

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Website Fingerprinting Attacks and Defenses
on Anonymity Networks

A Dissertation presented

by

Xiang Cai

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

August 2014

Stony Brook University

The Graduate School

Xiang Cai

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Robert T. Johnson — Dissertation Advisor
Assistant Professor, Department of Computer Science

R. Sekar — Chairperson of Defense
Professor, Department of Computer Science

Phillipa Gill
Assistant Professor, Department of Computer Science

Nikita Borisov
Associate Professor, Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Website Fingerprinting Attacks and Defenses
on Anonymity Networks

by

Xiang Cai

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

Website fingerprinting attacks [29] enable an adversary to infer which website a victim is

visiting, even if the victim uses an encrypting proxy, such as Tor [64]. As a result, researchers

have proposed several defenses, most of which focus mainly on hiding packet size information.

For example, Tor packs all data into 512-byte cells. Other packet padding schemes include

padding to 2k bytes, or padding all packets to MTU. In 2009, Wright, et al., proposed

traffic morphing, which alters the size of the packets transmitted so that the packet size

distribution appears to be from a different web page [73]. Recently researchers proposed

several application-level defenses against traffic analysis attacks, including HTTPOS [43]

and randomized pipelining over Tor [53].

We present a novel web page fingerprinting attack DLSVM, that is able to defeat these

defenses. Regardless of the defense scheme, our attack was able to guess which of 100 web

pages a victim was visiting at least 50% of the time and, with some defenses, over 90% of

the time. Our attack is based on a simple model of network behavior and out-performs

previously proposed ad hoc attacks. We then build a web site fingerprinting attack that is

able to identify whether a victim is visiting a particular web site with over 90% accuracy in

our experiments.

Our results have shown that all these defenses are ineffective, and strongly suggest that

ad hoc defenses against traffic analysis are not likely to succeed. Therefore, we develop a

theoretical model of website fingerprinting attacks and defenses and use it to prove several

iii

results. First, we develop bounds on the trade-off between overhead and security that any

fingerprinting defense can achieve. This enables us to compare schemes with different over-

head/security trade-offs by comparing how close they are to optimal. We then propose,

implement, and evaluate a new defense scheme, which we call Congestion-Sensitive BuFLO,

based on the BuFLO defense proposed by Dyer, et al. [20]. Our experiments find that

Congestion-Sensitive BuFLO has high overhead (around 2.3-2.8x) but can get 6× closer to

the overhead/security trade-off lower bound than Tor or plain SSH.

Lastly, our theoretical analysis suggests that the reason website fingerprinting defenses are

expensive is not because websites are so different; it is because defenses lack the knowledge

of where to put cover traffic, so they have to put it everywhere. We propose a provably

secure defense Glove, and demonstrate that this defense can defeat an ideal attacker while

providing better overhead/security trade-off than previously proposed defenses.

iv

Dedicated to my family.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background 9

2.1 Problem Description . 9

2.2 Evaluation Models . 10

2.3 Related Work . 10

2.3.1 Attacks . 10

2.3.2 Defenses . 12

2.3.3 Other Related Work . 13

3 DLSVM Attack 14

3.1 Recognizing Web Pages . 14

3.2 Recognizing Web Sites . 16

3.3 DLSVM Evaluation . 19

3.3.1 Web Page Classifier . 19

3.3.2 Web Site Classifier . 24

4 Theoretical Foundations 28

4.1 Security vs. Overhead Trade-Off . 28

4.1.1 Definitions . 29

4.1.2 Bandwidth Lower Bounds . 30

4.1.3 Security Against Multiple Feature Classifiers 32

4.2 From Closed To Open World . 33

vi

5 Congestion-Sensitive BuFLO 37

5.1 Design . 37

5.1.1 Review of BuFLO . 37

5.1.2 Overview of Congestion-Sensitive BuFLO 38

5.1.3 Rate Adaptation . 39

5.1.4 Congestion-Sensitivity . 41

5.1.5 Stream Padding . 42

5.1.6 Early Termination . 44

5.1.7 Packet Sizes . 44

5.2 Prototype Implementation . 45

5.3 Congestion-Sensitive BuFLO Evaluation . 46

5.3.1 Experimental Setup . 46

5.3.2 Results . 47

6 Glove 51

6.1 Design . 51

6.1.1 Security Guarantee . 52

6.1.2 Clustering Web Pages . 52

6.1.3 Computing Super-traces . 54

6.2 Simulation Results . 55

7 Discussion and Conclusion 58

7.1 DLSVM Attack . 58

7.2 Theoretical Analysis . 60

7.3 Congestion-Sensitive BuFLO . 60

7.4 Glove . 61

Bibliography 63

Appendices 69

A. HMMs for Facebook and IMDB . 69

B. Lower Bound Proofs . 70

vii

List of Figures

2.1 Website fingerprinting attack threat model. 9

3.1 Performance of DLSVM and previously proposed attacks 22

3.2 Performance of DLSVM against Tor with randomized pipelining. 22

3.3 Bandwidth overheads of several previously proposed defenses 23

3.4 Performance of DLSVM against Tor under various data collection scenarios. 23

3.5 Performance of DLSVM against Tor as the number of web pages grows. . . . 24

3.6 Distribution of log-likelihood scores from the Facebook model. 25

3.7 The distribution of matching web pages for various IMDB movie pages. . . . 26

3.8 Receiver operating curves for the Facebook and IMDB web site classifiers. . 26

3.9 Log-likelihood scores from the Facebook and IMDB model for several real traces. 27

5.1 Rate adaptation in CS-BuFLO. 39

5.2 The interaction between client and server padding schemes. 45

5.3 Security of CS-BuFLO, Tor, and SSH compared to the optimal defense. . . . 48

5.4 Bandwidth costs of various defense schemes as the number of web pages grows. 49

5.5 Non-uniform lower bounds on bandwidth ratio as a function of the security

parameter ε. 50

6.1 Bandwidth ratio as a function of the security parameter, ε, of various defense

systems. 56

6.2 Overhead ratios and average coverage of Glove. 57

viii

List of Tables

1.1 Success rate of DLSVM attack against previous defenses 3

1.2 Success rate of DLSVM attack compared to previous attacks 3

1.3 Main evaluation results for CS-BuFLO, and comparison to results on other

schemes reported by other researchers. 5

3.1 The attacks evaluated in our experiments. 20

5.1 Two different padding schemes for CS-BuFLO. 43

5.2 Security and performance of Congestion-Sensitive BuFLO variants. 47

ix

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my advisor, Rob

Johnson, for his guidance and support during my Ph.D. studies at Stony Brook University.

He has always been an innovative researcher, a patient mentor, and a great friend. As a

teacher, he taught me how to be a good researcher; as a friend, he showed me how to be a

better person. I am lucky enough to have Rob as my advisor during this long but wonderful

Ph.D. journey.

Next, I would like to thank my dissertation committee members, Phillipa Gill, R. Sekar

and Nikita Borisov, for their valuable suggestions and comments to my thesis and research.

I have also learned a lot during my Internship at HP Labs. I would like to thank my

mentor Pratyusa Manadhata and my manager Bill Horne, for the great internship experience

they provided.

I have had the honor to work with many talented colleagues in SPLAT lab: Michael Hart,

Yuwei Ethan Gui, Jianing Sandra Guo, Xincheng Zhang, Jun Yuan and Rishab Nithyanand.

I am also fortunate to meet so many friends here at Stony Brook. To name just a few of

them: Xiaomeng Ban, Congcong Che, Chen Pan, Tianyuan Wu, Yang Liu, Ping Cao, Lin

Chen, Xiaoyang Gong, Yi Shang, Yifan Peng, Ziyi Zheng, Tingbo Hou and Min Lu.

Last but not least, I would like to thank my family, especially my parents and my lovely

wife, for the love and faith they gave me. I never could have made it this far without their

support and encouragement. Thank you and I love you!

x

Chapter 1

Introduction

Anonymous communication systems hide the identities of the parties involved in the

communication by providing unlinkability between messages and their senders and receivers,

thus giving anonymity to end users. A set of definitions for unlinkablity and anonymity were

proposed by Pfitzmann, et al. in 2008 [55]. Chaum et al. introduced the Mix networks

in 1981 [13], which use a set of trusted servers to relay messages from senders to receivers

while providing perfect anonymity as long as at least one of the servers is trustworthy.

Based on Mix networks, Goldschlag, et al. proposed the idea of onion routing [26], which

is employed by Tor [64], the most popular anonymity network on the Internet today. Other

anonymity networks include JAP [34], PipeNet [14] and Freedom [12]. Anonymous web

browsing systems, such as Tor, hide users’ browsing activities from outside observers. Most

anonymity networks achieve anonymity by directing a user’s web traffic through a proxy or

chain of proxies before it reaches the web server. The traffic between the user and the proxies

is encrypted, so that an outside observer cannot infer users’ activities from packet contents.

People use anonymity networks for many reasons. For example, activists and reporters

use anonymity networks to report from danger zones; researchers can use anonymity networks

to anonymously research sensitive topics that may be banned in certain countries. More

importantly, users can use anonymity networks to visit websites banned by Internet censors

[2]. In this case, anonymity networks are used to evade the censor’s automated blocking,

and to hide the user’s activities that might have legal or political repercussions.

Although many web browsing privacy mechanisms, such as SSL, Tor, and encrypting

tunnels, encrypt the data transferred between the user and the proxies, they do not effec-

tively hide other information, such as packet sizes, timing, and directions of packets. These

information allows an adversary to mount website fingerprinting attacks by performing traf-

fic analysis on the observed traffic. In a website fingerprinting attack, an adversary analyzes

these features and attempts to infer the web page being visited by a client. Website finger-

1

printing attackers are passive attackers, so they do not alternate the traffic and hence are

difficult to detect.

Researchers have proposed various website fingerprinting attacks and defenses, and they

have shown that web page fingerprinting attacks are possible against many privacy services,

including IPSec tunnels, SSH tunnels, and Tor [64, 28, 50, 20, 40].

As a result, researchers have proposed several defenses, primarily aimed at hiding packet

size information. For example, Tor packs all data into 512-byte cells. Other mechanisms

pad packets in a variety of ways (e.g. padding to 2k bytes, or padding all packets to the

MTU). Wright, et al., proposed traffic morphing, which pads and fragments packets so that

the resulting distribution of packet sizes appears to be from a different web page [73]. At the

2012 Oakland conference, Dyer, et al. [20] showed that an attacker could infer, with a success

rate over 80%, which of 128 pages a victim was visiting, even if the victim used network-

level countermeasures. They also performed a simulation-based evaluation of a hypothetical

defense, which they call BuFLO, and found that it required over 400% bandwidth overhead

in order to get the success rate of the best attack down to 5%, which is still well-above the

ideal 0.7% success rate from random guessing.

Researchers have recently proposed defenses based on manipulating the sequence and

structure of the HTTP requests generated by the browser. HTTPOS, published at NDSS

2011, manipulates TCP MSS and window size parameters to obscure packet sizes, but also

includes several HTTP-specific mechanisms [43]. For example, HTTPOS can split individual

HTTP requests into multiple partial requests, can issue extra HTTP requests as cover traffic,

and can use pipelining to execute requests concurrently, obscuring the exact order of requests.

Pipelining, which was originally introduced to improve performance, allows web clients to

issue subsequent requests without waiting for the response from previous requests. Similarly

to HTTPOS, the Tor project has released a version of Firefox that implements “randomized

pipelining,” in which the browser requests objects in a random order and with random levels

of pipelining [53].

In this dissertation, we show that:

• All existing defenses are either not effective or not efficient.

• There is likely substantial room for improvement.

• Defenses can substantially increase their efficiency if they have information about the

websites users are likely to visit.

We propose an attack called DLSVM, which is very effective against a wide variety of

defenses, including HTTPOS, randomized pipelining, and several other defenses. Table 1.1

2

Defense Rate

None (SSH tunnel) 91.6%
SSH + HTTPOS 75.7%
SSH + Sample-based morphing 92.1%
Tor 83.7%
Tor + randomized pipelining 87.3%
Tor + random pipelining + random traffic 52.2%

Table 1.1: Success rate of our web page fingerprinting attack against each defense evaluated
in Chapter 3.3. The success rate is the probability that the attack was able to correctly
guess which of 100 web pages the victim was visiting.

summarizes the results of our attack on each defense we evaluate. Our attack can determine,

with a success rate over 83%, which of 100 web page a victim is visiting via Tor, even if the

victim uses randomized pipelining. Against SSH tunnels, our attack could determine which

web page the victim was visiting over 75% of the time, even if the victim used HTTPOS or

sample-based traffic morphing.

We also evaluated our attack against a simulated Tor implementation that uses random-

ized pipelining, pads all packets to 1500 bytes, and adds random cover traffic. Even with a

1-to-1 ratio between cover traffic and real traffic, our attack could identify the victim’s web

page over 50% of the time.

Attack Defense Database Size Success Rate

DLSVM attack Tor 100 83.7%
Ad hoc SVM [50] Tor 100 65.4%
Cosine Similarity [61] Tor 20 50%
Multinomial Naive-Bayes [28] Tor 100 4.4%
DLSVM attack Tor + random pipelining 100 87.3%
Ad hoc SVM [50] Tor + random pipelining 100 62.8%
DLSVM attack None (SSH) 100 91.6%
Ad hoc SVM [50] None (SSH) 100 92.0%
Multinomial Naive-Bayes [28] None (SSH) 100 81.9%

Table 1.2: Success rates of DLSVM attack compared to relevant previous attacks. The
results for the cosine similarity classifier are taken from Shi, et al [61]. All other results are
computed using our implementations on our data sets.

Ours is the first demonstration that application-level defenses, such as HTTPOS and

randomized pipelining, are not effective. All previous attacks have only shown that defenses

based solely on packet padding and similar network-level manipulations were not effective.

We also compare our attack to several previously published attacks, as shown in Table 1.2.

In 2009, Herrmann, et al., proposed a fingerprinting attack based on a Multinomial Naive-

3

Bayes classifier [28], which, in our experiments is able to identify the web page a victim

visited (out of a set of 100 possible pages) with a success rate of less than 5%. Our attack

has over an 80% success rate under similar conditions. Shi, et al., proposed a fingerprinting

attack based on cosine similarity in 2009 [61], but this method had a success rate of only

50%, even when there were only 20 web pages to choose from. In 2011, Panchenko, et al.

published a classifier using ad hoc HTTP-specific features, but it achieves only a 65% success

rate on our data set [50]. Our attack also works well against simple SSH-tunneled traffic,

achieving a 92% success rate, comparable to the rate achieved by Panchenko et al.’s classifier

and the VNG++ classifier of Dyer et al. [20].

Our attack has two novel components. First, we propose a new method for computing the

similarity of packet traces generated when a browser loads a web page. Our attack converts

traces into strings and uses the Damerau-Levenshtein distance to compare them. Packet

ordering is useful for identifying web pages because the order of incoming and outgoing

packets reveals information about the size of objects referenced in a page and the order in

which the browser requests them. Damerau-Levenshtein distance is a good metric because

it allows insertions, deletions, substitutions, and transpositions, operations that correspond

well with network packet drops, retransmissions, and re-orderings, and with slight changes

in a page’s content, as may occur with pages dynamically generated from a template.

We then use Hidden Markov Models to extend our web page classifier to a web site

classifier. An attacker can use these models to determine if a sequence of a victim’s page

loads are all from the same web site. The HMM captures the link structure of the site

and the probable paths that users will follow among the pages when visiting the site. The

HMM uses our novel page fingerprinting technique to classify the packet traces observed each

time the user transitions from one page to another. The attacker can then use the Forward

algorithm [68] to compute the probability that an observed trace of packets was generated

by a browser loading pages from the target web site. Our site classifier was able to identify

when a user visited a target web site via Tor with over 90% accuracy in our experiments.

Our results show that existing network and application-level defenses also fail to pro-

vide sufficient protection. As a result, it is not currently known whether there exists any

efficient and secure defense against website fingerprinting attacks. We investigate this issue

further, and propose Congestion-Sensitive BuFLO, which extends Dyer’s BuFLO scheme to

include congestion sensitivity and rate adaptation. CS-BuFLO is TCP-friendly and adapts

its transmission rate dynamically, which makes it very practical to deploy. This also poses

a challenge: adapting too quickly to the website’s transmission rate can reveal information

about which website the victim is visiting. CS-BuFLO balances these performance and se-

curity constraints by limiting the rate and granularity of adaptation. We also introduce

4

Defense n Method Source
Pan-
chenko

VNG++ DLSVM
BW
Ratio

Latency
Ratio

CS-BuFLO (CTSP) 200 Empirical Chapter 5 18.0 13.0 20.6 2.796 3.271
CS-BuFLO (CPSP) 200 Empirical Chapter 5 24.2 16.5 34.3 2.289 2.708
CS-BuFLO (CTSP) 120 Empirical Chapter 5 23.4 20.9 28.9 2.799 3.444
CS-BuFLO (CPSP) 120 Empirical Chapter 5 30.6 22.5 40.5 2.300 2.733

BuFLO (0, 40, 1000) a 128 Simulation [20] 27.3 22.0 N/A 1.935 N/A
BuFLO (0, 40, 1500) 128 Simulation [20] 23.3 18.3 N/A 2.200 N/A
BuFLO (0, 20, 1000) 128 Simulation [20] 20.9 15.6 N/A 2.405 N/A
BuFLO (0, 20, 1500) 128 Simulation [20] 24.1 18.4 N/A 3.013 N/A
BuFLO (105, 40, 1000) 128 Simulation [20] 14.1 12.5 N/A 2.292 N/A
BuFLO (105, 40, 1500) 128 Simulation [20] 9.4 8.2 N/A 2.975 N/A
BuFLO (105, 20, 1000) 128 Simulation [20] 7.3 5.9 N/A 4.645 N/A
BuFLO (105, 20, 1500) 128 Simulation [20] 5.1 4.1 N/A 5.188 N/A

HTTPOS 100 Empirical Chapter 3 57.4 N/A 75.8 1.361 N/A
Tor+random pipelining 100 Empirical Chapter 3 62.8 N/A 87.3 1.745 N/A
Tor 100 Empirical Chapter 3 65.4 N/A 83.7 N/A N/A
Tor 120 Empirical Chapter 3 56.3 36.8 77.4 1.247 4.583 b

Tor 200 Empirical Chapter 3 50.1 31.8 75.1 1.244 4.919
Tor 775 Empirical [50] 54.6 N/A N/A N/A N/A
Tor 800 Empirical Chapter 3 40.1 N/A 50.6 N/A N/A
SSH 120 Empirical Chapter 3 86.5 75.0 80.7 1.128 1
SSH 200 Empirical Chapter 3 84.4 72.9 79.4 1.111 1

aThe triplet (x, y, z) represents the three parameters used by BuFLO, where τ = x, ρ = y, d = z.
bNote that the high latency of TOR is largely due to its onion routing protocols — a cost that other

defenses do not incur.

Table 1.3: Main evaluation results for CS-BuFLO, and comparison to results on other
schemes reported by other researchers.

a stream padding scheme that exploits interaction between the client and server to pro-

vide better security at lower bandwidth than simpler stream padding schemes that operate

independently in each direction.

We present a complete specification of CS-BuFLO, and have implemented CS-BuFLO in

a custom version of OpenSSH. Our implementation also includes a Firefox browser plugin

that informs the SSH client when the browser has finished loading a web page. The CS-

BuFLO implementation uses this information to reduce the amount of padding performed

after the page load has completed.

We evaluate CS-BuFLO, and compare it to Tor on the Alexa top 200 websites in a closed-

world setting. The Alexa top 200 websites represent approximately 91% of page loads on the

internet [3], so these results reflect the security users will obtain when using these schemes

in the real world. Furthermore, prior work on website fingerprinting attacks has found that

an attacker’s success rate only decreases as the number of websites increases, so our results

5

give high-confidence upper bounds on the success rate these attacks may achieve in larger

settings.

In our experiments, CS-BuFLO uses 2.8 times as much bandwidth as SSH (i.e. no

defense) and the best known attack had only a 20% success rate at inferring which of 200

websites a victim was visiting. This is a substantial improvement over previously proposed

schemes — the same attack had a success rate over 75% against Tor and SSH under the

same conditions.

Table 1.3 compares our results with results reported by other researchers. These com-

parisons must be done carefully, since the experiments used different numbers of websites

and methodologies. Nonetheless, the following conclusions are clear from the data:

• CS-BuFLO hides more information than Tor, SSH, HTTPOS, and Tor with randomized

pipelining, albeit with higher cost. For example, the DLSVM attack has a lower success

rate against CS-BuFLO in a closed-world experiment with 100 websites than it has

against Tor with 800 websites.

• Overall, CS-BuFLO achieves approximately the same overhead/security trade-off in our

empirical analysis as BuFLO achieved in Dyer’s simulated evaluation. For example,

CS-BuFLO in CTSP mode had a bandwidth ratio of 2.8 and Panchenko’s attack had

a success rate of 23.4% on 120 websites. BuFLO with τ = 0, ρ = 40, and d = 1500 had

almost identical security, but a bandwidth ratio of 2.2. Although CS-BuFLO optimizes

many aspects of the BuFLO protocol, an empirical evaluation presents issues that do

not arise in a simulation, such as dropped packets, retransmissions, and application-

level timing dependencies.

These results show that CS-BuFLO achieves better overhead/security trade-off than existing

real defense systems, making it a promising technology to be deployed in the real world.

In addition to the empirical work on CS-BuFLO, we provide an analytical study of the

problem of defending against website fingerprinting attacks. We show that constructing an

optimally-efficient defense scheme for a given set of websites is an NP-hard problem. We then

develop lower bounds on the best possible trade-off between overhead and security that any

website fingerprinting defense can achieve. Specifically, given a set of websites and a desired

security level, we can compute a lower bound on the bandwidth overhead that any defense

scheme with that security level can incur on those websites. This enables us to compare

defenses that offer different overhead/security trade-offs by comparing how close they are to

the lower bound.

Our study also shows how to compute the open-world performance of an attack based

on its performance in a closed-world experiment. Thus, researchers can evaluate attacks

6

and defenses in the simpler closed-world model and, using our method, compute open-world

performance results. We also use the closed-world/open-world connection to investigate the

danger that fingerprinting attacks pose in the real world. We find that, without any defense

whatsoever, fingerprinting attacks can pose a significant threat to visitors to popular web

pages. For example, an ideal attacker against defenseless victims could recognize visits to

the 100 most popular websites with a false discovery rate of less than 50%.

Our theoretical analysis suggests that a small amount of well-placed cover traffic can

make many websites look similar. This conclusion is based on the assumption that a defender

knows the sizes of protected websites in advance, so she can pad each website to the same

size. Although in reality, hiding only the sizes of websites is not enough to defeat a powerful

attacker, the idea of learning information from protected websites in advance is a valuable

insight. Based on this idea, we propose a provably secure defense scheme, which we call

Glove. To protect n websites, Glove collects traces of popular websites and computes a

transcript, z, of packet sizes and timings that it replays whenever a user loads one of the

websites. Since the same observation z is always presented, Glove bounds the success rate

of any attacker to 1
n
.

In summary, our work makes the following contributions:

• We show that recently proposed application-level defenses, such as HTTPOS and ran-

domized pipelining, are not secure.

• We present a new web page fingerprinting attack that significantly outperforms other

proposed attacks on these and other defenses. Our attack can determine which web

page, out of 100 possibilities, a victim is visiting with over 80% success rate.

• We present a novel web site fingerprinting attack that can identify, with over 90%

accuracy, when a victim is visiting a particular web site.

• We propose and give a complete specification of the CS-BuFLO protocol, describing

optimizations to make the protocol congestion sensitive, rate adaptive, and efficient at

hiding macroscopic website features, such as total size and the size of the last object.

• We implement a prototype of the defense in SSH, which also includes a Firefox plugin

to notify the proxy when the browser finishes loading a web page.

• We present empirical evaluation results for CS-BuFLO, Tor, and SSH, and shows that

CS-BuFLO provides better security, albeit at higher bandwidth costs. We also show

that CS-BuFLO is closer to the lower bound on the overhead/security trade-off than

Tor and SSH.

7

• We provide the first analytical results on the website fingerprinting defense problem,

showing that constructing an optimal defense is NP-hard and developing lower bounds

on the best possible trade-off between overhead and security.

• We show the connection between the two most widely used evaluation models: open-

world and closed-world.

• We propose and evaluate a provably secure defense, Glove, which achieves a better

overhead/security trade-off by using information collected offline about the websites

users are likely to visit.

The remainder of the dissertation is organized as follows. Chapter 2 describes the back-

ground of website fingerprinting attacks and defenses. In Chapter 3 we describe and evaluate

our website fingerprinting attack, DLSVM. Chapter 4 presents our analytical results. Chap-

ter 5 and Chapter 6 describe and evaluate CS-BuFLO and Glove, respectively. We then

discuss related issues and conclude the dissertation in Chapter 7.

8

Chapter 2

Background

2.1 Problem Description

Encrypted Channel
User Web Page

Anonymizing
Service: Client

Anonymizing
Service: ServerMonitoring

Traffic

Attacker

Figure 2.1: Website fingerprinting attack threat model.

In a website fingerprinting attack, an adversary is able to monitor the communications

between a victim’s computer and an anonymizing service server, as shown in Figure 2.1. The

service server may be an SSH proxy, VPN server, Tor, or other privacy service. The traffic

between the user and server is encrypted, so the attacker can only see the timing, direction,

and size of packets exchanged between the user and the server. Based on this information,

the attacker attempts to infer the website(s) that the user is visiting via the server. The

attacker can prepare for the attack by collecting information about websites in advance. For

example, he can visit websites using the same privacy service as the victim, collecting a set

of website “fingerprints”, which he later uses to recognize the victim’s site.

Website fingerprinting attacks are an important class of attacks on private browsing

systems. For example, Tor states that it “prevents anyone from learning your location or

browsing habits.”[64] Successful fingerprinting attacks undermine this security goal. Fin-

gerprinting attacks are also a natural fit for governments that monitor their citizens’ web

9

browsing habits. The government may choose not to (or be unable to) block the privacy

service, but nonetheless wish to infer citizens’ activities when using the service. Since it can

monitor international network connections, the government is in a good position to mount

website fingerprinting attacks.

Website fingerprinting defenses try to erase the “fingerprints” by reshaping websites’ page

load traffic in various ways. Some defenses try to generate different traffic for a website on

each page load [53, 43], and others try to make the page load traffic similar for a group of

websites [73, 20].

2.2 Evaluation Models

Researchers have proposed two models for evaluating website fingerprinting attacks and

defenses: the closed-world model and the open-world model. A closed-world model consists

of a finite number, n, of web pages. Typical values of n used in past work range from 100

to 775 [20, 50]. The attacker can collect traces and train his attack on the websites in the

world. The victim then selects one website uniformly at random, loads it using some defense

mechanism, such as Tor or SSH, and the attacker attempts to guess which website the victim

loaded. The key performance metric is the attacker’s average success rate.

In an open-world model, there is a population of victims, each of which may visit any

website in the real world, and may select the website using a probability distribution of their

choice. The attacker does not know any individual victim’s distribution over websites, but

has aggregate statistics about website popularity. The attacker’s goal is to infer which of

the victims are visiting a particular “website of interest”, i.e. an illegal or censored site. In

this case, the primary evaluation criteria are false positives and false negatives.

The relationship between these two models are discussed in Chapter 4.2.

2.3 Related Work

2.3.1 Attacks

Researchers have studied attacks on anonymity systems from a variety of angles [33, 58].

Some attacks are designed to exploit vulnerabilities of a specific anonymity system. For

example, Zhang exploits a vulnerability in Tor authentication protocol during concurrent

runs [77]; McLachlan, et al., reveals the IP addresses of Tor bridges due to several bridge

related architectural vulnerabilities in Tor [45]. These attacks are not generic and can be

addressed by fixing implementation bugs. Some attack model involves a global passive

10

adversary, who is capable of observing large portion or all of the network traffic [21, 49].

However, such an attacker rarely exists in reality, so this attack model is not considered by

some anonymity networks [18].

Some attacks focus on discovering the identity of the anonymous network user, others

focus on discovering the servers they interact with. Some active attacks require subverting

nodes in the anonymity network and injecting traffic into the network [7, 19, 39, 56, 46,

51, 22, 11]. An Attacker can increase the probability that their malicious nodes are chosen

during the circuit set up phase, and enabling them to uncover the victim’s route through the

anonymizing network [7, 51]. Injecting traffic allows an attacker to mount a denial of service

attack, and the attack forces the messages in the network to be retransmitted, thus giving

more opportunities to an attacker [11]. An attacker can also subvert web servers visited by

anonymous users [66].

Traffic and time analysis is a useful technique for network attackers. It deduces infor-

mation from network traffic by analyzing communication patterns. It is widely used in the

research field of network security [57, 5, 52, 70, 78, 36, 35]. There are also lots of such attacks

related to anonymity networks [6, 62, 65, 59, 44, 47, 16, 4, 31, 41, 74].

We focus on one particular type of traffic analysis attacks, web page fingerprinting attacks,

which assume a passive local eavesdropper and focus on de-anonymizing the identities of the

web pages a user is visiting. Web page fingerprinting attacks are an important class of

attacks because they are a good match for the attacker scenario faced by many Tor users

today: they use Tor to evade censorship and persecution by a government or ISP that wants

to know their browsing habits and has the ability to monitor their internet connection, but

cannot easily infiltrate Tor nodes and web servers outside the country.

Several researchers have developed web page fingerprinting attacks on encrypted web

traffic, as occurs when the victim uses HTTPS, link-level encryption, such as WPA, or

an encrypting tunnel such as SSH, a VPN, or IPSec [10, 15, 27, 28, 29, 40, 42, 63, 75,

76, 20]. Most attacks against these systems focus on packet sizes, and many throw away

all information about packet ordering. Packet sizes do carry a lot of information in these

scenarios, where data packets are simply padded to a multiple of the block size (typically

16 bytes), but Tor pads all data packets to a multiple of 512 bytes, providing much less

information. Most recently, Dyer et al. performed a thorough survey of past attacks and

past network-level defenses and found that no network-level defense was secure [20]. They

did not evaluate application-level defenses, such as HTTPOS or randomized pipelining.

There is relatively little research on fingerprinting attacks on Tor. Herrmann, et al., used

a Multinomial Naive Bayes classifier on features that captured no information about packet

ordering – only packet sizes [28]. They applied this classifier to several encrypting tunnels,

11

such as SSH, and achieved over 94% success in recognizing packet traces from a set of 775

possible web pages. When they applied this classifier to Tor, however, they had less than

a 3% success rate on the same set of web pages. In the same year, Shi, et al., proposed to

use cosine similarity on feature vectors that represented some ordering information about

packets, but they achieved only a 50% success rate on a set of 20 web pages [61]. Panchenko,

et al., used ad hoc, HTTP-specific features with support vector machines to achieve a 54.61%

success rate on the same data set used by Herrmann, et al., [50, 28]. We re-implemented

their attack and obtained a 65.4% success rate on our data set of 100 web pages.

The unpublished work of Danezis [15] is also worth pointing out, since it uses HMMs to

model entire web sites in much the same way that we do. Lu, et al., propose a fingerprint

based on edit distance [42], but their fingerprints depend heavily on packet size information,

which is not available when attacking Tor users. Yu, et al. [75] also proposed to use HMMs

to model web sites, but their observations consisted only of the amount of time a victim

spent viewing each page, and hence their success rate was not very high.

2.3.2 Defenses

Network-level website fingerprinting defenses pad packets, split packets into multiple

packets, or insert dummy packets. Dyer, et al., list numerous approaches to padding indi-

vidual packets, including pad-to-MTU, pad-to-power-of-two, random padding, etc.[20]. They

showed that none of the padding schemes was effective against the attacks they evaluated.

Wright, et al., proposed traffic morphing, in which packets are padded and/or fragmented so

that they conform to a specified target distribution[73]. Dyer, et al., defeated this defense,

as well[20]. Lu, et al., extended traffic morphing to operate on n-grams of packet sizes, i.e.

their scheme pads and fragments packets so that n-grams of packet sizes match a target

distribution[42]. Dyer, et al. also proposed BuFLO, which pads or fragments all packets to

a fixed size, sends packets at fixed intervals, injecting dummy packets when necessary, and

always transmits for at least a fixed amount of time[20]. They found that they could reduce

their best attack’s success rate to 5% (when guessing from 128 websites), at a cost of 400%

bandwidth overhead. Fu, et al., found in early work that changes in CPU load can cause

slight variations in the time between packets in schemes that attempt to send packets at

fixed intervals, and recommended randomized inter-packet intervals instead[24].

Application-level defenses alter the sequence of HTTP requests and responses to further

obfuscate the user’s activity. At NDSS 2011, Luo, et al., described HTTPOS, a collection

of HTTP- and TCP-level tricks for fooling traffic analysis attacks previously described in

the literature [43]. At the TCP level, they manipulate MSS options and window sizes to

12

perturb the size and ordering of packets in the TCP stream. At the HTTP level, they split

single requests into multiple possibly overlapping requests using the HTTP Range feature,

re-order some requests via pipelining, generate some extra, unnecessary requests, and insert

some extra data into HTTP GET headers. Our attack is able to defeat their prototype

implementation of HTTPOS.

The Tor project recently proposed a traffic analysis defense based on “randomized pipelin-

ing”, in which the browser loads images and other embedded content in a random order [53].

It also pipelines random subsets of these requests. Even with this defense in place, our attack

is able to identify the target web page over 87% of the time in our experiments.

2.3.3 Other Related Work

A few previous papers are notable for using similar techniques on similar problems.

Wright, et al., used HMMs for protocol classification of encrypted TCP streams [72], i.e.

to determine whether an encrypted connection was an HTTP, SMTP, POP, IMAP, etc.

session. More recently, White, et al., used HMMs to recover partial plaintext of encrypted

VoIP conversations [71].

13

Chapter 3

DLSVM Attack

In this chapter, we present a powerful website fingerprinting attack, DLSVM, which

defeats HTTPOS, randomized pipelining, and several other defenses. Developing an attack

helps us to understand the vulnerabilities of existing defenses, and gives us valuable insights

towards building better defenses.

3.1 Recognizing Web Pages

Web pages can consist of multiple objects, such as HTML files, images, and flash objects,

and browsers send separate requests for each object. Browsers may use a combination of

multiple TCP connections and pipelining in order to load pages more quickly [32]. Further-

more, browsers may begin issuing requests for objects referenced in a web page before they

have finished loading that page.

Note, however, that there is some inherent stability in the ordering of requests: browsers

cannot request an object until they have received the portion of a page that references it.

The sequence of requests and responses may vary each time the browser loads the page:

some requests may be delayed due to CPU load or packet re-ordering, and some requests

(or responses) may be omitted if the browser has a copy of the object in its cache. Dynamic

web pages may also vary slightly in the size and number of objects they contain, and hence

in the number of requests sent by the browser and the total number of packets returned by

the server.

Web privacy proxies, such as Tor and SSH, multiplex these data transfers over a single,

encrypted channel, so an attacker can only see the size, direction, and timing of packets in

the multiplexed stream. Tor furthermore sends all data in 512-byte cells, so packet sizes

carry limited information.

These facts suggest a simple representation for the attacker’s traffic observations, and a

14

similarity metric the attacker can use to compare traces. Our attack represents a trace of `

packets as a vector t = (d1, . . . , d`), where di = ±si, where si is the size of the ith packet

and the sign indicates the direction of the packet. Our attack compares traces t and t′ using

the Damerau-Levenshtein edit distance [48], which is the length of the shortest sequence

of character insertions, deletions, substitutions, and transpositions required to transform t

into t′. In the context of our packet traces, these edits correspond to packet and request

re-ordering, request omissions (e.g. due to caching), and slight variations in the sizes of

requests and responses. Thus, this model and distance metric are a good match for real

network and HTTP-level behavior.

The Damerau-Levenshtein algorithm supports different costs for each operation. Ideally,

these costs would be tuned to match the probability of packet drops, retransmissions, etc.

in the real network. We experimented with several cost schemes; the impact was mild, but

the attack yielded best results when transpositions were 20 times cheaper than insertions,

deletions, and substitutions. We did not explore this parameter thoroughly – a better ap-

proach would be to learn optimal costs from the training data using the recently-proposed

method of Bellet, et al. [8].

We found that TCP ACK packets reduce the performance of our classifier. This seems

natural: inserting an ACK after every packet essentially makes all traces look more similar –

they’re all half ACKs. Our Tor classifier deletes all 40 and 52 byte packets from the traces.

Our SSH classifier deletes all packets of size 84 or less.

Since Tor transmits data in 512-byte cells, our attack also rounds all packet sizes up to

a multiple of 600 (we use 600 instead of 512 in order to account for other inter-cell headers

and overhead). In some of the experiments described in Chapter 3.3, we deleted all packet

size information, i.e. traces were reduced to sequences of ±1s.

Our attack normalizes the edit distance to compensate for the large variation in the

lengths of packet traces. If d(t, t′) is the Damerau-Levenshtein edit distance, the attack uses

L(t, t′) =
d(t, t′)

min(|t|, |t′|)

where |t| is the number of packets in trace t. The classifier normalizes by the minimum of

the two lengths because, if t and t′ are very different in length, then they are probably from

different web pages. In this case, dividing by min(|t|, |t′|) will result in a relatively large

normalized distance, which is desirable. Other normalization factors, such as |t| + |t′| and

max(|t|, |t′|), yielded worse results.

To build a classifier for recognizing encrypted, anonymized page loads of 1 of n web pages,

an attacker collects k traces of each page, using the same privacy system, e.g. Tor or an

15

SSH proxy, in use by the victim. He then trains a support vector machine [67] using a kernel

based on edit distance:

K(t, t′) = exp(−γL(t, t′)2)

The γ parameter is used to normalize L so that it’s outputs fall into a useful range. In our

experiments, we found γ = 1 works well. We also adjusted the SVM cost of misclassifications

to be 4, based on early experimental results.

Intuitively, an SVM kernel function acts as an inner product on a vector space, allowing

the SVM to measure the angle between two vectors. Vectors with a small angle are considered

more similar by the SVM and likely to be placed in the same class. The above kernel will

assign traces with a small distance an “inner product” close to 1, indicating a small angle

between them and hence high similarity. Traces with a large distance will have kernel value

close to 0, corresponding to a large angle and hence low similarity.

This basic approach can be customized in several ways, depending on the application.

For example, instead of viewing the observed network traffic as a sequence of packets, as

above, an attacker could view it as a sequence of 512-byte Tor cells, or even as a sequence of

bytes, if appropriate. He would then generate a trace vector of ±1s for each cell or byte of

traffic. Finally, the attacker could encode timing information by inserting additional “pause”

symbols into the trace whenever there is a long gap between packets.

We briefly explored several of the above variations in our attack on Tor. We tried

representing traces as a sequence of Tor cells instead of as a sequence of packets. Classifier

performance degraded slightly, suggesting that the Tor cells are often grouped into packets

in the same way each time a page is loaded. We tried adding pause symbols to our traces,

but this made no contribution to classifier performance. An early version of our attack

classified traces using a nearest neighbor algorithm: to classify trace t, the attacker computed

t∗ = argmint′ L(t, t′) over every trace in his database, and guessed that t was from the same

web page as t∗. This attack correctly guessed a victim’s web page (out of 100 possibilities)

over 60% of the time. Finally, we tried using a metric embedding to convert our variable-

length trace vectors into fixed-length vectors in a space using the `2-norm, and then used an

SVM to classify these vectors. This performed substantially worse than the SVM classifier

with distance-based kernel described above.

3.2 Recognizing Web Sites

As the evaluation results in Chapter 3.3 will show, the classifier described above is quite

good at determining which of n web pages a user is visiting, assuming the user is visiting

16

one of those n pages. However, attackers often want to answer a slightly different question:

“Is the user visiting one of a small list of banned web sites?” There are three differences

between the previous scenario and this one: (1) there is no prior assumption about which

sites the user may be visiting; (2) the attacker wants to know if the user is visiting any of

the pages on a banned web site; and (3) the attacker will want a high degree of confidence

in the answer.

To answer this type of question, an attacker can construct a Hidden Markov Model for

each target web site, and use the forward algorithm [68] to compute the log-likelihood that

a given packet trace would be generated by a user visiting the target web site. If the log-

likelihood is below a certain threshold, then he can conclude that the user is visiting the web

site, otherwise she is not.

In our web site model, each web page corresponds to an HMM state, and state transition

probabilities represent the probability that a user would navigate from one page to another.

These transition probabilities, along with the initial state probabilities, can be derived from

the link structure of the web site and observations of real user behavior.

To complete the HMM, the attacker must define the set, O, of observations and, for

each observation o ∈ O and HMM state s, the probability, Pr[o|s], that the HMM generates

observation o upon transitioning to state s. Our attack uses the classifier from the previous

section for this purpose. The attacker collects k traces of each page in the target web site,

along with k traces of n other web pages chosen arbitrarily (e.g. random web pages). These

web pages form O, the set of observations that may be generated by the HMM. He uses the

collected traces to build a classifier, C, as described in the previous section. For each page,

s, in the target web site, he then collects ` additional traces and estimates Pr[o|s] as the

fraction of the ` traces from page s that C classifies as page o. If no trace for a page s ever

gets classified as a trace for page o, then he sets Pr[o|s] to a small non-zero value.

Huge web sites may have thousands or even millions of pages, so it would be impractical

to make a model covering each page separately. Fortunately, most large sites have pages that

are constructed from templates. For example, Amazon.com has page templates for search

results, individual items, reviews, etc. To handle large web sites, an attacker can create

a model with states corresponding to page templates rather than individual pages. A set

of web pages can be modeled as a single HMM state only if all the pages produce similar

probability distributions of observations. In other words, pages p1 and p2 can be represented

by a single state s only if Pr[o|p1] ≈ Pr[o|p2] for all observations o. Experimental results in

Chapter 3.3 will show that this is the case for pages generated from the same template.

HMM web site models can also handle pages that use AJAX. If a page can make r different

requests to a web server, then the HMM can represent the page with r + 1 states s0, . . . , sr.

17

State s0 corresponds to the initial page load, and states s1, . . . , sr correspond to each AJAX

transaction the page may execute. The attacker then treats AJAX operations like any other

page load: he collects traces of the transactions, adds them to the classifier described above,

and uses them to compute a probability distribution on observations. Other pages can only

transition to s0, but the transitions among states s0, . . . , sr, and transitions from the sis to

other pages, are determined by the structure of the AJAX code. The probability of these

transitions is determined by the code and by user behavior.

As a user traverses the pages of a web site, his browser collects a cache of page elements

it encounters. The attacker must account for the browser cache when constructing an HMM

for the site. Cold pages are unlikely to have elements cached in the browser. For example, a

login page is typically visited once at the beginning of a session, and hence is “cold”. Warm

pages may be loaded repeatedly or after the browser has collected a large cache. A user’s

Facebook profile page is likely to be “warm”. An attacker can include both types of page in

his model. For example, when modeling a social networking site, an attacker could model

the login page as cold, and he could include both a cold and warm version of a user’s main

profile page. The model would initially transition to the cold version of the profile page, but

transitions from other states would go to the warm version.

Users may also move between pages using their browser’s “Back” and “Forward” buttons

and by typing a URL directly into the location bar. The attacker can model page loads

via the location bar by simply adding edges between states of the HMM. The probability

assigned to these transitions can be derived from user behavior. Unfortunately, it is not

possible to precisely model the Back and Forward buttons using an HMM, since that would

require augmenting the HMM with a stack. In most browsers, clicking the Back button

generates the same traffic trace as clicking a link to the previous page, so the attacker can

model the Back button by adding reverse edges for every edge in the original HMM. Note

that, since clicking back necessarily is a “warm cache” load of the previous page, the HMM

back edge should go to the HMM state representing a warm cache load of the page, even if

its corresponding forward edge is from a cold cache state. The probability assigned to each

back edge can be derived from observing real users.

Note that this HMM-based attack assumes that users all tend to navigate through a

website in the same way. If this assumption is not valid, e.g. if users have wildly differing

habits when visiting the target site, then the attacker has two options. First, if user’s tend

to follow one of a small set of different patterns, then the attacker can build an HMM for

each pattern. If each user tends to have a totally unique pattern, then the attacker can

assign uniform transition probabilities. The HMM will not use any ordering information,

but it will still be able to make classification decisions based on the set of pages visited by

18

the victim.

3.3 DLSVM Evaluation

3.3.1 Web Page Classifier

Our evaluation examines several factors that may affect the performance of DLSVM

classifier:

• How do traffic analysis defenses, such as HTTPOS, randomized pipelining, Tor’s 512

byte cells, and traffic morphing affect the performance of our classifier?

• How does this compare with other classifiers, such as the Multinomial Naive Bayes

classifier of Herrmann, et al. [28] or the SVM classifier of Panchenko, et al. [50]?

• How is performance of our web page classifier affected as the number of web pages goes

up?

• How does the size of the training set affect the performance of our web page classifier?

• Does the choice of the web pages in the classification set affect the success rate of our

web page classifier?

• Does the state of the browser cache affect the performance of our classifier?

We additionally investigate the overheads of the defense schemes evaluated.

Experimental Setup. We collected traces using several different computers with

slightly different versions of Ubuntu Linux – ranging from 9.10 to 10.10. We used Fire-

fox 3.6.10-3.6.17 and Tor 0.2.1.30, except one computer that used 0.2.2.21-alpha. All Firefox

plugins were disabled during data collection. Three of the computers had 2.8GHz Intel Pen-

tium CPUs and 2GB of RAM, one computer had a 2GHz AMD Turion Mobile CPU with

2GB of RAM. We scripted Firefox using the Ruby watir-webdriver library and captured

packets using tshark, the command-line version of wireshark. For the SSH experiments, we

used OpenSSH 5.3p1. Our Tor clients used the default configuration, unless otherwise noted.

SSH tunnels passed between two machines on the same local network.

Most of our experiments use data collected from the Alexa Top 1000 web pages. We

removed any web pages that failed to load in Firefox (without Tor or any other proxy). If a

URL redirected to another location, we replaced it with its redirect target. We then used the

top 800 URLs from this cleaned list. We collected traces from each web page in a round-robin

fashion. Unless otherwise specified, we cleared the browser cache between each page load.

19

DLSVM Our attack. See Chapter 3.1.
Panchenko Ad hoc SVM classifier of Panchenko, et al. [50], with the lib-

svm 3.1 implementation from WEKA 3.6.4 and the parameters
recommended by Panchenko, et al. (c = 217 and γ = 2−19).

MNB The Multinomial Naive Bayes classifier proposed by Herrmann,
et al. [28].

Table 3.1: The attacks evaluated in our experiments.

We repeated data collection with four different defense mechanisms, as described below. We

collected either 20 or 40 traces from each URL, depending on the defense mechanism in use.

We ran most experiments with just the top 100 web pages in our list – we only use full 800

URLs in one experiment to test the scalability of our attack.

This is a “closed-world” evaluation. In such an evaluation, there are only k web pages

in the world. The attacker can collect fingerprints for each page. The victim then chooses

one of the pages uniformly at random and loads it in his browser. The attacker observes

the victim’s packet trace and attempts to guess which page the victim loaded. Thus, the

appropriate metric is the success rate of the attacker, i.e. the percentage of time he guesses

correctly. There is no notion of false positive or false negative in this scenario. In contrast,

we will evaluate our web site classifier in an “open-world” setting, which does have such

considerations.

Table 3.1 summarizes the attacks evaluated here.

Attacks and Defenses. We test each attack against each of the following defenses. For

each defense, we also indicate the number of URLs we collected, and the number of visits to

each URL. We collected four basic data sets:

None (SSH) (100x40). All HTTP traffic is sent through an SSH tunnel.

SSH + HTTPOS (100x20). We obtained the prototype implementation that the

HTTPOS authors used to evaluate HTTPOS in their paper. Based on some of our early

results, they added some additional randomization to their defense. Note that HTTPOS

includes both TCP- and HTTP-level defenses. Some web pages caused HTTPOS to crash.

We detected crashes and attempted to load the page up to 3 times. If HTTPOS crashed all

3 times, then we added the third, incomplete trace to our data set. Our final data set of

2000 traces contained 33 crash traces, so we do not believe these had a significant effect on

our results.

Tor (800x40). All HTTP traffic is tunneled through the default Tor configuration.

Most experiments only use the top 100 web pages from this dataset.

Tor + randomized pipelining (100x40). The Tor project has released a software

bundle that includes Tor, the Polipo proxy, and a patched version of Firefox that randomizes

20

the order and pipelining used to load images and other embedded objects in a web page. We

use the entire bundle as-is.

We then used these data sets to generate simulations of other defenses, as described

below.

SSH + Sample-based traffic morphing (100x20). We apply traffic morphing to the

traces obtained in the SSH experiment. We morphed all traces to have the same packet size

distribution as http://flickr.com (selected randomly from our data set). We morphed

each direction independently, as described in the traffic morphing paper. To morph a trace,

we repeatedly sampled packet sizes from the target distribution and padded (or fragmented)

packets in the trace to match the sampled size. Thus our morphed traces have the same

packet size distribution as they would under optimal traffic morphing, but the total number of

packets transmitted may be higher. The original traffic morphing paper found that optimal

traffic morphing and sample-based traffic morphing had equal resilience to attack, so we

believe this is a reasonable evaluation of traffic morphing.

SSH packet count (100x40). We remove all packet size and direction information from

our SSH traces. All that the attacker can observe is the total number of packets transmitted.

This experiment explores how much information is revealed by the size of the page being

loaded.

Tor + randomized pipelining + randomized cover traffic (100x20). We insert

additional cover traffic into the traces collected for the Tor + randomized pipelining exper-

iment. We deleted all packet size information, i.e. traces consisted of only ±1500s. Then,

for an input trace of l packets, we randomly, uniformly, and independently pick l positions

in the trace and insert a 1500 or −1500, with equal probability, at each position.

Tor packet count (100x40). We apply the same transformation to our Tor traces as

we did to our SSH traces, as described above.

Results. We ran each attack against each data set using stratified 10-fold cross vali-

dation. Figure 3.1 shows the results of these experiments. The DLSVM attack generally

outperforms the Panchenko and MNB attacks. See Chapter 7 for more discussions.

We performed an experiment to simulate the limits of defenses based on re-ordering,

pipelining, padding, and generating extraneous HTTP requests. We added randomized

cover traffic and padded all packets to 1500 bytes in the traces in our Tor + randomized

pipelining data set, as described above. We varied the cover traffic overhead from 0% to

100%. This experiment is intended to model an idealized version of defenses like randomized

pipelining and HTTPOS. Figure 3.2 shows the influence of adding randomized cover traffic

on our attack. With no cover traffic, i.e. with randomized pipelining and packets padded to

1500 bytes, our attack was able to recognize the visited web page almost 80% of the time.

21

http://flickr.com

attacks-and-defenses

Page 1

None(SSH)

SSH + HTTPOS

SSH + sa
mple-based m

orphing

SSH packet c
ount

Tor (1
00x40)

Tor +
 ra

nd. p
ipe.

Tor +
 ra

nd. p
ipe. +

 ra
nd. cover

Tor p
acket c

ount
0

0.2

0.4

0.6

0.8

1
S

u
cc

e
ss

 r
a
te

DLSVM
Panchenko
MNB

Figure 3.1: Performance of DLSVM and previously proposed attacks against several pro-
posed defenses.

rand-cover

Page 1

0 0.25 0.5 0.75 1

Cover Traffic Overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

e
ss

 R
a
te

Figure 3.2: Performance of DLSVM against Tor with randomized pipelining, all packets
padded to 1500 bytes, and varying amounts of cover traffic.

If we double the size of the trace by adding extra cover traffic, our attack can determine the

target web page over 50% the time.

Figure 3.3 shows the bandwidth overheads of the defenses evaluated in this section. All

overheads are normalized to the SSH traces. HTTPOS has the lowest overhead, 36%, but is

not secure. The other defenses have overhead of over 60% compared to SSH.

Figure 3.4 shows that the DLSVM, Panchenko, and MNB classifiers work well for both

cold cache and warm cache page loads. Although we have not directly evaluated our web

page classifier on a mixed cold/warm workload, the web site classifiers evaluated in the next

section do use mixed workloads and perform well. Figure 3.4 also shows that the classifiers

perform well on randomly selected web pages loaded through Tor, not just the Alexa top

22

overhead

Page 1

SSH + HTTPOS

SSH + sample-based morphing

SSH packet count

Tor + rand. pipe.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
a
n
d

w
id

th
 o

v
e
rh

e
a
d

Figure 3.3: Bandwidth overheads of the defenses evaluated in this section.

success-vs-various

Page 1

Top 100 (cold) Top 100 (warm) Random 100
0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 r
a
te

DLSVM
Panchenko
MNB

Figure 3.4: Performance of DLSVM against Tor under various data collection scenarios.

100 pages.

Figure 3.5(a) shows how the different attacks perform as the number of web pages they

must distinguish increases. Not only does our attack outperform the Panchenko attack when

the number of candidate web pages is small, the gap widens as the size of the candidate set

increases. For example, our attack can guess which web page, out of 800, that a Tor user is

visiting 70% of the time. The Panchenko attack had a success rate of 40% on our set of 800

web pages.

Figure 3.5(b) shows how additional training data can improve the success rate of our

attack. Our attack provides satisfactory results, even with a small training set.

23

success-vs-n

Page 1

50 150 250 350 450 550 650 750

Number of web pages

0

0.2

0.4

0.6

0.8

1
S

u
cc

e
ss

 r
a
te

DLSVM
Panchenko
MNB

(a)

success-vs-k

Page 1

4 8 12 16 20 24 28 32 36

Number of training instances per web page

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

e
ss

 r
a
te

N=50
N=100
N=200
N=300
N=400
N=500
N=600
N=700
N=800

(b)

Figure 3.5: (a) Performance of DLSVM against Tor as a function of the number of possible
web pages. (b) Performance of our Tor web page classifier as a function of the training set
size.

3.3.2 Web Site Classifier

Experimental Setup. To evaluate the performance of our web site classifier, we created

models for two web sites censored by the Chinese “Great Firewall” – Facebook [23] and

IMDB [17] – and constructed page classifiers using the Alexa Top 99 pages, along with the

pages in our model for each site. We then collected additional traces for the pages in our

models, and ran those traces through the model to compute the probability distribution of

classifier outputs for each page in each model, as described in Chapter 3.2.

Our Facebook model covers the login page, the user’s home page, and a generic “friend

profile page”. It includes warm and cold cache instances of the home and profile pages.

Facebook’s home and profile pages use javascript to automatically fetch older items as the

user scrolls down the page of past notifications. Our model includes these events. The IMDB

model covers the IMDB home page, search results page, movie page, and celebrity page. It

includes warm and cold cache states for each page. Transition probabilities between states

are artificial for both models – a real attacker would derive these from observations of user

behavior and would likely have higher accuracy as a result. Initial state probabilities are

uniform, since the attacker may begin eavesdropping in the middle of a user’s session. See

Appendix A. HMMs for Facebook and IMDB for complete specifications of the models.

To test our site classifiers, we need traces of the URLs visited by real users. We obtained

URL traces for 25 subjects from Eelco Herder. He collected these traces for his empirical

study of web user behavior [69]. These traces, from users in Europe, contain numerous visits

to IMDB, but no visits to Facebook. Therefore, we have generated artificial traces for Face-

book. Our artificial Facebook traces construct visits to Facebook that follow our Facebook

model, i.e. we pick a starting Facebook page according to the initial state probabilities of our

24

model, and pick successive pages according to the transition probabilities of our model. We

then insert these into real traces so that we create a trace consisting of some Facebook visits

and some non-Facebook visits. Since the traces are generated from the same model that the

classifier uses, this is obviously an artificial experiment that overestimates the success rate of

our attack. However, the IMDB model underestimates the success rate due to the artificial

transition probabilities described above, so, together, these two experiments provide rough

bounds on the performance of our attack.

We visited the URLs via Tor to generate packet traces that the attacker would observe.

Unfortunately, Facebook is not compatible with Tor’s default configuration. By default, Tor

picks a new path every 10 minutes and, to Facebook, the user appears to be coming from

the last node in this path. When the path changes, the user appears to have moved from one

computer to another – which may be thousands of miles away – in 10 minutes. Facebook

detects this and logs the user out. Consequently, Tor users visiting Facebook must alter the

Tor configuration to use a fixed path. Thus, we collected all our Facebook data using a fixed

Tor path. fb_histgram-vs-prob

Page 1

6 8 10 12 14 16 18 20 22 24 26 28 30 32

Log likelihood (Facebook)

0

10

20

30

40

50

60

70

80

C
o
u
n
t

Facebook
Other

(a)

imdb_histgram-vs-prob

Page 1

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Log likelihood (IMDB)

0

5

10

15

20

25

30

C
o
u
n
t

IMDB
Other

(b)

Figure 3.6: (a) Distribution of log-likelihood scores (from the Facebook model) for Facebook
visits and non-Facebook visits. (b) Distribution of log-likelihood scores (from the IMDB
model) for IMDB visits and non-IMDB visits.

Results. Figures 3.6(a) and 3.6(b) show the histogram of log-likelihood scores, under

the Facebook and IMDB models, respectively, of 6-page windows of the traces we collected.

So, for example, for every window of 6 page loads in the IMDB traces, we ran the packet

traces for those 6 page loads through the IMDB model to compute a log-likelihood score.

We only considered windows that contained either all IMDB visits or all non-IMDB visits

– if a window had, say, 3 IMDB pages and 3 non-IMDB pages, we discarded it from the

histogram. As Figure 3.6(a) shows, the non-Facebook windows are completely separated

from the Facebook windows by our model, meaning our classifier works perfectly on this

25

counts-vs-varioussites

Page 1

Harry Potter (IMDB)
dammitalltohell battleon

robotwisdom
0

100

200

300

400

C
o
u
n
ts

Figure 3.7: The distribution of matching web pages for various IMDB movie pages. IMDB
movie pages almost always match our template sample – the IMDB movie page for Harry
Potter. When they didn’t match the Harry Potter page, they always matched one of 3 other
web pages out of our 100 distractor pages.

data set. In the IMDB experiment, the non-IMDB windows have, on average, a much higher

log-likelihood, indicating that they are not likely to be generated by our IMDB model.roc-fb

Page 1

0 0.2 0.4 0.6 0.8 1

FPR

0.98

0.985

0.99

0.995

1

T
P
R

(a)

roc-imdb

Page 1

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

(b)

Figure 3.8: Receiver operating curves for the (a) Facebook and (b) IMDB web site classifiers.

Figure 3.8 shows the receiver operating curves (ROC) for our Facebook and IMDB clas-

sifiers. These curves show the trade-off in False Positive and True Positive rates for varying

thresholds of the classifier. As indicated by the histogram in Figure 3.6(a), the Facebook

classifier can achieve 0 false positives and false negatives on our dataset. The IMDB classifier

can achieve a 7.9% FP rate and a 5.6% FN rate.

Figure 3.9 demonstrates how the log-likelihood score correlates with user visits to the

target web site over time. Note that these graphs plot traces from multiple browsing sessions

– the sessions are separated by gaps in the traces. Only sessions with at least 6 page loads,

26

fb_imdb-vs-pageload

Page 1

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

Page Load

0

5

10

15

20

25

30

35

Lo
g
 L

ik
e
lih

o
o
d
 (

Fa
ce

b
o
o
k)

Log likelihood (Facebook)
Visits to Facebook
Visits to other sites

(a)

imdb-vs-pageload

Page 1

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209

Page Load

0

5

10

15

20

25

30

35

Lo
g
 L

ik
e
lih

o
o
d
 (

IM
D

B
)

Log likelihood (IMDB)
Visits to IMDB
Visits to other sites

(b)

Figure 3.9: Log-likelihood scores from the (a) IMDB model and (b) Facebook model for
several real traces. Note that the log-likelihood scores are usually below the threshold during
visits to the target web site in the trace and above the threshold during visits to other web
sites.

and at least one page load from the target web site (Facebook or IMDB, respectively), are

included in the graphs. The thick, flat, pink line indicates portions of the trace containing

page loads from the target web site, page loads from other sites have a thin flat line. The

blue lines with markers plot the log-likelihoods of the six-page windows of page loads. As

the graphs show, the log-likelihood is below the threshold almost all the time that the user

is visiting the target web site, and above the threshold otherwise. An attacker can therefore

use our algorithms to pinpoint when a user visits a target web site.

Figure 3.7 shows anecdotally that our intuition about template matching is correct. We

created a set of 99 random web pages and 1 IMDB movie page (Harry Potter). We then

ran 100 trials of 4 other IMDB movie pages through the classifier and recorded the pages to

which the classifier matched them. The other movie pages matched the Harry Potter movie

page 95% of the time, indicating that an attacker can model template pages by using a single

instance as a representative of all instantiations of that template.

27

Chapter 4

Theoretical Foundations

Before developing an efficient defense system that provides good security, we need to

solve the following two problems:

• How to compare different defenses? When two defenses are evaluated against the

same attack, it can be difficult to compare them, since every defense offers a different

trade-off between overhead and security.

• How efficient can a defense be? Even if one defense strictly dominates all other

defenses in terms of security and efficiency, it is still not clear whether the attack is

optimal. We want to know how efficient a defense can be while offering a given level

of security.

In this chapter we first develop a model of website fingerprinting attacks and defenses,

and derive lower bounds on the bandwidth overhead of any defense that achieves a given

level of security. This enables us to compare defenses with different overhead/security trade-

offs by comparing how close they are to the optimal trade-off curve. We then analyze the

security against any attacker equipped with a multi-feature classifier. We develop the Glove

defense system in Chapter 6 based on the model and our analysis. Lastly we show how to

derive open-world performance from closed-world experimental results.

4.1 Security vs. Overhead Trade-Off

We focus on understanding the relationship between bandwidth overhead and security

guarantees. The overhead required by a fingerprinting defense depends on the set of web

sites to be protected – a set of similar websites can be protected with little overhead, a

set of dissimilar websites requires more overhead. To derive lower bounds, we consider an

28

offline version of the website fingerprinting defense problem, i.e. the defense system knows,

in advance, the set of websites that the user may visit and the packet traces that each website

may generate. We develop an efficient dynamic program to compute a lower bound on the

bandwidth overhead of any fingerprinting defense scheme in the closed-world setting.

4.1.1 Definitions

In a website fingerprinting attack, the defender selects a website, w, and uses the defense

mechanism to load the website, producing a packet trace, t, that is observed by the attacker.

The attacker then attempts to guess w.

Let W be a random variable representing the URL of the website selected by the de-

fender. The probability distribution of W reflects the probability that the defender visits

each website. For each website, w, let TDw and Tw be the random variables representing

the packet trace generated by loading w with and without defense system D, respectively.

Packet traces include the time, direction, and content of each packet. Since cryptographic

attacks are out of scope for this dissertation, we assume any encryption functions used by

the defense scheme are information-theoretically secure. The probability distribution of TDw

captures variations in network conditions, changes in dynamically-generated web pages, ran-

domness in the browser, and randomness in the defense system. We assume the attacker

knows the distribution of W and TDw for every w.

In a closed-world setting, the attacker’s goal is to infer W from TDW . The optimal closed-

world attacker, A, upon observing trace t, outputs

A(t) = argmax
w

Pr[W = w] Pr
[
TDw = t

]
If more than one w attains the maximum, then the attacker chooses randomly among them.

Some privacy applications require good worst-case performance, and some only require

good average-case performance. This leads to two security definitions for website fingerprint-

ing defenses:

Definition 1. A fingerprinting defense D is non-uniformly ε-secure for W iff Pr
[
A(TDW) = W

]
≤ ε. Defense D is uniformly ε-secure for W if maxw Pr

[
A(TDw) = w

]
≤ ε.

These are information-theoretic security definitions – A is the optimal attacker described

above. The first definition says that A’s average success rate is less than ε, but it does

not require that every website be difficult to recognize. The second definition requires all

websites to be at least ε difficult to recognize. All previous papers on website fingerprinting

29

attacks and defenses have reported average attack success rates in the closed-world model,

i.e. they have reported non-uniform security measurements. We will do the same.

To define the bandwidth overhead of a defense system, let B(t) be the total number of

bytes transmitted in trace t. We define the bandwidth ratio of defense D as

BWRatioD(W) =
E
[
B
(
TDW
)]

E [B (TW)]

This definition captures the overall bandwidth ratio between a user surfing the web while

using defense D and a user visiting the same websites with no defense.

4.1.2 Bandwidth Lower Bounds

In this section we derive an algorithm to compute, given websites w1, . . . , wn, a lower

bound for the bandwidth that any non-uniformly ε-secure fingerprinting defense can use in

a closed-world experiment using w1, . . . , wn.

To compute a lower bound on bandwidth, we consider an adversary that looks only at

the total number of bytes in a packet trace, i.e. an attacker AS that always guesses

AS(t) = argmax
w

Pr
[
B(TDw) = B(t)

]
Any defense that is ε-secure against an arbitrary attacker must also be at least ε-secure

against AS. If we can derive a lower bound on defenses that are ε-secure against AS, that

lower bound will apply to any ε-secure defense.

We make two simplifying assumptions in order to obtain an efficient algorithm for com-

puting lower bounds. First, we assume that each website has a unique fixed size, si. In our

closed-world experiments, we found that, for just over half the web pages in our data set,

their size had a normalized standard deviation of less than 0.11 across 20 loads, so we do

not believe this assumption will significantly impact the results of our analysis. Second, we

assume that the defense mechanism does not compress or truncate the website.

We prove the following theorem in Appendix B. Lower Bound Proofs:

Theorem 1. Suppose εn is an integer. Let W be a random variable uniformly distributed

over w1, . . . , wn, i.e. W represents a closed-world experiment. Suppose D is a defense that

is ε-non-uniformly-secure against AS on distribution W . Then there exists a monotonically

increasing function f from S = {s1, . . . , sn} to itself such that

• |f(S)| ≤ εn.

•
∑n

i=1 f(si)/
∑n

i=1 si ≤ BWRatioD(W).

30

Intuitively, f represents a mapping from each website’s original size (si) to the number

of bytes that D transmits when loading website wi.

This theorem enables us to efficiently compute a lower bound on the overhead of any de-

fense that is ε uniformly or non-uniformly secure in a closed-world experiment on w1, . . . , wn.

To get a lower bound for non-uniformly ε-secure defenses, we just need to find a monotoni-

cally increasing function f : S → S that satisfies |f(S)| ≤ εn and minimizes
∑n

i=1 f(si).

Such an f is equivalent to a partition S1, . . . , Sk of S satisfying k ≤ εn and minimizing∑k
i=1 |Si|maxs∈Si s. These partitions satisfy a recurrence relation. If S1, . . . , Sk is an optimal

non-uniformly k
n
-secure partition, then S1, . . . , Sk−1 is an optimal non-uniformly k−1

n−|Sk|
-secure

partition of S1 ∪ · · · ∪ Sk−1. Therefore the cost, C(k
n
, n), of the optimal f satisfies the

recurrence

C(
k

n
, n) =

 nsn if k = 1

min
1≤j≤n−1

C(
k − 1

n− j
, n− j) + jsn otherwise.

We can obtain a similar bound for uniformly ε-secure deterministic defenses. We say a

defense is deterministic if, on each load of website wi, it always transmits bi bytes. The

following theorem is proven in Appendix B. Lower Bound Proofs.

Theorem 2. Let W be uniformly distributed over w1, . . . , wn, i.e. W represents a closed-

world experiment. Suppose D is a deterministic defense that is uniformly ε-secure against

AS on distribution W . Then there exists a monotonically increasing function f from S =

{s1, . . . , sn} to itself such that

• mini |f−1(si)| ≥ 1/ε.

•
∑n

i=1 f(si)/
∑n

i=1 si ≤ BWRatioD(W).

As with the lower bound on non-uniformly secure defenses, such an f corresponds to a

partition S1, . . . , Sk of S satisfying mini |Si| ≥ 1/ε and minimizing
∑k

i=1 |Si|maxs∈Si s. These

partitions satisfy a slightly different recurrence. If S1, . . . , Sk is is an optimal uniformly ε-

secure partition of S, then S1, . . . , Sk−1 is an optimal uniformly ε-secure partition on S1 ∪
· · · ∪ Sk−1. Thus the cost, C(ε, n) of the optimal uniformly ε-secure partition satisfies the

recurrence relation:

C ′(ε, n) =

∞ if n < 1/ε

nsn if n ∈
[
1
ε
, 2
ε

)
min

1≤j≤n−1
ε

C ′(ε, n− j) + jsn otherwise.

Algorithm 1 shows a dynamic program for computing a lower bound on the bandwidth of

any defense that can achieve ε non-uniform security in a closed-world experiment on static

31

Algorithm 1 Algorithm to compute a lower bound on the bandwidth of any offline non-
uniformly ε secure fingerprinting defense against AS attackers.

function AS-min-cost(n, ε, {s1, . . . , sn})
Array C[0 . . . nε, 0 . . . n]
for i = 0, . . . , nε do

C[i, 0]← 0
end for
for i = 0, . . . , n do

C[0, i]←∞
end for
for i = 1→ n do

for j = 1→ nε do
C[j, i] = min1≤`≤i−1 [(i− `)si + C[j − 1, `]]

end for
end for
return C[nε, n]

end function

websites with sizes s1, . . . , sn in time O(n2ε). We use this algorithm to compute the lower

bounds reported in Chapter 5.3. The dynamic program for computing uniform security lower

bounds is similar.

4.1.3 Security Against Multiple Feature Classifiers

We now analyze the task of defending against attack classifiers that harness multiple

features including, but not restricted to trace lengths, trace sizes, packet sizes, and ordering

– e.g., the DLSVM attack described above. We will refer to such attackers as MF-attacker.

We show that finding the lowest-cost offline defense against MF-attackers is NP-hard, via a

reduction from the binary shortest common super-sequence problem. This reduction will also

show that the minimum bandwidth required by an offline defense against an MF-attacker

is at most twice the bandwidth lower bound computed in the previous section. This result

will show that offline defenses can achieve low cost and high security, suggesting a promising

avenue for developing a provably secure defense.

Suppose websites w1, . . . , wn are all static and constructed such that loading each site

requires performing a fixed, serialized sequence of requests and responses, e.g. each web page

contains a javascript program that loads objects one at a time in a fixed order. Let di[j] = 1

iff the jth byte that must be transmitted to load page wi is a transmission in the upstream

direction.

Loading website wi via a deterministic defense mechanism produces a fixed trace ti. Let

32

zi be the binary string defined by zi[j] = 1 iff the jth byte of ti is an upstream byte. Since,

for these websites, the defense mechanisms cannot delete or re-order bytes, we must have

that di is a sub-sequence of zi.

When the client loads a web site, producing trace t, the attacker can compute the corre-

sponding string, z. In order for the attacker to learn nothing about which web page the client

loaded, we must have that, for all i, di is a substring of z. Thus the defense system must

compute some string, z, that is simultaneously a super-sequence of d1, . . . , dn. Minimizing

the cost of such a defense is thus equivalent to finding the shortest common super-sequence

(SCS) of d1, . . . , dn. This problem is NP-hard[25].

However, there is a simple 2-approximation for the binary SCS problem. Let ` be the

length of the longest string d1, . . . , dn. Their SCS must be at least ` long, but is at most

2` long, since every binary string of length at most ` is a sub-sequence of (01)`. Thus for

any set of static websites w1, . . . , wn, there exists a deterministic offline defense that achieves

(uniform or non-uniform) ε-security against MF-attackers and incurs bandwidth cost that is

at most twice the bandwidth lower bound derived in the previous section.

4.2 From Closed To Open World

Most attack evaluations have used the artificial “closed-world” model, in which the victim

selects one of n websites uniformly randomly and the attacker attempts to guess the chosen

website based on the observed network traffic. This model has been criticized for being

unrealistic because, in a real attack depicted in the “open-world” model, the victim may

visit any website in the world[54], potentially making the attacker’s task much more difficult.

Consequently, some researchers have suggested that website fingerprinting attacks are in

fact a paper tiger[54]. However, the two models are connected: our DLSVM attack shows

how to bootstrap a closed-world attack into an open-world attack, such that better closed-

world performance yields better open-world performance. Thus, although experiments in

the closed-world cannot tell us whether an attack or defense will be successful in the real

world, we can use closed-world experiments to compare different attacks and defenses.

In this section, we show how to use closed-world experimental results to compute open-

world security of defenses and open-world performance of attacks. This makes attack and

defense evaluation simpler: researchers need only perform closed-world experiments to pre-

dict open-world performance.

In an open-world attack, the defender selects a website, W , according to some probability

distribution and generates a trace, TDW , corresponding to a visit to that website using some

defense, D. The attacker’s goal is to determine whether W = w∗, where w∗ is a particular

33

website of interest. (It is easy to generalize this definition to situations with multiple websites

of interest).

In the open-world setting, the distribution of the random variable W corresponds to the

popularity of different websites among the population of users being monitored in the attack.

So, for example, if the fingerprinting attacker is a government monitoring citizens Tor usage,

then W would be distributed according to the popularity of websites among that nation’s

Tor users.

Any closed-world attack can be used to construct an open-world attack by selecting

websites w2, . . . , wn and building a closed-world classifier, A, on w∗, w2, . . . , wn. The open-

world classifier is defined as C(t) = 1 iff A(t) = w∗.

We can compute the false positive rate of this open-world attack as follows. Let p∗ =

Pr[W = w∗] and pi = Pr[W = wi] for i = 2, . . . , n. We can obtain estimates for p∗, p2, . . . , pn

from public sources, such as the Alexa “Page-Views per Million” database [1]. Let Rn be

the average success rate of A in the closed-world, i.e.

Rn =

Pr[A(TDw∗) = w∗] +
n∑
i=2

Pr[A(TDwi) = wi]

n

Note that Rn is the standard performance metric used in closed-world evaluations. For

simplicity, we will assume that Pr[A(TDw∗) = w∗] = Rn. We also assume that, whenever A

misclassifies a trace, there is a 1/n chance that it misclassifies the trace as w∗, i.e. that

Pr[A(TDW) = w∗|W 6= w∗ ∧ A(TDW) 6= W] = 1/n. Essentially, these two assumptions are

equivalent to assuming that w∗ is not particularly difficult or easy for A to recognize. With

34

these assumptions, we can compute C’s false-positive rate:

FPR(C) = Pr[C(TDW) = 1|W 6= w∗]

=
∑
w 6=w∗

Pr[W = w] Pr[C(TDw) = 1]

1− p∗

=
∑
w 6=w∗

Pr[W = w] Pr[A(TDw) = w∗]

1− p∗

=
n∑
i=2

Pr[W = wi] Pr[A(TDwi) = w∗]

1− p∗

+

(
1−

n∑
i=2

Pr[W = wi]

)
1

n(1− p∗)

=
1−Rn

n(1− p∗)

n∑
i=2

pi +
1

n(1− p∗)

(
1−

n∑
i=2

pi

)

With the same assumptions, the true positive rate of C is

TPR(C) = Pr[C(TDW) = 1|W = w∗] = Rn

The choice of the websites w2, . . . , wn used to build A will affect the performance of C

in the open world. The choice of websites affects the false-positive rate in two ways: (1)

choosing less popular websites tends to increase the false-positive rate since it decreases
n∑
i=2

pi,

and (2) choosing more similar websites increases the false-positive rate by reducing Rn. The

choice of websites affects the true-positive rate only through Rn. Chapter 3.3 shows that the

Alexa top 100 websites were about as similar as 100 randomly chosen websites, i.e. that the

most popular websites are not particularly similar to each other. Thus it is generally a good

strategy to choose w2, . . . , wn to be the most popular websites other than w∗.

Similarly, the number, n, of websites used to build A affects the false-positive rate in

two ways: (1) increasing n tends to increase the false positive rate by lowering Rn, and (2)

increasing n tends to decrease the false-positive rate since it increases
n∑
i=2

pi. Increasing n

can only decrease the true-positive rate.

Thus we can tune the false-positive and true-positive rates of C by varying n. Small n

will have large true- and false-positive rates. Increasing n will reduce both the false- and

true-positive rates. By varying n, we can generate the receiver operating curve (ROC) of C.

In the real world, visits to w∗ may be rare. In this case, false-positive rate can be a

misleading metric. A classifier with a low false-positive rate may still be useless if true

35

positives are so rare that they are overwhelmed by false positives. Therefore, we also report

true-discovery rates for the open-world attack and defense evaluations in this dissertation.

Given an open-world classifier, C, its true-discovery rate is defined as

TDR(C) = Pr[W = w∗|C(TDW) = 1].

Intuitively, the true-discovery rate is the fraction of alarms that are true alarms. The true-

discovery rate can be computed from the false-positive and true-positive rates as follows:

TDR(C) =
Pr[W = w∗] TPR(C)

Pr[W = w∗] TPR(C) + Pr[W 6= w∗] FPR(C)

=
p∗Rn

p∗Rn + 1−Rn
n

n∑
i=2

pi + (1−
∑n

i=2 pi)
1
n

36

Chapter 5

Congestion-Sensitive BuFLO

5.1 Design

Dyer, et al., described BuFLO, a hypothetical defense scheme that hides all information

about a website, except possibly its size, and performed a simulation-based evaluation that

found that, although BuFLO is able to offer good security, it incurs a high cost to do so.

In this section, we describe Congestion-Sensitive BuFLO (CS-BuFLO), an extension to

BuFLO that includes numerous security and efficiency improvements. CS-BuFLO represents

a new approach to the design of fingerprinting defenses. Most previously-proposed defenses

were designed in response to known attacks, and therefore took a black-listing approach to

information leaks, i.e. they tried to hide specific features, such as packet sizes. In designing

CS-BuFLO, we take a white-listing approach – we start with a design that hides all traffic

features, and iteratively refine the design to reveal certain traffic features that enable us to

achieve significant performance improvements without significantly harming security.

5.1.1 Review of BuFLO

The Buffered Fixed-Length Obfuscator (BuFLO) of Dyer, et al., transmits a packet of

size d bytes every ρ milliseconds, and continues doing so for at least τ milliseconds. If

b < d bytes of application data are available when a packet is to be sent, then the packet

is padded with d − b extra bytes of junk. The protocol assumes that the junk bytes are

marked so that the receiver can discard them. If the website does not finish loading within τ

milliseconds, then BuFLO continues transmitting until the website finishes loading and then

stops immediately. Dyer, et al., did not specify how BuFLO detects when the website has

finished loading. They also did not specify how BuFLO handles bidirectional communication

– presumably independent BuFLO instances are run at each end-point.

37

BuFLO effectively hides everything about the website, except possibly its size, but has

several shortcomings:

• It either completely hides the size of the website or completely reveals it (±d bytes).

Thus it does not provide the same level of security to all websites.

• BuFLO has large overheads for small websites. Thus its overhead is also unevenly

distributed.

• BuFLO is not TCP-friendly. In fact, it is the epitome of a bad network citizen.

• BuFLO does not adapt when the user is visiting fast or slow websites. It wastes

bandwidth when loading slow sites, and causes large latency when loading fast websites.

• BuFLO must be tuned to each user’s network connection. If the BuFLO bandwidth,
1000d
ρ

B/s, exceeds the user’s connection speed, then BuFLO will incur additional delay

without improving security.

• Past research by Fu, et al., showed that transmitting at fixed intervals can reveal load

information at the sender, which an attacker can use to infer partial information about

the data being transmitted[24].

Dyer, et al., proposed BuFLO as a straw-man defense system, so it is understandable that

they did not bother addressing these problems. However, we show below that several of these

problems have common solutions, e.g. we can simultaneously improve overhead and TCP-

friendliness, simultaneously make security and overhead more uniform, etc. Thus, as our

evaluation will show, CS-BuFLO may be a practical and efficient defense for users requiring

a high level of security.

Further, as noted by its authors, BuFLO’s simulation based results “reflect an ideal

implementation that assumes the feasibility of implementing fixed packet timing intervals.

This is at the very least difficult and clearly impossible for certain values of ρ. Simulation

also ignores the complexities of cross-layer communication in the network stack” [20]. As a

result, it remains unclear how well the defense performs in the real world.

5.1.2 Overview of Congestion-Sensitive BuFLO

Algorithm 2 shows the main loop of the CS-BuFLO server. The client loop is similar,

except for the few differences discussed throughout this section. Similarly to BuFLO, CS-

BuFLO delivers fixed-size chunks of data at semi-regular intervals. CS-BuFLO randomizes

the timing of network writes in order to counter the attack of Fu, et al.[24], but it maintains

38

packet that contains only junk

packet that contains only real payload

packet that contains both real payload and junk

packet travelling in the opposite direction that contains real payload

burst of packets travelling in the same direction

time

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

2K bytes
data sent

2k+1 bytes
data sent

Figure 5.1: Rate adaptation in CS-BuFLO. ρ∗ is updated based on the packets transmitted
to the other end between T2 and T15. Time intervals between two consecutive packets are
stored in an array Intervals[]. The two packets under consideration both contain some real
payload data and they belong to the same burst. i.e. Intervals = [T3 − T2, T5 − T3, T9 −
T8, T12 − T11, T14 − T12, T15 − T14] and ρ∗ = 2blog2Median(Intervals[])c.

a target average inter-packet time, ρ∗. CS-BuFLO periodically updates ρ∗ to match its

bandwidth to the rate of the sender (Chapter 5.1.3). Since updating ρ∗ based on the sender’s

rate reveals information about the sender, CS-BuFLO performs these updates infrequently.

CS-BuFLO uses TCP to be congestion friendly, and uses feedback from the TCP stack in

order to reduce the amount of junk data it needs to send (Chapter 5.1.4). Also like BuFLO,

CS-BuFLO transmits extra junk data after the website has finished loading in order to hide

the total size of the website. However, CS-BuFLO uses a scale-independent padding scheme

(Chapter 5.1.5) and monitors the state of the page loading process to avoid some unnecessary

overheads (Chapter 5.1.6).

5.1.3 Rate Adaptation

CS-BuFLO adapts its transmission rate to match the rate of the sender. This reduces

wasted bandwidth when proxying slow senders, and it reduces latency when proxying fast

senders. However, adapting CS-BuFLO’s transmission rate to match the sender’s reveals

information about the sender, and therefore may harm security.

As shown in Figure 5.1, CS-BuFLO takes several steps to limit the information that is

leaked through rate adaptation. First, it only adapts after transmitting 2k bytes, for some

integer k. Thus, during a session in which CS-BuFLO transmits n bytes, CS-BuFLO will

perform log2 n rate adjustments, limiting the information leaked from these adjustments.

39

Algorithm 2 The main loop of the Congestion-Sensitive BuFLO server.

function CSBUFLO-Server(s)
while true do

(m, ρ) = read-message(ρ)
if m is application data from website then

output-buff ← output-buff ‖ data
real-bytes ← real-bytes + length(m)
last-site-response-time ← current-time

else if m is application data from client then
send m to the website
ρ-stats ← ρ-stats ‖ ⊥
onLoadEvent ← 0, padding-done ← 0

else if m is onLoad message then
onLoadEvent ← 1

else if m is padding-done message then
padding-done ← 1

else if m is a time-out then
output-buff-bytes ← length(output-buff)
(output-buff, j) ← cs-send(s, output-buff)
junk-bytes ← junk-bytes + j
real-bytes-sent ← real-bytes-sent + output-buff-bytes - length(output-buf) - j
if real-bytes-sent ≥ packet-size then

real-bytes-sent ← real-bytes-sent - packet-size
ρ-stats ← ρ-stats ‖ current-time

end if
end if
if done-xmitting then

reset all variables
else . ρ∗ : Average time between sends to client

if ρ∗ =∞ then
ρ∗ ← initial-rho

else if crossed-threshold(real-bytes + junk-bytes) then
ρ∗ ← rho-estimator(ρ-stats,ρ∗)
ρ-stats ← ∅

end if

if m is a time-out then
ρ← random number in [0, 2ρ∗]

end if
end if

end while
end function

40

Algorithm 3 Algorithm for estimating new value of ρ∗ based on past network performance.

function rho-estimator(ρ-stats, ρ∗)
I ← [ρ-statsi+1 − ρ-statsi | ρ-statsi 6=⊥ ∧ρ-statsi+1 6=⊥]
if I is empty list then

return ρ∗

else
return 2blog2 median(I)c

end if
end function

This choice also allows CS-BuFLO to adapt more quickly during the beginning of a session,

when the sender is likely to be performing a TCP slow start. During this phase, CS-BuFLO

is able to ramp up its transmission rate just as quickly as the sender can.

CS-BuFLO further limits information leakage by using a robust statistic to update ρ∗.

Between adjustments, it collects estimates of the sender’s instantaneous bandwidth. It then

sets ρ∗ so as to match the sender’s median instantaneous bandwidth. Median is a robust

statistic, meaning that the new ρ∗ value will not be strongly influenced by bandwidth bursts

and lulls, and hence ρ∗ will not reveal much about the sender’s transmission pattern.

Note that the estimator only collects measurements during uninterrupted bursts from

the sender. This ensures that the bandwidth measurements do not include delays caused by

dependencies between requests and responses.

For example, if the estimator sees a packet p1 from the website, then a packet p2 from the

client, and then another packet p3 from the website, it may be the case that p3 is a response

to p2. In this case, the time between p1 and p3 is constrained by the round trip time, not

the website’s bandwidth.

Finally, CS-BuFLO rounds all ρ∗ values up to a power of two. This further hides infor-

mation about the sender’s true rate, and gives the sender room to increase it’s transmission

rate, e.g. during slow start.

5.1.4 Congestion-Sensitivity

There’s a trivial way to make BuFLO congestion sensitive and TCP friendly: run the

protocol over TCP. However, this simple approach misses an opportunity for increasing

efficiency: when the network is congested, BuFLO does not need to insert junk data to fill

the output buffer.

Algorithm 4 shows our method for taking advantage of congestion to reduce the amount

of junk data sent by CS-BuFLO. Note first that cs-send always writes exactly d bytes to

the TCP socket. Since the amount of data presented to the TCP socket is always the same,

41

Algorithm 4 Algorithm for sending data and using feedback from TCP. Socket s should be
configured with O NONBLOCK.

function cs-send(s, output-buff)
n←length(output-buff)
j ← 0
if n < packet-size then

j ← packet-size− n
output-buff ← output-buff ‖ j

end if
r ← write(s, output-buff, packet-size)
if r ≥ n then . Optional: reclaim unsent junk

output-buff← empty buffer
j ← r − n

else
remove last j bytes from output-buff
remove first r bytes from output-buff
j ← 0

end if
return (output-buff, j)

end function

this algorithm reveals no information about the timing or size of application-data packets

from the website that have arrived at the CS-BuFLO proxy.

This algorithm takes advantage of congestion to reduce the amount of junk data it sends.

To see why, imagine the TCP connection to the client stalls for an extended period of time.

Eventually, the kernel’s TCP send queue for socket s will fill up, and the call to write will

return 0. From then until the TCP congestion clears up, CS-BuFLO calls to cs-send will

not append any further junk data to B.

5.1.5 Stream Padding

CS-BuFLO hides the total size of real data transmitted by continuing to transmit extra

junk data after the browser and web server have stopped transmitting.

Table 5.1 shows two related padding schemes we experimented with in CS-BuFLO. Both

schemes introduce at most a constant factor of additional cost, but reveal at most a loga-

rithmic amount of information about the size of the website. The first scheme, which we call

payload padding, continues transmitting until the total amount of transmitted data (R+ J)

is a multiple of 2dlog2Re. This padding scheme will transmit at most 2dlog2Re additional bytes,

so it increases the cost by at most a factor of 2, but it reveals only log2R.

The second scheme, which we call total padding, continues transmitting until R+ J is a

42

Padding
Schemes

Payload Sent
Before Padding

Junk Sent
Before Padding

Total Bytes Sent
After Padding

payload
padding

R J c2dlog2Re

total
padding

R J 2dlog2(R+J)e

Table 5.1: Two different padding schemes for CS-BuFLO.

Algorithm 5 Definition of the done-xmitting function.

function done-xmitting
return length(output-buff)← 0 ∧channel-idle(onLoadEvent,last-site-response-time)∧

(padding-done ∨ crossed-threshold(real-bytes + junk-bytes))
end function

function channel-idle(onLoadEvent, last-site-response-time)
return onLoadEvent ∨ (last-site-response-time + quiet-time < current-time)

end function

function crossed-threshold(x)
return blog2(x− packet-size)c < blog2 xc

end function

power of 2. This also increases the cost by at most a factor of 2 and reveals, in the worst

case, log2R, but it will in practice hide more information about R than payload padding.

Note that the CS-BuFLO server and the CS-BuFLO client do not have to use the same

stream padding scheme. Thus, there are four possible padding configurations, which we

denote CPSP (client payload, server payload), CPST (client payload, server total), CTSP

(client total, server payload) and CTST (client total, server total).

In order to determine when to stop padding, the CS-BuFLO server must know when

the website has finished transmitting. Congestion-Sensitive BuFLO uses two mechanisms to

recognize that the page has finished loading. First, the CS-BuFLO client proxy monitors for

the browser’s onLoad event. The CS-BuFLO client notifies the CS-BuFLO server when it

receives the onLoad event from the browser. Once the CS-BuFLO server receives the onLoad

message from the client, it considers the web server to be idle (see Algorithm 5) and will stop

transmitting as soon as it adds sufficient stream padding and empties its transmit buffer.

As a backup mechanism, the CS-BuFLO server considers the website idle if quiet-time

seconds pass without receiving new data from the website. We used a quiet-time of 2

seconds in our prototype implementation.

43

5.1.6 Early Termination

As described above, the CS-BuFLO server is likely to finish each page load by sending

a relatively long tail of pure junk packets. This tail can be a significant source of overhead

and, somewhat surprisingly, may not provide much additional security.

Our initial investigations revealed that the long tail served two purposes which could

also be served through other, more efficient means. As mentioned above, the long tail helps

hide the total size of the website. However, the interior padding performed by cs-send also

obscures the total size of the website. Our evaluation in Chapter 5.3 investigates the security

impact of additional stream padding.

In the specific context of web browsing, the long tail also hides the size of the last object

sent from the web server to the client. The attacker can infer some information about the

size of this object by measuring the amount of data the CS-BuFLO server sends to the

CS-BuFLO client after the CS-BuFLO client stops transmitting to the CS-BuFLO server.

However, this information can also be hidden by having the CS-BuFLO client continue to

send junk packets to the CS-BuFLO server, i.e. more aggressive stream padding from the

CS-BuFLO client may obviate the need for aggressive padding at the CS-BuFLO server.

Based on these ideas, we implemented an early termination feature in our CS-BuFLO

prototype. The CS-BuFLO client notifies the CS-BuFLO server that it is done padding.

After receiving this message, the CS-BuFLO server will stop transmitting as soon as the

web server becomes idle and its buffers are empty.

Figure 5.2 illustrates how the padding scheme used by the client and server can interact,

including the impact of early termination. Additional client padding can hide the size of the

last HTTP object, and early termination can avoid unnecessary padding. Our evaluation

investigates the overhead/security trade-offs between different padding regimes at the client

and server, and how they interact with early termination.

5.1.7 Packet Sizes

Sending fixed-length packets hides packet size information from the attacker. Although

any fixed length should work, it is important to choose a packet length that maximizes

performance. Since we may transmit pure dummy packets during the transmission, larger

packets tend to cause higher bandwidth overhead, and on the other hand, smaller packets

may not make full use of the link between the client and server, thus increase the loading

time.

Preliminary investigations revealed that over 95.7% of all upstream packet transmissions

are under 600 bytes, therefore, this was used as the standard packet size in our experiments.

44

done

done

CPSP without
early termination

Client done

Server doneServer padding

CPSP with
early termination

CTSP with
early termination

CTSP without
early termination Server padding

Client done

Client done

Client done

Server done

Server done

Server done

Time

Client transmitting

Client transmitting

Client transmitting

Client transmitting

Server transmitting

Server transmitting

Server transmitting

Server transmitting

Figure 5.2: The interaction between client and server padding schemes and early termination.
More padding at the client can help hide the size of the last object sent from the server to
the client. Early termination can avoid unnecessary padding at the end of a page load.

5.2 Prototype Implementation

We modified OpenSSH5.9p1 to implement Algorithm 2. However, the optional junk

recovery algorithm described in Algorithm 4 was not implemented.

The SSH client was also modified to accept a new SOCKS proxy command code, on-

LoadCmd. This command was used to communicate to the server when to stop padding (as

described in Chapter 5.1.5). A Firefox plugin, OnloadNotify, that, upon detecting the page

onLoad event, connects to the SSH client’s SOCKS port and issues the onLoadCmd, was

also developed.

In addition, the following OpenSSH message types were used:

1. The OpenSSH message type SSH MSG IGNORE, which means all payload in a packet of

this type can be ignored, was used to insert junk data whenever needed.

2. The SSH MSG NOTIFY ONLOAD message was created to be used by the client to commu-

nicate reception of onLoadCmd from the browser, to the server. Upon receiving this

message from the client, the CS-BuFLO server stops transmitting as soon as it empties

its buffer and adds sufficient stream padding.

3. The SSH MSG NOTIFY PADDINGDONE message was created to implement the early ter-

mination feature of CS-BuFLO. Upon receiving this message from the client, the CS-

45

BuFLO server stops transmitting as soon as the web server becomes idle and its buffers

are empty.

All the above messages were buffered and transmitted just like other messages in Algo-

rithm 2, i.e. using cs-send, therefore an attacker is unable distinguish these messages from

other traffic.

5.3 Congestion-Sensitive BuFLO Evaluation

We investigated several questions during our evaluation of Congestion-Sensitive BuFLO:

• How do the different stream padding schemes affect performance and security of CS-

BuFLO? What is the effect of adding early termination to the protocol?

• How does CS-BuFLO’s security and overhead compare to Tor’s, and how do they both

compare to the theoretical minimums derived in Chapter 4.1.2?

• Can we use the theoretical lower bounds to enable us to compare defenses that have

different overhead/security trade-offs?

5.3.1 Experimental Setup

For our main experiments, we collected traffic from the Alexa top 200 functioning, non-

redirecting web pages using four different defenses: plain SSH, Tor, CS-BuFLO with the

CTSP padding and early termination, and CS-BuFLO with CPSP padding and early termi-

nation. We also collected several smaller data sets using other configurations of CS-BuFLO,

but these are only used in the padding scheme evaluations (Table 5.2).

We constructed a list of the Alexa top 200 functioning, non-redirecting, unique pages,

as follows. We removed web pages that failed to load in Firefox (without Tor or any other

proxy). We replaced URLs that redirected the browser to another URL with their redirect

target. Some websites display different languages and contents depending on where the page

is loaded, e.g. www.google.com and www.google.de. We kept only one URL for this type of

website, i.e. we only had www.google.com in our set. Our data set consisted of Alexa’s 200

highest-ranked pages that met these criteria.

We collected 20 traces of each URL, clearing the browser cache between each page load.

We collected traces from each web page in a round-robin fashion. As a result, each load of

the same URL occurred about 5 hours apart.

Measuring the precise latency of a fingerprinting defense scheme poses a challenge: we

can easily measure the time it takes to load a page using the defense, but we cannot infer

46

the exact time it would have taken to load the page without the defense. Therefore, every

time we loaded a page using a defense, we immediately loaded it again using SSH to get an

estimate of the time it would have taken to load the page without the defense in place. We

then compute latency ratios the same way we compute bandwidth ratios, i.e. if L(t) is the

total duration of a packet trace, the latency ratio of a defense scheme is

E
[
L(TDW)

]
E [L(TW)]

We collected network traffic using several different computers with slightly different ver-

sions of Ubuntu Linux – ranging from 9.10 to 11.10. We used Firefox 3.6.23-3.6.24 and Tor

0.2.1.30 with polipo HTTP Proxy. All Firefox plugins were disabled during data collection,

except when collecting CS-BuFLO traffic, where we enabled the OnloadNotify plugin. Three

of the computers had 2.8GHz Intel Pentium CPUs and 2GB of RAM, one computer had

a 2.4GHz Intel Core 2 Duo CPU with 2GB of RAM. We scripted Firefox using Ruby and

captured packets using tshark, the command-line version of wireshark. For the SSH experi-

ments, we used OpenSSH5.3p1. Our Tor clients used the default configuration. SSH tunnels

passed between two machines on the same local network.

We measured the security of each defense by using the three best traffic analysis attacks

in the literature: VNG++ [20], the Panchenko SVM [50], and DLSVM described in Chapter

3. We ran each of the above classifiers against the traces generated by each defense using

stratified 10-fold cross validation.

5.3.2 Results

Padding Early Termination Bandwidth Cost Latency VNG++ Accuracy

CTSP Yes 3.59 3.91 29.0%

CTSP No 3.73 3.51 29.6%

CPSP Yes 2.60 2.87 34.2%

CPSP No 3.42 3.52 36.0%

Table 5.2: Security and performance of Congestion-Sensitive BuFLO variants. VNG++
success rate is the probability that the attack was able to correctly guess which of 50 web
pages the user was visiting.

Padding Schemes. Table 5.2 shows the bandwidth ratio, latency ratio, and security

(estimated using the VNG++ attack) of four different versions of CS-BuFLO on a data set

47

of 50 websites. Note that early termination does not appear to affect security, although

it can significantly reduce overhead in some configurations. All other experiments in this

dissertation use early termination. The client padding scheme, on the other hand, appears

to control a trade-off between overhead and security. Therefore we report the rest of our

results for both CPSP and CTSP padding.

Security Comparison. Figure 5.3 shows the level of security various defense schemes

provide against three different attacks, as the number of web pages the attacker needs to

distinguish increases. Note that the CS-BuFLO schemes have significantly better security

than Tor and SSH. For each defense scheme, we compute its average bandwidth cost, BO, and

plot the lower bound on security that can be achieved within that cost, using the algorithm

from Chapter 4.1.2.

graph-all-attacks-vs-sites-CPSM

Page 1

20 40 60 80 100 120 140 160 180 200

Number of Sites

0

0.2

0.4

0.6

0.8

1

n
o
n
-u

n
if
o
rm

 s
e
cu

ri
ty

VNG++ against CTSP
Panchenko SVM againts CTSP
DLSVM againts CTSP
Optimal defense (2.87x BO)

(a) CS-BuFLO (CTSP)

graph-all-attacks-vs-sites-CMSM

Page 1

20 40 60 80 100 120 140 160 180 200

Number of Sites

0

0.2

0.4

0.6

0.8

1

n
o
n
-u

n
if
o
rm

 s
e
cu

ri
ty

VNG++ againts CPSP
Panchenko SVM againts CPSP
DLSVM againts CPSP
Optimal defense (2.39x BO)

(b) CS-BuFLO (CPSP)

graph-all-attacks-vs-sites-tor

Page 1

20 40 60 80 100 120 140 160 180 200

Number of Sites

0

0.2

0.4

0.6

0.8

1

n
o
n
-u

n
if
o
rm

 s
e
cu

ri
ty

VNG++ against Tor
Panchenko SVM against Tor
DLSVM against Tor
Optimal defense (1.25x BO)

(c) Tor

graph-all-attacks-vs-sites-vanilla-ssh

Page 1

20 40 60 80 100 120 140 160 180 200

Number of Sites

0

0.2

0.4

0.6

0.8

1

n
o
n
-u

n
if
o
rm

 s
e
cu

ri
ty

VNG++ against SSH
Panchenko SVM against SSH
DLSVM against SSH
Optimal defense (1.13x BO)

(d) SSH

Figure 5.3: Security of CS-BuFLO, Tor, and SSH compared to the optimal defense from
Chapter 4.1.2, as a function of the number of possible web pages.

Bandwidth Cost. Figure 5.4 plots the costs of SSH, Tor, and CS-BuFLO with CTSP

and CPSP padding. SSH has almost no overhead, and Tor’s overhead is about 25% on aver-

age. CS-BuFLO with CPSP has an average overhead of 129%, CTSP has average overhead

180%. Thus CS-BuFLO’s improved security does come at a price.

48

graph-overhead-vs-sites

Page 1

20 40 60 80 100 120 140 160 180 200

Number of Sites

0

0.5

1

1.5

2

2.5

3

3.5

B
a
n
d
w

id
th

 O
v
e
rh

e
a
d

CTSP
CPSP
Tor
SSH

Figure 5.4: Bandwidth costs of various defense schemes as a function of the number of
possible web pages.

Theoretical Bounds. Figure 5.5 evaluates CS-BuFLO, Tor, SSH, and BuFLO against

the theoretical lower bounds developed in Chapter 4.1.2.

Figure 5.5(a) shows the results of our empirical evaluation of CS-BuFLO, Tor, and SSH

on n = 120 sites and using the DLSVM attack to estimate security. We limit to 120 sites

to make it easier to compare with the BuFLO results reported by Dyer, et al., and which

use 128 sites. There is a significant gap between the bandwidth of CS-BuFLO and the lower

bound. However, as can be seen in Figure 5.5(c), CS-BuFLO in CTSP mode is over 6×
closer to the trade-off lower bound than Tor for 200 sites, and is the most efficient scheme

across all sizes we measured.

Figure 5.5(b) presents the results of our empirical evaluation of CS-BuFLO, Tor, and

SSH on n = 120 websites, using the Panchenko attack to estimate security. We also present

Dyer’s reported results from their experiments with BuFLO on 128 sites, also using the

Panchenko attack. Note that, since Dyer used 128 sites to evaluate BuFLO, this slightly

over-estimates BuFLO’s security compared to the other schemes plotted in the figure. Also,

recall that Dyer’s experiments with BuFLO were all based on simulation.

Despite the differences in experimental methodology, we can see that CS-BuFLO offers

performance in the same general range as the BuFLO configurations from Dyer’s paper, but

has slightly worse security in our experiments.

Figure 5.5(d) shows that, based on our experiments and the simulation results of Dyer,

et al., all but one BuFLO configuration get closer to the trade-off lower bound curve than

CS-BuFLO, Tor, and SSH (SSH is omitted from the graph because its ratio to the lower

bound was never less than 400). This figure also highlights a difference between the DLSVM

and Panchenko attacks. In the DLSVM results shown in Figure 5.5(c), Tor and SSH diverge

49

from CS-BuFLO. In the Panchenko results in Figure 5.5(d), Tor and CS-BuFLO appear to

be equally close to the lower bound.
Results-120-sites-BOHvsEps

Page 1

0 0.2 0.4 0.6 0.8 1

ϵ

1

2

3

4

5

6

B
a
n
d
w

id
th

 R
a
ti

o

Non-Uniform Bound
CTSP (Real World)
CPSP (Real World)
SSH (Real World)
Tor (Real World)

(a) DLSVM, n = 120

Results-120-sites-P

Page 1

0 0.2 0.4 0.6 0.8 1

ϵ

1

2

3

4

5

6

B
a
n
d
w

id
th

 R
a
ti

o

Non-Uniform Bound
CTSP (Real World)
CPSP (Real World)
SSH (Real World)
Tor (Real World)
BuFLO (Simulation)

(b) Panchenko, n = 120

graph-closeness-vs-sites

Page 1

20 40 60 80 100 120 140 160 180 200

Number of sites

0

100

200

300

400

500

600

700

O
v
e
rh

e
a
d
 /

 L
o
w

e
r

B
o
u
n
d CTSP (Real World)

CPSP (Real World)
Tor (Real World)
SSH (Real World)

(c) DLSVM

graph-closeness-vs-sites-panchenko

Page 1

20 40 60 80 100 120 140 160 180 200

Number of sites

0

50

100

150

200

250

O
v
e
rh

e
a
d
 /

 L
o
w

e
r

B
o
u
n
d CTSP (Real World)

CPSP (Real World)
Tor (Real World)
BuFLO (Simulation)

(d) Panchenko

Figure 5.5: Non-uniform lower bounds on bandwidth ratio, as a function of the security
parameter, ε, and specific trade-off points of the systems evaluated. The BuFLO results are
taken from Dyer, et al. [20], and therefore use n = 128. SSH is omitted from Figure 5.5(d)
because its ratio to the lower bound was always greater than 400.

50

Chapter 6

Glove

Previous work on fingerprinting defenses have evaluated security of defenses by testing

them against known attacks. Unfortunately, this approach can only show that a defense is

ineffective, but cannot prove that a defense is secure. In this chapter, we present Glove,

a defense scheme that is designed to defeat an ideal attacker, who can not distinguish two

websites if and only if they generate the same sequence of network traffic observation. Thus

the security provided by our defense is attack-independent therefore, we call Glove a provably

secure defense, because it gives an upper bound on the success rate of any attack, regardless

of its attacking method.

6.1 Design

The gap between the performance of existing defenses and the theoretical lower bounds

derived in Chapter 4.1.2 suggests that, if a defense remembers information about websites

seen in the past, it may be able to insert the cover traffic in a smart way that incurs little

bandwidth overhead. In Chapter 4.1.3 we analyzed how to defend against MF-attackers

using the shortest common super-sequence(SCS). We build Glove based on these insights.

Glove consists of an offline training phase and an online defending phase. During the

training phase, Glove collects traces of web pages, clusters the pages by their network-level

features, and computes, for each cluster, a transcript of packet sizes and timings. During the

defending phase, Glove replays the transcript whenever a user loads one of the pages in that

cluster. Glove can also be viewed as simply optimizing for the common case in CS-BuFLO.

Instead of sending packets between the proxy end-points at fixed schedules, Glove optimizes

this approach by using prior knowledge about popular websites to select a packet schedule

that uses less bandwidth but still hides the identity of the website. For websites for which

Glove does not have prior knowledge, it falls back to CS-BuFLO.

51

6.1.1 Security Guarantee

The network traffic generated by loading a web page consists of a sequence of packets,

which we call a trace. Packets in a trace can be divided into two categories: request packets

transmitted from a client to a web server, and response packets directed to the client. From

a different point of view, we can say the contents of a web page are covered by its trace. We

also define super-trace as follows:

Definition 2 (Super-Trace). We say that a trace S is the super-trace of traces t1, . . . , tn iff

each trace ti may be transformed into trace S by some sequence of the following actions:

• Inserting: Inserting request or response packets.

• Merging: Merging consecutive requests or responses.

• Splitting: Splitting a packet into a set of smaller sized packets such that the sum of

their sizes is maintained.

• Delaying: Increasing delays between a response packet and its succeeding request

packet, and vice-versa.

Clearly, from Definition 2 we can see that, trace ti of web page wi can be replaced by

super-trace S (at the cost of additional bandwidth and latency overhead). This is because

S has enough data packets to cover the contents in wi, while maintaining the temporal

dependencies between requests and responses in ti. To protect n websites w1, . . . , wn, Glove

does two things: First, it divides the traces of these websites into k clusters based on rules

we will describe later. Second, for all the traces within a cluster, Glove computes a single

super-trace.

Observe that Glove plays the same trace Sc, i.e. the transcript, whenever a web page

in cluster c is loaded, thus generating the same observation to an attacker. Glove therefore

meets the information theoretic definitions of security described in Definition 1. For example,

let C be the smallest cluster among all k clusters. Because loading all web pages in C yield

the same observation to an attacker A, the probability that A can correctly guess which web

page is loaded is 1
|C| . Since C is the smallest cluster, Glove is a uniformly ε-secure defense,

where ε = 1
|C| here. Similarly, Glove can be tuned to achieve non-uniformly ε security.

6.1.2 Clustering Web Pages

Because Glove only plays the super-trace during the defending phase, the bandwidth

overhead of the defense depends on how we cluster the web page traces and compute the

52

super-trace. Intuitively, if we put traces that have similar sizes, packet orderings and timings

into the same cluster, it is easier to compute a super-trace with low overhead for the cluster.

To find traces that have similar packet orderings and timings, we can treat a trace as

a time series, i.e. a byte sequence with time stamps. The time stamp of each byte is the

time at which the byte is transmitted.Dynamic Time Warping (DTW) is an algorithm to

measure the similarity between two time series, thus it can be used to compare two web page

traces.

We employ k-medoids clustering on the Dynamic Time Warping (DTW) based distance

matrix computed on input web page traces. k-medoids is preferred for clustering as it was

designed with the idea of enabling custom distance metrics between points (unlike k-means

and other clustering methods which assume a Euclidean space).

Finding Representative Traces: In reality, not all web pages are static and the

network conditions change over time, so the trace varies each time a web page is loaded.

Before clustering web pages, we need to choose a “representative” trace for each web page,

i.e., the trace that is likely to be most easily transformed into other traces generated by the

same page. To do this, we load a web page n times and record n traces. We then compute

pair-wise Damerau-Levenshtein edit distances [48] among them, and rank the traces based on

their average distances to others — the trace with the minimum average distance is ranked

1st, and is chosen as the representative trace for the web page.

k-medoids Clustering: Since a trace can be viewed as a time-series, we compute the

Dynamic Time Warping (DTW) [9] distances between every pair of representative traces.

Once this pairwise distance matrix is computed, we use the k-medoids [37] algorithm to

group similar web pages into a pre-determined number of clusters. The number of clusters

determines the security and overhead of the Glove defense.

Simulations revealed that the clusters generated by DTW had lower overhead super-traces

than other distance metrics. This is likely because DTW implicitly takes into account the

time between packets while computing edit distances – an important factor when considering

that super-traces need to maintain the inter-packet time dependencies between requests and

responses in their constituent traces.

In our implementation of k-medoids, the cost of a cluster configuration was the lower-

bound on bandwidth overhead which can be computed as:
∑k

i |ci|(max(reqj∈ci)+max(resj∈ci)).

Here, c1, . . . , ck are the k clusters and reqj, resj denote the number of request and response

bytes of the jth site. The idea is that any super-trace of a group of traces must contain at

least as many request and response bytes as its constituent traces with the most number of

request and response bytes.

53

6.1.3 Computing Super-traces

The super-trace of a cluster is a single trace that covers all traces contained in the cluster.

If all web pages are static, a defense that plays this super-trace while loading any web page

within the cluster, effectively hides all information about the page being loaded (except the

cluster it belongs to). However, since most web pages are dynamic, we compute a super-

trace that aims to conservatively cover a large (tunable) percentage of all traces that one

of its constituent web pages might generate. To do this, we use the heuristic demonstrated

in Algorithm 6 to approximate the minimum bandwidth super-trace for each cluster. The

following notation is used:

• Minimum site coverage (µmin): This parameter determines the minimum number of

traces of each web page to be covered by the super-trace. The parameter µ denotes

the average coverage of all pages. Larger µmin values provide more resistance to the

dynamicity of web pages, often at the cost of larger overheads.

• T is the set of input traces that the super-trace is computed over. This is initially

∅. ST denotes the currently computed super-trace. Ri is the set containing all the

recorded traces of site i. covmin is the index of the site which is least covered by the

current ST . This value may be initialized randomly.

• F denotes the current frontier packet of each trace in T and leni denotes the number

of packets in the ith trace in T .

• Bandwidth-Latency tuner (τ): The time at which a newly added packet is to be sent is

set to be the time of the τ th percentile frontier packet (assuming that frontier packets

are ordered by time) in the chosen direction. This parameter allows us to tune the

defense to produce super-traces that optimize some combination of bandwidth and

latency overheads. The lower the value of τ , the lower the latency overhead (at the

cost of bandwidth), and vice-versa. The range of τ is 1 to 100.

• The function Find-Direction returns +1 if more than 1
6

of the frontier packets are up-

stream packets, else it returns -1. Function Find-Time returns the τ th percentile time

of frontier packets in direction PD. Find-Size returns the maximum packet size in

the frontier with time ≤ PT and direction = PD. Finally, function Update-Frontiers

updates the frontier of each trace (Fi) to the last packet not covered by the current

ST .

The algorithm is simple. The super-trace is computed over a set of input traces. In

each iteration we add a trace from the least covered site into this input, until all sites have

54

Algorithm 6 Algorithm to compute the super-trace of a cluster

function Input-Gen(µmin, τ , covmin, T , {R1, . . . , Rn})
if coveragecovmin < µmin then

T ← T ∪ t, where t ∈ Rcovmin;
ST ← compute-st(τ , T)

else
return ST

end if
end function
function compute-st(τ , T)

ST ← ∅, F ← {1, . . . , 1}
while F 6= {len1 + 1, . . . , lenm + 1} do

PD ←Find-Direction(T)
PT ←Find-Time(τ , T , PD)
PS ←Find-Size(T , PT , PD)
ST ← ST ||(PD, PT , PS)
F ← Update-Frontiers(ST , T)

end while
end function

satisfied the minimum coverage parameter µmin.

Now, for each of these input traces, a counter (starting at the first packet) indicating the

current frontier is maintained. We count the number of frontier packets in each direction.

If more than 1
6

of the packets are up-stream packets, we add an up-stream packet to the

super-trace, otherwise, we add a down-stream packet. We use the parameter 1
6

because in

our input traces we found that the average ratio of up-stream to down-stream packets was
1
6
. The time at which this newly added packet is to be sent is set according to τ as described

above. The size of the newly added packet is taken to be the maximum size (rounded to

the nearest 50 bytes) of all the frontier packets in the chosen direction. The above process

is repeated until the frontier of all the input traces have passed their final packet. The final

trace ST is guaranteed to cover at-least µmin of the traces of each site (although, in practice

the average coverage turns out to be far higher).

6.2 Simulation Results

For our simulations, we collected 50 traces each from the Alexa top 500 functioning, non-

redirecting web pages. The browser cache was cleared between page-loads. Next, each of the

50 traces for each site were then ranked by their representativeness, and clustering was done.

For our simulations, we varied the number of clusters (k) in the range of 16 and 250, giving

55

graph-glove-sec-vs-bw

Page 1

0 0.1 0.2 0.3 0.4 0.5

ε

0

1

2

3

4

5

6

7

8

B
a
n
d

w
id

th
 R

a
ti

o

Glove[τ = 99%, μ_min = 40%] against any attack
BuFLO against Panchenko
CS-BuFLO against DLSVM

Figure 6.1: Bandwidth ratio as a function of the security parameter, ε, of various defense
systems.

us defenses which were between 0.032 and 0.5 non-uniformly secure. Once the clusters were

found, sets of super-traces were generated for each of the clusters while varying µmin and

τ . Finally, statistics corresponding to expected site coverage, bandwidth, and latency ratios

were computed.

Overhead/Security Trade-off: Figure 6.1 compares the trade-off between overhead

of Glove, BuFLO, and CS-BuFLO and the levels of security provided. The BuFLO results

are taken from Dyer, et al., and therefore use n = 128. CS-BuFLO is evaluated using

n = 120 and Glove is evaluated using n = 500 web pages. Note that in this plot, Glove is

the only defense that provides information theoretic security against any attacker, while the

data for BuFLO (obtained from [20]) and CS-BuFLO are relevant only against Panchenko

and DLSVM attackers, respectively. Therefore, while the BuFLO and CS-BuFLO trade-offs

might vary depending on the attacker, the Glove trade-off holds against any attacker. From

the figure, it is clear that Glove provides significantly better trade-off costs than CS-BuFLO

(vs. DLSVM, for any security level) and BuFLO (vs. Panchenko, when attack accuracy ≤
10%). When security is less critical (attack accuracy > 10%), however, Glove and BuFLO

(vs. Panchenko) provide similar trade-offs.

Tunability of Glove: In Figure 6.2, we demonstrate the effect of varying the µmin and

τ parameters of Glove (on its bandwidth and latency ratios). In particular, the figures show

that varying µmin to increase resistance to dynamic content in web pages has little effect on

the bandwidth overhead of the defense, while significantly increasing its latency overhead

(when τ = 99% – i.e., the defense is optimized for minimizing bandwidth costs). Further, we

see that τ allows user experience tuning – i.e., reducing τ causes a significant drop in latency

overheads (increasing the usability of the defense) at the cost of increased bandwidth.

56

graph-glove-u-vs-bw

Page 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

μ_min

0

1

2

3

4

5

6

7

8

9

10

B
a
n
d
w

id
th

 R
a
ti

o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

μ
_a

v
g

Glove(ε=0.108, τ=99%)
Glove(ε=0.108, τ=33%)
Average Coverage μ_avg(τ=99%)

(a) Bandwidth ratios

graph-glove-u-vs-latency

Page 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

μ_min

0

1

2

3

4

5

6

7

8

9

10
La

te
n
cy

 R
a
ti

o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

μ
_a

v
g

Glove(ε=0.108, τ=99%)
Glove(ε=0.108, τ=33%)
Average Coverage μ_avg(τ=99%)

(b) Latency ratios

Figure 6.2: Overhead ratios and average coverage of Glove while varying µmin and τ with
ε = 0.108.

57

Chapter 7

Discussion and Conclusion

7.1 DLSVM Attack

We have demonstrated that Tor is vulnerable to web page and web site fingerprinting

attacks. With these attacks, an adversary, such as a local or national government, with

the power to monitor a Tor user’s internet connection can infer which web sites the user

is visiting. They could use this information to censor the user’s internet connection or to

persecute them for visiting banned sites.

Previously proposed defenses, such as traffic morphing, HTTPOS, and randomized pipelin-

ing, impose high costs but do not stop our attack.

We built an attack with several novel features. It is successful even if it ignores packet

sizes. Packet sizes have been a crucial feature of almost all prior fingerprinting attacks

against Tor and encrypting proxies (e.g. SSH). Although packet size reveals a great deal of

information about the data being transferred over a simple encrypting tunnel, Tor conceals

this information by padding all data to 512-byte cells. Despite the fact that it ignores packet

sizes and uses a simple packet trace comparison method based on the Damerau-Levenshtein

distance, it outperforms a state of the art SVM-based classifier.

We also developed a web site classifier that can use packet traces from a sequence of

page loads performed by the victim to infer his online activities. We modeled web sites

using HMMs, where each state corresponds to a page or class of pages on the site, and

observations are categorized using the classifier developed in Section 3.1.

Our results on the DLSVM attack support several conclusions:

Previously proposed defenses are inadequate. Our attack was able to identify the

page being loaded over an SSH tunnel with over 90% accuracy. Against Tor, it identified the

web page over 80% of the time. The recently proposed randomized pipelining defense did

nothing to stop our attack. Our attack is also able to identify web pages loaded over SSH,

58

even if the victim employs traffic morphing or HTTPOS.

Traffic analysis can infer user actions through several different side channels.

The Panchenko classifier relies primarily on packet sizes and is able to achieve good re-

sults. On the other hand, our classifier is able to achieve good results even if all packet size

information is removed from the trace, as in the randomized cover traffic experiment. Some-

what surprisingly, traffic analysis attacks based solely on the number of packets transmitted

(without direction information) can do better than random guessing.

The DLSVM classifier generally outperforms other classifiers. It tied or beat the

Panchenko classifier in all cases except packet count experiments. Our attack is also much

more generic – it does not use ad hoc HTTP-related features. Our page classifier differs from

past work primarily in that it does not reduce the packet traces to a fixed-length feature

vector. Rather, it passes the trace directly into the classifier. The Damerau-Levenshtein-

based classifier is then able to consider multiple aspects of the observation – packet sizes,

directions, ordering, etc. – whereas previously-proposed classifiers were only given a finite

set of features that had been manually identified by the researchers.

Our experiments suggest that our attack gleans information from several sources, but

that the most crucial feature is the pattern of upstream/downstream transmissions. For ex-

ample, sample-based morphing destroys packet size information, but leaves ordering largely

undisturbed. Consequently, our attack works well against morphing. Randomized pipelining

destroys some, but not all, ordering information and leaves some packet size information.

As a result, our attack is still able to do well. Adding randomized cover traffic and hiding

all packet size information obscures the pattern of upstream and downstream transmissions,

and hence significantly degrades the performance of our attack. Completely hiding the up-

stream/downstream information, i.e. reducing the data set to just the number of packets

transmitted, almost stops our attack. The Panchenko attack uses packet sizes as its primary

feature, but incorporates several ad hoc ordering-based features, so that its performance pro-

file is similar to ours. The MNB classifier has no ordering information, and so its performance

drops precipitously when packet size information is obscured.

Defenses based on randomized requests and cover traffic are not likely to

be effective. In the experiment where we added cover traffic to the Tor + randomized

pipelining data, our attack achieved between a 50% and 80% success rate. Furthermore,

Figure 3.2 suggests that additional cover traffic provides diminishing security returns.

This attack is practical in real settings. We assume in our evaluation that the victim

loads one page at a time and that each page is loaded to completion. This does not always

match real user behavior. For example, users may load several pages in different tabs or

navigate away from a page before it finishes loading. However, there are two reasons to believe

59

that multiple tabs and similar cover-traffic-based defenses will not protect users. First, our

experiments evaluate two different defenses that employ cover traffic. HTTPOS injects

extra HTTP requests into the clients request stream – our attack is still very successful.

Similarly, we evaluated Tor with randomized pipelining and with random cover traffic –

again, our attack was successful. These two experiments do not evaluate all possible ways

of generating cover traffic, but we have yet to find an effective, efficient cover-traffic-based

defense. Secondly, a defense scheme should protect users no matter how they surf the web.

Even if users do not always load a single page at a time, they do so often enough that it is

a valid attack scenario and any defense that fails to protect users in this scenario must be

considered broken.

7.2 Theoretical Analysis

Our theoretical model clarifies the limits of website fingerprinting defenses. It establishes

efficiency bounds that no defense can cross, giving an absolute benchmark for evaluating

the efficiency of defenses. The lower bounds are surprisingly low, suggesting that it may be

possible to build very efficient defenses. We also show that, in some contexts, randomized

defenses offer no security or overhead advantage compared to deterministic defenses. This

theoretical foundation also provides a framework for comparing schemes that offer different

overhead/security trade-offs. Further, it allows conclusions to be drawn about open-world

performance of attacks and defenses, based on their closed-world results. This greatly sim-

plifies the experimental setup required to estimate open-world performance of attacks and

defenses.

7.3 Congestion-Sensitive BuFLO

Congestion-Sensitive BuFLO is a high-security, moderate-overhead solution to website

fingerprinting attacks. Compared to SSH and Tor, it achieves a better overhead/security

trade-off, i.e. it uses its bandwidth efficiently to provide extra security. Our experiments

also show that it has acceptable latencies. The padding schemes developed in CS-BuFLO,

along with browser-coordination and the early-termination algorithm, can improve security

with less overhead than previous stream padding schemes. Interestingly, we also found that

padding from one end of a connection can sometimes be an efficient way to hide information

about the data sent from the other side of the connection.

Since early termination does not seem to affect security, the padding results suggest that

the padding performed while transmitting a website sufficiently hides the size of the website,

60

so that additional stream padding at the end of the transmission has little security benefit.

Additional client padding does improve security, though – probably by obscuring the size of

the final object requested by the client.

The lower bounds derived in Chapter 4.1.2 proved useful for comparing schemes. For

example, without the lower bounds, it is difficult to determine whether Tor, SSH, or CS-

BuFLO has the greatest efficiency in Figure 5.5(a), but it becomes obvious in Figure 5.5(c).

Overall, CS-BuFLO has better security than any previous defenses in our experiments,

albeit at greater expense. It has the best overhead/security trade-off, as well.

CS-BuFLO’s overhead/security trade-off is in the same range as the estimates Dyer ob-

tained for BuFLO in their simulations. For example, Dyer, et al., reported that, in one

configuration of BuFLO, bandwidth overhead was 200% and the Panchenko SVM had an

24.1% success rate on 128 websites. We found that CS-BuFLO with CTSP padding had

an overhead of 180% on 120 websites, and that the Panchenko SVM had a success rate of

23.4%.

CS-BuFLO’s congestion-sensitivity likely had little impact in these experiments, which

were carried out on a fast local network, so that congestion was rare. However, CS-BuFLO’s

congestion-sensitivity means that, in a real deployment, it would have even better bandwidth

overhead.

CS-BuFLO’s latency overhead is approximately 3 in all our experiments. This is better

than Tor’s latency, although Tor has the additional overhead of onion routing, so no fair

comparison is possible. We cannot compare with the latency estimates reported by Dyer, et

al., because they gave only absolute latency values.

7.4 Glove

We presented Glove— a website fingerprinting defense that illustrates a promising new

approach towards building efficient fingerprinting defenses. In particular, Glove is the first

defense to demonstrate:

Information-Theoretic Security: Unlike previous defenses, Glove provides information-

theoretic security guarantees. This is achieved by computing a single super-trace for each

computed cluster and playing this each time a page contained in the cluster is loaded. As

a result, in the absence of prior (or, outside) knowledge, any (current or future) website

fingerprinting attackers success rate is bounded by the size of the computed cluster.

Good Overhead/Security Trade-off: The results illustrated in Figure 6.1 demon-

strate the validity of our conjecture that using prior information about the structure of a

web page to add cover traffic conservatively yields better website fingerprinting defenses. This

61

approach, used by Glove, results in it being more secure and efficient than any previously

proposed SSH based defense.

High Tunability: Unlike previous defenses, Glove allows users to tune their browsing

experience by adjusting the τ parameter. Lower τ values significantly reduce latency at the

cost of bandwidth, and vice-versa. This is especially useful in current scenarios where it is

likely the case that bandwidth costs are inconsequential, while even moderately increased

user experienced latency may result in significantly decreased usability of the defense.

However, Glove also has limitations that may hamper its adoptability in the real world.

We discuss these below.

Infrastructure Requirements: Glove greatly reduces its overhead by utilizing prior

knowledge of web page structures. This requires the Glove infrastructure to be able to collect

traces of defended web pages, cluster these pages, and compute corresponding super-traces.

These tasks are fairly computationally intensive, making them infeasible for standard server

side proxy nodes to perform on a regular basis. Instead, using a powerful dedicated central

node to compute clusters/super-traces and distribute them to Glove proxies (e.g., via Tor

bridges — since the security of Glove is independent of the secrecy of the computed super-

traces) is more efficient. However, such a node may not be easily available in the real world.

In the absence of such nodes, Glove has to fall back on less powerful server side proxies

which take as input a list of URLs (from the client) and returns a single super-trace (to

be played when the client loads a page in the input URLs). However, in these cases, while

Glove retains its information-theoretic security guarantees, it is no longer able to use prior

knowledge of web page structures to provide low overheads. To circumvent these problems,

one may consider developing distributed clustering and super-trace algorithms for use with

Glove.

Effect of Dynamic Content: Two types of dynamicity affect the Glove defense. First,

the information-theoretic guarantees provided by Glove hold only when µmin = 100%. This,

however, is possible to guarantee only when web pages do not contain dynamic content

(e.g., JS, AJAX, etc.). Second, when the structure of a Glove defended web page changes

significantly, its trace may change to a large enough degree that less than µmin% of its page

loads are covered by its current super-trace. In this case, re-clustering/super-tracing of all

defended pages may be in order. While our observation is that this is rare, its occurrence

does result in the need for the Glove infrastructure to occasionally perform this re-clustering,

super-tracing, and distribution.

62

Bibliography

[1] Alexa — The Web Information Company. www.alexa.com.

[2] Internet censorship. http://en.wikipedia.org/wiki/Internet_censorship/.

[3] Amazon web services - alexa top sites. https://aws.amazon.com/alexatopsites/,
October 2013.

[4] Timothy G Abbott, Katherine J Lai, Michael R Lieberman, and Eric C Price. Browser-
based attacks on tor. In Privacy Enhancing Technologies, pages 184–199. Springer,
2007.

[5] M.R. Albrecht, K.G. Paterson, and G. Watson. Plaintext recovery attacks against ssh.
In Security and Privacy, 2009 30th IEEE Symposium on, pages 16–26, May 2009.

[6] Adam Back, Ulf Mller, and Anton Stiglic. Traffic analysis attacks and trade-offs in
anonymity providing systems. In IraS. Moskowitz, editor, Information Hiding, volume
2137 of Lecture Notes in Computer Science, pages 245–257. Springer Berlin Heidelberg,
2001.

[7] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker.
Low-resource routing attacks against tor. In Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society, WPES ’07, pages 11–20, New York, NY, USA, 2007.
ACM.

[8] Aurelien Bellet, Amaury Habrard, and Marc Sebban. Good edit similarity learning by
loss minimization. Machine Learning, 2012.

[9] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in
time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[10] George Bissias, Marc Liberatore, David Jensen, and Brian Levine. Privacy vulnerabili-
ties in encrypted http streams. In PETS, 2006.

[11] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial of service
or denial of security? In Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, pages 92–102, New York, NY, USA, 2007. ACM.

[12] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems 2.0 architecture.
White paper, Zero Knowledge Systems, Inc, 2000.

63

http://en.wikipedia.org/wiki/Internet_censorship/
https://aws.amazon.com/alexatopsites/

[13] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–90, February 1981.

[14] Wei Dai. Pipenet 1.1. usenet post, august 1996, 1995.

[15] George Danezis. Traffic analysis of the HTTP protocol over TLS. http://research.

microsoft.com/en-us/um/people/gdane/papers/TLSanon.pdf.

[16] George Danezis. The traffic analysis of continuous-time mixes. In David Martin and
Andrei Serjantov, editors, Privacy Enhancing Technologies, volume 3424 of Lecture
Notes in Computer Science, pages 35–50. Springer Berlin Heidelberg, 2005.

[17] The Internet Movie Database. http://www.imdb.com/.

[18] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. Technical report, DTIC Document, 2004.

[19] John R. Douceur. The sybil attack. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London, UK, UK, 2002.
Springer-Verlag.

[20] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-
boo, i still see you: Why efficient traffic analysis countermeasures fail. In IEEE Security
and Privacy, 2012.

[21] Matthew Edman and Paul Syverson. As-awareness in tor path selection. In Proceedings
of the 16th ACM conference on Computer and communications security, pages 380–389.
ACM, 2009.

[22] Nathan S. Evans, Roger Dingledine, and Christian Grothoff. A practical congestion at-
tack on tor using long paths. In Proceedings of the 18th Conference on USENIX Security
Symposium, SSYM’09, pages 33–50, Berkeley, CA, USA, 2009. USENIX Association.

[23] Facebook. http://www.facebook.com/.

[24] X. Fu, B. Graham, R. Bettati, and W. Zhao. On countermeasures to traffic analysis
attacks. In Information Assurance Workshop, 2003.

[25] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[26] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Commun. ACM,
42(2):39–41, February 1999.

[27] Xun Gong, Negar Kiyavash, and Nikita Borisov. Fingerprinting websites using remote
traffic analysis. In ACM CCS, 2010.

[28] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprinting: at-
tacking popular privacy enhancing technologies with the multinomial naive-bayes clas-
sifier. In ACM Workshop on Cloud Computing Security, 2009.

64

http://research.microsoft.com/en-us/um/people/gdane/papers/TLSanon.pdf
http://research.microsoft.com/en-us/um/people/gdane/papers/TLSanon.pdf
http://www.imdb.com/
http://www.facebook.com/

[29] Andrew Hintz. Fingerprinting websites using traffic analysis. In PETS, 2002.

[30] Alan J. Hoffman and Joseph B. Kruskal. Integral boundary points of convex polyhedra.
In Michael Jnger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50
Years of Integer Programming 1958-2008, pages 49–76. Springer Berlin Heidelberg, 2010.

[31] Nicholas Hopper, Eugene Y Vasserman, and Eric Chan-Tin. How much anonymity
does network latency leak? ACM Transactions on Information and System Security
(TISSEC), 13(2):13, 2010.

[32] The Internet Society. Hypertext Transfer Protocol – HTTP/1.1, 1999.

[33] Rolf Jagerman, Wendo Sabée, Laurens Versluis, Martijn de Vos, and Johan A. Pouwelse.
The fifteen year struggle of decentralizing privacy-enhancing technology. CoRR,
abs/1404.4818, 2014.

[34] Jondonym: the anonymisation service. http://anonymous-proxy-servers.net/.

[35] S. Kadloor, Xun Gong, N. Kiyavash, T. Tezcan, and N. Borisov. Low-cost side channel
remote traffic analysis attack in packet networks. In Communications (ICC), 2010 IEEE
International Conference on, pages 1–5, May 2010.

[36] Hemanta Kumar Kalita and Avijit Kar. Wireless sensor network security analysis.

[37] Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids. Statistical
Data Analysis Based on the L1-Norm and Related Methods, 1987.

[38] I Keller and C Tompkins. An Extension of a Theorem of Dantzig’s. Linear Inequalities
and Related Systems, Annals of Mathematics Studies, 38:247–254, 1956.

[39] BrianN. Levine, MichaelK. Reiter, Chenxi Wang, and Matthew Wright. Timing attacks
in low-latency mix systems. In Ari Juels, editor, Financial Cryptography, volume 3110
of Lecture Notes in Computer Science, pages 251–265. Springer Berlin Heidelberg, 2004.

[40] Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted http connec-
tions. In ACM CCS, 2006.

[41] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. A new
cell counter based attack against tor. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 578–589. ACM, 2009.

[42] Liming Lu, Ee-Chien Chang, and Mun Chan. Website fingerprinting and identification
using ordered feature sequences. In ESORICS, 2010.

[43] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C. Chang, and
Roberto Perdisci. HTTPOS: Sealing information leaks with browser-side obfuscation of
encrypted flows. In NDSS, 2011.

65

http://anonymous-proxy-servers.net/

[44] Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and re-
sisting statistical disclosure. In David Martin and Andrei Serjantov, editors, Privacy
Enhancing Technologies, volume 3424 of Lecture Notes in Computer Science, pages 17–
34. Springer Berlin Heidelberg, 2005.

[45] Jon McLachlan and Nicholas Hopper. On the risks of serving whenever you surf: vul-
nerabilities in tor’s blocking resistance design. In Proceedings of the 8th ACM workshop
on Privacy in the electronic society, pages 31–40. ACM, 2009.

[46] S.J. Murdoch and G. Danezis. Low-cost traffic analysis of tor. In Security and Privacy,
2005 IEEE Symposium on, pages 183 – 195, may 2005.

[47] StevenJ. Murdoch and Piotr Zieliski. Sampled traffic analysis by internet-exchange-level
adversaries. In Nikita Borisov and Philippe Golle, editors, Privacy Enhancing Technolo-
gies, volume 4776 of Lecture Notes in Computer Science, pages 167–183. Springer Berlin
Heidelberg, 2007.

[48] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33:31–88, March 2001.

[49] Gavin OGorman and Stephen Blott. Large scale simulation of tor. In Advances in Com-
puter Science–ASIAN 2007. Computer and Network Security, pages 48–54. Springer,
2007.

[50] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website fin-
gerprinting in onion routing based anonymization networks. In WPES, 2011.

[51] Vasilis Pappas, Elias Athanasopoulos, Sotiris Ioannidis, and Evangelos P. Markatos.
Compromising anonymity using packet spinning. In Proceedings of the 11th Interna-
tional Conference on Information Security, ISC ’08, pages 161–174, Berlin, Heidelberg,
2008. Springer-Verlag.

[52] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor networks.
Commun. ACM, 47(6):53–57, June 2004.

[53] Mike Perry. Experimental defense for website traffic fingerprinting.
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting,
September 2011.

[54] Mike Perry. A critique of website traffic fingerprinting attacks. https://blog.

torproject.org/blog/critique-website-traffic-fingerprinting-attacks,
November 2013.

[55] Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, undetectability, un-
observability, pseudonymity, and identity management-a consolidated proposal for ter-
minology. Version v0, 31:15, 2008.

66

https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks

[56] R. Pries, Wei Yu, Xinwen Fu, and Wei Zhao. A new replay attack against anonymous
communication networks. In Communications, 2008. ICC ’08. IEEE International Con-
ference on, pages 1578–1582, May 2008.

[57] Jean-Franois Raymond. Traffic analysis: Protocols, attacks, design issues, and open
problems. In Hannes Federrath, editor, Designing Privacy Enhancing Technologies,
volume 2009 of Lecture Notes in Computer Science, pages 10–29. Springer Berlin Hei-
delberg, 2001.

[58] Juha Salo. Recent attacks on tor. Aalto University, 2010.

[59] Andrei Serjantov and Peter Sewell. Passive attack analysis for connection-based
anonymity systems. In Einar Snekkenes and Dieter Gollmann, editors, Computer Secu-
rity ESORICS 2003, volume 2808 of Lecture Notes in Computer Science, pages 116–131.
Springer Berlin Heidelberg, 2003.

[60] Paul Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory,
Series B, 28:305–359, 1980.

[61] Yi Shi and Kanta Matsuura. Fingerprinting attack on the Tor anonymity system. In
Information and Communications Security, volume 5927 of Lecture Notes in Computer
Science, pages 425–438. Springer Berlin / Heidelberg, 2009.

[62] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of keystrokes
and timing attacks on ssh. In Proceedings of the 10th Conference on USENIX Security
Symposium - Volume 10, SSYM’01, Berkeley, CA, USA, 2001. USENIX Association.

[63] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padmanabhan,
and Lili Qiu. Statistical identification of encrypted web browsing traffic. In IEEE
Security and Privacy, 2002.

[64] Tor project: Anonymity online. https://www.torproject.org/, August 2011.

[65] Carmela Troncoso and George Danezis. The bayesian traffic analysis of mix networks. In
Proceedings of the 16th ACM Conference on Computer and Communications Security,
CCS ’09, pages 369–379, New York, NY, USA, 2009. ACM.

[66] Lisa Vaas. Fbi used drive-by downloads to track child porn sus-
pects hidden on tor. http://nakedsecurity.sophos.com/2014/08/06/

fbi-used-drive-by-downloads-to-track-child-porn-suspects-hidden-on-tor/,
August 2014.

[67] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag New
York, Inc., 1995.

[68] AJ. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269, April
1967.

67

https://www.torproject.org/
http://nakedsecurity.sophos.com/2014/08/06/fbi-used-drive-by-downloads-to-track-child-porn-suspects-hidden-on-tor/
http://nakedsecurity.sophos.com/2014/08/06/fbi-used-drive-by-downloads-to-track-child-porn-suspects-hidden-on-tor/

[69] Harald Weinreich, Hartmut Obendorf, Eelco Herder, and Matthias Mayer. Not quite
the average: An empirical study of web use. ACM Transactions on the Web, 1(2):26, 2
2008.

[70] D. Welch and S. Lathrop. Wireless security threat taxonomy. In Information Assurance
Workshop, 2003. IEEE Systems, Man and Cybernetics Society, pages 76–83, June 2003.

[71] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose. Phono-
tactic reconstruction of encrypted VoIP conversations: Hookt on fon-iks. In Proceedings
of the 32nd IEEE Symposium on Security and Privacy, 2011.

[72] Charles Wright, Fabian Monrose, and Gerald M. Masson. Hmm profiles for network
traffic classification. In Proceedings of the ACM workshop on Visualization and data
mining for computer security, 2004.

[73] Charles V. Wright, Scott E. Coull, and Fabian Monrose. Traffic morphing: An efficient
defense against statistical traffic analysis. In NDSS, 2009.

[74] Matthew K Wright, Micah Adler, Brian Neil Levine, and Clay Shields. Passive-logging
attacks against anonymous communications systems. ACM Transactions on Informa-
tion and System Security (TISSEC), 11(2):3, 2008.

[75] Shui Yu, Wanlei Zhou, Weijia Jia, and Jiankun Hu. Attacking anonymous web browsing
at local area networks through browsing dynamics. The Computer Journal, 2011.

[76] Fan Zhang, Wenbo He, Xue Liu, and Patrick G. Bridges. Inferring users’ online activities
through traffic analysis. In ACM Conference on Wireless Network Security, 2011.

[77] Yang Zhang. Effective attacks in the tor authentication protocol. In Network and System
Security, 2009. NSS’09. Third International Conference on, pages 81–86. IEEE, 2009.

[78] Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion detection techniques for
mobile wireless networks. Wirel. Netw., 9(5):545–556, September 2003.

68

Appendices

A. HMMs for Facebook and IMDB

The Facebook HMM has 7 states:

1. homepage cold

2. profile cold

3. homepage scroll

4. profile scroll

5. login page

6. homepage warm

7. profile warm

with transition probabilities

0 0.6 0.2 0 0.1 0.1 0

0 0 0 0.2 0.1 0.4 0.3

0 0.6 0.2 0 0.1 0.1 0

0 0 0 0.2 0.1 0.4 0.3

0.9 0 0 0 0.1 0 0

0 0.2 0.2 0 0.1 0.1 0.4

0 0 0 0.2 0.1 0.4 0.3

The initial probability of all states is 0.142, except for the login state, which is 0.148.

The IMDB HMM has 8 states:

1. homepage cold

69

2. searchpage cold

3. moviepage cold

4. starpage cold

5. homepage warm

6. searchpage warm

7. moviepage warm

8. starpage warm

with transition probabilities

0 0.6 0.2 0.2 0 0 0 0

0 0 0.4 0.4 0.1 0.1 0 0

0 0 0.1 0.2 0.1 0.1 0.2 0.3

0 0 0.2 0.1 0.1 0.1 0.3 0.2

0 0.1 0.1 0.1 0.1 0.2 0.2 0.2

0 0 0 0 0.1 0.1 0.4 0.4

0 0 0 0 0.1 0.1 0.3 0.5

0 0 0 0 0.1 0.1 0.5 0.3

All states have initial probability 1/8.

B. Lower Bound Proofs

Suppose websites w1, . . . , wn have sizes s1 < s2 < . . . < sn. Let S = {s1, . . . , sn}. For

any defense, D, let pij be the probability that D transmits j bytes during a load of website

wi.

Since, in a closed-world experiment, each website occurs with probability 1/n, the band-

width cost of D is
∞∑
j=1

n∑
i=1

1

n
jpij

and the non-uniform success probability of AS is

∞∑
j=1

maxi pij∑
i pij

·
∑

i pij
n

=
∞∑
j=1

maxi pij
n

70

We derive lower bounds on the bandwidth cost of D by computing the matrix of pij

values that minimize the above bandwidth cost function while still satisfying the above

security constraint. Recall that, since D is assumed not to compress or truncate web pages,

pij = 0 for j < si.

The overall structure of the proof for non-uniform security is

• Constrain the structure of the optimal pij so that we can formulate the optimization

problem as a linear program. (see Lemma 1).

• Prove that the linear program has an integral solution, so that the optimal solution is

equivalent to a function f : S → S satisfying certain constraints (see Lemma 2).

• Prove that f is monotonically increasing (see Lemma 3).

The lower bound for uniform security is similar. We first prove that there exists a similar

function f for any deterministic uniformly secure defense, and then apply Lemma 3.

Lemma 1. Let pij be the probabilities that minimize the bandwidth cost while meeting the

security requirement.

1. pij = 0 unless j ∈ {s1, . . . , sn}.

2. If pij < maxk pkj, then for all j′ > j, pij′ = 0.

3. For all j, pkj ≤ pk+1,j for k ∈ [1, i], where si ≤ j < si+1.

Proof. 1. Suppose p`j 6= 0 where sk < j < sk+1. Then we can make a more efficient and

no less secure by replacing pisk with pisk +pij for all i and setting pij = 0 for all i. This

will have lower bandwidth cost because sk < j. This will not violate the constraint

that, for all i and j′ < si, pij′ = 0, because, if pij 6= 0 before the change, then si ≤ j, so

si ≤ sk. This will not worsen security because maxi(pisk + pij) ≤ maxi pisk + maxi pij.

2. Suppose otherwise. Let t = min(maxk pkj − pij, pij′). Note t 6= 0. Thus we can

construct a more efficient and no less secure defense by replacing pij with pij + t and

pij′ with pij′ − t.

3. Suppose pkj > pk+1,j for some k ∈ [1, i], where si ≤ j < si+1. This implies that

pk+1,j < maxi pij. By Item 2, pk+1,j′ = 0 for all j′ > j.

Thus we must have that:
∑j

j′=sk+1
pk+1,j′ = 1.

This also implies that pkj 6= 0. Thus, by Item 2, pkj′ = maxi pij′ for all j′ ∈ {sk, . . . , j−
1}. This implies that

∑j
j′=sk

pkj′ >
∑j

j′=sk+1
pk+1,j′ = 1, a contradicition.

71

Since pij is non-zero only if j ∈ {s1, . . . , sn}, we can relabel the pij to be the probability

that the defense transmits sj bytes during a load of website wi.

Lemma 1, Item 3 implies that maxi pij = pii, so the security constraint can be re-written

as
∑n

i=1 pii ≤ εn.

Now that the security constraint is a linear function of the pij variables, we can formulate

a linear program for computing the optimal pij values:

minimize
n∑
i=1

n∑
j=i

pijsj (the bandwidth cost)

subject to the constraints

(a)
∑n

i=1 pii ≤ εn (ε non-uniform security)

(b)
∑n

j=i pij = 1 (pij are probabilities)

(c) 0 ≤ pij ≤ 1

Lemma 2. The above linear program has an integral solution.

Proof. Linear programs with Totally Unimodular (TU) constraint matrices and integral ob-

jective functions have integral solutions [30]. We prove that the constraint matrix, A (derived

by the constraints (a), (b), and (c) of the above LP), is TU. To prove TU-ness of A, it is

sufficient to prove the following [38]: (i) Every column contains at-most 2 non-zero entries,

(ii) Every entry is 0, 1, or -1, (iii) If two non-zero entries in any column of A have the same

sign, then the row of each belongs in two disjoint partitions of A.

Since the set of TU matrices is closed under the operation of adding a row or column with

at-most one non-zero entry [60], we may delete the 2n rows of A corresponding to constraint

(c) and prove that the remaining constraint matrix A′ satisfies the TU conditions (i) - (iii).

Observe the following properties of A′:

• There are n rows (WLOG, rows 1 to n) induced by the constraint (a). These are such

that: Ai,(i−1)n, . . . , Ai,in−1 = 1, ∀i ∈ {1, . . . , n} and 0 for all other entries. Therefore,

each column of the partition B composed of these n rows contains only a single non-zero

entry (i.e., +1).

• There is only 1 row (WLOG, row n + 1) induced by the constraint (b). This row has

the form: An+1,j = 1, ∀j ∈ {12, . . . , n2} and 0 for all other entries. Each column of the

partition C composed of this single vector may contain only a single non-zero entry

(i.e., +1).

72

From the above properties, it is clear that matrix A′ is TU since: Each column contains

at-most 2 non-zero entries (+1) and it may be partitioned into matrices B and C such that

condition (iii) is satisfied. Therefore, the matrices A′ and A are TU and the LP describing

A has only integral optima.

In an integral solution of the linear program, all the probabilities are 0 or 1, so the

solution is equivalent to a function f : S → S satisfying

• |f(S)| ≤ εn.

•
∑n

i=1 f(si)/
∑n

i=1 si ≤ BWRatioD(W).

We now show there is a similar function for any deterministic uniformly secure defense D.

Set f(si) = bi where bi is the number of bytes transmitted when the defense D loads website

wi. Since D does not compress or truncate websites, we must have bi ≥ maxs∈f−1(bi) s for

all i. Observe that we can assume bi = maxs∈f−1(bi) s without harming security or efficiency,

so that f : S → S. Thus f satisfies the security constraint mini |f−1(si)| ≥ 1/ε, and∑n
i=1 f(si)/

∑n
i=1 si ≤ BWRatioD(W).

Lemma 3. The mapping function f corresponding to an optimal non-uniformly ε-secure

defense, or a deterministic uniformly ε-secure defense, is monotonic.

Proof. Consider any partition of {s1, . . . , sn} into sets S1, . . . , Sk. Let mi = maxs∈Si Si.

Without loss of generality, assume m1 ≤ m2 ≤ · · · ≤ mk. Now consider the monotonic

allocation of traces into sets S∗1 , . . . , S
∗
k where |S∗i | = |Si|. Let m∗i = maxs∈S∗i s. Observe that

m∗i ≤ mi for all i, i.e. the new allocation has lower bandwidth.

Since the number of sets in the partition and the sizes of those sets are unchanged, this

new allocation has the same uniform and non-uniform security as the original, but lower

bandwidth. Hence the optimal f must be monotonic.

73

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Description
	Evaluation Models
	Related Work
	Attacks
	Defenses
	Other Related Work

	DLSVM Attack
	Recognizing Web Pages
	Recognizing Web Sites
	DLSVM Evaluation
	Web Page Classifier
	Web Site Classifier

	Theoretical Foundations
	Security vs. Overhead Trade-Off
	Definitions
	Bandwidth Lower Bounds
	Security Against Multiple Feature Classifiers

	From Closed To Open World

	Congestion-Sensitive BuFLO
	Design
	Review of BuFLO
	Overview of Congestion-Sensitive BuFLO
	Rate Adaptation
	Congestion-Sensitivity
	Stream Padding
	Early Termination
	Packet Sizes

	Prototype Implementation
	Congestion-Sensitive BuFLO Evaluation
	Experimental Setup
	Results

	Glove
	Design
	Security Guarantee
	Clustering Web Pages
	Computing Super-traces

	Simulation Results

	Discussion and Conclusion
	DLSVM Attack
	Theoretical Analysis
	Congestion-Sensitive BuFLO
	Glove

	Bibliography
	Appendices
	A. HMMs for Facebook and IMDB
	B. Lower Bound Proofs

