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Abstract of the Dissertation 

Penalization for Gaussian mixture model and its application 

by 

Ziqi Meng 

Doctor of Philosophy 

in 

Department of Applied Mathematics and Statistics  

Stony Brook University 

2017 

 

Interval and linkage mapping are currently the most popular approaches for identifying 

quantitative trait loci (QTL). If phenotypic traits of interest are continuous, they are often assumed 

to follow a Gaussian mixture model. In this way, standard ML approach and LR test can be used 

to find the estimates of parameters and the position of a QTL. However, the assumption of 

homogeneity of variance across different genotypic groups can be violated in real data, and 

heterogeneous variances may lead to the unbounded likelihood function. Under this circumstance, 

the ML approach cannot be applied appropriately as the global ML estimate always fails to exist. 

In order to solve this problem, we derived a suitable penalty function to regularize the 

likelihood function. It allows heterogeneous variances in the Gaussian mixture model. We applied 

this penalized method to both interval mapping and Linkage disequilibrium mapping and tested 

the presence of single QTL on a genome. We performed extensive simulation studies to compare 

the penalized method with standard ML approach on the power of detecting the existence of QTL 
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and the accuracy of estimated parameters for the Gaussian mixture model under different scenarios. 

We find that the penalized method is preferred to the ML when the true model has heterogeneous 

variance and the sample size is small.  

We also applied the penalized and standard ML methods to a real data set with 96 markers 

genotyped for 502 F2 mice. The results suggest that both penalized and ML method were able to 

detect one genome-wide significant QTL. However, the penalized method offered additional 

information on the possible existence of QTLs at chromosome level. 
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Chapter 1 Introduction 

 

1.1 Quantitative Traits Loci 

Quantitative traits are phenotypes that demonstrate continuous variation within or among 

populations. Examples of the quantitative trait are crop yield, blood pressure, resistance to certain 

diseases, life span of mice or milk production in animals. Variation in such quantitative traits is 

associated not only with the environment they were exposed to, but also with the genetic loci they 

carry. Knowledge on genetic basis of this variation for quantitative traits is critical for addressing 

many important questions, from increasing the rate of selective improvement of important species 

in agriculture, to developing new and more personalized interventions to human beings and 

animals. Quantitative trait loci (QTLs) are stretches of DNA containing or linked to the genes that 

underlie a quantitative trait.  Traits, such as grain yield, reproductive behavior and cancer, which 

are important in economics, biology and clinics are controlled by a series of QTL.  

One of the main goals of QTL studies is to find out whether the variation in a phenotypic 

trait is controlled by any genetic loci, and if so, what are the locations of these loci. It is also 

interesting to know the phenotypic variation is attributed to a few loci each with relatively large 

effects, or to many loci, each with small effects. It is also possible that a few loci explain a 

substantial proportion of the difference in many quantitative traits while the remaining is due to 

many loci of minor effects [1] [2] [3]. For example, in domesticated rice[4], studies of flowering 

time have identified six QTL, which explains 84% of the variation in this trait [5]. This information 

is useful for applications such as breeding for better rice lineages.   
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1.2 Genetic markers 

In general, QTL is unobservable. What can be observed are genetic markers that consist of 

genes or DNA sequences with known locations on chromosomes. Traditional genetic markers 

include single nucleotide polymorphisms (SNPs), simple sequence repeats (SSRs, 

or microsatellites), restriction fragment length polymorphisms (RFLPs), and transposable 

element positions [6-9]. Usually genetic markers themselves do not have direct causal effects on 

the phenotypes of interest. However, since they occupy positions that near or linked to the 

unknown QTL, they are indirectly associated with the phenotypes, which forms the basis of most 

genetic mapping methods.  

One example is the hyper data from Hara (2001) [10]. Mice were given water containing 

1% NaCl for two weeks. The phenotype is blood pressure (actually the average of 20 blood 

pressure measurements from 5 days). The blood pressure is plotted against the genotype at two 

genetic markers D4Mit214 and D12Mit20, as shown in Figure 1-1. For D4Mit214, the 

homozygous individuals exhibit a larger average phenotype than the heterozygotes, indicating that 

this marker is linked to a QTL that may affect the blood pressure. For D12Mit20, on the other 

hand, the two genotype groups show similar phenotypes, and therefore D12Mit20 is not likely 

associated with a QTL. 
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Figure 1-1: Blood pressure against the genotypes at two selected markers. [11] 

 

1.3 Overview of the QTL mapping 

The method of obtaining knowledge of the number, locations and effects of these genetic 

loci is broadly referred as quantitative trait loci (QTL) mapping. It studies the association between 

two types of information — phenotypic data (trait measurements) and genotypic data (usually 

molecular markers) — to explain the genetic basis of variation in complex traits. The basic 

question of this process is how we can efficiently and effectively determine the association 

between a quantitative trait and its corresponding QTLs, and subsequently find their locations and 

the genetic effects through QTL-linked genetic markers.  

Depending on the biological nature of the organism and traits studied, either controlled 

populations, such as mice from experimental crosses, or populations arising naturally, such as 

human, can be used to map the QTL of interest. There are important distinctions for QTL mapping 

in controlled or natural populations. In natural populations, gene components are mainly separated 
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through random mating. For example, if we want to understand hypertension, we may be able to 

study genetic associations with hypertension in a large cohort such as the Nurses Health Study 

[12]. In addition, due to the different environments each subject was exposed to, the phenotypic 

characterization in natural populations typically have large noise. QTL mapping in experimental 

crosses provides an excellent alternative. In experimental crosses, individual gene components, 

including QTLs, are separated in a controlled manner, which allows us to magnify the genetic 

effects of a QTL. We can also perform phenotypes that may be impractical in humans (such as 

examining the liver in mice on a high-fat diet). We are able to control the environment of the 

subjects as well. For example, we may feed all mice the same diet, and keep the mouse rooms at 

the same temperature, and measure the phenotype of the mice at the same day in identical 

experimental conditions.  

Several types of mapping populations generated from different experimental crosses can 

be constructed to map the QTL of interest. Among those, backcross and F2 intercross are probably 

two of the most widely used techniques and have been applied in many areas, such as maize and 

mice studies[13-15].  

 

1.4 Basic QTL mapping methods 

Mapping QTL on the genome is of great scientific importance and economical values for 

plant and animal breeding as well as for medical research. The discoveries from the detection and 

localization of QTLs may be used for genetic modification of genes that are important in breeding 

programs, for development of efficient vaccines etc. The last 25 years or so has witnessed a rapid 

advancement of statistical methods for mapping QTL in experimental organisms. 



5 
 

Statistical methods for QTL mapping in experimental organisms started with the naive 

single marker locus analysis [16]. It uses t-statistics or ANOVA to test the equality of the trait 

means in different marker genotype classes. For each genetic marker, the progenies are splitted 

into groups based on their genotypes. The mean square calculated from the difference among the 

different genotypes reflects the degree to which the maker is associated with the QTL affecting the 

trait of interest, and the mean square from the difference within the genotype groups are the 

residual variance. The ratio of these two is the F test statistic which will be compared with the 

threshold value obtained from the theoretical F distribution to determine if the marker is linked to 

a QTL for a particular trait. The marker genotype analysis was later extended to regression models 

with multiple markers. The measurement of trait are regressed on the genotypes of the multiple 

markers[17] [18].  

As mentioned above, markers are the genes that linked to QTL which affects the trait of 

interest. However, in these early methods, marker loci are actually treated as QTL, which is not 

sensible. More advanced QTL mapping methods have then been developed after taking 

consideration of this problem. Weller (1986) [19] considered mixture models with a single marker 

locus. Weller (1987) [20] and Lander and Botstein (1989) [21] considered mixture models with 

two marker loci flanking a putative QTL. With the availability of maps of molecular markers 

covering the whole genome, Lander and Botstein (1989)[21] proposed a single interval mapping 

approach. Later on, a method combining single interval mapping approach and linear regression 

was then introduced by Jansen (1993) [22], Jansen and Stam (1994) [23] and Zeng (1993, 1994) 

[24, 25]. After this, Kao et al. (1999) [26] and Kao and Zeng (2002) [27] developed a more 

complicated approach — the multiple interval mapping method which used mixture models that 
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consider the effects of multiple QTL simultaneously and was more powerful in detecting multiple 

QTLs. 

Basically, these statistical methods can be classified into “single marker method”, 

“Flanking marker methods” and “multiple marker methods” based on the number of markers used 

in each method [28, 29]. Meanwhile, these methods can also be grouped as “least square methods”, 

“regression methods”, “maximum likelihood methods”, and “mixed linear model approach 

methods”, etc, as the statistical techniques employed by them. In summary, these methods vary 

from simple to complicated, from detecting QTL-marker association to locating QTLs position 

and estimation their effects, with their own advantages and limitations. In this study, we will 

mainly applied our penalized models in interval mapping and linkage disequilibrium mapping. 
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Chapter 2  Finite mixture of Gaussian regressions model 

 

2.1 Mixture model 

        The past few decades have witnessed tremendous statistical methodological development in 

QTL mapping, such as analysis of variance, interval mapping, multiple interval mapping [30-34]. 

Usually, one important assumption of these statistical methods is that the phenotypic values of a 

trait followed a known parametric distribution, such as a normal distribution. By estimating the 

parameters and comparing the phenotypic distributions under each genotype of QTL, the existence 

of a QTL and its genetic effects can be inferred.  

        Mixture model is one of the most important methodologies in QTL mapping. The phenotypic 

values corresponding to specific QTL genotypes can be modeled by known parametric 

distributions, e.g. normal for continuous and binomial for binary traits. If we can calculate the 

conditional probability of the QTL genotypes given a marker’s genotypes, we will be able to 

develop a mixture model. Statistical approaches for parameter estimation with the mixture model 

are typically derived using maximum likelihood (ML) method because of many good properties 

of a ML estimator, such as asymptotical unbiasedness and asymptotical efficiency. 

        Mixture models have been used for more than one hundred year and its applications have 

emerged in many areas. The first attempt to analyze mixture models are often attributed to Pearson 

(1894) [35].  Since then, mixture models have been applied in a wide range of applications. For 

example, independently and identically distributed (i.i.d.) mixture models can well fit problems in 

signal and image processing. An example of applying mixture models in biological (plant 

morphology measures) and physiological (EEG signal) data modeling is presented by Roberts et 

al. (1998) [36]. In the field of geophysical data processing, the work by Kormylo and Mendel 
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(1982) [37] has introduced a Bernoulli-Gaussian description for sparse spike trains, i.e. a particular 

case of a two class Gaussian mixture model. McLachlan and Basford (1987) [38] highlighted the 

important role of mixture models in the field of cluster analysis and Biernacki et al. (1997) [39] 

proposed a model selection criterion applied to multivariate real data sets. Markovian mixture 

models are also commonly used, as in Ridolfi (1997) [40] or Idier (2001) [41] , where an 

application to medical image segmentation is considered.  

Compared to the non-mixture models, more intensive computing is usually required by 

mixture models. Thanks to the more and more powerful computing technologies, the application 

of mixture models has tremendously increased in the last decades. 

 

2.2 Gaussian mixture regressions model 

Finite mixture models have been used for model-based clustering, in which a convex 

combination of a finite number of different distributions have been used to represent cluster 

features. For example, for a mixture of K univariate normal densities, it is defined as: 





K

k

kkkk uyfyh
1

),;();(                                              (0-1) 

where   

 

𝑓𝑘(𝑦; 𝑢𝑘, 𝜎𝑘) =  
1

√2𝜋𝜎𝑘
2

 exp (
(𝑦−𝑢𝑘)2

2𝜎𝑘
2 )    

 

(2-2) 

The parameters θ = (π, u, σ) = (𝜋1 … . 𝜋𝐾, 𝑢1 … . 𝑢𝐾 , 𝜎1 … 𝜎𝐾)  are the mixture parameters, 

belonging to the parameter space. 
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The data 𝑦1, 𝑦2 … . . 𝑦𝑛 are assumed to be i.i.d samples. From a clustering point of view, we can say 

that each observed quantity 𝑦𝑛, 𝑛 = 1,2 … 𝑁  has been sampled from one of the K Gaussian 

distributions, according to the proportions 𝜋1, 𝜋2 … . . 𝜋𝐾, i.e. each 𝑦𝑛 belongs to one of K classes. 

For the problem of QTL mapping, if we assume n independent subjects, each with a 

measurement of trait (y) and p marker information as showed in the following table: 

Subject Phenotype Marker 

m1             m2 m3  .. mp 

1 𝑦1 = 23.0 0 1 2  2 

2 𝑦2 = 11.2 2 2 1  2 

3 𝑦3 = 15.7 2 1 0  0 

…  … …    

n 𝑦𝑛 = 27.4 1 0 0  1 

 

The likelihood of the measurements of trait (y) and the marker (M) of the underlying QTL is 

constructed through a mixture model, expressed as:  

 

L(Y, M) =  ∏ ∑ 𝑤𝑗|𝑖𝑘

1

√2𝜋𝜎
exp (−

(𝑦𝑖 − 𝜇𝑗)2

2𝜎2
)

2

𝑗=0

𝑛

𝑖=1

) 

(2-3) 

Where 𝑤𝑗|𝑖𝑘
 is the conditional probability of the ith subject to carry QTL genotype j, given that its 

marker type. 𝜇𝑗  is the mean for the jth QTL genotypic subgroup. We also assume a common 

variance 
2  for all the subgroups.  
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To obtain the maximum likelihood estimates (MLEs) of the unknown parameters, it can be 

achieved by solving the likelihood equations by differentiating the log-likelihood with respect to 

each parameter and setting the derivatives to zero, i.e, 

∂

∂β
log 𝐿(𝑌, 𝑀) =  ∑ ∑

𝑤𝑗|𝑖𝑘
𝑓𝑗(𝑦𝑖)

∑ 𝑤𝑗|𝑖𝑘
𝑓𝑗(𝑦𝑖)

2
𝑗=0

2

𝑗=0

𝑛

𝑛=1

= 0 

(2-4) 

It is usually very difficult to solve these likelihood equations in an explicit form. Hence, 

we implement an EM algorithm, which has been shown to be very efficient for the parameter 

estimation for problems with a mixture of densities.  

 

2.3 EM algorithm for Gaussian mixture model 

Maximization of the log-likelihood of a mixture density is often done using the traditional 

EM algorithm proposed by Dedmpster et al. [42].  

To maximize the likelihood function in (2-3), we first augment the observed data (y) with 

𝑍𝑖′𝑠. Z = (𝑍1, 𝑍2 … . 𝑍𝑛) are the latent variables (𝑍𝑖 = 0,1,2) that determine the component from 

which the observation comes, so that the complete likelihood for (Y, Z) is then: 

L(Y, Z) =  ∏ ∑ 𝐼(𝑍𝑖 = 𝑗)𝑤𝑗|𝑖𝑘
∙

1

√2𝜋𝜎
exp (

(𝑥𝑖−𝑢𝑗)2

2𝜎2 )2
𝑗=0

𝑛
𝑖=1 , 

and the complete log-likelihood: 

log 𝐿(𝑌, 𝑍) =  ∑ ∑ 𝐼(𝑍𝑖 = 𝑗) ∙ [log 𝑤𝑗|𝑖𝑘
−

1

2
log 2𝜋 − log 𝜎 −

(𝑦𝑖 − 𝜇𝑗)2

2𝜎2
]

2

𝑗=0

𝑛

𝑖=1

 

(2-5) 

The detailed EM algorithm is given as follows: 
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E-step: it calculates the expected value of the log likelihood function, with respect to 

the conditional distribution of latent variable Z, given the observed data y under the current 

estimate of the parameters : 

𝐸𝑍|𝑌[log 𝐿(𝑌, 𝑍) = ∑ ∑ 𝑇𝑗,𝑖𝑘

(𝑡)
∙ [log 𝑤𝑗|𝑖𝑘

−
1

2
log 2𝜋 − log 𝜎 −

(𝑦𝑖 − 𝜇𝑗)2

2𝜎2

2

𝑗=0

𝑛

𝑖=1

 ] 

(2-6) 

Where 𝑇𝑗|𝑖𝑘
is the conditional distribution of the latent variable Z given the observed data and 

current estimate of 𝜃(𝑡): 

𝑇𝑗,𝑖𝑘
= 𝑃(𝑍𝑖 = 𝑗|𝑌𝑖 =  𝑦𝑖; 𝜃(𝑡)) =  

𝑤𝑗|𝑖𝑘𝑓𝑗(𝑦𝑖)

∑ 𝑤𝑙|𝑖𝑘
𝑓𝑙(𝑦𝑖)2

𝑙=0

                                   (2-7) 

M-step: since the conditional distribution of the latent variable 𝑤𝑗|𝑖𝑘
 is known given the markers 

information, the only thing we need to maximize is (μ, σ) in (2-6). 

Taking the derivative of (2-6) with respect of μ and σ, setting them to zeros and solving 

the equations yield the updated estimates:        

𝜇𝑗
(𝑡+1)

=  
∑ 𝑇𝑗,𝑖𝑘 𝑦𝑖

𝑛
𝑖

∑ 𝑇𝑗,𝑖𝑘 
𝑛
𝑖

                 

  (2-8) 

And  

              𝜎𝑗
(𝑡+1)

=   √
∑ 𝑇𝑗,𝑖𝑘

𝑛
𝑖=1 (𝑦𝑖−𝑢𝑗)

2

∑ 𝑇𝑗,𝑖𝑘
𝑛
𝑖=1

                   

(2-9) 

The algorithm iterates between the 2 steps until: 

𝐸𝑍|𝑌[log 𝐿(𝜃(𝑡); 𝑌, 𝑍) − 𝐸𝑍|𝑌[log 𝐿(𝜃(𝑡−1); 𝑌, 𝑍) ≤  𝜖 

where 𝜖 is some a pre-set threshold.  

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Log_likelihood
http://en.wikipedia.org/wiki/Conditional_probability_distribution
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The general convergence of the EM-type algorithms was discussed by Alfred [43].  

 

2.4 Main goal of our study 

In the previous framework about Gaussian mixture model in QTL mapping, we assume 

that each subgroup has a common variance because in this way the maximum likelihood estimate 

exists as the global maximization of the likelihood function [44]. However, this is a rather strict 

constraint and may be violated in real data. In the case of heteroscedastic variance, the likelihood 

function is always unbounded [45] and global ML estimates fail to exist, and therefore the EM 

algorithm would diverge toward a degenerated solution. 

Intuitively, the degeneracy happens because in the sum of Gaussian densities, the variance 

parameter appears in the denominator. When a sample point 𝑦𝑘 happens to equal to one of the 

means 𝑢𝑖, and at the same time, the corresponding 𝜎𝑖 goes to 0, the likelihood value goes to infinity. 

Indeed, points such (𝜎𝑖
2 = 0, 𝜇𝑖 =  𝑦𝑘) yield singularities.  

  From a theoretical point of view, as stated by McLachlan and Peel (2000) [44], the non-

existence of a global maximizer of the likelihood function does not exclude the ML approach, 

since its essential aim is to find a sequence of (local) maximize that is consistent [46]. Studies such 

as Peters and Walker (1978) [47], Kiefer (1978) [48], Redner (1981) [49] and Redner and Walker 

(1984) [50] focused on local ML estimation and mathematically investigated the existence of a 

consistent sequence of local maximizers. Unfortunately, in practice, it is hard to conceive a local 

maximization technique that could avoid global maxima. Actually, all the existent optimization 

techniques, including the very popular EM algorithm, are likely to converge to degenerated global 

solutions, depending on the initialization point. This is a severe drawback for the Gaussian mixture 

model with heterogeneous variances.  
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Hathaway (1985) [51] proposed a constrained formulation of the ML approach, which is 

based on the conditions 

, {1,.... } / 0k kk k K c       

 

Where c is a constant to be chosen a priori. Moreover, Hathaway proves that this estimator is 

strongly consistent over the constrained parameter space. The numerical constrained maximization 

of the likelihood function is performed by a constrained EM algorithm [52], which, for sake of 

numerical robustness, implements an additional condition 

{1,.... } 0kk K       

Where   is another constant to be chosen a priori.  

 

2.5 The Penalized Method 

To avoid the degeneracy in the QTL mapping due to heteroscedastic variances, we propose 

a solution by adding a penalized term to the likelihood function that penalizes small variances. The 

penalized likelihood function therefore stay finite whenever 𝜎𝑘 goes to zero so that heterogeneous 

variances in the Gaussian mixture model are allowed and we will be able to obtain a penalized 

maximum estimates. 

We penalize the mixture likelihood with a term p(σ) so that the penalized likelihood 

function can be expressed as: 

L(y, M; θ) = 𝐿(𝑦, 𝑀; 𝜃)𝑝(𝜎) 

The penalty term 𝑝(𝜎) is adjusted to make the penalized likelihood bounded. 
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We choose 𝑝(𝜎) =  𝑒
−𝜆 ∑ 𝜋𝑘

1

𝜎𝑘

𝐾
𝑘=1

 to be the penalty term. The reason for choosing such 

penalty term for two reasons: (1) it solves the degeneracy problem and guarantees the existence of 

maximum likelihood estimators, and (2) it also weights over each subgroup and automatically 

balances the weight in the sparse groups. The properties of the penalized likelihood and penalized 

maximum likelihood estimators will be showed by the following proposition.  

 

Proposition 1: Suppose the penalty term is  𝑝(𝜎) =  𝑒
−𝜆 ∑ 𝜋𝑘

1

𝜎𝑘

𝐾
𝑘=1

, the penalized likelihood is 

bounded over   and penalized maximum likelihood estimators exist. 

Proof:  

Since 1)
2

)(
exp(
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And 



K

jk k
k

e
n






1

2)2(  is bounded over  . 

 

This shows that the penalized likelihood goes to 0 as one of the 𝜎 tends to 0 and it can 

handle the problem of degeneracy caused by the heterogeneous variances from the different 

genotypic groups. 
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Chapter 3 Interval mapping 

Interval mapping, as first introduced by Lander and Botstein in 1989 [21], is one of the 

most influential statistical models used to determine the positions of QTLs.  It is an extension of 

one marker analysis. The term ‘interval mapping’ is used because it uses two flanking markers to 

construct an interval for searching a putative QTL within the interval. The idea of viewing QTL 

genotypes as missing data leads to the use of a mixture model for maximum likelihood analysis as 

mentioned in the previous chapter. To better understand the interval mapping, we need to introduce 

a few other concepts: the fraction of recombination rate and map function. 

 

3.1 Fraction of recombination  

Suppose the parental genotype is AB|ab for two loci on the genome, and the two 

homologous chromosomes lie side by side as showed in Figure 3-1 (A). Each of the paired 

chromosomes is then duplicated to generate 2 sister chromatids connected to each other at a region 

called the centromere. The homologous chromosomes form pairs and the four chromatids in Figure 

3-1 (B) is known as a tetrad. In Figure 3-1 (C) the non-sister chromatids adhere to each other where 

crossing over can occur and the regions it occur we call them chiasmata. Chiasmata do not happen 

entirely at random since they are more likely to be further away from the centromere. The 

chiasmata are then divided into four gametes, each of which corresponds to one chromatid from a 

tetrad to make up the haploid complement (Figure 3-1 (D)). If no crossover occurs, then the 

chromosome just completely replicates the parental chromosome which means the gametes must 

be AB or ab. However, when there is one exchange between loci A and B, new combinations 

occurs as Ab and aB, which are referred to be the recombinant types. Genes on the same 

chromosome do not sort independently and particularly, genes on the same chromosome tend to 
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stay together. The extent to which loci remain together depends on their physical closeness, and 

this property of co-inheritance is called as linkage. If loci A and B are close, i.e. tight linkage, the 

probability of crossing over is usually small and therefore, gametes would carry more AB and ab 

and fewer Ab and aB. The recombination fraction (r) is defined as the proportion of recombinant 

gametes, and 1-r corresponds to the proportion of parental type AB and a. For example, suppose 

we observe the following gamete frequencies: 

Gamete AB Ab aB ab 

Recombination 

probability 

0.49 0.01 0.01 0.49 

  

It is quite straightforward to calculate the recombination rate as r=.01+.01=.02=2%. 

 

Figure 3-1: Diagram for crossing-over between linked loci A and B[53].In general, for two linked 

loci, their recombination fraction should be smaller than 0.5, and for two unrelated (or independent) 

lock, their recombination fraction is 0.5. Hence recombination fraction is a measure of genetic 

linkage and is usually used in the creation of a genetic linkage map.  
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3.2 Map distance and map function 

One limitation of recombination fraction is that it is not additive. Suppose we have 3 

markers A, B and C and let AB be the event that odd number of crossovers occur between A and 

B and the recombination fraction 𝑟𝑎𝑏 = 𝑃(𝐴𝐵) . Assuming crossovers between A and B are 

independent of crossovers between B and C, we can get: 

 

P(AC) = 𝑃(𝐴𝐵 ∩ 𝐵𝐶𝐶) + 𝑃(𝐴𝐵𝑐 ∩ 𝐵𝐶) 

                                                         =  𝑃(𝐴𝐵)𝑃(𝐵𝐶𝐶) +  𝑃(𝐴𝐵𝑐)𝑃(𝐵𝐶) 

So that: 

𝑟𝑎𝑐 =  𝑟𝑎𝑏(1 − 𝑟𝑏𝑐) + (1 − 𝑟𝑎𝑏)𝑟𝑏𝑐 

                                                        =  𝑟𝑎𝑏 + 𝑟𝑏𝑐 − 2𝑟𝑎𝑏𝑟𝑏𝑐 

Which shows the non-additiveness of recombination fraction. 

To find some additive distance measure, the genetic distance (d) between two loci is 

defined, which is the expected number of crossovers occurring between them on a single meiosis. 

Each chiasma (i.e. crossover) involves 2 of the 4 the potential gametes. Hence, the expected 

number of chiasma between the loci on the tetrad is 2d. Also, Genetic distance is always additive, 

since expectations are additive. We usually measure genetic distance in Morgans or centi-Morgans: 

100cM = 1 Morgan. The unit Morgan is defined so that crossovers occur at an average rate 1 per 

Morgan (M) or 0.01 per centi-Morgan (cM). 

If there is no crossover or there is an even number of crossovers between two loci, the two 

haplotype generated from meiosis will be exactly the same as parental one; while on the other hand, 

if there is an odd number of crossovers, two recombinant haplotypes will occur. Based on these, a 
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theoretical model has been derived to present the recombination fraction between two loci using 

their map distance.  

Map function is a mathematical transformation that connects the recombination fraction (r) 

between two loci to the genetic distance between them. There are several types of map functions, 

including the Mather’s formula (1938), the Morgan function, the Haldane map function and the 

Kosambi map function. 

 

3.2.1 Mather’s function 

In Mather [54] derivation, the recombination fraction (r) between two loci is half the 

probability of the crossover occurring in all four strands of tetrad between the loci. 

As shown below: 

r =  
1

2
𝑃𝑟𝑜𝑏(𝑋 > 0) =  

1

2
𝑃𝑟𝑜𝑏(1 − 𝑃𝑟𝑜𝑏(𝑋 = 0)) 

The 𝑃𝑟𝑜𝑏(𝑋 = 0) is the probability that there is no crossover occurring between the two loci. 

According to the definition, the map distance (d) is the expected number of crossovers occurring 

on a single chromatid during meiosis. Then: 

d =  
1

2
𝐸(𝑋) 

Because each crossover involves two chromatids. 

 

3.2.2 Haldane Map Function 

The Haldane map function [55] is one of the simplest map function. It assumes that 

crossovers occur randomly and independently of each other. Under this assumption, we can view 

the occurrence of crossovers between two loci on a chromosome as a Poisson process, which 
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means at any point between the loci, it happens with the equal probability. The probability of the 

number of crossovers can be expressed using the Poisson distribution in terms of the genetic 

distance (d) as follows: 

 

Crossover 0 1 2 3 … k … 

Probability 𝑒−𝑑 
𝑑

1!
𝑒−𝑑 

𝑑2

2!
𝑒−𝑑 

𝑑3

3!
𝑒−𝑑  

𝑘2

𝑘!
𝑒−𝑑  

 

The recombination rate is the sum of the probabilities of all the odd numbers of crossovers so that 

we will have the following formula: 

𝑟 = 𝑒−𝑑 (
𝑑

1!
+

𝑑3

3!
+

𝑑5

5!
+ ⋯ ) 

                                                        =
1

2
(1 − 𝑒−2𝑑 )         

In this thesis, we will mainly use the Haldane map function due to its simplicity. 

 

3.2.3 The Morgan map Function 

The Morgan is another simple map function. It assumes single crossover occurring between 

adjacent loci, and the probability of a crossover is proportional to the map length of the interval 

(Morgan 1928). Under these assumptions, we can get: 

r =  
1

2
[1 − 𝑃𝑟𝑜𝑏(𝑋 = 0)] =  

1

2
[1 − (1 − 2𝑑)] = 𝑑 

As stated before, when d >  
1

2
  this function cannot be considered true since r cannot exceed  

1

2
 . 
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3.2.4 Kosambi Map Function 

In the previous map function, crossovers are assumed to be random and independent of 

each other. In practice, however, this is not always the case. We call this non-randomness 

interference. In general, occurrence of a crossover tends reduces the probability of other crossover 

in its nearby region. 

Kosambi [56] mapping function assumes a constant and specific level of interference with 

the following formula: 

 

d =  
1

4
ln (

1 + 2𝑟

1 − 2𝑟
) 

 

Figure 3-2 shows the relationship between the genetic distance (in centi-Morgan) and 

recombination fraction using Kosambi map function. Kosambi is preferred for most cases when 

there is evidence for interference. However, in reality the level of interference is usually unknown, 

and seems to vary across the genome (Sherman & Stack, 95) 
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Figure 3-2: The relationship between the genetic distance and recombination fraction. 

 

3.3 Interval Mapping 

The basic idea of interval mapping is straightforward. We first consider an interval between 

two observable markers M1 and M2, each having two possible alleles M1, m1, M2, m2. Suppose 

the genetic distance and recombination frequency between the two markers have been previously 

estimated, and a map function (either Haldane or Kosambi) is used to convert between them.  

For an F2 population, the two markers form 9 genotypic groups. The trait measurements 

are then from a mixture distribution with 3 components, corresponding to the three genotype of an 

unobserved QTL, as showed in the following table. 
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Table 3-1:  The genotypes formed by the 2 markers 

 L R N 

QQ (0) 

𝑓(𝑢0, 𝜎0
2) 

Q|q + q|Q (1) 

𝑓(𝑢1, 𝜎1
2) 

Qq (2) 

𝑓(𝑢2, 𝜎2
2) 

1 M1M1 M2M2 𝑛1 𝑤0|1 𝑤1|1 𝑤2|1 

2 M1M1 M2m2 𝑛2 𝑤0|2 𝑤1|2 𝑤2|2 

3 M1M1 m2m2 𝑛3  ..  

..   .. .. .. .. 

9 m1m1 M2m2 𝑛9 𝑤0|9 𝑤1|9 𝑤2|9 

The genotypes formed by the 2 markers and the conditional probability of the genotypes of QTL 

given the markers genotype. The three QTL genotypes (QQ, Qq and qq) are denoted as 0, 1 and 2, 

respectively. 

  

For joint probabilities involving more than two loci (e.g. three), all recombination rates 

among these loci need to be considered. For a single QTL flanked by two markers M1 and M2, 

the gamete frequencies then depend on three parameters: the recombination frequency r between 

the two markers, the recombination fraction 𝑟1 between marker M1 and the QTL, and the 

recombination fraction 𝑟2 between the QTL and marker M2. 

From the definition of recombination fraction, the probabilities of haplotypes can be 

expressed as: 

P(M1M2) = 𝑃(𝑚1𝑚2) =  
(1 − 𝑟)

2
 

P(M1m2) = 𝑃(𝑚1𝑀2) =  
𝑟

2
 

P(M1M2Q) = 𝑃(𝑚1𝑚2𝑞) =  
1

2
(1 − 𝑟1)(1 − 𝑟2) 

P(M1M2q) = 𝑃(𝑚1𝑚2𝑄) =  
1

2
𝑟1𝑟2 
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P(M1m2Q) = 𝑃(𝑚1𝑀2𝑞) =  
1

2
(1 − 𝑟1)𝑟2 

P(M1m2q) = 𝑃(𝑚1𝑀2𝑄) =
1

2
𝑟1(1 − 𝑟2) 

Based on these, the joint marker-QTL genotype frequencies in Table 3-2 can be derived 

and the conditional probability of the genotype of QTL given a certain type of paired markers can 

also be computed. 

As introduced in the previous chapter, the likelihood of the measurements (y) and the 

marker (M) at the underlying QTL is constructed through a Gaussian mixture model, expressed as:  

 

L(Y, M) =  ∏ ∑ 𝑤𝑗|𝑖𝑘

1

√2𝜋𝜎
exp (−

(𝑦𝑖 − 𝜇𝑗)2

2𝜎2
)

2

𝑗=0

𝑛

𝑖=1

) 

Where the 𝑤𝑗|𝑖𝑘
 is the conditional probability of the ith subject to carry QTL genotype j, given that 

his marker type, and ju  is the mean for the jth QTL genotypic subgroup.  
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Table 3-2:  Joint marker-QTL genotype frequencies in a F2 population 

 

For the interval mapping, we calculate a LOD score at an equal step size, for example, each 

2cM in the interval and finally get the profile of LOD score for the whole genome. The LOD score 

is defined as: 

LOD = 𝑙𝑜𝑔10

likelihood of  qtl exists at this loci  

likelihood of no qtl at this loci
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Large values of LOD score indicate high probability of the corresponding loci being a QTL. When 

some peak of the profile exceeds a pre-set threshold value, we say that a QTL have been found at 

that location. 

 

3.4 Penalized EM algorithm in interval mapping 

As stated previously, to allow difference variances for different QTL groups, a penalized 

likelihood needs to be employed.  

L(Y, M) =  ∏ ∑ 𝑤𝑗|𝑖𝑘

1

√2𝜋𝜎
exp (−

(𝑦𝑖 − 𝜇𝑗)
2

2𝜎2
)

2

𝑗=0

𝑛

𝑖=1

 𝑒
−𝜆 ∑ 𝑤𝑗|𝑖𝑘

1
𝜎𝑗

2
𝑗=1

 

In order to obtain the maximum likelihood estimates, we need to implement a penalized version 

of the EM algorithm.  

Since given marker information of each subject, the conditional probability for each QTL 

genotype is fixed and known, in the maximization step, we only need to update the value of (μ, σ) 

in each iterative process.  

In the E-step, under the current estimate of the parameters , the expected value of the log 

likelihood function, with respect to the conditional distribution of latent variable Z and the 

observed data y, is : 

 

𝐸𝑍|𝑌[log 𝐿(𝑌, 𝑍)] = ∑ ∑ 𝑇𝑗,𝑖𝑘

(𝑡)
∙ [log 𝑤𝑗|𝑖𝑘

−
1

2
log 2𝜋 − log 𝜎 −

(𝑦𝑖−𝜇𝑗)2

2𝜎𝑗
2

2
𝑗=0

𝑛
𝑖=1  ]                                                                                                                                                  

(3.2.1) 

In this step, we will add the penalty term λ ∑ ∑
𝑛𝑖𝑘

𝑛

9
𝑖𝑘=1 𝑤𝑗|𝑖𝑘

1

𝜎𝑗

2
𝑗=0  to the corresponding likelihood 

as: 

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Log_likelihood
http://en.wikipedia.org/wiki/Log_likelihood
http://en.wikipedia.org/wiki/Conditional_probability_distribution
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(3.2.2) 

𝑛𝑖𝑘
 is the number of observations that in the 𝑖𝑘𝑡ℎ marker group, 𝑖𝑘 = 1,2,3 … . .9. 

From previous EM algorithm chapter, we know that 𝑇𝑗|𝑖𝑘
 is defined as the conditional 

distribution of the latent variable Z given the observed data and current estimate of 𝜃(𝑡) 
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(3.2.3) 

In the M-step, from Table 3-2, we will be able to calculate the conditional probability 𝑤𝑗|𝑖𝑘
 and 

these values are fixed and are not updated in the EM algorithm:  

 

𝑤𝑗|𝑖𝑘=𝑙 =
𝑃(𝑀𝑎𝑟𝑘𝑒𝑟 = 𝑙 𝑎𝑛𝑑 𝑄𝑇𝐿 = 𝑗 )

𝑃(𝑀𝑎𝑟𝑘𝑑𝑒𝑟 = 𝑙)
 

(3.2.4) 

For the maximization of (𝜇, 𝜎):  

For 𝑢𝑗 , since it is not involved in the penalty term, the updated value of 𝑢𝑗
(𝑡+1)

remains the same as 

that in the standard EM algorithm. 
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(3.2.5) 

For 𝜎𝑗, the derivative of (3.2.2) with respect of 𝜎𝑗 yields: 
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        𝜎𝑗
2 (∑ 𝑇𝑗,𝑖𝑘

𝑛

𝑖=1

) − 𝜆𝜎𝑗 ( ∑
𝑛𝑖𝑘

𝑛

9

𝑖𝑘=1

𝑤𝑗|𝑖𝑘
) − ∑ 𝑇𝑗,𝑖𝑘

(𝑦𝑖 − 𝑢𝑗)
2

𝑛

𝑖=1

= 0 

(3.2.6) 

Solving the above equation gives the updated  𝜎𝑗: 

  𝜎𝑗
(𝑡+1)

=  
𝜆𝑐 + √(𝜆𝑐)2 + 4𝑇𝑗,𝑖𝑘

∙ ∑ 𝑇𝑗,𝑖𝑘

𝑛
𝑖=1 (𝑦𝑖 − 𝑢𝑗)

2

2 ∑ 𝑇𝑗,𝑖𝑘

𝑛
𝑖=1

 

(3.2.7) 

Where 𝑐 =  ∑
𝑛𝑖𝑘

𝑛

9
𝑖𝑘=1 𝑤𝑗|𝑖𝑘

 

These 2 steps are repeated iteratively until 3.2.2 converges. 

 

Below is the proof to show that for any initial point 𝜃0, the penalized likelihood is non-

decreasing at each step, i.e  

𝐿𝑝𝑒𝑛(𝜃𝑖+1) > 𝐿𝑝𝑒𝑛(𝜃𝑖),    𝑖 = 0,1, …. 

Proof: 

log(𝐿(𝑌|𝜃)) =  log(𝐿(𝑌, 𝑍|𝜃)) − 𝑙𝑜𝑔𝐿(𝑍|𝑌, 𝜃)) 

We take the expectation over values of Z by multiplying both sides by 𝐿(𝑍|𝑌, 𝜃𝑡)) and summing 

over Z.  

log(𝐿(𝑌|𝜃)) = ∑ 𝐿(𝑍|𝑌, 𝜃𝑡)

𝑍

 log(𝐿(𝑌, 𝑍|𝜃)) − 𝑙𝑜𝑔𝐿(𝑍|𝑌, 𝜃)) 

                                                = 𝐸𝑍|𝑌,𝜃(𝑡) log(𝐿(𝑌, 𝑍|𝜃)) − 𝑙𝑜𝑔𝐿(𝑍|𝑌, 𝜃)) 

                                                = 𝑄(𝜃|, 𝜃(𝑡)) + 𝐻(𝜃|, 𝜃(𝑡))  

Where Q is 𝐸𝑍|𝑌,𝜃(𝑡) log(𝐿(𝑌, 𝑍|𝜃)), and H is -𝑙𝑜𝑔𝐿(𝑍|𝑌, 𝜃). 
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If we add a penalty term on both sides: 

log ( 𝐿𝑝𝑒𝑛(𝑌|𝜃)) = 𝑄𝑝𝑒𝑛((𝜃|, 𝜃(𝑡)) + 𝐻(𝜃|, 𝜃(𝑡)) 

For any 𝜃 = 𝜃(𝑡), 

𝑙𝑜𝑔 (𝐿𝑝𝑒𝑛(𝑌|𝜃(𝑡))) = 𝑄𝑝𝑒𝑛(𝜃𝑡|, 𝜃(𝑡)) + 𝐻(𝜃𝑡|, 𝜃(𝑡)) 

And  

                         log (𝐿𝑝𝑒𝑛(𝑌|𝜃)) − log 𝐿𝑝𝑒𝑛(𝑌|𝜃(𝑡)) 

= 𝑄𝑝𝑒𝑛((𝜃|, 𝜃(𝑡)) − 𝑄𝑝𝑒𝑛((𝜃(𝑡)|, 𝜃(𝑡)) + 𝐻(𝜃|, 𝜃(𝑡)) − 𝐻(𝜃(𝑡)|, 𝜃(𝑡)) 

Jensen’s inequality tells us that 𝐻(𝜃|, 𝜃(𝑡)) > 𝐻(𝜃(𝑡)|, 𝜃(𝑡)), 

So  

𝑙𝑜𝑔 (𝐿𝑝𝑒𝑛(𝑌|𝜃)) − 𝑙𝑜𝑔 𝐿𝑝𝑒𝑛(𝑌|𝜃(𝑡)) ≥ 𝑄𝑝𝑒𝑛(𝜃|, 𝜃(𝑡)) − 𝑄𝑝𝑒𝑛(𝜃(𝑡)|, 𝜃(𝑡)) 

For 𝜃 = 𝜃(𝑡+1) that maximizes 𝑄𝑝𝑒𝑛(𝜃|, 𝜃(𝑡)), i.e. 𝜃(𝑡+1) = argmax
𝜃

𝑄𝑝𝑒𝑛(𝜃|, 𝜃(𝑡)),  

log (𝐿𝑝𝑒𝑛(𝑌|𝜃(𝑡+1))) − log 𝐿𝑝𝑒𝑛(𝑌|𝜃(𝑡)) ≥ 𝑄𝑝𝑒𝑛(𝜃(𝑡+1)|, 𝜃(𝑡)) − 𝑄𝑝𝑒𝑛(𝜃(𝑡)|, 𝜃(𝑡)) 

                                   ≥ 0 

 

3.5 Hypothesis test 

To test the existence of a QTL at each scanned position, the hypotheses are formulated as: 

H0:  There is no QTL in the whole interval so that: 

  𝑢𝑗 = 𝜇 𝑎𝑛𝑑 𝜎𝑗 =  𝜎 𝑓𝑜𝑟 𝑗 = 0,1,2 

H1:  Single QTL exists in this interval so that: 

𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑏𝑜𝑣𝑒 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑 

We define the LOD score to be: 
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LOD = 𝑙𝑜𝑔10

likelihood of  qtl exists at this loci  

likelihood of no qtl at this loci
 

Larger LOD score indicate higher probability of QTL existence so that the test statistic is 

max(LOD) in the whole interval.  

 

3.6 Permutation test 

In hypothesis testing, a decision will be made by comparing the value of a test statistic, 

which usually has different values under the null hypothesis and the alternatives. The sampling 

distribution of the test statistic under the null hypothesis needs to be identified. For some test 

statistics, we are able to find a parametric distribution of the test statistics, and the p-value for the 

test, which is the probability that the test statistic would be at least as extreme as observed value 

under the null hypothesis, is calculated to compare with the threshold value to make decision on 

the test. However, a theoretical distribution cannot always be obtained. In this case, we can use a 

permutation test to solve this problem. 

Permutation testing can be dated back to Fisher (1935) [57], and its essential idea is to 

compute the null distribution of the test statistics from the data.  Suppose we have n observation, 

each having a measurement of trait, 𝑦1, 𝑦2, … . . 𝑦𝑛 and the genotypes of p markers, as showed in 

the following table.  

Table 3-3: Samples with the observed information of p markers and the phenotype 

Subject Phenotype Marker 

m1             m2 m3  .. mp 

1 𝑦1 = 23.0 0 1 2  2 

2 𝑦2 = 11.2 2 2 1  2 

3 𝑦3 = 15.7 2 1 0  0 
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…  … …    

n 𝑦𝑛 = 27.4 1 0 0  1 

 

If the null hypothesis is true, the pairings between the outcome y and the marker 

information should not be unique. That is, the pairings found in the observed data is just one of the 

possible, equally likely many other pairings. A realization of the null hypothesis can be obtained 

by randomly shuffling or permuting the observed data, e.g., by randomly matching different 

outcome values with genotype data of all subjects.  

For example, after shuffling the values of y while keep the order of the markers, we might 

get the following realization: 

Table 3-4: Samples with the permuted information of p markers and the phenotype 

Subject Phenotype              Marker 

m1             m2 m3  .. mp 

1 𝑦2 = 11.2 0 1 2  2 

2 𝑦6 = 9.9 2 2 1  2 

3 𝑦𝑛 = 27.4 2 1 0  0 

…  … …    

n 𝑦4 = 19.2 1 0 0  1 

 

The random shuffling/permuting can be repeated for a large number of times, e.g. 1000 

times, and each permutation can then generate a value of test statistic under null hypothesis. The 

values of the test statistics for all permutations can be used to derive an empirical distribution of 

the test statistics, and p-value can be obtained for the observed test statistic. 
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The number of permutations to be conducted is a trade-off between precision and 

computation time. Usually the more permutations the better, since probability estimates are subject 

to error due to sampling the population of possible permutations. But as the number of permutation 

increased, the requirement for the computation power and time is growing linearly. The 

permutation test can be very time-consuming, especially when we study large datasets. In 

exploratory analyses, 500 to 1000 permutations are sufficient to ensure the stability of the 

probability estimates. If the computed p-value is close to the preselected significance level, more 

permutation runs are needed.  

Permutation provides an efficient and effective approach and the key advantage is that one 

does not have to worry about the assumption of the distribution of the test statistic, whether it is 

unknown or poorly assumed, as we do in traditional testing procedures. The disadvantage is, as 

stated in the last paragraph, the amount of computation time required to actually perform a large 

number of permutations sometimes can be impractical. Good news is this disadvantage has been 

weakened with development of computer and paralleling computing. 

To apply the permutation procedures in QTL mapping, we use 1000 permutations to get 

the empirical distribution of the test statistic: max (LOD). Figure 3-3 shows an example of 

scanning profiles for typical QTL mapping. The data is a realization as describe in Table 3-4, 

where there are 500 samples and each has a measurement of trait (y) and 20 markers. The y-axes 

are the LOD score. The x-axes are the scanning positions and the 20 markers.  The black dots are 

the LOD scores computed from the penalized method at each scanning position while the red ones 

are from the standard ML method. We can see that the max (LOD) is somewhere between the 12nd 

and 13th marker. The observed value is 11.38 and 2.25from the penalized and the standard ML 

method, respectively.  
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Figure 3-3: Scanning profile of QTL controlling the trait of interest. The y-axes are the LOD score. 

The x-axes are the scanning positions and the 20 markers. The black dots are the LOD scores 

computed from the penalized method while the red ones are from the standard ML method. 
 

Then we permute the data and scan the interval again to calculate the LOD score at each 

scanning position and record the largest LOD value. We repeat this for 1000 times to form our 

reference distribution of the test statistic: max (LOD). 

 

 

 

 

 

 

Figure 3-4: Examples of scanning profile of QTLs using permutated data. The y-axes are the LOD 

score. The x-axes are the scanning positions and the 20 markers.  
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After obtaining the 1000 values from the permutations, a histogram can be generated, as 

showed in the following figures for both un-penalized and penalized methods. 

 

Figure 3-5: Values of 1000 max (LOD) using the penalized method.  

 

 

Figure 3-6: Values of 1000 max (LOD) using the standard ML method.  

 

The p-value for the penalized method is then calculated as, 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
#(TS > 11.38)

1000
= 0 
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Where the 11.38 is the max(LOD)  calculated using the penalized method from the observed 

dataset in the profile showed in Figure 3-3 (Red). 

For the standard unpenalized ML method, the p-value is: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
#(TS > 2.25)

1000
= 0.123 

Similarly, 2.25 is the max (LOD) calculated using the standard ML method from the observed 

dataset in the profile showed in Figure 3-3 (Black)  

We compare the calculated p-value with the pre-selected significance level, for example, 

0.05 to makes decisions about rejecting the null hypothesis or not.  

 

3.7 Simulation 

We performed Monte Carlo simulation to examine the statistical property of the penalized 

method in interval mapping. The simulation contains two parts, one for generating the marker/QTL 

information and one for generating the trait value based on the simulated QTL genotypes. The 

QTL information has been removed for analyses to mimic real data in which QTL is unknown. 

The detailed setting is described as follows: 

(1) For F2, suppose QTL has three genotypes (QQ, Qq, qq) and is flanked by two markers with 

genotypes (M1M1, M1m1, m1m1) and (M2M2, M2m2, m2m2), respectively. For each 

individual, the first marker on the chromosome is MM, Mm, mm with the probability 

(0.25,0.5,0.25). For the next position, the chance of obtaining certain type of genotype is 

determined by its recombination frequency with the previous marker as the conditional 

probability expressed in the following table:  

Marker 1 genotype Marker 2 genotype 
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M2M2 M2m2 m2m2 

M1M1 (1 − 𝑟)2 2r(1 − r) 𝑟2 

M1m1 r(1 − r) (1 − 𝑟)2 + 𝑟2 r(1 − r) 

m1m1 𝑟2 2r(1 − r) (1 − 𝑟)2 

 

For example, if the distance between each marker is 20cM, then the next position, if it is a 

marker, by using the Haldane map function, the recombination frequency should be 0.165  

and the probability of current position falling into the 3 genotypes will be determined by  

the table above. After determining the genotype for current position, we can record the 

genotype value and proceed to the next one. The process will continue until all markers 

and QTLs have been reached.  

(2) After the QTL genotypes are simulated in step (1), we will be able to generate the 

measurement of the trait, which are from 3 different normal distributions with different 

mean and variance. The trait value for each individual was obtained according to the 

observation’s genotype of QTL. 

In our simulation, the number of markers is set to be 20 and the distance between each marker 

is 20cM. The location of QTL is assumed to be 4cM left to the 12nd marker. The penalized method 

is compared to the standard ML approach in which the variances are assumed to be homogenous. 

We set the sample size to be from 100 to 500. The means of the trait measurement for 3 different 

QTL families are (1,2,3) and the variances are adjusted to see how the difference in variances may 

affect power of detecting a significant QTL. The σ is set to be (3-δ, 3, 3+δ), where δ varies from 0 

to 1. We scanned the simulated chromosome with a step size of 2cM from the leftmost marker to 
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the rightmost. At each scanning point, we compute the LOD value. The maximum LOD in the 

whole profile will be recorded.  A detected QTL is defined by having a LOD score value that is 

greater than a predefined threshold. The QTL will then be counted for calculating power of QTL 

detection. The predefined threshold is calculated from permutation test (permuted for 1000 times) 

with type I error 𝛼 = 0.05. The power and parameter estimates are computed from 100 simulation 

replicates. The simulations are conducted to compare the consistency and efficiency between the 

penalized and standard ML methods under different sample size and variation of the variance in 3 

QTL subgroups. 

Table 3-5: Parameter estimation of interval mapping when δ = 0 

   100  200 

Parameter True Pen ML Pen ML 

u0 1 1.26(0.092) 1.15(0.106) 1.08(0.068) 0.98(0.065) 

u1 2 1.96(0.061) 1.95(0.067) 2.02(0.04) 2.04(0.044) 

u2 3 2.74(0.105) 2.88(0.108) 2.88(0.058) 2.95(0.063) 

sigma0 2.2 2.86(0.064) 2.84(0.022) 3.01(0.035) 2.95(0.015) 

sigma1 3 2.96(0.037) 2.84(0.022) 3.02(0.027) 2.95(0.015) 

sigma2 3.8 2.85(0.06) 2.84(0.022) 2.99(0.037) 2.95(0.015) 

pos 224 212.54(9.143) 228.48(7.928) 215.54(6.3) 222.86(5.685) 

   300  400 

Parameter True Pen ML Pen ML 

u0 1 1.11(0.051) 1.06(0.052) 1.1(0.045) 1.05(0.044) 

u1 2 2.01(0.031) 2.01(0.034) 2(0.025) 2(0.027) 

u2 3 2.93(0.048) 2.98(0.045) 2.97(0.04) 3.01(0.039) 
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sigma0 2.2 3.03(0.031) 2.95(0.014) 3.04(0.027) 2.97(0.011) 

sigma1 3 2.97(0.022) 2.95(0.014) 2.98(0.019) 2.97(0.011) 

sigma2 3.8 3(0.033) 2.95(0.014) 3.04(0.028) 2.97(0.011) 

pos 224 223.96(4.375) 226.06(3.661) 225.26(2.904) 224.34(2.799) 

   500   

Parameter True Pen ML   

u0 1 1.06(0.037) 1.03(0.037)   

u1 2 2(0.023) 2.01(0.023)   

u2 3 2.98(0.037) 3(0.036)   

sigma0 2.2 3.03(0.022) 2.97(0.01)   

sigma1 3 2.98(0.016) 2.97(0.01)   

sigma2 3.8 3.04(0.025) 2.97(0.01)   

pos 224 224.04(2.628) 224.18(2.014)   

The penalized ML and standard ML estimates of QTL parameters from an F2 population of sample 

size N = 100, 200, 300, 400,500 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) of 

the estimates. The results are calculated from 100 simulations 

 

Table 3-6: Parameter estimation of interval mapping when δ = 0.2 

  100  200  

Parameter True Pen ML Pen ML 

u0 1 1.25(0.09) 1.2(0.099) 1.09(0.066) 1(0.062) 

u1 2 1.96(0.06) 1.93(0.067) 2.02(0.04) 2.02(0.044) 

u2 3 2.77(0.103) 2.88(0.117) 2.86(0.064) 2.97(0.067) 

sigma0 2.8 2.71(0.062) 2.85(0.022) 2.83(0.033) 2.95(0.015) 
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sigma1 3 2.97(0.037) 2.85(0.022) 3.04(0.028) 2.95(0.015) 

sigma2 3.2 2.98(0.064) 2.85(0.022) 3.16(0.039) 2.95(0.015) 

pos 224 215.32(8.93) 223(8.079) 213.02(6.539) 224.16(5.654) 

   300  400 

Parameter True Pen ML Pen ML 

u0 1 1.06(0.044) 1.08(0.05) 1.08(0.038) 1.06(0.042) 

u1 2 2.02(0.029) 1.99(0.034) 2.01(0.026) 1.99(0.027) 

u2 3 2.97(0.043) 3(0.048) 2.98(0.042) 3.03(0.041) 

sigma0 2.8 2.85(0.031) 2.95(0.014) 2.84(0.027) 2.97(0.012) 

sigma1 3 2.97(0.022) 2.95(0.014) 2.99(0.019) 2.97(0.012) 

sigma2 3.2 3.19(0.034) 2.95(0.014) 3.24(0.03) 2.97(0.012) 

pos 224 224.78(3.863) 224.84(3.846) 219.62(3.179) 224.26(2.801) 

   500   

Parameter True Pen ML   

u0 1 1.05(0.034) 1.04(0.033)   

u1 2 2(0.022) 1.99(0.024)   

u2 3 2.98(0.036) 3.02(0.038)   

sigma0 2.8 2.83(0.021) 2.97(0.01)   

sigma1 3 2.99(0.016) 2.97(0.01)   

sigma2 3.2 3.23(0.026) 2.97(0.01)   

pos 224 220.22(2.732) 224.74(2.34)   

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of sample 

size N = 100, 200, 300, 400,500 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) of 

the estimates. The results are calculated from 100 simulations 
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Table 3-7: Parameter estimation of interval mapping when δ = 0.5 

    100   200   

Parameter True Pen ML Pen ML 

u0 1 1.22(0.084) 1.22(0.095) 1.07(0.056) 1.04(0.059) 

u1 2 1.97(0.059) 1.9(0.067) 2.02(0.037) 1.98(0.043) 

u2 3 2.79(0.106) 2.94(0.119) 2.9(0.066) 3(0.072) 

sigma0 2.5 2.54(0.061) 2.87(0.022) 2.55(0.026) 2.97(0.016) 

sigma1 3 2.99(0.038) 2.87(0.022) 3.05(0.027) 2.97(0.016) 

sigma2 3.5 3.15(0.071) 2.87(0.022) 3.44(0.044) 2.97(0.016) 

pos 224 217.74(8.508) 220.18(7.986) 219.52(4.63) 224.84(5.761) 

      300   400 

Parameter True Pen ML Pen ML 

u0 1 1.05(0.036) 1.1(0.047) 1.06(0.033) 1.07(0.039) 

u1 2 2.02(0.026) 1.97(0.034) 2.01(0.024) 1.97(0.027) 

u2 3 2.97(0.045) 3.03(0.052) 2.99(0.041) 3.05(0.046) 

sigma0 2.5 2.55(0.027) 2.97(0.015) 2.54(0.022) 2.99(0.012) 

sigma1 3 2.98(0.021) 2.97(0.015) 3(0.018) 2.99(0.012) 

sigma2 3.5 3.51(0.037) 2.97(0.015) 3.55(0.032) 2.99(0.012) 

pos 224 224.72(2.408) 223.42(4.214) 225.88(1.251) 224.04(2.813) 

      500     

Parameter True Pen ML     

u0 1 1.04(0.029) 1.05(0.029)     

u1 2 2(0.02) 1.97(0.024)     
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u2 3 2.99(0.035) 3.04(0.042)     

sigma0 2.5 2.53(0.019) 2.99(0.01)     

sigma1 3 3(0.016) 2.99(0.01)     

sigma2 3.5 3.54(0.027) 2.99(0.01)     

pos 224 224.46(0.873) 224.74(2.348)     

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of sample 

size N = 100, 200, 300, 400,500 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) of 

the estimates. The results are calculated from 100 simulations 

 

Table 3-8: Parameter estimation of interval mapping when δ = 0.8 

      100   200 

Parameter True Pen ML Pen ML 

u0 1 1.16(0.068) 1.26(0.088) 1.06(0.047) 1.12(0.06) 

u1 2 1.96(0.055) 1.83(0.066) 2.01(0.034) 1.93(0.045) 

u2 3 2.88(0.109) 3.05(0.124) 2.95(0.064) 3.04(0.079) 

sigma0 2.2 2.28(0.054) 2.89(0.025) 2.27(0.023) 2.99(0.017) 

sigma1 3 2.98(0.036) 2.89(0.025) 3.04(0.027) 2.99(0.017) 

sigma2 3.8 3.49(0.079) 2.89(0.025) 3.75(0.044) 2.99(0.017) 

out 224 222.44(7.006) 213.66(8.53) 225.04(2.71) 228.4(5.651) 

   300  400 

Parameter True Pen ML Pen ML 

u0 1 1.04(0.031) 1.11(0.045) 1.05(0.027) 1.09(0.034) 

u1 2 2.01(0.027) 1.93(0.033) 2.01(0.023) 1.95(0.028) 

u2 3 2.98(0.046) 3.07(0.057) 3.01(0.041) 3.07(0.054) 
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sigma0 2.2 2.26(0.022) 3(0.015) 2.25(0.017) 3.02(0.013) 

sigma1 3 3(0.021) 3(0.015) 3.01(0.016) 3.02(0.013) 

sigma2 3.8 3.81(0.036) 3(0.015) 3.85(0.033) 3.02(0.013) 

pos 224 224.96(0.883) 221.16(4.204) 225(0.501) 224.04(2.838) 

   500   

Parameter True Pen ML     

u0 1 1.04(0.025)        1.06(0.026)  

u1 2 2(0.02)        1.96(0.024)  

u2 3 2.99(0.038)        3.06(0.045)  

sigma0 2.2 2.24(0.016)        3.02(0.011)  

sigma1 3 3(0.015)        3.02(0.011)  

sigma2 3.8 3.84(0.028)        3.02(0.011)  

pos 224 225.22(0.424)        224.82(2.344)   

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of sample 

size N = 100, 200, 300, 400,500 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) of 

the estimates. The results are calculated from 100 simulations 

 

Table 3-9: Parameter estimation of interval mapping when δ = 1 

    100   200   

Parameter True Pen ML Pen ML 

u0 1 1.22(0.084) 1.22(0.095) 1.07(0.056) 1.04(0.059) 

u1 2 1.97(0.059) 1.9(0.067) 2.02(0.037) 1.98(0.043) 

u2 3 2.79(0.106) 2.94(0.119) 2.9(0.066) 3(0.072) 

sigma0 2 2.54(0.061) 2.87(0.022) 2.55(0.026) 2.97(0.016) 
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sigma1 3 2.99(0.038) 2.87(0.022) 3.05(0.027) 2.97(0.016) 

sigma2 4 3.15(0.071) 2.87(0.022) 3.44(0.044) 2.97(0.016) 

pos 224 217.74(8.508) 220.18(7.986) 219.52(4.63) 224.84(5.761) 

      300   400 

Parameter True Pen ML Pen ML 

u0 1 1.05(0.036) 1.1(0.047) 1.06(0.033) 1.07(0.039) 

u1 2 2.02(0.026) 1.97(0.034) 2.01(0.024) 1.97(0.027) 

u2 3 2.97(0.045) 3.03(0.052) 2.99(0.041) 3.05(0.046) 

sigma0 2 2.55(0.027) 2.97(0.015) 2.54(0.022) 2.99(0.012) 

sigma1 3 2.98(0.021) 2.97(0.015) 3(0.018) 2.99(0.012) 

sigma2 4 3.51(0.037) 2.97(0.015) 3.55(0.032) 2.99(0.012) 

pos 224 224.72(2.408) 223.42(4.214) 225.88(1.251) 224.04(2.813) 

      500     

Parameter True Pen ML     

u0 1 1.04(0.029) 1.05(0.029)     

u1 2 2(0.02) 1.97(0.024)     

u2 3 2.99(0.035) 3.04(0.042)     

sigma0 2 2.53(0.019) 2.99(0.01)     

sigma1 3 3(0.016) 2.99(0.01)     

sigma2 4 3.54(0.027) 2.99(0.01)     

pos 224 224.46(0.873) 224.74(2.348)     

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of sample 

size N = 100, 200, 300, 400,500 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) of 

the estimates. The results are calculated from 100 simulations 
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Below are the summaries of the results:  

(1) When the variances of the 3 genotype groups are homogeneous and the sample size is 

small, say, N =100 and N = 200 in table 3-5, the standard ML method works better than 

the penalized method in estimating the parameters. As the sample size grows, it will 

improve the performance of both methods and the penalized method becomes as good 

as the standard ML method. 

(2) When the variances of the three genotypic groups start to vary, the penalized estimators 

are consistent while the ML estimators become biased as the variation is larger. 

(3) When the variance gets bigger, larger sample size will lead to better performance of 

both methods in estimating the parameters and reducing the standard errors. For 

example, when δ = 0.8 and sample size 100 in Table 3-8, the standard errors of the 

position of the QTL for the Penalized and standard ML are 7.006 and 8.53, respectively. 

While when the sample size is 500, these values are reduced to 0.424 and 2.344. This 

is pretty satisfying for the penalized method while 2.344 is still a relative large value 

for the standard ML method.  

(4) As the delta becomes larger and larger, the penalized method has an increasing power 

of detecting a significant QTL while the ML method shows an opposite tendency after 

a specific value as showed in Figure 3-7. For instance, when N = 300, the power for 

standard ML grows as δ grows until it reaches 0.2. However, it decreases after 0.2 from 

0.75 to 0.73 then goes to 0.72 when δ exceeds 0.8. At the same time, the penalized 

method can reach a power as high as 1 when δ = 1 and the sample size larger than 300. 
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Table 3-10: Power of two methods in interval mapping 

delta  0  0.2  0.5  0.8  1 

 Pen ML Pen ML Pen ML Pen ML Pen ML 

N = 100 0.2 0.25 0.19 0.22 0.28 0.24 0.41 0.23 0.54 0.23 

N = 200 0.37 0.52 0.43 0.53 0.57 0.49 0.85 0.47 0.96 0.47 

N = 300 0.59 0.72 0.65 0.75 0.87 0.73 0.98 0.72 1 0.72 

N = 400 0.81 0.88 0.87 0.88 0.96 0.86 0.99 0.83 1 0.82 

N = 500 0.9 0.93 0.91 0.93 0.99 0.93 1 0.92 1 0.9 

Interval mapping under when δ = 0, 0.2, 0.5, 0.8, 1, the Penalized ML and standard ML’s power 

of detecting a QTL using an F2 population of sample size N = 100, 200, 300, 400, 500 for the 

phenotypic data simulated from Gaussian mixture distributions with 3 components. The results are 

calculated from 100 simulations. 
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Figure 3-7: Power of Penalized and Standard ML of detecting QTL in interval mapping. 

Phenotypic data is simulated from Gaussian mixture distributions with 3 components. The results 

are calculated from 100 simulations under scenarios δ = 0, 0.2, 0.5, 0.8, 1 with sample size N = 

100, 200, 300, 400,500. 
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3.8 Real data analysis for interval mapping  

In this section, we will apply our proposed penalized method to a real data. We will 

compare it with the standard ML method that assumes the homogeneous variance across the 

genotypic groups of QTL. 

Vaughn et Al [58] constructed a QTL map with 96 markers for 502 F2 mice (259 males 

and 243 females) which are derived from two inbreed strains. The F2 progeny’s body mass was 

measured weekly for 10 weeks after they were born.  

We calculated the log body mass ratio of week 10 over week 1 to week 9 and plotted the 

histogram as presented in Figure 3-8. These ratios indicate how fast the mice grow. We choose 

week 10 over week 3 as our traits of interest.  
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Figure 3-8: Body mass ratio for the 502 mice, between week 10 and week 1 to week 9. 

 

Our goal is to identify QTL that affect the growth rate of body mass from week 3 to week 

10. These 96 markers spread on 19 chromosomes. The profile of the test statistics, LOD score 

across the whole mice genome is shown in the Figure 3-9. The empirical distribution of the test 

statistics were obtained from 1000 permutations and the significance level was set at 5%. 

 

 (a) 
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          (b) 

Figure 3-9: QTL scanning profiles by standard ML (a) and penalized ML (b). The y-axes are the 

LOD test scores. The dash lines are the 0.05 significant level chromosome-wide while the solid 

line is the significant level genome-wide based on 1000 permutations. The x-axis ticks is the 

marker positions.   

 

Results:  

Both the penalized likelihood and ML detected one genome-wide significant QTL on the 

chromosome 15. Although the overall profiles of the penalized and un-penalized ML look similar, 

they did detect different chromosome-wide significant QTL. Additional chromosome-wide 

significant QTL locations are identified in chromosomes 13 and 17 by the penalized approach 

while the standard ML shows no sign of an existence of QTL in these 2 chromosomes, suggesting 

that the penalized method may provide insights that the standard ML method cannot provide. 

Table 3-11: Genome-wide significant QTL detected in an F2 mouse population 

Chromosome Position* Left Marker Right Marker 

15 12.2 D15Mit5 D15Mit2 



52 
 

*position in cM from the leftmax marker on the chromosome. 

Significant QTL for body mass ratio between week 10 and week 3 in an F2 mouse population 

detected from the genome-wide interval mapping scan by the penalized and ML methods, at the 

0.05 significance level from the permutation. 

 

Table 3-12: Chromosome-wide significant QTL detected in an F2 mouse population 

Chromosome Position* Left Marker Right Marker 

2 24 D2Mit1 D2Mit370 

2 6.8 D2Mit370 D2Mit380 

2 21.5 D2Mit17 D2Mit22 

13 13.5 D13Mit115 D13Mit9 

17 20.5 D17Mit16 D17Mit39 

*position in cM from the leftmax marker on the chromosome. 

Significant QTL for body mass ratio between week 10 and week 3 in an F2 mouse population 

detected from the chromosome-wide interval mapping scan by the penalized methods, at the 0.05 

significance level from the permutation. 
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Chapter 4 Linkage disequilibrium mapping 

In this chapter, we will describe how to apply our penalized approach to the linkage 

disequilibrium mapping framework. The linkage disequilibrium mapping is mainly applied for 

data collected from natural populations, such as humans, where controlled mating is not possible.   

4.1 Linkage disequilibrium 

Linkage disequilibrium occurs when genotypes at two loci are not independent of another. 

In another word, two loci are in linkage disequilibrium when the haplotype frequencies of the two 

loci are different from random associations of composing alleles. Consider two loci (A and B), 

each having two alleles (A1, A2, B1, and B2).  Therefore four possible haplotypes may present in 

the population:  

 

Table 4-1: The Frequency of the 4 haplotypes formed by two loci. 

Haplotype Frequency 

A1B1 𝑝11 

A1B2 𝑝12 

A2B1 𝑝21 

A2B2 𝑝22 

 

Then, the allele frequency can be represented by the haplotype counts as: 

 

 

 

 

https://en.wikipedia.org/wiki/Linkage_disequilibrium
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Table 4-2: The Frequency of the 4 types of Allele in the two loci 

Allele Frequency 

A1 p =  𝑝11 + 𝑝12 

A2 1 − 𝑝 =  𝑝21 + 𝑝22 

B1 q =  𝑝11 + 𝑝21 

B2 1 − 𝑞 =  𝑛12 + 𝑛22 

 

If alleles at the two loci are randomly associated with each other, then the frequencies of the four 

haplotype are equal to the product of the frequencies of alleles it contains. In this case, there is no 

linkage disequilibrium and gamete frequencies can be expressed as:  

 𝑝11 = 𝑝𝑞 

 𝑝12 = 𝑝 (1 − 𝑞) 

 𝑝21 = (1 − 𝑝)𝑞 

 𝑝22 = (1 − 𝑝)(1 − 𝑞) 

However, if alleles at the two loci are not randomly associated, then there will a deviation (D) in 

the expected frequencies:  

 𝑝11 = 𝑝𝑞 + 𝐷 

 𝑝12 = 𝑝 (1 − 𝑞) − 𝐷 

 𝑝21 = (1 − 𝑝)𝑞 − 𝐷 

 𝑝22 = (1 − 𝑝)(1 − 𝑞) + 𝐷 

This parameter D is called the coefficient of linkage disequilibrium and it quantifies the deviations 

from random association of alleles. This coefficient was first proposed by Lewontin and Kojima 

(1960) [59] and it is defined for a specific pair of alleles, A and B. If D = 0, it means linkage 
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equilibrium (LE), implying a statistical independence. The coefficient of linkage disequilibrium is 

a descriptive statistics. Their magnitude does not indicate whether or not there is a statistically 

significant association between alleles in haplotypes. Standard statistical tests, including the chi- 

squared and Fisher’s exact test, are commonly used to test for significance: 

  

𝜒2 =  
∑(𝑜𝑏𝑠 − 𝑒𝑥𝑝)2

𝑒𝑥𝑝
 

 

Linkage disequilibrium is influenced by many factors, including selection, the rate of 

recombination, the rate of mutation, genetic drift, the system of mating, population structure, 

and genetic linkage.  

Several statistics have been proposed to measure the amount of linkage disequilibrium, and 

they have different advantages. Although the measure D has the most intuitive concepts of linkage 

disequilibrium, its numerical value is not very useful for measuring the strength of linkage 

disequilibrium or comparing different levels of linkage disequilibrium, because D is affected by 

allele frequencies. Researchers suggested the value should be normalized based on the theoretical 

maximum and minimum relative to the value of D. so the standardized value of D is proposed by 

Lewontin (1964) [60]. It is estimated as: 

 When D ≥ 0: 

D′ =  
𝐷

𝐷𝑚𝑎𝑥
 

 

    𝐷𝑚𝑎𝑥 is the smaller of p(1-q) and (1-p)q. 

  When D < 0: 

https://en.wikipedia.org/wiki/Selection_(biology)
https://en.wikipedia.org/wiki/Mutation
https://en.wikipedia.org/wiki/Genetic_drift
https://en.wikipedia.org/wiki/Mating_system
https://en.wikipedia.org/wiki/Population_stratification
https://en.wikipedia.org/wiki/Genetic_linkage
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D′ =  
𝐷

𝐷𝑚𝑖𝑛
 

 

     𝐷𝑚𝑖𝑛 is the larger of –pq and –(1-p)(1-q). 

 

When D’=1, it is known as complete linkage disequilibrium, which means that two markers have 

not been separated by recombination in the population and occurs only when some haplotypes 

have frequency equals to zero. D’ = 0 represents linkage equilibrium.  

 

The other measure 𝑅2 is defined as: 

 

𝑅2 =  
𝐷2

𝑝𝑞(1 − 𝑝)(1 − 𝑞)
 

Where the nominator is the square of the linkage disequilibrium parameter D and the denominator 

is the product of the four allele frequencies. The range of 𝑅2 is between 0 and 1.  𝑅2 = 1 means 

complete linkage disequilibrium while 𝑅2 = 0 means complete linkage equilibrium. In general, 𝑅2 

is used to measure the statistical association between marker pairs and is related to the power of 

the LD mapping. It is preferred when the focus is on the predictability of one polymorphism given 

the other. 

 

4.2 Linkage disequilibrium mapping 

Linkage disequilibrium mapping is performed by scanning the entire genome for 

significant associations between markers and a particular phenotype.  Suppose a QTL has the 

https://en.wikipedia.org/wiki/Linkage_disequilibrium
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alleles Q and q. The allele frequencies of Q and q are expressed as q and 1 - q, respectively. Three 

genotypes can be formed (j=0 for QQ, 1 for Qq and 2 for qq) for this QTL. 

Assume this QTL is genetically associated with a genetic marker with three genotypes MM, 

Mm and mm. Let p and 1-p be the allele frequencies of M and m, respectively, and D be the 

coefficient of linkage disequilibrium between the marker and QTL. 

The marker and QTL together form four haplotypes, MQ, Mq, mQ and mq, with respective 

frequencies expressed as 𝑝11 = pq + D, 𝑝10 = p(1 − q) − D, 𝑝01 = (1 − p)q − D, 𝑝00 = (1 −

p)(1 − q) + D. These four haplotypes randomly unite to generate 16 combinations, some of which 

are collapsed to form nine distinguishable genotypes with frequencies presented in Table 4-3. 

 

Table 4-3: Genotypic and diplotypic frequencies for the maker and QTL 

  QTL = 2 QTL  = 1 QTL = 0 

  QQ Q|q + q|Q qq 

Marker = 2 MM 𝑝11
2  2𝑝11𝑝10 𝑝10

2  

Marker = 1 Mm 2𝑝11𝑝01 2𝑝11𝑝00 + 2𝑝10𝑝01 2𝑝10𝑝00 

Marker = 0 Mm 𝑝01
2  2𝑝01𝑝00 𝑝00

2  

 

From this table, we will be able to calculate the conditional probability of the QTL genotypes given 

a specific genotype of marker so that a mixture model can be constructed as followed: 

  

L(Y, M) =  ∏ ∑ 𝑤𝑗|𝑖𝑘

1

√2𝜋𝜎
exp (−

(𝑦𝑖 − 𝜇𝑗)2

2𝜎𝑗
2 )

2

𝑗=0

𝑛

𝑖=1

) 
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Similar to the interval mapping, the 𝑤𝑗|𝑖𝑘
is the conditional probability of the QTL given the 

genotype of ith subject’s marker and (𝜇𝑗, 𝜎𝑗
2) are the mean and variance of jth QTL genotypic 

subgroup. 

 

4.3 Penalized EM algorithm in linkage disequilibrium mapping 

From previous EM algorithm chapter, we defined 𝑇𝑗|𝑖𝑘
 to be the conditional distribution of 

the latent variable Z given the observed data and current estimate of 𝜃(𝑡): 
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So that the expected value of the log likelihood function, with respect to the conditional 

distribution of latent variable Z, given the observed data y under the current estimate of the 

parameters  is : 

 

𝐸𝑍|𝑌[log 𝐿(𝑌, 𝑍)] = ∑ ∑ 𝑇𝑗,𝑖𝑘

(𝑡)
∙ [log 𝑤𝑗|𝑖𝑘

−
1

2
log 2𝜋 − log 𝜎 −

(𝑦𝑖−𝜇𝑗)2

2𝜎𝑗
2

2
𝑗=0

𝑛
𝑖=1  ]                                                                                                                                                  

The penalty term we add in linkage disequilibrium mapping is λ ∑
1

𝜎𝑗

2
𝑗=0 .  We do not consider the 

weight in order to have an explicit form of estimate of 𝑤𝑗|𝑖𝑘
. So the the penalized expected value 

of the log likelihood function is: 

𝑄𝑝𝑒𝑛 = ∑ ∑ 𝑇𝑗,𝑖𝑘

(𝑡)
∙ [log 𝑤𝑗|𝑖𝑘

−
1

2
log 2𝜋 − log 𝜎 −

(𝑦𝑖−𝜇𝑗)2

2𝜎𝑗
2

2
𝑗=0

𝑛
𝑖=1  ]- λ ∑

1

𝜎𝑗

2
𝑗=0  

(4-1) 

https://en.wikipedia.org/wiki/Linkage_disequilibrium
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Log_likelihood
http://en.wikipedia.org/wiki/Conditional_probability_distribution
http://en.wikipedia.org/wiki/Conditional_probability_distribution
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The major difference between the linkage disequilibrium and interval mapping with respect to the 

EM algorithm is that the conditional probability is not fixed in the linkage disequilibrium mapping 

and should be updated in each M-step.  

 

In the M-step, since 𝑤𝑗|𝑖𝑘
 is only involved the first term, we need to maximize 

                 𝐾(𝑌) = ∑ ∑ 𝑇𝑗,𝑖𝑘

(𝑡)
∙2

𝑗=0
𝑛
𝑖=1 log 𝑤𝑗|𝑖𝑘

 

                    = ∑ (∑ 𝑇𝑗,𝑖𝑘

(𝑡)
 𝑙𝑜𝑔𝑤𝑗|𝑖𝑘𝑖𝑘=2

2
𝑗=0 + ∑ 𝑇𝑗,𝑖𝑘

(𝑡)
 𝑙𝑜𝑔𝑤𝑗|𝑖𝑘𝑖𝑘=1 + ∑ 𝑇𝑗,𝑖𝑘

(𝑡)
 𝑙𝑜𝑔𝑤𝑗|𝑖𝑘𝑖𝑘=0 ) 

(4-2) 

Let 𝑁𝑗|𝑙
(𝑡) be the number of observations that have the Maker = l  and QTL = j. We can get: 

𝑁𝑗|𝑙
(𝑡) = ∑ 𝑇𝑗,𝑖𝑘

(𝑡)

𝑖𝑘= 𝑙

 

 Then the likelihood function can be expressed as the product of the nine cells: 

𝐾(𝑌) = ∑  (𝑁𝑗|2
(𝑡)𝑙𝑜𝑔𝑤𝑗|2 + (𝑁𝑗|1

(𝑡)𝑙𝑜𝑔𝑤𝑗|1 + 𝑁𝑗|0
(𝑡)𝑙𝑜𝑔𝑤𝑗|0)

2

𝑗=0

 

                                 =  𝑁2|2
(𝑡) log 𝑝11

2 + 𝑁2|1
(𝑡) log(2𝑝11𝑝10)+𝑁2|0

(𝑡) log(𝑝10
2 ) 

                                      + 𝑁1|2
(𝑡) log(2𝑝11𝑝01) + 𝑁1|1

(𝑡)log (2𝑝11𝑝00 + 2𝑝10𝑝01) 

                                      + 𝑁1|0
(𝑡)log (2𝑝10𝑝00)+𝑁0|2

(𝑡)log (𝑝01
2 )+𝑁0|1

(𝑡)log (2𝑝01𝑝00) 

                                      + 𝑁0|0
(𝑡)log (𝑝00

2 ) 

 

                                   ∝ (2𝑁2|2
(𝑡) + 𝑁1|2

(𝑡) + 𝑁2|1
(𝑡)) log(𝑝11) 

                                       + (2𝑁0|2
(𝑡) + 𝑁1|2

(𝑡) + 𝑁0|1
(𝑡))log (𝑝10) 

                                        + (2𝑁2|0
(𝑡) + 𝑁1|0

(𝑡) + 𝑁2|1
(𝑡))log (𝑝01) 
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                                       + (2𝑁0|0
(𝑡) + 𝑁1|0

(𝑡) + 𝑁0|1
(𝑡))log (𝑝00) 

                                       + 𝑁1|1
(𝑡)log (𝑝11𝑝00 + 𝑝10𝑝01) 

                                     (4-3) 

To simply the notation, let 

𝑁1
(𝑡) =  2𝑁2|2

(𝑡) + 𝑁1|2
(𝑡) + 𝑁2|1

(𝑡)
 

𝑁2
(𝑡) =  2𝑁0|2

(𝑡) + 𝑁1|2
(𝑡) + 𝑁0|1

(𝑡)
 

𝑁3
(𝑡) =  2𝑁2|0

(𝑡) + 𝑁1|0
(𝑡) + 𝑁2|1

(𝑡)
 

   𝑁4
(𝑡) =   2𝑁0|0

(𝑡) + 𝑁1|0
(𝑡) + 𝑁0|1

(𝑡) 

                                                 𝑁5
(𝑡) =   𝑁1|1

(𝑡)
 

We can apply another EM algorithm here to solve for haplotype frequencies. Let R be a latent 

variable follow a binomial distribution Bin(𝑁5
(𝑡),

𝑝11𝑝00

𝑝11𝑝00+𝑝10𝑝01
).  So that: 

φ =  E(R) =  
𝑁5

(𝑡) 𝑝11𝑝00

𝑝11𝑝00 + 𝑝10𝑝01
 

and: 

log 𝐾(𝑌, 𝑅) = (𝑁1
(𝑡) + R)log 𝑝11 +(𝑁2

(𝑡) + 𝑁5
(𝑡) + R) log 𝑝10 + (𝑁3

(𝑡) + 𝑁5
(𝑡) − R) log 𝑝01  

                                 + 𝑁4
(𝑡) + R)log 𝑝10 

(4-4) 

In the E-step:                            

𝐸𝑍|𝑌K(Y, R) = (𝑁1 + φ)log 𝑝11 +(𝑁2 + 𝑁5 + φ) log 𝑝10 + (𝑁3 + 𝑁5 − φ) log 𝑝01  

                                    + (𝑁4 + φ)log 𝑝10 

(4-5) 

After maximizing the above function subject to 𝑝11 + 𝑝10 + 𝑝01 + 𝑝00 = 1, we can get: 
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𝑝11̂
(𝑡+1) =  

𝑁1
(𝑡) + φ

𝑁1
(𝑡) + 𝑁2

(𝑡) + 𝑁3
(𝑡) + 𝑁4

(𝑡) + 2𝑁5
(𝑡)

 

𝑝10̂
(𝑡+1)̂ =  

𝑁2
(𝑡) + 𝑁5

(𝑡) + φ

𝑁1
(𝑡) + 𝑁2

(𝑡) + 𝑁3
(𝑡) + 𝑁4

(𝑡) + 2𝑁5
(𝑡)

 

𝑝01̂
(𝑡+1) =  

𝑁3
(𝑡) + 𝑁5

(𝑡) − φ

𝑁1
(𝑡) + 𝑁2

(𝑡) + 𝑁3
(𝑡) + 𝑁4

(𝑡) + 2𝑁5
(𝑡)

 

𝑝00̂
(𝑡+1) =  

𝑁4
(𝑡) + φ

𝑁1
(𝑡) + 𝑁2

(𝑡) + 𝑁3
(𝑡) + 𝑁4

(𝑡) + 2𝑁5
(𝑡)

 

 

From Table 3-3, we will be able to calculate the updated conditional probability 𝑤𝑗|𝑖𝑘
(𝑡+1) 

𝑤𝑗|𝑖𝑘=𝑙
(𝑡+1) =

𝑃(𝑀𝑎𝑟𝑘𝑒𝑟 = 𝑙 𝑎𝑛𝑑 𝑄𝑇𝐿 = 𝑗 )

𝑃(𝑀𝑎𝑟𝑘𝑑𝑒𝑟 = 𝑙)
 

We take the derivative of Equation (3.3) with respect of μ  and we will get the updated estimate: 
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For 𝜎𝑗, if we take the derivative of (3.3) with respect of 𝜎𝑗, we will get: 

 

         𝜎𝑗
2(∑ 𝑇𝑗,𝑖𝑘

𝑛
𝑖=1 ) − 𝜆𝜎𝑗 (∑

𝑛𝑖𝑘

𝑛

9
𝑖𝑘=1 𝑤𝑗|𝑖𝑘

) − ∑ 𝑇𝑗,𝑖𝑘
(𝑦𝑖 − 𝑢𝑗)

2𝑛
𝑖=1 = 0          

(4-6) 

And  

              𝜎𝑗
(𝑡+1)

=  
𝜆+√𝜆2+4𝑇𝑗,𝑖𝑘

∙∑ 𝑇𝑗,𝑖𝑘
𝑛
𝑖=1 (𝑦𝑖−𝑢𝑗)

2

2 ∑ 𝑇𝑗,𝑖𝑘
𝑛
𝑖=1

                   

(4-7) 
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We can see that when 𝜆 = 0, the updated estimate   𝜎𝑗
(𝑡+1)

=   √
∑ 𝑇𝑗,𝑖𝑘

𝑛
𝑖=1 (𝑦𝑖−𝑢𝑗)

2

∑ 𝑇𝑗,𝑖𝑘
𝑛
𝑖=1

, which is just the 

one from standard EM algorithm. 

 

The algorithm iterates between the 2 steps until it converges. 

 

4.4 Hypothesis test 

The hypothesis testing tests the marker is linked to a QTL that affects the trait of interest.  

The hypothesis is formulated as: 

𝐻0:  𝑢𝑗 = 𝜇 𝑎𝑛𝑑 𝜎𝑗 =  𝜎 𝑓𝑜𝑟 𝑗 = 0,1,2 

𝐻1 = 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑏𝑜𝑣𝑒 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑. 

The null hypothesis states that there is no QTL affecting the interested quantitative trait and 

𝐻1 proposes that such QTL exists. The test statistics for this hypothesis testing is the likelihood 

ratio (LR) test statistic. Similar to Interval mapping, larger LR values indicate higher probability 

of existence of a QTL and we also use the permutation test to get an empirical distribution for 

determining the critical threshold.  

 

4.5 Simulation 

We performed Monte Carlo simulations to examine the statistical property of the penalized 

method in the linkage disequilibrium mapping framework. The simulation design here is similar 

to those used in the interval mapping, first generating the marker/QTL information and then 

generating the trait value based on the simulated QTL. The penalized method is again compared 

to the standard ML method. 
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(1) Suppose a QTL has three genotypes (QQ, Qq, qq) and is linked with a marker with 

genotypes MM, Mm, mm. The allele frequencies for M and m are set as p and 1-p 

respectively. We first generate the markers, which are randomly selected from one of the 

three genotypes MM, Mm, mm with the probability (𝑝2, 2𝑝(1 − 𝑝), (1 − 𝑝)2). 

(2) The allele frequencies for Q and q are set as q and 1-q. The coefficient of linkage 

disequilibrium between the marker and QTL is set to be D. Then we calculate the four 

haplotypes, MQ, Mq, mQ and mq, with respective frequencies expressed as 𝑝11 = pq + D, 

𝑝10 = p(1 − q) − D, 𝑝01 = (1 − p)q − D, 𝑝00 = (1 − p)(1 − q) + D, which will give us 

the joint distribution of the Marker and QTL. 

(3) Then we calculate the conditional probability for the 3 genotypes QQ, Qq and qq given the 

genotypes of the marker and generate the QTL based on the simulated markers. 

(4) Lastly, we simulated the measurement of the traits which are from 3 different normal 

distributions with different mean and variance according to the observation’s genotype of 

QTL. 

In our simulation, we set p = 0.6, q = 0.4 and the linkage disequilibrium coefficient D = 0.05.  The 

sample size is set to be 500, 1000, 1500 or 2000. The means of the trait measurement for 3 different 

QTL families are (1, 2, 3) and the variances are adjusted to see how the difference in variances 

may affect power. The σ is (3-δ, 3, 3+δ) and we vary δ from 0 to 2. A detected QTL is defined by 

having a LR value that is greater than a predefined threshold. The significant QTL will then be 

counted for calculating power of QTL detection. The predefined threshold is calculated from the 

permutation test (permuted for 1000 times) with type I error 𝛼 = 0.05. The power and parameter 

estimates are calculated from 100 simulation replicates. 
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Table 4-4: Parameter estimation of LD mapping under the scenario δ = 0 

  N = 500 N=1000 

Names TRUE Penalized ML Penalized ML 

mu0 1 1.12(0.14) 1.16(0.119) 1.06(0.093) 1.15(0.081) 

mu1 2 1.97(0.097) 1.97(0.078) 1.88(0.07) 1.82(0.051) 

mu2 3 2.21(0.174) 2.22(0.134) 2.4(0.086) 2.49(0.098) 

sigma0 3 2.62(0.056) 2.89(0.026) 2.82(0.047) 2.96(0.015) 

sigma1 3 2.86(0.039) 2.89(0.026) 2.95(0.027) 2.96(0.015) 

sigma2 3 2.73(0.061) 2.89(0.026) 2.94(0.045) 2.96(0.015) 

p 0.4 0.4(0.002) 0.4(0.002) 0.4(0.001) 0.4(0.001) 

q 0.6 0.5(0.007) 0.51(0.007) 0.5(0.003) 0.51(0.003) 

D 0.05 0.07(0.006) 0.04(0.005) 0.07(0.005) 0.04(0.004) 

      

  N = 1500 N=2000 

mu0 1 1.01(0.077) 1.08(0.074) 1.05(0.068) 1.09(0.061) 

mu1 2 1.88(0.047) 1.88(0.036) 1.85(0.043) 1.81(0.034) 

mu2 3 2.39(0.074) 2.36(0.067) 2.48(0.061) 2.51(0.067) 

sigma0 3 2.93(0.04) 2.99(0.011) 2.95(0.029) 2.99(0.011) 

sigma1 3 2.99(0.023) 2.99(0.011) 2.98(0.018) 2.99(0.011) 

sigma2 3 2.91(0.041) 2.99(0.011) 2.99(0.029) 2.99(0.011) 

p 0.4 0.4(0.001) 0.4(0.001) 0.4(0.001) 0.4(0.001) 

q 0.6 0.5(0.002) 0.5(0.001) 0.5(0.001) 0.5(0.001) 

D 0.05 0.05(0.004) 0.03(0.003) 0.05(0.003) 0.04(0.003) 
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The Penalized ML and standard ML estimates of QTL parameters from an F2 population of sample 

size N = 500, 1000, 1500, 2000 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) of 

the estimates. The results are calculated from 100 simulations. 

 

Table 4-5: Parameter estimation of LD mapping under the scenario δ = 0.5 

  N = 500 N=1000 

Names TRUE Penalized ML Penalized ML 

mu0 1 1.34(0.129) 1.5(0.077) 1.19(0.079) 1.5(0.07) 

mu1 2 1.75(0.084) 1.63(0.071) 1.79(0.069) 1.59(0.065) 

mu2 3 2.52(0.142) 3.11(0.212) 2.58(0.105) 3.64(0.229) 

sigma0 2.5 2.45(0.061) 2.8(0.024) 2.56(0.051) 2.82(0.019) 

sigma1 3 2.71(0.043) 2.8(0.024) 2.83(0.032) 2.82(0.019) 

sigma2 3.5 3.06(0.064) 2.8(0.024) 3.15(0.054) 2.82(0.019) 

p 0.4 0.4(0.002) 0.4(0.002) 0.4(0.001) 0.4(0.001) 

q 0.6 0.5(0.008) 0.54(0.01) 0.51(0.007) 0.55(0.011) 

D 0.05 0.08(0.005) 0.04(0.004) 0.07(0.004) 0.03(0.003) 

      

  N = 1500 N=2000 

mu0 1 1(0.073) 1.35(0.041) 1.03(0.055) 1.36(0.036) 

mu1 2 1.9(0.057) 1.56(0.038) 1.68(0.04) 1.47(0.035) 

mu2 3 2.52(0.099) 3.32(0.158) 2.88(0.065) 3.82(0.159) 

sigma0 2.5 2.48(0.04) 2.83(0.017) 2.52(0.031) 2.8(0.016) 

sigma1 3 2.81(0.031) 2.83(0.017) 2.8(0.021) 2.8(0.016) 

sigma2 3.5 3.23(0.045) 2.83(0.017) 3.31(0.03) 2.8(0.016) 
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p 0.4 0.4(0.001) 0.4(0.001) 0.4(0.001) 0.4(0.001) 

q 0.6 0.51(0.004) 0.54(0.007) 0.5(0.002) 0.56(0.008) 

D 0.05 0.06(0.003) 0.03(0.003) 0.06(0.002) 0.03(0.002) 

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of 

sample size N = 500, 1000, 1500, 2000 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) 

of the estimates. The results are calculated from 100 simulations. 

 

 

Table 4-6: Parameter estimation of LD mapping under the scenario δ = 1 

  N = 500 N=1000 

Names TRUE Penalized ML Penalized ML 

mu0 1 1.26(0.096) 1.66(0.113) 1.16(0.059) 1.53(0.073) 

mu1 2 1.85(0.091) 1.68(0.061) 1.8(0.067) 1.75(0.085) 

mu2 3 2.63(0.17) 4.4(0.298) 2.73(0.113) 5.13(0.309) 

sigma0 2 2.18(0.066) 2.73(0.024) 2.09(0.051) 2.71(0.021) 

sigma1 3 2.64(0.046) 2.73(0.024) 2.75(0.04) 2.71(0.021) 

sigma2 4 3.45(0.077) 2.73(0.024) 3.6(0.065) 2.71(0.021) 

p 0.4 0.4(0.002) 0.4(0.002) 0.4(0.001) 0.4(0.001) 

q 0.6 0.53(0.01) 0.61(0.014) 0.54(0.008) 0.64(0.013) 

D 0.05 0.07(0.004) 0.03(0.003) 0.06(0.003) 0.03(0.003) 

  N = 1500 N=2000 

mu0 1 1.05(0.053) 1.44(0.029) 0.98(0.048) 1.43(0.024) 

mu1 2 1.76(0.051) 1.73(0.063) 1.69(0.034) 1.51(0.038) 

mu2 3 2.77(0.09) 4.78(0.279) 2.91(0.051) 5.37(0.224) 



67 
 

sigma0 2 2.03(0.047) 2.73(0.021) 1.95(0.029) 2.68(0.018) 

sigma1 3 2.76(0.039) 2.73(0.021) 2.74(0.023) 2.68(0.018) 

sigma2 4 3.57(0.053) 2.73(0.021) 3.75(0.031) 2.68(0.018) 

p 0.4 0.4(0.001) 0.4(0.001) 0.4(0.001) 0.4(0.001) 

q 0.6 0.52(0.005) 0.63(0.012) 0.51(0.004) 0.65(0.011) 

D 0.05 0.05(0.002) 0.02(0.002) 0.05(0.001) 0.03(0.002) 

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of 

sample size N = 500, 1000, 1500, 2000 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) 

of the estimates. The results are calculated from 100 simulations. 

 

 

Table 4-7: Parameter estimation of LD mapping under the scenario δ = 1.5 

  N = 500 N=1000 

names TRUE Penalized ML Penalized ML 

mu0 1 1.19(0.072) 1.6(0.099) 1.07(0.047) 1.55(0.076) 

mu1 2 1.9(0.072) 1.67(0.061) 1.86(0.052) 1.62(0.063) 

mu2 3 2.46(0.18) 4.94(0.35) 2.85(0.14) 5.59(0.313) 

sigma0 1.5 1.7(0.067) 2.69(0.029) 1.57(0.054) 2.66(0.025) 

sigma1 3 2.69(0.06) 2.69(0.029) 2.71(0.053) 2.66(0.025) 

sigma2 4.5 3.91(0.095) 2.69(0.029) 4.1(0.073) 2.66(0.025) 

p 0.4 0.4(0.002) 0.4(0.002) 0.4(0.001) 0.4(0.001) 

q 0.6 0.55(0.01) 0.63(0.014) 0.54(0.01) 0.65(0.013) 

D 0.05 0.06(0.003) 0.03(0.003) 0.05(0.002) 0.02(0.002) 

  N = 1500 N=2000 

mu0 1 1.06(0.045) 1.47(0.024) 0.98(0.016) 1.45(0.021) 
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mu1 2 1.8(0.044) 1.63(0.055) 1.76(0.026) 1.53(0.028) 

mu2 3 2.78(0.081) 5.28(0.303) 2.93(0.042) 5.99(0.275) 

sigma0 1.5 1.45(0.037) 2.68(0.026) 1.39(0.018) 2.64(0.022) 

sigma1 3 2.75(0.05) 2.68(0.026) 2.7(0.02) 2.64(0.022) 

sigma2 4.5 4.07(0.062) 2.68(0.026) 4.27(0.024) 2.64(0.022) 

p 0.4 0.4(0.001) 0.4(0.001) 0.4(0.001) 0.4(0.001) 

q 0.6 0.53(0.008) 0.64(0.012) 0.53(0.004) 0.67(0.011) 

D 0.05 0.05(0.001) 0.02(0.002) 0.05(0.001) 0.02(0.002) 

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of 

sample size N = 500, 1000, 1500, 2000 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) 

of the estimates. The results are calculated from 100 simulations. 

 

 

Table 4-8: Parameter estimation of LD mapping under the scenario δ = 2 

  N = 500 N=1000 

Names TRUE Penalized ML Penalized ML 

mu0 1 1.11(0.055) 1.6(0.103) 1.03(0.026) 1.56(0.08) 

mu1 2 1.94(0.059) 1.66(0.078) 1.95(0.041) 1.54(0.056) 

mu2 3 2.71(0.138) 5.41(0.403) 2.83(0.071) 5.94(0.337) 

sigma0 1 1.24(0.076) 2.69(0.034) 1.11(0.063) 2.67(0.03) 

sigma1 3 2.79(0.081) 2.69(0.034) 2.82(0.056) 2.67(0.03) 

sigma2 5 4.4(0.1) 2.69(0.034) 4.78(0.061) 2.67(0.03) 

p 0.4 0.4(0.002) 0.4(0.002) 0.4(0.001) 0.4(0.001) 

q 0.6 0.57(0.01) 0.64(0.014) 0.57(0.008) 0.65(0.013) 

D 0.05 0.05(0.002) 0.02(0.002) 0.05(0.001) 0.02(0.002) 
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  N = 1500 N=2000 

mu0 1 1.06(0.041) 1.47(0.022) 1.03(0.02) 1.46(0.02) 

mu1 2 1.93(0.032) 1.57(0.053) 1.92(0.024) 1.5(0.028) 

mu2 3 2.89(0.055) 5.5(0.334) 2.99(0.045) 6.13(0.317) 

sigma0 1 1.02(0.045) 2.7(0.03) 0.99(0.02) 2.66(0.027) 

sigma1 3 2.9(0.05) 2.7(0.03) 2.87(0.031) 2.66(0.027) 

sigma2 5 4.74(0.065) 2.7(0.03) 4.89(0.028) 2.66(0.027) 

p 0.4 0.4(0.001) 0.4(0.001) 0.4(0.001) 0.4(0.001) 

q 0.6 0.58(0.007) 0.63(0.012) 0.58(0.005) 0.66(0.012) 

D 0.05 0.05(0.001) 0.02(0.002) 0.05(0.001) 0.02(0.002) 

The Penalized ML and standard ML estimates of QTL parameters from an F2 population of sample 

size N = 500, 1000, 1500, 2000 for the phenotypic data simulated from Gaussian mixture 

distributions with 3 components. Numbers in the parentheses are the mean square errors (MSE) of 

the estimates. The results are calculated from 100 simulations. 

 

Below are the summaries of the results:  

(1) When the variances of the 3 genotype groups are homogeneous, both the penalized and 

standard ML methods work well as showed in Table 4-4. As the sample size grows, it 

will improve the performance of both methods. 

(2) When the variances of the three genotypic groups start to vary, the penalized estimators 

perform consistently well while the ML estimators become biased as the variation is 

large and sample size is small, say, δ = 1.5 and N = 500 in Table 4-7. 

(3) When the variance becomes larger, larger sample size improves the performance of the 

penalized method while it does not help much on the estimation bias in standard ML 

method. 
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(4) As the delta becomes larger and larger, i.e the difference between the variances of the 

3 genotype groups are large, the penalized method has an increasing power while the 

ML method shows an opposite tendency after a specific value. Especially when sample 

size is large, for example, when N=2000 in Figure 4-1, the power for standard ML 

grows when δ grows until it reaches 1, the power starts to decrease fast after that. 

(5) In scenario with larger sample size and smaller delta, the penalized method tends to 

outperform the standard ML method. For example, when N = 500, the penalized 

method will have a higher power than the standard ML method at δ = 1.5. However, 

when N = 2000, this occurs at δ = 0.7 (Figure 4-1) 

In summary, the penalized method consistently outperforms the ML method when δ is larger than 

1.5 in both estimation (Table 4-7 and Table 4-8) and detection of significant QTL (Figure 4-1). 

The simulation results clearly demonstrate that the penalized method is preferred to the standard 

ML method when heterogeneous variances exist. 

Table 4-9: Power of two methods in LD mapping 

delta  δ = 0  δ = 0.5  δ = 1  δ =1.5  δ = 2 

N Pen ML Pen ML Pen ML Pen ML Pen ML 

500 0.09 0.15 0.06 0.17 0.18 0.28 0.33 0.29 0.67 0.32 

1000 0.22 0.26 0.29 0.37 0.52 0.53 0.72 0.52 0.93 0.51 

1500 0.28 0.35 0.36 0.39 0.54 0.53 0.83 0.54 0.98 0.54 

2000 0.37 0.53 0.55 0.62 0.84 0.71 0.98 0.69 1 0.64 

LD mapping under when δ = 0,0.5,1,1.5,2, the Penalized ML and standard ML’s power of 

detecting a  QTL using an F2 population of sample size N = 500, 1000, 1500, 2000 for the 

phenotypic data simulated from Gaussian mixture distributions with 3 components. The results are 

calculated from 100 simulations. 
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Figure 4-1: Power of Penalized and Standard ML of detecting QTL in LD mapping. Phenotypic 

data is simulated from Gaussian mixture distributions with 3 components. The results are 

calculated from 100 simulations under scenarios δ = 0,0.5,1,1.5,2 with sample size N = 500, 1000, 

1500, 2000. 
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Chapter 5 Discussion and Future Work 

 

In the current work, we mainly adopted the penalized model for the F2 and natural 

populations. This method may also be extended to a more complex sampling schema, for example 

that involves cluster sampling, which may induce correlation between individual observations 

within sampled clusters.  For example, the case-parent triad design is commonly used in genetic 

association studies, and in this design, N families with two parents and one child are recruited and 

families are assumed to independent of each other. For a locus with allele A and a, there are 27 

possible genotype combinations among father, mother and child. When the genotypes are not 

linked with sex chromosome (i.e. genotypes of father and mother are exchangeable), these 27 

combinations can be reduced to ten groups. Let p be the frequency of allele A and q be the 

frequency of allele a. the joint genotype distribution of parents-child triads are given in table 5-1. 

 

Table 5-1: Joint genotype distribution of parents-child triads 

 Genotype   

 Parents Child Joint probability  

1 AA-AA AA 4p  

2 AA-Aa AA 32 p q  

3 AA-Aa Aa 32 p q  

4 AA-aa Aa 2 22 p q  

5 Aa-Aa AA 2 2p q  

6 Aa-Aa Aa 2 22 p q  
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7 Aa-Aa Aa 2 2p q  

8 Aa-aa Aa 32 pq  

9 Aa-aa aa 32 pq  

10 aa-aa aa 4q  

 

One future direction is to explore how the penalized method introduced in this thesis can be used 

for genetic mapping in these types of designs.  
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