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Abstract of the Dissertation 

Innovations in High Dimensional Data Exploration, Representation and Generation 

by 

Bing Wang 

Doctor of Philosophy 

in 

Computer Science 

Stony Brook University 

2016 

 

Data with many attributes have become commonplace in a wide range of domains. In these 

data, the most interesting relations are often multivariate and are generally confusing to most 

people. Efforts have been made to design proper tools to recognize those high dimensional 

relationships reliably but those tools are often far off from making use of the innate 3D scene 

understanding capabilities of the human visual system.  

We present a framework that eases this barrier by design, called the Subspace Voyager. It 

decomposes a high-dimensional data space into a continuum of generalized 3D subspaces. 

Analysts can then explore these 3D subspaces individually via the familiar trackball interface 

and use additional facilities to smoothly transition to adjacent subspaces for expanded space 

comprehension.  

On top of the Subspace Voyager, we propose a novel 3D shaded shape representation for non-

spatial data. This representation visualizes data matrices in the most natural 3D forms that 

include depth cues, such as occlusion, shading, perspective distortion, shadows, and so on. Our 

user study suggests that mainstream users prefer shaded displays over scatterplots for visual 

cluster analysis tasks. And further, our experiments also provide evidence that 3D displays can 

better communicate spatial relationships, size, and shape of clusters. 

When designing those tools, we often had difficulties acquiring proper testing data. We 

therefore propose an interactive data generation tool – SketchPadN-D. The core concept in our 

SketchPadN-D is WYSIWYG (What You See Is What You Get) because it allows users to 

generate dataset in the same interface they use to visualize it such that they do not need to switch 

back and forth between data manipulation and visualization tools.  
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CHAPTER 1  

INTRODUCTION 

Data with many attributes have become commonplace in a wide range of domains, such as 

science, business, medicine, etc. In these data, the most interesting relations are often 

multivariate, and gaining proper tools to recognize these relationships reliably is still an active 

area of research. While automated analysis can be useful in finding some of the high-

dimensional patterns, adding the human into the loop can break ties and can also help discern 

patterns in confounding and noisy data settings that can benefit from the intricate reasoning 

faculties of human domain experts. However, we are still far off from having effective visual 

tools for high-D data analytics that make the best use of the innate capabilities of the human 

visual system and at the same time also observe its limitations. 

The human retina contains about 7M cones and 100M rods. This is roughly equivalent to a 

2.5k×2.5k pixel color camera and a 10k×10k pixel grey level camera. Looking at today’s 

technology, the resolution of consumer-level cameras matches or will soon match the resolution 

of the human eye. But can cameras recognize 3D objects? They surely cannot – even when we 

assemble two of them into a stereoscopic pair akin to the configuration of the human visual 

system. This is because the power of the human visual system is not the density of its retinal 

neurons – it is the massive processing that follows the image acquisition. Or better, the ability to 

rapidly index and interpolate a vast database of pre-stored 3D models of the world that we have 

acquired from early childhood on. It was Hermann von Helmholtz [34], who in the 19th century 

performed the first modern study of visual perception. When von Helmholtz examined the 

human eye he concluded that they could not aid humans in the perception of 3D shapes directly. 

And indeed, as was already suspected by Helmholtz, it was later scientifically shown that human 

perception of the 3D physical world we live in is learned during infancy. During this time an 

unconscious inferential chain is established which is used to transform the input coming from the 

eye’s optical system into the perception of 3D shape and relations. These neural circuits can not 

only make inferences about 3D shapes and topologies, but also resolve complex patterns and 

textures. 

This system served us very well for 3D visualization tasks, such as the search for tumors in 

medical volume renderings or the quest for vortices in a fluid flow volume. But it is overloaded 

when it is asked to look for features in a high-dimensional (N-D) dataset. The human visual 

system has just not built the circuitry required to recognize high-dimensional objects. One 

approach to aid humans in the task of comprehending and navigating high-dimensional space is 

to serialize it into three-dimensional subspaces. However, the number of such subspaces suffers 
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from combinatorial explosion and so computational guidance is needed to navigate the maze. So 

are we out of luck to ever see “N-D”? Indeed we may be so with conventional means, but we can 

take advantage of our complex neural circuitry and try to build visual aids that build on models 

and concepts we have learnt to use in the past and so feel natural and familiar when applying 

them to N-D visualization tasks. Stereo vision and motion parallax (objects closer to the viewer 

moves faster than the object further away) are two great examples. Especially the latter is an 

interesting concept since we can easily facilitate it on the computer, via interaction, without the 

need for special glasses. 

In this dissertation, we describe a web based framework and interface that is inspired by the 

above mentioned ideas, called the Subspace Voyager [94]. It serializes the exploration of high-D 

space into a continuous travel along a string of generalized 3D subspaces. This serialization 

allows us to abolish the complex interactions and representations that are often typical to high-D 

space exploration tools and replace them with paradigms familiar to most people, such as 

trackballs, maps, and word clouds. Our interface uses these to help users explore the generalized 

3D subspaces, navigate the continuum of 3D subspaces, and assess the relevance of individual 

attributes for a given subspace, respectively. Our Subspace voyager can also automatically 

optimizes views in a close range according to user specific criteria, and this provides the users 

with the views that are truly interesting to them.  

The simplicity gained through the 3D subspace decomposition comes at a price – the extent of 

the transformations defined on such a restricted subspace is limited and may not reach far 

enough to generate a projection in which a pattern of current interest is well expressed. To enable 

a reach beyond these limits we have augmented the trackball with extra capabilities that allow 

users to “chase” the discovered patterns by moving to adjacent 3D subspaces via simple mouse 

interactions. In this way patterns can be observed that are truly multivariate and not restricted to 

a single 3D subspace. 

We strive to make the interactions our Subspace Voyager offers as familiar and intuitive as 

possible. For example, we let the users to use simple mouse movement to rotate the trackball, let 

them to add explored views in a familiar map setting and let them drag and drop previous views 

back to the main exploration area for further inspection. What’s more, in order to offer the users 

the ability to present their findings to other people in a continuous fashion, we include a 

‘presentation mode’ in our framework that displays the key findings by animating the transient 

path. 

The Subspace Voyager allows us to explore the high-dimensional data and understand high-

dimensional relationships by creating motion parallax via interaction. Motion parallax offers an 

illusion of a third dimension which is used to tell close and distant objects apart. This dimension 

is what is referred to as ‘depth cue’. Since we already down project the data to a 3D space, can 

we make use of some other forms of depth cues such that 3D cognition alone, instead of a series 
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of interactions, to analyze the data?  The problem with high-dimensional data is that they lack 

this kind of depth cues which allow us to appreciate shapes in 3D volume renderings.  

We tackle this problem by using the Marching Cubes algorithm [60] to extract the 3D shapes 

of the data density fields and render these shapes using advanced computer graphics techniques, 

instead of operating on the data points directly. We propose a novice non-spatial data 

representation – the 3D Shaded Shape Representation [93]. We also use other depth and shape 

cues, such as shading, shadows, depth of field, transparency, and the like, and control them via 

interaction.  

Information visualization deals mostly with non-spatial data which can be multivariate. So 

one might say that adding a third dimension for the visualization of these data only offers 

insignificant gains when the number of variables is on the order of 10s, 100s, or even 1,000s. 

While this is a valid argument, it is not the reason why we advocate for 3D graphics. Rather, we 

advocate for it since, as the wide popularity of 3D movies and 3D shaded bar and pie charts 

readily show, 3D graphics is more appealing and potentially more engaging to general users than 

plain 2D graphics. And furthermore, due to the innate 3D reasoning capabilities of the human 

visual system, 3D renderings can also potentially facilitate better data understanding. We 

successfully tested both of these hypotheses for the research through former user study. 

One problem we realized when testing the Subspace Voyager was that it is sometimes hard to 

acquire real world data that fully meets the evaluation goals and artificial data specifically 

designed for certain testing purpose would be preferred. What’s more, even real datasets could 

be found, editing would still be recommended before bringing them into the testing circle.  

Proficient users could use statistical languages, scripts or software such as R or Matlab to 

generate data. But this is a tedious procedure and they need to be very careful the entire time. 

Any small mistake could lead to an entirely wrong dataset and without much visual aid, fixing it 

could be very difficult. For general users, this task would even feel like mission impossible. 

There are some tools for users to design data, but to our knowledge there’s no such tools for high 

dimensional data generation. 

Hence, we propose a sketching based data generation tool – SketchPadN-D [95]. It’s based on 

the dynamic scatterplot interface [60] and allows users to simply sketch out what they want on a 

2D plane.  A 2D intermediate dataset is generated based on this sketching. Such a plane can be 

either axis-aligned or non-axis-aligned. For the former, we randomize the values for the 

undefined dimensions and combine them with the 2D intermediate data. For the latter, we build a 

new coordinate system based on the two selected non-axis-aligned axes using Gram Schmidt 

Orthonormalization process [31], treat it the same as the axis-aligned case, generate the data and 

then rotate the data back to the original data space. After this data generation step, users can 

modify the initial data, such as brushing out non needed parts or fixing editing errors, and use 
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either a scatterplot matrix (for axis-aligned case) or a series of user selected arbitrary views (for  

non-axis-aligned case), to monitor the effect. 

The main advantage of this tool is the commonly separated two steps - data generation and 

data visualization – are tightly linked here. This would give users more control over what is 

going on and thus more rapid data generation. Users could also use the same interface to edit 

data – even real world ones.  

The remainder of this dissertation is organized as follows. Chapter 2 reports on background 

information and related work. Chapter 3 presents a study we’ve conducted on the intrinsic 

dimensionality. Chapter 4 presents a new interactive data analysis tool that allows users to 

traverse between salient subspaces in the high dimensional space. Chapter 5 describes a novel 

non-spatial data representation which fully utilizes 3D rendering techniques and feels more 

natural and appealing to general users. Chapter 6 introduces a sketching based high dimensional 

data generation tool where users can design the data in the same interface where it is also 

visualized. Chapter 7 summarizes our works and points to the directions of the future work.  
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CHAPTER 2  

BACKGROUND 

Analyzing high dimensional data is an inherently difficult task. We human beings are not trained 

for reasoning with anything that has more than three dimensions and a lot of well performing 

techniques in low dimensional space would probably not working in high-dimensional space. 

The phrase ‘curse of dimensionality’ [11] vividly depicts this phenomenon and it also describes 

the fact that limitation of the variance of the distribution of pairwise distance versus the 

minimum pairwise distance goes to zero as the dimensionality grows to infinity [2][25]. 

Therefore, when dealing with high dimensional data, extra effort should be made. 

Visualization has always been a good tool for data analysis, especially high dimensional ones. 

Visualization has been defined as “the use of computer-supported, interactive visual 

representations of data to amplify cognition” [13] and “The purpose of visualization is insight, 

not pictures”. It is more intuitive looking at a picture and deducts some knowledge from it than 

barely looking at rigid numbers. When visualization is integrated into the whole reasoning chain, 

this process is call “Visual Analytics”.  

Visual Analytics dates back to the 18th century when Dr. John Snow used a map to visualize 

the outbreak of Cholera [120]. The newer applications of visual analytics are ubiquitous, such as 

business intelligence [84], health care [73][104], finance [24] and so on. Kang [42] et al 

evaluated how visual analytics can help investigative analysis. Keim et at. [43][44][46] in their 

books described in detail what visual analytics is, what methods should be used, what its 

application areas are and what the challenges are. To summarize, in order to analyze data 

visually, the user has to have the required domain knowledge, to collect the data, to assimilate 

the data, to visualize the data and as the last step, to do computational analysis. The three main 

tasks are clear –visualize the data, analyze the data and obtain the data. For high dimensional 

data, the challenges are: what visualization paradigm should we use that best represents the 

underlying features of this data? What techniques we should apply that best facilitate the users 

when reasoning with the data given its visualization? If we have designed a good visual analytics 

tool but there is no testing data available, how can we easily generate high dimensional data? 

2.1 VISUALIZE HIGH DIMENSIONAL DATA  

There are various visualization techniques that have been applied in the high dimensional space. 

Parallel coordinates [38] is a famous one. It represents the data points as polylines crossing a 

series of parallel axes. This essentially unrolls the high-dimensional space into a serialization of 
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axis pairs and so gives good visual access onto the space. However, a shortcoming of parallel 

coordinates is that over plotting can become a significant problem once the number of data 

points grows. And also, the ordering of axes can have a significant influence what patterns can 

be seen, especially when it comes to correlation [39][102]. Radviz [35] is a non-linear multi-

dimensional visualization that embeds points inside a circle. Its position is decided using 

physical method: suppose there is a sprint coming from each dimension holding the point, where 

it would finally stops. The Self Organizing Map [51] not only reduces the dimensionality of data, 

but also maps the similar items together. It is actually a neural network method, and its 

organization is achieved by competing for the representation of the samples. Star coordinates [41] 

organizes axis in a cylindrical way and each point’s value on the star coordinates is simply the 

projection value onto each dimension. It is good since it uses a single visual cue, uses minimal 

visual representation and supports interaction. Heat map [48] uses different color to represent 

different values in each cell. Pixel bar chart [45] uses pixels within a traditional bar chart to 

represent detailed information.  

Most of the above mentioned visualizations transform the data non-linearly and the actual 

shapes or trends of the data are not preserved. We therefore lay the foundation of our work 

mainly on the linear one - the scatterplot[121]. It is a projection of the data into an orthogonal 

2D basis. In this projection, clusters and their shapes are relatively easy to see, as well as 

correlations [57]. This is the case when the data dimensionality is low – no occluding could 

possibly be introduced. But when the number of dimensions reaches a certain large number, 

points that are distant in high-dimensional space may project into similar locations and this can 

lead to ambiguities. One possible solution to this is to use the Scatterplot Matrix (SPLOM [32]). 

It compares scatterplots constructed with different bases and arrange them into a matrix. SPLOM 

is good in the sense that it helps discovering patterns existing in pairwise data dimensional 

projections, but it would fail to spot any non-axis-aligned pattern and when the dimensionality is 

very high, integrate information from such a mosaic of plots would be impossible. 

Another solution is to use some interface to adjust the compositions of the projection axis and 

allow it to display projections on arbitrary hyperplane. Biplot is such an example. It visualizes 

the data dimensions [53] along with the data points in a scatterplot styled display. The problem 

with BiPlot is that the dimension vectors are overlapping with the actual data and some 

information can be hidden. If this interface also allows users to dynamically change the 

projection axis [69][94], it will essentially help users to traverse in the high dimensional space. 

We will elaborate on this method later in section 2.2.    

The various paradigms can also be integrated. Schmid and Interberger [78] combine 

scatterplot matrices, parallel coordinates, and other displays together. Wong et al. [1] combine 

and link parallel coordinates with scatterplots matrices, and Yuan et al. [100] integrate parallel 

coordinates with scatterplots, using MDS to convert multiple axes into a single subplot. 
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So far, the visualizations we talked about are only using 2D rendering techniques. This is 

understandable because we are dealing mostly with non-spatial data and a third dimension does 

not come with it. A possible historical reason for the rare use of 3D techniques in information 

visualization is that 3D rendering techniques were not well developed, if existing at all, when 

information visualization came into existence. Already back in the 10th century, people started to 

use curved lines to trace planetary trajectories [26] and the modern concepts of information 

visualization (e.g. pie chart, bar chart and histogram) were also already invented in the early 18th 

century. There are a few exceptions such as 3D scatterplots, cone tree [75] and cushion tree map 

[97]. But to our knowledge, there hasn’t been any information visualization paradigms that fully 

use the 3D graphic rendering techniques.  

When it comes to scatterplot, our work [92] pointed out that the third dimension can add a 

significant amount of information to the visualization of high-dimensional data. Adding 3D 

information is essentially about adding depth cues to the scene. This dimension can also fully 

utilize the innate ability of humans to reason with 3D objects. Adding 3D information is 

essentially about adding depth cues to the scene. 

A relatively small number of depth cues are binocular [96] and they capitalize on the 

convergence of our two eyeballs. Binocular depths cues are most effective for close-up vision, 

such as for threading a needle [96]. For objects further away, monocular depth cues are more 

relevant. In visualization the reliance is mostly on monocular depth cues since binocular depth 

cues require stereoscopic equipment such as 3D glasses or virtual reality equipment which is not 

always readily available. 

 There are many monocular depth cues, such as linear perceptive, occlusion, relative size, 

accommodation, atmospheric, and shading. Linear perceptive makes use of the sizes or textures 

of objects to reveal their relative distances to each other. Occlusion exploits the overlap between 

objects or the shadow created by the light being blocked. Atmospheric cues add imaginary fog 

into the scene, while accommodation cues render objects in the back less sharp or change the 

clarity of objects by evaluating if they are in the viewer’s focus or not. The shading cue 

capitalizes on the fact that the visual system typically assumes that lighting comes from above, 

and the amount of light reflected at surfaces towards the eyes determines the perceived shape and 

depth of the geometric surface detail [58]. This process is called shading and can range from 

simple diffuse and specular shading to global illumination [81].  

2.2 DISAMBIGUATE HIGH DIMENSIONAL SCATTERPLOT 

In order to reason with the visualization, the visualization itself has to provide clear and 

meaningful information. As is discussed in section 2.1, when visualizing high dimensional data, 

ambiguities often exist. Numerous research effort has been spent on how to disambiguate high 
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dimensional visualizations – in our case, scatterplots. Those can be divided into two directions – 

the automatic methods and the manual approaches. 

2.2.1 AUTOMATIC METHODS 

The simplest automatic method to provide the users with a set of scatterplots is the Randomized 

Projection [6]. It has been demonstrated as a simple and computationally efficient method to gain 

a good overview of a high-dimensional space. It has been successfully applied in text, image and 

audio data processing [70][12][54] as well as in visual analytics [6]. It produces truly arbitrary 

views which may contain a varied amount of structures, and are ready to be examined later.  

There are other automatic layout optimization approaches seek to generate a view that best 

fits certain criteria. Given the many possible scatterplot projections it is helpful to design some 

quality criteria by which to select the most informative views. Research in that area has mainly 

addressed the selection of axis-aligned views in the presence of clustered or classified data. Sips 

et al. [82] define a class consistency measure that favors views based on the distance to the class 

center of gravity or on the entropies of the spatial distributions. Tatu et al. [86] assess quality by 

measures on density, histogram, and class separation. The rank-by-feature system by Seo and 

Shneiderman [79] allows users to specify certain statistical criteria, such as correlation, 

scatterplot uniformity, etc. Schäfer, et al. [77] describe a quality metric that focuses on structural 

preservation and visual clutter avoidance. GGobi uses projection pursuit [27] to generate 

interesting multivariate projections [55]. We use a popular evolutionary algorithm – the ant-

colony algorithm [19] – in conjunction with view quality metrics such as stress, class density, 

class separation, holes, and central mass. SeeDB [90] uses a subset of the data and recommend 

the user with some views the system deems meaning.  

A problem with having many projections is also how to manage and organize them. Several 

map-based diagrams have been proposed in the past [69][102]. We add to this research by 

presenting a map that is dedicated to the management of generalized subspaces in our Subspace 

Voyager [94].   

Layout optimization schemes, such as Multidimensional Scaling (MDS) [50], Linear 

Discriminant Analysis (LDA) [64], and t-SNE [61] can help overcome the ambiguity problems 

of projective scatterplot displays. All have found ubiquitous use in visualization (e.g. 

[15][37][71]). MDS, for example, seeks to generate a layout where the pairwise distances of 

points in 2D are relatively similar to those in high-D space. 

2.2.2 MANUAL APPROACHES 

Whatever the objective function and optimization method is, trying to warp high-dimensional 

space onto a 2D plane is inherently ill-posed since it cannot fully capture multivariate data 

variations. Distortions are the consequence, which can lead to problems with correctly 
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recognizing the true shape and appearance of clusters, and assessing point-wise distances, far and 

near. Therefore manual interaction is highly recommended in high dimensional data analysis. 

This idea of interaction is not new. In star coordinates where data points or clusters that may 

originate from distant N-D locations may still be mapped to the same 2D area due to their similar 

dimension vector sums. Hence, users can manually rotate and scale data axes to isolate these 

points. Some other methods have exploited the concept of ‘dynamic transition’. ScatterDice [21] 

restricts the transitions to motions between two SPLOM tiles, giving rise to a dynamic 3D point 

cloud projection display. The popular GGobi system [85] is derived from the seminal concept of 

the ‘Grand Tour’ [8], also employs trackball controls to smoothly transit between different 

subspaces. They all enable users to change the projection basis in a continuous fashion, 

effectively using motion parallax to resolve depth and relative distance. In the realm of health 

informatics [104], has successfully used different interactions to help the doctors quickly 

understand patient history and make the diagnose. In sport analysis, Shao et al. [80] has used 

visual interactive search to analyze soccer trajectories.  

A recently work by J. Nam and K. Mueller [69] presents the system of ‘dynamic scatterplot’. 

It has fully embraced this paradigm, enabling projections from any orientation. Its interface is 

sketched in Fig. 1. This navigation pad consists of a polygon with S vertices, where S is the 

cardinality of the subspace. Each vertex corresponds to a native dimension and so the subspaces 

are axis-aligned (and not generalized). It should also be noted that for S>3 different orderings of 

the vertices are required to allow users to access the full projection coverage of the subspace. 

The interior of the polygon shows two disk-shaped pointers. They represent the two (N-D) 

basis vectors into which the N-D point cloud is projected for display using the vector dot product. 

In [69] these two vectors are called Projection Plane Axis (PPA) vectors – the x-axis is PPA-x 

Fig. 1. Pad-based navigation interface. In this case, the PPA-x vector is dominantly a combination 
of dimension axis DA 5 and DA 6, while PPA-y is dominantly a combination of DA 6, DA 1, and 
DA 2. 
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and the y-axis is PPA-y. The vectors are computed from their position in the pad polygon via 

generalized Barycentric coordinate interpolation [65]. 

In the pad-based interface users can control the influence a dimension has on the display by 

moving either the PPA-x or PPA-y pointer towards that dimension. This essentially spreads out 

the projected point cloud along that dimension and so reveals the dimension’s ability to separate 

the data points into different populations/clusters. Then, by moving the other pointer towards 

another dimension bivariate relationships can be visualized. Finally, when moving either or both 

pointers midway toward a set of dimensions users can appreciate their combined effects due to 

multivariate relationships. 

While this pad-interface allows unprecedented control in the dynamic manipulation of the 

view onto the N-D point cloud the need to separately manipulate two pointers in sequence 

suffers from a certain lack of ergonomics. A further shortcoming is that users is required to keep 

track of two interfaces at the same time: (1) the visualization window that shows the moving 

point cloud along with a projected coordinate system, and (2) the pad that controls the orientation 

of the projection plane. In practice, a user may observe one or more dimensions that should be 

emphasized in the display as they might offer the potential to break up a cluster into two or more 

components. In that case this user would need to first check the pad in what direction a pointer 

should be moved and also which one, and then perform the move. In the present work, we aimed 

for an interface that makes this operation more straightforward by embedding the navigation 

controls directly into the display. Enhancing the well-known trackball interface with N-D 

navigation capabilities seemed to be good choice towards this goal.  

We should note that the automatic and manual approaches can be integrated. For example, 

Albuquerque et al. [3] combines quality metrics with the brushing technique to analyze high 

dimensional data. Our work [94] also uses the Ant Colony Optimization [19] algorithm powered 

projection pursuit to optimize views along with various interactions to let users explore the data.  

2.2.3 SUBSPACE ANALYSIS 

Both the automatic and manual methods we talked about are indeed endeavors to find 

meaningful subspaces in the high dimensional space where structures can be revealed.  Subspace 

clustering has been an active research area in the data mining community [49] but the focus was 

mostly on automated algorithms. In the field of visualization, one may distinguish the 

contributions by how much they rely on automated subspace analysis methods. On one end are 

the works by Yuan et al. [101] and Kim et al. [47]. The former proposes a visual subspace 

exploration approach that focuses mainly on interactive dimension set selection and refinement 

and the latter proposes a system where users can drop data points into two different groups and 

the PPA axes would be updated automatically.  On the other end are the approaches that first 

perform an automated subspace clustering step and then visualize the results either as small 
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multiples of scatterplot projections, as MDS layouts, or view the dimensions that define the 

subspaces [9][87]. Some other approaches [59] also used animation to traverse between the 

generated subspaces to see how those are related. We also first perform clustering but then use 

the results to provide guidance in the subsequent visual exploration of the actual subspaces, 

focusing on cluster appearance and relations which can be helpful in the visual reasoning 

process. 

2.3 GENERATE HIGH DIMENSIONAL DATA 

Synthetic data is useful in many fields. There are software for users to edit existing data, such as 

OpenRefine [122] or the visual framework Baudel [10] provides to edit large datasets. But using 

those tools it is not possible to produce a new dataset from scratch. To produce brand new data, 

if users are familiar with the setting, traditional practice is to run a script specifying certain 

criteria, otherwise, statistical software or environment such as R or Matlab could be used. Some 

data generation algorithms have also been proposed, they can be based on constraints [18] [29], 

genetic algorithms [72] [2] [3], optimization and search [62][89][67] or chaining approach [23]. 

When it comes to sophisticated data generation software,  [5] proposes a way to generate high 

dimensional data by inserting points in 2D projection and back projecting it to the original data 

space. This method sounds plausible until users embed those points back to 2D projection – a 

significant distortion could be noticed. The reason is when performing back projection, only 

locally linear embedding is guaranteed and it’s therefore not WYSIWYG. Albuquerque et al. [4] 

recently presented a system for high-dimensional dataset generation. It is based on drawing and 

is interactive, but it can only generate up to 2.5D dataset and when applying this tool in the high 

dimensional space, its limitations cannot be neglected. But to our knowledge, there is no specific 

tool – let alone sketching based tool – for complex high dimensional data generation. 
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CHAPTER 3  

STUDY ON INTRINSIC DIMENSIONALITY 

In order to quantitatively test if adding a third dimension in high dimensional data visualization 

is helpful, we studied a variety of real-world datasets and confirmed that the extension from the 

traditional 2D space to 3D space is indeed justified – most datasets we studied had clusters 

residing in subspaces with more than two significant principal components. This findings gave us 

the motivation to continue on the path of decomposing high dimensional space into a series of 

3D subspaces and analyze them. 

3.1 MOTIVATION 

Does 3D really make sense for data visualization? Or, more specifically, does it make sense for 

visual cluster analysis, which is a sub-field of visualization? This principal question might be 

framed in visual perception theory. As is discussed in the introduction, we human beings live in a 

3D world and our neural network is trained to observe, explore, analyze and reason with 3D 

objects and relations. Scientific visualization has long incorporated all three dimensions but for 

information visualization where non spatial data are being visualized, 3D methods are not wildly 

applied. The question is, would it be redundant to build 3D interactive analyzing system? Or 

current 2D visualization frameworks are enough? To answer this question, we designed a series 

of studies on the Intrinsic Dimensionality (ID). 

In this current research, we were particularly interested in finding out how appropriate the 

simple 3D display would be in practice. For this purpose we studied a variety of representative 

datasets to determine the ID characteristics of the subspaces in each. Subspace clustering can 

significantly reduce the ID of the data. It essentially decomposes the high-dimensional data into 

a composite of lower-dimensional independent phenomena, for which a 3D display or a 

transitional display that is not overly more complex might be sufficient. To find these subspaces 

we used the well-established DBSCAN clustering algorithm [22], augmented by a visual 

interface that gave us some insight into proper parameter settings to reach the different 

clusterings quickly.  

3.2 METHOD 

We do not assume any prior classification of the data. We consider each cluster a sub-space of 

the data. Here, a cluster is a set of -connected points where is the minimal distance a point 

must have to some other point in the cluster to also be part of this cluster. This property is not 

fulfilled by the k-means algorithm but is common in sub-space clustering. The outcome of this 
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clustering is a set of sub-spaces and associated shapes, each of which has a certain intrinsic 

dimensionality (ID). The ID determines the complexity of the shape display needed to visualize 

it. 

A classic method to discover the ID is Principal Component Analysis (PCA). If ID=2 then a 

conventional scatterplot will do. On the other hand, if ID=3 then a simple 3D display is sufficient. 

And finally, if ID>3 we need to allow users to transition between multiple 3D shapes, one for 

each distinct PCA vector set of three.  

To determine whether a 3D display would suffice for visual cluster analysis, we conducted a 

series of studies on a variety of unclustered datasets, ignoring any classification when available. 

The workflow of our analysis is depicted in Fig. 2. As a first step, for each dataset, we performed 

density-based spatial clustering via DBSCAN to obtain a set of clusters of arbitrary shape. Here, 

the tuning of the DBSCAN parameters can give rise to different numbers of clusters. Next, we 

ran Principal Component Analysis (PCA) on each cluster and used the elbow method/scree plot 

to estimate their intrinsic dimensionality. We also compared the PCs of different clusters via the 

cosine similarity to determine if the clusters exist in the same or different subspaces. In the 

following sections we describe our study methodology in detail and discuss its results. 

 

Fig. 2. Study workflow. We firstly performed density-based spatial clustering via DBSCAN to obtain a set of clusters of 
arbitrary shape.  Next, we did PCA on each cluster and used the elbow method/scree plot to estimate their intrinsic 
dimensionality. We also compared the PCs of different clusters via the cosine similarity to determine if the clusters 
exist in the same or different subspaces. 
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  3.2.1 DBSCAN 

DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise and is one of 

the most widely used and cited data clustering algorithms. Its key concept is to define clusters 

based on the notion of reachability. Gven two points, p and q, if the distance between them is 

less than ε and q has a sufficient number of neighbors within the ε distance, we say p is directly 

density-reachable from q. On the other hand, p and q are density-reachable if there exists a 

sequence of points 𝑝1 ,  𝑝2 ,  𝑝3  … 𝑝𝑛  where 𝑝𝑘+1  is directly density-reachable from 𝑝𝑘  (k = 

1,2,3…n-1), then 𝑝1 = p and  𝑝𝑛 = q. Finally, if there is a third point r from which both p and q 

are density-reachable, p and q would be density-connected. Every point-pair inside one cluster 

found by DBSCAN must be density-connected, and if a point is density-reachable from any 

point within one cluster, it also belongs to that cluster.  

DBSCAN requires two parameters: the neighborhood radius ε and the minimum number of 

points (minPtn) that a cluster should at least have. It also uses a flag to distinguish whether a 

point has already been processed or not. DBSCAN starts with an arbitrary yet unvisited point and 

finds all points that are no further than ε to it. If this number of points is greater than minPtn, a 

new cluster is started else the point is classified as noise. If a cluster is formed, all discovered 

points are added to the starting point’s neighbor list. Next, for every point in the list (note that the 

elements of the list are dynamically added), its ε-neighborhood is also retrieved. If it is also 

dense (the number of points being larger than minPtn), all of its ε neighbors are also added to the 

list. This process continues until no density-connected points can be further discovered. Then 

DBSCAN finds the next unvisited point and repeats this process.  

DBSCAN is not parameter free – it requires users to choose the proper combination of ε and 

minPtn. DBSCAN is quite sensitive to these two parameters, but there is no general guideline on 

how to set them. And so, finding the settings that resulted in a defined change typically required 

much time consuming trial and error.  

A first solution could be to run all possible setting as a background process and survey the 

clusterings that result. But this can take a considerable amount of time for reasonably sized 

datasets. Instead, we designed two visualizations that convey some idea about the relationships 

in the data and so provide some assistance in choosing the parameters  

The first of these visualizations is a distance histogram (Fig. 3(a)) which shows all pairwise 

distances between points. The purple bars are the normal histogram while the blue bars are the 

cumulative histogram which shows the setting at which the sharpest changes occur. These 

histograms convey the distance distribution of the data and allow users to pick specific ε-values 

that will likely give rise to a change in the clustering.  
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The second visualization is a 2D heat map (Fig. 3(b)) that visualizes the pairwise distances 

over the number of neighbors that are within each such distance. We constructed this plot by 

visiting each point, counting the number of neighbors for each discretized ε-setting, and 

incrementing the corresponding ‘number of neighbors’ bin of the plot. The plot allows users to 

estimate how many points would have a certain number of neighbors residing within a certain ε-

distance, which can be helpful when choosing minPtn (and ε). In this particular example, we 

learn that the relationship is a fairly narrow curve, and so this plot saves users the considerable 

amount of time trying out minPtn-ε combinations that fall into the vast blue areas of the plot. 

3.2.2 INTRINSIC DIMENSIONALITY ANALYSIS 

Following DBSCAN, we perform PCA on each discovered cluster. PCA uses an orthogonal 

transformation to find linear uncorrelated variables (the PCs) that describe the data. The strength 

of each PC vector – the eigenvalue – determines the amount of variation in the data it can  

 

(a) Distance histogram. This shows all pairwise distances between points. The purple bars are the normal 
histogram while the blue bars are the cumulative histogram which shows the setting at which the sharpest changes 
occur. 

 

(b). Heat map describing the number of points that have a certain number of ε-neighbors.  We constructed this plot 
by visiting each point, counting the number of neighbors for each discretized ε-setting, and incrementing the 
corresponding ‘number of neighbors’ bin of the plot. 

Fig. 3. . DBSCAN visualizations 
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explain. Normalizing these eigenvalues by the overall sum of eigenvalues expresses this strength 

in percent.  

After obtaining these normalized eigenvalues and discarding those with values less than 0.001 

we create a scree plot – an ordering of the eigenvalues from largest to smallest. The intrinsic 

dimensionality can then be estimated by locating the scree plot’s elbow or knee – the point on the 

scree plot curve at which it stops to decrease significantly [88]. A simple metric to find this 

elbow is to draw a line from the first to the last point of the curve and then find the point that is 

farthest away from that line (see red circle in Fig. 4).  

While the elbow criterion provides a clear and deterministic way to decide the intrinsic 

dimensionality, we (and others [91]) found that often the elbow is not overly well expressed. The 

curve only slowly bends and a slight variation of the elbow metric can change its location 

drastically. Instead, it might be more appropriate to also look at the percent contribution of the 

eigenvalues. While we have not formally tested this, a contribution below a significance value of 

0.05 (5%) may not account for much variation in the visual projection display. For the cluster 

plotted in Fig. 4this would then point to an intrinsic dimensionality of 4-5.  

Finally, we also conduct a similarity analysis of the subspaces found for a given dataset. We 

compute the cosine similarity for each significant PC pair for the two associated subspaces, and 

their normalized sum indicates if the two clusters reside in the same or similar subspace, or far 

apart.  

3.3 CASE STUDIES 

We studied a variety of datasets, most from the UCI Machine Learning Repository 

(http://archive.ics.uci.edu/ml/). Below we present three representative results from this study. For  

 

Fig. 4. Elbow method.  The intrinsic dimensionality can be estimated by locating the scree plot’s elbow– the point on 
the scree plot curve at which it stops to decrease significantly. 

http://archive.ics.uci.edu/ml/
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each dataset, we first decide the intrinsic dimensionality of the clusters using the scree plot and 

then compute their cosine similarity. 

3.3.1 BOSTON HOUSING DATA 

This dataset [123]describes housing values in suburbs of Boston. It has 506 instances with 14 

continuous attributes. We set ε equal 0.5828 and minPtn to be 12. After running DBSCAN, we 

obtained three clusters. Fig. 5(a) shows the corresponding scree plot.  

We observe that for all three clusters the amount of variance covered by the third PC 

dimension is at or above 5%, and it is at or above 10% for clusters 1 and 2. Only cluster 3 has a 

clear elbow at PC=3. Cluster 1 has it there as well, while cluster 2 has it at PC=4. Hence, a 3D 

display will be appropriate for all subspaces. 

Fig. 5(b) shows the value histogram for PC1 and the table in Fig. 5(c) presents the cosine 

similarities between pairwise PCs. We observe that for clusters 1 and 2 the similarity of their 

most significant PC, PC1, is 0.91, while for the remaining three PCs, the similarity drops only 

slightly to 0.75, 0.56 and 0.82, respectively. On the other hand, PC1 for cluster 3 is quite  

                                   (a) Scree plot                                                                                    (b) Value histogram 

 Similarity (cluster 1 & 2) Similarity (cluster 1 & 3) Similarity (cluster 2 & 3) 

PC1 0.91 0.15 0.13 

PC2 0.75 0.48 0.67 

PC3 0.56 0.38 0.49 

PC4 0.82 0.52 0.52 

                                                        (c) Table: similarity between PCs 

Fig. 5. Boston housing dataset. The scree plot in (a) shows the intrinsic dimensionality for all three clusters.  Only cluster 3 
has a clear elbow at PC=3. Cluster 1 has it there as well, while cluster 2 has it at PC=4. Hence, a 3D display will be 
appropriate for all subspaces. (b) is the value histogram for PC1 and the table in (c) presents the cosine similarities 
between pairwise PCs. We notice PC1 for cluster 3 is quite different from the PC1 of the other two clusters and the 
remaining PCs also only have a similarity of about 0.5 with those of cluster 1 and 2. We hence conclude that (1) cluster 3 
resides in a rather different subspace than cluster 1 and 2, and (2) the subspaces of cluster 1 and 2 are somewhat closer.  
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different from the PC1 of the other two clusters (0.15 and 0.13, respectively), and the remaining 

PCs also only have a similarity of about 0.5 with those of cluster 1 and 2. We hence conclude 

that (1) cluster 3 resides in a rather different subspace than cluster 1 and 2, and (2) the subspaces 

of cluster 1 and 2 are somewhat closer. 

3.3.2 IMAGE SEGMENTATION DATA 

This dataset [117] is composed of feature vectors derived from 1,200 3×3 image patches – 300 

random instances each from four image classes (Brickface, Cement, Foliage, and Grass). The 

feature vectors have 19 attributes (dimensions) which are statistical measures of the images, such 

as region centroid, region pixel count, density, hue, and others. The third attribute ‘region-pixel-

count’ is 9 for all instances. We removed it and are left with 18 all-numerical attributes. We set 

ε=0.321 and minPtn=47 and obtained five clusters.  

From the scree plot shown in Fig. 6(a) we find that for all clusters the amount of variance 

covered by the third PC vector is in the range of 10-15%, the elbow is at the 4th eigenvalue and 

the 5% significance is reached at the 4th and 5th. So again, a 3D display with transitioning  

                                     (a) Scree plot                                                                                 (b) Value histogram 

Similarity 
/ PC 

Cluster  

1 & 2 

Cluster  

1 & 3 

Cluster  

1 & 4 

Cluster  

1 & 5 

Cluster  

2 & 3 

Cluster  

2 & 4 

Cluster  

2 & 5 

Cluster  

3 & 4 

Cluster  

3 & 5 

Cluster  

4 & 5 

PC1 0.89 0.60 0.62 0.86 0.40 0.44 0.97 0.92 0.34 0.24 

PC2 0.33 0.37 0.69 0.70 0.33 0.36 0.59 0.45 0.29 0.90 

PC2 0.79 0.48 0.82 0.34 0.67 0.57 0.57 0.52 0.62 0.31 

PC4 0.32 0.63 0.65 0.56 0.56 0.74 0.55 0.74 0.56 0.52 

                                                             (c). Table: Similarity between PCs 

Fig. 6. Image segmentation dataset. From the scree plot in (a), we find that for all clusters the amount of variance covered by 
the third PC vector is in the range of 10-15%, the elbow is at the 4th eigenvalue and the 5% significance is reached at the 4th 
and 5th. So a 3D display with transitioning capabilities will be helpful. (b) shows the value histogram for PC1 and (c) presents 
the cosine similarities between pairwise PCs. Here we observe that probably the most similar clusters are cluster 1 and 5 as 
they have the most consistent PC vector similarities. Other clusters seem quite disparate.   
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capabilities will be helpful – a single 2D projection will not be able to capture the variances 

sufficiently. 

Fig. 6(b) shows the value histogram for PC1 and Fig. 6(c) presents the cosine similarities 

between pairwise PCs. Here we observe that probably the most similar clusters are cluster 1 and 

5 as they have the most consistent PC vector similarities. Other clusters seem quite disparate.   

3.3.3 ISDAC DATA 

The ISDAC dataset [103] is an atmospheric dataset fused from multiple sources and consists of 

221 data points, each a 33-dimensional vector composed of latitude, longitude, altitude, time 

stamp, temperature, and pressure and measurements on the cloud particles (cloud droplets 

presence, cloud particle concentration, etc.) and on aerosol particles (size and composition: soot, 

sulfate levels, organics, dust, sea salt, etc.). We set ε=0.7592 and minPtn=6 and obtained two 

clusters. Fig. 7 shows the results we obtained. We notice that at least three PCs are required to 

capture 90% of the data variance. The PCs for the two clusters are quite different (low cosine 

similarity values and very different PC1 value histograms) and hence the two clusters belong to 

entirely different subspaces.  

 

 

                                        (a) Scree plot                                                               (b) Value histogram 

 Similarity(cluster 1 & 2) 

PC1 0.143 

PC2 0.105 

PC3 0.276 

PC4 0.305 

                                                       (c)  Table: Similarity between PCs. 

Fig. 7.  ISDAC dataset.  We notice that at least three PCs are required to capture 90% of the data variance. The PCs 
for the two clusters are quite different (low cosine similarity values and very different PC1 value histograms) and hence 
the two clusters belong to entirely different subspaces.  

 



 

 

20 

 

 

CHAPTER 4 

THE SUBSPACE VOYAGER FRAMEWORK 

Analyzing high-dimensional data and finding hidden patterns is a difficult problem and has 

attracted numerous research efforts. Automated methods can be useful to some extent but 

bringing the data analyst into the loop via interactive visual tools can help the discovery process 

tremendously. An inherent problem in this effort is that humans lack the mental capacity to truly 

understand spaces exceeding three spatial dimensions. To keep within this limitation, we 

describe a framework that decomposes a high-dimensional data space into a continuum of 

generalized 3D subspaces. Analysts can then explore these 3D subspaces individually via the 

familiar trackball interface, but using additional facilities to smoothly transition to adjacent 

subspaces for expanded space comprehension. Since the number of such subspaces suffers from 

combinatorial explosion, we provide a set of data-driven subspace selection and navigation tools 

 

 Fig. 8. Subspace Voyager interface. It has three main components: the Subspace Explorer (SE), the Subspace Trail 
Map (STM) and the control panel. The SE is coupled with the trackball interface. It not only displays the data as a 
scatterplot, but it also allows users to visualize the current directions of the projected dimension axis vectors as labels 
placed outside its circular boundary. SE offers various interactions for users the exam the data.  The STM holds a set 
of views (and their parameters) that users may have found interesting during the exploration by embedding them in to 
a word cloud of attributes. The control panel allows user to set the various parameters and modes in the system 

Subspace Explorer 

Subspace Trail Map 

Control Panel 
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which can guide users to interesting subspaces and views. A subspace trail map allows users to 

manage the explored subspaces, and keep their bearings and return to interesting subspaces and 

views. Both trackball and trail map are each embedded into a word cloud of attribute labels. We 

demonstrate our system via several use cases in a diverse set of application areas, such as cluster 

analysis and refinement, information discovery, and supervised training of classifiers. We also 

conducted a user study to evaluation the usability of the various interactions our system provides. 

4.1 MOTIVATION 

High-D space is generally confusing to most people since humans do not possess the innate 

neural network to recognize and reason with high-D objects. Spatial reasoning skills are acquired 

in early childhood where often haptic and visual experiences are combined to build 3D mental 

models of the real world. Since high-D objects are largely mathematical and do not occur in a 

tangible form, the associated cognitive reasoning chains are not developed in these critical early 

years. This lack of reasoning faculties represents a barrier for most people when dealing with 

high-D data later in life and so deprives them of the chance to find more insight in these data.  

We describe a framework and interface that eases this barrier by design, called the Subspace 

Voyager. It serializes the exploration of high-D space into a continuous travel along a string of 

generalized 3D subspaces. This serialization allows us to abolish the complex interactions and 

representations that are often typical to high-D space exploration tools and replace them with 

paradigms familiar to most people, such as trackballs, maps and word clouds. Our interface uses 

these to help users explore the generalized 3D subspaces, navigate the continuum of 3D 

subspaces, and assess the relevance of individual attributes for a given subspace, respectively.  

The simplicity gained through the 3D subspace decomposition comes at a price – the extent of 

the transformations defined on such a restricted subspace is limited and may not reach far 

enough to generate a projection in which a pattern of current interest is well expressed. To enable 

a reach beyond these limits we have augmented the trackball with extra capabilities that allow 

users to “chase” the discovered patterns by moving to adjacent 3D subspaces via simple mouse 

interactions. In this way patterns can be observed that are truly multivariate and not restricted to 

a single 3D subspace.  

In some sense our approach is akin to that taken in an upcoming Indie video game, Miegakure 

[105] (itself inspired by the classic novel Flatland [1]) which enables 4D space travel by 

swapping one of the three current dimensions. However, we go significantly further than this 

game – our spaces are much greater than 4D and we also allow transitions in all dimensions 

simultaneously. Yet, it is encouraging that the entertainment industry sees fun in this type of 

space travel. It suggests that our interface might be fun and engaging as well, which will 

immensely benefit the analytics that is performed with it. 
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The 3D subspaces our system supports are general in the sense that they are formed by an 

arbitrary orthogonal axis system which are not necessarily axis aligned. As such they allow 

ample freedom for users to visualize high-D phenomena that are not aligned with a set of data 

axes. This, however, brings about a huge number of subspaces. To manage this complexity we 

provide a number of objective-driven search and clustering facilities that assist users in locating 

subspaces with interesting structures. 

When designing our interface we placed great emphasis on making the interactions as direct 

and intuitive as possible. Most exploration goals can be achieved by expressing them directly in 

the visualization, via simple mouse selections and transitions. At the same time, our framework 

is quite general and is readily applicable for many tasks and application areas that involve 

multivariate data diverse, such as cluster sculpting [68] and analysis, information discovery, and 

supervised training of classifiers, just to name a few.  

The contributions of our work are: 

 Propose a BiPlot [53] based display of high dimensional data but avoids the typical 

overlapping of vectors in BiPlot.   

 Implement different ways to interact with the data and to analyze the data in an exploratory 

fashion. 

 Apply Ant Colony Optimization Algorithm [19] to optimize views according to user specific 

criteria. 

 A Principal Component Analysis [40] based map records all important findings. 

 A presentation mode to let users present their finds via animation. 

4.2 SYSTEM OVERVIEW 

Fig. 8 shows the Subspace Voyager interface. It has three main components: the Subspace 

Explorer (SE), the Subspace Trail Map (STM) and the control panel, which allows users to set 

the various parameters and modes in the system.   

The exploration pipeline of the Subspace Voyager is outlined in Fig. 9. After loading the data, 

our system performs either Random Projection or Subspace Clustering and Principle Component 

Analysis (PCA) [34] to build the initial 3D subspace. The data is then projected onto this 

subspace and is displayed in the trackball embedded in the SE. There are different interactions 

users can perform on the trackball. The first one is to rotate the trackball while pressing down the 

mouse left button. This allows users to explore the current subspace. The second one is to change 

the weightings of data dimensions quickly by moving the mouse toward their labels displayed 

along the trackball while pressing down the right mouse button. This lets users jump to different 

subspaces and explore the data with a higher emphasis on one or more attributes of interest. 

Users can also tag points by brushing them into different colors. Our system can run Ant Colony 
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Optimization Algorithm (ACO) [19] to optimize views according to user selected criteria. At any 

time, users can save the current view in the trackball to the STM to keep track of interesting 

findings. Users can also bring any view in the STM back to the trackball by dragging for further 

exploration.  

Choosing meaningful subspaces for exploration is a key challenge in multivariate data 

analysis and much work has been dedicated towards this goal, as discussed in Section 2. We 

have implemented two such strategies: (1) randomization and (2) subspace clustering. On the one 

hand, our interface enables users to generate R (where R is user selectable) random 3D subspaces 

which are further optimized using ACO powered projection pursuit (see Section 5.4). We use the 

technique proposed by Anand et al. [6] to generate these subspaces. We then use view 

optimization to generate a scatterplot projection of the subspace and insert it into the STM. On 

the other hand, we also use clustering to generate a set of meaningful and salient subspaces. Here 

we assume, similar to Liu et al. [59] and also our own work [92], that each cluster forms a 

subspace on its own. We characterize each such subspace by its three principal components (PCs) 

Fig. 9. The workflow of our Subspace Voyager. It starts with projecting the input data onto the initial 3D subspace 
obtained either by Random Projection or Subspace Clustering and Principle Component Analysis (PCA). The projected 
data is displayed in the trackball in our Subspace Explorer (SE). Users can either rotate the trackball and explore the 
current subspace or change the weightings of data dimensions quickly to jump to different subspaces. Users can easily 
tag points by brushing them into different colors. Our system can run Ant Colony Optimization Algorithm (ACO) to 
optimize views according to user selected criteria. At any time, users can save the current view in the trackball to the 
Subspace Trail Map (STM) to keep track of interesting findings. Users can also bring any view in the STM back to the 
trackball for further exploration 
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obtained via Principal Component Analysis (PCA)[40]. We then optimize a 2D view from this 

3D subspace, insert it into the STM.  

We should also note that in a view that has the PC vectors as its basis, if two dimension 

vectors are very close, it means they are to some extent correlated. This is especially true when 

two dimensions both have large weightings in one significant PC – then these two dimensions 

are strongly correlated [106]. We will make use of this relationship in the use case described 

later. 

The Subspace Explorer (SE) is coupled with the trackball interface. It not only displays the 

data as a scatterplot, but it also allows users to visualize the current directions of the projected 

dimension axis vectors as labels placed outside its circular boundary. This display can be 

considered as a BiPlot [53] style visualization. Instead of using the length of the vectors to 

indicate how well the respective attribute is expressed in the current view, the size and opacity of 

these labels indicates – larger and bolder font means more of the attribute’s variability is shown. 

Conversely, the label placement reveals the radial direction along which the variability is mostly 

exposed (Fig. 8). The simplest form of trackball interaction generates scatterplot projections 

confined to the current (generalized) 3D subspace projected into the SE. This projected 

generalized 3D subspace can be modified by:  

 Trackball interaction: users can transition to adjacent 3D subspaces by augmented trackball 

interaction   

 Randomized projections: this discovers new 3D subspaces ready for trackball-based 

exploration    

 3D Subspace interpolation: moving a slider in the control panel generates intermediate 3D 

subspaces between two subspaces in the STM that can be explored with the trackball 

 View optimization: the 3D subspace (as well as the current projection in the current 3D 

subspace) can be optimized via projection pursuit driven by a user-defined set of criteria  

The control panel provides several options for trackball use. The checkbox ‘TurnOff’ 

specifies if all data points are to be shown or only those that are well described in the current 

subspace, i.e., belong to that subspace. The color bar on the bottom right corner is the brushing 

tool. It allows users to tag points or groups of points in a dedicated color to cluster them or mark 

them as inactive in grey.  

The Subspace Trail Map (STM) holds a set of views (and their parameters) that users may 

have found interesting during the exploration by embedding them in to a word cloud of 

attributes. We treat each view as one point and use PCA on all of them to spread them out. In 

case of overlapping, the ‘SmallViewSize’ slider can be used to change the size of the small 

views. Users can bring any view back to the trackball for further exploration. They can also use 

the STM as a media to present important findings to audience via animation. 
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4.3 THE SUBSPACE EXPLORER AND TRACKBALL INTERFACE 

Users can tilt the trackball and watch the resulting scatterplot react to the motion. Fig. 10 

sketches how a trackball works. Imagine a virtual sphere that encapsulates the current 

generalized 3D subspace. When clicked, the screen coordinate of the mouse is mapped to this 

sphere. Given the current and previous mouse clicks, we can compute the axis of rotation n and 

the rotation angle. From those two quantities a 3×3 rotation matrix as derived, as described in 

[7]. 

4.3.1 CREATING THE TRACKBALL SPACE PROJECTION MATRIX 

The trackball system only works in 3D but our data points are N-D and so we need to project the 

ND points into 3D before rotating. We achieve this by post-multiplying the trackball rotation 

matrix T with the 3N projection matrix P. We have two options for the first two of the vectors 

in P: (1) the orthogonal PPA x-axis and y-axis pair we have obtained from the randomized 

projection procedure, or (2) the two most significant PCs we have obtained when performing 

PCA for the selected cluster. In both cases we require a third orthogonal axis, call it the PPA z-

axis. Since this is N-D space we have a great number of choices here. To select an initial vector 

we can: 

 Randomly generate an N-D vector 

 If the PPA x-axis and PPA y-axis are generated via PCA, use the third most significant axis 

for the PPA z-axis  

Note that the resulting vector is not necessarily orthogonal to the PPA x-axis and the PPA y-

axis. To make it orthogonal we use the Gram-Schmidt orthonormalization process [31]. The 

Gram-Schmidt process takes N linearly independent vectors and produces N orthonormal vectors 

spanning the same N-D space. Let <𝑥1, 𝑥2> denote the inner product of two vectors 𝑥1 and 𝑥2 

Fig. 10 3D trackball concept 
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and let ||y|| denote the length of vector y. Let the projection of vector 𝑥2 onto vector 𝑥1 

be  𝑝𝑟𝑜𝑗𝑥1
(𝑥2) = 𝑥1

<𝑥1,𝑥2>

<𝑥1,𝑥1>
. Gram-Schmidt starts with N linearly independent N-D vectors 

{𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁} and performs the following calculations: 

                            𝑦1 =  𝑥1,                                                         𝑒1 =  𝑦1/‖𝑦1  ‖ 

                            𝑦2 =  𝑥2 −    𝑝𝑟𝑜𝑗𝑦1
(𝑥2),                               𝑒2 =  𝑦2/‖𝑦2 ‖ 

                            𝑦3 =  𝑥3 −    𝑝𝑟𝑜𝑗𝑦1
(𝑥3) −    𝑝𝑟𝑜𝑗𝑦2

(𝑥3) ,     𝑒3 =  𝑦3/‖𝑦3 ‖ 

⋮  

𝑦𝑁 =  𝑥𝑁 – ∑    𝑝𝑟𝑜𝑗𝑦𝑗
(𝑥𝑘)

𝑁−1

𝑗=1

,                           𝑒𝑁 =  𝑦𝑁/‖𝑦𝑁 ‖ 

The resulting vector set {𝑒1, 𝑒2, 𝑒3 … , 𝑒𝑁} is the desired orthonormal set. In practice we keep 

the PPA x-axis and PPA y-axis which are already orthonormal and run Gram-Schmidt to 

orthonormalize the PPA z-axis from the initially chosen vector. Once P is configured in this way, 

T is reset to the identity matrix, ready to be manipulated in the 3D trackball interaction. 

4.3.2 PROCESSING THE POINTS WITHIN THE TRACKBALL SPACE 

With P in place, the following sequence of operations is executed for every trackball move: (1) 

compute the 3N compound projection matrix M=S∙T∙P, where S is an optional scaling matrix 

that allows zooming into the display, and (2) multiply each N-D point vector VND by M to get 

the 3D points V3D=M∙VND. But ultimately we are only interested in the projection of the points 

into the coordinate system spanned by the PPA-x and PPA-y vectors manipulated which the 

trackball. This yields a set of 2D points V2D which are the first two components of V3D since the 

projection is orthogonal.  

We have not observed a significant delay in the direct projection of N-D points in the 

operation of the trackball. But first pre-computing a 3D point cloud right after construction of the 

3D coordinate system and rotating them directly for the lifetime of P can reduce the number of 

computations to roughly N/3 of the original computations. We have not chosen this intermediate 

step because: (1) it requires extra storage which can be significant for large point clouds, and (2) 

it incurs some delay in the initial response of the trackball whenever a new P is created. Given 

the capabilities our system provides, this can occur quite frequently (see section below). 

4.3.3 MOUSE INTERACTIONS WITHIN THE TRACKBALL INTERFACE 

We provide three different kinds of mouse interactions, all controlled with different mouse 

buttons pressed in our trackball interface. 



 

 

27 

 

 

The first one is to explore a generalized 3D subspace. This is the basic mouse interaction 

performed when the left button is depressed. The kind of operation we perform here is exactly 

the same as described in Sections 3.3.1 and 3.3.2. Referring to the pad-based interface [69], it 

corresponds to a triangular pad-polygon but now the vertices are not due to original dimension 

axes but to arbitrary vectors. This greatly generalizes the adaptability of the display to the 

orientation of high-D features which might have required many more original dimensions to 

cover. It but effectively avoids the need for a pad-polygon with more than three vertices and the 

immense overhead associated with vertex reordering. 

The second one is to chase clusters in adjacent 3D subspaces. When using the basic 3D 

subspace exploration mode we frequently observed that interesting patterns were starting to 

evolve but their full exposure was out of reach since it occurred in a different, albeit nearby, 

subspace. In these situations we often felt the need to “break out” of the current 3D subspace in 

the direction of the trackball movement such that these patterns could be reached. To solve this 

shortcoming we added a smooth subspace transition capability. It allows users to interactively 

change the influence of the data dimensions whose projections align with the current trackball 

movement and so increase their bias in the projection matrix P. This gives the exploring user 

access to the adjacent 3D subspace where the patterns of interest are better expressed. It lets 

him/her explore the data with a higher emphasis on one or more attributes of interest.  

To engage into this mode of exploration users would let go of the left button and instead press 

the right button while moving the mouse in the direction of the desired dimension’s projection, 

as indicated by the corresponding attribute’s label on the trackball’s periphery. The further the 

mouse is moved the more the projection plane is tilted into the dimension’s axis vector. 

Conversely, moving backwards along that direction, towards the center of the trackball, 

decreases the influence of this dimension.   

As Fig. 11 illustrates, ideally, we would accomplish this task by adding (or subtracting) 

increments x=ka∙d∙sin() and y= ka∙d∙cos() to the PPA-x and PPA-y vectors, respectively, 

where  is the angle between the mouse movement vector and the trackball x-axis (the PPA-x 

vector), d is the distance the mouse moved in the direction of the projected dimension axis 

vector (positive when moving towards the periphery, negative otherwise), and ka is a user-

adjustable speed constant (we use dot products instead of the trigonometric functions). 

Subsequently, Gram-Schmidt is used to re-orthonormalize P (see Section 4.1), using the original 

PPA z-axis vector. One problem here is that, after Gram-Schmidt, the direction of this data 

dimension would change and there might be other dimensions taking the selected one’s direction. 

We overcome this by fixing the selected dimension until the user releases the mouse.  

This basic approach generalizes to more than one dimension. Fig. 4 illustrates this practical 

case in which there might be two or more projected dimension axis vectors in close range of the  
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exploration direction. This might be an indication of multivariate relationships. To properly scale 

the axes vector influences geometrically, we apply a Gaussian weighting in terms of their 

direction misalignment. This is done via the following equation: wd=exp(-kd∙dot(vm, vd)) where 

wd is the weight applied to this axis vector, vm and vd are the direction vectors of the mouse and 

the axis vector, respectively, and kd determines the reach of the Gaussian. The remaining steps 

are as for the single-vector case described in the previous paragraphs. 

Our system also supports the case in which a user would first select an attribute via mouse 

click on the trackball boundary but then move the mouse in a direction not necessarily aligned 

with the attribute’s dimension vector. This will gradually align the dimension vector with the 

mouse movement and move the attribute label accordingly. Again, the selected dimension’s 

weighting changes according to the direction and length of the mouse movement. 

The third one is to let users to go deeper into high-dimensional space. By clicking the middle 

mouse button, our system generates a PPA-z vector according to the three options described in 

Section 3.3.1. Then, based on the current PPA-x and PPA-y vectors – the first two rows in the 

compound matrix M – a new orthogonal vector is computed using Gram-Schmidt. This might at 

first glance not change the current projection at all, but when combined with trackball 

movements it directs users to a new 3D space, essentially going deeper into the high-dimensional 

universe.   

4.3.4 DISPLAY OF ATTRIBUTE LABELS ON THE SE BOUNDARY 

In order to better comprehend the relationships between a scatterplot projection and the data 

dimensions (attributes), we display the attribute names as labels along the SE trackball periphery 

(see Fig. 12(b)). How much a dimension contributes to the projected point cloud is indicated by  

Fig. 11. Updating the PPA x-axis and PPA y-axis vectors by moving the mouse towards one or more 
dimensions. The influence of each dimension is weighted by a Gaussian function 
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label size and opacity. The larger and bolder the label’s font is, the stronger is the attribute’s 

contribution in the plot. The location of each label is computed by the attribute’s weighting in the 

PPA-x and PPA-y vectors. Let wx be the PPA-x weighting, and wy be the PPA-y weighting. Then 

the angle of this dimension vector and the positive x-axis direction is computed as α = 

atan(wy/wx). 

In practice, attribute labels may come to print on top of one another (Fig. 12(a)). This occurs 

because during trackball movement the weightings of dimensions constantly change, and very 

commonly several dimension vectors overlap. We have solved this problem by forcing labels to 

locate at least β degrees apart from their neighbors. Fig. 12(c) shows this for the upper left 

quadrant where 𝑑1 is the location of label1 located γ degrees away from PPA-y and 𝑑2
′
 is the 

location of neighboring label2, spaced 𝛽′ degrees away. We see that 𝛽′ is too small causing the 

two labels to overlap. Therefore we introduce a small displacement which places label2 at𝑑2. 

Now label1 and label2 are spaced 𝛽 degrees apart and no longer overlap. 

In experiments we found that the best choice for β is dependent on the orientation of the 

dimension vector. The more vertical it is, the larger β should be, while for a more horizontal 

alignment, a smaller β will suffice. The logic behind this is simple – when labels are displayed 

on the top or bottom of the trackball, since the text is displayed horizontally, they need a larger 

distance for better separation. But when they are displayed on the left or right, only a small 

misalignment will be sufficient for readability. We therefore assign β a value dependent on the 

dimension vector orientation. Specifically, we choose the following piecewise linear function 

which relates β to the angle γ between the vertical axis PPA-y and the dimension vector (this 

equation is valid for the upper left quadrant only – the other three quadrants are related by 

symmetry): 

                            (a)                                                                          (b)                                                                   (c)                                                                  

Fig. 12. Dimension label overlap prevention. (a) With label overlap. (b) Without label overlap. (c) Illustration of this 
scheme 
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β =  { 
𝜃𝑣 − (𝜃𝑣 − 𝜃ℎ) ∗

γ

45°
            0 ≤ 𝛾 <  45°

          𝜃ℎ                                      45° < 𝛾 ≤  90°    
 

Here, 𝜃𝑣 and 𝜃ℎ are constants we determined for the maximal font size of the labels which 

occur when the corresponding dimension vectors are fully projected. The angle  𝜃ℎ = 4° is the 

displacement needed when γ > 45°, while an angle of 𝜃ℎ = 24° is needed when γ=0°. When γ is 

between 0° and 45° we determine β via linear interpolation. Fig. 12(b) shows the configuration 

of Fig. 12(a) with our label displacement scheme enabled. 

When using the system we made several additional observations. First, we found that while 

displacing the labels in the way described above provided for better readability, it was distracting 

in interactive mode when the user was rotating the trackball, since it could lead to sudden jumps 

of the labels. Hence we only apply the overlap removal method when the projection is fixed 

(when the user has released the mouse). Second, when a dataset has many dimensions, the label 

overlap can never be prevented. For this reason we added a slider to the control panel by which 

users can set the maximum number of attribute labels that are being displayed. Via the control 

panel, users can also choose to keep the labels of the 3D subspace’s  most significant attributes, 

or they can click on dimension names while pressing down <ctrl> to select the attributes they 

wish to track.  

4.3.5 POINT BRUSHING, TAGGING AND DE-ACTIVATION 

Our interface also provides the ability to label a point, or groups of points, with a color chosen 

from a palette. This is useful when monitoring a certain point or point group’s behavior when the 

trackball rotates. It greatly helps in distinguishing different clusters or seeing sub-clusters emerge 

during motion.  

Conversely, by painting a selected group of points in gray they will become inactive and are 

excluded from all further analysis, such as clustering and others. They can also be made invisible 

(by checking the ‘Turn Off’ checkbox in the control panel) which helps in recognizing other 

structures that were hidden or ambiguous before this removal. Finally, it is also helpful if the 

dataset contains outliers. 

4.4 THE SUBSPACE TRAIL MAP 

The subspace trail map (STM) serves three purposes: (1) it enables users to keep track of the 

subspaces explored so far, which they can revisit for further exploration, (2) it serves as a 

presentation platform for the system to suggest new subspaces not yet explored; and (3) it 

permits users to define routes along which they can transition between two or more of these 

subspaces, essentially using them as key frames. Users can double click anywhere on the STM to 
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add the current view in the SE. For clustered data, if users want to add all subspaces where each 

cluster reside, they can simply click the ‘AllSubspace’ button. 

4.4.1 MAPPING SUBSPACES TO THE SUBSPACE TRAIL MAP 

The STM is configured as an (invisible) irregular N-sided polygon with the N data dimensions 

mapped to its vertices, called the STM-frame. In this map, an added subspace appears as a small 

2D scatterplot projection. We use PCA to place those small views in order to spread them out. In 

case of overlapping, the ‘SmallViewSize’ slider can be used to change the size of the small 

views. 

Let’s assume there are 𝑝 small scatterplots in the STM and the dimensionality of the data set 

is 𝑁. The compositions of the three 𝑃𝑃𝐴 axes of the 𝑝 subspaces can be formally represented as 

follows: 

𝑃𝑃𝐴𝑖𝑗 = ∑ 𝑤𝑖𝑗𝑘 ∗ 𝑑𝑘

𝑁−1

𝑘=0

 

In this equation, 𝑖 is either 𝑥 ,  𝑦  or  𝑧  and 𝑗 varies from 0 to (𝑝 − 1). 𝑃𝑃𝐴𝑖𝑗  represents either 

PPA-x, PPA-y or PPA-z axis of the 𝑗𝑡ℎ subspaces. Similarly, 𝑤𝑖𝑗𝑘 means the weighting of the 

𝑘𝑡ℎ data dimension on 𝑃𝑃𝐴𝑖𝑗 and 𝑑𝑘 is the 𝑘𝑡ℎ dimension.  We then use the L-2 norm to define 

the overall weighting of the 𝑘𝑡ℎ data dimension for the 𝑗𝑡ℎ  subspace: 

𝑊𝑘𝑗 =  √𝑤𝑥𝑗 + 𝑤𝑦𝑗 + 𝑤𝑧𝑗   

We then obtain a 𝑁 dimensional vector for each subspace, representing the overall weightings 

of all data dimensions on it: 

𝑆𝑗 = [𝑊0𝑗, 𝑊1𝑗 , 𝑊2𝑗 … 𝑊𝑝−1,𝑗] 

We treat each subspace as an 𝑁 dimensional points and perform PCA on all of them. We keep 

the first 2 PCs and project all points (subspaces) onto them. Since PCA automatically seeks to 

find the directions that maximize the variance of the data points, the small views representing the 

subspaces would be organized in a way that overlapping is reduced.  

In case of inevitable overlapping due to the fact that some subspaces share very similar 

compositions, we provide the users with two methods to overcome the clutter. The first one is to 

put the mouse over the hidden view and it will be brought to the front. The second one is to use 

the “SmallViewSize” slider to change the sizes of the small scatterplots and by reducing the sizes, 

hidden views can also be revealed. 
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The STM is surrounded by a word cloud of dimension labels. To prevent a clutter of words 

we only show labels of the top L most significant dimensions where L is user-definable. The 

labels are placed based on the PCA results on the saved views.  

4.4.2 SUBSPACE AND VIEW OPTIMIZATION 

We perform view optimization on two levels: (1) to produce an optimized 3D subspace from a 

higher-dimensional one (as just mentioned for the subspace clustering), and (2) to automatically 

generate a salient 2D view for insertion into the VG.  

Apart from the generation of novel subspaces, both optimization modules can also be used ad-

hoc during exploration. For example, when chasing clusters into neighboring subspaces, users 

might employ view optimization within a narrow range of dimension updates to optimize the 

search. Another, more frequent application of this module aids users in the trackball-based 

exploration, accelerating the tedious manual exploration needed to find a view that fits a certain 

criterion, such as cluster separation. 

A popular view optimization method in the context of high-dimensional data visualization is 

projection pursuit. Starting from any projection, projection pursuit returns the PPA x-axis and 

PPA y-axis that optimizes the targeted projection pursuit index (PPI). A number of 

methodologies have been proposed for this task – hill-climbing [16], random search [74], or 

modified simulated annealing [17]. We have strived for a sophisticated yet comparably easy-to-

implement algorithm – Ant Colony Optimization (ACO) [19]. To the best of our knowledge 

ACO has not been used for the task of projection pursuit so far. And so we believe that its ease 

of implementation might be helpful to the readers of this article.  

ACO simulates the behavior of ants in nature. When looking for food, ants initially travel 

randomly until they find food. On their way back they leave a pheromone trace along the route. 

Instinct prescribes that other ants most likely follow this pheromone trace instead of wandering 

randomly. But pheromone also evaporates gradually, and so, over time, shorter paths will be 

travelled more frequently, become more attractive, and therefore most ants will choose this path. 

Based on this intuition, the simplest ACO algorithm consists of the following three steps 

executed iteratively: (1) construct solutions, (2) evaluate solutions, and (3) update pheromone. It 

has been shown that the solution so generated is typically quite close to the optimal solution, if 

not identical to it.  

The ACO algorithm requires a discrete search space and an objective function. Every time 

solutions are constructed, only those ants with good scores (higher/lower objective function 

values) can increase the pheromone amount along the path thus increasing the probability that 

the same path is chosen in the next iteration. 
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The search space is the set of all possible PPA x-axes and PPA y-axes. The objective function 

in our case is straightforward – the chosen PPI. For example, for MDS the PPI is to minimize the 

normalized sum of differences between pairwise distances in the high-D and the low-D spaces – 

the stress. But really any quality criterion can be evaluated as long as it can be scored by a 

numerical value. This makes it quite easy to “plug-in” new quality metrics, even on the fly 

during exploration.  

 A small caveat is that projection pursuit is typically performed in the continuous domain, 

while ACO is inherently a discrete-space algorithm. Solutions to this problem were proposed in 

[14][83]. We decided to use a grid-based approach. To explain, suppose we only have a 2D data 

set and the PPA x-axis and PPA y-axis can be represented as: 𝑃𝑃𝐴𝑥 =  𝛼1𝑑1 + 𝛽1𝑑2 , and 

𝑃𝑃𝐴𝑦 =  𝛼2𝑑1 + 𝛽2𝑑2. There are four unknowns altogether - 𝛼1, 𝛽1, 𝛼2  and 𝛽2 . We use four 

vertical gridded bars of Fig. 13 to denote those unknown parameters.   

Our ACO algorithm differs from the traditional one in the selection of the starting path. While 

the traditional ACO typically begins with a random path, ours cannot because we begin from an 

initial PPA x-axis and PPA y-axis configuration, e.g., a randomized view. We start instead with 

the closest path– the red path in Fig. 9. In our example, suppose the starting view’s PPA axes are:  

𝑃𝑃𝐴𝑥
𝑐𝑢𝑟𝑟 =  𝛼1

𝑐𝑢𝑟𝑟𝑑1 + 𝛽1
𝑐𝑢𝑟𝑟𝑑2, and 𝑃𝑃𝐴𝑦

𝑐𝑢𝑟𝑟 =  𝛼2
𝑐𝑢𝑟𝑟𝑑1 + 𝛽2

𝑐𝑢𝑟𝑟𝑑2. Our ants would start 

from the red path which intersects the four vertical lines on 𝛼1
𝑐𝑢𝑟𝑟, 𝛽1

𝑐𝑢𝑟𝑟
, 𝛼2

𝑐𝑢𝑟𝑟 and 𝛽2
𝑐𝑢𝑟𝑟

. 

This path would have higher pheromone to begin with. We can constrain the searching range on 

each dimension to be close to the starting path to perform a local optimization by setting the two 

ends of the vertical bars to be close to the initial values. All ants construct different paths 

according to the pheromone the paths have. After finding a path each time, they lay different 

amount of pheromone according to the quality of the path (PPI). Our ants stop after a fixed 

number of iterations and the path with the highest pheromone amount would be the solution. It is 

in fact a piecewise linear path across this grid, which looks similar to a discrete parallel 

coordinate display. Performing the ACO algorithm on these discrete values is feasible. It  

 

 

 

 

 

 

 

 

 

 

 

                     𝛼1                 𝛽1                 𝛼2                𝛽2 

Fig. 13. The ACO algorithm in the discrete domain 
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will eventually result in one or more narrow clusters of polylines which are the set of optimal 

solutions.   

 The above is what we use when finding subspaces for clusters since it guarantees that the 

found view is close to the origin. We can also loosen the condition and do a global search. Then 

the resulting projection would be a global optimum according to different criteria. Further, we 

should also take into account that our ACO algorithm’s return values are PPA vectors, which 

need to be of unit length and orthogonal. We therefore always normalize the returned PPA x-axis 

and then use Gram-Schmidt to find the corresponding PPA y-axis. 

Our system also allows users to select several dimensions and produce a view in which those 

dimensions are equally expressed. This is achieved by letting users click on the respective labels 

along the trackball while pressing down the ctrl- and space-keys. Then, when releasing the 

mouse, the weightings for those selected dimensions are set to the maximum. A Gram-Schmidt 

step follows to orthogonalize the transformation matrix.  See Fig. 14 for an example. 

Fig. 15 shows results we obtained with our ant-colony based subspace and view optimization 

framework, again for the sales campaign dataset. We first applied simple k-means clustering 

using the Structure-Based Distance Metric of Lee at al. [56] and found three subspace clusters. A 

subsequent PCA analysis for each cluster established three subspaces. Clicking the ‘AllSubspace’ 

button adds all three subspaces to the STM. Fig. 15 shows the STM map. We obtained these 

projections by projecting all data points into the top two PCs for each subspace. We colored the 

three clusters blue, magenta, and green, and the outline colors of each small view  

                      (a)                                                        (b) 

Fig. 14. Equally expressing several dimensions. (a) The original projection. (b) The optimized projection where 
%Complete, #Opportunity, and #Leads are equally expressed. 
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Fig. 15. PCA combined with the view optimizer to find separable subspaces. The respective subspace clusters are 
colored blue, magenta, and green. (a) The STM holds the three not optimized subspaces for the three clusters. We 
observe that the PCs alone cannot isolate the subspaces well – there is still a significant amount of cluster overlap. 
(b)(c)(d) Optimized subspaces for the blue, magenta and green cluster using the distribution consistent criteria. All 
subspace clusters are now well separated from the others in their respective subspaces 

distinguish the corresponding cluster’s subspace.  Observe that by just projecting the points into 

this basis the clusters still overlap for all subspaces, but especially for the magenta subspace.  

 Next we optimized the subspaces found by PCA, using distribution consistent criteria [82]. 

The results are displayed in Fig. 15 (b)(c) and (d). We observe that the blue cluster’s subspace is 

almost unchanged. This is because the three clusters are already well separated here. And since 

we only run optimization in a close range of the original PC projection this view might already 

be the best compared to its neighbors. (We might get better views if we optimize the view 

globally.) But conversely, the subspaces of the magenta and green clusters have significantly 

improved – in each panel the respective subspace clusters are now clearly separated from the 

others. 

 

(a) 

(b) 

 (c) 

(d) 
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4.4.3 TRANSITIONING BETWEEN SUBSPACES 

Self-initiated and controlled animation can be a helpful paradigm for humans to understand how 

two or more different representations of the same information relate to one another [76]. We 

have employed animation to help users understand how two subspaces relate to one another, with 

the added aim that this might also instill a better understanding of the high-dimensional data 

space in a larger context. In our framework, users can select multiple subspaces in the STM, a 

path is then formed according to the order of small views being selected. Users can then 

manipulate the ‘TraverseBtw’ slider to change the PPA axis vectors from one subspace to 

another, and back.  

However, simply linearly interpolating between PPA axes would lead to nonlinear 

intermediate projections. We adopted the algorithm by Cook et al. [17] to transition between the 

two subspaces using singular value decomposition.  

Fig. 16 shows three snapshots of a sequence of frames from such an animation along with the 

path connecting the two corresponding nodes in the STM. In Fig. 16, panel (a) is the starting 

view, panel (b) is an intermediate view, and panel (c) shows the projection reached at the target 

view. Fig. 16 (d) shows the path in the STM. The yellow dot in the path indicates where the 

current view is. Since these still frames can only provide a limited illustration, the reader is 

encouraged to view the video to appreciate the insightful visual effect of this animation.  

Alternatively, we also include a ‘presentation mode’ by letting the presenter to click the 

‘Next’ button to go to the next key frame instead of using the slider. This provides a smooth 

transition between findings when representing the results to the audience, instead of abrupt 

changes of views.   

                      (a)                                                (b)                                                  (c)                                                (d) 

Fig. 16. Transitioning between two subspaces marked in the STM using the slider. (a)(b) and (c) are three intermediate 
views. (d)The defined path in the STM. The yellow dot is the indicator of where view in (b) is. Please see the provided video 
for the complete animation. 
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4.5 CASE STUDIES 

In this section we will demonstrate the versatility of our framework by ways of applying it in a 

diverse set of use scenarios involving high-dimensional data. The following sections will show 

our framework’s application in (1) visual cluster analysis (2) visual item discovery and selection, 

helping users to recognize and negotiate tradeoffs among items, (3) visual cluster refinement, 

allowing users to partition feature-driven clusters based on the visual expression of the 

aggregation of these features， and (4) visual setup of a classifier in the presence of intermixing 

outliers. 

4.5.1 VISUAL CLUSTER ANALYSIS 

To illustrate the trackball interactions, we chose a multivariate cluster analysis task – an 

interactive study of the salesforce working for a large company. This discussion forms the first of 

four application scenarios we present in this paper. Our dataset consists of 900 points (one per 

salesperson) and 10 attributes parameterizing the basic corporate sales pipeline. Briefly, a sales 

campaign begins with a leads generator who produces prospective customers that a salesperson 

might be able to close a deal with. If these leads receive positive responses, they become won 

leads and receive a sales pitch at cost per won lead. Upon further positive response they become 

opportunities, or potential customers. Cost is involved in every step and high pipeline revenue is 

the ultimate goal. 

Let’s assume a sales team analyst, Pat, who is about to analyze the dataset. He begins to treat 

the whole dataset as one cluster and performed PCA on it. The PCA view of the whole dataset is 

shown in Fig. 17(a). He immediately notices that there are three visually separable clusters.  

Recall that there are three sales teams; this finding seems to be correct. To double check, Pat 

presses the ‘Cluster’ button in the control panel without entering a specific cluster number. This 

enables our system to run automatic K-means clustering powered by the elbow method to find 

the optimum cluster. The result (small view in the bottom right side of panel (a)) confirmed that 

those three clusters are real clusters. Pat now goes and examines the SE boundary in Fig. 17 (a), 

he notices that there are several group of attributes that have fairly strong correlations – Expected 

ROI and Pipeline Revenue, LeadsWon and #Leads. This gives him further insight into the 

dataset. Pat adds this view to the STM so he can easily return to this key finding. 

Next, Pat wants to examine the subspaces of each cluster. He performs PCA on each cluster 

and adds all of them to the STM (Fig. 17(b)). Those three subspaces are optimized such that their 

corresponding clusters are better separated from the rest clusters. The blue, magenta and green 

outlined scatterplots are the subspaces for the blue, magenta and green cluster while the unlined 

one is the subspace for the whole data. 
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Fig. 17. Analyzing the sales force dataset. (a) The dataset projected on to the first two PCs. There are three visually 
separable clusters. K-means clustering algorithm using the elbow method confirmed that the three groups of data are 
real clusters. (b) Extracted subspaces for the three clusters. Those three subspaces are optimized such that their 
corresponding clusters are better separated from the rest clusters. They are added to the STM along with the initial 
PCA view. The blue, magenta and green outlined scatterplots are the subspaces for the blue, magenta and green 
cluster while the unlined one is the subspace for the whole data. (c) The subspace for the blue cluster. Cost is the 
attributes that has the highest variance for this group of data. %Complete and PlannedROI are the attributes that the 
blue cluster performed differently than the rest two clusters. (d) The subspace for the green cluster. #Leads, Cost and 
%Complete are the attributes that has the highest variance for this group of data. The green cluster generated a lot of 
Leads compared to the magenta and blue cluster. (e) The subspace for the magenta cluster. PlannedRev, Cost and 
ExpectedROI are the attributes that have the highest variance for this group of data. The combination of PlannedRev, 
#Opportunity and ExpectedROI separate the magenta cluster from the rest two. (f) Use the STM to bring the PCA view 
back to the SE and increase the weighting of PipelineRevenue and ExpectedROI. Both the green and magenta clusters 
generated more revenue than the blue cluster. The green cluster is slighter better than the magenta one. Note the 
#Opportunity is also fairly well expressed in this view and it shows that the purple cluster has higher number of 

opportunities than the green one. (g) Increase the weighting of #Opportunity along the PPA-y axis and produces a 
traditional bivariate scatterplot projection. (h)Top: Save this view to the STM and there are some views overlapping. 
Bottom: Reduce the size of the small views and reveal all views. (i) Increase the weighting of Cost/WonLead. The blue 
cluster assigned the highest Cost to each WonLead. Consider the fact that is also produced the least PipelineRevenue, 

it might not be a good idea for this strategy. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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He first brings the blue cluster’s subspace back to the SE for examination (Fig. 17(c)). He 

notices that Cost, which is at the left hand side of the PPA-x axis, has the biggest and boldest 

font and it indicates that this has the green clusters varies a lot on it. What’s more, in the PPA-y 

direction, %Complete and PlannedROI are the attributes that the blue cluster performed 

differently than the rest two clusters – it has less complication rate but higher PlannedROI. Pat 

goes on and brings the subspace for the green cluster back to the SE (Fig. 17(d)). He notices that 

#Leads, Cost and %Complete are the attributes that has the highest variance for this group of 

data. Based on the size and location of the attribute #Leads, he can tell that the green cluster 

generates a lot of Leads compared to the magenta and blue cluster. Pat keeps his exploration by 

taking the subspace of the magenta cluster back to the SE (Fig. 17(e)). Similarly, he observes 

that PlannedRev, Cost and ExpectedROI are the attributes that have the highest variance for this 

group of data. The combination of PlannedRev, #Opportunity and ExpectedROI separate the 

magenta cluster from the rest two. 

Pat knows that high Pipeline Revenue and Expected ROI are important targets for any 

business. He decides that it would be good now to explore how the company’s salesforce 

compares with respect to these two revenue parameters.  

He uses the STM to bring the initial PCA view (small panel in Fig. 17(a)) back to the SE. He 

presses the right mouse button and moves the mouse in the direction of the two attributes in Fig. 

17(a) (upper left corner). Fig. 17(f) shows the outcome. We notice that the font of the two 

revenue labels gets stronger which means that the corresponding two attributes receive more 

weight in the viewed 3D subspace. This outcome shows that both the green and magenta clusters 

generate more revenue than the blue cluster. The green cluster is slighter better than the magenta 

one. Pat also notices that #Opportunity is fairly well expressed in this view and he decides to 

now cast this relationship into a traditional bivariate scatterplot by increasing the weighting of 

pipeline revenue along the x-direction, making it the PPA-x, while #opportunity is increased 

along PPA-y. He achieves this by selecting the label pipeline revenue with a mouse click and 

then moving the mouse with the right button depressed into the direction of the x-axis. Fig. 17(g) 

displays the outcome.  It shows that while the green and magenta clusters vary in the number of 

opportunities – magenta creates more – both groups have somewhat similar revenue. On the 

other hand, the blue cluster has high #Opportunity but its revenue is low. There must be 

something else going on.  

Pat saves this view in the STM (top panel in Fig. 17(h)) and continues to explore. Pat notices 

that the STM is much cluttered right now and he uses the “SmallViewSize” slider to reduce the 

size of the small views (bottom panel in Fig. 17(h)). Pat continues to explore the data. He always 

thinks that how much cost a sales team puts on a won lead should be one of the important sales 

strategies. This time, he makes Cost per won lead the PPA-x axis (Fig. 17(i)). He notices that the 

blue cluster assigned the highest Cost to each won lead.  
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Based on all the discoveries Pat makes, especially those in Fig. 17(d), (g) and (i). Pat 

concludes that the blue team doesn’t have lots of Leads, but put a high cost on those won leads 

and they get lots of opportunities. Lots of opportunities sounds like a winning strategy but 

because of the high cost per won lead, their generated revenue is very low. On the contrary, the 

green team has lots of Leads and assigned low cost on those won leads. Even though they do not 

have lots of opportunities, their final revenue is still high. 

Pat also notices that even the number of leads the magenta team has is not as high as the green 

team and they both has low cost per won lead, the purple team produces more opportunities. He 

can continue to use our Subspace Voyager to explore the data and answer those questions 

Pat is now very excited about his findings and he presents them to his co-worker Kate. Since 

he already saved all the key frames in the STM, he only needs to connect them by simple mouse 

clicking and build a path (bottom panel in Fig. 17(h)). Now, he only needs to click on the ‘Next’ 

button and all his findings would be displayed one after one, in a continuous animation fashion. 

We believe that this example convincingly demonstrates how our SE interface enables users 

to playfully arrive at different multivariate scatterplot projections, quickly respond to new 

explorations ideas on a whim, make casual observations in the process, and just as easily return 

back to a traditional bivariate scatterplot visualization. The interested reader may watch the video 

to see the complete process. These proposed interactions can also be achieved by Radviz [36] 

when it allows users to change the weighting and positions of different data dimensions. This 

might be good to exam single projection but to our knowledge, there is no system that is based 

on Radvis and also use maps to save the findings. Our STM on the other hand allows users to 

record all important findings which they can use to present to audience. Radviz is also a non-

linear projection which often leads to distortions of the data. 

4.5.2 VISUAL ITEM DISCOVERY & SELECTION 

Selecting the best college, given the many personal constraints and preferences one might have, 

is arguably one of the most difficult choices a person will make in life. It involves the task of 

discovering the set of schools that best meet one’s personal requirements, comparing them by 

weighing their trade-offs, and then selecting the college that fits best. Here we use the mixed 

dataset initially created by Nam and Mueller [69]. It has multi-faceted data on 50 of the top US 

colleges, enabling the college-seeking student to look at schools not only through the lens of 

academics, but also through the lens of social life and the general environment the school resides 

in. Academic ranking and tuition information were extracted from a leading source of such 

information – the US News & World Report [108]. The College Prowler website [107], on the 

other hand, ranks colleges on a multitude of social and environmental factors. We picked 8 of the 

20 the site offers: athletics, campus housing, local atmosphere, nightlife, safety, transportation,  
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Fig. 18. Finding the best college in the college dataset. 

 

(a). The PCA view of the whole 
dataset. It reveals a strong 
positive correlation between 
Academic and Tuition, as well as 
between LocalAtmosphere, 
NightLifet and Transportation.  

(b). Make Tuition the 
PPA-x axis and 
USnewsScore the 
PPA-y axis. The 
magenta-colored, 
labeled points are the 
schools with high US 
News Score and low 
Tuition.  

(d). Increase Athletic along the 
PPA-x axis.  UCSantaBabara has 
very low athletic score. 

(e). Increase Nightlife along the 
PPA-y axis. USCViterbi has the 
best overall score, followed by 
UCLA, Georgia Tech, 
UCSanDiego and UC Berkeley.  

(f). The final setup. The dimension 
projection reveals four dimension 
groups.  

(c). Increase Weather along the 
PPA-y axis.  Purdue moves up 
revealing its bad weather, 
TexaxA&M and UMaryland do 
not move much but are low in 
both scores. 

(a) (c) 

(d) 

(e) 

(f) 

(b) 
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academic environment, and weather. Each score is available letter-graded ranging from A+ to D-. 

We mapped these equidistantly to values in the range 0 to 1. 

The College Prowler website allows users to navigate the space of college attributes by 

filtering – using slider bars and menu selections for each parameter to narrow down the search. 

This can be rather tedious and it also makes it difficult to recognize tradeoffs. We believe that 

our SE provides a more playful and targeted experience, with the STM serving a platform to save 

any intermediate findings.  

In the following we shall follow 17-year old Tina, who is just about to finish high school, and 

see how she uses our subspace voyager to find the university she feels best about.    

Tina starts out with a view onto the dataset as a single cluster using the primary PC axes as a 

basis (Fig. 18(a)). As mentioned in Section 3.2, in such a view the dimension vectors of strongly 

positively correlated attributes tend to coincide and as a result their labels map to similar 

locations along the trackball boundary. Conversely, negatively correlated attributes will map to 

opposite sides of the trackball boundary. The only condition for both is that their projection into 

the PC-axes basis is sufficiently significant, which is visually expressed in our system by a large 

and heavy label font. 

In the initial view of Fig. 18(a) Tina observes two sets of positively correlated attributes: (1) 

Academics and Tuition, and (2) LocalAtmosphere, NightLife and Transportation. She also 

observes a few negatively correlated attributes, among them: (1) Academic with Weather and 

Athletics, and (2) LocalAtomosphere and NightLife with Safety. From these constellations Tina 

quickly recognizes that top academic universities tend to charge higher tuition, but at the same 

time their athletic teams are not necessarily among the best. She also learns that universities built 

in nice town or city areas usually have better night life and transportation systems, but they also 

tend to be less safe. All this is good to know before engaging into the actual selection process 

described next. 

Tina does not come from a wealthy family and so her immediate focus is tuition cost. Her first 

step is therefore to select Tuition and move the mouse towards that label (to the left). Next she 

wants to see which of the schools have good academic ranking. She selects USNewsScore and 

moves the mouse downwards to maximize the spread. This leaves her with the axis-aligned 

scatterplot shown in Fig. 18(b). In this plot, all points on the lower right side are the universities 

with high rankings but low tuition – these are the ones Tina is interested in the most. She colors 

them in magenta and asks the system to label them (with the university names). 

Tina likes the outdoors a lot which requires the weather to be generally good. So she adds 

Weather as another requirement to USNewsScore by selecting the Weather label and moving the 

mouse in the downward direction (Fig. 18(c)). This enables her to appreciate any tradeoffs that 
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may exist in these two variables.  After making this choice, she sees ‘Purdue’ moving away 

significantly. This means that even though its USNewsScore is quite good, the score is not good 

enough to make up for the unfavorable weather.  Likewise, ‘GeorgiaTech’ also moves away but 

not as much and so Tina keeps it marked and labeled. ‘UMaryland’ and ‘TexasA&M’ did not 

move too much either, but both of their scores are not high to begin with. It means that none of 

these two schools does well enough in either UsnewScore or Weather to make up for the 

moderate performance in the other attribute. Tina removes these two schools as well, repainting 

them to neutral blue.  

Tina enjoys the excitement of college team sports. She is also quite athletic and she thinks she 

might be able to secure an athletic scholarship to pay for the tuition. So she puts the Athletics 

attribute near the tuition using the aforementioned mouse interactions (Fig. 18(d)). She notices 

that ‘UCSantaBarbara’ has a rather poor athletic score and henceforth she eliminates that school. 

On the other hand, ‘USC-Viterbi’ has the highest athletic score, followed by ‘GeorgiaTech’, 

‘UCLA’, ‘UCBerkely’ and ‘UCSanDiego’. She keeps all them magenta colored and labeled.Of  

course, Tina wants to have some fun in college. She focuses on NightLife and moves it to the 

bottom (Fig. 18(e)). ‘USCViterbi’ moves down confirming that it has good nightlife. 

‘UCBerkeley’ and ‘UCSanDiego’ move up, indicating that they may have good weather but the 

nightlife is limited. On the other hand, ‘GeorgiaTech’ and ‘UCLA’ stay put – they are more 

balanced in those two factors. 

Looking at the plot shown in Fig. 18(e) Tina sees that ‘USC-Viterbi’ might be the best 

candidate, but it also has the highest tuition (Fig. 18(a)). On the other hand, ‘GeorgiaTech’, 

‘UCLA’, ‘UCBerkeley’ and ‘UCSanDiego’ all could be possible candidates. In order to gain an 

overall impression Tina puts all attributes of interest into one view. She tilts the trackball and 

creates the configuration shown in Fig. 18(f). It shows four dimension groups: (1) Athletic and 

faintly Academic, (2) Tuition, (3) LocalAtmosphere and Transportation (both with small 

weighting), (4) NightLife, Weather and faintly USNewsScore, Safety and CampusHousing. 

Among all those groups of factors, Tina values Athletic and Academic the most, and so she 

chooses ‘GeorgiaTech’ as her #1 top choice school to apply for. 

We purposely conducted a similar selection task than Nam and Mueller in [69], and a partial 

goal of this use case was to compare these two systems. We obtained rather similar, almost 

identical result than these authors, except that their final candidate list did not contain ‘UCLA’. 

We compared UCLA’s scores with that of the other candidates (see Table 1) and found that 

except for a lower rating in transportation and a slightly lower rating in USNewsScore, it is not 

worse in other aspects and hence should be included in the final candidate set. Especially in the 

final dimension group Academic and Athletic, it has a better combination than the other schools 

in the set, except for ‘Georgia Tech’.  
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Table 1. Rankings of the final five candidates 

 

We think that the omission of ‘UCLA’ occurs because TripAdvisorND’s motion trail makes it 

sometimes difficult to precisely follow each point. But the motion trail is needed there to convey 

the dynamic movement. Conversely, with our trackball, motion trails are not required since the 

perception of the motion is much more tightly linked to the interaction that is causing it – both 

occur in the same interface. Another advantage of our new system is that users no longer need to 

take their eyes off the visualization while they are interacting to change the view while 

TripAdvisor’s touchpad required this. It also required that two points are moved separately, the 

one due to the PPA-x and the one due to the PPA-y vector. With the trackball interface presented 

here users can express these goals much more directly. In fact, they do not even need to be aware 

of the existence of these axes and vectors which we believe makes our interface much more 

appealing to general users.  

Admittedly, similar reasoning can also be achieved by using LineUp [30]. However, LineUp 

needs users to manually input specific weightings for each attributes and compute the score as a 

weighted sum. It's not easy to achieve a weighing combination that fits the needs of the users. 

For example, Tina here would need to know “I want to give tuition 0.3, US News Score 0.4, 

weather 0.2, sports 0.1”. But does this combination guarantees that the final ranking is what Tina 

wants? To use our system, users do not need to know this specific composition and can explore 

the data in a playful fashion. LineUp also displays the data in a table style and users may need to 

scroll up and down to monitor the effects of different weighting combinations. Our system on the 

other hand displays all the data in one area (the trackball) and users can monitor them all at the 

same time. 

4.5.3 VISUAL CLUSTER REFINEMENT 

Often high-dimensional data are derived from feature analysis where the features themselves are 

not overly meaningful in isolation. Rather, it is the synthesis of all features that allow users to 

describe a grouping of the data points, with the feature-based clustering providing the 

organization in which the boundaries of the individual groups can be delineated. In this final use  

College Acad. Athletics Hous. Atmos. Night Life Safety Trans. Weather US News Tuition 

UCLA 10 10 5 12 10 9 4 11 69 22428 

USC-Viterbi 10 2 8 11 12 7 8 11 77 22734 

Georgia Tech 10 11 5 10 9 7 7 8 86 22188 

UC Berkeley 10 9 8 9 8 7 10 11 89 14998 

UC San Diego 9 8 6 11 9 11 6 12 72 14694 
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case we demonstrate how our system can be used to allow humans to assist in deriving and 

refining these kinds of groupings in data, using visualization as a gateway. We call this process 

visual cluster refinement.  

 

Fig. 19. Exploring the ImageCLEF dataset. (a) The subspace of the blue cluster. (b) The subspace of the 
dark magenta cluster. (c) The images in the dark magenta cluster. (d) The images in the blue cluster. (e) 
The images in the first sub-cluster in the blue cluster. (2) The images in the second sub-cluster in the blue 
cluster. 

(a) (b) 
(c) 

(e) 

(d) 

(f) 
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We have selected an image classification tasks for this use case. The CLEF Cross Language 

Image Retrieval Track (ImageCLEF) [109], launched in 2003, is an evaluation forum for the 

cross-language annotation and retrieval of images. It aims at providing a cross-language and 

language independent platform where visual information retrieval systems operate, in order to 

assist apparent needs in visual media analysis, classification and retrieval. The ImageCLEF data 

[28][110] provide users three sets of images –  training, testing and development. Each set uses 

different feature descriptors to describe the images, such as SIFT, colorhistogram, and GIST. We 

use the GETLF feature vector from the development set of ImageCLEF 2013 [111], which is a 

256-dimensional histogram based feature. For the exact information on how to generate these 

descriptors the reader is referred to [28]. 

We now employ our subspace voyager as a medium to bring users into the loop of assessing 

and assisting the process of top-down clustering of this dataset. Since the cognitive processes 

driving image recognition and assessment are still much better developed in humans, as opposed 

to machines, a visual interface that allows humans to participate in this task can be very valuable. 

We begin by setting the initial number of clusters to a value of 2 and run k-means clustering with 

the structural based distance metric [56] on the collection of points. Fig. 19(a)(b) shows the two 

subspaces in which the two clusters reside. Since the attribute labels on the trackball boundary 

are rather cryptic, a visual quality is difficult and even more so is their interactive refinement. 

This can only be done by visualizing the semantics of the data points themselves – in this case 

the underlying images.  

To facilitate this, we examine the two clusters separately inside their own subspaces by 

turning off the other cluster. We then randomly select a subset of the data points in each cluster 

and display the corresponding images next to them. Fig. 19(c)(d) are the displays for the blue and 

magenta clusters, respectively, and the small overlays on the side are the projections without the 

images. We notice that the images in the magenta cluster (Fig. 19(c)) are overall more saturated 

than those in the blue cluster (Fig. 19(d)). Their hue values are also different. Fig. 19(c) has more 

yellow (lots of fire and sunset, trees with yellow leaves) and black while Fig. 19(d) has more 

blue, green and gray. In the direction of the PPA-y, the images in Fig. 12 (c) gradually change 

from yellow to black, with some slight red tone in the middle. Even within the bottom yellow-

toned images, the yellow in the left images is more intense than the yellow in the right images. In 

Fig. 19(d), the bottom right images are paler green mixed with gray while those on the top are 

mostly blue toned. The images on the right half have mostly white background, with the main 

objects being low saturated. The differences between the two clusters are obvious and this 

confirms that k-means separated the dataset well.  

With these cluster visualizations in place we now continue this process by further partitioning 

each cluster. We start with the blue cluster by painting all magenta points in gray. This allows k-

means to only run on the blue cluster. Fig. 19(e)(f) are the results. We again display a random 
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collection of images in each sub-cluster’s subspaces and the point-only projections along the side. 

We notice that the blue cluster (Fig. 19(e)) is blue tone based while the magenta cluster (Fig. 

19(f)) is mostly green. The blue cluster also has some white images in its right half which points 

to the opportunity for further partitioning this cluster. This process might be continued until no 

further significant variations inside each clusters can be found. 

4.5.4 VISUAL SETUP OF A CLASSIFIER 

In this example we show how our system deals with very high-dimensional datasets, assisted by 

its integrated view optimizer suite. We use the data published for the CADASTER challenge 

[112]. It applies the MOE descriptor [113] to describe the structure of molecules. The challenge 

is to use the descriptor to predict the molecule’s environmental toxicity. The toxicity information 

is given and so the data can be used to train such a predictor. This dataset contains 644 points, 

each 254-dimensional. 

Since the attribute of toxicity is continuous, the solution would involve some form of 

regression. We changed the challenge into a binary prediction task, that is, determine of toxicity 

is positive or negative. This is similar to the approach of Yuan et al. [101] but they used a 

different descriptor of 221 dimensions and they only classified a portion of the data with 

approximate results. Yuan et al. tackled the problem largely via manual interaction in both the 

data and the dimension domains without much assistance by optimization schemes. Their 

classifier is based on a set of data dimensions, while ours is based on a set of hyperplanes which 

is a more general spatial descriptor. Our hyperplanes separate the data according to toxicity 

being positive or negative. Then, using those planes, new molecules could be classified as well.  

Since we already know the class labels, we can begin with the subspaces of the two classes 

(Fig. 20(a)(b)). Unfortunately, even after view optimization, the two clusters still overlap in both 

views. In normal operation when using the view optimizer to find subspaces, we restrain the 

range to perform a ‘local’ optimization which ensures the optimized views are very close to the 

original PCA views. In this use case, we only care about finding views where the two classes are 

mostly separated, but those views do not necessarily have to be close to the current view. Thus, 

we relax the constraint and run the view optimizer ‘globally’ by setting the search range for all 

dimensions as [-1, 1]. Then, each time we run the view optimizer it starts with the current view 

and returns a view which separates the two classes better than the current one. Win this way we 

run the view optimizer a couple times until it no longer returns any better view.  

Fig. 20(c) is the result after running the view optimizer on the subspace of the magenta class. 

We notice except for the middle area (in the red circle), the blue and the magenta classes are well 

separated by the green hyperplane. We record this information and then paint the well separated 

points in grey to further perform view optimization only on the circled points (Fig. 20(d)).  
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Fig. 20(e) is what we get after a couple ACO runs (The gray points have been omitted for 

clarity). We observe that the two classes are well separated using the orange hyperplane except 

for a couple magenta points falling into the blue class region. We could focus on these points and 

run the view optimizer on them, but the amount of misclassified points is already rather small. 

But this is the advantage of our visual interface – users can decide where they would like to 

refine the classifier.  

This use case shows that our approach of fusing visual interaction with view optimization can 

produce fairly accurate classifiers with just a few interactions. A new point would be classified 

by first determining if it projects into the red circle or not. If it does then the orange hyperplane 

would be used to classify it, else the green hyperplane. 

4.6 USER STUDY 

In order to evaluation the various interactions our Subspace Voyager provides, we conducted a 

user study among 10 graduate students. None of them had experience in visual analytics before. 

We wanted to test if the participants could fulfill certain data analysis tasks using the proposed 

interactions. 

Fig. 20. Visual classifier setup using the MOE dataset (a). The subspace of the blue class (b) The subspace of 
the magenta class.(c).Run the view optimizer globally on the subspace of the magenta class -- except for the 
points inside the red circle, all others are well separated by the green hyperplane. (d) Paint the well separated 
points gray and run the view optimizer again on the rest of the points. This view only shows the active (non-gray) 
points. The orange hyperplane separates the two classes 

. 

(a) 

(b) 

(c) 

(d) 

(e) 
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4.6.1 SETUP 

We invited all participants to sit down with us individually. At the beginning, we showed them a 

three minutes ten seconds long introductorily video which covered all the basic interactions the 

Subspace Voyager supports, such as the different trackball interactions, how to save views to the 

STM, how to bring the saved views back and how to traverse between the views. In that video, 

we used the Iris dataset [114] as a walking example.  

We then let them ask us any questions about the system and this was the only time during the 

user study that we interfered. Three participants were a bit confused about how to interpret the 

dimensions’ labels along the trackball at first but after a quick explanation, they all understood. 

We then asked them to perform three tasks. We filmed the computer screen to record their 

operations and also asked them to speak out their thoughts during the whole time, which we also 

recorded. Both means of recording helped us analyzing the participants’ performances later. 

4.6.2 TASKS 

There are three tasks we asked the participants to fulfill. For the first task, we used a 3D 

contrived data set which has a hollow tube with a stick in the middle, displayed both in the 

SPLOM (Fig. 21(a)) and our system (Fig. 21(b)). We at first asked the participants to describe 

the shape of the data based on the SPLOM and then asked them to use the Subspace Voyager to 

explore the data and describe it again.  

For the second task, we initially put two snapshots (Fig. 22(a)) of the salesforce data set in the 

STM, asked the participants what they saw in the two scatterplots. We then asked them to 

traverse between the two and describe to us what they saw along the path. 

The last task is a complete data analyzing one. We used the salesforce data set and showed the 

participants a 48 seconds long video to introduce this data. The initial trackball configuration is 

shown in Fig. 23 (a) where all three teams overlap. We then told the participants that there are 

three sales teams in this data set and they are colored differently in our system. Different teams 

use different sales strategies such as generating lots/a small amount of leads, assigning high/low 

cost per won lead and such.  If the participant was the company leader, what strategies he/she 

would take that is more related to higher revenue generation. We asked the participants to 

explore the data first and after they done exploring, tell us their choices all together.  

4.6.3 RESULTS 

In task one, because the structure of the data can only be observed from a non axis-aligned angle, 

not a single participant found the hidden stick from the SPLOM. 8 of them asked for pen and 

paper to help themselves construct the distribution of the data. They described the data as ‘tilted  
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cylinder’ or ‘oval prism’.  On the other hand, using our trackball’s normal rotating functionality, 

all of them managed to find this hidden stick. They described the data as ‘a pipe with something 

in the middle’, ‘cylinder with some coaxial cable’, or ‘two concentric cylinders’. Fig. 21(c) and 

(d) listed two typical views the participants generated that helped them draw the conclusion. This 

demonstrates that our trackball is able to help users understand the structure of the data.  

We have a few interesting findings here. First of all, for the slowest participants, he initially 

only tilted the trackball in the upward or downward directions in Fig. 21(a) where the hidden 

structure cannot be revealed. After some time, he decided to tilt the trackball in the other 

directions and finally found the stick. He later told us that because of the SPLOM display, he did 

not suspect anything in the middle and therefore didn’t intent to peek from that decisive angel. 

This makes us think in order to explore an unknown data set, sometimes it might help to not give 

too much prior information such that users would have the flexibility to perform all kinds of 

actions. Secondly, after finding the hidden structure, 4 users used the ‘chase cluster’ mode to re-

produce the SPLOM in order to verify if the SPLOM is correct. This makes us think that our 

system might be a good tool for the users to verify known facts about the data. 

In task two, 8 participants said that there are 2 clusters in this data set based on the two small 

snapshots. 2 participants suspected there being a third cluster based on the top view in Fig. 22(a). 

All of them used our ‘TraverseBtw’ slider to go from one view to the other (nine of them went 

from the top view to the bottom one while one of them went the other way). Top panels in Fig. 

22(b)-(d) listed a few critical views along the path. It’s hard to spot the three clusters without 

motion parallax in those frames, so for demonstration purpose, we colored the three clusters and 

put the same views below their uncolored counterparts here. All of the participants spotted the 

third cluster while travelling (for the two who suspected its existence in the beginning, they said 

they were not sure at first, but now they are sure). They described what they saw along the path 

as ‘The bigger cluster separates into two, one of them remains a separate  

                      (a)                                             (b)                                                       (c)                                                   (d) 

Fig. 21. User study 1. We asked the participants to user both SPLOM and our system to examine the shape of the data.(a) 
The SPLOM of the data. (b) The initial view in the SE. (c)(d) Typical views the participants generated that helped them draw 
the conclusion. 
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cluster while the other one merges with the smaller cluster’. Some of them even described in 

more detail, ‘The upper left cluster seems to be moving forward. Another cluster is moving 

upward and the third one is moving downward’. One guy also saved a couple views in the STM 

and later mentioned that, “if I look at those still frames, I probably still cannot tell that there are 

three clusters, it’s really the motion that you can tell.” 

This task proves the use of our STM, especially the feature that allows users to traverse 

between frames. What’s more, the power of motion parallax is also proved – users can spot 

patterns easier than relying purely on still frames. 

For the third task The participants all used the ‘chase cluster’ functionality (directly move 

toward several dimensions’ labels or first click on a dimension label and then move toward it to 

increase its weighting on the current projection) to analyze the data. But when it comes to the 

way they operated, three different strategies formed.  

The first one is to make individual data dimensions be the dominant factor on either PPA-x or 

PPA-y axis, and observe the distribution of the three sales teams along these attributes. A typical 

view of this strategy is shown in Fig. 23(b). Here, the participant wanted to exam the influence of 

#opportunity and later on, when using the STM to go back to this view to present his findings, he 

described this way as ‘The blue cluster has the lowest number of opportunities’.  

The second one is to keep PipelineRevenue as either PPA-x or PPA-y axis, and make the rest 

attributes the other one. By doing this, those participants managed to create traditional axis-

aligned scatterplots where they can exam the relationships between two variables. One typical  

                      (a)                                                                    (b)                                               (c)                                           (d) 

Fig. 22. User study 2. We asked the participants to use the STM to traverse from one view to the other and describe what 
they saw long the path.(a) The initial STM. (b)(c)(d). 
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view of this method is shown in Fig. 23(c). The participant can then conclude that “Blue and 

magenta clusters all have high revenue. Magenta and green all have high number of 

opportunities.” 

The last analysis strategy is to try to come up with certain views where some attributes are all 

well expressed. One typical view for this strategy is shown in Fig. 23(d). Based on this view, this 

participant has described his findings as ‘The blue and magenta clusters have higher revenues 

than the green one. They both generated more leads and have lower cost per won lead. Those 

two factors seem to be important. Cost does not seem to play a very decisive role here.’ 

All participants used the STM to save important findings and they all used the STM to tell us 

their choices of sales strategies. Six participants simply dragged and dropped those saved views 

back to the trackball in order to find out the dominant dimensions on those views. Four of them 

used the STM to traverse between those key frames when telling us the story because they ‘like 

the animation’. When presenting their findings to us, all of the participants came up with similar 

results such as ‘The blue and the magenta teams have the highest revenue’, ‘The blue team has 

high number of leads and this might lead to their high revenue’ and ‘Cost per won lead needs to 

be low.’ 

All participants managed to finish all three tasks using proposed interactions after a short 

training. They also understood the meaning of the displays of our system well. They managed to 

find hidden patterns, using motion parallax to discover the third cluster and fully analyze the 

sales force dataset. These proves the usefulness of our system for data analysis tools 

 

 

 

                      (a)                                                    (b)                                                       (c)                                                   (d) 

Fig. 23. User study 3. We asked the participants to analyze the sales force dataset. 
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CHAPTER 5 

THE 3D SHADED SHAPE REPRESENTATION 

                      (a)                                            (b)                                           (c)                                                (d) 

Fig. 24. Four visualizations of the Optical Recognition of Handwritten Digits data set using different depth cues. (a) 
Scatterplot with occlusion. (b) Scatterplot with fog function. (c) Scatterplots imitates motion parallax. (d) 3D shape 
representation. 

Apart from cone trees and some other representation there has been a great reluctance to use 3D 

graphics for non-spatial data. However, recent workshops have begun exploring this (and other) 

issues related to 2D vs. 3D information displays. In this paper, we test the hypothesis whether 

transforming a data matrix into a 3D shaded surface or even a volumetric display can be more 

appealing to humans than a scatterplot since it makes direct use of the innate 3D scene 

understanding capabilities of the human visual system. In addition, we test the hypothesis 

whether 3D shaded displays can add a significant amount of information to the visualization of 

high-dimensional data, especially when enhanced with proper tools to navigate the various 3D 

subspaces. Our experiments suggest that mainstream users prefer shaded displays over 

scatterplots for visual cluster analysis tasks after receiving training for both. And further, our 

experiments also provide evidence that 3D displays can better communicate spatial relationships, 

size, and shape of clusters. 

5.1 MOTIVATION 

In 2009 the movie Avatar was released. It was a tremendous success and has been logged as the 

highest-grossing movie of all times. Avatar was so successful because it took the movie 

watching experience to a whole new level. Among other advances, it perfected the art of adding 

a third spatial dimension to the traditional two dimensions plus time. The underlying reason why 

this is so appealing to a human audience is because 3D is the most natural form of visual input. 

The human visual system is trained for 3D viewing already in early childhood and it is in these 

early years where an inferential chain is built that, fed by the retinal stage, takes in surrounding 

information and outputs 3D shape relations, aided by 3D models of the world already stored in 

the brain.  
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In the area of inform visualization researchers have long realized the benefits of incorporating 

all three spatial dimensions into the information display. This of course is natural since the data 

in these fields typically have a spatial reference. This is not the case for information visualization 

where data are usually from non-spatial sources and have no direct relation to 3D space. 

Henceforth, 3D methods have not been widely applied in information visualization. Scatterplots, 

parallel coordinates, tree maps, and the like all embody 2D graphics. One of the few exceptions 

are cone-trees [75]. Others have used 3D shading to accentuate boundaries of 2D shapes, such as 

cushion tree maps [97]. Finally, some researchers [85][69] have exploited motion parallax which 

is 2D plus time to disambiguate distance relations in scatterplots displays. We are not aware of 

research that has used fully 3D methods for the depiction of these types of point clouds. 

We define 3D visualizations as renderings that include depth cues, such as occlusion, shading, 

perspective distortion, shadows, and so on. As discussed, these are all phenomena that occur in 

the daily life of every normal person, and it is this audience we would like to get interested and 

engaged in the visualization of complex data. Adding 3D shading effects to bar and pie charts, as 

many plotting programs do, seems to be a step into the right direction. While it is arguably a 

rather small step, it does make data visualizations more appealing to the general user, as 1,000s 

of business graphics can readily attest to. 

Interesting to our mission is a recent study conducted in the Smithsonian Museum in 

Washington DC [115] where visitors were asked to rate certain abstract 3D shapes for aesthetics. 

The study suggested that curved 3D shapes are more attractive to humans, as opposed to non-

curved ones, offering them more aesthetic pleasure. In fact, the 3D shapes our renderer produces 

are strikingly similar to these curved museum pieces, although they are shaped by data and not 

by artists. In our work, shape is the high-dimensional manifold covering a point distribution or 

cluster. Since graphics displays can only render in 3D, we project these high-dimensional shapes 

into 3D, and provide an interactive interface by which users can navigate the high-dimensional 

space, control the 3D projection operations, and so manage the large space of possible 3D 

projective shapes due to data subspaces, seamlessly transitioning among them. 

The high-dimensional navigation and exploration uses our existing subspace exploration tool - 

the Subspace Voyager [94]. However, instead of operating on the data points directly, we now 

use the Marching Cubes algorithm [60] to extract the 3D shapes of the density fields. Multi-layer 

semi-transparent rendering can then visually reveal hidden structures as well as phenomena 

associated with varying density of the data, such as skew and outliers.  

To illustrate what has been stated above, Fig. 24 shows a comparison of 2D vs. 3D, using the 

Optical Recognition of Handwritten Digits dataset [116]. This dataset has the normalized 

bitmaps of the ‘0’-‘9’ handwritten digits. We only use 5 clusters out of the 10 (‘0’-‘4’) for ease 

of comparison. Fig. 24(a) is a scatterplot with occlusion implemented for depth perception 

(points in the back are blocked by points in the front) viewed from an optimized angle where 
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most of the clusters are separated. Fig. 24(b) is the same scatterplot viewed from the same angle 

but with a fog function applied (points in the back are dimed by an invisible fog). Fig. 24(c) uses 

four frames to imitate motion parallax where the scatterplot from Fig. 24(a) is tilted upward. Fig. 

24(d) is our 3D shape representation with the shapes of the five clusters extracted. We observe 

that with our method (Fig. 24(d)), the structures and relations of the five clusters can be clearly 

discerned. The blue cluster and the red cluster are on the right and the red cluster surrounds the 

blue cluster. The purple and the red cluster are both close in the front while the yellow cluster is 

in the back. Most of the green cluster is well separated from the rest of the clusters but part of it 

is on top of the purple one. We also find that the third dimension, in combination with the shaded 

display, allows users to peek around cluster shapes, mitigating the point overlaps that exist in the 

scatterplot projection (Fig. 24(a) and Fig. 24(b)).   

One may argue that these relations can also be observed by other visualizations, especially 

those that utilize motion parallax. But these methods require interaction to generate the effect, 

while shaded displays invoke motion parallax by sheer 3D cognition. 

As mentioned above, information visualization deals mostly with non-spatial data which can 

be multivariate. So one might say that adding a third dimension for the visualization of these data 

only offers insignificant gains when the number of variables is on the order of 10s, 100s, or even 

1,000s. While this is a valid argument, it is not the reason why we advocate for 3D graphics. 

Rather, we advocate for it since, as the wide popularity of 3D movies and 3D shaded bar and pie 

charts readily show, 3D graphics is more appealing and potentially more engaging to general 

users than plain 2D graphics. And furthermore, due to the innate 3D reasoning capabilities of the 

human visual system, 3D renderings can also potentially facilitate better data understanding. We 

successfully tested both of these hypotheses for the research in this dissertation. 

5.2 SYSTEM OVERVIEW 

Our 3D shaded shape representation (Fig. 25) is tightly integrated in our Subspace Voyager [94] 

which is described in detail in chapter 3. Fig. 25(a) shows this interface with one of the shape 

displays we propose in this paper -- the corresponding point display is shown in Fig. 25(b). The 

circle containing the shape (or the points) in the SE is the boundary of the trackball interface. At 

its periphery are the current directions of the projected dimension axis vectors shown as 

dimension labels. All of the original navigation controls are still available, and new controls (Fig. 

25(c)) related to shape generations have been added to the interface. The two checkboxes are 

used to control if the shape representation, instead of regular scatterplot should be displayed, and 

with/without the original points. The sliders are used for controlling the generated shapes, such 

as the transparency, number of layers and level of detail.  
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5.3 METHODS  

The first step in building our shaded shape representation (SSR) is to build a 3D space where the 

high-D data is projected into. We then run the Marching Cubes algorithm [60] to find the 

polygon mesh enclosing the projected points. It is similar to the routine proposed in [63] but their 

work still strives for a 2D representation.  We shall now describe how this works along with the 

various rendering modes our system provides. 

Fig. 25. Subspcay Voyager interface using the 3D shaded shape representation  The controls outlined in red are those new  in order 
to modify the shapes. 

(a) 

(b) 

(c) 
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5.3.1 CREATING THE 3D SPACE 

The creation of the polygon mesh requires 3D points and for data sets with more than three 

dimensions, we need to create a 3×N projection matrix P. We will refer to the three N 

dimensional vectors as Projection Plane Axis (PPA). We have two options for the first two of the 

vectors in P: (1) using randomized projections [6] and obtain the orthogonal PPA x-axis and y-

axis pair, or (2) perform Principal Component Analysis (PCA) [40] and use the two most 

significant PCs. In both cases we require a third orthogonal axis – the PPA z-axis. To select an 

initial vector for the PPA z-axis we can either use the third vector obtained from randomized 

projection or PCA, or let the user manually assign one by pointing in the Subspace Trail Map. If 

this PPA z-axis is not orthonormal to both PPA x-axis and PPA y-axis, we perform Gram-

Schmidt orthonormalization process [31].  With the projection matrix P in place, we multiply 

each N-D point vector VND by P to obtain the 3D points V3D=M∙VND.  

5.3.2 GENERATING THE SHAPES 

We run the Marching Cubes (MC) Algorithm [60] on the 3D points to find their shapes. MC 

operates on 3D spatial data interactively and builds triangle mesh based isosurfaces. One can 

imagine a virtual 3D grid subdividing the space with all points residing on its vertices. Some 

vertices may have more points indicating high isovalues while others may have no points at all. 

If the isovalues of all 8 vertices of a cube are smaller or bigger than the user defined threshold, 

the isosurface does not intersect this cube. Otherwise, the isosurface crosses this cube in the form 

of a small mesh of triangles. Because each vertex can either be above or below the isosurface, 

there are 28 different configurations for the cubes (In fact, with mirroring and rotating, the 256 

possibilities can be reduced to 15 different unique cases). MC orders all 8 vertices from 0 – 7, 

and based on the values they have (1 for higher than the threshold and 0 for lower), an 8-bit 

binary number is formed. This number can be used as an index to find the entry in a lookup table 

that determines which edges of the cube the triangle intersects. Aggregating all triangles 

produces the final isosurface. 

 Fig. 26. Reversed trilinear Interpolation. The values 
of the 8 vertices are approximated based on the 
distances between the faces of the cube and the 
actual point.  
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One small caveat is that we are mostly dealing with non-spatial data and these 3D points are 

irregularly sampled and are not perfectly aligned with the vertices of the grid. We solve this 

problem by splatting the points into a regular grid using reversed trilinear interpolation. Suppose 

the length of the edges of the cubes is 𝐿 and the distances of a data point to the left, bottom and 

back faces of the cube which it resides in are 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧, respectively (see  Fig. 26). Let 𝑤𝑥 =

 𝑑𝑥 𝐿⁄  , 𝑤𝑦 =  𝑑𝑦 𝐿⁄  and 𝑤𝑧 =  𝑑𝑧 𝐿⁄ . The values on the 8 vertices are then approximated using 

the following formula: 

𝑉𝑝1
=  𝑤𝑥 ∗  𝑤𝑦 ∗  𝑤𝑧

𝑉𝑝2
=  𝑤𝑥 ∗  𝑤𝑦 ∗ (1 − 𝑤𝑧)

𝑉𝑝3
=  𝑤𝑥 ∗ (1 − 𝑤𝑦) ∗  𝑤𝑧

𝑉𝑝4
=  𝑤𝑥 ∗  (1 − 𝑤𝑦) ∗ (1 − 𝑤𝑧)

𝑉𝑝5
= (1 − 𝑤𝑥) ∗  𝑤𝑦 ∗  𝑤𝑧

𝑉𝑝6
=  (1 − 𝑤𝑥) ∗  𝑤𝑦 ∗ (1 − 𝑤𝑧)

𝑉𝑝7
= (1 − 𝑤𝑥) ∗ (1 − 𝑤𝑦) ∗  𝑤𝑧

𝑉𝑝8
=  (1 − 𝑤𝑥) ∗  (1 − 𝑤𝑦) ∗ (1 − 𝑤𝑧)

  

After this step, we also apply a 3D Gaussian filter on the gird to smooth out the points since 

otherwise the final shapes usually appear jagged. We use a 9 × 9 × 9 Gaussian filter and instead 

of applying it on the points for three nested iterations, we separating the filter into X, Y and Z 

direction to speed up this process. We offer point light and ambient light in our system. The 

point light acts like a light bulb and either creates bright areas or casts shadows on the objects 

depending on their positions and structures. Conversely, the ambient light adds uniform shading 

to all objects in the scene, regardless of their properties. 

We use a sales campaign data set as an illustrative example in Fig. 27. Our data set consists of 

900 points (one per salesperson) and 10 attributes parameterizing the basic corporate sales 

pipeline. There are 3 clusters. Fig. 27(a) shows the generated shapes and their corresponding 3D 

points (top right). e use the same color for the same cluster in both views. We also take another 

view of the data and generate its shapes in Fig. 27(b). We already see the resemblances in the 

shape representations with their original scatterplots, such as the relative positions and the 

silhouettes of the 3 clusters. We will demonstrate the correctness of our representation later. 

There are three parameters that can be adjusted here – the number of cubes that the grid has, 

the number of times the box filter is run, and the isovalue. They can be adjusted using the 

GridSize, Smooth and IsoValue sliders in the control panel (Fig. 25(c)), respectively.  

We find that with more cubes in the grid, the details of the shape are better depicted (Fig. 28). 

When the grid size is 30×30×30, the shapes grow very large, fill almost the entire space, and 

look like three shapeless blobs (Fig. 28(a)). But when the grid size is 130×130×130, small lumps  
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formed by points on the boundary are shown (Fig. 28(c)). A grid size of 80×80×80 seems best 

here. 

The number of smoothing iterations has the opposite effect (Fig. 29) – the greater the number of 

iterations is, the less details the shapes have. The smoothing stage works like the blurring filter in 

image processing; when applied, details (in our case, sparse points or outliers) are reduced. 

Without smoothing, individual points instead of shapes are generated (Fig. 29(a)); with an 

increased amount of smoothing, the lumps on the isosurfaces disappear (Fig. 29(c)).  

Fig. 27. Shapes generated using the Marching Cubes algorithm and their corresponding scatterplots to their right. 
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Finally, the isovalue controls which portions of the points are rendered – with a higher isovalue 

the denser part of the points would be used to generate the shapes ( Fig. 30(c)). In contrast, all 

points would be enclosed in the shapes if the isovalue is low ( Fig. 30(a)). 

 

 

Fig. 28. The effect of grid resolution on the generated shapes: Left: 30×30×30, middle: 80×80×80, right: 
130×130×130 

Fig. 29. The effect of number of smoothing iterations on the generated shapes. Left: No smoothing. Middle: 2 
iterations. Right: 10 iterations  

 Fig. 30. The effect on the final shapes when using different isovalues. Left: Isovalue is 0.00075. Middle: Isovalue is 
0.00375. Rigth: Isovalue is 0.01  
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5.3.3 MANIPULATING THE SHAPES 

We provide the user with the flexibility to render the generated shapes as they like. The 

following adjustments are supported: 

 Zooming and panning. Users can apply the scroll wheel to zoom in/out the shapes (Fig. 8). 

This allows them to inspect the shapes closely or attain an overall view of them. Users can also 

pan to the desired areas of the shapes by moving the mouse while the right mouse button is 

pressed.  

 Transparency. Users can change the transparency of the shapes, and shapes with higher 

transparency (lower opacity) reveal the structures that are otherwise hidden behind them. Fig. 

9(a-c) show the same shapes rendered with different opacities. Both Fig. 9(a), which renders 

the purple object at half opacity and Fig. 9(b), which renders it at 70% opacity allow the user to 

see the fairly large blue cluster that is behind the purple one. Conversely, Fig. 9(c) where the 

purple object is fully opaque yields no information on how the large the blue cluster really is.   

 Multi-layer. In Computed Tomography (CT) scan, high density areas are reconstructed using 

solid surfaces while low density areas are depicted with low opacities. This easily separates 

body parts with different densities and makes diagnosis less complicated. We believe that if we 

could create our shaded shapes using a similar method, it would also help users to discern the 

inner structure of the data. As discussed in section 4.2.1, MC with different isovalues renders 

different parts of the points – denser parts would only be rendered if larger isovalues are 

applied. We can rely on this property and use different isovalues at the same time. Fig. 33(a) is 

one such example. We run MC using three isovalues and the final results has three layers. The 

outermost layer is almost transparent and it includes almost all the points while the innermost  

Fig.  31.  Zooming and panning. (a) The shapes are zoomed out. (b) The shapes are zoomed in. (c) The shapes 
are zoomed in and panned to the blue cluster   
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layer is opaque and only points in denser areas are included. Users can clearly tell the dense 

parts apart from the other parts and so gain insight into the data set. 

 Points within shapes. We also allow users to render the shapes and the points at the same time. 

Fig. 33(b) gives such an example. 

The transparency and the number of layers of the shapes can be controlled by adjusting the 

Opacity and Layers sliders in the control panel. The points within the shapes can be turned on 

and off by the RenderPtn checkboxes in the control panel.  

5.3.4 PROOF OF CORRECTNESS OF OUR SHAPE REPRESENTATION 

With the proposed shape representation being a new paradigm for scatterplot rendering it is 

important to prove its correctness.  

Fig. 32. Different transparency. Left: Opacity = 0.5. Middle: Opacity = 0.7. Right: Opacity = 1. 

Fig. 33. The Multi-layer mode and the Points within Shapes mode. (a) Multi-layer mode. (b) Render points within shapes. (c) 
The corresponding heat map. We can see that the dense parts in (c) map to the innermost layers in (a) and (b). Certain 
distributions of the dataset (green circle in (c)) are also preserved (green circle in (a)). The left out points circled in red in (b) 
are far from the majority of the points and can be considered outliers. 

(a) (b) (c) 
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Let us first consider Fig. 33(b) where all points are rendered together with the shapes. There 

we notice that all points, except for the three circled ones, are enclosed by the shapes. The 

curvatures of the shapes also fit well with the edge points. The three left out points are far away 

from the rest of the data, and because of the Gaussian filter we applied, the eight vertices of the 

cubes they reside in have little weight. They still influence the final shape (see the point in the 

blue lump on the outermost layer that is in the red circle), but MC did not include them in the 

generated isosurfaces based on the isovalue we chose. We wish to point out that because MC is 

isovalue sensitive, these three points can be included in the shapes by assigning a lower isovalue 

or by using fewer rounds of box filtering.  

To give a more quantitative analysis, we also generated a heat map based on the 3D density of 

the original non-splatted points (see Fig. 33(c)). By comparing Fig. 33(a, c) we can see that the 

shapes preserve the original distribution of the points well. For example, the tail of the green 

cluster in Fig. 33(a) circled in green matches the parts in Fig. 33(c) circled using the same color. 

We also drew the contours enclosing the dense areas of the three clusters on the heat map (black 

lines), and we can see that they roughly match the silhouettes of the innermost layers in Fig. 

33(a). 

It should be mentioned that since we generate the shapes based on the splatted and smoothed 

points, sometimes only the overall trend and not every detail of the points is retained. If we had 

used a grid with higher resolution and fewer smoothing iterations, more details would have been 

maintained but at the cost of higher storage and rendering. In addition, sample points in data 

science are usually always associated with some inherent uncertainty. One might design a grid 

size and blurring filer that would be tuned to this uncertainty. 

5.4 CASE STUDIES 

We had set out to design our 3D framework with the intent that it might (1) help clarify certain 

relationships and (2) help engage users to move along in their data exploration task, providing 

them with interesting options to explore, akin to game play. For the former one might have a 

conventional scatterplot display augmented with a ‘ShapeUp’ button that would provide an 

instant 3D view of the same scene. As noted, both of these intents were motivated by the human 

visual system’s natural penchant for 3D displays. In the following we provide two case studies to 

bring home these points, complemented by the results of a web-based user study we conducted. 

5.4.1 USING THE SHAPE DISPLAYS TO CLARIFY AND ENGAGE 

We use Fisher’s Iris data set [114] as a first example. The Iris flower data set has three classes 

with 50 instances in each of them. Each class belongs to a different type of iris. This dataset has 

five attributes – sepal length, sepal width, petal length, petal width, and the class label. Data 

analysts often use a SPLOM to exploit it. We use the first four attributes to generate half of the 

scatterplots in the SPLOM and place their corresponding SSRs to their left (see Fig. 34).  
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Essentially, each view on the left could be the 3D renderings that would result when hitting the 

aforementioned ‘Clarify’ button when only the 2D scatterplot on the right is seen. 

Let us assume a plant biologist, Tim, views the scatterplot display in Fig. 34(a) on the right 

which is a rather complex one. While he can easily discern that the blue cluster of flowers is 

separate, he cannot tell for sure for the green and purple clusters. So he hits the ‘ShapeUp’ button 

which produces the 3D view to the left in Fig. 34(a). He can now clearly see that the green 

cluster is in front of the purple one and a plane parallel to the screen seems to be able to separate 

them. This gives Tim good guidance on how to find a proper view where all three clusters can be 

Fig. 34. Comparisons between scatterplots and our shaded shape representation using the Iris dataset.  (a) The green and 
purple clusters are not separable in the scatterplot but our SSR suggests the possibility to use a plane parallel to the screen 
to separate them. (b)(c) From the scatterplots, only the 2D distribution of the data can be seen but our SSR allows users to 
observe the trend along the third dimension. (d) Outlier detection. Our SSR is able to detect outliers that are far away from 
the majority of points along the third dimension (red circle). (e)(f) Brushing and linking. A portion of the green cluster is 
painted yellow in (e), all points belonging to that portion form a new cluster for shape generation in (f). 
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separated. Since the current view is Sepal width over Sepal length, he now knows that the other 

attributes, Petal width and Petal length, or both, are also involved in the classification. 

Tim moves on and inspects a 2D scatterplot of Sepal width and Petal length (Fig. 34(d), 

right). Looking at this display he suspects that there might be some flowers that are different 

from the main stream – outliers. To get more insight he hits the magic ‘ShapeUp’ button and the 

system produces the 3D display on the left. Now he clearly sees that the points he suspected to 

be outliers (circled in green and blue) are indeed outliers. But he also discovers an outlier he did 

not suspect – the one circled in red. This point is indistinguishable from the others in the 2D 

scatterplot, but pops out easily in the associated 3D SSR. While Tim could have possible found 

this rare flower in a different 2D scatterplot, the 3D SSR is more direct and does not require a 

context switch to a different set of dimensions. Rather, it uses the same dimensions than the 2D 

scatterplot, just using shading to disambiguate it. 

Next, Tim calls up the 2D scatterplot that visualizes Petal length vs. Petal width (Fig. 34(b), 

right). He sees three lean shapes that spread along the diagonal, suggesting a strong correlation 

for the green and purple classes. The blue class, on the other hand, does not seem to have a trend. 

Tim thinks that this is interesting but he is not certain what 2D scatterplot to look at next. He 

presses the ‘Clarify’ button (producing the view on the left) and sees that all three classes seems 

to protrude into the depth direction, almost inviting him to follow to see what this trend is all 

about. He knows that this third dimension has to be one of the remaining ones, or a combination 

of them. So he gets curious again and exchanges Petal with by Sepal length (see Fig. 34(c)) to 

learn more about his data. And the exploration continues. 

An important activity in interactive cluster analysis is brushing and linking. Tim decides that 

he would like to break away part of the green class into a separate class since he thinks that it an 

important subset of flowers. Tim prefers to do this in 3D since he used to painting 3D objects. He 

picks the yellow color and brushes on a portion of the green surface. Our system automatically 

assigns the tagged surface points, as well as points underneath, to a different cluster. This 

produces Fig. 34(e), left. Next, Tim uses the trackball interface to go to a different projection 

(Fig. 34(f), left) where new shapes are generated according to the new axis dimensions. Tim 

observes that the tagged yellow cluster is now rotated to the back. This gives Tim an overall idea 

of the dynamics of what he thinks are the interesting parts of the data. 

5.4.2 DISCOVERING HIDDEN STRUCTURES 

We present a somewhat contrived, almost malicious, dataset that we constructed to illustrate 

that our SSR can make structures visible that equivalent 3×3 SPLOM cannot. Such an example 

readily extends to higher dimensions – we just chose 3D for ease of illustration.  

We used our SketchPadND [95] to generate a test data set. The data set is a box shaped point 

cloud with four sides closed (except for the front and the bottom sides, Fig. 35). There are three  
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holes on the top, left and right sides and one solid stick in the middle of the box. In Fig. 35(a), 

we can clearly see the structure of the data. The stick is pointing out in the middle and the three 

holes are also obvious. If we change the opacity of the shape from 1.0 to 0.7 (Fig. 35(b)), more 

attributes can be seen. For example, we can now see the entire hole on the back and tell where 

the stick ends. We compare our SSR with an SPLOM in Fig. 35(c). Since the stick is perfectly 

aligned with the holes in all axis-aligned views, we cannot determine the structure simply using 

SPLOM alone. The only thing we can discern is that there are some denser planes (the sides of 

the box), but we would never picture holes on those planes or the existence of the inner stick. If 

we look at the points from the same angle as the shaded shape (Fig. 35(d)), we do notice two 

holes (top and right), but because of points overlapping, neither the left hole nor the stick can be 

observed. Finally, we add invisible fog in the scene (Fig. 35(e)), and the tip of the stick becomes 

visible. The left hole is a bit clearer than Fig. 35(d) but still not quite obvious. However, the 

emergence of these two structures comes at a cost:  the other two holes are now blurred out. The 

fog dimmed the points in the back too much and the rear part of the shape seems hollow now. 

Admittedly, with a movie showing this object rotating around, all three holes and the stick can 

be observed. However, a movie takes more computing resources to generate and it also costs 

more time for users to reason with a movie. In fact, with a movie clip, viewers typically forget 

what they have seen before and cannot connect the dots. This is not a problem for our SSR 

because users only need to look at one still image. 

Fig. 35. Our shaded shape representation helps discern hidden structures. (a) Shaded shape representation with opacity 
set to 1.0. (b) Shaded shape representation with opacity set to 0.7. (c) Scatterplot Matrix. (d) Points viewed from the 
same angle. (e) Points viewed from the same angle with fog function applied. 

(a) (b) 

(d) (e) 

(c) 
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5.5 USER STUDY 

Sections 4.4 has shown that our SSR can nicely complement and possibly substitute a traditional 

2D scatterplot display or SPLOM for analysis. We also hinted on the possibility that a 3D 

display might also be more engaging and appealing to human users. In this section we have set 

out to formally proof all this via a targeted user study. Specifically, we want to know, do 

mainstream users like the SSR? Is it more appealing than point-based displays? Is it more 

engaging? What about accuracy? To test these questions, we conducted a user study on Amazon 

Mechanical Turk. 

5.5.1 THE SETUP 

Our study started with the explanation of what a cluster is and showed the participants the two 

different ways to represent different clusters – SSR and scatterplots (Fig. 36(a)(b)). For the latter, 

we used a combination of three scatterplots because we wanted to give the participants more 

depth information. In the bottom right corner of Fig. 36(b), the data set is viewed from the same 

angle as in Fig. 36(a). In the bottom left corner, the viewing window has been rotated toward the 

left relative to Fig. 36(a), whereas in the top right corner, it has been rotated upward. The three 

scatterplots provide the participants with motion stimulus and the relative locations of the three 

clusters can be derived. In Fig. 36(b), because we rotate the bottom right scatterplot along its 

center to the top (top right scatterplot), the points in the back were moved toward the bottom (the 

blue cluster) and points in the front were moved toward the top (purple and green cluster). Since 

the green cluster is in front of the purple cluster and further away from the rotation center, it has 

Fig. 36. Data sets used for our user study. (a) – (g). The different SSR and the scatterplot representations used in the user 
study. 

(a) (b) (c) 

(e) (f) (g) 

(d) 
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larger displacement compared to the purple cluster in the same scatterplot. Similar reasoning can 

be made for the upward tilting. 

5.5.2 STUDY DESIGN AND TASKS 

Following these instructions, we asked the participants three sets of questions. The first set 

featured a visualization using our SSR (Fig. 36(c), the Optical Recognition of Handwritten Digits 

data set [116]) and the second set featured a visualization using the scatterplots (Fig. 36(d), the 

Image Segmentation data set [117] where we chose 4 clusters out of the 7). Hence, each 

participant saw both representations, had to use them for problem solving, and so was familiar 

how each operates. We used different datasets for both to avoid learning effects. 

Next, for answering the last set of questions, each participant had a choice between the SSR 

(Fig. 36(f)) and the scatterplot (Fig. 36(g)) to answer them. Both used the Campaign dataset 

since learning was not an issue here. To select the representation of choice they could click on 

one of the pictures in Fig. 36(e). The ‘SHAPE’ labeled picture represents our SSR, while the 

‘POINTS’ labeled picture represents the scatterplots.  

Each set contained three questions. The first questions were always “How many clusters are 

there?” the second questions were “Which two clusters are better separated?” and the third ones 

were “Which cluster is in front?” All of the questions were binary choice. For example, for the 

first set of questions (Fig. 36(c)), we offered them “3” and “4” for the first question, “Blue & 

Red” and “Blue & Green” for the second one and “Purple” and “Yellow” for the third one.  

Since we make reference to colors, we conducted the Ishihara color blindness test [118] 

before the real user study and only those participants who had passed this test could proceed to 

the survey. 

Specifically, our three hypotheses were: 

H1: the participants would demonstrate equal performances for the first questions related to 

the number of clusters using both method since they do not make key use of the depth cue;  

H2: the participants would perform better for the second and third questions when using our 

SSR since it’s easier to determine the spatial relation; and 

H3: a majority of the participants would choose our SSR over scatterplots because it is more 

appealing and natural to them. 

5.5.3 LAUNCH, ANALYSIS AND OUTCOME 
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We posted 40 assignments for our HIT (Human Intelligence Task) on Amazon Mechanical 

Turk. We chose Amazon Mechanical Turk in order to get a diverse pool of participants. For the 

last set of questions, even though it uses the same data set and the same questions for both 

representations, the number of participants that answered them for each was different. We 

therefore combined these responses and counted the number of correct and incorrect answers to 

the three types of questions (cluster number, cluster separability and which cluster is in the 

front). All 40 participants answered the three questions in set 1 and 2, 34 chose our SSR to 

answer the questions in set 3, while 6 chose to use the scatterplot representation. This yields 74 

(40 + 34) responses for each type of answers using our SSR and 46 (40 + 6) answers for each 

type of answers using the scatterplot representation. The aggregated results are shown in Table 2. 

The numbers before the slash are the counts of correct answers while the numbers after the slash 

are the total responses. 

To test the first two hypotheses, we performed the Chi Square test [99] to get the p-values 

[20]. The Chi Square statistic indicates how well the observed values fit with the expected values 

based on a certain hypothesis. The p-value is a relative standard to accept or reject this 

hypothesis (p<0.05 means the result is significant) and can be looked up using the Chi Square 

statistic.  

The calculated Chi Square statistics and p-values for the three types of questions are shown in 

Table 3. We can see that the p-value for testing if there is a difference in the performances of 

counting the number of clusters using the two different representations is not significant 

Table 2. Results for our user study. The numbers before the slash are the counts of correct answers while the 
numbers after are the total responses. 

 SSR Scatterplot 

# of clusters 72/74 42/46 

Separability 65/74 33/46 

In the front 62/74 24/46 

 

Table 3 Chi Square statistics and p-values for our user study. This confirms our three hypotheses. Participants 
performed equally well in counting the number of clusters using both representations but our SSR offers higher 
accuracy in separating clusters and figuring out spatial relations between clusters.. 

 Chi-Square p-value 

# of clusters 2.1448 0.143049 

Separability 4.9103 0.026698 

In the front 13.9585 0.000187 
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(0.143049 > 0.05). This insignificance confirms H1. Since this task is simply about counting the 

number of different colors, it should be easy for both representations. The second p-value 

(0.026698 < 0.05) indicates that it is easier to figure out which clusters are better separated in our 

SSR. The last p-value 0.000187 is much smaller than 0.05, indicating that our SSR is much 

better at showing spatial relations compared to scatterplots. This confirms H2.  

Out of the 40 participants, 34 chose to use our SSR to answer the last set of questions and 

only 6 of them chose to use scatterplots. We computed the confidence interval (11.07%) for this 

observed proportion (85%) of participants that preferred our SSR to the scatterplot 

representation. This result indicates that we can be 95% certain that the true population 

proportion of people that prefer our SSR falls within the range of 73.93% to 96.07%. This 

suggests that H3 is also true. The majority of the participants might find our SSR more 

informative and easier to interpret than scatterplots and that is why they chose our SSR. Another 

possible explanation is that they simply found our SSR more appealing and engaging. 
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Brushing 
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N-D touchpad 
Polygon 

Fig. 37. Scatterplot Sketching interface 

CHAPTER 6 

THE SCATTERPLOT BASED DATA GENERATION TOOL 

High-dimensional data visualization has been a very popular research topic recently and there are 

a large number of tools and frameworks that have been designed for this purpose. In order to test 

those tools, researchers always need datasets with certain desired features. However, those 

features are not always present in real world dataset, or only partially available. Here we propose 

the a scatterplot based WYDIWYG (What You Draw Is What You Get) data generation tool. It 

allows users to generate high-dimensional data in the same interface they also use for 

visualization. This provides for an immersive and direct data generation activity, and furthermore 

it also enables users to interactively edit and clean existing high-dimensional data from possible 

artifacts. Our tool is based on a relatively new framework using an N-D polygon to navigate in 

high-dimensional space, and it embraces the idea of sculpting. Users can carve data at arbitrary 
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orientations and refine them wherever necessary. This guarantees that the data generated is truly 

high-dimensional. 

6.1 MOTIVATION 

High dimensional data is immersive in our life nowadays and it’s useful in many applications 

and domains. In order to analyse it, researchers has designed a larger number of techniques and 

tools. These new algorithms and software all need to be formerly tested using datasets with 

specific features. However, those datasets are not always at hand – real datasets often are not 

very easy to acquire and sometimes, those existing ones lack those specific features. To solve 

this problem, some researchers resort to synthetic data generation tools but those software often 

require professional programming skills to hard code the required features into statistical 

properties. What’s more, even with real datasets at hand, scientists sometimes want to edit them, 

clean them or modify them without touching for their own needs. For this purpose, the tools they 

use would ideally operate in the same interface where they can monitor the changes while 

editing, exploring and analysing their data.  

Here we propose our scatterplot based data generation tool [95]. It uses the same visual 

interface for data generation and visualization such that users can monitor the whole progress 

without switching back and forth between different interfaces. This provides better context for 

later iterations of the data generation process and facilitates a more streamlined workflow. As 

users are able to create datasets more quickly, they can explore and generate a larger number of 

these and possibly more complex ones. This in turn will favor the development of more robust 

algorithms and software for high-dimensional data analysis and visualization. Similarly, as users 

are able to edit data and artifacts more informed and thoroughly they will be able to make faster 

progress in their data analysis efforts. We address this interface as ‘WYSIWYG (What You See 

Is What You Get)’ because it lets users directly manipulate the data in the same interface and 

also sculpt in 3D and draw in 2D. 

Our system tool can operate either in a scatterplot matrix or with an interface for arbitrary 

projections [69]. As it is difficult for users to imagine what the effect of a specific carving 

operation done from one vantage point looks like from other vantage points, especially when the 

number of dimensions is larger than three, we provide simultaneous views from other vantage 

points of interest that reflect these shape changes. 

6.2 SYSTEM OVERVIEW 

Our interface is shown in Fig. 37. It consists of the following components: 

Scatterplot display: This window shows the projected N-D data and serves as the main 

editing canvas. The data are projected as points into the 2D basis formed by the projection plane 

axis (PPA) vectors. These two orthogonal N-D vectors define the x- and y-axes of the resulting 
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scatterplot display. The projected data axes can be optionally visualized directly in the scatterplot 

display or in isolation in the data axes vector display. The vector component bar chart 

display conveys more information about the dataset. The top two charts show the x and y 

components of the current PPA vectors while the bottom chart shows the PCA spectrum of the 

data. 

N-D touchpad polygon: This is the interface by which the orientation of the PPA vector 

basis can be interactively configured, which in turn determines the projective view onto the data. 

Each polygon vertex represents a data dimension vector. The PPA vectors are determined by the 

positions of the red and blue points in the polygon’s interior using generalized barycentric 

interpolation [65]. The touchpad polygon control panel lets the user switch between moving 

the red point (PPA x-axis) or the blue point (PPA y-axis).  

Scatterplot display controls: This panel allows users to change the scatterplot’s point size, 

zoom in or out, view the points in a 2D or 3D display, and see the moving trajectory as motion 

blur for better shape perception in motion parallax. 

Sketching controls enable users to input the number of dimensions, the number of points, 

choose to start from scratch or with an existing dataset, and modify the points in axis-aligned or 

non-axis aligned fashion. Brushing controls let the user switch between brushing and erasing 

mode, choose brush size, brush density and brush color.  

Scatterplot matrix (SPLOM) window: This is a separate window that is used when editing 

the distributions in axis-aligned mode. (see Section 5.3.1).  

Scatterplot views window: This is another separate window that is used when editing the 

distributions in non-axis aligned mode. (see Section 5.3.2) 

Distribution designer: Users design an initial distribution using this window (see Fig. 39 and 

explanatory text in Section 5.3.1, Step 1). 

The design process begins with the user drawing an initial 2D distribution shape using the 

distribution designer. This 2D distribution is conceptually due to a collection of N-D points 

projecting into this shape. Initially these points would be randomly distributed in the other N-2 

dimensions. Now we can pick another scatterplot projection and carve the 2D projected point 

cloud into one that we like to see from this orientation, under the constraint of the first drawing. 

We can repeat this for other projections and so on. This carving is essentially a subtraction of 

points from the current N-D distribution. However, a fundamental problem related to the nature 

of high-dimensional space is that the carving may subtract points in undesired locations in other 

projections. Therefore we need to replenish the N-D distribution every once in a while to satisfy 

all prior constraints, i.e. the shapes drawn and carved so far. Our proposed algorithm is presented 
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in Fig. 38. We will demonstrate this algorithm first for the axis-aligned case and then for the 

non-axis aligned case. When interacting, users can switch among these modes at will. 

6.3 METHODS 

6.3.1 INTERACTIONS WITH AXIS-ALIGNED SCATTERPLOTS 

Axis-aligned interactions make use of the SPLOM window for high-D space visualization. While 

this does allow for the generation (and editing) of distributions of any dimensionality, it requires 

them to be axis-aligned -- the non-axis aligned interface discussed in Section 5.3.2 removes this 

constraint. As outlined in Fig. 38, the point generation stage consists of two operations: 

distribution painting and backprojection. The sculpting supports two operations as well: 

distribution carving and repair. Editing operations use the same framework – just now a 

distribution already exists and does not have to be initialized. Editing an existing dataset is a 

good idea even when data generation is the goal – one does not have to start from scratch. We 

now describe each of these four operations in turn, using Fig. 40as a running example.   

Point Generation 

 Distribution painting in 2D 

 Sketch shape, center line, and distribution profile 

 System computes probability map 

 Distribution backprojection 

 System generates N-D points according to probability map 

 (fully randomized in dimensions perpendicular to view plane) 

Repeat as desired (allow multi-view painting) 

Point Sculpting 

 Distribution carving 

 Manually erase unwanted points from other projection planes 

 (this can delete points in other views in undesired locations) 

 Update probability maps on these projection planes 

 Distribution repair 

 Manually replenish points erased in undesired locations 

 (use probability maps constructed earlier to guide the process) 

Repeat as desired 

 

Fig. 38. Scatterplot based data generation algorithm. 
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Fig. 39. Scatterplot sketching process. (a) Draw the boundary of the distribution. (b) Draw the center of the 
distribution. (c) Draw the profile of the distribution and the backprojected points. (d) Use the density bar to 
control the brush density and add more points. 

Distribution designer 

Profile editor 

Density slider 

(a) 

(b) 

(c) 

(d) 

 

 

Step 1: Distribution Painting. This activity occurs in the distribution designer window (see 

Fig. 39). The user first selects the desired axis-aligned view by placing the two PPA vector 

points in the N-D touchpad polygon onto the respective vertices. He then uses the sketching 

brush to draw the boundary of the distribution (Fig. 40(a)) and then the centerline (Fig. 40(b)). 

The center line is where the densest points should appear while the boundary constrains the 

range of the points. Next he uses the distribution profile designer to define the profile of the 

distribution (Fig. 40(c)). This fills the drawn shape with a point distribution which looks fairly 

regular. The user now has the option to paint additional points to make this distribution look 

more natural, i.e., less regular using a paint brush. The density of these drawn points can be 

controlled using a slider (Fig. 40(d)).  Alternatively, points can also be removed using a fuzzy 

eraser, which strength is also configured by the density slider. The resulting 2D distribution is 

then converted into a probability map that governs how N-D points will project onto this 

projection plane. To ensure a sufficiently smooth probability map, we could optionally filter this 

density map with a 2D Gaussian function before backprojection. Figure 10a shows our running 

example in the SPLOM window – we sketched the shapes and centerlines of four clusters. 
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Fig. 40. An illustrative example of the scatterplot based data generation algorithm using axis-aligned views in the SPLOM 
window (panel (i) shows four views in the scatterplot window). 

 

(a)  Paint on x1-x2 (c) Cluster1, carve on x1-x3, 
less points exist now 

(d) Cluster 1, repair on x1-x2, 
points gain density back in un-
carved places 

 

(b) Initial points 

(e) Cluster 1, sculpting 
finished, only spans the first 
dimension 

(f) Cluster 2, sculpting finished, 
only spans the second 
dimension 

(g) Cluster 3, sculpting 
finished, only spans the third 
dimension 

(h) Cluster 4, sculpting 
finished, only spans the fourth 
dimension 

(i)  result points, 4D snake 
shape 

Points gain 
density back  

 

Points 
remove
d 

 

Step 2: Distribution Backprojection. Once the probability map has been constructed, the 

system uses it to generate P N-D points where P can be specified by the user. For the axis-

aligned case, since all other projection planes at this initial configuration have a projection 
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probability map with uniform distribution we can randomize the coordinates of all other N-2 

dimensions. The result of this step is a set of P N-D data points with all coordinates defined. Fig. 

40(b) shows the result of this step for a 4-D scatterplot matrix [32], composed of dimensions x1, 

x2, x3, and x4. Since the painting occurred in the x1-x2 plane (which is now fully defined), the 

x3-x4 projection has still a random point distribution. All other projections are partially defined 

since they either include dimension x1 or x2.  

Different distributions drawn in step 1 can be treated as different clusters and colored 

differently, as shown in the scatterplot matrix window of Fig. 40(b). The coloring clearly 

distinguishes between each drawn distribution and lets the user quickly see the points belonging 

to each (sub-) cluster. For distributions that may be too complicated to define at once or span 

more than one view, it helps to decompose them into simpler distributions and use the color 

coding as a guide to work on them one by one. For example, the final cluster shown in Fig. 40(i) 

(using four views in the scatterplot display) spans the entire 4D space but is composed of four 

different-colored sub-clusters each spanning just one dimension.  

To create even more complex clusters the user may repeat the first two steps as often as 

desired by placing the PPA vector points on other vertices in the N-D touchpad polygon to select 

another view and paint on it. In this operation, all previously generated points are shown as 

inactive background labeled in gray color (Fig. 42(b)). This multi-view painting mechanism 

allows users to define highly multivariate clusters. We found that these two levels of 

decompositions can help greatly in comprehending the N-D sculpting task.   

This point generation procedure just described provides us with a set of initial points to 

further work on – especially in those views that have at least one dimension not part of the 

painting process. Users can now sculpt on those dimensions to finish the data generation task. 

Step 3: Distribution Carving. Fig. 40(c) visualizes the carving effects on all projections 

simultaneously in the scatterplot matrix window. In this figure the carving occurred for cluster 1 

(black) in the x1-x3 plane – all other three clusters are inactive now and are shown in gray. The 

user carves the points in the desired locations directly in the scatterplot display. The carving tool 

can also work as a fuzzy eraser such that every swipe only removes a random subset of the 

covered N-D points. Similar to the brush used in the data generation step, users can choose from 

three different eraser sizes. A large eraser allows quick point removal while a small eraser refines 

details. At every eraser location the algorithm picks a random set of points that project into a 

small box around it – the size of this box can be user specified – and these points will be 

removed from the location’s current list of N-D points. Following, the updated distribution is 

stored in this projection’s probability map. However, note that removing points from this 

projection’s list will also remove these points from any other projections in the scatterplot matrix 

and update (scale down) their respective probability maps. This can lead to undesired effects and 

so the final (repair) step is required. 
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Step 4: Distribution Replenishing/Repair. As just mentioned, erasing/carving points in one 

view may delete points in other views in undesired places, and so we will have to bring these 

points back. Further, the repeated erasing of points will deplete the N-D distribution in general. 

Fig. 40(c) shows an example of this effect – the distribution of cluster 1 in the x1-x2 plane is 

much weaker than in Fig. 40(b). We can repair/replenish the N-D distribution in two ways: (1) 

automatically by comparing the original projection probability maps with the current projections, 

and (2) user-driven by allowing the user to paint the missing points back on. The latter facility 

can also be used for general editing. In either mode, we need to make sure that we add points 

only in desired places. Given the current projection location subject to repair, we randomize the 

coordinates of the dimensions whose distributions have not been defined yet.  For the other 

dimensions (excluding the two forming the current projection) – those for which the distributions 

have already been defined -- we compute their joint probability map and from it generate their 

coordinates. Fig. 40(d) shows an example where we observe that the distribution of cluster 1 has 

gained back the strength it had in Fig. 40(b).  

Step 5 and on: Repeat. The user can pick any projection and update its probability map by 

carving or replenishing. This will activate the procedures described in detail in the previous 

steps. Fig. 40 (e)-(h) show a few more such operations for our demonstration dataset. The result 

is visualized in Fig. 40(i) using four non-axis aligned scatterplot projections. The generated data 

resembles a 4D snake-like structure which could not be constructed with existing tools that 

operate in 2.5D space. 

6.3.2 INTERACTIONS WITH NON-AXIS ALIGNED SCATTERPLOTS 

Non-axis aligned scatterplots provide additional freedom in cluster design but they require a 

more sophisticated navigation interface. A non-axis aligned view is selected by placing the PPA 

vector points inside the N-D touchpad polygon (see Fig. 41). We now describe the five data 

operations in turn.  

Step 1: Distribution Painting: This is similar to the axis-aligned case, just now the selected 

view is non-axis aligned.   

Step 2: Distribution Backprojection: This process is significantly more complicated than in 

the axis-aligned case. We first build a new coordinate system spanning the same data space using 

the Gram-Schmidt orthonormalization process [31]. The resulting vector set is the orthonormal 

set. In our case, we randomly generate (N-2) N-D vectors – we keep the two user selected 

vectors in order to preserve the shape the user painted. We also make sure that those vectors are 

linearly independent. Following we apply the Gram-Schmidt process on the N vectors. We treat 

the new orthonormal vectors as general unit base vectors and generate data using the same 

procedure as used in the axis-aligned case. Since the projection (painting) plane is not axis 

aligned, the generated point coordinates are described in the rotated space. 
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       (a)                                         (b)                            (c)                                                                      (d) 

Fig. 41. Non-axis aligned carving. (a) Top: the composition of the touchpad polygon. Bottom: the weighting of each 
dimension for the x and y PPAs. (b)(c) Carve and erase on one non-axis-aligned plane. (d) Select another plane to carve 
another shape. Note that the carved shapes can only be seen on those two selected views. 

 We can calculate their true data axis-aligned coordinates by multiplying them by the rotation 

matrix formed by the orthogonal basis vectors described above. 

Step 3: Distribution Carving: As with the SPLOM in the axis-aligned case, we require a set 

of simultaneous views to enable users gain a more comprehensive understanding of the effect of 

the current carving. In the non-axis aligned case discussed here these views can be arbitrarily 

chosen by the user and typically hold views on certain structures the user would like to maintain. 

Then, any carving interaction in one view is immediately updated in all other views. Undesired 

effects can be undone by pressing an undo button and similar to an actual drawing process done 

on paper, we also provide a tool for erasing any unsatisfying mistakes. 

Step 4: Distribution Replenishing/Repair: This is more problematic than for the axis-

aligned case in which projections were mutually orthogonal. In the non-axis aligned case, unless 

two projections are proven to be orthogonal to each other, any view selected will partially 

overlap with another. Hence, when carving out points in one view, this effect cannot be repaired 

in another view using the above method. Our current solution is to allow the user to repair by 

bringing all points back, even if they have been carved out in the first view. 

Step 5 and on: Repeat. This is similar to the axis-aligned case. 

Fig. 41 demonstrates an example using an initial 5D Gaussian distribution. Our result dataset 

displays two characters ‘N’ and ‘D’ on the projection plane of which the x-axis is close to the 

first and second dimensions while the y-axis is close to the fourth and fifth dimensions. Fig. 

41(a) shows the configuration of our polygonal touchpad. We move the red point close to the 

first and second dimensions and the blue point close to the fourth and fifth dimensions. The two 
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bar charts below show the different dimension interpolation weights for the x and y-axis. We can 

clearly see that the first and second dimensions dominate the composition of the x-axis while the 

fourth and fifth dimensions have the largest value for y-axis. Fig. 41(b) shows the two 

multivariate scatterplots of the data on the previously selected projection plane, before and after 

carving. The top scatterplot shows a point cloud while the bottom displays the two characters 

after carving. This pattern can be observed only on this plane and it may not show any 

meaningful patterns on any other plane. Fig. 41(c) is a case in which the eraser comes in handy. 

The top scatterplot shows that a part in the ‘N’ is accidentally brushed away. Note the hollow 

portion on the left part of ‘N’. Like in any painting tool, we can change to ‘erasing’ mode and 

use the eraser to bring those points back as shown in the bottom scatterplot. With the help of the 

brush and eraser users can create any pattern on any projection plane.  

Next, the user may want to carve the existing set of characters such that they are also visible 

from another projection orientation. Carving on another projection plane may compromise the 

previous patterns so the user needs to be more careful. As is shown in Fig. 41(d), the user 

navigates to the second plane using the touchpad, adds this projection to the row of multiple 

views and starts carving. He can easily monitor the changes on the previous projection (the fifth) 

and make sure the ongoing carving does not adversely affect the overall shape of the data there. 

We note that changing the carving plane can extend the intrinsic dimensionality of the 

resulting dataset to the number of dimension of the touchpad polygon. Our present example has a 

5D polygon but there are no limits on how many vertices such a polygon can have. We note, 

however, that the ordering of the vertices is important with respect to the subspace of the data 

that can be reached [69]. We may initialize or reconfigure this vertex ordering using the parallel 

coordinate interface, but our navigation polygon also allows users to interchange, add, or remove 

vertices directly. Likewise, when a SPLOM is used and the dimensionality of the data grows 

high, the user may choose the dimensions composing the SPLOM using a selection interface. 

6.3.3 ACTIVE AND INACTIVE POINTS 

The navigation polygon and the multiple views help users to easily carve data globally but not 

locally. Because of the high-dimensional space, a subset of data is cluttered with other data once 

the plane changes. Our interface also supports the concept of active and inactive points to 

provide the user complete control over selecting an active subset of data points for editing. Users 

can assign different point sets to clusters and control their status (active/non-active) via a check-

box interface. In this case only the active points can be manipulated via the brushing/eraser tools. 

For example, all points marked in light gray in Fig. 40 are currently inactive and will be 

insensitive to any brush manipulation. 
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      (a)                                        (b)                            (c)                           (d)                                              (e) 

Fig. 42. Testing dataset generation. (a) Paint on x1-x2 (b) Paint on x3-x4 (c) (d) Generated data, clustered using standard k-
means. Red and black are two clusters. (e) Generated data on parallel coordinates. 

6.4 CASE STUDIES 

6.4.1 DATASET GENERATION FOR CLUSTERING ALGORITHM TESTING 

As mentioned, one of the most common problems when testing algorithms is the lack of a dataset 

that challenges a specific aspect of the algorithm. Let us take standard k-means which works well 

on linearly separable clusters, but how will it work on linearly non-separable clusters? To get 

insight we need a higher-D dataset that has these conditions. Now the challenge is where to get a 

high-D dataset with multiple clusters that are not linearly separable, even in 4D. We can quickly 

use our interface to generate such a 4D dataset.  

We aim to create a dataset with two such clusters spanning the entire 4D space – one of these 

has an ‘L’ shaped structure on the x1-x2 plane while the other has the same structure on the x2-x3 

plane. This guarantees the linear non-separability we strive for. Similar to Fig. 40, we decompose 

the two 4D clusters into four sub-clusters for ease of manipulation. The generation process of the 

first cluster is exactly the same as in Fig. 40. For the second cluster, we initially paint on the x2-

x3 plane, and also go through the sculpting procedure to make sure each sub-cluster only span 

one dimension. Fig. 42(a)(b) show the initially painted distributions, while Fig. 42(c)(d) show 

the two clusters as scatterplots. Fig. 42(b) shows those points generated from the first distribution 

painting as background gray points.  

We then performed standard k-means clustering on the generated dataset, and we obtained 

two clusters colored red and black (Fig. 19(c)(d)). From the parallel coordinate’s view of this 

dataset (Fig. 42(e)) we observe that the standard k-means clustering mainly operated on the 4th 

dimension and that the resulting two clusters are not accurate. We now know that a more 

sophisticated clustering algorithm, such as a kernel method, must be used. 

6.4.2 EXISTING DATA EDITING 

Our proposed system also allows users to modify an existing data set for better algorithm testing 

and data analysis purposes.  
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                    (a)                                                                  (b) 

Fig. 43. Edit an existing data set. (a) Red points are outliers (b) Outliers removed. 

 One of the most encountered problems in data analysis is the existence of outliers. Outliers 

may impair the ability to discover underling patterns or finding meaningful trends. One may use 

outlier detection algorithms to remove them, but different algorithms are based on different 

definitions (density based or distance based) of outliers and may not fit into a particular need. 

Hence, to be able to visually detect outliers and subsequently remove these outliers would be 

more suitable in the general case. 

Let us take the housing data set [119] as an instance. A user might want to determine the 

relationship between the ‘average number of rooms per dwelling’ and the ‘% lower status of the 

population’. After plotting the data against these two attributes (Fig. 42(a)), we see that most of 

the points are concentrated on the main cluster but outliers (Fig. 43(a), red points) exist. This 

makes further analysis hard, and simply including all the points in the analysis would introduce 

errors. Some methods might be able to adjust to the shape of the data, but they often bring the 

risk of over fitting.  Pre-processing the data to remove unwanted points would be very useful. 

The user could employ general outlier detection algorithms but since this is a high-D data set, the 

importance of these two attributes might be reduced. In addition, these algorithms often require a 

pre-setting of some parameters or thresholds which can lead to erroneous results. Our system 

would come in handy here. The user could navigate to the desired view and visually detect 

outliers according to their own understanding and need, brushing away unwanted points (Fig. 

43(b)). Using the remaining points for further analysis would then yield more robust results. 
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CHAPTER 7  

CONCLUSION 

In this dissertation we have introduced innovative methods to present, analyze and generate high 

dimensional data. We started with an intrinsic dimensionality study. We first used visually aided 

DBSCAN to cluster the data and then perform PCA on each cluster to extract the subspaces they 

reside.  The results shows that most clusters reside in subspaces that are composed of more than 

two principal components. This justifies our research direction that incorporating a third 

dimension in to high dimensional non spatial data visualization is indeed helpful. 

We then represented an advanced interactive data exploration tool – the Subspace Voyager. It 

decomposes the high dimensional space into a series of salient 3D subspaces and provides the 

users with both automatic and manual means to analyze those subspaces. Our Subspace Voyager 

essentially makes use of motion parallax and gives the users the illusion of a third dimension that 

helps to disambiguate the data. 

For the automatic methods, the Subspace Voyager uses Ant Colony Optimization algorithm to 

offer the users with meaningful views that is close to their starting projections according to their 

own needs. For the manual interactions, it lets users operate directly on a familiar trackball 

interface. To examine the data locally, users can simply rotate the trackball and if they want to 

go to adjacent subspaces, the ‘chase cluster’ functionality allows them to rapidly change the 

weightings of different data dimensions.  

The Subspace Voyager also uses a trail map to save explored views. The saved views are 

automatically spread out and they sizes can be changed by a slider. Any anytime, users can bring 

any previously saved view back to the trackball for further exploration. To let the users smoothly 

present their findings to others, a path can be designed between key views and system will 

display those key findings one after another, in a continuous fashion. 

We have also proposed a novel 3D shaded shape representation (SSR) for non-spatial data. 

Our representation uses the Marching Cubes algorithm to build isosurfaces enclosing the data 

points according to a user-defined isovalue. Users can change the transparency, the rendering 

mode, and the level of the detail of the generated shapes, as well as the lighting mode of the 

scene. Case studies we presented showes that our SSR can be advantageous over traditional 

scatterplot displays. It allows users to better discern relations in the dataset, and it also allows 

users reveal structures that scatterplots cannot discover. Finally, we also find, through a study 

conducted in Amazon Mechanical Turk, that mainstream users prefer our 3D representation over 
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scatterplots. This has important implication for how general users can be engaged into reasoning 

with data. Our results suggest that it might be better to provide 3D shaded surface displays for 

this purpose.  

In the future, we seek to make the Marching Cubes algorithm parallel. The MC algorithm is 

currently implemented in JavaScript and this stands in the way of achieving interactive 

performance when shifting shapes to adjacent subspaces. This could be achieved via GPU 

acceleration. Further, we would also like to solve issues with color blending. When a shape is 

shown behind another semi-transparent shape, false color can be generated in the overlap area.  

We are considering using the method described in [52] to overcome this problem. Finally, when 

the shapes are displayed in semi-transparent multi-layer mode, as far as the data sets we 

encountered so far, the outermost layer has always been the most transparent one because the 

data has dense points in the middle and sparse ones along the boundary. But what if a dataset has 

the opposite property and has dense points along the border? How can we still reveal the inner 

structure in that case? We would like to look further into possible solutions for this case. 

In the end, we presented our sketching based high dimensional data generation tool which is 

easy and intuitive to use even for novice users. The sketching interface is based on scatterplot 

and which is also used as the visualization interface. This design saves users from switching back 

and forth when generating data. Unlike previous data generation paradigms, our tool can truly 

generate high dimensional data. It also lets users to modify existing data. However, it does have 

its weakness too. One notable thing is the navigation pad is a bit more abstract. In our future 

work, we could substitute this interface with our trackball navigation system. We also want to 

add curve drawing and line drawing widgets for better user experience. 
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