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Abstract of the Dissertation

Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

by

Ming Zhong

Doctor of Philosophy

in

Computer Science

Stony Brook University

2016

In this dissertation, we focus on extending classical spectral shape analysis by
incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined
with the graph Laplacian eigenbasis, the spectral graph wavelets are localized
both in the vertex domain and graph spectral domain, and thus are very effective in
describing local geometry. With a rich dictionary of elementary vectors and forc-
ing certain sparsity constraints, a real life signal can often be well approximated
by a very sparse coefficient representation. The many successful applications of
sparse signal representation in computer vision and image processing inspire us
to explore the idea of employing sparse modeling techniques with dictionary of
spectral basis to solve various shape modeling problems.

Conventional spectral mesh compression uses the eigenfunctions of mesh Lapla-
cian as shape bases, which are highly inefficient in representing local geometry.
To ameliorate, we advocate an innovative approach to 3D mesh compression us-
ing spectral graph wavelets as dictionary to encode mesh geometry. The spectral
graph wavelets are locally defined at individual vertices and can better capture
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local shape information than Laplacian eigenbasis. The multi-scale SGWs form a
redundant dictionary as shape basis, so we formulate the compression of 3D shape
as a sparse approximation problem that can be readily handled by greedy pursuit
algorithms.

Surface inpainting refers to the completion or recovery of missing shape ge-
ometry based on the shape information that is currently available. We devise
a new surface inpainting algorithm founded upon the theory and techniques of
sparse signal recovery. Instead of estimating the missing geometry directly, our
novel method is to find this low-dimensional representation which describes the
entire original shape. More specifically, we find that, for many shapes, the vertex
coordinate function can be well approximated by a very sparse coefficient repre-
sentation with respect to the dictionary comprising its Laplacian eigenbasis, and
it is then possible to recover this sparse representation from partial measurements
of the original shape. Taking advantage of the sparsity cue, we advocate a novel
variational approach for surface inpainting, integrating data fidelity constraints on
the shape domain with coefficient sparsity constraints on the transformed domain.
Because of the powerful properties of Laplacian eigenbasis, the inpainting results
of our method tend to be globally coherent with the remaining shape.

Informative and discriminative feature descriptors are vital in qualitative and
quantitative shape analysis for a large variety of graphics applications. We advo-
cate novel strategies to define generalized, user-specified features on shapes. Our
new region descriptors are primarily built upon the coefficients of spectral graph
wavelets that are both multi-scale and multi-level in nature, consisting of both
local and global information. Based on our novel spectral feature descriptor, we
developed a user-specified feature detection framework and a tensor-based shape
matching algorithm.

Through various experiments, we demonstrate the competitive performance of
our proposed methods and the great potential of spectral basis and sparsity-driven
methods for shape modeling.
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Chapter 1

Introduction

With the advent of ever more advanced and affordable 3D data acquisition tech-
nologies, digitalized 3D shapes have become ubiquitous in our daily life and
played indispensable roles in numerous fields and applications, including computer-
aided design, entertainment industry, medical research, etc. Although it is straight-
forward to represent and manipulate shape geometry directly in the spatial do-
main, in recent years there has been a growing trend towards spectral shape anal-
ysis, leveraging the eigen-structures of various mesh operators, especially the
Laplacian operator. In this chapter, we give an overview of the main theme of
this dissertation: spectral representations and sparsity-driven algorithms for shape
modeling and analysis.

1.1 Problem Statement

In order to effectively encode 3D geometric data and facilitate different shape
analysis and processing tasks, many different shape representations have been
developed and adopted, including point clouds, polygon meshes, spline surfaces,
voxels, etc. Choosing the most appropriate representation generally depends on
the specific data source and task at handbut of all these representations, polygon
meshes, especially triangle meshes, are perhaps the most widely used. Thanks
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to its conceptual simplicity, the discrete mesh representation is flexible, versatile,
and highly efficient for batch processing and rendering.

From the point of view of signal processing, the vertex coordinate function
of a mesh is essentially a vector-valued discrete signal defined on the domain of
mesh vertices, just like an image is a color-valued signal defined on 2D grids. Nat-
urally, the countless successful applications of digital signal processing with con-
ventional types of signals, such as audio and images, have long motivated people
to employ and adapt signal processing techniques to solve shape modeling prob-
lems in the mesh domain. For instance, in one of the pioneering works [147] on
geometric signal processing, Taubin showed that the operation of surface smooth-
ing can be carried out by applying the graph Laplacian operator to the mesh co-
ordinates, which is equivalent to low-pass filtering of discrete signals defined on
vertices.

One key aspect of signal processing is to represent signals in some transform
domain by decomposing the signal as the linear combination of a suitable choice
of basis vectors. Analyzing the coefficient representation with respect to the trans-
form basis can often reveal important properties of the original signal, and many
operations that are difficult to perform directly on the spatial domain can be eas-
ily accomplished in the transform domain by manipulating the coefficients. In
Euclidean space, the most fundamental transform is the well known Fourier trans-
form, which converts signals from time/space domain to frequency domain with
multi-scale sinusoids as basis.

The classic Fourier basis functions are actually the eigenfunctions of the second-
order differential operator in Euclidean space, corresponding to the spectra of 1D
Laplacian. In general, spectral analysis refers to the analysis in terms of the eigen-
values and eigenfunctions of certain linear operator.

In the context of geometry processing and analysis, the natural equivalent to
the Fourier basis is the set of eigenfunctions of the mesh’s Laplacian operator.
According to the spectral graph theory, the Laplacian eigenfunctions form an or-
thonormal and complete basis of functions defined on the mesh vertices, thus in-
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ducing the graph Fourier transform which affords space-frequency decomposition
of functions defined on the surface, analogous to the Fourier transform in regular
domains.

Unlike classic Fourier basis functions which are simply fixed sinusoids, the
manifold harmonic basis differ with the connectivity, geometry, and the type of
Laplacian operator that is adopted [163]. As a result, the mesh Laplacian eigen-
vectors and eigenvalues actually encode substantial topological and geometric in-
formation and can help characterize the global shape property and reveal intrinsic
structure of the original mesh. This lends to the popularity of spectral methods for
shape analysis and processing, including compression [67], segmentation [90],
deformation [129], remeshing [35], paramterization [166], shape indexing [128],
and retrieval [80], to name just a few.

Myriads of successful applications notwithstanding, there are certain limita-
tions in employing the Laplacian eigenpairs directly for shape analysis. Primarily,
the Laplacian eigenvalues and eigenvectors are determined by the global Lapla-
cian matrix and thus encode information of the entire shape. Hence, they are more
suitable for representing the overall shape but are not very effective in encod-
ing local details. In addition, the Laplacian eigenpairs are not very stable across
shapes and direct comparisons become unreliable after the first few eigenpairs. To
more effectively describing the properties of local regions and the pair-wise rela-
tions between regions in a shape, people have developed a series of sophisticated
spectral representations building upon the Laplacian eigenpairs, including various
forms of kernels and distances.

In recent years, the focus of harmonic analysis has been moving from orthog-
onal basis with minimum size like the Fourier basis to richer, more expressive
dictionaries with many redundant atoms such as wavelets, and from simple deter-
minant time-frequency transform to coefficient decomposition based on sparsity-
seeking optimization. Comparing with Fourier-based signal processing, richer
dictionaries allows more flexibility in basis design and affords greater expressive
power. With suitable dictionary and appropriate sparse optimization algorithm,
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the obtained representation can provide a very concise description or approxi-
mation of the original signal, help manifest a signal’s essential components, and
potentially facilitate a diversity of applications such as signal compression, pattern
recognition, noise reduction, source separation and signal restoration.

The concepts of redundant dictionary and sparse representation have gained
great momentum in the signal processing community [98], but most existing study
focused on regular domains such as images and audio rather than the more chal-
lenging and universal problem of signal processing on graphs. In this dissertation,
we will present our research work in shape analysis and processing by incorporat-
ing spectral representations and sparse modeling techniques.

1.2 Contributions

The basic idea of sparse modeling is to use as few as possible elementary func-
tions chosen in a dictionary to decompose or approximate a signal, based on the
intuition that a meaningful high-dimensional signal probably possesses a low-
dimensional intrinsic structure, which can be captured by a sparse coefficient rep-
resentation with respect to a suitable dictionary. Given a redundant dictionary, we
can compute a sparse decomposition or approximation of the original signal by
using various sparse optimization algorithms. The obtained sparse representation
provides not only a more concise description of the original signal, which can
be utilized for signal compression, but also, in many cases, a more precise and
structure-revealing one.

The efficacy of sparsity-driven algorithms highly depends on the selection of
dictionaries. Generally, the more “expressive” the dictionary is, the fewer elemen-
tary functions are needed to faithfully reconstruct the original signal, as there are
more “words” available to express the information. Hence, instead of selecting a
complete and orthogonal basis like the Fourier basis as the dictionary, it is often
desirable to construct a redundant, overcomplete dictionary.

A natural choice for constructing redundant dictionary is to use wavelets. A
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family of wavelets can be generated by scaling and translating a single mother
wavelet function, forming a rich dictionary of elementary signals of different
frequencies and centered at different locations. However, defining wavelets and
wavelet transform on mesh or manifold domain have always been a challenging
problem, since there is no intuitive way to define scaling on irregular mesh grids.
Recently, Hammond et al. proposed the spectral graph wavelets (SGWs) and
spectral graph wavelet transform (SGWT) [59] , in which the wavelet functions
are defined with the spectral graph basis and scaling is carried out in the Fourier
domain. The SGWs constitute an overcomplete wavelet frame, whose properties
such as multi-scale and spatial-locality of SGWs have proved to be valuable in a
variety of data analysis applications.

In addition to acting as overcomplete basis for shape signals, the spectral graph
wavelets also captures valuable intrinsic geometric information of the original
shape in a multi-scale and spatially-localized way, and thus become a promising
choice to serve as the building blocks for constructing local shape descriptors.

In this dissertation, we present solutions combining graph-based spectral rep-
resentations, especially spectral graph wavelets, and sparse modeling methods
to a series of fundamental problems in shape analysis and geometry processing,
including mesh compression, surface inpainting, feature description, shape corre-
spondence and shape retrieval. Through various experiments, we demonstrate the
competitive performance of our proposed methods and the great potential of spec-
tral representations and sparse modeling in shape analysis and processing. Fig. 1.1
highlights the hierarchy of our methodology. Specifically, the contributions of this
dissertations are summarized as follows:

Sparse Approximation of 3D Shapes (Chapter 3)
We present an innovative approach to 3D mesh compression using spectral
graph wavelets as dictionary to encode mesh geometry. In contrast to Lapla-
cian eigenbasis, the spectral graph wavelets are locally defined at individual
vertices and can better capture local shape information in a more accurate
way. Nonetheless, the multi-scale spectral graph wavelets form a redundant
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Figure 1.1: Conceptal hierarchy of this dissertation.

dictionary as shape bases, so we formulate the compression of 3D shape as
a sparse approximation problem that can be readily handled by algorithms
such as orthogonal matching pursuit. Various experiments demonstrate that
our method are superior to the existing spectral mesh compression methods.

Sparsity-Driven Surface Inpainting (Chapter 4)
We devise a new algorithm for completing surface with missing geometry
and topology founded upon the theory and techniques of sparse signal re-
covery. We find that for many shapes the vertex coordinate function can be
well approximated by a very sparse coefficient representation with respect
to the dictionary comprising its Laplacian eigenbasis, and it is then possible
to recover this sparse representation from partial measurements of the orig-
inal shape. Taking advantage of the sparsity cue, we advocate a novel vari-
ational approach for surface inpainting, integrating data fidelity constraints
on the shape domain with coefficient sparsity constraints on the transformed
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domain. Because of the powerful properties of Laplacian eigenbasis, the in-
painting results of our method tend to be smooth and globally coherent with
the remaining shape. We demonstrate the performance of our new method
via various examples in geometry restoration, shape repair, and hole filling.

Shape Feature Description based on Spectral Wavelets (Chapter 5)
We propose a new kind of shape feature descriptors built upon the coeffi-
cients of spectral graph wavelets and biharmonic distance fields. Our novel
descriptors are both multi-scale and multi-level in nature, effectively en-
coding both local and global information for the characterization of user-
specified feature regions. Via extensive experiments and comprehensive
comparisons with the state-of-the-art, our descriptor has exhibited many
attractive advantages such as being geometry-aware, versatile, robust, dis-
criminative, and isometry-invariant.

Feature-Driven Shape Correspondence and Retrieval (Chapter 6)
We develop effective feature-driven articulated shape correspondence and
retrieval algorithms based on spectral descriptors. For coarse matching, we
adopt tensor-based high-order graph matching to maximizes the geometric
compatibility between features tuples, and for dense matching, we present
a hierarchical shape registration algorithm, generating correspondence in
multiples levels in a coarse-to-fine manner. We also propose the novel Bag-
of-Feature-Graph (BoFG) descriptor for shape retrieval. For each geometric
word in the vocabulary, BoFG constructs a graph that records spatial rela-
tions of all feature pairs in the shape, weighted by their similarities to this
word. The BoFG descriptor significantly reducing the number of points
required for computing distributions in comparisons with more traditional
Bag-of-Words descriptors.
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1.3 Dissertation Organization

The remainder of this proposal is organized as follows. In Chapter 2, we briefly
review harmonic analysis in the manifold and mesh domain, including the theories
and applications of manifold harmonic basis and spectral graph wavelets; we also
give an overview of the concept of sparse and redundant representation as well as
related computational methods. In Chapter 3, we present an innovative approach
to 3D mesh compression using spectral graph wavelets as dictionary to encode
mesh geometry; in contrast to Laplacian eigenbasis, the spectral graph wavelets
are locally defined at individual vertices and can better capture local shape in-
formation in a more accurate way. In Chapter 4, we devise a new algorithm for
completing surface with missing geometry and topology founded upon the theory
and techniques of sparse signal recovery using the manifold harmonic basis as
dictionary. In Chapter 5, we propose a new kind of shape descriptors built upon
spectral graph wavelets for the characterization of user-specified feature regions
and develop a generalized feature detection framework. In Chapter 6, we present
our new algorithms for feature-driven shape correspondence and retrieval based
on spectral shape descriptors. Finally, we conclude this dissertation with discus-
sions and outline a few future research directions in Chapter 7.
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Chapter 2

Background Review

In this chapter, we first briefly review spectral analysis in the context of shape
modeling, including the theories and applications of graph Fourier transform and
spectral graph wavelets. Then we give an overview of the concept of sparse repre-
sentation modeling as well as its related computational methods and applications
in signal processing.

2.1 Laplacian and Graph Fourier Transform

Fourier transform is perhaps the most fundamental tool for classical time-frequency
(or space-frequency) signal analysis. The key idea is to decompose a tempo-
ral/spatial signal into the linear combinations of a set of sinusoid functions (i.e.,
the Fourier basis) of different frequencies. The collection of Fourier basis func-
tions {φn;n ∈ Z} form a complete orthogonal basis [55] of the underlying func-
tion space F , and the transform coefficients gives a frequency-domain represen-
tation of the original signal. In general, this decomposition can be written as

f =
∞∑

k=−∞

〈f, φk〉φk (2.1.1)

Consider the classical Fourier analysis in R1. From the perspective of dif-
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ferential equations, the kth Fourier basis function φk(x) = e−iωkx satisfies the
following equation:

− ∂2φk(x)

∂x2
= ω2

kφk(x). (2.1.2)

That is, in 1D Euclidean space, the Fourier basis functions are actually the
eigenfunctions of the second-order derivative operator ∂2

∂x2
, which can be regarded

as 1D Laplace operator. The eigenvalue ω2
k is the square of the frequency of

associated eigenfunction φk.
The concept of Fourier transform and Fourier basis can be generalized to the

manifold and mesh/graph domains, as will be described in this section.

2.1.1 Manifold Fourier Transform

Given a manifold M with Riemannian metric g. The goal is to find a family
of functions {φk(x)} that form a orthonormal and complete basis of the Hilbert
space Ł2(M, }) : M → R with properties similar to the classical Fourier ba-
sis. In manifold space, the equivalent to the Laplace operator is the Laplace-

Beltrami operator which acts on scalar functions defined on the manifold. We
denote by ∆M the Laplace-Beltrami operator ofM. The Laplace-Beltrami oper-
ator is a self-adjoint and semi-positive definite operator [130], hence ∆M admits
an orthonormal eigensystem. By solving the following Dirichlet problem for the
Laplacian {

∆Mf(x) = −λf(x), x ∈M
f |∂M = 0

(2.1.3)

we obtain the eigenvalues {λk}∞k=0 and eigenfunctions {φk(x)}∞k=0 of the Laplace-
Beltrami operator. According to the spectral theorem, the eigenvalues constitute a
real diverging sequence

0 ≤ λ0 ≤ λ1 ≤ · · · ≤ +∞
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and the eigenfunctions {φk}∞k=0 form a complete and orthonormal basis of the
Hilbert space L2(M) [83], i.e., the space of integrable functions defined onM.

The eigenvalues {λk}∞k=0 are sometimes referred to as the Laplace-Beltrami
spectra [128], which are analogous to {ω2

n} in Eq. 2.1.2 in classical Fourier trans-
form; their square roots can be deemed as the global shape frequencies. The
eigenfunctions, also known as the manifold harmonics or shape harmonics [154],
have global periodic oscillations on the manifold, behaving similarly to sine and
cosine functions over the real line.

A function f(x) ∈ L2(M) then can be uniquely expanded on the manifold
harmonics

f(x) =
∞∑
k=0

f̂(k)φk(x), (2.1.4)

where

f̂(k) = 〈f(x), φk(x)〉. (2.1.5)

We may call {f̂(k)} the manifold harmonics transform of function f(x).

2.1.2 Mesh Laplacian and Spectral Mesh Processing

Now we consider the discretization of Laplacian-Beltrami operator and MHB. In
geometry processing, we often represent or approximate surfaces with discrete
meshes. Consider a manifoldM approximated by triangular mesh M with vertex
set V := {vi, i = 1, . . . , N}, edge set E, and face set F . |V | = N is the size
of M . In addition, we define N(i) = {j|(vi, vj) ∈ E} and di = |N(i)|. N(i)

denotes the index set of the 1-ring neighborhood of the vertex vi, and di is the
valence of vi.

In principle,M can be viewed as the geometric embedding of a graph structure
G into R3. In another word, M can be decomposed into the topological compo-
nent, namely the underlying graph structure G, and the geometric component,
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i.e., the vertex coordinate function P which maps each vertex vi of the graph to a
position in the 3D Euclidean space pi ∈ R3.

The discrete Laplace-Beltrami operator of M is a N ×N matrix ∆M = (δij),
i.e., the Laplace matrix, defined by the result of applying it to a function f defined
on V :

∆Mf(vi) =
N−1∑
j=0

δijf(vj). (2.1.6)

The Laplacian is a local operator and its effect only impacts each vertex’s
immediate neighbors. Hence, the Laplacian matrix has the general form

∆Mf(vi) =
1

ai

∑
j∈N(i)

wij(f(vi)− f(vj)), (2.1.7)

where N(i) denotes the index set of the 1-ring neighbors of vi, and ai are the
masses associated with each vertex and wij represents the weight of each edge.

Depending on the choice of ai and wij , mesh Laplacian may have many dif-
ferent forms and can be classified as either combinatorial or geometric [163].

One simple discretization of the smooth Laplace-Beltrami operator is to define
∆f(pi) as the average difference between the function values at vi and its 1-ring
neighborhood

∆f(vi) =
1

di

∑
j∈N(i)

[f(vi)− f(vj)]. (2.1.8)

The corresponding Laplacian matrix is

∆(i, j) =


di i = j

−1 (pi, pj) ∈ E
0 otherwise

(2.1.9)

∆ and some of its variations are called the combinatorial Laplacian or graph

Laplacian, since they only take into account the connectivity of the underlying
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Figure 2.1: Angles in cotangent weights (courtesy of [143]).

graph topology while ignoring the geometric properties. Graph Laplacian can
serve as a good approximation of the smooth Laplacian only when the mesh ver-
tices are uniformly distributed.

To faithfully approximate smooth Laplacian on arbitrary meshes, we need to
take into account geometric information such as the distances between neighbor-
ing vertices and the angles between contiguous edges. Such defined Laplacian is
called the geometric Laplacian.

Constructing discrete Laplace-Beltrami operator on general meshes is not a
trivial task. In fact, it is impossible to make discrete Laplacian to simultaneously
converge to smooth Laplacian and be symmetric on general meshes [132]. Many
different versions of geometric discrete Laplacian have been proposed [5, 33,
83, 122, 154, 160]. One of the most popular scheme was proposed by Meyer et
al. [101]. It uses the cotangents of the two angles opposite to an edge to weight
the edge, and the area of the Voronoi cell size surrounding a vertex to weight the
vertex. Its action on vertex-based function f on mesh M is

∆f(vi) =
1

ai

∑
j∈N(i)

wij
f(vi)− f(vj)

di
. (2.1.10)

Here ai is the area of the Voronoi cells around vertex vi, and the weights
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wij :=
cotαij + cot βij

2
, (2.1.11)

where αij and βij denote the two angles opposite to the edge (vi, vj) (See
Fig. 2.1).

Let us define the area matrix A = diag(ai) and weight matrix W as

W (i, j) =


∑

k∈N(i) wik i = j

−wij (vi, vj) ∈ E
0 otherwise

The geometric Laplacian matrix then can be written as L = A−1W .
Generally, such defined L is not symmetric. However, we can rewrite the the

equation Lφ = λφ as the generalized eigenvalue problem

Wφ = λAφ. (2.1.12)

Since W is symmetric and A is symmetric positive-definite, the generalized
eigenvectors φi corresponding to different generalized eigenvalues λi are orthog-
onal, and all of the generalized eigenvalues/eigenvectors are real. We should note
that the orthogonality is with respect to the inner product induced by A

〈φi, φj〉 = φi
TAφj = 0, i 6= j. (2.1.13)

If the mesh vertices are evenly distributed, i.e., each vertex has the same
Voronoi cell size, we can make A = I by proper normalization. In this case,
the A-inner product becomes the standard dot product (I-inner product). This
is unfortunately not valid for general meshes whose vertices are not distributed
uniformly over the surface area. We may adopt the symmetric version of mesh
Laplacian Ls = A−1/2WA−1/2, which will give the same eigenvalues [154]. The
original eigenvectors can be obtained by φi = W−1/2φs

i . However, this sym-
metrization is not preferable since solving the generalized eigenvalue problem is
more stable than inverting W [127].
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Let {λi}N−1
i=0 be the set of generalized eigenvalues of ∆M = A−1W , and

{φi ∈ RN} their corresponding eigenvectors. A square-integrable scalar func-
tion f defined on V can be expanded as the linear combination of the eigenvectors

f(p) =
N−1∑
k=0

〈f , φk〉Aφk(p), (2.1.14)

where the inner-product is the A-induced scalar product

〈f ,g〉A = fTAg =
N−1∑
i=0

aif(i)g(i). (2.1.15)

Unlike classic Fourier basis functions which are simply fixed sinusoids, the
manifold harmonic basis differ with the connectivity, geometry, and the type of
Laplacian operator that is adopted [163]. As a result, the mesh Laplacian eigen-
vectors and eigenvalues actually encode substantial topological and geometric in-
formation and can help characterize the global shape property and reveal intrinsic
structure of the original mesh. In addition, Laplace-Beltrami operator is glob-
ally defined and is completely determined by the metric tensor, which is itself an
isometry invariant. Hence, the Laplacian eigenvalues and eigenfunctions encode
meaningful global intrinsic information about the shape and they are invariant un-
der isometric deformations up to a change in sign [132, 146]. This lends to the
popularity of spectral methods in the area of geometry processing and analysis.

There has been a great number of methods in literature directly employing the
Laplacian eigenstructures to tackle various shape modeling problems, including
compression [67], segmentation [90], deformation [129], remeshing [35], param-
terization [166], shape indexing [128, 132], and retrieval [80]. We refer readers
to [163] for a more thorough review of the theories and applications of spectral
methods for shape analysis and processing.
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2.2 Kernels and Spectral Graph Wavelets

2.2.1 Kernel Functions

On manifold M, consider a bivariate kernel Θ = {θ(x, y)} which shares the
same eigenvectors, {φi}∞i=0, with the Laplace-Beltrami operator ∆M. Suppose Θ

admits an eigendecomposition Θφi = αiφi with the eigenvalues {αi}∞i=0, then the
kernel function can be represented as

θ(x, y) =
∞∑
i=0

αiφi(x)φi(y), (2.2.1)

or
Θ = Φdiag({αi})Φt. (2.2.2)

This is to say, Θ can be diagonalized by the eigenbasis of ∆M.
Suppose the eigenvalues of Θ is some functions of the eigenvalues of ∆M, i.e.,

there is some function g(·) such that αi = g(λi), then the kernel can be expressed
as

θ(x, y) =
∞∑
i=0

g(λi)φi(x)φi(y). (2.2.3)

Since the Laplacian eigenvalues {λi} can be regarded as the frequency of the
shape, g(·) is essentially a transfer function and Θ is a filtered version of ∆M

The concept of manifold/graph Fourier transform can be extended to the bi-
variate case to define kernels. Suppose we have a bivariate kernel θ :M×M→
R which corresponds to a self-adjoint operator Θ. The bivariate kernel θ can be
expanded on the manifold Fourier basis

θ(x, y) =
∞∑
k=0

θ̂(k)φk(x)φk(y), (2.2.4)

where
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θ̂(k) = 〈〈θ(x, y), φk(x)〉, φk(y)〉. (2.2.5)

θ̂(k) can be deemed as the Fourier transform of the bivariate kernel with a
slight abuse of language.

For example, the Laplace-Beltrami operator itself can be expanded as

∆M(x, y) =
∞∑
i=0

λkφk(x)φk(y). (2.2.6)

Its Fourier transform therefore is ∆̂M(k) = λk.
The kernel function θ(x, y) describes the relations between each pair of points

on the manifold, and its diagonal θ(x, x) amounts to a signature function for the
characterization of individual points.

One well known kernel function is the heat kernel K(t, x, y), which is the
fundamental solution to the heat equation with appropriate boundary condition.
For example, the heat kernel for the Dirichlet problem is solution to the equation


∂K
∂t

(t, x, y) = ∆MK(t, x, y) ∀t > 0 and ∀x, y ∈M
limt→0K(t, x, y) = δx(y) ∀x, y ∈M
K(t, x, y) = 0. x ∈ ∂M or y ∈ ∂M

(2.2.7)

Expanded on the manifold harmonic functions, the heat kernel with time pa-
rameter t has the following expression:

K(t, x, y) =
∞∑
k=0

e−λktφk(x)φk(y). (2.2.8)

On the mesh domain, the heat kernel affords a multi-scale, stable and intrin-
sic characterization of the geometric shape [146], and have been the foundation
for many shape analysis applications including shape matching [114] and shape
retrieval [14].
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2.2.2 Wavelets on Graphs

Wavelet is a powerful analytical tool in signal processing. Intuitively speaking, a
wavelet is just a wave-like pulse in time (or space). By scaling and translating a
single mother wavelet, we may obtain a family of wavelet functions that cover the
entire domain in question. Similar to Fourier analysis in which a function f can
be decomposed into a series of component harmonics, in wavelet analysis f can
be expanded by a family of component wavelets. Nevertheless, there are some
fundamental differences between the Fourier and wavelet analysis:

• In Fourier analysis, each component harmonic is globally defined in space/time.
In wavelet analysis, the component wavelet are all locally defined at differ-
ent locations.

• In Fourier analysis, each component harmonic has an exclusive frequency.
In wavelet analysis, we use multiple wavelets localized at different loca-
tions to represent the information of a single frequency. Generally, for
large scale information (low frequency), we use fewer wavelets; whereas
for small scale information (high frequency), we use more wavelets.

• The component harmonics in Fourier analysis are all orthogonal to each
other. In fact, the Fourier basis functions form an orthonormal basis of the
space of square-integrable functions. This is not necessarily true for wavelet
functions.

In a nutshell, wavelet functions can be simultaneously localized in both time/space
and frequency domain, in contrast to the Fourier transform in which the basis
harmonic functions are all globally defined in time/space. For signals whose pri-
mary information lies in localized singularities, such as edges in images or step
discontinuities in time series signals, wavelet transform affords a more compact
representations than a transform with global basis such as the Fourier transform.

There have been many efforts to introduce wavelet methods to the field of
visual computing. Representative applications include image segmentation [44],
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image-based rendering [112], volume rendering [89], scientific visualization [30],
spectral rendering [28], animation compression [119], etc.

Classical wavelets are constructed by translating and scaling a mother wavelet
in Euclidean space, however, transplanting wavelets to graphs (specifically, trian-
gular meshes) is not straightforward due in part to the fact that it is unclear how to
apply the scaling operation on a signal that is defined on the mesh vertices, so early
studies using wavelet mostly relied on the spherical parameterization [92, 159].

One popular scheme to imitate scaling on meshed surfaces is achieved via ex-
plicit subdivision, which iteratively refines the mesh geometry, and at the same
time, also refines the functions defined on the mesh. The constructed wavelets
are biorthogonal and locally supported. The subdivision wavelets rely on the
subdivision connectivity of the mesh, which restricts the application scope to
data compression and level-of-detail rendering. The idea of subdivision wavelets
was first proposed by Schröder and Sweldens [136], in which the lifting scheme
was used to construct wavelets on sphere. Lounsbery et al. [93] studied MRA
of wavelets constructed on surfaces of arbitrary topology type. In [8], Bertram
et al. utilized bicubic B-spline subdivision to construct wavelet transform that
affords boundary curves and sharp features. As a drawback, the subdivision
wavelet requires the meshes to have subdivision connectivity, where remeshing
process is frequently needed. To avoid remeshing, Valette and Prost [153] ex-
tended the subdivision wavelet for triangular meshes using irregular subdivision
scheme that can be directly computed on irregular meshes. On spherical domains,
Haar wavelets [11, 108] were constructed over nested triangular grids generated
by subdivision. Recently, the spherical Haar wavelet basis was improved to the
SOHO wavelet basis [82] that is both orthogonal and symmetric.

Another method to construct graph and mainfold wavelets is through diffu-
sion [29, 62]. In sharp contrast to the aforementioned subdivision wavelets, the
diffusion wavelets adopt a bottom-up philosophy starting from the fine input data.
The Diffusion wavelets [29] use a diffusion operator and its powers to expand the
nested subspaces, where scaling functions and wavelet functions are obtained by
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orthogonalization and rank-revealing compression. This diffusion-driven method-
ology naturally dilates the functions associated with the underlying heat diffusion
process, which solely depends on manifold geometry. It allows flexible construc-
tion directly from data. However, the constructed scaling and wavelet functions
are not locally-supported, which limits the functionality of space localization. In
fact, it is impossible to construct wavelets that are simultaneously fully orthog-
onal, locally supported, and symmetric [93]. As an improvement, the biorthog-
onal diffusion wavelets (BDW) [95] were introduced, relieving the excessively-
strict orthogonality property of scaling functions. In [97], diffusion wavelets were
adopted to approximate scalar-valued functions based on analyzing the structure
and topology of the state space. Rustamov [133] studies the relation between
mesh editing and diffusion wavelets by introducing the generalized linear editing
(GLE). However, neither the DW nor the BDW have achieved localization in both
manifold and frequency domain.

In [62], an admissible diffusion wavelets (ADW) on meshed surfaces and point
clouds is proposed. The ADW are constructed in a bottom-up manner that starts
from a local operator in a high frequency, and dilates by its dyadic powers to
low frequencies. By relieving the orthogonality and enforcing normalization, the
wavelets are locally-supported and admissible.

It is attractive to be able to define wavelet transform directly on 3D shapes
without the need of parameterization. Various schemes of manifold wavelets have
been proposed via different approaches [2]. Diffusion wavelets, introduced by
Maggioni and Coifman [29], use diffusion as a scaling tool to achieve multiscale
analysis. Wavelet and scaling functions are constructed by repeatedly applying
a diffusion operator T on the graph or manifold space. After applying dyadic
powers of T at each scale, a localized orthogonalization procedure is performed
to yield nested approximation spaces, and then wavelets are produced by locally
orthogonalizing vectors spanning the difference of these approximation spaces.
The derived diffusion wavelets are orthogonal, compact, and multiscale in nature,
and have been employed in 3D mesh compression in [96]. In [53,125], tree-based,
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data-adaptive wavelet transforms are developed for high-dimensional Euclidean
data sets and weighted graphs, under the assumption that the data have a rich
geometrical structure that can be captured by a hierarchical tree.

2.2.3 Spectral Graph Wavelets

The primary reason that classical wavelet transforms cannot be directly adapted
to graph or manifold is that for a mother function ψ(x) defined on a manifold,
there is no obvious definition for ψ(sx). One approach to solve this problem is
appealing to the Fourier domain, with the help of aforementioned manifold har-
monics. Although scaling cannot be explicitly expressed on manifold domain, it
can be easily defined on the frequency domain. The idea of spectral wavelet trans-
form was introduced in [59] on the graph domain, denoted as the Spectral Graph
Wavelet Transform (SGWT). Here we extend the concept to general manifold,
denoted as the Spectral Graph Wavelet Transform (SGWT)

Given manifoldMwith appropriate boundary condition. Assume its Laplace-
Beltrami operator ∆M has the eigen-decomposition {λk, φk}. The eigenvectors
{φk} form a complete and orthonormal basis of L2(M), commonly known as the
manifold harmonics. The corresponding eigenvalues {λk} satisfy

0 = λ0 < λ1 ≤ λ2 ≤ · · · (2.2.9)

For any function f defined onM, its generalized Fourier transform f̂ is de-
fined as

f̂(k) = 〈φk, f〉 =
∞∑
k=0

φk(x)f(x) (2.2.10)

And the inverse Fourier transform is

f(x) =
∞∑
k=0

f̂(k)φk(x) (2.2.11)
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Figure 2.2: Spectral Graph Wavelets centered at one vertex on the wolf model.
From left to right are wavelets from high frequency to low frequency with scale
1, 3 and 5.

The Parseval relations holds for the manifold harmonics transform

〈f, g〉 = 〈f̂ , ĝ〉 (2.2.12)

We generate SGWT from a special wavelet operator that acts on functions
defined on the manifold. Given a real-valued transfer function g, the wavelet
operator Tg is defined by how it modulate on f :M→ R on Fourier domain

T̂gf(k) = g(λk)f̂(k) (2.2.13)

Employing the inverse Fourier transform, we obtain the spectral representation
of Tgf

(Tgf)(·) =
∞∑
k=0

g(λk)f̂(k)φk(·) (2.2.14)

To obtain spectral wavelets, we need localized and scaled versions of Tgf .
The scaling is defined by dilating the transfer function as g(tλk). The localization
at point x ∈ M is realized by applying wavelet operators to unit impulse at x,
represented by the Dirac delta function δx(·)

Since

δx(·) =
∞∑
k=0

φk(x)φk(·) (2.2.15)
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We have the Fourier transform of δx

δ̂x(k) = φk(x) (2.2.16)

Set f = δx in (2.2.14), we have the spectral wavelet at scale t and localized at
point x

ψt,x(·) = (T tgδx)(·) =
∞∑
k=0

g(tλk)φk(x)φk(·) (2.2.17)

The spectral wavelet can also be represented as a bivariate kernel

Ψt(x, y) = ψt,x(y) =
∞∑
k=0

g(tλk)φk(x)φk(y) (2.2.18)

For a real-valued function f defined onM, the spectral wavelet transform is

Wψ
f (x, t) = 〈ψx,t, f〉 (2.2.19)

Applying the Parseval relation (2.2.12), we obtain the spectral representation
of continuous spectral wavelet transform

Wψ
f (x, t) = 〈ψ̂x,t, f̂〉 =

∞∑
k=0

ψ̂x,t(k)f̂(k) =
∞∑
k=0

g(tλk)f̂(k)φk(x) (2.2.20)

If seen as a function of x, the Fourier transform of the above spectral wavelet
transform is

Ŵψ
f (k) = g(tλk)f̂(k) (2.2.21)

Similar to classical wavelet transform, the spectral wavelet transform is invert-
ible only if the transfer function g satisfies the admissibility condition

Cψ =

∫ ∞
0

g2(a)

a
da <∞ (2.2.22)

and the zero-mean condition g(0) = 0.
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Figure 2.3: 1D Mexican-hat Wavelet

Figure 2.4: Color plots of the spectral Mexican-hat wavelet with scales of 10
and 30. The reference point is denoted by the orange ball. We can see that the
function values oscillate around the reference point. When t is larger, the spread
of oscillation also increases.
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Figure 2.5: The Mexican-hat wavelet transfer function in the frequency domain.

In classical wavelets defined on real line, the space localization is apparent.
If the mother wavelet ψ(x) is localized in the interval [−ε, ε], then the wavelet
ψa,b(x) will be localized with [b− aε, b + aε]. in the limit as b→ 0, ψa,b(x)→ 0

for x 6= b.
For spectral wavelets, the localization property is less straightforward since

the scaling is defined implicitly in the Fourier domain. For g sufficiently regular,
the normalized spectral wavelet ψt,x/‖ψt,x‖ will vanish on vertices sufficiently far
from x in the limit of fine scales, i.e. as t → 0. We should expect ψt,x(y) to be
small if x and y are separated and t is small.

If two transfer functions g and g′ are close to each other, then the derived
spectral wavelets should be close to each other in the manifold domain.

As an example, we consider the Mexican hat wavelet. In 1D Euclidean space,
the Mexican hat wavelet is defined as

ψ(t) =
2

√
3σπ

1
4

(1− t2

σ2
)e
−t2
2σ2 . (2.2.23)
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Its graph is shown in Fig. 2.3, which exhibits clear localization in space. In mani-
fold space, we may analogously define the spectral Mexican hat wavelet as

ψt,x(·) =
∞∑
k=0

t2λ2
ke
−t2λ2kφk(x)φk(·), (2.2.24)

with the transfer function g(tλ) = t2λ2e−t
2λ2 .

Fig. 2.4 visualizes the value of the wavelet functions over the surface, with the
scale t = 10 and t = 30. Fig. 2.5 shows the Fourier transform of the wavelet
functions in frequency domain. It is easy to see that

• The spectral wavelet function is localized in both manifold and frequency
domains.

• On manifold, the values of the spectral wavelet functions attenuate and os-
cillate as the distance from the reference point increases.

• For a larger scale, the spectral wavelet has a wider windows in space, but a
narrower window in frequency.

By construction, the spectral wavelets ψt,x are all orthogonal to the the null
eigenvector φ0, and nearly orthogonal to φl for λl near zero [59]. For more ef-
fective representation of low-frequency signals, it is necessary to introduce the
spectral scaling functions, which are also defined as a bivariate kernel by a single
real-valued generator function h : R+ → R, which acts as a low-pass filter and
satisfies {

h(0) > 0

h(x)→ 0|x→∞.
(2.2.25)

Introducing the scaling functions helps ensure stable recovery of the original
signal f from the wavelet coefficients when the scale parameter t is sampled at
discrete values tj . Stable recovery will be assured ifG(λ) = h(λ)2+

∑J
j=1 g(tjλ)2
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is bounded away from zero. The design of the scaling function generator h is
uncoupled from the choice g.

The spectral wavelets depend on the continuous scale parameter t. For prac-
tical computation, t must be sampled at a finite number of scales {tj}Jj=1, which
generatesNJ waveletsψtj ,n along withN scaling functions sn. It can be proven [59]
that the set Γ = {φn, n = 0, . . . , N − 1} ∪ {ψtj ,n, j = 1, . . . , J, n = 1, . . . , N}
form a frame with bounds

A = min
λ∈[0,λN−1]

G(λ)

and
B = max

λ∈[0,λN−1]
G(λ),

where G(λ) = h2(λ) +
∑

j g(tjλ)2. That is to say, for all f defined on the
manifold, the following inequality holds:

A‖f‖2 ≤
∑
k

|〈f,Γk〉|2 ≤ B‖f‖2, (2.2.26)

where Γ = {Γk}.
The spectral wavelet transform is an overcomplete transform, mapping an in-

put vector f of sizeN toN(J+1) coefficients c = Wf . Given a set of coefficients
c, the synthesis/reconstruction of f can be given by solving the matrix equation

(W ∗W )f = W ∗c. (2.2.27)

Because of its attractive and powerful properties such as spatial localization,
multiscale, and geometry awareness, SGW has already been adopted as a descrip-
tor for a handful of shape analysis applications. Kim et al. [72, 73] introduced
a wavelet-based multi-scale descriptor for the analysis of cortical surface signals
using the SGWT and Li et al. [84] proposed a SGWT-based descriptor and utilized
the intrinsic spatial pyramid matching (ISPM) for global shape retrieval. Though
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these researches discover the potentials of SGWs, they all concentrate on global
shape analysis based on point signatures, ignoring the SGWs’ power in integrating
the local-to-global geometrical and topological information.

2.3 Sparse Representation Modeling

In recent years, sparse modeling techniques have become increasingly popular
in various fields of signal processing and analysis, especially in image processing
and computer vision. Its widespread applications include data compression, signal
denoising, pattern recognition, etc.

The fundamental idea of sparse modeling is to decompose or approximate
the signal in question as the linear combination of a very small subset of vectors
selected from a large number of candidate elementary vectors. These candidate
elementary vectors, also called atoms, constitute a set called the dictionary. With
a given dictionary, the signal is encoded by the coefficients w.r.t. the selected
atoms and can be easily reconstructed. The rationale of sparse modeling is that
most meaningful high-dimensional signals probably have some intrinsic structures
or patterns, which can be exploited for efficient representation in a subspace of
much lower dimension. It is often desirable for the dictionary to be redundant or
overcomplete such that it can accommodate a sparse set of atoms that can better
capture an input signal’s intrinsic characteristics.

2.3.1 Sparse Modeling Problems

Consider signal b ∈ Rn and dictionary matrix D ∈ Rn×m with n < m. If the
dictionary constitutes an overcomplete basis of Rn, the linear systems of equations
Dx = b is underdetermined and has infinite solutions.

To make the solution x unique, we can introduce an objective function J(x)

to govern the desired properties of the solution vector x. The general optimization
problem subject to linear equality constraints is as follows:
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min
x
J(x) subject to b = Dx. (2.3.1)

Alternatively, the objective function can be used as a regularization term, giv-
ing rise to the following regularized least square problem:

min
x
‖b−Dx‖2

2 + λJ(x). (2.3.2)

The regularization term can be viewed as imposing certain priors distribu-
tions on the solution x. Comparing with Eq. 2.3.1, regularization allows users to
make a tradeoff between the reconstruction fidelity and the desired property (e.g.,
smoothness) of the solution.

Eq. 2.3.1 and Eq. 2.3.2 are commonly encountered in different areas, including
signal processing, machine learning and statistics. One common choice for J(x)

is the function of squared l2-norm ‖x‖2
2, which aims to minimize the “energy”,

i.e., the Euclidean norm of the solution vector. Eq. 2.3.1 then has the closed-form
solution

x̂ = DT (DDT )−1b = D+b, (2.3.3)

where D+ = DT (DDT )−1 is the pseudo-inverse of D. Let J(x) = Γx, where
Γ ∈ Rm×m, Eq. 2.3.2 then becomes the famous Tikhonov regularization [54],
which has the explicit solution

x̂ = (DDT + λΓΓT )+DTb. (2.3.4)

Due to its computational simplicity, the l2 norm is commonly used as the or
penalty term. However, for many applications, minimizing the total energy of
solutions is not very meaningful.

If we know that the signal b has a very sparse coefficient representation x′

with respect to D, i.e., b ≈ Dx′, ‖x′‖0 � m, then we can specify J(x) such
that the objective to minimize the number of non-zero coefficients in solution x.
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The resultant optimization problem is called sparse decomposition and can be
formulated as follows:

min
x
‖x‖0 subject to b = Dx. (2.3.5)

Here ‖x‖0 denotes the pseudo norm of x which counts the number of non-zero
elements in x.

For real life signals, exact sparsity w.r.t. a fixed dictionary is elusive; instead,
natural signals tend to be compressible, meaning that the representation coeffi-
cients decay rapidly when sorted in order of decreasing magnitude. Hence, a more
practical formulation is to allow a bounded error of the sparsely reconstructed sig-
nal Dx, giving rise to the best subset selection problem:

min
x
‖x‖0 subject to ‖b−Dx‖2

2 < ε. (2.3.6)

or written as a regularization problem,

min
x
‖b−Dx‖2

2 + λ‖x‖0 (2.3.7)

Clearly, the approximation quality and the sparsity of the coefficient vector
depend both on the signal itself and the dictionary D. We can expect more con-
cise and accurate coefficient representations if the atoms in D can better capture
properties of concerned signal. Take the 2D image domain as example. The
global Fourier basis vectors are suitable for representing global signal trends,
while wavelets, with its local support, can better represent isotropic features of
different scales. To efficiently encode anisotropic image feature such as lines
and curves, various extensions to wavelets have been proposed including con-
tourlet [34], ridgelets [22], curvelets [20], etc. By incorporating new design pa-
rameters such as directions, these new shape basis afford more effective charac-
terization of images dominated with different features.
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2.3.2 Computational Methods

The l0 optimization problems (Eq. 2.3.5 and Eq. 2.3.6) are NP-hard, so searching
through all possible support sets by brute force is intractable except for problems
of very small sizes. A variety of methods have been developed for finding near-
optimal solution to l0 optimization, and the most important two classes are greedy

pursuit and convex relaxation [152].

Greedy Pursuit Methods

One of the most commonly-used approaches to sparse approximation is the greedy
pursuit method. The central idea is to iteratively refine a sparse solution in a
greedy manner. More specifically, in each iteration one or more atoms of the
dictionary are chosen and the corresponding coefficients are modified such that
the greatest improvement in approximation quality can be achieved. Represen-
tative greedy pursuit algorithms include matching pursuit (MP) [99], orthogonal
matching pursuit (OMP) [116], and simultaneous orthogonal matching pursuit
(S-OMP) [151]. The latter is suitable for solving the simultaneous sparse approx-
imation problem where the input signal have multiple correlated channels and the
same subset of atoms is to be used for every channel.

The basic idea of greedy pursuit methods is to iterative refine the estimation
of the coefficient vector x. In each step, one or several coefficients are modified
to yield biggest possible improvement in approximating the signal. The simplest
greedy pursuit algorithm is matching pursuit (MP) [99], described as follows

1. Set the index set Ω = ∅, the residual r0 = b, and the counter k = 1.

2. Find an index nk such that atom αnk is most correlated with the residual

nk = arg max
n

|〈rk−1, αn〉|,

and add nk to Ω. The coefficient corresponding to αnk is denoted as xnk .

3. Update the residual rk = rk−1 − xnkαnk .
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4. Increment k. Repeat (2)-(4) until stopping criterion is met.

The possible stopping criteria can be that a fixed number of atoms have been
selected, the magnitude of residual is smaller than a threshold, or no remaining
atoms have strong correlation with the residual.

A much improved version of MP is the algorithm known as orthogonal match-

ing pursuit (OMP) [116]. The major difference with MP is an additional step of
coefficients update. After a new index (that is most strongly correlated with the
residual) is identified and added to the index set Ω, the coefficients calculated in
previous steps are replaced with new coefficients which approximate the origi-
nal signal in the least square sense. Contemporary greedy pursuit methods have
more sophisticated mechanism for selecting and pruning the set of active atoms,
including the stagewise orthogonal matching pursuit (StOMP) [37], regularized
orthogonal matching pursuit [150], and compressive sampling matching pursuit
(CoSaMP) [105]. Apart from greedy selection, another method to achieve greedy
pursuit is iterative thresholding, or shrinkage [10, 31]. The basic idea is to iter-
ative updating the coefficients with thresholding applied in each step to enforce
sparsity.

Theoretically, it has been proved that greedy pursuit methods can produce
near-optimal sparse approximations if the dictionary is sufficiently incoherent [149].
If the dictionary is sufficient random and the signal is sparse enough, simple pur-
suit methods can provably recover the sparse representation with high probabil-
ity [150].

Convex Relaxation Methods

Another approach to sparse approximation problems is to replace the highly dis-
continuous l0 norm with l1 norm, yielding l1 optimization problems which are con-
vex and tractable. This convex relaxation is generally reasonable, as it has been
proved that for most large underdetermined system, l1 and l0 minimization will
produce the same unique solution, provided the signal is sufficiently sparse [36].
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The two most common l1 optimization problems are basis pursuit

min
x
‖x‖1 subject to b = Dx, (2.3.8)

and basis pursuit denoising (BPDN)

min
x

1

2
‖b−Dx‖2

2 + λ‖x‖1, (2.3.9)

where the parameter λ is a regularization parameter which governs the sparsity of
the solution.

Practical methods for solving l1 optimization include interior point methods [19,
26, 71], iteratively reweighted least squares (IRLS) algorithm [25, 32, 126], and
stepwise algorithms [39, 111, 123]. We refer readers to [17] and [152] for more
detailed review of the algorithms for sparse solution of underdetermined linear
system.

2.3.3 Applications

Sparsity-drive signal processing have numerous applications, and the following
are the most commonly encountered.

• Analysis. Given signal y which is generated from a sparse coefficient vec-
tor x0 with respect to dictionary A, i.e., y = Ax0, we can compute a sparse
approximation of y by solving Eq. 2.3.7. Under certain incoherent and spar-
sity conditions, the sparse solution x can well recover the true underlying
vector x0.

• Compression. With greedy pursuit algorithms such as OMP, a nonlinear
approximation of the original signal can be easily computed, yielding a
compressive coefficient representation that can best approximate the origi-
nal signal.
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• Denoising. Suppose the observation of the original sparse signal y = Ax0

is the noisy version ỹ = y + v. When x0 is sufficiently sparse, it can often
be reliably recovered by solving the sparse approximation problem, which
subsequently yields a denoised signal.

• Compressed sensing. Let P ∈ Rj×n be a measurement matrix of the orig-
inal sparse signal y = Ax,y ∈ Rn and j < n. Given measure c = Py, the
sparse coefficient vector x can be recovered by solving

min
x
‖x‖0 subject to ‖c−PAx‖2 ≤ ε, (2.3.10)

as long as the original signal is sufficiently sparse and the sensing matrix
P conforms to restricted isometry property. The original signal then can be
recovered from the coefficient representation.

• Source separation. Suppose the observed signal y is the superposition of
two different sub-signals y1, y2, which are sparsely generated with dic-
tionaries A1 and A2, respectively. The sparse coefficient vectors of the two
sub-signals can be estimated by solving the following optimization problem

x̂1, x̂2 = min
x1,x2

‖x1‖0 + ‖x2‖0 s.t. ‖y −A1x1 −A2x2‖2
2 ≤ ε21 + ε22,

(2.3.11)
and the separate sub-signals can be reconstructed as ŷ1 = A1x̂1 and ŷ2 =

A2x̂2.
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Chapter 3

Mesh Approximation and
Compression

Sparse approximation have gained great success on the regular domain of 2D im-
ages. However, the topics of approximating or compressing signals defined over
meshes are much less investigated due to the irregularity of underlying domains.
In this chapter, we takes an initiative to explore the challenging problem of sparse
approximation of discrete 3D shapes for compressive shape representation.

3.1 Introduction

Conventional Fourier analysis decomposes a signal into mutually independent
components with the multiscale and orthogonal Fourier bases. Compression is
achieved by discarding certain number of high-frequency Fourier coefficients.
This scheme has been transplanted to mesh compression, using the eigenbases of
mesh Laplacian, i.e, the manifold harmonic basis (MHB), as the Fourier bases [67].
The key disadvantage of Fourier compression is that the Fourier bases are only lo-
calized in the frequency domain yet having global support in the spatial domain,
and thus are not efficient in encoding local signal information. A popular and
powerful solution is to use wavelet bases, which are functions localized in both

35



vertex domain and frequency domain and can capture local signal information in
a more compact and efficient way.

In this chapter, we propose to use the spectral graph wavelets (SGW), pio-
neered by Hammond et al. [59], for mesh approximation and compression. To
the best of our knowledge, we believe that it is the first attempt to exploit the
SGW in sparse representation, with a unique application in 3D geometric com-
pression. The SGW has many attractive properties such as spatial localization,
being smooth, multi-scale, and shape-aware, and being flexible and versatile for
3D shapes of arbitrary topology and complicated geometry, hence is well suited
for encoding shapes with many local details. We employ the SGW as shape bases
to construct redundant dictionary with multiscale wavelets centered around each
vertex, and employ the simultaneous orthogonal matching pursuit (S-OMP) al-
gorithm to find a sparse coding of the original shape geometry. The primary
contributions of this work are hinging upon the unique integration of the spec-
tral graph wavelets (SGW) and sparse representation and its powerful application
in 3D shape compression. To the best extent of our knowledge, our current work
is the first attempt to employ the SGW in the task of 3D mesh compression.

Through our extensive experiments, we wish to demonstrate that our compres-
sion method outperforms the MHB-based Fourier compression in terms of com-
pression quality at different compression ratio settings. Since our sparse shape
approximation framework is independent of any data-specific dictionary design,
other formulations of bases or dictionaries, as well as other powerful sparse ap-
proximation algorithms, can all be migrated into our system with very little extra
workload. So we are expecting further computational improvement in compres-
sion performance in the near future.

3.1.1 Background

Harmonic analysis techniques such as Fourier transform and wavelet transform
are fundamental tools for compact representations of images, audio, and video sig-
nals. The most prominent applications include the JPEG [155] and JPEG2000 [141]
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image compression standards, which are based on 2D discrete cosine transform
and discrete wavelet transform, respectively. The key idea of harmonic compres-
sion is to decompose the original signal into a set of harmonic basis and reduce
the representation size by discarding coefficients that correspond to much less
noticeable signal components.

While traditional harmonic analysis oftentimes uses orthogonal basis, such as
the Fourier basis, recent years have witnessed the increasing popularity of sparse
approximation methods, which enable the utility of redundant or over-complete
dictionaries for signal representation. From the dictionary of elementary signals,
a small subset that can best capture the structure of the input signal is selected, and
the input signal is approximated by a linear combination of the selected signals.

A 3D mesh can be expressed as the connectivity information of the mesh
topology plus the 3D mesh coordinates. The mesh connectivity defines the do-
main of coordinate functions and have several efficient, lossless coding [58, 131].
To compress the mesh coordinates, traditional Fourier and wavelet compression
techniques for images can not be directly applied, since 3D meshes generally do
not have a fixed regular graph structure. Consequently, there is no universally
feasible Fourier basis and the dictionary should be derived from specific object’s
graph topology. In [67], Karni and Gotsman employed the mesh Laplacian eigen-
bases to encode the mesh geometry, and the compression is achieved by discard-
ing high-frequency coefficients. Later, Karni and Gotsman extended the spectral
compression method by using fixed eigenbases derived from a 6-regular mesh to
approximate the eigenbases of the non-regular input meshes, avoiding the cost of
Laplacian decomposition on the decoder side [68].

3.2 Spectral Mesh Compression

Consider a 3D mesh M = (V,E) with vertices V and edges E, where V =

{v1, v2, . . . , vn}. A vector-valued function f : V → Rc defined on V can be
represented as an n× c matrix, where the ith row represents the function value at
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vi.
As we mentioned in Chapter 2, the Laplacian matrix of M admits an orthog-

onal and complete basis of L2(M), i.e., the space of square-integrable functions
defined on M , and enables Fourier-like harmonic analysis on the vertex domain.

There are many different formations of discrete Laplacian. A combinatorial
Laplacian matrix is determined solely by the connectivity of the mesh. A geo-
metric Laplacian, on the other hand, takes into account both the topological and
geometric information.

Although a geometric Laplacian affords much more precise description of the
mesh geometry, it is not a feasible choice in mesh compression applications be-
cause the geometric information is unknown on the decoder side. On the other
hand, a combinatorial Laplacian can be easily reconstructed in the decoder size
since the mesh connectivity can be efficiently encoded and transmitted indepen-
dent of the geometric coordinates. In this work, we use the graph Laplacian de-
fined as

Lij =


1 if j ∈ N(i),

−d(i) if i = j,

0 otherwise,

(3.2.1)

where d(i) represents the valence of vi.
The graph Laplacian admits an eigensystem {λk, χk}n−1

k=0 , where {λk, χk} de-
notes the kth eigenvalue and eigenfunction. According to the spectral theorem, the
eigenfunctions {χk} form an complete and orthonormal basis, called the Lapla-

cian eigenbasis, or, in the context of shape analysis, the manifold harmonic basis
(MHB). Fig. 3.1 visualizes the MHB on an example mesh. It is straightforward to
see that the values of MHB oscillate between negative and positive on the surface,
and the larger the associated eigenvalues, the more frequent the oscillation be-
comes, similar to the behaviors of regular Fourier basis functions in the Euclidean
domain.

As mentioned earlier, the MHB can be employed to define the graph Fourier
transform, also known as the manifold harmonic transform (MHT), which con-
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(a) χ1 (b) χ10 (c) χ20

Figure 3.1: Visualization of the Laplacian eigenfunctions (MHB). From left to
right, the first, tenth, and twentieth eigenfunctions are highlighted.

verts a function between spatial domain and frequency domain. Any f ∈ L2(M)

can be expanded by MHB as

f =
n−1∑
k=0

f̂kφk =
n−1∑
k=0

〈f, φk〉φk, (3.2.2)

in which f̂k is the k-th MHT coefficient of f .
The MHT is the theoretical foundation of the spectral mesh compression pro-

posed by Karni and Gotsman [67]. Viewing the Euclidean mesh coordinates x,
y and z as functions defined on vertices, the basic idea of spectral compression
is to compute the MHT of the coordinate function and then truncate out certain
number of high-frequency coefficients. Take the x-coordinate function x as an
example. The original coordinates can be perfectly recovered as in Eq. (3.2.2) if
all n MHT coefficients {x̂0, . . . , x̂n−1} are used. If we only retain the first n′ < n

coefficients, the reconstructed x-coordinate function x′ =
∑n′−1

k=0 x̂kφk is a low-
pass-filtered version of x and can be regarded as an acceptable approximation.
The reconstructed mesh is smooth and the overall appearance tends to be very
similar to the original mesh, since low-frequency components, which correspond
to large-scale shape information, are prioritized to be preserved, and human’s vi-
sual system tends to be more forgiving to the loss of high-frequency information.

Fig. 3.2 shows an example of spectral mesh approximation with different num-
ber of MHB.
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(a) (b)

(c) (d)

Figure 3.2: Spectral approximation [67] of a 3D wolf model containing 4,344
vertices. (a) The original mesh. (b) Reconstruction using 100 eigenbases. (c)
Reconstruction using 300 eigenbases. (d) Reconstruction using 1000 eigenbases.

3.3 Sparse Shape Approximation via SGW

In Sec. 3.2 we have shown that the mesh coordinates can be transformed into
the frequency domain via MHT using the Laplacian eigenbasis, and compres-
sion can be achieved by trimming out a user-specified number of high-frequency
coefficients. The main drawbacks of this naive and simple low-pass spectral com-
pression method are: (1) It innately favors low-frequency information while most
high-frequency geometric details are compromised; (2) The Laplacian eigenbasis,
which serve as the compression dictionary, all have global support and therefore
are not efficient in encoding local geometry.

In this section, we propose to use SGW to construct a redundant dictionary.
Because of its powerful property of spatial localization, the multiscale SGW func-
tions are much more efficient in representing local mesh geometry around individ-
ual vertices than the Laplacian eigenbasis. Since the size of SGW dictionary is
much larger than the number of mesh vertices, we employ powerful sparse ap-
proximation algorithms to find a compact representation which selects the most
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appropriate basis in the procedure.

3.3.1 Sparse Approximation of Mesh Coordinates

For mesh M , let D be a dictionary of L2(M) containing m normalized basis vec-
tors. The dictionary can be written as a n ×m matrix D =

(
a1 a2 . . . am

)
,

where ai ∈ Rn×1. Our aim is to approximate function y ∈ L2(M) with a lin-
ear combination of the atoms in D, expressed in the matrix form as ŷ = Dx =∑m

i=1 xiai. Here the vector x ∈ Rm is the coefficient representation of the input
signal y w.r.t. the dictionary D.

An effective compression of the original signal y requires the number of el-
ementary signals that participate in the linear combination to be small and the
reconstructed result ŷ to be as close to y as possible. In principle, the number of
non-zero elements of the coefficient vector x, denoted by the pseudo-norm ‖x‖0,
should satisfy ‖x‖0 � n in order to achieve significant reduction in storage. Fix-
ing the number of participating atoms in the sparse approximation to be n′, the
problem to produce the optimal sparse representation x can be formulated as

min
x
‖y −Dx‖2

2 subject to ‖x‖0 = n′ (3.3.1)

which is called the Best Basis Selection problem
If the input signal has c channels, denoted as an n×cmatrix Y = (y1,y2, . . . ,yc),

the coefficient representation should be a m × c matrix X = (x1, . . . ,xc) satis-
fying Y ≈ DX. We may either treat each channel (column) of Y independently
and select different subsets of participating atoms for each channel, or enforce to
select the same subset for all the channels and minimize the combined approx-
imation errors. The latter one is called the simultaneous sparse approximation

problem
min
X
‖Y −DX‖2

F
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subject to support(x1) = · · · = support(xc)

‖x1‖0 = · · · = ‖xc‖0 = n′,
(3.3.2)

where ‖ · ‖F is the Frobenius norm, and support(xi) denotes the index set of
non-zero elements in xi.

The vertex coordinates of a mesh can be treated as a 3-channel signal p(v) =

(vx,vy,vz). Since the three coordinate functions are correlated, it is prefer-
able to formulate the mesh compression as the simultaneous sparse approxima-
tion problem. Determining the optimal solution to Eq. (3.3.2) is NP-hard with
the time complexity of O(nmn′n′2, but we can find approximate solutions using
greedy pursuit algorithms such as simultaneous orthogonal matching pursuit (S-
OMP) [151]. The key idea is to iteratively select from the dictionary a new atom
that has the best correlation with the residual shape, and then project the original
mesh onto the space spanned by the selected atoms to obtain a new approximate
shape. Please refer to Algorithm 1 for details.

We may also adopt the simultaneous matching pursuit (S-MP) algorithm which
can be viewed as a simplification of S-OMP. The main difference from S-OMP is
the omission of the step to update all existing coefficients by orthogonal projec-
tion. If all atoms in D are mutually orthogonal (e.g., Fourier dictionary), S-MP
and S-OMP will produce exactly the same result.

3.3.2 SGW and Dictionary Design Strategies

The key to effective sparse approximation is the selection of elementary func-
tions that form the dictionary. A natural choice is the MHB dictionary com-
posed entirely of Laplacian eigenbasis {χ0, χ2, . . . , χn−1}. The MHB functions
have global support and multiple frequencies, making the MHB dictionary a good
choice for encoding a shape when global, periodical, and symmetric information
is prioritized to be preserved. In addition, since MHB are orthogonal basis, we
can replace orthogonal matching pursuit (OMP) with the much faster matching
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Algorithm 1 S-OMP on 3D mesh coordinates.
Input:
• 3D mesh coordinates S ∈ Rn×3.

• Dictionary D = {a1, a2, . . . , am}, ai ∈ R3.

• The number of atoms to be selected n′.
Initialization:
• The initial index set of selected atoms Λ0 = ∅.

• The initial residual R0 = S;

• The iteration counter t = 1.
Procedure:
(1) Find an index it of D that satisfies

it = arg max
j 6∈Λt−1

3∑
k=1

|〈Rt−1ek, aj〉|,

where ek denotes the kth canonical basis vector in R3.
(2) Set Λt = Λt−1

⋃
{it}.

(3) Compute the coefficient matrix Ct by solving the least-square problem

Ct = arg min
X

= ‖S−DX‖2
2

subject to support(X) = Λt.
(4) Calculate the new approximation and residual:

Ŝt = DCt,

Rt = S− Ŝt.

(5) Stop if t = n′. Otherwise, increment t and go to (1).
Output:
• The index set of selected atoms Λn′ .

• Final coefficient matrix Cn′ .
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pursuit (MP) and the approximation results will be the same.
However, MHB dictionary is very inefficient in capturing non-periodical, local

details due to the global support. It is desirable to have a dictionary with a class of
functions that have local support but are still smooth and multiscale. In this work,
we propose to use normalized multiscale spectral graph wavelets (SGW) as atoms
to construct the dictionary for sparse approximation.

As we mentioned in Chapter 2, the spectral graph wavelets (SGW) are ex-
pressed as bivariate kernel functions expanded on the Laplacian eigenbasis

Ψt(i, j) =
n−1∑
k=0

g(tλk)χk(i)χk(j), (3.3.3)

where g is the real-valued wavelet generator function and t is the scale param-
eter. The ith row of Ψt

ψt,i(·) =
n−1∑
k=0

g(tλk)χk(i)χk(·) (3.3.4)

is the spectral wavelet localized at vi in the vertex domain and at scale t in the
frequency domain.

The spectral scaling functions is defined with the scaling generator function h
which satisfy {

h(0) > 0

h(x)→ 0|x→∞.
(3.3.5)

In practice, the scale parameter t also need to be discretized. The spectral
graph wavelets ψt,i are near orthogonal to χk for λk near 0, i.e., low-frequency
eigenbasis, for any discrete scale t. Hence, to better capture low-frequency signal
information, [59] also introduced the spectral scaling functions which have similar
constructions with SGW but act like low-pass filters

Φt(i, j) =
n−1∑
k=0

h(tλk)χk(i)χk(j), (3.3.6)
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Figure 3.3: Visualizations of spectral graph wavelets localized at the same point
but with different scales. From left to right, the spectral wavelets at scale 1, 3 and
5 are plotted.

in which
Suppose we compute the spectral wavelets at J different scales {t1, t2, . . . , tJ},

the constructed SGW then comprises (J + 1)×n functions in Rn. In this chapter,
we adopt the same formulation of wavelet and scaling functions used in [59] with
the generator function

g(x) =


x2 if x < 1

−5 + 11x− 6x2 + x3 if 1 ≤ x ≤ 2

4x−2 if x > 2.

(3.3.7)

The J scales are selected to be logarithmically equally spaced between the mini-
mum scale tJ = 2/λmax and the maximum scale t1 = 40/λmax, where λmax is the
upper bound of the Laplacian eigenvalues. For the scaling function, the generator
is h(x) = γ exp(−( 20x

0.6λmax
)4), in which γ = h(0) equals the maximum value of

g.
Fig. 3.3 visualizes multiscale spectral graph wavelets on a 3D mesh. It may be

noted that, the values of wavelets are attenuated and oscillating on the mesh, and
wavelets with a larger scale have a wider oscillating window.

The SGW dictionary has several advantages:

• The SGW atoms are compact and localized at vertices, suitable for encoding
local geometric features.
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• The SGW atoms can cover multiple scales, enabling the efficient represen-
tation of both small-scale and large-scale shape information in the vincinity
of each vertex.

• The computation of SGW from MHB is straightforward, and can be done
on the decoder side provided the mesh connectivity is known.

On the flip side, the SGW are less efficient than MHB for encoding global
shape structures. Moreover, since SGW functions always have extreme values at
their origin vertices, a mesh reconstructed from SGW atoms may exhibit unpleas-
ant protrudes at vertices where selected SGW are centered, which can be further
ameliorated by constructing a dictionary that contains both MHB and SGW. The
mixed dictionary potentially inherits the advantages of both waveforms, at the cost
of increased dictionary size.

The SGW or SGW+MHB dictionary are non-orthogonal and redundant, forc-
ing us to use costly sparse approximation methods such as S-OMP. The enlarged
dictionary also increase the storage requirements for the dictionary themselves
and for the sparse coefficient representation (see Sec. 3.3.3).

Fig. 3.4 shows an example of sparse approximation results using three meth-
ods: (1) Spectral mesh compression via MHB, as described in Sec. 3.2; (2) S-MP
with the MHB dictionary; (3) S-OMP with the SGW dictionary. In this example,
the S-MP method produces higher-quality shape approximation than the naive
low-pass spectral approximation using the same MHB dictionary. Adopting the
multiscale SGW dictionary in place of MHB further improves the approximation
results. In particular, the SGW dictionary are more effective in preserving lo-
cal geometric features, while MHB-based approximations have the tendency to
smooth out some body parts such as the wolf’s legs when the number of partici-
pating bases is small.
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(a) MHB, truncation

(b) MHB, S-MP

(c) SGW, S-OMP

Figure 3.4: Comparison of the approximation results of three different approxi-
mation methods. Top row: Spectral compression by truncating MHB coefficients.
Second row: S-MP approximation with MHB bases. Bottom row: S-OMP ap-
proximation with SGW bases. For each method, from left to right, the number of
participating bases are 20, 50, and 100, respectively.
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3.3.3 Compression Ratio and Analysis

Now we analyze the compression ratio of the simultaneous sparse representation
using a simple coding scheme. Assume the dictionary D are known in advance
on both the encoder and decoder sides. The sparse m × 3 coefficient matrix X

contains n′ non-zero rows, and can be conveniently expressed by 3n′ non-zero
values and a vector of size n′ specifying the indices of corresponding atoms. For
a dictionary containing m atoms, each index occupies dlog2me bits, and the total
cost to store the index vector is n′dlog2me. If the sparsity of X, namely the
ratio of non-zero elements, is greater than 1/dlog2me, it would be more efficient
to represent the non-zero positions with a bit-vector of size m. Assuming each
signal element in Y takes up k bits, and each coefficient in X requires k′ bits to
store, the storage size of the original 3D coordinates is then 3nk bits. The effective
compression ratio is

Γ =
3n′k′ + min(m,n′dlog2me)

3nk
. (3.3.8)

Assume that the dictionary contains m = αn atoms, and both the coordinates
and coefficients are stored in single-precision k = k′ = 32, the compression ratio
is then

Γ =
n′

n
+ min(

α

96
,
n′dlog2 αne

96n
). (3.3.9)

In comparison, the compression ratio of the coefficient truncation method intro-
duced in Sec. 3.2 is simply n′/n with n′ coefficients, since there is no need to
store the indices of non-zeros.

From Eq. (3.3.9) we can easily see that enlarging the dictionary (larger α)
increases the overhead ratio for a given mesh. In addition, when the coefficient
matrix is very sparse, the overhead ratio becomes smaller for larger meshes, since
log2αn increases slower than n.
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3.3.4 Mesh Partitioning

The most time-consuming part of S-OMP is the computation of the maximum
inner product between the residual and available atoms, which costs O(mn) in
each iteration. If the required number of iterations, i.e., the sparsity of the solution
is l, the total time complexity of S-OMP will be O(lmn). Generally, the required
number of iterations l and the size of dictionary m are linearly proportional to the
mesh size n, hence the total time complexity is O(n3), which is unacceptable for
very large meshes.

In addition, all the dictionaries we use are constructed from the eigenvectors
of mesh Laplacian, but the full Laplacian eigendecomposition of a large mesh is
very time consuming and can be numerically instable. Hence, when the input
mesh is very large, it is necessary to perform graph partitioning and perform the
compression algorithm on each individual sub-mesh. As suggested in [67], we
use the METIS package [69] for fast graph partitioning. If the average size of
each submesh is v, the time complexity of S-OMP will decrease to O(nv2).

As mentioned in Sec. 3.3.3, the overhead ratio of storing the indices of selected
atoms is smaller when the mesh size becomes larger. Moreover, increasing the
number of sub-meshes also increases the occurrences of unpleasant artifacts along
sub-mesh boundaries, known as the edge effects. On the flip side, partitioning a
large mesh to smaller ones may result in better local fitting.

Taking into account these factors, it is not immediately clear what partition
size should be optimal. In our implementation, a large mesh is decomposed into
patches containing approximately equal number of vertices, with the maximum
patch size empirically set to be 1, 000, which seems to strike a good balance be-
tween time cost and approximation error. Fig. 3.5 shows an example of how the
approximation error and encoding time change with the partition size.
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(a) (b) (c)

Figure 3.5: Relationships between approximation performance and partition size.
(a) The Horse model partitioned into patches of about 1, 000 vertices. (b) Time
performance vs patch size. (c) Approximation errors vs patch size.

(a) (b)

(c) (d)

Figure 3.6: Models used in our approximation experiments and their partitionings.
(a) Cow: 4,315 vertices. (b) Fandisk: 6,475 vertices. (c) Centaur: 15,768 vertices.
(d) Armadillo: 172,974 vertices.
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3.4 Experimental Results

3.4.1 Evaluation Method

To evaluate the effectiveness of lossy mesh compression methods, we adopt the
mesh comparison metric proposed in [67] to measure the errors between the orig-
inal mesh geometry and approximate ones. Let M1 and M2 be two meshes to be
compared, both containing n vertices, and v1

i and v2
i denote the 3D coordinates

of the i-th vertex in M1 and M2, respectively. The geometric error between M1

and M2 is

‖M1 −M2‖g =
n∑
i=1

1

n
‖v1

i − v2
i ‖2. (3.4.1)

To better capture visual closeness such as smoothness, [67] introduces another
metric which measures the errors after applying the geometric Laplacian to mesh
coordinates, i.e., transforming the absolute coordinates to differential coordinates

GL(vi) = vi −
∑

j∈N(i) l
−1
ij vj∑

j∈N(i) l
−1
ij

, (3.4.2)

where lij represents the edge length between vi and vj . The differential error

between M1 and M2 is then defined as

‖M1 −M2‖d =
n∑
i=1

1

n
‖GL(v1

i )−GL(v2
i )‖2. (3.4.3)

The final error metric is the average of geometric error and differential error

‖M1 −M2‖ =
1

2
(‖M1 −M2‖g + ‖M1 −M2‖d). (3.4.4)

3.4.2 Compression Performance

In all our tests, we compare the compression performance between the classical
spectral compression method based on MHB coefficient truncation [67] and our
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(a) MHB, truncation (b) MHB, S-MP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP
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Figure 3.7: Comparison of mesh compression performance for the cow model.
(a-d) show the reconstructed meshes at 20% compression ratio and visualize each
vertex’s positional error comparing with the original model. (e) shows how the
compression errors change with the target compression ratios.52



(a) MHB, truncation (b) MHB, S-OMP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP
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Figure 3.8: Comparison of mesh compression performance for the fandisk model.
(a-d) show the reconstructed meshes at 20% compression ratio and visualize each
vertex’s positional error comparing with the original model. (e) shows how the
compression errors change with the target compression ratios.
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(a) MHB, truncation (b) MHB, S-OMP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP
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Figure 3.9: Comparison of mesh compression performance for the centaur model.
(a-d) show the reconstructed meshes at 20% compression ratio and visualize each
vertex’s positional error comparing with the original model. (e) shows how the
compression errors change with the target compression ratios.

54



(a) MHB, truncation (b) MHB, S-MP

(c) SGW, S-OMP (d) SGW+MHB, S-OMP
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Figure 3.10: Comparison of mesh compression performance for the armadillo
model. (a-d) show the reconstructed meshes at 15% compression ratio and visu-
alize each vertex’s positional error. Comparing (c) and (d), it is obvious that the
SGW+MHB dictionary produces much smaller positional error than the SGW-
only dictionary. (e) shows how the compression errors change with the target
compression ratios.
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sparse approximation compression method employing three different dictionaries:
(1) S-MP with the MHB-only dictionary; (2) S-OMP with the SGW-only dictio-
nary; (3) S-OMP with the SGW+MHB dictionary.

Model (#vertices) Ratio Error Error Reduction Timing (s)

Cow (4,315)
20% 1.91e-3 18.0% 3.4
40% 1.12e-3 27.5% 10.5

Fandisk (6,475)
20% 1.09e-3 11.6% 7.2
40% 5.74e-4 28.1% 18.9

Centaur (15,768)
20% 1.03e-3 20.3% 19.6
40% 5.89e-3 37.7% 50.3

Armadillo (172,974)
20% 2.26e-3 9.4% 178.0
40% 1.76e-3 15.7% 354.5

Table 3.1: Statistics of compression errors and running times using the S-OMP al-
gorithm with SGW+MHB dictionary (on a machine with quad-core 2.4GHz pro-
cessor and 16G RAM). The “Error Reduction” column denotes how much the
compression error is reduced comparing with the MHB truncation method.

Fig. 3.6 shows the original meshes and their partitioning used in our experi-
ments, including a “cow”, a “fandisk”, a “centaur”, and a “armadillo” model. All
meshes are scaled to have unit surface area. The evaluation results are shown in
Fig. 3.7, Fig. 3.8, Fig. 3.9, and Fig. 3.10, respectively. For each 3D mesh, we
compute the approximation at specified compression ratios in the ranges between
5% and 80%. The overall compression quality is measured by the combined ge-
ometric and differential error (see Eq. (3.4.4)) w.r.t. the original mesh. Table 3.1
documents the compression errors and timing of S-OMP with SGW+MHB dic-
tionaries, and compares the errors with the MHB coefficient truncation method.

From the experimental results, we see that, with a properly chosen dictio-
nary, simultaneous sparse approximation can generate higher-fidelity mesh com-
pression than the MHB truncation method at the same compression ratio. The
SGW functions are a viable choice for efficient mesh approximation, but the per-
formance of a SGW-only dictionary degenerates significantly when the required
compression ratio is small or the mesh is large, which is especially evident in
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the armadillo model (Fig. 3.10). A dictionary combining SGW and MHB over-
comes this deficiency, and its performance in mesh approximation is consistently
superior to the MHB truncation method.

3.5 Chapter Summary

In this chapter, we have developed an algorithm for sparse approximation of 3D
shapes. We employed the spectral graph wavelets to construct the redundant dic-
tionary of shape bases, and used simultaneous orthogonal matching pursuit to seek
a sparse representation of the input mesh. The use of spatially-localized wavelets
makes our algorithm very suitable and powerful for better approximating shapes
with many local and fine geometric features. Through comprehensive experiments
we have demonstrated the superiority of our algorithm for approximating complex
3D objects at different compression ratio settings towards sparse representation.

As for the future work, we plan to investigate other improved formulations
of harmonic basis to enhance the expressive power of dictionary. For example,
it is potentially desirable to have data-dependent, anisotropic wavelets that are
adaptive to shape features such as sharp corners and edges to attain more effi-
cient and sparse representation of shape geometry. We also plan to explore faster
sparse approximation algorithms such as stagewise orthogonal matching pursuit
(StOMP) [37] to arrive at better time performance.
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Chapter 4

Surface Inpainting

4.1 Introduction

In principle, surface inpainting refers to the completion or recovery of missing
shape geometry based on the shape information that is currently available. The
most prominent application of surface inpainting is mesh repair. Due to factors
such as occlusions, low reflectance, and quality limitations of scanning equip-
ments, 3D models generated from range scanners often contain holes that need
to be filled; sometimes the source model itself has missing pieces and requires
digital repair to attain a complete model. Another common application of surface
inpainting is to remove geometric features because of shape editing needs. This is
achieved by replacing the unwanted shape regions with inpainting patches.

From the statistical point of view, surface inpainting can be viewed as an es-
timation problem which infers the missing geometry from the observable shape,
and the inpainting result is determined by the statistical model we have adopted.
Generally speaking, there is no universally acceptable “correct” estimation; se-
lecting the best inpainting is usually subjective or dependent on the requirement
of downstream applications.

Most existing surface inpainting methods tackle the problem only in the mesh
domain. These methods typically employ some geometric constraints as heuristics
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to ensure that the obtained inpainting patch is visually pleasing and blend natu-
rally with its neighboring geometry. The primary issue of geometry-constrained
inpainting is that these methods only utilize the shape information in the vicinity
of missing regions rather than consider the model in question in its entirety.

Our new surface inpainting method documented is inspired by the theory of
sparse signal recovery and compressed sensing. The intuition is that for a mean-
ingful 3D model, even though its global geometry is a high-dimensional signal, it
most likely has a low-dimensional intrinsic structure. That is to say, the high-
dimensional shape signal actually lives in a low-dimensional subspace, which
can be captured by a sparse coefficient representation in some transformed (e.g.,
Fourier) domains. In another word, the coordinate function of a shape with N
vertices can be decomposed as or well approximated by the linear combination of
k � N basis signals. According to the compressed sensing theory, the sparse co-
efficient representation can be recovered from partial measurements as long as the
signal is sufficiently sparse and the sensing matrix satisfies certain properties [21].

The critical idea of our new inpainting algorithm is to estimate the spectral co-
efficient representation of the shape geometry from partial observations by impos-
ing sparsity constraints on the reconstructed coefficients, exploiting the fact that
most 3D models are highly compressible with respect to their Laplacian eigen-
functions [67]. To the best of our knowledge, the utility of Laplacian eigenbasis
towards the shape inpainting application has not yet been explored in the past.
The estimation problem can be formulated with a data term strongly emphasizing
fidelity to the observations and a penalty term constraining sparsity of the repre-
sentation. Thus, the surface inpainting could be transformed to a sparse signal
recovery problem and can be solved by either l0 or l1 optimization techniques.
Such effort represents our first attempt towards technical innovation.

The primary advantage of our method is that the inpainting takes into account
the information of all the remaining shape instead of only the vicinity of missing
regions. Rather than directly estimating the missing geometry, we actually esti-
mate the reconstruction coefficients of the whole original shape. Since the mesh
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Laplacian basis functions are smooth and have global support, the reconstructed
inpainting shape is naturally smooth and globally coherent with a simple intrinsic
structure.

The main contributions of this work are:

• We introduce a new surface inpainting framework based on representations
in the transformed domain and sparsity constraints on reconstruction co-
efficients. This framework can make use of the information of the whole
remaining shape and inpainting results tend to be simple and globally co-
herent.

• We study the sparsity of 3D shapes with respect to their Laplacian eigen-
bases and show their effectiveness in surface inpainting.

• We demonstrate the high performance of our inpainting method with several
examples in hole filling and mesh editing.

4.2 Related Work

4.2.1 Surface Inpainting

Many methods have been proposed in the research literature dealing with the gen-
eral problem of surface inpainting, bearing different names such as hole filling,
mesh completion, and surface restoration. We refer readers to [3] for a recent
survey of popular algorithms for hole filling and mesh completion.

One simple approach for surface inpainting is by filling the missing region
with an inpainting patch that interpolates the surrounding geometry. The interpo-
lating patch may be generated with simple polynomial functions [156], triangular
B-splines [121], or radial basis functions [13], and are generally smooth and con-
tinuous across the boundaries. The interpolation-based approaches, however, only
work well with disk-like holes and are not suitable for filling regions with complex
boundaries.
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Typical mesh-based hole filling algorithms have two steps: (1) Find an initial
triangulation of the missing region defined by the hole boundary; (2) Optimize
the inserted mesh to improve its fairness and coherence with surrounding shapes.
In [87], Liepa performed hole triangulation with a dynamic programming tech-
nique taking into account the dihedral angles and areas of the created triangles.
The inserted mesh is then optimized with Laplacian smoothing to improve fair-
ness. In [165], surface holes are patched by an advancing-front mesh generation
method, and the vertex positions are optimized by solving a Poisson equation
based on the desirable triangle normals computed from boundary vertices. In [4],
the coordinates of the inserted vertices are optimized by minimizing the discrete
thin-plate energy. In [86], [157] and [107], complex holes are first partitioned into
sub-holes by feature curves extended from the existing parts; typical hole-filling
then can be performed on these sub-holes which are much more planar.

Another class of inpainting algorithms are based on variational methods. The
basic idea is to iteratively evolve the inpainting shape by optimizing a functional
that constrains certain geometric properties of the inserted mesh, e.g., positions,
areas, tangency, and curvatures. In [120], Pernot et al. developed a hole filling
algorithm which minimizes the variational involving curvature between the sur-
rounding and inpainted geometry. In [23], the completing surface is chosen such
that a power of the mean curvature is minimized. In [27], Clarenz et al. proposed
a shape restoration algorithm by computing the l2-gradient flow of the Willmore
energy which ensures the continuity of the normal field.

Finally, a large number of mesh inpainting methods can be classified as exemplar-
based or template-based. The basic idea is to find a known patch or a template
model that has similar context with the damaged or missing region and then adapt
the selected patch for inpainting. Symmetry-guided methods [85, 115, 118, 138]
take advantage of intrinsic shape symmetry to repair damaged regions by trans-
planting similar regions from the object itself; the pitfall is that it only works when
the damaged region’s corresponding symmetric counterpart exists and is not miss-
ing or damaged. Template-guided methods [50, 76, 117, 158, 164] conduct mesh
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completion by matching the incomplete region with a template model which may
be deformed to adapt to the context. The main challenges are: (1) Suitable tem-
plate model may not be available in the template database; (2) Inpainting results
can be affected by cross-shape parameterization.

4.2.2 Sparse Signal Recovery and Inpainting

Recent years have witnessed a surge in the research of sparsity-based signal re-
covery. The fundamental idea is that a sufficiently sparse signal can be reliably
reconstructed from partial measurements by exploiting the sparsity cue.

Sparse signal recovery has seen most success in compressed sensing applica-
tions, where the measurement/sensing matrix is typically chosen as a normalized
random matrix which satisfies the restricted isometry property with high probabil-
ity. For the inpainting problem, the measurement is expressed as a mask matrix,
which is not strictly a valid compressed sensing process. Nonetheless, we can still
take advantage of the sparsity constraints to recover the original signals in many
situations.

For image inpainting and restoration tasks, many algorithms based on sparse
representation have been published. In [56] and [57], Guleryuz proposed an al-
gorithm for image recovery based on adaptive sparse representation. In [40],
images are decomposed into texture and cartoon components, each of which is
sparse with respect to a particular dictionary; the missing parts then can be easily
reconstructed. In [42] and [43], Fadili et al. formulated image inpainting as a
maximum-likelihood estimation problem with a sparsity-promoting prior penalty
imposed on the reconstructed coefficients. A similar formulation is proposed
in [18] where images have sparse framelet representations and the incomplete
image can be restored via an iterative shrinkage algorithm. This formulation
balances the sparsity of coefficients, fidelity to the existing data, as well as the
smoothness of the solution. In [109], Ogawa et al. proposed an image recovery
algorithm based on sparse representation, in which the low-dimensional subspaces
optimal for targeted missing textures are adaptively selected.
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There have been very few works on the sparsity-induced recovery of signals
defined on graphs. In [167], Zhu and Rabbat proposed to use the dictionary of
graph Laplacian eigenfunctions to recover smooth and sparse graph signals and
applied them to the reconstruction of wireless sensor networks data from partial
node readings. To the best of our knowledge, our method is the first of such at-
tempts to tackle the problem of geometry inpainting/completion via sparse signal
recovery.

4.3 Variational Inpainting Model

The problem of mesh signal inpainting can be stated as follows. Consider a trian-
gle mesh M = {V,E} with n vertices, where V and E denote the set of vertices
and edges, respectively. Let f ∈ Rn be a vector signal defined on the mesh ver-
tices. Assume the signal values at a subset of vertices V ′ ⊂ V are already known,
the goal of inpainting is to compute a reasonable estimate of the remaining signal
values at V −V ′. For the problem of inpainting surface geometry, the mesh signal
is the coordinate function and the unknown parts correspond to surface holes.

Assume the number of known vertices is |V ′| = n′. We can define the n′ × n
projection matrix P as

P (i, j) =

{
1 if vj is the ith element of V ′

0 otherwise.
(4.3.1)

Denote the observable parts of f to be f ′ ∈ Rn′ , which should satisfy f ′ = P f ,
the general inpainting problem can be formulated as a constrained optimization
problem

f̂ = arg min
f

Pr(f) s.t. ‖P f − f ′‖2
2 < ε, (4.3.2)

or equivalently as a penalized maximum-likelihood estimation problem

f̂ = arg min
f

Pr(f) + λ‖P f − f ′‖2
2, (4.3.3)
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where the data term ‖P f − f ′‖2
2 emphasizes fidelity to the available observations,

while Pr(f̂) is a prior regularizing certain properties of the reconstructed signal.
Traditionally, priors are chosen to optimize the fairness of the inserted mesh

or its coherence with the surrounding geometry. For example, a commonly-
adopted prior for surface optimization is Pr(f) = ‖Lf‖2

2 which aims to maximize
the smoothness of the estimated signal, generating the so-called least-squares

meshes [144]. Here L is the Laplace operator of the shape.
Instead of computing the approximate signal f̂ in the mesh domain directly,

we may first estimate the original signal’s representation in some transformed
domains. Consider a dictionary D of m atoms, where each atom is an elementary
signal defined on the mesh; written in the matrix form, D = (d1, . . . ,dm),di ∈
Rn×1. The original signal f may be represented as the linear combination of
columns in D

f = Dα =
m∑
i=1

αidi, (4.3.4)

where α = (α1, . . . , αm)T is the coefficient representation of f w.r.t. the dictionary
D.

Obviously, if we can estimate the coefficient representation of the whole orig-
inal signal from partial measurements f ′, then we also obtain an inpainting of the
missing signal values. If we know in advance that the coefficients of representa-
tion of f satisfy certain statistical properties, we can estimate the coefficients by
imposing a prior on α

α̂ = arg min
α

Pr(α) s.t. ‖PDα− f ′‖2
2 < ε, (4.3.5)

The complete original signal can then be estimated as f̂ = Dα̂.
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4.4 Sparsity-Based Surface Inpainting

The fundamental idea of our sparsity-based surface inpainting method is that, for
most natural shapes, although the surface geometry is a high-dimensional signal,
it actually lives in a low-dimensional subspace and has a sparse representation in
some transformed domains. Hence, we can set the sparsity of coefficients as the
prior in Eq. 4.3.5 to estimate the coefficient representation of the global shape and
recover the missing geometry. As long as the “complexity” of the original shape
is much smaller than the number of available observations, we have a good chance
to obtain a plausible restoration.

In this section, we first discuss the sparsity of shape geometry w.r.t. the mesh
Laplacian eigenbasis, demonstrating the potentials of Laplacian eigenfunctions
for sparsity-based geometry processing. Then we propose a sparsity-constrained
formulation for the problem of surface inpainting with known connectivity. Fi-
nally, we extend our inpainting method to hole filling-in where mesh connectivity
is nonexistent in the missing regions in the first place.

4.4.1 Laplacian Eigenbasis

For a discrete mesh, its graph Laplacian matrix L is typically defined as

L(i, j) =

{
1 if (vi, vj) ∈ E
0 otherwise.

(4.4.1)

The set of eigenfunctions of L, Φ = {φi}ni=1, are commonly referred to as
Laplacian eigenbasis or manifold harmonic basis (MHB) [154]. The Laplacian
eigenfunctions are analogous to the classic Fourier basis in Euclidean space and
have the following similar properties:

• Functions in {φi} all have global support on the mesh.

• Functions in {φi} exhibit wave-like periodical oscillations on the mesh with
different frequencies corresponding to the eigenvalues {λi}.
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• {φi} form a complete, orthonormal basis of the square-integrable function
space L2(M) defined on the mesh.

• {φi} induce a spectral transform: Any signal f ∈ L2(M) have a unique
decomposition w.r.t. {φi}

f =
n∑
k=1

f̃(k)φk =
n∑
k=1

〈f, φk〉φk,

in which f̃(k) denotes the kth spectral/Fourier coefficient.

The aforementioned attractive properties make Laplacian eigenfunctions po-
tentially efficient for representing shape signals defined on meshes. In [67], Karni
and Gotsman utilized the truncated spectral coefficients for compressed represen-
tation of mesh geometry, which is very similar to the JPEG format for image
compression. In [6], Ben-chen and Gotsman further proved that the Laplacian
eigenbasis is the optimal basis for mesh compression in the mean square error
(MSE) sense, provided that the distribution of the vertex coordinates satisfy cer-
tain natural assumptions.

The spectral mesh compression method introduced in [67] basically computes
the linear approximation of mesh geometry expanded on its Laplacian eigenba-
sis. In linear approximation, spectral coefficients are always added from low-
frequency to high-frequency, regardless of their respective contributions to the
original signal. Better coefficient sparsity can be achieved through nonlinear ap-
proximation by prioritizing coefficients of larger magnitude.

As an example, Fig. 4.1 shows the power of Laplacian eigenbasis for shape
approximation. Fig. 4.1(b)-(c) visualize the mesh coordinate functions of the ex-
ample mesh and their spectral transform coefficients, respectively. We can easily
see that the coordinate functions have very dense support in the natural graph ba-
sis, but can be sparsely represented in the spectral/Fourier domain in the sense
that the majority of spectral coefficients are almost 0. Moreover, the few signifi-
cant coefficients are mostly concentrated in the low-frequency end, especially for
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Figure 4.1: Approximation of the double-torus model with the Laplacian eigen-
basis. (a) Original shape; (b) Vertex coordinate functions; (c) Spectral coefficients
of the coordinate functions w.r.t. the Laplacian eigenbasis; (d) Ratios of spectral
energy contained in the first k coefficients; (e) Approximation error of the mesh
geometry using the first k coefficients.
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a smooth shape model.
Fig. 4.1(d) shows the spectral energies contained in the first k coefficients

(linear approximation) and the first k most significant coefficients (nonlinear ap-
proximation). We see that the vast majority of spectral energy are captured by the
first few significant coefficients.

Fig. 4.1(e) shows how the mesh reconstruction error changes with the number
of coefficients being used. In this example, we see that the approximation error
becomes negligible using only about 20 non-zero coefficients.

4.4.2 Surface Inpainting

In the previous section, we have shown that the geometry of a 3D shape generally
has a sparse representation w.r.t. its Laplacian eigenbasis. Hence, we can set
the Laplacian eigenvector as the reconstruction dictionary and use the sparsity of
coefficients as a prior to estimate the representation of missing shape geometry.

Following the formulation in Sec. 4.3, surface inpainting can be rewritten as
the following sparse approximation problem

α̂ = arg min
α
‖α‖0 s.t. ‖PΦα− x′‖2

2 < ε, (4.4.2)

x̂ = Φα. (4.4.3)

Here the pseudo-norm ‖α‖0 = #{i : αi 6= 0} denotes the support of α, which
counts the number of non-zero components of α, Φ denotes the dictionary matrix
comprising the Laplacian eigenfunctions, and x̂ and x′ represent the estimated
and observable coordinate functions, respectively.

We should note that, since the Laplacian eigenbasis constitute a complete dic-
tionary, Eq. 4.4.2 is solvable even if we set ε = 0, in which case the reconstructed
shape will exactly match the known geometry. However, strictly sparse signals
are rare in real life. It is much more likely that the unknown shape geometry is
compressible or weakly sparse w.r.t. the dictionary of Laplacian eigenvectors, i.e.,
the nonlinear approximation errors observe a power law decay as the number of
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participating basis vectors increases [145]. In practice, we set ε > 0 to trade off
exact reproduction for a sparser α, i.e., allowing the reconstructed signal to have
small discrepancies with the observation.

Solving l0 optimization is an NP-hard problem in nature. Fortunately, under
certain conditions, greedy algorithms such as orthogonal matching pursuit (OMP)
and its variants can generate the exact sparse solution or a good enough approxi-
mation [106, 150].

Another approach to find an approximated solution to Eq. 4.4.2 is to relax the
highly discontinuous l0 norm with l1 norm, i.e.

α̂ = arg min
α
‖α‖1 s.t. ‖PΦα− x′‖2

2 < ε, (4.4.4)

or equivalently,
α̂ = arg min

α
‖PΦα− x′‖2

2 + λ‖α‖1. (4.4.5)

The estimation problem then becomes convex and solvable. There are sev-
eral readily available algorithms for solving l1 optimization, e.g., interior point
method [71], iteratively reweighted least squares (IRLS) [60], least angle regres-
sion (LARS) [144], and iterative shrinkage-thresholding [31].

For the task of surface inpainting, we find that l1 optimization algorithms tend
to be more robust and generally produce better inpainting results than greedy algo-
rithms. In this work, we use the l1 ls solver introduced in [71] which implements
a fast interior-point method for solving l1-regularized least-square problems like
Eq. 4.4.5.

As an example, Fig. 4.2 demonstrates the potentials of our sparsity-based in-
painting method. We randomly label 40% of vertices of the original cube model
as missing vertices, and use the coordinates of the remaining vertices to estimate
the spectral coefficient representation of the original shape by solving Eq. 4.4.4.
Fig. 4.2(b) shows the shape reconstructed from the estimated spectral coefficients.
Fig. 4.2(c)-(d) shows the spectral coefficients computed from the original x-coordinate
function and the coefficients estimated by our sparsity-based method, respectively.
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In this example, our method recovers the sparse coefficient representation in a very
precise way.

4.4.3 Filling Surface Holes

One of the most important technical elements of our surface inpainting method
is the dictionary of global shape basis, which are determined by the global mesh
connectivity. For some applications such as repairing damaged surface regions,
the mesh connectivity of the region to be repaired is already known in advance
before reconstruction and we may not need to modify it. For hole filling appli-
cations, however, the inpainting regions are completely blank without any inside
information. It is imperative to establish interior mesh connectivity, by way of
vertex insertion and patch triangulation, before our surface inpainting method can
be applied.

Obviously, how a patch (to be used to cover the hole region) is triangulated
directly influences the final inpainting result in our framework. In general, a good
patch triangulation should ensure the vertex density of the inserted mesh to be con-
sistent with the remaining mesh. In this work, we adopt the algorithms proposed
by Liepa in [87] for hole triangulation and refinement. Algorithm 2 summarizes
the pipeline of our sparsity-based hole filling method.

Algorithm 2 Sparsity-Based Hole Filling
Require: Input mesh M

1: Identify surface holes,
2: Triangulate and refine holes using the algorithms described in [87],
3: Compute the mesh Laplace matrix L and the Laplacian eigenbasis dictionary

Φ,
4: for coordinate x, y, and z do
5: Compute the spectral representation α of the global coordinates by solving

Eq. 4.4.4,
6: Reconstruct the coordinates of the inserted mesh with Φα,
7: end for
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4.4.4 Remarks on Dictionary

Although the dictionary of Laplacian eigenvectors in general has strong compres-
sive power for encoding shape geometry, it also has some limitations. Similar
to Fourier basis, the Laplacian eigenvectors are most suitable for representing
smooth signals or globally repetitive features, but are generally not optimized for
encoding shapes with many local sharp features. In the image domain, other than
2D Fourier basis, people have developed various types of harmonic basis (e.g.,
wavelet, curvelet, ridgelet, etc) for efficient encoding of images of different prop-
erties. For example, the ridgelets are especially efficient in representing piecewise
smooth images with global straight edges [41]. In the mesh domain, however, we
do not have such diverse harmonic basis to choose from, which for now limits the
power of sparsity-based methods.

Another issue is related to the ratio of Laplacian eigen-decomposition. Com-
puting the full set of Laplacian eigenvectors of a large mesh is extremely time con-
suming, generally infeasible for meshes with more than a few thousand vertices
on a regular PC. Fortunately, for our surface inpainting applications, it is actually
not necessary or even desirable to compute the full set of eigenvectors. On the one
hand, for smooth shapes, the spectral energy is overwhelmingly concentrated on
the low-frequency end, and a dictionary composed of only low-frequency eigen-
vectors can well approximate the shape geometry with very little error. On the
other hand, the high-frequency Laplacian eigenvectors are less stable than the
low-frequency ones, and including them in the dictionary may cause overfitting
and result in worse inpainting results, since the high-frequency eigenvectors are
more correlated with local geometric details than with the overall structure of the
shape. In our experiments, we find that the best inpainting results are usually
achieved with a dictionary of 20% to 50% total eigenvectors.
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Figure 4.2: Estimating the Laplacian eigenbasis coefficients of the cube model
with 40% random missing vertices. (a) Original shape model; green dots de-
note vertices that are labelled as missing. (b) The reconstructed shape using our
inpainting method. (c) The coefficient representation of the original shape’s x-
coordinates. (d) Estimated coefficient representation of the x-coordinates inferred
from the information of available vertices.
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(a) 20% vertices
missing.

(b) Shape recovered
from (a).

(c) 50% vertices
missing.

(d) Shape recovered
from (c).

Figure 4.3: Recovery of the bunny model with 20% and 50% random missing
vertices.

(a) 20% vertices
missing.

(b) Shape recovered
from (a).

(c) 50% vertices
missing.

(d) Shape recovered
from (c).

Figure 4.4: Recovery of the horse model with 20% and 50% random missing
vertices.

(a) 20% vertices
missing.

(b) Shape recovered
from (a).

(c) 50% vertices
missing.

(d) Shape recovered
from (c).

Figure 4.5: Recovery of the fandisk model with 20% and 50% random missing
vertices.
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(a) 20% vertices
missing.

(b) Shape recovered
from (a).

(c) 50% vertices
missing.

(d) Shape recovered
from (c).

Figure 4.6: Recovery of the centaur model with 20% and 50% random missing
vertices.

(a) (b) (c) (d)

Figure 4.7: Geometry repair of the cube model by replacing the selected damaged
regions (marked in yellow) with an inpainting patch. (a) The damaged model; (b)
Repaired with Laplacian regularized least square smoothing [104]; (c) Repaired
with thin-plate energy minimization [4]; (d) Repaired with our inpainting method.
In (b)-(d), the per-vertex error (compared with the ground truth) is color-coded.
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(a) (b) (c) (d)

Figure 4.8: Geometry repair of the damaged epcot model. (a) The original epcot
model; (b) The damaged model (damaged region is marked in yellow); (c) Re-
paired with thin-plate energy minimization [4]; (d) Repaired with our inpainting
method. In (c) and (d), the per-vertex error (compared with the ground truth) is
color-coded.

4.5 Experiments

In this section, we first evaluate the performance of our sparsity-based inpainting
algorithms on recovering missing geometry from partial observations. Then we
demonstrate how our method can be applied to repairing damaged geometry and
filling surface holes.

4.5.1 Geometry Recovery

To evaluate the performance of geometry recovery, for each testing model, we
randomly label 20%-50% vertices as missing and use our sparsity-based inpaint-
ing method to estimate the original geometry based on the coordinates of the still
available vertices. The estimated coordinates are then compared with the original
coordinates.

All the testing models have been translated and scaled to be contained in-
side the unit cube. The recovery error is measured as the root-mean-square error
(RMSE) of the coordinates of the missing vertices.

Fig. 4.3, Fig. 4.4, Fig. 4.5, and Fig. 4.6 show some examples of geometry
recovery with 20% and 50% missing vertices. Fig. 4.10 shows two examples
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(a) (b)

(c) (d)

Figure 4.9: Geometry repair of the damaged wolf model. (a) The original wolf
model; (b) Damaged model with significant noise in the region marked in yellow;
(c) Repaired with Laplacian regularized least square smoothing [104]; (d) Re-
paired with our inpainting method. In (c) and (d), the per-vertex inpainting error
(compared with the ground truth) is color-coded.
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(a) Horse model (b) Fandisk model

Figure 4.10: Inpainting errors given different ratios of randomly missing vertices
using our method. The horse model uses 2,000 eigenvectors and the fandisk model
uses 3,000 eigenvectors to construct dictionaries, respectively.

Mesh #vertices #eigenvectors Decomposition
time (s)

Missing
ratio

Error l1 time (s)

bunny 2.5k 1000 19.6
0.2 1.9e-2 2.8
0.5 2.2e-2 2.1

horse 8.4k 4000 1015.4
0.2 8.6e-3 19.7
0.5 1.0e-2 59.0

fandisk 6.5k 3000 445.2
0.2 8.8e-3 17.4
0.5 1.2e-2 33.9

centaur 15.8k 2000 397.7
0.2 7.1e-3 12.2
0.5 8.0e-3 15.0

Table 4.1: Geometry recovery errors and time performance. For each model,
we test the recovery performance with 20% and 50% randomly selected vertices
labelled as missing. Each experiment has been repeated three times and averaged
on a system with quad-core 2.4GHz CPU and 16GB RAM.
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of how the inpainting error (MSRE) changes with the ratio of vertices randomly
labeled as missing.

Table 4.1 documents the recovery errors and time performance of our tests.
From the experimental results, we have the following observations:

• When the missing vertices are randomly dispersed on the shape, our sparsity-
based method can reliably recover the missing coordinates with great preci-
sion, even when the ratios of missing vertices are as high as 50%.

• The l1 estimation generally becomes more time consuming when the ratio
of missing vertices increases.

• As noted in Sec. 4.4.4, using the truncated Laplacian eigenbasis dictionary
is acceptable for restoring smooth shapes. However, for shapes with many
edges and corners, such as the fandisk model (see Fig. 4.5), our inpainting
method cannot well preserve local discontinuities, since the high-frequency
basis are simply not present in the truncated dictionary.

4.5.2 Geometry Repair

Our sparsity-based inpainting method is very suitable for repairing partially dam-
aged geometry. After manually selecting the damaged regions, we can apply our
inpainting method to estimate the original whole shape with the same connectiv-
ity based on the remaining parts of the shape. The corrupted regions can then be
substituted by the inpainting patch.

Fig. 4.7, 4.8, and 4.9 demonstrate repairing damaged local geometry using
our sparsity-regularized inpainting method. The results are compared with two
geometry-regularized mesh optimization methods: Laplacian regularized least
square smoothing [104] and thin-plate energy minimization [4]. We can see that,
although geometry-regularized methods can generate patches that are smooth and
blend well with the surroundings, they fail to recognize the intrinsic structures
of the original shapes; consequently, important geometric features are simply
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smoothed out. In contrast, our sparsity-regularized inpainting method takes into
account the global shape structures, and almost perfectly recovers the edges and
corners in the cube model (Fig. 4.7) and the geometric textures of the epcot model
(Fig. 4.8) from partial observations.

4.5.3 Hole Filling

As introduced in Sec. 4.4.3, for general hole filling tasks, the mesh connectivity
information inside holes are probably unknown. We must first triangulate holes
in a proper way and then apply our geometry inpainting method to optimize the
newly inserted mesh. How the hole is triangulated directly impacts the global
Laplacian eigenbasis which subsequently determine the estimated recovery.

As an example, Fig. 4.11 compares the results of filling the holes of a dou-
ble torus model with and without original connectivity information, using our
sparsity-regularized method and the geometry-regularized method proposed in
[4]. We can see that estimating with a different connectivity significantly alters
the final hole fairing results. In this example, our method generate shapes that are
more approximate to the original shape both with the original connectivity and
with the new connectivity.

In general cases, we cannot expect the hole filling result using our sparsity-
regularized inpainting method to precisely match the original shape when the
number of vertices and connectivity of the patching mesh, generated from hole
triangulation and refinement, are different from the original mesh. Nonetheless,
the resulting patching meshes tend to be coherent with the whole remaining shape,
thanks to the global shape awareness of our method. Fig. 4.12 shows two exam-
ples of filling holes utilizing our inpainting method. The results are comparable
to the geometry-regularized surface restoration method in [4].
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(a) (b) (c) Error: 0.010

(d) Error: 4.1× 10−4 (e) Error: 0.030 (f) Error: 0.021

Figure 4.11: Compare hole filling results using our sparsity-regularized method
and the geometry-regularized method introduced in [4]. The error is measured as
the root-mean-squared deviation from the estimated vertices to the original shape.
(a) The original double torus model. (b) The model with a hole. (c) Inpainted
using the method in [4] with the original mesh connectivity. (d) Inpainted using
our method with the original mesh connectivity. (e) Inpainted using the method in
[4] with the mesh connectivity generated from hole triangulation and refinement.
(f) Inpainted using our method with the same mesh connectivity as (e).
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Inpainting existing holes on the bunny and hand models. (a)(d) Orig-
inal models with holes; (b)(e) Hole-filling result using our method; (c)(f) Hole-
filling result using the method of [4].
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4.6 Chapter Summary

In this chapter, we have proposed a novel surface inpainting algorithm based on
sparse signal recovery. Instead of directly estimating the local missing geometry,
our new inpainting framework is designed to discover the coefficient representa-
tion of the entire original shape in a transform domain. When the shape geometry
is sufficiently sparse with respect to the dictionary of transform basis, chances are
we can accurately recover this sparse representation by imposing sparsity con-
straints on the coefficients given partial observations. In our method, we adopt
the mesh Laplacian eigenbasis as dictionary, and formulate surface inpainting as a
sparse signal recovery problem. Leveraging standard l1 optimization techniques,
we can obtain an estimated shape which agrees with the observable parts and
are globally coherent. For shapes that are highly compressible w.r.t. the Lapla-
cian eigenbasis, we have experimentally demonstrated the great potential of our
method for geometry restoration, geometry repair, and hole filling.

For the future work, we plan to extend our sparsity-based inpainting frame-
work by integrating geometric constraints such as curvatures and normals, which
should improve the geometric consistency of the inpainting result. We are also
interested in designing new types of shape basis and exploring more sophisticated
strategies for constructing dictionaries, e.g., dictionaries that are adaptive to the
input shape.
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Chapter 5

Generalized Feature Description
and Detection

5.1 Introduction

Studies in feature abstraction and analysis have been gaining momentum be-
cause features are essential for numerous downstream graphics tasks and ap-
plications such as shape recognition, segmentation, analysis, understanding, etc
[14, 74, 142]. Influenced by the trending concept of high-level representations in
computer vision, which are based on object-wise components, more attention has
now been directed towards region-wise feature analysis in geometry modeling. In
this work, we advocate a new region-based and user-specified type of feature as
well as a novel wavelet-inspired multi-scale and multi-level descriptor, and they
jointly enable our feature detection framework that can further facilitate various
applications.

Conventional feature descriptors are usually constructed by considering the
discontinuities of certain differential attributes of different orders (e.g., the second-
order attribute like surface curvature) that naturally afford their discriminative
power in characterizing point features, line/curve features, small patch-based fea-
tures with regular boundaries, etc. Such descriptions have been employed in
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point/patch-based recognition, point-wise correspondence, and curvature-based
saliency detection with great success. However, for more complicated applica-
tions such as modeling by example [46], model composition [77], and key com-
ponent analysis [140], the aforementioned conventional features are usually too
localized to capture the multi-scale neighboring information, and it is desirable
to have a flexible, region-induced feature description. Furthermore, in many real-
world settings, shape data may be degraded due to acquisition imperfections and
noises, necessitating the use of region descriptors which tend to be much more
robust.

Existing works related to region-wise analysis include partial matching, shape
correspondence, saliency extraction, etc. Boundaries of the regions in question are
usually confined to regular but non-adaptive shapes [52, 70, 75, 103], thus neigh-
boring and in-between geometry information may not be fully captured. As for
region description, trending measures include the distributions of various types
of point descriptors [7, 91, 110] and the global analysis of the regions based on
spectral decomposition [63, 80]. Some regional measures are not discriminative
enough to solely characterize the regions in question, for which post-processing
like geometric hashing [78] or random sample consensus [45] is required. Never-
theless, these settings are not hierarchical enough to characterize the focal regions.
On the other hand, multi-scale shape analysis methods [134,146], in spite of their
great descriptive power, have not yet been employed to construct regional descrip-
tions. These insights inspire us to propose a more comprehensive and stable type
of shape description that can encode the region of interest with high discriminative
power and efficiency.

In this chapter, we propose a local-to-global shape feature via user specifi-
cation, introduce an informative region descriptor, and then present a shape fea-
ture detection framework to facilitate a host of graphics applications. The pro-
posed shape feature extends the definition of conventional features to a region-
wise manner in a user-specified way (as highlighted in Fig. 5.1). To encode user-
specified features, we proactively seek an informative regional descriptor con-
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Figure 5.1: Pipeline of our feature detection and description framework.

85



structed in a multi-scale and multi-level way. Our descriptor takes advantage of
the bi-harmonic distance field and the SGWs. The stability and robustness of bi-
harmonic distance field guarantee the technically-sound foundation for the whole
descriptor. SGWs naturally accommodate local and global geometry with a multi-
scale solution, and such solution is consistent across multiple levels. We devise a
new statistical method based on the decomposition coefficients of the shape sig-
nal, enabling the joint analysis of the underlying geometry together with different
shape signals. In order to comprehensively characterize the shape features, we
also incorporate the contour-centered geometric statistics into our descriptor. All
of these enable our feature detection framework as shown in Fig. 5.1. We quantify
each model’s regions of interest around central points (or point samples) accord-
ing to the user-specified feature scope on the query model. Then descriptors are
constructed on candidate regions across different models, which is equivalent to
transform each region into the high-dimensional feature space. After the region-
wise feature space is constructed, various analytical tasks can be performed. The
primary contributions of this work can be summarized as follows:

• We propose to define a generalized shape feature type via user specification,
which is geometry-aware and is the organic coupling of local and global
description. Also, it is a fundamental tool that can help unite different types
of graphics applications.

• Our region-based descriptor is primarily built upon the SGWs that are both
multi-scale and multi-level in nature, elegantly integrating both local (dif-
ferential) and global (integral) information. We also introduce the contour-
centered geometric statistics to enhance the descriptor’s discriminative power.

• We develop a feature detection framework, which can integrate different
types of state-of-the-art region descriptors and further facilitate widespread
graphics applications including partial matching, coarse-to-fine recognition,
model recognition, etc.
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5.2 Related Work

This section will briefly review prior research related to region analysis and the
latest progresses on SGWs.

Region-wise Description and Detection. We first review how current meth-
ods define boundaries for given regions. Broadly speaking, they characterize a
local neighborhood around a central point in two ways. The first is based on Eu-
clidean distance, such as spheres [70], blowing bubbles [103], rings [52], shape
context [75] or priori decompositions [49, 65]. The second is to use geodesic
distance like geodesic fans [162] and spiral pathway [79]. The shapes of region
boundaries defined by the above methods are mostly restricted to regular formats,
and such nonadaptive neighborhoods cannot precisely reflect the local geomet-
rical or topological distortions. Region-wise descriptors can be roughly divided
into two categories: point-based and region-based methods. Point-based meth-
ods provide the quantitative measure by organizing single-valued point signatures
into certain kinds of distributions. Various kinds of point descriptors have been
incorporated in this manner, e.g., the shape index (SI) [148], shape diameter func-
tion (SDF) [137], heat kernel signature (HKS) [124], Zernike moments [100], etc.
Region-based methods analyze the entire focal region through spectral decompo-
sition [63, 66], which can robustly depict the intrinsic geometry. However, due
to the instability of local Laplacian decomposition, these methods usually cannot
well handle small and complex regions.

Region-based Partial Matching and Correspondence. In literature, region
analysis has been discussed mainly in the research of partial matching problems,
and several categories of techniques have been employed. Skeletal-graph-based
approaches such as [9] couple geometry and structure in a single skeletal descrip-
tor based on the theory of Reeb graph. The main drawback is that sub-parts cannot
be recognized automatically. Multi-criterion optimization approaches [24, 79, 94]
try to match subparts by striking balance between significance and similarity cri-
teria. This type of methods require the knowledge of correspondence between
shapes, otherwise, it can only be solved by alternating between correspondence
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and part area, which is time-consuming. Bag-of-words (BoWs) technique has
been adopted [16, 161] to represent a shape or a subpart as a collection of lo-
cal feature signatures quantized in some vocabularies of “geometric words”. If
the geometric vocabulary is sufficient and the shapes have significant common
parts, it is possible to compare partially-similar shapes, otherwise, these meth-
ods oftentimes fail to function properly. Furthermore, improper additions of the
spatial information and imprecise binning process may lead to the averaging-off
effects of geometric information. The concept of non-point-wise correspondence
was first proposed in [124] by using region-wise local descriptors and optimiz-
ing over the integration domain upon which the integral descriptors of the two
parts match. This method can exactly match fragments to entire shapes, however,
since it utilizes the absolute values in calculation like integration, it cannot deal
with the partially similar correspondence. Besides, many of the above approaches
rely heavily on exact or meaningful shape decomposition process as in [65, 80],
which is computationally expensive and significantly influences the final corre-
spondence results. Also, in order to achieve meaningful results, many approaches
utilize time-consuming post-processing like in [49] and [65]. So it requires more
effective and generalized region detection techniques to help speed up and im-
prove the precision of the partial matching and correspondence processes.

5.3 Local-to-global Shape Feature Definition

In this section, we introduce the definition process of the proposed novel shape
feature, which generalizes conventional features (e.g., point, line, or patch fea-
tures) to a local-to-global level via user specification. Our shape feature is ex-
tracted via the bi-harmonic distance field [88], which is robust, globally “shape-
aware”, parameter-free, and widely used in geometry processing. Among these
attractive properties, the consecutive depicting power inspires us to incorporate
it for integrating multi-scale regional information that is required for subsequent
analysis. In addition, the cross-sections of contours in the bi-harmonic distance
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Figure 5.2: The functional pipeline of our feature detection framework. (a)-(c)
show the user’s inputs in the specification process, red arrows in (a) and (b) denote
the specified point of interest and contour scope, respectively. The bottom row
shows the specified shape feature (e) and analogous feature regions (d) (we only
display three cases here).

field naturally form boundaries for user-specified features, thus avoiding the shape
decomposition process.

Our shape feature is a user-specified partial region with two parameters: the
point of interest and the contour scope, both of which can be determined using
a simple user-interactive process. The point of interest is the relative center of
the feature, it can either be picked directly on the mesh, as shown in Fig. 5.2(a),
or be automatically initialized as the extreme point of a function defined on the
surface. In order to specify the contour scope of the point of interest, we should
first introduce the metric with which we set the scope, namely, the bi-harmonic
distance field.

Let us consider a 3D mesh represented as a graph M = (V ;E) with vertices
V and edges E, where V = {v1, v2, ..., vn} and n is the number of the vertices. A
vector-valued function f : V → Rq defined on V can be represented as an n × q
matrix, where the i-th row represents the function value at vi, we denote it as
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f(i). According to [88], the bi-harmonic distance between vertex vi and vj can be
expressed as

Dbh(i, j)
2 =

m∑
k=1

(χk(i)− χk(j))2

λ2
k

, (5.3.1)

where {λk} and {χk(·)} are, respectively, the firstm non-zero eigenvalues and the
corresponding eigenfunctions of the Laplacian-Beltrami operator with “cotangent
formula” discretization [101].

For each vertex, Eq. (5.3.1) defines a diffusion field around it. We compute
the diffusion field of the specified interest point (denoted as vs) and then construct
a set of contours (Fig. 5.2(b)) across the entire model with contour points located
on the edges of the mesh model. These contours can very well reflect the changes
locally around the central point and characterize the corresponding global struc-
tures, and these will be discussed later. In order to make the setting of parameters
more stable, we normalize the original models using a unit box. Then the total
number of the contours distributed in the diffusion field can be set empirically to
the integer nearest to max(Dbh(s, ·))/0.05, which is dense enough to depict the
diffusion field. Then the user can choose one of the contours to set the scope of
the feature (as shown in Fig. 5.2(b)) and denote it as Ss. Fig. 5.2(c) illustrates the
feature defined with the red boundary.

Our shape features can be located anywhere and vary spatially in scale de-
pending on specific applications. They integrate the local and global geometry,
which affords their great potential in bridging differential and integral geometry
information.

5.4 Multi-level And Multi-scale Shape Description

Our novel descriptor primarily make use of the statistics of SGWs coefficients. As
a supplement, contour-based statistics are also included the descriptor to achieve
better discriminative power.
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5.4.1 SGW-based Description

As mentioned in Chapter 2, spectral graph wavelet transform (SGWT) defines a
new type of wavelet analysis on graphs by performing scaling of mother wavelet
in the Fourier domain instead of the spatial domain. The SGWs are expressed as
bivariate kernel functions expanded on the manifold harmonic basis

Ψt(i, j) =
n−1∑
k=0

g(tλk)χk(i)χk(j), (5.4.1)

where g is the real-valued wavelet generating kernel and t is the scale parameter.
The ith row of Ψt(·, ·)

ψt,i(·) = Ψt(i, ·) =
n−1∑
k=0

g(tλk)χk(i)χk(·), (5.4.2)

is the spectral wavelet spatially-localized at vi, and in the frequency domain, local-
ized at scale t. It should be noted that we choose to use the geometric mesh Lapla-
cian for more geometric-aware description, instead of the combinatorial Laplacian
originally used in [59].

Multi-scale SGWs can well represent both the high frequency and low fre-
quency geometric information around the index point. Suppose we compute the
spectral wavelets at J different scales {t1, t2, ..., tJ}, and adopt the same formula-
tion of generating kernel functions used in [59], given by

g(x) =


x2 if x < 1

−5 + 11x− 6x2 + x3 if 1 ≤ x ≤ 2

4x−2 if x > 2

, (5.4.3)

and the J scales are selected to be logarithmically equally spaced between the
minimum scale tJ = 2/λmax and the maximum scale t1 = 40/λmax, where λmax
is the upper bound of the Laplacian eigenvalues. The settings of t1 and tJ guar-
antee that g(t1x) has power-law decay for x > λmin and g(tJx) has monotonic
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polynomial behavior for x < λmax.
Using the above formulations, we can easily obtain the wavelet coefficients of

a given function centered on a specific vertex vi as

Wf (t, i) = 〈ψt,i, f〉 =
n−1∑
l=0

g(tλl)f̂(l)χl(i), (5.4.4)

where
f̂(l) = 〈χl, f〉. (5.4.5)

Here, the signal function f can be any kind of surface signal depending on the
downstream application. For example, mean curvature, characterizing detailed lo-
cal distortions, is a good choice for the recognition of repetitive features within
individual models and the detection of similar features across models with differ-
ent poses. For coarse-to-fine recognition, the HKS is more favorable thanks to its
robustness to noise. The coefficients Wf obtained from the spectral wavelet trans-
form is the inner product of the signal function and the corresponding wavelet at
scale t and location i. It is an encoding of the signal at that particular scale, i.e., it
describes the original signal in certain frequency with respect to the local geome-
try and topology. Repeating this process for J scales (as shown in Fig. 5.3(a)-(d)
with 4 scales), the collection of coefficients obtained comprises our multi-level
and multi-scale descriptor.

Instead of using Wf directly as descriptors like in [84], we incorporate it into
our descriptor by taking advantage of the consecutive depicting power of the bi-
harmonic distance field. In order to comprehensively describe the geometric in-
formation contained within the feature, we divide the feature region into thinner
bands with more contours as shown in Fig. 5.2(c)-(e). The number of dense con-
tours may be set automatically as the integer nearest to Ss/0.025, and such dense
contours can elaborately depict and organize the inner geometrical information
within the feature region. Fig. 5.3(e) illustrates the setup of our SGW-based sta-
tistical bands based on Wf , where different layers convey multi-level (from high
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(a) 

(d) (c) 

(b) 

(e) 

),( 11f bandtW ),(W 21f bandt

Figure 5.3: Statistics on signal’s wavelet decomposition coefficients (Wf (·, t)).
(a)-(d) list t from small (t1) to large (t4) value, corresponding to the decomposed
signals varying from high to low frequencies. (e) illustrates the composition of
statistics based on Wf within one feature region.
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to low frequency) information and different bands (denoted in yellow and green)
in-between contours encode multi-scale information. By stretching the “matrix-
like” statistic (as in Fig. 5.3(e)) into a high dimensional vector, we obtain the
descriptor of vs, denoted as Ds, given by

Ds = [W b1
t1 , ... ,W

bL
t1 ,W

b1
t2 , ... ,W

bL
t2 , ... ,W

b1
tJ
, ... ,W bL

tJ
], (5.4.6)

where W bj
ti denotes the statistic of Wf with scale ti on the j-th band, and L is the

number of contours. Here W bj
ti can be expressed as the 1-norm of Wf (ti, ·) over

the j-th band
W

bj
ti =

∑
p∈bj

|Wf (ti, p)|, (5.4.7)

where p is the vertex index, p ∈ bj denotes p is a vertex located on the j-th band.
In Fig. 5.3, we observe that information contained in Wf of different time

scales corresponds to the fine-to-coarse multi-level information, and the statistics
on the bands convey the near-to-far multi-scale knowledge. These collectively
make use of SGWs’ power in integrating geometric information. In addition,
we notice that descriptors based on Wf are scale-invariant as long as SGWs are
normalized.

5.4.2 Contour-based Multi-scale Statistics

The contours of bi-harmonic distance field encode rich information of local-to-
global geometric variation. So we further introduce the perimeters of contours and
the distance distribution of contour points to help characterize the focal region’s
shape in an orderly and quantitative manner.

For a specified feature and its corresponding contours, we first calculate con-
tours’ perimeters and concatenate them as {pc1 , pc2 , ..., pcL}, where ci denotes the
index of the i-th contour. Then, for each contour, we compute the Euclidean dis-
tances between the contour points and their barycenter (as shown in Fig. 5.4),
and further evaluate the probability distribution of the distances. We denote the
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Figure 5.4: Contour-based distance distribution. The zoomed-in part shows the
distances under current consideration when performing statistical calculation.

distance-related statistics as {dsc1 , dsc2 , ..., dscL}. Here, dsci is a vector stacking
up the probability distribution of the distances concerning the i-th contour. We
uniformly separate the distance values into M bins, ranging from zero to the max-
imum value after removing the top and bottom 5% to rule out possible outliers.
Then its stack pattern is

dsci = [
num(b1)

num(ci)
,
num(b2)

num(ci)
, ...,

num(bM)

num(ci)
], (5.4.8)

where num(bj) is the number of points with distance values falling in the j-th
bin and num(ci) is the number of points on the i-th contour. For multiple con-
tours with the same value, they should be considered as a whole when performing
statistical calculation.

These two measurements help describe the shape of the bi-harmonic distance
field completely and identify the details of shape’s distortion. The purpose of
introducing the distance distribution is to distinguish between different contours
with the same perimeters.
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5.4.3 Informative Region-based Descriptor

So far, the separate parts of our descriptor have all been introduced. Now, it
sets the stage for us to integrate them together to form our final informative hi-
dimensional descriptor as

Ds = [ωs ∗ (W b1
t1 , ... ,W

bL
tJ

),

ωp ∗ (pc1 , ... , pcL),

(dsc1 , ... , dscL)],

(5.4.9)

where ωs and ωp are weights to adjust the contributions of the three parts in the
descriptor. The settings of these weights will be detailed in Section 5.6.

Our descriptor integrates the attractive properties of both SGWs and contour-
based measurements. From the viewpoint of feature mapping, SGWs establish a
powerful foundation for hierarchical representation of the geometrical and topo-
logical details. Our design of the regional description encodes the shape feature in
the aspects of both “breadth” and “depth”, paving the way for our feature detection
framework.

5.5 Feature Detection Framework

Using the same way to define feature regions around candidate points and formu-
late the corresponding descriptions, descriptors concerning candidate regions on
the same model or different models in the database can be easily computed for
analytical purposes.

5.5.1 Constructing Descriptors over Shapes

To construct descriptors on candidate regions on one or more models, the cen-
tral points and contour scopes should also be determined first. As for the central
points, we implement the farthest-point-sampling strategy [102] to uniformly ex-
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Figure 5.5: Sampling results on horse and Santa models using the farthest-point-
sampling strategy. Only part of the sampling points are shown for visual clarity.

tract points on the mesh model (as shown in Fig. 5.5). This strategy ensures not
only the uniform distribution of the candidate points, but also the inclusion of
the end points, which are interesting alternatives for user’s selection. However,
we want to mention that the sampling process is optional, and users could either
pick the desired sampling methods or simply use all the vertices as candidates
according to specific applications.

Then the construction of descriptors across versatile shapes is based on the
knowledge of the shape feature defined. That is, candidate regions are determined
automatically according to the contour scope of the shape feature specified. Sup-
pose that vs and vi are respectively the interest point and one of the candidate
points. Then the scope of vi is set as Ss ∗max(Dbh(i, ·))/max(Dbh(s, ·)) and this
can help ensure the robustness of our method for deformable models. With the
region scope determined, the construction of the corresponding descriptor is con-
ducted in the same way as the specified feature (in Section 5.4), which is detailed
in Algorithm 3.

With each candidate region equipped with a high-dimensional descriptor, our
key task is to analyze the similarity in the descriptor space. We shall first intro-
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duce the proper measurements for this new space. It has been found that both L1

and L2 norms are discriminative enough to measure the distance between any two
descriptors, representing the corresponding regions. As alternatives, the covari-
ance distance and χ2 distance are also tested to be good choices for comparing
the distributions’ similarities.

5.5.2 Feature Detection and Framework Properties

Here, we detail the effectiveness of our feature detection framework together with
several of its attractive properties and more results will be shown in Section 5.6.
It shall first be emphasized that high sampling rates always lead to dense distri-
bution of the candidate points, thus several neighboring points may have similar
diffusion regions, and this will lead to multiple detected results that are in the
vicinity of each other. Therefore we empirically reject candidate regions that have
more than 50% overlaying with the afore-ranked regions. This strategy can en-
sure the uniqueness of the detected features as well as the broader coverage of all
relevant feature regions, and also make our approach robust to different sampling
processes.

We first show a simple feature detection result within the bear model as dis-
played in Fig. 5.6 (here, mean curvature is chosen as the signal function). The top
row shows the features specified with different scales and the second row shows
the detected results. It can be observed that the detected similar feature regions
are affected by the specification of the feature scope (the selected contour indices
here are 2, 3, and 6, respectively). Though small-scale query leads to rather trivial
outcomes, the most similar parts are still among the top-ranked results. Further-
more, it is obvious that larger scales can lead to more accurate results thanks to
added information. The analogous feature regions defined (proportional to the
specified feature) and the corresponding descriptors jointly ensure the accuracy of
the detection of the repetitive feature regions.

Our shape feature and its description possess many attractive properties like
being concise to store, fast to compute, and efficient to match, etc. Here, we
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Figure 5.6: Detection of repetitive features with different scales. The first row
shows the specified features and the second row shows the detected results within
the bear model. Yellow points on query models denote the specified points of
interest.
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Algorithm 3 Construction of Descriptors over Shapes.
Require: User-specified interest point vs and contour index ns;
Ensure: Descriptors of the specified feature (Ds) and all the other candidate re-

gions ({Di});
1: Conduct the eigen-decomposition on all models;
2: Compute the Wf of each point using Eq. (5.4.4);
3: Compute the bi-harmonic distance of vs, denoted as Dbh{s, ·};
4: Uniformly construct max(Dbh(s, ·))/0.05 contours across the entire model;
5: With user’s specification of the contour number (ns), compute the correspond-

ing value as Ss;
6: For any candidate point vi, compute its bi-harmonic distance Dbh{s, ·}, and

set its region scope as Ss ∗max(Dbh{i, ·})/max(Dbh{s, ·});
7: Reconstruct Ss/0.025 contours on the specified feature and all the candidate

feature regions;
8: Compute the SGWs-based and contour-related measurements using

Eq. (5.4.9);
9: Return Ds and {Di}.

demonstrate two more desirable properties that can facilitate various practical
tasks.

Isometry-invariance. We verify the property of isometry-invariance through
tests carried on three categories of models in different poses. These models are
chosen from the SCAPE and TOSCA databases. As visualized in Fig. 5.7, we
deliberately specify features on the human arm containing the elbow, dog leg with
elbow and finger with knuckle to validate the property. The models in Fig. 5.7(b)
are the deformed ones showing the top-2 most similar feature regions detected on
each of them (red and orange highlight the first and second one, respectively). The
top-2 detected results are shown here since our approach is capable of identifying
similar regions, but distinguishing between symmetric parts is beyond the tech-
nical scope of this work. The retrieved results empirically prove that our region-
based descriptor is isometry-invariant, which is inherited from the properties of
graph wavelets and bi-harmonic distance field.

Robustness to Noise. We add 0.5 (of the mesh’s mean edge length) noise to
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Figure 5.7: Illustration of isometry-invariance. (a) Query. (b) Detected results on
deformed models with red and orange denoting the top-2 similar regions.
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Figure 5.8: Coarse-to-fine recognition on elk and kettle models with 0.5 (mean
edge length) noise. (a) Noisy model. (b) Specified features. (c) Recognized
regions.

the query models as shown in Fig. 5.8(a) and set the signal as HKS. We selectively
enlarge the SGWs-related part of our descriptor to combat noise. The features
are specified on these noisy models as shown in Fig. 5.8(b). From the detection
results displayed in Fig. 5.8(c), it can be observed that even with large noise, our
approach can still recognize the intrinsic geometric characteristics of the features
and identify the corresponding similar features, including the ball shape on the
elk model and the bended handle of the kettle model from the shape database,
thanks to the robustness and stability of bi-harmonic distance field and HKS. The
robustness of our approach is of great significance in practical applications as will
be demonstrated in Section 5.6.
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Table 5.1: Run Time for Constructing Descriptors

Model # vertices
Timing (min)

Eigen Wf Total

Dinosaur 14K 0.17 0.14 0.33

Dog 26K 0.30 0.35 0.69

Armadillo 34K 0.38 0.48 0.97

Santa 75K 0.93 1.23 2.32

Dragon 430K 5.51 8.16 14.15

5.6 Experimental Results and Discussions

In this section, we demonstrate the performance of our approach via experiments
in various aspects. All the experiments were conducted on a 3.5GHz Intel(R)
Core(TM) i7 computer with 16GB memory. We used the cusparse and cublas
libraries in CUDA to help reduce the computational time for wavelet transform
significantly. For instance, for the SHREC 2007 partial retrieval dataset, in which
the average model size is 18K vertices, the whole process of constructing de-
scriptors on one model takes an average of 0.38 minutes, and the whole database
costs 114 minutes with 20% sampling rate for each model. More timing details
concerning versatile models are shown in Table 5.1.

5.6.1 Parameter Evaluation

There are several parameters in our approach, most of them can be set automati-
cally or empirically set as constants. Two parameters, the sampling rate and the
signal function, could be tuned according to specific applications’ requirements
for better results.

Parameters in the Construction of Descriptors. For the SGWs-related part
of the descriptor, we calculate bi-harmonic distances and graph wavelets using the
first 300 eigenvalues of each model, and they only need to be computed once. The
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number of graph wavelets’ time scales is set to be 5, which can well represent
the frequency information. We empirically set the number of the bins in distance
distribution to be 10, and it has been tested to be sufficient to characterize the
structure features. The weights ωs and ωp are automatically set (based on the
mean scale of each part) to balance the three parts that comprise the descriptor.
Fig. 5.9 demonstrates the function of graph wavelets by comparing the retrieval
results with ws = 0 and ws 6= 0 on SHREC database and the corresponding
constructed database (note that each model is added with 0.5 mean-edge-length
noise as shown in Fig. 5.9(a)). The relevant number is the number of retrieved
models that contain partial regions that match the query region (here, ant head and
plane tail). It clearly shows that graph wavelets holds the power to characterize
the focus regions discriminatively and robustly. Therefore, we selectively enlarge
the weight of SGWs-related part (ws) to combat the disadvantages of the other
parts in specific applications.

Sampling Rate. The setting of sampling rate depends on specific applications.
Even when the sampling rate is decreased to 5%, our sampling strategy still ensure
the inclusion of endpoints. It should be noted that if the application requires high-
precision detection, all the vertices of the model could be taken into consideration.
For the feature detection framework, the sampling rate of 20% can meet almost
all the needs in our experiments.

Signal Selection. The signal function influences SGW-related statistics di-
rectly. Therefore, signal selection is among the key problems that should be con-
sidered. In principle, the selection depends on specific applications as analyzed
in Section 5.4. Furthermore, some applications require the signal to be intrinsic,
for which signals like Gaussian curvature, thickness, etc. are expected to perform
better.

5.6.2 Repetitive Feature Detection within Certain Model

Repetitive feature detection is of great importance to applications, such as self-
symmetry detection [49] and non-local processing propagation [100]. We ran-
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(b) Ant head (c) Plane tail

(a) Samples from original and constructed noisy database 

Figure 5.9: Retrieval results (on the SHREC database) with ws = 0 (red line) and
ws 6= 0 (blue line), and dash lines show the results on noisy models.
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Figure 5.10: Repetitive feature detection within one model. Red denotes query
feature and blue denotes some detected results.

domly select some regions of interest to be the shape features as illustrated in
Fig. 5.10 (in red). The specified features show that our diffusion-manner demar-
cation can well cover the interest regions of any kind of shapes if only the interest
points and scopes are chosen properly. The detection results show that our de-
scriptor can reliably locate the repetitive feature regions within the dragon model
even with large deformations, and it can effectively distinguish between the lumpy
local shape of dinosaur’s tail from its cylinder-like legs, etc. It very well demon-
strates that our SGW-centered descriptor can depict the local details and reflect
multi-scale geometric distortions thanks to its gradational construction.
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5.6.3 Feature Detection in Database

The performance of our feature detection framework is evaluated on the SHREC
2007 watertight retrieval benchmark, which contains 20 categories and each con-
sists of 20 meshes. In order to demonstrate that our framework is not restricted
to the segmentation-based regions like four-legs, we test three kinds of artificial
models and each of the query model is unique without any transformed equivalent
in the dataset.

We deliberately specify features on kettle, glasses, and chair as shown in
Fig. 5.11(a). The slab of the chair is a vivid example, and the existing meth-
ods based on segmentation cannot achieve such trans-boundary shapes. It’s ob-
vious that the top-4 similar parts in Fig. 5.11(b) resemble the query region very
well, which validates that our descriptor based on the continuously distributed
contours could characterize the focal region thoroughly. The feature detection
process has the ability to correctly identify the most similar parts with equal-
proportional scales thanks to the stable characteristic of bi-harmonic distance. By
examing which models in the database contain the similar shapes such as kettle
base, eyeglasses or slab of chair, our framework can facilitate co-analysis across
models and enable search-based shape modeling.

5.6.4 Comparisons and Discussion

Due to the unique technical strategy of our feature description and detection, there
is no existing work that is directly comparable with ours. From the perspective of
applications, partial matching appears to be the most relevant one. Therefore, we
first compare our approach with five popular existing methods in partial matching
or shape retrieval based on region description. These methods can all properly fit
into our framework and make effective comparisons. They are

• D2 Shape Distribution (D2): statistics of distances between any random pair
of points on the region [110].
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Figure 5.11: Feature detection on the SHREC 2007 watertight retrieval database.
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Table 5.2: Precisions of different detection methods.

Method
Ant Head Plane Tail Human Leg

15 30 15 30 30 60

Ideal 100% 66.7% 100% 66.7% 100% 66.7%

D2 26.7% 30.0% 26.7% 23.3% 40.0% 41.7%

CF 33.3% 30.0% 53.3% 56.7% 46.7% 48.3%

ZM 53.3% 43.3% 53.3% 53.3% 46.7% 50.0%

SDF 46.7% 56.7% 46.7% 50.0% 50.0% 58.3%

PS 80.0% 60.0% 46.7% 43.3% 73.3% 60.0%

Ours 93.3% 63.3% 80.0% 60.0% 86.7% 63.3%

• Conformal Factors (CF): statistics of conformal geometric factors of points
on the region [7].

• Zernike Moments based signature (ZM): local shape signature based on
transformation of Zernike Moments [100].

• Local SDF Signature (SDF): statistics of points’ Shape Diameter Func-
tion [137].

• Patch Spectral Geometric Features (PS): normalized spectra of patch spec-
trum decomposition [63].

The above methods induce the direct geometric measurement (D2), intrinsic curvature-
related measurement (CF), heightmap-based measurement (ZM), volume-based
measurement (SDF), and spectral-analysis measurement (PS), respectively.

We conduct comparison tests on SHREC 2007 watertight database as well
as the McGill database that contains 255 objects divided into ten classes and the
intra-class variations consist of non-rigid transforms applied to models. By setting
proper parameters in the above methods, effective results are achieved. Fig. 5.12
shows the detection results of all methods concerned. (a)-(c) are the detection
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(c) Human leg (d) Average P-R curve

(b) Plane tail(a) Ant head

Figure 5.12: Precision plots of different detection methods. (a)-(c) show results of
different queries. (d) shows the average P-R graph on SHREC watertight database.
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Figure 5.13: Comparisons of different detection methods for partial matching.
The queries are ant head, human leg, and plane tail.
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results with the queries of ant head, plane tail, and human leg. In the SHREC
database, every category contains 20 different models, so we retrieve the top 20
results of ant head and 40 for human leg, since left and right legs of human are
documented separately (we call it the multiple-region case). (d) shows the average
PR graph based on all queries without multiple regions.

Table 5.2 details the precisions of different detection methods. The precision
is computed as the ratio of relevant number to the retrieved number (the second
line shows the retrieved number for each query). Table 5.2 and Fig. 5.13 col-
lectively show that each method has its own strength in describing some specific
kind of shape. D2 is excellent in describing regular shapes, such as spheres, be-
cause the histogram statistics sometimes have the averaging effect on the spatial
information, and the ant head with two tentacles makes it difficult for D2 to de-
pict. CF, which integrates the gaussian-curvature knowledge, performs well in
characterizing highly-curved region such as the plane tails. ZM is suitable for
depicting small patches, as for large feature regions it works better in detecting
highly curved ones. SDF takes into account the volume-based information and
the region’s area ratio knowledge, so it performs well for cylinder-like shape, but
not for local complex shapes. PS performs very well in most cases except for
the relatively small and complex structure like plane tails due to the instability
of regional Laplacian decomposition. In contrast, our method performs stably
with high precision in detecting various types of feature regions across different
models.

Moreover, we conduct the comparison with two most related works that can-
not fit into our feature detection framework, namely, Gal’s [49] and Itskovich’s
works [65]. Since these two works obtain the feature regions by decomposi-
tion process and clustering of the pre-divided patches, there inevitably exist over-
segmentation phenomenon as shown in the zoomed-in part of Fig. 5.14. In com-
parison, our method can flexibly specify the interesting feature region and exactly
detect the similar regions with the proper scales.
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Figure 5.14: Comparison on detection of complex feature regions. Figure (a) and
(b) are cited from the corresponding works. On each model, the flower inside the
yellow circle is the query region.

5.6.5 Applications

Our feature detection framework enjoys plenty of desirable properties as demon-
strated in Section 5.5. They can further facilitate a host of applications as will be
shown and analyzed.

Partial Matching and Restoration. We analyze the combined models from
SHREC 2007’s partial retrieval dataset, which comprises the SHREC 2007’s wa-
tertight dataset and a query set of 30 models. Each combined model is obtained
by merging or removing several subparts of models belonging to the watertight
dataset. Existing algorithms concerning partial matching consider the retrieval
of the query set models as a big challenge. We demonstrate that our framework
provides a powerful tool to restore the combined models, thus can effectively aid
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the matching and recognition. As the three cases shown in Fig. 5.15, choosing
proper interest points (yellow points in (a)) and contour scopes could give rise to
diffusion regions that cover large scale of the searched models. After completing
the detecting process in the watertight database, the original model can be rec-
ognized as shown in (b), and (c) shows another two detected models containing
the top-ranked similar feature regions. Moreover, if conventional point-wise cor-
respondence is required for downstream tasks, we can further achieve this goal
easily. Since our feature is defined in a diffusion manner, after the similar region
is matched, the exact point matching can be obtained by shrinking the diffusion
region back to its source point, thus helping the conventional point-based corre-
spondence and other complex partial matching tasks.

Model Recognition. Another immediate application is model recognition
based on key components as suggested in [140]. The feature detection frame-
work is much more powerful and does not need the complex process of finding
key components as in [140]. Fig. 5.16(a) shows the query models, on which we
selectively specify three or four features that are considered to be essential for
characterizing the armadillo and horse model. The whole shape similarity is com-
puted as the sum of the distances between the specified feature regions of the
query model and the corresponding regions of the target model. Apparently, spec-
ifying more feature regions can achieve more precise results. The ranked retrieval
results in Fig. 5.16(b) show that our method can correctly retrieve the relevant
models from the database even when the models are somewhat incomplete (like
the first recognized armadillo model).

Other Potential Applications. Many more practical applications could poten-
tially benefit from the attractive properties of our approach. For example, thanks
to the robustness demonstrated in Section 5.5, our framework can serve as the
foundation for search-based modeling and coarse-to-fine part replacement that
frequently relies upon the conventional denoising processes in the pre-processing
stage. The reliability demonstrated in the test of repetitive feature detection shows
that our detection results could potentially help with the recognition of repeated
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Figure 5.15: Partial matching and restoration on the SHREC’s partial query
dataset. (a) Combined models with query regions in red. (b) Restored models.
(c) Another two models containing the top-ranked similar feature regions.
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Figure 5.16: Model recognition by identifying multiple components of interest.
(a) Query models with 3 or 4 specified features. (b) Top three recognized models.
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patterns, cut-and-paste editing, and self-symmetry detection.

5.7 Chapter Summary

In this chapter, we have detailed the description and detection of our proposed
generalized local-to-global features on 3D geometric models, which organically
couple both local (differential) and global (integral) geometric attributes. The
multi-scale and multi-level descriptor based on SGWs has exhibited its potential
in depicting any user-specified feature region and distinguishing among descriptor
vectors in the corresponding region-wise descriptor space. Furthermore, our novel
descriptor is comprising many desirable properties which can facilitate a host of
graphics applications, as showcased in our comprehensive experiments. Extensive
comparisons with other state-of-the-art techniques/methods have demonstrated
certain key advantages of our method in terms of geometry-awareness, reliabil-
ity, robustness, etc.

One of our future work is to make the user interface and functionality more
flexible and intuitive, e.g., allowing users to sketch the boundary of intended fea-
ture region. We also plan to to incorporate more powerful analytical tools into
the descriptor space for improved performance. Finally, we intend to broaden the
application scope of the proposed shape features to support feature-centric regis-
tration, structure-driven co-segmentation and high-fidelity model production.
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Chapter 6

Feature-Driven Shape
Correspondence and Retrieval

As we mentioned in Chapter 2, the eigenvalues and eigenvectors of mesh Lapla-
cian matrix encode valuable intrinsic geometric information of the original mesh.
The Laplacian spectrum on its own only affords very limited descriptive power of
the global shape. However, the Laplacian eigenpairs can be integrated into more
sophisticated spectral representations for highly discriminative and robust local
feature descriptors and distance measures, which can facilitate various high-level
shape analysis tasks. In this chapter, we present our contributions in feature-driven
shape correspondence and retrieval based on robust spectral representations such
as the heat kernels.

6.1 High-Order Shape Matching

Signatures and distances induced by the Laplacian eigenpairs are well suited for
corresponding points on deformable shapes, since the Laplacian spectra encode
intrinsic, global information of the topological and geometric information of the
mesh in question. Among the many spectral representations, heat kernel is one
of the most commonly used thanks to its robustness and multi-scale properties.
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For better feature points correspondence, other than considering the similarity of
point heat kernel signatures and pair-wise heat kernel distances, we additionally
take into account the compatibility of heat kernels across more than two points by
conducting high-order graph matching on the manifold. The heat kernel tensor
(HKT) is a high-order potential of geometric compatibility of feature tuples on
manifolds. To facilitate the matching process, we further build up a two-level
hierarchy via feature clustering. This simple hierarchy greatly reduces the search
space of HKT, and therefore the computation time.

Geometric relations among features are extremely important on deformable
shapes, and collectively they are much more reliable than single feature point in
shape matching. Therefore, we adopt the advanced tensor matching [38], and
transplant it to manifolds via a diffusion-driven relation measure, given by

dt(x, y) =
1

4
(−t log ht(x, y))1/2. (6.1.1)

Here, ht(x, y) denotes the heat kernel from point x to y at time t

ht(x, y) =
∞∑
l=0

e−λltφl(x)φl(y), (6.1.2)

where λl and φl are the l-th eigenvalue and eigenfunction of the Laplace-Beltrami
operator. When t → 0, dt(x, y) is indeed a metric and converges to the geodesic
between x and y.

We consider two partial shapesM1 andM2 with overlaps and boundary changes.
Let N1 be the number of features extracted on M1, and N2 be the one on M2. A
pair i = (i1, i2) denotes a candidate match with a point i1 from M1 and i2 from
M2. The problem of matching point sets is equivalent to finding an assignment
matrix XN1×N2 , such that

Xi1,i2 =

1 i1 matches i2

0 otherwise
, with

∑
i2

Xi1,i2 ≤ 1. (6.1.3)
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dt(j1, k1)
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dt(j2, k2)

Outliers
Outlier

Figure 6.1: HKT for shape matching. Three candidate matches (i, j, k) form two
“triangles”. Some outlier features are circled.

Note that there may be outliers in the feature set. As shown in Fig. 6.1, some
outliers are circled. For an outlier i1, there is no match in the second feature
set, i.e.,

∑
i2
Xi1,i2 = 0. We adopt the tensor formulation [38] for high-order

graph matching on manifold. Specifically, we consider a tuple of three candidate
matches (i, j, k) without conflicts, i.e., i1 6= j1 6= k1 and i2 6= j2 6= k2. They
may form two “triangles” by connecting them with dt, as shown in Fig. 6.1. Since
small heat kernels are error-prone, we select large heat kernels with a threshold
εh(t) = 10−6. In the case when the three points do not form a triangle, we simply
drop this tuple.

The tuple of candidate matches is then embedded into a 3D space by three
angles of this triangle. The distance in the embedded space is given by

dθ(i, j, k) = ‖θi1,j1,k1 − θi2,j2,k2‖2, (6.1.4)

where θi1,j1,k1 is a vector comprising three angles of the triangle formed by points
i1, j1, k1, and ‖.‖2 denotes the l2-norm. The affinity of the tuple (i, j, k) without
conflicts is defined as

τi,j,k = e−dθ(i,j,k)2/σ, (6.1.5)
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Figure 6.2: Matching hierarchy. Extracted features are clustered into sub-graphs.

where σ is a parameter, which can be set as σ = mean(dθ). For tuples with
conflicts, we let their affinities equal to zero. The high-order score of assignment
X is defined as

score(X) =
∑
i,j,k

τi,j,kXi1,i2Xj1,j2Xk1,k2 . (6.1.6)

We rewrite the score using tensor notation, given by

score(X) = T ⊗1 X ⊗2 X ⊗3 X, (6.1.7)

where⊗d denotes the tensor product in d dimension. We call T the heat kernel

tensor, as it utilizes heat kernels to form the tensor. The HKT can be fused with
different order of potentials. Here, the HKT is a 3rd-order tensor with entries τi,j,k
defined in Eq. (6.1.5). The final results are obtained according to their matching
scores subject to conflict constraints in Eq. (6.1.3).

For articulated shapes, we design a two-level hierarchy to improve the time
performance by reducing the searching space. Articulated shapes with long branches
can be easily segmented using some low frequency eigenfunctions of the Laplace-
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Figure 6.3: Matching deforming shapes with scale changes.

Beltrami operator. In the upper level, we find centers of clusters as the local
extrema of the first two non-trivial Laplace-Beltrami eigenfunctions, and remove
redundant ones that are very close to selected centers. In the lower level, extracted
shape features are then clustered into sub-graphs based on their heat kernels to the
cluster centers. The goal of the upper-level matching is to reduce the searching
space, and it can be skipped whenever necessary.

The cluster centers comprise a hyper-graph in the upper level of the hierar-
chy, as shown in Fig. 6.2. In the hyper-graphs with hyper-nodes (cluster centers),
we compute their HKT. We release conflicting constraints by allowing candidate
matches that have matching scores greater than 80% of the maximal one. This
will prune diverse sub-graphs, and reduce the search space of HKT. At the lower
level, we run HKT in each cluster. For the high-order optimization in Eq. (6.1.7),
we use the tensor power iteration with l1-norms of columns. The complexity of
one power iteration is O(m), where m is the number of non-zero elements in the
tensor. We restrict the number of triangles (i.e., non-zero elements) to 64N1 by
randomly selecting tuples. As a result, the computation of HKT is very efficient.

We conduct various experiments to demonstrate the performance, including
scale change (Fig. 6.3), noise/topology change (Fig. 6.4)), and large deformation
(Fig. 6.5).
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Figure 6.4: Matching with noise (Left) and topology changes (Right).

Figure 6.5: Selected frames of matching objects with large deformations.

6.2 Hierarchical Shape Registration

We improve the registration algorithm in [61] by implementing a hierarchical cor-
responding process. The central idea is to generate correspondences in multiple
levels in a coarse-to-fine manner, with additional features incrementally inserted
in each level. The registration starts from the coarsest resolution. Registration re-
sults obtained in one level serve as references for the registration in the next level.
We adopt the heat kernel coordinates for local shape parameterization, giving rise
to a complete solution capable of registering partial shapes undergoing isometric
deformation with higher accuracy.

A common and effective approach to dense correspondence is first matching a
small number of pre-selected feature points, and then using the matched features
as references for dense correspondences. Features, encoding important informa-
tion of shapes, can be used to parameterize the shapes and serve as anchors to
bootstrap the matching of the rest points. In general, it is necessary to have a
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Figure 6.6: Pipeline overview of our hierarchical registration framework.

fairly large number of matched features to obtain dense correspondence of good
quality. Otherwise, the feature-based parameterization may have difficulty in dis-
criminating nearby elements, especially in parts of shapes that are far away from
any features. However, automatically finding and matching a large number of
features is very difficult and error-prone. Even in the case of user-assisted fea-
ture matching, one would prefer a small set of matched features, since manually
corresponding many features is burdensome and time-consuming.

As illustrated in Figure 6.6, the main steps of our method are: (1) Detect and
match features to get a small initial set of feature matches; (2) Construct hier-
archical structures of input shapes; (3) Perform registration at the coarsest level
using the initial feature set; (4) Select some newly registered points as additional
features; (5) Perform registration at the next level using results from the previous
level and the expanded set of feature references; (6) Repeat step (4) and (5) until
all valid points are registered.

The rationale of our approach is that distinguishing elements that are distant
from each other on the surface is much more accurate than nearby elements. Even
with a small number of features, we can achieve very good registration on a heav-
ily downsampled version of the original shapes. The registration result of a coarse
resolution can serve as seed correspondences when performing registration in a
finer level. The large number of available seeds significantly reduce the chances
of correspondences being trapped in an incorrect location. Moreover, the multi-
resolution process enables us to pick additional features from already registered
points. This greatly enhances the discriminative strength as the meshes become
more refined.

Hierarchical Registration. Given a source shape S and a target shape T ,
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(a) (b) (c) (d)

Figure 6.7: Major steps of our hierarchical registration algorithm. The blue shape
is the source and the red one is the target. We use a three level hierarchy in this
example. (a) Initial feature correspondences; (b) Coarse registration result (Third
level); (c) Expanded feature correspondences (Third level); (d) Final registration
result.

both represented as triangular meshes, and let V S = {si} and V T = {ti} be
their respective vertex sets, the objective of dense registration is to find an optimal
mapping τ : V S → V T . In practice, we represent the registration results as a set
of correspondences R = {vSi , vTi }. When the shapes in question are not complete,
some vertices in V S may not have correspondences in R.

Initial Feature Detection and Matching. The goal of this step is to obtain
a small feature correspondence set C∗. In this work, we adopt the heat kernel
signature (HKS) [146] to extract multi-scale features and spectral graph matching
method [81] to match them.

Multiresolution Structure. Once we obtained features correspondence set
C∗, we can use it as reference to propagate the correspondences by searching
in the vicinity of already matched vertices, until every source vertex is mapped
to a vertex in the target shape [61, 64]. However, when the size of C∗ is small,
simple propagation approaches often cannot produce satisfactory registration. On
one hand, with insufficient features as anchors, it is difficult to distinguish nearby
vertices no matter what kind of parameterization scheme we employ. On the other
hand, since the sources for propagation are few, wrong correspondences are more
likely to accumulate following a mismatch.

To address this issue, instead of computing registration in a single run, we per-
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form it hierarchically in a coarse-to-fine manner. We construct a multi-resolution
structure of the original shapes, and in each level we only register vertices that
belong to the current resolution. Given a triangular mesh M0 = (V0, F0) and con-
stants d,m ∈ Z, we downsampleM and obtain the mesh hierarchy {M0,M1, . . . ,Mm}.
Assume Mi = (Vi, Fi) and ni = |Vi|, we enforce that ni+1 = ni/d. We adopt the
method in [51] for mesh downsampling. In our implementation, we select d = 4.

Correspondence Propagation and Feature Expansion. Let both the initial
correspondence set Rm+1 and initial feature set Cm+1 be C∗. In level l, we input
the previous level’s registration result Rl+1 and feature set Cl+1. The goal is to
find the l-th level correspondence set Rl that registers meshes Sl and Tl, with an
augmented feature set Cl.

For each vertex x in Sl and Tl, we compute its heat kernel coordinates

HKC(x) = (ht(x, c1), . . . , ht(x, cz)), ci ∈ Cl+1. (6.2.1)

InheritingRl+1 as the initial correspondence set, we propagate correspondence
to match the rest vertices in Sl and Tl. We use a heap to determine the order by
which the vertices in Sl are processed, prioritizing on the magnitude of HKC. For
an already matched pair (sj, tj) and one of sj’s immediate neighbor si, we search
for si’s best correspondence ti ∈ V T

k in the neighborhood of tj , and add (si, ti)

into the correspondence set. ti is selected using the following criterion

ti = arg min
t∈n(tj ,Tk)

‖HKCS(si)− HKCT (t)‖2 (6.2.2)

where n(tj, Tk) represent the set of tj’s neighboring vertices in Tk, and HKCS and
HKCT denote the heat kernel coordinates of points on S and T .

The correspondence propagation continues until all vertices in Sk have been
matched and we get the correspondence set {(si, ti)} ⊂ V S

m−1 × V T
m−1. Note that

for each correspondence (si, ti), the endpoint ti actually represent a set of vertices
K(ti) in the original mesh T0. To find the precise correspondence of si in the
original target mesh, we search K(ti) and replace ti with tj ∈ K(ti) if tj is closer

126



Figure 6.8: Comparison of registration results using our multi-resolution method
(Left) and the single-resolution method [61] (Right). Large colored dots represent
matched features.
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to si in the embedding space. The result is the l-th level correspondence set Rk

that relates points si ∈ Sk to ti ∈ T0. For each correspondence (si, tj), we assign
a matching score

score(si, tj) = exp(−‖HKCS(si)− HKCT (tj)‖2). (6.2.3)

We then select from Rl some vertex pairs as new features and insert them into
the feature set. These new added feature pairs should be both reliable (having great
matching score) and not in the δ-neighborhood of any existing feature points. The
expanded feature set Cl enables a more discriminative HKC in the next level. We
carry on this process from the coarsest level to the finest level until we obtain the
final registration set R0 between the original meshes S0 and T0. Fig. 6.7 shows
the major steps of our algorithm.

6.3 Bag-of-Feature-Graphs Shape Retrieval

To effectively characterize a shape for retrieval, only using the distribution of
word frequency as in traditional bag-of-words method is not enough. We need
to incorporate the spatial relations between features into our representation, and
the most effective way to encode pairwise relation is through graph-based feature
aggregation method, such as spatially-sensitive bags-of-words (SS-BoW) [14] or
relevance diffusion [48].

We present a new paradigm, called bag-of-feature-graphs (BoFG), for non-
rigid shape retrieval. The basic idea is to represent a shape by constructing graphs
among its features, which significantly reduces the number of points involved in
computation. Given a vocabulary of geometric words, for each word the BoFG
builds a graph that records spatial information of features, weighted by their sim-
ilarities to this word. This eliminates unlikely points in a word category, dur-
ing shape comparison. Feature graphs are governed by their affinity matrices of
weighted heat kernels, whose eigenvalues form a concise shape descriptor. Given
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(a) Shape (b) BoW vector (V × 1) (c) SS-BoW matrix (V × V )

. . .
(d) BoFG matrices (|F | × |F | × V )

Figure 6.9: Different representations of a given shape.

a vocabulary of geometric words, corresponding to each word we build a graph
that records spatial information between features, weighted by their similarities to
this word. Specific characteristics of the BoFG include:

• It is concise by significantly reducing the number of points involved in rep-
resentation, and thus, is fast to compute.

• It explicitly records spatial information among features.

• It is representative, since features are salient points containing important
information of the shape.

• Graphs have different dominating features associated with corresponding
words. This greatly improves the accuracy in shape comparison by elimi-
nating unlikely word-distributions.
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We first revisit the ShapeGoogle method originally introduced in [113], which
requires a point descriptorK(x) and a distance measure γ(x, y) defined on surface
M. Let W = {W1, . . . ,WV } be a vocabulary of geometric words with size V =

|W |. The words {Wi} are representative vectors in the descriptor space clustered
by the k-means algorithm. For each point x, the ShapeGoogle method computes
its word distribution Θ(x) = [θ1(x), . . . , θV (x)]T . The similarity between x and
word Wi is given by

θi(x) = c(x)e−
‖K(x)−Wi‖

2

2σ2 , (6.3.1)

where σ is a parameter, and c(x) is the normalization factor selected such
that ‖θ(x)‖1 = 1. The BoW descriptor of M is computed by integrating word
similarities over the entire shape

f(M) =

∫
M

Θ(x)dµ(x), (6.3.2)

where µ(x) denotes the surface area of x. As shown in Fig. 6.9, the BoW
descriptor is a |W | × 1 vector that measures the frequencies of words appearing
on the shape.

The ShapeGoogle algorithm also introduced the Spatially-Sensitive Bag-of-
Words (SS-BoW) descriptor, given by

F (M) =

∫
M×M

Θ(x)ΘT (y)γ(x, y)dµ(x)dµ(y). (6.3.3)

As shown in Fig. 6.9, F (M) is a |W | × |W | matrix which measures frequen-
cies of word pairs modulated by their spatial relations. The BoW needs to evaluate
the word distributions for all points in the query shape, while the SS-BoW needs
to comptue all word-to-word distributions for all pair of points.

In practice, heat kernel signature (HKS) or scale-invariant heat kernel sig-
nature (SI-HKS) is often employed as point descriptors thanks to the properties
of robustness and isometry-invariance. To make comparison more efficient, the
ShapeGoogle algorithm highly suppresses the geometric information by comput-
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ing the frequencies of words or word-pairs on the shape. It ends up with concise
descriptors for comparison, yet completely loses spatial information. Besides, the
shape-google algorithms are time-consuming, since they are working on all the
points in the data.

To reduce the complexity of ShapeGoogle, it is desirable to reduce the number
of points involved in representing the shape. A straightforward solution is to se-
lect feature points, which keep most information of the shape geometry. Because
of the multi-scale property, HKS features contain geometry information ranging
from points in small scales to the entire shape in large scales. However, one con-
cern is that a reduced number of points may not be sufficient to faithfully represent
the shape. Therefore, instead of counting word frequencies, we construct graphs
on detected features, giving rise to a bag-of-feature-graphs (BoFG) paradigm. The
graphs encode spatial relations between features, which contain much more ge-
ometry information in representing the shape.

We adopt weighted heat kernel matrices to capture global structures of graphs.
Specifically, for a shape M with feature set F , only points x ∈ F are involved
in computing word distributions Θ(x), which significantly reduces computation.
Features are vector-quantized by a fuzzy classification, which assigns θi(x) por-
tion of similarity to word Wi in the distribution of feature x. The distribution
Θ(x) is computed by Eq. (6.3.1) with σ set as 1

4
of the average distance of words

in the vocabulary. This fuzzy classification reduces ambiguities in graph com-
parison, and also avoids misclassification in a hard quantization. For a geometric
word Wi, we construct a matrix Gi, whose entry Gi(x, y) with (x, y) ∈ F × F is
computed by

Gi(x, y) = θi(x)θi(y)ht(x, y). (6.3.4)

Gi the heat kernel between x and y weighted by their similarities to the geo-
metric word Wi.

The matrix set G(M) = {G1, . . . , GV } comprises a BoFG representation of
the shape M . As shown in the bottom row of Fig. 6.9, matrices characterize spa-
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Figure 6.10: Some non-rigid shapes and their BoFG descriptors.

tial information of features assigned to different word categories. The near-zero
entries in a matrix indicate they are hardly classified to this category, and there-
fore, not considered in this graph. It contains all the geometric information of
features in a multi-scale way, which faithfully characterizes the shape. The com-
putation complexity for this matrix representation is O(|F|2D), as the computed
heat kernels can be shared by all matrices. Considering that the size of feature set
is always much fewer than the total number of points on the shape, the BoFG is
much faster than ShapeGoogle.

The mechanism of shape retrieval is to build concise BoFG descriptors of
shape models in a database in an off-line process, and retrieve related shapes for a
query by the approximate nearest neighbor (ANN) search. The BoFG descriptor is
constructed by concatenating the most significant eigenvalues of each BoFG ma-
trix. Each Gi is a real symmetric matrix, whose eigenvalues are all real and eigen-
vectors are orthogonal to each other. We choose its six largest eigenvalues, de-
noted as Si(M), which contributes to a 6V×1 vector [S1(M), . . . , SV (M)]T as a
concise descriptor. This reduces the dimension of the matrix by multi-dimensional
scaling (MDS) [15]. Fig. 6.10 shows some non-rigid shapes and their BoFG de-
scriptors. The deformed cat-models have very similar BoFG descriptors, while
the horse-model has a quite different one. It projects the matrix to its main direc-
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Figure 6.11: Precision-recall curves of evaluated methods, with categories of
(from Left to Right) null, scale change, and hole.

tions in the subspace spanned by the eigenvectors corresponding to Si(M), which
are stable to a small amount of outliers. Then, we define the similarity distance
between two models M1 and M2 as

d(M1,M2) =
V∑
i=1

‖Si(M1)− Si(M2)‖2. (6.3.5)

The above distance is based on one-scale heat kernels, which can be easily
extended to multi-scale by averaging distances of heat kernels at different values
of t.

To test the methods under some challenging cases, we apply transformations
to the query shapes. This leads to categorized experiments, including null (no
transformation), scale change (scaling vertex coordinates), and hole (topological
change and missing information). For comparison purpose, we also evaluate some
state-of-the-art methods that are similar to ours, including the BoW shape google,
the SS-BoW ShapeGoogle, and the SI-HKS. Since the SS-BoW runs extremely
slow, we only consider feature points in its implementation, denoted as FSS-BoW.

The methods are quantitatively evaluated by the precision-recall (PR) curve
that is often adopted for evaluating retrieval performance [47]. It plots the trade-
off between precision (ratio of the number of relevant shapes retrieved and the
total number of shapes retrieved) and recall (ratio of the number of relevant shapes
retrieved and the total number of existing relevant shapes that could be ideally
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retrieved). Fig. 6.11 shows the PR curves of evaluated methods, with categories
of null, scale change, and hole. The BoFG has competitive results comparing with
some state-of-the-art methods.

6.4 Chapter Summary

In this chapter, we present several algorithms for feature-driven shape correspon-
dence and retrieval. We adopt heat kernel tensor for high-order graph matching
of shape features and propose a hierarchical coarse-to-fine registration method to
achieve better dense correspondence. We also propose a novel paradigm for shape
retrieval called the bag-of-feature-graph (BoFG). In BoFG, both the similarity be-
tween features and words in vocabulary and the spatial relations among features
are explicitly encoded. By only considering feature points, the required compu-
tation is significantly reduced comparing with traditional spatially-sensitive shape
retrieval methods.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation presents our research work on shape modeling and analysis based
on spectral representations and sparsity-driven algorithms. Our proposed methods
provide solutions to a wide range of shape modeling problems with competitive
performance, demonstrating the great potential of spectral methods and sparse
representations in the mesh domain.

We present an innovative approach to 3D mesh compression by incorporating
redundant spectral graph wavelets in dictionary design and using greedy pursuits
to find compressed coefficient approximation.

By formulating surface inpainting as a sparse signal recovery problem, we
propose a novel variational approach for surface inpainting, integrating data fi-
delity constraints on the shape domain with coefficient sparsity constraints on the
transformed domain.

We propose a novel informative shape descriptor that combines SGW coef-
ficients and contour-based statistics for better characterization of feature shape
regions. Based on this descriptor, we develop a generalized feature detection
framework, which can integrate different types of regional descriptors to facili-
tate widespread applications including partial matching and model recognition.
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We develop an effective feature-driven shape correspondence and retrieval al-
gorithms. For coarse correspondence, we adopt tensor-based high-order graph
matching to maximizes the geometric compatibility between features tuples; and
for dense matching, we present a hierarchical shape registration algorithm, gen-
erating correspondence in multiples levels in a coarse-to-fine manner. We also
propose the Bag-of-Feature-Graph (BoFG) descriptor for shape retrieval, which
significantly reduce the number of points required for computing distributions,
comparing with traditional Bag-of-Features descriptors.

7.2 Future Work

There are many possible extensions and improvements related to our current re-
search work in spectral representations and sparse modeling. Here we introduce
some potential topics.

Shape Editing

Classical Laplacian mesh editing [12] can be written as a regularized least square
problem. Taking the x-coordinate for example, soft constraint Laplacian mesh
editing constructs the new coordinate function by solving the following optimiza-
tion problem

min
x′

∑
j∈C

(x′j − cj)2 + γ‖Lx′ − Lx‖2
2, (7.2.1)

where L denotes Laplacian operator, C represents the set of handle vertices, cj
denotes the coordinate of the handle vertex indexed at j, and x′ and x represent the
original and deformed coordinates, respectively. This formulation ensures that the
deformed shape will preserve the second-order differential geometric information
of the original shape while conforming to the constraints of new handle positions.

Let function f = x′ − x and denote the values of f at handle vertices as
dj = cj − xj, j ∈ C. The optimization problem can be rewritten as
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min
f

∑
j∈C

(fj − dj)2 + γfTL2f . (7.2.2)

Expanding f w.r.t. the Laplacian eigenbasis Φ = {φk} as f =
∑

k akφk,
Eq. 7.2.2 becomes

min
f

∑
j∈C

(fj − dj)2 + γ
∑
k

λ2
ka

2
k, (7.2.3)

where {λk} denote the Laplacian eigenvalues.
Analyzing Eq. 7.2.3, we can see that the formulation of Laplace editing penal-

izing high frequency components (corresponding to larger λk) [133].
Replacing the bi-Laplacian in Eq. 7.2.2 with a spectral graph wavelet kernel

W affords flexible design choices regarding the dominating frequencies. Suppose
W = Φg(tΛ)ΦT, where g(·) is the spectral domain generator function. Instead of
preserving the differential or Laplacian coordinates, we may choose to preserve
wavelet coefficients of different scales after deformation. The spectral expansion
of the optimization problem then becomes

min
f

∑
j∈C

(fj − dj)2 + γ
∑
k

g(tλk)a
2
k. (7.2.4)

Clearly, changing the generator function g(·) or the scale parameter t will
influence the contribution of components of different frequencies in the final re-
construction.

Sparse Representation Learning

Our current research focuses on reconstructive sparse models with predefined
dictionaries composed of analytical functions such as wavelets. Nevertheless,
sparse representations also have great potential as discriminative models for pat-
tern recognition, as most meaningful high-dimensional signals probably reside in
some low-dimensional subspace which can more better revealed by proper sparse
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models.
To construct a highly discriminative sparse models, predefined dictionaries

are usually not sufficiently expressive. To improve the sparsity and discriminative
power, a dictionary learned from the data set is much preferred. Given training
signals {yi}Ni=1, a dictionary that minimize the overall coefficient sparsity of the
training signals can be formulated as follows:

D̂ = arg min
D

N∑
i=1

min
xi
{‖Dxi − yi‖2

2 + λ‖xi‖1}. (7.2.5)

The dictionary learning can be handled by algorithms such as K-SVD [1].
After the dictionary D is learned, for an input signal y, a sparse coefficient

representation x̂ can be easily computed with respect D using common l1 formu-
lation:

x̂ = arg min
x
{‖Dx− y‖2

2 + λ‖x‖1}. (7.2.6)

For shape signals, we cannot directly apply the dictionary learning formulation
in Eq. 7.2.5, since different models generally have vastly different graph structures
and cannot be easily mapped. Nevertheless, we can adopt or devise appropriate
feature descriptors as a proxy instead of encoding shape signals directly. A highly
discriminative sparse model in the descriptor space should have great potential for
tasks such as classification and retrieval.

General Graph Signal Analysis

In this dissertation, our research work concentrates on graph spectral analysis in
the context of shape modeling. Nonetheless, discrete mesh is only a special type
of graph structure. For modeling various types of tangible or intangible networks,
such as transportation networks and social networks, graph representation is the
natural choice. It is also a common practice to infer graph structures from data
sets without pre-defined networks to help organize the data in a specific way. Even
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for data with existing graph structure, such as 2D images, it is sometimes helpful
to cluster the original data points into some super nodes and create an alterna-
tive graph topology. Graph is therefore a very generic data structure as it allows
flexible representations of relations among data points.

In recent years, with the explosive increase of data sets generated from Inter-
net and devices with sensors, there bas been a growing interest towards adapting
and applying signal processing techniques for analyzing and modeling graph sig-
nals [135,139]. Currently, there is very few existing works in literature employing
sparse and redundant modeling methods for graph signal, and it is a promising
direction to extend our research in spectral representations and sparsity-driven al-
gorithms for the analysis of general graph signals.
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[28] J. Claude Iehl and B. Péoche. An adaptive spectral rendering with a per-
ceptual control. Computer Graphics Forum, 19(3):291–300, 2000.

[29] R. R. Coifman and M. Maggioni. Diffusion wavelets. Applied and Com-

putational Harmonic Analysis, 21(1):53 – 94, 2006.

[30] G. Craciun, M. Jiang, D. Thompson, and R. Machiraju. Spatial domain
wavelet design for feature preservation in computational data sets. IEEE

Transactions on Visualization and Computer Graphics, 11:149–159, 2005.

[31] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint. Communica-

tions on pure and applied mathematics, 57(11):1413–1457, 2004.

[32] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively
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