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Abstract of the Dissertation

Knowledge Extraction from Diverse Biomedical Corpora with Applications in Healthcare:
Bridging the Translational Gap

by

Ritwik Banerjee

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

A wealth of knowledge in the biomedical domain is available in unstructured or semi-structured
data repositories as natural language narratives. Much of this knowledge can provide immediate
and tangible benefits in patient welfare and the healthcare industry. Extracting relevant knowledge
from these natural language sources and providing them as structured information suitable for
immediate real-time consumption in clinical settings is, however, a manual process restricted to
human domain experts. As a result, it is expensive and time-consuming. A very real consequence of
this is that the journey made by medical “knowledge nuggets” from research publications to patient
care settings like hospitals often take several years. Even so, the knowledge still gets presented to
clinicians in natural language – unsuitable for machine consumption, and an impediment to the
pace of work often demanded of clinicians (e.g. in emergency rooms).

Automatic extraction of this knowledge is a challenging task. Biomedical research literature
is replete with language constructs that are highly specific to not just the domain, but internal
sub-domains. The linguistic semantics used in discussions of, say, diabetes, are very different from
the semantics used to discuss diseases like malaria that are caused by external agents. Moreover,
being research literature, authors typically write for readers with a fair amount of encyclopaedic
domain knowledge. Consequently, important information can often only be gleaned by identifying
causal relations that are implicit. Standard information extraction methods that depend on iden-
tifying causality in text usually require explicit discourse connectives like “because”, “since”, etc.
Additionally, they manage to extract only those relations that are expressed within the span of a
single sentence.

This proposal presents a novel relation learning methodology for biomedical natural language
that is able to infer relations where (a) the relation is implicit, and (b) the related entities do
not co-occur within the span of a single sentence. We show that our technique outperforms a
sentence-level supervised classification approach. Further, as a human-in-the-loop (HITL) model, it
is capable of augmenting biomedical knowledge bases quickly and accurately. Finally, we contribute
two novel applications that demonstrate the use of such relational knowledge in providing real-time
clinical decision support.
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Introduction

The biomedical sciences, at least in terms of sheer volume of new information, have recently been
experiencing explosive growth (Druss and Marcus, 2005; Boissier, 2013). New results are being
published in the research literature in this domain with increasing frequency. For instance, PubMed,
the most widely used repository of biomedical articles, has tripled its growth rate over the last
decade (Andronis et al., 2011). Much of this information can lead to immediate and tangible
benefits in the healthcare industry, and decidedly, in patient welfare. One of the most important
types of knowledge that can directly provide these benefits is relational information connecting
behavioral, social and biomedical entities or concepts. These include the relation between a lifestyle
choice and a disease (e.g. smoking and lung cancer), a drug and a symptom (e.g. Tylenol and
headache), etc. In addition to well established relations like these two examples, new information
is continuously being produced and made available in biomedical research literature. Automatic
extraction of actionable information from these sources, however, remains highly challenging not
only because it is presented in natural language, but also because the language used in these
publications is highly specialized. In fact, the language is specific to not just the domain as a whole,
but sub-domains within biomedicine. For instance, the linguistic semantics used in literature
on psychological diseases are very different from the semantics used in discussions of infectious
diseases. Moreover, since the narratives are intended for highly knowledgeable readers, distilling
the knowledge presented in this data requires a lot of encyclopaedic domain knowledge.

In spite of the challenges, extracting relevant information from research literature cannot be
left as a manual process to be carried out by human domain experts. This is inherently expensive
due to the associated labor cost. Moreover, it leads to unacceptable delays in updating structured
knowledge bases (KBs), and is prone to errors of omission. Drug interaction databases, for example,
are seldom complete because their update periods can be as long as three years (Rodriguez-Terol
et al., 2009). It has also been noted that databases on adverse drug effects miss nearly a quarter of
all clinical trials reporting such effects (Derry, Loke, and Aronson, 2001). A medical “knowledge
nugget” from research literature can thus take a long time before it is incorporated in databases
used by hospitals and other healthcare facilities. These delays can have catastrophic consequences,
as illustrated by the unfortunate incident of over 27, 000 heart attacks caused by the pain relief
drug rofecoxib before the drug was recalled in 20041. Many other drugs have had similar results
in the past. Examples include cisapride, withdrawn after 80 reported fatalities2 and cerivastatin,
recalled after 52 deaths and nearly 400 cases of hospitalization3. The need for scalable learning is
1 MSNBC Staff, “Report: Vioxx Linked to Thousands of Deaths”, www.nbcnews.com, Oct. 6, 2004
2 FDA, “Propulsid (cisapride) Dear Healthcare Professional Letter Jan 2000”, www.fda.gov, Jan 24, 2000.
3 Furberg and Pitt, 2001.
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not just limited to adverse effects. Extraction of therapeutic relations between drugs and diseases
from natural language to create structured knowledge is of vital importance. Such knowledge
has important real-world applications including healthcare information retrieval (Hanbury, 2012;
Lialiou and Mantas, 2014), bioinformatics research (Tatonetti et al., 2012; Li and Lu, 2013) and
clinical decision support (Duke and Friedlin, 2010; Banerjee et al., 2014; Banerjee et al., 2015).

This gap between research and clinical applications has been discussed by biomedical re-
searchers and healthcare practitioners for over a decade, with a number of publications com-
menting on how we need to translate knowledge from research to clinical settings (e.g. Lenfant,
2003; Glasgow and Emmons, 2007; Laan and Boenink, 2012; Burnand, 2015), thus giving rise
to the phrase “translational research” in the biomedical domain. Several authors have pointed
out that the bulk of translational research so far has focused on bridging the gap between basic
research and clinical investigations, but not on taking the results of clinical investigations and
translating them into evidence-based healthcare practice (e.g. Lenfant, 2003; Clyne et al., 2014).

Accurate extraction of relational information from biomedical literature is an important step
in this translation pipeline. In order to have utility in clinical settings, this step needs to be fast
enough to make research findings available with little or no delay, and accurate so that the ex-
tracted knowledge can, indeed, have a positive impact on patient care. Current relation extraction
techniques can, with reasonable accuracy, extract relations explicitly mentioned within the span
of a single sentence. In biomedical research publications, however, we observed that a majority
of the relations are not expressed within a single sentence. Further, the discourse is often implicit.
These aspects make standard relation extraction approaches unsuitable for this domain.

The first part of this thesis outlines our contribution to the first half of the translation pipeline:
a novel relation learning methodology that combines elements of text-based relation extraction
techniques and statistical relation learning in knowledge graphs. This, effectively, allows for
relation inference in the absence of clear discourse in texts and in the absence of connecting paths
in knowledge graphs.

We show that this approach is a significant improvement over a supervised classification base-
line, and is able to distill relational knowledge even when (a) the related entities are not in the
same sentence, and (b) there is no explicit discourse connective. This has a twofold advan-
tage over traditional relation extraction frameworks. First, it enables inference based on simple
lexico-syntactic constructs even when the underlying text consists of long and complex sentences.
Second, by inferring relations that are beyond the scope of sentence-level extraction systems, it
greatly reduces the omission errors that currently afflict medical KBs (Derry, Loke, and Aronson,
2001; Reaume, 2012). Being fully computational, it is obviously a much faster process than any
manual curation framework. In addition, the high precision and yield indicate that our methodol-
ogy can be adapted into an expert-in-the-loop process that can very quickly provide a completely
accurate list of biomedical relations. In this manner, we have obtained therapeutic relations be-
tween drugs and diseases/symptoms, and established that this can be used to augment structured
KBs like the Unified Medical Language System (UMLS) (Lindberg, Humphreys, and McCray, 1993)
and DrugBank (Knox et al., 2011).

It is worth noting that in spite of being indispensable, translational research is not by any means
a complete substitute for human domain expertise. Manually curated methods have produced
a sizable body of structured and semi-structured KBs that provide accurate information about
thousands of medical entities. From the perspective of healthcare applications in clinical settings,
which constitute the later stages of the translation pipeline, these KBs are extremely important. In
fact, many are used as standard reference points by practicing clinicians. However, in addition
to these being incomplete, this practice has several other pitfalls. Note that patient care is not
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just a single instance of drug use for treatment. It consists of a dynamic, and often iterative
(especially in disease management), process, which demands consolidating many different types
of knowledge. For example, if a patient is exhibiting certain symptoms, s/he may be asked to
undergo a laboratory test. Depending on the test results, the physician may prescribe a drug, alter
the dosage, suggest lifestyle changes, ask for more laboratory tests, etc. This requires integrating
information across heterogeneous KBs that have been developed for divergent uses and different
types of users (e.g. radiologists, pharmacists, patients).

The second part of our work pertains to integrating such heterogeneous information sources
for practicable patient care. Here, we present our contribution to the second half of the translation
pipeline: bringing the outcome of biomedical research investigations into clinical practice. We
describe two novel applications of medical information extraction in clinical decision support. In
both applications, our focus is on prevention of adverse drug events (ADEs) – events that are
unintended and undesired reactions experienced by an individual due to use, misuse or discon-
tinuation of medication. Several studies have reported that among the adult population, a high
percentage of emergency room (ER) visits are caused by ADEs (Zed et al., 2008; Jayarama, Shiju,
and Prabahakar, 2012). As there exist way too many drugs, physicians cannot be expected to
remember all possible ADEs associated with them. Semi-structured drug data repositories help to
some extent by providing a list of conditions associated with the adverse effects of a drug. Not
all adverse effects manifest as observable symptoms, however. Some can only be confirmed by
laboratory tests. But, even though laboratory testing is the single highest-volume medical activity
driving clinical decision making, information pertaining to them is not integrated with drug KBs.
As a result, the process of ordering diagnostic tests and acting upon them remains vulnerable to
errors (Singh, 2013; Zhi et al., 2013). Our first application is a system that carefully harnesses
patient electronic health record (EHR) with a collection of different types of medical data reposi-
tories to automatically suggest laboratory tests to confirm (or invalidate) potential adverse effects
of a patient’s drug regimen. The performance of this system is measured using sensitivity, which
indicates its ability to correctly identify the laboratory test required to confirm ADEs.

Our second application presents a patient centered approach toward identification and attri-
bution of ADEs. As mentioned earlier, information about ADEs is often available in online drug
KBs in the form of narrative texts, and serves as the physician’s primary reference point for ADE
attribution and diagnosis. Manually reviewing these narratives, however, is an error prone and
time consuming process, especially due to the prevalence of polypharmacy. So ER health care
providers, especially given the heavy volume of traffic, often either skip this step or at best do it
rather perfunctorily. This causes ADEs to be missed or misdiagnosed, often leading to extensive
and unnecessary testing and treatment, including hospitalization. This part of the thesis describes
a system that automates the detection of ADEs and provides a list of suspect drugs, ranked by their
likelihood of causing the patient’s complaints and symptoms. The input data, i.e., medications and
complaints, are obtained from triage notes that often contain descriptive language. Our applica-
tion utilizes heterogeneous information sources (including drug KBs) to refine and transform these
descriptions as well as the online database narratives using a natural language processing (NLP)
pipeline. Our work incorporates a domain-specific entity normalization method. We then employ
ranking measures to establish correspondence between the complaints and the medications. Our
evaluation based on actual cases demonstrates that this system achieves high precision and recall.

The body of this thesis constitutes three chapters, describing our contribution to the translation
pipeline of bringing research knowledge into a structured, actionable form that can be directly
applied in clinical settings. Chapter 1 presents the details of our relation learning methodology
from research literature. Chapters 2 and 3 describe the two applications introduced above.

ix



Chapter 1

Relation Inference in Biomedical Texts

The large amount of literature in biomedical science and structured knowledge bases (KBs) avail-
able today makes it difficult for researchers and medical practitioners alike to absorb and retain all
the information relevant in their fields. The problem is particularly acute for physicians working in
patient care settings, who must often tend to heavy traffic, and therefore cannot afford the luxury
of manually perusing research literature to stay abreast of the latest findings. From the vantage
point of healthcare providers, relational information is extremely important. Since much of patient
care relies on understanding the relation between drugs, diseases, symptoms, lifestyle aspects, etc.,
there is a growing demand for structured information extracted from literature (Ananiadou and
Mcnaught, 2005).

The discovery of such knowledge usually begins in research settings, goes through rigorous
clinical investigations and finally reaches the proverbial “bedside”, where the knowledge is finally
applied for the benefit of patients. The process of translating basic scientific findings into therapeu-
tic interventions for patients has often been called the “bench-to-bedside” process (e.g. Zerhouni
(2005) and Luciano et al. (2011)), or translational research (e.g. Birmingham (2002), Woolf
(2008), and Butler (2008)). As described in the introduction, there remains a significant gap
between the research findings and their application in healthcare. This gap is both temporal –
resulting in significant delay between a discovery and its use in healthcare (Rodriguez-Terol et al.,
2009) – and quantitative, i.e. a large proportion of research knowledge does not reach the realm
of patient care (Derry, Loke, and Aronson, 2001). In an attempt to significantly reduce this transla-
tional gap, the current chapter describes our contribution toward extracting relational knowledge
from biomedical research literature. In particular, we focus on relations that can be broadly cat-
egorized as beneficial or harmful, and present a novel methodology to infer such relations from
research narratives.

1.1 Domain Characteristics

Any natural language processing task is burdened by the ambiguity and variability of human lan-
guage, and biomedical research literature is replete with both. Biomedical literature is considered
to be one of the most difficult domains for NLP tasks, and several authors have used various metrics
to support this intuition (e.g. Zeng-Treitler et al. (2007), Leroy et al. (2008), and Wu et al. (2015)).
Moreover, it is characterized by highly specialized sub-domains providing very different perspec-
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Figure 1.1: The syntactic dependency parse tree, obtained using TurboParser v2.21for the sentence “For this purpose, in
vivo evaluation of the potency of HI-6 to reactivate Cyclosarin, Soman and Tabun Inhibited Acetylcholinesterase (AChE)
was done.” Errors often include wrong POS tags. The acronym ‘AChE’ and ‘Inhibited’ in a compound noun are both
tagged as verbs while ‘in’ in in vivo is tagged as a preposition. These in turn lead to parsing errors.

tives, often for similar issues. This degree of specialization in scientific endeavors is reflected in
the use of specialized language. Its drawback, however, is the creation of what has been called
“islands of knowledge” (Andronis et al., 2011) that mystify the interconnections between these
sub-domains (Weeber et al., 2000). As a result, lexical synonymy and polysemy are exceedingly
common (Marrero et al., 2012).

Authors also often condense a lot of information by using features such as long compound
nouns, appositives and relative clauses. The sentences also often exhibit complex instances of right
node raising. A combination of these characteristics render standard parsing techniques prone
to errors. Relation extraction methods that depend on lexico-syntactic features (see Sec. 1.2)
thus suffer from the resultant inaccuracies. The dependency parse tree of Fig. 1.1 presents a
typical example of such errors. In many ways, the sentence used there is quite representative of
the research literature domain. Sentences are often long and complex with multiple intervening
entities. On a random sample representing 10% of the entire PubMed Central2 (PMC) repository,
we found that the average sentence length is 26 words (Wu et al. (2015) report an average sentence
length of 26.1 words on another dataset that largely overlaps PMC). Further, the average distance
between a drug and a disease mention was 8 words, with 28.9% of the relation bearing sentences
having at least two drug mentions.

Additionally, a surprisingly small fraction of relations are expressed within the span of a single-
sentence. We found that for more than 44% of the drug-disease relations present in the Unified
Medical Language System3 (UMLS) database, there were no sentences that contained both the
drug and the disease. Clearly, sentence-level relation extraction techniques, even if they succeed
in correctly parsing complicated domain-specific language, are bound to have low recall.
1 Martins, Almeida, and Smith (2013)
2 PubMed Central (http://www.ncbi.nlm.nih.gov/pmc/) is an electronic archive of over 3.5 million articles. It was

developed and is maintained by the National Center for Biotechnology Information (NCBI), a division of the National
Library of Medicine (NLM) at the U.S. National Institutes of Health (NIH).

3 Lindberg, Humphreys, and McCray, 1993.

2
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1.2 Related Work

A large body of work in information extraction and related areas focuses on learning relational
knowledge. Much of the prior work in this direction can be put down as belonging to one of two
broad categories: relation extraction from texts, and relation learning from knowledge graphs. In
this section, we provide a review of these two approaches. In particular, we discuss, in some detail,
statistical learning methods that employ latent variable models, and are pertinent to the approach
adopted in this thesis.

1.2.1 Relation Extraction from Texts

Extracting relational information from unstructured natural language data has a multitude of
applications, including information retrieval and natural language understanding, that require an
understanding of the semantic relations between various entities. Widely studied semantic relations
in the non-medical domain include relations between the three entity-types person, organization
and location. For example, from sentences like “Stony Brook is one of Long Island’s major centers
of education.” and “Bill Gates co-founded Microsoft Inc.”, state-of-the-art techniques can extract
relations of the type located-in(Stony Brook, Long Island) or affiliated-with(Bill Gates,

Microsoft). Even though relations may generally be defined between several entities, a majority
of current research has focused on extracting binary relations that can be represented as triples of
the form (ei, rk, ej) where rk is the relation, and ei and ej are the related entities. This problem has
been explored in several domains by Agichtein and Gravano (2000), Mooney and Bunescu (2005),
Xu, Uszkoreit, and Li (2007), Hoffmann et al. (2011), and Xu et al. (2013), among others. In the
biomedical domain, much of prior research has focused on very specific relations such as protein-
protein interactions (Yakushiji et al., 2006; Airola et al., 2008), gene-protein interactions (Fundel,
Kuffner, and Zimmer, 2007), drug-drug interactions (Segura Bedmar, Martínez, and Herrero Zazo,
2013), drug-disease treatments (Xu and Wang, 2013) and adverse effects of single drugs (Liu and
Chen, 2013; Nikfarjam et al., 2015).

Next, we discuss supervised approaches to relation extraction, delving into several feature- and
kernel-based methods, and then a discussion of semi-supervised approaches. Finally, we briefly
review distant supervision methods pertaining to relation extraction.

Supervised Methods

The most successful approaches have usually been supervised techniques using deep lexico-syntactic
features (Culotta and Sorensen, 2004; Mooney and Bunescu, 2005; Kim et al., 2011; Nédellec et al.,
2013; Segura Bedmar, Martínez, and Herrero Zazo, 2013), where the relation extraction task is
formulated as a binary classification problem. This body of work can broadly be divided into feature-
based and kernel-based methods. One advantage of the latter is that they enable polynomial-time
exploration of large feature spaces. Of particular note in this area are the approaches using tree
kernels (Zelenko, Aone, and Richardella, 2003), subsequence kernels (Mooney and Bunescu, 2005)
and dependency kernels (Bunescu and Mooney, 2005). More recent approaches have shown that
such kernels may be combined to further improve relation extraction results (Nguyen, Moschitti,
and Riccardi, 2009).

The classification task is formulated in terms of a scoring function fk(S), where S is a sentence
containing two entities ei and ej , and rk is the relation under consideration. The scoring function
typically has the range [−1, 1], and positive/negative values determine whether or not the entities
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ei and ej in S are related by rk. The function f(·) itself can be built using any discriminative
model such as perceptron or support vector machines (SVMs). The input to this function is a set of
features extracted from the sentence. Syntactic and semantic features extracted from positive and
negative examples in the training data are used to train the model. These features often consist
of the entities themselves, the sequence of words between the entities, the semantic type of the
entities, the path connecting the entities in the parse tree, etc. In such approaches, only some of
the explored features may be discriminative. It is important to select only the “good” features. The
feature-selection process, however, is largely heuristic, and obtaining an optimal set of features is
often extremely difficult. To overcome this problem, two lines of work have emerged in relation
extraction: one exploring specialized kernels capable of directly exploiting rich structures like parse
trees, and the other utilizing continuous space word representations.

The kernel-based methods for relation extraction have been based on string kernels used for
text classification by Lodhi et al. (2002). For two data points x and y, the kernel similarity function
K(x, y) is used by SVMs (or other discriminative classifiers). Thus, given a training sentence
S = w0 . . . ei . . . ej . . . wns and a test sentence T = w0 . . . ei . . . ej . . . wnt , the classifier performance
effectively depends on how the similarity between S and T is computed. Mooney and Bunescu
(2005), for instance, divide their sentences into three portions labeled before, middle and after, and
compute three separate kernels for these portions. The final kernel function is simply a sum of
these three measures.

Zelenko, Aone, and Richardella (2003) modified the original string kernel function to compute
structural similarity between constituency parse trees. In their work, the computations were
recursively carried out on subtrees. Culotta and Sorensen (2004) used a very similar kernel to
perform the relation extraction task using dependency parse trees instead. They argued that it
was the use of richer syntactic and semantic structures that yielded significant performance gains.
In contrast, Bunescu and Mooney (2005) observed that using the shortest path connecting two
entities in a dependency parse tree is sufficient for relation extraction. Their shortest path kernel, in
addition to simplifying the kernel function computation, improved recall while obtaining precision
comparable to Culotta’s tree kernel.

With the revived interest in neural networks, using continuous space representations has been
the other approach intended to overcome the dependency on feature design. These methods rely
on learning distributed representations of words, called word embeddings (Turian, Ratinov, and
Bengio, 2010). Going beyond words, Socher et al. (2012) used a recursive neural network (RNN)
to learn embeddings for syntactic tree paths connecting the target entity-pair. Hashimoto et al.
(2013), too, used RNN for supervised relation classification. Their work shows that if important cue
phrases can be explicitly weighted, we can achieve significant improvements. Subsequently, Zeng
et al. (2014) and Zeng et al. (2015) used a convolutional neural network (CNN) with multiple
layers of embeddings for words and sentences to improve upon the RNN results. Further, a recent
work by Santos, Xiang, and Zhou (2015) showed that a single layer of word embeddings achieves
state-of-the-art results when CNN is modified to use a pairwise ranking method. In contrast, RNN
and Zeng’s CNN models perform multi-class classification using a softmax function.

Supervised methods, however, have one obvious drawback: they require gold-standard labeled
data. This is inherently expensive, more so in a specialized domain like scientific research literature
where domain expertise is a prerequisite for annotation. As a result, semi-supervised methods are
becoming increasingly popular. This body of work is discussed next.
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Input: A set of unlabeled data D and a set of seed examples S
repeat

train a classifier C on S;
label D using C;
N = top n labels provided by C (ranked by confidence);
S = S ∪N ;
D = D \N ;

until convergence criteria reached;

Algorithm 1.1: The general structure of Yarowsky’s bootstrapping algorithm (Bach and Badaskar, 2007).

Semi-supervised Methods

Lack of sufficient gold-standard labeled data is an obvious impediment to supervised relation
extraction. Early notable attempts to circumvent this problem include semi-supervised methods
such as DIPRE (Dual Iterative Pattern Relation Expansion) (Brin, 1999) and Snowball (Agichtein
and Gravano, 2000). These two methods, and semi-supervised methods in general, have much in
common. They are closely related to an earlier algorithm proposed by Yarowsky (1995), presented
in Algorithm 1.1. The main idea is to bootstrap, i.e., iteratively expand the set of seed relations
while taking care to limit the “semantic drift”4.

DIPRE represents every seed element as a triple of contexts: before, between, and after. It then
generates extraction patterns by using string matching to group these contexts. The semantic
drift is controlled by limiting the number of instances each pattern can extract. Snowball, too,
uses these three contexts, but uses a TF-IDF vector representation of these contexts followed by a
one-pass clustering based on cosine similarity. The cluster centroids are treated as valid extraction
patterns. By not requiring exact surface matching like DIPRE, Snowball allows for some flexibility.
The patterns are scored and ranked, and only the instances that pass a threshold are used as seed
for the next iteration. Continuing to explore more robust ways of controlling semantic drift while
learning general patterns, others have employed word clusters (Sun, Grishman, and Sekine, 2011)
and in the very recent BREDS system (Batista, Martins, and Silva, 2015), word embeddings.

The approaches discussed above all use clustering algorithms to select the instances that get
included in subsequent iterations. Some approaches have also used bootstrapping with SVMs
(e.g. Zhang (2004)), thus formulating a semi-supervised technique closer in spirit to the supervised
approaches discussed earlier. Another body of work has exploited label propagation algorithms
instead. Fundamentally, the manifold structure (i.e., the cluster structure) of the underlying data
is still used, but is exploited by defining a graph where (possibly weighted) edges reflect similarity,
rather than resorting to an explicit clustering algorithm. This can be seen in the works of Chen
et al. (2006) and GuoDong, LongHua, and QiaoMing (2009), among others.

Distant Supervision

As a relatively recent approach to alleviating the problem of lack of labeled data, distant supervision
has become increasingly attractive. It has been used with success in other domains by Mintz et
al. (2009) and Hoffmann et al. (2011), among others, often using Freebase5 as the knowledge
4 Semantic drift is the evolution of the usage of a word or phrase that results in the meaning of the word itself to

change (McIntosh and Curran, 2009)
5 Bollacker et al., 2008.

5



+

+

not(uptake(X, sodium))≈

treat(X, hypertension)

uptake(SLC12A3, sodium)

block(X, SLC12A3)

reduce(X, sodium)

cause(sodium, hypertension)

Figure 1.2: A simple two-step relation inference process illustrating how an unknown drug X may be discovered to be
a potential treatment for hypertension based on (i) an intra-document inference across multiple sentences leading to the
relation ¬ (uptake(X, sodium)), (ii) semantic similarity of predicate-argument structures, and (iii) an inter-document
inference that combines with the prior knowledge cause(sodium, hypertension). This particular illustration is based
on the pathway of hydrochlorothiazide, which treats high blood pressure by blocking the action of the SLC12A3 gene.

source. In recent years, the biomedical domain has also seen the use of distant supervision using
databases such as the Yeast Protein Database6 (YPD) to detect relations involving proteins (Craven
and Kumlien, 1999), IntAct7 to extract protein interactions (Thomas et al., 2011) and the Unified
Medical Language System8 (UMLS) for various medical relations (Roller and Stevenson, 2014).

Distant supervision, however, provides data that is inherently noisy. Prior research, e.g. Mintz
et al. (2009), has often worked with the assumption that if two entities ei and ej are known to be
in a relation rk, then any sentence containing both entities express rk. As described in Sec. 1.1, this
assumption is too strong for our domain. Previous methods (e.g., Mintz et al. (2009), Riedel, Yao,
and McCallum (2010), Hoffmann et al. (2011), Surdeanu et al. (2012)) have typically applied
the supervised learning paradigm with feature designs to obtain distantly supervised labeled data.
To reduce the noise in such data, these methods model relation extraction as a multi-instance
learning problem: the assumption that if multiple sentences contain ei and ej , the relation rk holds
in at least one of them. The features are aggregated from multiple sentences where the target
entity-pair is present. The aggregation is accomplished by the use of latent variables to represent
sentence-level decisions.

A major limitation of all the relation extraction approaches is that they extract relations at
the sentence level. Relations can, in fact, span over multiple sentences and even across multiple
documents. Such relations are better inferred than directly extracted. Much of prior research has
modeled this inference process as learning from knowledge graphs, which we discuss next.

1.2.2 Relation Learning from Knowledge Graphs

In natural language texts, it is often the case that the cues of a relation between two entities are not
contained within a single sentence. Particularly so in biomedical research literature, as described
earlier in Sec. 1.1. These relations may, however, be inferred based on various criteria if the problem
is modeled as a graph. In statistical relation learning, such graphs that represent knowledge bases

6 Hodges, Payne, and Garrels, 1998.
7 Hermjakob et al., 2004.
8 Lindberg, Humphreys, and McCray, 1993.
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(KBs) are called knowledge graphs (KGs). YAGO9, NELL10 and Freebase are some of the well-
studied examples. In this section we will look at how relation learning, which pertains to creating
models for relational data, can be applied to KGs. Since our focus remains on binary relations rk
between two entities ei and ej , relations will be denoted by triples of the form (ei, rk, ej). This
is consistent with the RDF standard of relation representation using (subject, predicate, object)
(SPO) triples. Given a KG, one may assume one of two positions: triples absent from the graph (a)
indicate false relations, and (b) are treated as unknown facts. These are known as the closed-world
and open-world assumptions, respectively. Most KGs are known to be highly incomplete, especially
so in the biomedical domain due to the rapid growth in data. Our work, therefore, embraces the
open-world assumption.

Knowledge graphs typically obey certain hard constraints like type contraints, transitivity, etc.
In the biomedical domain, UMLS may be viewed as a KG, albeit sparse due to relational information
being highly incomplete. Additionally, such graphs also often exhibit soft constraints, some of which
are quite important with respect to our work:

(1) Homophily, or autocorrelation states that any entity exhibits a tendency to be related to
other entities with similar characteristics (Nickel, 2013). Homophily is known to be present
in many relational datasets (Jensen and Neville, 2002), and can be a powerful predictor of
unknown relations. For example, we can predict a new adverse effect of a drug by studying
the adverse effects of the drugs similar to it.

(2) Long-range dependency over paths in a graph of known relations can yield new relations.
These paths can be expressed as logical conjunctions of the form (e1, r1, e2)∧ (e2, r2, e3) . . .∧
(ek−1, rk−1, ek) =⇒ (e1, rk, ek). Fig. 1.2 shows a simple 2-hop inference for a drug
that may treat hypertension. The corresponding logical formalism is (x, reduce, sodium) ∧
(sodium, cause, hypertension) =⇒ (x, treat, hypertension).

Needless to say, a biomedical KB must heed two extremely important parameters that govern its
usefulness – completeness, and accuracy. As observed by Nickel et al. (2015), constructing such a
KB may involve methods that fall under one of four categories:
• manual curation, which is how medical KBs are currently created and expanded,
• collaboration, where relation triples are created manually by an open group of volunteers,
• automated semi-structured methods, where triples are extracted from semi-structured texts

using rules and regular expressions, and
• automated unstructured methods, extracting triples from texts using NLP techniques.

Note that given the specialized nature of our domain, open collaboration is not a feasible op-
tion. Also, while later chapters of this thesis adopt automated semi-structured techniques, such
techniques require semi-structured data to already exist. In the early stages of the translational
pipeline, KB construction and expansion must exploit unstructured data as the primary source of
new knowledge. From this perspective, our work on relation inference may be viewed as a link
prediction task – i.e., to predict whether or not an edge exists – aimed at expanding a KB.

In the remainder of this section, we will denote each possible relation as the triple xijk =
(ei, rk, ej) over the set E = {e1, . . . , en} of entities and the set R = {r1, . . . , rm} of relations, where
|E| = n and |R| = m. The triples are then modeled as binary random variables

yijk =

{
1 if xijk exists

0 otherwise
(1.1)

9 Suchanek, Kasneci, and Weikum, 2007.
10 Carlson et al., 2010.
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Relation Learning Models

The presence (absence) of some relations often indicate the presence (absence) of certain other
relations, indicating that global inference models are particularly well suited for relation learning
in knowledge graphs. The inter-dependence between various relations, i.e., the correlations among
the yijk variables, can be modeled in many ways. In the knowledge graph paradigm, these can be
thought of as models exploiting (i) latent features, and (ii) graph features. These two categories
assume conditional independence of the yijk variables given latent and observed features, respec-
tively. Before describing some particular models relevant to our work, we present a high-level
formalism as follows:

P (yijk|Rknown,Θ) = B (yijk|σ (f (xijk; Θ))) (1.2)

where Rknown is the set of known relations, Θ is the set of model parameters, f is a scoring
function representing the model’s confidence that the relation xijk is true, σ(x) = 1/ (1 + e−x) is
the sigmoid function, and B(· | ·) denotes the Bernoulli distribution. Equation 1.2 provides the
general structure of probabilistic models, but other score-based models can be transformed into
this form by Platt scaling (Platt, 1999; Niculescu-Mizil and Caruana, 2005).

Latent Feature Models

In this class of models, the entities are modeled by latent variables. The probability of a relation
between two entities is then computed based on operations on these latent variables, as shown
by Kok and Domingos (2007). Others have explored assigning a latent class to each entity (Kemp
et al., 2006; Xu et al., 2012). This means that the latent variables are binary and mutually exclusive
(since each entity can have exactly one class label). This body of work is based on the idea that
entities will first be assigned classes, and the probability of a relation between ei and ej will then
be derived from the probability of the relation existing between their respective latent classes.
Subsequently, Airoldi et al. (2006) generalized this method to allow entities to obtain multiple
labels, thereby abandoning the requirement for the latent variables to be mutually exclusive.

Recently, bilinear vector space models have been shown to outperform significantly richer
parametrized models in relation learning. For example, RESCAL (Nickel, Tresp, and Kriegel, 2011)
achieved state-of-the-art performance on several datasets, and a modified bilinear model, D I S T-
M U LT (Yang et al., 2015), has achieved better results than richer models like T R A N S E (Bordes
et al., 2013). In this approach, relations are modeled via pairwise interaction of latent variables,
with the score function

fijk = ei
TWkej (1.3)

where Wk is a weight matrix representing the kth relation rk, and ei and ej denote the latent
feature representations of the corresponding entities ei and ej . The magnitude of the diagonal
entries of Wk indicate the degree of homophily (Nickel, 2013).

Graph Feature Models

Now, we present a brief discussion of models that learn relations from the actual edges in the
knowledge graph itself, without resorting to hidden variables. From this body of research, our
relation inference is most similar in spirit to the cross-document information integration method
of Yao, Riedel, and McCallum (2010) using factor graphs, the inference based on a path ranking
algorithm (PRA) by Lao, Mitchell, and Cohen (2011) and the work on relation entailment graphs
by Berant, Dagan, and Goldberger (2012).
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While these methods provide powerful relation entailment capabilities, they typically infer
more relations for an unchanging entity-pair. For instance, given two drugs d1 and d2, we could
obtain an entailment like (d1, derive, d2) =⇒ (d1, process-from, d2). In this domain, however,
our focus is on inferring a relation between an entity-pair based on other related entities. This is
unlike the above mentioned body of work where the focus is to drill down from general to more
specific relations between the same entities.

Very recently, Gardner and Mitchell (2015) have built on PRA to show that entity-neighborhoods
in graphs can be used for knowledge based completion. Their technique, called subgraph feature
extraction, is similar to PRA in the sense that they too generate feature matrices over node pairs
in the knowledge graph. Each column of such a matrix is a path type in the graph, and each row
corresponds to a node-pair. Another recent work suggesting a PRA-like model is the compositional
vector space model proposed by Neelakantan, Roth, and McCallum (2015). Their work showed
that path bigram features (i.e., paths of length 2 in the graph) resulted in significant improvement.

Our work, too, models such paths in knowledge graphs. The major distinction, however, is that
in our problem, the intermediate edges are seldom present in the knowledge graph. Therefore,
they must be modeled implicitly. Our first model, presented in Sec. 1.5.1 is similar to a latent
modeling of the path bigram features explored by Neelakantan, Roth, and McCallum (2015). We
then generalize this approach to model long-range dependencies in an integer linear programming
framework (presented in Sec. 1.5.2).

1.3 Motivation

The key observation that motivates our approach is that research articles describing drugs, diseases
and their relationships, often do so in terms of the underlying physiological effects. As noted before,
in many cases, the effects of a drug X do not bear any explicit linguistic connection to a disease Y .
As a result, a relation r(X,Y ) must be inferred based on two things:

(a) the physiological effects EX = (e1, e2, . . . , en) of X, and
(b) the characteristics CY = (c1, c2, . . . , cm) of the disease Y .

The inference process itself can be thought of as an implicature where X is deemed beneficial if
it provides evidence of opposing the characteristics of Y , i.e. ei = ¬(cj). Similarly, X should be
considered harmful if it aids the disease characteristics. The above example is an overly simplistic
depiction. In most cases, we find that there are several layers of physiological effects that need
to be semantically linked before establishing a drug-disease relation. Conceptually, this outlook
is similar to the use of implicature in the graph-based sentiment propagation method proposed
by Deng and Wiebe (2014). Figure 1.2 illustrates this concept by showing how a drug-gene and a
gene-chemical relation combine with prior knowledge to infer a potential therapeutic relation.

While current state-of-the-art relation learning methods are capable of long-range inferences
in a knowledge graph, they still require the intermediate steps to be a represented in the graph.
However, we note that often these intermediate steps that express the physiological effects, are
missing from the graph. Thus, there is a need to incorporate them as latent variables in order to
infer how entities such as drugs and diseases are related. This raises the first major distinction
between our work and prior research using latent variable models for relation learning. Instead of
building latent feature representations of the entities, our latent features are entities and relations.
In particular, they are entities and relations extracted from a text corpus, and not necessarily a part
of the graph.
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Further, since these variables are extracted from unstructured text using standard NLP tools,
they are subject to erroneous extraction. As a result, directly adding this extracted knowledge
yields an extremely noisy graph, and any subsequent relation learning suffers. To alleviate this, we
adopt two approaches to global inference.

The first is a one-hop maximum likelihood inference. If we were to add all the extracted entities
and relations to the original KG, this method could be viewed as relation learning restricted to
paths of length 2 in that graph. The second is an integer linear programming (ILP) framework
that exploits compatibility constraints to impede noisy propagation. The constraints we encode
can be likened to the manifold regularization constraints used by Wang and Fan (2014) in their
sentence-level relation extraction system for medical relation extraction.

In biomedicine, the observation that a drug and a disease could be therapeutically related
because of their opposing physiological effects, was first made by Swanson (1986). His initial
discovery was that fish oil (X) may treat Raynaud’s disease (Y ) because the latter is characterized
by high platelet concentration and high viscosity in blood, while the former reduces both. In that
work, he points out that this relation was thus far unknown because of “noninteracting literatures”
in the sub-domains within medical researchers. This was a completely manual process. In the
following years, some text mining systems were developed to aid this kind of knowledge discovery
(e.g. Arrowsmith11, BITOLA12 and LitLinker13). These, however, simply use co-occurrence as a
potential indication of a relation – the actual existence of a relation, and what that relation might be
– is left to the domain-experts (Hristovski, Rindflesch, and Peterlin, 2013). More recent research has
used rule-based approaches to incorporate the semantics of a relation. Notable examples include
the SemRep14 program built by Rindflesch and Fiszman (2003) and a combination of rules and
co-occurrence measures proposed by Hristovski et al. (2006). These, too, are largely manual.
Further, their inference procedure is local in the sense that the rules do not incorporate the chain
of implicit effects beyond a single step. To summarize, the limits of these knowledge discovery
methods are that

(a) significant manual involvement is required,
(b) they are restricted to a one-hop inference, and
(c) the knowledge discovery for intermediate physiologic effects remains at the clause-level.

To overcome these shortcomings of current methods, and to stay true to the relation inference
paradigm described so far, we delve deeper into some terminology borrowed from the biomedical
sciences. These definitions provide the basis of our relation inference method formally described
in Sec. 1.4.

1.3.1 A pharmacologic perspective

In most biomedical research articles, the natural language narrative is an explanation of not just
the what, but also the why and how of observed phenomena. The explanation of events in terms
of physiological effects, thus, is to be expected. Biomedical researchers as well as healthcare prac-
titioners have a keen interest in understanding the mechanism of the action of a drug – be it an
adverse effect or a therapeutic one. Even for non-pharmacological entities (micro-organisms, chem-
icals, etc.), due to scientific interest as well as strong economic considerations, this understanding
is of fundamental importance in biomedicine.
11 Smalheiser and Swanson, 1998.
12 http://ibmi3.mf.uni-lj.si/bitola/
13 Pratt and Yetisgen-Yildiz, 2003.
14 http://semrep.nlm.nih.gov/
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Table 1.1: The two “super”-
relations and their constituent
fine-grained UMLS types.

beneficial (B) may_treat, may_prevent, treats, prevents

harmful (H) cause_of, causative_agent_of, contraindicated_drug

The detailed effects described in biomedical research literature broadly fall under two cate-
gories, each a discipline in its own right:

(a) pharmacokinetics, the study of drug absorption, distribution, metabolism, and excretion (Ra-
tain and Plunkett, 2003), and

(b) pharmacodynamics, the study of the biochemical and physiological effects of drugs and their
mechanisms of action (Brunton, Lazo, and Parker, 2005, ch. 3).

In simpler terms, the former is the study of what happens to the drug in the body, while the latter
is the study of what the drug does to the body.

Drug action is the end result of several branched or consecutive reaction steps (Seydel and
Schaper, 1981). The sequence of these steps is called the pathway. From a purely pharmacologic
perspective, the sequence of intermediate entities and effects that we exploit in order to infer the
final relations between two entities are usually pharmacodynamic/pharmacokinetic pathways. In
other words, the methodology we describe next, works by a latent modeling of these pathways. A
potential advantage of this is that a slight modification of our core inference framework allows for
a characterization where the steps of these pathways can be made more explicit. Even though that
makes the inference process computationally more expensive, it provides an inference model that
can better explain why two entities share a particular semantic relation.

In the remainder of this chapter, we present our methodology in Sec. 1.4, followed by the formal
definition of our inference models in Sec. 1.5. Next, Sec. 1.6 discusses the experimental setup,
along with the results we have obtained so far. The chapter then concludes with the evaluation
and error analysis in Sec. 1.7.

1.4 Methodology

As discussed previously in Sec. 1.1, standard sentence-based extraction approaches have limited
efficacy in this domain. The sentences tend to be long and complex, making it hard to learn
generalizable lexico-syntactic extraction patterns. Further, a significant proportion of relations are
not directly expressed within a single sentence. Thus, instead of extracting relations, we focus on an
inference paradigm wherein pieces of relevant information expressed in multiple sentences and/or
documents are combined. Our approach identifies a relation between two entities by modeling how
they are related to other relevant entities. Specifically, we observe that many narratives mention
the effects without directly stating the final outcome. For example, most drugs that treat diabetes
often target a reduction in blood glucose levels even though they may differ in the mechanisms
and sites used to achieve this effect. From a medical standpoint (see Sec. 1.3.1), this can be viewed
as an aggregation of the pharmacodynamic/pharmacokinetic pathways of these entities. Formally,
the entailment may be expressed as lower(x, glucose)⇒ treat(x, diabetes). However, since there
are no readily available knowledge bases (KBs) that provide this kind of gold-standard relation
entailment data, we develop a framework that models the pathways implicitly15.

We use two basic ideas to discover relations. First, we find the most frequent subject-verb-object
(SVO) triples where a drug is the subject, and we treat the VO pairs as implicit effect in the drug’s
pathway. To reduce noise, we use domain knowledge to induce semantic type constraints on the
15 These pathways are implicit, or latent, because they are neither observed in the model nor available during training.
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objects. For example, if we know the relation treats(insulin, diabetes) and we extract the SVO
lower(insuling, glucose), the VO pair lower(glucose) is treated as a latent effect. This allows us to
infer that any new drug that lowers glucose is also likely to have a therapeutic effect on diabetes,
even when there is no direct sentence-level evidence that explicitly conveys such a relation.

Second, we use a global inference model to discover new classes of drugs whose targets may
have been unobserved in the training data. From a pharmacologic perspective, this means that our
model is capable of identifying new pathways that were not available in the training data. This
model is formulated as in integer linear programming (ILP) problem, which encourages new drugs
that achieve similar pharmacodynamic effects as known drugs, to be assigned compatible relations.

Given a disease, our goal is to identify (i) new therapeutic options for it, and (ii) entities that
may be harmful for patients afflicted with it. By therapeutic options, we mean drugs or procedures
that may be used to treat, prevent or manage a disease or its symptoms. Similarly, we also want to
identify drugs, procedures or even lifestyle aspects (e.g. smoking) that may cause or exacerbate a
disease or its symptoms. Such an inference system can aid the translational pipeline by allowing
quick augmentation of resources like UMLS or DrugBank16 that provide critical knowledge about
biomedical concepts. To this end, we follow the distant supervision approach: use UMLS as the
knowledge source, and assume that we are not given any sentence-level annotations.

Note that biomedical KBs like UMLS provide fine-grained relation labels. Since our goal is to
identify therapeutic and adverse-effect relations, we follow the approach adopted by Wang and
Fan (2014), and coalesce some of these fine-grained relations into two “super”-relation categories:
beneficial and harmful. Table 1.1 lays out the correspondence between these super-relations
and their fine-grained UMLS constituents. The problem definition can be stated thus

Given some prior knowledge in the form of a set of diseases D = {d1, . . . , dn} and
a set of drugs R = {r1, . . . , rm} such that ∀ i ∈ [1,m], ∃ j ∈ [1, n] for which either
beneficial(ri, dj) or harmful(ri, dj) holds, discover new drugs – by means of infer-
ences drawn from biomedical research literature – that bear either a beneficial or a
harmful relation to a disease in D.

1.4.1 The latent pathway model

Since we only have drug-disease relations as prior knowledge, we model the pharmacodynamic/
pharmacokinetic pathway of a drug as latent knowledge. For this, an initial analysis was carried out
on sentences with drug mentions. Due to the complexity of the sentences, we extracted predicates
that were in the dependency neighborhood of the drugs and the objects that they modify. These
SVO triples constitute individual steps in the drug’s pathway, and were treated as candidates.
We found that assessing these candidate steps as beneficial, harmful or unrelated to a disease
was extremely challenging as it required domain-specific semantic knowledge of various entities.
Returning to the example presented in Fig. 1.2, block(hydrochlorothiazide, SLC12A3) is such a
candidate. Understanding it as a step that is beneficial for the target disease, hypertension, requires
the knowledge that it is a gene that is responsible for reabsorbing sodium into the body.

We choose a simpler approach where we do not explicitly classify the effects as beneficial or
harmful. Instead, we gather the most frequent predicates and their objects as a surrogate for the
key steps in a drug’s pathway. This allows us to convert the extraction problem into a similarity-
based inference problem, where drug-drug similarity is measured in terms of their prominent
pharmacological effects. Next we describe the process of extracting these steps, and present two

16 Knox et al., 2011.
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Treatment antibiotic, clinical drug, hazardous or poisonous substance, organic chemical,
pharmacological substance, steroid, vitamin

Disease acquired abnormality, anatomical abnormality, congenital abnormality, disease or
syndrome, cell or molecular dysfunction, neoplastic process, pathologic function,
sign or symptom

Theme anatomical structure, body location or region, body part, organ or organ com-
ponent, body space or junction, cell component, cell, laboratory or test result,
biologic function, cell function, genetic function, molecular function, organism
function, organ or tissue function, physiologic function, amino acid, peptide or
protein, enzyme, hormone

Table 1.2: Coarse semantic categories and their constituent fine-grained UMLS semantic types.

global inference formulations that use them to identify new drugs pertaining (either as harmful or
as potentially therapeutic treatments) to a given disease.

Extracting the “steps” of a pathway

We use the PubMed Central (PMC) repository for relation extraction from biomedical research
literature. To extract mentions of drugs, diseases and other biological or physiological entities, we
use Genia (Tsuruoka et al., 2005), a tagger and parser for biomedical texts, to obtain phrase chunks
of the dataset. Subsequently, each noun phrase was provided as input to a well known medical
named entity recognizer, MetaMap (Aronson, 2001), which uses the UMLS resource to identify
each phrase to one or more entities. Additionally, it labels each identification with a semantic type,
obtained from UMLS. The UMLS Metathesaurus consists of 133 such semantic types, and uses
these types to categorize more than 2 million entities17. We use this fine-grained semantic type
information to determine whether or not a phrase mentions a relevant entity.

Entities relevant to our approach are primarily drug and disease mentions. But we also want
to extract any biological and/or physiological entities that may either affect or be affected by a
drug or a disease. In this proposal, we call such an entity a pharmacologic theme, shortened to
just “theme”. We collect a small subset of the fine-grained UMLS categories to define three coarse
semantic types: treatment, disease and theme. These coarse semantic types and their constituent
UMLS categories are shown in Table 1.2.

MetaMap often maps a phrase to multiple entities, assigning a score to each mapping. In
our work, we experimentally decided upon a cutoff value, and considered only those candidates
that had score beyond this threshold. We also observed that biomedical literature contains an
extremely high number of context-dependent non-standard abbreviations. To correctly resolve
them, we identified their first mention in a document, and applied a well-known abbreviation
resolution algorithm for this domain (Schwartz and Hearst, 2003) to obtain the correct expansion,
and subsequently, the correct semantic type as determined by MetaMap. In this manner, each
document was labeled with sentence- and phrase-level entity mentions. In case of a conflict
between the coarse-types of an entity mention (e.g. “Insulin” is a theme as well as a treatment),
we chose to record both types.
17 UMLS R© Reference Manual [Internet] (2009, Ch. 5). Available: http://www.ncbi.nlm.nih.gov/books/NBK9679
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It should be noted that a vast majority of medical entities have a variety of synonymous names,
as noted earlier in Sec. 1.1. To normalize such surface differences, we also recorded the canonical
name (provided by the UMLS Metathesaurus) for each entity. For example, both “shortness of
breath” and “dyspnea” are identified with the latter, which is its canonical name in UMLS. After
identifying the relevant medical entities, we extracted triples of the form predicate(treatment,

theme) using dependency parse trees. All the sentences were parsed using ClearParser (Choi and
Palmer, 2011), which provides a model trained on biomedical language. Then, the dependency
paths connecting a drug-disease pair or a drug-theme pair were extracted. These paths in turn
were used to identify and extract predicates through which a drug may affect a theme.

In the predicate extraction step, we considered not just verbs, but also nominal predicates,
i.e. verbs that are used in their noun forms. This is a common usage pattern, evident in clauses of
the type “insulin may have caused a reduction in serum glucose”. In such cases, we de-nominalized
the predicates (e.g. “reduction”) that satisfied each of the following conditions:

(a) the nominal predicate does not have a noun compound modifier
(b) is itself not a noun compound modifier of another noun
(c) has a preposition child node in the dependency path

1.5 Global Inference

As discussed in the related work (see Sec. 1.2), knowledge discovery from biomedical research
literature must deal with a scenario where the complete knowledge may be fragmented across
multiple sentences in a single document, or even across multiple documents. The relation inference
process must therefore be able to incorporate global cues. Further, such cues must be combined
correctly based on the similarity of drug pathways in order to obtain the final relation. In this
section, we first present a simple one-hop maximum likelihood inference (MLI) method that stays
true to this goal. We then describe a more sophisticated modeling of global inference using an
integer linear programming (ILP) framework.

1.5.1 Maximum Likelihood Inference

Here we describe a simple score-based method for relation inference. Our objective is to score
new drugs based on their likelihood of being beneficial (harmful) for a given disease, based on
the overlap of their effects with the effects of the known beneficial (harmful) drugs. Formally,
we represent a pharmacologic effect of a drug by an (action, theme) pair e = (p, t), where p
denotes a pharmacologic action on a theme t. The pair (reduce, blood glucose) is an example
of such an effect18. We will denote the set of drugs, diseases and pharmacologic themes by
R = {r1, r2, . . . , rm}, D = {d1, d2, . . . , dn}, and T = {t1, t2, . . . , tk}, respectively. Our goal is
to infer “super”-relations (see Table 1.1) s(r, d) between drugs and diseases, where s ∈ S, and
S = {B, H}. Further, let Rd+ ⊆ R and Rd− ⊆ R denote the sets of drugs known (from prior
knowledge) to be in B and H super-relations, respectively, with respect to a disease d ∈ D.

For every drug r in prior knowledge, we extract all mentions of an effect e of r and compute
the probability19 of observing e within all drugs exhibiting the same super-relation (beneficial
18 Note that what we are defining here is, from a medical perspective, a single step in the drug’s pharmacodynamic

pathway.
19 Strictly speaking, we are computing the relative frequency. But since we can convert this into a probability measure

via Platt scaling (Platt, 1999), we are using the term probability for ease of expression.
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or harmful) toward a disease d ∈ D. Denoting the frequency of a drug r being the subject of an
effect e by ν(r, e), for the beneficial super-relation, this can be computed as

Pr(e|Rd+) =
Σr∈Rd+

ν(r, e)

Σr∈Rd+∪Rd−
ν(r, e)

(1.4)

To discover new relations between drugs and the disease d, we first find all drugs and their effect
mentions by looking for (r, p, t) triples where (p, t) denotes the effect as before. Then, we compute
the likelihood of ri being beneficial for d as

∀ri /∈ Rd+ , Lri∈Rd+
=
∑
j

(Pr (ej |Rd+) .ν(ri, ej)) . (1.5)

InterchangingRd+ andRd− in equations 1.4 and 1.5 yields the corresponding formulas for inferring
harmful super-relations.

In spite of its simplicity, this formulation achieves two key goals. First, it attends to the
syntactic complexity of biomedical sentences by reducing the problem to the space of predicates
and themes. Second, it goes beyond sentence-level relation extraction by aggregating information
across different mentions of the effects and drugs. These mentions may be across multiple sentences
in the same document, or even across multiple documents in the dataset.

Extensions of the maximum likelihood inference approach

Even though the above approach is able to learn from a global distribution of features, it is restricted
in the sense that only those drugs that have some effects identical to the drugs in prior knowledge
can be discovered by it. Therefore, in the event that a drug treats a disease, but does so in a
way that has little in common with the drugs in prior knowledge, MLI in the last section will fail
to detect the new drug. Further, it suffers from a limitation on the number of inference steps –
much like the manual literature-based discovery method of Swanson (1986), the simple likelihood
estimation can only do a one-hop inference. If the drug pathways are never stated in a manner
so simple that there is only one intermediate entity affected by the drugs, the previous approach
will not be able to discover new relational information. There are, however, several simple ways
to augment this approach. The focus of this thesis lies in the translation pipeline as a whole, and
as a result, a detailed discussion of such extensions is beyond the scope of this work. But, before
presenting our second approach using ILP, we will digress briefly to sketch the outlines of two
other possible directions.

The first is to place it in context of Yarowsky’s bootstrapping algorithm (see Algorithm 1.1).
Given the seed set of beneficial and harmful drugs, MLI can be used instead to rank the other
drugs. Subsequently, the top few can be chosen based on a threshold value, and added to the
seed set for the next iteration. This approach, however, is likely to suffer from poor performance
unless carefully designed constraints and convergence criteria are added. Experimental results
from prior research has shown that iterative self-training has a tendency to quickly succumb to
semantic drift (Komachi et al., 2008; McIntosh and Curran, 2009). But designing good constraints
on a simple bootstrapping approach is a largely heuristic process.

Perhaps a more natural way to extend this kind of a one-hop process is view it as a perceptron,
and subsequently design a feed-forward neural network with multiple layers instead of just one.
Constraints can be imposed naturally via excitation and/inhibition of neurons based on various
criteria. A simple illustration of this is shown in Figure 1.3. Of particular interest here is that we
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Figure 1.3: The one-hop MLI process (left) extended (right) to a multi-layer feed-forward neural network: a chain
of effects can then propagate through the layers, ultimately determining whether or not the drug r has a harmful
super-relation (shown here with H) with diabetes.

may not need to learn the weights because if we train a neural network using mean square error
or cross-entropy cost function, the outputs will converge to the posterior class probabilities (Gish,
1990; Richard and Lippmann, 1991). But these values can be induced directly from co-occurrence
statistics in the corpus.

1.5.2 A formulation based on Integer Linear Programming

In this work, we chose to address the shortcomings of the MLI approach by designing a global
inference algorithm based on integer linear programming (ILP). In contrast to the one-step likeli-
hood estimation method, this is a setting that imposes inter-dependent constraints on drugs based
on how (dis-)similar their effects are to those of other drugs. To strengthen the constraints, we
include two new components: (i) prior knowledge of drugs in opposing super-relations, and (ii)
lexical similarity measures for distinct predicates.

Distance Measurements

For each drug ri ∈ R, we collect all its effects (ri, pj , tk), i.e. all triples of the form lower(insulin,

glucose), and measure its likelihood by computing the relative frequency measure

fi,j,k =
ni,j,k
N

, (1.6)

where ni,j,k denotes the frequency of the triple (ri, pj , tk), and N is the total count of all such
triples representing drug-effect mentions. We impose a notion of drug-drug similarity based on the
similarity of the probability distributions of their effects. This measure, however, cannot be directly
imposed because it fails to take into account the lexical (dis-)similarity of the predicates that appear
in these effects. For example, if one drug lowers blood glucose level while another reduces it, their
effects should be considered as nearly equivalent, even though the predicates are different.

We compute the probability distribution of a drug’s effects by constructing different distributions
for each theme that the drug acts on. In this way, the difference between two drugs is explicitly
modeled in terms of how different their actions on a particular theme are. For instance, if two drugs
have similar predicates through which they act on ‘blood glucose’, but very different predicates for
their effect on ‘joint pain’, they may share a super-relation with respect to one disease (e.g. diabetes)
but not with respect to another one such as arthritis.

More formally, for two drugs r1, r2 ∈ R, let Pt(i) denote the probability that r1 acts on t through
the predicate pi, and Qt(i) the probability that r2 acts on t through pi. If T is the set of themes
on which both drugs r1 and r2 exhibit some effect, and Pr1,t and Pr2,t are the sets of predicates in
those effects, then the difference between the two drugs is expressed in terms of the symmetrized
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K-L divergence (Kullback and Leibler, 1951):

∆(r1, r2) =
1

|2T |
∑
t∈T

(Dt(r1, r2) +Dt(r2, r1)) (1.7)

where

Dt(r1, r2) =
∑

i∈Pr1,t

Pt(i) ln
Pt(i)

Qt(i)
+
∑

i∈Pr2,t

Qt(i) ln
Qt(i)

Pt(i)
(1.8)

The above equation does not account for the lexical similarity of predicates, which we have
built into the construction of Pt and Qt. To compute the divergence in eq. 1.8, we define the
probability distributions in terms of a lexical similarity function σ and the relative frequency. In
this work, we employed the WordNet20-based similarity score proposed by Wu and Palmer (1994).
This is a knowledge-based (as opposed to corpus-based) measure of similarity between concepts,
rather than words, but it can be easily turned into a lexical similarity metric by selecting, for a given
pair of words, those two senses that yield the highest concept similarity score. This, in fact, has
largely been the way prior NLP research has employed this similarity metric (e.g. McCarthy et al.
(2004) and Mihalcea, Corley, and Strapparava (2006)). Denoting by δf (pi, pj , t) the difference in
the relative frequencies of r1 causing the effect pi and r2 causing the effect pj on the theme (t), we
set Pt(i) to be the relative frequency (see eq. 1.6) of r1 acting on t through pi, and

Qt(i) =
1

Pr2,t

∑
pj∈Pr2,t

σ(i, j) {1− δf (pi, pj , t)} (1.9)

Note that even though we have defined Pt(i) and Qt(i) differently, the measure of the difference
between r1 and r2 is symmetric. This is ensured by eq. 1.7.

Incompatibility Constraints

The ILP formulation is designed so that two drugs that, according to eq. 1.7, are similar enough, are
encouraged to have the same super-relation label. The optimization function associates the cost
∆(r1, r2) to any drug-pair that, for an ε > 0, violates the constraint between drug-drug similarity
and super-relation labels:

(i) ∆(r1, r2) < ε but r1 and r2 have different super-relation labels, or

(ii) ∆(r1, r2) ≥ ε but r1 and r2 have identical super-relation labels.

To formalize this constraint violation, we introduce indicator variables δS(r1, d) and δS(r2, d) to
denote whether r1 and r2 have a beneficial (or harmful) relation with respect to d. Then, a third
indicator variable w(r1, r2) is defined as

w(r1, r2) =

{
1 if ∆(r1, r2) < ε

0 otherwise

The constraint violations can be expressed in terms of w(r1, r2), δS(r1, d) and δS(r2, d) by introduc-
ing a binary variable Yr1,r2 and the following equation

w(r1, r2) + δS(r1, d) + δS(r2, d) + 2Yr1,r2 = 0 (1.10)

20 Miller, 1995.
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Finally, we introduce an indicator variable I ( S )
w,r1,r2 to denote whether the above equation holds or

not, and obtain the optimization function

min
∑

r1,r2∈R
r1 6=r2

∑
S∈{B,H}

I ( S )
w,r1,r2∆(r1, r2) (1.11)

Note that d is implicit (and fixed) in eq. 1.11, i.e. our ILP formulation makes inferences on a
per-disease basis. Further, the optimization function is subject to the following hard constraints:

∀r ∈ Rd+ , δB(r, d) = 1 (1.12)

∀r ∈ Rd− , δH(r, d) = 1 (1.13)

∀r ∈ R, δB(r, d) + δH(r, d) ≤ 1 (1.14)

∀r1, r2 ∈ R, r1 ≡ r2, δS(r1, d) = δS(r2, d) (1.15)

∀d1, d2 ∈ D, d1 ≡ d2, δS(r, d1) = δS(r, d2) (1.16)

Equations (1.12) and (1.13) impose that the relation label of a drug-disease pair whose super-
relation has been obtained as prior knowledge must remain unchanged. Equation (1.14) requires
each pair to acquire at most one super-relation label. Finally, equations (1.15) and (1.16) enforce
that synonymous drugs and diseases must have identical relation labels.

Defining ε: what is “similar enough”?

Our constraint optimization formulation depends on the value of ε to decide whether two drugs
are deemed similar or not. The constraints imposed in the ILP framework depends on this value.
A proper choice for ε is therefore fundamentally important.

Since our ILP formulation handles one disease at a time, the super-relation labels are well-
defined, i.e. given a disease, the drug-to-relation function is not one-to-many. Thus, from the set of
drugs in prior knowledge, we constructed the set of all drug-drug pairs with identical super-relation
labels. We then computed the distance ∆(r1, r2) for each pair (r1, r2) in this set, and selected the
top k closest pairs. ε was then defined as the average distance between these pairs. In doing so,
we manage to discard outliers and obtain a value that is representative of the “typical” similarity
between two drugs that bear the same relation with the given disease.

1.6 Experimental Results

We use the UMLS meta-thesaurus to obtain our seed set of relations (i.e. the “prior knowledge”).
As described in our methodology (Sec. 1.4.1), we derive beneficial and harmful super-relations
from the UMLS relations. These super-relations and the fine-grained UMLS constituents were
presented in Table 1.1. In this section of our proposal, we present the experiments and the results
obtained for the beneficial drug-disease relations. The experiments on the discovery of harmful
relations, i.e. drugs that may exacerbate or cause a disease or symptom, is a work in progress. For
our experiments, we chose a random set of 10 diseases such that each disease had at least 10 drugs
that were known (i.e. already present in the UMLS knowledge base) to treat it. These drug-disease
relations served as our prior knowledge.

In the remainder of this section, we strive to determine the efficacy of our relation inference
methods in finding new drugs for therapeutic purposes. To that end, we first describe a supervised
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classifier for sentence-level relation extraction, which serves as the baseline. We then present a
comparison of the baseline results against the two global inference formulations based on our
latent pathway model: (i) the maximum likelihood inference method (see Sec. 1.5.1), and (ii) the
integer linear programming formulation (see Sec. 1.5.2).

1.6.1 Sentence-level supervised relation extraction

As our baseline, we built a (distantly) supervised classifier to perform sentence-level relation
extraction. To obtain the training data, a set of sentences from the PMC corpus were annotated via
the standard distant-supervision paradigm: for each drug-disease pair (r, d) marked as “beneficial”
in the prior knowledge, sentences that mentioned both r and d were labeled as positive instances.
Likewise, if a sentence contained a drug-disease pair marked “harmful”, it was labeled as a negative
instance. A little over 57% of the sentences were positive, and the remaining were negative – thus
yielding a fairly balanced dataset for the classifier.

This baseline adopts the approach taken by some prior work that has explored supervised
relation classification using lexico-syntactic features. These include the methods presented for
general domains by Zhang (2004) and GuoDong et al. (2005), and for the biomedical domain
by Liu, Shi, and Sarkar (2007), among others. We trained a linear-kernal support vector machine
classifier using LIBSVM21. The feature space for this classifier comprised of bag of words and
fragments from dependency parse trees representing the predicate-theme constructs.

Further, semantic category information of medical entities was also included. This was done in
order to ensure that the classifier had access to all the information used to build our latent pathway
models. It was trained using 5-fold cross-validation on the training data. Finally, after using the
trained classifier to predict the sentences in test data, the output relations were aggregated and
sorted according to their classification probability scores.

1.6.2 Ranking

We evaluate the results manually, having human judges who study each positive labeled pair and
annotate the relation as true or false. Unlike some prior work in relation extraction using distant
supervision who also perform an automatic evaluation by holding out part of their gold-standard
knowledge base (e.g., Mintz et al. (2009)), our work, by design, produces drugs that have no
relational information in UMLS. This renders automatic evaluation impossible. Also, given the
sheer volume of drug-disease pairs produced by the output of all the methods, a manual evaluation
of the entire output is not feasible. Therefore, we followed the manual evaluation approach taken
by others like Mintz et al. (2009) and Hoffmann et al. (2011), and ranked the inferred relations
in order to produce precision/recall curves.

For the baseline classifier, the classification probability scores are used to rank the output.
Similarly, for the maximum likelihood inference, the likelihood computed by eq. 1.5 is used. The
ILP formulation, however, does not provide any readily available method to rank its output. Next,
we describe how a ranking mechanism is incorporated with ILP.

Ranking the predictions made by the ILP formulation

For each disease d, the output of the ILP formulation is a set of drugs that it predicts as beneficial
for d. Recall that we measure (dis)-similarity of the pharmacologic effects of a drug by measuring
21 Chang and Lin, 2011.
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Figure 1.5: Histograms showing the number of new
drugs returned by LatEnt formulations against the num-
ber of available entires in UMLS. Blue bars show number
of drugs in UMLS, green bars show new drugs from the
basic LatEnt formulation and red bars show new drugs
from LatEntILP .

the (dis-)similarity of their probability distributions using KL-divergence. Then, ILP uses a cost
function based on the divergence measure, as described in Equation 1.7, to arrive at its decisions.
Thus, to rank its predictions, we use a scoring function that mimics this cost. Staying true to the
spirit of global inference, the score of a new drug r′j is computed by comparing how similar its
effects are to the effects of

(i) the drugs ri in prior knowledge, and
(ii) the new drugs predicted as beneficial by the ILP formulation.

As before, the set of known beneficial drugs is denoted by Rd+ . The set of new drugs predicted as
beneficial is denoted by R′d+ . We compute the score using the average distance of the drug to the
prior drugs and to the other new drugs with the same super-relation label:

score(r′j) =
1

2

 ∑
ri∈Rd+

Dt(r
′
j , ri)

|Rd+ |
+

∑
r′k∈R

′
d+
Dt(r

′
j , r
′
k)∣∣R′

d+

∣∣
 (1.17)

1.6.3 Evaluation

For each disease, we manually evaluated the top 50 drugs returned by each method: the base-
line classifier, the maximum likelihood inference (MLI) method, and ILP. Figure 1.4 shows the
precision/yield plots for all three. The results show that both the formulations using the latent
pathway model clearly outperform the sentence-level relation extraction baseline, even though
the feature spaces are identical. The simple MLI formulation, denoted LatEnt, increases overall
yield by more than 25% and at a higher precision – 0.62 against 0.49 of the baseline. The more
sophisticated ILP-based formulation of the laten pathway model (LatEntILP ), provides the best
results at a substantially higher overall precision (0.71) and increases yield by another 16%.

Figure 1.5 shows a comparison of the number of new drugs, i.e. drugs that are not in a
beneficial/harmful relation with the disease in the UMLS knowledge base, identified for each of
the ten diseases. In many cases even when the seed knowledge is low (e.g, Influenza and AIDS),
formulations based on the latent pathway model are able to identify many new drugs. The bars
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Relation Type Percentage Description
Therapeutic 24% Direct expression of therapeutic action on the

disease. e.g. prevent(r, d)

Indirect therapeutic 32% Expression of therapeutic action on a condi-
tion related to the disease or a symptom of
the disease. e.g. manage(r, “pain”)

Pharmacologic effect 44% Expression of targeted pharmacologic effect.
e.g. impair(r, “insulin signaling”)

Table 1.4: Distribution of the top 50 predicate-theme pairs for COPD, Diabates and Arthritis across three prominent
categories.

also show that the overall performance is consistent across diseases. UMLS, however, is well known
to be deficient in relational information. We thus chose to evaluate the usefulness of our relation
learning method against DrugBank as well. DrugBank is an expert-curated dataset and is one of
the most frequently updated repositories in this domain. Moreover, unlike UMLS, DrugBank has
an abundance of relational data in structured form. This result is provided in Table 1.3.

1.7 Analysis

Disease Number of beneficial
drugs not in DrugBank

Influenza 14
Atrial Fibrillation 7
Arthritis 9
Pneumonia 16
Oseoarthritis 18
Psoriasis 15
Tuberculosis 11
AIDS 9
Diabetes 15
COPD 17

Table 1.3: For each disease evaluates, this table shows
the number of drugs that were not indicated for it
in DrugBank, but were deemed beneficial by human
judges. For these 10 diseases, a total of 141 drugs were
identified by the ILP formulation as beneficial.

Our data for the results described in the previous
section comprised of 100, 000 PMC abstracts. Of
these, 12, 138 abstracts mention at least one drug-
disease pair from a UMLS relation. In total, these
abstracts yield 2, 604 unique UMLS relations, and
1, 459 of these relations are expressed within a sin-
gle sentence at least once. The entities in the re-
maining 1, 145 pairs, however, never co-occur in
any sentence, underscoring the need for relation in-
ference instead of extraction solely based on lexico-
syntactic features.

The latent pathway model extracted a total of
112, 963 unique predicate-theme pairs for the drugs
in prior knowledge. While a large percent of these
pairs occur very few times, there are 19, 830 pairs
that occur three or more times in the abstracts. We
analyzed the top 50 predicate-theme pairs for three
randomly chosen diseases: COPD, Diabetes, and Arthritis. We found that more than 70% of the
candidates expressed relations. These can be broadly categorized into (i) a direct expression of
therapy, (ii) an indirect expression of therapy where the treatment is of a condition or symptom
related to the disease (e.g., treating “insulin resistance” benefits patients suffering from rheumatoid
arthritis), or (iii) expression of targeted pharmacological effects (e.g., a drug lowers blood glucose
levels).
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1.7.1 Error Analysis

While the global inference formulation using ILP was able to extract relations across sentences and
documents with reasonably high performance, there were a few distinct types of errors that led it
to incorrect conclusions about drug-disease relations. These are due to the use of MetaMap and
UMLS as well as the complex use of language in this domain. We list these main error types below:

1. Entity recognition: Biomedical literature is a particularly difficult domain for accurate entity
recognition. Several issues such as the presence of large compound nouns (e.g.“mitogen
activated protein kinase pathway”), incorrect POS tagging (e.g.“fasting plasma glucose”),
etc. are responsible for this. Further, many entities are long compound nouns comprising
of shorter compound nouns that are relevant entities in their own right. The use of UMLS
semantic types, too, adds to this type or error. A few entities that are too broad to be
useful in our relation extraction problem have the same semantic type as very precise objects.
For instance, the very phrase “pharmacological substance” is tagged with the semantic type
“pharmacologic substance”.

2. Decoupled compound nouns: Our work uses extremely simple features, viz. predicates and
themes in dependency paths, to establish relational connections between entities. This leads
to incorrect predicate extraction in case a compound noun is decoupled (e.g.“resistance to
insulin” instead of “insulin resistance”).

3. Negation: A particularly difficult aspect of capturing the effect of one entity on another is
the complex use of hedging and negation. Instead of direct statements involving ‘no’, ‘not’,
etc., we often encountered negation expressed by predicates that had a negative connotation
in the given context. Phrases such as “slows down the progress of”, or “did not contribute to
the suppression of” are prime examples of this phenomenon.

4. Hypothetical Statements: Many research articles start by saying that their work investigates
whether or not some medical phenomenon is true. Treatment effects extracted from such
sentences also contribute to the noise.

5. Pathogen Themes: In some diseases, particularly those that are caused by microorganisms,
many documents talk in great detail about the effect of a drug on that pathogen. On these
diseases, the themes being affected are components of the pathogen. This leads to a confusing
scenario where a drug may be beneficial because it destroys a protein in the pathogen, and
our inference procedure mistakenly identifies it with protein destruction in the human host.

1.8 Summary

A visible advantage of the latent pathway model is that it is able to discover not just new treatments
that are similar to prior knowledge, but also treatments that have, compared to prior knowledge, a
significantly different way of treating a disease. The global inference based on themes enables the
system to identify drugs that have some pharmacologic effects in common with the drugs in prior
knowledge. Often, these new drugs also have other effects not associated with any drug in prior
knowledge. The labels on these new drugs further propagate to other drugs that also share these
effects. In particular, we observed this propagation in diabetes, where an where an entirely new
class of drugs called “sodium glucose co-transporter 2”, was discovered from biomedical literature
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in spite of no drug from that category being present in the UMLS prior knowledge. It is worth
noting that neither the supervised classifier nor the one-step maximum likelihood inference was
able to discover these.

In this work, we studied the problem of identifying beneficial drugs for diseases and proposed a
method that can extract them by analyzing biomedical abstracts. We proposed a novel latent path-
way model that is able to discover relations by extracting information about the pharmacodynamics
of a drug. Further, we formulated an ILP model that leverages consistency constraints to perform
global inference. Our evaluation showed that this approach achieves substantial improvements
over a supervised sentence-level classifier baseline. Our analysis showed that the simple latent
pathway model captures useful knowledge, which can be further improved via human curation or
through improved modeling.
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Chapter 2

RecommendingDiagnostic Tests for Iden-
tification of Adverse Drug Events

An adverse drug event (ADE) is an undesired reaction experienced due to use, misuse or discontin-
uation of medications. Several studies have reported that among the adult population, over 12%
of emergency room (ER) visits are caused by ADEs (Capuano et al., 2004; Trifiro et al., 2005; Zed
et al., 2008). Safety and quality of patient healthcare are strengthened when a medical problem
caused by a drug is promptly and correctly identified. Evidence of an ADE based on a patient’s
clinical symptoms thus provides an important data point for clinical decision making. However,
as there exist way too many drugs, physicians cannot be expected to have memorized all possible
ADEs associated with them. Often this is not a problem due to the availability of electronic phar-
maceutical databases like Lexicomp1 or Micromedex2 that provide extensive information about a
wide range of drugs, including their adverse effects. Since this information is provided in the form
of narrative texts, to assess the likelihood of ADEs, physicians manually look up these databases.
This manual lookup and review is a time-consuming process, prone to lapsed vigilance, and often
brings about a failure to order appropriate diagnostic tests (Gandhi et al., 2006).

Diagnostic tests are a critical component of diagnostics because while some symptoms may be
observable, many others can only be confirmed by laboratory tests. And even though laboratory
testing is the single highest-volume medical activity driving clinical decision making, the process
of ordering diagnostic tests and acting upon them remains vulnerable to errors (Singh, 2013; Zhi
et al., 2013).

In this chapter, we propose a clinical decision support (CDS) system which automatically pushes
laboratory test suggestions to confirm (or invalidate) potential adverse effects of a patient’s drug
regimen. Our application exploits natural language information provided in online pharmaceutical
databases. To this end, we use natural language processing (NLP) and template-based techniques
to extract three types of information:

I1. potential adverse effects of a drug.
I2. observable symptoms associates with medical problems.
I3. medical problems identified by abnormal values in laboratory test results.

Based on this extracted knowledge, on one hand we map symptoms to medical problems, and the
1 https://online.lexi.com/
2 http://micromedex.com/
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Patient’s drug regimen 
• Metformin 

Symptoms exhibited 
• Upset stomach 
• Difficulty breathing 
• Tiredness 

Potential Adverse Effects 
• Lactic Acidosis 
• Low levels of vitamin B12 
• Diarrhea 
• … 

Problem that matched symptoms 
• Low levels of vitamin B12 

Extract adverse 
effects of drug 

Extract symptoms of 
medical problems 

Is there a 
match? 

No suggestions 

Extract laboratory tests 
that can confirm vitamin 
B12 deficiency 

Suggestion 
• Vitamin B12 Levels 

NO 

YES 

* 

* 

* 

(Input A) 

(Input B) 

(Output) 

Figure 2.1: A use-case scenario: patient taking metformin (Input A) and exhibiting certain symptoms (Input B).
Symptoms are matched to likely adverse effects, and a diagnostic test to confirm this possiblity is suggested (Output).
The information extraction steps corresponding to I1, I2 and I3 are marked *.

problems to laboratory test results, while on the other hand we map drugs to their adverse effects.
Fig. 2.1 shows a use-case scenario where a patient has been prescribed the drug metformin, and
is experiencing the following symptoms: (a) an upset stomach, (b) difficulty in breathing and (c)
overall tiredness.

For information extraction, we use shallow parsing and pattern matching techniques to extract
relevant text from available natural language databases. Further, we adapt MetaMap (Aronson,
2001), a biomedical named entity recognizer, to extract medical terms. The three types of in-
formation I1, I2 and I3 are obtained by employing these steps on three separate semi-structured
databases, viz. Drugs.com3, the MedlinePlus encyclopedia4 and Rush University Medical Center’s
health encyclopedia5, respectively. In many cases, the output consists of more than one suggestion.
This is due to multiple disorders partially or wholly matching the patient’s symptoms, as well as
multiple diagnostic tests having the ability to identify a medical problem. Providing a clinician
with all such suggestions can lead to what is known as alert fatigue – the desensitization towards
alerts as a consequence of an excessive number of alerts being raised (Koppel et al., 2008). We thus
employ similarity resolution to filter out spurious suggestions, and then compute the relevance of
each suggestion to finally provide the clinician with a single, short, ranked list.

The remainder of this chapter consists of an overview of our method in 2.1, followed by a
description of the datasets and the information extraction steps in 2.2. The similarity resolution
and ranking processes are explained in Sec. 2.4 before presenting our experimental results in
Sec. 2.5. Finally, we discuss the related work in this area before concluding the chapter.
3 http://www.drugs.com/sfx/
4 https://www.nlm.nih.gov/medlineplus/
5 http://health.rush.edu/HealthInformation. Accessed: Nov 14, 2013
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Disease 
Description 

Dataset 

Drug Description 
Dataset 

Adapted-MetaMap 
(Medical Entity Recognition)

Patient’s drug regimen 

Relevant Laboratory 
Tests 

(input) 

Drugs ↔ Adverse Effects 

Patient’s symptoms 

(input) 

Adverse effects of 
patient’s drug regimen 

Similarity 
Resolution 

Module 

Potential ADEs matching 
patient’s symptoms 

Problems ↔ Symptoms 

Laboratory Test 
Dataset 

Template-based Inference & 
shallow-parsing

Test Results ↔ Problems 
Relevance Metrics 

Module 

(output) 

Figure 2.2: Overview of the automated diagnostic test recommendation process. Offline datasets, modules and processes
are shown in blue dashes. Information corresponding to I1, I2 and I3 are represented as bidirectional maps (↔).
Segments of the process flow that are input-dependent are shown in solid red arrows.

2.1 Method Overview

We use three separate medical knowledge repositories to automatically suggest diagnostic tests
that identify potential ADEs. The first, a drug description dataset, is used to extract the adverse
effects of drugs. The second, a laboratory test dataset, is used to ascertain the problems indicated
by abnormal test results. Finally, a third dataset contains descriptions of various medical conditions.
We use it to map diseases and disorders to their clinical symptoms. The overview of our approach
is presented in Fig. 2.2.

Information extraction from these datasets involves the use of MetaMap. It extracts medical
terms from natural language data and assigns them semantic types defined by the Unified Medical
Language System (UMLS) (Lindberg, Humphreys, and McCray, 1993). For the purposes of this
work, we combine several semantic types into two categories, medical conditions and drugs, as
shown in Table 2.1. The distinction between our semantic categorization and that followed by
MetaMap is further explained in Sec. 2.2.1.

Given a patient’s list of medications and an optional list of exhibited symptoms, our application
identifies a list of medical conditions {c1, . . . , ck} fitting two criteria:

(i) Each ci is a potential adverse effect of at least one of the drugs being taken by the patient.
(ii) The symptoms of each pi match at least some of these exhibited symptoms.

For the second criterion, i.e. matching symptoms, synonyms are resolved so that equivalent symp-
toms are identified. For example, if the disease description dataset provides “fatigue” as a symptom
of an ADE while the input symptoms contain “tiredness”, the synonym resolution module desribed
in Sec. 2.3 identifies them as equivalent.

Finally, we perform a relevance ranking of laboratory tests based on the similarity between (a)
medical problems identified by test result, and (b) the list of problems {c1, . . . , ck} obtained above.
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Category UMLS Semantic Types
Medical Condition Disease or Syndrome; Sign or Symptom; Body System; Laboratory or Test

Result; Mental or Behavioral Dysfunction; Cellular or Molecular Dysfunc-
tion; Mental Process; Individual Behavior; Neoplastic Process; Acquired
Abnormality; Anatomical Abnormality; Congenital Abnormality

Drug Organic Chemical; Biologically Active Substance; Pharmacologic Substance;
Amino Acid, Peptide or Protein; Steroid; Clinical Drug

Table 2.1: Categories and their constituent UMLS semantic types.

2.2 Information Extraction

This application required the extraction of three types of information in order to map (a) drugs to
their adverse effects, (b)medical problems to their clinical symptoms, and (c) laboratory tests to
the medical problems identified by them. These mappings are obtained by extracting information
from the drug description dataset, the disease description dataset, and the laboratory test dataset,
respectively. In this section, we present the details of these repositories along with the extraction
processes employed to distill structured information from them.

2.2.1 The drug description knowledge base

For this work, we used a publicly available web-repository, Drugs.com, to obtain relevant infor-
mation about drugs typically used in patient care settings like the ER. This repository consists
of 5, 856 unique drugs. It is a semi-structured dataset, i.e. the different types of information are
pre-labeled. All the information about a drug is presented under sections with labels such as “side
effects”, “dosage”, “warnings”, etc. Within each section, however, the information is presented in
descriptive, and often complex, natural language text. To extract the relevant information from
these texts, it is critical to correctly identify the relevant medical entity mentions.

Medical Entity Recognition (MER) is the first step of this process. A medical entity is a particular
instance of a medical concept or category. For example, the drug “metformin” is an instance of
a pharmacologic substance. Recognizing such entities requires first, detection of their mentions
in the text, and second, identifying their semantic category. Next, we describe how we tailored
MetaMap for successful MER in this application.

Tailoring MetaMap

In the scope of this work, we used the UMLS semantic types6 to broadly categorize entities into
the types that are of interest in our healthcare application: drugs and medical conditions. Table 2.1
shows the complete list of the constituent UMLS semantic types that make up these two broad
categories. This coarse categorization is needed because MetaMap simply labels phrases with a list
of UMLS semantic types. These labels, however, are too fine-grained for our purpose. Moreover,
the labeling is not precise enough to be readily used in a system built for real patient care settings.

MetaMap operates by first splitting a text into its constituent sentences. It then runs the Med-
Post/SKR part-of-speech tagger (Smith, Rindflesch, and Wilbur, 2004), a tagger built for biomedical

6 The complete list of 135 semantic types is available at https://www.nlm.nih.gov/research/umls/META3_current_
semantic_types.html.
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Phrase UMLS Semantic Type Label MetaMap Score

“Subnormal vitamin B12 levels have been reported, and may result in anemia or neuropathy.”
Subnormal vitamin B12 levels Laboratory or Test Result 906
Anemia Disease or Syndrome 746
Neuropathy Disease or Syndrome 1000

“In vivo evaluation of Soman and Tabun Inhibited Acetylcholinesterase.”
In vivo evaluation of Soman Health Care Activity 760

Spatial Concept 640
Pharmacologic Substance 593

Tabun Organophosphorous Compound 1000
AcetylCholinesterase Amino Acid, Peptide, or Protein, Enzyme 1000

Table 2.2: Entity extraction using MetaMap (without any tailoring), illustrating two kinds of errors: (i) perfect matches
like “anemia” often have low scores, and (ii) relevant entities like “Soman” may get incorporated into larger phrases and
get low scores. Further, phrases like “subnormal vitamin B12 levels” are, for the purposes of our application, adverse
effects, beyond being test results. Such application-specific labeling is, of course, not readily available.

language, and a shallow parser that further chunks each sentence into phrases. Following this, it
generates variants of the phrase, which includes not just linguistic variations, but also any subse-
quence of words in the phrase that appears in the UMLS lexicon7. Finally, MetaMap ranks all the
mappings and returns a scored list of medical entities. The ranking function is based on four simple
metrics that measure the extent of linguistic variation and overlap between the actual phrase in
the text and the mapped entity in the lexicon. Even though in his detailed report, Aronson (2006)
describes some heuristics to focus on correctness rather than breadth, this process generates too
many mappings for each phrase – including a high number of incorrect entities. Further, it is often
the case that the top ranked entity in the returned list is not suitable for our application.

The labels readily offered by MetaMap are not conducive for our application for three primary
reasons. First, labeling errors often arise from incorrect phrase chunking. Second, we observed that
in many cases, even a perfect lexical match did not yield a high score in MetaMap, and third, for the
purposes of our application to work as a CDS system, we need to incorporate additional semantic
types into our coarse-grained “super”-categories, even though ordinarily, the labels assigned to
them by MetaMap would suffice. The examples shown in Table 2.2 serve as an illustration of
these errors. Thus, to improve the precision of MER with CDS as the goal, we made the following
revisions to MetaMap’s labeling process:

(i) Perform shallow parsing with Genia (Tsuruoka et al., 2005). Even though both the Med-
Post/SKR and Genia taggers are tailored to the biomedical domain, we found that using the
latter lead to phrase generation at a finer granularity, and as a result, considerably reduced
errors of the first type.

(ii) Filter mappings based on an empirically determined score threshold.
(iii) Filter mappings by imposing additional restrictions on semantic types. For example, the

semantic type “Element, Ion or Isotope” is a child of the UMLS category “Chemicals and
Drugs”. This labeling, while relevant for information extraction from research literature (as
discussed in Chapter 1), hurts the precision of a typical CDS while offering only marginal
improvements in recall.

(iv) Include some additional semantic types in the super-categories (see Table 2.1).
7 UMLS R© Reference Manual [Internet] (2009, Ch. 6). Available: http://www.ncbi.nlm.nih.gov/books/NBK9680/
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Laboratory Test Knowledge Base Disease Description Knowledge Base
Vitamin B12 Level Test Vitamin B12 deficiency

<h2>Vitamin B12 Level</h2>
<h3>Definition</h3> . . .
<h3>Normal Values</h3> . . .
Values of less than 200 pg/mL are a sign
of a vitamin B12 deficiency. Causes of vi-
tamin B12 deficiency include diseases that
cause malabsorption (e.g. Celiac disease and
Crohn’s disease), not enough vitamin B12 in
diet, . . . .
Conditions that can increase vitamin B12
levels include liver disease, . . .

Symptoms can include:
• Diarrhea or constipation
• Fatigue, lack of energy
• Light-headedness when standing up
• Loss of appetite
• Pale skin
• Problems concentrating
• Shortness of breath, mostly during exercise
• Swollen, red tongue or bleeding gums

Table 2.3: Typical examples of semi-structured information as available in the laboratory test and disease description
knowledge bases. For information extraction, this is simpler than unstructured knowledge bases, and template-based
inference methods suffice. Linguistic cues of such templates (e.g. “causes of”) are underlined.

In Sec. 2.5, where we present our experimental results, we include an extrinsic evaluation of this
application-specific adaptation of MetaMap by juxtaposing the performance of our CDS system
with the original MetaMap labels against the same system using the labels obtained with the above
modifications. Next, we describe information extraction from the laboratory test and disease
description datasets.

2.2.2 Shallow Parsing and Template-based Inference

The two remaining knowledge bases (KBs) we use are also semi-structured, but linguistically
simpler. As a result, we were able to extract the relevant pieces of information from them using
a combination of shallow parsing (to identify phrasal cues) and template-based rules. As our
KB for laboratory tests and procedures, we used the Rush University Medical Center’s health
encyclopedia. It comprises of 603 laboratory tests, where information about each test is provided
in semi-structured narratives. In order to determine the observable symptoms associated with
medical problems, we use the National Library of Medicine’s MedlinePlus encyclopedia as the
disease description KB. From this source, we extracted information about medical problems,
including the clinical symptoms they manifest. Table. 2.3 shows typical semi-structured templates
from these two sources.

Causes of vitamin B12 deficiency include diseases

like Celiac disease and Crohn's disease.

Phrasal cue

Medical problem mention

Causes of the medical problem

Figure 2.3: Causes of vitamin B12 deficiency identified
using the template T = 〈�cause of� C O N D I T I O N

�include� c1, c2, . . . and cn〉.

Even when the information is unstructured, it
is in the relatively simple form of short sentences
that serve as data labels, i.e. sentences from which
the type of information can be inferred. To identify
them, we chunk sentences into phrases, and perform
a simple frequency-analysis. For this analysis, we
extract verbal phrases and prepositional phrases that
follow a nominalized predicate. Further, we only
consider phrases occurring in a left- or right-context
window of 4 words around the disease mention in a
sentence. They are then lemmatized word-by-word.
This step normalizes expressions such as “cause of”
and “causes of”. Sorting such phrases by their frequency showed that there is little variation in the
way symptoms and causes are described in these knowledge bases, thus eliminating the need for
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anything more complex than designing template-based rules. Figure 2.3 illustrates the use of a
simple template for extraction of the potential causes.

We also designed templates that decouple compound nouns to obtain the details of a medical
condition. Performing a frequency analysis similar to the one described above, we observed that al-
most all compound nouns that were mapped by MetaMap to a UMLS semantic type in the “medical
condition” category, but also got a (lower) score for the “drug” category, were conditions expressed
in terms of a polar qualifier attached to a pharmacological or physiological entity. Common exam-
ples included phrases like “high blood pressure”, “iron deficiency”, “excess vitamin D”, etc. These
qualifiers, too, varied little across the disease description and laboratory test KBs.

Higher than reference range

Lower than reference range

Higher than reference range

Lower than reference range

Positive

Negative

Test 1

Test 2

Test 3

Condition 1

Condition 2

Condition 3

Vitamin B12 Level

Higher than reference range

Lower than reference range

Celiac Disease

Liver Disease

Normal

Figure 2.4: Mapping laboratory test results to conditions.

We were thus able to design templates that
mapped laboratory tests to symptom descrip-
tions. For example, using a template to iden-
tify the qualifier “deficiency” in Fig. 2.3, we
were able to (a) extract the core entity vita-
min B12, and (b) relate the extracted informa-
tion, i.e. “Celiac disease” and “Crohn’s disease”,
to low values of the corresponding laboratory
test result. This simple method suffices because
laboratory tests typically have two types of ab-
normal results: (a) results above the reference
range, and (b) results below it. Laboratory tests
that return binary results, i.e. positive or nega-
tive, were also matched using similar templates. Using the shallow-parsing and template-based
inference rules, we identified the types of abnormal test results (e.g. low/high, positive/negative).
Further, we used MetaMap to extract the medical problems associated with such abnormal results.
This way, we obtained a directed tripartite graph that maps each abnormal test result to a medical
problem, as shown in Fig. 2.4). Some test results, of course, may not indicate any abnormality.

2.3 Similarity Resolution

Even though for this application, we were able to choose some semi-structured knowledge bases
where template-based rules were sufficient for accurate extraction of symptoms and laboratory test
results, polysemous expressions of symptoms were commonplace. Our initial experiments showed
that ignoring such variations had a negative effect on identification of relevant ADEs. However,
these KBs mostly only employed word-level polysemy. Thus, instead of attempting to identify all
possible paraphrases – a difficult problem in NLP, especially in this domain where semantics are
often highly contextual – we tackle this issue at a simpler level by resorting to ontology-based
semantic similarity measures.

To this end, we employ one general-purpose ontology, WordNet (Miller, 1995), and a medical
vocabulary, MeSH (Medical Subject Headings)8. The latter is the National Library of Medicine’s
comprehensive controlled vocabulary for the biomedical domain wherein detailed category infor-
mation is available for each term. In both WordNet and MeSH, synonymous terms are identified
under a concept-set. Staying in line with the terminology used by WordNet, the remainder of this
section will refer to such a set of semantically equivalent terms as a synset.
8 (Rogers, 1963) Available: https://www.nlm.nih.gov/mesh/
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Synsets available from WordNet and MeSH are able to directly resolve several equivalent
terms, e.g. “fatigue” and “tiredness”. . Identifying the semantic similarity in a more general sense
(i.e. going beyond synonyms), however, requires a little more work. Many symptoms are expressed
in words or phrases that are used interchangeably. Additionally, many clinical expressions offer
a narrower or broader semantic scope than the symptom itself. For example, a patient suffering
from a “histamine headache”, a MeSH synset, may have her symptom listed only as “headache”.
Such closely related expressions are often treated by clinicians as equivalent, when actually they
are closely related, but distinct entities. These terms often share a type-of relation. If e1 is a type
of e2, it is said that e1 is a hyponym of e2, and e2 is a hypernym of e1. Both WordNet and MeSH
contain hyponym and hypernym relations. Globally, these relations form a directed acyclic graph.
The further away two words are from each other in this graph, the less similar they are. In other
words, the shortest path length l(t1, t2) between two terms t1 and t2 is inversely related to their
semantic similarity δ(t1, t2), i.e. δ(t1, t2) ∝ 1/l(t1, t2).

There is a formidable body of prior research delving into similarity metrics based on the path
between two concepts in an ontology. With WordNet, in particular, a formulation based directly
on the path length was demonstrated by Wu and Palmer (1994). For the purposes of identifying
semantically similar terms in our KBs, we follow their approach. Note that unlike their work,
our situation dictates that terms be identified as equivalent if they are similar enough. Therefore,
instead of using the metric itself, we simply experiment with varying path lengths to seek a desirable
threshold for such a definition of semantic equivalence. Later in section 2.5, we present the
performance of our application with different path length thresholds.

2.4 Avoiding Alert Fatigue

Clinical decision support (CDS) systems aimed toward mitigating the adverse effects of medications
have often caused alert fatigue among healthcare practitioners (Koppel et al., 2008). This is due
mainly to the fact that almost every drug has some side effect, no matter how mild. Some of these
undesirable effects are caused by a vast majority of drugs. Nausea and dizziness, for example, can
be caused by almost any medicine (Scorza et al., 2007). Similarly, there are symptoms that can
be manifested by many medical conditions, and are too common to warrant a diagnosis involving
laboratory tests. If all such adverse effects are considered, and an application starts suggesting
laboratory tests to confirm or invalidate each one of them, it has been observed that such automated
alerts soon start getting ignored. In some cases, clinicians were found to be ignoring up to 96% of
the alerts (Sijs et al., 2006).

These studies clearly indicate that the tendency of CDS systems to cause alert fatigue greatly
diminishes their potential to improve patient safety. We thus present the final step of this applica-
tion, wherein several potentially useful laboratory tests are ranked according to their relevance to
a given set of medical conditions. Our goal is to ensure that the most relevant recommendations
appear at the top of this list.

In order to do this, we adopted a two-pronged approach. On one hand, for each test t in the
laboratory test KB, we extracted a set of medical conditions Ct, viz. the conditions confirmed by
abnormal values of t. On the other hand, we extracted all possible adverse effects of the patient’s
medications. This yielded another set of conditions Cm. These extraction processes are the ones
described previously in section 2.2.2. The tests are then ranked in descending order of their Jaccard
similarity coefficient (Jaccard, 1901) between the two sets of conditions Ct and Cm, defined as the
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size of the intersection divided by the size of the union of the sample sets

J(Ct, Cm) =
|Ct ∩ Cm|
|Ct ∪ Cm|

(2.1)

Thus, a laboratory test that can confirm or discard a medical condition that is indicative of a higher
number of a patient’s symptoms is given a better rank.

2.5 Experimental Results

Our application is intended to serve as a CDS system in direct patient care settings like an ER
– the last stage of the translational pipeline. Based on a patient’s drug regimen and symptom
manifestations, it automatically suggests relevant laboratory tests that can confirm or invalidate
an ADE. There is, however, no gold standard data available for this. Moreover, since the current
practice in healthcare facilities of ordering laboratory tests is error-prone (Singh, 2013; Zhi et
al., 2013), a comparison against real diagnostic processes will also not be truly indicative of the
performance of our application.

In this section, we thus present an evaluation based on a small dataset comprising of the first
40 drugs from the list of top 100 drugs (by sales) available on Drugs.com. For each drug in this set,
we manually annotated all possible adverse effects and the laboratory tests (if necessary) that are
capable of confirming them. Our evaluation attempts to answer the following questions:
(Q1) Are the diagnostic test recommendations useful if no observable symptoms are present?
(Q2) Are the diagnostic test recommendations capable of confirming/discarding an ADE if observ-

able symptoms are provided?
In the process, we also evaluate our information extraction methodology. In particular, we provide
insights on whether or not
(Q3) our tailored approach toward medical entity recognition improves the quality of recommen-

dations over the standard use of MetaMap, and
(Q4) our similarity resolution module improves the quality of recommendations over naïve match-

ing based on keywords and synonyms.
The remainder of this section is devoted to addressing these queries one by one.

(Q1) Suggestions based solely on patient’s drug regimen

When suggesting diagnostic tests without being provided any of the patient’s symptoms, our ap-
plication is unaware of the prior likelihood of any ADE. All potential adverse effects are thus
treated as equally probable. Therefore, instead of ranking by relevance, we check whether a test
suggested by our application has the ability to identify any potential adverse effect associated with
a given drug. For evaluation, two human judges independently assigned a relevant or irrelevant
label to each laboratory test recommended by the system. For the 40 drugs, a total of 226 tests were
suggested, of which 186 were deemed relevant by the judges. The remaining tests were labeled as
irrelevant by at least one judge. Additionally, 28 laboratory tests that were found to be relevant by
the judges were not suggested by our system.

In our evaluation data, 10 out of the 40 drugs are psychotropic medications. Upon analyzing
the results, we observed that in general, test suggestions to identify potential ADEs associated with
psychotropic medications performed poorly. The worst results were obtained for the drug Adderall,
where only 2 of the 11 suggested tests were judged as relevant. For the other 30 drugs, it was
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standard MetaMap tailored MetaMap

Evaluation Set Recall Precision Recall Precision

All Drugs All Symptoms 0.84 0.80 0.87 0.82

Nonpsychotropic Drugs All Symptoms 0.84 0.81 0.86 0.85

Nonpsychotropic Drugs minus symptoms associated
with the nervous system

0.85 0.82 0.89 0.86

Table 2.4: Laboratory test suggestions based solely on patient’s drug regimen, without any symptoms being provided.

noted that suggestions for ADEs involving the nervous system were comparatively less accurate.
The performance of our system based only on the patient’s drug regimen is shown in Table 2.4,
which also attends to Q3 by demonstrating the improvement achieved by tailoring the medical
entity recognition process (see Section 2.2.1).

(Q2) Suggestions based on patient’s drug regimen and symptoms

Our second experiment takes into account the scenario where, in addition to the list of medications,
we also know a few symptoms exhibited by the patient. We test with each drug twice by providing
two sets of symptoms s1 and s2 corresponding to different medical problems. For instance, the drug
‘metformin’ was tested with the two symptom-sets {nausea, vomiting, low blood pressure} and
{fatigue, dizziness, dyspnea, diarrhea}. These two sets of symptoms correspond to two potential
adverse effects of metformin, viz., ‘lactic acidosis’ and ‘vitamin B12 deficiency’, respectively. We
thus obtain 80 test data points for the 40 drugs. For each input, the output is a list of laboratory
test suggestions ranked by the Jaccard similarity coefficient described in Eq. 2.1.

As part of these experiments, we test the similarity resolution step as well, thereby addressing
point Q4. Our results show that resolving similarity leads to a significant improvement in per-
formance when direct hyponymy/hypernymy are incorporated. Longer paths, however, simply
result in more tests being suggested, even if they are for ADEs with quite different symptoms. Our
application provides a list of laboratory tests that can confirm (or invalidate) a medical condition
associated with the patient’s symptoms provided that the condition is also a known adverse effect
associated with the patient’s drug regimen. The output list is ranked by the relevance of the test in
identifying a potential ADE associated with the given set of drugs and symptoms. To evaluate such
a list, we measure the mean reciprocal rank (MRR) (Voorhees et al., 1999), a widely used metric in
information retrieval (a detailed survey can be found in Baeza-Yates, Ribeiro-Neto, et al. (1999))
to evaluate systems that provide ranked results instead of a single answer. It is the average of the
reciprocal ranks of the output list

MRR =
1

|Si|

|Si|∑
k=1

1

rankk
(2.2)

where Si is the input set of drugs and symptoms, and rankk is the rank of the correct suggestion for
the kth test input. The ranking evaluation using this metric is presented in Table 2.5, which includes
comparisons between using similarity resolution with different path lengths (see Section 2.3) and
not using it at all.
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Evaluation Set Mean Reciprocal Rank
¬(SimRes) SimRes

l = 0 l = 1 l = 2 l = 3
All Drugs All Symptoms 0.78 0.83 0.88 0.76 0.73
Nonpsychotropic Drugs All Symptoms 0.80 0.86 0.89 0.79 0.74
Nonpsychotropic Drugs minus symptoms associated

with the nervous system
0.80 0.85 0.93 0.78 0.74

Table 2.5: Laboratory test suggestions based on patient’s drug regimen and symptoms, with different similarity resolu-
tion thresholds. Results obtained without the use of similarity resolution are indicated by ¬(SimRes). In the subsequent
columns l denotes the shortest path length between two terms within which they were considered semantically equiva-
lent. E.g., l = 0 indicates that only synonyms were considered equivalent.

Error Analysis

There are two aspects of the experimental results that we probed into. First, the distinctly inferior
performance upon encountering psychotropic drugs, and second, a further deterioration when
coupled with symptoms pertaining to the central nervous system. Analyzing the errors in such
cases, we found that our recommendation system is not fully capable of interpreting terms that
tend to be rather subjective. These terms are particularly prevalent in the descriptions of psycho-
logical conditions. The symptoms of these maladies are often vaguely defined in terms of mental
faculties like “lack of concentration”, “abnormal behavior”, etc. Symptoms associated with the
central nervous system are also often at least partly psychological in nature. Examples include
“nightmares”, “laziness”, “mood changes”, etc.

The simple ontology-based similarity resolution that we perform is not adequate for these
cases. Many terms that occur in these disease descriptions often have several synsets with non-
medical semantics. Using WordNet, therefore, hurts the precision of our system. Another important
reason for the relatively poorer performance with psychotropic drugs and psychological symptoms
is that a majority of such symptoms are detected by human judges through conversations, not
measurements based on physical tests. In many cases, the symptoms are very similar to normal
behavior in human beings, but may be present in a far greater degree in patients who actually suffer
from a psychological condition. A well-known example is social anxiety disorder, whose symptoms
include anxiety and fear of getting judged by those around us. To some extent, these reactions affect
a vast majority of people. However, only through detailed psychological evaluations can terms like
“anxiety” and “fear” be treated as clinical symptoms, since there are few, if any, laboratory tests to
identify such cases.

2.6 Related Work

The topic of pharmacovigilance, defined as the science and activities relating to the detection,
assessment, understanding and prevention of adverse effects or any other drug-related problem9,
has received substantial research attention in the medical literature (e.g. Beuscart, Hackl, and Nøhr
(2009) and Friedman (2009), among others). Computer-aided approaches in this area can be
divided into two orthogonal categories: (a) extraction of new ADEs from population data, and (b)
detection or identification of already known ADEs in patients.
9 World Health Organization, 2006.
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Extraction of ADEs based on population studies

This body of work aims to discover previously unknown ADEs from population-based historical
clinical data – primarily a pharmacoepidemiological approach. Much of this work is based on
mining biomedical research literature (Agbabiaka, Savovic, and Ernst, 2008; Wang et al., 2011;
Gurulingappa, Mateen-Rajput, Toldo, et al., 2012; Théophile et al., 2012). The main drawback is
that their supervised learning requires large amounts of annotated training data (Gurulingappa,
Mateen-Rajput, Toldo, et al., 2012; Segura-Bedmar, Martínez, and Sánchez-Cisneros, 2011; Segura-
Bedmar, Martinez, and Pablo-Sanchez, 2011), or else suffers low accuracy (Théophile et al., 2012;
Shetty and Dalal, 2011; Percha, Garten, and Altman, 2012). Getting large amounts of annotated
text is, of course, inherently expensive. The problem we addressed in this chapter, however, is not
the discovery but the identification of known ADEs that are described in narrative form in existing
pharmaceutical databases.

Identification of ADEs in patients

Prior research tackling the identification problem has focused on creating ADE alerts in patient
data. In one line of work, alerts are formulated as rules that get triggered whenever signs and
symptoms in patient data satisfy the conditions attached to these rules. The conditions are built
with medical terms in the patient’s symptoms and ADE descriptions. These terms are drawn from
discharge summaries (Melton and Hripcsak, 2005; Wang et al., 2009), ADE reports (Botsis et al.,
2011; Tatonetti, Fernald, and Altman, 2011) and ambulatory care notes (Cantor, Feldman, and
Triola, 2007). NLP tools based on MetaMap, like MedLEE (Friedman, 2000), have also been used
to extract them.

The rules in these approaches vary in complexity. Some, like Honigman et al. (2001), Cantor,
Feldman, and Triola (2007), and Haug et al. (2007), have used simple rules based on keywords
or short linguistic patterns to trigger alerts. As noted by Murff et al. (2003), such triggers do not
achieve a desirable level of accuracy. Additionally, the rules are learned from a set of documents
obtained from a small number of hospitals, often one. In other words the data set from which
the rules are derived is far from being comprehensive. Not surprisingly, such systems report
low accuracy even when employing more sophisticated NLP tools to extract relevant medical
terms (Melton and Hripcsak, 2005; Wang et al., 2009). More complex decision rules have also
been used which combine keywords and laboratory findings (Botsis et al., 2011; Seger et al., 2005;
Gandhi et al., 2010; Tatonetti, Fernald, and Altman, 2011). However, in this body of work, the rules
are manually curated. Notable exceptions include the PSIP project (Beuscart, McNair, Brender,
et al., 2009), which performs more complex semantic mining. Their approach does not, however,
extend to external natural language databases.

Identification using external knowledge sources

Some recent work has explored the utility of available semi-structured knowledge sources. Notable
in this class, for detection and prevention of ADEs, is the use of RxNorm10 by Izquierdo-Garcia and
Escobar-Rodriguez (2012), Smithburger, Kane-Gill, and Seybert (2012), and Tsai et al. (2013),
among others. These approaches continue to offer shallow coverage, though, due to their focus on
very specific drugs (e.g. Izquierdo-Garcia and Escobar-Rodriguez (2012) and Tsai et al. (2013)) or
10 http://www.nlm.nih.gov/research/umls/rxnorm/
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because they continue to build rules manually (e.g. Smithburger, Kane-Gill, and Seybert (2012)).
More importantly, this body of work does not exploit laboratory test data.

In summary, despite substantial research in ADE detection methods, gaps remain. Our approach
attempts to fill this gap with three salient characteristics:

(a) extensive utilization of available pharmaceutical databases,
(b) use of automated measures that provide coverage over a large set of drugs, and
(c) combining diagnostic test information with ADE information to aid clinical decision support.

2.7 Summary

In this chapter, we presented an approach for automatically suggesting diagnostic tests as a con-
tribution to the last phase of the translational research pipeline. We presented the details of this
clinical decision support system, and in particular, demonstrated its practical use in the identifi-
cation of potential ADEs. As a part of this process, we perform medical entity recognition and
template-based information extraction from available datasets about adverse drug effects, labora-
tory tests and symptoms of various medical conditions.

A key observation that we would like to make at this point is that in cognizance of the trans-
lational research pipeline, once new knowledge from biomedical research literature is incorpo-
rated into semi-structured knowledge bases where relations between medical entities are explicitly
mentioned in relatively simpler language, building healthcare applications with tangible benefits
becomes a much simpler process. Thus, the work presented in chapter 1 can be seen as having an
impact through the incorporation of the extracted relations into existing KBs, and then building ap-
plications such as the one described in this chapter. In the next chapter of this proposal, we present
another application that builds on relational information distilled from biomedical literature, and
translates it to the proverbial “bedside”, in an emergency room setting.
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Chapter 3

Identification, Attribution andRanking of
Adverse Drug Events

This third and final chapter of the proposal presents our second contribution towards the second
half of the translational research pipeline: bringing the outcome of research investigations into
clinical practice. We present a clinical decision support (CDS) system that makes extensive use
of the kind of relational knowledge we learned in Chapter 1, and automates the identification and
attribution of adverse drug events (ADEs) in an emergency room (ER) setting. In Chapter 2, we
focused on one error-prone area of healthcare, viz., incorporating laboratory tests in the diagnostic
process. In particular, we noted that a recommendation system such as the one we presented, can
provide evidence in support of ADE diagnoses. In this chapter, our focus is entirely on ADEs. As the
title suggests, the work we present here can be viewed as a three-pronged approach comprising of

(a) identification of potential adverse effects based on the patient’s drug regimen,
(b) attribution of the patient’s symptoms and complaints to such ADEs, and
(c) ranking of such attributions based on the strength of their association with the drugs and

symptoms.

3.1 Motivation

An ADE is a undesirable reaction experienced due to the use, misuse or discontinuation of medi-
cations. It is an alarming truth that a high number of hospital ER visits are due to them. A widely
cited study conducted by Null et al. (2005) reported 783, 936 iatrogenic1 fatalities at an estimated
financial cost of $282 billion, and a total of 2.2 million in-hospital adverse drug events. A sizeable
body of more recent work has also repeatedly pointed out this phenomenon, with notable examples
including Trifiro et al. (2005), Zed et al. (2008), and Jayarama, Shiju, and Prabahakar (2012).

Information about ADEs is often available in semi-structured drug databases. For attribution
of the patient’s symptoms and complaints to ADEs, it is necessary for physicians to manually re-
view these narratives in light of the patient’s medications. However, over 40% of such cases are
overlooked by emergency physicians (Hohl et al., 2010; Roulet et al., 2014). Given that most
1 Iatrogenesis is defined as “inadvertent and preventable induction of disease or complications by the medical treatment

or procedures of a physician or surgeon”. From: http://www.merriam-webster.com/medical/iatrogenesis
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ERs are overcrowded, such lapses in patient care are potentially an outcome of increased work-
load (Trzeciak and Rivers, 2003; Olshaker and Rathlev, 2006; Weissman et al., 2007; Collis, 2010).
Overcrowding also means that spending more time on a single patient may not be feasible. Indeed,
it has been observed that under such circumstances, physicians increasingly restrict themselves to
only those questions that can be instantly answered (Ramos, Linscheid, and Schafer, 2003). Un-
fortunately, the current practice of ADE attribution requires a physician to manually read through
narrative texts in online pharmaceutical databases such as Lexicomp2 or Micromedex3. As a result,
even while missing nearly half of the ADEs, they already suffer from what has been called the
“4, 000 click syndrome” – spending much of their time with electronic records rather than in direct
patient care (Hill, Sears, and Melanson, 2013).

The ER setting thus warrants an evidence-based CDS system that automatically detects possible
ADEs and instantly pushes such diagnostic suggestions to the physician, making it an instantaneous
process not requiring any clicks. Such a system will not only improve patient safety by identify-
ing ADEs, but also save a significant amount of time in crowded ERs by allowing physicians to
quickly determine an important step in their medical diagnosis. This second aspect is particularly
important due to the exponentially high number of potential adverse effects that can arise from
drug interactions. In research as well as in clinical practice, drug interactions have largely been
considered as pairwise events involving two drugs (Horn, Hansten, and Chan, 2007), and higher-
order interactions have rarely been studied (Mannheimer, 2009). Due to the lack of available
resources on higher-order drug interactions, they are beyond the scope of this proposal. Even with
this restriction to pairwise interactions, a patient taking 12 drugs requires the physician to check
up to 78 possible cases (12 drugs and 66 potentially interacting pairs). Even if s/he spends only a
minute per potential complication to look up the pharmaceutical database and skim through the
adverse effect narrative, it would be far beyond the feasible amount of time for this task, especially
in ERs, which more often than not, tend to heavy traffic.

3.2 Related Work

Pharmacovigilance, the discipline pertaining to the detection, assessment and prevention of drug-
related adverse events, has been a topic of significant interest in the healthcare community.
Computer-aided approaches aimed at ADE prevention in patients has focused on creating tools
and services that raise alerts by prompting clinicians about potential ADEs. A vast majority of
these, however, are prevention systems designed to issue an alert at the moment of prescribing
new medication. These systems have been presented by Galanter, Didomenico, and Polikaitis
(2005), Schedlbauer et al. (2009), and Jha et al. (2009), among others. Even though such CDS
implementations are aimed at preventing adverse events, they have not always improved patient
safety (Gurwitz et al., 2008; Strom et al., 2010). The lack of a pervasive and tangible improvement
is due to two seemingly conflicting factors: coverage and alert fatigue.

Coverage versus Alert Fatigue

In one line of work, alerts are rule-based, where the conditions for raising an alert are built from
medical terms in a patient’s symptoms and ADE descriptions. These terms are drawn from discharge
summaries (Melton and Hripcsak, 2005; Botsis et al., 2011), ambulatory notes (Cantor, Feldman,
2 https://online.lexi.com/
3 http://micromedex.com/
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and Triola, 2007) or ADE reports (Wang et al., 2009; Tatonetti, Fernald, and Altman, 2011). Entity
extraction systems based on Metamap (e.g. MedLEE (Friedman, 2000)) have also been used. But
because the rules are manually curated, such approaches suffer from low coverage. On the other
hand, rule-based trigger systems that have attempted to generalize in order to improve coverage
tend to raise too many alerts, thereby causing alert fatigue (Rozich, Haraden, and Resar, 2003;
Classen et al., 2011; Baseman et al., 2013). In some cases, clinicians were found to be ignoring
upto 96% of the raised alerts (Sijs et al., 2006). Keeping these issues under consideration, our
work adopts a three-step approach:

(a) To ensure maximum coverage, exploit multiple knowledge bases for each task.
(b) To produce relevant ADE diagnosis suggestions, normalize entities and filter out ADE attribu-

tions not adequately supported by evidence.
(c) Finally, rank the remaining suggestions.

Some prior studies have argued that ranking is a more suitable approach compared to filtering (Sijs
et al., 2008; Lee et al., 2010), but more recent reports suggest that expert panels recommend
filtering as well (Phansalkar et al., 2013). We thus adopt a combination of filtering and ranking.
Further, unlike the ranking algorithms in existing CDS systems, our simultaneous use of several
types of information allows for the final suggestions to be ranked based on a combination of
multiple factors like the severity of an ADE, the likelihood of its occurrence, relevance to patient’s
symptoms, etc.

Identification of ADEs using external knowledge sources

Previous work on identification of ADEs using external sources has largely not been patient-
centered. Much of it has focused on discovering adverse reactions from retrospective data. Some
have used a single source like the FDA Adverse Event Reporting System (FAERS)4 data (Tatonetti
et al., 2012; Ramesh et al., 2014), while others have worked on information fusion (Sarker and
Gonzalez, 2015; Jiang, Solbrig, and Chute, 2011; Yeleswarapu et al., 2014). Their techniques
based on large amounts of retrospective data are well-suited for discovering new ADEs, but not
applicable for real-time ADE detection and attribution.

A few examples do exist for patient-centered ADE-detection in hospital settings. For example,
Duke and Friedlin (2010) proposed a real-time decision support service for ADEs, but their system
does not handle unstructured data of the type obtained from triage notes. Moreover, these tools
do not perform any entity normalization beyond ontology-based mapping to UMLS concepts. As
shown in Fig. 3.2, this leads to missing out on crucial evidence of adverse reactions.

3.3 Overview

With the motivation thus presented, we devote this section to presenting an overview of the CDS
system for identification, attribution, and ranking of ADEs (I AT R O-ADE). It is designed to push
suggestions/recommendations of ADE diagnoses to the physician in a completely non-intrusive
manner. Further, it attempts to eliminate – or at least mitigate – alert fatigue (i.e., the clinician
becomes less responsive to automated messages over a course of time) by ranking the suggestions
by the likelihood of a drug (or multiple drugs) causing the patient’s symptoms. Our application,
I AT R O-ADE, features the simultaneous use of not just multiple knowledge bases (KBs), but multiple
4 http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/

AdverseDrugEffects/default.htm
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Figure 3.1: Process Flow: The ADE detection system
involves (i) offline information extraction from various
knowledge bases, and (ii) online processes to handle pa-
tient data provided as dynamic input. The final output is a
ranked list of ADE attributions provided to the physician.
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Figure 3.2: Entity Normalization: Current ontology-
based information extraction fails to map varied natural
language expressions of patients’ symptoms to canonical
entities. As a result, test results, ambiguous abbreviations,
etc. (e.g. “Guaiac positive”, “AMS”) are ignored.

types of KBs to attain this goal. To this end, we make extensive use of natural language processing,
template-based mining, and disproportionality analysis metrics.

The processes may broadly be seen as performing the three following tasks:
T1: distill the potential adverse effects of a drug from unstructured and semi-structured narratives

obtained from multiple KBs,
T2: normalize entities using structured ontologies and semi-structured KBs to resolve surface

differences of medical entity mentions, and
T3: measure the strength of association between drugs and adverse events using structured and

unstructured data sources.
In order to find the possible ADE diagnoses, we map the adverse effects (extracted by T1) of a
patient’s drugs to her symptoms (processed by T2). Subsequently, the ADEs are ranked based on
the severity of the adverse effect and disproportionality analysis metrics as computed by the third
task T3. The overall process flow is presented in Fig. 3.1.

Entity Normalization

The extraction module processes narrative texts through a combination of shallow parsing and
template-based text mining methods. The standard information extraction approach has been to
use tools like Metamap (Aronson, 2001) to map matural language to medical concepts in ontologies
such as MeSH (Rogers, 1963) or UMLS (Lindberg, Humphreys, and McCray, 1993). This, however,
is ill suited for extraction from triage notes because clinicians often use workplace jargon that is not
captured by existing methods. For example, a clinical symptom may be provided as a laboratory
test result like “Hemoglobin 4.7”, or a drug name like “simvastatin” may be abbreviated to “simva”.
Existing methods address the normalization of medical expressions, i.e. mapping various linguistic
expressions to an unambiguous canonical form, in a limited manner. This leads to non-recognition
of ADE evidence. Fig. 3.2 provides an example where key evidence of an adverse reaction cannot
be correctly detected without extensive entity normalization. Details of the information extraction
and entity normalization processes are provided in Sec. 3.4 and Sec. 3.5, respectively.
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Offline Processes Dynamic (Online) Processes

• Extraction from semi-structured and unstructured data
(a) Adverse drug effects
(b) Drug-drug interactions
(c) Disease characterization in terms of symptoms
(d) Laboratory test information

• Mining structured data
(a) Statistical association measures for pairs of the

form 〈drug, adverse-effect〉

• Symptom similarity resolution
• Abbreviation resolution and disambiguation
• Entity normalization

(a) for patient symptoms and complaints
(b) for medications

• Evidence-based ADE detection and attribution
• Ranking ADE diagnosis recommendations

Table 3.1: The two components of the I AT R O-ADE pipeline and their constituent processes.

Matching and Relevance Ranking

The complete list of all those drugs that are being taken by a patient and whose adverse effects
match the patient’s complaints and symptoms is often a large fraction of the patient’s entire drug
regimen. In other words, simply matching the patient’s complaints and symptoms to the side effects
of her drugs will almost certainly detect an adverse effect (i.e. a very high recall), but is likely to
suffer from very low precision. This approach has been shown to cause alert fatigue because the
CDS system provides too much information of low clinical significance (Beeler, Bates, and Hug,
2014). To resolve this, I AT R O-ADE filters out spurious ADE attributions, and the remaining are
ranked. Section 3.6 explains this process in greater detail.

3.3.1 Methodology

We use unstructured, semi-structured and structured KBs for the complete pipeline, the key steps
of which are divided into an offline component for information extraction from various KBs and a
dynamic online component (shown with dashed lines in Fig. 3.1) that handles patient input data.
The constituent processes of these two components are listed in Table 3.1. The results obtained in
the offline processes are required at various stages by the online component.

I AT R O-ADE uses multiple types of KBs. The first comprises of drug description repositories. The
core knowledge of adverse effects of single drugs and drug-drug interactions (DDIs) is extracted
from them. The second type of KBs are medical encyclopedias, which act as knowledge sources
for symptoms, diseases and laboratory tests and procedures. Information extracted from these
KBs forms the gold standard knowledge for laboratory test results and for characterization of
diseases and syndromes in terms of clinical symptoms (e.g. “hypotension” is mapped to “dizziness”,
“fainting”, etc.).

Given a set of drugs D = {d1, d2, . . . , dm} and symptoms S = {s1, s2, . . . , sn} obtained from a
patient record, I AT R O-ADE identifies a subset D0 ⊆ D such that the adverse effects of drugs in D0

explain all the symptoms in S. If a symptom sj ∈ S can be explained as a possible adverse effect
of di ∈ D, we denote it as di

cause−−−→ sj . For ease of notation, we also extend it to sets of drugs and
symptoms so that D cause−−−→ S denotes that the set of drugs D may cause the symptoms S. It is
possible that some symptoms are not known to be adverse effects of any d ∈ D. In such cases, our
method attempts to find the subsets of D that can explain maximal subsets of S. Formally, this can
be expressed as

D = {Di ⊆ D} = argmax
D′⊆D

{
|S′| : S′ ⊆ S,D cause−−−→ S

}
. (3.1)

Note that the argmax is not unique. For example, the patient’s entire drug regimen, D, is trivially
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in D. Thus, D is a set of subsets of D, from which we select the minimal sets:

Dmin = argmin
Di

{|Di| : Di ∈ D} . (3.2)

d0

d1

s0

s1

0.005

0.002

0.100

Drugs Symptoms

Figure 3.3: The ADE attribution problem: a hypothetical
case of a patient taking drugs {d0, d1} exhibiting symptoms
{s0, s1}. The directed edges represent causality between
drug and symptom, with edge weights reflecting the likeli-
hood of the cause. Even though d0 explains all symptoms,
the partial match 〈d1, s1〉 is more likely.

Note that eq. 3.2 only attempts to find the min-
imal subsets with no regard for severity or like-
lihood of the adverse effects. This naïve ap-
proach is clearly not realistic. For instance,
consider a patient taking two drugs d0 and d1
and complaining of headache and abdominal
pain, where both are potential adverse effects
of d0. The drug d1, however, can only cause
the latter. If these adverse effects of d0 are
rare while d1 causing abdominal pain is com-
mon, then it is more likely that the headache
is caused by some non-iatrogenic factor and
d1

cause−−−→ “abdominal pain” is the correct attri-
bution. Fig. 3.3 illustrates this as a weighted
bipartite graph.

Data: Set of drugs D and symptoms S
Result: ADE attributions in descending order of

coverage of S
QD ← empty queue of sets of drugs;
P(D)← {D′ ⊆ D};
while P (D) 6= ∅ do

Di = argmax
Di∈P (D)

{
|S′| : S′ ⊆ S,D′ cause−−−→ S′

}
;

P(D)← P(D) \Di;
if @q ∈ QD, Di ⊆ q then

QD ← QD ∪ {Di};

return QD

Algorithm 3.1: ADE attribution search.

In light of such scenarios, instead of simply
solving eq. 3.2, we use it to iteratively com-
pute the list of all possible ADE attributions, as
shown in Algorithm 3.1. In order to automati-
cally attribute a patient’s symptoms to an ADE,
the terms in the information extracted from
the drug description repositories are normalized.
This is the process of mapping varying linguis-
tic expressions to unambiguous canonical forms
by similarity resolution, abbreviation resolution
and disambiguation, and finally, named entity
normalization. For example, if the offline extrac-
tion has obtained “fatigue” as the adverse effect
of a drug, while an ER patient taking that drug
is complaining of “tiredness”, similarity resolution identifies the two terms as nearly equivalent.
Similarly, expressions such as “anemia”, obtained from offline extraction from drug description
datasets, are equated to terms like “low hemoglobin” in the patient’s health record.

Symptoms expressed as acronyms or abbreviations are resolved by either looking up structured
data tables, or by applying the abbreviation extraction algorithm of Schwartz and Hearst (2003)
on the third type of KBs used in our application: biomedical literature. For this, our source is the
PubMed Central (PMC) repository. Ambiguous abbreviations are resolved (see section 3.5), and
the canonical forms are matched to see if a particular drug di can cause a symptom sj .

Finally, a fourth type of KB, structured data from FAERS, is engaged. This is a database
that contains information on adverse event and medication error reports submitted volunatrily
by clinicians to FDA. It is designed and intended to support the FDA’s post-marketing safety
surveillance program for drug and other therapeutic products. This dataset, in conjunction with
PMC, is used to compute statistical association measures. These measures, in turn, are applied to
provide the final ranked list of ADE attribution diagnoses.
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3.4 Information Extraction

In the scope of this work, we extract information to map (i) drugs to their adverse effects, (ii)
diseases to their symptoms, and (iii) laboratory test results to the diseases and symptoms indicated
by abnormal findings. In this section, we present the details of these information extraction
processes and their place in I AT R O-ADE.

A template connecting a drug r to the symptoms si of its
adverse effects: “(side|adverse) (reactions|effects) .* 〈r〉
.*: s1, . . . , sk−1 and sk”

• The following additional adverse reactions have
been identified during postapproval use of simvas-
tatin: pruritus, alopecia, rhabdomyolysis, . . . [Source:
RxList.com]

• If any of the following side effects occur while taking
simvastatin, check with your doctor: dizziness, fainting,
irregular heartbeats, . . . [Source: Drugs.com]

Table 3.2: The regular-expression of a typical template (top) and
two examples from semi-structured knowledge bases. Linguistic
cues are in bold, while the extracted symptoms (si) are italicized.

To extract information about clini-
cal drugs, we employed several publicly
available online data repositories as well
as proprietary services used by the Stony
Brook University Hospital. DrugBank5,
consisting of 7, 759 drug entries, was
used as the basis of all possible clinical
medications. Beyond DrugBank, we also
extracted information about these med-
ications from Drugs.com6, RxList.com7,
Lexicomp and Micromedex (the last two
are services used by the SBU hospital).
These sources provide a mix of struc-
tured and semi-structured information.
Structured information was directly extracted using web-scraping techniques. This step was a
rule-based approach that relied on the underlying HTML structure of the source pages.

Where information was semi-structured, relevant information was available in narrative texts
under suitable headings. Examples include “What are the possible side effects of . . .?” for informa-
tion on the possible adverse effects of a drug, or “What are the precautions when taking . . .?”, for
information on drug interactions and contraindications.

In this work, we decided against manually crafting templates since such an approach is clearly
not scalable accross multiple KBs for proper information fusion. Instead, we adopted the approach
of learning the templates of sentences that contain relevant information. We observed that such
sentences usually contained lexico-syntactic patterns indicative of the information being presented.
Cues like “may cause” and “side effects” were common. Similarly, syntactic patterns such as long
conjunctions of entities of the same semantic type also appeared frequently. These patterns were
often very similar to the observations on hyponymy structures made by Hearst (1992), albeit with
variations. A simple template that combines such lexical cues with a Hearst pattern, along with
two examples of matching text snippets, is presented in Table 3.2.

3.4.1 Learning relation templates from semi-structured information

In traditional information extraction (IE) systems, the local context around words or phrases is used
in conjunction with global information (Califf and Mooney (2003), Bunescu and Mooney (2004),
Maslennikov and Chua (2007), and Patwardhan and Riloff (2007), among others). Our approach
is similar in spirit to the two-stage pipeline process presented by Patwardhan and Riloff (2007). In
their work, only those sentences that are identified by a classifier as relevant, are passed on to the
IE module. Similarly, we used a three-step pipeline. The first step was to identify the sections in
5 Knox et al. (2011) Available: http://www.drugbank.ca/
6 http://www.drugs.com/
7 http://www.rxlist.com/
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the semi-structured KBs that are relevant for a particular kind of information. Then, a classifier
is used to identify the relevant sentences from that section. Our final step is the construction of
dependency and syntactic parse trees for these sentences, and then identifying the lexico-syntactic
constructs that are indicative of the relation of interest.

Note that unlike the body of work cited above, we can obtain the medical entity mentions
by using MetaMap (this step is often called “role filling” in standard IE terminology), and thus
directly focus on learning the templates that are characteristic of certain relations. In this sense,
our template-learning approach resembles the integration of named entities into pattern learning,
as done by Filatova, Hatzivassiloglou, and McKeown (2006). Also worth noting is that more recent
work on learning templates involves building unified models instead of the pipeline approach
(e.g. Patwardhan and Riloff (2009) and Chambers and Jurafsky (2011)). In our scenario, however,
due to the availability of semi-structured data, the relatively simpler pipeline paradigm suffices. As
our evaluations demonstrate later, we use it successfully to complete the three types of mappings
underscored earlier, viz., map (i) drugs to their adverse effects, (ii) diseases to their symptoms,
and (iii) laboratory test results to the diseases and symptoms indicated by abnormal findings. In
the remainder of this section, we describe the three steps of the IE pipeline introduced above.

As mentioned before, these KBs are semi-structured in the sense that each entry in a KB is
divided into labeled sections, where each section presents a certain type of information. In the
drug data repositories, for instance, sections had labels such as “side effects”, “interactions”, “what
are the precautions when taking . . .”, etc. These labels are consistently used within each KB, so a
small number of fixed rules were sufficient for identification of the relevant sections.

Within each section, however, the data was presented in natural language text. To identify
the sentences that actually express the relations pertaining to our application, we built a linear
kernel support vector machine (SVM) classifier using LIBLINEAR (Fan et al., 2008). To this end,
we performed lemmatization, and then used unigrams, bigrams and trigrams as lexical features.
Additionally, phrases identified by MetaMap as medical entities were also included. Now, because
the feature vectors were being built for sentences that were already known to be from a section
discussing only one particular kind of relation (e.g. adverse drug effects), we were able to exploit
the information obtained from the structured portions of these datasets and assume the distant
supervision hypothesis: if a sentence contained an entity-pair known to be in a certain relation, we
assumed that the sentence was actually expressing that relation. Thus, using a small number of
relations extracted from structured data, we were able to bootstrap a classifier that labeled each
sentence as (ir-)relevant with respect to a particular relation.

The final step of this IE pipeline is to extract entity-pairs from the relevant sentences. Again,
a linear kernel SVM classifier was built for this. But instead of labeling sentences, this was used
to label entity-pairs. To illustrate this, consider the extraction of (drug, adverse-effect) pairs from
a sentence. If a pair was already among those obtained from structured data, it was marked as
true. Then, the sentence was parsed and the dependency path connecting the drug to its marked
adverse effect was extracted. Finally, the medical entities were replaced by their semantic types.
These paths formed the training data. Once the trained model was available, all the sentences
deemed relevant in the previous step were passed through MetaMap, parsed, and the dependency
paths obtained from these parse trees were provided as input to this classifier. A simple example
of extracting such a path is shown in Fig. 3.4.

This IE pipeline was used to map drugs to their adverse effects and drug-pairs to their in-
teractions. Some KBs like Drugs.com and Micromedex also provide a ‘severity’ calue for drug
interactions. This, too, was extracted for later use in our ranking algorithm.
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DRUG DISEASE

Figure 3.4: The entity-pair 〈simvastatin, rhabdomyolysis〉 was obtained from structured data as a gold-standard (drug,
adverse-effect) instance. Thus, in sentences like “The adverse effects of simvastatin include pruritus and rhabdomylysis.”,
the dependency path joining them (dashed portion of the parse tree) was used to train our template-learning classifier
after the entity instances were replaced by their semantic types (“drug” and “disease”, respectively).

Characterizing diseases in terms of their symptoms

As we saw in Table 3.2, an adverse effect of a drug may be given in terms of symptoms (e.g. “dizzi-
ness”) or diseases/disorders (e.g. “rhabdomyolysis”). Similarly, the patient data may also have
symptoms as well as diseases. Thus, a crucial piece of the I AT R O-ADE pipeline is to understand the
manifestation of a disease in terms of its clinical symptoms. Continuing with the previous example
(Table 3.2 and Fig. 3.4), let us consider an ER patient on simvastatin and complaining of “muscle
pain”, “joint pain” and “tiredness”. All three are symptoms of “rhabdomyolysis”, an adverse effect
of the drug. But since the ADE information extracted so far does not map “rhabdomyolysis” to the
observable symptoms, this will not be detected.

The technique of extracting the symptom-based characterization of a disease or disorder is
identical to the template learning process described for mapping drugs to their adverse effects. The
KBs, however, are general-purpose medical encyclopedias instead of drug databases: MedicineNet8

and MedlinePlus9.

Mapping laboratory test results to diseases and symptoms

Here, we describe the last leg of the three-pronged approach: mapping laboratory test results to
the diseases and symptoms corresponding to their abnormal findings. It is important to note that
even though we usually think of symptoms as observable physical or mental states like seizures,
headaches, etc., a wide range of symptoms are expressed in terms of medical tests (Banerjee et al.,
2014). An abnormal test result is often an indication or confirmation of a symptom or disease. In
the remainder of this work, we use the term ‘test’ to mean laboratory tests as well as comparatively
simple readings such as pulse rate, blood pressure, etc. As illustrated earlier in Fig. 3.2, hospital
records often use such evaluations to express the presence of a medical condition. For example,
the symptom “hemoglobin 4.7” indicates a very low red blood cell count. In order to infer this,
however, I AT R O-ADE needs to know the reference range for hemoglobin. This section explains
how we extract such information and draw meaningful inferences from the results.

We use three KBs to map test results to symptoms: (i) the list of procedures and tests available
on MedicineNet, (ii) the Laboratory Test Database at University of California, San Fransisco10, and
8 www.medicinenet.com/
9 https://www.nlm.nih.gov/medlineplus/
10 UCSF Departments of Pathology and Laboratory Medicine | SFGH Lab Manual | Laboratory Test Database. Available:
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Warfarin (d0)

Bleeding (s0)

GI Hemmorhage (s1)

Colorectal Cancer (s2)

Vit. B12 Deficiency (s3)

Iron Deficiency (s4)

Anemia (s5)

Hemoglobin 4.7 (s6)

Guaiac positive (s7)

w(d, s0)

w(d, s1)

w(d, s3)

w(d, s4)

w(d, s5)

w(s0, s6)
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w(s4, s6)

w(s5, s6)

w(s0, s7)

w(s1, s7)

w(s2, s7)

Figure 3.5: A graphical model of ADE attribution for a single drug, Warfarin (d0), based on two laboratory test results.
Edge direction denotes causality, and the likelihood of a cause-effect relation between nodes m and n is encoded as edge
weight functions w(m,n). Note that multiple test results are capable of reinforcing ADE signals. In this example, most
symptoms indicated by the hemoglobin count (s6) and guaiac positive value (s7) point to an adverse effect of Warfarin.
In case of uniform likelihoods, the most probable adverse effect is “bleeding” (s0).

(iii) the health encyclopedia available from University of Rochester’s Health Encyclopedia11.
Compared to the extraction of adverse effects, test results are harder to interpret. This is

because reference ranges vary depending on the patient’s age, gender and medication history. They
may also vary from one laboratory to another. Our work errs on the side of caution, and if even
one of the KBs claims a particular value to be abnormal, we consider it to be so. In other words, if
different KBs disagree on a reference range, we take the most conservative estimate.

The extraction process comprises of obtaining noun phrases using the Genia tagger/parse (Tsu-
ruoka et al., 2005), and then using template-rules to selectively pass these phrases on to be labeled
by MetaMap. This leads to the discovery of two kinds of knowledge:

(a) the reference range or value (i.e., the normal range/value of the measurement), and
(b) what abnormal values may indicate

For example, from “hemoglobin 4.7” in a hospital record, I AT R O-ADE is able to infer that (a)
patient’s hemoglobin count is lower than the normal value, and (b) the possible reasons are
(to name a few) anemia, bleeding, stomach ulcer, or iron deficiency. Moreoever, in cases where
multiple results point to a common reason, the ability to automatically infer these results enable
our approach to distill stronger signals from all available data, and thus identify the most likely
ADE. Fig. 3.5 illustrates how these likelihoods are computed.

3.5 Entity Normalization

So far, we have described how we extract different types of information pertaining to diseases,
symptoms, laboratory tests and adverse effects of drugs – using multiple information sources for
each. Even though fusing such heterogeneous information ensures significantly higher coverage,
it leads to extensive polysemy, where vastly different linguistic expressions may refer to the same
medical concept. In some cases, resolving the surface differences is simply an issue of identifying
and linking synonymous (e.g., the generic name “warfarin” and its brand name “Coumadin”)
or nearly-synonymous (e.g., the symptoms “breathlessness” and “shortness of breath”) entities.
Frequently, less obvious equivalences need to resolved, however. These arise from (a) the pervasive
use of domain-specific abbreviations, and (b) expressions involving numeric (e.g. “hemoglobin 4.7”,
“INR 7.1”) or nominal (e.g. +/-, high/low) values.

http://labmed.ucsf.edu/sfghlab
11 http://health.rush.edu/HealthInformation. Accessed: Nov 14, 2013
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Abbreviation Expansion UMLS concept

NCRS Nutrition-related chronic diseases –
CB1 Cannabinoid-1 CNR1 gene
SGLT2 sodium glucose co-transport-2 SLC5A2 gene
vit. def. Vitamin Deficiency VIT gene; butyl phosphorotrithioate
GIB gastrointestinal bleeding (Gibraltar) [Geographic Area]

Table 3.4: Limitations of ontology-based entity normalization: many abbreviations in our data were either absent from
the UMLS meta-thesaurus, or were mapped to incorrect concepts by MetaMap.

3.5.1 Linking synonyms and near-synonyms

This is by far the simplest of our entity normalization processes due to the significant amount
of prior research devoted to building general linguistic ontoligies like WordNet (Miller, 1995) as
well as biomedical knowledge ontologies like SNOMED-CT, NDF-RT, RxNorm and MeSH. Since
the Unified Medical Language System (UMLS) integrates over a 100 such medical ontologies, we
exclusively work with UMLS for identifying synonymous medical terms. For identifying equivalent
or nearly-equivalent terms that are less domain-specific, we also engage WordNet.

Entity Type Recall Errors Cause

Drugs 0.98 Amio non-standard
Simva abbreviations
VPA

Symptoms 0.69 qtc > 460 no knowledge
occult stool of laboratory

test data

Table 3.3: Named entity normalization of terms in patient health
record, based on the UMLS meta-thesaurus. Non-standard use of
abbreviations and extensive use of laboratory test results lead to
imperfect (and for some semantic types, poor) recall.

The UMLS meta-thesaurus maps each
medical term to a unique concept identi-
fier, a unique preferred name and one or
more semantic types, which are biomedical
categories. It holds over 12 million con-
cept names collated into 3.1 million unique
concepts and categorized into 135 seman-
tic types.12 Exploiting this massive reposi-
tory allows us to identify most variations in
medication and disease names. To a large
extent, it is also able to link synonymous
symptoms like “shortness of breath” and
“dyspnea”. Table 3.3 presents the recall of
UMLS-based entity identification on our data, showing nearly perfect identification of all drugs
except when non-standard abbreviations are used, e.g. simva and amio for simvastatin and amio-
darone, respectively. The ability to correctly identify patients’ symptoms and complaints, however,
suffers more. This is because a large fraction of symptoms are expressed in terms of laboratory test
results, which the existing medical ontologies do not map to symptoms.

3.5.2 Abbreviation Resolution

A fairly comprehensive list of abbreviations is already present in UMLS, but as shown in Table 3.3,
a better entity normalization process requires intelligent abbreviation resolution that goes beyond
simply looking up ontologies. The first step in this direction is to check whether an abbreviation
matches a synonymous term instead of just the list of patient’s medications. This is done to
normalize names such as ‘VPA’ and ‘divalproex’.

Non-standard abbreviations, however, cannot be resolved in this manner. We thus implement
the algorithm proposed by Schwartz and Hearst (2003) to identify abbreviation definitions from
12 http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html

47

http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/release/statistics.html


unstructured medical texts. This algorithm is run on the PubMed Central (PMC) dataset, compris-
ing of more than 2.7 million research articles. Table 3.4 shows a few abbreviations we found by
this method that were either absent in UMLS or were incorrectly labeled by Metamap. It is often
the case that a single abbreviation has multiple possible expansions. The observation made in such
cases was that even though all expansions were sensible in their own right, there was, in each
case, only one expansion that was most relevant to the patient’s medications or symptoms. This
was a clear indication that in order to identify the correct expansion, and subsequently, normalize
entities, it was imperative that the context of the abbreviation be taken into account. To learn the
correct expansion in a context-dependent manner, we built a distributional semantic model using
the PMC dataset and the semi-structured datasets described in Section 3.4.

Distributional Semantic Modeling

(I) After 10mg of , hyperglycemic patients felt
immediate relief.
Metformin is known to provide relief to patients
suffering from hyperglycemia.

(II) The tiny brown scurried away under the
branches.
The little brown rabbit disappeared under the
branches.

Table 3.5: The distributional hypothesis: (I) suggests a treat-
ment that lower blood glucose levels, and (II) implies that
the subject is most likely a small animal.

Distributional semantic models rely on the dis-
tributional hypothesis, which states that the
meaning of a word is the set of contexts in which
it occurs across a large number of texts. To il-
lustrate this clearly, we present two examples
in Table 3.5, one medical and one non-medical,
to show how the meaning of a previously un-
knkown word may be inferred from its context.
This approach has been used in non-medical rec-
ommender systems before (Herlocker and Kon-
stan, 2001; Adomavicius and Tuzhilin, 2011)
and very recently, also been applied to the en-
tity normalization problem (Musto et al., 2014; Lipczak, Koushkestani, and Milios, 2014).

Given an abbreviation, our goal is to identify the correct expansion out of multiple candidate
expansions. In order to achieve this, we construct a context vector ve for entity e. A context vector
of a term is a vector designed to capture the set of contexts in which it occurs. For I AT R O-ADE, we
build these vectors by considering a fixed-size window around every mention of e. For documents
in the PMC dataset, the paragraph in which e occurs is considered as the context window, and for
documents from the semi-structured sources, the text contained under the relevant section heading
(e.g. “adverse effects”) is considered. All context vectors are normalized to unit length, and the
angular distance based on cosine similarity is used to determine the distance between two vectors:

d(ve, vf ) = 1− cos−1
(

ve.vf
||ve||.||vf ||

)
1

π
(3.3)

where ||x|| denotes the Euclidean norm of a vector. The candidate expansion whose context vector
is closest to the context vector of the abbreviation is selected.

It should be noted that creating the context vectors is a resource-intensive process, and cannot
be achieved in real-time scenarios. Context vectors of abbreviations in the KBs are thus constructed
offline, and all the candidate expansions are retained. The final selection is done based on the
context provided by patient data, i.e.the list of medications and symptoms. For a given abbreviation
a, its expansion ea can thus be formally expressed as

ea = argmin
e∈D∪S

d(ve, va) (3.4)

where D and S are the sets of drugs and symptoms obtained from the patient record.
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3.5.3 Normalizing expressions involving laboratory test results

As we saw before, a patient’s symptoms may be expressed in terms of laboratory test results. This
means that phrases like “hemoglobin 4.7”, “guaiac positive” (Fig. 3.2) or “occult stool” (Table 3.3)
must be identified with the canonical name of the corresponding condition. Just like in abbreviation
resolution, this mapping, too, generates multiple candidates.

Unlike abbreviation resolution, however, we do not select one candidate as the canonical
expression. Instead, all the possible causes extracted from semi-structured KBs (using methods
described in Sec. 3.4) are retained, and a probabilistic identification is induced. For example, if
an abnormal test result indicates n distinct potential conditions (e.g. low hemoglobin may indicate
gastrointestinal bleeding, iron deficiency, etc.), a probability is associated to each potential cause.
The probability distribution is computed by extracting detailed syntactic and semantic information
from the PMC dataset, and subsequently calculating co-occurrence statistics.

For each symptom expressed in terms of a laboratory test result, the lexical content is separated
from the expression. For example, from “hemoglobin 4.7”, we retain “hemoglobin”. Further,
ubiquitous terms like “test”, etc. are also removed in order to retain only the terms specific to the
symptom. For example, if a symptom is expressed as “guaiac test was positive”, we will only retain
the term “guaiac”. The filtering is done by tokenizing all the text from the laboratory test KBs, and
ranking all terms by their inverse document frequency (IDF). For D being the set of all documents
under consideration, the IDF of a term t is defined as

IDF (t) = log (|D|/|{d ∈ D : t ∈ d}|) . (3.5)

This measures whether t is common or rare across all documents. Common terms, clearly, are not
significant for a specific test. We can thus filter out generic words like “test”, “was”, etc. Letting t0
denote the term that remains after the above filtering is carried out, we search the PMC dataset to
find (i) the number of documents in which t0 appears, and (ii) the number of documents in which
a potential cause (e.g. iron deficiency) co-occurs with t0.

In case the original symptom was a numeric expression, or contained an adjective modifier,
we marked the semantic orientation of this expression. This was done for nominal expressions
(e.g. +/-) by triggering binary values. For numeric expressions, we checked whether the value
was lower or higher than the reference range, and trigger a binary value indicating low/high. For
example, for the expression “hemoglobin 4.7”, we compare the value 4.7 with the reference range
for hemoglobin test, and mark the fact that 4.7 is lower than normal. Let this semantic orientation
be denoted by S(t0). When querying the KB, we filtered out documents unless the same semantic
orientation S(t0) was observed for t0 in the document.

This was achieved by splitting the text into sentences, and then generating the dependency
parse tree of those sentences in which t0 appeared. We then checked if a word with a negative
connotation, like “low”, was a modifier of t0. This check was performed after lemmatization so
that inflected forms like “lower”, “lowered”, etc. were accounted for. In case there of a numeric
dependency, the semantic orientation was checked by comparing it to the reference range for the
test. Let the semantic orientation obtained from the dependency parse tree be denoted by T (t0).
The probability of a cause c is then given by

P (c|t0) =
|{d ∈ D : t0 ∈ d, T (t0) = S(t0), c ∈ d}|
|{d ∈ D : t0 ∈ d, T (t0) = S(t0)}|

(3.6)

These probability values were used as illustrated earlier in Fig. 3.5. They were also used to rank
the patient’s medications by their relevance with respect to the reported symptoms. This ranking
process is described in details in the next section.
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3.6 Ranking

The ADE attributions are computed using the exhaustive search Algorithm 3.1. The extensive steps
taken to extract relevant information from several KBs and subsequently normalize entity names is
necessary for the matching algorithm to perform well, and exhibit high recall (i.e. it does not miss
a potential ADE attribution). However, as prior work in this domain has shown, presenting the
physician with all such potential cases leads to alert fatigue. I AT R O-ADE thus employs a ranking
algorithm as well. In this section, we discuss this, and show that the most plausible attributions
are always ranked among the top diagnostic recommendations provided by I AT R O-ADE.

The first step is to rank the possible ADEs by severity. The severity ratings were extracted from
semi-structured KBs as discussed earlier in Section 3.4. The next step is to obtain co-occurrence
statistics for drugs and their adverse effects. To this end, we made use of the structured portions of
the semi-structured KBs, where relevant statistics are often presented in tabular format. For exam-
ple, for several drugs, the percentage of reported cases where patients suffered from a particular
adverse effect are reported in this manner.

To bolster the association between drugs and their adverse effects, I AT R O-ADE also performs
simple disproportionality analysis (DPA) on the FAERS dataset. The first DPA metric we used is a
conditional probability value known as the relative reporting ratio (RRR). It computes the ratio
between the probability of a symptom s given a drug d and the probability of s in the entire dataset:

RRR(s, d) =
P (s|d)

P (s)
=

P (s, d)

P (s).P (d)
. (3.7)

The second is a relative risk metric, called the proportional reporting ratio (PRR). It measures the
ratio of the frequency of s in patients exposed to d to the frequency of s in unexposed patients:

PRR(s, d) =
P (s|d)

P (s|¬d)
. (3.8)

Both metrics were computed only for those 〈s, d〉 pairs that occurred at least 5 times, as co-
occurrences that are too rare are not deemed statistically meaningful. These frequency-based
association scores were also computed on the PMC dataset. However, our initial experiments
showed that if, while computing the joint probability score P (s, d), we insist that s and d are
syntactically connected, then the RRR and PRR scores tend to be negligible. Further, we noticed
that a much stronger signal is obtained if the condition is relaxed to include every document
where s and d co-occur. This relaxed notion of co-occurrence was used to compute the RRR and
PRR metrics based on the PMC dataset. In addition to computing these two metrics to capture
drug-symptom or drug-disease associations, we also used them to compute association metrics for
drug-drug interactions. This was done with a simple extension of the formulae in eq. 3.7 and 3.8.
Thus, the I AT R O-ADE ranking scheme stands on three measures:

(m1) severity
(m2) RRR and PRR based on FAERS and tabular data from semi-structured KBs
(m3) RRR and PRR based on PMC data

The likelihood L(d, s) of a drug d causing a symptom s is a weighted linear sum of these three
factors whose coefficients were experimentally determined:

L(d, s) = αm1 + βm2 + γm3. (3.9)
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Figure 3.6: Distribution of the ranks of the correct ADE attributions computed by I AT R O-ADE. Shown here are R1 (only
severity rating, i.e., β = γ = 0 in eq. 3.9), R2 (severity plus DPA on structured and semi-structured KBs, i.e., γ = 0), and
R3 (severity plus DPA on all types of KBs, i.e., α, β, γ > 0). The linear trends show that R3 is successful in providing the
correct ADE attributions at the top of the ranked list. In our data, I AT R O-ADE is always able to provide the correct ADE
attribution among the top 5 suggestions.

3.7 Experimental Results

We now present the experimental results of I AT R O-ADE. The evaluation was done by human
experts on a dataset of 100 ER patient records. As a baseline, we performed maximal matching
(M M), where the output consists of all possible drugs that can cause the given symptoms. No entity
normalization or ranking is done for the baseline, providing a naïve and imprecise system that
returns every potential ADE that can be directly matched to the patient’s drug(s).

Note that even though the baseline yields every potential adverse effect, it still suffers from
low recall because a large fraction of drugs and conditions cannot be identified using just medical
ontologies. The missed out cases include laboratory test results, non-standard abbreviations and
phrasal expressions. To see how these expressions can also be identified, we continued with
maximal matching, but added entity normalization. This method, denoted M MEN , achieves nearly
perfect recall. But since it matches everything without performing any filtration, it suffers from
very low precision. We then add the iterative ADE attribution algorithm (Algorithm 3.1), denoted
I A, to obtain the smallest set of drugs that can explain maximal sets of the patient’s symptoms.
Finally, we add entity normalization to the I A method, denoted by I AEN .
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Experiment Precision Recall MRR

Baseline 0.23 0.52 –
M MEN 0.39 0.94 –
I A 0.65 0.52 –
I AEN 0.75 0.94 –

I AEN,Rank 0.75 0.94
R1 R2 R3

0.30 0.37 0.59

Table 3.6: Experimental Results: (i) the precision and recall of I A -
T R O-ADE in different experimental settings, and (ii) the mean recip-
rocal rank of the correct diagnostic recommendation based only the
severity-based ranking (R1), severity plus disproportionality measures
from semi-structured KBs (R2) and finally, adding disproportionality
measures from all types of KBs (R3).

The ranking algorithm is evalu-
ated separately since precision and
recall are set-based measures, com-
puted over unordered collections.
The precision and recall values over
the entire list of ranked results will
be identical to the unranked set ob-
tained by I AEN . To evaluate the rank-
ing algorithm, we use mean recipro-
cal rank (MRR), a widely used met-
ric in the information retrieval do-
main (Voorhees et al., 1999; Baeza-
Yates, Ribeiro-Neto, et al., 1999). It is
the average of the reciprocal ranks of
all the output lists. If Q is the set of data being evaluated (in our evaluation, |Q| = 100), and ri is
the rank of the correct suggestion for the ith patient, then

MRR =
1

|Q|

|Q|∑
i

1

ri
. (3.10)

The results of our experiments are shown in Table 3.6 using (R1) only the severity-based ranking,
(R2) severity plus DPA metrics from semi-structured and structured KBs, and (R3) severity plus
DPA metrics from all types of KBs. Additionally, Fig. 3.6 illustrates the distribution of the rank
of the correct diagnostic recommendation made by I AT R O-ADE. The best results are achieved
when severity-based ranking is combined with the disproportionality metrics computed on all the
semi-structured KBs and the unstructured data from the PMC dataset. Especially, we note that in
our data, I AT R O-ADE was able to provide the correct ADE attribution for each patient as one of
the top 5 recommendations to the clinician.

3.8 Summary

In this chapter, we presented a pipeline I AT R O-ADE to automatically identify adverse drug events
based on a patient’s drug regimen and the symptoms and complaints s/he presents. Further, we
attribute these adverse events to these symptoms and complaints, and rank the possible diagnoses
with respect to their relevance to the individual patient’s condition. This process is accomplished
by extracting information from multiple types of knowledge sources. It involves normalizing
medical entities, resolving ambiguous acronyms and abbreviations, and incorporating laboratory
test results. Unlike most state-of-the-art clinical decision support systems, our application presents
a combination of filtering and ranking in order to avoid suggesting diagnoses of low clinical
significance.

We demonstrated the performance of our method on real (de-identified) patient data obtained
from the emergency room of the Stony Brook University Hospital, and showed that in each case, the
correct diagnosis was always among the top five suggestions. In conclusion, we would like to say
that I AT R O-ADE is capable of alerting clinicians with highly accurate ADE attribution notifications,
and has shown promising results thus far in a clinical setting.
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Chapter 4

Conclusion

In this proposal, we presented our contributions toward connecting the dots in what has often
been called the translational pipeline in biomedicine: the “bench to bedside” journey made by
newly discovered knowledge from research settings into actual patient care. It has often been
claimed that in spite of substantial research in various areas of biomedical research, there remains
a significant translational gap, which has led to tragic loss of life and resources on many occasions.
So much so that medical errors have caused more fatalities than cancer or heart diseases! Our
work presents novel research spanning – and more importantly, bridging – this gap.

The first part of this proposal presented a novel relation inference mechanism that combines
the strengths of natural language processing with intuitions from the domain of pharmacological
science to learn new drug-disease relations from biomedical research literature, thereby contribut-
ing to the first stage of the translational pipeline: the proverbial “bench”. In spite of the linguistic
complexity of research literature, our approach – the latent pathway model – is capable of using
extremely simple features to distill relations between medical entities even in the absence of dis-
course connectives, and even when the related entities (viz., drugs and medical conditions) never
co-occur in the same sentence or document.

Professionals in the biomedical domain, and healthcare practitioners in particular, have long
deliberated over how the current trend in translational research focuses largely on carrying initial
research findings into the clinical investigation stage, but not so much on the later stages of the
journey, where the results are actually implemented in patient care settings. With that in mind,
the second and third chapters of this proposal focused on the later stages of translational research.
There, we described our contribution towards using the knowledge about relations among medical
entities to aid healthcare activities in real clinical settings. In particular, our techniques of harness-
ing diverse biomedical corpora to distill actionable information was used to build clinical decision
support systems aimed at improving two highly error-prone areas of diagnostics: the proper and
timely incorporation of laboratory tests, and identification and attribution of adverse drug events.
With evaluations done on de-identified patient data obtained from emergency room scenarios,
we demonstrated that combining the diverse knowledge that is available in various forms and in
various stages of the translation pipeline, can have a significant positive impact on patient care.
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Relation Inference in Biomedical Literature

This first component of our proposal focused on extracting new relational information directly
from the vast body of research literature in biomedicine. We presented a novel global inference
framework that infers relations between drugs and medical conditions based on the underlying
implicit pharmacologic effects of drugs. This model, based on the latent pathway of drugs, was
designed such that relations could be inferred even when (i) the entities were not in the same
sentence or document, and (ii) there was no explicit discourse connecting them to each other. The
empirical findings of this work showed that this methodology is consistently capable of inferring
relations across multiple drugs and diseases, and yields a high number of new relations without
compromising precision. It is a substantial improvement over a sentence-level supervised classifica-
tion built on the same underlying feature space. Finally, as a human-in-the-loop process, the latent
pathway model is a quick and viable option for augmenting existing medical data repositories with
new knowledge.

Healthcare Applications: the proverbial “bedside”

The next part of our proposal presented two healthcare applications that employ the kind of rela-
tional information we strive to learn from research literature. Here, we discussed our contribution
towards improving two highly error-prone areas of the last stage of the translational pipeline:
incorporating laboratory tests in the diagnostic process, and detecting adverse drug events.

Our key observation here was that even though there are multiple data repositories available
for various purposes, the information that is needed for fast and accurate clinical decision support
in these areas, is scattered across several different kinds of knowledge bases. Based on this obser-
vation, we built two applications wherein heterogeneous data repositories are brought together to
incorporate information extracted from structured, semi-structured and unstructured data.

The first healthcare application presented, in chapter 2, is a diagnostic test recommendation
system that uses an application-specific entity recognition and a template-based information ex-
traction approach to suggest laboratory tests that can be used to confirm (or invalidate) an adverse
drug effect. Our evaluations showed that harnessing a diverse group of knowledge bases and,
subsequently, carefully engineering the information extractions processes, yields a system capable
of making highly accurate recommendations.

The second application, called I AT R O-ADE, is designed to identify adverse drug events based
on a patient’s drug regimen, and then attribute (if applicable) the patient’s symptoms to the
adverse effects of one or more drugs s/he is taking. Our work here, again, involved a careful
fusion of relevant information from a diverse group of knowledge bases. The process of identifying
and attributing adverse drug events comprised of a domain-specific entity normalization step,
automatically learning relation templates, and using disproportionality analysis metrics to rank
the diagnostic suggestions. We demonstrated, on real patient data, that I AT R O-ADE is capable of
delivering the correct ADE diagnosis among the top five suggestions in every single case, with the
top diagnosis being correct in 25% of the cases, and one of the top three being correct in 74% of
the cases.

To summarize, in this proposal, we contributed to the initial and final stages of the translational
pipeline by proposing a novel relation inference model based on latent pharamacologic effects of
drugs, and then presenting two highly accurate healthcare applications that harness such relations
from multiple diverse knowledge bases to improve patient safety.
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