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Abstract of the Dissertation

Achieving Regulatory Compliance in Data Management

by

Sumeet Vijay Bajaj

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

Regulations mandate consistent procedures for information access, processing, and stor-
age. In the United States alone, over 10,000 data management regulations exist in the
financial, life sciences, health care and government sectors. A recurrent theme in data
management regulations is the need for regulatory compliant storage to ensure data confi-
dentiality, data integrity, audit trails maintenance, data retention, and guaranteed deletion.

This thesis describes the design and implementation of several regulatory compliant re-
lational databases and file systems. The systems increase efficiency and lower costs of regu-
latory compliance through the use of novel cryptographic and system security constructs.

The first system described in this thesis is TrustedDB. TrustedDB is a relational database
that ensures data confidentiality. TrustedDB enables SQL query execution over an encrypted
database hosted with a remote, untrusted service provider. TrustedDB is the first DBMS
with data confidentiality that does not limit query expressiveness. Moreover, the per query
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execution costs in TrustedDB are orders of magnitude lower than current cryptography-
based mechanisms. To significantly lower query execution costs, TrustedDB leverages server-
hosted, tamper-proof trusted hardware in critical query processing stages.

The second system described in this thesis is CorrectDB. CorrectDB is a relational
database that provides efficient, low-cost Query Authentication (QA). QA requires strict
guarantees for both the correctness and completeness of the query results returned by po-
tentially compromised providers. Similar to TrustedDB, CorrectDB leverages server-hosted
trusted hardware. CorrectDB achieves economy and efficiency by minimizing server-side
authentication data and by reducing the client-server communication overheads.

The third system described in this thesis is ConcurDB. ConcurDB provides concurrent
query authentication in a multi-client scenario wherein many clients simultaneously perform
update operations. ConcurDB achieves high concurrency by decoupling transaction exe-
cution and verification – permitting transactions to execute concurrently and performing
verifications in parallel.

The fourth system described in this thesis is the history independent file system (HIFS).
HIFS guarantees secure data deletion by providing full history independence across both file
system and disk layers of the storage stack. HIFS overcomes the challenge of simultaneously
preserving history independence and data locality. Moreover, HIFS is customizable to suit
several data locality scenarios, such as block-group locality and sequential file storage.

This thesis also builds the theoretical foundations of history independence. The the-
sis explores the concepts of abstract data types, data structures, machine models, memory
representations and history independence itself. The thesis then proposes ∆ history inde-
pendence (∆HI), a generic game-based framework that is malleable enough to define a broad
spectrum of new history independence notions. To bridge the gap between theory and prac-
tice, the thesis outlines a general process for building history independent systems. HIFS
itself is designed using the suggested process.

Finally, this thesis describes Ficklebase. Ficklebase is a relational database that provides
irrecoverable data erasure. In Ficklebase, once a tuple is deleted all side effects of the delete
tuple are removed. Removal of all side effects of a deleted tuple achieves the same effect as
if the deleted tuple was never inserted in the database. Ficklebase thus eliminates all traces
of deleted data rendering data irrecoverable and also guaranteeing that the deletion itself is
undetectable.
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Chapter 1

Introduction

1.1 Regulatory Compliance

Today, regulations govern all areas of commerce. Important regulatory functions include
mandating quality of manufactured goods, controlling prices of services, maintaining wage
standards, ensuring suitable working conditions, limiting effects of production on the envi-
ronment, preventing discrimination, and increasing corporate transparency. In short, regu-
lations can be viewed as rules set forth to protect the interests of society at large. Adherence
to regulations is Regulatory Compliance.

1.2 Regulations in Data Management

In recent times, the increasing collection and processing of data has raised several concerns
regarding data confidentiality, access, and retention.

In some areas, such as health care and banking, data confidentiality is a prime concern
since data confidentiality is directly linked to individual privacy. Illegitimate access to con-
fidential data can have financial consequences for individuals and businesses. For example,
impersonation via theft of personal information costs consumers and business billions of dol-
lars annually [194,243]. A data breach involving sensitive health care records costs companies
up to $359 per compromised record [163].

Accurate data recording, maintaining integrity of recorded data, and authorized access to
data concern both regulators and regulated entities. For regulators, data serves as evidence in
the event a regulation is violated. For regulated entities, data serves as proof of compliance.

For many applications, the duration between data generation or data collection and actual
use of data can be significant. For example, a financial regulatory body may wish to audit
a business years after the suspicious transactions occurred. Such applications are possible
only if data is retained with integrity for the desired period. In certain other scenarios, such
as defense records management [192], the retention of data for excessive periods increases
the risk of data leaks. Hence, timely and irrecoverable disposal of data is also a concern.
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Driven by the above concerns, regulators have enacted laws that govern all facets of data
management. In the United States alone, there are over 10,000 regulations outlining how
data records should be created, stored, accessed and retained [119].

1.2.1 Classification of Data Management Regulations

Regulations are enacted in the form of a legal document referred to as an Act, a Directive,
a Program, or an Agreement. For consistency, we refer to any such legal document as a
Regulation1.

Although each Regulation governs multiple facets of data management, a Regulation has
a primary area of focus. For example, the EU Data Protection Directive [252] is primarily
concerned with data retention. However, retention of data without ensuring data integrity
can be fruitless. Hence, the directive also lists secondary clauses for data protection.

To give an overview of current Regulations, Tables 1.1 and 1.2 list some of the US and
foreign Regulations pertaining to data management along with selected important clauses
from each Regulation. For each listed Regulation, we identify the Regulation’s primary area
of focus, which is one of the following – privacy, audit or retention.

We note that Regulations with a focus other that privacy, audit, and retention may
exist. We choose to focus on privacy, audit, and retention Regulations because majority
of compliance efforts are geared towards these Regulations. For instance, 90% of total
compliance costs incurred by companies are towards ensuring compliance with privacy, audit,
and retention Regulations [161]. Also, surveys of multinational organizations [162] have
shown that privacy, audit, and retention Regulations are perceived to be most important.

1.2.2 Privacy Regulations

Privacy Regulations are primarily concerned with data confidentiality and with protecting
individual privacy. The goal of data confidentiality is to ensure legitimate access to data.
Data confidentiality comes into picture after data has been collected from individuals. In-
dividual privacy refers to an individual’s right to choose what personal information can be
shared and with whom.

Many entities collect personal information from individuals in order to provide ser-
vices [138]. If used only for the intended purpose of delivering services, the collection of
personal information is beneficial to both individuals and service providers. However, since
personal information can be linked to specific individuals, illegitimate access to personal in-
formation violates individuals’ privacy. Hence, privacy Regulations demand service providers
to ensure that personal information is not accessed for any purpose other than the intended
provision of services. Specifically, privacy Regulations require service providers to employ
data confidentiality, deidentify personal information before distribution, seek explicit per-
mission from individuals before disclosing personal information, and to notify individuals in

1We differentiate between a regulation, with a lowercase letter ’r’, and Regulation, with an uppercase
letter ’R’. Regulation refers to a legal document while regulation as its dictionary meaning suggests is a rule.
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Regulation Primary Important Clauses
Focus

Health Insurance
Portability and
Accountability Act

[77] Privacy Sec 1177(a) – Penalties for wrongful disclosure of
individually identifiable health information.

Patient Safety and
Quality Improve-
ment Act

[142] Privacy Sec 922 – Privilege and Confidentiality protec-
tions.
Sec 923 – Computation of national and regional
statistics preserving individual privacy.

Federal Infor-
mation Security
Management Act

[14] Privacy Title III Sec 301 § 3547 – Information security pro-
tections for national security systems.

Family Educational
Rights and Privacy
Act

[49] Privacy 34 CFR § 99.31 – Prevent unauthorized disclosure
of education records.

Massachusetts
Identity Theft Pro-
tection Regulation

[18] Privacy Sec 16.04 to 16.06 – Mandates reporting agencies
to comply with authorized placement, lifting and
removal of security freeze on consumer data.

The Children’s On-
line Privacy Protec-
tion Act

[75] Privacy Sec 1303(b)(D) – Require the service operator to
establish and maintain reasonable procedures to
protect the confidentiality, security, and integrity
of personal information collected from children.

California Security
Breach Information
Act

[207] Privacy Sec 4 – Prompt notification of breach to any resi-
dent whose unencrypted personal information was,
or is reasonably believed to have been, acquired by
an unauthorized entity.

Sarbanes-Oxley
Act

[232] Audit Title XI Sec 1102 – Penalize tampering or conceal-
ment of a record, document etc, or attempts to do
so, with the intent to impair the objects integrity
or availability for use in an official proceeding.

Code of Federal
Regulations

[83] Retention 17 CFR 240.17a-4 – Records to be preserved by
certain exchange members, brokers and dealers.
(ii)(A) – Preserve the records exclusively in a non-
rewritable, non-erasable format.

Department of De-
fense Records Man-
agement Program

[192] Retention C2.2.7.6.3 – Delete electronic records approved for
destruction in a manner that prevents their phys-
ical reconstruction using commonly available file
restoration utilities.

Table 1.1: Partial list of US Regulations pertaining to data management.
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Regulation Primary Important Clauses
Focus

EU Data Protec-
tion Directive

[251] Privacy Section VIII Articles 16,17 – Confidentiality and
Security of Processing.

Personal Informa-
tion Protection
and Electronic
Documents Act
(Canada)

[191] Privacy Sec 4,5,6 – Collection, retention and disposal of
personal information.
Schedule 1 Sec 5 – Model code for the protection
of personal information.

Regulation of In-
vestigatory Powers
Act (UK)

[197] Privacy Part III – Investigation of electronic data protected
by encryption (power to require disclosure).

Data Protection
Act (UK)

[13] Privacy Principle 3 – Personal data shall be adequate, rel-
evant and not excessive in relation to the purpose
or purposes for which they are processed.
Principle 5 – Personal data processed for any pur-
pose or purposes shall not be kept for longer than
is necessary for that purpose or those purposes.

Personal Data Pro-
tection Act (Singa-
pore)

[196] Privacy Part IV – Collection, use and disclosure of personal
data.
Part V – Access to and correction of personal data.
Part VI – Care of personal data (protection, reten-
tion and transfer).

Information Tech-
nology Amendment
Act (India)

[193] Privacy 66E – Prohibits publishing or transmission of im-
age of private parts of an individual without con-
sent.

German Corporate
Governance Code

[76] Audit Sec 7 – Reporting and Audit of the Annual Finan-
cial Statements.

Listing Agreement
to the Indian stock
exchange

[237] Audit (D)(4)(e) – Compliance with listing and other legal
requirements relating to financial statements.

Corporate Law
Economic Re-
form Program Act
(Australia)

[15] Audit RG 34.1,2 – Auditor Obligations.
RG 34.3 – Auditor reporting requirements.
RG 34.22,23 – Penalties for audit failure.

EU Data Retention
Directive

[252] Retention (11) – Retention of traffic and location data.
Article 5 – Categories of data to be retained.
Article 7,8 – Protection, security and storage re-
quirements for retained data.

Table 1.2: Partial list of foreign Regulations pertaining to data management.
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case of unauthorized access to individuals’ personal information.
In certain scenarios, the benefits of exchange and publication of personal information

are significant. For example, the results of analytical research on health data can be ex-
tremely valuable for the well being of the populace. Regulators do recognize the benefits of
sharing personal information and adapt accordingly. The Health Insurance Portability and
Accountability Act (HIPAA), for instance, permits release of health information to autho-
rized entities as long as appropriate statistical principles are applied to render information
not individually identifiable.

Certain privacy Regulations are focussed to protect specific segments of the population.
For example, the Children’s Online Privacy Protection Act (COPPA) [75] applies to online
collection of information from children under 13 years of age. COPPA requires website
operators to provide suitable mechanisms for parents to review and control the personal
information collected from children. Similarly, the Family Educational Rights and Privacy
Act (FERPA) [49] regulates the collection and dissemination of students’ educational records.

1.2.3 Audit Regulations

Audit Regulations have two broad requirements. First requirement is the collection and
maintenance of data that can be used to verify compliance in the future. Second requirement
is periodic audits using the collected data to detect noncompliance.

Regulations use penalties as a deterrent from noncompliance. For instance, Schedule 3
of the Corporations Act [190] lists specific penalties for over 300 offenses. An offense is a
violation of the Act’s clauses. The penalties are stated in form of monetary fines and criminal
prosecutions leading to imprisonment.

Enforcing penalties requires evidence that can prove noncompliance in court. Evidence
for noncompliance can be gathered via audits. Typically, regulations require periodic audits
to verify operating practices of regulated entities. For example, the Corporate Law Eco-
nomic Reform Program Act (CLERP9) [15] in Australia, requires audit of semi-yearly and
yearly financial statements of companies by certified auditors. CLERP9 mandates auditors
to report within 28 days any circumstances that give the auditor reasonable grounds to sus-
pect noncompliance. Similar laws exist in other countries, such as the German Corporate
Governance Code [76], the Financial Instruments and Exchange Act (J-SOX) [16] in Japan,
and Keeping the Promise for a Strong Economy Act in Canada [90].

Provenance for digital records [129] also plays an important role in audits and is required
by several Regulations [131]. The Gramm-Leach-Bliley Act [20] and the Securities and
Exchange Commission rule 17-a [236] require audit trails for financial records.

1.2.4 Retention Regulations

Retention Regulations govern the periods for which various types of data should be retained.
To ensure the availability of data for future audits, retention Regulations mandate mini-

mum retention periods for certain data. For example, the EU Data Retention Directive [252]
requires certain communications data to be retained for a minimum period of six months.
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Additionally, the directive also lists storage and protection requirements for the retained
data. Section 103 of the Sarbanes-Oxley Act (SOX) [232] requires corporations to maintain
audit reports for a period of seven years. SOX also mandates auditors to retain all audit
data for a period of five years after an audit is concluded. To deter noncompliance, SOX
imposes heavy penalties on tampering or concealment of data relevant to audits.

Retention Regulations also stipulate the maximum retention periods for certain data.
Once maximum retention period ends, thorough and safe disposal of data is required. The
goal of limiting retention periods is to prevent data retention past the intended use, thereby
reducing the risks of data misuse. Examples of retention Regulations that mandate maximum
retention periods include the EU Data Retention Directive [252], the UK Data Protection
Act [13], and the Code of Federal Regulations [84]. The EU Data Retention Directive
limits retention of communications data to two years. The UK Data Protection Act [13],
in principle five, more generally bars the retention of personal data for any longer than its
intended purpose. The Code of Federal Regulations (CFR) [84] requires physical destruction
of electronic media if other means are insufficient in ensuring data irrecoverability after the
maximum retention period.

1.3 Challenges in Achieving Regulatory Compliance

Many challenges lie on the path towards regulatory compliant data management. The chal-
lenges are faced by both regulators and the entities being regulated. Challenges are in the
form of scale and complexity of modern systems; advent of new computing environments,
such as cloud services; complexity of regulatory framework; and high costs of compliance.

1.3.1 Systems’ Scale and Complexity

Today, the increasing use of digital systems for data management places immense pressure
on enforcing regulatory compliance. A large organization can have hundreds of data manage-
ment systems executing a host of enterprise applications, such as logistics, finance, supply
chain, customer service, and human resources. Moreover, systems are increasing in both
scale and complexity. Ensuring continuous regulatory compliance in such an environment is
a complex undertaking for organizations and for regulators.

1.3.2 Cloud Services

Both private and government organizations are increasingly considering the use of cloud
services to reap the benefits of scale, flexibility, and low costs. As a result, Regulations
are expanding their scope to include cloud services. Regulations, such as the Gramm-Leach-
Bailey Act [20], the Massachusetts Data Security Regulations (201 CMR 17.00) [18], and the
EU E-Privacy Directive [205] have already included cloud services within their regulatory
boundaries. For example, the EU Data Protection Directive [251] limits the transfer of
cloud-hosted personal data to certain countries.
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Regulations place the onus of compliance on cloud users and not necessarily on service
providers [78]. However, cloud users have limited guarantees of where their data is stored;
and how data is protected and shared. Instead, users have to rely on and trust service
providers for compliance. Therefore, in the event of noncompliance by service providers,
cloud users may be penalized. As a result, many users avoid cloud services and the full
potential of cloud services is not realized.

1.3.3 Complexity of Regulatory Framework

The complexity of regulatory framework has been increasing. Since 1997, federal agencies
have published between 2,500 and 4,500 regulations each year [54]. The number of regulations
pertaining to data management have increased significantly as a result of recent infringements
[7] and financial crisis [220].

A large and complex regulatory framework puts greater responsibility on system designers
and application developers. Keeping track of regulatory requirements and aligning system
policies accordingly is a complex task and warrants a high degree of automation.

1.3.4 Costs of Compliance

Costs for regulatory compliance are incurred by both regulators and regulated entities. Reg-
ulators incur costs to formulate regulations, to oversee enforcement, to investigate transgres-
sions, and to prosecute. Estimated annual costs of US federal regulations range between $57
billion and $84 billion [195]. In order to be compliant, regulated entities need to invest in
technology and personnel. Studies indicate that multinational organizations on an average
spend $3.5 million annually to stay compliant [162]. For the hedge fund industry, seven
percent of total operating costs are towards compliance related activities [140]. Moreover,
per-capita compliance cost is higher for smaller organizations [140, 162].

1.4 Current State of Regulatory Compliant Data Man-

agement Systems Research

Over the last two decades a large body of research has focused on regulatory compliance in
data management. Also, with increasing awareness of and emphasis on regulatory compli-
ance, research areas that were not intended to serve regulatory compliance at inception have
now been identified as a solution towards regulatory compliance. Figure 1.1 lists the areas
of research that address privacy, audit and retention Regulations.

This section gives a broad overview of research areas targeting regulatory compliance in
data management. This section does not serve as an in-depth review of current literature.
Chapter 9 discusses related work in detail.
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Figure 1.1: Current research areas serving regulatory compliance in data management. Con-
tributions of this thesis are highlighted with references.

1.4.1 Research Areas Addressing Privacy Regulations

Privacy-preserving data publishing

The sharing of personal information is permitted by certain Regulations as long as appropri-
ate measures are taken to render data not individually identifiable. To be practical, data use-
fulness must be preserved when data is de-identified. Research in the area of Privacy Preserv-
ing Data Publishing (PPDP) [96] has strived to achieve deidentification while preserving data
usefulness. The objective under PPDP is transformation of the original data to render infer-
ences about individually identifiable information unlikely. Based on the privacy model [96],
PPDP can be further classified into the subareas of k-anonymity [144, 228, 229], MultiR k-
Anonymity [188], l-Diversity [167], Confidence Bounding [258,259], (α, k)-Anonymity [264],
(X , Y )-Privacy [257], (k, e)-Anonymity [274], Personalized Privacy [267], t-Closeness [158],
δ-Presence [187], (c, t)-Isolation [59, 60], ǫ-Differential Privacy [80, 87, 135, 176], (d, γ)-
Privacy [218], Distributional Privacy [40], Data Randomization [23, 24], and Information
Downgrading [21, 180, 254].

Data Confidentiality

Encryption is commonly used to protect data residing with untrusted cloud services. The
hope is that encryption will help data owners to stay compliant and benefit from the use of
cloud services. However, encryption limits the type of operations that can be performed on
data reducing the functionality that cloud services can offer.

Both theoretical and systems research have focussed to overcome the limitations imposed
by encryption on computation. On the theoretical front, new mathematical constructs, such
as homomorphic encryption [42,104–106,223,253] have been devised to enable computation
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over encrypted data without the need for decryption. However, implementations of these
constructs are not yet practical. For example, processing SQL queries using fully homomor-
phic encryption requires days of processing to recover a single database record [272]. Even for
primitive operations, such as addition of two integers, the cost associated with homomorphic
encryption are orders of magnitude higher that processing of plaintext data (Section 2.4).

In order to be efficient, systems research has focussed on specific scenarios, such as
range and aggregation query processing over encrypted data [92,122,123,168,212]. However,
limiting functionality to a small subset of query operations reduces practicality.

Private Information Retrieval (PIR)

In certain scenarios, providing data confidentiality alone is insufficient to ensure privacy.
In addition, the manner in which data is accessed also needs to be hidden. Techniques
to hide data access patterns are being explored under Private Information Retrieval (PIR)
[102, 116, 244, 261–263, 279].

1.4.2 Research Areas Addressing Audit Regulations

Audit Logs

Regulations require maintenance of audit logs in various applications, such as drug approval
data, medical information disclosure, financial records, and electronic voting [77, 222, 232].
The collection and logging of system activity is not a particularly difficult task. The real
challenges lie in protecting the integrity of recorded data and in analyzing the recorded
data to determine compliance. To address the challenges of data integrity and analysis in
audit logs, researches have designed tamper-proof audit logs [222, 234], audit frameworks
[57,100], and forensic tools [148,206,248]. Audit frameworks enable application designers to
specify policies in high-level languages, which can then be auto-enforced in data management
systems. Forensic tools aid in analysis of audit logs.

Provenance

Digital provenance mechanisms [129–131, 164] support the collection and persistence of in-
formation about the creation, access, and transfer of data. Provenance can therefore play an
important role in audits for regulatory compliance. However, the challenges of provenance
information collection and migration of provenance records across organizational boundaries
are yet to be overcome [129].

Verification of Computation

Outsourcing data to potentially untrusted environments, such as a third-party cloud, raises
concern over the correct operation of the remote services. The concern is especially serious
when the liability for compliance is on cloud users. Using techniques for verifiable computa-
tion [102,111], a remote client can verify the correct execution of an outsourced computation.
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However, current techniques for verifiable computation are impractical, consuming several
orders of magnitude more resources as compared to unverified computation [255]. To lower
the costs of verifiable computation, research has focussed on solutions for specific scenarios,
such as range query verification [85, 182, 203, 204, 240] in outsourced relational databases.
Although the overheads of verification are relatively lower in specific targeted scenarios, the
overheads are high enough to be a significant deterrent for widespread use (Section 3.5).

1.4.3 Research Areas Addressing Retention Regulations

Retention regulations stipulate both minimum and maximum data retention periods for the
purpose of audit and privacy, respectively. Minimum retention period indicates the duration
for which data must be retained. Maximum retention period mandates the time when data
must be disposed and made irrecoverable.

Addressing Minimum Retention

Compliance storage [29,132,159] and trustworthy indexes [177,208,277] have been designed
for secure retention of data records. Compliance storage facilitates the storage and protection
of audit-related data. Data stored with compliance storage is protected from both tampering
and deletion. In addition to data storage and protection, trustworthy indexes also permit
verified searches on stored data. Currently, trustworthy indexes have been designed for
key-based lookups and range queries.

Addressing Maximum Retention

Secure deletion [86] mechanisms are proposed to render data irrecoverable on deletion. Secure
deletion is achieved by either overwriting data to be deleted [34, 68, 121, 209], or by using
encryption [151, 153]. Data degradation [26, 28] on the other hand gradually degrades data
precision. The final step in data degradation is secure deletion.

Overwriting deleted data or using encryption as in secure deletion does not ensure ir-
recoverability of deleted data. Since the past existence of delete data affects the current
system state implicitly at all layers, even after secure deletion, evidence of past existence of
deleted data can be recovered by analyzing data side effects and current system state [173].

1.5 Thesis Goals

This thesis is driven by the motivation for low-cost, efficient, and increasingly automated
regulatory compliance in data management. Following are the thesis objectives targeting
specific requirements from privacy, audit and retention Regulations.

• To increase functionality and lower costs of query processing over encrypted data in
outsourced databases, thereby satisfying privacy Regulations and facilitating the adop-
tion of cloud services.
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• To serve audit Regulations by efficient and low-cost verification of SQL query results
in database outsourcing.

• To comply with retention Regulations by ensuring secure, irrecoverable data erasure
in relational databases and file systems.

1.6 Achieving Regulatory Compliance in Data Man-

agement

Figure 1.1 highlights our contributions towards practical, cost-efficient systems for regulatory
compliance in data management. We briefly discuss our contributions here and treat each
one in depth in subsequent chapters.

1.6.1 Querying Encrypted Data with TrustedDB

To address data confidentiality in an outsourced setting we have designed TrustedDB (Chap-
ter 2). TrustedDB is a relational database that enables SQL query execution with privacy
and under regulatory compliance constraints over a database hosted with an untrusted ser-
vice provider. TrustedDB is the first DBMS with full privacy that does not limit query
expressiveness.

To achieve full SQL execution over encrypted data, TrustedDB leverages server-hosted,
tamper-proof trusted hardware in critical query processing stages. In TrustedDB, each data
column is categorized as either sensitive or nonsensitive. Sensitive columns are encrypted and
nonsensitive columns are stored unencrypted. A client query is then split into sub-queries. A
subquery that accesses sensitive columns is processed entirely within the trusted hardware
ensuring data confidentiality. A subquery that does not access any sensitive columns is
processed on the host server. TrustedDB thus balances query execution load between the
resource-constrained trusted hardware and the host server.

Within trusted hardware, data is decrypted before processing. The processing of data
in plaintext significantly reduces the computation required as compared to current cryp-
tographic techniques [198, 199, 223] for direct processing over encrypted data. As a result,
the per-query-execution costs in TrustedDB are orders of magnitude lower than existing
software-only, cryptography-based mechanisms.

For efficiency, TrustedDB is equipped with query optimization techniques designed specif-
ically for a trusted hardware model. Query optimization in TrustedDB ensures that client
queries are split in a manner that minimizes query execution time.

1.6.2 Low-cost, Efficient Query Authentication with CorrectDB

Query authentication (QA) requires strict guarantees for both the correctness and com-
pleteness of the query results returned by potentially compromised providers. For users of
cloud-based databases, QA offers the ability to prove noncompliance by service providers.
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Existing solutions provide QA assurances for limited query types using server-side, au-
thenticated data structures. The client-server QA protocols in existing solutions incur high
data transfer and processing costs. We show that to achieve QA, it is significantly cheaper
and more practical to use server-hosted, tamper-proof trusted hardware.

To identify the benefits of trusted hardware for QA, we extensively surveyed existing
QA work analyzing limitations and cost points. Our results indicate that despite the higher
acquisition costs of trusted hardware, the overall costs of trusted hardware-based QA solu-
tions is significantly lower. Further, the use of trusted hardware for QA provides additional
benefits, such as the ability to handle arbitrary queries, server-side updates, replay attack
detection, and client synchronization.

To demonstrate the benefits of trusted hardware for QA, we designed CorrectDB (Chap-
ter 3). CorrectDB is a relational database that provides full QA assurances. CorrectDB
leverages server-hosted trusted hardware to meet QA requirements cheaply and efficiently.
In CorrectDB, query verification is performed by server-side, trusted hardware. Minimal data
is sent to the client for query verification, thereby significantly reducing the client-server data
transfer costs.

1.6.3 Concurrent Query Authentication with ConcurDB

Most existing authenticated data structures designed for Query Authentication (QA) as-
sume read-only or infrequently updated databases. For dynamic datasets, the data owner
is required to perform all updates on behalf of clients. Hence, for concurrent updates by
multiple clients, such as for OLTP workloads, existing QA solutions are inefficient.

To overcome concurrency limitations in QA, we designed ConcurDB, a concurrent QA
scheme that enables simultaneous updates by multiple clients. To realize concurrent QA, we
have designed several new mechanisms. Firstly, we identify and use an important relationship
between QA and memory checking to decouple query execution and verification. We allow
clients to execute transactions concurrently and perform verifications in parallel. Then, to
extend QA to a multi-client scenario, we design new protocols that enable clients to securely
exchange a small set of authentication data even when using the untrusted provider as a
communication hub. Finally, we overcome provider-side replay attacks.

Using ConcurDB, we provide and evaluate concurrent QA for the full TPC-C benchmark.
For updates, ConcurDB shows a 4x performance increase over existing solutions.

1.6.4 History Independence for Regulatory Compliance

The way data structures organize data is often a function of the sequence of past operations.
The organization of data is referred to as the data structure’s state, and the sequence of
past operations constitutes the data structure’s history. A data structure state can therefore
be used as an oracle to derive information about its history. For example, the current
organization of data blocks on disk is a function of the sequence of previous writes to file
system, or to database search indexes. Questions such as “was John’s record ever in the
HIV patients’ dataset” can then be answered much more accurately than guessing by simply
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looking at the search index organization on disk since the organization could be different
depending on whether John has previously been in the data set or not. The inference of past
existence of deleted data is in direct violation of data retention Regulations. As a result,
for compliance with retention Regulations, it is imperative to conceal historical information
contained within data structure states.

Data structure history can be hidden by making data structures history independent. We
explore how to achieve history independence in both theory and practice.

On the theoretical side we postulate the need for a broad, encompassing notion of history
independence, which can capture existing history independence notions and can be used
to define a broad spectrum of new history independence notions. We then introduce ∆
history independence (∆HI), a generic game-based framework that is malleable enough to
accommodate existing and new history independence notions. Additionally, ∆HI helps to
reason about the history preserved or hidden by existing data structures including ones that
were designed without history independence in mind. In the process of formalizing ∆HI
we explore the concepts of abstract data types, data structures, machine models, memory
representations and history independence itself.

To bridge the gap between theory and practice, we outline a general process for building
end-to-end, history independent systems. We demonstrate the use of this process in designing
two file systems – a history independent file system (HIFS) and delete-agnostic file system
(DAFS).

HIFS (Chapter 6) guarantees secure deletion by providing full history independence across
both file system and disk layers of the storage stack. HIFS also preserves data locality and
provides tunable efficiency knobs to suit different application data locality scenarios. DAFS
(Chapter 6) optimizes on the HIFS design to effectively comply with maximum retention
requirements in Regulations.

1.6.5 Untraceable Deletion and Ficklebase

Proper disposal of data records after the maximum retention period is mandated by certain
data retention Regulations. In prior work, disposal of data is performed by secure deletion.
Under secure deletion, data is typically deleted by overwriting. However, overwriting does
not prevent recovery of deleted data. Past existence of deleted data can instead be inferred
from current data organization.

We identified history independence as a solution to eliminate inferences about deleted
data via data organization. Under history independence, data organization depends on
current data only. Deleted data leaves no effect on current data organization that can be
used for recovery. However, side effects of deleted data may persist within current system
data. The current data itself can be used to derive information about deleted data in direct
violation of retention Regulations.

For truly irrecoverable data erasure, secure deletion and history independence are in-
sufficient. Along with secure deletion and history independence, complete removal of post-
deletion data residues and processing side effects is required. We refer to the removal of
all data residues and side effects as untraceable deletion. We formalize untraceable deletion
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for relational databases and provide insights into the new functional aspects of untraceable
deletion.

Ficklebase (Chapter 8) is our relational database design that achieves untraceable dele-
tion. In Ficklebase, once a tuple is deleted, all side effects of the deleted tuple are removed.
Removal of all side effects of a deleted tuple achieves the same effect as if the deleted tuple
was never inserted in the database. Ficklebase thus eliminates all traces of deleted data,
rendering deleted data irrecoverable and also guaranteeing that the deletion itself is unde-
tectable.

1.7 Summary of Contributions

This dissertation advances regulatory compliant data management systems research.

• For query processing with data confidentiality, we make the following contributions.

– The introduction of new cost models and insights that quantify the advantages of
using trusted hardware for data processing.

– The design, development, and evaluation of TrustedDB, the first trusted hardware-
based relational database with full data confidentiality and with no limits on query
expressiveness.

– New query processing techniques that overcome the processing and storage limi-
tations of trusted hardware.

– New query optimization techniques for a trusted hardware-based query execution
model.

• Regarding Query Authentication (QA) we make contributions as follows.

– A comparative survey of existing QA research that explores both theoretical and
empirical dimensions based on published results.

– A cost analysis and associated insights showing that using trusted hardware for
QA is significantly more efficient both in cost and performance.

– CorrectDB, a new trusted hardware-based database with full QA assurances.

– Identification of the equivalence between memory checking and query authentica-
tion.

– ConcurDB, a concurrent query authentication solution that supports simultaneous
updates by multiple clients.

• For regulatory compliant data retention, we contribute the following.

– A formalization of history independence via the exploration of essential concepts,
such as abstract data types, data structures, machine models, and memory rep-
resentations.
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– New game-based definitions of weak and strong history independence that are
more appropriate for the security community.

– A new notion of history independence, termed ∆ history independence (∆HI).
∆HI centers around a generic game-based definition of history independence and is
malleable enough to accommodate existing and new history independence notions.

– A general recipe for designing history independent systems.

– The design, implementation and evaluation of the first history independent file
system (HIFS).

– The design, implementation and evaluation of a delete-agnostic file system (DAFS).

– Introduction of untraceable deletion as a mechanism to achieve truly irrecoverable
data erasure.

– Ficklebase, a new relational database that achieves untraceable deletion.

1.8 Thesis Outline

In this dissertation we make several contributions towards regulatory compliance in data
management. Our contributions address requirements of privacy, audit and retention Regu-
lations. Contributions are in the form of theoretical results and practical system designs.

Chapters 2 to 8 focus on one contribution each. Chapter 2 presents the cost-tradeoffs,
design, implementation and evaluation of TrustedDB. Chapters 3 and 4 focus on CorrectDB
and ConcurDB, respectively. The theoretical foundations of history independence are built
and discussed in Chapter 5. Then, Chapter 6 uses the theoretical concepts and results from
Chapter 5 to design the first history independent file system (HIFS). Chapter 7 presents
the delete agnostic file system (DAFS). Chapter 8 introduces Un-Traceable deletion and
Ficklebase. In Chapter 9 we discuss related work in regulatory compliant data management
systems research. Chapter 10 concludes the thesis.
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Chapter 2

Querying Encrypted Data with
TrustedDB

2.1 Chapter Overview

2.1.1 Background and Motivation

Encryption is commonly used to comply with privacy Regulations. Use of encryption for
in-house systems is straight-forward. Data is stored encrypted. For processing, data is first
decrypted.

For cloud-hosted services, decryption of data for processing raises concerns about data
confidentiality. Several instances of illicit insider behavior and data leaks have resulted in
the treatment of cloud providers as untrusted, third parties. Moreover, data confidentiality
guarantees of cloud services are at best declarative and subject customers to unreasonable
fine print clauses. For example, permitting the service provider to use customer behavior and
content for commercial, profiling, or governmental surveillance purposes [71, 72]. Users are
therefore hesitant to place sensitive data under the control of a remote, third-party provider
without practical assurances of data confidentiality especially in business, healthcare and
government frameworks.

To ensure data confidentiality for cloud services, existing research has focussed on new
mechanisms that enable processing over encrypted data without the need for decryption.
For example, homomorphic encryption [42, 104–106, 223, 253]. However, instances of such
mechanisms are impractical [103]. The impracticality of homomorphic schemes arises not
from implementation inefficiencies but is rooted in fundamental cryptographic hardness as-
sumptions. The simplest of homomorphic schemes permits the addition of two encrypted
numbers and requires at least one modular multiplication [214] operation. Even a single
modular multiplication costs upwards of 30,000 picocents1 (Section 2.4). In comparison,
performing the equivalent operation on plaintext data costs less than one picocent (Section
2.4).

11 US picocent = 10−14 USD.
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By focussing on specific operations, processing over encrypted data can be made relatively
more efficient. For example, range query execution over outsourced encrypted data [92,122,
123,168,212]. However, solutions designed for specific operations limit functionality and are
not suitable in practice.

For regulatory compliant cloud services, novel mechanisms are needed that significantly
lower the costs of data confidentiality in the cloud without limiting functionality.

2.1.2 Our Contribution: Low-cost, full-SQL Query Execution Over

Encrypted Data

We posit that using cloud-hosted trusted hardware, data confidentiality can be provided at a
fraction of the cost of current cryptography-based mechanisms. To validate our hypothesis,
we conducted a detailed analysis of query processing costs for homomorphic encryption and
trusted hardware. Our results (Figure 2.4) indicate that for linear and join query processing,
use of trusted hardware costs 1-2 orders of magnitude less than software-only, cryptography-
based mechanisms.

We realize the cost benefits of trusted hardware in TrustedDB. TrustedDB is a relational
database that leverages server-hosted, tamper-proof, trusted hardware for full SQL execution
over encrypted data. TrustedDB decrypts data before processing, thereby avoiding the high
computation costs incurred by homomorphic schemes. However, data is decrypted only
within the trusted hardware ensuring confidentiality.

Since TrustedDB processes plaintext data, there are no limitations of the type of query
operations that can be performed. The current TrustedDB implementation supports range,
aggregation, joins and nested queries (Section 2.5).

To realize TrustedDB, we designed new mechanisms that overcome the storage and pro-
cessing limitations of trusted hardware. For example, we enable the server-hosted trusted
hardware to transparently access external storage while preserving data confidentiality with
on-the-fly encryption. Utilization of external storage eliminates the limitations on the size
of databases that can otherwise be supported via trusted hardware alone. Further, in
TrustedDB, client queries are preprocessed to identify sensitive and nonsensitive operations.
Sensitive operations are processed inside the trusted hardware. Nonsensitive operations are
offloaded to the untrusted host server. The splitting of query execution between trusted
hardware and untrusted host server greatly improves performance. We also propose new
query optimization techniques (Section 2.6) to ensure efficient workload balance between
trusted hardware and host server.

2.1.3 Chapter Outline

Deployment model and adversarial assumptions are discussed in Section 2.2. Section 2.3
describes trusted hardware. Section 2.4 derives and analyzes the query processing costs
of trusted hardware in comparison to homomorphic encryption. Section 2.5 details the
TrustedDB architecture. Query optimization techniques for trusted hardware are described
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Function Context IBM 4764 P4 AMD A8-5500

RSA sig. 1024 bits 848/s 261/s 1373/s
2048 bits 316-470/s 43/s 265/s

RSA verif. 1024 bits 1157-1242/s 5324/s 28806/s
2048 bits 976-1087/s 1613/s 10385/s

SHA-1 1KB blk. 1.42 MB/s 80 MB/s 269 MB/s
64 KB blk. 18.6 MB/s 120 MB/s 489.6 MB/s

3DES 1KB blk. 1.08 MB/s 18 MB/s 21.8 MB/s
64 KB blk. 7.73 MB/s 17 MB/s 22.8 MB/s

AES-128 1KB blk. 14 MB/s 100 MB/s 144 MB/s

DMA xfer end-to-end 75-90 MB/s 1+ GB/s 2+ GB/s

CPU freq 233MHz 3400MHz 3200MHz

RAM 64MB 2 GB 4+ GB

Table 2.1: Sample Performance Data. IBM 4764-001 PCI-X is slower for general purpose
computation than modern systems. Benchmarked using OpenSSL 0.9.7f.

in Section 2.6. Section 2.8 presents experimental evaluation of TrustedDB. TrustedDB demo
application is introduced in Section 2.10. Finally, Section 2.11 concludes the chapter.

2.2 Model

Data is uploaded by a client to a relational database hosted with a remote, untrusted service
provider. For confidentiality, sensitive attributes are encrypted before uploading to the
service provider. Later, the client or an authorized third party queries the outsourced dataset
through a SQL interface exposed by the provider.

We assume the provider to be honest-but-curious [51]. An honest-but-curious adversary
performs all communication protocols and algorithms correctly. However, the adversary may
attempt to compromise data confidentiality.

2.3 Trusted Hardware

TrustedDB implementation uses the IBM 4764 PCI-X [17] cryptographic coprocessor (SCPU).
The 4764 is a PowerPC 405 based board with 64 MB memory and a 233 MHz processor.
The operating system on SCPU board is embedded Linux. The SCPU offers several crypto-
graphic operations, such as AES and DES symmetric key encryptions; RSA encryption on
key lengths up to 4096 bits; pseudo random number generation; and hash functions. Crypto
operations are implemented in SCPU hardware.

2.3.1 SCPU Security

Since the SCPU is designed for deployment in a remote, untrusted environment, client ap-
plications need guarantees that the remote SCPU is uncompromised. Specifically, client
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applications at all times need to be assured of the following.

• The remote SCPU has not been tampered with.

• The remote SCPU runs the correct software stack including the user application, op-
erating system, and SCPU firmware.

• The client-SCPU communication channel is secure.

To prevent against physical tampering, the SCPU features a tamper-resistant design.
The SCPU design has FIPS 140-2 level 4 [6] certification. The tamper proof SCPU enclosure
detects tampering and as a response erases sensitive memory areas containing secrets keys.
Once secret keys are erased the SCPU powers down.

To assure clients that the SCPU is running a trusted code stack, the SCPU produces
an on-demand certificate. Using the certificate, a client can verify that the SCPU runs the
correct code stack. The process of verifying SCPU state using the certificate is referred to
as outbound authentication (OA) [235].

Outbound Authentication (OA)

The goal of outbound authentication (OA) is to prove to a client that the SCPU state
is uncompromised. The proof is in the form of a certificate chain referred to as an OA
certificate. The chain of trust is rooted in the manufacturer’s private key.

To clarify, we describe the SCPU software stack and OA certification.

SCPU software stack: The SCPU-software architecture consists of four software layers
running at differing levels of trust. The layers are numbered from 0 to 3. Layer 0 is referred
to as Miniboot 0. layer 1 is referred to as Miniboot 1. Layers 2 and 3 are the operating
system and user application, respectively.

OA Certification: Each SCPU software layer is issued a public-private key pair. The
public key certificate of layer n is generated and certified by layer n − 1. The Layer 0
public key certificate is signed using the manufacturer’s private key. The Layer 1 public key
certificate is signed using the layer 0 private key. The Layer 2 public key certificate is signed
using the layer 1 private key. Finally, the Layer 3 public key certificate is signed using the
layer 2 private key. The layer-to-layer certification process builds a chain of trust rooted
in the manufacturer’s private key. The chain of public key certificates constitutes the OA
certificate.

The certificate for each layer also contains a signed crypto hash of the software installed in
that layer. By verifying the hashes against previously published values, a client can ensure
validity of software executing in all SCPU layers. If the software in an SCPU layer n is
updated as part of maintenance, then the key pairs for all layers ≥ n are re-generated. The
next time a client requests authentication, the OA certificate sent to the client will reflect
the updated certificate chain.
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Client-SCPU communication channel is secured as follows. An application running inside
the SCPU is granted a public-private key pair. The application public key is certified by the
operating system. Clients obtain the application public key using outbound authentication.
Sharing the application public key with clients enables the setup of secure client-SCPU
communication channels similar to SSL communication between a web-browser and server.

2.3.2 SCPU-based Application Development Challenges

The IBM 4764 SCPU presents significant challenges in designing and deploying custom code
to be run within its enclosure. We discuss the challenges here along with our approaches to
overcome them.

Large-scale applications such a databases require significant storage space. However, the
SCPUs have no persistent storage other than a 128KB battery backed memory. Hence,
we designed a custom I/O library that enables applications executing within the SCPU to
transparently access external storage.

The SCPU communicates with the host server synchronously through fixed sized messages
exchanged over the PCI-X bus. Interfacing such a synchronous channel with the commu-
nication model of a database engine required the development of a custom paging module.
The paging module performs message translation and enables SCPU-based applications to
use the SCPU-server communication channel via normal function calls.

The SCPU’s cryptographic hardware engine features a set of latencies that effectively
cripple the ability to encrypt and decrypt small amounts of data, less than 1KB. To reduce
the hardware latencies, we ported several cryptographic primitives, such as encryption and
hashing to run on the SCPU’s main processor instead. For data sizes > 1KB the SCPU
hardware crypto engine is used.

2.4 The Costs of Data Confidentiality

Encryption is typically used to maintain data confidentiality. In an outsourced setting, data
is encrypted before uploading to a remote, untrusted service provider. Once uploaded, three
solutions can be envisioned for processing over the encrypted data.

• Solution A: Client downloads data from the provider, decrypts the data, and processes
the decrypted data.

• Solution B: Deploy cryptographic constructs to process encrypted data server-side
without the need for decryption.

• Solution C: Process the encrypted data server-side inside tamper-proof enclosures of
trusted hardware, which the clients’ trust.

In this section, we compare the per query costs of solutions A, B, and C. We show that per
query execution cost of solution C is 1-3 orders of magnitude lower than solutions A and B
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H, S M L
monthly $44.90 $95 $13
bandwidth (d/u) 15/5 Mbps per 1Mbps per 1Mbps
dedicated No Yes Yes
picocent/bit 115/345 3665 500

Figure 2.1: Network service costs [61–63]. H = home, S = small enterprise, M = medium
enterprise, L = large cloud provider.

(Figure 2.4). That is, computation inside secure hardware processors is orders of magnitude
cheaper than any equivalent cryptographic operation performed on the provider’s unsecured
hardware. Also, due to the extremely high costs of data transfer, the overhead of transferring
data back to the client is significantly more expensive than using cryptography.

We derive per query execution costs as follows:

• Step 1: Using prior work [61–63], we compute client-side and server-side CPU cycle
costs (Section 2.4.1). In addition, we also derive the per unit, client-server data transfer
costs.

• Step 2: We compute per query CPU cycles consumed and the total data transferred
for each of the solutions A, B, and C (Section 2.4.2).

• Step 3: Using the results from steps 1 and 2, we calculate the per query execution
costs for each solution (Section 2.4.3).

The key insights for lower costs of trusted hardware as compared to solutions B and C
are the following. When data is outsourced, the extremely expensive network traffic often
dominates. Transferring a single bit of data between cloud and clients costs upwards of 3500
picocents [62]. The high data transfer costs make solution A very expensive.

Due to economies of scale, provider-side CPU cycles are inexpensive costing less than 0.5
picocents per cycle. In comparison, cost of a CPU cycle in trusted hardware is 56 picocents.
However, despite the higher cost of trusted hardware CPU cycle, overall query processing
costs for trusted hardware are much lower.

The lower costs of trusted hardware-based query processing result from the significantly
less CPU cycles consumed as compared to cryptography that allows processing over en-
crypted data without decryption. Cryptography that allows processing on encrypted data
demands extremely large numbers of cycles even for very simple operations such as addition.
The simplest of cryptographic schemes permits the addition of two encrypted numbers and
requires at least one modular multiplication [214] operation. Even a single modular mul-
tiplication costs upwards of 30,000 picocents (Section 2.4). On the other hand, in trusted
hardware, data is decrypted before processing. The decryption of data can be achieved at
much lower costs (Section 2.4.3).
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Parameters H S M L
Scale <10 <1000 <10k >10k
CPU utilization 5-8% 10-12% 15-20% 40-56%
server:admin ratio N.A. 100-140 140-200 800-1000
Space ($/sqft/month) N.A. 0.5 0.5 0.25
PUE N.A. 2-2.5 1.6-2 1.2-1.5
Hardware ($/CPU) 750 500 500 350
Electricity ($/KW) 0.09 0.07 0.07 0.06
CPU Cycle (picocent) 5 14-27 2 <0.5

Figure 2.2: Costs and key parameters for different computing environments [61–63]. H =
home, S = small enterprise, M = medium enterprise, L = large cloud provider.

2.4.1 Cost of Primitives

Compute Cycles and Networks

Chen et al. [61–63] derived the cost of CPU cycles for a set of environments ranging from
individual homes with a few PCs to clouds running tens of thousands of CPUs. Their cost
analysis takes into account several cost factors such as hardware procurement, floor space
leasing, energy consumption, personnel, and administration. Figures 2.1 and 2.2 summarize
the cost analysis, which concludes that due to economies of scale CPU cycle costs decrease
significantly in large cloud environments.

To validate the results of Chen et al., we compare the costs from Figures 2.1 and 2.2
with today’s cloud offerings. We find that the costs derived by Chen et al. are very close
to pricing offered by cloud providers today. Amazon for example, charges 1-2.5 picocents
per cycle. The pricing includes Amazon’s markup. Rackspace.com’s CPU cycles range from
0.3-2.4 picocents. Chen et al. estimate cloud-hosted CPU cycles to cost <0.5 picocents per
cycle.

Amazon’s network service ranges from 800 to 1500 picocents per bit depending on source
and destination region. Chen et al. estimate client to cloud per bit transfer cost to be 500
picocents without the markup.

Trusted Hardware

To evaluate the cost of SCPU cycles, we use the cost equation designed by Chen et al. [62].
The cost equation requires as input the CPU frequency, energy consumption, service, and
procurement costs. For simplicity we consider only one SCPU per main CPU. To lower costs,
multiple SCPUs can be installed per server2.

The IBM 4764 SCPU runs a Motorola PowerPC 405 RISC CPU at 233 MHz. For consis-
tency, we normalize SCPU cycles to CISC x86 cycles. We performed extensive benchmarking
(Table 2.1) and identified that branching, integer ops and memory access performance of

2Up to 4 SCPUs can be installed on a single server.
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SCPU are almost identical to an x86 AMD K6 model 6 at 200 MHz with 512 KB L2-cache,
which in turn performs equivalently to a Pentium II core at 166 MHz [10].

SCPU energy consumption peaks by design at only 25W. We conservatively estimate
that the deployment of SCPUs effectively doubles energy and service costs. The conservative
estimate helps to defend against any critique claiming that in effect the main CPU will need
to be dedicated as a communication conduit for the SCPU.

SCPUs are expensive. At the time of writing the IBM 4764 could be purchased for around
$8,000 at retail, which is the number we deploy in our estimation. However, unofficial bulk
pricing is around $5,000 excluding support services.

Substituting the SCPU frequency, energy consumption, and purchase cost in the cost
equation of [61–63], we derive the cost of CPU cycles inside cloud-hosted SCPUs to be 56
picocents. We note that 56 picocents is indeed much higher than the < 0.5 picocent cost
of a cycle on cloud commodity hardware. However, the SCPU cycle cost is comparable to
CPU cycle costs for small sized enterprises, which is 14-27 picocents (Table 2.2).

2.4.2 Cost Comparison

Equipped with CPU cycle and data transfer costs, we proceed to compute the per query
execution costs of solutions A, B, and C. We consider the following simple scenario: a client
outsources an encrypted, integer dataset to a service provider. The encrypted data is then
subjected to a simple aggregation query, which requires the server to add all integers and
return the result to the client. We chose the aggregation scenario not only for its illustrative
simplicity but also because sum aggregation is one of the very few types of queries for which
cryptography-based solutions have been proposed in existing research. Using the aggregation
scenario allows us to directly compare with existing work. In Section 2.4.3, we compare the
costs for general select and join query processing.

Querying un-encrypted data: No confidentiality

As a baseline consider the most prevalent scenario today in which the client’s data is stored
unencrypted with the service provider. Client queries are executed entirely on the provider’s
side and only the results are transferred back to the client. The lower bound cost of query
execution on unencrypted data is computed as follows3:

Costunencrypted = Cost of addition operations on server +

Cost of transmitting results

=

(

N

D
− 1

)

· Ccycle server · ηaddition+

2 ·D · Cbit transmit

(2.1)

3The cost of reading data from storage into main memory is a common factor in all solutions and thus
not included here.
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where N is the size of the entire database in bits, D = 32 for 32 bit integer dataset, Ccycle server

is the cost of one CPU cycle on server hardware, ηaddition = 1 is the average number of CPU
cycles required for an addition operation [139]. Cbit transmit is the cost of transmitting 1 bit
of data from the service provider to the client.

Solution A: Transferring encrypted data to client

Solution A provides data confidentiality. In solution A, the entire encrypted database is
transferred to the client. The client decrypts the database and performs the aggregation
locally. The cost of solution A is as follows:

Costtransfer = Cost of data transmission +

Cost of decryption on client +

Cost of addition operations on client

= N · Cbit transmit +

N · Cbit decryption +
(

N

D
− 1

)

· Ccycle client · ηaddition

(2.2)

Where Cbit decryption = 8 picocents is the (normalized) cost of decrypting one bit with AES-
128 in a medium-sized (M) enterprise and Ccycle client = 2 picocents is the cost of a single
client CPU cycle in medium sized enterprises. Here, the cost of transferring the database to
the client dominates.

Solution B: Cryptography

For server-side processing of aggregation query, additive homomorphisms [198,199,223] have
been proposed in existing work [123, 249]. Additive homomorphic encryption allows the
computation of the encryption of the sum of a set of encrypted values without requiring
decryption.

Homomorphic schemes require at least a modular multiplication in performing the addi-
tion operation. Moreover, for security, the modular multiplication needs to be performed in
fields with a large modulus. For efficiency, Ge et al. [249] propose to perform aggregation
in parallel by simultaneously adding multiple 32-bit integer values. In parallel addition, two
1024-bit chunks of encrypted data are added at a time. Due to the properties of the Paillier
cryptosystem used, each 1024 bit addition involves one 2048-bit modular multiplication4.

The server computes the encrypted sum of all 1024-bit integers and returns the 2048
bit result to the client. The client decrypts the result into a 1024 bit plaintext, splits the
plaintext into 32 32-bit integers, and computes the final sum. The cost of solution B is as
follows:

4To process n-bit plaintexts, Paillier operates in n2 = 2048 bit fields for 1024 bit plaintexts. Ciphertexts
are 2048 bit.
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Costhomomorphic = Cost of Modular Multiplications on server +

Cost of data transmission +

Cost of decryption on client +

Cost of addition operations on client

=
Bh

D
·

((

N

Bh

− 1

)

· Cmodular mul +

2 · Bh · Cbit transmit +

Chomomorphic dec +
(

Bh

D
− 1

)

· Ccycle client · ηaddition

)

(2.3)

where Bh = 1024 is the plaintext block size and Cmodular mul is the cost of performing a single
modular multiplication modulo 2048 on the server. Chomomorphic dec is the cost of performing
the single decryption on client and involves modular multiplication and exponentiation.

Solution C: SCPUs

A possible use of a SCPU for aggregation is to perform the aggregation completely inside
the server-side SCPU. The result is then reencrypted and transmitted to the client.

In addition to the core CPU processing costs, data transfer overheads are incurred to
bring encrypted data into the SCPU and then to transfer the encrypted results back to the
client via the host server. The total cost of solution C is as follows:

Costscpu = Cost of data transmission between the host server and SCPU +

Cost of decryption inside SCPU +

Cost of addition operations inside SCPU +

Cost of encryption inside SCPU +

Cost of data transmission from server to client +

Cost of decryption at client

Costscpu =

⌈

N

Bs

⌉

· (δsrv · Ccycle srv + δscpu · Ccycle scpu) +

N · Cbit decryption scpu +
(

N

D
− 1

)

· Ccycle scpu · ηaddition scpu +

Bc · Cbit encryption scpu +

Bc · Cbit transmit +

Bc · Cbit decyption client

(2.4)
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Figure 2.3: Comparison of outsourced aggregation query solutions.

Where δsrv and δscpu are the server and SCPU cycles used to setup data transfer and
include the cost of setting up and handling DMA interrupts. Ccycle scpu is the cost of a SCPU
cycle. Bs = 64KB is the block size of data transmitted between the server and the SCPU in
one round and Bc is the cipher block size (128 bits for AES). ηaddition scpu = 2 is the number
of cycles per addition operation in the SCPU for 64 bit addition (on a 32 bit architecture).

Cost Comparison Results

Figure 2.3 shows the cost relationship between solutions A, B, and C. As can be seen, for all
data set sizes, Costscpu < Costhomomorphic and Costscpu < Costtransfer. Also, note that for
data sets of size < 100KB, the cost of client-side homomorphic decryptions, which involves
modular exponentiation, dominates and exceeds the data transmission cost in Costtransfer.
Overall, the use of SCPUs is the most efficient from a cost-centric point by an order of
magnitude as compared to cryptographic alternative.

Cost vs. Performance

Given the order of magnitude cost advantage of SCPU over cryptography-based mechanism,
we expect that for the aggregation scenario [249], the SCPU’s overall performance will also
be at least comparable if not better. We experimentally evaluated the SCPU-based approach
and achieved a throughput of about 1.07 million tuples/second for the SCPU. By contrast,
best-case scenario throughputs of homomorphic scheme ranges between 0.58 and 0.92 million
tuples/second [249].
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Figure 2.4: Cost comparison of SCPU-based and cryptography-based query processing.
SCPU-based query processing is 1-3 orders of magnitude cheaper.

2.4.3 Generic Select and Join Query Processing Costs

Current cryptographic constructs that guarantee data confidentiality are based on trapdoor
functions [110]. Currently viable trapdoors are based on modular multiplication and ex-
ponentiation in large fields, for example, 2048 bit modular operations. A single modular
multiplication operation costs 30,000 picocents [61]. Thus, even if we assume that in the
future, homomorphic schemes are invented that allow full Turing Machine languages to be
run under the encryption envelope, unless new trapdoor math is discovered, each operation
will cost at least 30,000 picocents when run on commodity servers. By comparison, SCPUs
process data at a cost of 56 picocents per cycle5.

To compute general query processing costs, we also need to account for the fact that
SCPUs need to read data in before processing. The IBM 4764 SCPUs feature a decryption
throughput of about 10-14 MB/s for AES decryption [17]. The decryption throughput limits
the ability to process data. At 166-200 megacycles/second, the decryption latency results in
the SCPU having to idly wait anywhere between 47 and 80 cycles for decryption to happen in
the crypto engine module before the SCPU can process data. The wait time in effect results
in an amortized SCPU decryption cost between 2632 and 4480 picocents, 3556 picocents on
average.

The decryption cost of 3556 picocents is derived for the case wherein the SCPU has only

5 While ECC signatures (e.g., even the weak ECC-192) may be faster, ECC-based trapdoors would be
even more expensive, as they would require two point multiplications, coming at a price tag of least 780,000
cycles [81].
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enough memory to store the operands of a binary operation. In the presence of significantly
higher, realistic amounts of SCPU memory, for example, 32 MB for the 4764, optimizations
can be achieved for certain types of queries such as relational joins. For joins, the SCPU can
read in and decrypt data pages instead of individual data items and run the join query over
as many of the decrypted data pages as would fit in SCPU memory at one time.

Loading bulk data pages at a time results in significant cost savings. To illustrate,
consider a page size P of 32-bit words and a nested join algorithm for two tables of size
N 32-bit integers each. For the nested join, the SCPU will perform (N/P )2 + (N/P ) page
fetches each fetch also involving a page decryption at a cost of P · 3556 picocents6. Thus, we
get a total join query processing cost of (N

2

P
+N) ·3556+N2 ·56. As shown in Figure 2.4, for

reasonable page sizes, such as P = M/2/4 = 4 million 32-bit words, join query processing
cost becomes 3 orders of magnitude lower than the N2 · 30000 picocent cost incurred in the
cryptography-based solution.

Cost-Analysis Summary

As Figure 2.4 illustrates, for linear processing queries, such as select queries, the SCPU-based
solution is roughly 1+ order of magnitude cheaper than any cryptography-based mechanisms.
For join queries, the SCPU-based costs drop even further even when assuming no available
memory. Finally, in the presence of realistic amounts of SCPU memory, SCPU-based join
processing is 3 orders of magnitude cheaper than software-only cryptographic solutions on
commodity server hardware.

2.5 TrustedDB Architecture

In the previous section, we showed the cost benefits of trusted hardware for data confiden-
tiality. We now describe the TrustedDB architecture. TrustedDB uses the IBM 4764 SCPU
for full-SQL query execution over encrypted data.

TrustedDB is built around a set of core components (Figure 2.5) including server and
SCPU request handlers; a processing agent; a query parser; a paging module; a query dis-
patch module; a cryptography library; and server and SCPU-side database engines.

The SCPU DBMS engine is a heavily modified PowerPC ported SQLite core, which uses
the paging module to extend the database buffer pool with external storage. The TrustedDB
paging module traps I/O requests made by the SCPU DBMS engine. The paging module
then interacts with the external TrustedDB agent to fetch and store the relevant database
pages.

The main CPU DBMS is an unmodified MySQL 14.12 Distrib 5.0.45 engine. The main
database engine can be substituted with any other SQL engine with changes related only to
SQL syntax.

6Recall that decrypting 32-bits incurs an amortized cost of around 3556 picocents.
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Figure 2.5: TrustedDB architecture

2.5.1 Overview

A client defines a relational database schema and uploads data. Sensitive attributes are
marked using the “SENSITIVE” keyword in DDL statements. For example, following is a
create statement wherein customer name and address are marked as sensitive attributes.

CREATE TABLE customer(ID integer primary key,

Name char(72) SENSITIVE, Address char(120) SENSITIVE);

A client-side library transparently encrypts sensitive attributes.

Query execution comprises of the following steps (Figure 2.5).

• Step 1: A client sends a query request to the host server through a standard SQL
interface. The query is transparently encrypted at the client site using the SCPU
public key. The host server thus cannot decrypt the query.

• Steps 2,3: The host server forwards the encrypted query to the SCPU request handler.

• Step 4: The SCPU request handler decrypts and forwards the client query to the query
parser.
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Figure 2.6: Database Schema

• Step 5: The decrypted query is parsed and rewritten as a set of sub-queries. Each
subquery is identified as being either public or private. Public queries access only
nonsensitive attributes and can be executed entirely on the host server.

• Steps 6,7,8: The query dispatcher forwards public queries to the host server and private
queries to the SCPU database engine. The host server executes public queries. The
SCPU database engine executes private queries. Dependencies are handled by the
query dispatcher. The net result is that the maximum possible work is run on the host
server’s cheap cycles.

• Step 9: The final query result is assembled and encrypted by the SCPU query dis-
patcher.

• Steps 10,11: The encrypted query result is sent to the client.

2.5.2 Query Parsing

Outline

Sensitive attributes can occur anywhere within the select clause, where clause, group-by
clause, aggregation operators, or within sub-queries. The TrustedDB query parser’s job is
then:
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Figure 2.7: TrustedDB query plan for TPC-H query Q6

• To ensure that any processing involving private attributes is done within the SCPU.
All private attributes are encrypted using a shared data encryption key between the
client and the SCPU (Section 2.5.3). Hence, the host server cannot decipher these
attributes.

• To optimize query rewrites, such that processing on the host server is maximized.

To exemplify how public and sensitive queries are generated from the original client query,
we use examples from the TPC-H benchmark [12]. TPC-H does not classify attributes based
on security. Therefore, we define an attribute classification into sensitive and nonsensitive
attributes. The resultant schema is listed in Figure 2.6. In summary, all attributes that
convey identifying information about customers, suppliers and parts are considered private.
The query plans for TPC-H queries Q3, Q4, and Q6 are illustrated in Figures 2.8,2.9 and
2.7, respectively.

Select Query

Queries with where clause conditions on nonsensitive attributes only, are processed entirely
by the server. No private queries are generated by the query parser if sensitive attributes do
not occur within a where clause and no computation is performed on sensitive attributes in
the select clause other than projection.

Queries with where clause conditions on both sensitive and nonsensitive attributes are
parsed into a public subquery and a private subquery. The public subquery is first processed
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Figure 2.8: TrustedDB query plan for TPC-H query Q3

on the host server. The private subquery is executed by the SCPU database engine over the
intermediate results of the public subquery. For example, query Q6 of the TPC-H benchmark
is parsed as shown in Figure 2.7. The host server first executes a public query that filters
all tuples which fall within the desired ship date and quantity range, both ship date and
quantity being nonsensitive. The public query result is then used by the SCPU to filter the
tuples that meet the condition on the sensitive discount attribute.

Note that the execution of private queries depends on the results from the execution of
public queries and vice-a-versa even though they execute in separate database engines. The
dependency is handled by the TrustedDB query dispatcher in conjunction with the paging
module.

Aggregation

An aggregation clause involving sensitive attributes is processed by the SCPU database
engine. For example, execution of TPC-H query Q6 as illustrated in Figure 2.7. The host
server first executes a public query that filters all tuples which fall within the desired ship date
and quantity range. The result public query result is then used by the SCPU to perform
the aggregation on the private attributes extended price and discount. For aggregation,
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Figure 2.9: TrustedDB query plan for TPC-H query Q4

sensitive attributes are decrypted inside the SCPU. Since the aggregation operation results
in a new attribute computed from sensitive attributes, the result is reencrypted before being
sent to the client. The reencryption is also done within the SCPU.

Group-by and Order-by

If the client query specifies a group-by or an order-by clause on nonsensitive attributes but the
select clause includes an aggregation on sensitive attributes, the grouping or sort operation
is performed inside the SCPU. Figure 2.8 illustrates the case for the TPC-H query Q3. If
the aggregation does not involve any sensitive attributes, then the host server performs all
the group-by and sort operations.

Nested Queries

Each nested query is parsed and processed separately. The input dataset for a nested query
are the intermediate results of public sub-queries. For example, nested query execution of
TPC-H query Q4 as shown in Figure 2.9.
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Figure 2.10: (a) Acquiring Outbound Authentication certificate. (b) Setup of Data Encryp-
tion Key. (c) Secure Transmission of query results. Notations: E(M,K) denotes encryption
of message M with key K. PKALICE denotes a public key that belongs to Alice while SKALICE

represents Alice’s private key. S(M,K) denotes signature of message M with private key K.
The cryptographic hash of message M is denoted by H(M). || represents concatenation.

For nested queries, additional care is taken to limit the data transfer between host server
and the SCPU, which may result in sub-optimal performance. For instance, the query plan
of Figure 2.9 runs the removal of duplicates on attribute order key within the SCPU. An
alternative would be to perform duplicate removal on the host server. The choice for SCPU-
side duplicate removal is made to reduce the traffic over the PCI interface.

2.5.3 TrustedDB Security

In Section 2.3.1, we discussed the physical SCPU security and client-side verification of the
SCPU software stack. Here, we detail the client-SCPU communication protocols to setup
data encryption keys.

The client database consists of nonsensitive and sensitive attributes. Sensitive attributes
are transparently encrypted by the client layer as part of DML7 query requests. The encryp-
tion is performed using a key KDATA shared between the SCPU-side, TrustedDB database

7DML queries include insert and update queries
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engine and the client. The shared key is generated using outbound authentication (Section
2.3.1). The precise key exchange protocol is listed in Figure 2.10(b).

Sensitive results generated by query execution are encrypted inside the SCPU before be-
ing sent to the client. For example, consider the query SELECT avg(SALARY) FROM EMPLOYEES.
The result of avg(SALARY) is an aggregation over a sensitive attribute. Hence, the aggrega-
tion result is encrypted inside the SCPU using the shared key KDATA. For authenticity, the
result is also signed before transmission to the client. Figure 2.10(c) depicts the process of
securing query results.

2.5.4 Choice of Encryption Algorithm

In TrustedDB, different avenues for data encryption are available. In the simplest case, the
entire database is encrypted at page level and SCPU-side database engine fetches pages on
demand, decrypting each page before processing. Page-level encryption features the highest
throughput but does not utilize host server CPU cycles. Page-level encryption is suitable for
data sets with only sensitive attributes.

Tuple-level encryption can be used for key-based lookup queries. In tuple-level encryp-
tion, each tuple is encrypted using a symmetric encryption algorithm, such as AES. The
encryption key KDATA is shared between clients and SCPU. Tuple-level encryption is suit-
able for blobs and large-sized attribute values but not for small data items such as integers
due to encryption latencies and ciphertext blow-up factors.

Finally, for fine-grained-attribute-level encryption, each individual attribute value within
each tuple is encrypted separately. Attribute-level encryption is achieved using random keys
generated by a cryptographic hash function based cipher. The cipher is initialized with
the key KDATA shared between clients and SCPU. The attribute-level encryption scheme in
TrustedDB is based on the NMAC construction [35,110]. Each attribute value is encrypted
as follows:

E(tbl.attr.val) = ctrattr || tbl.pri key || idxK || (tbl.attr.val ⊕ k)

k = F (KDATA[idxK ] || ctrattr || tbl.pri key||F (KDATA[idxK ]))
(2.5)

where tbl is the table name, tbl.attr is the attribute to be considered, tbl.attr.val is the
plaintext value of the current tuple, tbl.pri key is the primary key of the current tuple in
table tbl, ctrattr is a unique identifying number associated with tbl.attr8, idxK is an index in
a table of KDATA keys which allows multiple such keys to exist simultaneously for increased
security, and F (·) is a cryptographic hash function, such as SHA or MD5 [35]9.

2.5.5 Key Management

So far we have considered a single data encryption key shared between the SCPU and
client(s). In a multi-client scenario, it is desired to have multiple distinct client-SCPU keys

8For storage efficiency we don’t want to use the entire tbl.attr value in the result.
9Note that the known MD5 collision - resistance related vulnerabilities are not a problem here where it

is used as a source of randomness only.

35



either for access control or for increased security in case one or more clients are compromised.
The extensions to handle a multi-client scenario are discussed here.

The data stored on host server disk is encrypted using a single master encryption key
known only to the SCPU. Since all update and insert operations are performed by the SCPU,
the master key is stored within the SCPU and is never communicated to the outside. Now,
all decryptions required as part of query processing use the master key. Only when a sensitive
attribute value is to be communicated to the client, the SCPU encrypts the value using the
specific client-SCPU encryption key. Use of the specific client-SCPU key ensures only the
authorized client access to data.

Having a unique encryption key for each client is possible since the SCPU has specialized
battery backed memory dedicated for the purpose of key storage. The available space, which
is 128 KB for the 4764, enables the storage of up to 8K keys assuming a 128 bit key size.
For larger key space, client keys can be generated from a master encryption key using the
key generation technique described in Section 2.5.4.

2.6 Query Optimization

2.6.1 Model

As per section 2.5, due to the unavailability of storage within the SCPU the entire database
is stored at the server. Hence, the attribute classification into sensitive and nonsensitive
introduces a logical vertical partitioning of the database between the server and the SCPU.
The partitioning of data resembles a federated database rather than a stand alone DBMS.
Moreover, for data confidentiality, it needs to be ensured that sensitive attributes are pro-
cessed only within the SCPU. Query optimization in TrustedDB therefore accounts for both
performance and security. In the following, we describe TrustedDB query optimization tech-
niques.

2.6.2 Overview

At a high level query optimization in a database system works as follows.

1. A query plan generator constructs possibly multiple plans for a client query.

2. For each constructed plan a query cost estimator estimates the plan’s execution cost.

3. The best plan, that is, one with the least cost, is then selected and passed on to a
query plan interpretor for execution.

The query optimization process in TrustedDB works similarly with key differences in the
query cost estimator due to the logical partitioning of data into sensitive and nonsensitive at-
tributes. Well-known query optimizations techniques [154] applicable in a traditional DBMS
with no sensitive attributes are applied to public sub-queries executed on the host server.

In the following sections we only discuss query optimizations that are unique to TrustedDB
and trusted hardware based designs alike.
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Server SCPU
CPU ηs 3.4 GHz ηt 233 MHz
Memory Υs 4 GB Υt 32 MB

Table 2.2: System Configuration parameters.

Query-Plan-Cost Metric

The key for query optimization is estimating the costs of various logical query plans. A
common metric utilized in comparing query plan costs is disk I/O [231, 238]. Use of disk
I/O as a metric is justified since disk access is the most expensive operation for databases
and should be minimized. In the trusted hardware model, an additional significant I/O cost
is introduced, which is the server↔SCPU data transfer cost. Moreover, disk access on the
server and the Server↔SCPU communication have different costs. Further, we also need to
consider the disparity between the computational abilities of the server and the SCPU. To
combine all cost factors, we use execution time as the metric for cost estimation. From this
point onwards, any reference to the cost of a query plan refers to the plan’s execution time.

We emphasize that the goal of query optimizer is not necessarily to measure query execu-
tion times with high accuracy but only to correctly compare query plans based on estimation.
To clarify, assume that a query Q has two valid execution plans PA and PB. Then, if the
real execution times of PA and PB are such that ET real(PA) >ET real(PB), then it suffices for
the Query Optimizer to estimate ET est(PA) >ET est(PB) although the values for ET real(Pi)
and ET est(Pi) may not be close.

2.6.3 System Catalog

A query plan is composed of multiple steps. To estimate the cost of an entire plan, it is
essential to estimate the cost of individual steps and aggregate them. In order to estimate
individual steps’ costs, the query cost estimator needs access to some key information. For
instance, the availability of an index or the knowledge of possible distinct values of an at-
tribute. Information needed by the query cost estimator is collected and stored in the system
catalog. Most available DBMS today maintain some form of periodically updated system
catalog. Figures 2.2-2.4 and tables 2.3-2.6 give a partial view of the system catalog main-
tained by TrustedDB. Later, in section 2.6.5 we will see how the system catalog information
is used in estimating plan execution times. System Catalog content is classified in to four
categories. We discuss each category in the following:

(a) System Configuration (Figure 2.2)

System configuration includes compute capacities of the system hardware. Configuration
information is unlikely to change frequently and is configured during system setup.
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Parameter Value Description
Disk Read φs 0.02 ms Average time to read 32 KB blk from server disk
Server↔SCPU λ 5.26 ms Average time to transfer a 32 KB blk between

server and SCPU
Cycles / aggregation δg 3 Number of cpu cycles per aggregate operation (e.g.

group by)
Cycles / addition δa 1 Number of cpu cycles per addition
Cycles / comparison δc 1 Number of cpu cycles per comparison between two

values
Crypto ǫa 0.012 µs Time to encrypt/decrypt a single (32 byte) at-

tribute in SCPU

Table 2.3: Benchmarked parameters.

Parameter Value
DB Page Size ρ 32KB
Server Cache Size µs 32768
SCPU Cache Size µt 1024
B+-Tree Order θ 100

Table 2.4: Database Configuration parameters.

(b) Benchmarked Parameters (Table 2.3)

As part of query execution many basic operations are performed which add to the overall
execution time. Benchmarks are needed to determine the average execution times for the
basic operations. Unless system configuration is changed, benchmarked parameters remain
unchanged.

(c) Database Configuration (Figure 2.4)

Database configuration parameters are directly set on the host server database to improve
performance. In TrustedDB, the server DBMS is an off the shelf industrial quality database
system (Section 2.8), which provides a large range of configuration parameters. With the
TrustedDB design the host DBMS can be configured independently.

(d) Data Statistics (Table 2.5)

TrustedDB performs periodic data scans to collect data statistics. The statistics on public
attributes are collected server side. However, private attributes are scanned via the SCPU,
decrypted, and then analyzed. Since the collection process involves scan of the database, it
is a time consuming task. As a result, data statistics collection needs to be scheduled during
low workloads, for example, nightly or on weekends.

38



lineitem
Attribute Values Max Size
l shipdate υlsd = 2526 ϑlsd κlsd = 4
l shipmode υlsm = 7 κlsm = 10
l linestatus υlls = 2 κlls = 16
l quantity κlqt = 4
l discount υldc = 11 κldc = 16
l orderkey κlok = 4
l linenumber κlln = 4

Indexes
Table Attribute(s) Type Organization
lineitem l orderkey, l linenumber B+-Tree clustered
lineitem l shipdate B+-Tree non-clustered

Table 2.5: Collected data statistics.
lineitem orders part

Number of tuples ϕl 6 M ϕo 1.5 M ϕp 200 K
Tuple size τl 120 τo 100 τp 160
Tuples per page ( ρ

τ
) ωl 273 ωo 328 ωp 203

Table 2.6: Collected relation level statistics for sample TPC-H data set of Figure 2.6.

2.6.4 Estimating Cost of Basic Query Operations

In this section, we present cost estimation for certain basic query plan steps. The basic steps
are reused in multiple plans and hence we group their cost analysis here.

(i) Index-based lookup

Consider the selection query Q = σl shipdate=10/01/1998. As per the System Catalog (Table
2.5), there is a B+-Tree index available on the attribute l shipdate. Hence, the expected
execution time to locate the first leaf page containing the result tuples will be

ET (Q) = logθ ϕl · φs (2.6)

Here, logθ ϕl is number of index pages read and φs is the time to read a single page from
disk on server.

(ii) Selection

Estimating the execution time of selection queries requires estimation of the number of tuples
that would comprise the query result. To estimate the number of tuples in query results, we
use the following concepts from [154].

Definition 1. Values: The Values of an attribute A, V alues(A) or υA is the number of
distinct values of A.
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Figure 2.11: Query plans for Case I: Group By on public attribute.

Definition 2. Reduction Factor: The Reduction Factor of a condition C, Reduction(C) or
ΘC is the reduction in size of the relation caused by the execution of a selection clause with
that condition.

For example,

Reduction(l shipdate = 10/01/1998) =
1

V alues(l shipdate)

OR

Θl shipdate=10/01/1998 =
1

υlsd

(2.7)

Further,

Θl shipdate>10/01/1998 =
ϑlsd −

′ 10/01/1998′

υlsd
(2.8)

Note that above definitions assume a uniform distribution of attribute values, that is, each
distinct attribute value is equally likely to occur in a relation.

Now, consider the selection query σl shipdate>10/01/1998. For execution of the selection
query, the index on l shipdate is used to locate the first leaf page containing the result.
Then, subsequent leaf pages are scanned to gather all tuples comprising the result. Hence

the estimated execution time is logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs. Here the term

Θlsd
·ϕl

ωl
estimates the

number of leaf pages containing all tuples that satisfy the query.

(iii) Server↔SCPU Data Transfer

The intermediate results from query plan execution are often transferred between the server
and the SCPU. The server-SCPU data transfer involves exchange of fixed sized pages in a
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Figure 2.12: Query plans for Case II: Order By on public and private attributes.

Figure 2.13: Query plans for Case III: Distinct clause on public and private attribute.

synchronous fashion. If the data to be transferred is B bytes, then the total transfer time is
⌈ B
ρ∗1024

⌉ · λ. Here, ρ is the page size and hence ⌈ B
ρ∗1024

⌉ gives the number of pages needed to
transfer B bytes. λ is the time required to transfer a single page of size ρ. Refer to Table
2.3 and Figure 2.4 for values of ρ and λ.

Suppose that we need to transfer the results of a query Q = Πsum(l quantity)(σl shipdate>10/01/1998

and l linestatus=‘O′). Then, we can estimate the intermediate query result size by multiplying the
number of tuples in the query result with the total size of the projection operation. The size
of the projection is simply the sum of the sizes of the individual attributes l linestatus and

l quantity. Hence, the total data transfer time for query Q is estimated as
(κlls

+κlqt
)·Θlsd

·ϕl

ρ∗1024
·λ.
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Figure 2.14: Query plans for Case IV: Projections.

(iv) External Sorting

External sorting is used when the relation(s) to be sorted cannot fit in memory. External
sorting has been studied extensively [154] and the I/O cost for an external merge sort is given
as 2 · F · logM−1F , where F is the total number of relation pages and M is the number of
pages that can be stored in memory. Also, M <<F . Using the well-known cost of external
sorting, we can estimate the execution time for sorting a relation r on the server as

2 ·
ϕr · τr

1024 · ρ
·

(

logΥs·1024
ρ
−1

ϕr · τr
1024 · ρ

)

· φs (2.9)

and the time for the same sort from within the SCPU as

2 ·
ϕr · τr

1024 · ρ
·

(

logΥt·1024
ρ
−1

ϕr · τr
1024 · ρ

)

· (φs + λ) (2.10)

Here, ϕr is the total number of tuples in r and τr is the size of an individual tuple.

2.6.5 Estimating Query Plan Costs

Overall Approach

The TrustedDB query optimizer selects optimization techniques on a case-by-case basis. To
illustrate query optimization in TrustedDB, we take the following approach for each case.

• First, we present two alternative plans for the case.

• Next, we estimate the execution times (ET ) for each of the two plans.

• We analyze the estimations of step (2) for selection of the best plan.
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Plan Step Execution Time (ET ) ET (s)

I.A

1. σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.572. Server → SCPU transfer
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·ϕl

ρ∗1024

⌉

· λ

3. σDECRY PT (l linestatus=‘O′) Θlsd
· ϕl · ǫa

4. Server ← SCPU transfer
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·Θlls

·ϕl

ρ·1024

⌉

· λ

5. l shipmodeχsum(l quantity) (Θlsd
· ϕl · δg +Θlsd

·Θlls
· ϕl · δa) ·

1000
ηs

I.B

1. σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.782. Server → SCPU transfer
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·ϕl

ρ∗1024

⌉

· λ

3. σDECRY PT (l linestatus=‘O′) Θlsd
· ϕl · ǫa

4. l shipmodeχsum(l quantity) 2 · F · logµt−1F · λ, F =
⌈ (κlqt

+κlsm
+κlls

)·Θlsd
·ϕl

ρ∗1024

⌉

5. Server ← SCPU transfer
⌈ (κlqt

+κlsm
)·υlsm

ρ·1024

⌉

· λ

II.A

1. σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.68

2. Server → SCPU transfer
⌈

(κldc
+κlsm

+κlls
)·Θlsd

·ϕl

ρ∗1024

⌉

· λ

3. σDECRY PT (l linestatus)=‘O′) Θlsd
· ϕl · ǫa

4. Server ← SCPU transfer
⌈

(κldc
+κlsm

)·Θlsd
·Θlls

·ϕl

ρ∗1024

⌉

· λ

5. l shipmodeτ
Θlsd

·Θlls
·ϕl·1000

ηs
· δc

6. DECRY PT (l discount)τ 2 · F · logµt−1F · λ, F =
⌈

(κldc
+κlsm

)·Θlsd
·Θlls

·ϕl

ρ∗1024

⌉

II.B

1. σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

1.29
2. Server → SCPU transfer

⌈

(κldc
+κlsm

+κlls
)·Θlsd

·ϕl

ρ·1024

⌉

· λ

3. σDECRY PT (l linestatus)=‘O′) Θlsd
· ϕl · ǫa

4. Server ← SCPU transfer
⌈

(κldc
+κlsm

)·Θlsd
·Θlls

·ϕl

ρ∗1024

⌉

· λ

5. l shipmode,DECRY PT (l discount)τ 2 · F · logµt−1F · λ, F =
⌈

(κldc
+κlsm

)·Θlsd
·Θlls

·ϕl

ρ∗1024

⌉

Table 2.7: Cost computations for query plans shown in Figures 2.11 and 2.12 corresponding
to cases I and II.

Note that the query optimizer may generate multiple plans for each client query. For
brevity, we limit ourselves to discussion of only two plans for each case. In Section 2.8 we
experimentally verify TrustedDB’s query optimization techniques.

Case I: Group-By on Public Attribute

Figure 2.11 shows two alternative plans for a group-by operation on public attribute l shipmode.
The difference between the plans A and B is whether the grouping is performed by the server
or the SCPU. If the grouping is performed by the server, then the cheap server cycles are
utilized. However, if grouping is done within the SCPU, the SCPU→Server data transfer
is reduced. The reduction in data transferred depends on the number of distinct values of
attribute l shipmode.

Table 2.7 shows the computation of execution times of plans A and B along with the
estimation. Given the parameters and system catalog data from Figures 2.2-2.4 and Tables
2.3-2.6, it is more efficient to perform the group-by operation server side, that is, plan A
has lower estimated execution time. The lower execution time for plan A results due to the
high selectivity of l shipdate attribute, which reduces the SCPU-server data transfer cost.
If l shipdate had low selectivity, then aggregation within the SCPU would be more efficient.
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Plan Step Execution Time (ET ) ET (s)

III.A

1. σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.231. l shipmodeτ 2 ·
ϕl·Θlsd

·τl

1024·ρ
·

(

logΥs·1024

ρ
−1

ϕl·Θlsd
·τl

1024·ρ

)

· φs

3. Distinctl shipmode,DECRY PT (l discount) υlsm · 2 · F · logµt−1F · λ, F =
⌈

κldc
·Θlsd

·Θlls
·ϕl

ρ∗1024

⌉

4. Server ← SCPU transfer
⌈

(κlsm
+κldc

)·υlsm
·υldc

ρ·1024

⌉

· λ

III.B

1. l shipmode,DECRY PT (l discount)τ 2 · ϕl·τl
1024·ρ

·

(

logΥt·1024

ρ
−1

ϕl·τl
1024·ρ

)

· (φs + λ)

0.202. Distinctl shipmode,DECRY PT (l discount) 2 · F · logµt−1F · λ, F =
⌈

(κldc
+κlsm

)·Θlsd
·Θlls

·ϕl

ρ∗1024

⌉

3. Server ← SCPU transfer
⌈

(κlsm
+κldc

)·υlsm
·υldc

ρ·1024

⌉

· λ

IV.A

1. σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.812. Server → SCPU transfer
⌈ (κlqt

+κldc
+κlsm

+κlsd
+κlls

)·Θlsd
·ϕl

ρ·1024

⌉

· λ

3. σDECRY PT (llinestatus=‘O′) Θlsd
· ϕl · ǫa

4. Server ← SCPU transfer
⌈ (κlqt

+κldc
+κlsm

+κlsd
+κlls

)·Θlsd
·Θlls

·ϕl

ρ·1024

⌉

· λ

IV.B

1. σl shipdate>‘1998−10−01′ logθ ϕl · φs +
Θlsd

·ϕl

ωl
· φs

0.32
2. Server → SCPU transfer

⌈

(κlls
+κlok

+κlln
)·Θlsd

·ϕl

ρ·1024

⌉

· λ

3. σDECRY PT (l linestatus=‘O′) Θlsd
· ϕl · ǫa

4. Server ← SCPU transfer
⌈

(κlok
+κlln

)·Θlsd
·ϕl

ρ·1024

⌉

· λ

5. ⋊⋉l orderkey=okey,l linenumber=lnum

(

(2 · F · logµt−1F ) +
Θlls

·ϕl

ωl

)

· φs, F =
⌈

(κlok
+κlln

)·Θlsd
·ϕl

ρ·1024

⌉

V.A
1. o totalpriceτ 2 · ϕo·τo

1024·ρ
·

(

logΥs·1024

ρ
−1

ϕo·τo
1024·ρ

)

· φs

39.8
2. p retailpriceτ 2 ·

ϕp·τp
1024·ρ

·

(

logΥt·1024

ρ
−1

ϕp·τp
1024·ρ

)

· (φs +λ)+ϕp · ǫa

3.⋊⋉o totalprice=p retailprice
ϕo

ωo
·
ϕp

ωp
· (φs + λ) + ϕp · ǫa

V.B 1. ⋊⋉o totalprice=p retailprice
ϕp·τp
1024·ρ

+ ϕo·τo
1024·ρ

·

⌈

ϕp·τp
1024·ρ

Υt·1024

ρ
−1

⌉

29.3

Table 2.8: Cost computations for query plans shown in Figures 2.12(a) and 2.12(b) corre-
sponding to cases III and IV.

Case II: Order-By on Public and Private Attributes

If an order-by clause has a nonsensitive attribute followed by a sensitive attribute, the server
can first order the intermediate results on the nonsensitive attribute leaving the sensitive
attribute ordering to the SCPU (Figure 2.12 - plan A). As an alternative, the SCPU can
process the entire order-by clause as shown in Figure 2.12, plan B.

Under the specific data statistics, plan A is preferred. In plan A, the SCPU orders
a smaller intermediate result set making the the sort operation more efficient. Since the
SCPU employs external sorting, any reduction in the size of intermediate results directly
lowers the Server↔SCPU transfer cost.

Case III: Distinct clause on Public and Private Attributes

A distinct clause is processed by first sorting the relation on the sort attribute and then
removing the duplicate values. Figure 2.13 depicts two plans for evaluating a distinct oper-
ation. In plan A (Figure 2.13), the server first sorts the intermediate results on the public
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attribute l shipmode. Then, the SCPU processes the distinct clause. In plan B, the SCPU
sorts and processes the distinct operation.

As seen from Table 2.8, the optimizer prefers plan A. The number of distinct values
of l shipmode play a critical role in plan selection here. In the dataset, l shipmode has
high selectivity, which means that after server-side sorting, the SCPU operates on a small
data set. Low selectivity of l shipmode instead would favor plan B since the advantage of
server-side sorting will be reduced.

Case IV: Projections

Figure 2.14 shows two plans for evaluating a projection operation. In plan A, all projected
attributes are passed to the SCPU. After SCPU-side processing all attributes are transferred
back to the server. The server then performs the final projection.

In plan B, only the attributes needed for SCPU-side processing are passed into the SCPU.
As a result, in plan B the server needs to perform additional lookups to locate the projected
attributes for each tuple in the result set. To optimize the final lookup join, the server first
sorts the intermediate results received from the SCPU on the tuple primary key. The sort
on primary key greatly reduces the number of disk operations, thereby making plan B more
efficient.

Case V: Public-Private Join

A join between a sensitive and a nonsensitive attribute can be processed via two plans. In
plan A, the relation with the nonsensitive join attribute is sorted server-side. The relation
with the sensitive join attribute is sorted by the SCPU. Then, the SCPU performs a sort-
merge join on the sorted relations. In plan B, the SCPU performs the entire join using
a block-nested mechanism. For efficiency, in plan B, the SCPU makes use of all available
memory within.

The steps involved in both plans are listed in Table 2.8 along with the estimated plan
costs. Plan B is preferred since the SCPU sort operation in plan A is expensive enough to
not augment the advantage of server-side sorting on nonsensitive attribute. However, if the
relation to be sorted had a clustered index on the sort attribute, then the server-side sort in
plan A would be eliminated, thereby favoring plan A.

2.7 Attribute Exposure

For efficiency, TrustedDB relies on attribute classification into sensitive and non-sensitive
attributes. Sensitive attributes are stored encrypted. Non-sensitive attributes are stored
in clear. To ensure data confidentiality, sensitive attributes are decrypted only within the
trusted hardware.

However, correlations between non-sensitive and sensitive attributes can yet violate data
confidentiality. For example, consider a census database that stores name, date of birth,
and zip of individuals. Also, suppose that attribute name is considered sensitive while date
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of birth and zip are both considered non-sensitive. Samarati et al. [227] have shown that
the date of birth and zip combination can be used to infer an individual’s identity. Hence,
storing date of birth and zip as non-sensitive attributes can reveal individual names, thereby
violating data confidentiality that TrustedDB aims to protect.

Information leakage due to correlation between non-sensitive and sensitive attributes can
be prevented by a careful choice of sensitive attributes. For example, in a census database
name, date of birth, and zip can all be classified as sensitive. We note that increasing the
number of sensitive attributes lowers efficiency, since the cheap untrusted server cycles can
only be utilized to process non-sensitive attributes. The following interesting question arises
from this discussion. What is the optimal attribute classification that prevents information
leakage from non-sensitive to sensitive attributes and permits the maximum possible number
of non-sensitive attributes for efficiency. This question of optimal attribute classification has
been answered by Ciriani et al. [69].

Ciriani et al. [69] refer to a set of correlated attributes as a confidentiality constraint.
The requirement is that attributes with a constraint must never be jointly visible. Joint
visibility can be prevented by encrypting one or more attributes in a constraint. For example,
the sets {name} and {date of birth, zip} are constraints in a census database. Given a set
of confidentiality constraints to be satisfied, Ciriani et al. address the problem of minimizing
the number of sensitive attributes. They refer to this problem as minimal fragmentation.
Ciriani et al. go on to show that minimal fragmentation is a NP-hard problem. Instead,
they propose a heuristic approach to minimize fragmentation.

We suggest adoption of the approach by Ciriani et al. to select the set of sensitive at-
tributes in TrustedDB. Once, attribute classification is done, TrustedDB provides an efficient,
low-cost solution for query processing as compared to cryptography-based solutions.

2.8 Experiments

2.8.1 Setup

The SCPU of choice is the IBM 4764-001 PCI-X with the 3.30.05 release toolkit featuring
32MB of RAM and a PowerPC 405GPr at 233 MHz. The SCPU sits on the PCI-X bus of
an Intel Xeon 3.4 GHz, 4GB RAM Linux box with kernel version 2.6.18. The server DBMS
is a standard MySQL 14.12 Distrib 5.0.45 engine. The SCPU DBMS is a heavily modified
SQLite custom port to the PowerPC. The entire TrustedDB stack is written in C.

2.8.2 TPC-H Query Load

To evaluate the runtime of generalized queries, we chose several queries of varying degrees
of difficulty and privacy from the TPC-H benchmark [12] The TPC-H scale factor is 1, that
is, the database size is 1GB.

Figure 2.15 shows the TrustedDB query execution times as compared to a simple unen-
crypted MySQL setup. Figure 2.16(a) depicts the breakdown of times spent in execution
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Figure 2.15: TPC-H query execution times.

of the public and private sub-queries. The execution times of private queries include the
time required for encryption and decryption operations inside the SCPU. The public queries
executed on the host server also include the server-SCPU data transfer time.

As seen from Figure 2.15, when compared with a completely unsecured baseline scenario,
data confidentiality in TrustedDB does not come cheap. The query execution times in
TrustedDB are higher by factors between 1.03 and 10. However, recall from Section 2.4 that
the actual query processing costs are orders of magnitude lower than any cryptography-based
solution.

Figure 2.16(b) shows the latencies for insert and update queries. The reported times are
for a random insert or update of a single tuple in the lineitems relation averaged over ten
runs.

2.8.3 Query Optimization

In Section 2.6, we presented different query plans, analyzed query plans execution and showed
how the optimizer computed query plan execution times. Tables 2.7 and 2.8 summarized
the theoretical costs and estimated execution times. To verify whether the plan selected in
each case is indeed the best plan, we executed each of the plans on the TPC-H dataset and
measured execution times. Figure 2.17(a) lists the results.

We find that in each of the cases I-IV, the following holds: If ET est(PA) >ET est(PB) in
table 2.7 or 2.8 then ET real(PA) >ET real(PB) in figure 2.17(a).

For more detailed evaluation, we compare the estimated and measured times for varying
selectivity of the public attribute l shipdate in case I. Note that the selectivity directly
influences the amount of server↔SCPU data transfer and thus the overall processing costs.

47



10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q13 Q14 Q16 Q17 Q18 Q19 Q21 Q22

%
 o

f t
ot

al
 q

ue
ry

 e
xe

cu
tio

n 
tim

e
SCPU encryption operations
SCPU decryption operations

Private Query Processing on SCPU
Public Query Processing on host server

(a) Query time profiles.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

insert update

La
te

nc
y 

(m
s)

MySQL
TrustedDB

(b) DML ops.

Figure 2.16: Query time profiles and latencies for DML operations. Qi = ith query from
TPC-H [12].

As seen in Figure 2.17(b), the optimizer correctly estimates which plan would have lower
execution time for most of the cases.

Figure 2.17(c) shows the results for very low selectivity of l shipdate. At low selectivity
the accuracy of estimation lowers. The low accuracy is due to experimental variance and
data distribution. In the experiments, measured times vary by +3.5ms between runs. Thus,
when the estimated times for two plans differ by <3.5ms they are practically equivalent.
Also, the optimizer assumes a uniform distribution of attribute values. For the TPC-H data,
uniform distribution does not hold, especially at low selectivity. The accuracy of estimation
for in the case of low selectivity can be increased by simply populating the system catalog
with more accurate information.

2.9 Related Work

2.9.1 Queries on Encrypted Data

Hacigumus et al. [125] propose division of data into secret partitions and re-writing of range
queries over the original data in terms of the resulting partition identifiers. This balances a
trade-off between client and server-side processing, as a function of the data segment size.
In [134] the authors explore optimal bucket sizes for range queries.

[89] proposes using tuple-level encryption and indexes on the encrypted tuples to support
equality predicates. The main contribution here is the analysis of attribute exposure caused
by query processing leading to two insights. (a) the attribute exposure increases with the
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Figure 2.17: Measured execution times for optimization cases I-IV from section 2.6 and with
varied selectivity for Case I.

number of attributes used in an index, and (b) the exposure decreases with the increase in
database size. Range queries are processed by encrypting individual B+ − Tree nodes and
having the client, in each query processing step, retrieve a desired encrypted B+ − Tree
node from the server, decrypt and process it. However, this leads to minimal utilization
of server resources thereby undermining the benefits of outsourcing. Moreover, transfer of
entire B+ − Tree nodes to the client results in significant network costs.

[256] employs Order Preserving encryption for querying encrypted xml databases. In
addition, a technique referred to as splitting and scaling is used to differ the frequency
distribution of encrypted data from that of the plain-text data. Here, each plain-text value
is encrypted using multiple distinct keys. Then, corresponding values are replicated to ensure
that all encrypted values occur with the same frequency thereby thwarting any frequency-
based attacks.
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[260] uses a salted version of IDA scheme to split encrypted tuple data amongst multiple
servers. In addition, a secure B+−Tree is built on the key attribute. The client utilizes the
B+ − Tree index to determine the IDA matrix columns that need to be accessed for data
retrieval. To speed up client-side processing and reduce network overheads it is suggested to
cache parts of the B+ − Tree index client-side.

Vertical partitioning of relations amongst multiple un-trusted servers is employed in [98].
Here, the privacy goal is to prevent access of a subset of attributes by any single server.
E.g., {Name, Address} can be a privacy sensitive access-pair and query processing needs
to ensure that they are not jointly visible to any single server. The client query is split
into multiple queries wherein each sub-query fetches the relevant data from a server and
the client combines results from multiple servers. [22] also uses vertical partitioning in a
similar manner and for the same privacy goal, but differs in partitioning and optimization
algorithms. TrustedDB is equivalent to both [22, 98] when the size of the privacy subset is
one and hence a single server suffices. In this case each attribute column needs encryption to
ensure privacy [70]. Hence [22,98] can utilize TrustedDB to optimize for querying encrypted
columns since otherwise they rely on client-side decryption and processing.

[70] introduces the concept of logical fragments to achieve the same partitioning effect
as in [22, 98] on a single server. A fragment here is simply a relation wherein attributes not
desired to be visible in that fragment are encrypted. TrustedDB (and other solutions) are
in effect concrete mechanisms to efficiently query any individual fragment from [70]. [70] on
the other hand can be used to determine the set of attributes that should be encrypted in
TrustedDB.

Ge et al. [101] propose an encryption scheme in a trusted-server model to ensure privacy of
data residing on disk. The FCE scheme designed here is equivalently secure as a block cipher,
however, with increased efficiency. [211], like [101] only ensures privacy of data residing on
disk. In order to increase query functionality a layered encryption scheme is used and then
dynamically adjusted (by revealing key to the server) according to client queries. TrustedDB
on the other hand operates in an un-trusted server model, where sensitive data is protected,
both on disk and during processing.

Data that is encrypted on disk but processed in clear (in server memory) as in [101,211]
compromises privacy during the processing interval. In [52] the disclosure risks in such
solutions are analyzed. [52] also proposes a new query optimizer that takes into account
both performance and disclosure risk for sensitive data. Individual data pages are encrypted
by secret keys that are managed by a trusted hardware module. The decryption of the data
pages and subsequent processing is done in server memory. Hence the goal is to minimize
the lifetime of sensitive data and keys in server memory after decryption. In TrustedDB
there is no such disclosure risk since decryptions are performed only within the SCPU.

Aggregation queries over relational databases is provided in [123] by making use of ho-
momorphic encryption based on Privacy Homomorphism [223]. The authors in [91] have
suggested that this scheme is vulnerable to a cipher text only attack. Instead [91] proposes
an alternative scheme to perform aggregation queries based on bucketization [125]. Here
the data owner precomputes aggregate values such as SUM and COUNT for partitions and
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stores them encrypted at the server. Although this makes processing of certain queries faster
it does not significantly reduce client side processing.

Ge et al. [249] discuss executing aggregation queries with confidentiality on an untrusted
server. Due to the use of extremely expensive homomorphisms [198, 199] this scheme leads
to impractically large costs by comparison, for any reasonable security parameter choices.
This is discussed in more detail in section 2.4.

Above solutions are specialized for certain types of query operations on encrypted data.
[89] for equality predicates, [125,256,260] for range predicates and [123,249] for aggregation.
In TrustedDB, all decryptions are performed within the secure confinements of the SCPU,
thereby processing is done on plain-text data. This removes any limitation on the nature of
predicates that can now be employed on encrypted attributes including arbitrary user defined
functions. We note that certain solutions designed for a very specific set of predicates can
be more efficient albeit at the loss of functionality.

2.9.2 Encrypted Storage

Encryption is one of the most common techniques used to protect the confidentiality of
stored data. Several existing systems encrypt data before storing it on potentially vulnerable
storage devices or network nodes. Blaze’s CFS [37], TCFS [56], EFS [175], StegFS [170], and
NCryptfs [265] are file systems that encrypt data before writing to stable storage. NCryptfs
is implemented as a layered file system [133] and is capable of being used even over network
file systems such as NFS. SFS [120] and BestCrypt [143] are device driver level encryption
systems. Encryption file systems are designed to protect the data at rest, yet only partially
solve the outsourcing problem. They do not allow for complex retrieval queries or client
access privacy.

2.9.3 Keyword Searches on Encrypted Data

Song et al. [241] propose a scheme for performing simple keyword search on encrypted data
in a scenario where a mobile, bandwidth-restricted user wishes to store data on an untrusted
server. The scheme requires the user to split the data into fixed-size words and perform
encryption and other transformations. Drawbacks of this scheme include fixing the size of
words, the complexities of encryption and search, the inability of this approach to support
access pattern privacy, or retrieval correctness. Eu-Jin Goh [107] proposes to associate
indexes with documents stored on a server. A document’s index is a Bloom filter [39]
containing a codeword for each unique word in the document. Chang and itzenmacher
[58] propose a similar approach, where the index associated with documents consists of a
string of bits of length equal to the total number of words used (dictionary size). Boneh et
al. [43] proposed an alternative for senders to encrypt e-mails with recipients’ public keys,
and store this email on untrusted mail servers. They present two search protocols: (1)
a non-interactive search-able encryption scheme based on a variant of the Diffie-Hellman
problem hat uses bilinear maps on elliptic curves; and (2) a protocol using only trapdoor
permutations, requiring a large number of public-private key pairs. Both protocols are
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computationally expensive. Golle et al. [112] extend the above idea to conjunctive keyword
searches on encrypted data. They propose two solutions. (1) The server stores capabilities
for conjunctive queries, with sizes linear in the total number of documents. They claim that
a majority of the capabilities can be transferred offline to the server, under the assumption
that the client knows beforehand its future conjunctive queries. (2) Doubling the size of
the data stored by the server, which reduces the communication overheads between clients
and servers significantly. The scheme requires users to specify the exact positions where the
search matches have to occur, and hence is impractical. Brinkman et al. [46] deploy secret
splitting of polynomial expressions to search in encrypted XML.

2.9.4 Trusted Hardware

In [25] SCPUs are used to retrieve X509 certificates from a database. However, this only
supports key based lookup. Each record has a unique key and a client can query for a record
by specifying the key. [226] uses multiple SCPUs to provide key based search. The entire
database is scanned by the SCPUs to return matching records.

[216] implements arbitrary joins by reading the entire database through the SCPU. Such
as approach is clearly not practical for real implementations since it is lower bounded by the
Server↔SCPU bandwidth (10 MBps in our setup).

Chip-Secured Data Access [165] uses a smart card for query processing and for enforc-
ing access rights. The client query is split such that the server performs majority of the
computation. The solution is limited by the fact that the client query executing within the
smart card cannot generate any intermediate results since there is no storage available on
the card. In follow-up work, GhostDB [189] proposes to embed a database inside a USB
key equipped with a CPU. It allows linking of private data carried on the USB Key and
public data available on a server. GhostDB ensures that the only information revealed to a
potential spy is the query issued and the public data accessed.

Both [165] and [189] are subject to the storage limitations of trusted hardware which
in turn limits the size of the database and the queries that can processed. In contrast
TrustedDB uses external storage to store the entire database and reads information into the
trusted hardware as needed which enables it to be used with large databases. Moreover,
database pages can be swapped out of the trusted hardware to external storage during query
processing.

In [36] a database engine is proposed inside a SCPU for data sharing and mining. The
SCPU fetches data from external sources using secure jdbc connections. The entire data is
treated as private with queries completely executed inside the coprocessor. We find that using
the IBM 4764 for processing queries entirely within the trusted hardware module, without
utilizing server cpu cycles, is up to 40x slower than traditional server query processing. This
is so even when the trusted hardware has access to the local server file system using our
Paging Module (section 2.5). Hence using jdbc connections as in [36] can only have higher
processing overheads.
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Figure 2.18: TrustedDB Demo Client.

2.10 Demo Application

The TrustedDB client application [31] illustrates how TrustedDB enables generalized query
processing over encrypted data and covers the following.

• Running queries and performing data manipulation over outsourced encrypted data.

• Visualizing the workload schedule between the host server and the secure coprocessor,
which is key in making the use of trusted hardware in query processing practical.

• Gauging the security mechanisms employed to ensure the execution of queries over
sensitive data in a remote secure environment.

2.11 Conclusions

This chapter’s inherent thesis is that in outsourced contexts, query processing inside secure
hardware processors is 1-3 of magnitude cheaper than using cryptography despite the higher
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acquisition cost of trusted hardware. Further, the use of trusted hardware removes limita-
tions on query expressiveness that are inherent in current cryptography-based mechanisms.

To realize the benefits of trusted hardware we designed, implemented and evaluated
TrustedDB. TrustedDB is the first relational database that supports full SQL query execution
over encrypted data.
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Chapter 3

Query Authentication with
CorrectDB

3.1 Introduction

3.1.1 Background and Motivation

Query authentication (QA) requires strict guarantees for both correctness and completeness
of query results returned by potentially compromised providers. For users of cloud-based
databases, QA offers the ability to prove non-compliance by service providers.

Existing research tackles the QA problem by designing authenticated data structures
(ADS). An ADS is constructed and uploaded by the data owner to the service provider. At
query execution time, ADS enables the service provider to construct a proof that a client
verifies. The proof ensures the client that query results are correct and complete.

The proofs in existing QA solutions are large, making the server to client proof transmis-
sion a costly operation. Also, due to large proof sizes, the performance of QA solutions based
on client-side checking is limited by network bandwidth and latency. Moreover, a single QA
solution for all query types has not been proposed yet.

3.1.2 Our Contribution: Low-cost Query Authentication Using

Trusted Hardware

We propose to look at the QA problem from a different angle. Specifically, we posit that
server-hosted, close-to-data trusted hardware acting on behalf of clients can result in a
general purpose QA solution that is also significantly cheaper and more efficient than prior
work. We were particularly encouraged by the results from TrustedDB (Chapter 2) showing
that for data confidentiality, a trusted hardware-based solution is significantly cheaper than
cryptographic alternatives [64].

In this chapter, we show the cost benefits of trusted hardware for QA (Section 3.6.5).
In addition to lowering costs, the use of trusted hardware for QA significantly increases the
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QA functionality (Section 3.5). For example, support for update queries and replay attack
detection.

To realize the benefits of trusted hardware in QA, we design CorrectDB, an SQL DBMS
that deploys tamper proof secure coprocessors at the server’s side to provide full QA guar-
antees cheaply and efficiently. CorrectDB achieves efficient, low-cost QA through its close
proximity to the outsourced data, by minimizing the authentication data, and by reducing
the client-server communication overheads.

3.1.3 Chapter Outline

Section 3.2 describes the adversarial model. QA requirements are listed in Section 3.3.
Section 3.4 provides an overview of exiting QA work along with critical cost insights. The
benefits of trusted hardware for QA are discussed in Section 3.5. Section 3.6 details the
CorrectDB architecture. Experimental results are presented in Section 3.7. Section 3.8
discusses the relationship between data confidentiality and QA. Finally, Section 3.9 concludes
the chapter.

3.2 Model

Data Owner

Data is placed by the data owner with a remote, untrusted service provider. For authenticity
and integrity of query results, the data owner computes and places additional authentication
data with the provider. The data owner issues search and update queries to the provider. In
existing QA work, the data owner performs all updates to the provider-side authentication
data. In CorrectDB, the server-side, trusted hardware manages the authentication data on
behalf of the data owner.

Clients

Clients authorized by the data owner query the outsourced datasets through an interface
exposed by the provider. A client query can either perform a search or a data-only-update
operation. Clients cannot update the server-side authentication data.

Adversary

The service provider is not trusted. Due to compromise or malicious intent, the provider
may violate one or more of the QA security requirements (Section 3.3).

3.3 Query Authentication

Query Authentication (QA) has two essential requirements – correctness and completeness.
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Correctness

Correctness has two components. First, each tuple in the query result should be authen-
tic, that is, all tuple’s must originate from the original database that was uploaded to the
provider’s site. It must be impossible for the provider to introduce any spurious tuples in
the result. Second, each tuple in the query result must satisfy the query predicates exactly,
thus ensuring that query execution adhered to all predicates specified in clients’ queries.

Completeness

For completeness, all tuples that are supposed to be part of the query result must be present
in the result, that is, query execution should not exclude any valid tuples from the result.

3.4 Existing QA Solutions

In this section, we overview existing QA work. The overview identifies cost points of existing
QA solutions. In addition, using published experimental result, we identify state-of-the-art
in QA.

Existing QA solutions follow the deployment model of Section 3.2 with the following key
difference. All database updates, including the modifications to the authentication data are
performed by the data owner. Client queries are read-only.

At a high level, existing solutions work similarly using the following steps.

• Step 1: The data owner uploads the database to the service provider. The data owner
then computes and uploads additional data structures known as Authenticated Data
Structures (ADS). In addition, depending on the specific QA scheme, the owner may
distribute certain information to the clients.

• Step 2: A client submits a query request to the service provider.

• Step 3: The provider executes the query to get the desired results. Using the ADS,
the provider also computes a proof, which the client uses to verify correctness and
completeness of query results. This proof is referred to as a Verification Object (VO).

• Step 4: The service provider delivers both the query results and the VO to the client.

• Step 5: Using information from the owner together with query results and VO from
the service provider, the client determines whether QA assurances are met.

The properties of ADS and VO prevent the provider from compromising integrity of the
query results.

Existing QA solutions can be classified as either tree-based or signature-based. The two
categories differ in the data structures used for the ADS and the VO; and hence in the query
execution and verification.
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In the following we discuss the general strategy of tree and signature-based solutions.
Discussion of a general strategy suffices to identify cost points. In Chapter 9, we detail
existing tree and signature-based QA solutions.

3.4.1 Tree-based QA solutions

In tree-based approaches, the ADS is constructed as a tree. For example, MB-tree [155]
and VB-tree [201]. As part of query execution, service provider traverses the tree and
gathers the nodes that form the VO, which is sent to the client along with the query results.
The client reconstructs the traversal path used in query execution to verify correctness and
completeness.

The simplest example of a tree-based QA solution is a merkle hash tree [172]. A merkle
hash tree (MHT) authenticates a set relationship between multiple items such as tuples in
a database. Let t1, t2 ... tn denote individual tuples in the dataset. Then, the leaves of the
MHT are composed of the hash of each individual tuple, that is, H(t1), H(t2) ... H(tn). Each
internal tree node is constructed as the hash of its two child nodes. For instance, the parent
node of H(t1) and H(t2) is H(H(t1)||H(t2)). To subsequently prove that a tuple belongs to
the dataset associated with the MHT, it suffices to recompute and verify the root of the tree
from the tuple’s value and the siblings of all the nodes in the traversal path up to the root
of the MHT.

Cost Insights for Tree-based Solutions

Transferring additional ADS nodes to the clients for verification means that the VO sizes in
tree-based approaches can become quite large. Large VO sizes increase both query latency
and the cost of data transmission. From the results of Chen et al. [65] we know that cloud-
to-client data transfer costs upwards of 3500 picocents1 per bit, 2-3 orders of magnitude
higher than processing costs.

3.4.2 Signature-based QA solutions

Signature-based approaches provide a mechanism to verify the ordering between tuples when
using specific search attributes. For QA, an authenticated chain of unforgeable signatures is
constructed by the data owner. At query time, the service provider gathers the signatures
of all the tuples that comprise the contiguous range query result. The set of signatures
comprises the VO. Since each tuple is now linked to its predecessor and successor in an
unforgeable manner, the client can verify that no tuple is either illicitly inserted or omitted
from the query result.

An example of a signature-based QA solution is DSAC [185]. In DSAC [185], the ADS

consists of the signature of each individual tuple along with its immediate predecessor,
that is, S(H(ti)||H(ti−1), SKDO), where S(·) denotes a signature operation and ti−1 is the

11 US picocent = $1× 10−14.
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predecessor of ti when sorted on the search attribute. By including the predecessor in the
signature, a chain of all tuples is formed ordered on the search attribute. The VO then
consists of the signature of all tuples in the query results. The client verifies that the set of
tuples received in the result form a valid chain.

Cost Insights for Signature-based Solutions

The VO for signature-based solutions that employ signature aggregation [181,182] is a single
signed message. Hence, signature-based solutions do not incur the high transmission costs
of tree-based approaches, at least not for range queries. However, the operations needed to
construct small VOs involve cryptographic operations, such as modular multiplications and
exponentiations. Cryptographic operations are expensive to compute on the server side due
to the large number of CPU cycles involved. Computing a single cryptographic trapdoor
server-side costs up to 30,000 picocents [65].

3.4.3 Survey of Empirical Evaluation

QA performance entails the following three key metrics.

• VO size (VOS): The VO is transferred over the network and thus determines query
latency and bandwidth usage. Hence, all QA solutions target minimizing the VO size.

• Query Execution Time (QET): The provider builds VO by computing on the ADS.
This computation adds to the overall execution time.

• Verification Time (VT): Client-side computation is required to verify the au-
thenticity of query results. Since clients may be limited in computing abilities it is
imperative that client-side processing is minimal.

Over time, newer QA solutions have shown their benefits over prior work using experi-
mental comparisons. By surveying all published experimental results, we draw a comparison
map and identify the most efficient QA solutions. Figure 3.1 shows the comparative summary
of existing QA research.

Survey Conclusions

For selection and range queries, signature-based schemes using signature aggregation [185]
provide the smallest VO and thus have the least client-server network overhead. However,
tree-based solutions [155] in 2006 were shown to perform better than signature-based schemes
when evaluated on both QET and VT. The advantage reverses in 2009 with the speedup in
crypto operations [203]. Crypto operations such as signature verification and aggregation are
CPU but not I/O intensive. Faster processors in 2009 reverse the 2006 result and signature-
based schemes now perform better on the metrics QET and VT as well. Signature-based
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schemes are not efficient for join processing. AIM [269] is the only comprehensive tree-
based approach for join processing and is shown to perform better than other tree-based
approaches.

3.5 The Case for Trusted Hardware in QA

In Section 2.3, we described secure coprocessors (SCPU) including scpu-based application
development and security. We now discuss the benefits of SCPUs for QA. In section 3.6, we
describe how the benefits are realized in CorrectDB.

Data Proximity

A major performance and cost consideration for QA is VO size. Since VO needs to be
transferred from provider to client, VO size directly adds to network costs. VO cost factor
specifically applies to tree-based solutions.
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SCPUs communicate with the host server locally over the PCI bus. Hence, in SCPU-
based QA, the VO can be processed server-side within the SCPU virtually eliminating the
VO transmission costs. Later, in section 3.6.5 we show that despite the higher acquisition
and processing costs of SCPU, the proximity factor leads to significant savings in overall
query processing costs.

Query Expressiveness

The general-purpose SCPUs can be programmed to execute arbitrary queries. Thus, limita-
tions on the query expressiveness can now be removed and a single solution utilizing SCPUs
can be used for authenticating range, join, and aggregation queries even with complex pred-
icates.

Database Updates

In existing QA solutions, there is no trusted component server-side. Hence, the data owner
cannot issue update queries to the server. Instead, the data owner performs all update
operations locally [185]. For an update operation, the data owner fetches the relevant tuples
from the server, modifies them locally, constructs new ADS, and upload the new tuples
and ADS back to the server. The data transfer overhead involved in owner-side updates
is significant. Moreover, tree-based approaches require redistribution of the new ADS root
hash computed by the owner to all clients. Distribution to clients increases transfer costs.

Using SCPUs, the data owner can issue an update query directly to the server-side SCPU.
All updates are then performed by the SCPU incurring no additional data transfer overheads
(Section 3.6.7). Also, the ADS can now completely be stored server-side. Hence, if the query
result verification is also performed by the SCPU, redistribution to clients is avoided.

Access Control

If the provider is not trusted for QA, the provider can also not be trusted enforce access
control policies. In a SCPU-based solution, access control can be efficiently enforced by the
trusted, server-side SCPU.

Untrusted Clients

An update operation involves modifications to both data and ADS. In existing QA solutions,
updates are limited to the data owner only. If clients were permitted to perform data updates,
it would be necessary to give the clients access to the ADS as well. Hence, a compromised
client could alter the ADS causing incorrect results to be computed for other clients’ queries.

In a trusted hardware-based solution, the SCPU acts as a trusted entity on behalf of the
owner and performs all updates server-side. Clients can now issue update queries but the
underlying data and ADS are modified only by the server-side SCPU. Further, client update
queries can be filtered by the SCPU enforced access control mechanisms, thereby avoiding
malicious updates by compromised clients.
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Client Synchronization

If clients store authentication information, such as the root hash in tree-based approaches,
any change to the authentication data involves updates on all other clients in synchronization.
If clients are not synchronized, some clients may end up with stale data. For large number
of dispersed clients, synchronization becomes a problem. In a SCPU-based QA solution,
the SCPU maintains and updates information for multiple clients. Hence, SCPU-based QA
avoids client synchronization.

Replay Attacks

A replay attack occurs when the server sends old authentication data to clients. To prevent
replay attacks, tree-based approaches require locking the entire database when the data
owner performs updates. Further, the owner is required to securely distribute the new ADS

root to all clients. Similar to tree-based schemes, signature-based schemes are also vulnerable
to replay attacks on tuple chain signatures. By computing the ADS locally during updates,
SCPU-based designs can avoid replay attacks entirely in an efficient manner (Section 3.6.7).

Querying without ADS

In existing work, queries with predicates on attributes that do not have an associated ADS

require intermediate results to be transferred for client-side evaluation. Transfer of interme-
diate query results to clients incurs significant data transmission costs.

In comparison, server-side SCPUs can leverage an ADS on attributes other than the
search attribute. Hence, intermediate results do not need client-side processing eliminating
data transfer costs (Section 3.6.4).

Data Privacy

For privacy, data can be encrypted before uploading to the provider. However, encryption
greatly limits the query predicates to very simple conditions [91, 123]. Within a SCPU
however, data can be processed in plaintext and complex predicates can be evaluated (Section
3.8).

3.6 CorrectDB Architecture

CorrectDB is built around a set of core components (Figure 3.2) including a request handler;
a query parser; server and SCPU-side query processors; and a crypto library.

3.6.1 Overview

In this section, we give an overview of CorrectDB query processing. In Sections 3.6.2-3.6.5,
we detail processing of specific query types.
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Figure 3.2: CorrectDB Architecture

The outsourced data is stored at the provider’s site. For each relation R in the database,
a B+-tree is built on the search attribute(s) of R. In addition, a separate merkle hash tree
(MHT) based ADS is built on the leaf nodes of each of the B+-trees. Each leaf of the ADS is
a hash of a B+-tree leaf node’s contents. An internal ADS node is computed as the hash of
its children. Figure 3.3 illustrates the MHT ADS construction. The root hash of each ADS

is stored inside the SCPU and is never accessible from the outside. Since the root hash is
stored within the SCPU, the hash need not be signed. Not signing the root hash saves an
expensive signature operation on each update and multiple signature verifications for each
query.

Note that for static data sets, both the B+-trees and their ADS can be constructed by
the data owner prior to uploading the database. However, since CorrectDB supports insert
and update queries, the structures are continuously updated by the server-side SCPU in
response to client update queries.

Query processing in CorrectDB occurs as follows (Figure 3.2):

• A client queries the server through a standard SQL interface.

• The server forwards the query to the SCPU request handler. The SCPU request
handler, in turn, forwards the query to the CorrectDB Query Parser.

• The parser rewrites the client query into two sub-queries: a server subquery and a
SCPU subquery.
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Step Description Details in

1 Client submits query

2,3 Forward client query

4 Parse into server and scpu-side sub-queries section 3.6.1

5 Forward parsed queries

6* Request leaf nodes from server

Sections 3.6.2
7* Find leaf and MHT nodes
8* Request MHT nodes from server
9* Verify leaf nodes and process query to 3.6.5
10 Sign digest of query results (VO)

11,12 Forward results and signed VO

13 Client-side verification Section 3.6.6

Table 3.1: Legend for figure 3.2, * = multi-round steps.

L1 L2 L3 L4

B+-Tree

MHT 

based ADS

m1 m2
m3 m4

m1 = H(L1)

H(m1||m2)

H(H(m1||m2)||H(m3||m4))

H(m3||m4)

m2 = H(L2) m3 = H(L3) m4 = H(L4)

Figure 3.3: MHT based ADS.

• The parser then forwards the rewritten queries to the CorrectDB query processor.

• CorrectDB query processor forwards the server subquery to the server-side query pro-
cessor. Server-side processor executes the server subquery on untrusted server host.
The results of server-side execution are verified by the SCPU query processor. For
verification, SCPU query processor using the MHT ADS.

• The SCPU subquery is processed entirely by the SCPU query processor to get the final
results.

• The SCPU query processor signs the final query result.

• The signed result is sent to the client by the server-side request handler.

• The client verifies the signature on the final query result.
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Query Parsing and Execution Example

A query consists of various SQL operations, such as selection, range predicate, projection,
aggregation, order-by, and group-by. The CorrectDB query parser’s job is to rewrite the
original client query into sub-queries ensuring the following:

• Processing within the SCPU is minimized.

• Any intermediate results generated by server-side query processing can be validated by
the SCPU using the ADS built on the leaf nodes of the B+-tree indices of the relevant
relations.

• Any server-side operations that cannot be authenticated by the SCPU are by the
SCPU.

• The net result of the sub-queries is the same as if the original client query was executed
without any rewrites.

To illustrate how queries are rewritten and processed, consider the following query derived
from the TPC-H [12] benchmark.

SELECT sum(l_extendedprice*l_discount), o_priority

FROM lineitem, orders

WHERE l_shipdate >= ’1993-01-01’

AND l_shipdate < ’1994-01-01’

AND o_orderdate between ’1992-01-01’ AND ’1993-01-01’

AND l_discount between 0.05 AND 0.07

AND l_orderkey = o_orderkey

AND o_priority in (’W’, ’R’, ’Q’)

Suppose we have B+-tree indices and MHT based ADS on the attributes l shipdate and
o orderdate. Then, the server-side subquery searches for all leaf nodes from the relations
lineitem and orders that satisfy the following conditions.

l_shipdate >= ’1993-01-01’

AND l_shipdate < ’1994-01-01’

AND o_orderdate between ’1992-01-01’ AND ’1993-01-01’

For query execution, server uses the B+-tree indices on attributes l shipdate and o orderdate.
The server does not identify individual tuples that satisfy query predicates. Instead, the
server locates only the B+-tree leaf nodes that contain the tuples which may potentially
form the query result. The server and the SCPU-side query processors then engage in a
interactive protocol. In each round, the SCPU query processor reads a set of leaf nodes and
verifies correctness and completeness using the MHT based ADS. On each set of leaf nodes
read, the SCPU query processor evaluates the SCPU subquery:
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SELECT sum(l_extendedprice*l_discount), o_priority

FROM lineitem, orders

AND l_discount between 0.05 AND 0.07

AND l_orderkey = o_orderkey

AND o_priority in (’W’, ’R’, ’Q’)

The SCPU-side verification step ensures QA for the server subquery results (Section
3.6.2). Since the server subquery filters out unwanted tuples from relations lineitem and
orders, the SCPU subquery only processes a subset of the data. The filtering is essential
since otherwise the join condition l orderkey = o orderkey would become an expensive
operation to perform entirely within the SCPU.

3.6.2 Range Queries

Consider the execution of a range query for all tuples with keys in the range (L, U), L <
U . Let R denote the set of tuples in the query result. Let L1, L2,..., Ln denote B+-tree leaf
nodes. Since the B+-tree stores data sorted on the search keys, the same sort order applies
to the leaf nodes as well including the ordering of tuples within a single leaf, that is, for two
leaf nodes Li and Lj where i < j, we have ∀ t ∈ Li, ∀ t

′

∈ Lj, t.key < t
′

.key. The server
searches all tuples in the range and identifies the leaf nodes Ll, Ll+1,...Lm, where l > 1, m <
n and l < m. The server then sends the leaf nodes to the SCPU query processor. The SCPU
query processor computes the hash of the leaf nodes H(Ll), H(Ll+1),...H(Lm). Using the
computed hash values and by requesting additional ADS nodes from the server, the SCPU
query processor constructs and verifies the root hash of the MHT ADS. Finally, the SCPU
query processor scans the leaf nodes to find all tuples t, such that t.key ∈ (L, U), which
comprise the result set R.

The following properties hold:

Correctness: ∀ tuples t ∈ R, t.key ∈ (L, U)

Proof (sketch): The SCPU verifies evaluation of the range predicate. Correctness then re-
duces to the collision resistance of the MHT. Since the MHT based ADS is used to verify the
integrity of each leaf node the server cannot alter any tuples to subvert query correctness.

Completeness: ∀ t, if t.key ∈ (L, U) then t ∈ R

Proof (sketch): Completeness is violated iff, ∃ tuple t such that t.key ∈ (L, U) but t /∈ R.
Note that the leaf nodes Ll, Ll+1, ... Lm are consecutive nodes at the lowest level of the
B+-tree. The sequence of leaf nodes is verified by the SCPU using the MHT since the same
leaf nodes correspond to the leaves at the lowest level of the MHT. Thus, when the root hash
of the MHT is constructed, the chain linking between the B+-tree leaf nodes is automatically
verified.

In addition, the SCPU checks the following two conditions.
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• min{t.key, t ∈ Ll} < L, and

• max{t.key, t ∈ Lm} > U .

The above conditions ensure that all leaf nodes that potentially contain result tuples are
included in the server-side subquery results. Hence, the above conditions together with chain
linking of consecutive leaf nodes guarantee query completeness. Proof then reduces again to
collision resistance of the MHT.

3.6.3 Projections

Projection operations are performed by the SCPU query processor. Thus, no additional ADS
is needed to support projections. For each leaf node being processed, the SCPU query pro-
cessor simply discards any attributes not required for current query processing. Supporting
projections within the SCPU enables CorrectDB to build the MHT based ADS on B+-trees
leaf nodes rather than on individual tuples. An MHT on leaf nodes requires significantly less
hash operations to verify intermediate server-side query results.

In effect, for the verification of Ln leaf nodes of average size Ls KB with an average tuple
size of Ts bytes, the number of hash operations required during SCPU-side verification are
reduced from Ln∗Ls∗1024

Ts
to Ln. Moreover, hashing entire leaf nodes enables utilization of

SCPU’s crypto-hardware engine, which has high throughputs for bulk operations.

3.6.4 Joins

Join processing is a relatively straight-forward extension of range processing. A join query
specifies a condition on two attributes. The conditions are of the form R.A ◦ S.B, where R
and S are relations; A and B are attributes of relations R and S, respectively; and ◦ is the
join operator.

CorrectDB uses two methods for evaluating join queries. For a query with a ordering-
based join operators such as =,< and >, CorrectDB uses a sort-merge join. For all other
join operators, CorrectDB uses a full nested join.

Ordering-based join operators (=, <, >, ≤, ≥)

CorrectDB uses a sort-merge join for ordering-based join operators.
To illustrate, consider authentication of the join query σPr

(R) ⋊⋉R.a=S.b σPs
(S). The server

uses the B+-trees on R.a and S.b to identify all the leaf pages of R and S that contain the
query results. If the predicates Pr and Ps contain conditions on attributes other than R.a
and S.b or if both Pr and Ps are empty, then all leaf pages of both relations potentially
contain result tuples. If Pr and Ps contain predicates only on R.a and S.b, then the server
identifies the subset of leaf nodes by traversing the B+-trees trees of relations R and S.

Once the server identifies leaf nodes, the server and SCPU-side query processors engage
in an multi-round protocol. In each round, the server-side query processor sends a set of leaf
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nodes, in order, to the SCPU query processor. The SCPU query processor performs a sort-
merge scan of leaf nodes and constructs the final result set. Just as in range query processing
(Section 3.6.2), the SCPU query processor verifies both integrity and consecutive linking of
all leaf nodes read using the respective MHT based ADS. Verification by SCPU-side query
processor ensures both correctness and completeness. Projections and additional predicates
if present, are processed by the SCPU query processor.

Arbitrary Joins

Nested loop joins are required when join operations are complex and cannot be computed
using a sort-merge mechanism, or when there are no indices available on the join attributes.
Nested loop joins can also be the preferred choice when the outer relation is small. Unfortu-
nately, nested loop joins can be expensive. Suppose relations R and S participating in the
join have nr and ns number of leaf nodes, respectively. A nested join operation would then
require up to nr * ns leaf nodes to be read into the SCPU.

The cost of nested joins can be reduced by utilizing the available SCPU memory. Let
M be the size of SCPU memory and M/2 space inside the SCPU is dedicated to hold B+-
tree leaf nodes. Then, the SCPU query processor will read nr + (2∗P∗ns

M
)2 leaf nodes to

perform the join. The verification procedure described in Section 3.6.2 ensures correctness
and completeness. If an ADS is not available for a particular join attribute, the ADS of
another attribute of the same relation is used to perform the join within the SCPU. When
using ADS on an attribute not specified in the join condition, all leaf nodes are scanned by
the SCPU query processor.

3.6.5 Aggregations, Grouping and Ordering

Existing tree and signature-based mechanisms require the client to perform aggregation
operations. Thus, additional data, which is not part of the final query results is transferred
to the client incurring both query latency and data-transfer-cost overheads. CorrectDB
however, performs all aggregation operations inside the SCPU and only the final result is
sent to the client. Thus, CorrectDB significantly lowers the amount of data transferred.
Later, in Section 3.7, we compare the performance and cost of aggregation operations for
CorrectDB with the data transfer in other QA solutions.

Similar to aggregation operations, group-by clauses are processed entirely by the SCPU
query processor. No additional tuples are transferred to the client other than the final query
result. Suppose, on average a group-by clause aggregates ng values and the total number
of tuples satisfying the query predicates is nr. Then, SCPU processing of group-by clauses
reduces the number of tuples transferred from nr to nr

ng
.

Order-by clauses cannot be optimized like aggregation and group-by clauses. If an order-
by clause is processed as the last step in query execution, then there is no reduction in the
number of tuples that need to be transferred to the client. If the client has higher processing
capacity than the SCPU, such as the case of desktop clients, then client-side ordering will
perform better that CorrectDB at least in execution time.
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3.6.6 Client Side Verification

In CorrectDB, unlike other QA solutions, client-side verification is minimal. The SCPU
query processor computes and verifies final query results and transfers a signed hash of
query results to client. Client-side processing is limited to r hash operations and a single
signature verification per query, where r is the number of tuples in the query result.

The tuples comprising the result set R are identified by the SCPU query processor while
processing the SCPU subquery. Let R = {t1, t2, ..., tr}. The SCPU then computes the digest
of R, D(R) as

D(R) = H(Cid||Qc|| Nonce||H(t1)||H(t2)||...||H(tr)).

Here, Cid is the client identifier and Qc is the client query. Nonce is a per query fresh
random value sent by the client within the query request. The Nonce establishes a unique
association between the result R with the query Qc. The unique association prevents the
server from matching stale results with a recent query, thereby thwarting replay attacks.

The SCPU signs D(R) using a private key. The signed message S(D(R), SKCDB) is sent
to the client along with the query results R. SKCDB is the CorrectDB application secret key.
The client then recomputes D(R) and verifies the signature using the CorrectDB application
public key.

Standardized outbound authentication mechanisms exist for key setup and for commu-
nication of public keys to clients. We described outbound authentication in Section 2.3.

3.6.7 Database Updates

Clients issue update statements to request modifications to the server-hosted data. An
update query requires secure modifications to the B+-tree storing the tuples and to the
MHT based ADS used by the SCPU for verification. Both B+-tree and ADS are modified
only by the SCPU via local interaction with the server-side query processor. Updates do not
involve the data owner. Also, since root hashes for the ADS are stored within the SCPU,
client synchronization is not needed.

To illustrate update query processing in CorrectDB, consider the following update query:

UPDATE lineitem SET l_discount = l_discount + 0.01

WHERE l_shipdate >= ’1993-01-01’

AND l_shipdate < ’1994-01-01’

AND l_discount between 0.05 AND 0.07

The above query is processed as follows.

Step 1: The query is parsed by the SCPU query parser and rewritten into a server subquery

SELECT * FROM lineitem

WHERE l_shipdate >= ’1993-01-01’

AND l_shipdate < ’1994-01-01’
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and a SCPU subquery

UPDATE lineitem SET l_discount = l_discount + 0.01

WHERE l_discount between 0.05 AND 0.07

Step 2: The server then executes the first subquery and finds all the leaf nodes that require
modifications. Additional leaf nodes may be identified if the server requires rebalancing of
the index.

Step 3: The server transfers the leaf nodes to the SCPU query processor. The SCPU query
processor verifies the leaf nodes using the MHT ADS. Verification ensures correctness and
completeness.

Step 4: The SCPU query processor then modifies the nodes as per the second subquery.
The SCPU query processor also modifies the MHT ADS recomputing and updating the root
hash stored within the SCPU.

Step 5: Only after making changes to the ADS, the modified leaf nodes are transferred back
to the server query processor and the final changes applied to the B+-tree.

Steps 1-5 are repeated for each B+-tree that has an MHT ADS.

3.7 Experiments

In this section, we present experimental evaluation of CorrectDB. In Section 3.4.3, we
identified the best QA solutions for range and join query processing. We compare Cor-
rectDB with the identified solutions. For range query execution we compare CorrectDB
with DSAC [185, 203] using signature aggregation. For join query processing we compare
with AIM [269].

3.7.1 Setup and Measurements

The SCPU used is the IBM 4764 with 32 MB RAM, and a PowerPC 405GPr at 233 MHz.
The SCPU sits on the PCI-X bus of an Intel Xeon 3.4 GHz, 4GB RAM Linux box with
kernel 2.6.18. The client is an Ubuntu VM with 1 GB RAM and 2 vCPUs. The CorrectDB
stack is written in C.

Measurements are made for the three key metrics – verification object (VO) size, query
execution time (QET), and client-side verification time (VT).

For comparative experiments (Figures 3.4-3.6), we combine both query execution time
(QET) and client-side verification time (VT) into a single total query execution time. In
Figure 3.7(a), we list each time component separately. CorrectDB has a constant VO size,
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(a) Small tuple sizes (no projections).
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(b) Large tuple sizes (no projections).
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Figure 3.4: Comparison of CorrectDB and signature aggregation for range queries with and
without projections

which is a single signed digest of all tuples that comprise the query result. The VO size is
the same for all query types. Hence, we only mention the VO size once here.

3.7.2 Range Queries

To evaluate the performance of CorrectDB and signature aggregation, we set up multiple
relations with varying tuple sizes. Each relation consists of 106 tuples. All relations are
indexed using B+-trees. Tuple keys are random integers between 1 and 107.

We evaluate the performance by varying the tuple size and the number of tuples in the
query result. As we shall see, both tuple size of number of tuples in query result have varying
effects on performance and it is hence important to consider both. Test queries are of the
form

SELECT * FROM R where R.key > ’LB’ AND R.key < ’UB’
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(b) FK join with VO transfer (10 Mbps link).
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(c) Equi join - 10 Mbps link.

Figure 3.5: Comparison of CorrectDB and AIM for foreign Key and equi-join queries.

’LB’ and ’UB’ are varied to get query results of different sizes. Although CorrectDB
supports a wide range of queries, we only use simple queries here for consistent comparison
since other approaches [185, 203, 269] support and evaluate only such basic queries.

Figure 3.4(a) shows the total query execution times for CorrectDB and signature ag-
gregation for varying tuple and result set size. For small tuple sizes, 32 bytes - 128 bytes,
CorrectDB performs 2-6x better than signature aggregation. The performance of signature
aggregation does not depend on tuple size since signature aggregation is performed only
tuple signatures and not on the tuples. Thus signature aggregation has similar times for all
tuple sizes. CorrectDB’s performance however, varies with both tuple size and number of
tuples in the result.

For larger tuple sizes, such as 512 bytes and large result sets, ≥ 103, we observe a shift
and signature mechanisms perform better by factors of 1.1-2x (Figure 3.4(b)). Increasing
tuple size also increases the size of the leaf nodes that contain tuple data. Since leaf nodes
are transferred from the server to the SCPU, the larger the leaf nodes, the higher is the
transfer latency. Hence, CorrectDB has higher execution times for large tuples. The transfer
latency is evident from Figure 3.7(a), which depicts the breakdown of execution times of
different query processing stages of CorrectDB. As seen from Figure 3.7(a), for result sizes
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Figure 3.6: Effect of data link capacity on performance of AIM compared to CorrectDB.

≥ 103, the data transfer of leaf nodes from the server to the SCPU is significant.
Paying the penalty to transfer entire leaf nodes into the SCPU enables CorrectDB to

support projections and complex selection predicates. The overhead of transfer is thus
acceptable. However, note that in the experiments above we have not considered projection
operations, that is, the entire tuple is part of the result. Once projections are introduced,
CorrectDB regains the performance advantage even for large tuple sizes, as described next.

3.7.3 Projections

We now add projections to the test queries. We fix the tuple size to 512 bytes and vary the
number of projected attributes in the select condition of the test query for each run. Each
tuple is divided into 16 equal sized attributes.

As Figure 3.4(c) illustrates, CorrectDB performs better for all cases by 1.5-7x. In case
of signature aggregation, if p tuples are projected out, then the number of signatures to be
aggregated increases by p per tuple in the query result [203]. As a result, projections cause
higher execution times for signature aggregation as compared to CorrectDB even for large
tuple sizes.

Both signature aggregation and CorrectDB have the same VO size and hence are equiva-
lent on the VO size metric. Figure 3.8(a) summarizes which solution, CorrectDB or signature
aggregation, performs better for each combination of the parameters, tuple size, result size,
and number of projected attributes.

3.7.4 Join Queries

For join queries, we compare CorrectDB with AIM [269]. We use two relations R and S.
Each relation has 106 tuples. We vary the tuple size from 32 to 512 bytes. Each relation has
a B+-tree on its key attribute and an MHT based ADS. The test queries are of the form

SELECT * FROM R, S WHERE R.key = S.key AND R.key > ’LB’
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Figure 3.7: CorrectDB query profile and data privacy overheads (as percentage of total query
execution time).

AND R.key < ’UB’

For AIM, the VO size is not constant but varies with the query result size. Since nontrivial
VO sizes result in large server-client data transfers, we include the data transfer time as a
measurement parameter. As in [269], we evaluate the performance on both foreign Key (FK)
and equi (EQ) joins to keep the comparisons consistent.

Foreign Key (FK) Join

In a FK join, each tuple in relation R matches at least one tuple in the other relation S.
FK joins therefore have large query result sizes. Figure 3.5(a) shows the total FK join query
execution times for CorrectDB and AIM for various tuple sizes. Note that the data transfer
times are not included in Figure 3.5(a). We see that when compared on processing times
alone, AIM outperforms CorrectDB for tuple sizes up to 256 bytes.

However, note that the VO size for AIM ranges from 19 MB to 260 MB [269]. Hence, once
we consider the data transfer times as well, it is observed that the performance relationship
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(a) CorrectDB and Signature Aggregation (Range queries)

(b) CorrectDB and AIM (Join queries)

Figure 3.8: Performance maps for CorrectDB, Signature Aggregation and AIM. A box shaded
with the color of a specific solution indicates that this solution has better performance, that
is, lower total query execution time, for the set of parameters corresponding to that box.

inverses. Results including server to client data transfer times are depicted in Figure 3.5(b).
As seen from Figure Figure 3.5(b), when data transfer times are also considered, CorrectDB
features significantly lower overall execution times by factors up to 5x.

Figure 3.5(b) considers a link capacity of 10 Mbps. In certain settings, such as private
clouds, the client-server link capacities may be larger favoring AIM. Hence, in Figure 3.6(a)
we recompare for different link capacities. In conclusion, up to link capacities of 50 Mbps
CorrectDB still performs better than AIM.

In most commercial settings today, available link capacities for home and businesses
range from 1 Mbps to 30 Mbps. Increased capacity is available at increased costs [65]. For
commercial cloud services, such as Amazon EC2, the available TCP bandwidth from external
clients to cloud has been benchmarked in the 7-27 Mbps range [230]. Hence, for today’s link
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Figure 3.9: CorrectDB aggregate and update operations.

capacities CorrectDB performs better than AIM.

Equi (EQ) Join

Unlike FK join, where each tuple in relation R matches at least one tuple in the other
relation S, equi join has a small result set, which we fix at 31000 as in [269]. A small result
set reduces the processing times for AIM to construct the VO. Moreover, the VO size is also
small. CorrectDB on the other hand, uses the same processing mechanisms for both FK and
EQ joins, thereby having similar performance for both join types.

Figure 3.5(c) shows the execution times for EQ join queries for a link capacity of 10
Mbps. Figure 3.6(b) compares the times for varying data link capacities. In summary, for
link capacities > 5 Mbps AIM performs similarly or better.

Figure 3.8(b) summarizes which solution ,CorrectDB or AIM, performs better for each
combination of the parameters – join type, tuple size, and link capacity.
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Conclusions

As seen from Figures 3.8(a) and 3.8(b), using trusted hardware makes CorrectDB the pre-
ferred QA solution for a wide range of the parameter space. In addition, use of trusted
hardware as in CorrectDB significantly increases the QA functionality. For example, support
for arbitrary joins, aggregation queries, access control, and client synchronization (Section
3.5).

3.7.5 Updates

Update operations are evaluated using the range query data sets from Section 3.7.2. Test
queries of the form

UPDATE key=key+1 FROM R where R.key>’LB’ AND R.key<’UB’

Updates are a highly favorable scenario for CorrectDB. As discussed in Section 3.5, ex-
isting QA solutions do not perform updates server-side. Instead, the data owner obtains the
relevant tuples from the server, modifies the tuples locally along with the ADS, and reuploads
modified tuples and ADS to the server. Hence, the data transfer overheads in existing QA
solutions are significant. As a result, for update operations CorrectDB outperforms in the
entire parameter space. Results for update operations are shown in Figure 3.9(a).

3.7.6 Aggregations

To evaluate aggregate operations, we use the data setup of range queries (Section 3.7.2).
Test queries are of the form.

SELECT SUM(key) FROM R where R.key > ’LB’ AND R.key < ’UB’

Figure 3.9(b) shows data transfer times in other QA approaches as compared to the time
required for computation within the SCPU wherein only the final result is send to the client.
The link capacity considered is 10 Mbps. As seen from Figure 3.9(b), total query execution
time in CorrectDB is lower for result sizes > 102. Note that, here we only compare the data
transfer time in other solutions and not the total query execution time, which includes the
server processing and client verification times. We compare with data transfer times only, to
specifically demonstrate the significant overhead of data transfer for aggregations in existing
QA solutions. If overall query execution times are added to results of Figure 3.9(b), then
CorrectDB outperforms for all result sizes.

We also compare the costs of aggregations in CorrectDB with just the data transfer costs
in other approaches. For cost comparison, we use the data transmission costs derived in
prior work [65]. To compute the cost of SCPU-based aggregations, we consider the SCPU
cycle costs derived in Section 2.4.1. Figure 3.9(c) illustrates the cost comparison.

As seen from Figure 3.9(c), CorrectDB performs significantly better in terms of cost as
long as the number of tuples aggregated is above 80. For aggregation set size < 80, a fixed
lower bound cost is incurred in transferring a single data page from the server to the SCPU.
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3.8 Discussion

3.8.1 Data Confidentiality and QA

In Chapter 2 we showcased TrustedDB [30], an efficient SCPU-based solution for data con-
fidentiality in the presence of a curious but otherwise trusted server. TrustedDB partitions
relational data into sensitive and nonsensitive attributes. Sensitive attributes are encrypted.
A client query is then split in such a way that sensitive data is decrypted only inside the
server-side. Processing on nonsensitive attributes is done by the host server. TrustedDB
supports full SQL and leverages the use of fine-grained, attribute-level encryption to offload
significant query operations to the server.

TrustedDB does not provide QA guarantees. Although it may be feasible to endow
TrustedDB with an additional layer of QA, we chose not to do so for two reasons.

Firstly, since TrustedDB employs fine-grained, attribute-level encryption, it can keep the
SCPU-side processing minimal by offloading nonsensitive range, projection and aggregation
operations to the server. However, to date, we do not have a single authentication data
structure (ADS) that can verify the integrity of all query operations. Hence, to add QA in
TrustedDB, a separate ADS is needed for each query operation. Having a separate ADS

for each operation increases server-side storage, the SCPU-server data transfer overheads
and SCPU-side processing. In short, the overheads of adding QA to TrustedDB far exceed
the original cost of data confidentiality, resulting in a solution that is efficient neither for
confidentiality nor for QA.

Secondly, for illustration purposes, it was important to clearly outline the cost and perfor-
mance benefits of trusted hardware over existing QA work without the additional overheads
of data confidentiality.

However, CorrectDB allows for a certain degree of confidentiality at minimal cost by
employing tuple-level encryption in update and insert operations. All tuple attributes are
encrypted except for the search attribute(s) on which a B+-tree index is built. The search
attribute(s) are not encrypted to aid the server in query processing. Also, since projections,
aggregations, and the final processing of queries are done inside the SCPU, tuple data is
decrypted only within the SCPU.

We measure the overhead of data confidentiality in CorrectDB. Figure 3.7(b) shows the
data confidentiality overhead for a set of range queries while Figure 3.7(c) shows the overhead
for equi join queries. We observe that the confidentiality overhead decreases with tuple size.
For small result set sizes as in the case of EQ join queries, confidentiality is added with very
little overhead.

3.8.2 Optimized Solutions

At the expense of functionality, it is possible to design SCPU-based solutions targeted at
particular query types. For example, for EQ join queries we can modify the leaf nodes
to store the hash of individual tuples instead of entire tuple contents. Tuple-level hashing
reduces the size of the leaf nodes and thereby the server-to-SCPU data transfer times. To
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Figure 3.10: Equi Join Comparison for new 4765 SCPU which yields faster results for all
cases.

illustrate, for tuple size of 512 bytes from above experiments the transfer times are reduced
by up to 95%. However, we chose to opt out of targeted solutions since we posit that the
benefits of utilizing trusted hardware are seen in the increased functionality offered (Section
3.5) at better or comparable performance.

New SCPU

Older SCPU technology is now being replaced by new and improved SCPUs, such as the
recently announced IBM 4765 [19]. The 4765 features a larger 128 MB RAM, two faster
400MHz CPUs, and a significantly faster PCIe bus for increased 100 MB/s throughputs.

Initial intuitions suggest that the new 4765 will increase the current CorrectDB advan-
tages by a factor of 4-6x over existing QA solutions. We know from the results of Figure
3.7(a) that the server-SCPU transfer latency often dominates query processing time. The
higher PCIe throughputs of the 4765 will significantly decrease server-SCPU data transfer
times, resulting in a 3.5x reduction of the overall query execution time. Figure 3.10 projects
the expected performance of CorrectDB on the new SCPU. As seen, CorrectDB outperforms
AIM in the entire parameter space.

3.9 Conclusions

In this chapter, we provide insights into the benefits of trusted hardware for query authen-
tication (QA). The reach the insights, we survey existing QA work and identify cost-based
inefficiencies. We show how trusted hardware significantly reduces the data transfer cost in-
curred by existing QA solutions for join queries. For range queries, use of trusted hardware
avoids expensive cryptographic operations significantly saving processing costs.
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The benefits of trusted hardware for QA include significant cost savings, better perfor-
mance, and enhanced QA functionality. We realize the benefits in CorrectDB, a trusted
hardware based DBMS that provides QA for a wide range of query types on both read-only
and dynamic data sets.
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Chapter 4

Concurrent Query Authentication
with ConcurDB

4.1 Chapter Overview

4.1.1 Background and Motivation

As we briefly discussed in Chapter 3, Query Authentication (QA) complicates update op-
erations since changes made to the outsourced database tuples involve modifications in the
related server-side authenticated data structures (ADS). In case of concurrent updates by
multiple clients, existing QA solutions have two key limitations. Firstly, current ADS designs
limit transaction concurrency because in order to keep the authentication information small,
they require updates to a common subset of data items in an ADS resulting in bottlenecks.
Further, since current QA solutions do not synchronize clients, they are also subject to replay
attacks (also referred to as fork consistency attack [157]). A replay attack occurs when the
server hides updates of one client from other clients by using old authentication data.

Due to the limitations of concurrency and replay attack detection, existing QA so-
lutions do not support update operations [240]; assume fairly static or infrequently up-
dated databases [85, 182]; rely on the data owner to perform all updates on behalf of
clients [185, 204, 276]; permit only periodic updates [203]; or suggest batching of update
operations [155].

4.1.2 Our Contribution: Concurrent Query Authentication with

Updates

We design and evaluate ConcurDB, a concurrent, multi-client QA scheme that eliminates
bottlenecks on ADS updates and detects replay attacks efficiently. For concurrency, we de-
couple transaction execution and verification permitting transactions to execute concurrently
and performing verifications in parallel. To detect replay attacks, we design novel communi-
cation protocols ensuring that updates by one client are visible to other clients even though
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clients have no direct knowledge of each other. As compared to existing QA approaches,
ConcurDB shows a fourfold increase in performance for update operations.

ConcurDB can be utilized to augment the low-cost CorrectDB solution by adding con-
currency. The protocols designed for ConcurDB can easily be ported for execution in the
general-purpose trusted hardware devices utilized by CorrectDB, significantly increasing QA
concurrency.

4.1.3 Chapter Outline

Section 4.2 describes concurrency-related limitations of existing QA solutions. Section 4.3
discusses the key ideas behind ConcurDB design. ConcurDB architecture is detailed in
Section 4.4. Section 4.5 lists experimental results. Finally, Section 4.6 concludes the chapter.

4.2 Concurrency of Existing QA solutions

In Chapter 3, we described the classification existing QA solutions into tree and signature-
based. In this section, we focus on the concurrency-related limitations of existing QA work.

4.2.1 Tree-based QA solutions

In tree-based approaches, the ADS is constructed as a tree. As part of range or join query
execution, service provider traverses the tree and gathers query results and nodes that form
the VO. Using the VO, client reconstructs the traversal path used in query execution to
verify correctness and completeness.

The Merkle B-tree (MBT) [155, 202] forms the basis of tree-based approaches. All other
tree-based approaches, such as EMBT [155], AIM [269], and XBT [204] are variations of
MBT.

MBT is essentially a Merkle hash tree [172] applied to a B+-tree. In a MBT, a hash value
is computed for each B+-tree node using a cryptographic hash function, such as SHA-1. The
hash for a B+-tree leaf node is computed as follows: The hash of each tuple contained in the
leaf node if first computed. Then, the hashes of all the leaf node’s tuples are concatenated.
A hash of the concatenated value gives the leaf node’s hash.

The hash of a non-leaf node is computed as the hash of concatenation of the hashes of
the node’s children. The root node’s hash is signed by the data owner using a secret key.
The root signature can be verified by clients using the owner’s public key.

During query execution, the provider gathers a minimal set of tuple and B+-tree node
hashes that would enable the client to reconstruct the root node’s hash. The additional tuple
and node hashes constitute the VO. Using the VO and query results, client reconstructs the
root hash. The client then compares the computed root hash to the original root hash signed
by the owner. If the two hashes match, QA is ensured [202].

To illustrate, Figure 4.1 shows a MBT for a set of tuples along with the VO for a sample
range query.
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Figure 4.1: An example of a MBT ADS. ti denotes a tuple with key i. hi is the hash of tuple
ti. Hl,k represents the hash of kth node at level l. Root node is at level 0. Values circled in green
constitute the VO for sample select query σ61≤key≤80. T1,T2,T3, and T4 are update transactions.
The number of red concentric circles indicate the number of transactions that are in contention for
that value.
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Figure 4.2: An example of a signature-based ADS. ti denotes a tuple with key i. hi is the hash
of tuple ti. tlb and tub are fake boundary tuples added to the data set. si represents the signature
for tuple ti. Values circled in green constitute the VO for sample select query σ61≤key≤80. T1,T2,T3,
and T4 are update transactions. The number of red concentric circles indicate the number of
transactions that are in contention for that value.

Concurrency

For read-only transactions, it is trivial to observe that tree-based approaches have good
concurrency. However, for update operations, concurrency is limited due to the common set
of hash values modified by all update transactions. An update of any tuple in the dataset
requires recomputation of node hashes up to the root. Thus, in a multi-client scenario,
each client update locks and modifies multiple node hashes significantly limiting transaction
concurrency. Figure 4.1 shows an MBT example wherein transactions update independent
tuples (from distinct leaf nodes) and yet have contention on node hashes.

We note that other tree-based approaches are derived from the MBT approach. Hence,
they too have a common set of hash values modified on each update limiting concurrency.
Concurrency limitations of tree-based approaches, such as Embedded-Merkle B-tree (EMBT)
[155] have been identified and experimentally demonstrated in prior work [203].
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Replay Attacks

In tree-based approaches, there are two options to store the root hash. The first option is
to distribute the root hash to clients when the database and ADS are initially uploaded to
the provider. Although this approach precludes server-side replay attacks, it necessitates
synchronization between clients to communicate updated root hash values.

The second option is to store the signed root hash with the provider. On updates, a new
root hash is computed and resigned using a secret key not known to the provider. However,
storing the signed root hash with the provider enables replay attacks. Using old hash values,
the provider can transfer stale results to clients.

To avoid replay attacks, most QA solutions limit updates to the data owner [185,204,276].
Jain et al. [141] designed a QA solution that permits updates by clients. However, all
transactions are verified by the data owner. Moreover, Jain et al. use a MBT ADS limiting
server-side concurrency due to contention for hash updates.

4.2.2 Signature-based QA solutions

Figure 4.2 illustrates a signature-based ADS approach [185]. Here, the ADS consists of a set
of signatures forming a chain. For each tuple, a signature is computed on the concatenation
of the tuple’s hash along with the hash of the immediate predecessor tuple. For example,
the signature for a tuple ti is computed as S(h(ti)||h(ti−1)), where S(·) denotes a signature
operation using the data owner’s secret key, h(·) represents a cryptographic hash, and ti−1
is the predecessor of ti when sorted on the search attribute. By including the predecessor in
the signature, a chain of all tuples is formed ordered on the search attribute. The VO then
consists of the signature of all tuples in the query result and the signature of two boundary
tuples not in the result. Since each tuple is linked to its predecessor in an unforgeable
manner, the client can verify that no tuple is either illicitly inserted or omitted from the
query result.

Variations of the above signature-based scheme can be constructed by including both
predecessor and successor tuples in the signature chain or by computing signatures using
multiple search attributes [200].

Concurrency

Compared to tree-based approaches, signature-based solutions exhibit good concurrency for
updates. In signature-based approaches, an update of a tuple requires updates to the tuple’s
and the neighboring tuples’ signatures. Hence, two updates are in lock contention only if
they update same or adjacent tuples as illustrated in Figure 4.2.

Replay Attacks

In signature-based QA, the ADS consists of as many signatures as the number of database
tuples. Hence, replay attack detection in signature-based QA is challenging.
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Figure 4.3: Relationship between tree and signature-based ADS. Number of tuples, n = 16.

Replay attack detection in signature-based approaches is challenging even if updates are
limited to the data owner. For any update by the owner, all clients need to be notified of
signatures that are no longer valid. If the number of updated tuples and clients is large, the
problem of notifying clients becomes acute.

Pang et al. [203] address the problem of client notification to a certain extent by allowing
the data owner to periodically publish a concise bitmap of signatures that were updated in
the current period. The solution requires clients to check freshness of each signature received
in the VO. However, replay attacks can only be detected for a period p, if the client has
stored a bitmap for p. Hence, client-side storage can potentially become a limiting factor.

4.2.3 Relationship between Tree and Signature-based QA

As discussed in Section 4.2.1, tree-based approaches limit concurrency since any two update
transactions will be in contention for updating the root hash. A straight-forward way to
increase concurrency for tree-based solutions is to maintain multiple root hashes from lower
levels. For example, consider the MBT from Figure 4.1. Instead of the single root hash
H0,0, the hashes H1,0, H1,1, and H1,2 can be considered as root hashes for their respective
sub-trees. Here, H1,0, H1,1, and H1,2 will all be signed by the data owner or distributed to
clients. The advantage of this approach will be that a transaction that updates tuples in
subtree of H1,0 will not be in contention with a transaction that updates tuples in subtrees
of H1,1 and H1,2, thereby increasing concurrency. However, a server-side replay attack can
now involve H1,0, H1,1, and H1,2.

The approach of multiple root hashes can be extended to the lowest tree level. At the
lowest level, a root hash will be maintained for each adjacent tuple pair giving maximum
concurrency. This effectively is the signature-based QA approach, where each root hash is a
signature chain between two adjacent tuples.

Figure 4.3 highlights the relationship between tree and signature-based QA. In sum-
mary, a signature-based approach can be viewed as a modification of tree-based QA for
high concurrency. However, due to the large number of signatures (or root hashes) involved,
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signature-based approaches make replay attack detection challenging.

4.3 ConcurDB: Key Insights and Ideas

In view of existing QA approaches, designing a particular QA solution in practice requires
two design choices to be made. The first choice is between tree and signature-based QA. The
second choice that has received less consideration in prior work is between online and offline
QA. In online QA, a client query is verified at execution time, that is, a client verifies query
correctness and completeness as soon as it receives query results and VO from the provider.
In offline QA, a client query is verified at a later time, possibly after several other queries
have executed.

As a result of the two choices, currently, four combinations for QA design are possible –
tree-based, online; tree-based, offline; signature-based, online; and signature-based, offline.

We first discuss trade-offs for the choices. Then, in Section 4.3.4, we outline our choices
in ConcurDB. In ConcurDB, we choose the best combination in terms efficiency and make
further design improvements to realize concurrent QA.

4.3.1 Tree-based vs Signature-based

Trade-offs

In Chapter 3, we compared existing QA solutions based on published experimental results.
We found that signature-based approaches perform better for range query processing. Tree-
based approaches are more efficient for join processing. Therefore, knowledge of application
query types can be a factor in the choice between tree or signature-based QA.

For cloud environments, where data transfer costs dominate [65], signature-based QA
may be preferred due to the small, constant VO sizes. Analysis of tree-based QA has shown
VO sizes to be O(logb n), where n is the total number of database tuples and b is the B+-tree
branching factor [155].

For multiple updates by a single client, signature-based approaches have been shown
to perform better than tree-based approaches [203]. No efficient solutions are available for
updates in a multi-client scenario.
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4.3.2 Online vs Offline QA

Most QA solutions [136, 155, 160, 201, 203, 204, 269] have been designed assuming the online
QA model.

Jain et al. [141] designed an offline QA solution based on the MBT. During query exe-
cution, all relevant information is logged with the data owner, including query results and
VO. If a particular transaction is suspected in the future, the logged data can be used for
verification. Verification is entirely the data owner’s responsibility.

The QA solution by Goodrich et al. [118] performs most query verification operations
online except for replay attack detection, which is done offline using cryptographic accu-
mulators. Both solutions [118, 141] use tree-based ADS and hence limit concurrency due to
contention for hash updates. Goodrich et al. leave the extension of their protocols to a
multi-client setting as an open problem.

Memory Checking and QA

The ability to detect replay attacks is necessary to support update operations in QA. Replay
attacks are not just a concern for QA. Any application that updates data stored with an
untrusted party is subject to replay attacks. Hence, general solutions for replay attack
detection may also be applicable to QA.

The problem of replay attacks has been extensively studied under memory checking [41].
In memory checking, a client performs store (write) and retrieve (read) operations on an
untrusted memory. The goal of memory checking is to ensure that a value retrieved by
the user from a particular memory location was the latest value written to that location.
Memory checking thus detects replay attacks at a level of simple store (write) and retrieve
(read) operations.

We observe that since database operations are a sequence of reads and writes on tuples
[150], memory checking schemes are applicable to replay attack detection in QA. To illustrate
the connection between memory checking and QA, consider the MBT, which is the basis for
tree-based QA solutions. The MBT in turn is based on the Merkle hash tree (MHT) [202],
which is an online memory checking scheme [41].

Memory checking can be online or offline [41]. In online memory checking, each store
and retrieve operation is immediately verified. In offline memory checking, verification is
deferred until a number of store and retrieve operations have been performed.

We describe memory checking in detail in Section 4.4.1. In this section, we outline the
theoretical bounds proved for memory checking that apply to all replay attack detection
schemes including ones designed for QA.

Trade-offs

Dwork et al. [88] show that the complexity of online memory checking is Ω(log n/ log log n),
where n is the total number of data items subject to replay attacks. This result is significant
for signature-based QA since the number of signatures for potential replay attacks is large,
as many as the number of database tuples. At first glance, it may seem that tree-based
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approaches are not limited by the theoretical bound since replay attacks involve only the
root hash. However, this is not the case. In order to limit replay attacks to a single root
hash, tree-based approaches by design have a built-in processing and VO size complexity of
O(b · logb n)1 [155]. Thus the lower bounds by Dwork et al. are inherently factored into the
ADS for tree-based approaches.

In conclusion, irrespective of tree or signature-based ADS, the per query complexity of
online QA cannot be better than Ω(log n/ log log n), where n is the number of database tuples.

Further, for a multi-client scenario, online QA results in a serial dependency between
client queries. In online QA, the results of a query are verified as soon the query is executed.
As a result, in tree-based QA, if one client updates the root hash as part of verification, a
subsequent client cannot execute its update query unless it has access to the updated root
hash from the previous client. Therefore, in addition to lock contention over a common set
of hash values, the single root hash results in a serialized dependency between client trans-
actions. Figure 4.4(a) illustrates the serialized, online transaction execution and verification
model.

Unlike online memory checking, offline memory checking schemes have O(1) amortized
complexity per operation [41]. Thus, offline memory checking is a promising alternative for
replay attack detection in QA. However, to achieve amortized constant complexity, offline
memory checking detects whether a replay attack has occurred in a batch of operations.
The precise operation (or query in case of QA) that was subject to a replay attack is not
identified.

4.3.3 Analysis Summary

Based on the analysis from Sections 4.2.1 and 4.3.2, we find that tree-based and online QA
are not suitable for high concurrency. Tree-based ADS have higher processing and data
transfer latencies; and limit concurrency due to contention for hash updates. Online QA
introduces a serial dependency between client transactions and imposes a theoretical lower
bound of Ω(log n/ log logn) for replay attack detection. As a result, we rule out tree-based
and online designs for concurrent QA with updates.

Signature-based and offline QA exhibit greater potential for concurrency. However,
signature-based solutions are more vulnerable to replay attacks and use expensive crypto
operations. Offline QA detects replay attacks only for query batches.

4.3.4 ConcurDB: Signature-based and Offline

In ConcurDB, we take advantage of signature-based design for concurrency but overcome
the associated limitations via the following:

• We do not use separate mechanisms to verify correctness and completeness; and to
check for replay attacks. Instead, we design a single memory checking-based, offline

1b is the B-tree branching factor.
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QA scheme that verifies both correctness and completeness of SQL query results; and
detects replay attacks.

• Although ConcurDB design is based on signature-based QA, we do not use expensive
crypto operations, such as RSA signatures. Instead, we use the properties of memory
checking to guarantee unforgeability. Thus, we achieve same security properties as
signature-based QA but avoid the use of expensive crypto operations (Section 4.4.2).

• For concurrency, our offline QA scheme decouples transaction execution and verifi-
cation. Thus, when one transaction commits, a client does not wait to execute a
subsequent transaction. QA operations for a transaction are initiated in a parallel
client thread. Thus, transaction execution is not stalled by QA as is the case with on-
line QA (Section 4.4.3). Figure 4.4(b) illustrates the ConcurDB transaction execution
model.

• We extend offline QA to enable concurrent updates by multiple clients (Section 4.4.5).
The extension involves new protocols that allow clients to securely exchange small,
constant-sized authentication data in a fixed order while using the untrusted provider as
a communication hub. Our protocols ensure that the provider cannot skip transaction
execution for any client, cannot reuse old authentication data (for replay attacks), and
cannot tamper client messages.

• We provide extensions to our offline QA scheme that enable precise identification of
transactions for which QA requirements were violated (Section 4.4.6). Once our offline
QA mechanism detects QA infringement for a batch of transactions, we permit a switch
over to online QA. The online QA mode repeats verification for offline QA operations.
By design, online QA identifies the faulty operation immediately on execution and
hence the faulty transaction. For providers that malfunction or cheat occasionally the
switch over condition ensures lower offline QA costs for most of the time. The higher
price for online QA applies only when an occasional fault occurs. Moreover, even the
online QA mode does not stall subsequent transaction executions and offline QA.

Experimental results (Section 4.5) validate the high concurrency in ConcurDB as compared
to tree-based solutions showing a fourfold increase in performance for updates.

4.4 Architecture

We detail ConcurDB architecture as follows: Firstly, we explain offline memory checking as
it was originally introduced for a single client scenario (Section 4.4.1). Then, we model QA
as an offline memory checking problem and introduce a basic memory checking-based QA
solution (Section 4.4.2). Next, we extend the basic QA solution to support QA for database
transactions involving multiple SQL queries, such as range, updates, inserts, deletes, pro-
jections, and joins (Sections 4.4.3 - 4.4.4). Then, we present a novel protocol that extends
offline QA to multiple clients with concurrency (Section 4.4.5). Finally, we present extensions
to our offline scheme to precisely detect the transactions (if any) that violate QA (Section
4.4.6).
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Figure 4.5: Sample execution of ConcurDB’s offline QA mechanism for two concurrent clients.
Blue steps represent transaction execution. Green steps represent offline QA operations. Steps
with the same sequence number and color, or with different colors occur in parallel except for the
dependency indicated by red arrows. Dotted blue lines indicate the interval during which queries
of transaction Tij execute.

4.4.1 Offline Memory Checking [41]

Model

Memory checking involves three entities: an untrusted memory M, a trusted user U , and
a trusted checker C. M consists of n registers. Each register has a b-bit unique address
and can store a b-bit value. C is assumed to have a small amount of trusted memory of size
O(logn).

User U requests two types of operations – read and write. Given a register address a,
read returns the b-bit value stored at a. Given a register address a and a b-bit value v, write
stores v at address a.

User U sends a sequence of read and write operations to C. C translates a user operation
into multiple memory read and write operations. C’s job is to verify that M operates
correctly. M is said to operate correctly, if the value read by user from any register a is the
latest value that was written to a [41].

The offline checker by Blum et al. stores a timestamp of size O(logn) with each register
inM. A memory read operation thus accepts an address a and returns a tuple (v, t), where
v and t are the value and timestamp stored at a, respectively. A memory write operation
accepts a triple (a, v, t) and stores the value v and timestamp t at a.

Offline Checker

Checker C stores two hash values H(R) and H(W) in its memory. Here, R is the set of
all triples (a, v, t) read from M and W is the set of all triples (a, v, t) specified to write
operations. Initially, R =W = φ.

The hash function H has the following two properties:

90



Tij jth transaction of client i.

Sij Sequence number of transaction Tij.

RQs RQs = Ek(N, s,Ci) is the request for
authentication set (Section 4.4.5) of
transaction with sequence number s

(Section 4.4.5).

RSs RSs = Ek(N, s,Ci, Cj,A) is the re-
sponse to request for authentication set
of transaction with sequence number s
(Section 4.4.5).

BQA(s) BasicQA step for transaction with se-
quence number s (Section 4.4.2).

FQA(s) Final QA step for a batch of m trans-
actions (Section 4.4.2).

Table 4.1: Legend for Figure 4.5.

• Incremental : Given H(R) and a triple (a, v, t), H(R ∪ (a, v, t)) can be computed
efficiently.

• Collision Resistant : If R 6=W, then H(R) 6= H(W) with high probability.

For a user operation write(a, v), the checker performs the following actions.

• Reads the value v′ and time t′ stored at a.

• Checks that current time is greater than t′.

• Writes current time t and value v to a.

• Replaces H(R) with H(R ∪ (a, v′, t′))

• Replaces H(W) with H(W ∪ (a, v, t))

For a user operation read(a), the checker performs the following actions.

• Reads the value v′ and time t′ stored at a.

• Checks that current time is greater than t′.

• Writes current time t and value v′ to a.

• Replaces H(R) with H(R ∪ (a, v′, t′))

• Replaces H(W) with H(W ∪ (a, v′, t))

After a sequence of operations, C reads all n memory registers and updates H(R). Col-
lision resistance of hash function H ensures that if M operates incorrectly, then H(R) 6=
H(W).
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Complexity

The checker performs a constant number of memory operations for each user read or write.
Thus, the final step wherein the checker reads all memory registers to update H(R) dom-
inates the runtime cost especially if M is large. To achieve O(1) amortized cost per user
operation, the checker performs the final step only after n user operations have completed.
Thus, memory correctness is verified only after a long sequence of n operations.

4.4.2 Memory Checking-based QA

In this section, we model QA as the offline memory checking problem described in Section
4.4.1.

Overview

For each relation, we first sort the tuples on a search attribute. Then, we create links between
adjacent tuples. The links are similar to the signatures in signature-based QA (Section 4.2.2).
However, since we do not use expensive crypto operations, such as RSA signatures, we use the
term links rather than signatures to differentiate from existing signature-based QA solutions.

We create links as a function of tuple attribute values. As a result, the links also guarantee
tuple integrity (Section 4.4.4). Moreover, a SQL query can now be considered as a sequence
of reads and writes on links. Therefore, memory checking can be applied to links (Section
4.4.2) along with checks for correctness and completeness (Section 4.4.4).

Since links are a function of tuple attributes, updates and inserts of database tuples
correspond to link updates and insertions, respectively. By properties of memory checking,
we ensure that, a link value read as a result of a SQL query is the latest value written to
the database. Reuse of an old link value by the provider or fake tuples in the query result
cannot go undetected.

Initialization and Hashing Tools

Data Upload and Links Creation

At initialization, the data owner uploads a relation R = {t0, t1, t2, ..., tn, tn+1} to the
provider, where each ti is a tuple, such that ti.a < ti+1.a for some attribute a. t0 and tn+1

are two fake boundary tuples, such that the values of t0.a and tn+1.a are never used for any
other tuples. Additionally, the data owner uploads a set of triples L wherein each triple
(li, vi, tsi) represents the following.

• li is a link between ti and ti−1. That is, li = h(h(ti−1)||h(ti))), where h is a crypto-
graphic hash function, such as SHA.

• vi takes two values. vi = 1 means link li is valid and vi = 0 indicates an invalid link.

• tsi is the timestamp for link li. The timestamp is incremented on each read and write
of li.
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At initial upload time, vi = 1 and tsi = 0 for all triples (li, vi, tsi), 1 ≤ i ≤ n + 1.
Thus, the triples (li, vi, tsi) closely resemble the (a, v, t) triples in memory checking (Sec-

tion 4.4.1).

Incremental Hashing

Similar to memory checking, the data owner records two hash values, H(R) and H(W).
Initially, R = φ and W = L.

As in memory checking, we require the hash function H to be incremental. That is given
H(R) and a triple (l, v, t), it should be efficient to computeH(R∪(l, v, t)). To ensure collision
resistance, we use incremental hash functions based on modular arithmetic [108, 109]2.

Using incremental hashing with a large modulus p [210], owner computes H(W) as

H(W) =
∑n+1

i=1 h(li||vi||ti) mod p

For now, we assume that the owner distributes H(R), H(W), and a count C = |W| to
client. Later, in Section 4.4.5 we describe a new protocol that enables multiple clients to
securely exchange the set {H(R), H(W), C} using the untrusted server as a communication
hub.

BasicQA

We first detail our memory checking-based protocol for read and write operations on links.
We term this scheme as BasicQA. Then, in Section 4.4.3 we describe use of the BasicQA
protocol to support QA for entire transactions involving multiple SQL queries.

For a sequence of link reads and writes, our BasicQA protocol ensures correctness and
detection of replay attacks. That is, any link returned by provider as a result of a read, is
either the original link uploaded by the owner or a new link uploaded by client. If a link
is made invalid by client, then the invalid link cannot be returned as a result of any future
read without detection.

Provider and Client operations

In BasicQA, the provider supports two operations – read(l) and write(l, v, ts). Read
returns the tuple (v, ts), where v is the value and ts is the timestamp, respectively, for link
l. write(l, v, ts) stores the triple (l, v, ts) at the provider.

Unlike an user in memory checking, a client in BasicQA functions as both a user and
checker. To capture link invalidation (as part of update queries) and addition of new links
(as part of insert and update queries) by client, BasicQA supports three operations on
the client’s side – cwrite, cwrite new, and cread. cwrite invalidates an existing link and
cwrite new stores a new valid link with the provider.

On a cwrite(l), a client performs the following.

• Reads the tuple (v, ts) for link l from the provider.

2Proved collision-resistant via equivalence to the weighted subset sum problem.
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• Checks that v is 1, that is, the link is valid.

• Writes the triple (l, 0, ts + 1) to the provider.

• Replaces H(R) with H(R ∪ (l, v, ts)).

• Replaces H(W) with H(W ∪ (l, 0, ts + 1)).

For a new link, under cwrite new(l), client does the following.

• Writes the triple (l, 1, 0) to the provider.

• Replaces H(W) with H(W ∪ (l, 1, 0)).

• Increments count C by one.

For cread(l), client actions involve the following.

• Reads the tuple (v, ts) for link l from the provider.

• Checks that v is 1, that is the link is valid.

• Writes the triple (l, v, ts + 1) to the provider.

• Replaces H(R) with H(R ∪ (l, v, ts)).

• Replaces H(W) with H(W ∪ (l, v, ts + 1)).

After a sequence of operations, the client requests all triples from the server. For each
triple received, the client updates H(R) and decrements C. When C = 0, client checks
whether H(R) = H(W). The collision-resistant property of hash function H ensures that if
the provider operates incorrectly, then H(R) 6= H(W) with high probability. As in memory
checking (Section 4.4.1), longer operation sequences, result in lower amortized per-operation
verification cost.

4.4.3 QA for SQL Queries : An Overview

We use the BasicQA protocol for transaction-level QA as follows. For each query Q in
the transaction, client submits Q to the provider and receives some results as a response.
The client then checks the results for partial correctness (not completeness). For example,
client checks whether all result tuples satisfy the query predicates. Once partial correctness
is verified, using the query results, client constructs and records the hashes for all tuples
that were read or written as part of query execution. At transaction commit time, using
the recorded tuple hashes, client initiates the BasicQA protocol. Section 4.4.4 details the
derivation of BasicQA operation sequences from query results for SQL queries.

Note that in ConcurDB, a client does not wait to submit subsequent transactions to
the provider. Execution of BasicQA operations for a transaction is initiated in a parallel
client thread. Thus, transaction execution is not stalled by QA as is the case with online
QA (Figure 4.4(a)). In a multi-client scenario, each client performs the BasicQA operations
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in a parallel thread and continues to execute new transactions. Figure 4.4(b) depicts the
ConcurDB transaction execution model.

A client is required to store the tuple hashes only temporarily. As soon as the BasicQA
operations are performed by the parallel thread for a particular transaction, client discards
the tuple hashes recorded for that transaction. In practice, since the BasicQA operations
involve far less computations than server-side transaction execution, the BasicQA operations
for a transaction are expected to complete before a subsequent transaction commits.

Further, initiating the BasicQA protocol at transaction commit enables two optimiza-
tions. The first optimization is elimination of redundant operations. For example, if the
same tuple was read twice in a transaction, with no updates in between, then we only per-
form the corresponding BasicQA operation once for the tuple link. The second optimization
is reduction in client-server communication. All BasicQA operations for one transaction are
batched and performed via a single round trip message to the provider.

When verification for completeness and replay attack detection is desired, a client or
the data owner initiates a special transaction that executes the final memory checking step
wherein all triples are downloaded from the provider. The final step verifies completeness
and checks replay attacks for all committed transactions.

The timing of final QA step gives a tradeoff for overhead of QA. The longer the final step
is delayed, lower is the per transaction QA cost. In real-world deployments, the final step can
be initiated at times of low transaction load, such as nightly. For amortized constant QA cost
per transaction, the final step must be performed after n/r transactions have committed.
Here, n is the number of tuples initially uploaded by the owner; and r is the average number
of tuples read and written per transaction.

Figure 4.5 illustrates ConcurDB’s offline QA mechanism.

4.4.4 Mapping SQL Query Results to BasicQA Operations

Now that we have outlined the QA process for database transactions, we detail the derivation
of BasicQA operation sequences from query results for various SQL query types.

Range (Select) Queries

Consider a range query for all tuples with keys in the range [L, U ], L ≤ U . Let R =
{t0, t1, t2, ..., tr, tr+1} denote the set of tuples in the query result. t0 and tr+1 are two boundary
tuples included in the query result to ensure completeness.

For completeness, t0 must be the immediate predecessor of t1 and tr+1 must be the
immediate successor of tuple tr. That is, t0 and tr+1 are required to satisfy the following
conditions:

• t0.key < L and ∄ ti, such that t0.key < ti.key < L.

• tr+1.key > U and ∄ ti, such that tr+1.key > ti.key > U .

At query execution, client checks the following for correctness of result set R:

• t0.key < L.
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• tr+1.key > U .

• L ≤ ti.key ≤ U , where 1 ≤ i ≤ r.

Additionally, client records the hashes of all tuples in R. In the parallel QA step, using the
stored tuple hashes, client executes the following sequence of BasicQA operations.

• cread(l), where l = h(h(ti−1)||h(ti)) and 1 ≤ i ≤ r + 1.

In order to violate correctness or completeness the provider has three choices. The first
choice is to introduce a fake tuple in the result. The second choice is to omit a valid
tuple from the result. The final choice is to resend a tuple that was previously updated
or deleted by client. First two choices would result in a BasicQA operation on a link that
was neither written by the owner at database upload time nor written by the client using
the cwrite new operation. The third choice would result in a BasicQA operation on a link
that was previously made invalid by client using the cwrite operation. As a result, in the
final QA step, for all provider choices, H(R) and H(W) will not be equal. Therefore, QA
infringements are guaranteed to be detected by ConcurDB’s offline memory checking-based
QA.

Update Queries

Consider an update query that modifies all tuples with keys in the range [L, U ], L ≤ U .
The client first executes a select query for all tuples in the range [L, U ], L ≤ U . Let
R = {t0, t1, t2, ..., tr, tr+1} denote the set of tuples in the select query result. t0 and tr+1

are two boundary tuples included for completeness as in the case of range queries (Section
4.4.4). Similar to the case of range queries, client performs checks for correctness on set R.

The client then locally modifies the tuples to create the set R′ = {t0, t
′
1, t
′
2, ..., t

′
r, tr+1},

where t′i is the updated version of tuple ti. Boundary tuples are not updated since they fall
outside the query range.

After local modifications, client records the hashes of all tuples in sets R and R′. Finally,
client issues the update query to provider and the provider updates database tuples.

In the parallel QA step, client constructs and executes a sequence of BasicQA operations
using the stored tuple hashes as follows.

• cread(l), where l = h(h(ti−1)||h(ti)) and 1 ≤ i ≤ r + 1.

• cwrite(l), where l = h(h(ti−1)||h(ti)) and 1 ≤ i ≤ r + 1.

• cwrite new(l), where l = h(h(t′i−1)||h(t′i)), 1 ≤ i ≤ r + 1 and t′0 = t0.

cwrite operations invalidate old tuple links. cwrite new operations add new links for the
updated tuples.

Insert Queries

Consider an insert query to add a new tuple t with key k. The client first executes a select
query for the range [k, k]. Let R = {tl, tu} denote the set of tuples in the select query result.
tl and tu are required to be the immediate predecessor and successor, respectively, of tuple
t.
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The client then records h(tl), h(tu), and h(t). Finally, client submits insert query to the
provider. The provider adds the new tuple to the database.

BasicQA operations for the insert query are the following.

• cread(l), where l = h(h(tl)||h(tu)).

• cwrite(l), where l = h(h(tl)||h(tu)).

• cwrite new(l), where l = h(h(l)||h(t)).

• cwrite new(l), where l = h(h(t)||h(u)).

The old link between tl and tu is invalidated and two new links are added for tuple t.
For clarity, we illustrated an insert with a single tuple. Extensions to insert-select queries
are straight-forward.

Delete Queries

Delete queries are processed similar to updates queries in that the client first executes a
select query to fetch all tuples that would be deleted. The client then verifies correctness,
records hashes, and submits the delete query to provider.

If R = {t0, t1, t2, ..., tr, tr+1} is the select query result, then the BasicQA operation se-
quence for the delete query with range [L, U ] (L ≤ U) is the following:

• cread(l), where l = h(h(ti−1)||h(ti)) and 1 ≤ i ≤ r + 1.

• cwrite(l), where l = h(h(ti−1)||h(ti)) and 1 ≤ i ≤ r + 1.

• cwrite new(l), where l = h(h(t0)||h(tr+1)).

Projections

In Section 4.4.2 we described the tuple link construction from tuple hashes. To support
projections, we construct a tuple hash as a Merkle hash tree (MHT) on the tuple’s attribute
values. The MHT root hash is the tuple’s hash.

When a subset of attributes are projected by a select query, for each tuple in the query
result, provider returns only the projected attributes along with a set of hashes using which
the client constructs the tuple hash. Incorrect projections will result in an invalid tuple
hash. An invalid tuple hash will in turn result in an invalid link which will be detected by
the BasicQA protocol.

The MHT node hashes are not stored at the provider. The provider computes the hashes
as part of query execution. Hence, no extra storage is consumed on the provider’s side.

Moreover, since most databases use row-level locking, concurrent transactions are in
contention for entire tuples. Adding an MHT on tuple attributes does not add further
contention.

Join Queries

We provide two mechanisms for join processing – client-side join and nested join. To illustrate
the two mechanisms, consider a join query σR.a=S.b and R.a ∈ [L1,U1] and S.b ∈ [L2,U2], where R and
S are two relations; and a and b are search attributes of R and S, respectively.
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If selectivity of both attributes is high, joins are processed client-side. The client executes
and verifies two select queries σR.a ∈ [L1,U1] and σS.b ∈ [L2,U2]. Using results of both queries,
client performs the join locally. Verification of both queries is carried out as described in
Section 4.4.4.

In the nested join mechanism, the relation with higher selectivity of the search attribute
is first selected. In the example query suppose that R.a has higher selectivity. The client first
executes the range query σR.a ∈ [L1,U1] performing checks for correctness and gathering tuple
hashes as described in Section 4.4.4. For each tuple t in the query result, client executes and
verifies a select query σt.a=S.b.

In case of low selectivity of search attributes join efficiency in ConcurDB will be lower
than tree-based approaches. As discussed in Section 4.3.1, tree-based approaches are more
efficient for join processing and thus more suitable for read-intensive OLAP applications.
Our focus is OLTP applications with frequent data updates. Hence, we design ConcurDB
for efficient multi-client update scenarios.

4.4.5 Multi-Client Offline QA

The security of ConcurDB’s offline QA scheme relies on two hash values H(R) and H(W)
(Section 4.4.2). Initially, H(R) and H(W) are computed by the data owner at database
upload time. In a single client scenario, owner transfers the initial hashes and a count C to
the only client. We collectively refer to the two hashes and count as the authentication set
A = {H(R),H(W), C}. As part of the QA step for each transaction, client updates A. The
authentication set A remains with the single client until the final QA step.

In a multi-client scenario, transactions are executed concurrently by many clients. Each
client performs the BasicQA operations for its transactions in a parallel thread. Since Ba-
sicQA involves updates to the set A, all clients need access to A. However, in order to
ensure QA, only one copy of A can exists3 and clients need to access the single copy. This
is analogous to the root hash in tree-based ADS. However, unlike online tree-based QA
transaction execution is not stalled by QA.

Moreover, for consistency, databases operate under a serializable mode. In serializable
mode, locking mechanisms ensure that a concurrent transaction schedule is equivalent to
some serial schedule of transactions [150]. Therefore, to ensure QA consistency, the order of
BasicQA steps must match a serial order of committed transactions.

Serializing the order of BasicQA steps requires the authentication set A to be exchanged
by clients in a fixed serial order without clients having direct knowledge of each other. We
designed a new protocol to enable the exchange using the untrusted provider as a commu-
nication hub.

Authentication Set Exchange Protocol

For each client transaction, at commit time, the provider assigns a unique incrementing
sequence number. In effect, the provider commits to a serial transaction schedule. The

3For partitioned databases, one copy can exist for each partition.
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BasicQA operations are then performed in the order of assigned sequence numbers. Our
protocol design ensures that the provider cannot skip sequence numbers (i.e., cannot skip a
transaction execution altogether), cannot reuse old sequence numbers (i.e, cannot perform
a replay attack using old authentication set), and cannot tamper client messages.

As part of the exchange protocol, each client performs two essential operations.

• Before commencing the BasicQA operations for a transaction with sequence number s,
a client acquires the authentication set (from another client) resulting from BasicQA
for transaction with sequence number s− 1.

• After completing the BasicQA operations for a transaction with sequence number s, a
client responds to a request (from another client) for authentication set with sequence
s.

Setup

All clients and the data owner share a key K. We denote by EK(M), the encryption
of message M with key K. Additionally, each client stores a sequence number S. Initially,
before any transactions are executed, S = 0 for all clients. The initial database upload by
the owner is considered as a transaction with sequence number 0. Provider assigns sequence
numbers to client transactions starting from 1.

Protocol (illustrated in Figure 4.5)

In the parallel QA step, when performing BasicQA operations for transaction with se-
quence number s, a client uses the following steps to acquire the authentication set for
sequence number s− 1.

• Generates a random nonce N .

• Pushes the message Ek(N, s − 1, C) to the provider, where C is the unique client
identifier.

• Waits for the response message Ek(N ′, s′, C ′, C ′′,A) Here, C ′′ is the responding client’s
identifier and A is the authentication set for sequence s′.

• Decrypts the response message and verifies that N ′ = N , s′ = s− 1, and C ′ = C.

Using A, the client performs BasicQA operations, resulting in the authentication set A′.
After BasicQA operations are performed, client C does the following to transfer A′ to a
client that has sequence number s + 1.

• Waits for a request message for current sequence s. The request message is of the form
Ek(N, s, C ′), where C ′ is the requesting client’s identifier.

• Decrypts the request message.

• Ensures that s > S, that is, the client has not previously responded for the sequence
s.

• Pushes the message Ek(N, s, C ′, C,A′) to the provider.

• Sets S ← s.

The nonce plays three important roles. Firstly, the nonce associates a request and a
response message for a particular sequence number. Secondly, along with the client identifier,
the nonce ensures message integrity. Finally, since each client only responds to a sequence
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number once, the nonce ensures that replay attacks are avoided. Security proof follows by
induction from the intial database upload which is assigned sequence number zero.

4.4.6 Detection of Faulty Transactions

ConcurDB’s offline QA mechanism described so far (Sections 4.4.2 - 4.4.5) only detects
whether QA infringements for a batch of transactions. Specific transactions for which the
provider cheated or malfunctioned are not identified. However, in certain applications, iden-
tification of faulty transactions may be necessary for corrections. In this section, we describe
the augmentations to ConcurDB for retrospective identification of faulty transactions.

At a high level, faulty transactions are identified as follows. Once the offline QA mech-
anism detects a QA violation, that is, H(R) 6= H(W) in the final QA step (Section 4.4.2),
a switch over to online QA occurs. The online QA mode repeats verification of all BasicQA
operations (cwrite, cwrite new, and cread). By design, online QA identifies the faulty
operation immediately on execution.

Note that the switch over to online QA occurs only if a violation is detected by offline QA.
The switch over condition is important for efficiency. Recall from Section 4.3.1 that online
QA has a complexity of O(logn) per operation as compared to O(1) complexity for offline
QA. For providers that malfunction or cheat occasionally the switch over condition ensures
lower offline QA costs for most of the time. The higher price for online QA applies only when
an occasional fault occurs. We emphasize that the assumption for occasional violations is
reasonable in practice. If a provider malfunctions or cheats often, then switching providers
may be a more prudent decision than using a more expensive online QA solution considering
that online QA would also limit transaction throughputs.

To enable a switch over to online QA, we make the following augmentations to our offline
QA mechanism.

• Along with the hashes H(R) and H(W) we add a new hash H(O). H(O) records
(in sequence) all BasicQA operations performed by clients. Initially, at upload time,
sequence O = 〈(create new, li)|1 ≤ i ≤ n + 1〉, where l1, l2, ..., ln+1 are the tuple
links (Section 4.4.2). The hash function H is not incremental. For example, H(O ∪
(create new, li)) = h(H(O)||h(create new, li)).

• H(O) is added to the authentication set exchanged by clients (in transaction commit
order) using the authentication set exchange protocol (Section 4.4.5).

• Provider records the sequence of all BasicQA operations, that is, the sequence of cwrite,
cwrite new, and cread operations.

• After a QA violation is detected by the offline mechanism, online QA is initiated. In
online QA, the owner or a client requests the BasicQA operations from provider. H(O)
verifies that provider returns the exact same sequence of BasicQA operations as were
performed in offline mode. For each operation, client and provider engage in an online
QA protocol. We suggest the use of MBT-based online implementation by Jain et al.
that also supports insert and update operations. cwrite, cwrite new, and cread will
correspond to the MBT update, insert, and read operations, respectively. Online QA

100



 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

Se
le

ct
s 

pe
r 

se
co

nd
 (

2x )

Number of tuples in query result

No QA
ConcurDB

MBT

1000100101

(a) Select queries.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

U
pd

at
es

 p
er

 s
ec

on
d 

(2
x )

Number of tuples in query result

No QA
ConcurDB

MBT

1000100101

(b) Update queries.

Figure 4.6: Throughput comparison of ConcurDB and MBT with varying number of con-
current clients (1,2,4,8,16,32) and result set size (1,10,100,1000). “No QA” indicates a plain
MySQL database with no query authentication.

will identify the faulty operation.

The above augmentations add only a constant number of operations for clients and
provider. Hence, the amortized constant cost of offline QA is preserved. Moreover, switching
to an online mode does not necessarily stall transactions. Clients can continue to execute
new transactions and perform offline QA for the new transactions. Online QA can be done
in parallel for the faulty batch of transactions. However, the decision to stall transactions
is application-specific since application logic dictates whether a faulty transaction causes
inconsistencies in future transactions.

4.5 Experiments

We compare the performance of ConcurDB with MBT and separately evaluate ConcurDB
using the TPC-C benchmark.

Implementation

ConcurDB implementation is split into client-side and server-side libraries. The client-
side Java library transparently performs all QA related operations, including query rewriting;
and BasicQA and concurrency protocols.

Server-side library comprises of a set of stored procedures that implement provider-side
QA functionality. Using stored procedures instead of modifying the database makes Con-
curDB easily portable to run with several DBMS systems. For the current implementation,
the database of choice is MySQL version 5.6.17. For the authentication set exchange protocol
(Section 4.4.5), we use the RabbitMQ message broker. The total LOC is ≈11K.

Setup

We use a test bed of three identical servers. Each server has 2 Intel Xeon quad-core CPUs
at 3.16GHz, 8GB RAM, a Hitachi HDS72302 SCSI drive, and Linux kernel v3.13.0-24. One
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Figure 4.7: Data transfer comparison of ConcurDB and MBT with varying number of con-
current clients (1,2,4,8,16,32) and result set size (1,10,100,1000). “No QA” indicates a plain
MySQL database with no query authentication.
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Figure 4.8: TPC-C benchmark comparison of ConcurDB and plain MySQL with no query
authentication.

server is dedicated to host the MySQL database and the RabbitMQ message broker, thereby
playing the role of service provider. The remaining two servers host clients. We simulate
clients using the BenchmarkSQL tool.

4.5.1 Comparison with MBT

We implemented a MBT on top of MySQL following Jain et al.’s implementation [141].
We do not endow the MBT implementation with replay detection. Instead, multiple clients
update MBT node hashes and replay attacks are permitted. Permitting replay attacks on
MBT enables a comparison for concurrency-related characteristics only. The ConcurDB
approach on the other hand, performs the full offline QA protocol. Hence, we note that in
real deployments with replay attack detection, performance of MBT will be lower than the
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performance reported in our results.
We compare ConcurDB and MBT for both select (read-only) and update queries. The

data set consists of a relation with 10 million random integer keys. Each client transaction
performs a select or update query for a range of tuples. We measure the select and update
throughputs with varying number of concurrent clients for a total of 10K transactions.

Figures 4.6(a) and 4.6(b) show the throughputs for selects and updates, respectively. To
clearly indicate the overheads of QA, Figures 4.6(a) and 4.6(b) also show the performance
of a traditional MySQL database with no QA.

Overall, ConcurDB performs 1.5x - 4x better than the MBT approach with no replay
attack detection. Adding replay attack detection to MBT will widen the performance gap
further. The results directly stem from the O(logn) complexity of MBT versus the O(1)
amortized execution and data transfer complexity of ConcurDB’s offline mechanism.

Figures 4.7(a) and 4.7(b) report the total network-level data transferred for all clients.
Since we keep the total number of transactions constant (10K) is each test, data transfer is
similar for 1,2,4,8,16, or 32 concurrent clients. Hence, in Figures 4.7(a) and 4.7(b) we report
the average data transfer with error bars indicating the minimum and maximum.

For small result set sizes, ConcurDB exhibits up to 4x reduction in data transfer as
compared to MBT. For large result set sizes, the data transfer gap between ConcurDB and
MBT is lower. This results from the large fanout of MBT. Large result sets include tuples
from multiple leaf nodes. Since multiple leaf nodes share common parent nodes at upper
levels, the per tuple VO overhead reduces. ConcurDB’s data transfer on the other hand
increases linearly with query result size.

In a database with no QA, updates do not return results to clients except for an acknowl-
edgement. Hence, data transfer is nearly constant irrespective of result size size (Figure
4.7(b)). For QA solutions (MBT, ConcurDB, etc.) updates include search operations to
identify the correct set of target tuples. Hence, in QA solutions, data transfer for updates is
not constant but increases with result set size.

4.5.2 TPC-C Benchmark

We use a TPC-C scale factor of 100 giving a total database size of ≈10 GB. The distributions
of TPC-C transactions were set in accordance with the specification. 45% new order, 43%
payment, 4% order status, 4% delivery, and 4% stock level. A total of 100K transactions
were executed for each test. As per the TPC-C benchmark, we measure throughputs as the
number of new order transactions executed per minute (tpmc).

Figure 4.8(a) shows the throughput results in comparison with a plain MySQL database
with no QA. We also measure the total data transferred for all clients during the entire test,
reported in Figure 4.8(b).

Even for complex TPC-C transactions, ConcurDB maintains a QA overhead similar to
the case of simple select and update queries (Figures 4.6(a) and 4.6(b)).
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4.6 Conclusions

In this chapter, we introduced ConcurDB, a concurrent query authentication (QA) scheme
that supports updates by multiple clients. Identifying an important relationship between
query authentication and memory checking we showed that online QA is inherently limited
in latency and concurrency. Therefore, we designed ConcurDB as an offline QA mecha-
nism. ConcurDB eliminates bottlenecks on updates; increases transaction concurrency by
decoupling transaction execution and verification; and detects replay attacks efficiently. For
updates, ConcurDB performs up to 4x better that tree-based QA. Using the TPC-C bench-
mark, we also demonstrate that ConcurDB can achieve efficient QA for full-fledged OLTP
applications.

104



Chapter 5

History Independence For Regulatory
Compliance

5.1 Introduction

5.1.1 Background and Motivation

Retention regulations [83, 191, 252] desire that once data is deleted, no evidence about the
past existence of deleted data should be recoverable. Typically, data is deleted using secure
deletion [86]. Under secure deletion, data is physically deleted from the storage medium by
overwriting. The number of overwrites required depends on the storage medium character-
istics. However, evidence of past deletes cannot be eliminated by simply overwriting data as
in secure deletion [86]. Even after secure deletion, deleted data can be recovered via current
data organization.

Data structures are commonly used to organize data in systems. For a data structure, the
organization of data is referred to as the data structure’s state. Since the previous existence
of deleted data impacts the current data structure state, the current state can be used to
derive information about the past existence of deleted data.

We posit that for regulatory compliance, truly irrecoverable deletion can be achieved by
utilizing history independent data structures for organizing data (Section 5.2). The current
state of a history independent data structure is a function of current data only and not of the
sequence of past operations. Hence, if data is deleted in the past, the current state carries
no evidence of the delete. History independent data structures are therefore ideal to meet
data retention Regulations.

Although we have identified the role of history independence in designing systems compli-
ant with data retention Regulations, history independence has a wider scope. Applications
such as incremental signature schemes [183] and e-voting [38, 178, 179, 183] rely on the use
of history independent data structures for privacy. In the context of document editing,
incremental signature schemes ensure that intermediate edits are not visible in the final doc-
ument version. In e-voting, use of history independent data structures conceals the vote
order protecting voter privacy.
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Figure 5.1: A history dependent hash table organizes the same data set differently depending
on the sequence of operations (i.e., history). In this example, the hash table uses linear
probing [171]. The number of hash table buckets is 3 and the hash function is modulo 3.

5.1.2 Our Contribution: Theoretical Foundations of History In-
dependence

Weak history independence (WHI) and strong history independence (SHI) are the two ex-
isting notions of history independence. WHI assumes a rather weak adversary. SHI on
the other hand is a very powerful notion of history independence, secure even against a
computationally unbounded adversary [113]. Further, WHI does not protect against insider
adversaries and SHI results in inefficiency [48].

Currently, applications are restricted to using data structures with either WHI or SHI
characteristics. However, applications that do not fit into either WHI or SHI do exist. For
example, a journaling system that reveals no historical information other than the last k
operations1. Hence, there is a necessity for new notions of history independence targeted
towards specific application scenarios.

To facilitate the design of new history independence notions, we introduce the ∆ history
independence (∆HI) framework. ∆HI centers around a generic game-based definition of
history independence and is malleable enough to accommodate WHI, SHI, and a broad
spectrum of new history independence notions (Section 5.5.1). In addition, ∆HI helps to
quantify the history revealed by existing data structures most of which have been designed
without history independence in mind.

In the process of formalizing ∆HI, we explore the concepts of abstract data types, data
structures, machine models, memory representations and history independence itself.

To summarize, in this chapter we understand history independence from a theoretical
perspective. Then, in Chapters 6 and 7 we use the theoretical results to architect history
independent file systems.

5.2 A Quick Informal Look at History Independence

History independence is concerned with the historical information preserved within data
structure states. The preserved history may be illicitly used by adversaries to violate regu-
latory compliance. For example, an adversary may breach data retention laws by recovering

1We give additional examples in Section 5.5.1.
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deleted data. Therefore, to understand history independence, we need to specify what we
mean by state, what we mean by history, and what an adversary can do.

What is state?
A data structure’s state is an organization of data on a physical medium such as memory or
disk.

What is history?
History is the sequence of operations that led to the current data structure state.

What is the threat?
For many existing data structures, the current state is a function of both data and history
[113]. Hence, by analyzing the current state an adversary can derive the state’s history.
Depending on the application the historical information includes the following:

• Evidence of past existence of delete data [32].
• The order in which votes were cast in a voting application [38, 183].
• The intermediate versions of a published document [183].

To illustrate, consider the sample hash table data structure of Figure 5.1. The sample
hash table organizes the same data set differently depending on the sequence of operations
used. Hence, an adversary that looks at the system memory can potentially detect which
operation sequence was used to get to the current hash table state.

What is history independence?
History independence is a characteristic of a data structure. A data structure is said to be
history independent if from the adversary’s point of view, the current data structure state is
a function of data only and not of history. Thus, the current state of a history independent
data structure reveals no information to the adversary about its history other than what is
inherently visible from the data itself.

We emphasize that history independence is concerned with historical information that is
revealed from data organization and not from the data. In our hash table example of Figure
5.1, the fact that values {3,6,9} were inserted in the past is evident no matter how the data
is organized. The data organization reveals the order of insertion.

Are there different kinds of history independence?
Naor et al. [184] introduced two notions of history independence – weak history independence
(WHI) and strong history independence (SHI).

WHI and SHI differ in the number of data structure states an adversary is permitted to
observe. Under WHI, an adversary is permitted to observe only the current data structure
state. For example, as in case of a stolen laptop. Under SHI, an adversary is permitted several
observations of data structure states throughout a sequence of operations. For example, as
in case of an insider adversary who can obtain a periodic memory dump. For SHI, the
adversary should be unable to identify which sequence of operations was applied between
any two adjacent observations.
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How does history independence achieve regulatory compliance?
The current state of a history independent data structure is a function of current data only.
Data that was deleted in the past leaves no effect on the current state that an adversary
can detect. History independent data structures are therefore ideal to organize data in
compliance with data retention Regulations [83, 191, 252] that require truly irrecoverable
data erasure.

5.3 Preliminaries

Formalizing history independence requires an understanding of data structures. A data
structure itself can be viewed as an implementation of an abstract data type (ADT) on a
machine model [113]. An abstract data type (ADT) is a specification of operations for data
organization while a machine model represents a physical computing machine.

In the following, we will explore the aspects of ADTs, data structures, machine models,
and memory representations that are relevant to history independence. Then, in Section 5.4
we formalize history independence.

5.3.1 Abstract Data Type (ADT)

The specification of data organization techniques is often done via abstract data types.
The key characteristic of an ADT is that it specifies operations independently of any specific
implementation. We build on the the ADT concept proposed by Golovin et al. [113], wherein
an ADT is considered as a set of states together with a set of operations. Each operation
maps the current state to a new state.

Definition 3. Abstract Data Type (ADT)
An ADT A is a pentuple (S, sφ,O,Γ,Ψ), where S is a set of states; sφ ∈ S is the initial
state; O is a set of operations; Γ is a set of inputs; Ψ is a set of outputs; and each operation
o ∈ O is a function 2 o : S × Γo → S ×Ψo, where Γo ⊆ Γ and Ψo ⊆ Ψ.

The ADT is initialized to state sφ. When an operation o ∈ O with input i ∈ Γo is applied
to an ADT state s1, the ADT outputs τ ∈ Ψo and transitions to a state s2. The transition
from state s1 to s1 is denoted as o(s1, i)→ (s2, τ).

The necessity of ADTs

History independence requires that from an adversary’s point of view, the current data
structure state is a function of data only and not of history. In the context of history
independence, an ADT models the history revealed by data only. Since we view a data
structure as an ADT implementation (Section 5.3.3), the ADT helps to clearly identify what

2For brevity, we model each ADT operation with an input and an output. ADT operations may accept
no inputs or produce no outputs. Hence, an ADT operation can also be modeled as the following functions:
o : S → S, o : S → S ×Ψo, or o : S × Γo → S.
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the data structure is permitted or not permitted to reveal about past operations. Any history
revealed by an ADT state can be revealed by the corresponding data structure state. Any
history hidden by an ADT state must be hidden by the corresponding data structure state.

We will revisit and formalize the connection between ADT states and data structure
states in Section 5.3.5.

ADT as a graph

We can imagine the ADT to be a directed graph G, where each vertex represents an ADT
state and each edge is labeled with an ADT operation along with an ADT input and an ADT
output. The label for an edge between two vertices represents the operation that causes the
transition between the corresponding states. We call the graph G, the state transition graph
of the ADT.

Viewing an ADT as a graph will be particularly useful when we take a deeper look into
history independence in Section 5.3.4.

5.3.2 Models of Execution

An ADT is only a specification of operations for organizing data. For more practical use,
such as for efficiency analysis, concrete implementations of the ADT operations are required.
ADT implementations are provided via programs that can be executed on a given machine
model. We refer to an ADT’s implementation in a given machine model as a data structure
(Section 5.3.3).

Several machine models have been proposed [233], such as logic circuits, machines with
memory, and combinatorial circuits3. We focus on the RAM model of execution since we
are concerned with history independent characteristics of complex software applications.
Software applications such as databases, and file systems rely on data organization within
the storage sub-systems of modern computers. The sub-systems can be accurately modelled
using the RAM execution model.

RAM Model of Execution

The RAM model of execution models a traditional serial computer. The model consists of
two components, a central processing unit (CPU) and a random access memory (RAM).
Both the CPU and RAM are finite state machines (FSM) [233].

The RAM consists of m = 2u storage locations. Each location is a b-bit word and has
a unique log2m bit address associated with it4. Two operations are permitted on a storage
location in the RAM. First, a load operation to access the b-bit bit word stored at the
location. Second, a store operation that copies a given b-bit word to the location. Typically,
the b-bit words are copied to or copied from CPU registers.

3For a detailed survey of various machine models refer to the work of Savage et al. [233].
4This a bounded-memory RAM.

109



The CPU consists of n b-bit registers and operates on a fetch-and-execute cycle [233].
The CPU has an associated set of instructions that it can perform. CPU instructions are
specified in a programming language. A program in a RAM model is a finite sequence of
programming language instructions.

A machine model can itself be considered as an ADT [113]. In this case, the set of ADT
states is the set of all machine states, and the set of ADT operations is the set of all machine
programs. For the RAM model, the set of ADT states, the set of inputs, and the set of
outputs are all represented as bit strings.

Definition 4. Bounded RAM Machine Model
A bounded RAM machine modelM with m b-bit memory words and n b-bit CPU registers is
a pentuple (S, sφ,P,Γ,Ψ), where S = {0, 1}b(m+n) is the set of machine states; sφ ∈ S is the
initial state; P is the set of all programs ofM; Γ = {0, 1}∗ is a set of inputs; Ψ = {0, 1}∗ is
a set of outputs; and each program p ∈ P is a function p : S × Γp → S × Ψp, where Γp ⊆ Γ
and Ψp ⊆ Ψ.

M is initialized to state sφ. If a program p ∈ P with input i ∈ Γp is executed by the
CPU whenM is in state s1,M outputs τ ∈ Ψp and transitions to a state s2. The transition
from state s1 to s2 is denoted as p(s1, i)→ (s2, τ).

5.3.3 Data Structure

In the previous section, we hinted that a data structure is an ADT’s implementation in a
specific machine model. Now that we have defined both ADT and the RAM machine model
we can formalize the data structure.

An implementation for an ADT in a given machine model is obtained as follows.

• A machine representation is chosen for each ADT input and output.

• For each ADT operation a machine program is selected that provides the functionality
desired from the ADT operation.

• A unique machine state is selected to represent the initial ADT state.

We encapsulate the above steps in the following data structure definition.

Definition 5. Data Structure
A data structure implementation of an ADT A in a bounded RAM machine model M is a
quadruple (α, β, γ, sM0 ), where A = (S, sφ,O,Γ,Ψ) as per definition 3,M = (SM, sMφ ,PM,ΓM,ΨM)
as per definition 4, α : Γ′ → ΓM, β : Ψ′ → ΨM, γ : O → PM, sM0 ∈ S

M, Γ′ ⊆ Γ and
Ψ′ ⊆ Ψ.

α is a mapping from ADT inputs to machine inputs. That is, for any ADT input i, α(i)
is the machine representation of the input. Similarly, β is the mapping from ADT outputs
to machine outputs. γ is the mapping from ADT operations to machine programs. For an
ADT operation o, γ(o) is the machine program implementing o. Finally, just as the ADT
A is initialized to a unique state sφ, a unique machine state sM0 is selected to represent the
initial data structure state.
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Example: Hash table as an ADT and its data structure

To clarify the concepts of ADT and data structure, we use the example of a hash table.
First, we define a hash table ADT. Then, we describe a data structure implementation of
the hash table ADT.

Let H = (S, sφ,O,Γ,Ψ) be a hash table ADT, where

• S = 2N×N is the set of states5.

• sφ = ∅ is the initial state.

• Γ = N ∪ (N× N) is the set of inputs.

• Ψ = N ∪ {ERROR, SUCCESS} is the set of outputs.

• The set of operations O = {insert, search, delete}, such that

– insert : S × N× N→ S × {ERROR, SUCCESS}.
– search : S × N→ S × (N ∪ {ERROR}).
– delete : S × N→ S × {ERROR, SUCCESS}.

An implementation of the above hash table ADT in the RAM model, that is, a data
structure D = (α, β, γ, sM0 ) can be obtained as follows.

• For all n ∈ Nb, α(n) ∈ {0, 1}b. Here, Nb = {x|x ∈ N and x ≤ 2b}, b is the machine word
length, and α(n) is the bit string representing n. For all (n1, n2) ∈ Nb×Nb, α((n1, n2)) =
α(n1)||α(n2).

• For all n ∈ Nb, β(n) = α(n). SUCCESS is represented by {0}b, and ERROR is
represented by {1}b.

• γ : O → PM. A machine program is provided for each hash table ADT operation. For
example, implementation of the insert, search and delete algorithms of an array-based
hash table using linear probing [171].

• The initial machine state sM0 corresponding to the initial ADT state sφ is obtained
by first loading all machine programs implementing the ADT operations into memory
and setting the memory locations reserved for the hash table to zero.

Note that the above data structure D is one possible implementation of the hash table
ADT. Several other implementations are possible. In general, the same ADT can have several
data structure implementations.

Abstract Data Types And Type Theory: The above hash table ADT definition
assumes a hash table over natural numbers. In general, the hash table ADT can be defined
over any type, such as real numbers, bit strings, or be composed from other basic types. In

52A denotes the powerset of set A.
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type theory [53], a type is defined as a set of values that share a common logical property
or attribute. It is beyond the scope of this dissertation to formalize the notion of types.
Instead, we refer the reader to relevant notes on type theory [53].

Data Structure State

A data structure state is a machine state. The set of all data structure states consists of
all machine states that are reachable from the initial data structure state via execution of
machine programs implementing the ADT operations.

State Transition Graph For Data Structure

In Section 5.3.1, we introduced the state transition graph for an ADT. Similarly, we can
view a data structure in terms of a state transition graph. Graph-based view of a data
structure helps to identify the machine states that constitute the set of data structure states,
to precisely define the relationship between ADT states and data structure states (Section
5.3.5), and to understand history independence (Section 5.3.4).

A data structure can be considered to be a directed graph G, where each vertex represents
a data structure state and each edge is labeled with a machine program implementing an ADT
operation along with a machine input and a machine output. The label for an edge between
two vertices represents the program that causes the transition between the corresponding
states. We call the graph G, the state transition graph of the data structure.

5.3.4 A Semi-Formal Look At History Independence

Equipped with the concepts of ADT (Section 5.3.1), RAM machine model (Section 5.3.2),
data structure (Section 5.3.3), and state transition graphs, we can gain a deeper insight
into history independence. In Section 5.2, we briefly introduced the two existing history
independence notions – weak history independence (WHI) and strong history independence
(SHI). Both WHI and SHI are formalized in Section 5.4. In this section, we use the graph-
based view of ADT and data structure to understand history independence. Later, in Section
5.4 we formalize history independence.

The nonisomorphism problem

Nonisomorphism between the state transition graph of an ADT and of its data structure
implementation breaks SHI. WHI on the other hand can be achieved even when the ADT
and data structure state transition graphs are nonisomorphic. First, we look at how noni-
somorphism breaks SHI and then we discuss how to achieve WHI in the presence of noniso-
morphism.
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Figure 5.2: Example of nonisomorphism between ADT and data structure state transition
graphs. (a) Partial state transition graph for sample hash table ADT. (b) Partial state
transition graph for sample array-based hash table data structure implementation using
linear probing. Number of hash table buckets is 3 and the hash function is h(key) = key % 3.
γ(insert), γ(search) and γ(delete) denote the machine programs implementing the ADT
operations insert, search and delete, respectively. o(i)/t denotes that ADT operation o takes
input i and produces output t. Similarly, γ(o)(α(i))/β(t) denotes that program γ(o) takes
input α(i) and produces output β(t). α(i) and β(t) are the machine representations of the
ADT input i, and ADT output t, respectively. Note that the vertices in figure (b) represent
data structure states. In the RAM model, data structure states are bit strings. However, to
convey data semantics we denote the hash table array as << a0, a1, a2 >>, where a0, a1, and
a2 are elements at buckets 0 , 1 and 2, respectively. Underscore denotes an empty bucket.
Highlighted paths are referenced in Table 5.1 and in Section 5.3.4.

Why nonisomorphism breaks SHI?

The need for SHI arises due to nonisomorphism. Nonisomorphism occurs when an ADT
state has multiple memory representations6. We will precisely define memory representa-
tions for ADT states in Section 5.3.5. For now, it suffices to say the following: A memory
representation for an ADT state that is reachable from the initial ADT state via a sequence
of ADT operations, is the machine state reachable from the initial data structure state via
the corresponding program sequence.

To illustrate how nonisomorphism breaks SHI, consider the example graphs from Figure
5.2, example paths from Table 5.1, and an adversary with access to the following: the initial
ADT state sφ, the initial data structure state sMφ , the current ADT state {1, 3, 6}, and the
current data structure state. The current data structure state is either << 3, 6, 1 >> or
<< 6, 3, 1 >>. Both states << 3, 6, 1 >> and << 6, 3, 1 >> are memory representations of
the ADT state {1, 3, 6}.

By looking at the ADT states alone, an adversary cannot determine which sequence of
ADT operations, that is path pA or path p′A was used to arrive at the current ADT state

6Many existing data structures have this property and are hence, not history independent. Common
examples include linked lists, hash tables, and B-trees. In these data structures, different insertion order of
the same set of data elements, that is the same ADT state results in different memory representations.
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Path From
Figure

pA = sφ → {1} → {1, 3} → {1, 3, 6} 5.2(a)
p′A = sφ → {1} → {1, 6} → {1, 3, 6} 5.2(a)

pD = sMφ →<< , , 1 >>→<< 3, , 1 >>→<< 3, 6, 1 >> 5.2(b)

p′D = sMφ →<< , , 1 >>→<< 6, , 1 >>→<< 6, 3, 1 >> 5.2(b)

Table 5.1: Sample paths from ADT and data structure state transition graphs of Figure 5.2.
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Figure 5.3: Using randomization to achieve history independence. The dotted lines indicate
new transitions added to the hash table data structure state transition graph. Amongst all
edges with the same starting node and the same label, the choice of edge for state transition
is made at random.

{1, 3, 6}. Hence, the data alone gives the adversary no advantage in guessing which sequence
of ADT operations was applied in the past. Now, by looking at the current data structure
state, which is either << 3, 6, 1 >> or << 6, 3, 1 >>, the adversary can clearly identify
which sequence of machine programs, that is path pD or path p′D was used to arrive at the
current data structure state. The sequence of machine programs, in turn, tells the adversary
the sequence of ADT operations used. Hence, the data structure implementation gives the
adversary additional advantage in identifying the history of past execution, thereby breaking
history independence.

How can we achieve history independence?

Currently, there are two known ways to make data structures history independent.

1. For SHI, make the ADT and the data structure state transition graphs isomorphic:
Data structures with state transition graphs isomorphic to their ADT’s state transition
graph are referred to as canonically (or uniquely) represented data structures. We
discuss the necessity of canonical representations for SHI in Section 5.4.4. SHI implies
WHI.
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2. For WHI, make the data structure state transitions randomized:
Randomization here refers to the selection of the data structure state representing
the corresponding ADT state. To illustrate, consider the example graphs from Figure
5.2. Both data structure states << 3, 6, 1 >> and << 6, 3, 1 >> are valid memory
representations of the ADT state {1, 3, 6}. For WHI, the choice of data structure state
to represent the ADT state {1, 3, 6} must be random.

Randomization translates to addition of new paths in the data structure state transition
graph (Figure 5.3) to ensure the following: For any two ADT states s0 and s1, if there
is a path in the ADT state transition graph between s0 and s1, then there must be a
path from all memory representations of ADT state s0 to all memory representations
of ADT state s1 in the data structure’s state transition graph. The choice of path
in the data structure state transition graph between representations of ADT states s0
and s1 is then made at random.

From the adversary’s point of view, randomization makes all memory representations
of an ADT state equally likely to occur. Hence, observation of a specific representation
gives the adversary no advantage in guessing the sequence of machine programs that led
to the current data structure state. Since the adversary cannot identify the sequence of
machine programs used, the adversary is also unable to identify the sequence of ADT
operations that led to the current ADT state.

5.3.5 Memory Representations

The last concept that remains to be formalized before we move on to formal definitions for
history independence (Section 5.4) is that of memory representations.

In the discussion of nonisomorphism and history independence above, we informally in-
troduced memory representations for ADT states. We also showed that history independence
comes into picture when an ADT state has multiple memory representations. In short, the
memory representation for an ADT state that is reachable from the initial ADT state via a
sequence of ADT operations, is the machine state reachable from the initial data structure
state via the corresponding program sequence. We formally define memory representations
here and use them later in Section 5.4 for the game-based definitions of history independence.

Let δ = 〈o1, o2, ..., on〉 be a sequence of ADT operations and I = 〈i1, i2, ..., in〉 be a
sequence of ADT inputs. We denote by O(δ, s0, I) the application of the ADT operation
sequence δ on ADT state s0.

O(δ, s0, I) =

{

s0 if |δ| = 0
(sn, τn)|ok(sk−1, ik)→ (sk, τk); 1 ≤ k ≤ n otherwise

If δ is empty no state transition occurs and no outputs are produced. For nonempty
sequence δ, sn and τn denote the ADT state and the ADT output, respectively, produced by
the final operation in sequence δ.
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To summarize, we denote by O(δ, s0, I) → (sn, τn) that the ADT operation sequence δ
when applied to the ADT state s0 with ADT input sequence I, results in the ADT state sn
and ADT output τn.

Now, let δM = χ(δ) = 〈γ(o1), γ(o2), ..., γ(on)〉 be a sequence of machine programs corre-
sponding to the ADT operation sequence δ. γ(ok) is the machine program implementing the
ADT operation ok. Then, we denote by OM(δM, sM0 , I) the application of program sequence
δM on a machine state sM0 .

OM(δM, sM0 , I) =

{

sM0 if |δM| = 0
(sMn , β(τn))|γ(ok)(s

M
k−1, α(ik))→ {s

M
k , β(τk)}; 1 ≤ k ≤ n otherwise

Here, α(i) and β(τ) denote the machine representations for an ADT input i and an
ADT output τ , respectively. sMn and β(τn) are the machine state and the machine output,
respectively, produced by the final program in sequence δM.

In summary, we denote by OM(δM, sM0 , I) → (sMn , τMn ) that a program sequence δM

when applied to a machine state sM0 with an ADT input sequence I, results in a machine
state sMn and a machine output τMn .

Definition 6. Memory Representations
The set of memory representations of an ADT state s, denoted by m(s), is the set of data
structure states, defined as

m(s) =

{

{sM0 } if s = sφ
{sM | OM(δMk , sM0 , Ik)→ {sM, β(τ|δk|)}; 1 ≤ k ≤ n} otherwise

where, sM0 is the initial data structure state; I1, I2, ..., In are sequences of ADT inputs;
δ1, δ2, ..., δn are ADT operation sequences, each of which when applied to the initial ADT
state sφ results in state s, that is O(δk, sφ, Ik) → (s, τk); δ

M
k = χ(δk) denotes the program

sequence corresponding to ADT operation sequence δk; |Ik| = |δk|; 1 ≤ k ≤ n.

Here m is the mapping m : S → 2S
D

, where S is the set of all ADT states, SD is the set
of all data structure states, and 2S

D

denotes the power set of SD.

Dealing With Infinite ADT State Space

The set of machine states for the bounded RAM model is finite since there are finite number
of available bits. Hence, a data structure implementation on a bounded RAM model can
only have a finite number of data structure states. The set of ADT states on the other
hand can be infinite. For an ADT with infinite states, a data structure implementation
will be unable to uniquely represent all the ADT states. The case of infinite ADT states is
of particular importance for canonically represented data structures that require the state
transition graphs of the ADT and of the data structure to be isomorphic, that is, each ADT
state has a unique memory representation.

We will look at canonical representations in detail within the context of history indepen-
dence in Section 5.4.4. Here, we list two work-arounds to dealing with infinite ADT state
space.
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1. Redefine the ADT, such that the number of ADT states is less than or equal to the
number of machine states.

2. Design each machine program implementing an ADT operation, such that the program
produces a special output when an ADT state cannot be represented using the available
machine bits. For example, an out-of-memory error.

5.4 History Independence

Now that we are equipped with the necessary concepts (ADT, RAM machine model, data
structure, and memory representations), we proceed to formalize history independence. We
give new game-based definitions for both WHI and SHI (Sections 5.4.1 and 5.4.1). The new
definitions are equivalent to existing proposals [127,183] but more appropriate for the security
community since they follow the game-based construction of semantic security. Further, our
new definitions naturally extend to accommodate other notions of history independence
beyond WHI and SHI.

We generalize history independence by introducing ∆ history independence (∆HI), a
generic game-based definition of history independence that is malleable enough to accom-
modate WHI, SHI, and a broad spectrum of new history independence notions. Using ∆HI,
we define new practical notions of history independence and also cover both WHI and SHI
(Section 5.5.1). Finally, we show how ∆HI helps to reason about the history preserved or
hidden by data structures including ones that were designed without history independence
in mind (Sections 5.5.2 and 5.5.3).

Summary of notations: In the previous section, we introduced several notations for
states, state transitions, operations, and program sequences. We summarize the notations
in Table 5.2. The summary serves as a quick reference for history independence definitions
that follow.

5.4.1 Weak History Independence (WHI)

WHI was introduced for scenarios wherein an adversary observes only the current data
structure state. For example, as in the case of a stolen laptop. The current data structure
state is the memory representation of the current ADT state. WHI then requires that
observation of the current data structure state reveals no additional historical information
to the adversary other than what is inherently available from the current ADT state.

Informally, a data structure is said to be weakly history independent if for any two
sequences of ADT operations δ1 and δ2, that take the ADT from initialization to a state
s, observation of any memory representation of state s gives the adversary no advantage in
guessing whether sequence δ1 or δ2 was used to get to s.

We define weak history independence (WHI) by the following game:
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Notation Description
sφ Initial ADT state
sMφ Initial machine state

sM0 Initial data structure state
s1, s2 ADT states
sM1 , sM2 Data structure (machine) states
δ, δ1, δ2 Sequences of ADT operations

δM, δM1 , δM2 Sequences of machine programs
i, i1, i2 ADT inputs
I, I1, I2 Sequences of ADT inputs
τ, τ1, τ2 ADT outputs

iM = α(i) Denotes the machine representation of the ADT input i
τM = β(τ) Denotes the machine representation of the ADT output

τ
γ(o) Denotes the machine program corresponding to the

ADT operation o
δM = χ(δ) Denotes that δM is a sequence of machine programs

corresponding to the ADT operation sequence δ. If
δ = 〈o1, o2, ..., on〉 then δM = 〈γ(o1), γ(o2), ..., γ(on)〉

O(δ, s0, I)→ (sn, τn) Denotes that the ADT operations sequence δ when ap-
plied to the ADT state s0 with ADT input sequence I,
results in the ADT state sn and ADT output τn

OM(δM, sM0 , I)→ (sMn , τMn ) Denotes that the program sequence δM when applied
to the machine state sM0 with ADT input sequence I,
results in the machine state sMn and machine output τMn

Table 5.2: Summary of notations.

Let A = (S, sφ,O,Γ,Ψ) be an ADT, M = (SM, sMφ ,PM,ΓM,ΨM) be a bounded
RAM machine model, and D = (α, β, γ, sM0 ) be a data structure implementing A in M,
as per definitions 3, 4 and 5, respectively.

1. A probabilistic polynomial time-bounded adversary selects the following: An ADT
state s; two sequences of ADT operations δ0 and δ1; and two sequences of ADT
inputs I0 and I1; such that O(δ0, sφ, I0)→ (s, τ) and O(δ1, sφ, I1)→ (s, τ). Both δ1
and δ2 take the ADT from the initial state sφ to state s producing the same output
τ .

2. The adversary sends s, δ0, δ1, I0 and I1 to the challenger.
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3. The challenger flips a fair coin c ∈ {0, 1} and computes OM(δMc , sM0 , Ic) →
(sM, τM), where δMc = χ(δc) and τM = β(τ). That is, the challenger applies
the program sequence δMc corresponding to the ADT operation sequence δc to the
data structure initialization state sM0 , resulting in a memory representation sM of
ADT state s and a machine output τM.

4. The challenger sends the memory representation sM to the adversary.

5. The adversary outputs c′ ∈ {0, 1}.

The adversary wins the game if c′ = c.

A data structure is said to be weakly history independent if the advantage of the
adversary defined as

∣

∣Pr[c′ = c]− 1
2

∣

∣ is negligible.

Since WHI permits the adversary to make a single observation, the adversary is allowed
to choose the end state only in step 1. The starting state for the chosen ADT operation
sequences is always the initial ADT state sφ. Recall from the data structure definition
(Section 5.3.3) that the initial ADT state has a fixed memory representation, which is the
initial data structure state sM0 . Hence, in step 3, the challenger applies the adversary-selected
sequence to the memory representation sM0 of sφ.

If the adversary is able to identify the ADT operation sequence chosen by the challenger
in step 3, then the adversary wins7 the game. Winning the game implies the adversary was
able to determine the operation sequence that led to the current ADT state by observing
the state’s memory representation, thereby breaking WHI.

5.4.2 Strong History Independence (SHI)

Unlike WHI, SHI is applicable when an adversary can observe multiple memory represen-
tations throughout a sequence of operations For example, as in case of an insider who can
obtain a periodic memory dump. SHI requires that the adversary must not gain any addi-
tional information about the sequence of operations between any two adjacent observations
than what is inherently available from the corresponding ADT states.

Informally, a data structure is said to be strongly history independent if for any two
sequences of ADT operations δ1 and δ2, that take the ADT from a state s1 to a state
s2, observations of any memory representations of states s1 and s2 give the adversary no
advantage in guessing whether sequence δ1 or δ2 was used to go from s1 to s2.

We define strong history independence (SHI) by the following game:

7A function f is negligible if for every positive polynomial poly() there exists an integer n > 0 such that
for all x > n, f(x) < 1

poly(x) .
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Let A = (S, sφ,O,Γ,Ψ) be an ADT, M = (SM, sMφ ,PM,ΓM,ΨM) be a bounded
RAM machine model, and D = (α, β, γ, sM0 ) be a data structure implementing A in M,
as per definitions 3, 4 and 5 respectively.

1. A probabilistic polynomial time-bounded adversary selects the following.

• Two ADT states s1 and s2; two sequences of ADT operations δ0 and δ1; and
two sequences of ADT inputs I0 and I1; such that O(δ0, s1, I0) → (s2, τ) and
O(δ1, s1, I1)→ (s2, τ). Both δ1 and δ2 take the ADT from state s1 to state s2
producing the same output τ .

• A memory representation sM1 of ADT state s1.

2. The adversary sends s1, s
M
1 , δ0, δ1, I0 and I1 to the challenger.

3. The challenger flips a fair coin c ∈ {0, 1} and computes OM(δMc , sM1 , Ic) →
(sM2 , τM), where δMc = χ(δc) and τM = β(τ). That is, the challenger applies
the program sequence δMc corresponding to the ADT operation sequence δc to the
data structure state sM1 , resulting in a memory representation sM2 of state s2 and
a machine output τM.

4. The challenger sends the memory representation sM2 to the adversary.

5. The adversary outputs c′ ∈ {0, 1}.

The adversary wins the game if c′ = c.

A data structure is said to be strongly history independent if the advantage of the
adversary defined as

∣

∣Pr[c′ = c]− 1
2

∣

∣ is negligible.

Winning the game means that the adversary was able to determine the operation sequence
that took the ADT from state s1 to state s2, thereby breaking SHI.

SHI implies WHI. If the ADT state s1 chosen by the adversary in step 1 is the initial
ADT state sφ, then the SHI game reduces to the WHI game of Section 5.4.1.

5.4.3 Equivalence to Existing History Independence Definitions

WHI and SHI were first introduced by Naor et al. [184]. Later, Hartline et al. [127] introduced
new definitions for WHI and SHI. However, Hartline et al. showed that their definitions al-
though less complex are equivalent to the ones proposed by Naor et al. Our game-based
definitions of WHI and SHI (Sections 5.4.1 and 5.4.2) differ slightly from the definitions by
Hartline et al. Specifically, Hartline et al. assume a computationally unbounded adversary.
We address history independence in the presence of computationally bounded adversaries to
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be more in-line with reality. Further, new definitions were necessary to overcome imprecise-
ness in existing definitions and to develop a framework for new history independence notions
beyond WHI and SHI. We detail in the following.

Hartline et al. defined weak history independence as follows.

Definition 7. Weak History Independence (WHI)
A data structure implementation is weakly history independent if, for any two sequences of
operations X and Y that take the data structure from initialization to state A, the distribution
over memory after X is performed is identical to the distribution after Y. That is:

(φ
X
−→ A) ∧ (φ

Y
−→ A) =⇒ ∀ a ∈ A, Pr

[

φ
X
−→ a

]

= Pr
[

φ
Y
−→ a

]

In the above definition, φ
X
−→ B denotes that a operation sequence X when applied to

the initial state φ, results in state A. The notation a ∈ A means than a is a memory

representation of state A. Pr
[

φ
X
−→ a

]

denotes the probability that a sequence X when
applied to initial state φ, results in representation a.

Reconciling terminology

Hartline et al. do not formalize the concepts of data structure, data structure state
and memory representations. A data structure’s state is referred to as the data structure’s
content. Memory representation of a data structure state is the physical contents of memory
that represent that state. We note that Naor et al. also used the same terminology in their
definitions.

The WHI definition by Hartline et al. is imprecise in the following.

• Operation inputs and outputs are not considered.

• The same operation sequences are considered applicable to both data structure states
and to memory representations. The mechanisms for the applicability are not specified.

• The connection between a data structure’s state and the state’s memory representations
is not precisely specified.

Following Golovin et al. [113] we use the ADT concept to model logical states (or content)
and define a data structure as an ADT’s implementation (Sections 5.3.1 - 5.3.3). A data
structure state is therefore the memory representation of an ADT state. Separating ADT
and data structure concepts enables us to precisely define memory representations (Section
5.3.5) for various machine models; understand history independence from the perspective
of state transition graphs; and to build a framework for defining new history independence
notions other than SHI and WHI (Section 5.5).

To summarize the differences in terminology, what Hartline et al. refer to as data struc-
ture state in definition 8 is an ADT state in our model. Further, we refer to a memory
representation in definition 8 as a data structure state.

For WHI, Hartline et al. require a data structure implementation to satisfy the following:

(φ
X
−→ A) ∧ (φ

Y
−→ A) =⇒ ∀a ∈ A, Pr

[

φ
X
−→ a

]

= Pr
[

φ
Y
−→ a

]

(5.1)
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Our game-based definition of WHI poses the following slightly relaxed requirement:

(φ
X
−→ A) ∧ (φ

Y
−→ A) =⇒ ∀a ∈ A, |Pr

[

φ
X
−→ a

]

− Pr
[

φ
Y
−→ a

]

| is negligible (5.2)

We will show that the game-based WHI definition (Section 5.4.1) is equivalent to state-
ment 5.2, that is, a data structure preserves WHI only if statement 5.2 is true. However,
before we show the equivalence we point out the necessity for the difference between condi-
tions 5.1 and 5.2.

As discussed in Section 5.3.4, there are two known ways to achieve history independence.
The first way is to make the ADT and data structure state transition graphs isomorphic.
The second way is to make the data structure state transition graph randomized. The
requirement for identical memory distributions as per statement 5.1 rules out the use of
randomization to achieve history independence8. A randomized data structure implemen-
tation will rely on pseudo random generators. The security of pseudo random generators
relies on computational indistinguishability [33]. Therefore, the relaxed requirement of neg-
ligibility introduced in statement 5.2 is in fact not a limitation, but rather a reconciliation
of the definition by Hartline et al. with reality where we have computationally bounded
adversaries.

Although Naor et al. proposed a WHI definition that requires identical distributions,
they also used randomization to design a history independent data structure.

Equivalence of WHI definitions

We now show that our gamed-based WHI definition (Section 5.4.1) is equivalent to a
WHI definition based on statement 5.2.

We rewrite statement 5.2 for consistent notations as follows.

(sφ
δ0−→ s) ∧ (sφ

δ1−→ s) =⇒ ∀sM ∈ s, |Pr
[

sMφ
δM0−→ sM

]

− Pr
[

sMφ
δM1−→ sM

]

| is negligible
(5.3)

Here, δ0 and δ1 are two ADT operation sequences that take the ADT from initial state sφ
to state s. sφ and sMφ are the initial ADT and the initial data structure states, respectively.
δM0 and δM1 are the machine programs corresponding to ADT operation sequences δ0 and δ1,
respectively.

History independence only considers cases where the condition (sφ
δ0−→ s)∧ (sφ

δ1−→ s) is
true, that is, both sequences δ0 and δ1 take the ADT to the same end state s. Otherwise,
the ADT states themselves reveal history.

We therefore have two cases to consider

Case 1: The distributions are computationally distinguishable, that is,

∃sM ∈ s such that |Pr
[

sMφ
δM0−→ sM

]

− Pr
[

sMφ
δM1−→ sM

]

| is non− negligible.

Now consider the following adversarial strategy. Given a data structure state sM in
step 4 of the WHI game, the adversary outputs c such that δMc has a higher probability of

8The use of randomization to achieve weak history independence is discussed in Section 5.4.5.
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producing sM. For such an adversarial strategy
∣

∣Pr[c′ = c] − 1
2

∣

∣ is non-negligible for some
sM. Therefore, the data structure implementation does not preserve WHI.

Case 2: The distributions are computationally indistinguishable, that is,

∀sM ∈ s, |Pr
[

sMφ
δM0−→ sM

]

− Pr
[

sMφ
δM1−→ sM

]

| is negligible

In this case, from a computationally bounded adversary’s perspective, the representation
sM received in step 4 of the WHI game is equally likely to have been produced by either
δM0 or δM1 . Hence, observation of a data structure state gives the adversary a negligible
advantage in guessing c. The data structure implementation therefore preserves WHI.

Equivalence of SHI definitions

For strong history independence Hartline et al. proposed the following definition.

Definition 8. Strong History Independence (SHI)
A data structure implementation is strongly history independent if, for any two (possibly
empty) sequences of operations X and Y that take a data structure in state A to state B, the
distribution over representations of B after X is performed on a representation a is identical
to the distribution after Y is performed on a. That is:

(A
X
−→ B) ∧ (A

Y
−→ B) =⇒ ∀ a ∈ A, ∀ b ∈ B, Pr

[

a
X
−→ b

]

= Pr
[

a
Y
−→ b

]

In the above definition, A
X
−→ B denotes that a operation sequence X when applied to state

A, results in state B. The notation a ∈ A means than a is a memory representation of

state A. Pr
[

a
X
−→ b

]

denotes the probability that a sequence X when applied to memory
representation a, results in representation b.

Similar to the case for WHI, our game-based SHI definition (Section 5.4.2) differs from
the above definition only by relaxing the requirement for identical distributions. That is, for
SHI, we require the following:

(A
X
−→ B) ∧ (A

Y
−→ B) =⇒ ∀ a ∈ A, ∀ b ∈ B, |Pr

[

a
X
−→ b

]

- Pr
[

a
Y
−→ b

]

| is negligible

The equivalence of SHI definitions follows similarly to the case of WHI.

Summary of Differences

The main differences between our definitions and the the definitions by Hartline et al.
are the following

• The definitions by Hartline et al. are imprecise about the concepts of data structures,
states, and memory representations. We precisely formalize all of these concepts.

• Hartline et al. do not consider the case of computationally bounded adversaries. We
permit computationally bounded adversaries and thus have the negligibility definition
instead of equality for memory distributions.
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Programs of M Random bits Adversary History Canonical
hidden from computationally Independence representations
adversary bounded desired needed?

Randomized Yes Yes WHI No
N/A N/A No N/A Yes
N/A N/A N/A SHI Yes

Deterministic N/A N/A N/A Yes

Table 5.3: Identification of scenarios where canonical representations are necessary for history
independence. N/A = not applicable.

5.4.4 Canonical Representations And History Independence

Canonically (or uniquely) represented data structures have the property that each ADT state
has a unique memory representation. Unique representation implies that the ADT and data
structure state transition graphs are isomorphic9. Canonically represented data structures
give very strong guarantees for history independence and in many cases are the only way to
achieve history independence.

We first define canonically represented data structures and then discuss several important
results pertaining to canonical representations and history independence. We also summa-
rize (Table 5.3) the scenarios where canonical representations are necessary for history inde-
pendence across all combinations of types of programs, secrecy of random bits, adversarial
computational ability, and the desired notion of history independence.

Definition 9. Canonically represented data structure
A data structure D implementing an ADT A on a bounded RAM machine model M is
canonically represented if each ADT state has a unique memory representation, that is, the
mapping m : S → 2S

D

is injective and |m(s)| = 1, where S is the set of all ADT states, SD

is the set of all data structure states, and m(s) denotes the set of memory representations of
an ADT state s ∈ S as per definition 6.

Impossibility of canonical representations for ADTs with infinite states

In Section 5.3.5, we discussed how to handle the case when the set of ADT states is infinite.
The case of infinite ADT states is of particular importance for canonically represented data
structure implementations on a bounded RAM machine model. Since the bounded RAM
machine model has a finite number of available bits, the machine state space is not large
enough to provide a unique representation for each ADT state when the ADT state space
is infinite. Impossibility of unique representations clearly suggests that canonical represen-
tations for infinite state set ADTs are not possible in practice since machines with infinite
state space do not exists in reality. This straight-forwardly leads to the following theorem.

9Isomorphism is discussed in Section 5.3.4.
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Theorem 1. Canonically represented data structure implementations for ADTs with infinite
states are impossible in practice.

However, prior work [113, 183, 184] has claimed designs for canonically represented data
structures for the RAM model in direct contradiction to Theorem 1. The contradiction arises
from the fact that prior work has implicitly considered ADTs with finite state space. Specif-
ically, the ADTs considered have have fewer states than the the total number of machine
states.

The necessity of canonical representations for SHI

Since history independence was first proposed [184], it has been known that canonically
represented data structures support SHI. An interesting question posed in this context was
whether canonical representations are necessary to achieve SHI. The question about the
necessity of canonical representations for SHI was answered by Hartline et al. Hartline et
al. [127] showed that SHI cannot be achieved without canonical representations.

Thus, we have the following theorem

Theorem 2. A data structure is strongly history independent iff it is canonically represented.

The proof by Hartline et al. [127] builds on the case that if a data structure is not
canonically represented, then an adversary can distinguish an empty sequence of operations
from a nonempty sequence of operations.

Why canonical representations are not necessary for WHI?

In the absence of canonical representations, it has been shown that an adversary can dis-
tinguish an empty sequence of operations from a nonempty sequence of operations thereby
breaking SHI [127]. If operation sequences are always assumed to be nonempty, canoni-
cal representations are not necessary [127]. We will define such a slightly relaxed notion
of history independence that permits only nonempty sequences in Section 5.5.1. Here, we
show that WHI is preserved even for empty operation sequences in the absence of canonical
representations.

Consider the WHI game from Section 5.4.1. The case in which the adversary selects two
empty ADT operation sequences in step 1 is trivial since empty sequences cause no state
transitions and hence there is no history to be revealed.

Now, consider the case when the adversary selects an empty sequence δφ and a nonempty
sequence δ1 of ADT operations. Both δφ and δ1 are required to take the ADT from the initial
state to the same end state. Since the empty sequence δφ causes no state transitions, end
state for both sequences δφ and δ1 will be the initial ADT state itself.

Then, in step 3, the challenger chooses either δφ or δ1 and sends the resulting memory
representation to the adversary. Since the end state for the two operation sequences is the
initial ADT state, the memory representation sent to the adversary in step 4 will be the data
structure initialization state. From the data structure definition (Section 5.3.3), we know
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that the initial ADT state has a corresponding fixed unique memory representation. Hence,
irrespective of the nonempty sequence that the adversary selects in step 1, the adversary
receives the initial ADT state’s memory representation in step 4. Since the adversary receives
the same representation each time, the adversary gains no advantage in guessing whether δφ
or δ1 was chosen by the challenger in step 3.

ADT states other than the initial ADT state can have multiple memory representations.
Multiple representations for ADT states does not break WHI as long it is ensured that from
the adversary’s perspective, all representations of the current ADT state are equally likely
to be observed. Equal likelyhood for all representations of an ADT state can be achieved
using randomization (Section 5.4.5).

Canonical representations and adversary models

Canonically represented data structures are history independent in the strongest sense, se-
cure even against a computationally unbounded adversary [113]. For a computationally
unbounded adversary, canonical representations are also necessary for WHI.

5.4.5 Randomization and History Independence

In the previous section, we discussed the necessity of canonical representations for SHI. In
this section, we discuss the use of randomization to achieve history independence. We note
that using randomization only gives WHI.

In Section 5.3.4, we introduced the use of randomization for WHI from the point of view
of state transition graphs. We showed that randomization involves ensuring that for any
two ADT states s0 and s1, if there is a path in the ADT state transition graph between
s0 and s1, then there must be a path from all memory representations of s0 to all memory
representations of s1 in the data structure’s state transition graph. The choice of path in
the data structure state transition graph between representations of s0 and s1 is then made
at random.

In practice, randomization is achieved using the machine programs implementing the
ADT operations. An ADT operation o takes the ADT from a state s1 to a state s2. A
machine program implementing o takes the data structure from a memory representation
of state s1 to a memory representation of state s2. Since each ADT state can have several
memory representations (Section 5.3.4), the program has a choice amongst all representations
of state s2 and picks one representation as the result of a transition. Starting from a fixed
memory representation of s1, and a fixed input, if the program takes the data structure
to a fixed resulting representation of s2 on each execution, then the program is said to be
deterministic. If on each execution the resulting representation is chosen uniformly at random
from all possible representations of state s2, then the program is said to be randomized.

To illustrate, consider an ADT operation o and a machine program p implementing o.
Let o(s1, i) → (s2, τ) denote the transition from ADT state s1 to ADT state s2 using an
ADT input i and producing an ADT output τ . Also, let m(s1) and m(s2) denote the set
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of memory representations of states s1 and s2, respectively. Then, for history independence,
the following must hold for program p:

Pr[p(sM1 , α(i))→ (sM2 , β(τ))] = 1
|m(s2)|

, ∀ sM1 ∈ m(s1) and ∀ sM2 ∈ m(s2).

Here, α(i) and β(τ) are the machine representations of ADT input i and ADT output τ ,
respectively.

Note that randomization here refers to the selection of memory representations for ADT
states and not to program outputs. A program’s output is the machine representation of the
corresponding ADT operation’s output.

If randomization is used for history independence, then random choices made by the
machine programs must be hidden from the adversary. If the adversary has knowledge of the
random bits, then from the adversary’s point of view the machine programs are deterministic.
Data structures with deterministic machine programs require canonical representations.

5.5 Generalizing History Independence

SHI is a very strong notion of history independence requiring canonical representations [113,
127]. Canonically represented data structures are not efficient [48]. For heap and queue
data structures Buchbinder et al. [48] show that certain operations that require logarithmic
time under WHI take linear time under SHI. Hence, it is worth to question the need for
canonical representations for history independence. Many scenarios may not require such a
strong notion of history independence making the use of SHI data structures with canonical
representations an inefficient solution.

Following are some scenarios that can be efficiently realized by new history independence
notions weaker than SHI.

• Hiding evidence of specific operations only. For example, hiding only the fact that a
specific data item has been deleted in the past. Eliminating evidence of past deletes
is directly applicable for regulatory compliance. Retention Regulations [83, 191, 252]
are only concerned with hiding the past existence of deleted data and not with other
aspects of history, such as the insertion sequence of current data.

• A MRU caching or a journaling system by definition reveals the last k operations.
Hence, journaling and caching require a new notion of history independence, wherein
no history is revealed other than the last k operations [184].

• Revealing only the number of times each operation is performed [113]. For example,
in a file-sharing application disclosing file-access counts may be permissible, but not
the access order.

Existing work [113,184] has already suggested that for efficiency, it is important to benefit
from new relaxed notions of history independence. A proper theoretical framework is needed
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to precisely define new history independence notions. In the following, we take first steps
towards such a framework.

A straight-forward way to define new notions of history independence is to provide a
new game-based definition for each scenario. However, defining distinct scenario-specific
games can quickly become a tedious process. Instead, we introduce a definitional framework
that can accommodate a broad spectrum of history independence notions. We term the
new framework as ∆ history independence (∆HI), where ∆ is the parameter determining
the history independence flavor. As we shall see, ∆HI also captures both WHI and SHI.
In addition, ∆HI helps to reason about the history revealed or concealed by existing data
structures which were designed without history independence in mind.

5.5.1 ∆ History Independence (∆HI)

The WHI and SHI games (Sections 5.4.1 and 5.4.2 respectively) are defined over a subset of
ADT operation sequences. For WHI, the adversary is permitted to select sequences that take
the ADT from initialization to the same end state. For SHI, the permitted sequences are ones
that take the ADT from the same starting state to the same ending state. The selection
is made by the adversary in step 1 of both the WHI and SHI games. Hence, the initial
selection permitted to the adversary determines the history that is desired to be revealed
or hidden. By generalizing the selection step, we can accommodate a broad spectrum of
history independence notions. We achieve the generalization in ∆HI, which is defined by the
following game:

Let A = (S, sφ,O,Γ,Ψ) be an ADT, M = (SM, sMφ ,PM,ΓM,ΨM) be a bounded
RAM machine model, and D = (α, β, γ, sM0 ) be a data structure implementing A in M,
as per definitions 3, 4 and 5, respectively. Also, let ζ be the set of all ADT operation
sequences, Υ be the set of all ADT input sequences, and ∆ be a function ∆ : S × S ×
ζ × ζ ×Υ×Υ→ {0, 1}.

1. A probabilistic polynomial time-bounded adversary selects the following.

• Two ADT states s1 and s2; two sequences of ADT operations δ0 and δ1; and
two sequences of ADT inputs I0 and I1; such that ∆(s1, s2, δ0, δ1, I0, I1) = 1.

• A memory representation sM1 of ADT state s1.

2. The adversary sends s1, s
M
1 , δ0, δ1, I0 and I1 to the challenger.

3. The challenger flips a fair coin c ∈ {0, 1} and computes OM(δMc , sM1 , Ic) →
(sM, τM), where δMc = χ(δc). That is, the challenger applies the program se-
quence δMc corresponding to the ADT operation sequence δc to the data structure
state sM1 , resulting in a memory representation sM, and a machine output τM.
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4. The challenger sends the memory representation sM and the machine output τM

to the adversary.

5. The adversary outputs c′ ∈ {0, 1}.

The adversary wins the game if c′ = c.

A data structure is said to be ∆ history independent if the advantage of the adversary
defined as

∣

∣Pr[c′ = c]− 1
2

∣

∣ is negligible.

Function ∆ determines the pairs of ADT states, ADT operation sequences, and ADT
input sequences that the adversary is permitted to select in step 1 of the ∆HI game. For the
adversary-selected ADT states, operation sequences, and input sequences, the ∆HI game can
be played and the data structure implementation is required to ensure that the advantage
of the adversary is negligible. Thus, for a given ADT, ∆ defines two sets,

H∆ = {(s1, s2, δ0, δ1, I0, I1) | ∆(s1, s2, δ1, δ2, I0, I1) = 1}, and
H∆ = {(s1, s2, δ0, δ1, I0, I1) | ∆(s1, s2, δ1, δ2, I0, I1) = 0}.

For all tuples in H∆, history independence is preserved, that is, neither the ADT nor the
data structure implementation reveals the operation sequence selected by the challenger in
step 3. For all tuples in H∆, history independence is not required to be preserved since the
ADT itself reveals the sequence of operations used.

A careful choice of ∆ allows us to precisely define both SHI and WHI, and a broad
spectrum of new history independence notions. In the following, we illustrate the use of
∆HI framework to define some familiar history independence notions and a few previously
unconsidered notions of history independence.

Strong History Independence (SHI)

We discussed SHI in Section 5.4.2. Here, we define the function ∆ for SHI.

∆(s1, s2, δ0, δ1, I0, I1) =

{

1 if O(δ0, s1, I0)→ (s2, τ) and O(δ1, s1, I1)→ (s2, τ)
0 otherwise

For SHI, the adversary’s advantage in the ∆HI game must be negligible when in step 1,
the adversary selects any two ADT operation sequences that take the ADT from a state s1
to a state s2 producing the same ADT output τ .

Weak History Independence (WHI)

Refer to Section 5.4.2 for discussion on WHI, which requires the following definition of ∆.
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∆(s1, s2, δ0, δ1, I0, I1) =







1 if s1 = sφ and O(δ0, s1, I0)→ (s2, τ) and
O(δ1, s1, I1)→ (s2, τ)

0 otherwise

Since WHI permits the adversary to observe a single data structure state, the adversary
chooses only the end state s2 in step 1 of the ∆HI game. The starting state on which
sequences δ0 and δ1 are applied is the initial ADT state sφ.

Null history independence (φHI)

Under null history independence, a data structure conceals no history except for the trivial
case when the ADT operation sequences and ADT input sequences selected by the adversary
in the ∆HI game are identical. Example of a data structure with φHI is an append-only log.
We can reflect φHI using the following.

∆(s1, s2, δ0, δ1, I0, I1) =







1 if O(δ0, s1, I0)→ (s2, τ) and O(δ1, s1, I1)→ (s2, τ)
and δ1 = δ2 and I1 = I2

0 otherwise

SHI*

The necessity of canonical representations for SHI was proven by Hartline et al. [127]. The
proof by Hartline et al. [127] builds on the case that if a data structure is not canonically
represented, then an adversary can distinguish an empty sequence of operations from a
nonempty sequence. Hartline et al. [127] then proposed SHI*, which is defined over nonempty
ADT operation sequences. SHI* data structures were initially expected to more efficient than
data structures providing SHI. However, Hartline et al. [127] found that SHI* still poses very
strict requirements on a data structure and may not differ from SHI in asymptotic complexity.

Here, we give the ∆ function for SHI*.

∆(s1, s2, δ0, δ1, I0, I1) =







1 if O(δ0, s1, I0)→ (s2, τ) and O(δ1, s1, I1)→ (s2, τ) and
|δ0| > 0 and |δ1| > 0

0 otherwise

SHI* closely resembles SHI except that the operations sequences δ0 and δ1 must be
nonempty.

Reveal last k operations (MRU Cache, File System Journal)

System features such as caching and journaling by definition reveal the last k operations
performed from the ADT state itself. Thus, for caching and journaling, we need to define
a ∆ function, such that no additional historical information is leaked from the memory
representations other than the last k operations. We define the new notion as follows.

Let δ[i] denote the ith operation in the sequence δ. Also, let δ[i, j] denote a subsequence
of δ, i ≤ j.
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∆(s1, s2, δ0, δ1, I0, I1) =







1 if O(δ0, s1, I0)→ (s2, τ) and O(δ1, s1, I1)→ (s2, τ) and
|δ0| ≥ k and |δ1| ≥ k and δ0[|δ0| − k, |δ0|] = δ1[|δ1| − k, |δ1|]

0 otherwise

Here, the adversary is permitted to choose two sequences δ0 and δ1, such that last k
operations in δ0 and δ1 are the same. Other than the last k operations, sequences δ0 and
δ1 may differ. Yet, the adversary should be unable to identify the sequence chosen by the
challenger in step 3.

Operation-Agnostic History Independence (OAHI)

Consider a secure deletion application that wishes to destroy any evidence of a delete op-
eration performed in the past. That is, an adversary should be unable to detect whether
a delete operation was performed or not other than guessing. In general, any particular
operation may require to be concealed, not just deletes. We introduce a new notion of his-
tory independence that conceals specific ADT operations. The new notion is referred to as
operation-agnostic history independence (OAHI). A data structure that is ∆ history inde-
pendent given the following ∆ function guarantees operation-agnostic history independence
for an ADT operation o.

∆(s1, s2, δ0, δ1, I0, I1) =







1 if O(δ0, s1, I0)→ (s2, τ) and O(δ1, s1, I1)→ (s2, τ) and
o ∈ δ0 and o /∈ δ1

0 otherwise

In OAHI, neither the presence of operation o in δ0, nor the absence of o in δ1 gives the
adversary any advantage in guessing the sequence chosen by the challenger in step 3 of the
∆HI game.

Operation-Instance-Agnostic History Independence (OIAHI)

Consider a file system or a database index that features irrecoverable erase. That is, no
evidence of the past deletion of a particular data item is preserved in the current memory
representation. Concealing item-specific deletion requires hiding the fact that a particular
ADT operation with a specific input was performed. For example, concealing a file delete
operation with specific file name as input. For concealing item-specific deletes, we introduce
operation-instance-agnostic history independence (OIAHI). Following is the ∆ function for
OIAHI.

∆(s1, s2, δ0, δ1, I0, I1) =















1 if O(δ0, s1, I0)→ (s2, τ) and O(δ1, s1, I1)→ (s2, τ) and
δ0[j] = o and δ1[k] = o and I0[j] 6= I1[k],
1 ≤ j ≤ |δ0|, 1 ≤ k ≤ |δ1|

0 otherwise

For a given ADT operation o, OAHI hides the past execution of o. OIAHI on the other
hand does not hide the past execution of o, but hides the input used. To illustrate a practical
comparison, the history independent file system (HIFS) we propose in Chapter 6 supports
OAHI. The Ext3 [5] file system supports OIAHI. B-trees [74] feature neither.
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5.5.2 Measuring History Independence

We have seen that new notions of history independence can be easily derived from ∆ history
independence by defining the appropriate ∆ function. In this section, we present an intuitive
way of comparing ∆ functions on the basis of the history they require to be concealed or
preserved.

For a given ∆ function we defined the set H∆ (Section 5.5.1) that represents all combina-
tions of ADT states, operation sequences, and ADT input sequences for which the adversary’s
advantage is negligible in the ∆ history independence game. That is, for all members of H∆,
history independence is preserved. One insight is to use the cardinality of H∆ as a measure
of history independence.

Recall from Section 5.3.3 that an ADT can have several data structure implementations.
Let D and D′ be two implementations of an ADT A, such that D is ∆ history independent
and D′ is ∆′ history independent for two functions ∆ and ∆′. Now, we say that D is more
history independent than D′ if H∆′ ⊂ H∆.

Note that |H∆| > |H∆′| alone does not imply that D is more history independent than D′

since an application may be more sensitive to the history preserved by D′ than the history
preserved by D. Only in the case where H∆′ ⊂ H∆ can we consider D to be a more history
independent implementation than D′.

5.5.3 Deriving History Independence

In order to provide a history independent implementation for an ADT, we first require the ∆
function to be precisely defined. Then, a history independent data structure can be designed
that satisfies the ∆ function. Satisfying a ∆ function means that the adversary’s advantage
is always negligible in the ∆ history independence game. In effect, so far we have approached
history independence as a define-then-design process.

However, data structures have been in use for a long time and most data structures
have been designed for efficiency or functionality with no history independence in mind. A
natural question then arises – are there any meaningful10 ∆ functions satisfied by existing
data structures?.

A data structure can be ∆ history independent for several ∆ functions. For example, a
data structure that satisfies SHI, also satisfies WHI, OAHI, and OIAHI. Hence, for a given
data structure D finding a ∆ function may not be a particularly difficult task. It may be
more useful instead to determine an uncontained ∆ function for D. We define an uncontained
∆ function for a data structure as follows.

Definition 10. Uncontained ∆ function
A ∆ function for a data structure D is uncontained if D is ∆ history independent and ∄ ∆′,
such that D is also ∆′ history independent and H∆ ⊂ H∆′, where H∆ = {(s1, s2, δ0, δ1, I0, I1) |
∆(s1, s2, δ0, δ1, I0, I1) = 1}; H∆′ = {(s′1, s

′
2, δ
′
0, δ
′
1, I
′
0, I
′
1) | ∆′(s′1, s

′
2, δ
′
0, δ
′
1, I
′
0, I
′
1) = 1}; s1, s2,

10∆ = 0 is satisfied by all data structures. Hence, we need to determine ∆ functions that are more useful
in practice.
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s′1, and s′2 are ADT states; δ0, δ1, δ
′
0, and δ′1 are ADT operation sequences; and I0, I1, I

′
0,

and I ′1 are ADT input sequences.

We can determine an uncontained ∆ function for existing data structures on a case-by-
case basis. An open question is whether there exists a general mechanism for deriving an
uncontained ∆ function for a given data structure.

5.6 From Theory To Practice

5.6.1 Defining Machine States

The RAM model of execution described in Section 5.3.2 consists of two components, the RAM
and the CPU. Hence, the machine state for the RAM model includes bits from both the RAM
and the CPU. In general, the machine state for a system-wide machine model will comprise
all system component states. A system-wide history independent implementation has to
then consider each individual component’s characteristics along the interaction between the
components. Providing system-wide history independence is therefore challenging.

However, in practice an adversary may have access to only a subset of system com-
ponents. In this case, for the purpose of history independence, the machine state can be
defined over the adversary-accessible components only. For example, history independent
data structures proposed in existing work (Section 9.3.1) are designed with the RAM model
in mind. However, the machine states considered for history independence only include bits
from the RAM and exclude the CPU.

5.6.2 Building History Independent Systems

Various techniques for designing history independent data structures for commonly used
ADTs such as queues, stacks, and hash tables have been proposed [113]. Our focus on the
other hand is designing systems with end-to-end history independent characteristics. The
difference between history independent implementations for simple ADTs, such as stacks
and queues versus a complete system, such as a database, or a file system is a matter of
often exponentially increasing complexity. Fundamentally, any system can be modeled as an
ADT and an history independent implementation can be sought for the system.

We introduce a general recipe for building history independent systems as follows:

1. Model the system as an ADT. For a specific example of file system as an ADT, refer
to Chapter 6.

2. Select a machine model for implementation. While defining the machine state identify
all machine components that the adversary has access to and define the machine state
associated with the adversary-accessible components.

3. Depending on the application scenario, fix a desired notion of history independence
and the corresponding ∆ function.
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4. Based on the definition of ∆, provide an implementation over the selected machine
model. For complex systems, the implementation will likely require the most effort
since the machine programs implementing the ADT operations must provably ensure
that the advantage of the adversary is negligible in the ∆HI game.

In Chapter 6, we follow the above recipe to design a history independent file system.

5.7 On A Philosophical Note

At a very high level, the motivation for history independence can be stated as follows.

For any logical state SL, the physical state SP representing SL may reveal information
about the history leading to SL, that is otherwise not discernible via solely SL.

So far, we have considered the logical state to be the ADT state and the physical state
to be the underlying machine state representing the ADT state, that is, the physical state is
the set of all bits of the machine. Our selection of logical and physical states seems rather
arbitrary. We do this specific selection due to our adversary model, which assumes that the
adversary can interpret information at the level of bits. An adversary, that can for example,
examine the electric charge in individual capacitors used to represent the bits will require a
different choice of logical and physical state descriptions. A straight-forward choice would
be to consider a bit as a logical state and the precise capacitor state as the physical state.

The following interesting question arises from this discussion – is history independence
only a matter of perspective?. The short answer is yes, history independence is a matter of
perspective. There is no universal history independence.

To clarify, consider the universe as a whole from the viewpoint of classical physics. Under
the classical viewpoint, knowledge of current state of all objects in the universe enables
determination of any past or future universal state since the laws of physics work both
forwards and backwards in time. Hence, the past is never hidden and history independence
is impossible. For example, using the currently observed movement of galaxies, the past
states of the universe can be inferred up to the very initial moments of the big bang.

Physical phenomena at the subatomic scale is explained by quantum physics. At the
quantum level, the universe appears nondeterministic. Further, the uncertainty principle
[215] restricts the ability to accurately measure the current state of a quantum system.
Since the current state cannot be accurately known, it may seem the past states cannot be
determined either and history independence can be achieved at the quantum level.

However, even at the quantum level history independence is still a matter of perspective.
The perspective is governed by the interpretation of quantum physics used. Under the many-
worlds interpretation, the multiverse as a whole is deterministic [93]. The probabilistic nature
at the quantum level is only our perception since our observations are limited to a single
universe. A hypothetical all-powerful adversary that can view the entire multiverse would
have a full view of the past and the future similar to the case of classical physics making
history independence in the presence of such an adversary impossible.
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5.8 Conclusions

In this chapter, we took a deep look into history independence from both a theoretical and a
systems perspective. We explored the concepts of abstract data types, machine models, data
structures and memory representations. We identified the need for history independence from
the perspective of ADT and data structure state transition graphs. Then, we introduced
∆ history independence, which serves as a general framework to define a broad spectrum
of history independence notions including strong and weak history independence. We also
outlined a general recipe for building history independent systems, which we will use in
designing a history independent file system in Chapter 6.
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Chapter 6

History Independent File System

6.1 Chapter Overview

6.1.1 Background and Motivation

In Chapter 5, we identified the role of history independence for data retention Regulations.
Although compliance with retention Regulations is our prime motivation, we note that any
application that relies on persistent history independent data structures cannot be realized in
practice without an underlying file system that is also history independent. If the file system
is not history independent, then the file system’s organization of data will break application-
level history independence (Section 6.2). Examples of applications that rely on persistent
history data structures include incremental signature schemes [183] and e-voting [38].

Existing file systems, such as Ext3 [5] are not history independent because they organize
data on disk as a function of both files’ data and the sequence of file operations. The
exact same set of files can be organized differently on disk depending on the sequence of file
system operations that created the set. As a result, observations of data organization on
disk can potentially reveal file system’s history. Moreover, file system metadata also contains
historical information, such as list of allocated blocks. Therefore, when observations of data
organization are combined with file system metadata, and with knowledge of application
logic, significantly more historical information can be derived, for example, full recovery of
deleted data. It is therefore imperative to hide file system history.

File system history can be hidden by making file system implementations history inde-
pendent. A straight-forward way to achieve history independence is to use existing history
independent data structures to organize files’ data on disk. Current techniques to make
history independent data structures persistent require the use of history independent hash
tables [113]. The history independent hash tables [38] in-turn use uniform hash functions,
distributing files’ data on storage with no consideration to data locality. Hence, existing
history independent data structures destroy data locality. Since data locality is critical for
file system efficiency, the direct adoption of current history independent data structures in
file system design is impractical.
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Figure 6.1: B-Tree, a non history independent data structure.

6.1.2 Our Contribution: History Independent File System (HIFS)

In Chapter 5 we layed the theoretical foundations for history independence. We explored the
concepts of ADTs, machine models, data structures, and memory representations. We then
formalized history independence and introduced the ∆ history independence framework.
In this chapter, we apply the theoretical concepts and results towards practical history
independent system design. Using the recipe outlined in Section 5.6.2, we design, implement,
and evaluate a history independent file system (HIFS).

In HIFS, we overcome the challenge of providing history independence while preserving
data locality. Moreover, HIFS is configurable to different data locality scenarios, such as
block group locality and complete sequential. Data locality is preserved in the presence of
strong history independence (SHI).

6.1.3 Chapter Outline

Section 6.2 illustrates the need for history independence in file systems through a practical
example. Section 6.3 describes the adversarial model. Theoretical concepts are introduced in
Section 6.4. Section 6.5 details HIFS architecture including proofs of history independence.
Issues, such as maintenance of temporal metadata and in-memory history independence are
discussed in Section 6.6. Section 6.7 presents experimental evaluation of HIFS. HIFS demo
application is introduced in Section 6.8. Finally, Section 6.9 concludes the chapter.

6.2 Illustrative Example

6.2.1 File Systems

To illustrate, the need for history independence in file systems we consider an admissions
management application at a hospital. The application records patients’ data as new patients
are admitted. The application API permits the hospital staff to add new patient records,
lookup existing records and delete patient records on discharge. We use this example for
illustration. However, most existing applications of history independent data structures
cannot be securely realized in practice without an underlying history independent file system.
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Figure 6.2: B-Treaps and file system layouts. IR(t) and DR(t) denote insertion and deletion
respectively of element t in relation R.

The admissions management application will typically utilize a database to manage its
data. Now, a database in turn stores and manipulates data by utilizing efficient data struc-
tures of which B-Trees [74] are the most common example. However, the use of B-Trees
causes several privacy concerns. The concerns arise because the storage layout of B-Trees or
of variations such as B+-Trees often depends on the order in which operations are performed
due to deterministic insertions and deletions. For example, Figure 6.1 shows two B-Trees
that store the exact same elements. Yet the layouts of the two B-Trees differ due to different
insertion orders. Therefore, by a simple examination of the tree layout (Figure 6.1(a)) one
can ascertain with a probability of 75% that Chad was admitted before John. The deduction
of admission order is possible due to the fact that out of total 4! ways of insertion for the
four elements Adam, Chad, John and Katy, Chad is the root in only twelve, and inserted
before John in nine of those twelve sequences.

To ensure privacy, B-Trees can be replaced by corresponding history independent ver-
sions, such as B-Treaps [114]. The treaps will yield the same layout irrespective of the
insertion order. However, a simple replacement of application data structures with their
history independent versions does not suffice unless the underlying file system is also history
independent. To clarify, suppose that the B-Trees are replaced by the history independent
B-Treaps [114]. Also, suppose that the application has two relations, one for admissions to
the General ward and another for admissions to the Special ward. Let both relations be
persisted using a simple file system that allocates the first available free block on request.
The file system is therefore not history independent. For simplicity, assume that the B-Treap
node size is equal to the file system block size.

Now, consider the sequence of operations, the resultant B-Treaps, and the space allocation
by the underlying file system as shown in Figure 6.2. At the end of operation 7, the disk
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Figure 6.3: B-Treaps and file system layouts. IR(t) and DR(t) denote insertion and deletion
respectively of element t in relation R.

layout (Figure 6.2) reveals the following.

i. The fact that a delete operation was performed. The gaps left by the file system
allocation form evidence for a delete.

ii. That the deleted node belonged to the General relation. Since otherwise there would
be no gaps in the file system.

iii. The first patient was not admitted to the Special ward, since the root node of Special
relation is not the first block on storage.

Note that neither the B-Treaps’ layout nor the application API reveal any of (i) - (iii). The
leaks are solely due to file system allocation.

Figure 6.3 shows an alternate sequence of operations that yield the exact same trees as in
Figure 6.2. However, even though the tress match, the disk layouts are significantly different
showing that the disk layouts produced by the file system allocation heavily depend on file
system operation sequencing. Hence, underlying storage mechanisms can defeat the history
independence of higher level data structures.

Existing file systems, such as Ext3 [5] are not history independent. For efficiency and
to preserve locality, existing file systems allocate new blocks to files based on existing state,
resulting in heavily history dependent layouts. A file system with strong history indepen-
dence would carry no evidence of a delete, such as gaps in block allocation. Thus, a strongly
history independent file system would reveal none of (i) - (iii) above, resulting in the exact
same disk layouts for the operation sequences of both Figures 6.2 and 6.3.
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6.3 Model

Adversary

We assume an insider adversary with full access to the storage medium, such as the system
disk. By analyzing data organization on disk, the adversary aims to derive file system’s
history.

We assume that the adversary can make multiple observations of disk state. Recall from
Section 5.4.4 that thwarting such an adversary requires SHI with canonical representations.
Hence, our HIFS design targets canonical representations for file storage.

Storage Medium

The underlying storage device is assumed to be a mechanical disk drive, not flash storage.

6.4 Concepts

In Section 5.6.2, we outlined a general recipe for building history independent systems. In the
following, we use the recipe to design HIFS. First, we define a file system as an ADT (Section
6.4.1). Then, we describe the machine model over which we seek an history independent
implementation for the file system ADT (Section 6.4.2). In Section 5.6.2 we have already
outlined the need of canonical representations for SHI. Hence, the ∆ function for HIFS is the
same as that for SHI defined in Section 5.5.1. Finally, we detail our HIFS implementation
(Sections 6.5 - 6.7).

6.4.1 File System as an ADT

A file system organizes data as a set of files. We consider a file to consists of some metadata
and a bit string. That is, a file f = {mf , bf}, where mf is the file metadata and bf ∈ {0, 1}

∗.
We define file system as an ADT using the file type. Refer to Section 5.3.3 for a discussion
on ADTs and types.

A file system is an ADT, that is, a pentuple (S, sφ,O,Γ,Ψ), where

• S = 2F , is the set of states. Here F is the set of all files.

• sφ ∈ S is the initial state.

• Γ = N ∪ {0, 1}∗ ∪ (N× N× N) ∪ (N× N× N× {0, 1}∗) is the set of inputs.

• Ψ = Z ∪ ({0, 1}∗ × Z) is the set of outputs.

• The set of operations O = {open, read, write, delete, close}, such that

– open : S × {0, 1}∗ → S × Z.
– read : S × N× N× N→ S × {0, 1}∗ × Z.
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– write : S × N× N× N× {0, 1}∗ → S × Z.
– delete : S × N→ S × Z.
– close : S × N→ S × Z.

File systems including HIFS, support several additional operations. We have included
only a small subset of the operations here for brevity.

6.4.2 RAMDisk Machine Model

In Section 5.3.2, we introduced the RAM machine model. The RAM model consists of
two components, a central processing unit (CPU) and a random access memory (RAM).
However, a file system is generally used to store and manage data over a secondary storage
device. Hence, we define the RAMDisk model which in addition to the CPU and memory
also includes the storage disk.

Definition 11. RAMDisk Machine Model
A RAMDisk machine model MD with m b-bit memory words, n b-bit CPU registers, and c
k-bit disk blocks is a pentuple (S, sφ,P,Γ,Ψ), where S = {0, 1}b(m+n)+c·k is a set of machine
states; sφ ∈ S is the initial state; P is the set of all programs of MD; Γ = {0, 1}∗ is
a set of inputs; Ψ = {0, 1}∗ is a set of outputs; and each program p ∈ P is a function
p : S × Γp → S ×Ψp, where Γp ⊆ Γ and Ψp ⊆ Ψ.

MD is initialized to state sφ. If a program p ∈ P with input i ∈ Γp is executed by
the CPU when MD is in state s1, MD outputs τ ∈ Ψp and transitions to a state s2. The
transition from state s1 to state s2 is denoted as p(s1, i)→ (s2, τ).

According to our model (Section 6.3), the adversary has access to the storage disk. Recall
from Section 5.6.1 that for the purpose of history independence, we need to consider the
machine states associated with the adversary-accessible components only. Hence, from this
point onwards we refer to the storage device state as the machine state. Since the adversary
does not access CPU and RAM components, we permit the CPU and RAM states to reveal
history.

6.4.3 File System Implementation (Data Structure)

The objectives of HIFS design are three-fold.

1. For a given set of files, the organization of files’ data and files’ metadata on disk
must be the same independent of the sequence of file operations. That is, file system
implementation must be canonically represented and thereby preserve SHI.

2. Despite history independent storage, data locality must be preserved.

3. The implementation must be easily customizable to suit a wide range of data locality
scenarios.
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HIFS is a history independent implementation of the file system ADT from Section 6.4.1.
That is, HIFS is a data structure D = (α, β, γ, sM0 ) obtained as follows.

• For all n ∈ Nb, α(n) ∈ {0, 1}b. Here, Nb = {x|x ∈ N and x ≤ 2b}, b is the machine
word length, and α(n) is the bit string representing n. For all ts ∈ {0, 1}

c·k, α(ts) =
ts, For all (n1, n2, n3) ∈ Nb × Nb × Nb, α((n1, n2, n3)) = α(n1)||α(n2)||α(n3). For all
(n1, n2, n3, ts) ∈ Nb × Nb × Nb × {0, 1}

c·k, α((n1, n2, n3, ts)) = α(n1)||α(n2)||α(n3)||ts.

• For all z ∈ Zb, α(z) ∈ {0, 1}b. Here, Zb = {x|x ∈ Z and x ≤ 2b}, b is the machine word
length, and α(z) is the bit string representing z.

• γ : O → PM. The programs that we provide for each file system operation are the key
to achieving SHI. We discuss the HIFS programs in Section 6.5.

• The initial data structure state sM0 corresponding to the initial file system ADT state
is obtained by initializing all file system metadata1.

6.5 Architecture

6.5.1 Overview

A file system ADT state contains two pieces of information for each file – file data and
file metadata. Both files’ metadata and files’ data need representation in the underlying
machine state2. In HIFS, separate areas on disk are reserved to store both files’ data and
files’ metadata. Moreover, HIFS ensures that both files’ data and files’ metadata are stored
in a canonical form. Canonical form gives strong history independence (SHI).

To ensure canonical representations, we first select an existing history independent data
structure implementation for a hash table ADT (Section 6.5.2). Then, we redesign the hash
table implementation to endow it with data locality properties (Section 6.5.3). Finally, we
use two instances of the redesigned hash table implementation, one for files’ data and one
for files’ metadata (Sections 6.5.5-6.5.6). File system level metadata is handled separately
as discussed in Section 6.5.4.

HIFS closely resembles existing Linux file systems such as Ext3 [5] exposing the exact
same API and utilizing a similar disk structure (Figure 7.1). The key difference is that unlike
Ext3, the allocation of disk blocks to files is not based on history. Hence, HIFS does not use
indirect and double indirect blocks to map file blocks to disk blocks. Instead, the entire data
blocks section on disk is managed as a history independent data structure (Section 6.5.5).

In the following sections we detail.

1File system metadata includes superblock, group descriptors, inode tables, and disk buckets map. The
loading of file system programs, and memory management, is done by the operating system.

2Machine state is the disk layout.
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Figure 6.4: HIFS disk layout. Key parameters: Gn ← number of block groups, Bn ← number
of disk buckets per block group, ds ← Data block size in bytes, dbn ← number of data blocks
per disk bucket.

6.5.2 History Independent Hash Table [38]

The key feature of HIFS is the replacement of all file system disk structures with history
independent versions that we then endow with data locality properties. The data struc-
ture of choice here is the history independent hash table designed by Golovin et al. [38].
Hence, first we describe the hash table construction and in subsequent sections illustrate its
transformation and use in various HIFS components.

Golovin et al. designed a history independent hash table based on the stable matching
property of the Gale-Shapley Stable Marriage algorithm [97] detailed in the following.

Stable Marriage Algorithm

Let M and W be a set of men and women respectively, |M | = |W | = n. Also, let each man
in M rank all women in W as per his set of preferences. Similarly, each women in W ranks
all men in M .

The goal of the stable marriage algorithm is to create n matchings (m,w), where m ∈M
and w ∈ W , such that no two distinct pairs (mi, wj) and (mk, wl) exist where mi ranks wl

higher than wj and wl ranks mi higher than mk. If no such pairings exists, then all matchings
are considered stable.

The algorithm works as follows. In each round, a man m proposes to one woman at a
time based on his ranking of W . If a woman w being proposed to is unmatched, then a new
match (m,w) is created. If the woman w is already matched to some other man m′, then
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one of the following two occurs.

1. If w ranks m higher than m′, then the match (m′, w) is broken and a new match (m,w)
is created.

2. If w ranks m lower than m′, then m proposes to the next woman based on his rankings.

The algorithm terminates when all men are matched.
Gale et al. [97] show that if all the men propose in decreasing order of their preferences

(ranks) then the resulting stable matching is unique. The matchings are unique even if the
selection of a man m who gets to propose in each round is arbitrary.

History Independent Hash Table

Golovin et al. [38] use the above unique matching property of the Stable Marriage algorithm
to construct a history independent hash table as follows.

1. The set of keys to be inserted are considered as the set of men.

2. The set of hash table buckets are considered as the set of women.

3. Each key has an ordered preference of buckets and vice versa.

4. The preference order of each key is the order in which the buckets are probed for
insertion, deletion and search.

5. In case of a collision between two keys, the key which ranks higher on the bucket’s
preference takes the slot. The lower ranked key is relocated to the next bucket in its
preference list.

(1) - (5) ensure that the layout of keys in the hash table is the same irrespective of the
sequence of key insertions and deletions, thereby making the hash table history independent.

6.5.3 Key Insights

A simple replacement of all file system structures with the above history independent hash
table will suffice to yield a history independent layout of files on disk. However, a simple
replacement neither preserves data locality nor gives the flexibility to choose different layouts
based on application characteristics both of which are key goals in HIFS design.

A key observation to achieve data locality is the following. In the Stable Marriage
algorithm each man in M can rank the n women in W in n! ways, and vice-versa. Hence,
several sets of preferences from keys to buckets and buckets to keys are possible. Each
preference set results in a distinct history independent hash table instance. Therefore, by
changing the preference order of keys and buckets we can control the layout of keys within
the hash table.
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Procedure Set 1 History Independent Hash Table

Procedure: INSERT
Desc: insert the given key in to the hash table.

Input: Tables H0−m[n], key k
1: <i, r>← GET MOST PREFERRED BUCKET(k)
2: c← 0
3: while c < (n ∗ (m + 1)) do
4: if Hr[i] is null then
5: Hr[i]← k
6: return <i, r>
7: if BUCKET PREFERS(i, r, k,Hr[i]) then
8: SWAP(k,Hr[i])
9: <i, r>← GET NEXT BUCKET(k, i, r)
10: c← c + 1
11: return <null, null> {tables are full}

————————————————————————————————————–
Procedure: SEARCH
Desc: search for the given key in the hash table.

Input: Tables H0−m[n], key k
1: <i, r>← GET MOST PREFERRED BUCKET(k)
2: c← 0
3: while c < (n ∗ (m + 1)) AND Hr[i] is not null do
4: if k == Hr[i] then
5: return <i, r> {key found at Hr[i]}
6: <i, r>← GET NEXT BUCKET(k, i, r)
7: c← c + 1
8: return <null, null> {key not found}

————————————————————————————————————–
Procedure: DELETE
Desc: delete the given key from the hash table.

Input: Tables H0−m[n], key k
1: <i, r>← SEARCH(k)
2: while i is not null AND Hr[i] is not null do
3: <j, s>← GET NEXT BUCKET(k, i, r)
4: if Hs[j] is not null AND KEY PREFERS( Hs[j], i, j, r, s) then
5: Hr[i]← Hs[j]
6: k ← Hs[j]
7: i← j, r ← s

The reordering of preferences leads to the realization that we can rewrite the hash table
algorithms to enable easy-custom selection of history independent layouts with minimal
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modifications. For customization, we categorize the hash table operations in two procedure
sets – a generic set and a customizable set. The generic procedures implement the overall
hash table search, insert, and delete operations.

Generic procedures can be used unaltered for all application scenarios. The customizable
procedures determine the specific key and bucket preferences thereby governing the resultant
hash table layouts. The generic procedures include INSERT, SEARCH, and DELETE (Pro-
cedure Set 1). The customizable procedures include GET MOST PREFERRED BUCKET,
GET NEXT BUCKET, BUCKET PR EFERS, and KEY PREFERS. We list the scenario
specific customizable procedures later in Sections 6.5.5 and 6.5.5 while discussing file system
operations.

In summary, the new procedure classification and rewrite enables distinct history inde-
pendent layouts for the same data set through modifications to the customizable procedures.
Moreover, modifications can now be targeted to favor other application characteristics, such
as read-only and sequential access (Section 6.5.5).

6.5.4 Disk Layout

Super Block and Block Groups

Similar to Ext3 [5], HIFS divides the disk into block groups. Each block group contains an
inode table, a map, and data blocks. The super block contains information about the overall
file system, such as the number of block groups and disk block size. Each group descriptor
describes one block group. Information stored in a group descriptor includes the inode table
size, and location of the disk buckets map.

All parameters governing the disk layout can be set up at file system creation time.
Figure 7.1 summarizes the HIFS configuration parameters.

The superblock and group descriptors have fixed sizes and occupy the same locations
on disk independent of file contents. Hence, no special history independent designs are
needed for the superblock and group descriptors. The disk bucket maps and the inode tables
however, play a critical role in history independent file storage. We discuss the maps and
inode table in detail below.

6.5.5 File Storage

Disk Buckets

File data is stored in blocks on disk. Blocks are grouped into units. Each unit consists of a
fixed number of data blocks. Each unit is termed as a disk bucket (Figure 7.1). Although
read and write operations access individual data blocks, space is allocated to files in multiples
of disk buckets.
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Procedure Set 2 Customizable Procedures for Case A (Block Group Locality) from Section
6.5.5
Procedure: GDB
Desc: get the logical file bucket number from file offset.

Input: file offset fo : fo ∈ N
1: return

(⌊⌊

fo
ds

⌋

/dbn
⌋)

————————————————————————————————————–
Procedure: GET MOST PREFERRED BUCKET

Input: key k : k = {file path fp, file offset fo}
1: return <h(fp||GDB(fo)) mod Bn, h(fp) mod Gn>

————————————————————————————————————–
Procedure: GET NEXT BUCKET

Input: key k : {fp, fo}, bucket i, block group r : (i, r) ∈ N
1: i← (i + 1) mod Bn

2: if i == (h(fp||GDB(fo)) mod Bn) then
3: r ← (r + 1) mod Gn, i← h(fp||GDB(fo)) mod Bn

4: return <i, r>

————————————————————————————————————–
Procedure: BUCKET PREFERS

Input: bucket i, block group r : (i,r) ∈ N, key a : {fpa, foa}, key b : {fpb, fob}
1: return h(fpa||GDB(foa)) >h(fpb||GDB(fob))

————————————————————————————————————–
Procedure: KEY PREFERS

Input: key k : {fp, fo}, bucket i, bucket j, block group r, block group s : (i,j,r,s) ∈ N
1: if r <>s then
2: return ((h(fp) mod Gn) - r + Gn) mod Gn < ((h(fp) mod Gn) - s + Gn) mod Gn

3: return ((h(fp||GDB(fo)) mod Bn) - i + Bn) mod Bn < ((h(fp||GDB(fo)) mod Bn) - j +
Bn) mod Bn

Disk Buckets Map

To allocate new disk buckets to files and to locate disk blocks in read and write operations,
HIFS relies on a special region in each block group referred to as the disk buckets map.

Each entry within the disk buckets map has a one-one mapping to the corresponding disk
bucket within the same block group (Figure 7.1). The entry in the map contains metadata
about the corresponding disk bucket, such as whether the bucket is free or occupied.

All file system operations first locate the target entry in the disk buckets map. Once
the map entry is located, the actual read or write operation performed on the corresponding
disk bucket. The size of a disk buckets map entry is much smaller than the size of the
corresponding disk bucket. Hence, using the map to locate disk buckets avoids expensive
seek operations on actual file contents. Also, the significantly smaller size of the maps means
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Figure 6.5: Sample executions and corresponding disk layouts for Case A from Section 6.5.5.
Here Gn = 2, Bn = 4, dbn = 2. Ii, Bi and Di denote the inode table, disk buckets map, and
the disk blocks respectively of block group i. Also, h(fp1) = 2, h(fp2) = 3 and h(fp3) = 4.
write(fp, fd, fo) represents a write operation of fd blocks on file fp at offset fo. The disk
blocks occupied by files with paths fp1, fp2 and fp3 are shaded with their respective colors.
Blocks that are not shaded indicate free blocks. The number within a block represents the
data block number of the corresponding file.

that map entries are often cached in memory for faster access.

History Independent Layouts

Existing file systems such as Ext3 [5] maintain a list of allocated blocks within the file inode
which renders the disk space allocation history dependent. HIFS on the other hand, does not
rely on allocation lists. Instead, in HIFS, location of data blocks are derived directly from
file attributes. Thus, for each read or write operation in HIFS, the locations of data blocks
on disk are determined only by parameters to the current operation and do not depend on
history.

To ensure history independent file storage, the disk bucket maps from all block groups are
collectively treated as a single history independent hash table. Hash table keys are derived
from file attributes such as the file paths and read-write offsets. The entries in the maps are
the hash table buckets.

As discussed in Section 6.5.3, by altering the derivation of keys and the keys↔buckets
preference sets we can attain customized layouts of the hash table to suit different locality
scenarios. Hence, file system operations use the generic hash table procedures from Procedure
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Set 1 to locate free blocks for allocation or to find existing blocks for reading or writing.
Different history independent disk layouts are realized solely by altering the customizable
procedure set. Thus, file system operations, such as read and write have implementations
independent of the underlying history independent layouts. The history independent layouts,
in turn, are governed by specific customizable procedure implementations. To illustrate, the
actual file system write operation is included in Procedure Set 7 (Appendix).

We now describe a specific history independent data locality scenario in detail and then
briefly discuss other scenarios.

Case A: Block Group Locality

For block group locality, it is desired that data blocks of the same file are located close
together on disk, ideally within the same block group. To realize block group locality,
we tailor the customizable procedures as shown in Procedure Set 2. The generic history
independent hash table procedures from Set 1, and the generic file system operations are
unchanged.

To clarify the implementation of history independent block group locality in HIFS, con-
sider the example in Figure 6.5. The example illustrates history independent space allocation
for a set of three files. Each of the Figures 6.5(a)-6.5(d) lists a sequence of file system op-
erations and depicts the resultant disk layout at the end of each operation. The depicted
disk layouts include files’ data and metadata. Note that although the sequence of operations
in Figures 6.5(a) and 6.5(b) differ, the resultant disk layouts at the end of either operation
sequence are exactly the same. The example thus illustrates canonical SHI file storage.

To achieve canonical disk layouts, file system operations are translated in to hash table
operations as follows:

1. Keys are derived from the full file path fp and the read or write offset fo.

2. The hash table buckets are the disk buckets map entries.

3. Key preferences are set such that each key first prefers all buckets from one specific
block group in a fixed order. Then, buckets from the next adjacent block group and
so on.

4. Finally, buckets simply prefer keys with higher numerical values.

We now explain how steps (1) - (4) above preserve locality and history independence.
Consider the file system write operation listed in Procedure Set 7 in the chapter Appendix.

The write operation first needs to locate the correct entry in the disk buckets maps. Once the
map entry is located, the actual file write will be performed on the corresponding disk bucket.
Since the disk buckets maps from all block groups are treated as a single history independent
hash table, locating the correct buckets map entry is equivalent to finding the corresponding
hash table bucket. Hence, locating the disk buckets map entry requires probing of the disk
buckets maps. The probe order is exactly what is determined by the key preferences (Step
3).
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Block Group Locality. The probe order for a write operation starts with the most pre-
ferred bucket as determined by the procedure GET MOST PREFERRED BUCKET (Pro-
cedure Set 2). For a given file fp, the block group of the most preferred bucket for all file
buckets are derived from only the file path’s hash h(fp) (line 1, second return parameter).
Hence, all write operations of the same file begin their probe from the same block group
independent of the target file offsets. Although the probing for two write operations that
target different offsets may start from two different buckets but both buckets will be located
within the same block group.

Subsequent map entries in the probe order are determined using the GET NEXT BUCKET
procedure. The GET NEXT BUCKET procedure ensures that all buckets in the current
block group are probed (line 1) before moving to the next adjacent block group (lines 2-4).
Hence, data blocks of the same file prefer to be located in the same block group preserving
locality.

History Independence. For each bucket map entry in the probe sequence, following two
cases are possible.

(a) The bucket map entry is free.

(b) The bucket map entry is occupied by a previous write.

For case (a), data is written to the corresponding disk bucket and the key is stored in the
bucket map entry. The bucket map entry is also marked as occupied. In case (b), a collision
has occurred. Now it is exactly the collision resolution process that gives HIFS its history
independence.

We clarify the collision resolution through an illustration. Let w1 and w2 be two write
operations on files fp1 and fp2, respectively. Also, let w1 target offset fo1 of fp1 and w2

target offset fo2 of fp2. Hence, the keys for w1 and w2 for probing the disk bucket maps are
h(fp1||GDB(fo1)) and h(fp2||GDB(fo2)), respectively (procedure GET NEXT BUC KET,
line 2). In addition, let h(fp1 ||GDB (fo1)) > h(fp2 ||GDB(fo2)). Finally, suppose that the
keys for both w1 and w2 prefer the same entry in the disk bucket map of the same block
group and hence result in a collision. Now, there are two possible write sequences for w1 and
w2.

(i) w1 occurs before w2: The bucket is already occupied by the key of w1 when w2 executes.
Also, since h(fp1 ||GDB(fo1)) > h(fp2||GDB(fo2)), the bucket prefers key of w1 more
than that of w2 (procedure BUCKET PREFERS, line 1). Hence, w2 looks to the next
bucket in the key’s preference list and the bucket map entry remains unchanged.

(ii) w2 occurs before w1: The bucket entry is already occupied by the key of w2 when w1

executes. The bucket however, prefers the key of w1 over that of w2. Hence, the key
of w2 is now evicted from the bucket entry and is replaced by w1’s key. The key of w2

is relocated to a new bucket based on its preference list and probe order. Also, in this
case, the data written by w1 is now placed in the corresponding disk bucket, while the
data previously written by w2 is moved to the new disk bucket corresponding to the
new bucket map entry determined for its key’s relocation.
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Figure 6.6: HIFS disk layouts for operation sequences of Figure 6.5. (a) Case B← Complete
Sequential and (b) Case C ← External Parameters, from Section 6.5.5. Also, h(user(fp1))
= 2, h(user(fp2)) = 4 and h(user(fp3)) = 3.

Figure 6.5 lists several examples of the two cases (i) and (ii) from above. Specifically,
consider execution of operation 5 of Figure 6.5(b). In operation 5, the write of data blocks
zero and one of file fp1 replaces and relocates the data blocks two and three of fp3 which
were previously written by operation 4.

As a result of the collision resolution process, the bucket entry and hence the correspond-
ing disk bucket contents are the same irrespective of the write sequence. Generalizing the
above example gives the following. For a given set of files F , a file f in F is always stored at
the exact same locations on disk irrespective of the operation sequence that creates F . That
is, HIFS supports canonical representations and is history independent as per SHI definition
in Section 5.4.2.

Customizing History Independence

Block group locality is one specific scheme for a history independent disk layouts for a given
set of files. Different applications may prefer different locality properties. Hence, we list
two additional locality scenarios that can be achieved using different implementations of the
customizable procedures. The two scenarios are complete sequential locality and locality
based on external parameters. The relevant customizable procedures for the two scenarios
are listed in Procedure Sets 4 and 5 (Appendix).

Case B: Completely Sequential

Applications, such as data mining have very few writes as compared to read operations.
Read-intensive applications can greatly benefit if the entire file is stored sequentially on
disk giving maximal locality. To realize sequential file layouts, only the key and bucket
preferences need to be modified. The keys of all write operations prefer buckets within the
same block group as in block group locality. However, the probe sequence starts with the
first bucket in the block group and probes linearly henceforth. The buckets in-turn prefer
blocks in increasing order of file offsets.

Case C: External Parameters

Many applications access multiple files simultaneously [126]. I/O performance of multi-file
applications can be greatly enhanced if the files are located close together on disk. For
example, files created by a single user or process are located in adjacency within the same
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block group. In HIFS, multi-file locality can be realized with very minimal changes. In fact,
the only change required is that key’s preferences for block groups are now based on external
parameters such as the user (Procedure Set 5 in Appendix).

Figure 6.6 gives the resultant layouts for both complete sequential and locality based on
external parameters. The layouts result from the operation sequences of Figures 6.5(a) and
6.5(b). For all locality scenarios, resultant disk layouts will be the same irrespective of the
operation sequence.

Several other locality scenarios are possible. Individual scenarios can also be combined
to create more complex ones. For example, cases B and C can be combined to have a
distribution wherein files from the same user are located adjacently on disk with each file laid
out sequentially. A new scenario is realized by providing an appropriate set of customizable
procedures. A new set of customizable procedures needs to ensure that the key↔buckets
preferences are unambiguous, that is, no key should prefer any two buckets equally and vice-
versa. In Section 6.5.8, we show that as long as unambiguity of preferences is maintained,
the resulting layouts will be history independent.

6.5.6 Inode Table

Each inode is of fixed size and contains file metadata such as the file type, access rights, and
file size. Each inode table contains a fixed number of inodes. Inodes are allocated to files at
creation time.

Similar to the disk buckets maps, the inode tables from all block groups are collectively
treated as a single history independent hash table. Then, inode allocation and search is done
using the generic procedures from Procedure Set 1. History independent layouts for the inode
tables are also determined by the customizable procedures. One such set of inode-specific
customizable procedures are listed in Procedure Set 6 (Appendix). Here, the file inode is
located in the same block group as that preferred by the file data blocks. The intuition and
reasoning for history independence is similar to that described for block group locality.

6.5.7 File Delete and Rename Operations

HIFS hides all evidence of a file delete operation. To illustrate, consider the sample executions
and disk layouts from Figures 6.5(c) and 6.5(d). Figure 6.5(c) shows the resulting layouts
of a sequence of write-only operations. Figure 6.5(d) shows the layout after execution of all
operations of 6.5(b) plus the delete operation on file fp3 .

The disk layout after the delete operation (Figure 6.5(d)) is exactly the same as the layout
after the write-only sequence of Figure 6.5(c). Same layouts occur since HIFS relocates
data blocks on delete to their more preferred locations (procedure DELETE in Set 1). For
example, in Figure 6.5(d) blocks 2 and 3 of file fp1 are relocated to more preferred locations
when file fp3 is deleted by operation 6. Overall, when a file is deleted, the resultant disk
layout carries no traces of the delete operation as if the file was never created in the first
place.
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A file delete is realized by execution of the delete procedure from Set 1 for each disk
bucket allocated to the file. Thus, a delete operation is cost-wise equivalent to a write of the
entire file. A rename or move operation for a particular file is a delete of each allocated disk
bucket followed by a write of the same bucket with the new file path.

6.5.8 Proofs of History Independence

Let K denote the set of keys and β denote the set of buckets within the hash table. Also,
let k.pref(b) denote bucket b’s position on key k’s preference list, where k ∈ K and b ∈ β.
Lower value of k.pref indicates higher preference. Then, we have the following definition

Definition 12. Unambiguous Preferences
A set of preferences from K → β and β → K are unambiguous if both conditions (a) and
(b) below are met

(a) ∀k ∈ K, ∄ bi, bj ∈ β, such that i 6= j and k.pref(bi) = k.pref(bj)

(b) ∀b ∈ β, ∄ ki, kj ∈ K, such that i 6= j and b.pref(ki) = b.pref(kj).

Theorem 3. The customizable procedures listed in Procedure Set 2 result in a history inde-
pendent hash table with unique representation.

Proof. According to the Gale-Shapley Stable Marriage algorithm [97], if men propose in
decreasing order of their preferences and if all preferences are unambiguous, then the resulting
stable matching is unique. The key preferences of the history independent hash table [38]
are decreasing and unambiguous. Golovin et al. [38] proved that as a result of decreasing
and unambiguous preferences, the hash table layout is canonical, that is, the hash table is
strongly history independent. Therefore, to show that the layouts produced by a given set of
customizable procedures are history independent, we only need to show that the customizable
procedures result in decreasing and unambiguous preferences.

In the following we show that the customizable procedures in Procedure Set 2 applicable
to block group locality (Section 6.5.5) produce decreasing and unambiguous preferences.

(a) Proposal Order

Each time a new key is inserted, the first attempt is to place the key in its most preferred
bucket, that is, bucket b where k.pref(b) is minimum. The hash table insert procedure
(Set 1) uses the GET MOST PREFERRED BUCKET customizable procedure to locate a
key’s most preferred bucket. If further probing is needed, each new bucket in the probe
sequence is selected by the procedure GET NEXT BUCKET. Given a bucket bi, procedure
GET NEXT BUCKET finds the bucket bj , such that ∄ bl where k.pref(bi) < k.pref(bl) <
k.pref(bj). In other words, bj is always the next preferred bucket on key k’s preference list.
Thus, analogous to men in the stable marriage algorithm, the matching of keys to buckets
is attempted in decreasing order of key preferences.

153



(b) Unambiguous preferences

A bucket’s preference between two keys is resolved by the customizable procedure BUCKET
PREFERS. The condition for resolution is h(fpa||GDB(foa))>h(fpb||GDB(fob)). If the condi-
tion is true, key h(fpa ||GDB(foa)) is preferred. If the condition is false, key h(fpb||GDB(fob))
is preferred. Since the comparison operator is >, the comparison is always unambiguous for
two distinct keys.

For any given set of files F , the combination of the file path and the logical file bucket num-
ber is unique, that is, ∀f ∈ F , <fp,GDB(fo)>is unique. Hence, the hash value h(fp||GDB(fo))
is unique. The proof then reduces to collision resistance of the hash function.

Similarly, a key’s preference amongst two buckets is resolved by the customizable proce-
dure KEY PREFERS. If the two buckets belong to separate block groups (line 1), then the
key simply prefers the bucket in the block group with the lower index (line 2). Hence, the
case for separate block groups is unambiguous.

If the two buckets are in the same block group, then the key prefers the bucket closer to
its most preferred bucket in that block group (line 3). Again, since the comparison is based
on the hash of the unique combination <fp,GDB(fo)>, the comparison is unambiguous. The
proof again reduces to collision resistance of the hash function.

Similar proofs exist for the customizable procedures for complete sequential (Case B) and
for locality based on external parameters (Case C) from Section 6.5.5. Also, using the same
approach, history independence can be proved for the inode table.

6.6 Discussion

6.6.1 The Role of Secure Deletion

Under secure deletion, data is physically deleted from the storage medium via overwriting
[219]. The number of overwrites needed depends on the storage medium being used.

Secure deletion plays a role in history independence to avoid direct retention of deleted
data. When data is deleted from a history independent implementation, it is imperative
that the data location on disk is cleared by overwriting. Any residual data artifacts can
compromise the history of operations. Hence, HIFS does not mark hash table entries as
deleted but immediately performs an overwrite on delete. Overwriting applies to all history
independent disk structures including the inode table, disk bucket maps, and disk buckets.

6.6.2 Temporal Metadata

File systems typically maintain temporal metadata, such as modification times for files and
directories. The temporal metadata are then made available to applications. For certain
composite applications, it may be desired that history independence is preserved across files.
Cross-file history independence implies that file creation and modification order must be
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Parameter Database Web Server
profile profile

File system size 100 GB 10 GB
Mean file size 1 GB 512 KB

No. of files L · 100 (L · 10) · 211

Disk block size (ds) 4 KB 4 KB
No. of block groups (Gn) 8 24
Disk blocks / bucket (dbn) 5120 128

Inode size 281 bytes 281 bytes
IO Size 32KB 512KB

Table 6.1: Experimental parameters. L ← File System Load factor.

hidden. If configured, HIFS achieves cross-file history independence by not maintaining any
temporal metadata for files and by using history independent directories.

A directory file consists of a set of directory entries one entry for each file in the directory.
If cross-file history independence is desired, then HIFS maintains the contents of each direc-
tory file in a history independent manner. To ensure history independence, no additional
data structures are used. Instead, the directory entries are always stored sorted. Since a
simple sorted list is history independent [184], the sorting of directory contents suffices.

6.6.3 In-Memory History Independence

HIFS protects history independence only for data residing on disk. HIFS does not target
in-memory structures such as the file system cache.

Although the need for a history independent memory allocator for in-memory data struc-
tures has been voiced [113], we posit that extension of history independence to data in mem-
ory requires further careful examination. Simply replacing in-memory caches with history
independent versions will not suffice.

An in-memory system cache cannot treat each disk block independently. Instead, in-
terblock associations need to be maintained. For example, the cache must avoid scenarios,
such as the case wherein disk buckets map is written to disk but the modified file data blocks
still reside in the cache. Discrepancy between cache and disk can potentially reveal the last
file system operation performed.

6.7 Experiments

We benchmarked HIFS to understand the impact of history independence on performance.
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(a) Database profile, Case A (Section 6.5.5).
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Figure 6.7: HIFS throughputs and latencies. A load factor of L indicates that the file system
is L% full.

6.7.1 Setup

All experiments were conducted on servers with 8 Intel i7 CPUs at 3.4GHz, 16GB RAM,
and kernel v3.2.0-37. The storage devices of choice are Hitachi HDS72302 SCSI drives. The
benchmark tool used is Filebench [95].

6.7.2 Implementation

HIFS is implemented as a C++ based user-space Fuse [246] file system. All data structures,
including customizable procedures for history independence were written from scratch. The
entire HIFS code is ≈10K LOC.
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6.7.3 Measurements

Each test run commences with an empty file system, then creates and writes new files to
storage. The number of files stored is increased until the file system is 90% full. Throughputs
are measured at specific load factors3 ranging from 10% to 90%. To minimize the effect of
caching, the writes and subsequent read operations are separated by a complete clearing of
the system cache.

6.7.4 Results

Database Profile. Databases typically feature access to a few large files with random
access patterns. To simulate a database profile, we evaluate random reads and writes on
multiple files with a mean file size of 1 GB. The number of files is varied from 10 to 90 to
reflect the file system load factor. Table 6.1 summarizes all file system parameters while
Figure 6.7(a) shows the results.

As detailed in Section 6.5.5, the allocation of a new disk bucket to a file potentially causes
the displacement of other files’ data due to the history independent collision resolution. The
number of collisions increases with the load factor. For load factors beyond 60% a sharp
decrease in throughputs is observed for random writes. Read operations do not modify data.
As a result, read operations are not signifcantly affected by collisions showing less declines in
throughput with increasing load factors. Also, since the customizable procedures for block
group locality (Case A from Section 6.5.5) are employed here, data locality is preserved.
Write operations incur the overheads to maintain locality while reads benefit from colocated
data.

The tradeoff between write and read performance is further evident from the results shown
in Figure 6.7(b). Figure 6.7(b) lists file system throughputs when customizable procedures
for complete sequential locality (Case B in Section 6.5.5) are used. In the case of complete
sequential storage, each file is laid out sequentially on disk. For the sequential scenario,
read operations show a 13% average increase in throughput for sequential reads and 17%
for random reads as compared to block group locality (Figure 6.7(a)). To maintain higher
locality for sequential storage, write throughputs incur an average decline of 90% compared
to block group locality (Case A).

All of the above results hold under history independence assurances.

Web Server Profile

Web servers are characterized by access to a large number of very small files [247]. To model
a web server profile, we use a mean file size of 512 KB but increase the number of files up to
≈18,500 for a load factor of 90%. Refer to Table 6.1 for a full parameter list. The read and
write operations access entire files. Figure 6.7(c) summarizes the results for the web server
profile.

3Load factor is the file system disk space utilization.
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File create and delete operations

Figure 6.7(d) shows the latencies of file create and delete operations.
A create operation involves locating a free inode for the new file, writing the file metadata

to the new inode, locating the parent directory, and writing the file entry to the parent
directory. The writes to the inode table and to the directory are both history independent.
Since the inode table employs a history independent hash table (Section 6.5.6), create latency
increases with the load factor.

As discussed in Section 6.5.7, a file delete is equivalent to a write of the entire file in
order to preserve history independence. As a result, deletes have high latencies.

Overhead of history independence

Figures 6.7(a) and 6.7(c) also illustrate the throughputs for the Ext3 file system. For con-
sistent comparisons all Ext3 file system operations are also routed via Fuse.

The performance of HIFS for read operations is comparable to read throughputs of Ext3
for load factors up to 70%. To maintain history independence with locality, write operations
sustain significant overheads especially for higher load factors. Once the write operations
provide locality, reads incur significantly lower disk seek operations and are hence efficient.

For the web server profile, the overhead of history independence is higher even for reads.
Each operation in the web server profile accesses the entire file at once. Although the locality
of data blocks withing a file is maintained the files themselves are distributed over the entire
disk.

6.7.5 Summary and Analysis

HIFS employs history independent hash tables for all its data structures including files’
metadata and files’ data. The performance of hash tables in turn depends on the load
factor. In fact, the asymptotic performance per operation of the history independent hash
table employed is O(1/(1− α)3) [38]. The asymptotic result shows exponential decrease in
performance with increasing load factor α. Hence, for load factors >60% the performance
degrades for writes are significant. The same behavior is clearly evident in the experimental
results for HIFS (Figures 6.7(a)-6.7(d)).

6.8 HIFS Visualizer (Demo)

The HIFSVisualizer (Figure 6.8) aids in the demonstration and understanding of history
independent storage in HIFS. For a given locality scenario and file set, the HIFSVisualizer
depicts the entire disc layout. Users can also select different locality scenarios and see
how changes in the file creation sequence result in the same canonical, history independent
layouts.
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Figure 6.8: HIFS Visualizer.

6.9 Conclusions

In this chapter, we approached history independence from a systems perspective bridging the
gap between theory and practice. We used our theoretical concepts from Chapter 5 to design
a history independent file system (HIFS). Once data is deleted, HIFS guarantees that no
evidence of the deleted data is recoverable via data organization. HIFS provides full history
independence across both file system and disk layers of the storage stack. Additionally, HIFS
preserves data locality and is configurable to suit different data locality scenarios.
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6.10 Chapter Appendix

6.11 Procedure Sets

Procedure Set 3 Customizable Procedures for HIHT Hash Table by Golovin et al. [38]

Procedure: GET MOST PREFERRED BUCKET
Desc: get the top most bucket on key’s preference list.

Input: key k : k ∈ N
1: return <k mod n, 0>

————————————————————————————————————–
Procedure: GET NEXT BUCKET
Desc: get the next bucket on key’s preference list.

Input: key k, bucket i, table r : (k, i, r) ∈ N
1: i← (i + 1) mod n
2: if i == (k mod n) then
3: r ← r + 1
4: i← k mod n
5: return <i, r>

————————————————————————————————————–
Procedure: BUCKET PREFERS
Desc: find which of two keys the given bucket prefers.

Input: bucket i, table r, key a, key b : (i, r, a, b) ∈ N
1: return a > b

————————————————————————————————————–
Procedure: KEY PREFERS
Desc: find which of two buckets the given key prefers.

Input: key k, bucket i, bucket j, table r, table s : (k, i, j, r, s) ∈ N
1: if r 6= s then
2: return r < s
3: return ((k mod n)− i + n) mod n < ((k mod n)− j + n) mod n
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Procedure Set 4 Customizable Procedures for Case B (Complete Sequential) from Section
6.5.5
Procedure: GET MOST PREFERRED BUCKET
Desc: get the top most bucket on key’s preference list.

Input: key k = {file path fp, file offset fo}
1: return <0, h(fp) mod Gn>

————————————————————————————————————–
Procedure: GET NEXT BUCKET
Desc: get the next bucket on key’s preference list.

Input: key k = {fp, fo}, bucket i, block group r
1: i← (i + 1) mod Bn

2: if i == 0 then
3: return <0, (r + 1) mod Gn>
4: return <i, r>

————————————————————————————————————–
Procedure: BUCKET PREFERS
Desc: find which of two keys the given bucket prefers.

Input: bucket i, block group r, key a = {fpa, foa}, key b = {fpb, fob}
1: if fpa == fpb then
2: return GDB(foa) <GDB(fob)
3: return h(fpa) >h(fpb)

————————————————————————————————————–
Procedure: KEY PREFERS
Desc: find which of two buckets the given key prefers.

Input: key k = {fp, fo}, bucket i, bucket j, block group r, block group s
1: if r 6= s then
2: return ((h(fp) mod Gn)− r + Gn) mod Gn < ((h(fp) mod Gn)− s + Gn) mod Gn

3: return i < j
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Procedure Set 5 Customizable Procedures for Case C (External parameters) from Section
6.5.5
Procedure: GET MOST PREFERRED BUCKET

Input: key k : k = {file path fp, file offset fo, user u}
1: return <h(fp||GDB(fo)) mod Bn, h(u) mod Gn>

————————————————————————————————————–
GET NEXT BUCKET and BUCKET PREFERS same as in procedure set 2.
————————————————————————————————————–
Procedure: KEY PREFERS

Input: key k : {fp, fo, u}, bucket i, bucket j, block group r, block group s : (i, j, r, s) ∈ N
1: if r 6= s then
2: return ((h(u) mod Gn)− r + Gn) mod Gn < ((h(u)modGn)− s + Gn) mod Gn

3: return ((h(fp||GDB(fo)) mod Bn)−i+Bn) mod Bn < ((h(fp||GDB(fo)) mod Bn)−j+Bn)
mod Bn

Procedure Set 6 Inode Table Customizable Procedures
Procedure: GET MOST PREFERRED BUCKET

Input: key k = file path fp
1: return <h(fp) mod In, h(fp) mod Gn>

————————————————————————————————————–
Procedure: GET NEXT BUCKET

Input: key k = fp, bucket i, block group r
1: i← (i + 1) mod In

2: if i == (h(fp) mod In) then
3: r ← (r + 1) mod Gn, i← h(fp) mod In

4: return <i, r>

————————————————————————————————————–
Procedure: BUCKET PREFERS

Input: bucket i, block group r, key a = fpa, key b = fpb
1: return h(fpa) > h(fpb)

————————————————————————————————————–
Procedure: KEY PREFERS

Input: key k = fp, bucket i, bucket j, block group r, block group s
1: if r 6= s then
2: return ((h(fp) mod Gn)− r + Gn) mod Gn < ((h(fp) mod Gn)− s + Gn) mod Gn

3: return ((h(fp) mod In)− i + In) mod In < ((h(fp) mod In)− j + In) mod In
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Procedure Set 7 HIFS write operation

Procedure: write

Input: file path fp, file offset fo, data ∂, data length ∂l
I
Gn

t : Inode tables, BGn

t : Disk Bucket Maps, GDt : Group Descriptor table
1: <ii, in>← SEARCH(IGn

t , fp)
2: check file permissions in inode data
3: bs ← (dbn ∗ ds), wl ← 0
4: while wl < ∂l do
5: <bi, gi>← SEARCH(BGn

t , {fp, fo})
6: if bi is null then
7: <bi, gi>← INSERT(BGn

t , {fp, fo}, {})
8: if (∂l − wl) > (bs − (fo mod bs)) then
9: ∂i ← bs − (fo mod bs)
10: else
11: ∂i ← ∂l − wl

12: sd ← start offset of disk buckets in GDt[gi]
13: write ∂[wl : wl + ∂i] bytes to disk at offset sd + (bs ∗ bi) + (fo mod bs)
14: fo ← fo + ∂i, wl ← wl + ∂i
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Chapter 7

Delete Agnostic File System (DAFS):
Journaling and OAHI

7.1 Chapter Overview

7.1.1 Background and Motivation

The HIFS implementation from Chapter 6 supports strong history independence (SHI). As
seen from the experimental results in Section 6.7, for higher file system load factors1, HIFS
write efficiency is low. Lower write efficiency results from the necessity of canonical repre-
sentations for SHI. To ensure canonical representations for files’ data and metadata, HIFS
relocates data on each write operation. The amount of data relocated increases exponen-
tially with the file system load factor. Hence, the write throughputs are significantly lower
for load factors greater than 60%.

SHI is a very powerful notion of history independence, secure even against a computa-
tionally unbounded adversary [113]. SHI also conceals the maximum possible history. In
practice, hiding partial history may be sufficient for certain applications. Applications that
do not require SHI can be made highly efficient using new targeted history independence no-
tions. It is therefore important to explore the efficiency benefits of new history independence
notions that are weaker that SHI and potentially more suitable for practical use.

7.1.2 Our Contribution: Delete Agnostic File System (DAFS)

In Section 5.5.1, using ∆HI we defined several new history independence notions that unlike
SHI do not require canonical representations. In this chapter, we redesign the HIFS file
system layer to support two new history independence notions – revealing last k operations
for journaling (JHI)2 and operation-agnostic history independence (OAHI) for regulatory
compliance. The new file system is called Delete Agnostic File System (DAFS).

1Load factor refers to file system space utilization.
2We refer to history independence in the presence of journaling as journaled history independence.
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Figure 7.1: DAFS disk layout. Key parameters: Gn ← number of block groups, Bn ←
number of disk buckets per block group, ds ← Data block size in bytes, dbn ← number of
data blocks per disk bucket.

We demonstrate that relaxing the history independence notion from SHI to JHI or from
SHI to OAHI significantly improves file system performance.

7.2 Model

We assume an insider adversary with full access to the storage medium, such as the system
disk. By analyzing data organization on disk, the adversary aims to derive file system’s
history. We also assume that the adversary can make multiple observations of disk state.

Both JHI and OAHI were formally defined in Section 5.5.1. For JHI, it is permissible
to reveal only the last k file system operations performed. For OAHI, the adversary should
not be able to detect whether a delete operation was performed between any two adjacent
observations unless the delete is evident from the file system ADT states itself.

7.3 Journaled History Independence (JHI): Reveal Last

k Operations

In the event of a system failure, it is imperative that the file system state is not corrupted.
To ensure consistent state, file systems typically employ a journal. File system operations
are first recorded in the journal and then applied to the file storage area. If a failure occurs
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while writing to the journal, the operations can be ignored on system recovery. On the other
hand, if failure occurs while writing to file storage, operations are replayed from the journal
on recovery. Thus, each write request to the file system causes two writes on disk, one to
the journal and one to file storage.

Recall from Section 5.5.1 that journaling by definition reveals the last k operations. For
journaling, revealing the last k operations is a necessary tradeoff for resilience.

7.3.1 DAFS Journaling

In DAFS, a separate region on disk is reserved for a journal in the form of a circular log. The
journal contains information for a finite number of file system operations, say k operations.
Operations are recorded in the journal in the order in which they are received by the file
system. To restore consistency after system failure, it is essential to maintain operation
order. Hence, the sequence of k operations recorded in the journal cannot be hidden. The
file storage areas, such as the inode tables, disk bucket maps, and the disk buckets provide
SHI just as in the case of HIFS. Hence, once a file system operation is applied to file storage
and removed from the journal, its timing can no longer be identified.

In summary, DAFS journaling provides consistent failure recovery while revealing the
sequence of only last k file system operations.

7.3.2 Apparent Paradox: Why Journaling Increases Efficiency

History independence relaxations that come with journaling allow significantly more efficient
file system operations due to batching. The positive effect of batching on efficiency for write-
intensive workloads is explained in the following.

To maintain canonical representations, in HIFS, data is potentially relocated on each
file system write operation. The frequency of data relocation increases exponentially with
the file system load factor. Hence, for higher load factors, the number of disk writes for
each write request to the file system is much greater that the two disk writes required for
journaling. Further, the same data blocks may be relocated several times in consecutive
write operations. If write operations can be batched, then the number of times a data block
is relocated can be reduced by avoiding redundant moves.

Hence, in DAFS, we choose to use the journal not only for failure recovery, but also as
a buffer to batch write operations. Write operations are applied to file storage areas only
when the journal is full. During the application to file storage area, redundant disk writes
are eliminated significantly improving write throughputs.

7.4 Operation-Agnostic History Independence (OAHI)

Regulations [83,191,252] that are specifically concerned with irrecoverable data erasure and
not with other artifacts of history can be met by systems that support OAHI for the delete
operation. As discussed in Section 5.5.1, unlike SHI, OAHI for deletes can be achieved

166



File System Operation SHI (HIFS) OAHI (DAFS)
File write O(1/(1− L)3) O(1)
File delete O(1/(1− L)3) O(1/(1− L)3)

Table 7.1: Number of disk bucket writes per file system operation. L is the file system load
factor (space utilization), 0 ≤ L ≤ 1.

without canonical representations. Relaxing the requirement to noncanonical representations
presents significant efficiency benefits.

To make DAFS preserve OAHI only, we first transform the SHI hash table [38] into
an OAHI hash table. Then, we use the OAHI hash table to organize files’ data and files’
metadata.

7.4.1 OAHI hash table

The SHI hash table [38] can be transformed into an OAHI hash table as follows. The hash
table insert operation is modified to not maintain canonical representations. Instead, the
insert operation uses linear probing [171] and inserts a key in the first available bucket. The
OAHI hash table operations are listed in Procedure Sets 8 and 9 in the chapter appendix.

The hash table delete operation3 alone provides OAHI. Deletion of a key from the hash
table leaves an empty bucket, say bucket b1. The delete operation then finds a key that
prefers bucket b1 more than the bucket it is located in, say bucket b2. If such a key is found,
it is moved from b2 to b1 making b2 empty. The process is then repeated for bucket b2 and so
on, until no key is found for relocation. The net effect of the key relocation process is that
a sequence of hash table operations containing a delete, results in the same hash table state
as an insert-only sequence, thereby hiding all evidence of the delete.

7.4.2 OAHI in DAFS

DAFS uses the OAHI hash table for file storage. The OAHI hash table insert operation is
not required to maintain canonical representations. The hash table insert operation is used
by file system write operation. Hence, the overhead of maintaining canonical representations
on file writes is eliminated.

When a file is deleted in DAFS, for each disk bucket allocated to the file, the same effect
is achieved as that for a key deleted from the OAHI hash table. As a result, no evidence of
a delete remains in the file system state and OAHI is preserved.

Changing the history independence notion from SHI in HIFS, to OAHI in DAFS, has
significant potential for efficiency. As shown in Table 7.1, the number of writes to disk
buckets needed for OAHI is significantly lower as compared to the number of writes needed
for SHI. Fewer writes are needed for OAHI since the write operations are not required to

3For complete listing of SHI hash table operations refer to Chapter 6.
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Parameter Value
File system size 10 GB

Mean database size 1 GB
No. of databases L · 10

Disk block size (ds) 4 KB
No. of block groups (Gn) 4

Disk blocks per bucket (dbn) 512
Inode size 281 bytes

Table 7.2: Experimental parameters. L ← File System Load factor.

maintain canonical representations. Under noncanonical representations, when disk buckets
are allocated to a file, other files’ data needs no relocation. Relocation of data to ensure
canonical representations was precisely the reason for lower throughputs of HIFS writes.

7.5 Experiments

DAFS implements two new history independence notions, JHI and OAHI. Both JHI and
OAHI are aimed to increase file system efficiency. In this section, we compare the perfor-
mance of DAFS and HIFS.

7.5.1 Setup

All experiments were conducted on servers with 2 Intel Xeon Quad-core CPUs at 3.16GHz,
8GB RAM, and kernel v3.13.0-24. The storage devices of choice are Hitachi HDS72302 SCSI
drives.

7.5.2 Implementation

DAFS is implemented as a C++ based user-space Fuse [246] file system. All data structures,
including OAHI hash table were written from scratch. File system setup parameters are listed
in Table 7.2.

7.5.3 Measurements

To experiment for a real-world scenario we use the TPCC [11] database benchmark. The
database of choice is Sqlite. Sqlite data files are stored using HIFS, DAFS, and Ext3. The
BenchmarkSQL [1] tool is used to generate the TPCC workload.

Each test run commences with an empty file system and creates new databases on file
system storage. The number of databases is increased until the file system is 90% full. The
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Figure 7.2: TPCC throughputs for Ext3, HIFS, and DAFS with file system load factor.

TPCC scale factor is 10 giving a size of 1GB for each database. Throughputs are measured
at specific load factors4 ranging from 10% to 90%.

7.5.4 Results

Figure 7.2 reports the throughputs for HIFS, DAFS, and Ext3. As per the TPCC specifica-
tion [11], throughputs are reported as new order transactions executed per minute (tpmc).
As seen, the performance of DAFS is up to 4x times better than HIFS for load factors >50%.
Note that the performance of Ext3 is included as a reference. Ext3 does not provide OAHI.

For load factors ≤ 50%, HIFS and DAFS exhibit similar performance. At lower load
factors fewer collisions occur as new files are added to file system storage. Fewer collisions
mean that the frequency of data relocation to maintain canonical representations is low at
load factors ≤ 50%. Hence, performance of DAFS and HIFS is similar at low load factors.

7.6 Conclusions

The system design and experimental results of this chapter validate our theoretical results
from Chapter 5. In Chapter 5, using the new ∆HI framework we defined both JHI and
OAHI. We also hypothesized that relaxing the history independence notion from SHI to JHI

4Load factor is the file system disk space utilization.
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and OAHI will eliminate the need for canonical representations and significantly improve
system performance.

In this chapter, we demonstrate the effect of history independence notions on file system
performance. We design, implement, and evaluate the delete agnostic file system (DAFS).
DAFS supports two new history independence notions - JHI and OAHI. JHI makes DAFS
resilient to system failures and OAHI targets regulatory compliance. As shown by our
experimental results, changing the history independence notion from SHI in HIFS, to OAHI
in DAFS significantly increases file system performance.
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7.7 Chapter Appendix

7.7.1 Procedure Sets

Procedure Set 8 OAHI Hash Table
Procedure: INSERT
Desc: insert the given key in to the hash table.

Input: Tables H0−m[n], key k
1: <i, r>← GET MOST PREFERRED BUCKET(k)
2: c← 0
3: while c < (n ∗ (m + 1)) do
4: if Hr[i] is null then
5: Hr[i]← k
6: return <i, r>
7: c← c + 1
8: return <null, null> {tables are full}

————————————————————————————————————–
Procedure: SEARCH
Desc: search for the given key in the hash table.

Input: Tables H0−m[n], key k
1: <i, r>← GET MOST PREFERRED BUCKET(k)
2: c← 0
3: while c < (n ∗ (m + 1)) AND Hr[i] is not null do
4: if k == Hr[i] then
5: return <i, r> {key found at Hr[i]}
6: <i, r>← GET NEXT BUCKET(k, i, r)
7: c← c + 1
8: return <null, null> {key not found}

————————————————————————————————————–
Procedure: DELETE
Desc: delete the given key from the hash table.

Input: Tables H0−m[n], key k
1: <i, r>← SEARCH(k)
2: while i is not null AND Hr[i] is not null do
3: <j, s>← GET NEXT BUCKET(k, i, r)
4: if Hs[j] is not null AND KEY PREFERS( Hs[j], i, j, r, s) then
5: Hr[i]← Hs[j]
6: k ← Hs[j]
7: i← j, r ← s
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Procedure Set 9 Customizable Procedures for OAHI Hash Table
Procedure: GDB
Desc: get the logical file bucket number from file offset.

Input: file offset fo : fo ∈ N
1: return

(⌊⌊

fo
ds

⌋

/dbn
⌋)

————————————————————————————————————–
Procedure: GET MOST PREFERRED BUCKET

Input: key k : k = {file path fp, file offset fo}
1: return <h(fp||GDB(fo)) mod Bn, h(fp) mod Gn>

————————————————————————————————————–
Procedure: GET NEXT BUCKET

Input: key k : {fp, fo}, bucket i, block group r : (i, r) ∈ N
1: i← (i + 1) mod Bn

2: if i == (h(fp||GDB(fo)) mod Bn) then
3: r ← (r + 1) mod Gn, i← h(fp||GDB(fo)) mod Bn

4: return <i, r>

————————————————————————————————————–
Procedure: BUCKET PREFERS

Input: bucket i, block group r : (i,r) ∈ N, key a : {fpa, foa}, key b : {fpb, fob}
1: return h(fpa||GDB(foa)) >h(fpb||GDB(fob))

————————————————————————————————————–
Procedure: KEY PREFERS

Input: key k : {fp, fo}, bucket i, bucket j, block group r, block group s : (i,j,r,s) ∈ N
1: if r <>s then
2: return ((h(fp) mod Gn) - r + Gn) mod Gn < ((h(fp) mod Gn) - s + Gn) mod Gn

3: return ((h(fp||GDB(fo)) mod Bn) - i + Bn) mod Bn < ((h(fp||GDB(fo)) mod Bn) - j +
Bn) mod Bn
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Chapter 8

Un-Traceable Deletion and Ficklebase

8.1 Introduction

8.1.1 Background and Motivation

The delete operation in modern computer systems can be an illusion [224]. Although once
deleted, data may no longer be accessible via legitimate system interfaces, several instances
[50, 239, 245] have demonstrated that presumably erased data can be recovered with simple
mining techniques. Preserving deleted data violates retention policies set forth by legislations
such as HIPAA [77], FERPA [49], FISMA [14], EU Data Protection Directive [4] and the
Gramm–Leach–Bliley Act [20].

Prior work has proposed secure deletion to prevent direct recovery of deleted data from
storage. Under secure deletion, system components where deleted data is preserved are
first identified. For example, system subcomponents, such as memory [68], storage medi-
ums [99] and file systems [55] have been shown to preserve deleted data. Applications such
as databases hold on to deleted data in transaction logs, error logs, temporary tables, deal-
located data pages, index entries and audit logs [94, 242]. Once the existence of deleted
data is identified, the physical storage locations where deleted data resides are overwritten.
Overwriting ensures that deleted data cannot be directly recovered from storage. Secure
deletion mechanisms have been proposed for general storage media [99, 121, 151, 266], file
systems [34, 153], and database applications [242]. Also, off-the-shelf [3] tools can now be
used to perform secure deletion.

In Chapter 6, we showed that secure deletion alone is insufficient. Even after secure dele-
tion, deleted data can recovered by analyzing data organization. We then proposed history
independence as a solution to eliminate inferences about deleted data via data organization.

The storage layout of history independent data structures1 [128] is a function of current
state only and not of past operations. If a delete operation is part of a system interface, then
utilizing a history independent data structure ensures that an adversary subsequently gaining
access to the system storage is unable to infer whether a delete operation was performed.

1Also referred to as uniquely represented data structures.
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Currently, history independent variants are available for hash tables [183], 2-3 Trees [174],
B-Trees [114] and Skip Lists [115].

A third, largely ignored aspect in preventing recovery of deleted data concerns the rela-
tionship of deleted data to data that is present in the system now. The main observation
here is that side effects of deleted data persist within current data. Analyzing current data
can potentially reveal information about the data deleted in the past.

We posit that, for true regulatory compliance, in addition to secure delete and history
independence, full erasure of postdeletion data side effects is required. We term the removal
of data side effects as untraceable2 deletion.

8.1.2 Our Contribution: Untraceable Deletion for Databases

We formalize untraceable deletion for relational databases (Section 8.2) and discuss various
functional aspects of untraceable deletion. We then design Ficklebase, a relational database
that achieves untraceable deletion. In Ficklebase, once a tuple is deleted, all of the deleted
tuple’s side effects are removed. Removal of all side effects achieves the same effect as if the
deleted tuple was never inserted in the database. Ficklebase thus eliminates all traces of
deleted data, rendering data unrecoverable and also guaranteeing that the deletion itself is
undetectable.

8.1.3 Chapter Outline

Data side effects and untraceable deletion are formalized in Section 8.2. Section 8.2 also iden-
tifies the scenarios where untraceable deletion is suitable or not suitable. Adversarial model
is discussed in Section 8.3. Section 8.4 describes the Ficklebase architecture. Ficklebase
security is analyzed in Section 8.5. Section 8.7 presents experimental results for Ficklebase
performance. Ficklebase demo application is introduced in Section 8.8. Finally, Section 8.9
concludes the chapter.

8.2 Concepts

8.2.1 Example Illustrating Data side effects

To illustrate how deleted data can leave behind side effects, consider a snippet from a hypo-
thetical intelligence agency database shown in Figure 8.1(a). Suppose that once agent Sarah
leaves the agency all evidence of her existence in the database needs to be eliminated. The
evidence includes tuples from the Agent relation, travel information from Travel relation,
and mission assignments from the Mission relation. In addition, the Avg(Rating) attribute
in Mission relation also carries evidence of past existence of agent Sarah since the average
was computed using agent Sarah’s rating.

2To differentiate from a “secure deletion” performed by overwriting.
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Name Alias
Current 

Location
Speciality Rating

Ethan Hunt Hawk Hong Kong Access 8.7

Charles Vine Spider Zurich Intelligence 9.1

Sarah Walker Tzar Dhaka Security 8.1

John Steed Chopper Warsaw Strategy 7.9

Sam Clover Agent J Omsk Intelligence 7.6

….. ….. ….. ….. …..

Code Department Avg (Rating)

MI832 Narcotics 8.4

ST782 Weapons 8.9

CI397 Collections 7.6

CR641 Crime 9.0

….. ….. …..

Mission Agent

ST782 Hawk

MI832 Spider

CI397 Tzar

MI832 Chopper

MI832 Agent J

….. …..

Agent Source Destination Mission Date

Hawk Berlin Vienna ST782 03/12/11

Spider Chicago Sydney MI832 06/15/11

Hawk Vienna Hong Kong ST782 01/23/12

Spider Sydney Zurich MI832 08/07/12

….. ….. ….. ….. …..

T

I

M

E

MI832 Assignments

Agent Rating

Spider 8.7

Chopper 7.9

Avg(Rating)

8.3

Transaction T2 :  New Assignment

Agent Rating

Spider 8.7

Chopper 7.9

Agent J 7.6

Avg(Rating)

8.067

Transaction T3 :  Delete Chopper

Transaction T1:  New Assignment

AgentRating

Spider 8.7

Avg(Rating)

8.7

Agent Rating

Spider 8.7

Agent J 7.6

Avg(Rating)

8.7

Avg(Rating)

8.15

Rollback T1

Rollback  T2

Delete Chopper

Re-Execute T2

(a) (b)

Agent

Mission Assignment

Travel

Figure 8.1: (a) Intelligence Agency Database Snippet (b) Rollback vs Transaction reexecu-
tion

To remove all evidence of agent Sarah’s past existence, relevant tuples from Agent, Travel
and Mission relations need to be deleted. Further, the Avg(Rating) needs to be recomputed
to remove the effect of agent Sarah’s rating from the average. The effect on the average rating
can be removed by reexecuting transactions that computed the average since agent Sarah
was inserted into the database. Figure 8.1(b) illustrates that the reexecution is necessary to
ensure that the database reflects the correct average rating after agent deletion.

At first glance, it may appear that removal of all data side effects can be performed
by application logic. However, deletion of all data linked to an agent can potentially be a
complex task. For example, in the case of a transaction that uses agent information and
mission data to generate new travel assignments for other agents. Also, removal of data side
effects via application logic requires detailed semantic knowledge of all database transactions
increasing the burden on database application developers. Ideally, removal of all evidence of
the deleted agent should be supported transparently by the underlying database as Ficklebase
does.

8.2.2 Notations

Consider the following notation for a transaction Tj in a relational database - Tj(R) →
(M), where R represents the read operations performed by Tj while M indicates the data
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modification operations3 of Tj , |R| ≥ 0,|M | ≥ 0. Let rti , uti and iti denote the read,
update, and insert operations, respectively, of a tuple ti. Also let T S(oi) denote the commit
timestamp of the transaction that performs operation oi.

Now suppose that the following transactions have been executed and committed in se-
quence:

T1()→ (it1), T2(rt1)→ (it2), T3(rt2)→ (ut5 , ut6), T4(rt5 , rt4)→ (ut7 , it10). (8.1)

8.2.3 Data Side Effects

We first determine tuple side effects for transactions in schedule 8.1. Transaction T2 read
tuple t1 and inserted t2. Hence, the insertion of t2 is a side-effect of t1. Similarly, transaction
T3 read tuple t2 and updated tuples t5 and t6. Hence, updates to t5 and t6 are side effects
of t2. In addition, T4 read tuple t5 updated by T3. Hence, modifications made by T4 i.e.
update of t7 and insertion of t10 are also side effects of t2 and so on.

Overall, the side effects are as follows:
SA(t1) = (it2 by T2, ut5 , ut6 by T3, ut7 , it10 by T4)
SA(t2) = (ut5, ut6 by T3, ut7 , it10 by T4)
SA(t5) = SA(t4) = (ut7,it10 by T4).

It is to be noted from the above illustration that data side effects go beyond simple
primary and foreign key relationships. In fact, any modification after reading of a data item
constitutes the data item’s side effects and needs to be hidden after deletion of the read data
item.

Definition 13. Side effects of a tuple ti (SA(ti)) are represented by the set of all data
modifications (update and insert) operations, such that

1. If ∃Tj(Rj) → (Mj), such that rti ∈ Rj and T S(Tj) > T S(iti), then ∀otm ∈ Mj , otm ∈
SA(ti).

2. ∀otm ∈ SA(ti), If ∃Tj(Rj) → (Mj), such that rtm ∈ Rj and T S(Tj) > T S(otm), then
∀otn ∈Mj , otn ∈ SA(ti).

Note that the side effects definition is recursive but not circular. The reasons for noncircu-
larity as as follows. Under a fully serializable mode of execution there exists a serial schedule
of database transactions, that is, a sequential schedule with no overlapping transactions. A
serial schedule is by definition noncircular. Further, SA(ti) includes database operations and
not the tuples themselves. Since each database operation is unique, circularity is avoided.
To illustrate, consider the sequence T1(rt1)→ (ut2), T2(rt2)→ (ut1). Although it may appear
circular at first glance, the operations ut1 and ut2 are distinct, thereby SA(t1) = {ut2} and
SA(t2) = {ut1}.

3Data modification operations include updates and inserts.
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8.2.4 Untraceable Deletion

Consider the transaction schedule 8.1. Now, suppose that tuple t2 expires and is to be
deleted. An untraceable delete of t2 should leave the database in a state such that no trace
of t2 is left behind, not even the effects of t2 on other data. Untraceable delete of t2 thus
requires the following:

• Rollback of transactions T4 and T3.

• Deletion of t2, which is rollback of transaction T2.

• Reexecution of transactions T3 and T4. The reexecution is necessary as illustrated by
the example in Figure 8.1).

The above steps results in the execution schedule T1T3T4. A database that performs
operations equivalent to the above steps and achieves a schedule where the transaction that
inserted t2 never took place achieves untraceable deletion of t2

4.
We define untraceable deletion for relational databases as follows:

Definition 14. Untraceable delete. Let the current database state be achieved by the trans-
action execution sequence ΓS = ...Tj−2Tj−1TjTj+1Tj+2, where tuple ti was inserted by trans-
action Tj. Then, an untraceable delete of ti is a set of operations that changes the current
database state into a state computationally indistinguishable5 from a state resulting from the
execution sequence ΓE=...Tj−2Tj−1T

′
jTj+1Tj+2, where T ′j = φ or T ′j = Tj − iti .

T ′j = φ when the application logic dictates that noninsertion of ti means complete rollback
of transaction Tj making ΓE = ΓS−Tj . Otherwise, T ′j = Tj−iti , for example, when Tj inserts
ti using an insert-select query.

8.2.5 Applicability of Untraceable Deletion

It is important to note that untraceable deletion is not desirable in certain scenarios. For
example, consider a banking application that records money transfer between clients. If a
client A has transfers recorded with another client B, then deletion of client A does not
justify deletion of A↔ B transfers and their side effects.

On the other hand, consider a privacy sensitive application that maintains confidential
documents, records user access to documents, and generates statistical or cross-document
intelligence information. Once a document D is to be purged, it is important to properly
erase all associated access records and intelligence information deduced from D. Erasing all
information deduced from document D eliminates all side effects of document D.

4Secure deletion and history independence would still be required to truly erase t2 as discussed in Section
8.4.7.

5No nonuniform probabilistic polynomial time algorithm exists that can distinguish between the states
[146]. untraceable deletion in fact, offers stronger information theoretic guarantees but we formulate the
definition in terms of computational adversaries to allow for the deployment of cryptography in the underlying
mechanisms.
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A third category of applications where an equivalent of untraceable delete operation is
desired is not privacy but rather functionality-centric. Economic data, such as the Current
Population Survey (CPS) [2] are permitted to undergo revisions. A simple case for revision
could be that an individual I is wrongly classified. Correcting the classification requires
deletion of I’s information from the data set and its effects on computed statistics, such as
average earnings.

8.2.6 Caveats of Untraceable Deletion

A database providing untraceable deletion will in certain aspects function differently than a
traditional database without untraceable deletion. Here we discuss some of the differences.

Time-sensitive Queries

If a query run over past data is repeated, then the query result should be unchanged since
the past has already occurred. For example, order is shipped, patient is discharged, etc.
However, untraceable deletion of one or more tuples that comprised the result set of the
query can cause the query response to differ at a later time.

To illustrate, consider a query Q = “find the number of agents that travelled on date
dt” on the sample database from Figure 8.1. Query Q in SQL can be written as – SELECT
COUNT(DISTINCT AGENT) FROM TRAVEL WHERE DATE = dt. If an agent was
made untraceable on date de, where de > dt, then the responses for query Q will be different
on two dates d1 and d2, dt < d1 < de < d2. In a traditional database, the expected response
for query Q on both dates d1 and d2 would be the same.

Committed Transactions

Traditionally, once committed, transactions are treated as permanent and irreversible. How-
ever, with untraceable deletion effects of committed transactions are no longer permanent.
In fact, in order to support untraceable deletion, a database must employ mechanisms to
change the effects of committed transactions.

External Application Logic

To provide untraceable deletion transparently, a database must be able to reexecute trans-
actions. To reexecute transactions a database must have access to and understand all appli-
cation logic. For instance, in the example of Figure 8.1, if the database did not know that
the Rating statistic was an average, the database would be unable to correctly remove the
effects of deleted agent Chopper.

Therefore, untraceable deletion may be impossible for databases that are agnostic to
application logic semantics. For example, when most of the business logic or functionality
resides in application programs, which in turn access the database externally via a standard
SQL interface.

178



8.3 Model

Data Expiration

Each database tuple has an associated expiration time. The tuple expiration time is specified
or computed at tuple insertion time. At expiration, a tuple needs to be deleted untraceably.

Tuple expiration times occur at fixed time intervals. For example, daily, weekly, monthly,
etc. We assume that expiration times of all tuples coincides with the end of an interval.
Delete queries can be executed at any time by clients. However, a tuple is deleted untraceably
only at expiration.

Adversary

We assume an adversary with full access to current and future database states. The adversary
uses mining or forensic techniques to recover information about tuples deleted in the past.

Suppose that a tuple ti expires and is made untraceable at time Et. Let Dct denote the
database state at time ct. Then the goal of untraceable deletion is to prevent the adversary
from recovering any information about ti when the adversary has full access to any database
state Dcj , such that cj > Et.

Note that the case where the adversary gains access to two database states Dcm and Dcn,
where ti ∈ Dcm and cm < Et < cn is trivial since the adversary can detect the deletion of ti
by merely computing the difference between the states Dcm and Dcn.

Transactions

A client transaction Tj is a sequence of SQL statements, that is,

Tj={begin,commit}, or Tj={begin,Q1,Q2,Q3,...,Qm,commit},

where Qi is a create, drop, insert, update, delete or select SQL statement, 1 ≤ i ≤ m,
m ≥ 1.

8.4 Ficklebase Architecture

8.4.1 Key Ideas

Ficklebase achieves untraceable deletion through versioning. Ficklebase maintains multiple
logical database versions. Each version has an associated expiration time. A given tuple
is only inserted in versions with expiration time less than or equal to the tuple expiration
time. Hence, a database version contains only tuples that expire on or before the version
expiration time.

Each client transaction is applied to all versions. When current time approaches a version
expiration time, the entire database version is deleted. Deletion of database version causes
all tuples with expiration time on or before the version expiration time to be untraceably
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Figure 8.2: Version maintenance and expiration with progression of time. Vj = Versionj .

deleted. Since a tuple is never inserted in a version that the tuple is not supposed to exist in,
the tuple leaves no side effects in that version. After tuple expiration time, only the versions
in which the tuple was never inserted exist. Thus, after tuple expiration time, no evidence
of expired tuple’s past existence is present including tuple side effects.

Achieving untraceable deletion by versioning avoids the need to keep track of all system-
wide side effects. Further, the versioning approach does not explicitly need retroactive
rollbacks of committed transactions and their reexecution.

In Ficklebase, maintenance of database versions, transaction application, and version
expiration are achieved using runtime query rewriting.

8.4.2 Overview

Recall from Section 8.3 that tuples expire at fixed intervals of time. Let Ei denote the end
time of interval i. For each time interval, Ficklebase maintains a separate logical database
version Vi (Figure 8.2). Version Vi contains tuples with an expiration time ≥ Ex(Vi), where
Ex(Vi) is the time when Vi will be fully expired. At a given time Et, such that E0 ≤ Et < En,
database versions V1 to Vn exist with Ex(V1) = E1, Ex(V2) = E2 and so on.

Each client transaction Tj is transparently applied to all versions with the following two
restrictions:

• When applied to version Vi, only tuples with expiration times ≥ Ex(Vi) are visible to
queries in Tj .

• Insertion of a tuple t by Tj in Vi is ignored if expiration time of t is ≤ Ex(Vi−1).
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Figure 8.3: Overview of (a) Architecture (b) Query Re-writing. Qi = Queryi, Vj = Versionj .

The net effect of above restrictions is that for a version Vi, all tuples with expiration times
≤ Ex(Vi−1) are never inserted in Vi. As a result, tuple side effects are never propagated to any
transactions and data structures in Vi. In effect, all tuples with expiration time ≤ Ex(Vi−1)
are untraceably delete when version Vi−1 expires.

In summary, at a given time Et, only versions with expiration time >Et exist, i ≥ 1. A
version Vi is expired at its expiration time Ex(Vi) (Section 8.4.7). To illustrate, at any time
Et, E0 < Et < E1 versions V1, V2, ..., Vn exist, with V1 being the current version visible to
clients (Figure 8.2). Once the current time approaches E1, version V1 is deleted, V2 become
V1, V3 becomes V2 and so on. Also, Ex(V1)← E2, Ex(V2)← E3 and so on.

The client application is not aware of the existence of versions other than the current
version V1. A new version Vn+1 is created when a tuple with expiration time >En is inserted
by a client transaction Tj.

8.4.3 Components

Figure 8.3 (a) illustrates the main Ficklebase components. Query rewriting logic resides in
the Ficklebase proxy. The proxy intercepts all client queries and communicates with the
server on behalf of the clients. The database server is an off-the-shelf DBMS.

8.4.4 Consolidated Versioning

All versions are maintained within a single database instance. To limit storage overheads,
tuple copies are combined, that is, if tuple attributes have the same value across multiple
versions then only a single copy of the tuple is maintained for the multiple versions.
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To consolidate tuple copies, a special VERSION attribute is transparently added to each
relation by query rewriting (Section 8.4.5). The VERSION attribute is not visible to clients.
The VERSION attribute is a bit field of size βv wherein a bit bi, 0<i<βv, is set only if the
tuple is valid in version Vi, that is, the tuple expiration time is ≤ Ex(Vi)

6.
Client queries specify tuple expiration times on insertion via the EXPIRATION TIME

tuple attribute. Rewriting of insert queries (Figure 8.6) converts the client-specified expi-
ration time into the correct value of the VERSION attribute7. The conversion is done by
the EXDT2VER function (Procedure Set 10). Note that the function EXDT2VER listed in
Procedure Set 10 is a sample that implements daily, monthly, quarterly, and yearly expira-
tions. For additional functionality, such as hourly expiration, necessary modifications should
be made.

Tuples are copied on write only, when an update query modifies one or more tuple
attributes causing the attribute values to differ between versions. The VERSION attribute
is automatically modified by query rewrites to indicate distinct tuple versions.

To illustrate how tuple copies are created and maintained in Ficklebase, consider a tuple
tj with k attributes, such that tj = {VERSION=0000..11, ATTR1=value1, ATTR2=value2,
... , ATTRk=valuek}. The VERSION attribute has bits b1 and b2 set indicating that the
same tuple copy is valid in both versions V1 and V2, that is, expiration time of tj ≤ Ex(V2).
Now, suppose that an update query applied to V2 modifies ATTR1 from value1 to value′1.
Then a new copy of tj is created such that
tj = {VERSION=0000..01, ATTR1=value1, , ATTR2=value2, ... , ATTRk=valuek} and
t′j = {VERSION=0000..10, ATTR1=value′1, , ATTR2=value2, ... , ATTRk=valuek}
The version fields of the original and copied tuples are updated to correctly maintain distinct
version copies.

8.4.5 Query Rewriting

As discussed in Section 8.4.2, Ficklebase achieves untraceable deletion via versioning. In
Ficklebase, database versioning is achieved using query rewriting. Client queries are trans-
parently rewritten by the Ficklebase proxy to achieve the effect of versioning.

Each client query is rewritten into a set of queries. Each query in the set is classified as a
version-specific or a consolidation query. Version-specific queries only affect the version that
they are applicable to while consolidation queries ensure compact storage by combining tuple
copies across versions. Figure 8.3 (b) gives an overview of query rewriting along the order
of client query submission and the order of query execution after rewriting. BEGIN and
COMMIT statements are executed as is at the start and end of the rewritten transaction.

Figures 8.4 - 8.7 detail query rewriting. We discuss the rewrites for each SQL statement
below.

6The last bit bβv
is used for consolidation and does not represent any version.

7Expiration times are only specified/computed in insert queries and cannot be updated at a later time –
an almost pervasive requirement of most information life-cycle regulations.
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Figure 8.4: Query rewrites for create table and drop table statements.

Create Table and Drop Table Statements [Figure 8.4]

Create and drop statements are rewritten to achieve the following:

• To transparently add the VERSION attribute to the relation being created. The
VERSION attribute is also added as the terminal field on table indexes.

• To create and drop version-specific views. Version-specific views are used in rewriting
select, update, and insert queries. Each version-specific view is applicable to a specific
relation in a specific database version. If there are r relations and n database versions,
then there are r · n version-specific views. A version-specific view on a relation R for
a version V selects only the tuples from R that are valid in version V .

• Create additional indexes on the VERSION attribute to improve overall transaction
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Figure 8.5: Query rewrites for select statements.

performance.

Select Statements [Figure 8.5]

A select statement is rewritten into n select statements, where n is the number of database
versions present. Hence, rewriting of a select statement results is in a new unique select
statement for each database version. For a select statement rewritten for version V , all
table references in the select are replaced with the corresponding version-specific views. A
version-specific view on a relation R for a version V selects only the tuples from R that are
valid in version V . Hence, a select statement for version V reads only tuples valid in version
V .

Only the results of the select statement executed on version V1 are returned to the client.
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Figure 8.6: Query rewrites for insert statements.

The results of select statements executed on all other versions are filtered out by the proxy
component. Thus, the existence of versions other than version V1 is hidden from client
applications.

The case where a transaction is read-only is handled differently. A read-only transaction
comprises of only select statements. All queries within a read-only transaction are applied
only to the current version V1 and the results of each query are returned to the client. Since
read-only transactions do not modify any tuples, they produce no side effects. Hence, the
application of read-only transactions to the current version suffices.

Insert and Update Statements [Figures 8.6,8.7]

Similar to select, insert and update statements are rewritten to replace table references with
version-specific views. Insert statements create new tuples and update statements modify
existing tuples. Hence, new tuple copies come into existence as a result of inserts and
updates.

The new tuple copies generated by insert and update statements are combined together
by consolidation queries. Consolidation queries are generated for each database relation in
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Figure 8.7: Query rewrites for update statements.

which either a tuple is inserted or modified by the client transaction. Also, similar to select,
only results of statements executed on current version V1 are seen by clients.

8.4.6 Version-Specific Rollbacks

It is often desired by application logic that transactions be rolled back under certain condi-
tions. For example, tuple not found. Note that rollbacks explicitly requested by applications
are not error or failure conditions, such as duplicate key or deadlock. In case of error or
failure, a transaction is implicitly rolled back by the DBMS.

To illustrate how Ficklebase handles application-requested rollbacks, consider the follow-
ing two queries submitted as part of a client transaction.

SELECT @d_next_o_id := d_next_o_id, d_tax
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Procedure Set 10 EXDT2VER
Input: sver INT, exdt DATE, policy INT
Output: version BIT(βv)
1: ver ← 0
2: ever ← 0
3: switch(policy)
4: case 1:
5: ever = datediff(exdt, curdate()) + 1
6: case 2:
7: ever = period diff(extract(year month from exdt),

extract(year month from curdate())) + 1
8: case 3:
9: ever = (period diff(extract(year month from exdt),

extract(year month from curdate())) div
3) + 1

10: case 4:
11: ever = year(exdt) - year(curdate()) + 1
12: end switch
13: if ever ≥ sver then
14: ver ← 2sver−1

15: return ver

FROM DISTRICT WHERE d_id = 1 AND d_w_id = 1

ROLLBACK(ISNULL(@d_next_o_id))

Here, the application desires that if no tuple is selected by the first select query, then the
transaction be rolled back. The ROLLBACK syntax is specially provided by Ficklebase
for the purpose of requesting a transaction rollback. Ficklebase query rewriting handles a
rollback request as follows. The client ROLLBACK statement is rewritten for each version.
For user defined variables, such as @d next o id in the example above, a separate copy is
created for each version. Also, a savepoint is created on the database before execution of
queries for each version.

When a rollback occurs for any version, that is, the condition in the ROLLBACK state-
ment evaluates to true, the Ficklebase proxy issues a SQL ROLLBACK statement to the
database. The SQL ROLLBACK statement rolls back the transaction up to the previous
savepoint. Rolling back to the previous savepoint undoes the effects of all queries executed
on that specific version. The effects of queries on other versions remain intact.

Rollbacks in Ficklebase are similar to nested transactions [221] with distinct subtransac-
tions. In nested transactions, individual subtransactions can be rolled back without affecting
other subtransactions.
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8.4.7 Expiration

As illustrated in Figure 8.2, when the current time Et approaches Ex(V1), version V1 expires.
To expire version V1, all tuples that were valid until version V1, that is, all tuples with
expiration time ≤ Et = Ex(V1) are deleted. Then, the next version V2 is set as the current
version V1 visible to clients. For all versions Vi, where i > 0, Vi ← Vi+1 and thus Ex(Vi) ←
Ex(Vi+1).

The expiration of version V1 is achieved by a scheduled transaction that executes at
the expiration interval Ex(V1). The transaction comprises of the following queries for each
relation Ri.

UPDATE Ri SET VERSION = VERSION >> 1

DELETE FROM Ri WHERE VERSION = 0

The net effect of the above queries is the deletion of all tuples that were valid only in
version V1.

8.4.8 Storage Analysis

Suppose the database comprises of N tuples and the number of active versions is n. Then, in
the worst case, every tuple has a distinct copy in each version Vi, 1 ≤ i ≤ n giving a overall
storage requirement of N · n tuples. In the best case, each tuple has the same attribute
values for all of versions and storage for only N tuples is required.

Now, suppose that each tuple is equally likely to expire at any interval Ei, 1 ≤ i ≤ n.
Also, suppose that each tuple has distinct copies for each version Vj , such that, Ex(Vj) ≤ Ei.

Then, the total number of database tuples is N · (n+1)
2

.
If we further assume a random distribution of client queries, such that each tuple expiring

at Ei, 1 ≤ i ≤ n is equally likely to have j copies (1 ≤ j ≤ i), then the average storage

requirement is N · (n+3)
4

.
In summary, the overall storage complexity of Ficklebase is O(N · n).

8.5 Untraceability

In this section, we show that Ficklebase query rewriting and versioning achieves untraceable
deletion as defined in Section 8.2.

Let ΓS denote the set of all transactions submitted by the client until time ℓ. Let tuple
tk with expiration time Et > ℓ be inserted by a transaction Tj , where Tj ∈ ΓS . As per the
expiration model in Section 8.3, the expiration of tuple tk will coincide with the expiration
of some version Vi, that is, Ex(tk) = Ex(Vi) = Et Also, let ΓVi

E denote the set of transactions
successfully committed on version i until time ℓ. Then, Ficklebase guarantees that queries
for a version Vi do not access any tuples that have expired before version Vi. That is, the
following theorem holds for Ficklebase.
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Untraceable deletion of tuple tk: ∀Vi, Tj ∈ ΓVi

E iff. Ex(tk) ≥ Ex(Vi).

Proof. For each version Vi, function EXDT2VER (Figure 8.6) determines whether tuple tk
is valid in Vi, that is, whether Ex(tk) ≥ Ex(Vi). If tk is not valid in version Vi, then tk is
inserted with corresponding bit in the VERSION attribute set to zero. Setting the bit to zero
ensures that tk is not visible to any subsequent query on Vi. Before transaction Tj commits,
consolidation queries delete all tuples, which have zero value for the bit corresponding to
version Vi (Figure 8.6). Thus, an invalid tuple is never accessed by queries for a version Vi.

Further, if transaction Tj rolls back on version Vi, then the rollback mechanism of Section
8.4.6 ensures that Tj ’s queries have no effect on Vi.

Finally, when the current time is > Et, all versions Vj where E(Vj) ≤ Et expire and are
securely deleted (Section 8.4.7). The only versions left after time Et would have expiration
time > Et and not contain any side effects of tuple tk.

8.6 Untraceable Deletion + Secure Deletion + History

Independence = Truly Irrecoverable Deletion

Untraceable deletion eliminates deleted data’s side effects from current data. Secure deletion
ensures target data is physically deleted from the storage medium. History independence
erases all evidence of past existence from data organization. When combined, untraceable
deletion, secure deletion, and history independence can together achieve truly irrecoverable
data deletion.

In this section we discuss how to incorporate secure deletion and history independence
into Ficklebase.

Secure Deletion

Version expiration as described in Section 8.4.7 can leave behind deleted data since many
database systems do not physically delete tuple data at delete query execution time [242]. .
Instead, deleted tuples are marked for later deletion [242]. Moreover, the database transac-
tion log may retain deleted tuples.

To avoid direct retention of deleted data, we suggest adoption of secure deletion mech-
anisms suggested by Stahlberg et al. [242]. Stahlberg et al. recommend that after delete
query execution, the storage area where deleted tuple content resides be overwritten with
zeros.

To prevent retention of deleted data in transaction log, we suggest encryption of individ-
ual log entries with unique keys [242]. When a tuple is deleted the key for the corresponding
log entry must be erased by overwriting.

History Independence

Data structures such as B-Trees are commonly used by database storage engines. The storage
layouts of B-Trees or variations such as B+-Trees are history dependent. Thus, even if
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Figure 8.8: Execution times for TPC-C transactions.

untraceable deletion and secure deletion are used, data organization may yet reveal evidence
for the past existence of deleted data. We note that although deductions of past existence
via data organization are difficult in practice [149,242], they are nonetheless possible and in
certain specific cases trivial [149]. For example, an index based on incrementing values. For
B+-Trees in particular, the amount of information regarding past operations decreases as the
fanout increases and fanouts in typical usages are usually large. Ideally a fanout of N , where
N is the total number of database tuples, results in all index values being stored sorted in
a single root node making the B+-Trees history independent. However, unreasonably large
fanouts are not practical.

Data organization can be made delete-evidence-free by using history independent data
structures for database indexes. For instance, B-Treaps [114] or B-SkipLists [115]. History
independent data structures can be made persistent using the history independent file system
described in Chapter 6.

8.7 Experiments

Benchmark

We evaluate the performance of Ficklebase using the TPC-C benchmark [11]. The benchmark
data is set up with 16 warehouses giving a total database disk size of 1.5 GB. The database
buffer pool size is 200MB. In the initial versioned database, tuples in relations oorder, order
line and new order are given random expiration times. The tuples in other relations have
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fixed maximum expiration times. New tuples inserted during the benchmark transactions
are also given random expiration times.

Setup

The database server runs on an Intel Xeon 3.4 GHz, 4GB RAM Linux box with kernel 2.6.18.
The server DBMS is off-the-shelf MySQL version 14.12 Distrib 5.0.45. The client system is
an Ubuntu VM running on an Intel core i5 at 1.60 GHz with 2 GB RAM. The Ficklebase
proxy is implemented in Lua [8] and runs within the MySQL proxy [9] component version
0.8.2. To simulate the TPC-C clients, we use the BenchmarkSQL tool [1]. We modified
BenchmarkSQL so that all TPC-C logic is comprised in SQL queries.

Measurements

To measure the TPC-C transaction execution times, we execute ni × 50 runs of each TPC-C
transaction using a single client and record the average execution time. ni is the target
number of versions the test database instance is set up for. The multiplicative factor × 50
ensures that targets of insert and update queries are distributed across all versions of the
test database. Figure 8.8 shows the results for each of the TPC-C transactions with varying
number of versions.

Results

We observe the following overheads for each added version: New Order : ≈4.9 %, Delivery
: ≈7.8 %, Payment : ≈6.7 %. Stock level and order status are both read-only transactions.
Note from section 8.4.5 that read-only transactions are executed only on version one. Hence
increasing number of versions to not contribute any overheads on these transactions.

Analysis

Version maintenance and query rewriting (Section 8.4) may suggest that each added version
should result in an overhead of 1x. If a transaction takes time t to complete execution on
one version, then on two versions it would require 2t time, on three versions 3t and so on.
Expectation for 1x overhead is justified since each client transaction is applied to all logical
database versions. In practice however, the overheads are far lower as shown in Figure 8.8.

The lower overheads result from database caching and colocation of tuple versions. Up-
dates to individual tuples potentially cause distinct copies to be present in the database.
However, in Ficklebase, tuple copies reside close together and are very often located in the
same storage node, that is, the same leaf node of the underlying B+-tree. Hence, queries
applicable to a specific version often locate their target tuples in the database caches since
the queries were processed for other versions.

In addition, rewriting of create statements adds the VERSION attribute only as the
terminal field of primary keys or other indexes (Figure 8.4). Thus, even if tuples are valid
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Figure 8.9: Ficklebase demo client.

in different versions and differ in their VERSION attribute, tuples are not dispersed within
the storage index.

8.8 Demo Application

The Ficklebase client application (Figure 8.9) serves to demonstrate the following.

• The effects of providing untraceable deletion in a database application.

• Inner workings of Ficklebase including the runtime query rewrites and version mainte-
nance.
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• Application of untraceable deletion in a real-world scenario using an animated, story-
board style illustration.

8.9 Conclusions

In this chapter, we introduced untraceable deletion. Untraceable deletion removes all data
side effects, thereby eliminating all evidence of the past existence of deleted data from current
data. Along with secure deletion and history independence, untraceable deletion is integral
to ensure truly irrecoverable data deletion.

We formalize untraceable deletion for relational databases and provide insights into the
new functional aspects of untraceable deletion. We also present the design and evaluation
of Ficklebase, a relational database which achieves untraceable deletion via versioning and
query rewriting.
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Chapter 9

Related Work

This chapter discusses related work. In Section 1.4, we gave a brief overview of regulatory
compliant data management systems research. In this chapter, we focus on research that is
directly related to our contributions.

9.1 Related Work Addressing Privacy Regulations

9.1.1 Queries over Encrypted Data

Range Queries

Hacigümüs et al. [125] propose range query execution over encrypted data using partitioning.
Data is partitioned by attribute values. Each partition contains a subset of the total attribute
value range. Partitions are stored encrypted with the service provider.

Tuples are then transformed to associate partition identifiers with tuple attribute values.
To illustrate, consider a tuple t =< a1, a2, ..., an >, where a1, a2, ..., an are tuple attributes.
The tuple t is transformed to t′ =< E(t), I1, I2, ...In >, where E(t) is the encrypted value of
tuple t, and Ik is a partition identifier. Each partition identifier Ik identifies the partition
that contains the value for attribute ak.

Mapping functions are used to map attribute values to partition identifiers. Given an
attribute value, a mapping function determines the partition that contains the value. To
process a range query, the server evaluates mapping functions to identify the partitions that
contain the query results. The identified partitions are transferred to the client. The client
decrypts and processes the partitions to get the final query results.

The information leaked to the server is claimed to be 1-out-of-s, where s is the partition
size. The partitioning scheme thus provides a tradeoff between security and performance.
Large partition sizes favor security and small partition sizes favor performance. At one
extreme, a single partitioned is maintained. For query processing, the entire partition would
be transferred to client for client-side processing. At the other extreme, each attribute value
constitutes a partition. Such fine-grained partitioning maximizes performance since only the
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values that are part of final query results would be sent to client. However, fine-grained
partitioning leaks the attribute value distribution to the server.

Damiani et al. [89] propose using tuple-level encryption for outsourced data. Their main
contribution is an analysis for the attribute exposure. Attribute exposure is the risk that
an untrusted server can deduce an attribute’s value for a database that indexes encrypted
data. Damiani et al. concluded that the attribute exposure increases with the number of
attributes used in an index. Further, the exposure decreases with the increase in database
size. Damiani et al. also propose a range query solution, wherein data is stored using a
B+-tree. For confidentiality, the B+-tree nodes are encrypted. For query processing, a client
retrieves the desired encrypted B+-tree nodes from the server. The client then performs
decryption and processing locally.

Client-side processing of queries leads to minimal utilization of server resources, thereby
undermining the benefits of outsourcing. Moreover, transfer of entire B+ − Tree nodes to
the client results in significant data transfer costs.

Wang et al. [256] use order preserving encryption for querying encrypted xml databases.
Order preserving encryption was ruled out by Damiani et al. due to the high attribute
exposure. To reduce the attribute exposure, Wang et al. us a technique referred to as splitting
and scaling. Splitting and scaling differentiates the frequency distribution of encrypted data
from plaintext data. Each plaintext value is encrypted using multiple distinct keys. Then,
corresponding values are replicated to ensure that all encrypted values occur with the same
frequency, thereby thwarting frequency-based attacks.

Vertical partitioning of relations amongst multiple untrusted servers is suggested by
Ganapathy et al. [98]. The goal of vertical partitioning is to prevent access of a subset
of attributes by any single server. For example, {name, address} can be a privacy-sensitive
access pair and query processing should ensure that name and address are not jointly visible
to any single server. The client query is split into multiple sub-queries. Each subquery
fetches data from a single server. The client then combines results from multiple servers.
TrustedDB is equivalent to the vertical partitioning scheme when the size of the privacy
subset is one and hence a single server suffices. In the single-server case, each attribute
is encrypted to ensure privacy [70]. Hence, vertical partitioning-based schemes can utilize
TrustedDB to optimize query execution at each individual server.

Ciriani et al. [70] introduce the concept of logical fragments to achieve vertical parti-
tioning on a single server. A fragment is a relation. Sensitive attributes in a fragment are
encrypted. The paritioning into sensitive and non-sensitive attributes in TrustedDB is equiv-
alent to fragmentation. TrustedDB then is a concrete mechanism to efficiently query a set
of fragments. The appropriate set of sensitive attributes in TrustedDB can be determined
using the fragmentation concept.

Aggregation Queries

For aggregation queries over encrypted relational databases, Hacigümüs et al. [123] use ho-
momorphic encryption based on privacy homomorphisms [223]. Mykletun et al. [91] have
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showed that the homomorphic scheme for aggregations [123] is vulnerable to a ciphertext-
only attack. Instead, Mykletun et al. [91] propose an alternative scheme based on bucketi-
zation [125]. Here, the data owner precomputes aggregate values such as SUM and COUNT
for data partitions and stores the precomputed values encrypted at the server. Although
precomputation makes processing of certain queries faster it does not significantly reduce
client-side processing.

Ge et al. [249] propose to perform aggregation in parallel by simultaneously adding mul-
tiple 32-bit encrypted integer values. In parallel addition, two 1024-bit chunks of encrypted
data are added at a time. Due to the properties of the Paillier cryptosystem used, each
1024-bit addition involves one 2048-bit modular multiplication. The server computes the en-
crypted sum of all 1024-bit integers and returns the 2048-bit result to the client. The client
decrypts the result into a 1024-bit plaintext, splits the plaintext into 32 32-bit integers, and
computes the final sum. Due to the use of extremely expensive homomorphisms [198, 199],
the parallel aggregation scheme is expensive (Section 2.4).

Keyword-based Search

Song et al. [241] propose a probabilistic scheme for keyword-based search on encrypted
documents. A document is split into fixed-size words. Each word is encrypted using a distinct
key. For query processing, the server scans a whole document and matches the encrypted
keyword to each encrypted word. Since the matching is probabilistic, false positives are
included in the result. False positives are eliminated client-side.

Goh et al. [107] use indexes for keyword search on encrypted data. An encrypted docu-
ment’s index is a Bloom filter [39], which contains all document keywords. Query processing
is then equivalent to a bloom filter lookup.

Above solutions are specialized for specific query operations, such as equality predicates
[89] , range predicates [125, 256, 260], aggregations [123, 249], and keyword-based search
[107, 241]. In TrustedDB, all decryptions are performed within the server-side SCPU and
data is processed in plaintext. Plaintext processing of data removes any limitation on the
nature of predicates that can be supported. The tamper-proof-SCPU enclosure ensures that
no data is leaked even if an adversary gains complete physical access to the server. Hence,
in TrustedDB a single strong encryption scheme is used for all query types.

Support for multiple query types

CryptDB [211] uses layered encryption to support multiple query types. The encryption
is dynamically adjusted according to client queries. To illustrate, consider an encrypted
attribute l quantity and two queries, a query Q1 = σl quantity<100 and a join query Q2 =
⋊⋉l quantity>o shipqty. Both queries share the attribute l quantity. However, query Q1 can be
efficiently processed if l quantity was encrypted using order preserving encryption [217] and
query Q2 requires nondeterministic encryption. Therefore, to enable server-side execution
for both queries, attribute l quantity needs to be encrypted using two different encryption
schemes.
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For multiple encryptions on a single attribute, CryptDB uses layered encryption. For
example, l quantity is first encrypted using order preserving encryption and then using
nondeterministic encryption – ERAND(EOPE−JOIN(l quantity)). To process query Q1, the
nondeterministic encryption layer is removed and the inner order preserving encryption is
used server-side. To remove the nondeterministic encryption layer, decryption keys are com-
municated to the server. Restoration of the nondeterministic layer then requires reencryption
of the entire relation.

In CryptDB, the encryption layers need to be decided before data is uploaded. Hence,
prior knowledge of client queries is essential. The encryption layers used by CryptDB include
homomorphism, order-preserving encryption, deterministic encryption, and nondeterministic
encryption. Deterministic encryption is used to process equality predicates. Homomorphic
encryption is used for aggregation queries.

In contrast to CryptDB, TrustedDB uses a single strong encryption scheme for all query
types. Hence, TrustedDB does not weaken the encryption as client queries are processed.
Moreover, in TrustedDB, no prior knowledge of client queries is required to encrypt data.

9.1.2 Disk-based confidentiality

An alternative adversarial model for an outsourced setting is discussed by Ge et al. [101].
The alternative model requires protecting the confidentiality of data residing on disk. For
processing, data is permitted to be decrypted in memory. Data that is encrypted on disk but
decrypted for server-side processing compromises confidentiality during the processing inter-
val. Canim et al. [166] analyze the disclosure risks in solutions that decrypt data server-side.
Canim et al. also propose a new query optimizer that takes into account both performance
and disclosure risk for sensitive data. Individual data pages are encrypted by secret keys
that are managed by server-side trusted hardware. The decryption of the data pages and
subsequent processing is done in server memory. Here, the goal is to minimize the lifetime of
sensitive data and keys in server memory after decryption. In TrustedDB on the other hand,
there are no such disclosure risks since decryptions are performed only within the SCPU.

9.1.3 Use of Trusted Hardware for Data Confidentiality

Iliev et al. [25] use SCPUs to retrieve X509 certificates from an outsourced database. Each
certificate has a unique key and a client queries for a certificate by specifying a key. To
improve performance, Smith et al. [226] use multiple SCPUs for key-based search. The
entire database is scanned by the SCPUs to locate matching records.

Agrawal et al. [216] propose a SCPU-based solution for join queries. The entire database
is scanned by the SCPU to process a join. The approach is limited by available server-SCPU
bandwidth, which is low in practice, ≈10 MBps in our setup.

Chip-Secured Data Access [165] uses a smart card for query processing and to enforce
access rights. The client query is split, such that the server performs majority of computation.
In follow-up work, GhostDB [189] proposes to embed a database inside a USB key equipped
with a CPU. GhostDB allows linking of private data carried on the USB Key and public data
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available on a server. GhostDB ensures that the only information revealed to the server is
the query issued and the public data accessed. For efficiency, GhostDB organizes the schema
as a tree and builds additional indexes on data.

Both Chip-Secured Data Access and GhostDB are limited to small datasets since all
query-processing data resides within the trusted hardware module used. Queries executing
within the trusted hardware cannot use external storage to store intermediate query results.
In TrustedDB on the other hand, the SCPU database engine can generate intermediate
results. The intermediate results are encrypted and stored externally. Database pages can be
swapped out of the trusted hardware to external storage during query processing. Therefore,
TrustedDB can process queries that access large amounts of data.

Bhattacharjee et al. [36] use SCPUs for cross-enterprise data mining. They port a
database engine to the SCPU. The SCPUs fetch data from external enterprises. Queries
are processed entirely by the SCPUs. Host server cycles are not used. To fetch data from
external sources, the SCPUs use secure jdbc connections. Processing queries entirely within
the SCPU is up to 40x slower than plaintext query processing. The 40x factor holds when
the SCPU access data from the host server. Hence, for jdbc connections the slowdown is
expected to be much higher than 40x. In contrast, query execution times in TrustedDB are
1.03x-10x slower than plaintext query processing.

In Matchbox [147], requests are made to the SCPU in the form of contracts. A contract
is a predefined list of operations to be performed by the SCPU. All parties including data
owners and potential recipients of processing results must sign the contract before-hand.
Defining contracts requires prior knowledge of all application logic and thus is less suitable
for dynamic outsourced databases.

NetDB [124] simply deploys a SCPU as a cryptographic accelerator. The SCPU hardware
module is used to perform cryptographic operations efficiently. The SCPU is not used for
query processing.

9.2 Related Work Addressing Audit Regulations

9.2.1 Query Authentication (QA)

Existing QA solutions can be classified as either tree-based or signature-based. The two
categories differ in the data structures used for the ADS and the VO and hence in the query
execution and verification.

In tree-based approaches, the ADS is constructed as a tree. For example, MB-tree [155]
and VB-tree [201]. As part of query execution, service provider traverses the tree and
gathers the nodes that form the VO, which is sent to the client along with the query results.
The client reconstructs the traversal path used in query execution to verify correctness and
completeness.

Signature-based approaches provide a mechanism to verify the ordering between tuples
when using specific search attributes. For QA, an authenticated chain of unforgeable sig-
natures is constructed by the data owner. At query time, the service provider gathers the
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Name Year QCT QCP Ops Updates
Tree Based

MHT [85] 2003 X X S,R ×
VBT [201] 2004 X X S,R X

EMBT [155] 2006 X X S,R,J X

Singh et al [240] 2008 X X S X

XBT [204] 2009 X X R X

AIM [269] 2009 X X S,R,J ×
MRT [270] 2009 X X Sp X

AABT [156] 2010 X X A X

MR-SKY [160] 2011 X X Sp ×
Yang et al [271] 2011 X X R ×
Jain et al [141] 2012 X X R X

Signature Based
AGS [181, 182] 2004 X × S,R ×
DSAC [185] 2005 X X S,R X

Pang et al [200] 2005 X X S,R,J X

VKDT,VRT [66] 2006 X X Sp ×
Goodrich et al [118] 2008 X X R X

Pang et al [203] 2009 X X S,R,J X

VNA [137] 2010 X X Sp X

Others
DICT [117] 2001 X X K X

AUDIT [268] 2007 X × S,J X

Nath et al. [186] 2009 X X R,A X

HLT [275] 2012 X X S,R,J,A X

Zhou et al. [276] 2013 X X R X

Table 9.1: Summary of existing approaches (QCT - Query Correctness, QCP - Query Com-
pleteness, S - Select, R - Range, J - Join (Equi,<,>), A - Aggregation, Sp - Spatial, K - Key
lookup).

signatures of all tuples that comprise the contiguous range query result. The set of signa-
tures comprises the VO. Since each tuple is now linked to its predecessor and successor in an
unforgeable manner, the client can verify that no tuple is either illicitly inserted or omitted
from the query result.

Table 9.1 summarizes existing QA solutions.

Tree-based Solutions

The QA approach designed by Devanbu et al. [85] forms the basis for most tree-based range
query approaches. Devanbu et al. utilize a Merle hash tree (MHT) for query processing
on the provider’s site. The MHT root node is signed by the owner and distributed to the
clients before uploading the MHT to the provider. In response to a client query, the provider
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delivers the actual query results and relevant nodes from the MHT such that the client can
reconstruct the root node. The client then verifies the signature on the root node and is
thereby assured that the query was processed correctly.

The MHT approach can be extended and applied to a B-tree. The ADS is then referred
to as a MB-tree (MBT). In a MBT, the hash for a leaf node is constructed by concatenating
the hashes all tuples contained in the leaf, that is, Hli = H(H(t1)||H(t2)||...||H(tk)), where
li is a leafd node, t1, t2, ..., tk are tuples contained in li, and H(·) is a cryptographic hash
function. Each non-leaf node’s hash is concatenation of the hashes of its children. Then, the
VO consists of all the additional node hashes required by the client to reconstruct and verify
the root hash.

The first approach to deploy an MHT-design-based B-tree is Verifiable B-tree (VBT)
[201]. VBT considers an edge computing model, wherein all hashes are computed, signed,
and later updated by a trusted central server and then distributed to the edge servers. The
VO then consists of all authenticated nodes up to the root node of the subtree that do not
envelope the tuples present in the query result. The client constructs the subtree and verifies
the signature on the subtree’s root. The optimization here lies in the fact that the VO need
not contain the path up to the root of the entire B-tree, like in MHT.

An MBT-based ADS is also used by Li et al. [155]. Here, each individual node of the
MBT in-turn stores an embedded MBT. The approach is thus referred as Embedded Merkle
B-tree (EMBT). The embedded tree aids in quickly constructing the composite hash of the
node being traversed as part of query execution, thereby reducing the number of B+-tree
read operations required to construct the VO.

A standard MHT is used by Singh et al. [240] in a slightly different context. Here, the
provider periodically commits the state of the database to the client and QA is performed
against the last committed version. Limiting QA to the last committed version provides
weaker security but allows more frequent updates. The ADS used is a MHT and the hash for
a leaf node is computed as H(id||H(Ai1||S(Ai1, SKDO) ... H(Aik||S(Aik, SKDO)), where id
is a unique identifier for the tuple, Ai1, ...Aik are the tuple attribute values, and SKDO is the
data owner’s secret key. Support for projections is added by including the tuple attribute
values in the composite hash.

For join processing, Pang et al. [201] suggest the use of materialization. Here, the entire
cross product is materialized and an ADS is built on the materialized result. Materialization
is inefficient both in terms of storage and for update operations.

Pang et al. [200] extend range query authentication to joins, explained as follows. Con-
sider the relations R1, R2, and the join query R1 ⊲⊳R1.A=R2.B R2. The data owner then
constructs an ADS on both relations R1.A and R2.B. Also, assume that R1 is smaller. First
the provider sends R1 to the client along with the authentication data for R1. Then, for each
tuple in R1 the provider performs a range query on R2 to find the matching tuples. The VO

resulting from each range query is appended to construct the VO for the entire join.
The first comprehensive QA solution for joins is Authenticated Index Merge Join (AIM)

[269]. According to our survey of published experimental results (Section 3.4.3), AIM is also
the most efficient QA solution for join queries.

200



To understand AIM, consider the join query R1 ⊲⊳R1.A=R2.B R2. In AIM, the ADS used
is MBT. A MBT is constructed on the join attribute of each relation. In our example, a
separate MBT is constructed for R1.A and R2.B. Join query processing proceeds as follows.
The provider locates the first tuple from R1 that is part of the query result. For the first tuple
in R1, the provider performs an index traversal and leaf scan on the ADS for R2 locating
the matching and boundary tuples, which are included in the VO. The server then uses each
boundary tuple located in R2 as a target and performs a search on R1. Now, boundary tuples
from R1 are added to the VO. The process is repeated until all result tuples are found.

A tree-based QA solution for aggregation queries is proposed by Li et al. [156]. The
solution is referred to as Authenticated Aggregation B-tree (AABT). In AABT, each tree
node stores the aggregated sum α of its child nodes on the value of the search attribute, that
is, α = α1 + α2 + ... + αk where α1, α2 ... αk are the aggregated values of the individual
child nodes. In addition, a node stores the hash H(η1||α1||...||ηk||αk), where η1, η2 ... ηk are
the child nodes. The hash H(η1||α1||...||ηk||αk) is also included in the VO. The precomputed
aggregation values allow client-side verification of aggregation queries. QA solutions other
than AABT and TrustedDB do not authenticate aggregations server-side. Instead, data is
transferred for client-side aggregation.

Signature-based Solutions

Mykletun [182] designed the first approach to use signatures for range QA. The approach
is referred to as NBS. NBS addresses only query correctness. In NBS, the data owner signs
individual tuples before uploading to the provider. The signatures of all tuples constitute
the ADS. The provider includes tuple signatures in the query result sent to clients. Tuple
signatures in query result constitute the VO. Client-side processing then involves signature
verifications.

NBS uses signature aggregation [181, 182] to combine multiple tuple signatures into a
single signed message, thereby resulting in a small, constant-sized VO. Signature aggregation
applies to both RSA and BGLS [44] signature schemes. We describe signature aggregation
for RSA below.

Consider a query Q with a result that includes the set of tuples {t1,t2...tk}. Then a single
aggregated signature-based VO is constructed by the service provider as follows

SVO =

k
∏

i=1

S(H(ti), SKDO)(mod n) (9.1)

where SKDO is the data owner’s secret key. Client verification then tests the following
equality

(SVO)e =

k
∏

i=1

H(ti)(mod n) (9.2)

The tuple signatures S(H(ti), SKDO) are computed by the data owner and uploaded to
the provider.
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DSAC [185] extends NBS [182] to provide completeness for range queries. In NBS, the
ADS consists of individual tuple signatures. In DSAC, each tuple signature also includes
the tuple’s immediate predecessor. For example, the signature of tuple ti is computed as
S(H(ti)||H(ti−1), SKDO), where ti−1 is the predecessor of ti when sorted on the search at-
tribute. Including the predecessor forms an authenticated chain of all database tuples ordered
on the search attribute. A client then verifies that the set of tuples received in the result do
form a valid chain.

Pang et al. [200] designed a signature-based scheme for range and join QA. Unlike DSAC
[185], Pang et al. include a tuple’s immediate predecessor and successor in the query result.
For example, the signature of tuple ti is computed as S(H(ti−1)||H(ti)||H(ti+1)), SKDO),
where ti−1 and ti+1 are the predecessor and successor, respectively, of tuple ti when sorted
on the search attribute. Signature aggregation is also applicable here to reduce the VO size.

Signature-based schemes are inefficient for join processing as they result in large VO sizes.
To illustrate, consider the join query R1 ⊲⊳R1.A=R2.B R2. For each tuple from R1 present in
the result, the VO contains the boundary tuples for the matching tuple in R2. Also, for each
tuple in R1 that is not part of the result we need a proof that no matching tuple exists in
R2. Again, the VO will contain two boundary tuples showing that no matching tuple exists
in R2. The resulting VO thus becomes large.

QA for key-based lookups is proposed by Goodrich et al. [117]. The ADS is constructed
using a skip list [213]. Verification is similar to tree-based approaches. Client verifies the
skip-list traversal path used to locate tuples. The VO is kept constant using commutative
hashing.

Xie et al. [268] propose a probabilistic QA scheme for range and join queries. The
data owner incorporates fake tuples in the encrypted dataset. The secret function used to
distinguish between fake and real tuples is shared only with clients. Clients probabilistically
verify completeness by checking whether all fake tuples satisfying the query are present in
the result set. Unfortunately, a probabilistic design makes it difficult to detect omissions of
a very small fraction of tuples from a large dataset.

Update Operations in QA

QA complicates update operations on the outsourced database since changes made to the
database tuples involve modifications in the related ADS. Hence, existing QA solutions either
do not address update operations [181, 240] or assume fairly static or infrequently updated
databases [85, 169, 182, 185].

Solutions that do provide QA, only permit the data owner to perform updates as follows.
The data owner queries and downloads the tuples to be updated along with the ADS. The
data owner then performs updates to both tuples and ADS locally. The updated tuples and
ADS are reuploaded to the provider. Finally, the data owner recomputes a new signature for
the ADS root and distributes it to clients. As discussed in Section 3.5, owner-side updates
is inefficient for large number of clients.

Further, avoiding replay attacks in case of owner-side updates also results in inefficiency.
A replay attacks occurs when the service provider uses old signatures to return stale results
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Data Structure Year Ops Runtime
2-3 Tree [173] 1997 I,L,D O(logN)

Hash Table [184] 2001 I,L O(log(1/(1− α)))
Hash Table [38] 2007 I,L,D O(1/(1− α)3)

Ordered 2007 I,P,D O(log logN)
Dictionary [38]

Order 2007 I,C,D O(1)
Maintenance [38]
Hash Table [183] 2008 I,L,D I,D → O(logN)

S → O(1)
B-Treaps [114] 2009 I,D,R O(logBN)

B-SkipList [115] 2010 I,D,R O(logBN)
R-Trees [250] 2012 I,D,R not available

Table 9.2: Summary of history independent data structures. α ← load factor, N ← number
of keys, B ← block transfer size. Also, I : insert, L : lookup, D : delete, R : range, P :
predecessor, C : compare.

to clients. To avoid replay attacks, the data owner locks the entire database for the duration
of updates. Since locking the entire databases is inefficient, Pang et al. [201] permit only
intermittent updates.

To overcome inefficiencies of database locking, Li et al. [155] suggest batching of updates.
Updates to tuples that reside close together, that is, stored in the same or adjacent ADS leaf
nodes are performed in a single batch. Since adjacent leaf nodes share parent nodes on the
path to the tree root node, the number of ADS tree nodes modified is reduced.

For signature-based approaches, an update to a tuple requires recomputing the signatures
of neighboring tuples. A concrete update mechanism is designed in DSAC [185]. In DSAC,
the owner downloads the tuple and signatures to be modified, performs modifications locally,
and reuploads modified tuples and ADS to the provider.

In Section 3.5, we discussed the advantages of SCPU-based QA over existing tree and
signature-based solutions. We do not repeat the discussion here and instead point to Section
3.5.

9.3 Related Work Addressing Data Retention Regula-

tions

9.3.1 History Independence

Existing history independent data structures are summarized in Table 9.2. History indepen-
dent data structures have several applications including incremental signature schemes [183],
privacy in voting systems [38, 178, 179, 183], performing updates without revealing interme-
diate states [184], debugging parallel computations [38], reconciliation of dynamic sets [183],
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and untraceable deletion (Section 8.6).
Micciancio et al. [173] designed a history independent 2-3 tree, referred to as an oblivious

2-3 tree. In a 2-3 tree, each non-leaf leaf node has either two or three children. In the
oblivious 2-3 tree, the choice of whether to have two or three child nodes for each non-leaf
is randomized. When the oblivious 2-3 tree undergoes a local modification, random choices
are made for a small number of neighboring nodes in the leaf-to-root path. The tree is
rebalanced based on the new random choices. Micciancio et al. show that the probability
distribution of nodes in an oblivious 2-3 tree is independent of the sequence of operations.

Naor et al. [184] were the first to introduce weak and strong history independence. Naor
et al. [184] then designed a strongly history independent hash table that supports search
and insert operations. The hash table construction is similar to linear probing [171] except
for the collision resolution. In case of collision between two keys a priority function is used.
The key with higher priority takes the bucket. The key with lower priority is relocated to
the next bucket in the probe sequence. Naor et al. [184] show that for a given set of keys,
the hash table layout is same irrespective of the insert sequence.

In follow-up-work, Golovin et al. [38] designed a history independent hash table that
also supports deletion. The hash table is based on the stable matching property of the
Gale-Shapley Stable Marriage algorithm [97] detailed in the following.

Stable Marriage Algorithm: Let M and W be a set of men and women respectively,
|M | = |W | = n. Also, let each man in M rank all women in W as per his set of preferences.
Similarly, each women in W ranks all men in M .

The goal of the stable marriage algorithm is to create n matchings (m,w), where m ∈M
and w ∈ W , such that no two distinct pairs (mi, wj) and (mk, wl) exist where mi ranks wl

higher than wj and wl ranks mi higher than mk. If no such pairings exists, then all matchings
are considered stable.

The algorithm works as follows. In each round, a man m proposes to one woman at a
time based on his ranking of W . If a woman w being proposed to is unmatched, then a new
match (m,w) is created. If the woman w is already matched to some other man m′, then
one of the following two occurs.

1. If w ranks m higher than m′, then the match (m′, w) is broken and a new match (m,w)
is created.

2. If w ranks m lower than m′, then m proposes to the next woman based on his rankings.

The algorithm terminates when all men are matched.
Gale et al. [97] show that if all the men propose in decreasing order of their preferences

(ranks) then the resulting stable matching is unique. The matchings are unique even if the
selection of a man m who gets to propose in each round is arbitrary.

Golovin et al. [38] use the above unique matching property of the Stable Marriage algo-
rithm to construct a history independent hash table as follows.

1. The set of keys to be inserted are considered as the set of men.
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2. The set of hash table buckets are considered as the set of women.

3. Each key has an ordered preference of buckets and vice versa.

4. The preference order of each key is the order in which the buckets are probed for
insertion, deletion and search.

5. In case of a collision between two keys, the key which ranks higher on the bucket’s
preference takes the slot. The lower ranked key is relocated to the next bucket in its
preference list.

(1) - (5) ensure that the layout of keys in the hash table is the same irrespective of the
sequence of key insertions and deletions, thereby making the hash table history independent.

Hartline et al. provide new definitions for weak and strong history independence based
on probability distributions. The new definitions are equivalent to the ones provided by Naor
et al. [184]. Hartline et al. then briefly analyze various properties of history independence.
The significant result by Hartline et al. is the proof for necessity of canonical representations
for strong history independence (SHI). The proof builds on the case that in the absence of
canonical representations, an adversary can distinguish an empty operations sequence from
a non-empty sequence, thereby breaking SHI.

History Independence on Write Once Storage

The history independent data structures in Table 9.2 are designed for the RAM model and
assume a rewritable storage medium. Molnar et al. [178] designed a history independent
solution for write-once storage. For example, storage in voting machines. The construction
is based on the observation by Naor et al. [184], which states that a lexicographic ordering
of elements in a list is history independent. However, write-once memories do not allow
in-place sorting of elements and hence cannot maintain a sorted list. Instead, Molnar et al.
use copy-over lists [184]. In a copy-over list, when a new element is inserted, the current list
is deleted and a new sorted list is stored. Copy-over lists therefore require O(K2) space to
store K keys.

An alternative solution designed by Molnar et al. uses randomization. Each new element
is inserted at a random location on the write-once storage. If a location is free, the element
is inserted in the free location. If a location is already occupied, a new random location
is selected. Although simple and space-efficient, the random approach requires random
bits to be hidden from the adversary. As Molnar et al. suggest hiding random bits from
the adversary may not be possible in the target scenario involving voting machines in poll
booths.

Moran et al. [179] design a history independent solution for write-once storage that
requires only linear storage. Specifically, their solution requires O(K · polylog(N)) space,
where K is the number of keys to be stored and N is the total number of keys in the keys’
domain. To reduce storage requirement, Moran et al. organize the write-once storage as a
history independent hash table. Each hash table bucket is a copy-over list. As suggested by
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Naor et al. [184], a copy-over list is history independent. Hence, the hash table as a whole
also preserves history independence. In case a bucket overflows, one key from the bucket is
relocated to the adjacent bucket. For a given set of keys, the key selected for relocation is
always the same.

9.3.2 Secure Deletion

The goal of secure deletion is to prevent direct recovery of deleted data from the storage
medium. Prior work achieves secure deletion either by overwriting or by using encryption.
We cover both techniques in the following.

Secure Deletion by Overwriting

Secure deletion by overwriting was first suggested by Gutmann et al. [121]. Gutmann et
al. concluded that storage locations need to be overwritten multiple times to ensure secure
deletion. In fact, Gutmann et al. suggest up to 35 overwrites to prevent recovery of deleted
data from storage.

Later Joukov et al. [145] claim that a single overwrite is sufficient to prevent software-
based recovery of delete data. Software-based recovery implies that an adversary does not
have physical access to the storage medium. For example, an insider that can obtain a dump
of entire storage over a remote connection but cannot physically access the storage device.
Joukov et al. [145] also propose extensions to the Ext3 [5] file system for overwriting files’
data and metadata on deletion.

Wright et al. [266] investigated the possibility of recovering deleted data using an electron
microscope. They concluded that although recovery of an individual bit is possible, the
likelihood of recovering sizeable data using an electron microscopy is negligible. Wright et
al. suggest that the case for multiple overwrites [121] holds only when a copy of deleted data
is available. Then, the recovery process entails determining whether the storage contained
the same data in the past. Without an available copy, recovery of deleted data is infeasible.

An extension for the Ext2 file system is provided by Bauer et al. [34]. Unlike the Ext3
extension by Joukov et al. [145], Bauer et al. use asynchronous overwriting. Asynchronous
overwriting causes less interference with user tasks by delaying overwriting. Security is thus
compromised for a short interval from delete time to overwrite time.

Chow et al. [68] target secure deletion for main memory. They propose to reduce the
lifetime of data in main memory. The solution is referred to as secure deallocation. In secure
deallocation, the heap and stack contents are overwritten with zeros to prevent recovery of
deleted data.

Secure Deletion by Encryption

Lee et al. [153] use encryption to achieve secure deletion for a NAND flash file system. Each
data block is encrypted using a distinct encryption key. A special area on disk is reserved
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for key storage. To delete a data block, the corresponding key is overwritten by zeroes. For
a strong encryption system, overwriting the key suffices to ensure a secure data block delete.

Zhu et al. [278] also use encryption for secure deletion. The solution by Zhu et al. is
similar to the work by Lee et al. [153]. The only difference is that Zhu et al. [278] target
deletion of document index entries and not file system data blocks.

Peterson et al. [209] provide secure deletion in a versioning file system. Similar to the
work of Lee et al. each data block is encrypted using a random key. Random keys are
authenticated using a single per-file master key. To delete an entire file, the master key is
securely deleted by overwriting.

9.3.3 Compensating Transactions

A compensating transaction undoes the effect of a previously committed transaction without
resorting to cascading aborts. Hence, compensating transactions can potentially be utilized
to undo the side effects of deleted tuples as in Ficklebase. However, compensating trans-
actions are application-dependent [152], need to be predefined, and can only be minimally
automated. Ficklebase on the other automates untraceable deletion at the database level.

Compensating transactions also need to be manually predefined. The existence of an
automated technique to generate a compensating transaction for any given transaction is
yet unknown [152]. Hence, use of compensating transactions requires increased development
effort from database application developers.

Korth et al. [152] discuss various guidelines for designing compensating transactions.
Colombo et al. [73] use an online bookstore example to review several notations for compen-
sating transactions including syntax and semantics.

Sagas [47] is a flow composition language which achieves atomicity based on compensa-
tion. In case of a long running transactions that fails to complete, compensation is used
to undo the transaction’s effects. Sagas also addresses parallel composition, nesting and
exception handling.

Similar to compensating transactions Ataullah et al. [29] design a system wherein ap-
plication developers can specify destructive policies for business records. The policies are
stored and later executed as database stored procedures. Policy execution is triggered by
predefined meta-policies. The meta-policies take data lifetime into account. The drawback
is that destructive policies need to be predefined not unlike compensating transactions.

9.3.4 Statistical Databases

Statistical databases [45] are used to maintain statistical data in an online analytical process-
ing (OLAP) model. The security concern for statistical databases is to prevent an adversary
from deducing specific information by issuing statistical queries. Typical approaches to pre-
vent data leaks include limiting support for aggregation queries, refusal to answer queries
with small result sets, and returning range results instead of specific values [67, 82].

At first glance it may seem that statistical databases achieve untraceable deletion. The
perception may arise since deletion of a particular data item will result in new updated
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statistics that exclude the deleted data. However, statistical databases are designed for the
OLAP model and do not support delete operations.

9.3.5 Data Degradation

Data Degradation [28] is a work-in-progress to address deletion of sensitive data. The goal
of data degradation is to gradually degrade sensitive information eventually making it unre-
coverable.

A solution providing data degradation is InstantDB [27]. In InstantDB, a data item is
degraded in steps from specific to more general values. For example, an address field may
initially contain the entire detailed address. In the next iteration the street part is erased.
A following iteration erases the state and zip leaving only the country code and so on.

9.3.6 Information Flow Control

Although not dealing with removal of side effects, information flow control and related imple-
mentations [79,225,273] can potentially play a complimentary role to Ficklebase. Information
flow control enables tracking of sensitive data across system components. Information flow
control can therefore be used to extend Ficklebase for cross-system untraceable deletion.
When a tuple is deleted in Ficklebase the flow control information can be used to remove
remote side effects.
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Chapter 10

Conclusions

This thesis has been driven by the motivation for low-cost, efficient, and increasingly au-
tomated regulatory compliance in data management. This thesis describes the design and
implementation of several relational databases and file systems that target specific require-
ments from privacy, audit, and retention Regulations. The systems increase efficiency and
lower costs of regulatory compliance through the use of novel cryptographic and system
security constructs.

Through TrustedDB and CorrectDB, this thesis shows the cost and efficiency benefits
of trusted hardware for query processing in outsourced databases. To make the use of
trusted hardware practical, this thesis overcomes several challenges in trusted hardware-
based application development. This thesis also presents new query optimization techniques
for a trusted hardware model.

The contributions of this thesis are not limited to system designs but also cover theo-
retical results. This thesis develops the theoretical foundations for history independence via
an exploration of basic concepts, such as abstract data types, data structures and mem-
ory representations. The thesis then expands history independence by introducing the ∆HI
framework. ∆HI helps conceptualizing new history independence notions and also incorpo-
rates both weak and strong history independence. Using ∆HI, the thesis outlines several
new history independence notions and presents mechanisms to analyze the history preserved
in existing data structures that were designed without history independence in mind.

This thesis bridges the gap between theory and practice of history independence by
outlining a generic process for history independent system design. The process is used in the
thesis itself to design and evaluate two history independent file systems, HIFS and DAFS.

The thesis focuses on both security and practicality simultaneously. For query authen-
tication (QA), this thesis proposes ConcurDB, a concurrent QA solution for outsourced
databases that meets practicality by selecting the best available design tradeoffs for effi-
ciency and security. For file systems, along with history independence, the thesis ensures
data locality for efficiency and journaling for failure recovery.

Finally, to achieve truly irrecoverable deletion, the thesis introduces the concept of un-
traceable deletion and designs Ficklebase, a relational database that provides untraceable
deletion via versioning and query rewriting.
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