

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Integrating Mobile Agents and Distributed Sensors in Wireless Sensor Networks

A Dissertation presented

by

Jiemin Zeng

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2016

Copyright by
Jiemin Zeng

2016

Stony Brook University

The Graduate School

Jiemin Zeng

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Jie Gao - Dissertation Advisor
Professor, Computer Science Department

Joseph Mitchell - Chairperson of Defense
Professor, Department of Applied Mathematics and Statistics

Esther Arkin
Professor, Department of Applied Mathematics and Statistics

Matthew P. Johnson - External Member
Assistant Professor

Department of Mathematics and Computer Science at Lehman College
PhD Program in Computer Science at The CUNY Graduate Center

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Integrating Mobile Agents and Distributed Sensors in Wireless Sensor Networks

by

Jiemin Zeng

Doctor of Philosophy

in

Computer Science

Stony Brook University

2016

As computers become more ubiquitous in the prominent phenomenon of the In-
ternet of Things, we encounter many unique challenges in the field of wireless sensor
networks. A wireless sensor network is a group of small, low powered sensors with
wireless capability to communicate with each other. The goal of these sensors, also
called nodes, generally is to collect some information about their environment and
report it back to a base station. Depending on the nature of the nodes or the environ-
ment, they may be placed in a deterministic pattern, deployed randomly, or mobile
(i.e. cars on a highway). Due to the varying nature of these types of networks, they
need specialized algorithms tailored to their scenarios and optimized to make efficient
use of the limited power resources of the nodes. In this report, we provide upper and
lower bounds for the following six different wireless sensor network problems.

• Spanner on Imprecise Points: We consider the construction of a Euclidean
spanner for imprecise points where we take advantage of prior, inexact knowl-
edge of our input.

• Distributed Mobile Sensor Coverage: We consider the problem of covering
a domain by mobile sensors and the design of an efficient schedule that reduces
unnecessary sensor overlap and energy consumption.

• The Data Gathering Problem: A data mule tours around a sensor net-

iii

work and helps with network maintenance such as data collection and battery
recharging/replacement. We assume that each sensor has a fixed data genera-
tion rate and a capacity (upper bound on storage size). If the data mule arrives
after the storage capacity is met, additional data generated is lost. We aim to
schedule a tour for the mule such that it optimally services the network.

• The Shortest Separating Cycle Problem: Given a set of pairs of points in
the plane, the goal of the minimum length separating cycle problem is to find
a simple tour of minimum length that separates the two points of each pair on
different sides.

• r-gather Clustering: Given a set of points in Euclidean space and a value r,
the aim of the r-gather problem is to cluster the points into groups of at least
r points each such that the largest diameter of the clusters is minimized.

• Geographical Routing in 3D: Given a graph on vertices embedded in R3,
the objective is to add the minimum number of virtual edges such that greedy
routing succeeds for any source and destination pair.

iv

Dedication Page

I would like to dedicate this work to the following people whose patience and
guidance have made this thesis possible: my advisor, Jie Gao; my father, Zhaobang
Zeng; my mother Jia Ma; and my boyfriend, Brandon Cieniewicz.

v

Table of Contents

1 Introduction 1

2 Spanner on Imprecise Points 6
2.1 Introduction . 6
2.2 Preliminary Information . 8
2.3 Algorithm Description . 10
2.4 Algorithm Analysis . 13
2.5 Conclusion . 16

3 Distributed Mobile Sensor Coverage 17
3.1 Introduction . 17
3.2 Preliminary Information . 21
3.3 Distributed Approximation Algorithms 22
3.4 Conclusion . 28

4 The Data Gathering Problem 29
4.1 Introduction . 29
4.2 Single Mule Scheduling . 32
4.3 k-Mule scheduling . 39
4.4 No Data Loss Scheduling . 41
4.5 Different Capacities . 45
4.6 Practical Algorithms . 46

4.6.1 Single Mule Scheduling . 46
4.6.2 No Data Loss Scheduling . 47

4.7 Simulations . 48
4.7.1 Single Mule Simulations . 48
4.7.2 No Data Loss Simulations . 48

4.8 Conclusion . 51

vi

5 The Shortest Separating Cycle Problem 52
5.1 Introduction . 52
5.2 Hardness . 56

5.2.1 APX-hard For Unit Length Segments 56
5.2.2 Inapproximability for Any Length Segments 59

5.3 Algorithms . 60
5.3.1 Board Size 2− ε, Horizontal Unit Segments 60
5.3.2 Board Size 2− ε, Horizontal and Vertical Unit Segments . . . 63
5.3.3 Constant Board Size . 64
5.3.4 Any Board Size, Horizontal and Vertical Unit Segments 66
5.3.5 Any Orientation, Bounded Aspect Ratio 67
5.3.6 The General Case . 68
5.3.7 Separating Subdivision Problem 68

5.4 Conclusion . 69

6 r-gather Clustering 70
6.1 Introduction . 70
6.2 Static r-Gather . 72
6.3 Dynamic r-Gather . 76
6.4 Decentralized Algorithm . 79

6.4.1 Maximal Independent Neighborhoods 79
6.5 Conclusion . 81

7 Geographical Routing in 3D 82
7.1 Introduction . 82
7.2 Graph Augmentation . 86

7.2.1 Directed Graphs . 86
7.3 Experiments . 91
7.4 Conclusion . 101

8 Future Work 102

vii

List of Figures

2.1 (a) The neighbors of p in level i include q, s, and P (p). P (p) must
also be in level i+ 1. Since we have denoted p’s parent to be another
node, we know that p is not in level i + 1. This diagram does not
specify if q, r, or s are also in level i + 1. (b) A path between p and
q that fulfills the (1 + ε)-spanner property. There is no mutual link
between P i−1(p) and P i−1(q). 10

3.1 (a) A triple of disks with an empty intersection, just before they meet,
and (b) their position at the moment they meet in a common point
(depicted by the black bullet). 22

3.2 A unit disk placed on a grid of side length 1/2. 23

4.1 Remove a segment of the path to eliminate a U-turn at zl. 34
4.2 The optimal solution repeats sensors . 35
4.3 With two data mules and sensors uniformly spaced c/4 apart, many sensors

will be visited by both mules in the optimal solution. 40
4.4 Shifted window along TSP of uniformly distributed point sets in a 5

× 5 square . 49
4.5 Shifted window along TSP of uniformly distributed point sets in a 10

× 10 square . 49
4.6 Shifted window along TSP of 4,663 cities of Canada 50
4.7 (i) Chopped MST on 4,663 cities of Canada. 602 mules used; (ii)

Approximation of minimum light cycles on 734 cities of Uruguay. 85
mules used. 51

5.1 The shortest separating cycle problem. 53
5.2 The TSP with neighborhoods solution (solid) is a much shorter tour

than the shortest separating cycle (dashed). It is also not a valid
separating cycle. 54

viii

5.3 The one-in-a-set TSP solution (dashed) is a much longer tour than
the shortest separating cycle (solid). 54

5.4 A gadget that ensures the parity of X and Y are the same. On the
chain each adjacent pair of points is a pair of points in the input P .
All points in gray are either all inside the cycle or outside the cycle. . 58

5.5 A clause gadget. 58
5.6 P and P ′ = P + (1, 0) have disjoint interiors. 61
5.7 Case (i): Exactly one endpoint of each input pair can be enclosed in

a unit square. 64
5.8 Case (ii): The curve T ′ traverses around S1 and S3. 64
5.9 Constant sized square board with cycles along the perimeter of the

dark squares. 65

6.1 Clause and splitter gadget . 73
6.2 Signal negation gadget . 73
6.3 Close up of the splitter gadget . 74
6.4 NAND gadget . 75
6.5 Splitter gadget . 76

7.1 Left: the bisectors of u and each neighbor in N(u) are shown. v4 is
not inside C(u) and thus is added as a virtual neighbor; Right: in
the case when there are many nodes on a circle centered at u, in the
Delaunay triangulation all the edges from u to each node on the circle
is a Delaunay edge but to enable greedy routing one does not need to
keep all such Delaunay edges – five edges in this example suffice. . . 88

7.2 The average number of added edges per node after adding virtual links
to aid greedy routing. (n=250-2000) 92

7.3 The average number of added edges per node after adding virtual links
to aid greedy routing. (n=1000) . 93

7.4 The length of the greedy path, the shortest path, and the shortest
path when a virtual link is considered as a single hop of 100 random
node pairs. (n=250-2000) . 94

7.5 The length of the greedy path, the shortest path, and the shortest path
when a virtual link is considered as a single hop of 100 random node
pairs. On a network with 1000 nodes with different communication
ranges. 94

7.6 The average number of additional hops the repaired greedy path con-
tains compared to the greedy path on unbroken links and the shortest
path after link failure. (n=1000) . 95

ix

7.7 The average number of additional routing table entries for different
probabilities of link failure. (n=1000) 96

7.8 The average number of additional hops of the paths between 100 ran-
domized start/finish pairs over time. (n=1000) 96

7.9 The proportion of 100 randomized start/finish pairs that cannot reach
each other in the network as time goes on. (n=1000) 97

7.10 The average number of additional entries in a routing table created
while 100 messages are routed with randomized origins and destina-
tions. The routing tables are monitored over 350 time steps. (n=1000) 97

7.11 The average number of additional hops in a greedy path on the mended
network over all pairs of nodes. On a real world network. 98

7.12 The average number of additional entries in a routing table after link
failure and messages have been sent between all pairs of nodes. On a
real world network. 99

7.13 The average number of additional hops of greedy paths as time in-
creases. On a real world network, averaged over 100 randomized
start/finish pairs. 99

7.14 The average number of additional entries in a routing table as mes-
sages are sent between 100 randomized node pairs. On a real world
network. 100

x

List of Tables

4.1 Our approximation algorithm results for different settings. Note that
m ≤ log(cmax

cmin
) where cmax is the largest capacity and cmin is the small-

est capacity. For the results in the first four rows, we assume that the
sensor capacities are all the same. ε is any positive constant. 31

4.2 Number of mules used in chopped MST vs. light cycles in 5 × 5 square 50
4.3 Number of mules used in chopped MST vs. light cycles in 10 × 10

square . 50

5.1 Approximation algorithm and hardness results for different settings. . 55
5.2 Additional hardness results. 55

xi

Acknowledgments

We would like to acknowledge the support of the NSF under the grants CNS-
1116881, CNS-1217823, DMS-1221339, CCF-12-16689, and CCF-1017539 .

xii

Chapter 1

Introduction

As computers become more ubiquitous in the prominent phenomenon of the Inter-
net of Things, we encounter many unique challenges in the field of wireless sensor
networks. A wireless sensor network is a group of small, low powered sensors with
wireless capability used to communicate with each other. These sensor nodes may
contain a variety of different types of sensor hardware such as cameras, microphones,
temperature sensors, etc. The goal of these nodes is generally to collect some infor-
mation about their environment and report it back to a base station.

The nature of the sensor nodes are adapted to their environment and target
function. In applications where nodes are densely deployed to monitor an area such
as heat sensors distributed in a forest to detect the origin of forest fires or temperature
sensors placed in an office building to monitor the indoor climate, static nodes may
suffice [80, 120].

Other applications may see the need for mobile nodes, where either the sensors
themselves are mobile or the sensors are attached to a moving object. Autonomous
mobile robots, also know as mules, may have advantages in a sensor network over
static nodes in that they can cover more area with fewer nodes or can mobilize to
fill a coverage hole if a node goes offline. Sensors are also often attached to moving
entities for applications such as monitoring patients’ statuses in a hospital, tracking
livestock on a farm, or detecting the speed of cars on a highway to observe traffic
[44, 104, 145]. Finally, nodes in a sensor network do not have to be all mobile or
static. Mixed sensor networks can have mules that can help collect data from the
static sensor nodes or help manage the network (recharging batteries, upgrading
software, etc).

In many of these applications, the sensors used are tailored to the specific project
and the goals of the network architects. However, the prominence of smartphones

1

have provided an opportunity to take advantage of a deployment of sensors much
larger than any possible planned sensor network. Although smartphones are mainly
designed for user communication and social interactions, they also provide an plat-
form for communities to sense and contribute sensory information to form a body of
knowledge.

The unique nature of networks with mobile nodes brings new potentials but
also new challenges. When the sensors are mobile, maintaining an objective as
the nodes move around is difficult, especially if the sensors are attached to entities
whose movement is unpredictable. It requires a method to detect critical events and
methods to update the nodes in a way that is ideally more efficient than executing
algorithms intended for static nodes in intervals. For sensor networks with mules,
mule route planning needs to accommodate unique objectives that may not occur
in other fields. Above all, any algorithm designed for wireless sensor networks must
make efficient use of the limited power resources of the nodes.

In this report, we explore six different wireless sensor network scenarios and codify
their unique challenges into formal problems. For each problem, we prove hardness
constraints and provide algorithms with provable guarantees.

Spanner on Imprecise Points1 An s-spanner on a set S of n points in Rd

is a graph on S where for every two points p, q ∈ S, there exists a path between
them in G whose length is less than or equal to s · |pq| where |pq| is the Euclidean
distance between p and q. We consider the construction of a Euclidean spanner for
imprecise points where we take advantage of prior, inexact knowledge of our input.
In particular, in the first phase, we preprocess n d-dimensional balls with radius r
that are approximations of the input points with the guarantee that each input point
lies within its respective ball. In the second phase, the specific points are revealed
and we quickly compute a spanner using data from the preprocessing phase. We
can compute (or update) the (1 + ε)-spanner in time O(n(r + 1

ε
)d log(r + 1

ε
)) after

O(n(r + 1
ε
)d logα) preprocessing time where α is the ratio between the furthest and

the closest pair of points. Our algorithm does not have any restrictions on the
distribution of the points. It is the first such algorithm with linear (update) running
time.

Distributed Mobile Sensor Coverage2 We consider the problem of covering
a domain by mobile sensors and the design of an efficient schedule that reduces
unnecessary sensor overlap and energy consumption. This problem is motivated

1This work was done in collaboration with Jie Gao.
2This work was done in collaboration with Esther Ezra and Jie Gao.

2

by emerging participatory sensing applications as well as other coverage problems
involving mobile nodes. The problem of minimizing the total energy consumption
while maintaining the same level of coverage guarantee is NP-hard. We develop
distributed algorithms achieving a constant approximation factor when sensors have
unit disk sensing ranges, and a (1 + ε) approximation factor when the sensors also
have constant bounded density. For all these algorithms the communication cost is
asymptotically bounded by the cost of simply maintaining the direct neighborhood
of each sensor. The constant approximation distributed algorithm can be generalized
for the k-coverage problem, when each point of interest has to be covered by at least
k sensors.

The Data Gathering Problem3 We consider the fundamental problem of schedul-
ing data mules for managing a wireless sensor network. A data mule tours around a
sensor network and can help with network maintenance such as data collection and
battery recharging/replacement. We assume that each sensor has a fixed data gen-
eration rate and a capacity (upper bound on storage size). If the data mule arrives
after the storage capacity is met, additional data generated is lost. We formulate
several fundamental problems for the best schedule of single or multiple data mules
and provide algorithms with provable performance. First, we consider using a single
data mule to collect data from sensors, and we aim to maximize the data collection
rate. We then generalize this model to consider k data mules. Additionally, we study
the problem of minimizing the number of data mules such that it is possible for them
to collect all data, without loss. For the above problems, when we assume that the
capacities of all sensors are the same, we provide exact algorithms for special cases
and constant-factor approximation algorithms for more general cases. We also show
that several of these problems are NP-hard. When we allow sensor capacities to dif-
fer, we have a constant-factor approximation for each of the aforementioned problems
when the ratio of the maximum capacity to the minimum capacity is constant.

The Shortest Separator Problem4 Given a set of pairs of points in the plane,
the goal of the shortest separating cycle problem is to find a simple tour of minimum
length that separates the two points of each pair to different sides. In this section
we prove hardness of the problem and provide approximation algorithms under var-
ious settings. The problem is hard to approximate for a small constant factor and
is APX-hard even in very restricted scenarios such as when pairs are unit length

3This work was done in collaboration with Gui Citovsky, Jie Gao, and Joseph S. B. Mitchell.
4This work was done in collaboration with Esther M. Arkin, Jie Gao, Adam Hesterberg, and

Joseph S. B. Mitchell.

3

apart. We provide a polynomial algorithm when all pairs are unit length apart with
horizontal orientation inside a square board of size 2 − ε. We provide constant ap-
proximation algorithms for unit length horizontal or vertical pairs or constant length
pairs on points laying on a grid. For pairs with no restriction we have an O(

√
n)-

approximation algorithm and an O(log n)-approximation algorithm for the shortest
separating planar graph.

r-gather Clustering5 Given a set of n points P = {p1, p2, . . . , pn} in Euclidean
space and a value r, the aim of the r-gather problem is to cluster the points into
groups of at least r points each such that the largest diameter of the clusters is
minimized. While results for this problem are tight for points in a general metric, we
want to determine if we can exploit geometry and find better results in the Euclidean
setting. We explore this problem with both static and mobile points. For the static
setting, we show lower bounds that are close to 2 but do not close the gap. For the
dynamic setting, we define three different variations that allow no, k or unlimited
changes in the clustering through the entire time period. We show a lower bound
of 2 when the points cannot change clusters and apply the lower bounds for the
static setting to all variations of the dynamic setting. In addition, we present 2-
approximation algorithms for the variations with no or k reclusterings. When we
allow an unlimited amount of reclusterings, we show that there can be up to O(n3)
clusters changes. Finally, we provide a distributed 4-approximation algorithm.

Geographical Routing in 3D6 Existing geographical routing algorithms are
mainly for wireless sensor nodes in 2D settings with a number of strong assumptions
on wireless communication model or deployment density. We present new ideas that
try to push geographical routing for real world network settings and for sensors in
general 3D space. Given a graph on vertices embedded in R3, we would like to add the
minimum number of virtual edges such that greedy routing succeeds for any source
and destination pair. The virtual edges are created by enhanced communication
range and when that is not possible, implemented as a path locally stored at the
routing table of the nodes. We show that finding the minimum number of virtual
edges is actually polynomially solvable. The maximum number of virtual edges is no
greater than 5 for 2D and at most 11 for 3D, for arbitrary directed graphs. Thus the
result would apply for real world network when the links do not necessarily follow
any particular communication model and can be asymmetric and dynamic. In our

5This work was done in collaboration with Esther M. Arkin, Jie Gao, Matthew P. Johnson,
Joseph S. B. Mitchell, and Rik Sarkar.

6This work was done in collaboration with Jie Gao, Adam Hesterberg, and Rob Johnson.

4

simulations the number of virtual edges is actually a lot less than the proved upper
bound. The total routing table state size is also at a modest level compared to the
worst case bound.

5

Chapter 2

Spanner on Imprecise Points

2.1 Introduction

While in classical computational geometry all input values are assumed to be accu-
rate, in the real world this assumption does not always hold. Aside from measurement
errors or human errors that are always inherent to any data, there are a few scenarios
in emerging applications in which only approximate locations are known and from
time to time more accurate positions are given. GPS units are generally power hun-
gry and are typically not kept on all the time to save energy. It is common practice to
only turn on GPS periodically and, in between the snapshots, interpolate or extrap-
olate the device’s positions based on the speed of the user. In another application,
a user’s location data might be perturbed in an attempt to protect user privacy.
Here, a random nearby location, instead of the user’s true location, is reported to
location based services, as in [149]. These are the major motivating applications for
this problem.

Models on Imprecise Points The ways to model imprecise input can vary greatly
based on the interpretation of the nature of uncertainty the data may contain. There
are models that are tailored to address input data imprecision or limitations of data
representation, where the exact values may never be known [78, 105, 114, 124]. Other
approaches involve computing the boundary cases based on the bounds of the input
[114] and computing a distribution of solutions when given a probability distribution
of the input set [105]. Yet another case assumes a superset of the input is known
[32].

A popular model assumes that some knowledge of the location of each input point
is known ahead of time. Initially, instead of a point, a region where each input point

6

may lie is known. The shape (lines [62], circles/balls [2, 52, 81, 106], fat regions
[31, 139], etc.) of the region can vary as well as constraints such as the amount of
overlapping regions allowed. Algorithms that operate in this model have two phases.
The first is a preprocessing phase where the input regions are processed in such a way
as to aid the second phase. The second phase, also called the query phase, occurs
when the precise locations of the input points are known and the result is computed
usually using some structure from the preprocessing phase.

Spanners and Proximity Queries In this section we are interested in the main-
tenance of a Euclidean spanner and proximity queries using the spanner. Given a
set P of n points in Rd, a Euclidean (1 + ε)-spanner defines a graph G (often a
sparse graph with a linear number of edges) on the points, each edge weighted by
the Euclidean length, such that the shortest path between any two points u, v in the
graph is at most 1 + ε times the Euclidean distance of u, v. Thus one can consider
the spanner as a sparse backbone that approximates all of the pairwise distances.
For this reason, a spanner can be used to answer many proximity queries such as
closest pair, approximate nearest neighbor (given a point q, find a point p ∈ P that
is at most (1 + ε) · d away from q, where d is the distance from q to its closest point
in P), and approximate clustering.

Spanners have been studied for many years. Numerous algorithms have been
developed to compute a spanner, see the survey [58] or the recent book [116]. Almost
all previous work assume that the precise positions of the points are known. We
present our results below and compare with the only previous work on spanners for
imprecise inputs.

Our Results In the model our algorithm operates in, an imprecise point p is
defined to be a disk or a d-dimensional ball centered at a point ṗ with radius r.
The assumption is that initially, the only information of an input point is ṗ and
r and that later, the precise location of the point p̂ (located somewhere within the
corresponding ball) is revealed. Our algorithm preprocesses a set S = {p1, p2, . . . , pn}
of n imprecise points in O(n(r + 1

ε
)d logα) time such that when Ŝ = {p̂1, p̂2, . . . , p̂n}

is available, we can compute a (1 + ε)-spanner in O(n(r+ 1
ε
)d log(r+ 1

ε
)) time where

d is the dimension of the input. Without loss of generality we scale our input such
that the distance between the closest pair of centers is 1 and thus α is the diameter
of the centers of the imprecise points. It is important to note that our algorithm will
accept input sets with overlapping points of any depth. In the applications that we
are interested in, r is typically a small constant.

7

Related Work Previous work on algorithms for imprecise points can be classified
by objective (convex hull [62], triangulation [81, 139], Delaunay triangulation [31,
52, 106], etc) and shape of imprecise regions (lines [62], circles/balls [2, 52, 81, 106],
fat regions [31, 139], etc.). Most of the algorithms aim for linear or almost linear
running time for the second phase, when the precise locations are given. Notice that
a linear running time is the best we can hope for, as one would need linear time to
simply scan the input.

Our construction algorithm modifies a dynamic spanner which has been well
studied before [3, 68, 72, 122]. However, since previous work focuses on optimizing
the insertion/deletion of single points, the time needed to update the entire spanner
for all imprecise points is superlinear.

The only known previous work for spanners on imprecise points is done by Abam
et. al. [2]. They provided an algorithm to construct a (1 + ε)-spanner from a set
of n imprecise points in O(n/εd) time after O(n log n) preprocessing time, in which
the imprecise points are assumed to stay in n pairwise disjoint unit balls in d-space.
In the preprocessing phase, the well-separated pair decomposition of the centers of
the balls is computed, in time O(n log n) [34]. When the specific points are known,
the spanner is constructed by creating an edge between every pair of well-separated
sets. Since there are O(n/εd) edges in the spanner, this phase takes O(n/εd) time.
They also provide a variation for inputs of different sizes, however this version runs
in O(n log n/ε2d) time in the second phase after O(n log n) preprocessing.

In comparison with our results, we remark that the above algorithm requires
that the imprecise regions are disjoint. If the closest pair of centers is defined to
have distance 1, the input requires r to be at most 1/2. The version with varying
sized imprecise regions allows higher values of r but the update cost has an extra d
on the exponent. Our algorithm accepts imprecise points with overlapping regions
and allows the user a degree of control over the running time by trading efficiency
with the size of the imprecise region.

2.2 Preliminary Information

The algorithm we present constructs a (1 + ε)-spanner or more specifically the de-
formable spanner (DefSpanner) as described in [68]. A defspanner is a specific
(1 + ε)-spanner construction that is designed to be easily modified and updated.
More specifically, for a set of points S in Rd, the defspanner G is made up of a
hierarchy of levels Gdlog2 αe ⊆ Gdlog2 αe−1 ⊆ · · · ⊆ Gi ⊆ Gi−1 ⊆ · · · ⊆ G0 = S where
the top level Gdlog2 αe contains only one point and the bottom level G0 contains all
points in S.

8

The aspect ratio α of S is defined as the ratio of the distance between the furthest
and closest pair of points in S. Since we scale all values such that the distance between
the closest pair of imprecise centers is 1, α is also the diameter. Note that r is scaled
as well. There is no restriction for the distance between the closest pair of precise
points.

Any set Gi is a maximal subset of Gi−1 where for any two points p, q ∈ Gi,
|pq| ≥ 2i. Let p(i) denote the node p in level i given that p ∈ Gi. We say a point p(i)

covers a point q(i−1) if |pq| ≤ 2i. While a point q(i−1) may be qualified to be covered
by several points in the level above, we arbitrarily designate one of these points (say
p(i)) as its parent by p(i) = P (q(i−1)) and say that q(i−1) is the child of p(i). The
exception is if q ∈ Gi, then P (q(i−1)) = q(i). We denote P k(p(i)) = P (P k−1(p(i))) to
be the ancestor of p(i) at k levels higher and define P 0(p(i)) = p(i). When p has no
superscript, we assume that P (p) 6= p or intuitively, that p is in the highest level it
resides in. We also denote Ci−1(p) = {q ∈ Gi−1|P (q) = p} as the set of children of
p(i) in level i− 1. By a packing argument (shown in [68]), |Ci−1(p)| ≤ 5d. Note that
for any point p, |P i(p(0))p| ≤ 2i+1. See Figure 2.1(a) for an illustration of these rules.

The edges of a Defspanner of a set S are determined by connecting all nodes
within distance c · 2i in all levels, where i is the level and c is a constant. Such pairs
are called neighbors at level i. The neighbors of p at level i are denoted by Ni(p). As
shown in [68], |Ni(p)| ≤ (1 + 2c)d− 1. The total number of edges in a DefSpanner
is less than 2(1 + 2c)dn. Note that two nodes can be neighbors in multiple levels and
that an edge is always constructed between every parent-child pair. The family tree
metaphor is extended to define cousins as two points whose parents are neighbors.
If two points are neighbors, they are also cousins as their parents must be neighbors
as well.

A path between two nodes in a Defspanner that is less than or equal to 1 + ε
times their euclidean distance can be found by traversing up the hierarchy from both
nodes until a mutual link is found. This is illustrated in Figure 2.1(b). We refer to
[68] for a proof and more details.

Now we state a property of a DefSpanner that will be useful later.

Lemma 2.2.1. For a node p ∈ Gi, let q ∈ Gi+1 be another node such that |pq| ≤
(c − 1)2i+1. The nodes P j(p(i)) and P j−1(q(i+1)) must be neighbors (or the same
node) for all j ≥ 1, i.e., the ancestors of p and q must be neighbors (or converge) in
all levels above i.

Proof: It is given that |pq| ≤ (c − 1)2i+1. By the definition of a DefSpanner,
|P j(p(i))p| ≤ 2i+j+1−2i+1 and |P j−1(q(i+1))q| ≤ 2i+j+1−2i+2. Thus, |P j(p(i))P j−1(q(i+1))| ≤
|P j(p(i))p| + |pq| + |P j−1(q(i+1))q| ≤ 2i+j+1 − 2i+1 + (c − 1)2i+1 + 2i+j+1 − 2i+2 =

9

r
s

≥ 2i

≤ 2i+1pq

c · 2i P (p)

P i(p) P i(q)

≤ 2i+1

P i−1(p)
P i−1(q)

P (p)

P (q)

p

q

(a) (b)

Figure 2.1. (a) The neighbors of p in level i include q, s, and P (p). P (p) must also be in level
i + 1. Since we have denoted p’s parent to be another node, we know that p is not in level i + 1.
This diagram does not specify if q, r, or s are also in level i+ 1. (b) A path between p and q that
fulfills the (1 + ε)-spanner property. There is no mutual link between P i−1(p) and P i−1(q).

4 · 2i+j + (c − 4)2i+1 ≤ 4 · 2i+j + (c − 4)2i+j = c · 2i+j. Therefore P j(p(i)) and
P j−1(q(i+1)) must be neighbors or the same node in level i+ j. �

2.3 Algorithm Description

Let S = {p1, p2, . . . , pn} be a set of imprecise points where for pi, ṗi is the center, r
is the radius, and p̂i is an instance of pi, i.e., |ṗip̂i| ≤ r . Let Ṡ = {ṗ1, ṗ2, . . . , ṗn} and
Ŝ = {p̂1, p̂2, . . . , p̂n}.

Preprocessing In the preprocessing phase, we are initially given Ṡ and r. We
create a DefSpanner Ġ with the point set Ṡ as in [68]. Here we choose c =
2r + 16

ε
+ 4. The running time is O(n(r + 1

ε
)d logα).

Spanner Construction When the true positions of the points are revealed, we
will update the spanner. We construct a DefSpanner Ĝ for Ŝ by inserting the
points one by one into Ĝ. That is, Ĝ is initially empty and we gradually create the
hierarchy by expanding downwards.

An ordered list is maintained of the remaining points yet to be inserted into the
spanner. When we begin, this list contains all of the nodes in the order they appear
in the hierarchy in Ġ, from highest to lowest. So all nodes in level i are placed right

10

before all nodes in level i− 1. Parents in Ġ will always appear before their children.
After all nodes in level i have been inserted, we create level i− 1 before adding the
next node. Here each node at level i is repeated at level i−1 with itself as the parent.
As we continue to insert nodes into Ĝ, we may add levels to Ĝ that are beyond the
range of levels in Ġ – if the exact locations are closer than 1 for instance. During
the insertion process for a node, we may find that it is necessary to move the node
up or down the hierarchy. If a node is demoted to l, a lower level, l does not exist
yet. Instead of creating more levels immediately, the point is removed from Ĝ and
is reinserted into the list of remaining points right before all the other nodes in level
l. Therefore, we wait until all levels above l are filled before inserting this node.

The algorithm terminates when all points are inserted. In some sense we are
rebuilding the hierarchy for Ĝ by referring to the hierarchy of Ġ. We would like to
reuse the structure of Ġ as much as possible. We elaborate the procedure below.

We assume that p̂ is at the beginning of the list, and we want to insert p̂ into Ĝ.
We insert p̂ into the bottom level of Ĝ. Let’s call this level i. There are three phases
in our algorithm as described below.

Step 1: Check for demotions. First, we compare the distances between p̂ and all of
its neighbors in Ġ that have been inserted in Ĝ. If |p̂q̂| < 2i, where q̂ is a neighbor
of p̂, then p̂ is too close to q̂ and violates one of the properties of a DefSpanner.
Therefore, we must move p̂ to a lower level. We can calculate this level to be l, where
2l ≤ |p̂q̂| < 2l+1 and q̂ is the closest node to p̂. As discussed earlier, this level does
not exist yet, so we must delay the insertion of p̂. Meanwhile, we denote c(p̂) = q̂,
the potential parent of p̂.

When we try to reinsert a demoted node such as p̂, we still need to check that it
does not need to be demoted again. Since demoted nodes are reinserted into Ĝ before
other nodes in the same level, a node can only be demoted by another previously
demoted node. Therefore, we only need to test the previously demoted cousins of
p̂ (through c(p̂)) for possible demotion. We can strategically place pointers to keep
track of these previously demoted nodes.

Step 2: Find a parent. Now we determine the parent of p̂. If c(p̂) has been defined for
p̂, then we assign P (p̂) = c(p̂). As mentioned in step 1, in this case p̂ was demoted
from a higher level and is now reinserted into level i so |p̂c(p̂)| ≤ 2i+1. If c(p̂) is
not defined, we need to search for the parent of p̂. First we define the point up̂,
the starting point for parent search, and prove a property of it. For this purpose
we refer to the spanner Ġ. Let up̂ = q̂ where q̇ = P (ṗ) in Ġ. Notice that we must
have at least attempted to insert q̂ in the new spanner. If q̂ is not in level i + 1 (q̂
may have been demoted), then we let up̂ = P (q̂). If q̂ has not been inserted yet (an
insertion was attempted but q̂ was demoted and has not been reinserted yet), then

11

let up̂ = c(q̂).

Lemma 2.3.1. Let p̂ be a node inserted in to Ĝ at level i. P (p̂) ∈ Nj(P
j−i−1(up̂))

for some j ≥ i+ 1 or does not exist. That is, the parent of p̂ is a neighbor of up̂, or a
neighbor of an ancestor of up̂, or does not exist (in which case p̂ belongs at the top
of the hierarchy).

Proof: Define q̂ such that q̇ = P (ṗ) in Ġ. We know that up̂ may be one of three
nodes, q̂, P (q̂), or c(q̂). We know that |p̂q̂| ≤ 2i+1 + 2r, |p̂P (q̂)| ≤ |p̂q̂| + |q̂P (q̂)| ≤
2i+1 + 2r + 2i+1, and |p̂c(q̂)| ≤ |p̂q̂| + |q̂c(q̂)| ≤ 2i+1 + 2r + 2i+1. Since all of these
distances are less than or equal to (c−2)2i+1, we can invoke Lemma 2.2.1. Therefore,
for all cases of up̂, P (p̂) and P j−i−1(up̂) must be neighbors for some j ≥ i+ 1 or p̂ is
at the top and P (p̂) does not exist. �

By Lemma 2.3.1, in order to find the parent of p̂ we must search neighbors of
up̂ and neighbors of ancestors of up̂. More specifically, P (p̂) is the lowest node in
this set such that |p̂P (p̂)| < 2j+1 where p̂ is in some level j ≥ i and P (p̂) is in level
j + 1. We search for P (p̂) from bottom up, first searching all neighbors of up̂ in one
level before moving upward to the next level. The first node that fulfills the parent
requirement is selected to be p̂’s parent. As we move up the hierarchy in search of
P (p̂), we promote p̂ up the hierarchy as well. For each level j that p̂ is promoted to,
we let P (p̂(j−1)) = p̂(j). If p̂ reaches the top of the hierarchy, then we know that p̂
has no parent and p̂ becomes the parent of the node that was previously at the top.

Step 3: Find all neighbors. In this step we find the neighbors of p̂ for every level it
resides in. If p̂ lies in the highest level of the graph, then the only neighbor p̂ has
is itself. Otherwise, all neighbors of p̂ in a level must also be a cousin (children of
neighbors of P (p̂)) of p̂ in the same level. This is trivial to prove. Therefore, we
only need to search among the cousins of p̂ to determine if they are neighbors. If
|p̂q̂| < c · 2j where p̂ and q̂ are cousins in level j, then we denote p̂ and q̂ to be
neighbors and create a link between the two nodes. Note that if we have promoted
p̂, we need to repeat our search in all levels p̂ resides in. This search is executed top
down in the hierarchy. After all neighbors of p̂ are found in all levels, we conclude
the insertion process for p̂.

When a new level is created below the bottom level j, we have to maintain our
structure. To do this, all nodes in level j are copied to the new level j − 1 and
neighbors in level j are searched to find neighbors in level j − 1.

After all nodes are inserted, it is possible that we need to demote a node below
G0. In this case, we can simply add more levels to the bottom of the hierarchy. It is

12

also possible that we promote so many nodes such that lower levels are redundant.
In this case, we can delete the redundant levels.

The following theorem concludes with the correctness of the algorithm.

Theorem 2.3.2. This algorithm creates a correct DefSpanner Ĝ of Ŝ.

Proof: First, we argue that our algorithm terminates. A node may not be demoted
by the same node more than once. Therefore the number of demotions is bounded,
all nodes are inserted into Ĝ and the algorithm terminates.

In a DefSpanner, in every level, all points must be sufficiently far apart and
every point has a designated parent (except for the topmost node) and links to
all neighbors. We argue that, our algorithm, after each point is inserted into Ĝ,
constructs a graph that fulfills all of these properties.

The distance between every pair of nodes in any level i must be greater than or
equal to 2i. We prove this by contradiction. Let us assume that two points p̂ and
q̂ are too close in some level i, that is |p̂q̂| < 2i. Without loss of generality, let us
assume that p̂ is inserted after q̂ which also means that p̂ has been inserted into a
level that q̂ resides in. If |p̂q̂| < 2i then |p̂q̂| < 2j must be true for any level j ≥ i and
specifically the level that p̂ is inserted into. Here we have a contradiction because in
our algorithm, p̂ would have been demoted down to a level i where |p̂q̂| ≥ 2i.

Now we must show that every node in every level has a designated parent. When
a point p̂ is inserted into Ĝ, either c(p̂) is assigned to be the parent of p̂ or neighbors
of ancestors of up̂ are searched for P (p̂). By Lemma 2.3.1, if the latter is the case,
we know that P (p̂) must be found or p̂ is promoted to the top of the hierarchy. The
parent for each node in the lower levels is the same node in the level above. This is
assigned when a node is promoted up the hierarchy or when a level is added to the
bottom of the hierarchy.

This leaves showing that the neighbors for each node in all levels are found. For
any pair of nodes that are neighbors, the connection is made when the second node
is inserted into the graph. In the third step, after the parent of the second node is
found, the algorithm then finds the first node among the second node’s cousins and
creates the link between the two. �

2.4 Algorithm Analysis

The cost of preprocessing is the DefSpanner construction cost orO(n(r+1/ε)d log2 α) [68].
The running time of our algorithm is bounded by the cost of inserting each node,
and the cost of adding new levels to the bottom of the hierarchy.

13

There are three distinct phases during the insertion of a node: checking for de-
motion, finding the parent, and finding the new neighbors. We will bound the cost
of the three phases separately.

Lemma 2.4.1. The number of comparisons conducted while determining whether
a node should be demoted is O(n(r + 1

ε
)d).

Proof: The first step of inserting a node p̂ is to check the distance between p̂ and
all of its previous neighbors in Ġ to determine if any two nodes are too close and
if so, p̂ is to be demoted. According to our algorithm, if a node p̂ is demoted, then
the next time it is inserted into Ĝ, it is generally inserted before other nodes in that
level are inserted. This way, if there is another node that is too close to p̂, then the
other node is demoted instead of p̂. Therefore, for the majority of demoted nodes,
they are only demoted once.

The only case where a node is demoted more than once is when two nodes are
demoted to the same level and when they are reinserted, they are found to be too
close and one of the two nodes is demoted again. In this case, if we let the other node
be q̂ and the level the two nodes are reinserted to be i, then |ṗq̇| ≤ |p̂ṗ|+ |p̂q̂|+ |q̂q̇| ≤
2r + 2i ≤ c · 2i ≤ c · 2j for some j > i where ṗ, q̇ ∈ Ġj and either ṗ /∈ Ġj+1 or
q̇ /∈ Ġj+1. Then ṗ and q̇ must be neighbors in level j. Since one of the nodes has
been demoted before the other was inserted, p̂ and q̂ have not been compared yet in
the construction of Ĝ. Therefore, the total number of comparisons is bounded by n
times the number of neighbors a node may have in one level.

Note that previously, we mentioned that the number of neighbors a node has on
one level is bounded by (1 + 2c)d − 1. Given our definition of c, this is O((r + 1

ε
)d).

Thus, the number of comparisons is bounded by O(n(r + 1
ε
)d). �

Lemma 2.4.2. Two nodes can be neighbors in at most O(log (r + 1
ε
)) levels.

Proof: Let p̂ and q̂ be two nodes that are only neighbors in levels j to i, j ≤ i.
Since p̂ and q̂ are both in level i and are neighbors in level j, 2i ≤ |p̂q̂| ≤ c · 2j.
From this, we can bound the number of levels p̂ and q̂ are neighbors in, i− j + 1, by
log c+ 1. Therefore, the maximum number of levels that two nodes can be neighbors
in is log c+ 1 = O(log (r + 1

ε
)).

�

Lemma 2.4.3. Let p̂ be a node inserted into Ĝ at level i and let j be the highest
level it resides in. In levels i + 1 to j − 1, p̂ and all neighbors of ancestors of up̂ are
cousins.

14

Proof: For a level k, i + 1 ≤ k ≤ j − 1, p̂ is in level k + 1 and P k−i−1(up̂) is the
ancestor of up̂ in level k. Let q̂ be a node in level k that is also neighbor of P k−i−1(up̂).
We need to show that the parents of p̂ and q̂ are neighbors in level k + 1.

From Lemma 2.3.1 we know that |p̂up̂| ≤ (c − 2)2i+1. We can determine the
distance between p̂ and q̂ to be |p̂q̂| ≤ |p̂up̂| + |up̂P k−i−1(up̂)| + |q̂P k−i−1(up̂)| ≤
(c−2)2i+1 +2·2k−2i+2 +c·2k. Using this information, we can determine the distance
between the parents of p̂ (which is itself) and q̂ to be |p̂P (q̂)| ≤ |p̂q̂|+ |q̂P (q̂)| ≤ (c−
2)2i+1+2·2k−2i+2+c·2k+2k+1 = (c−4)2i+1+(c+4)2k ≤ (c−4)2k+(c+4)2k = c·2k+1.
Therefore, the parents of p̂ and q̂ are neighbors in level k+ 1 and p̂ and q̂ are cousins
in level k.

�

Lemma 2.4.4. The total cost of finding the new neighbors of all nodes during their
insertion is O(n(r + 1

ε
)d log(r + 1

ε
)).

Proof: For a node p̂ inserted into level i and promoted to level j, the search for
p̂’s neighbors begins after the parent has been found. First, the cousins of p̂ in level
j are searched for neighbors. Since, a, the maximum number of children a node
can have is bounded by 5d, this takes O((r + 1

ε
)d) time. For all nodes, it takes

O(n(r+ 1
ε
)d) time. Then the cousins in levels below j are checked for neighbors. We

can bound the number of nodes we check by charging each cousin to the neighbor
link between p̂ and the cousins’ parent. We charge a operations to each link. By
Lemma 2.4.2, we know that each edge in Ĝ represents a neighbor link between
two nodes in O(log (r + 1

ε
)) levels. When we take into account the time it takes

to find neighbors for all nodes, we can bound all operations (that do not include
finding neighbors of a node in the highest level it resides in) by the number of
edges in Ĝ multiplied by O(a log (r + 1

ε
)). The number of edges in Ĝ is bounded

by O(n(r + 1
ε
)d). The total time it takes to find the new neighbors of all nodes is

O(n(r + 1
ε
)d) +O(5d · n(r + 1

ε
)d log(r + 1

ε
)) = O(n(r + 1

ε
)d log(r + 1

ε
)). �

Lemma 2.4.5. The total cost of inserting all nodes into Ĝ is O(n(r+ 1
ε
)d log(r+ 1

ε
)).

Proof: We have already proved time bounds for two phases of insertion: checking
for demotions (O(n(r + 1

ε
)d) by Lemma 2.4.1) and finding new neighbors (O(n(r +

1
ε
)d log(r+ 1

ε
)) by Lemma 2.4.4). All that we need to do is to bound the time spent

searching for the parents of the nodes during insertion. By Lemma 2.4.3, we note
that for a node p̂ where p̂ ∈ Ĝj, p̂ /∈ Ĝj+1, all nodes that we test as a possible parent
in all levels below j are also checked as possible neighbors. All nodes that we test as
a possible parent in level j+1 for a node p̂ can be bound by the number of neighbors

15

up̂ can have or O((r + 1
ε
)d). Therefore, for all nodes, the time it takes to find the

parents is O(n(r + 1
ε
)d) + O(n(r + 1

ε
)d log(r + 1

ε
)). When we add up all costs of

insertion, the term that dominates is O(n(r + 1
ε
)d log(r + 1

ε
)). �

Lastly, we need to consider the time it takes to add new levels to the bottom of
the hierarchy while the spanner is built.

Lemma 2.4.6. The cost of adding new levels to the bottom of the hierarchy during
spanner construction is O(n(r + 1

ε
)d log (r + 1

ε
)).

Proof: Each time a new level is added to the bottom of the hierarchy, all nodes
on the bottom level are compared to all of their neighbors. By Lemma 2.4.2, the
maximum number of times that two nodes may be compared is the maximum number
of levels they are neighbors in or O(log (r + 1

ε
)). Since the number of edges in a

DefSpanner represents the number of neighbor pairs, the total cost is O(n(r +
1
ε
)d log (r + 1

ε
)). �

Now we can finalize our analysis.

Theorem 2.4.7. The entire algorithm after preprocessing takes O(n(r+ 1
ε
)d log(r+

1
ε
)).

Proof: Summing the costs of inserting all nodes (Lemma 2.4.5) and creating new
levels (Lemma 2.4.6), the entire algorithm takes O(n(r + 1

ε
)d log (r + 1

ε
) + n(r +

1
ε
)d log(r + 1

ε
)) = O(n(r + 1

ε
)d log(r + 1

ε
)). �

2.5 Conclusion

We have presented an O(n(r+ 1
ε
)d log(r+ 1

ε
)) time algorithm to construct a (1 + ε)-

spanner with O(n log(α)(r + 1
ε
)d) preprocessing, when the accurate positions of the

points are revealed and each point is at most distance r from its old position. There
are many applications of a DefSpanner [68]: well-separated pair decomposition, all
near neighbors query, (1 + ε)-nearest neighbor, closest pair and collision detection,
and k-center. Note that our algorithm for constructing the DefSpanner will imme-
diately imply that given the accurate positions we can immediately get a structure
for the above problems in linear running time.

16

Chapter 3

Distributed Mobile Sensor
Coverage

3.1 Introduction

The past few years have witnessed the wide adoption of smartphones. Although
smartphones are mainly designed for user communication and social interactions,
they also provide an opportunistic platform for communities to sense and contribute
sensory information to form a body of knowledge. This has been termed as partici-
patory sensing [33] or crowdsourcing applications.

There are good reasons to use smartphones for sensing tasks. First, smartphones
already come with multiple sensors such as microphones, GPS units, gyroscopes, ac-
celerometers, cameras, digital compasses, and other commodity sensors [102]. Cellu-
lar phones are generally carefully maintained and charged. The popularity of smart-
phones can make sensing at a large scale, both spatial and temporal, possible. Many
interesting applications have already emerged, such as using smartphones for map
creation and enhancing bikers’ experience [56], urban sensing that considers cities
and public living environments [35, 50, 101] with monitoring noise pollution [108],
road conditions [59] or on-street parking [43] as examples. Commercial software on
smartphones are also available (e.g., Waze, Google’s OpenSpot). These participa-
tory sensing applications recruit users’ cellphones to accomplish environment sensing
tasks. Such effort piggybacks on the cellphone platform and benefits substantially
from its wide availability, ample computational cycle, battery life, etc. These par-
ticipatory sensing applications, nevertheless, must consider the relationship of user
mobility and the data quality, in terms of coverage and density.

A recent study using anonymous cell phone records discovered that human tra-

17

jectories show a high degree of temporal and spatial regularity [71]. The study also
confirms, not surprisingly, that individuals return to a few highly frequented loca-
tions, such as home or work and that there is a lot of overlap in different individuals’
trajectories. Therefore it is expected that there will be ample redundant sensors
populating certain ‘hot spots’ and there is an opportunity to selectively turn on such
sensors to reserve battery power. We would like to optimally determine where and
when to turn on or off sensors so that as much resources are preserved as possible
while coverage is maintained.

Problem definition

In this section we study how to efficiently schedule mobile sensors for monitoring the
environment. We represent a sensor by a point (which we also refer to as “node”)
that is moving around in a pre-specified region Σ (e.g., a polygon) in the plane.
We assume two different types of sensing requirements. In the continuous coverage
model, the entire domain Σ needs to be covered at all time. In the discrete coverage
model, we assume that a discrete set L of landmarks inside Σ need to be covered at
all time.

Each sensor has a fixed sensing range, and thus we assume its monitoring region
is a unit disk (which is a common assumption in the literature). Since the disks may
overlap, we consider scheduling sensors to minimize the total energy consumption.
Assume that sensor i, kept on, will consume energy at a rate of wi and it is kept
on for a total of ti time. Then the total energy usage

∑
iwiti is the weighted sum

of the time that sensors are turned on. When the weights are uniform (i.e., all
nodes consume power at the same rate), the objective becomes the total time that
all sensors are kept on.

The research question at hand is to design a clever schedule of the sensors such
that the total energy usage is minimized and the coverage quality does not degrade –
i.e., what could be covered by the original collection of sensors at any snapshot is still
covered. Notice that this problem is related to the problem of removing redundant
sensors for static sensor coverage. In our setting the mobility of the sensors makes
this problem more challenging – one main difference is the addition of the temporal
dimension in the sense that we may selectively turn on and off any sensor to reserve
energy.

Our results

We start by introducing a framework to analyze the complexity of mobile coverage.
Although the nodes move continuously, their coverage only changes at some discrete

18

points of time, which we call “critical events”. To enable rigorous theoretical anal-
ysis on the number of such critical events, we make a number of additional natural
assumptions. We take Σ to be the unit square and assume that the critical events
are tracked via a standard Hello beacon broadcast. Also, without loss of generality,
we assume that all the sensors, at any snapshot, collectively cover the entire domain
Σ or the entire set of landmarks1.

We then describe our algorithms for finding approximate mobile coverage solu-
tion. We first present a static distributed algorithm. This algorithm achieves a
constant approximation factor, where the main observation is to use a grid parti-
tioning of the input sensors into squares of side length r/2, where r is the sensing
range (i.e., the radius of the disks). For all the sensors whose range intersect the
same square, we calculate a constant approximate solution for the local version of
a geometric set cover problem. The solution is taken as the union of all the local
solutions. We show that this results in a constant approximation factor of the global
optimum.

Next, we show that the above algorithm for the static case can be extended to
the mobile case such that we only need to update the solution for a local problem
whenever a critical event occurs. This is achieved due to our assumption that the
critical events are tracked via Hello beacon broadcast.

We also describe the distributed implementation of a polynomial-time approxi-
mation scheme (PTAS) for the case where each sensor has only a constant number
of neighbors in its communication range. This is by adapting an existing centralized
algorithm (the so-called “shifting” technique [82]) with the critical insight that the
core structure is similar to our grid based solution—see below.

We also show that the distributed algorithm can be generalized (with only uniform
weights though) to handle k-coverage with a constant approximation factor, that is,
each point of interest is covered by at least k sensors [152, 100]. The k-coverage
problem is a natural extension to the standard coverage problem by improving the
robustness and accuracy of the coverage solution.

Related Work

Sensor coverage The problem of sensor coverage in the static setting has been
extensively studied. We only have space to review the most relevant results to our
work, and refer the reader to the survey paper [143] for more details. In particular,
our work belongs to the category of using the boolean disk coverage model for area

1We describe our assumptions and model in more detail in Section 3.2, however, we give a brief
description here as well in order to report our results.

19

coverage (covering the entire region) or point coverage (covering discrete targets).
For area coverage, one of the most well studied problems is to determine the

optimal placement pattern for the infinite plane with minimum sensor density, when
sensors can be placed anywhere in the plane. It is shown by Kershner that the
triangle lattice pattern is the optimal pattern if the sensors have unit disk sensing
regions [92]. Bai et al. [23] considered both optimal density and network connectivity.
They provided a strip-based placement pattern and proved its asymptotic optimality
for achieving both complete coverage and 1-connectivity.

Both the area coverage and point coverage problems can be generalized to k-
coverage, where each target or each point in the monitored area must be covered by
at least k sensors [152, 100].

Our work is also closely related to the problem of sensor activity scheduling,
which is to schedule nodes to be activated alternatively such that the network op-
eration time can be prolonged and area coverage requirement is still met. Various
optimization objectives have been used for this problem, ranging from ensuring the
area coverage ratio, minimizing the number of active sensors, and prolonging network
lifetime [138, 84, 147, 49]. A number of local tests have been developed to check for
redundant nodes and put them to sleep while still maintaining full coverage(see, e.g.,
[49, 147]. The list of reference is too long to survey here and we refer the readers to
the survey papers [135, 144].

Despite these previous studies, we are not aware of any previous work which
considered mobile sensors, and thus our work is seminal in this topic.

Geometric set cover The geometric set-cover problem is an abstraction of the
sensor coverage problem. In a typical setting, we are given a set X ⊆ Rd of points
(which is either discrete or continuous) and a set R of simply-shaped regions in Rd

(e.g., halfspaces, balls, simplices, cylinders, etc.). The goal is to compute a smallest
set of regions that altogether cover X.

When X = Rd, or when X is a continuous subset in Rd, we refer to this setup of
the problem as the continuous model, and when X is a finite point set, this setup of
the problem is referred to as the discrete model.

The geometric set-cover problem is NP-Hard, under both discrete and contin-
uous models, even for very simple geometric settings in R2, e.g., when R is a set
of unit disks or unit squares [65, 75]. Therefore attention has mostly focused on
developing polynomial time approximation algorithms. The well-known greedy al-
gorithm, which always selects the set that maximizes the residual coverage, yields a
O(log n)-approximation in polynomial time for the smallest set-cover [141, Chapter
2], and the known lower-bound results suggest that this is the (asymptotically) best

20

approximation factor one can hope to achieve in polynomial time for arbitrary (that
is, not necessarily geometric) settings [63]. However, by exploiting the underlying
geometry, one can obtain polynomial-time algorithms with better approximation fac-
tors for various geometric set-cover problems. These algorithms employ and adapt a
wide range of novel techniques, including variants of the greedy algorithm, dynamic
programming, LP-relaxation, and “ε-nets”. It is beyond the scope of this report to
give a comprehensive review of the known results. We only mention a few results
that are directly relevant to our problem, and refer the reader to [30, 37, 61, 82]
and the references therein for further details. Specifically, Clarkson and Varadara-
jan [47] show a constant approximation factor (achievable in expected polynomial
time) for arbitrary disks with uniform weights. A recent result by Chan et al. [39]
is a constant approximation factor (achievable in expected polynomial time) for the
weighted set-cover problem of points and arbitrary disks in the plane.

3.2 Preliminary Information

One of the main challenges in analyzing mobile coverage problems is to properly
factor the continuity of the motion. We next describe how to model the mobile
coverage problem in the time-space domain and how to track critical events.

The model We consider a domain Σ to be monitored by mobile sensors; Σ is
typically of a simple shape, say, a square or a disk. The sensors are represented by a
set D = {D1, . . . , Dn} of n unit disks in the plane, where each disk Di is assigned a
weight wi representing its energy consumption at all times, for i = 1, . . . , n. In what
follows, the weights are assumed to be arbitrary, unless stated otherwise.

For each sensor, we denote its sensing range by r (i.e., the radius of the disk in our
model), and assume that it has a communication range 3r. In this case, full coverage
of Σ implies network connectivity. We note that in practice the sensing ranges are
much smaller than the diameter ρ of the domain Σ, we thus assume r � ρ (we also
note that ρ ≤ r implies that Σ can be covered by a small number of disks, which
is a scenario of less interest in theory). Applying a common assumption in mobile
networks, we assume that the sensors periodically send Hello beacons to detect
and maintain direct communicating neighbors.

Critical Events. Each sensor moves along an arbitrary trajectory. We denote the
position ci of the center of Di at time t, for i = 1, . . . , n, by ci := ci(t) = (Xi(t), Yi(t)),
and Di := Di(t) denotes Di at time t. Let U(t) :=

⋃n
i=1Di(t) be the union of the

21

(a) (b)

Figure 3.1. (a) A triple of disks with an empty intersection, just before they meet, and (b) their
position at the moment they meet in a common point (depicted by the black bullet).

disks at time t (that is, all regions in the plane that are covered by at least one disk
at time t). Without loss of generality, we assume that time ranges from 0 to 1 in the
mobile coverage problem.

Let us initialize the process with a subset S of the disks in D whose union covers
the domain Σ at time t = 0. Since the union U(t) of all disks covers the domain
Σ at all times 0 ≤ t ≤ 1, such a subset cover exists, and let us denote its union in
time t ≥ 0 by U ′(t) :=

⋃
D∈S D(t). We note that the topological structure of the

cover U ′(t) changes only at some critical events. Each of these events is characterized
by a triple of disks that meet at a point p. Such an event may correspond to the
appearance of a new connected component in the complement of the union of U ′(t)
(that is, a new “hole” in the union appears) or to the disappearance of an existing
component (that is, an existing hole is sealed). In the first case we need to add a
new disk to S to restore coverage, and in the latter case we may remove an existing
disk from S, to save energy. See Figure 3.1 for an illustration.

Therefore, the optimal solution to the kinetic sensor coverage problem will only
change at a critical event, and our assumption on the Hello beacon broadcast
implies that each sensor can locally detect the critical event when its sensing region
just starts or stops overlapping with another one’s sensing region. Similarly, three
sensors can all detect locally when their sensing regions just start or stop having a
common intersection.

3.3 Distributed Approximation Algorithms

The General Framework In what follows, we first consider the discrete coverage
requirement when a set of landmarks to be covered is given, and is denoted by L. We
assume, without loss of generality, that they are covered by the sensors (otherwise,
an uncovered point in L can be removed from further consideration). Later on, we

22

Figure 3.2. A unit disk placed on a grid of side length 1/2.

show how to choose L carefully so that it guarantees a full coverage in the continuous
coverage model.

The static problem Our static algorithm is a variant of the set-cover algorithm
of Hochbaum and Maass [82], although they refer to the scenario where the disk set
is unrestricted (that is, this set is continuous and thus one can choose any arbitrary
disk to participate in the coverage), whereas in our scenario this set is given.

We place a grid Γ over Σ of side length r/2. We say that a cell is empty if it does
not contain a point of L, otherwise, it is non-empty. Our goal is to locally construct
a small cover in each non-empty cell of Γ, and then combine all these covers to form
the global coverage. Due to our special structure (that is, all disks have radius r)
and the existence of a machinery to handle each cell locally, we will be able to show
that our coverage is not any larger than the optimal coverage up to a constant factor.

It is easy to verify that each disk D ∈ D must fully contain at least one cell of Γ,
moreover, it meets at most 25 cells of Γ. See Figure 3.2 for an illustration. Let us
now consider a fixed non-empty cell τ ∈ Γ, with a landmark point p ∈ L inside. By
the assumption that all points in L are covered by D, p must have a disk D ∈ D with
p ∈ D. In particular, D must intersect τ (it either overlaps τ or fully contains it).
We now collect all points p ∈ L that lie inside τ and the disks intersecting τ ; let Lτ ,
Dτ be these resulting subsets. We next construct a set cover for Lτ with the disks
in Dτ using the algorithm of Chan et al. [37]. As noted in Section 3.1 this algorithm
produces a set cover whose size is only within a constant factor of the smallest set
cover. Let Sτ ⊆ Dτ be the set cover just produced. We then report the set

S :=
⋃

τ∈Γ,τ∩L 6=∅
Sτ .

We next show:

23

Lemma 3.3.1. Let OPT be the smallest set cover for L and D. Then |S| =
O(|OPT|).

Proof: Let τ ∈ Γ be a fixed non-empty cell. We next observe that the optimal set
cover OPT∗τ for Lτ , Dτ is at least as good as the entire optimal set cover OPT
restricted to τ (as OPT∗τ is the best coverage for Lτ , Dτ whatsoever). That is,
|OPT∗τ | ≤ |OPTτ |, where OPTτ is the subset of disks in OPT meeting τ .

By the properties of the approximation algorithm of Chan et al. [39] it follows
that |Sτ | ≤ C · |OPT∗τ |, where C > 0 is an absolute constant. On the other hand,
we claim that

∑
τ∈Γ,τ∩L6=∅ |OPTτ | ≤ 25|OPT|, since, as observed above, each disk

of D can meet at most 25 cells of the grid, and thus the multiplicity of a fixed disk
in the optimal solution OPT cannot exceed this constant. Combining the above
inequalities we obtain:

|S| ≤
∑

τ∈Γ,τ∩L6=∅
|Sτ | ≤ C

∑
τ∈Γ,τ∩L6=∅

|OPT∗τ | ≤

C
∑

τ∈Γ,τ∩L6=∅
|OPTτ | ≤ 25C|OPT|,

from which we conclude |S| = O(|OPT|), as asserted. �

In order to make the algorithm distributed, we observe that since the communi-
cation range of each sensor is 3r, any two disks that meet the same cell τ can directly
communicate with each other. Indeed, all disks (of radius r) that meet (a non-empty
cell) τ must have their centers within distance at most r from τ . We now observe
that the centers c, c′ of two distinct such disks D, D′ are located within distance at
most 2r + r/

√
2 < 3r from each other. This can be verified by placing c, c′ within

distance r from two opposite corners of τ and the fact that the distance between
these two corners is r/

√
2. Having this property at hand, the communication graph

refined to the corresponding nodes (whose disks meet τ) forms a clique, and hence all
disks meeting τ can “nominate” (say, by selecting the one with smallest ID) one such
disk D∗ to hold all information about the local setting to our set cover problem, that
is, Lτ , Dτ , and then the computation for the approximated set cover (as described
above) can be done within D∗.

The kinetic problem At the initial time t0 we apply the static algorithm pre-
sented above in order to find an approximation for the set cover. Then for each
node (that is, a sensor), we keep track of the state of all possible triples with that

24

node, that is, whether they have an empty or non-empty intersection (recall that
our model supports that). Then, when a critical event is detected (and so we also
have the triple it involves), the local solution within the grid cell τ on which the
critical event occurred will be re-computed using the algorithm for the static case
(only within τ). We compute τ by locating in the grid Γ the cell containing the
common intersection of the disks at the corresponding critical event.

Running time and communication cost For the static problem, computing
the approximate set-cover locally within each cell τ is done in expected polynomial
time [39]. We recall that each disk D communicates only with other disks whose cen-
ters lie in its communication range, in other words, each sensor exchanges messages
only with its neighbors in the communication network. Recall that we do so inde-
pendently in each cell τ ∈ Γ that D meets, and that there are at most 25 such cells,
and thus the overall number of exchanged messages that D involves is proportional
to its degree in the communication network. Thus the total number of exchanged
messages is proportional to the sum of these degrees (over all nodes representing
the disks D), which is just O(|E|), where E is the set of links in the network. This
bound is no more than the number of messages needed for each node to discover its
neighborhood (up to a constant factor), which is a necessary routine for almost all
networks.

Concerning the kinetic version, in each round imposed by the periodic beacons,
each disk D exchanges messages in its neighborhood as described above for the static
problem. Thus the total number of messages exchanged is O(T |E|), where T is the
number of rounds. Here too, we piggyback the communication cost on the cost of
maintaining neighborhoods, and thus the algorithm does not incur extra cost. We
have thus shown:

Theorem 3.3.2. Given a network of mobile sensors with an Hello beacon model
as above, where each of the sensors has a unit sensing radius r and a communication
radius 3r, and a set of landmarks L (confined to a unit-square domain Σ) to be
monitored, one can compute a coverage for L at each time t, whose overall weight
is at most a constant factor from the optimum. The overall number of messages
exchanged from each sensor is proportional to its neighborhood size at any time t.

Sparse networks A natural case that we study is where the communication degree
in the network is constant for each node. This scenario arises in the context of
participatory sensing, as one cannot condense many participants (e.g., people who
carry smartphones) at the same location. We first note that when applying our

25

previous algorithm in this case, the total number of messages exchanged from and to
each node is onlyO(1) (at each round), and the overall number of messages exchanged
in the network is only linear in the number of nodes (at each round). Nevertheless,
we show below that for this setting, one can achieve a better approximation factor.

We apply the polynomial approximation scheme (PTAS) of Hochbaum and Maass [82],
based on a shifting technique. A crucial property in their algorithm is the fact that
each point in the plane is covered by at most O(1) disks, which corresponds to our
scenario, as for each disk there are only O(1) other disks that it meets. Thus, in
particular, a “deep” point (a point that is covered by arbitrarily many disks) implies
that there is a large clique in the network, and thus the communication degree (of
the nodes in the clique) must be large as well, which contradicts our assumption.
Thus all points are “shallow” (i.e., have constant depth).

In this algorithm we fix a small error parameter ε > 0, and then set the side length
of the grid Γ to be ∆ := O(r/ε) (recall that r is the sensing radius of the disks). A
key observation of the algorithm in [82] is the fact that due to the constant-depth
property, within each cell τ of the grid the optimal solution can be computed in
polynomial time (where the degree of the polynomial depends on ε). The algorithm
in [82] then shows that if we place the origin of this grid at a random point in [0,∆]2,
find the optimal set-cover OPT∗τ locally in each cell τ , and then collect all these local
solutions to form the actual set-cover S, we obtain that |S| is at most (1 + ε)|OPT|
(on expectation), where OPT is the optimal solution for the whole setting. That
is, the main difference between this algorithm and the previous one given for an
arbitrary communication network, is the fact that here (i) we randomly shift the
grid, and (ii) we compute the actual optimal solution within each grid cell rather
than an approximate solution. These two facts eventually leads to the PTAS in [82],
which is an improvement over the constant approximation factor we obtained earlier.

Here too we can make the algorithm distributed using a similar approach as in the
general framework, however, we observe that the communication graph confined to
the nodes, whose corresponding disks meet a fixed cell τ , is not necessarily connected.
Nevertheless, we claim that the coverages constructed w.r.t. each connected com-
ponent must be pairwise disjoint, and then an optimal coverage is just the disjoint
union of the respective optimal coverages computed for each connected component.
Indeed, two sensors in different connected components must lie within distance at
least 3r from each other, and thus if we draw a disk of radius r centered in each
node of these components, the two resulting structures (each of which is a union of
disks that contain an optimal coverage) remain disjoint. Thus in each such connected
component we can nominate a disk to compute the optimal set-cover.

In the kinetic problem, we track the critical events and make the local computa-

26

tion in the grid at each such event, this is done almost verbatim as in the general
framework.

Concerning the communication cost, in this solution we need to expand the neigh-
borhood of each node by O(1/ε2). Specifically, the fact that each node has only O(1)
neighbors in the network, and, on the other hand, each grid cell τ is now of side
length O(r/ε), implies that τ may be intersected by only O(1/ε2) disks (we omit
the easy computation, which follows from a straightforward packing argument), and
thus each disk may exchange messages with that many disks in τ . On the other
hand, consider the connected components formed by the disks covering the same
grid cell τ . Each connected component has a diameter of at most O(1/ε). Thus
each node searching in its O(1/ε)-hop neighborhood can find all potential nodes in
its connected component. Since each disk appears in only O(1) cells (assuming ε is
sufficiently small, as otherwise we can resort to the previous algorithm), the total
number of exchanged messages involving D is O(1/ε2), and this bound is O(n/ε2)
over all nodes. We have thus shown:

Theorem 3.3.3. Given a network of mobile sensors of constant communication de-
gree and a set of landmarks L as in Theorem 3.3.2, one can compute a coverage of
L at each time t, whose weight is within a factor of (1 + ε) from the optimum, for
any ε > 0. The overall number of messages exchanged from each sensor is O(1/ε2)
at any time t.

The continuous coverage problem We now aim to cover the entire domain Σ at
all times. Consider that one can produce an appropriate point set P by constructing
the planar subdivision induced by the disks (also referred to as the “arrangement
of the disks”), with the property that P is covered if and only if Σ is covered; such
constructions are standard in the theory of computational geometry [51]. This com-
putation involves in each round the construction of the planar subdivision induced
by the disks.

Since Σ is covered at all times, the underlying communication graph is connected.
Moreover, this graph remains connected in any refinement to a subset of nodes, whose
corresponding disks meet a fixed cell τ . Thus all disks meeting a cell τ can nominate
one disk D∗ to locally compute the subdivision within τ . Then the entire subdivision
is obtained by gluing together all these “pieces”. Having this subdivision at hand,
the computation of P is fairly standard (see, e.g., [51]). At time t0 we compute P
with respect to the initial disk locations, and then apply the static algorithm with
this set of landmarks. For each critical event, before we update our set cover, we only
re-compute the portion of P that intersects with the cell we are updating (this is
sufficient as the combinatorial structure of the coverage does not change elsewhere).

27

Using similar arguments as above, the communication overhead, at any time t, is
proportional to the sum of the neighborhood sizes over all nodes.

The k-Coverage Problem The k-coverage problem is a special case of the so-
called set multi-cover problem, and in our scenarios this implies that we require each
point to be covered by at least k disks, or, more specifically, each point should be
monitored by at least k sensors, where k > 0 is an integer parameter (and thus the
case k = 1 is just the standard set cover problem).

In order to solve this problem efficiently, we use a similar grid construction as
the one for the original problem, and instead of applying the set-cover algorithm
of Chan et al. [39], we apply the set multi-cover algorithm of Chekuri et al. [40].
This algorithm can be applied only when the weights are uniform, and computes in
expected polynomial time a k-coverage whose size is only within a constant factor
from the optimum. Plugging this into our machinery, we obtain a similar bound as
in Lemma 3.3.1.

Theorem 3.3.4. Given the setting of Theorem 3.3.2 (while assuming uniform weights),
and an integer parameter k > 0, one can compute a k-coverage for L at each time
t, whose size is at most a constant factor from the optimum. The overall num-
ber of messages exchanged from each sensor, at any time t, is proportional to its
neighborhood size.

3.4 Conclusion

In this section we studied the problem of efficiently constructing coverage by mobile
sensors in order to reduce energy consumption, we are not aware of any previous
works on this topic. Our approximation algorithms are based on the shifting tech-
nique technique of Hochbaum and Maass [82], nevertheless, this machinery has never
been subject before to a distributed computing, which, as our work shows, is an
important and useful machinery for both theory and practice. We hope that this
observation will be useful for existing and future participatory sensing applications.

28

Chapter 4

The Data Gathering Problem

4.1 Introduction

A number of sensor network designs integrate both static sensor nodes and more
powerful mobile nodes, called data mules, that serve and help to manage the sensor
nodes [129, 87, 86, 132]. The motivation for such designs are twofold. First, there
are fundamental limitations with the flat topology of static sensors using short range
wireless communication. It is known that such a topology does not scale – the net-
work throughput will diminish if the number of sensors goes to infinity [79], while
allowing node mobility will help [74]. Second, a number of fundamental network
operations can benefit substantially from mobile nodes. We consider two exam-
ple scenarios: sensor data collection and battery recharging. In both cases, data
mules that tour around the sensors periodically can be used to maintain the normal
functionality of the sensors. In addition, data collection by sensors using multi-
hop routing to a fixed base station often suffers from the bottleneck issue near the
base station, both in terms of communication and energy usage. Using short range
wireless communication with a mobile base station can fundamentally remove such
dependency and avoid the single point of failure [142].

Despite the potential benefits of introducing data mules with static sensors, a lot
of new challenges emerge at the interface of coordinating the data mules with sensors.
One of the most prominent challenges is the scheduling of data mule mobility to
serve the sensors in a timely and energy efficient manner. This has been an active
research topic for the past few years. However, as surveyed later, most prior work
is evaluated by simulations or experiments [8]; algorithms with provable guarantees
are scarce. In this section we make contributions in this direction. We formulate
data mule scheduling problems with natural objective functions and provide exact

29

and approximation algorithms.

Our Problem

Suppose there are n sensors and a data mule traveling at a constant speed s to collect
data from these sensors. A sensor i generates data at a fixed rate of ri and has a
storage (“bucket”) capacity of ci where ci ≥ ri. When a data mule visits a sensor,
all current data stored in the sensor is collected onto the mule. We assume that
the mule has unbounded storage capacity. We also assume that data collection at
each sensor happens instantaneously, i.e., we ignore the time of data transmission,
which is typically much smaller than the time taken by the mule to move between
the sensors. If the amount of data generated at a sensor goes beyond its capacity
(i.e., its bucket is full), additional data generated is lost. Thus, a natural objective
is to schedule data mules to efficiently collect the continuously generated data.

We assume that the data collection and the data mule movement continues in-
definitely in time. Therefore, we are mainly concerned about the long-term data
gathering efficiency by periodic schedules.

The same problem arises in the case of battery recharging and energy manage-
ment. In that case, each sensor i uses its battery with capacity ci at a rate of ri.
When the battery at a sensor is depleted the sensor becomes ineffective. Thus, one
would like to minimize the total amount of time of ineffectiveness, over all sensors.
We formulate the following three problems.

• Single Mule Scheduling: Find a route for a single data mule to collect data
from the sensors that maximizes the data collection rate (the average amount
of data collected per time unit).

• k-Mule Scheduling: Given a budget of k data mules, find routes for them to
maximize the rate of data collected from the sensors.

• No Data Loss Scheduling: Find the minimum number of data mules, and
their schedules, such that all data from all sensors is collected (there is no data
loss).

Our Results

We report hardness results, exact algorithms for a few special cases, and approxi-
mation algorithms for all three problems. Our algorithmic results are summarized
in Table 4.1. When we assume that the capacities of all sensors are the same, we
provide results for the different cases where the sensors lie in different metrics. For
the case where the capacities of the sensors are different, we provide general results.

30

With Sensors Single mule k-mule No Data Loss
on a Line exact 1

3
exact

on a Tree exact pseudo-polynomial 1
3
(1− 1/e

1
2+ε)

12General Metric Space 1/6− ε
Euclidean Space 1/3− ε 1

3
(1− 1/e1−ε)

with Different Capacities O(1
m

) O(m)

Table 4.1. Our approximation algorithm results for different settings. Note that m ≤ log(cmax

cmin
)

where cmax is the largest capacity and cmin is the smallest capacity. For the results in the first four
rows, we assume that the sensor capacities are all the same. ε is any positive constant.

Without loss of generality, we assume that the minimum data rate is 1 and the
mule velocity is 1. In fact, we can further assume that all sensors have a data rate
of 1; if a sensor has data rate ri > 1, we can replicate this sensor with ri copies, each
with unit data rate and capacity ci/ri. Thus, in the following discussion we focus on
the case of all sensors having unit data rates and possibly different capacities. When
we consider the case where all sensors have the same capacity, we simplify notation
and let the capacity of all sensors be c.

We give the first algorithms for such data mule scheduling problems with provable
guarantees. In addition, we provide upper and lower bounds on the optimal solution
for both problems, and we evaluate the performance using simulations, for a variety
of sensor distributions and densities.

Related Work

Vehicle Routing Problems The problems we study belong to the general family
of vehicle routing problems (VRPs) and traveling salesman problems (TSPs) with
constraints [20, 103, 119, 150]. But our problem is the first one considering periodi-
cally regenerated rewards/prizes and thus is the first of this type.

Related TSP variations stem from the Prize-Collecting Traveling Salesman Prob-
lem (PCTSP) [22, 26] which was originally defined by Balas [24] as the problem, given
a set of cities with associated prizes and a prize quota to reach, find a path/tour on
a subset of the cities such that the quota is met, while minimizing the total distance
plus penalties for the cities skipped. (Some recent formulations of this problem do
not include penalties for skipped cities.) Archer et. al. [10] provided a (2 − ε)-
approximation algorithm for this formulation of PCTSP where ε ≈ 0.007024.

The Orienteering Problem [70, 140] assigns a prize to each city and, given a
constraint on the length of the path, aims to maximize the total prize collected. For

31

the rooted version in a general metric space, Blum et. al. [28] had proven that the
problem is APX-hard and provided a 4-approximation algorithm which was improved
to a 3-approximation by Bansal et. al. [25] and finally to a (2 + ε)-approximation
by Chekuri et. al. [41]. For the rooted version in <2, Arkin et. al. [12]give a
2-approximation, which was improved to a (1 + ε)-approximation (PTAS) [42] for
fixed dimension Euclidean space. For additional information we refer to the review
papers [64, 140].

Similar to our problems, the Profitable Tour Problem [19] balances the two com-
peting objectives of maximizing total prize collected and minimizing tour length. In
some problems, the profit collected is dependent on the latency [48].

Our problems are also very similar to many multi-vehicle routing problems [11,
57, 60, 94]. Arkin et. al. [14] give constant-factor approximation algorithms for
some types of multiple vehicle routing problems including a 3-approximation for the
problem of finding a minimum number of tours shorter than a given bound that
cover a given graph. Nagarajan and Ravi [115] provide a 2-approximation for tree
metrics and a bicriteria approximation algorithm for general metrics. Khani and
Salavatipour [93] present a 2.5-approximation algorithm for the problem of finding,
for a given graph and bound λ, the minimum number of trees, each of weight at most
λ, to cover the graph (improving on a bound given in [14]).

Data Mule Scheduling Increasingly, there has been interest in using mobile data
mules to collect data in sensor networks. A common question that has arisen is how
to schedule multiple mules effectively and efficiently. Many heuristics have been
proposed to schedule multiple mules with various constraints and objective functions
(e.g., evenly distributing loads [86], scheduling short path lengths [107, 146], and
minimizing energy [6]). Somasundara et. al. [133] address a very similar problem
to ours, but with different methods; we obtain provable polynomial-time algorithms,
while they employ (worst case exponential-time) integer linear programming and
explore heuristics.

4.2 Single Mule Scheduling

Given a single mobile data mule with unit velocity, n sensors with uniform capacity
and unit data rate, the goal is to route the mule in effort to maximize its data
gathering rate. We explore this problem with sensors on a line, on a tree, and in
space.

32

Exact Algorithms on a Line or a Tree

Line Case We first look at the case when the sensors are on a line. We assume
that the input data is integral; specifically, the sensors pi are located at integer
coordinates and the capacities ci for all i are integers. With this assumption, the
optimal schedule can be shown to be periodic.

Lemma 4.2.1. The optimal schedule that minimizes data loss is periodic, assuming
integral input data.

Proof: If the sensors are located at integral positions, the distances between any
two of them are integers as well. Thus, all states of the problem can be encoded
by the position of the mule and the current amount of data at each sensor i. All of
these values are integers. Thus, the total number of possible states is finite; after a
state reappears we realize that the robot must follow the same schedule, making the
schedule periodic. �

Theorem 4.2.2. Let there be n sensors, p1, p2, . . . , pn on a line. Assume that the
capacities and rates of all sensors are the same: ci = c and ri = 1, for 1 ≤ i ≤ n. Then
there exists an optimal path that minimizes data loss with the following properties:
(1) its leftmost and rightmost points are at sensors, (2) it is a path making U-turns
only at the leftmost and rightmost sensors.

Proof: The first claim is obvious since one can remove the portion of the path
beyond the leftmost sensor and shorten the time for one period of the trip, which
results in all covered sensors being visited more frequently than before. Now, let
there be an optimal path P with leftmost sensor at xl and rightmost sensor at xr.

Let us assume that P contains U-turns that do not occur at the extreme points
xl, xr. A U-turn is called a left U-turn if the mule was traveling from right to left
before the turn, and a right U-turn otherwise. Note that one cycle of P can be split
into two sub-paths, a path Pl from xl to xr and a path Pr from xr to xl. These
sub-paths may have U-turns at the extreme points xl, xr. (In that case, Pl and Pr
are not unique.) Without loss of generality, assume that there are U-turns in the
sub-path from xl to xr. Consider the closest left U-turn to xl and name the point
it occurs at zl. Since P is periodic, we can assume that in one full period, P starts
and ends at xl.

Now, we will modify the trip P . Notice that for the mule to make a left U-turn
at zl, it must make a right U-turn in the path from xl to zl. Let the rightmost such
U-turn be zr. We remove the path that begins at the first time Pl reaches zl to the
last time Pl reaches zl. See Figure 4.1 for an example.

33

x` z` zr xr x` z` zr xr

Figure 4.1. Remove a segment of the path to eliminate a U-turn at zl.

After the surgery, we get a schedule without the round trip beginning at zl.
Suppose the trip eliminated has duration δ and the trip after this surgery, denoted
by P ′, has round-trip time length T . That means, the trip P has duration T + δ.

Since the rate of data accumulation and the bucket size are the same for all
sensors, all sensors take the same amount of time to overflow. As a result, when
a mule travels from right to left and encounters an overflowing sensor b, then all
sensors to the left of b are also overflowing – since the last time they were visited
was definitely before the last time that b was visited.

In the shortened path P ′, the sensors to the left of zl are reached δ time sooner
than in P . In the paths P and P ′, all sensors to the left of zl overflow in both paths
or there exists a sensor to the left of zl that does not overflow in either P or P ′. In
the latter case, lets define yl to be the leftmost such sensor. We define bl to be the
leftmost of either zl or yl. Let nl denote the number of sensors to the left of bl. Since
all sensors to the left of bl overflow in both P and P ′, the difference in the amount of
data lost in those sensors between the two paths is δnl. Also, note that the definition
of yl suggests that there exists a path in either P or P ′ from yl to xr to yl where none
of the sensors from xr to yl overflow. The terms br, yr, and nr are defined similarly
in the right direction.

Let m denote the amount of overflow for sensors covered by P ′ in one full period
and let n′′ be the number of sensors not covered by the path P ′ (i.e., those that are
either to the left of xl or the right of xr). The overflow rate is m/T + n′′ in path

P ′ and for P it is m+δ(nl+nr)+e
T+δ

+ n′′ where e is any extra overflow in P that is not
accounted for such as from sensors between zl and zr.

Since P is an optimal path, then m+δ(nl+nr)+e
T+δ

+n′′ ≤ m/T +n′′. We simplify this
relationship to

m+ δ(nl + nr) + e

T + δ
+ n′′ ≤ m

T
+ n′′

m+ δ(nl + nr) + e

T + δ
≤ m+m(δ

T
)

T + δ

34

nl + nr +
e

δ
≤ m

T
. (4.1)

Consider a simple periodic path P ′′ only making U-turns at bl and br. If bl or br is
defined by a non-overflowing sensor, then there is no overflow between bl and br since
there exists a longer path between bl and xr (or br and xl) in P or P ′ that does not
cause any sensor to overflow. Thus the overflow rate of the path is just nl + nr + n′′.
If bl is zl and br is zr then the overflow rate of the path is nl + nr + e′

δ
+ n′′ where

e′ is the extra overflow. Note that by definition, e′ ≤ e since a cycle of P ′′ is shorter
than the path cut out in P . For either case, the overflow rate of the direct periodic
path between bl and br is bound by nl + nr + e′

δ
+ n′′. By Equation 4.1,

nl + nr +
e′

δ
+ n′′ ≤ m

T
+ n′′

(T + δ)(nl + nr + e′

δ
)

T + δ
≤ m

T + δ
+
δ(nl + nr + (e

δ
))

T + δ

nl + nr +
e′

δ
+ n′′ ≤ m+ δ(nl + nr) + e

T + δ
+ n′′

Since P is optimal, the direct path must be optimal as well. Therefore, there
exists an optimal path that is direct with only U-turns at the extreme points. �

The immediate consequence from Theorem 4.2.2 is that one can find the optimal
schedule in O(n2) time, enumerating all possible pairs of extreme points.

It is important to note that it is sometimes necessary for the mule in the optimal
solution to gather data more than once from a given sensor in a period. In Figure 4.2,
sensors are split into six groups, where each group has either k or 2k sensors. Within
each group, each sensor has the same x-coordinate. In the optimal solution, the data
mule traverses the entire interval back and forth, picking up data whenever it reaches
a sensor. This solution has data gathering rate 10.5k

2
= 5.25k. In comparison, the

best solution that gathers data from a sensor at most once per period has rate 4k.

0.25

0.125 0.125

0.25 0.25

2k 2kk k k k

Figure 4.2. The optimal solution repeats sensors

35

Tree Case We extend our results to a tree topology, with the sensors placed on
a tree network embedded in the plane. Then, we show that the structure of an
optimal schedule for the mule is to follow (repeatedly) a simple cycle (a doubling of
a subtree). Again we assume that all sensors have the same capacity c and the same
rate, 1, of data accumulation. We also assume that the input is integral, i.e., c is an
integer and the distance between any two sensors on the tree network is an integer.

Theorem 4.2.3. Let there be n sensors, p1, p2, . . . , pn on a tree G. For all pi, 1 ≤
i ≤ n, let ci = c and ri = 1, i.e. let the capacity and rates of all sensors be the same.
There exists an optimal path that minimizes data loss with the following properties:
(1) it only changes direction at sensors, (2) it is a cycle obtained by doubling a
subtree.

Proof: For the first claim, we argue that any path that contains a U-turn that does
not coincide with a sensor can be shortened to the preceding sensor. The shortened
path will visit all nodes more frequently and will not lose any more data than the
original path.

Our argument for the second claim is similar to the proof for the line case. Let
there be an optimal path P that is not a cyclic, depth-first traversal on a subtree G′

of G. We denote the set of nodes X = {x1, x2, . . . , xm} to be leaves of G′. Therefore,
the path P must contain a subcycle that visits at most one node in X. We also
denote P as the set of nodes the path P visits.

Note that any subcycle that visits more than one node in X contains a subcycle
that visits exactly one node in X. When a path visits a leaf, the section from the
nearest junction to the leaf and back again is such a subcycle.

Consider a subcycle that visits at most one node in X. Let Pi be the shortest
section of P that begins and ends with a node in X and completely contains the
subcycle. We denote the node zb to be the closest node in Pi to xi that is also part
of a subcycle.

Since P is periodic, we can assume that in one full period, P always starts at xi
and ends at xi. Let the path from zb along Pi and back to zb be denoted as S.

Now, we will modify the trip P by removing S. Suppose S has duration δ and
the path after this subcycle is removed, denoted by P ′, has duration T . That means,
the trip P has duration T + δ. We now calculate the overflow rate of one entire cycle
with and without the subcycle S.

Let Y denote the set of sensors that do not lie on S and overflow in both P and
P ′ but are reached δ time sooner in P ′. Let |Y | = n′ and R be the subtree of G′ on
the nodes S ∪O where O is the set of nodes that do not overflow in both P and P ′.
Note that if a node is overflowing and the mule is above the node in the tree, then

36

all nodes below the node are also overflowing. Therefore, if no nodes in S overflow,
then R does not overlap any overflowing nodes.

Let m denote the amount of overflow in P ′ in one full period not including the
overflow of the n′′ nodes that P and P ′ miss altogether. The overflow rate is m/T+n′′

in path P ′ and m+δ·n′+ε
T+δ

+ n′′ in path P where ε is any extra overflow in P that is

not accounted for. Since P is an optimal path, then m+δn′+ε
T+δ

+ n′′ ≤ m/T + n′′. We
simplify this relationship to

m+ δn′ + ε

T + δ
+ n′′ ≤ m

T
+ n′′

m+ δn′ + ε

T + δ
≤ m+m(δ

T
)

T + δ

n′ +
ε

δ
≤ m

T
. (4.2)

Consider a cyclic, depth-first traversal P ′′ on the subtree R. If R \ S 6= ∅, then
there is no overflow within the subtree since there exists a path beginning at xi that
reaches all nodes in R without overflowing. Thus the overflow rate of the path on R
is n′ + n′′. If R = S then the overflow rate of the path is n′ + ε′

δ
+ n′′ where ε′ is the

extra overflow. Note that by definition, ε′ ≤ ε since P ′′ is shorter than or has the
same duration as S. For either case, by the overflow rate is bound by n′ + ε′

δ
+ n′′.

By Equation 4.2,

n′ +
ε′

δ
+ n′′ ≤ m

T
+ n′′

T (n′ + ε′

δ
)

T + δ
+
δ(n′ + ε′

δ
)

T + δ
≤ m

T + δ
+
δ(n′ + ε

δ
)

T + δ

n′ +
ε′

δ
+ n′′ ≤ m+ δn′ + ε

T + δ
+ n′′

Since P is optimal, the direct path on R must be optimal as well.
Therefore, there exists an optimal path that is a cyclic, depth-first traversal on a

subtree of G. �

A consequence of Thereom 4.2.3 is that we can compute an optimal mule route
(we can identify an optimal subtree of G) in time that is pseudo-polynomial, using
a dynamic programming algorithm.

It is unlikely that there is a strongly polynomial time algorithm for an exact
solution, since we show that the problem is weakly NP-hard.

37

Hardness

We show that single mule scheduling on a tree is weakly NP-hard. Further, we show
that the data gathering problem for a single mule and sensors in Euclidean (or any
metric) space is NP-hard.

Theorem 4.2.4. The data gathering problem scheduling a single mule among uni-
form capacity sensors on a tree is (weakly) NP-hard.

Proof: Our reduction is from PARTITION (or SUBSET-SUM): given a set S =
{x1, . . . , xn} of n integers, does there exist a subset, S ′ ⊂ S, such that

∑
xi∈S′ xi =

M/2, where M =
∑

i xi? Given an instance of PARTITION, we construct a tree as
follows: There is a node v connected to a node u by an edge of length M/2. Incident
on v are n additional edges, of lengths xi; the edge of length xi leads to a node where
there are exactly xi sensors placed. Also, at node u there are M2 sensors placed. (If
one disallows multiple (x > 1) sensors to be at a single node w of the tree, we can
add x very short (length Θ(1/n)) edges incident to w, each leading to a leaf with a
single sensor.) Consider the problem of computing a maximum data-rate tour in this
tree, assuming each sensor has capacity 2M . Then, in order to decide if it is possible
to achieve data collection rate of M2 +M/2 we need to decide if it is possible to find
a subtree that includes node u (where the large number, M2, of sensors lie) and a
subset of nodes having xi sensors each, with the sum of these xi’s totaling exactly
M/2. (If the sum is any less than M/2, we fail to collect enough data during the
cycle of length 2M that is allowed before data overflow; if the sum is any more than
M/2, we lose data to overflow at u, which cannot be compensated for by additional
data collected at the xi nodes, since M2 is so large compared to xi.) �

Theorem 4.2.5. The data gathering problem scheduling a single mule among uni-
form capacity sensors in the Euclidean (or any metric) space is NP-hard.

Proof: We reduce from the Hamiltonian cycle problem in a grid graph where n
points are on an integer grid and an edge exists between two points if and only if
they are unit distance apart. If we place a sensor at each point with capacity n, it
follows that there exists a Hamiltonian cycle in this graph if and only if there exists
a data gathering solution with no data loss. �

NP-hardness for this problem also holds for any general metric space.

38

Approximation Algorithm

Theorem 4.2.6. For uniform capacity sensors in fixed dimension Euclidean space,
there exists a (1/3 − ε)-approximation for maximizing the data gathering rate of a
single mule. For general metric spaces, a (1/6− ε)-approximation exists.

Proof: In order to achieve this, we approximate the maximum number of distinct
sensors a mule can cover in time c/2, the amount of time for sensors to fill from
empty to half capacity (it can be shown that one half capacity is the optimal choice).
The result will be a path, to which we assign one mule to traverse back and forth.
The data gathering rate of this solution is equal to the number of distinct sensors
covered as a mule on a schedule with period t will collect exactly t units of data from
each sensor. We denote R to be the maximum number of distinct sensors that can be
covered by a path of length c/2. Note that R can be approximated to within a factor
of 1 + ε in fixed dimension Euclidean space using the PTAS for orienteering [42]. In
general metric spaces, R can be approximated to within a factor of 2 + ε [41]. Let
R∗ be the data gathering rate of the optimal solution. We now show that R∗ ≤ 3R.

Consider the interval of time c/2 in the optimal solution that has the highest data
gathering rate. This is an upper bound on R∗. In this time period, we know that the
number of distinct sensors visited is at most R. We also know that during this time
period at most 3

2
c units of data can be downloaded from any visited sensor (at most

c units of data immediately downloaded and at most c/2 units of data downloaded
after c/2 units of time have passed). Therefore, the total amount of data collected in
the optimal solution during this period of time is at most 3

2
cR. Averaging the data

collected over the time interval c/2, the data gathering rate of the optimal solution
is at most 3R. �

4.3 k-Mule scheduling

Given a budget of k data mules, we now consider the problem of maximizing the
total data gathering rate of these mules. We assume the n sensors have uniform
capacity, unit data rate, and unit velocity. It is important to note that even with
sensors on a line, the optimal solution may not assign mules to private tours; sensors
may need to be visited by multiple mules. Consider an input with two mules and
sensors uniformly spaced c/4 apart from one another. Any time a mule makes a U-
turn, it will gather only c/2 data from the next sensor it visits. In order to maximize
the frequency of full buckets collected, we want to minimize the frequency of U-turns
made. This can be done by maintaining separation of length c between the mules and

39

having the mules zig-zag across (nearly) the entire line (see Figure 4.3). Interestingly,
this example also shows that mules can travel arbitrarily far distances.

mule 2

mule 1

Figure 4.3. With two data mules and sensors uniformly spaced c/4 apart, many sensors
will be visited by both mules in the optimal solution.

Sensors on a line

Theorem 4.3.1. Given a budget of k data mules, for uniform capacity sensors on
a line, there exists a 1/3-approximation for maximizing the data gathering rate.

Proof: Similar to the case when k = 1, we find the maximum amount of distinct
sensors that k mules can cover in time c/2 (it can be shown that half capacity is the
optimal choice). The result will correspond to a set of disjoint intervals; we assign
one mule to each interval. The duration of a cycle for each mule is the length of
time a sensor fills up to capacity so no sensor is allowed to overflow. Therefore,
the data gathering rate of this solution, call it R, is equal to the number of sensors
covered. Note that R, the maximum amount of distinct sensors that can be covered
by k disjoint intervals of length at most c/2, can be computed exactly in polynomial
time using dynamic programming. Let R∗ be the data gathering rate of the optimal
solution. It follows from the same argument given for the k = 1 case (Theorem 4.2.6)
that R∗ ≤ 3R.

�

Sensors in a general metric space

Theorem 4.3.2. Given a budget of k data mules, for uniform capacity sensors in
a general metric space, there exists a 1

3
(1 − 1

eβ
)-approximation with β = 1

2+ε
for

maximizing the data gathering rate. In fixed dimension Euclidean space there exists
a 1

3
(1− 1

eβ
)-approximation with β = 1− ε.

40

Proof: The proof is similar to the proof of Theorem 4.2.6. In order to approximate
the maximum amount of distinct sensors that k mules can cover in c/2 time, we
compute an orienteering path with a travel distance budget of c/2 on the uncovered
sensors. We repeat this operation for a total of k times. In the Maximum Coverage
problem, one is given a universe of elements, a collection of subsets, and an integer k.
The objective is to maximize the number of elements covered using k subsets. It has
been shown by Hochbaum et al.[83] that greedily choosing the set with the largest
number of uncovered elements k times yields a (1− 1

e
)-approximation. Interestingly,

Hochbaum et al. also show that using a β-approximation for covering the maximum
amount of uncovered elements in each of the k rounds yields a (1− 1

eβ
)-approximation.

Computing orienteering k times on only the remaining uncovered sensors, we achieve
a 1

(2+ε)
-approximation each round and therefore a (1− 1

eβ
)-approximation for β = 1

2+ε

for covering the maximum amount of sensors with k mules. Using similar arguments
as the case where k = 1 (Theorem 4.2.6), it is now easy to see that having mules
traverse the k orienteering paths back and forth yields a 1

3
(1− 1

eβ
)-approximation.

�

4.4 No Data Loss Scheduling

In situations in which it is not possible for a fixed number of data mules to collect all
data in the network, it is natural to increase the number of data mules and let them
collectively finish the data collection task. In the no data loss scheduling problem,
we seek to minimize the number of mules in order to avoid data loss. Throughout
this section we assume that all sensors have unit data rate, unit velocity, and uniform
capacity.

Exact Algorithm on a Line

When sensors all lie along a line, we show that the problem can be solved in poly-
nomial time. As before, we can assume that the sensors lie at integer coordinates
so that, by the same argument as in Lemma 4.2.1, the mules in an optimal solution
follow periodic schedules.

Lemma 4.4.1. For the minimum cardinality data mule problem with no data loss,
if the sensors have uniform capacity and lie on a line, there is an optimal schedule in
which all mules follow periodic cycles, zigzaging within disjoint intervals, each with
length at most c/2.

41

Proof: The proof is by induction on the number of sensors. If there is only one
sensor, then one mule is enough and it remains stationary at the sensor; this is a
trivial zigzag schedule.

Suppose we have n sensors and consider the schedule of one optimal solution using
k∗ mules. The mule i follows along a periodic schedule Ci visiting a set of sensors
Si. Without loss of generality we can assume the mules in this optimal schedule do
not visit any point to the left of the leftmost sensor. Consider the leftmost sensor,
p1, and the mules that collect data from it. If p1 is visited by more than one mule,
we will find another optimal schedule in which p1 is visited by only one mule. To see
this, we first fix a time t1 when p1 is visited by some mule, denoted as the first mule
m1. Suppose the next visit to p1 is by a different mule, say m2, at time t2. Clearly,
at the time when m1 visits p1, m2 is to the right of p1. Later, at the time when m2

is visiting p2, m1 is to the right of p1. By continuity of motion, there must be a time
in [t1, t2] such that m1 and m2 meet. At the intersection we can swap the motion
plan of m1 and m2. So m1 turns back to visit p1 and m2 turns back and follow the
original motion plan of m1. This modification does not change the data rate, so
the modified schedule collects all data and remains optimal. Similarly, if p1 is later
visited by another mule m3, we perform the same swap. This way p1 is exclusively
visited by one mule, m1.

Since p1 is only visited by a single mule, m1, the schedule C1 does not visit any
node that is more than distance 1/2 away from p1 to the right (otherwise m1 does
not have enough time to go back to p1 before its bucket becomes full). Thus we can
assume without loss of generality that C1 is a simple zig-zag tour on an interval I1 of
length c/2 with p1 as the left endpoint. All sensors in this interval can be collected
by this mule without data loss. Thus, we can modify the schedule for all other mules
such that they do not need to visit any nodes in I1. Clearly, k∗−1 mules are sufficient
to collect data from the remaining sensors with no data loss. Since there are at most
n− 1 sensors to be covered, by the induction hypothesis there is a schedule of k∗− 1
mules covering disjoint intervals. Together with the first mule, this is the disjoint
schedule whose existence is claimed. �

By the above structural lemma, we can use a simple greedy algorithm to minimize
the number of data mules necessary to collect data, without loss, for sensors on a
line: Starting at the leftmost sensor, schedule a mule to zigzag within an interval of
length c/2 whose left endpoint is the leftmost sensor, and then continue to the right,
adding further intervals of length c/2 until all sensors are covered. This is an O(n)
algorithm for n (sorted) sensors.

42

Hardness

Even when the sensors lie on a tree, the problem of minimum cardinality data mule
scheduling with no data loss is already NP-hard.

Theorem 4.4.2. For uniform capacity sensors on a tree, the problem of minimum
cardinality data mule scheduling with no data loss is (strongly) NP-hard.

Proof: We reduce from 3-PARTITION. Given a multiset, S = {x1, x2, · · · , x3n},
of 3n integers with total sum M , 3-PARTITION asks whether there is a partition
of S into n subsets, S1, . . . , Sn, such that each subset sums to exactly B = M/n.
It is known that we can assume that the integers xi satisfy B/4 < xi < B/2, so
that each subset Si must consist of a triple of elements (|Si| = 3). We create an
instance of a star having a hub (center node) incident on 3n edges (“spokes”) to
3n sensors, with edge lengths equal to xi. Each sensor has capacity 2M/n. Thus if
there is a partitioning of S into triples of integers that each sum to M/n, then one
(unit-speed) mule can traverse each corresponding 3-spoke subtree in time exactly
2M/n, resulting in no data loss using n mules. On the other hand, any solution
using exactly n data mules and having no data loss determines a valid partition of
S into triples Si. Thus, the 3-PARTITION instance has a solution if and only if n
data mules suffice. �

For the general case, with sensors at points of a metric space or in a Euclidean
space, the problem of determining the minimum number of data mules necessary to
collect all data is also NP-hard. This can be seen by using a similar reduction from
Hamiltonian cycle, as in Theorem 4.2.5.

Approximation Algorithm

It is tempting to think that an optimal solution will allocate each mule to cover an
exclusive set of sensors S ′, that are not covered by other mules. We denote such
a set of tours as a private tour set on S ′. However, the following example shows
that this is no longer the case when sensors lie in the plane. Consider n > 2 sensors
placed on a circle, uniformly spaced with adjacent sensors at (Euclidean) distance
exactly c − 1/n. The convex hull of these sensors is a regular n-gon of perimeter
n(c − 1/n) = nc − 1. The optimal solution would use n − 1 mules, with each mule
touring periodically at constant speed (1) along the boundary of this n-gon, with
time/distance separation of exactly c between consecutive mules. This ensures that
each sensor is visited exactly when its storage (bucket) becomes full. However, any

43

solution using private tours will have to use n mules, since no mule can use a private
tour to cover two or more sensors (since it would have length at least 2c− 2/n > c).

While it may be that no private tour set is optimal, we now argue that the optimal
schedule using only private tours is provably close to optimal (in terms of minimizing
the number of data mules). Denote by k∗ the minimum number of cycles, each of
length at most c, to cover all nodes, which is denoted as a light cycle cover. And
denote by m∗ the minimum number of data mules required to collect all data.

Lemma 4.4.3. m∗ ≤ k∗ ≤ 2m∗.

Proof: First, note that using k∗ mules, each traversing a (private) light cycle, results
in all data being collected; thus, m∗ ≤ k∗.

Now consider an optimal schedule of m∗ data mules. Mule i moves along a
schedule Ci. Consider any particular time t. Each sensor j is visited by at least one
mule. We assign it to the mule that visits it first, i.e., at the earliest time after t. We
know this time is at most c, since no data is lost at sensor j. Thus, consider mule i,
at current position pi (at time t) and all the sensors along Ci that are assigned to it.
They all lie on a path (along Ci) of length at most c. Let si be the sensor furthest
away from pi, measuring distance along Ci. Let γi be the corresponding path along
Ci, from pi to si. Let bi be the midpoint of this path. Place a clone of mule i at point
si, and create two private cycles for mule i and his clone: one cycle goes from pi to
bi along γi, then returns to pi directly (along a shortest path or a straight segment),
the other goes from bi to si along γi, then returns to bi directly. Mule i traverses the
first cycle; his clone traverses the second cycle. Do this for all mules.

We have doubled (via cloning) the number of mules, but now each mule/clone
has a private cycle, of sensors assigned only to it, and these cycles are each of total
length at most c. Thus, this is a valid solution to the light cycle cover problem.
Thus, the minimum number of light cycles, k∗ is no greater than 2m∗. �

By the above lemma, an α-approximation for the minimum light cycle cover gives
a 2α-approximation for the minimum number of data mules. Arkin et al. [14] gave
a 6-approximation algorithm for the minimum light cycle cover problem; thus, we
have a 12-approximation for minimum data mule scheduling. This is summarized in
the following theorem.

Theorem 4.4.4. For uniform capacity sensors within a general metric space or in
the Euclidean plane, computing the minimum number of data mules to collect all
data is NP-hard. There is a polynomial-time 12-approximation algorithm for sensors
in a general metric space.

44

4.5 Different Capacities

We now consider both the k-mule scheduling problem and the no data loss scheduling
problem on n sensors with potentially different sensor storage capacities. Each sensor
has unit data rate. The result for the k-mule scheduling problem obviously holds for
the single mule problem (i.e. when k = 1).

k-Mule Scheduling

Lemma 4.5.1. With m groups of sensors, each group having the same storage ca-
pacity, optimally solving each group independently and taking the solution with the
highest data gathering rate yields a O(1/m)-approximation to the k-mule scheduling
problem.

Proof: Let r(·) be the data gathering rate of a solution. Let OPTi be the op-
timal solution to group i and let OPT be the schedule with highest data rate.
r(OPT) ≤ ∑m

i=1 r(OPTi) ≤ m · max
i
{r(OPTi)}. The first inequality is from the

following observation. Consider the optimal schedule OPT and modify it such that
we only visit the nodes in group i. This is obviously a solution for collecting data
from group i and thus has data rate no greater than r(OPTi). �

Let cmax and cmin be the storage capacities of the largest and smallest sensors
respectively. We round the storage capacity of each sensor down to its nearest power
of two. Doing so, we create m groups of sensors where m is at most log(cmax

cmin
). Note

thatmmay be significantly smaller than log(cmax
cmin

). In the rounding down process, the
storage capacity of each sensor is at most halved, thus the optimal solution on the new
sensors has data gathering rate of at least 1/2 of the same solution before rounding.
We approximate the optimal solution to each of the groups within a constant factor
and choose the one with highest data gathering rate. By Lemma 4.5.1, we have the
following.

Theorem 4.5.2. By rounding down the sensor capacities intom ≤ log(cmax
cmin

) groups,
the group with highest data gathering rate has rate at least O(1/m) · r(OPT) where
OPT is the optimal solution to the k-mule scheduling problem.

No Data Loss Scheduling

Theorem 4.5.3. By rounding down the sensor capacities into m ≤ log(cmax
cmin

) groups
and solving each group independently, at most O(m) · |OPT | mules are used in total,
where |OPT | is the minimum number of mules needed to avoid data loss.

45

Proof: Using the same rounding technique as the previous section, we again obtain
m groups of sensors with m ≤ log(cmax

cmin
). In the rounding down process, the capacity

of any sensor is at most halved. Thus, the optimal solution on the rounded down
sensors requires at most two times the number of mules as the optimal solution to
the original set of sensors. Let |OPTi| be the minimum number of mules needed
for no data loss to occur in group i and let |OPT | be the number of mules in
the optimal solution. Since |OPT | ≥ |OPTi| for 1 ≤ i ≤ m, we have that m ·
|OPT | ≥∑m

i=1 |OPTi|. Approximating |OPTi| within a constant factor for all i, we
use O(m) · |OPT | mules.

�

4.6 Practical Algorithms

Our discussion on mule scheduling algorithms have focused on getting the best the-
oretical approximations. Although some of the algorithms (especially the one for
the case of a line) are practical and implementable, some of the other algorithms
mentioned depend on solving the orienteering problem or k-TSP problem. These
algorithms are too complicated for practical implementation. In this section we try
to find heuristic algorithms that are easily implementable. We also discuss upper
and lower bounds that can be used to estimate the optimal solution and provide
comparisons for the heuristic algorithms. These are tested in our simulations.

4.6.1 Single Mule Scheduling

Lower Bounds

For maximizing data rate by a single mule, any algorithm giving a feasible solution
will be a lower bound. We run approximation algorithms of TSP on the entire point
set, then traverse the TSP in one direction, searching all windows of variable length
w in the tour. Each window starts at a distinct point p in the TSP and is pinned to
the point that is farthest away from p along the TSP and still within length w. Thus,
these windows will always be pinned to two points in the TSP. We can then traverse
these interval back and forth and determine the data gathering rate. For example,
suppose w = 1 and suppose this interval covers r nodes, then cycling through the
r nodes gives data rate of at least r/2. We will refer to this algorithm as ‘shifted
window along TSP’.

46

Upper Bounds

To get an upper bound on the highest data rate by a single mule, we start from the
optimal schedule to discuss how to estimate it from above.

Let S be a set of nodes in the plane and let P be the optimal schedule with
data rate of R. If the length of P is greater than one, then there must be a unit
length interval along P such that the data gathering rate is at least R, by pigeon
hole principle. Now we take such a unit length interval and denote it P ′. Suppose
the number of nodes covered (with repeats) by P ′ is h and the set of nodes is H.
h ≥ |H|. Note that in a unit length interval, a node can be considered to be visited
at most twice because if a node is visited three times, the second visit can always be
skipped and no data will be lost. Thus each node in H is visited at most twice in
P ′. h ≤ 2|H|. In addition, R ≤ h since we collect at most a full bucket of data at
each node. Thus we have an upper bound 2|H| on the optimal data rate. Since we
do not know the optimal schedule, we do not know H either and this upper bound is
not immediately useful. In the following we do further relaxation and find an upper
bound on |H|.

Recall that the set of nodes in H can be connected by a path of length at most 1.
Therefore if we can find the maximum number of nodes visited by a path of length at
most 1, then we have an upper bound on |H|. This is an instance of an orienteering
problem and is still hard to solve. But we know that this set H is fully contained in
a square of unit side length. The distance between the leftmost and rightmost point
in H is at most 1. The same can be said in the vertical direction. Thus, if we lay
out a grid over our point set with cell side length of 1/2, we know that there exists
a 3 × 3 square in the grid that contains any unit square, and therefore we can find
such a square that contains H.

We enumerate all 3× 3 squares in the grid and on each square we run Kruskal’s
algorithm until the sum of the edge weights exceeds 1. We choose the 3 × 3 square
that maximizes the number of points picked up. Call this point set K. By the
aforementioned argument, we know that |K| ≥ |H|. Since points in H can be
repeated at most twice in the optimal schedule, we conclude that the optimal data
gathering rate is at most 2|K|.

4.6.2 No Data Loss Scheduling

By Lemma 4.4.3, a solution to the minimum light cycle cover is a valid solution to
our minimum cardinality mule scheduling problem with no data loss and is a natural
upper bound. Further, if we have a lower bound L on the minimum light cycle cover
problem, L ≤ k ≤ 2k∗ then L/2 is a lower bound on the number of mules needed.

47

Thus in the following we discuss upper and lower bounds on the minimum light cycle
cover problem.

Besides the algorithm by Arkin et al. [14], The following algorithm provides a
solution (upper bound) on the optimal number of data mules. Take the minimum
spanning tree of the set of sensors and remove all edges of length 1 or more. This
leaves a number of connected components S1, S2, · · · , Sk. For each connected com-
ponent Si, we can duplicate each edge to form a Euler tour. Remove duplicate
occurrences of any node on this tour and we get a cycle Ci to visit the nodes in Si. If
Ci has length `i, we use d`ie mules along Ci with uniform timewise separation. This
algorithm is called ‘chopped MST’.

4.7 Simulations

In this section we show the results of implementations of the upper and lower bounds
that were discussed in the previous section

4.7.1 Single Mule Simulations

We generated one hundred different point sets. For each instance we generated 500
uniformly distributed points in a 5 × 5 square and computed shifted window along
TSP with window lengths between 0.5 and 1.0 in increments of 0.05. We compare the
results to the grid based upper bound. Figure 4.4 shows the results. With window
length 0.7, the worst ratio over all point sets was roughly 0.18353. i.e. the data
gathering rate of a mule following our heuristic was 0.18353 times as fast as the rate
produced by the grid based upper bound. In order to compare to a sparser point
set, we ran the same experiment in a 10 × 10 square (see Figure 4.5) and noticed
improved results.

We also computed shifted window along TSP on the 4,663 cities of Canada [1]
(see Figure 4.6) with varying window lengths. The point set was scaled down so that
the average distance between any two points is 1.

4.7.2 No Data Loss Simulations

First, we generated one hundred point sets, each set containing 200 points. For each
set, we generated 10 uniformly distributed points in a 5 × 5 square. Centered at
each of these points we generated 20 uniformly distributed points in a 1× 1 square
and discarded the center point. Over all point sets, we compared the number of
mules used in a chopped MST solution to the number of mules used in a light cycles

48

Figure 4.4. Shifted window along TSP of uniformly distributed point sets in a 5 × 5 square

Figure 4.5. Shifted window along TSP of uniformly distributed point sets in a 10 × 10 square

49

Figure 4.6. Shifted window along TSP of 4,663 cities of Canada

solution. The results can be seen in table 4.2. In addition to the results in this
table, we found that the point set with highest ratio of number of mules used in a
light cycles solution to number of mules in a chopped MST solution was 1.46154.
The lowest ratio was 1.18868. We repeated this experiment for a 10× 10 square (see
table 4.3). The highest and lowest ratios were 1.45652 and 1.16949 respectively.

Chopped MST Light Cycles

Best 39 53

Worst 55 69

Average 47.45 62.75

Table 4.2. Number of mules used in chopped MST vs. light cycles in 5 × 5 square

Chopped MST Light Cycles

Best 45 62

Worst 59 75

Average 52.04 67.58

Table 4.3. Number of mules used in chopped MST vs. light cycles in 10 × 10 square

We computed chopped MST on the cities in Canada (fig 4.7). The points were
scaled down so that the average distance between any two points is 10. 602 mules

50

are enough to cover these points. Note that there are edge crossings in this solution
because we used a two approximation to compute TSP.

(i) (ii)

Figure 4.7. (i) Chopped MST on 4,663 cities of Canada. 602 mules used; (ii) Approximation of
minimum light cycles on 734 cities of Uruguay. 85 mules used.

We also tested the approximation algorithm to minimum light cycles. This algo-
rithm runs significantly slower than chopped MST. Therefore, we used the 734 cities
of Uruguay [1] (fig 4.7). The point set was scaled down so that the average distance
between any two points is 1. 85 mules are enough to cover these points. For com-
parison, chopped MST produces a TSP on the entire point set and uses 50 mules.
We also scaled the Uruguay point set so that the average distance between any two
points is 10. This time the approximation to minimum light cycles outperformed
chopped MST using 436 and 470 mules respectively.

4.8 Conclusion

Our exact and approximation algorithms for single mule scheduling, k-mule schedul-
ing, and no data loss scheduling represent the state of the art results on mule schedul-
ing problems and greatly deepens our understanding of vehicular routing with con-
straints. In the future, we would like to see if the approximation ratios can be
improved, especially with sensors in Euclidean space.

51

Chapter 5

The Shortest Separating Cycle
Problem

5.1 Introduction

In a distributed sensor network, various data is generated at different sensors [121,
127]. One challenge that arises considers how to provide a fully distributed storage
and retrieval algorithm to allow mobile users at any location query for such data.
Consider an application in which sensors are installed at parking spots to detect
if the spot is empty, while mobile users roaming around in the city are in need of
such information. The solution of always delivering the query to the data source
may suffer from a single point of failure and traffic bottleneck. Therefore a natural
solution is to adopt geographical hashing. Each piece of detection data is hashed to
a storage sensor. While a piece of data i is delivered from its source pi (where it is
generated) to its storage/hash location qi using multi-hop routing, it is convenient
for all the nodes on the relay path to also cache the data item. For a mobile user
seeking data of a particular type, the user can issue a query which only needs to visit
a node that has cached the data. However, the routing path connecting pi and qi is
determined by the specific routing algorithm in use which may be unknown for nodes
not on the path. Nevertheless if the user query travels along a tour that separates
pi and qi, the query will surely hit the cached data. In this retrieval scheme one
can easily query for a collection of data that are generated from multiple sensors
p1, p2, · · · pn, as long as the query follows a tour that separates each pair of nodes pi
and its corresponding hashed storage node qi. Finding the shortest separating cycle
is natural, as the shortest tour minimizes energy consumption and delay.

52

Our Problem

Given a set P = {(pi, qi)|1 ≤ i ≤ n} of pairs of points in the plane, we seek a shortest
separating cycle T , a tour where for every pair of points, one point is inside the tour
and the other is outside. Each pair (pi, qi) can be represented by a line segment
connecting pi and qi. Therefore each segment is cut by the tour an odd number of
times. Throughout this section, we use whichever interpretation is more intuitive.

p2

q2

q1

p1
p3

q4

q3

p4

q5

p5

p6

q6

Figure 5.1. The shortest separating cycle problem.

In computational geometry, this problem is related to many traveling salesman
problem (TSP) variants, including the red-blue separation problem, TSP with neigh-
borhoods, and one-in-a-set TSP (also known as group TSP), that have been well
studied [17, 111]. All of these problems are known to be NP-hard in the Euclidean
plane as they all contain the classical TSP as a special case. The shortest separating
cycle problem is different from any of these problems. In the red-blue separation
problem, given a set of red and blue points in the plane, the aim is to find the short-
est tour that separates the blue points from the red points. In our problem, the
points in the pairs need to be separated but they are not assigned colors. Thus part
of the challenge is to determine which point of each pair is inside the tour and which
one is outside.

In TSP with neighborhoods (TSPN), given a set of regions, the goal is to find the
shortest tour that visits each region. One may attempt to connect a line segment for
each pair in our input and apply an algorithm for TSP with neighborhoods where
the neighborhoods are line segments. However, this does not necessarily give a valid
solution since the TSP with neighborhoods solution might reflect on the edge and
not enclose an endpoint in its cycle such as in Figure 5.2.

For the one-in-a-set TSP, we are given a collection of sets and the problem asks for
the shortest tour that visits at least one element in each set. Any one-in-a-set TSP
solution to our input can be easily modified to become a separating cycle. However,
a separating cycle does not need to visit every point it is including or excluding so
the one-in-a-set TSP solution may be excessively long. An example of this can be

53

seen in Figure 5.3.

Figure 5.2. The TSP with neighborhoods solution (solid) is a much shorter tour than the shortest
separating cycle (dashed). It is also not a valid separating cycle.

Figure 5.3. The one-in-a-set TSP solution (dashed) is a much longer tour than the shortest
separating cycle (solid).

Our Results

In this section we are the first to study the shortest separating cycle problem and
provide both hardness and approximation results. In particular, we consider special
cases where the orientation of the input pairs, the distance between the input pairs,
and the configuration of the domain are restricted. We vary the size of the square
board the input points are confined within as well as the range of orientations the
input pairs have from strictly horizontal and/or vertical to any orientation. Some
cases have additional restrictions such as how far each pair of points are from each

54

Unit Length Unit Length Unit Length Constant Length
Board Size Horizontal Horizontal &Vertical Arbitrary Orient. Arbitrary Orient.

Points on Grid
2− ε in P 4-approx NP-hard NA

M = O(1) O(1)-approx (M2 + 1)/4-approx Hard to approx NA
n O(1)-approx O(1)-approx Hard to approx O(1)-approx

Table 5.1. Approximation algorithm and hardness results for different settings.

Unit Length Any Length
Arbitrary Orientation APX-hard 2-inapprox

Table 5.2. Additional hardness results.

other and whether or not the input points must lie on a grid. The results are
summarized in Tables 5.1 and 5.2.

In general, despite the apparent similarity and connection to many other TSP
variants which have easy constant-factor approximation results, the shortest sepa-
rating cycle problem is a lot harder. Many ideas that were used in typical TSP
algorithms are not applicable here. Indeed, we show that the problem is hard to
approximate for a small constant factor and is APX-hard even in very restricted
scenarios such as unit length segments. We provide a polynomial time algorithm
when all pairs are unit length horizontal segments inside a square board of size 2−ε.
We provide approximation algorithms for unit length horizontal or vertical segments
or constant length segments on points laying on a grid. These scenarios are of par-
ticular interest to the application setting in a sensor network. Last, for arbitrary
pairs we have an O(

√
n)-approximation algorithm and an O(log n)-approximation

algorithm for the shortest separating planar graph problem, in which the objective
is to compute an embedded planar graph of minimum total edge length so that the
two endpoints of each pair are in different faces.

Related Work

TSP. The traveling salesman problem is one of the most well known geometric
problems in history. It is one of the first problems known to be NP-hard [69, 118].
In a metric setting Christofides provided a 3/2 approximation algorithm [45]. In the
Euclidean setting, the problem is known to admit a PTAS, independently shown by
Arora [17] and Mitchell [111].

55

TSP with Red Blue Separation. The red blue separation problem in the plane
admits a PTAS (by [111] or by [18]).

TSP with Neighborhoods. TSP with neighborhoods was first studied by Arkin
and Hassin [13] in which O(1)-approximation algorithms were developed when the
neighborhoods are translates of a convex polygon or when the neighborhoods are unit
disks. For general (nondisjoint) connected neighborhoods, anO(log n)-approximation
algorithm is known where n is the number of neighborhood regions [109, 76], and it is
NP-hard to approximate within a 2−ε ratio [123]. For fat regions of bounded depth,
there is a PTAS [112] (even in doubling metrics [36]), while for general connected
regions of bounded depth, or for convex regions, an O(1)-approximation is known in
two dimensions [113].

One-of-a-set TSP or Group TSP. The one-of-a-set or group TSP is the TSPN in
which the neighborhoods are discrete sets of points (and thus disconnected). Safra
and Schwartz [123] show the 2D problem is NP-hard to approximate to within any
constant factor; for groups that are sets of k points, they also give approximation
lower bounds (Ω(

√
k)). Slav́ık [131] gives a (3/2)k-approximation, based on linear

programming methods.

5.2 Hardness

The shortest separating cycle problem is NP-hard by a trivial reduction from the
traveling salesman problem (TSP). For any TSP instance with cities at location wi,
we place a pair of points pi, qi very close to each wi. In order to separate the points,
the tour will need to visit each city wi. Thus the shortest separating cycle problem
is as hard as TSP. In the following we show stronger results that the problem is hard
to approximate even for unit length segments.

5.2.1 APX-hard For Unit Length Segments

Theorem 5.2.1. Finding the shortest separator is APX-hard for an arbitrary board
size if the segments are all unit length but are allowed to have any orientation.

Proof: Our reduction is from MAX NAE 2-SAT, the problem of maximizing the
number of 2-SAT clauses in which exactly one of the literals is true, which is APX-
hard [21]. We reduce a MAX NAE 2-SAT problem whose optimal solution satisfies
t clauses to a shortest separating cycle problem whose optimal solution is a tour of
length tm2n2 + O(mn), where n is the number of variables and m is the number of

56

clauses. The O(mn) term is overhead from gadgets other than the clause gadgets
and the clause gadgets are densely packed grids of points that must all be visited
individually if the corresponding clause is unsatisfied, but can be grabbed using a
(much shorter) loop all at once if the corresponding clause is satisfied.

Let φ(x1, . . . , xn) = (y1 ∨ z1)∧ (y2 ∨ z2)∧ · · · ∧ (ym ∨ zm) be a MAX NAE 2-SAT
instance, where each y or z is either xi or ¬xi for some i. Each variable xi corresponds
to a point Xi; if Xi is inside the cycle, we will interpret xi as TRUE; if not, we’ll
interpret it as FALSE. Each Xi is the endpoint of some unit segment whose other
endpoint X̄i corresponds to ¬xi.

In our construction, multiple points may correspond to the same variable. We
first describe a gadget that ensures that these points are either all inside or all outside
of the separating cycle. Given any two points X and Y at distance d and a finite set
of points to avoid (possibly from other gadgets) Z1, . . . , Zk, we can guarantee that
X and Y are either both inside or both outside the tour, using at most d+ 10 other
segment endpoints none of which is any of the Zi, using a gadget as in Figure 5.4.

That is, we first construct a path of an even number of vertices (from X ′ to Y ′

in the diagram) such that the displacement between Y ′ and X ′ is the same as the
displacement between X and Y . Choose a point X ′ on the unit circle centered at X
such that none of the points in the path starting at X ′ is any of the Zi; since there
are only finitely many pairs of a point on the path and a Zi and each pair rules out
only one X ′, there does exist such a point on the unit circle. Then X and X ′ are on
opposite sides of the separator, so X and the next point are on the same side of it,
and so on, so X and Y are on the same side of the separator, as desired.

Finally, we will construct a clause gadget for a clause yi ∨ zi: choose a point Y
and ensure by the above gadget that Y is in the cycle iff yi is TRUE. Choose 1/ε
points at distance 1 from Y , each at distance ε2 from the previous one along the
unit circle centered at Y , such that all of them are within ε of the point Y + (0, 1),
and such that none is used elsewhere in the construction. By connecting them to
Y , guarantee that they’re in the loop iff Y isn’t. For each of those points Ȳ , choose
1/ε points at distance 1 from Ȳ , each at distance ε2 from the previous one along the
unit circle centered at Ȳ , such that all of them are within ε of the point Y + (1, 1),
and such that none is used elsewhere in the construction. By connecting them to Ȳ ,
guarantee that they’re in the loop iff Y is. That gives a grid of 1/ε2 points, about
equally spaced within a square of side length ε, that are all in the loop iff Y is.

Now, choose a displacement r of length at most ε3 such that no pair of points yet
defined are at distance r. Define Z̄ to be Y + r, ensure by the above gadget that Y
is in the loop iff yi is, and make a new copy of everything constructed so far in the
clause gadget shifted by r (see Figure 5.5).

57

X ′

X

Y ′

Y

Figure 5.4. A gadget that ensures the parity of X and Y are the same. On the chain each adjacent
pair of points is a pair of points in the input P . All points in gray are either all inside the cycle or
outside the cycle.

Z̄
Y

Figure 5.5. A clause gadget.

58

If Y and Z are both enclosed or both excluded by the separator, then the tour
must separate each pair of a point and its displaced version in that gadget, so the
tour must pass within ε3 of each point in that grid of 1/ε2 points in a square of
side length ε, requiring a total length of at least 1/ε−O(1) just within that gadget.
Conversely, a length of 1/ε+O(1) suffices to separate the points in such a gadget, just
by tracing along the unit circles at distance 1 from each point Ȳ . Also, if a clause
is satisfied, then the tour can enclose all the points in the densely packed square
at once by traversing its boundary, in length at most ε. Also, the total number of
points not in the clause gadgets’ densely packed squares is O(nm), so if t clauses are
satisfied, the total length of the optimal loop is between r/ε−O(1) and 1/ε+O(nm).
Set 1/ε = Ω(n2m2); then any approximation to the length of the optimal loop is an
approximation to MAX NAE 2-SAT, as claimed. �

5.2.2 Inapproximability for Any Length Segments

Theorem 5.2.2. The shortest separating cycle problem with no restrictions on the
distance and orientation of input pairs is NP-hard to approximate better than a
factor of 1.3606. It is hard to approximate better than a factor of 2 assuming the
unique games conjecture.

Proof: Our reduction is from minimum vertex cover. Given a graph G = (V,E), the
goal of the minimum vertex cover problem is to find a minimum cardinality subset
of vertices V ∗ ⊆ V such that every edge in E is incident to at least one vertex in V ∗.

To translate this graph to the plane, we place each vertex in V along a circle with
a center v′ and designate another location v′′ at a distance Ω(nm) from v′. For every
edge e(u, v) ∈ E, we place m endpoints in a

√
m × √m grid pattern in a

√
m − 1

square around u and their corresponding endpoints overlapping a single point ue near
the grid. Another grid of m endpoints is placed in a similar grid around v with their
corresponding points overlapping on a point ve. Finally, a ue and ve are connected
by a segment. Therefore, for every gadget that represents an edge, exactly one set
of grid points must be inside the cycle.

For every vertex v ∈ V , we place m endpoints overlapping a single point at v′ and
their corresponding endpoints in a

√
m×√m grid pattern around v. Finally, v′ and

v′′ are connected by a long segment. The result is a “wheel” composed of vertices
and edges in G with additional “spokes” towards the center, a hub at v′, and a large
arm from v′ to v′′.

Note that collecting all endpoints associated with an edge at the hub or any of
the vertices while excluding other points involves navigating between different sets
of grids. Since points in a grid are unit distance away from each other, a path only

59

collecting one grid of points has a length of at least m. Collecting the point at v′′

would add a length of O(nm) to the cycle. This additional cost is so prohibitive,
it must be avoided. So the point at v′ is collected and collecting any points at
the vertices must navigate between sets of grids. Therefore, if the cycle collects
any additional points at the vertices, it has to pay a cost of m for every vertex it
visits. The optimal solution visits the minimum number of vertices in V while also
separating all pairs of points which is a minimum vertex cover of G. The parity of
the segment chains ensure that when one point of a grid is collected, all points in
that grid must be collected.

The length of the optimal solution to this separating cycle instance isO(|OPT |m+
n
√
m) where |OPT | is the size of the optimal solution of the corresponding vertex

cover problem. If m ≥ n, then the cost of navigating between grids at the vertices of
V dominates the cost of the optimal solution. The rest of the cost, O(n

√
m) is from

traveling between vertices and collecting v′.
Now we assume that we are given a δ-approximation to our construction of the

shortest separator problem. To convert this solution into a solution for the corre-
sponding vertex cover problem, any grid points collected at a vertex translates to a
vertex selected in the vertex cover. This means that any additional vertex above the
optimal solution of the vertex cover problem translates to an additional O(m) length
in the given approximation of the shortest separator instance. This completes the
L-reduction and means that our problem with varying length segments cannot be ap-
proximated within ≈ 1.3606 unless P = NP . This problem cannot be approximated
with a factor better than 2 assuming the unique games conjecture.

�

5.3 Algorithms

We describe exact and approximation algorithms for the shortest separating cycle
problem under different scenarios.

5.3.1 Board Size 2− ε, Horizontal Unit Segments

In this section we show a polynomial algorithm for horizontal unit length segments
inside a square board of size 2 − ε. Most of the challenge is to prove structures of
the optimal solution, denoted as the polygon P .

Lemma 5.3.1. For the optimal polygon P , P and P ′ = P + (1, 0) (that is, P
translated to the right by one unit length) have disjoint interiors.

60

Proof: Suppose otherwise, that the intersection of P and P ′ is not empty. We take
R to be one connected component of P ∩ P ′. For any point p in R, p ∈ P and
p+ (−1, 0) are both inside P . See Figure 5.6 for an example. Take any segment piqi
(with the convention that pi is to the left of qi). pi and qi cannot both be in the
interior of P – for P to be a valid separating cycle. Thus for any qi inside R, it must
stays on the boundary of R. Further, the boundary of R is then formed by pieces of
the boundaries of P and of P ′, because any point in the interior of both of them is
in the interior of their intersection.

If there is any convex vertex x on the boundary of R such that the boundary
segments on either side of it (to points w and y) come from the same one of P and
P ′ (without loss of generality, P), we can replace the boundary segments wx and
xy of P with the segment wy. This shortens the perimeter of P by the triangle
inequality. And we argue that after the shortcut, the cycle still separates all pairs.
To see that, recall that all input points of {pi, qi} inside R must be on the boundary.
Thus the only point removed would be x and x in this case is a right endpoint. Since
x+ (−1, 0) is inside P , x is on the boundary of P and is not considered to be inside
P . Thus after the shortcutting x and x+ (1, 0) are still separated. This will lead to
a contradiction.

By the argument above, for every convex vertex on the boundary of R, the
boundary of R comes from P on one side and P ′ on the other side.

0 1 2− ε
P P ′

R

A
B

C

α β

γ

x

w

y

R′

Figure 5.6. P and P ′ = P + (1, 0) have disjoint interiors.

R has positive area, so it has at least three convex vertices. Thus there are at
least two disjoint segments of the boundary of R that come from P and at least two
from P ′. One of the latter segments separates R from R + (−1, 0) in P , leaving at
least three other consecutive segments of the boundary of R. Denote these segments
as α, β, and γ, separated by convex vertices, such that α is part of the boundary of
P , β is part of the boundary of P ′ and doesn’t separate R from R + (−1, 0) in P ,
and γ is part of the boundary of P . Let A be the part of P ′ that is separated from

61

R by α, B be the part of P that is separated from R by β, and C be the part of P ′

that is separated from R by γ. See Figure 5.6.
If either A or C (say, A) has no points with x-coordinate greater than 2− ε, then

we’ll add A to P and remove A−(1, 0) from P . This doesn’t increase the total length
of the boundary of P , but it makes a convex vertex of R (say, the one separating α
from β) having its boundaries on both sides come from P , which is a contradiction to
the conclusion of the previous paragraph. Thus both A and C must contain points
with x-coordinate greater than 2− ε.

Similarly, if B has no point with x-coordinate less than 1, we can remove B from
P and add B + (−1, 0). So B has a point with x-coordinate less than 1 and A and
C both have points with x-coordinate greater than 2− ε.

We now claim that B intersects at least one of A and C. If not, it’s contained
in a region bounded by A, R, C, and the line x = 2 − ε — both A and C intersect
x = 2 − ε. And this region is entirely contained in the region x ≥ 1, contradicting
the claim that B had a point with x-coordinate less than 1.

Therefore, there are two regions R and R′ in the intersection of P and P ′, and
the region B′ between them is contained in the region x ≥ 1. Then we can remove
B′ from P and add B′ − (1, 0) to P , which satisfies all the same constraints but has
a perimeter shorter by at least the length of β, which is a contradiction.

So, P and P + (1, 0) have disjoint interiors, as claimed. �

Lemma 5.3.2. The optimal polygon P is convex.

Proof: Suppose for contradiction that it has a nonconvex vertex x. Not both x −
(1, 0) and x+(1, 0) are inside the board, since its side length is less than 2, so without
loss of generality (by reflecting the board through its vertical center line if necessary),
let x− (1, 0) not be inside the board. If x+ (1, 0) is in the interior of P , then there’s
some neighborhood of x+(1, 0) in the interior of P , so some neighborhood of x must
not be in the interior of P , so x isn’t actually a boundary point. Otherwise, x+(1, 0)
isn’t in the interior of P .

We can choose points w and y on either side of x on the boundary of P , close
enough to x that the triangle wxy contains no constraint points except possibly
x, and replace the boundary segments wx and xy by the single segment wy. By
the triangle inequality, that shortens the length of the boundary; for no constraint
point except possibly x does it change whether that point is inside the polygon, and it
includes x in the polygon, which is allowed. So, whether x+(1, 0) is on the boundary
of P or strictly outside, it can be counted as outside for purposes of separation, so x
is allowed to be strictly inside P . Hence P is convex, as claimed. �

62

Now we argue that the optimal solution is actually the shortest convex cycle
that contains at least one point from each pair, which can be found by dynamic
programming, following the method of [15]; details for the algorithm are omitted
in this extended abstract. For the proof of correctness that this cycle is indeed
what we are looking for, we just need an argument that the shortest convex cycle
that contains at least one point from each pair contains exactly one point of each
pair inside. This proof is essentially the same as Lemma 5.3.1 and is thus omitted.
Further, by Lemma 5.3.2 adding the extra constraint of convexity on the cycle to be
find is of no problem.

5.3.2 Board Size 2 − ε, Horizontal and Vertical Unit Seg-
ments

In this scenario, all n input segments are inside a square board of size 2− ε for some
ε > 0 and are restricted to have horizontal or vertical orientations. Without loss
of generality we assume all the endpoints of different input segments do not share
a common x-coordinate or y-coordinate. This can be done by perturbing the input
slightly.

First, all unit length boxes which strictly contains at least one endpoint of each
segment are found. This can be executed in polynomial time by checking all possible
combinatorial configurations of unit length boxes. The total number of combinatorial
types of such squares is O(n2) since we can assume without loss of generality that the
square always has two input endpoints (from two different segments) on its boundary.
Aside from the points on the boundary, each such box actually contains exactly one
endpoint of each input segment. We handle boundary points by enumerating all
combinations of boundary points in a box. The convex hull of all endpoints inside
the box is a candidate separating cycle. We can enumerate all such boxes to find the
shortest separating cycle.

If a unit length box that strictly contains one endpoint of every segment cannot
be found, then the board is divided into four squares each of size 1 − ε/2 and are
colored in a checker board pattern. The square are named S1, S2, S3, S4 in a counter
clockwise manner. Consider two squares along the diagonal (named S1 and S3, see
Figure 5.8). We create a tour that walks along the perimeter of their union. To
accommodate corner cases, we consider the top and left border of S3 to be open
edges. This generates a curve T ′ of length 8− 4ε.

Theorem 5.3.3. For the shortest separating cycle problem with a square 2 − ε
domain where input pairs are exactly one apart and have either horizontal or vertical

63

B

Figure 5.7. Case (i): Exactly one endpoint of each input pair can be enclosed in a unit square.

S2

S4

S1

S3
T ′

Figure 5.8. Case (ii): The curve T ′ traverses around S1 and S3.

orientation, our algorithm outputs a cycle that is a 4-approximation to the optimal
solution.

Proof: There are two cases in the algorithm which outputs two different types of
cycles. In case (i), the optimal solution fits inside a unit length box B. Every
segment has one endpoint inside B and B will be discovered in the first phase of
the algorithm. The convex hull of the points inside B is the shortest separating tour
that contains all points in B.

For case (ii) we first argue that T ′ is a valid separating cycle. Since each segment
has unit length, the two endpoints of each segment cannot fit inside any single square
of size 1− ε/2 and thus cannot both lie inside S1 ∪ S3 nor inside S2 ∪ S4. Therefore
each segment must have exactly one endpoint inside S1 ∪ S3. Therefore, T is a valid
separating cycle. Since T ′ has length 8− 4ε and the optimal tour has length at least
2, T ′ is a 4-approximation of the optimal solution. �

5.3.3 Constant Board Size

We can extend the checkerboard strategy for any constant board size M , where M
is an integer. The only modification is that in the second case, a larger checkerboard

64

of M ×M unit squares is used. The squares are colored in a checkerboard manner,
and partitioned into white squares and dark squares. To make the tiling a perfect
partition of the plane, we consider each square pixel to include its top edge, except
for the NE corner, and to include its left edge, except for the SW corner. Again
any unit length vertical or horizontal segment has two endpoints in different colored
squares. Thus a tour T ′ that separates the white squares from the dark squares
would be a valid separating cycle. Such a tour can always be found by taking a cycle
along the boundary of the outermost ring of the dark squares, and iterating towards
the center. All the tours can be joined into a single tour of the same length. See
Figure 5.9 for an illustration.

Figure 5.9. Constant sized square board with cycles along the perimeter of the dark squares.

Theorem 5.3.4. We consider the case of the shortest separating cycle problem with
an M ×M square domain and where the input pairs are restricted to be exactly one
apart with either horizontal or vertical orientation. Our algorithm including the
checkerboard strategy is an (M2 + 1)/4-approximation.

Proof: Our proof is similar to the proof of Theorem 5.3.3. Either we can find a unit
length box containing at least one endpoint of each segment (in which case we find
the optimal solution), or the optimal tour has length at least 2. In the second case
we will take the tour T ′ along the perimeter of the union of the dark squares. T ′ has
length at most M2/2 if M is even, and at most (M2 + 1)/2 if M is odd. Thus the
approximation factor is at most (M2 + 1)/4. �

65

5.3.4 Any Board Size, Horizontal and Vertical Unit Seg-
ments

If the board size M is a constant, we can apply the same checkerboard idea as in
the previous section. But when M is large, we have to use a different idea to get a
constant approximation.

First, we overlay a grid of unit squares over the domain partitioning the domain
into light and dark squares in a checkerboard pattern. For each grid cell, we consider
the top edge, excluding the NE corner, and the left edge, excluding the SW corner,
as closed edges.

We refer to dark squares that have a point (from a pair) in them as “occupied”.
Let S be the occupied squares. Let S ′ be the 3-by-3 squares centered on the squares
of S. In the following we assume without loss of generality that |S| ≥ 5. The case
|S| ≤ 4 can have an arbitrarily small optimal value; but this constant-size case can
be easily handled.

Now we consider the shortest TSP with Neighborhoods (TSPN) tour on the set
S ′ of enlarged squares and name the length as TSPN(S ′). This tour connects the
regions in S ′ but we must also separate the pairs of points in each region. We further
apply the constant factor approximation to each region in S ′. Our algorithm is simply
this: Run a TSPN algorithm on S ′ (for which there is a PTAS [54]), and augment
the tour with our approximation algorithm for square regions of constant size.

Theorem 5.3.5. Our algorithm for the shortest separating cycle problem for input
pairs restricted to a separation of exactly 1 and only horizontal or vertical orientation,
is a constant approximation.

Proof: We have two cases regarding the size of S, |S| ≥ 5 and |S| ≤ 4. In the
first case, |S| ≥ 5, the length of the output is at most (1 + ε)TSPN(S ′) + O(|S|).
Since the optimal solution must visit every enlarged square in S ′, then OPT =
Ω(TSPN(S ′)). Assuming no single point stabs all squares of S ′ (i.e., assuming
|S| ≥ 5), the standard packing argument shows that TSPN on a set of nearly disjoint
(i.e., constant depth of overlap), equal-sized squares requires length proportional to
the number of squares times the side length of the squares. This leads us to claim
that OPT = Ω(|S|). Therefore, (1 + ε)TSPN(S ′) +O(|S|) is O(OPT) and our tour
is a constant approximation.

For the case where |S| ≤ 4, our strategy only changes if a single point is contained
in all squares of S ′. In this case, our entire input can be contained in a 5× 5 square
and we refer to our algorithm for constant sized domains. �

66

5.3.5 Any Orientation, Bounded Aspect Ratio

We now assume that the distance between any two points (not restricted to desig-
nated pairs) in S are greater than or equal to 1. The segments defined by the pairs
of points may have any orientation and their distances are bounded by a constant.
Let r = cL for some constant value of c ≥ 1 where L is the length of the longest
segment. The aim is to find a subset I of pairs of points where the shortest distance
between any two segments is greater than r and the shortest distance between any
input segment and it’s closest segment in I is less than r. Then we find the TSPN
path on line segments in I. Next, we divide the region into neighborhoods by as-
signing the remaining segments to their nearest segment in I. The TSPN tour of the
segments, TSPN(I), is augmented with detours that separate all of the segments in
each neighborhood. The resulting tour is a constant approximation of the optimal
separating tour.

To find such an independent set, we randomly select neighborhoods of size O(r)
until all segments have been selected. A segment s is randomly chosen and removed
from the set of input segments along with all remaining segments within distance
(shortest distance) r of s. The segment s is placed in the set I. This procedure
is repeated until all segments are removed. The shortest distance between any two
segments in I is greater than r. The shortest distance between any segment and it’s
closest segment in I is less than or equal to r. Each segment is assigned to it’s closest
segment in I. The set of segments assigned to a segment s in I is denoted as N(s).

A tour is constructed by first finding a TSPN tour on I. Then the path is
augmented by a shorter tour within each neighborhood of each segment in I. When
a tour reaches a segment s in I, then it makes a separating detour that separates
all of the segments in N(s). The length of a tour is bounded by O(L2) since all of
the segments in N(s) is within a neighborhood of radius 2r of s and by a packing
argument, there are O(L2) possible points in such a neighborhood. In the worst case,
the separating tour visits every point in the neighborhood and includes or excludes
each point as required. Note that the detour must exclude segments that are not in
N(s).

Theorem 5.3.6. The path our algorithm produces is a O(L2) approximation of the
shortest separator.

Proof: Let T be the length of the path our algorithm produces, let OPT be the
length of the optimal solution and let TSPN(I) be the length of the TSPN path on I.
Our path is a separating tour because every segment is separated by the tour within
its neighborhood and excluded by the tour everywhere else. We claim the length of

67

such a tour is bounded above by TSPN(I) + O(|I|L2). Since the TSPN path of I
must enter and exit the neighborhood of every segment in I, TSPN(I) = Ω(|I|).
Therefore T = O(L2 · TSPN(I)). Since OPT = Ω(TSPN(I)) and T ≥ OPT , then
T = O(L2 ·OPT). �

5.3.6 The General Case

For general pairs of points in the plane, we observe that an O(
√
n)-approximation

follows from known results on the Euclidean TSP in the plane. Specifically, we first
compute a minimum-size square, Q, that contains at least one point of each pair.
(This is easily computed, since the n point pairs determine only O(n3) combinato-
rially distinct squares.) Now, within Q, we compute an approximate TSP tour T
(using any constant-factor approximation method for TSP) on the points that are
inside (or on the boundary of) Q, making sure the approximate tour is a simple
polygon. We obtain a valid separating cycle for the input pairs as follows: Consider
traversing T , starting from an arbitrary point. Each time we reach a point along
this traversal, we either make a slight detour to include it (if it is the first time we
have encountered a point from this pair), or make a slight detour to exclude it (if
it is the second encounter with a pair). In this way, we obtain a valid separating
cycle just slightly longer than T . By classic results on the Euclidean TSP (see, e.g.,
Karloff [89]), we know that the length of T is at most O(|Q|√n), where |Q| is the
side length of the square Q. Since we know that Ω(|Q|) is a lower bound on the
length of an optimal separating cycle, we have shown that in polynomial time one
can obtain an O(

√
n)-approximation for the general case of our problem.

5.3.7 Separating Subdivision Problem

We consider now a different version of the separating cycle problem – the separating
subdivision problem, in which the goal is to compute an embedded planar graph of
minimum length such that every input pair has its points in different faces of the
subdivision. We give an O(log n)-approximation algorithm. We outline the approach,
deferring details to the full paper. We argue that an optimal subdivision, S, can be
converted to a special (recursive) “guillotine” structure, increasing its length by a
factor O(log n); then, we show that an optimal solution among guillotine structures
can be computed in polynomial time, using dynamic programming. The conversion
goes as follows. First, increasing the total edge length of S by at most a constant
factor, we can convert its faces to all be rectilinear: we enclose S with its bounding
box, and replace each face of S with a rectilinear polygon, with axis-parallel edges

68

that lie on the grid induced by the input point pairs, while keeping all points within
their respective faces. Then, we partition each simple rectilinear face into rectangles,
adding axis-parallel chords that lie on the grid; this causes the total edge length to go
up by a factor O(log n); see [109]. Then, using the charging scheme of [109], we know
that we can convert the resulting rectangular subdivision to a guillotine rectangular
subdivision, in which one can recursively partition the subdivision using axis-parallel
“guillotine” cuts that do not enter the interior of rectangular faces. Optimizing the
length of a guillotine rectangular subdivision is done with dynamic programming, in
which subproblems are axis-aligned rectangles all of whose boundary is (by definition)
included in the edge set of the subdivision. This implies that any input pair of points
that “straddles” the boundary of a subproblem, with one point inside, one point
outside, is already satisfied automatically with respect to pair separation (the points
lie in different faces/rectangles). This means that the subproblem is only responsible
for the separation of the point pairs both of whose points lie within the defining
rectangle of the subproblem. The algorithm computes a minimum-length guillotine
rectangular subdivision, separating all point pairs. Since an optimal solution can be
converted to the class of guillotine rectangular subdivisions at a lengthening factor
O(log n), we obtain the claimed approximation.

5.4 Conclusion

The shortest separating cycle is a new variant of the TSP family that has not been
studied before. This section provides the first set of hardness bounds and a number
of approximation algorithms under different settings. The gap for the approximation
ratios and hardness results is still big and narrowing or closing the gap should be
prioritized in the future.

69

Chapter 6

r-gather Clustering

6.1 Introduction

With the ubiquitous use of GPS receivers on mobile devices, it is now common
practice to record and collect the locations of these mobile devices. This raises
privacy concerns as location information is sensitive and can be used to identify the
users of the devices. One common practice in the treatment of this location data is to
adopt the k-anonymity criterion [137], which says that the locations are grouped into
clusters, each of at least k points. The cluster is used to replace individual locations
such that any one user cannot be differentiated from k − 1 others. Thus minimizing
the diameter of the clusters can lead to location data with the best accuracy with
the constraints of not intruding user privacy.

Our Problem

Given a set of n points P = {p1, p2, . . . , pn} in Euclidean space and a value r, the
aim of the r-gather problem is to cluster the points into groups of r such that the
largest diameter of the clusters is minimized. We consider this problem with static
and mobile points. For the static setting, we have two definitions of the diameter of
a cluster: the distance between the furthest pair of points and the diameter of the
smallest disk that covers all points. For the dynamic setting, with mobile points, we
have three different variations depending on the number of times the clustering of
the points are allowed to change (either never, k, or unlimited). In this setting, the
definition of a the diameter of a cluster is the diameter of the smallest covering disk.

70

Our Results

For the application of protecting location privacy, the data points are actually in
Euclidean spaces. Thus, we ask whether the hardness of approximation still holds
in the Euclidean space. In the following, we assume that the input points are in the
Euclidean plane.

In the static setting, for the case where the diameter of a cluster is the diameter
of the smallest covering disk, we show it is NP-hard to approximate better than√

13/2 ≈ 1.802 when r = 3 and
√

35+
√

3
4
≈ 1.912 when r ≥ 4. For the case where the

diameter of a cluster is the distance between the furthest pair of points, then it is

NP-hard to approximate better than
√

2 +
√

3 ≈ 1.931 when r ∈ {3, 4} and 2 when
r ≥ 5.

We also show that the lower bound for the static setting translates to all versions
of the dynamic setting. When we allow no reclusterings, we are able to strengthen
the lower bound by showing that its is NP-hard to approximate better than 2. In
addition, we provide 2-approximation algorithms when we allow no or k reclusterings.
For the dynamic variation where an unlimited number of reclusterings are allowed,
we present an example where clusters change O(n3) times. Finally, we describe a
distributed algorithm that guarantees a solution that is a 4-approximation of the
optimal solution.

Related Work

The r-gather problem is shown to be NP-hard to approximate at a ratio better than
2 when r > 6 and the points are in a general metric by Aggarwal et al.[5]. They also
provide a 2-approximation algorithm. The approximation algorithm first guesses the
optimal diameter and greedily selects clusters with twice the diameter. Then, a flow
algorithm is constructed to assign at least r points to each cluster. This procedure
is repeated until a good guess is found. Note that this solution only selects input
points as cluster centers.

Armon [16] extended the result of Aggarwal et al. by proving it is NP-hard
to approximate at a ratio better than 2 for the general metric case when r > 2.
He also specifies a generalization of the r-gather clustering problem named the r-
gathering problem which also considers a set of potential cluster centers (referred to
as potential facility locations in Armon’s paper) and their opening costs in the final
optimization function. They provide a 3-approximation to the min-max r-gathering
problem and prove it is NP-hard to have a better approximation factor. They also
provide various approximation algorithms for the min-max r-gathering problem with
the proximity requirement; a requirement for all points to be assigned to their nearest

71

cluster center.
For the case where r = 2, both [9] and [130] provide polynomial time exact

algorithms. Shalita and Zwick’s [130] algorithm runs in O(mn) time, for a graph
with n nodes and m edges. A similar facility location problem has also been studied
in [77, 88, 136].

6.2 Static r-Gather

Theorem 6.2.1. The r-gather problem for the case where the diameter of a cluster
is measured by the furthest distance between two points is NP-hard to approximate
better than a factor of 2 when r ≥ 5.

Proof: Our reduction is from the NP-hard problem, planar 3SAT. Given a formula in
3CNF composed of variables xi, i = 1, . . . , n and their complements xi, we construct
an instance of r-gather on the plane. Figure 6.1 illustrates a clause gadget of the
clause C = xi ∨xj ∨xk and part of a variable gadget for xi. In the figure, each point
represents multiple points in the same location, the number of which is noted in
parenthesis. All distances between groups of points connected by a line are distance
1 apart. Note that all clusters shown in the figure have a diameter of 1. If all clusters
have a diameter of 1, then we can signify the parity of a variable by whether solid
or dashed clusters are chosen. Here the solid clusters signify a positive value for xi
that satisfies the clause since the center point of the clause gadget is successfully
assigned to a cluster. Note that the variable gadget in Figure 6.1 swaps the parity
of the signal sent away from the gadget. We also include a negation gadget shown in
Figure 6.2 that swaps the parity of the signal and can be used when connecting parts
of the variable gadget together. If an optimal solution to this r-gather construction
can be found, the diameter of all clusters is 1.

The center point of the clause gadget must be assigned to a cluster that contains
all r points of one of the variable clusters or else a cluster of diameter 2 is forced.
WLOG, let the center point be clustered with the r points of the xi gadget. What
results is the solid clusters in figure 6.1 are selected above the triangle splitter and
the dashed clusters are selected below the splitter. The group of points at the top
of the triangle splitter is unassigned to a cluster. It must merge with one of the
neighboring clusters which results in a cluster of diameter 2. Therefore, it is NP-
hard to approximate r-gather below a factor of 2 for r ≥ 5. �

72

(r)

(1)

(r − 1)

(r − 2)

(1)

(r)

(r)

(1)

(1)

(1)

(1)

(r − 1)(r − 1)

xjxk

xi

C

Figure 6.1. Clause and splitter gadget

(r − 1) (1) (r − 1) (r − 1) (r − 1)(1)

Figure 6.2. Signal negation gadget

73

Theorem 6.2.2. The r-gather problem for the case where the diameter of a cluster
is measured by the diameter of the smallest covering disk is NP-hard to approximate
better than a factor of

√
35+
√

3
4
≈ 1.912 when r ≥ 4.

Proof: The reduction is very similar to the proof of Theorem 6.2.1. The only dif-
ference is the splitter which is illustrated in Figure 6.3. �

(r − 2)

(1)
(1)

(r − 1)
(r − 1)

1
2

√
3
4

√
35
4

1
2

1

Figure 6.3. Close up of the splitter gadget

Theorem 6.2.3. The r-gather problem for the case where the diameter of a cluster
is measured by the diameter of the smallest covering disk is NP-hard to approximate
better than a factor of

√
13/2 ≈ 1.802 when r = 3.

Proof: We reduce from the NP-hard problem planar circuit SAT. We are given a
planar boolean circuit with a single output. Similar to the previous proofs, a wire
gadget consists of a line of points that alternate between a single point and a group
of r− 1 points at the same location. The parity of the clusters chosen signify a true
signal or a false signal. When the clusters combine a group of r − 1 points followed
by a single point, the signal of the wire is true. It is simple to enforce the output
to be a true signal by ending the output wire with a single point. The beginning
of the input wires have a group of r points so that the inputs can be either true or
false. Figure 6.4 illustrates the NAND gadget, a universal gate. The solid clusters
illustrate two true inputs into the gate and a false output. If either or both of the
inputs is false, then two groups of points in the triangle (or all three) will become a
cluster and the output will be true. Figure 6.5 illustrates the splitter circuit where

74

the solid clusters indicate a true signal and the dashed clusters indicate a false signal.
As before, if the optimal solution to the r-gather construction can be found, then
cluster diameter will be 1. Otherwise, three groups will form a cluster, two from
the triangle and one adjacent to the triangle. The diameter of such a cluster is√

13/2 ≈ 1.802 when r = 3. Finally, note that in order to connect the wires, they
must be able to turn somehow. We can bend the wire such that no three groups of
points can form a cluster that has diameter smaller than

√
13/2. Thus concludes our

proof. �

(1)

(r − 1)

(1)

(1)

(1)

(r − 1)

(r − 1) (r − 1) (1) (r − 1)

Figure 6.4. NAND gadget

Theorem 6.2.4. The r-gather problem for the case where the diameter of a cluster
is the distance between the furthest pair of points is NP-hard to approximate better

than
√

2 +
√

3 ≈ 1.931 when r = 3 or 4.

Proof: The proof is similar to the proof of Theorem 6.2.3 except that with the
different definition of diameter, the triangles in the gadgets are slightly larger. This
makes a cluster with two groups from a triangle and one adjacent to the triangle

have a diameter of
√

2 +
√

3 ≈ 1.931. �

75

(1)

(r − 1)

(r − 2)
(1)

(1)

(r − 1)

(1)

(r − 1) (2)

Figure 6.5. Splitter gadget

6.3 Dynamic r-Gather

The natural progression of investigating the r-gather problem is to consider clustering
when the points are mobile. The conversion of the r-gather problem to a dynamic
setting may appear in many forms. In this section, we detail several versions of the
mobile r-gather problem. In each version, we assume that the trajectories of the
points are piecewise linear.

In the simplest formulation of r-gather in a mobile setting, we are given a set of
trajectories over a time period T and we want to cluster the trajectories such that
each cluster has at least r trajectories and the largest diameter of each cluster over
the entire time period is minimized. Here we designate the diameter of a cluster at
a single point in time to be the distance between the furthest pair of points. Points
are assigned to a single cluster for the entire length of T and do not switch clusters.
We claim that the 2-approximation strategy for static r-gather can also be applied
to this problem. We also claim that 2-inapproximation lower bound from Aggarwal
et. al. applies as well [5]. We use the distance metric defined by Lemma 6.3.1.

Lemma 6.3.1. The distance function dt(p, q) between two trajectories p and q over
a time period T is defined as the distance between p and q at time t ∈ T . Then
d(p, q) = maxt∈T dt(p, q). The function d(p, q) is a metric.

Proof: The function by definition is symmetric, follows the identity condition, and

76

is always non-negative. To show that the metric follows the triangle equality, we first
assume that there is a pair of trajectories x and z where d(x, z) > d(x, y)+d(y, z) for
some y. There is some time t ∈ T , where dt(x, z) = d(x, z). By triangle inequality,

dt(x, z) ≤ dt(x, y) + dt(y, z).

This contradicts our assumption and concludes our proof. �

Theorem 6.3.2. For the definition of dynamic r-gather where all trajectories are
clustered once, it is NP-hard to approximate better than a factor of 2 for r > 6.

Proof: We construct a reduction from the problem 3-SAT where each variable is
restricted to 3 clauses. Our proof is similar to the lower bound proof in [5]. Given
a boolean formula in 3-CNF form with m clauses Cj, 1 ≤ j ≤ m, composed of n
variables xi, 1 ≤ i ≤ n, where i and j are integers, we construct a set of trajectories
over a time period T . For every variable xi and its complement x̄i, we have two
points vTi and vFi and an additional (r−2) points uki for integer k, 1 ≤ k ≤ r−2. We
will construct trajectories where d(vTi , v

F
i) = d(vTi , u

k
i) = d(vFi , u

k
i) = 1, for 1 ≤ i ≤ n

and 1 ≤ k ≤ r − 2 . In addition, for every cluster Cj, we construct another point
wj. We construct trajectories such that the distance between wj and the points that
represent the literals in the clause Cj is 1. All other distances are 2.

Constructing the trajectories that obey these distance constraints is simple. Place
all points at the origin on a number line. For every point p, we have one timestep
that establishes the distance between it and all other points. In that timestep, p
moves to 2 on the number line. At the same time, all other points that must have
a distance of 1 to p move to 1 on the number line. This procedure is repeated for
every point.

We claim, that if there is an r-gather clustering of maximum radius 1, then the
3-SAT formula can be satisfied. Here, for every variable, we have two possibilities
for the center of a cluster of radius 1, vTi and vFi . There are not enough points close
to vTi and vFi to have both as the center of two clusters. Any cluster with uki as the
center will have fewer than r points within a distance of 1 and therefore cannot be
a cluster center with radius 1. Finally, every point wj has only three other points
within a distance of 1. Therefore, in any r-gather clustering with maximum radius 1,
there is one cluster for every variable with a center of either vTi or vFi . This clustering
must be done in such a way that for every point wj, at least one of the points that
represents a literal in Cj must be chosen as a cluster center. Thus if an optimal
r-gather clustering of our trajectories can be found, then we can determine if the
corresponding 3-SAT formula is satisfiable. �

77

The next step in expanding dynamic r-gather is by allowing the clusters to change
throughout T . We amend our problem formulation to allow k regroupings. Each re-
grouping allows all clusters to be modified or changed completely. The lower bounds
for the earlier version of r-gather applies here too for the same reasons. We claim
that with the assumption that the trajectories are piecewise linear, we can construct
a 2-approximation solution using dynamic programming.

Let |T | be the number of timesteps in the time period T . Each trajectory is a
piecewise linear function that only changes directions at a timestep in T . Let Cij
denote the max diameter of the 2-approximation clustering at time i over the time
period [i, j], i < j. We can create a |T | × |T | table T where entry T (i, j) = Cij.
One clustering takes O(1

ε
kn2) and there are |T | clusterings in total. However, for

each clustering, the max diameter is recalculated for each timestep. The cost of
recalculating the max diameter of a clustering is O(n/r). The total number of times
a clustering is recalculated is O(n|T |/r). The total time it takes to compute the
table T is O(n|T |2/r + 1

ε
k|T |n2).

We formulate a subproblem S(t, i), where 0 ≤ t ≤ |T | and i ≤ k, for our dynamic
program to find the optimal clustering of the points in the time period [0, t] where
there are exactly i reclusterings. Let l(t, i) denote the last timestep a reclustering
occurred for the optimal solution of S(t, i).

The subproblem of our dynamic program is:

S(t, i) = min(max
j<t

(S(j, i), Cl(t,i)t),max
j<t

(S(j, i− 1), Ctt))

The entry S(t, i) checks 2t previous entries and 2t entries in the table T . The
entire table takes k|T |2 to execute with the additional preprocessing of the table T .

Our lower bound proofs for static r-gather apply here as well. The points arranged
in any of the lower bound proofs can be static points for the duration of T or may
move in a fashion where the distances between points do not increase. Then the
arguments for static r-gather translate to this simple version of dynamic r-gather
directly.

Theorem 6.3.3. The lower bound results for static r-gather apply to any defini-
tion of dynamic r-gather. Further, we can approximate mobile r-gather, when k
clustergings are allowed, within a factor of 2.

Another variation allows unlimited regroupings in a continuous dynamic setting.
We know that in this setting, the optimal clustering may change many times, as much
as O(n3) times. Consider this example: n/2 points lie on a line where the points are
spaced apart by 1 and 3 points are overlapping on the ends. In this example, r = 3.

78

The optimal clustering of the points on the line is to have three points in a row be
in one cluster with a diameter of 2. There are three different such clusterings which
differ in the parity of the clusterings. In each clustering, there are O(n) clusters. If
another point travels along the line, when it is within the boundaries of a cluster, it
will just join that cluster. However, when it reaches the boundary of a cluster and
exits it, the optimal clustering would be to shift the parity of the clustering. This
results in a change in all of the clusters along the line. The clustering change every
time the point travels a distance of 2. Therefore, as the point travels along the line,
the number of times the entire clustering changes is O(n) which results in a total of
O(n2) changes to individual clusters. Since there are O(n) points that travel along
the line, the total number of clusters that change is O(n3).

6.4 Decentralized Algorithm

In this section, we consider the r-gather as a distributed computation problem. This
approach is particularly relevant in the context of locations, where data is naturally
spread over a spatial region, and we can use local computations at access points and
local devices for anonymization and cloaking. This approach also provides better
security and privacy, since it is harder for an attacker to compromise many devices
spread over a large region.

6.4.1 Maximal Independent Neighborhoods

We assume there is a set of n mobile nodes 1, 2, . . . , n, and use pi to denote the
location of node i. The set P is the set of locations (pis) of the nodes. For any point

pi, we let p
(r)
i denote its rth nearest neighbor in P , and we let dr(pi) = |pi − p

(r)
i |

denote the corresponding distance. We let Nr(pi) denote the set of r nodes nearest
to point pi, and let N(P) = {N(pi) : pi ∈ P} denote the set of such r-neighborhoods.
If Nr(pi)∩Nr(pj) = ∅, we say that the r-neighborhoods of pi and pj are independent.

We let G denote the set of clusters, at any stage of our algorithm; G is initialized
to ∅. We let cG denote the center of cluster G ∈ G; the center cG may be either a
node (in P) or another location.

The basic algorithm executes the following steps to construct the set G of clusters:

M1 At each point pi ∈ P , compute p
(r)
i , dr(pi) and Nr(pi).

M2 Find a maximal independent subset of neighborhoods from the set Nr(P), add
each as a cluster in G, and mark the nodes (as “clustered”) in these sets.

79

M3 For any unmarked node pi ∈ P , assign pi to the cluster G ∈ G whose center,
cG, is closest to pi.

The nodes that belong to r-neighborhoods of cluster centers and added to clusters
in step M2 are called canonical members of the cluster, while nodes that are added
in step M3, are called the outer members.

Next, we argue that this simple algorithm approximates an optimal clustering.
Let dmax

r = maxi dr(pi) be the largest distance from a node to its rth nearest neighbor.
Let DOPT be the diameter of the largest cluster in an optimal clustering. We then
observe

Observation 6.4.1. DOPT ≥ dmax
r .

Proof: Suppose pi ∈ P is a point achieving dmax
r : dr(pi) = dmax

r . Since any disk of
radius less than dmaxr centered at pi does not contain r nodes, a disk that contains
pi as well as (at least) r− 1 other nodes must have radius at least dmaxr /2. Thus the
diameter DOPT must be at least dmax

r . �

Lemma 6.4.2. For any cluster G ∈ G and any node pi ∈ G, |pi−cG| ≤ dr(pi)+dmax
r .

Proof: Consider a cluster G ∈ G, centered at cG, and pi ∈ G.
If pi was assigned to cluster G in step M2, then we know that pi ∈ Nr(cG),

implying that |pi − cG| ≤ dr(cG) ≤ dr(pi) + dr(cG).
If pi was not assigned to cluster G in step M2, but was instead assigned to

G in step M3, then we know, by maximality of the independent set, that the r-
neighborhood Nr(pi) intersects some other r-neighborhood, say Nr(pj), that was a
cluster in the maximal independent set in step M2. (It may or may not be the
case that G = Nr(pj).) Thus, there is a node py ∈ Nr(pi) ∩ Nr(pj), implying that
|pi − py| ≤ dr(pi) and that |py − pj| ≤ dr(pj). The triangle inequality implies then
that |pi − pj| ≤ |pi − py| + |py − pj| ≤ dr(pi) + dr(pj) ≤ dr(pi) + dmax

r . Since
pi is closer to cG than to the alternative center pj, we get the claimed inequality,
|pi − cG| ≤ |pi − pj| ≤ dr(pi) + dmax

r . �

From the above lemma it follows that the algorithm produces a 4-approximation
of the diameter:

Corollary 6.4.3. The diameter of any G ∈ G is at most 4DOPT .

80

Proof: Consider any pi, pj ∈ G. By Lemma 6.4.2, |pi − cG| ≤ dr(pi) + dmax
r ≤ 2dmax

r

and |pj − cG| ≤ dr(pj) + dmax
r ≤ 2dmax

r . Thus, by the triangle inequality, |pi − pj| ≤
2dmax

r + 2dmax
r = 4dmax

r ≤ 4DOPT . �

The maximal independent subsets in step M2 can be computed rapidly, in time
O(log n), using the randomized parallel algorithm of Alon et al. [7], applied to com-
pute a maximal independent set in the intersection graph of the neighborhoods N(P)
(i.e., in the graph whose nodes are the r-neighborhoods N(pi) and whose edges link
two r-neighborhoods that have a nonempty intersection).

6.5 Conclusion

In this section we build upon the work of others and further explore the r-gather
problem. We provide further insight in to the Euclidean version of r-gather in the
static, dynamic, and distributed setting. Still, little is known about the dynamic
setting and it should be the focus of future work.

81

Chapter 7

Geographical Routing in 3D

7.1 Introduction

With the vision of the Internet of Things, sensors are ubiquitously installed on phys-
ical objects and at an accelerating speed penetrate into our everyday life. In this
section we examine a classical yet important problem in wireless sensor networks –
how to find an efficient and practical routing method for sensors that stay in three
dimensional space.

While numerous work have been done in this direction, we take the approach of
geographical routing and try to make it practical and for 3D. Geographical routing
uses geographical locations of the sensor nodes for routing decisions. It is the most
natural choice in the setting when the data that a sensor gets is more important
than the sensor node itself. Geocast, i.e., routing to a sensor whose location is at or
near the specific geographical target, is the most relevant type of routing requests
than routing to any specific sensor ID. The second motivation is the efficiency and
compactness of geographical greedy routing – on a network of constant node degree
the routing scheme uses constant state per node.

Unfortunately geographical greedy routing alone does not always work and exist-
ing recovery schemes face serious challenges in practice, namely, the complex prop-
agation models of wireless communication, and the challenges when nodes are gen-
erally in a 3D space. Requiring that the nodes to always stay on 2D plane starts to
become a major limitation as in many applications sensors are deployed in 3D space,
with different levels of elevations or even airborne.

We will first review the history of geographical routing in the literature and then
present our new ideas.

82

History

In geographical routing, the physical locations of the sensor nodes are used to find
the path a packet takes in the network. Geographical routing was originally pro-
posed by Bose et al. [29], and independently by Karp and Kung [90] for routing
in resource-constrained and dynamic networks such as ad hoc mobile networks or
sensor networks. Further improvements on worst-case efficiency were provided by
the GOAFR+ family of protocols [99, 98]. A nice summary of geographical routing
schemes with a focus on some subtle issues is presented in [66]. Here we quickly
review the basics.

Geographical routing has two modes: the greedy mode and the recovery mode.
In the greedy mode, the node currently holding the packet “advances” it towards
the destination, based only on the location of itself, its immediate neighbors and the
destination. The advance rule may be defined in many ways. The most popular way
of defining the advance is to examine the Euclidean distance to the destination and
select the next hop as the node closest to the destination. The greedy routing often
suffices to deliver a packet in a dense network, but may fail in a sparse network.
For example, the packet may reach a local minimum whose neighbors are all further
away from the destination than itself.

When the greedy mode fails to advance a packet at some node, the routing
process switches to the recovery mode. The recovery mode defines how to forward the
packet at a local minimum, in order to guarantee eventual delivery to the destination.
Some examples of the methods to get out of local minima are simple flooding [134],
terminode routing [27], breadth-first search or depth-first search [85], the face routing
or perimeter routing [29, 90].

When the sensor network is dense, there has also been a lot of work that generates
virtual coordinates with which greedy routing becomes easier. For example, by
using Ricci flow the network can be transformed to a circular domain such that
greedy routing alone guarantees delivery [126]. Other ideas that use polar coordinates
system [117] or hyperbolic coordinates [97] are much more flexible with density, but
tend to create load imbalance.

Challenges in Practice

Many of the proposed ideas work nicely on paper. When applied to real world
networks they face a number of critical challenges that may greatly degrades their
performance. The most notable challenges are the following.

83

Geographical routing in 3D None of the proposed geographical mechanism is
for nodes that generally stay in 3D. Many of them explicitly make use of the two
dimensional structure of the network geometry and break down when the dimension
is elevated. For example, in perimeter routing, a planar subgraph is extracted from
the communication graph and a message when stuck at a local minimum will be
routed along the boundary of a face towards the destination. In 3D we can try to
mimic this and build a volume decomposition, but the boundary of each ‘solid piece’
is a surface in general, and routing on a surface is nontrivial.

This challenge has also been demonstrated by worst case theoretical analysis.
In theory, geographical routing protocols using face or perimeter routing use con-
stant state information in the packet and guarantees delivery, Durocher et al. [55]
showed that it is impossible to find a constant state routing algorithm in 3D unit
ball networks.

Unit disk graph assumption In many proposed mechanisms it was important
that the communication model follows the unit disk graph model – i.e., two nodes
have a link if their distance is within 1 and not otherwise. For example, the correct
construction of a planar subgraph critically depends on such an assumption.

On the other hand, experimental evaluations of the communication model on
sensor nodes reveal various spatial and temporal radio irregularities [67, 151]. Close-
by nodes may not be able to communicate directly while some long high-quality links
may exist. Links might also be asymmetric/directional and over time link quality
varies. In practice, the planar subgraph extracted may become disconnected or still
contain crossing edges, as shown in [128, 96]. This subsequently causes the delivery
rate to drop to about 68% on a real testbed [96].

A number of repair mechanisms propose to remove crossing links by probing [96,
95, 73]. These mechanisms improve the delivery rate at the cost of higher processing
overhead. But again this will only work for nodes that embed in 2D. In 3D the
notion of crossing does not exist.

Node density Many of the algorithms that use global transformation to build
virtual coordinates for geographical routing assume that the network is dense such
that one can talk about the geometric shape of the network. This is true for large
scale dense network topologies but in smaller, sparser networks the assumption is
less appropriate.

84

New Ideas

The new ideas we present in this section is to supplement geographical greedy routing
by additional virtual edges. With the augmented edges geographical routing can suc-
cessful deliver the message towards the destination. And we want to add a minimum
of such edges. These virtual edges are created either by extending communication
range when possible, or implemented by routes stored in the network. In the latter
case, each virtual edge (u, v) actually corresponds to a path from u to v which is
stored locally at the nodes along the path. The node u remembers the location of v
and can use v as a neighbor in geographical greedy routing. When v is identified as
the next hop the routing table entries will be used to guide the message towards v.

Mathematically, consider a graph on vertices embedded in the Euclidean space, we
would like to add a minimum number of virtual edges such that greedy routing using
the node coordinates succeeds. That is, for any source node s and any destination
t, there is an edge from s to w such that w’s Euclidean distance to t is strictly
smaller than the Euclidean distance from s and t, i.e., |wt| < |st|. This way a
message can always reach the destination via a distance decreasing path by purely
local operations.

This problem has two versions, depending on whether the edges in the network
are directed or not. In wireless communication it is possible that a link is directional
in the sense that u can send a message to v but v cannot send it directly back to
u. Correspondingly, the virtual edges can be directed or undirected. It is actually
a little surprising that the problem in the directed case, i.e., finding the minimum
number of directed virtual edges to enable greedy routing, is easier to solve and the
result for directed case provides a 2-approximation for the undirected setting. In
this section we show that finding the minimum number of directed virtual edges is
actually polynomially solvable. And the maximum number of virtual edges is no
greater than 5 for 2D and at most 11 for 3D. This result is for general directed
graphs. Thus the result would apply for real world network when the links do not
necessarily follow unit disk graph model and can be asymmetric and dynamic. In
our simulations the number of virtual edges is actually a lot less than the proved
upper bound. The total routing table state size is also at a modest level compared
to the worst case bound.

Related Work

The problem of augmenting a graph to enable greedy routing is related to the question
which types of graphs naturally support greedy routing. The one mostly known is the
Delaunay triangulation. Given a set of nodes in the plane, the Delaunay triangulation

85

is a planar graph in which each node has at least a neighbor whose Euclidean distance
is closer to the destination. Therefore, if the communication graph already contains
the Delaunay triangulation on the same set of vertices, greedy routing automatically
works. If not, it is obvious that adding these missing Delaunay edges will suffice.
This idea works fine in 2D, as the Delaunay triangulation is a planar graph and
thus has at most a linear number of edges. However, this is not precisely what our
algorithm will do. Just to point out that the in a Delaunay triangulation a node may
have degree Θ(n) and Delaunay triangulation for nodes in 3D may have a quadratic
number of edges but in our algorithm we always add the minimum number possible
and will not add more than a linear number of edges in total.

We would also want to point out that the edges we construct is different from
the Yao graph [148] or Θ-graph [46, 91]. In both setting, a cone partition with angle
π/3 is placed at each node p in the network and p connects to all the nodes that are
nearest inside each cone (in Yao graph), or with the closest projection on the bisector
of each cone (in the case of the Θ-graph). In our setting, we are not always adding
6 edges for each node but rather make use of existing edges as much as possible. In
the simulations, the total number of edges augmented is much fewer than the worst
case asymptotics.

7.2 Graph Augmentation

In this section we focus on the mathematical proofs and centralized algorithms for
finding a minimum number of directed virtual edges to augment a given graph such
that greedy routing works. We handle the two cases of directed edges and undirected
edges separately.

7.2.1 Directed Graphs

Given a set of n wireless nodes in Rd, d = 2, 3, the graph G contains the communi-
cation links between them. Notice that G is assumed to be generally directional and
edges may not be asymmetric. Thus we will call G a digraph. A digraph G with
coordinates of the vertices in Rd is a digraph drawing. We will add additional virtual
edges, which are assumed to be directional as well. That is, the edge uv is directed
from u to v. In the network the node u considers v as a neighbor and remembers
v’s geographical coordinates. We show below how to find the minimum number of
additional directional edges to enable greedy routing between all pairs in polynomial
time.

86

This algorithm is based on two observations. The first observation is that we
must add edges for each node u to ensure that u has a neighbor closer to any possible
destination. Since the edges are directional, the edges added from u to v can only
help u but not v. Thus we can consider the edges added to each node separately. In
other words, greedy routing in a digraph is a local property:

Lemma 1. A digraph drawing is greedily routable if and only if, for every pair of
vertices s and t, there is a vertex u such that (s, u) is an edge and d(u, t) < d(s, t).

Proof: If a digraph drawing is greedily routable, then for any s and t, the first vertex
u after s on a greedy routing from s to t satisfies the desired conditions. Conversely,
if for every pair of vertices s and t there’s a vertex u(s, t) such that (s, u) is an edge
and d(u, t) < d(s, t), then the digraph drawing is greedily routable: the sequence s,
u(s, t), u(u(s, t), t), . . . is a path of vertices with strictly decreasing distance to t, and
there are finitely many vertices in the digraph, so the path terminates at t. �

The next observation is a geometric lemma. Consider a node u and all neighbors
N(u). We draw a bisector between u and each neighbor v ∈ N(u). Such a bisector
defines a halfplane containing v, denoted by Hu(v). A message with a destination
that falls inside Hu(v) can not get stuck — it can at least be delivered to v which is
closer to the destination than u is.

Therefore we will consider only the region that is outside all the halfplanes Hu(v),
for all v ∈ N(u). Denote by this region C(u). We take the node w in C(u) closest to
u and add an edge from u to w. Then add the neighbor w to N(u) and iterate. We
argue that this procedure will repeat at most 6 times until C(u) is empty of points.
See Figure 7.1 for an illustration which also shows that not all Delaunay edges are
needed.

The number 6 is not an arbitrary number but rather the kissing number in 2D –
the number of non-overlapping unit spheres that can be arranged such that they each
touch another given unit sphere. The result can be generalized to higher dimensions.
For 3D it is 12. We have the following theorem.

Theorem 2. Every digraph drawing in d dimensions has a greedily routable su-
perdigraph formed by adding at most k(d) edges from each vertex, where k(d) is the
kissing number in d dimensions.

There is a digraph drawing that needs to add k(d) edges from some vertex, simply
by putting one vertex with no edges from it at distance 1 from each of k(d) other
vertices, with no other vertices in the graph. Similarly, there are digraph drawings
that need to add as many edges as the d-dimensional lattice kissing number at almost

87

u

v1

v2

v3C(u)

v4

C(u)

Figure 7.1. Left: the bisectors of u and each neighbor in N(u) are shown. v4 is not inside C(u)
and thus is added as a virtual neighbor; Right: in the case when there are many nodes on a circle
centered at u, in the Delaunay triangulation all the edges from u to each node on the circle is a
Delaunay edge but to enable greedy routing one does not need to keep all such Delaunay edges –
five edges in this example suffice.

every vertex, by arranging many vertices in a section of a lattice attaining that kissing
number. We can now prove Theorem 2:

Proof: Given a vertex s = s0, define a sequence inductively by letting si be a closest
vertex to s0 (other than s0 itself) such that d(si, sj) ≥ d(si, s0) for all j ∈ [1, i − 1].
If no such vertex exists, the sequence ends.

We claim that if edges are added from s to every other vertex si in that sequence,
then we can route greedily from s. Indeed, let t be any vertex. If t is one of the
si, we can greedily route straight to it. Otherwise, if i is the least index such that
d(s, si) > d(s, t), then, since t was not picked as si, there’s some vertex sj such that
d(t, sj) < d(t, s), but there’s an edge from s to sj that we can follow to get closer to
t, as desired.

We also claim that for any two vertices si and sj with i > j > 0, ∠sis0sj ≥ τ
6
.

Indeed, we have d(si, sj) ≥ d(si, s0) (by the inductive choice of i) and d(si, s0) ≥
d(sj, s0) (since sj was picked before si, and is therefore closer to s0), so in triangle
s0sisj, sisj is the (nonstrictly) longest side, so the angle opposite it is the triangle’s
greatest, and is therefore at least τ

6
.

Therefore, if we center a unit sphere at distance 2 from s0 in the direction of each
si, they form a no overlapping sphere packing around the unit sphere S centered
at s0, so the d-dimensional kissing number is at least the number of terms in the
sequence, which is at least the minimum number of edges that must be added from
s for greedy routability, as desired. �

What still remains is a means to efficiently find the nearest neighbor of a vertex u
within the region C(u). This can be done with a combination of simplex range queries
and Voronoi diagrams. Using methods by Matousek [110] and later, Chan [38],

88

quick nearest neighbor queries can be executed in O(n1−1/d log n) time with some
preprocessing.

Lemma 7.2.1. Given a set of n points in R2, a structure can be constructed in
O(n log n) time with O(n) space that can find the nearest neighbor to an input point
u within a given polygon C(u) in O(

√
n log n) time w.h.p.. The number of sides that

C(u) has is bound by the kissing number. When the points are in Rd, the prepro-

cessing time is O(n2), the space is O(nd
1
2
de), and the query time is O(n1−1/d log n)

w.h.p.

Proof: We use the techniques by Chan [38] for simplex range queries. He describes
a construction of a partition tree on a set of points that can execute simplex range
queries in O(n1−1/d) time with O(n log n) preprocessing time and linear storage space
w.h.p. This tree has constant depth.

We can amend this tree by constructing a voronoi diagram in each cell in each
node of the tree. Since each level of the tree is a partition of the input points it
takes O(n log n) time to construct voronoi diagrams for all points in one level. There
are a constant number of levels so the preprocessing time for our structure remains
O(n log n). The size of the structure does not change as well. In higher dimensions,

each level takesO(n2) time to construct and takesO(nd
1
2
de) space so the preprocessing

time and space is larger.
When executing nearest neighbor queries, each node in the tree queried also

queries it’s corresponding voronoi diagram. This adds a O(log n) factor to the query
time increasing it to O(n1−1/d log n). �

Corollary 7.2.2. Finding the greedy routing number of a digraph drawing G is d
dimension is in FPT (fixed parameter tractable); that is, it can be done in time
O(k(d)n2−1/d log n).

Proof: By lemma 1, determining the greedy routing number of a digraph is solvable
locally: for each vertex s, we need to add exactly as many edges from s as needed to
greedily route from s, independent of what edges are added from other vertices.

By Theorem 2, there is a solution that adds at most k(d) edges from every vertex.
Each vertex can be found using a nearest neighbor query with u and C(u). With
Lemma 7.2.1, we can find all virtual edges in time O(k(d)n2−1/d log n) with O(n log n)
preprocessing in 2D and O(n2) preprocessing time in higher dimensions w.h.p. �

In applications where the aspect ratio of the sensors is bounded by a constant, a
practical solution is to use a quadtree with voronoi diagrams to execute queries in
O(|C(u)| log n) time per query where |C(u)| is the length of the perimeter of C(u)
(or size of the surface area of the polytope C(u) when d ≥ 3).

89

Lemma 7.2.3. Let a set of n points in R2 have aspect ratio α, the ratio between
the closest and furthest points, be bounded by a constant. A quadtree structure
can be computed on these points in O(n log n) time with O(n) space that supports
nearest neighbor queries in O(|C(u)| log n) time of an input point u within an input
convex polygon C(u). When the points are in R3, this structure can be constructed
in O(n2 log n) time with O(n2) space.

Proof: Given a set of n points, construct a quadtree on the input. For each cell,
on each level, a voronoi diagram is constructed on the points inside. Using existing
methods, all of the voronoi diagrams for one level of the quadtree can be constructed
in O(n log n) time with O(n) space in 2D and O(n2) time with O(nd

1
2
de) space for

d ≥ 3. Due to the assumptions on α, the depth of the tree is constant and the
quadtree can be constructed in linear time. Therefore, the entire structure can be
constructed in O(n log n) time in 2D with O(n) space and O(n2) time in higher

dimensions with O(nd
1
2
de) space.

To query the quadtree for the nearest neighbor of an input point u within a convex
polytope C(u), we traverse through the quadtree to find the cells that intersect C(u).
During this traversal, we also find the canonical cells within C(u), the set of cells
that are fully contained within C(u) whose parent cells are not fully contained in
C(u). On a grid with cell size 2l where l is bounded by α, a constant, the number
of cells that the boundary of C(u) intersects is O(|C(u)|). Note that |C(u)| = O(α),
though at times it may be much smaller.

Now, for any canonical cell, its parent cell must intersect the boundary of C(u)
which implies that for any l, the number of canonical cells of size 2l is O(|C(u)|).
Since there are a constant number of levels in the quadtree, the total number of
canonical cells and the total number of cells touched by our search is O(|C(u)|).

To compute the nearest neighbor of our query point u, for every canonical cell,
its corresponding voronoi diagram is queried. Each voronoi query is executed in
O(log n) time. Each noncanonical leaf cell that intersects the boundary of the query
polygon contains at most one point. The result is a total of O(|C(u)|) candidate
points from canonical and noncanonical cells. The closest candidate point to u is the
solution. Finding all canonical and noncanonical cells takes O(|C(u)|) time. Finding
candidate points takes O(|C(u)| log n) time from canonical cells and O(|C(u)|) time
from noncanonical cells. Therefore, the total query time of a nearest neighbor search
is O(|C(u)| log n). �

90

Undirected Graphs

When all edges are undirected, the virtual edges can also be treated as undirected
edges. Basically, if we identify uv as a virtual edge, and the path P (u, v) is used to
enable this virtual edge – i.e., for all nodes on the path they remember the coordinates
of both upstream and downstream neighbors. Thus this virtual edge uv can be used
in both directions.

We can thus formulate the same problem in the undirected case: find a minimum
number of virtual edges to enable greedy routing. This problem turns out to be more
challenging than the directed case, as the selection of virtual edges is no longer a
local property. An edge uv that works for u may also help node v. Nevertheless, we
can show that the solution computed by the algorithm for the directed case in the
previous subsection gives a 2-approximation for the undirected case.

Theorem 7.2.4. The solution provided by the algorithm in the directed case is a
2-approximation to the graph augmentation problem in the undirected case.

Proof: Suppose E is the set of edges produced by the graph augmentation algorithm
in the directed case and E∗ is the optimal solution for the undirected case. It
is obvious that |E∗| ≤ |E|. It is also clear that if we treat each edge in E∗ as
two directed edges (one in each direction), the solution suffices for enabling greedy
routing in the directed case. Thus |E| ≤ 2|E∗|. �

7.3 Experiments

Implementation

For our experiments, we created a network simulation with sizes ranging from 250
nodes to 2000 nodes. These nodes were randomly generated locations in three di-
mensions. Links between nodes are determined by the wireless radius of the nodes in
the given scenario. Using our algorithm, additional directed virtual links are added
to the network. The virtual links are represented in the routing tables of the source
node as the shortest path between the two nodes, simply found using breadth-first
search. When a packet is routed using the greedy algorithm, if a virtual edge is
chosen for the next step of the path, then the packet is routed along the path in the
routing table before the greedy method is applied again.

In addition, we also simulated a network using details of the INDRIYA testbed
[53]. We used the relative locations of the nodes and their topology in some of our
experiments. All of our simulations were programmed in python using the NumPy
package.

91

Experimental Results

We ran experiments in static and dynamic scenarios on various networks. This
includes random networks in sizes ranging from 250 to 2000 nodes and a simulated
network inspired by the INDRIYA testbed. For experiments run on a single network,
we use a randomly generated network of 1000 nodes.

In the static scenarios, we measured properties of the network and the greedy
paths between pairs of nodes in relation to the density and size of the network. The
density of the network is manipulated by the communication radius of the nodes. If
the communication radius of the nodes is larger, then a node is more likely to have
more neighbors and the network graph becomes more dense. When experiments were
run on different network sizes, we wanted to see the effects of just having more nodes
in the network. We attempted to negate the influence of the density of the network
so the size of the domain was increased accordingly so that the average number
of neighbors a node would have would be roughly the same in all network sizes.
For these two factors, we measured the number of added edges per node when our
practical algorithm is run and the average length of different paths in the network.
We consider the length of a path to be the number of hops a message travels. The
results of our experiments in the static case are illustrated in Figures 7.2 through
7.5.

As indicated in Figures 7.2 and 7.3, our algorithm adds few additional edges. The
average number of added edges per node is very small, much less than the theoretical
upper bound of 6.

Figure 7.2. The average number of added edges per node after adding virtual links to aid greedy
routing. (n=250-2000)

92

Figure 7.3. The average number of added edges per node after adding virtual links to aid greedy
routing. (n=1000)

As expected, the length of paths increase as the network size increases and as
the density decreases. Figures 7.4 and 7.5 show the average number of hops of
several paths between 100 randomly generated source and destination pairs. The
shortest path on a network with virtual links is determined by the path with the
fewest number of physical or virtual links. However, in Figures 7.4 and 7.5, they are
measured on the y axis by the number of physical hops in the path. In Figure 7.4,
all paths increase as the network size increases as is expected but additionally the
gap between the shortest path with and without virtual links increases as well. In
Figure 7.5, when the communication radius is low, the shortest path with virtual
links suggests that it is more likely that such a path would include a virtual link
which would increase the physical hop count. As the communication radius increases,
the chances that a shortest path with virtual links would actually include a virtual
link is lower which corresponds to the lower number of virtual links added to the
network as the communication radius increases and the network becomes more closely
connected. Note that there are a very narrow set of densities where the greedy paths
on the network has a stretch that is greater than 1 and the network is still connected.
This suggests that as long as the network is connected, our method scales well and
produces a path with very low stretch.

We also examined the robustness of the modified network in the static and dy-
namic setting. On a network of 1000 nodes, we explore the effect of a certain prob-
ability of link failure on the paths of 1000 random source and destination pairs.
Figure 7.6 shows the effect of different probabilities of link failure on the length of

93

Figure 7.4. The length of the greedy path, the shortest path, and the shortest path when a virtual
link is considered as a single hop of 100 random node pairs. (n=250-2000)

Figure 7.5. The length of the greedy path, the shortest path, and the shortest path when a virtual
link is considered as a single hop of 100 random node pairs. On a network with 1000 nodes with
different communication ranges.

94

the repaired path in the static setting. That is, we only consider each link to fail
once with the probability designated. We compare the length of the greedy path
after link failure to the length of shortest path after link failure and the greedy path
before link failure. The gap between the greedy path after link failure and the other
two paths increases as the probability of link failure increases. Figure 7.7 shows the
average number of additional entries in a routing table of a node. Predictably, the
average number of additional entries in a routing table of a node increases as the
probability of link failure increases.

Figure 7.6. The average number of additional hops the repaired greedy path contains compared
to the greedy path on unbroken links and the shortest path after link failure. (n=1000)

In the dynamic setting, when links fail, we assume that they are not repaired
and the broken links compound as time increases. Figures 7.8 to 7.10 show the
effect of compounding link failure on a network of 1000 nodes. Of course, if the
links in the network are allowed to fail with no possibility of repair, eventually the
entire network is disconnected. This is illustrated in Figure 7.9 which shows the
proportion of 100 randomized node pairs that become disconnected. In Figure 7.10
the routing tables of the nodes increase as time goes on and plateaus when all test
pairs become disconnected. Figure 7.9 shows the average number of additional hops
of the repaired paths of 100 random node pairs. In that figure, the number of
additional hops steadily increases until at a certain point, the chart dips and spikes.
At some point, certain pairs become disconnected and are removed from calculation
which causes the dips in the chart since the disconnected paths are likely to have
been longer paths beforehand. Note that the 100 random pairs of nodes are randomly
chosen in the beginning and remain the same for all time steps.

95

Figure 7.7. The average number of additional routing table entries for different probabilities of
link failure. (n=1000)

Figure 7.8. The average number of additional hops of the paths between 100 randomized
start/finish pairs over time. (n=1000)

96

Figure 7.9. The proportion of 100 randomized start/finish pairs that cannot reach each other in
the network as time goes on. (n=1000)

Figure 7.10. The average number of additional entries in a routing table created while 100
messages are routed with randomized origins and destinations. The routing tables are monitored
over 350 time steps. (n=1000)

97

Finally, we run the same link failure experiments on a network simulated to reflect
the real world INDRIYA testbed. The physical coordinates of roughly 100 sensors
and their connectivity topology are simulated in python. Figures 7.11 to 7.14 show
that this networks behaves very similarly to our randomly generated network.

Figure 7.11. The average number of additional hops in a greedy path on the mended network
over all pairs of nodes. On a real world network.

98

Figure 7.12. The average number of additional entries in a routing table after link failure and
messages have been sent between all pairs of nodes. On a real world network.

Figure 7.13. The average number of additional hops of greedy paths as time increases. On a real
world network, averaged over 100 randomized start/finish pairs.

99

Figure 7.14. The average number of additional entries in a routing table as messages are sent
between 100 randomized node pairs. On a real world network.

100

7.4 Conclusion

In this section we have found ways to amend a network in higher dimensions to
guarantee the effectiveness of the simple and intuitive greedy algorithm. Through
experiments, we have shown the effectiveness of our procedure and that its overhead
is lower than our already low theoretical bounds. We emphasize the practicality of
our algorithm among a field of routing algorithms that may be effective in 2D but
are not workable in 3D.

101

Chapter 8

Future Work

There are many further avenues we would like to investigate in several projects. We
detail the questions here:

The Data Gathering Problem We would like to further close the gap for the
variations of The Data Gathering Problem we have explored. While we have many
approximation algorithms, for our lower bounds, we have only proven NP-hardness
for most of the problems. We suspect that these lower bounds can be raised.

The Shortest Separator Problem While we have narrowed the gap in theoret-
ical bounds for The Shortest Separator Problem, it is still quite large and we would
like to narrow them further.

r-gather Clustering While we have narrowed the theoretical bounds for both
variation of r-gather clustering, there are other avenues we would like to explore.

The 2-approximation for r-gather is for the variation where the definition of the
diameter of a cluster is the diameter of the smallest enclosing circle of the cluster. Do
these approximation algorithms apply for the variation where the diameter is the dis-
tance between the furthest pair of points? Also, can we fine tune our understanding
of the problem? Is r-gather in FPT?

We have begun to explore the dynamic version of r-gather. However, we still
know little about the most general definition of this problem. Also, can we find a
faster or more stable algorithm that has an advantage over just recomputing a new
clustering every step?

102

Bibliography

[1] National traveling salesman problems. http://www.math.uwaterloo.ca/tsp/

world/countries.html. Accessed: 2014-12-15.

[2] M. A. Abam, P. Carmi, M. Farshi, and M. Smid. On the power of the semi-separated
pair decomposition. In Proceedings of the 11th International Symposium on Al-
gorithms and Data Structures, WADS ’09, pages 1–12, Berlin, Heidelberg, 2009.
Springer-Verlag.

[3] M. A. Abam and M. de Berg. Kinetic spanners in Rd. Discrete & Computational
Geometry, 45(4):723–736, June 2011.

[4] I. Abraham, D. Dolev, and D. Malkhi. LLS: A locality aware location service for
mobile ad hoc networks. In Proceedings of the 2004 Joint Workshop on Foundations
of Mobile Computing, pages 75–84, 2004.

[5] G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas, K. Kenthapadi, S. Khuller, and
A. Zhu. Achieving anonymity via clustering. ACM Transactions on Algorithms,
6(3):49:1–49:19, July 2010.

[6] K. Almi’ani, A. Viglas, and L. Libman. Tour and path planning methods for effi-
cient data gathering using mobile elements. International Journal of Ad Hoc and
Ubiquitous Computing, 2014.

[7] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

[8] G. Anastasi, M. Conti, and M. Di Francesco. Data collection in sensor networks with
data mules: An integrated simulation analysis. In IEEE Symposium on Computers
and Communications, pages 1096–1102, July 2008.

[9] E. Anshelevich and A. Karagiozova. Terminal backup, 3D matching, and covering
cubic graphs. SIAM Journal on Computing, 40(3):678–708, 2011.

103

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/countries.html

[10] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff. Improved approximation
algorithms for prize-collecting steiner tree and tsp. SIAM Journal on Computing,
(2):309–332, Mar.

[11] C. Archetti, M. Speranza, and D. Vigo. Vehicle routing problems with profits. Tech-
nical report, Tech. Report WPDEM2013/3, University of Brescia, 2013.

[12] E. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained geometric
network optimization. In Proceedings of the 14th Annual ACM Symposium on Com-
putational Geometry, pages 307–316, 1998.

[13] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering
salesman problem. Discrete Applied Mathematics, 55(3):197–218, Dec. 1994.

[14] E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and min-max
vehicle routing problems. Journal of Algorithms, (1):1 – 18.

[15] E. M. Arkin, S. Khuller, and J. S. B. Mitchell. Geometric knapsack problems. Algo-
rithmica, 10(5):399–427, 1993.

[16] A. Armon. On min–max r-gatherings. Theoretical Computer Science, 412(7):573–
582, 2011.

[17] S. Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. Journal of the ACM, 45(5):753–782, sep 1998.

[18] S. Arora and K. Chang. Approximation schemes for degree-restricted MST and
redblue separation problems. Algorithmica, 40(3):189–210, 2004.

[19] G. Ausiello, V. Bonifaci, and L. Laura. The online prize-collecting traveling salesman
problem. Information Processing Letters, (6):199 – 204.

[20] G. Ausiello, S. Leonardi, and A. Marchetti-Spaccamela. In Algorithms and Complex-
ity.

[21] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and
V. Kann. Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1st edition, 1999.

[22] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guaran-
tees for minimum-weight k-trees and prize-collecting salesmen. In SIAM Journal on
Computing, pages 277–283, 1995.

104

[23] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai. Deploying wireless sensors to
achieve both coverage and connectivity. In Proceedings of the 7th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 131–142, 2006.

[24] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989.

[25] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for
deadline-tsp and vehicle routing with time-windows. In Proceedings of the 36th An-
nual ACM Symposium on Theory of Computing, STOC ’04, pages 166–174, New
York, NY, USA. ACM.

[26] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the
prize collecting traveling salesman problem. Mathematical Programming, (3):413–
420, May.

[27] L. Blazević, L. Buttyán, S. Capkun, S. Giordano, H. Hubaux, and J. L. Boudec.
Self-organization in mobile ad hoc networks: the approach of terminodes. IEEE
Communications Magazine, pages 166–175, 2001.

[28] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approxi-
mation algorithms for orienteering and discounted-reward tsp. In Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer Science, pages 46–55,
Oct 2003.

[29] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

[30] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC dimen-
sions. Discrete & Computational Geometry, 14:463–479, 1995.

[31] K. Buchin, M. Löffler, P. Morin, and W. Mulzer. Preprocessing imprecise points for
delaunay triangulation: Simplified and extended. Algorithmica, 61(3):674–693, 2011.

[32] K. Buchin and W. Mulzer. Delaunay triangulations in o(sort(n)) time and more.
In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’09, pages 139–148, Washington, DC, USA, 2009. IEEE Computer
Society.

[33] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and N. Sri-
vanstava. Participatory sensing. In Proceedings of the World Sensor Web Workshop,
2006.

105

[34] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph
problems in higher dimensions. In Proceedings of the 4th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’93, pages 291–300, Philadelphia, PA, USA,
1993. Society for Industrial and Applied Mathematics.

[35] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A. Peterson. People-
centric urban sensing. In Proceedings of the 2nd Annual International Workshop on
Wireless Internet, New York, NY, USA ACM, 2006.

[36] T. H. Chan and S. H. Jiang. Reducing curse of dimensionality: Improved PTAS for
TSP (with neighborhoods) in doubling metrics. In Proceedings of the 27rd Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 754–765, 2016.

[37] T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46:178–189, 2003.

[38] T. M. Chan. Optimal partition trees. Discrete & Computational Geometry,
47(4):661–690, 2012.

[39] T. M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted capacitated, priority,
and geometric set cover via improved quasi-uniform sampling. In Proceedings of
the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages
1576–1585, 2012.

[40] C. Chekuri, K. L. Clarkson, and S. Har-Peled. On the multi-cover problem in geomet-
ric settings. In Proceedings of the 25th Annual ACM Symposium on Computational
Geometry, pages 341–350, 2009.

[41] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and related
problems. ACM Transactions on Algorithms, (3):23:1–23:27, July.

[42] K. Chen and S. Har-Peled. The euclidean orienteering problem revisited. SIAM
Journal on Computing, 38(1):385–397, 2008.

[43] X. Chen, E. Santos-Neto, and M. Ripeanu. Crowdsourcing for on-street smart park-
ing. In Proceedings of the Second ACM International Symposium on Design and
Analysis of Intelligent Vehicular Networks and Applications, pages 1–8, 2012.

[44] O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman. Reliable clinical monitoring using
wireless sensor networks: Experiences in a step-down hospital unit. In Proceedings of
the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10, pages
155–168, New York, NY, USA, 2010. ACM.

[45] N. Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, 1976.

106

[46] K. Clarkson. Approximation algorithms for shortest path motion planning. In Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC ’87,
pages 56–65, New York, NY, USA, 1987. ACM.

[47] K. L. Clarkson and K. Varadarajan. Improved approximation algorithms for geo-
metric set cover. Discrete & Computational Geometry, 37:43–58, 2007.

[48] S. Coene and F. C. R. Spieksma. Profit-based latency problems on the line. Opera-
tions Research Letters, (3):333–337, May.

[49] B. Cărbunar, A. Grama, J. Vitek, and O. Cărbunar. Redundancy and coverage
detection in sensor networks. ACM Transactions on Sensor Networks, 2(1):94–128,
February 2006.

[50] D. Cuff, M. Hansen, and J. Kang. Urban sensing: out of the woods. Communications
of the ACM, 51(3):24–33, March 2008.

[51] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008.

[52] O. Devillers. Delaunay triangulation of imprecise points, preprocess and actually get
a fast query time. Journal of Computational Geometry, pages 30–45, 2011.

[53] M. Doddavenkatappa, M. Chan, and A. Ananda. Indriya: A low-cost, 3d wireless
sensor network testbed. In T. Korakis, H. Li, P. Tran-Gia, and H.-S. Park, editors,
Testbeds and Research Infrastructure. Development of Networks and Communities,
volume 90 of Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 302–316. Springer Berlin Heidelberg,
2012.

[54] A. Dumitrescu and J. S. Mitchell. Approximation algorithms for TSP with neigh-
borhoods in the plane. Journal of Algorithms, 48(1):135 – 159, 2003. Proceedings of
the 12th Annual ACM-SIAM Symposium on Discrete Algorithms.

[55] S. Durocher, D. Kirkpatrick, and L. Narayanan. On routing with guaranteed delivery
in three-dimensional ad hoc wireless networks. In Proceedings of the 9th International
Conference on Distributed Computing and Networking, ICDCN’08, pages 546–557,
Berlin, Heidelberg, 2008. Springer-Verlag.

[56] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn, and A. T.
Campbell. Bikenet: A mobile sensing system for cyclist experience mapping. ACM
Transactions on Sensor Networks, 6(1):6:1–6:39, January 2010.

[57] B. Eksioglu, A. V. Vural, and A. Reisman. Survey: The vehicle routing problem: A
taxonomic review. Computers & Industrial Engineering, (4):1472–1483, Nov.

107

[58] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 425–461. Elsevier Science Publishers
B.V. North-Holland, Amsterdam, 2000.

[59] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The
pothole patrol: using a mobile sensor network for road surface monitoring. In Pro-
ceedings of the 6th International Conference on Mobile Systems, Applications, and
Services, pages 29–39, 2008.

[60] G. Even, N. Garg, J. Knemann, R. Ravi, and A. Sinha. Covering graphs using
trees and stars. In Approximation, Randomization, and Combinatorial Optimization..
Algorithms and Techniques, volume 2764 of Lecture Notes in Computer Science, pages
24–35. 2003.

[61] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the VC-dimension is small.
Information Processing Letters, 95:358–362, 2005.

[62] E. Ezra and W. Mulzer. Convex hull of imprecise points in o(n log n) time after
preprocessing. In Proceedings of the 27th Annual ACM Symposium on Computational
Geometry, SCG ’11, pages 11–20, New York, NY, USA, 2011. ACM.

[63] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45:634–652, 1998.

[64] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with profits.
Transportation Science, (2):188–205, May.

[65] R. Fowler, M. Paterson, and S. Tanimoto. Optimal packing and covering in the plane
are NP-complete. Information Processing Letters, 12:133–137, 1981.

[66] H. Frey and I. Stojmenovic. On delivery guarantees of face and combined greedy-
face routing in ad hoc and sensor networks. In Proceedings of the 12th Annual
International Conference on Mobile Computing and Networking, MobiCom ’06, pages
390–401, New York, NY, USA, 2006. ACM.

[67] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Com-
plex behavior at scale: An experimental study of low-power wireless sensor networks.
Technical Report UCLA/CSD-TR 02-0013, UCLA, 2002.

[68] J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications. In
Proceedings of the 20th Annual ACM Symposium on Computational Geometry, pages
179–199, 2004.

[69] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric prob-
lems. In Proceedings of the 8th Annual ACM Symposium on Theory of Computing,
STOC ’76, pages 10–22, New York, NY, USA, 1976. ACM.

108

[70] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research
Logistics, 34:307–318, 1987.

[71] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding individual human
mobility patterns. Nature, 453(7196):779–782, June 2008.

[72] L.-A. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric
spaces. In Proceedings of the 16th Annual European Symposium on Algorithms, ESA
’08, pages 478–489, Berlin, Heidelberg, 2008. Springer-Verlag.

[73] Y.-J. K. R. Govindan, B. Karp, and S. Shenker. Lazy cross-link removal for geo-
graphic routing. In Proceedings of the 4th ACM Conference on Embedded Networked
Sensor Systems, pages 112–124, 2006.

[74] M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc wireless
networks. IEEE/ACM Transactions on Networking, 10(4):477–486, August 2002.

[75] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2. of Algorithms and Combinatorics, Springer, 1988.

[76] J. Gudmundsson and C. Levcopoulos. Hardness result for TSP with neighborhoods.
Technical report, Technical Report LU-CS-TR:2000-216, Department of Computer
Science, Lund University, Sweden, 2000.

[77] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network design
problems. Technical report, Stanford, CA, USA, 2000.

[78] L. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approximate hulls
with inaccurate primitives. In Proceedings of the International Symposium on Algo-
rithms, SIGAL ’90, pages 261–270, New York, NY, USA, 1990. Springer-Verlag New
York, Inc.

[79] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions
on Information Theory, 46(2):388–404, 2000.

[80] M. Hefeeda and M. Bagheri. Wireless sensor networks for early detection of forest
fires. In Proceedings of the 2007 IEEE International Conference on Mobile Adhoc
and Sensor Systems, pages 1–6, Oct 2007.

[81] M. Held and J. S. B. Mitchell. Triangulating input-constrained planar point sets.
Information Processing Letters, 109(1):54–56, Dec. 2008.

[82] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 32:130–136, 1985.

109

[83] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in problems of
maximum k-coverage. Naval Research Logistics, 45(6):615–627, 1998.

[84] C.-F. Huang, Y.-C. Tseng, and H.-L. Wu. Distributed protocols for ensuring both
coverage and connectivity of a wireless sensor network. ACM Transactions on Sensor
Networks, 3(1), March 2007.

[85] R. Jain, A. Puri, and R. Sengupta. Geographical routing using partial information
for wireless ad hoc networks. IEEE Personal Communications, 8(1):48–57, Feb. 2001.

[86] D. Jea, A. Somasundara, and M. Srivastava. Multiple controlled mobile elements
(data mules) for data collection in sensor networks. In Proceedings of the First IEEE
International Conference on Distributed Computing in Sensor Systems, DCOSS ’05,
pages 244–257, 2005.

[87] A. Kansal, M. Rahimi, W. J. Kaiser, M. B. Srivastava, G. J. Pottie, and D. Estrin.
Controlled mobility for sustainable wireless networks. In IEEE Sensor and Ad Hoc
Communications and Networks.

[88] D. R. Karget and M. Minkoff. Building steiner trees with incomplete global knowl-
edge. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS ’00, pages 613–, Washington, DC, USA, 2000. IEEE Computer
Society.

[89] H. J. Karloff. How long can a Euclidean traveling salesman tour be? SIAM Journal
on Discrete Mathematics, 2(1):91–99, 1989.

[90] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless net-
works. In Proceedings of the 6th Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’00, pages 243–254, 2000.

[91] J. M. Keil. Approximating the complete euclidean graph. In Proceedings of the
1st Scandinavian Workshop on Algorithm Theory, pages 208–213, London, UK, UK,
1988. Springer-Verlag.

[92] R. Kershner. The number of circles covering a set. American Journal of Mathematics,
61(3):665–671, 1939.

[93] M. R. Khani and M. R. Salavatipour. Improved approximation algorithms for the
min-max tree cover and bounded tree cover problems. Algorithmica, 69(2):443–460,
2014.

[94] D. Kim, R. Uma, B. Abay, W. Wu, W. Wang, and A. Tokuta. Minimum latency mul-
tiple data mule trajectory planning in wireless sensor networks. IEEE Transactions
on Mobile Computing, 13(4):838–851, April 2014.

110

[95] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made practi-
cal. In Proceedings of the Second USENIX/ACM Symposium on Networked System
Design and Implementation, May 2005.

[96] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geographic
face routing. In Proceedings of the 2005 Joint Workshop on Foundations of Mobile
Computing, pages 34–43, 2005.

[97] R. Kleinberg. Geographic routing using hyperbolic space. In Proceedings of the 26th
Conference of the IEEE Communications Society, pages 1902–1909, 2007.

[98] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing:
Of theory and practice. In Proceedings of the 22nd ACM International Symposium
on the Principles of Distributed Computing, pages 63–72, 2003.

[99] F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric mo-
bile ad-hoc routing. In Proceedings of the 6th International Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, pages 24–33,
2002.

[100] S. Kumar, T. H. Lai, and J. Balogh. On k-coverage in a mostly sleeping sensor
network. In Proceedings of the 10th Annual International Conference on Mobile
Computing and Networking, MobiCom ’04, pages 144–158, 2004.

[101] S. Kuznetsov and E. Paulos. Participatory sensing in public spaces: activating urban
surfaces with sensor probes. In Proceedings of the 8th ACM Conference on Designing
Interactive Systems, pages 21–30, 2010.

[102] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A
survey of mobile phone sensing. IEEE Communications Magazine, 48(9):140–150,
September 2010.

[103] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, (3):345 – 358.

[104] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Corradi. Mobeyes:
smart mobs for urban monitoring with a vehicular sensor network. IEEE Wireless
Communications, 13(5):52–57, October 2006.

[105] M. Löffler and J. M. Phillips. Shape fitting on point sets with probability distribu-
tions. Computing Research Repository, abs/0812.2967, 2008.

[106] M. Löffler and J. Snoeyink. Delaunay triangulation of imprecise points in linear time
after preprocessing. Computational Geometry: Theory and Applications, 43(3):234–
242, Apr. 2010.

111

[107] M. Ma and Y. Yang. Data gathering in wireless sensor networks with mobile col-
lectors. In IEEE International Symposium on Parallel and Distributed Processing,
pages 1–9. IEEE, 2008.

[108] N. Maisonneuve, M. Stevens, M. E. Niessen, P. Hanappe, and L. Steels. Citizen noise
pollution monitoring. In Proceedings of the 10th Annual International Conference
on Digital Government Research: Social Networks: Making Connections between
Citizens, Data and Government, pages 96–103, 2009.

[109] C. S. Mata and J. S. B. Mitchell. Approximation algorithms for geometric tour
and network design problems. In Proceedings of the 11th Annual ACM Symposium
on Computational Geometry, SCG ’95, pages 360–369, New York, NY, USA, 1995.
ACM.

[110] J. Matousek. Range searching with efficient hierarchical cuttings. In Proceedings of
the 8th Annual ACM Symposium on Computational Geometry, pages 276–285, 1992.

[111] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric tsp, k-mst, and related
problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

[112] J. S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane.
In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pages 11–18, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics.

[113] J. S. B. Mitchell. A constant-factor approximation algorithm for TSP with pairwise-
disjoint connected neighborhoods in the plane. In Proceedings of the 26th Annual
ACM Symposium on Computational Geometry, pages 183–191, 2010.

[114] T. Nagai, S. Yasutome, and N. Tokura. Convex hull problem with imprecise input.
In Revised Papers from the Japanese Conference on Discrete and Computational
Geometry, JCDCG ’98, pages 207–219, London, UK, UK, 2000. Springer-Verlag.

[115] V. Nagarajan and R. Ravi. Approximation algorithms for distance constrained ve-
hicle routing problems. Networks, 59(2):209–214, 2012.

[116] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, 2007.

[117] J. Newsome and D. Song. GEM: graph embedding for routing and data-centric
storage in sensor networks without geographic information. In Proceedings of the 1st
ACM Conference on Embedded Networked Sensor Systems, pages 76–88, 2003.

112

[118] C. H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoretical Computer Science, 4(3):237 – 244, 1977.

[119] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. A review of dynamic vehicle
routing problems. European Journal of Operational Research, (1):1 – 11.

[120] J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy. Picoradio
supports ad hoc ultra-low power wireless networking. Computer, 33(7):42–48, Jul
2000.

[121] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT: A geographic hash table for data-centric storage in sensornets. In Proceedings
of the 1st ACM Workshop on Wireless Sensor Networks and Applications, pages
78–87, 2002.

[122] L. Roditty. Fully dynamic geometric spanners. In Proceedings of the 23rd Annual
ACM Symposium on Computational Geometry, SCG ’07, pages 373–380, New York,
NY, USA, 2007. ACM.

[123] S. Safra and O. Schwartz. On the complexity of approximating TSP with neigh-
borhoods and related problems. In Proc. 11th Annu. European Sympos. Algorithms,
volume 2832 of Lecture Notes Comput. Sci., pages 446–458. Springer-Verlag, 2003.

[124] D. Salesin, J. Stolfi, and L. Guibas. Epsilon geometry: Building robust algorithms
from imprecise computations. In Proceedings of the 5th Annual ACM Symposium
on Computational Geometry, SCG ’89, pages 208–217, New York, NY, USA, 1989.
ACM.

[125] R. Sarkar and J. Gao. Differential forms for target tracking and aggregate queries
in distributed networks. In Proceedings of the 16th Annual International Conference
on Mobile Computing and Networking.

[126] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with guaranteed
delivery using ricci flows. In Proceedings of the 8th International Symposium on
Information Processing in Sensor Networks, pages 97–108, April 2009.

[127] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in sensor
networks. IEEE/ACM Transactions on Networking, 17(6):1902–1915, Dec. 2009.

[128] K. Seada, A. Helmy, and R. Govindan. On the effect of localization errors on ge-
ographic face routing in sensor networks. In Proceedings of the 3rd International
Symposium on Information Processing in Sensor Networks, pages 71–80, 2004.

[129] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling a three-tier
architecture for sparse sensor networks. In Proceedings of the 1st IEEE International
Workshop on Sensor Network Protocols and Applications, pages 30–41, 2003.

113

[130] A. Shalita and U. Zwick. Efficient algorithms for the 2-gathering problem. In Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’09, pages 96–105, Philadelphia, PA, USA, 2009. Society for Industrial and Applied
Mathematics.

[131] P. Slav́ık. The errand scheduling problem. Technical report 97-2, Department of
Computer Science, SUNY, Buffalo, 1997.

[132] A. Somasundara, A. Kansal, D. Jea, D. Estrin, and M. Srivastava. Controllably
mobile infrastructure for low energy embedded networks. IEEE Transactions on
Mobile Computing, 5(8):958–973, Aug 2006.

[133] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava. Mobile element schedul-
ing with dynamic deadlines. IEEE Transactions on Mobile Computing, 6(4):395–410,
2007.

[134] I. Stojmenovic and X. Lin. Loop-free hybrid single-path/flooding routing algorithms
with guaranteed delivery for wireless networks. IEEE Transactions on Parallel and
Distributed Systems, 12(10):1023–1032, 2001.

[135] I. Stojmenovic and J. Wu. Broadcasting and activity scheduling in ad hoc networks.
Mobile Ad Hoc Networking, pages 205–229, 2004.

[136] Z. Svitkina. Lower-bounded facility location. In Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’08, pages 1154–1163, Philadelphia,
PA, USA, 2008. Society for Industrial and Applied Mathematics.

[137] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst., 10:557–570, Oct. 2002.

[138] D. Tian and N. D. Georganas. Wireless Communications and Mobile Computing,
(2):271–290.

[139] M. van Kreveld, M. Löffler, and J. S. B. Mitchell. Preprocessing imprecise points and
splitting triangulations. SIAM Journal on Computing, 39(7):2990–3000, June 2010.

[140] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden. The orienteering problem:
A survey. European Journal of Operational Research, (1):1 – 10.

[141] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, New York, 2001.

[142] Z. Vincze and R. Vida. Multi-hop wireless sensor networks with mobile sink. In
Proceedings of the 2005 ACM Conference on Emerging Network Experiments and
Technologies, CoNEXT ’05, pages 302–303, New York, NY, USA, 2005. ACM Press.

114

[143] B. Wang. Coverage problems in sensor networks: A survey. ACM Computing Surveys,
43(4):32:1–32:53, October 2011.

[144] B. Wang, K. C. Chua, V. Srinivasan, and W. Wang. Scheduling sensor activity
for point information coverage in wireless sensor networks. In Proceedings of the
4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, pages 1–8, April 2006.

[145] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Valencia,
D. Swain, and G. Bishop-Hurley. Transforming agriculture through pervasive wireless
sensor networks. IEEE Pervasive Computing, 6(2):50–57, April 2007.

[146] F.-J. Wu and Y.-C. Tseng. Energy-conserving data gathering by mobile mules in a
spatially separated wireless sensor network. Wireless Communications and Mobile
Computing, 13(15).

[147] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage
and connectivity configuration for energy conservation in sensor networks. ACM
Transactions on Sensor Networks, 1(1):36–72, Aug. 2005.

[148] A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

[149] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. Spacetwist: Managing the trade-offs
among location privacy, query performance, and query accuracy in mobile services.
In Proceedings of the 24th International Conference on Data Engineering, pages 366–
375, 2008.

[150] W. Yu and Z. Liu. Vehicle routing problems with regular objective functions on a
path. Naval Research Logistics, (1):34–43.

[151] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity
on wireless sensor networks. In Proceedings of the 2nd International Conference on
Mobile Systems, Applications, and Services, pages 125–138, 2004.

[152] Z. Zhou, S. Das, and H. Gupta. Connected k-coverage problem in sensor networks.
In Proceedings of the International Conference on Computer Communications and
Networks, pages 373–378, 2004.

115

	Introduction
	Spanner on Imprecise Points
	Introduction
	Preliminary Information
	Algorithm Description
	Algorithm Analysis
	Conclusion

	Distributed Mobile Sensor Coverage
	Introduction
	Preliminary Information
	Distributed Approximation Algorithms
	Conclusion

	The Data Gathering Problem
	Introduction
	Single Mule Scheduling
	k-Mule scheduling
	No Data Loss Scheduling
	Different Capacities
	Practical Algorithms
	Single Mule Scheduling
	No Data Loss Scheduling

	Simulations
	Single Mule Simulations
	No Data Loss Simulations

	Conclusion

	The Shortest Separating Cycle Problem
	Introduction
	Hardness
	APX-hard For Unit Length Segments
	Inapproximability for Any Length Segments

	Algorithms
	Board Size 2-, Horizontal Unit Segments
	Board Size 2-, Horizontal and Vertical Unit Segments
	Constant Board Size
	Any Board Size, Horizontal and Vertical Unit Segments
	Any Orientation, Bounded Aspect Ratio
	The General Case
	Separating Subdivision Problem

	Conclusion

	bold0mu mumu rr0rrrr-gather Clustering
	Introduction
	Static bold0mu mumu rr0rrrr-Gather
	Dynamic bold0mu mumu rr0rrrr-Gather
	Decentralized Algorithm
	Maximal Independent Neighborhoods

	Conclusion

	Geographical Routing in 3D
	Introduction
	Graph Augmentation
	Directed Graphs

	Experiments
	Conclusion

	Future Work

