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Abstract of the Dissertation

Game-Theoretic Models for Interdependent Security:
Modeling, Computing, and Learning

by

Hau Chan

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Due to an increase number of attacks by hackers and terrorists, there
has been quite a bit of recent research activity in the general area of game-
theoretic models for terrorism settings that aim to understand the behavior of
the attackers and the attackers’ targets. My thesis is centered on introducing,
studying, and applying several game-theoretic models to security.

In particular, my doctoral thesis consists of the following components: (1)
designing increasingly more realistic variants of defense games; (2) studying
computational questions in defense games such as equilibria computation
and computational implications of equilibria characterizations, (3) designing
efficient algorithms and effective heuristics for defense problems; and (4)
designing and applying new machine learning techniques to estimate game
model parameters from behavioral data.

Our computational models build on top of interdependent security (IDS)
games, a model introduced by economists and risk-assessment experts Kun-
reuther and Heal to study investment decisions of strategic agents when
facing direct and transfer risk exposure from other agents in the system. We
first introduce generalized IDS (α-IDS) games, a model that extends IDS
games where full investment can reduce transfer risk. In particular, α is a
vector of probabilities, one for each agent, specifying the probability that
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the transfer risk will not be protected by the investment. In other words,
agent i’s investment can reduce indirect risk by probability (1 − αi). We
then extend from α-IDS games and introduce interdependent defense (IDD)
games, a computational-game-theoretic framework for settings of interdepen-
dent security to study scenarios of multiple-defenders vs. a single-attacker in
a network. For the variants of defense games we introduced, we study some
computational aspects of computing Nash equilibria in those games.

Finally, we investigate the problem of learning the games form observed
behavioral data. For this problem, we introduce a machine-learning genera-
tive model to learn the parameters of the games. As an application, we apply
the learning model and use machine-learning techniques to estimate the pa-
rameters and structure of α-IDS games using the vaccination data from the
Centers for Disease Control and Prevention (CDC) in the United States.
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Preface

Game theory, a topic that has been studied extensively both analytically
and computationally over the recent years, models the interactions between
agents in an environment or a state of the world. By interactions, we mean
that each agent strategically selects an action given the actions of other
agents. For examples, one can use game theory to model the interactions
between the kicker and goalie in a penalty kick or a simple game of rock-
paper-scissors between two players. When each agent is “happy” and has no
incentive to deviate to other actions given the actions of other agents, we say
that an equilibrium or a stable outcome has been reached.

Roughly speaking, a GT model consists of a set of players, and for each
player, a set of actions, or pure strategies, as well as a payoff function that
quantifies the player’s preferences as a function of joint-action of all players.
The general goal is to find a strategy (equilibrium) for each player, such that
each player maximizes his/her payoff conditioned on the joint-strategy of the
other players. An equilibrium is achieved when, given the joint-action of
other players, the player has no other strategy that would result in a higher
payoff. We can allow each player to play mixed strategies ; randomize (with
respect to some probability distribution) over their pure strategies.

Due to an increase number of attacks by hackers and terrorists, there
has been quite a bit of recent research activity in the general area of game-
theoretic models for terrorism settings that aim to understand the behavior of
the attackers and the attackers’ targets. My thesis is centered on introducing,
studying, and applying several game-theoretic models to security.
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Chapter 1

Introduction

Attacks carried out by hackers and terrorists such as the 9/11 attacks, the
2006 transatlantic aircraft plot, the Northwest Airlines Flight 253 Detroit
bombing attempts, and the Yemen bomb scare over the last few years have
led to increased efforts by both government and the private sector to create
and adopt mechanisms to prevent future attacks. This effort has yielded
a more focused research attention to models, computational and otherwise,
that facilitate and help to improve (homeland) security for both physical
infrastructure and cyberspace. In particular, there has been quite a bit of
recent research activity in the general area of game-theoretic models [von
Neumann and Morgenstern, 1944] for terrorism settings (see, e.g., Bier and
Azaiez [2009] and Cárceles-Poveda and Tauman [2011]) and network security
[Roy et al., 2010].

For example, Lye and Wing [2002] look at the interactions between an
attacker and the (system) administrator using a two-player stochastic game
(See Raghaven et al. [1990] for a reference to stochastic games). Liu [2003]
focus on understanding the attacker’s intent, objectives, and strategies and
derive a (two-player) game-theoretical model. Recent work by [Jain et al.,
2011, Kiekintveld et al., 2009, Korzhyk et al., 2010, 2011a,b] uses a Stackel-
berg game model, a game model in which the defender (or leader) commits to
a mixed strategy to allocate resources to defend a set of nodes in the network,
and the follower (or attacker) optimally allocates resources to attack a set of
”targets” in the network given the leader’s commitment. For examples, one
can view the resources as some security mechanisms such as the locations to
install security checkpoints and the assignments of air marshals to various
flights. Therefore allowing the government to take preventive measures.
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1.1 Components of My Thesis

My thesis is centered on introducing and applying several game-theoretic
models [von Neumann and Morgenstern, 1944] to security setting. More
specifically, my thesis consists of the following research components: (1) de-
signing increasingly more realistic variants of defense games; (2) studying
computational questions in defense games such as equilibria computation,
computational implications of equilibria characterizations1; (3) designing bet-
ter, more efficient algorithms and effective heuristics for defense problems;
and (4) applying and designing new machine learning techniques to estimate
game model parameters from behavioral data.

1.1.1 Thesis Organization

Chapter 2 We will begin by providing background information on the
original interdependent security (IDS) games and related work. This chapter
will form the basis of our security game models.

Chapter 3 Then, we introduce and study an extension of the IDS games
where we call the games generalized IDS games (α-IDS games). Like tra-
ditional IDS games introduced by Kunreuther and Heal [2003, 2004, 2007],
α-IDS games model agents’ voluntary investment decisions when facing po-
tential direct risk and transfer-risk exposure from other agents. A distinct
feature of α-IDS games, however, is that full investment can reduce trans-
fer risk. In particular, α is a vector of probabilities, one for each agent,
specifying the probability that the transfer risk will not be protected by the
investment. In other words, agent i’s investment can reduce indirect risk by
probability (1 − αi). As a result, depending on the transfer-risk reduction
level, generalized IDS games may exhibit strategic complementarity (SC) or
strategic substitutability (SS) [Topkis, 1979, Vives, 1990]. We consider three
variants of generalized IDS games in which players exhibit only SC, only SS,

1To put our computational contributions in context, note that deciding whether a
graphical game (with bounded neighbors) has a PSNE is, in general, NP-complete (see,
e.g., Gottlob et al. [2005]). For normal-form games, computing an MSNE in them is
PPAD-complete, even in two-player multi-action games (see, e.g., Chen et al. [2009] and
Daskalakis et al. [2009]). Also, in normal-form games, computing all MSNE is rarely
achieved and counting-related problems are often #P-complete (see, e.g., Conitzer and
Sandholm [2008]). However, these results are based on the “hard” instances of games.
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and both SC+SS. We show that determining whether there is a pure-strategy
Nash equilibrium (PSNE) in SC+SS-type games is NP-complete, while com-
puting a single PSNE in SC-type games takes worst-case polynomial time.
As for the problem of computing all mixed-strategy Nash equilibria (MSNE)
efficiently, we produce a partial characterization. Whenever each agent in
the game is indiscriminate in terms of the transfer-risk exposure to the other
agents, a case that Kearns and Ortiz originally studied in the context of tra-
ditional IDS games in their NIPS 2003 paper, we can compute all MSNE that
satisfy some ordering constraints in polynomial time in all three game vari-
ants. Yet, there is a computational barrier in the general (transfer) case: we
show that the computational problem is as hard as the Pure-Nash-Extension
problem, also originally introduced by Kearns and Ortiz [2004], and that it is
NP-complete for all three variants. Finally, we experimentally examine and
discuss the practical impact that the additional protection from transfer risk
allowed in generalized IDS games has on MSNE by solving several randomly-
generated instances of SC+SS-type games with graph structures taken from
several real-world datasets.

Chapter 4 Starting from α-IDS games, we formally define and study In-
terdependent Defense (IDD) games in depth. In this chapter, we present
several results that fully characterize their NE (PSNE and MSNE), which
includes a polynomial-time algorithm to compute all MSNE for an impor-
tant subclass of IDD games in which there is only one attack, the defender
nodes are fully transfer-vulnerable (i.e., investing in security does nothing to
reduce their external/transfer risk) and transfers are one-hop.2 Moreover,
we provide experimental results from applying learning-in-games (or best-
response-gradient dynamics) heuristics to compute approximate NE to both
fixed and randomly-generated instances of IDD games, with at most one si-
multaneous attack and one-hop transfers, on a very large Internet AS graph
(≈ 27K nodes and ≈ 100K edges). We call this subclass of IDD games
Internet games.

Chapter 5 We continue our study of IDD games, and we further examine
the problem of computing a NE in IDD games. We show that an efficient
algorithm to determine whether some attacker’s strategy can be a part of

2We note that the original IDS games [Kunreuther and Heal 2003, 2004, 2007] are also
fully transfer-vulnerable and assume one-hop transfers.
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a NE in an instance of IDD games is unlikely to exist. Yet, we provide a
dynamic programming algorithm to compute an approximate NE when the
graph/network structure of the game is a directed tree with a single source,
and show that it is a fully polynomial time approximation scheme (FPTAS).
We also introduce an improved heuristic to compute an approximate NE on
arbitrary graph structures. Our experiments show that our heuristic is more
efficient, and provides better approximations, than best-response-gradient
dynamics for the case of Internet games.

Chapter 6 We introduce a statistical framework to learn the structures
and parameters of games given a set of possible (approximate) MSNE. Under
our framework, we show that maximizing the log-likelihood of the game is
equivalent to maximizing the number of (approximate) MSNE in the data
under some mild assumptions. Moreover, using the vaccination data from the
Center for Disease Control and Prevention (CDC) in the United States, we
demonstrate the effectiveness of our framework on learning the parameters
of the α-IDS games that best fit the data. Although our focus in this chapter
is to learn α-IDS games, we can also apply it to learn IDD games. Due to
dataset availability, we settle for learning α-IDS games and leave learning
IDD games as a future exploration, conditional on the available of attacker-
defender security data.

1.2 Background: Game Theory Basic

Game theory is the study of interaction among independent and self-interested
agents or players. The notion of independent means that the basic model-
ing unit is the individual. The modeling unit includes the agent’s beliefs,
preferences, and actions. In our work, we are only interested in noncooper-
ative game theory as opposed to cooperative game theory, where there are
binding agreements among some agents. Moreover, self-interested does not
mean that the agents want to cause harm to each other, or only care about
themselves. Instead, they have their own description of which states of the
world they like and that they act trying to bring about these states.

We use a utility function to model an agent’s degree of interest. Roughly
speaking, a utility function is a mapping from states of the world to real
numbers. These numbers are interpreted as measures of an agent’s level of
“happiness” in the given states. When the agent is uncertain about which
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state of the world he faces, his utility is defined as the expected value of
his utility function with respect to the appropriate probability distribution.
Each agent’s goal is to choose the set of actions (or probability distribution
over the set of actions) that maximizes (expected) utility.

Model Interaction. The normal-form representation (or normal-form game)
is arguably the most fundamental representation in game theory to model
interaction among agents.

Definition 1. A (finite, n-person) normal-form game is a tuple (N,A, u)
where

• N is a finite set of n players, indexed by i;

• A = A1 × ...×An, where Ai is a finite set of actions or pure strategies
available to player i, and each vector a = (a1, ..., an) ∈ A is called an
action profile;

• u = (u1, ..., un) where ui : A → R is a real-valued utility (or payoff)
function for player i.

A natural way to represent normal-form games is via an n-dimensional
matrix. Below is a classic example of a 2-person prisoner’s dilemma game
in normal form [Fudenberg and Tirole, 1991]. Each row corresponds to a

Cooperate Defect
Cooperate -1, -1 -4, 0

Defect 0, -4 -3, -3

Table 1.1: Prisoner’s Dilemma Game

possible action for player 1, each column corresponds to a possible action for
player 2, and each cell corresponds to one possible outcome. Each player’s
utility for an outcome is written in the cell corresponding to that outcome,
with player 1’s utility listed first.

Strategies in Normal-Form Game. There are many strategies available
to a player. An example of a simple strategy for a player is for that player to
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play one action (or pure-strategy). A player can choose a more complex strat-
egy in which he plays the actions according to some probability distribution.
This such strategy is also known as a mixed strategy.

Let (N,A, u) be a normal-form game. For any set D, let ∆(D) be the set
of all probability distributions over D.

Definition 2. The set of mixed strategies of player i is Xi = ∆(Ai). The
set of pure strategies for player i is Xi = Ai.

The set of pure-strategy and mixed-strategy profiles is simply the Carte-
sian product of the individual pure-strategy set (A1 × ... × An) and mixed-
strategy set (X1 × ...×Xn).

The following definition gives us a way to compute the expected utility
value for each player under mixed-strategy profile.

Definition 3. Given a normal-form game (N,A, u) and the mixed-strategy
profile x = (x1, ..., xn), player i’s expected utility ui is

ui(x) ≡
∑

a∈A ui(a)
∏n

j=1 xj(aj),

where xj(aj) is the probability of player j plays the action aj according to xj.

Note that pure-strategy profile is equivalent to a mixed-strategy profile
where the probability of playing an action is one.

Equilibrium (Solution) Concept. Given a game, each player strategi-
cally selects a strategy given the strategies of other players. In particular,
when each player is “happy” and has no incentive to deviate to other strate-
gies given the strategies of other players, we say that an equilibrium or a
stable outcome has been reached.

There are many equilibrium concepts (see Fudenberg and Tirole [1991]
for other concepts). One that has been studied extensively, both analytically
and computationally, over the recent years is the concept of Nash equilibrium
(NE). Intuitively, a NE is a stable strategy profile: no player would want
to change his strategy if he knew what strategies the other players were
following.

Definition 4. A strategy profile x∗ = (x∗1, ..., x
∗
n) is a NE if, for all players i

and for all strategies x′i ∈ Xi, ui(x
∗
i , x
∗
−i) ≥ ui(x

′
i, x
∗
−i).

Alternatively, we can define NE in terms of best response.
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Definition 5. Player i’s best response to the strategy profile x−i is a mixed
strategy x∗i ∈ Xi such that ui(x

∗
i , x−i) ≥ ui(xi, x−i) for all strategies.

Definition 6. A strategy profile x∗ = (x∗1, ..., x
∗
n) is a NE if, for all players

i, x∗i is a best response to x∗−i.

In fact, there are alternative mathematical expressions for NE that are
more computationally amenable.

Proposition 1. A strategy profile x∗ = (x∗1, ..., x
∗
n) is a NE if, for all players

i, ui(x
∗
i , x
∗
−i) ≥ ui(ai, x

∗
−i) for all ai ∈ Ai.

Proof. Suppose that have a strategy profile x∗ = (x∗1, ..., x
∗
n) such that for

all players i, ui(x
∗
i , x
∗
−i) ≥ ui(ai, x

∗
−i) for all ai ∈ Ai. For all players i, let

amaxi ∈ Ai such that amaxi ∈ arg maxai∈Ai ui(ai, x
∗
−i). For any x′i ∈ Xi,

ui(x
∗) ≥

∑
ai∈Ai

x′i(ai)ui(a
max
i , x∗−i) ≥

∑
ai∈Ai

x′i(ai)ui(ai, x
∗
−i)

=
∑
ai∈Ai

x′i(ai)
∑

a−i∈A−i

ui(ai, a−i)
n∏

j=1,j 6=i

x∗j(aj) = ui(x
′
i, x
∗
−i)

where the first inequality is because
∑

ai∈Ai x
′
i(ai) = 1 and the second in-

equality is because amaxi ∈ arg maxai∈Ai ui(ai, x
∗
−i). Thus, x∗ is a NE.

Throughout the text, we will use the short-hand expressions PSNE and
MSNE to distinguish the set of NE resulting from all the players playing pure-
strategies and the players playing mixed-strategies, respectively. However, a
PSNE is also an MSNE and the general term NE can be interpreted broadly
as MSNE. In either case, the definitions and proposition above hold for both
PSNE and MSNE.

A more compact representation: Graphical Games. In a more prac-
tical sense, the normal-form representation of games is too large and unre-
alistic for real life when the number of players is large. We can use graphi-
cal games to represent normal-form games compactly. Graphical games use
graphical models to capture the payoff (conditional) independence structure
of the games. A classic example is Road games (see below) [Shoham and
Leyton-Brown, 2009].
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Consider n players, each of whom has a piece of land alongside a road. Each
agent has to choose what to build on his/her land. In this example, graph
encodes the modeling assumption. His/Her payoff depends on what his neigh-
bors (the connected nodes) have built.

Definition 7. Let G = (N,E) be the graph defined on a set of nodes N and
and a set of edges E. For every i ∈ N , let n(i) = {i}∪ {j | (j, i) ∈ E} be the
set of neighboring nodes of i and i.

Definition 8. A graphical game is a tuple (G = (N,E), A, u), where:

• G = (N,E) is a set of n vertices, representing players, and E is a set
of undirected edges connecting the nodes N ;

• A = A1 × ... × An, where Ai is the set of actions available to agent i;
and

• u = (u1, ..., un) where ui : An(i) → R, where An(i) =
∏

j∈n(i) Aj.

Note that an edge between two vertices in the graph can be view as the
two players are able to affect each other’s payoffs. Moreover, the graphical
structure can also be directed and the definition can be modified easily by
simply replacing n(i) by Pa(i) ∪ {i} for all players i ∈ N where Pa(i) is the
parent of i in the directed graph representation.

Computing Nash Equilibrium. The complexity of computing a PSNE
depends on the representation of the games. For instance, computing a PSNE
in the classic normal-form representation where the utilities (for each possible
combination of actions) are given via a (large) table/matrix can be done in
logarithmic space and in polynomial time [Gottlob et al., 2005]. However,
the complexity of computing a PSNE is rather negative as shown by Gottlob
et al. [2005].

Theorem 1. Determining whether a graphical games of bounded neighbors
has a PSNE is NP-complete.
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However, if the graph (in graphical games) has constant treewidth and
small neighborhood, computing PSNE can be solved in polynomial time by
formulating the computational problem as a constraint satisfaction problem
[Gottlob et al., 2005]. Therefore, allowing us to apply the standard CSP
algorithms [Dechter, 2003] to find a PSNE if it exists.

While the hardness of computing a PSNE depends on the representation
of the games. The following results hold in general, regardless of repre-
sentations, when computing MSNE. Every game has a MSNE Nash [1950]
while Chen et al. [2009] and Daskalakis and Papadimitriou [2005], Daskalakis
et al. [2009], Chen and Deng [2006] show that computing a MSNE is PPAD-
complete even in two-player multi-action games.

Theorem 2. [Nash, 1950] Every game with a finite number of players and
action profiles has at least one MSNE.

Theorem 3. [Chen and Deng, 2006] [Daskalakis and Papadimitriou, 2005],
[Daskalakis et al., 2009] The problem of finding a MSNE of a general sum
finite game with two or more players is PPAD-complete.
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Chapter 2

Interdependent Security Games

Interdependent security (IDS) games are one of the earliest models resulting
from a game-theoretic approach to model security in non-cooperative en-
vironments composed of free-will self-interested individual decision-makers.
Originally introduced and studied by economists Kunreuther and Heal [2003,
2004, 2007], IDS games model the general abstract security problems in which
an individual within a population considers whether to voluntarily invest in
some protection mechanisms or security against a risk they may face, know-
ing that the cost-effectiveness of the decision depends on the investment
decisions of others in the population because of transfer risks (i.e., the “bad
event” may be transferable from a compromised individual to another).

In their work, Kunreuther and Heal [2003, 2004, 2007] provided several
examples based on their economics, finance, and risk management expertise.
As a canonical example of the real-world relevance of IDS settings and the
applicability of IDS games, Heal and Kunreuther [2005a] used this model to
describe problems such as airline baggage security. In their setting, individ-
ual airlines may choose to invest in additional complementary equipment to
screen passengers’ bags and check for hazards such as bombs that could cause
damage to their passengers, planes, buildings, or even reputations. One can
also view bomb packages as passengers where they often only get screened at
their initial airport, resulting in decisions where an attacker boards a plane in,
for instance, an African airport to connect to a Europe-US flight [O’Connor
and Schmitt, 2009]. However, mainly due to the large amount of traffic vol-
ume, it is impractical for an airline to go beyond applying security checks
to bags incoming from passengers and include checks to baggage or cargo
transferred from other airlines. On the other hand, if an airline invests in
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security, they can still experience a bad event if the bag was transferred from
an airline that does not screen incoming bags, rendering their investment
useless. 1 Thus, we can see how the cost-effectiveness of an investment can
be highly dependent on others’ investment decisions. Another recent appli-
cation of the IDS model is on container shipping transportation [Gkonis and
Psaraftis, 2010]. They use the IDS model to study the effect of investment
decision on container screening of ports have on their neighboring ports.
Furthermore, IDS games can be used to model other practical real-world sit-
uations such as vaccination Heal and Kunreuther [2005b]. See Laszka et al.
[2014] for a survey on IDS games and other variants of IDS games.

2.1 Preliminary: Parameters of IDS Games

We start by looking at Interdependent Security (IDS) games and define the
parameters and rules governing this model. There are n players in the IDS
games and the players are indexed by [n] = {1, 2, ..., n}. Each player i ∈ [n]
has a choice to invest or not invest. Thus, the action set of a player i is
denoted by the set {0, 1} and, for convenient, we let ai = 1 denote the action
of invest and let ai = 0 denote the action of not invest.

For each player i ∈ [n], let Ci ∈ R+ be the cost of investment and Li ∈ R+

be the loss induced by the bad event.
For each player i ∈ [n], we let pi ∈ [0, 1] to be the probability that player

i will experience a bad event because of a direct contamination. We will refer
the parameter pi as direct risk or internal risk of player i. The standard IDS
model assumes that investing will completely protect the player from direct
contamination; hence, internal risk is only possible when ai = 0.

For each player i ∈ [n] and for each player j 6= i, the indirect risk or
transfer risk is denoted by qji ∈ [0, 1]. The transfer risk is the probability
that player j is directly “contaminated,” does not experience the bad event
but transfers it to player i who ends up experiencing the bad event. The
player receiving the transfer still has the chance of not experiencing the bad
event. The IDS model also assumes that the interactions between players are
unaffected by investment, so regardless of one’s investment, one’s transferred
risk is the same.

1Note that even if full screening were performed, the Christmas Day 2009 episode in
Detroit [O’Connor and Schmitt, 2009] serves as a reminder that transfer risk still exists.
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As pointed out by Kearns and Ortiz [2004], the original IDS model im-
poses an implicit global constraint on the internal and transfer risk parame-
ters such that pi +

∑
j∈Pa(i) qji ≤ 1 for all i ∈ [n].

Denote by a ≡ (a1, . . . , an) ∈ {0, 1}n the joint-action or pure-strategy
profile of all n players. Also denote by a−i the joint-action or action profile
of all players except i and for any subset I ⊆ [n] of players, denote by aI the
sub-component of the joint-action corresponding to those players in I only.

We now formally define a (directed) graphical game [Kearns et al., 2001,
Kearns, 2007] version of IDS games, as first introduced by Kearns and Ortiz
[2004]. The graphical structure is induced by the transfer risk parameters.
In particular, the parameters qij’s induce a directed graph G = ([n], E) such
that E ≡ {(i, j) for i, j ∈ [n] | qij > 0}. Let Pa(i) ≡ {j ∈ [n] | qji > 0} be
the set of players that are parents of player i in G (i.e., the set of players that
player i is exposed to via transfers), and by PF(i) ≡ Pa(i) ∪ {i} the parent
family of player i, which includes i. Denote by ki ≡ |PF(i)| the size of the
parent family of player i. Similarly, let Ch(i) ≡ {j ∈ [n] | qij > 0} be the set
of players that are children of player i (i.e., the set of players to whom player i
can present a risk via transfer) and CF(i) ≡ Ch(i)∪{i} the (children) family
of player i, which includes i. Note that the above definitions and notations
are standard in graph theory for directed graphs.

Giving the graph that is induced by the transfer risks, one important
notion in IDS games is the safety of the players. Indeed, the safety of a
player i depends not only on the transfer risks but also on the investment
decisions of other players that could transfer the bad event to i. To compute
the safety of player i, we first compute the the probability that player i is safe
from player j. More specifically, the probability that player i is safe from
player j, as a function of player j’s decision, is

eij(aj) ≡ aj + (1− aj)(1− qji) = (1− qji)1−aj ,

because, in the standard IDS games of Kunreuther and Heal [2003, 2004,
2007], if j invests, then it is impossible for j to transfer the bad event, while
if j does not invest, then j either experiences the bad event or transfers it to
another player, but never both.

Because the transfer risks to i and the safety functions of i from other
players are independent, i’s overall safety from all other players is

si(aPa(i)) ≡
∏

j∈Pa(i) eij(aj),
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and equivalently his overall risk from other players is

ri(aPa(i)) ≡ 1− si(aPa(i)).

Note that each player’s overall safety (and risk) is a direct function of its
parents only, not all other players. Moreover, it is important to realize that,
in the IDS model, there is only one bad event in the system and the bad event
such as bomb explosion can only occur once [Heal and Kunreuther, 2003].
Therefore, the above risk function captures that the probabilities that the
bad event will be transferred from the parents that do not invest in security.

From these definitions, we obtain player i’s overall cost, the cost of joint-
action a ∈ {0, 1}n, corresponding to the (binary) investment decision of all
players, is

Mi(ai, aPa(i)) ≡ai[Ci + ri(aPa(i))Li]+

(1− ai)[pi + (1− pi)ri(aPa(i))]Li .

Given the cost function, the goal of the player is to select the action
that minimizes its cost given the actions of others. Whether players invest
depends solely on what they can gain or lose by investing. If the overall
cost of investing is less than the overall cost of not investing, the player will
invest. Applying this logic to cost function Mi, player i will invest if

Ci + riLi < [pi + (1− pi)ri]Li

so that the investment cost and the losses due to a transferred event do not
outweigh the losses from an internal or transferred bad event. Similarly, if
the inequality in the last expression is reversed or is replaced by equality,
player i will not invest or would be indifferent, respectively.

Rearranging the expression for the best-response conditions given in the
last equation and letting

∆i ≡
Ci
piLi

,

the cost-to-expected-loss ratio of player i, we get the following best-response
correspondence BRi : {0, 1}ki−1 → 2{0,1} for player i:

BRi(aPa(i)) ≡


{1}, if si(aPa(i)) > ∆i,

{0}, if si(aPa(i)) < ∆i,

{0, 1}, if si(aPa(i)) = ∆i.

(2.1)
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In other words, whether it is cost-effective for player i to invest or not depends
on a simple threshold condition on his safety. For the original IDS model,
the question a player faces is, does he feel safe enough from others?

Definition 9. A pure-strategy profile a∗ ∈ {0, 1}n is a PSNE of an IDS game
if a∗i ∈ BRi(a

∗
Pa(i)) for all players i ∈ [n] (i.e., a∗ is a mutual best-response).

The cost function can be easily extended to accommodate the mixed-
strategy setting in which each player plays the actions with some probability.
Formally, for each player i, we let Ai to be a Bernoulli random variable
that can take a value of zero or one. We denote xi = Pr(Ai = 1) to be
the probability that Ai is equal to one. In other words, xi denotes the
mixed strategy of player i that specifies i’s probability of playing the action
invest. Thus, player i’s expected cost function is the expectation over the
cost function when the pure actions are represented by the Bernoulli random
variables Ai’s. With a slight abuse of notation, player i’s expected cost
function is

Mi(xi, xPa(i)) ≡ E[Mi(Ai,APa(i))]

= E[Ai[Ci + ri(APa(i))Li] + (1−Ai)[pi + (1− pi)ri(APa(i))]Li]

= xiCi + E[Airi(APa(i))]Li + (1− xi)piLi + E[(1−Ai)(1− pi)ri(APa(i))]Li

= xiCi + xiri(xPa(i))]Li + (1− xi)piLi + (1− xi)(1− pi)ri(xPa(i))Li

= xi[Ci + ri(xPa(i))Li] + (1− xi)[pi + (1− pi)ri(xPa(i))]Li ,

where the second equality is by linearity of expectation and the third equality
is by the expected value of mutually independent random variables. More-
over, the best-response correspondence of each player i can be redefined in
terms of mixed strategy where BRi : [0, 1]ki−1 → S ⊆ [0, 1].

Definition 10. A mixed-strategy profile x∗ ∈ [0, 1]n is an MSNE of an IDS
game if x∗i ∈ BRi(x

∗
Pa(i)) for all players i ∈ [n].

We will conclude this chapter by discussing the results on computing NE
in IDS games.

2.2 Nash Equilibrium in IDS Games

One central question in studying game-theoretical model is the characteriza-
tion and computation of NE. Below, we present previous results on finding
NE in IDS games.
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In regard to the existence of a PSNE, Heal and Kunreuther [2004] and
Kearns and Ortiz [2004] show that there always exists one.

Theorem 4. There exists a PSNE for any n-player IDS game. In addition,
a PSNE in time O(n2).

The key to show the above theorem is based on the following constructive
proof and algorithm. The idea is to start with all players playing the action
not invest. Given that, we check to see whether each player is playing a best-
response according to Equation 2.1. If all of the players are playing according
to their best-response, then we have a PSNE and we are done. Otherwise,
there must be some players that are “unhappy” playing the action invest.
Then, we switch the “unhappy” players to play the action not invest and
keep the other players’ action to invest. Once again, with those players
playing invest and the remaining players playing not invest, we check to see
if every player is playing a best response. If so, we are done. Otherwise,
there must be some other players that are not playing their best-responses.
We change their actions to invest and we repeat until every player is playing
best response to each other (in worst case, everybody invests) 2.

Given the existence of a PSNE in IDS games, Heal and Kunreuther [2004]
and Kearns and Ortiz [2004] investigate the question of finding all NE in
uniform-transfer (indiscriminate) IDS games analytically and computation-
ally, respectively. A uniform-transfer IDS game is an IDS game in which the
transfer probability of a node is independent of the destination, that is, for all
i 6= j, qij = δj for some value δj ∈ (0, 1]. Kearns and Ortiz [2004] show that
there exists a polynomial algorithm to compute all NE in uniform-transfer
IDS games.

However, the result is quite negative for finding all NE in the non-uniform
case. In particular, Kearns and Ortiz [2004] study a problem in which they
call Pure-Nash Extension problem. The Pure-Nash Extension problem for
any n-player game with binary actions takes a description of the game and a
partial assignment a ∈ {0, 1, ∗}n as inputs and output a complete assignment
that agrees with a (a PSNE) or ”none”.

Even in a slightly more general case of IDS games where all i 6= j, qij ∈
{δ, 0} for δ ∈ (0, 1] are allowed to have only two values and |Ch(i)| ≤ 3 for

2The same reasoning work starting with everyone playing the action invest and asking
whether there are “unhappy” players (i.e., playing invest is never a good strategy regardless
of what other players are playing) and recursively applying the same argument.
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all i ∈ [n], the Pure-Nash Extension problem for this version of IDS games
is NP-complete. Therefore, the existence of an efficient algorithm to find all
NE in general IDS games is unlikely.
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Chapter 3

Generalized Interdependent
Security Games1

In the standard IDS game model of Kunreuther and Heal [2003, 2004, 2007],
investment in security does not reduce transfer risks. However, in some
IDS settings (e.g., vaccination and cyber-security), it is reasonable to expect
that security investments would include mechanisms to reduce transfer risks.
This motivates our first modification to traditional IDS games: allowing the
investment in protection to not only make us safe from direct attack but also
partially reduce (or even eliminate) the transfer risk. Let us start off with a
motivating example.

3.1 An Illustrative Example

Let us be more concrete and consider an application of IDS games from Heal
and Kunreuther [2004], Kearns and Ortiz [2004]. Imagine that you are an
owner of an apartment. One day, there was a fire alarm in the apartment
complex. Luckily, it was nothing major: nobody got hurt. As a result, you
realize that your apartment can be easily burnt down because you do not
have any fire extinguishing mechanism such as a sprinkler system. However,
as you wonder about the cost and the effectiveness of the fire extinguishing
mechanism, you notice that the fire extinguishing mechanism can only pro-
tect your apartment if a small fire originates in your apartment. If a fire

1A part of this chapter has appeared in the proceedings of the Twenty-eighth Annual
Conference on Neural Information Processing Systems (NIPS 2014).
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originates in the floor below, or above, or even the apartment adjacent to
yours, then you are out of luck: by the time the fire gets to your apartment,
the fire would be fierce enough already. You realize that if other apartment
owners invest in fire extinguishing mechanisms, the likelihood of their fires
reaching you decreases drastically. As a result, you debate whether or not
to invest in the fire extinguishing mechanism given whether or not the other
owners invest in fire extinguishing mechanisms. Indeed, making things more
interesting, you are not the only one going through this decision process;
assuming that everybody is concerned about their safety in the apartment
complex, everybody in the apartment complex wants to decide whether or
not to invest in fire extinguishing mechanisms given the individual decision
of other owners.

To be more specific, as an IDS game, the players are the apartment
owners, each apartment owner needs to make a decision as to whether or not
to invest in the fire extinguishing mechanism based on cost, potential loss,
as well as the direct and indirect (transfer) risks. The direct risk here is the
chance that a player will start a fire (e.g., forgetting to turn off gas burners or
overloading electrical outlets) and potentially burn his apartment down. The
transfer risk here is the chance that a fire from somebody else’s (unprotected)
apartment will spread to other apartments. Moreover, as a feature of the
IDS games, transfer risk comes from the direct neighbors conditional and
cannot be re-transferred. In other words, the player only concerns about
the risks from the direct neighbors. From the perspective of the player, the
player does not care about what happens to him after the “bad event” (i.e.,
burning). However, the player does indirectly care about the transfer risks
but conditionally on the actions of other players that can transfer to him
directly. As we saw earlier, the player’s cost function is directly independent
from other players in the system.

Note that in the apartment complex example, the fire extinguishing mech-
anism does not protect an agent from fires that originate from other apart-
ments. In this work, we consider a more general, and possibly also more
realistic, framework of IDS games where investment can partially protect the
indirect risk (i.e., investment in the fire extinguishing mechanism can par-
tially extinguish some fires that originate from others). To distinguish the
naming scheme, we will call these generalized IDS games as α-IDS games
where α is a vector of probabilities, one for each agent, specifying the proba-
bility that the transfer risk will not be protected by the investment. In other
words, agent i’s investment can reduce indirect risk by probability (1-αi).
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α ∼ N (0.4, 0.2) α ∼ N (0.6, 0.2) α ∼ N (0.8, 0.2)
(a) (b) (c)

Figure 3.1: α-IDS Game of Zachary Karate Club at a NE. Legend:
Square ≡ SC player, Circle ≡ SS player, Shaded ≡ Invest, and Not Shaded
≡ No Invest, N (m, v) = Normal(mean, variance)

Given an α, the players can be partitioned into two types: the SC type and
the SS type. The SC players behave strategic complementarily : they invest
if sufficiently many people invest. On the other hand, the SS players behave
strategic substitutability : they do not invest if too many people invest.

As a preview of how the α can affect the number of SC and SS play-
ers and NE, which is the solution concept used here (formally defined for
the α-IDS games in the next section), Figure 5.1 presents the result of our
simulation of an instance of SC+SS α-IDS games using the Zachary Karate
Club network [Zachary, 1977] where α is generated independently according
to normal distribution with mean (a) 0.4, (b) 0.6, and (c) 0.8 and a common
standard deviation of 0.2 for each player. The nodes are the players, and the
edge between nodes u and v represents the potential transfers from u to v
and v to u. The SC players are denoted by squares and the SS players are
denoted by circles. Those that make an investment in an NE are shaded. As
we increase α’s value, the number of SC players increases while the number
of SS players decreases. Interestingly, almost all of the SC players invest,
and all of the SS players are “free riding” as they do not invest at the NE.

3.2 The Model: α-IDS Games

We incorporate this factor by introducing a new real-valued parameter αi ∈
[0, 1] representing the probability that a transfer of a potentially bad event
will go unblocked by i’s security, assuming i has invested. Said differently,
the parameter αi models the degree to which investment in security can
potentially reduce player i’s transfer risk. Thus, we redefine player i’s overall
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cost as 2

Mi(ai, aPa(i)) ≡ai[Ci + αiri(aPa(i))Li]+

(1− ai)[pi + (1− pi)ri(aPa(i))]Li .

Note that the safety function describes the situation where a player j can
only be “risky” to player i if and only if j does not invest in protection.

While a syntactically minor addition to the traditional IDS model, the
parameter α introduces a major semantic difference and an additional com-
plexity over the traditional model. The semantic difference is perhaps clearer
from examining the best response of the players: player i invests if

Ci + αiri(aPa(i))Li < [pi + (1− pi)ri(aPa(i))]Li

⇔ Ci
Li

< pi + (1− pi)ri(a−i)− αiri(a−i)

⇔ Ri − pi < (1− pi − αi)ri(aPa(i)) .

The expression (1 − pi − αi) is positive when αi < 1 − pi and negative
when αi > 1 − pi. The best-response condition flips when the expression is
negative. When αi = 1− pi, player i’s investment decision simplifies because
the player’s internal risk fully determines the optimal choice. In other words,
the best-response of player i is independent of other players’ actions; player
i behaves as a disconnected node in the game graph.

In fact, the parameter α induces a partition of the set of players based on
whether the corresponding αi value is higher or lower than 1 − pi. We will
call the set of players with αi > 1 − pi the set of strategic complementarity
(SC) players. SC players exhibit as optimal behavior that their preference
for investing increases as more players invest: they are “followers.” The set
of players with αi < 1− pi is the set of strategic substitutability (SS) players.
In this case, SS players’ preference for investing decreases as more players
invest: they are “free riders.”

For all i ∈ SC, let ∆sc
i ≡ 1 − Ri−pi

1−pi−αi ; similarly for ∆ss
i , for i ∈ SS. We

can define the best-response correspondence BRsc
i : {0, 1}ki−1 → 2{0,1} for

2A possible generalization, which we do not pursue here, may also consider αi a function
of Pa(i).

20



player i ∈ SC as

BRsc
i (aPa(i)) ≡


{0}, ∆sc

i > si(aPa(i)),

{1}, ∆sc
i < si(aPa(i)),

{0, 1}, ∆sc
i = si(aPa(i)) .

The best-response correspondence BRss
i for player i ∈ SS is similar, except

that we replace ∆sc
i by ∆ss

i and “reverse” the strict inequalities above. There-
fore, the best-response correspondence BRss

i : {0, 1}ki−1 → 2{0,1} for player
i ∈ SS is

BRss
i (aPa(i)) ≡


{0}, ∆ss

i < si(aPa(i)),

{1}, ∆ss
i > si(aPa(i)),

{0, 1}, ∆ss
i = si(aPa(i)) .

As before, we consider the mixed-strategy setting and denote xi to be
the probability that i plays the action invest. Player i’s decision depends on
expected cost, and, with abuse of notation, we denote it by Mi(x).

Definition 11. A pure-strategy profile a ∈ {0, 1}n is a PSNE of an α-IDS
game if (1) for each player i ∈ SC, ai ∈ BRsc

i (aPa(i)) and (2) for each player
i ∈ SS, ai ∈ BRss

i (aPa(i)). Replacing the pure-strategy profile a with a mixed-
strategy profile x ∈ [0, 1]n in the equilibrium condition and the respective
functions it depends on, this leads to the condition for x being a MSNE.

For convenient, in the following, we will denote the α-IDS games consist
of only SC players, only SS players, and both SC and SS players as SC α-IDS
games, SS α-IDS games, and SC+SS α-IDS games, respectively.

3.3 Computational results for Finding a PSNE

in α-IDS games

In this section, we present and discuss the results of our computational study
of α-IDS games. We begin by considering the problem of computing PSNE,
then moving to the more general problem of computing MSNE.

In this subsection, we look at the complexity of determining a PSNE in
α-IDS games, and determine if one exists. Our first result follows.

Theorem 5. Determining whether there is a PSNE in n-player SC+SS α-
IDS games is NP-complete.
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Figure 3.2: 3-SAT-induced SC+SS α-IDS game-graph.

Proof. For formality, we first define the notations that will be used in the
proof. In particular, we consider the problem of determining whether there
is a PSNE in SC+SS α-IDS games and denote the instances with PSNE as

α-IDS = {
(
[n], (Ci)i∈[n], (αi)i∈[n], (Li)i∈[n], (pi)i∈[n], (qji)j,i∈[n],i 6=j

)
:

there exists a PSNE in G }.

We will reduce our problem from a variation of 3-SAT (also called Boolean
Satisfiability Problem) where each clause of the 3-SAT has exactly three
variables and consists of either negated variables or (un-negated) variables.
We use the term variable(s) by default for un-negated variable(s), unless
stated otherwise. This 3-SAT variation is known to be NP-complete [Garey
and Johnson, 1979]. We denote the instances with satisfiable solutions as

3-SAT = { ((xi)i∈[m], (¬xi)i∈[m],∧ci=1Ci, Ci = (∨3
j=1xij)

or Ci = (∨3
j=1¬xij)) : there exists a satisfiable assignment },

where there are m variables (along with its negated variables which are listed
explicitly), c clauses, and each clause has three variables or negated variables.
A satisfiable assignment is defined to be an assignment of all variables i to
zero or one, xi ∈ {0, 1}, such that the boolean formula ∧ci=1Ci is true or
satisfied (i.e., each clause Ci is true or satisfied).

Below, given an instance of 3-SAT

γ =
(
(xi)i∈[m], (¬xi)i∈[m],∧ci=1Ci, Ci = (∨3

j=1xij) or Ci = (∨3
j=1¬xij)

)
,
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we are going to construct an instance of α-IDS games

β =
(
([n], (Ci)i∈[n], (αi)i∈[n], (Li)i∈[n], (pi)i∈[n], (qji)j,i∈[n],i 6=j)

)
,

that correspond to γ.

• There are n = c+2m players: a player for each clause, a player for each
variable, and a player for each negated variable. The clause players,
variable players, and negated variable players are indexed from 1 to c,
c+ 1 to m+ c, and m+ c+ 1 to 2m+ c, respectively.

• First, we find q ∈ [0, 1] such that 1 −
(

1− R−p
1−p−α

) 1
2
> q > 1 −(

1− R−p
1−p−α

) 1
3

for some 0 < 1 − α < R < p < 1, 1 > L > C > 0, and

R = C
L

. The constraint of the parameters is due to the fact that we want

to enforce the condition 1− p < α, and to ensure that 0 < R−p
1−p−α < 1,

we require R− p < 0 and R− p > 1− p− α. It is not hard to see that
such q always exists.

For each clause player i ∈ [c] such that Ci = (∨3
j=1xij), q(ij+c)i =

qi(ij+c) = q for all j, and for each clause player i ∈ [c] such that Ci =
(∨3

j=1¬xij), q(ij+c+m)i = qi(ij+c+m) = q for all j. To set the remaining
parameters, for each clause player i ∈ [c], set Ci = C, Li = L, αi = α,
and pi = p.

Given the parameters, notice that (1) αi > 1 − pi for all i and (2)
(1 − q)2 > ∆sc

i > (1 − q)3. Thus, all of the clause players are SC, and
each clause player can transfer the “bad event” to its variable players
(or negated variable players) and vice versa.

• Using the same q as above, we find 1 > 1− α′ > R′ > p′ > 0, 1 > L′ >
C ′ > 0, and R′ = C′

L′
such that q > R′−p′

1−p′−α′ > 0. Notice that we can

make p′ arbitrary small so that R′−p′
1−p′−α′ ≈

R′

1−α′ . Moreover, R′

1−α′ can be
made arbitrary close to zero.

The constraint of the parameters is due to the fact that we want to
enforce the condition 1 − p′ > α′, and to ensure that 0 < R′−p′

1−p′−α′ < 1,
we require R′ − p′ > 0 and R′ − p′ < 1− p′ − α′.
As defined earlier, each variable player i ∈ {c+ 1, ...,m+ c, ..., 2m+ c}
has transfer risks to and from its clause players (i.e., the clauses in
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which variable i appears in). In addition of having transfer risks to
and from the clauses, each variable player i ∈ {(c+ 1), ..., (m+ c)} has
transfer risks from and to its negated variable player, that is qi(i+m) =
q(i+m)i = q. To set the remaining parameters, for each player i ∈
{c+ 1, ...,m+ c, ..., 2m+ c}, set Ci = C ′, Li = L′, αi = α′, and pi = p′.

Given the parameters, notice that (1) αi < 1 − pi for all i and (2)
1 > ∆ss

i > (1 − q). Thus, all of the variable and negated variable
players are SS, and each variable player can transfer the “bad event”
to its clause players and its negated variable player (and vice versa).

Moreover, unless defined above, the transfer risks from other clauses to other
variables are all zero.

Figure 3.2 depicts the basic structure of the game of a variable. It is easy
to see that the construction takes polynomial time.

Lemma 1. γ ∈ 3-SAT =⇒ β ∈ α-IDS.

Proof. Given a satisfiable assignment for γ, we show how to construct a PSNE
for β. Let x(1) = {i ∈ [m] : xi = 1} and x(0) = {i ∈ [m] : xi = 0} be the
indices of the variables that are assigned a value of one and zero, respectively,
in the satisfiable assignment. For consistence, we let ai to denote the action
of any player i ∈ [n] and construct a PSNE as follows. For each clause player
i ∈ [c], let ai = 1. For each variable player i ∈ {(c + 1), ..., (m + c)}, if
(i − c) ∈ x(1), ai = 1, otherwise ai = 0. For each negated variable player
i ∈ {(m+ c+ 1), ..., (2m+ c)} if (i− (m+ c)) ∈ x(0), ai = 1, otherwise ai = 0.
Note that by construction ai 6= ai+m for i ∈ {(c + 1), ..., (m + c)}. We will
call this constructed pure-strategy profile a = (a1, ..., an).

To show that a is a PSNE, we argue that each player is playing its best-
response. First, we consider the clause players. Recall that since the clause
players are the type of SC, for each i ∈ [c], we have

BRsc
i (aPa(i)) ≡


{0}, ∆sc

i > si(aPa(i)),

{1}, ∆sc
i < si(aPa(i)),

{0, 1}, ∆sc
i = si(aPa(i)) ,

where Pa(i) = {i1, i2, i3} (which corresponds to variables xi1 , xi2 , xi3 of clause
i) and si(aPa(i)) =

∏
j∈Pa(i)(1 − q)1−aj . Moreover, by the satisfiable assign-

ment, at least one variable in Pa(i) is assigned to a value of one which
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corresponds to at least one variable player that plays action one. Therefore,
(1− q)2 < si(aPa(i)) < 1. By our construction, (1− q)2 > ∆sc

i > (1− q)3. It
follows that si(aPa(i)) > ∆sc

i , and the i’s best-response is one. This holds for
all clause players i ∈ [c].

For each variable player i ∈ {(c+ 1), ..., (m+ c)}, i is a SS player and i’s
best-response correspondence is

BRss
i (aPa(i)) ≡


{0}, ∆ss

i < si(aPa(i)),

{1}, ∆ss
i > si(aPa(i)),

{0, 1}, ∆ss
i = si(aPa(i)) ,

where P (i) = {m + i} ∪ {j ∈ [c] : qji = q} (its negated variable and the
clauses that have variable xi) and si(aPa(i)) =

∏
j∈Pa(i)(1 − q)1−aj . Since

every i ∈ [c] plays the action one, si(aPa(i)) = (1 − q)1−am+i . Moreover, by
our construction, we have 1 > ∆ss

i > (1 − q). Therefore, if am+i = 1 then
ai = 0, and if am+i = 0 then ai = 1. This is exactly our construction as by
the satisfiable assignment either one of them is true but never both. This
holds for the negated variable player i ∈ {(m+ c+ 1), ..., (2m+ c)}. Hence,
the pure-strategy profile a is a PSNE.

Lemma 2. β ∈ α-IDS =⇒ γ ∈ 3-SAT .

Proof. Now we show how to construct a satisfiable assignment for γ given
a PSNE of β. Let a = (a1, ..., an) be a PSNE of β. First we provide the
following claims.

Claim 1. For every PSNE of β, ai = 1 for all i ∈ [c].

Proof. For the sake of contradiction, suppose there is a PSNE such that
there is a clause player i ∈ [c] plays the action zero (i.e., ai = 0). Since
(1 − q)2 > ∆sc

i > (1 − q)3, for ai = 0, ∆sc
i > (1 − q)3. It follows that

for j ∈ Pa(i) = {i1, i2, i3}, aj = 0. On the other hand, for j ∈ Pa(i),
1 > ∆ss

j > (1 − q). Since i ∈ Pa(j), sj(aPa(j)) ≤ (1 − q), aj = 1. This is a
contradiction, thus our claim holds.

Claim 2. For every PSNE of β, ai 6= ai+m for all i ∈ {c+ 1, ..., c+m}.

Proof. For the sake of contradiction, we consider the case where there is a
PSNE in which either (a) ai = ai+m = 0 or (b) ai = ai+m = 1 for some
i ∈ {c+ 1, ..., c+m}. First, we consider the case of (a) where ai = ai+m = 0
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for some i ∈ {c + 1, ..., c + m}. By construction, we have 1 > ∆ss
i > (1− q)

and 1 > ∆ss
i+m > (1− q). It follows that either i or m + i is not playing the

best-response; that is, si(aPa(i)) ≤ (1 − q) or sm+i(aPa(m+i)) ≤ (1 − q) since
(m+ i) ∈ Pa(i) and i ∈ Pa(m+ i).

Now suppose that we consider (b) where ai = ai+m = 1 for some i ∈
{c+1, ..., c+m}. From Claim 1, all i ∈ [c], ai = 1. It follows that si(aPa(i)) =
(1−q)1−am+i and sm+i(aPa(m+i)) = (1−q)1−ai . Hence, i or m+i is not playing
the best-response. Thus, our claim holds.

Claim 3. For every PSNE of β, for each i ∈ [c], there is a j ∈ Pa(i) such
that aj = 1.

Proof. For the sake of contradiction, suppose that there is a PSNE where
there is i ∈ [c] such that ai = 1, and for all j ∈ Pa(i) aj = 0. Notice that
by construction, (1− q)2 > ∆sc

i > (1− q)3 and ai = 1 whenever si(aPa(i)) >
(1− q)2. However, si(aPai) = (1− q)3 since aj = 0 for all j ∈ Pa(i). This is
a contradiction and our claim holds.

Given the claims, we construct a satisfiable assignment for γ as follows.
For each i ∈ {(c + 1), ..., (c + m)} if ai = 1, set x(i−c) = 1, otherwise, set
x(i−c) = 0. For each i ∈ {(c+m+1), ..., (2m+c)}, ai = 1, set ¬x(i−(c+m)) = 1,
otherwise, set ¬x(i−(c+m)) = 0. From Claim 2, we know that xi 6= ¬xi for
all i ∈ [m]. For each clause Ci for i ∈ [c], by Claim 3, there is at least
one variable that makes Ci true. Moreover, since all of the clauses are true
(Claim 1), we have that the PSNE yields a satisfiable assignment.

It is easy to see that given a pure-strategy profile, we can verify whether
it is a PSNE of an α-IDS game in polynomial time. This fact, together with
Lemma 1 and Lemma 2, we have our hardness result.

3.3.1 SC α-IDS games

What is the complexity of determining whether a PSNE exists in SC α-IDS
games (i.e. αi > 1−pi)? It turns out that SC players have the characteristics
of following the actions of other players. If there are enough SC players who
take the action invest, then some remaining SC player(s) will follow suit.
This is evident from the safety function and the best-response condition.
Consider the dynamics in which everybody starts off with playing the action
of not invest. If there are some players that are not best-responding, then
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their best strategy is play the action invest. We can safely change the actions
of those players to invest. Then, for the remaining players, we continue to
check to see if any of them is not best-responding. If not, we have a PSNE,
otherwise, we change the action of the not best-responding players to invest.
The process continues until we have reached a PSNE.

Theorem 6. There is an O(n2)-time algorithm to compute a PSNE of any
n-player SC α-IDS game.

Note that once a player plays invest, other players will either stay and
play the action of not invest or change his/her action to invest. The players
that play the action not invest do not affect the strategy of the players that
already have decided to invest. Players that have decided to invest will
continue to invest because only more players will invest.

3.3.2 SS α-IDS games

Unlike the SC case, an SS α-IDS game may not have a PSNE when n > 2.

Proposition 2. Suppose we have an n-player SS α-IDS game with 1 > ∆ss
i >

(1 − qji) where j is the parent of i. (a) If the game graph is a directed tree,
then the game has a PSNE. (b) If the game graph is a a directed cycle, then
the game has a PSNE if and only if n is even.

Proof. (a) The root of the tree will always play no-invest while the immediate
children of the root will always play invest at a PSNE. Moreover, assigning the
action invest or no-invest to any node that has an odd or even (undirected)
distance to the root, respectively, completes the PSNE.

(b) For even n, an assignment in which any independent set of n
2

players
play invest form a PSNE. For odd n, suppose there is a PSNE in which I
players invest andN players do not invest, such that I+N = n. The investing
players must have I parents that do not invest and the non-investing players
must have N parents that play invest. Moreover, I ≤ N and N ≤ I implies
that I = N . Hence, an odd n cycle cannot have a PSNE.

3.4 Computing all NE in α-IDS games

Given that we can compute a PSNE in SC α-IDS games in polynomial time,
we now study whether we can compute all MSNE of α-IDS games. We prove
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that we can compute all MSNE in polynomial time in the case of uniform-
transfer SC α-IDS games, and a subset of all MSNE in the case of uniform SS
and SC+SS α-IDS games. A uniform transfer α-IDS game is an α-IDS game
where the transfer probability to another players from a particular player is
the same regardless of the destination. In other words, the players do not
discriminate the destinations of the transfers. More formally, qij = δi > 0 for
all players i and j (i 6= j). Hence, we have a complete graph with bidirectional
transfer probabilities. We can express the overall safety function given a
mixed-strategy profile x ∈ [0, 1]n as s(x) =

∏n
i=1[1− (1− xi)δi].

Recall that whether a player, say player w, plays a particular strategy
depends on whether ∆SC

w (or ∆SS
w ) is is less than, greater than, or equal

to sw(xPa(i)). Given the transfer probabilities, we have that Pa(w) = [n].
Without loss of generality, we can multiple ∆SC

w (or ∆SS
w ) and sw(xPa(i)) by

(1 − (1 − xw)δw) so that we only need to compare the values of ∆SC
w (1 −

(1 − xw)δw) (or ∆SC
w (1 − (1 − xw)δw)) and s(x). Now, we can determine

the best-response of SC or SS player exactly based solely on the values of
∆sc
i (1− (1− xi)δi), for SC, relative to s(x); similarly for SS.

We assume, without loss of generality, that for all players i, Ri > 0,
δi > 0, pi > 0, and αi > 0. Given a mixed-strategy profile x, we partition the
players by type with respect to x: let I ≡ I(x) ≡ {i | xi = 1}, N ≡ N(x) ≡
{i | xi = 0}, and P ≡ P (x) ≡ {i | 0 < xi < 1} be the set of players that,
with respect to x, fully invest in protection, do not invest in protection, and
partially invest in protection, respectively.

3.4.1 Uniform-transfer SC α-IDS games

The results of this section are non-trivial extensions of those of Kearns and
Ortiz [2004]. In particular, we can construct a polynomial-time algorithm
to compute all MSNE of a uniform-transfer SC α-IDS game, along the same
lines of Kearns and Ortiz [2004], by extending their Ordering Lemma (their
Lemma 3) and Partial-Ordering Lemma (their Lemma 4). 3 We now present
our versions of the lemmas.

Lemma 3 (Ordering Lemma). Suppose x is a NE of a uniform-transfer SC
α-IDS game. Then for any i ∈ I (investing players), any j ∈ P (partially

3Take their Ri/pi’s and replace them with our corresponding ∆sc
i ’s.
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investing players), and any k ∈ N (not investing players), then

∆sc
i ≤ ∆sc

j

∆sc
i ≤ (1− δk)∆sc

k < ∆sc
k

(1− δj)∆sc
j ≤ (1− δk)∆sc

k

Proof. The inequalities follow immediately by using the overall safety func-
tion to compare the players in I, P , and N . In particular, let i ∈ I be an
investing player, j ∈ P be a partially investing player, and k ∈ N be a not
investing player. It follows that

∆SC
i = ∆SC

i (1− (1− xi)δi) ≤ s(x) = ∆SC
j (1− (1− xj)δj) ≤ ∆SC

j ,

where the first equality is xi = 1, the first inequality and the second equality
are by the best-response correspondence of a SC player, and the last inequal-
ity is because (1− (1− xj)δj) is between zero and one. This condition gives
us the first inequality.

The second inequality follows that

∆SC
i = ∆SC

i (1− (1− xi)δi) ≤ s(x) ≤ ∆SC
k (1− (1− xk)δk) < ∆SC

k ,

where this is according to the best-response correspondence, xk = 0, and
(1− δk) is strictly between zero and one.

Finally, the last inequality follows that

∆SC
j (1− (1− xj)δj) = s(x) ≤ ∆SC

k (1− (1− xk)δk) = ∆SC
k (1− δk),

which, again, is by the best-response correspondence condition.

The following Lemma specifies the strategies of the players in the partially
investing set.

Lemma 4 (Partial Investment Lemma). Suppose x is a NE of a uniform-
transfer SC α-IDS game. For any j ∈ P ,

1. If |P | = 1, then xj ∈ 1
δ
( 1

∆sc
j
V − (1− δj))

2. if |P | > 1, then xj = 1
δ
( 1

∆sc
j
V ∗ − (1− δj))

where V = [maxi∈I ∆sc
i ,mink∈N(1− δk)∆sc

k ] and V ∗ =
( ∏

j∈P ∆sc
j∏

k∈N (1−δk)

) 1
|P |−1

.
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Proof. Suppose that |P | = 1. By the best-response condition ∆sc
j =

∏
l∈N(1−

δl). Moreover

∀ i ∈ I, ∆sc
i ≤ (1− (1− xj)δj)

∏
l∈N(1− δl)

and

∀ k ∈ N , (1− δk)∆sc
k ≥ (1− (1− xj)δj)

∏
l∈N(1− δl).

If we solve for xj, we can obtain the values that xj can take at an equilibrium.
Suppose that |P | > 1. By the best-response condition

∆sc
j =

∏
p∈P−{j}(1− (1− xp)δp)

∏
l∈N(1− δl) ∀j ∈ P .

Furthermore, for j ∈ P , ∏
k∈P−j ∆sc

k =

(1− (1− xj)δj)|P |−1 (
∏

p∈P−j (1− (1− xp)δp))|P |−2 (∏
l∈N(1− δl)

)|P |−1

It follows that ∏
k∈P−j ∆sc

k(∏
p∈P−j(1− (1− xp)δp)

)|P |−2 (∏
l∈N(1− δl)

)|P |−1
= (1− (1− xj)δj)|P |−1

∏
k∈P ∆sc

k(∏
p∈P−j(1− (1− xp)δp)

)|P |−1 (∏
l∈N(1− δl)

)|P | = (1− (1− xj)δj)|P |−1

 ∏
k∈P ∆sc

k(∏
p∈P−j(1− (1− xp)δp)

)|P |−1 (∏
l∈N(1− δl)

)|P |


1
|P |−1

= (1− (1− xj)δj)

( ∏
k∈P ∆sc

k∏
l∈N (1−δl)

) 1
|P |−1(∏

p∈P−j(1− (1− xp)δp)
)∏

l∈N(1− δl)
= (1− (1− xj)δj)

( ∏
k∈P ∆sc

k∏
l∈N(1− δl)

) 1
|P |−1 1

∆sc
j

= (1− (1− xj)δj)

The result follows from solving for xj.
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Algorithm 1: Compute all Nash equilibria of SC α-IDS games

Input : An instance of n-players SC α-IDS Game
Output: S - The set of all Nash equilibria of the input game

1 I ← {1, ..., n}, P ← {}, N ← {}
2 S ← TestNash(I, P,N)
3 Order (i1, i2, ..., in) such that ∆sc

i1
≥ ... ≥ ∆sc

in

4 foreach k = 1, ..., n do
5 P ← P ∪{ik}, I ← I −{ik}, N ← {}, S ← S

⋃
TestNash(I, P,N)

6 Let P ′ ← P and order (j1, ..., jk) such that
(1− δj1)∆sc

j1
≥ ... ≥ (1− δjk)∆sc

jk

7 foreach m = 1, ..., k do
8 N ← N ∪ {jm}, P ′ ← P ′ − {jm} S ← S

⋃
TestNash(I, P ′, N)

9 end foreach

10 end foreach
11 return S

Algorithm 2: TestNash subroutine

Input : A partition of the players into I, P, and N
Output: S - The set of all Nash equilibria consistent with the input

partition
1 ∀i ∈ I, xi ← 0, ∀k ∈ N , xk ← 0
2 if |P | = 1 and j ∈ P (Lemma 4 Part 1) then
3 Let U ′ = U ∩ (0, 1)
4 if ∆sc

j =
∏

k∈N(1− δk) and U ′ 6= ∅ then
5 S ← {y | yj ∈ U ′,y−j = x−j}
6 end if

7 else Lemma 4 Part 2
8 ∀j ∈ P , compute xj
9 if x is an MSNE of the input game then

10 S ← {x}
11 end if

12 end if
13 return S

Algorithm 1, constructed based on the above characterizations, compute
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all NE in uniform-transfer SC α-IDS games. The subroutine TestNash of
Algorithm 1 is outlined in Algorithm 2.

The running time of Algorithm 1 is O(n3
sc) where the TestNash subrou-

tine takes O(n), and line 7 of the algorithms runs in O(n(1 + 2 + ... + n) =
O(n3) times where n = nsc for SC players. This is similar to running-time
analysis of traditional uniform-transfer IDS games done by Kearns and Ortiz
[2004].

Theorem 7. There exists an O(n4)-time algorithm to compute all MSNE of
an uniform-transfer n-player SC α-IDS game.

The significance of the theorem lies in its simplicity. That we can ex-
tend almost the same computational results, and structural implications on
the solution space, to a considerably more general, and perhaps even more
realistic model.

3.4.2 Uniform-transfer SS α-IDS games

Unlike the SC case, the ordering we get for the SS case does not yield an
analogous lemma. Nevertheless, it turns out that we can still determine the
mixed strategies of the partially-investing players in P relative to a partition.
The result is a Partial-Investment Lemma that is analogous to that of Kearns
and Ortiz [2004] for traditional IDS games. 4

Lemma 5. (Partial Investment Lemma) Suppose x is a NE of a uniform-
transfer SS α-IDS game. For any j ∈ P ,

1. If |P | = 1, then xj ∈ 1
δ
( 1

∆ss
j
V − (1− δj))

2. if |P | > 1, then use Lemma 4 part 2.

where V = [maxk∈N(1− δk)∆ss
k ,mini∈I ∆ss

i ].

Proof. The proof is similar to the one in Lemma 4.

Indeed, a naive way to compute all NE is to consider all of the possible
combinations of players into the investment, partial investment, and not
investment sets and apply the Partial-Investment Lemma alluded to in the

4Take their Lemma 4 and replace Ri/pi there by ∆ss
i here, and replace the expression

for V there by V ≡ [maxk∈N (1− δk)∆ss
k ,mini∈I ∆ss

i ].
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previous paragraph to compute the mixed strategies. However, this would
take O(nss3

nss) worst-case time to compute any equilibrium. So, how can
we efficiently perform this computation? As mentioned earlier, SS players
are less likely to invest when there is a large number of players investing
and have “opposite” behavior as the SC players (i.e., the best response is
flipped). Hence, imposing a “flip” ordering (Ordering 1) that is opposite
of the SC case seems natural. If we assume such a specific ordering of the
players at equilibrium, then we can compute all NE consistent with that
specific ordering efficiently, as we discuss earlier for the SC case. Mirroring
the SC α-IDS game, we settle for computing all NE that satisfy the following
ordering.

Ordering 1. For all i ∈ I, j ∈ P , and k ∈ N ,

(1− δk)∆ss
k ≤ (1− δj)∆ss

j < ∆ss
j

(1− δj)∆ss
j ≤ ∆ss

j ≤ ∆ss
i

(1− δk)∆ss
k ≤ (1− δi)∆ss

i ≤ ∆ss
i

The first and last set of inequalities (ignoring the middle one) follow
from the consistency constraint imposed by the overall safety function. The
middle set of inequalities restrict and reduce the number of possible NE
configurations we need to check. It is possible that the (1 − δk)∆ss

k > (1 −
δj)∆

ss
j or (1− δk)∆ss

k > (1− δi)∆ss
i at an NE, but we do not consider those

types of NE. Our hardness results presented in the upcoming Section 3.4.4
suggest that, in general, computing all MSNE without any of the constraints
(in general graph structures) above is likely hard.

Theorem 8. There exists an O(n4)-time algorithm to compute all MSNE
consistent with Ordering 1 of an uniform-transfer n-player SS α-IDS game.

The algorithm is provided below. Note that the subroutine TestNash of
Algorithm 3 can be constructed similarly from Algorithm 2 where it will use
Lemma 5.

3.4.3 Uniform-transfer SC+SS α-IDS games

For the uniform variant of the SC+SS α-IDS games, we could partition the
players into either SC or SS and modify the respective algorithms to compute
all NE. Unfortunately, this is computationally infeasible because we can only
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Algorithm 3: Compute All Nash Equilibria of SS consistent with Or-
dering 1

Input : An instance of n-players SS α-IDS Game
Output: S - A set of all Nash Equilibria that is consistent with

Ordering 1
1 I ← {}, P ← {}, N ← {1, ..., n}
2 S ← TestNash(I, P,N, S)
3 Order (i1, i2, ..., in) such that (1− δi1)∆ss

i1
≥ ... ≥ (1− δin)∆ss

in

4 foreach k = 1, ..., n do
5 P ← P ∪ {ik}, N ← N − {ik}, I ← {}, S ← TestNash(I, P,N, S)
6 Let P ′ ← P and order (j1, ..., jk) such that ∆ss

j1
≥ ... ≥ ∆ss

jk

7 foreach m = 1, ..., k do
8 I ← I ∪ {jm}, P ′ ← P ′ − {jm} S ← TestNash(I, P ′, N, S)
9 end foreach

10 end foreach
11 return S

compute all NE in polynomial time in the SC case. Again, if we settle
for computing all NE consistent with Ordering 1, then we can devise an
efficient algorithm. From now on, the fact that we are only considering NE
consistent with Ordering 1 is implicit, unless noted otherwise. The idea is to
partition the players into a class of SC and a class of SS players. From the
characterizations stated earlier, it is clear that there are only a polynomial
number of possible partitions we need to check for each class of players.
Since the ordering results are based on the same overall safety function, the
orderings of SC and SS players do not affect each other. Hence, without loss of
generality, starting with the algorithm described earlier as a based routine for
SC players, we do the following. For each possible equilibrium configuration
of the SC players, we first run the algorithm described in the previous section
for SS players and then test whether the resulting mixed-strategy profile is a
NE. This guarantees that we check every possible equilibrium combination.
A running-time analysis yields our next result.

Theorem 9. There exists an O(n4
scn

3
ss + n3

scn
4
ss)-time algorithm to compute

all NE consistent with Ordering 1 of an uniform-transfer n-player SC+SS
α-IDS game, where n = nsc + nss.

34



Figure 3.3: Monotone 1 In 3-SAT-induced SC α-IDS game-graph.

3.4.4 Computing all MSNE of arbitrary α-IDS games
is intractable, in general

In this section, we prove that determining whether there exists a PSNE
consistent with a partial-assignment of the actions to some players is NP-
complete, even if the transfer probability takes only two values: δi ∈ {0, q}
for some q ∈ (0, 1).

We consider the Pure-Nash-Extension problem [Kearns and Ortiz, 2004]
for binary-action n-player games that takes as input a description of the game
and a partial assignment a ∈ {0, 1, ∗}n. We want to know whether there is
a complete assignment b ∈ {0, 1}n consistent with a. Indeed, computing all
NE is at least as difficult as the Pure-Nash Extension problem.

Theorem 10. The Pure-Nash-Extension problem for n-player SC α-IDS
games is NP-complete.

Proof. We first define the notations that will be used in the proof. In partic-
ular, we consider the problem of determining whether there is a PSNE in SC
α-IDS games while fixing some actions of some players. More specifically, we
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denote the instances with PSNE as

SC α-IDS = { ([n], (Ci)i∈[n], (αi)i∈[n], (Li)i∈[n], (pi)i∈[n], (qji)j,i∈[n],i 6=j,

(ai)i∈S ⊆ {0, 1}|S|) : there exists a PSNE in G with

the players in S play according to (ai)i∈S }.

We will reduce our problem from Monotone 1 in 3-SAT where each clause
of the 3-SAT has exactly three variables and consists of (un-negated) vari-
ables. We use the term variable(s) by default for un-negated variable(s),
unless stated otherwise. The solution to the Monotone 1 in 3-SAT is to find
a satisfiable assignment such that exactly one variable is true in each clause.
The Monotone 1 in 3-SAT is known to be NP-complete [Garey and Johnson,
1979]. We denote the instances with satisfiable solutions as

M 1 in 3-SAT = { ((xi)i∈[m],∧ci=1Ci, Ci = (∨3
j=1xij)) : there exists a

satisfiable assignment with exactly one

variable true in each clause },

where there are m variables, c clauses, and each clause has three (un-negated)
variables. A satisfiable assignment is defined to be an assignment of all
variables i to zero or one, xi ∈ {0, 1}, such that the boolean formula ∧ci=1Ci
is true or satisfied (i.e., each clause Ci is true or satisfied and has exactly one
variable true).

Below, given an instance of Monotone 1 in 3-SAT

γ =
(
(xi)i∈[m],∧ci=1Ci, Ci = (∨3

j=1xij)
)
,

we are going to construct an instance of SC α-IDS games with partial as-
signments

β =
(
[n], (Ci)i∈[n], (αi)i∈[n], (Li)i∈[n], (pi)i∈[n], (qji)j,i∈[n],i 6=j, (ai)i∈S ⊆ {0, 1}|S|

)
,

that correspond to γ.

• There are n = 2c+m players: two players for each clause and a player
for each variable. The clause players and the variable players are in-
dexed from 1 to 2c and 2c+ 1 to 2c+m, respectively.
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• First, we find q ∈ [0, 1] such that 1 −
(

1− R−p
1−p−α

) 1
2
> q > 1 −(

1− R−p
1−p−α

) 1
3

for some 0 < 1 − α < R < p < 1, 1 > L > C > 0, and

R = C
L

. The constraint of the parameters is due to the fact that we want

to enforce the condition 1− p < α, and to ensure that 0 < R−p
1−p−α < 1,

we require R− p < 0 and R− p > 1− p− α. It is not hard to see that
such q always exists.

For each clause player i ∈ [c] such that Ci = (∨3
j=1xij), q(ij+2c)i = q for

all j. To set the remaining parameters, for each clause player i ∈ [c],
set Ci = C, Li = L, αi = α, and pi = p.

Given the parameters, notice that (1) αi > 1 − pi for all i and (2)
(1− q)2 > ∆sc

i > (1− q)3. Thus, all of the clause players in [c] are SC,
and each clause player has transfer risks from its variable players.

• Using the same q as above, we find 0 < 1 − α′ < R′ < p′ < 1, 1 >
L′ > C ′ > 0, and, R′ = C′

L′
such that (1 − q) > 1 − R′−p′

1−p′−α′ > (1 − q)2.
The constraint of the parameters are based on the same reasoning as
above. Notice that for each possible of q ∈ (0, 1), we can find R′−p′

1−p′−α′

such that 1 −
(

1− R′−p′
1−p′−α′

) 1
2
< q < R′−p′

1−p′−α′ (i.e., fixing the value of p′

and find (1− α′) and R′ arbitrary close or far from p′).

For each clause player i ∈ {c+1, ..., 2c} such that Ci−c =
(
∨3
j=1x(i−c)j

)
,

q((c−i)j+2c)i = q for all j. To set the remaining parameters, for each

clause player i ∈ {c + 1, ..., 2c}, set Ci = C ′, Li = L′, αi = α′, and
pi = p′.

Note that the clause players here are also SC players.

• Find 1 > p′′ > 0, 1 > R′′ > 0, 1 > L′′ > C ′′ > 0, and R′′ = C′′

L′′
such

that R′′ = p′′. For each variable player i ∈ {2c+1, ..., 2c+m}, Ci = C ′′,
Li = L′′, pi = p′′, and αi = α′′.

The variable players are indifferent from playing the action invest or
not invest and are SC players.

• Here, we construct a partial action profile for some of the players. In
particular, for each clause player i ∈ [c], ai = 1 and ai+c = 0. Thus, we
are giving a partial action profile of all clause players.
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Moreover, unless defined above, the transfer risks from other clauses to other
variables are all zero.

Figure 3.3 depicts the basic structure of the clauses and variables. It is
easy to see that the construction takes polynomial time.

Lemma 6. γ ∈ M 1 in 3-SAT =⇒ β ∈ SC α-IDS.

Proof. Given a satisfiable assignment for γ, we show how to construct a PSNE
for β. Let x(1) = {i ∈ [m] : xi = 1} be the indices of the variables that are
assigned a value of one in the satisfiable assignment. For consistence, we let
ai to denote the action of any player i ∈ [n] and construct a PSNE as follows.
For each of the variable player i ∈ {2c+1, ..., 2c+m}, ai = 1 if (i−2c) ∈ x(1)

and ai = 0 otherwise. Together with the partial action profile of the clauses,
we will call this constructed pure-strategy profile a = (a1, ..., an).

To show that a is a PSNE, we argue that each player is playing its best-
response. First, we consider the clause players. Recall that since the clause
players are the type of SC, for each i ∈ [c], we have

BRsc
i (aPa(i)) ≡


{0}, ∆sc

i > si(aPa(i)),

{1}, ∆sc
i < si(aPa(i)),

{0, 1}, ∆sc
i = si(aPa(i)) ,

where Pa(i) = {i1, i2, i3} (which corresponds to variables xi1 , xi2 , xi3 of clause
i) and si(aPa(i)) =

∏
j∈Pa(i)(1 − q)1−aj . Moreover, by the satisfiable assign-

ment, exactly one variable in Pa(i) is assigned to a value of one which cor-
responds to exactly one variable player that plays action one. Therefore,
si(aPa(i)) = (1 − q)2. By our construction, (1 − q)2 > ∆sc

i > (1 − q)3. It
follows that si(aPa(i)) > ∆sc

i , and the i’s best-response is one. This holds
for all clause players i ∈ [c]. On the other hand, for the clause player
i ∈ {c + 1, ..., 2c}, si(aPa(i)) = (1 − q)2 as well. Since clause player i is
also a SC player, we have the same best-response correspondence. By our
construction, (1 − q) > ∆sc

i > (1 − q)2, it follows that ∆sc
i > si(aPa(i)) and

ai = 0 is the best-response.
For each variable player i ∈ {2c + 1, ..., 2c + m}, i has no parent and i’s

overall risk is 0. To determine whether i plays the action invest or not invest,
we only need to compare the value of Ri and pi. By construction, Ri = pi for
all variable players i, we have that the variable players are indifferent between
playing one and zero. Hence, the pure-strategy profile a is a PSNE.
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Lemma 7. β ∈ SC α-IDS =⇒ γ ∈ M 1 in 3-SAT .

Proof. Now we show how to construct a satisfiable assignment for γ given a
PSNE of β. Let a = (a1, ..., an) be a PSNE of β. For each variable i ∈ [m],
if a2m+i = 1 then xi = 1 and if a2m+i = 0 then xi = 0. To show that
each clause, say i ∈ [c], has exactly one variable that is true, we observe
the best-response of clause players i and c + i that correspond to clause i.
Given the fixed action of ai = 1 and ac+i = 0 at a PSNE, it implies that
si(aPa(i)) > ∆sc

i and sc+i(aPa(c+i)) < ∆sc
c+i. Since (1 − q)2 > ∆sc

i > (1 − q)3,
(1 − q) > ∆sc

c+i > (1 − q)2, Pa(c + i) = Pa(i), |Pa(i)| = 3, and the transfer
risks are the same, we have sc+i(aPa(c+i)) = (1−q)2. This implies that exactly
one of the variables is true.

It is easy to see that given a (partial) pure-strategy profile, we can verify
whether it is a PSNE of a SC α-IDS game in polynomial time. This fact,
together with Lemma 6 and Lemma 7, we have our hardness result.

A similar proof argument yields the following computational-complexity
result.

Theorem 11. The Pure-Nash Extension problem for n-player SS α-IDS
games is NP-complete.

Proof. This is similar to the proof of Theorem 10 except the best-response of
the players and using the game graph as in Figure 3.3. For ease of notations,
we will use the same notations defined in the proof of Theorem 10.

Below, given an instance of Monotone 1 in 3-SAT

γ =
(
(xi)i∈[m],∧ci=1Ci, Ci = (∨3

j=1xij)
)
,

we are going to construct an instance of SS α-IDS games with partial assign-
ments

β =
(
[n], (Ci)i∈[n], (αi)i∈[n], (Li)i∈[n], (pi)i∈[n], (qji)j,i∈[n],i 6=j, (ai)i∈S ⊆ {0, 1}|S|

)
,

that correspond to γ.

• There are n = 2c+m players: two players for each clause and a player
for each variable. The clause players and the variable players are in-
dexed from 1 to 2c and 2c+ 1 to 2c+m, respectively.
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• First, we find q ∈ [0, 1] such that 1 −
(

1− R−p
1−p−α

) 1
2
> q > 1 −(

1− R−p
1−p−α

) 1
3

for some 1 > 1 − α > R > p > 0, 1 > L > C > 0, and

R = C
L

. The constraint of the parameters is due to the fact that we want

to enforce the condition 1− p > α, and to ensure that 0 < R−p
1−p−α < 1,

we require R− p > 0 and R− p < 1− p− α. It is not hard to see that
such q always exists.

For each clause player i ∈ [c] such that Ci = (∨3
j=1xij), q(ij+2c)i = q for

all j. To set the remaining parameters, for each clause player i ∈ [c],
set Ci = C, Li = L, αi = α, and pi = p.

Given the parameters, notice that (1) αi < 1 − pi for all i and (2)
(1− q)2 > ∆ss

i > (1− q)3. Thus, all of the clause players in [c] are SS,
and each clause player has transfer risks from its variable players.

• Using the same q as above, we find 1 > 1 − α′ > R′ > p′ > 0, 1 >
L′ > C ′ > 0, and R′ = C′

L′
such that (1 − q) > 1 − R′−p′

1−p′−α′ > (1 − q)2.
The constraint of the parameters are based on the same reasoning as
above. Notice that for each possible of q ∈ (0, 1), we can find R′−p′

1−p′−α′

such that 1 −
(

1− R′−p′
1−p′−α′

) 1
2
< q < R′−p′

1−p′−α′ (i.e., fixing the value of p′

and find (1− α′) and R′ arbitrary close or far from p′).

For each clause player i ∈ {c+1, ..., 2c} such that Ci−c =
(
∨3
j=1x(i−c)j

)
,

q((c−i)j+2c)i = q for all j. To set the remaining parameters, for each

clause player i ∈ {c + 1, ..., 2c}, set Ci = C ′, Li = L′, αi = α′, and
pi = p′.

Note that the clause players here are also SS players.

• Find 1 > 1 − α′′ > R′′ > p′′ > 0, 1 > L′′ > C ′′ > 0, and R′′ = C′′

L′′

such that R′′ = p′′. For each variable player i ∈ {2c + 1, ..., 2c + m},
Ci = C ′′, Li = L′′, pi = p′′, and αi = α′′.

The variable players are indifferent from playing the action invest or
not invest and are SS players.

• Here, we construct a partial action profile for some of the players. In
particular, for each clause player i ∈ [c], ai = 0 and ai+c = 1. Thus, we
are giving a partial action profile of all clause players.
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Moreover, unless defined above, the transfer risks from other clauses to other
variables are all zero.

Lemma 8. γ ∈ M 1 in 3-SAT =⇒ β ∈ SS α-IDS.

Proof. Given a satisfiable assignment for γ, we show how to construct a PSNE
for β. Let x(1) = {i ∈ [m] : xi = 1} be the indices of the variables that are
assigned a value of one in the satisfiable assignment. For consistence, we let
ai to denote the action of any player i ∈ [n] and construct a PSNE as follows.
For each of the variable player i ∈ {2c+1, ..., 2c+m}, ai = 1 if (i−2c) ∈ x(1)

and ai = 0 otherwise. Together with the partial action profile of the clauses,
we will call this constructed pure-strategy profile a = (a1, ..., an).

To show that a is a PSNE, we argue that each player is playing its best-
response. First, we consider the clause players. Recall that since the clause
players are the type of SS, for each i ∈ [c], we have

BRss
i (aPa(i)) ≡


{0}, ∆ss

i < si(aPa(i)),

{1}, ∆ss
i > si(aPa(i)),

{0, 1}, ∆ss
i = si(aPa(i)) ,

where Pa(i) = {i1, i2, i3} (which corresponds to variables xi1 , xi2 , xi3 of clause
i) and si(aPa(i)) =

∏
j∈Pa(i)(1 − q)1−aj . Moreover, by the satisfiable assign-

ment, exactly one variable in Pa(i) is assigned to a value of one which cor-
responds to exactly one variable player that plays action one. Therefore,
si(aPa(i)) = (1− q)2. By our construction, (1− q)2 > ∆ss

i > (1− q)3. It fol-
lows that si(aPa(i)) > ∆ss

i , and the i’s best-response is zero. This holds
for all clause players i ∈ [c]. On the other hand, for the clause player
i ∈ {c + 1, ..., 2c}, si(aPa(i)) = (1 − q)2 as well. Since clause player i is
also a SS player, we have the same best-response correspondence. By our
construction, (1 − q) > ∆ss

i > (1 − q)2, it follows that ∆ss
i > si(aPa(i)) and

ai = 1 is the best-response.
For each variable player i ∈ {2c + 1, ..., 2c + m}, i has no parent and i’s

overall risk is 0. To determine whether i plays the action invest or not invest,
we only need to compare the value of Ri and pi. By construction, Ri = pi for
all variable players i, we have that the variable players are indifferent between
playing one and zero. Hence, the pure-strategy profile a is a PSNE.

Lemma 9. β ∈ SS α-IDS =⇒ γ ∈ M 1 in 3-SAT .
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Proof. Now we show how to construct a satisfiable assignment for γ given a
PSNE of β. Let a = (a1, ..., an) be a PSNE of β. For each variable i ∈ [m],
if a2m+i = 1 then xi = 1 and if a2m+i = 0 then xi = 0. To show that
each clause, say i ∈ [c], has exactly one variable that is true, we observe
the best-response of clause players i and c + i that correspond to clause i.
Given the fixed action of ai = 0 and ac+i = 1 at a PSNE, it implies that
si(aPa(i)) > ∆ss

i and sc+i(aPa(c+i)) < ∆ss
c+i. Since (1 − q)2 > ∆ss

i > (1 − q)3,
(1 − q) > ∆ss

c+i > (1 − q)2, Pa(c + i) = Pa(i), |Pa(i)| = 3, and the transfer
risks are the same, we have sc+i(aPa(c+i)) = (1−q)2. This implies that exactly
one of the variables is true.

It is easy to see that given a (partial) pure-strategy profile, we can verify
whether it is a PSNE of a SS α-IDS game in polynomial time. This fact,
together with Lemma 8 and Lemma 9, we have our hardness result.

Combining Theorems 10 and 11 yields the next corollary.

Corollary 1. The Pure-Nash Extension problem for n-player SC+SS α-IDS
games is NP-complete.

3.5 Preliminary Experimental Results

To illustrate the impact of the α parameter on α-IDS games, we perform
experiments on randomly-generated instances of α-IDS games in which we
compute a possibly approximate NE. Due to the fact that we do not have an
algorithm to compute a NE in general structure α-IDS games, we will use a
known heuristic to compute approximate NE.

Given ε > 0, in an approximate ε-NE each individual’s unilateral devi-
ation cannot reduce the individual’s expected cost by more than ε. More
specially, in our setting, a mixed-strategy profile x is a ε-NE if for all players
i ∈ [n], Mi(x) ≤Mi(1, x−i) + ε and Mi(x) ≤Mi(0, x−i) + ε.

3.5.1 Structure of the Graphs

The underlying structures of the instances use network graphs from publicly-
available, real-world datasets [Zachary, 1977, Knuth, 1993, Girvan and New-
man, 2002, Watts and Strogatz, 1998, Leskovec et al., 2010, Klimt and Yang,
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2004]. Table 3.1 shows the exact number of nodes and edges for each of the
graphs from the real-world datasets we used for our experiments.

Graph Nodes Edges
Karate Club 34 78

Les Miserables 77 254
College Football 115 613

Power Grid 4941 6594
Wiki Vote 7115 103689

Email Enron 36692 367662

Table 3.1: Exact number of nodes and edges for different real-world
graphs.

Given the datasets, we view the nodes as players and the (undirected)
edges as potential (bidirectional) transfer risks between the players. The
number of nodes/players ranges from 34 to ≈ 37K while the number of edges
ranges from 78 to around 368K. The table lists the graphs in increasing size
(from top to bottom).

3.5.2 Generating Parameters of α-IDS Games

To construct each instance of α-IDS games based on a given real-world
datasets, for each player i, we first generate Ri where Ci = 103 ∗ (1 +
random(0, 1)) and Li = 104 (or Li = 104/3) to obtain a low (high) cost-
to-loss ratio. The αi value for each player i is generated independently from
a normal distribution N (µ, σ2) with the given mean µ and standard devia-
tion σ2 or from a uniform distribution as specified in the experiments. After
generated the Ri and αi for each player i, we then generate pi randomly
such that such that ∆sc

i or ∆ss
i is in [0, 1]. Finally, we generate qji’s that are

consistent with probabilistic constraints relative to the other parameters (i.e.
pi +

∑
j∈Pa(i) qji ≤ 1).

3.5.3 Computing Approximate NE of α-IDS Games

Given a randomly generated instance of α-IDS games, we initialize the play-
ers’ mixed strategies uniformly at random and run a simple gradient-dynamics
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heuristic based on regret minimization [Fudenberg and Levine, 1998, Nisan
et al., 2007, Shoham and Leyton-Brown, 2009] until we reach an ε-NE. In
short, we update the strategies of all non-ε-best-responding players i at each
round t according to x

(t+1)
i ← x

(t)
i − 10× (Mi(1,x

(t)
Pa(i))−Mi(0,x

(t)
Pa(i))). Note

that for ε-NE to be well-defined, all Mis’ values are normalized. Given that
our main interest is to study the structural properties of arbitrary α-IDS
games, our hardness results of computing NE in such games justify the use
of a heuristic as we do here. (Kearns and Ortiz [2004] also used a similar
heuristic in their experiments.)

Given a dataset, we generated ten instances of α-IDS games and record
the total percentage of level of investment, which is the sum of the mixed-
strategies of the players divided by the number of players, at an approximate
NE. Table 3.2 shows the average level of investment at NE on each graph
instance. In the table, we consider the graph structures using the Karate
Club, Les Miserables, College Football, Power grid, Wiki Voters, and Enron
Email networks. The standard deviations are not shown because they are not
significant. Each row represents a dataset and shows the average percentage
of SS players in the game (first column), the average percentage level of
investment of the SC players in the game (second column), and the average
percentage level of investment of the SS players in the game (third column)
of a given normal distributions or a uniform distribution for the α values

In particular, we consider α values generated fromN (0.4, 0.2),N (0.8, 0.2),
and uniform distribution from [0, 1]. Regardless of the datasets and on the in-
stances of α-IDS games that are generated according to the process discussed
earlier, we observe that as we change the distribution of α from N (0.4, 0.2),
N (0.8, 0.2), there are more percentage of SC players in the system, which is
consistent with the nature of the game instances. The uniform distribution
yields the percentage of SC players somewhere in between the two normal
distributions but closer to the percentage of N (0.4, 0.2). This observation
holds in both high and low cost-to-loss ratios.

Moreover, in all of the instances and all of the datasets, almost all of the
SC players play the action invest while the SS players play the action do not
invest. This makes sense because of the nature of the SC and SS players.

Going from high to low cost-to-loss ratio, we see that the number of SS
players and the percentage of SS players player the action invest at approxi-
mate NE increase across all α values.
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High Ci
Li

αi ∼ N (0.4, 0.2) αi ∼ N (0.8, 0.2)

Datasets %SS %SC Invest %SS Invest %SS %SC Invest %SS Invest
Karate Club 76.18 100.00 21.37 12.35 100.00 0.00
Les Miserables 75.45 100.00 17.93 11.82 99.85 0.67
College Football 75.65 100.00 15.47 11.57 100.00 0.00
Power Grid 75.47 97.76* 19.38* 12.82 98.79* 2.13*
Wiki Vote 75.55 97.46* 17.87* 12.78 98.92* 2.06*
Email Enron 75.29 95.97* 19.91* 12.53 97.92* 2.24*

High Ci
Li

αi ∈ [0, 1]

Datasets %SS %SC Invest %SS Invest
Karate Club 56.18 100.00 14.88
Les Miserables 55.06 99.40 14.84
College Football 55.39 100.00 13.46
Power Grid 55.01 97.31** 15.90**
Wiki Vote 55.02 97.00** 14.75**
Email Enron 54.78 94.39** 16.84**

Low Ci
Li

αi ∼ N (0.4, 0.2) αi ∼ N (0.8, 0.2)

Karate Club 99.41 100.00 49.64 60.59 100.00 23.19
Les Miserables 98.96 100.00 51.17 59.22 100.00 28.34
College Football 98.87 100.00 60.42 61.48 100.00 28.30
Power Grid 98.68 99.13* 49.45* 59.41 98.81* 28.66*
Wiki Vote 98.62 98.30* 46.50* 59.89 97.38* 27.54*
Email Enron 98.73 97.96** 49.80** 59.85 96.48* 29.32*

Low Ci
Li

αi ∈ [0, 1]

Karate Club 86.18 100.00 41.34
Les Miserables 85.71 100.00 49.26
College Football 86.35 100.00 54.87
Power Grid 85.20 99.13** 45.07**
Wiki Vote 85.01 98.51** 44.45**
Email Enron 84.94 98.0** 44.72**

*=0.001-NE, **=0.005-NE, %SS (%SC) = Percentage of SS (SC) players,

N (µ, σ2) =normal distribution with mean µ and variance σ2

Table 3.2: Level of Investment of SC+SS α-IDS Games at Nash
Equilibrium.
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3.6 Conclusion

In this chapter, we extend the original IDS games and introduce α-IDS games
to capture the situation in which the players can partially protect transfer
risks from others in the games. We partition the players into the class of
SC players and SS players based on their α values and direct risks. Along
with model, we provide some algorithmic and hardness results on computing
NE in various classes of α-IDS games where there are only SC, SS, and
SC+SS players in the games. From our results, the case of SC α-IDS games
is mostly understood. However, we still do not know much about the α-IDS
games that consist of SS player. In particular, it is remain open to look at the
computational complexity of computing a PSNE of SS α-IDS games. Indeed,
the question of computing an approximate NE has not been explored in this
work. Therefore, it would be interesting to see if there an efficient algorithm
to compute approximate NE in general SC+SS α-IDS games.
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Chapter 4

Interdependent Defense
Games1

Building from the generalized Interdependent Security games, in this chapter,
we introduce Interdependent Defense (IDD) games. We begin by introducing
an additional player, the attacker, who deliberately initiates bad events. (So
that now bad events are no longer “chance occurrences” without any strategic
deliberation.) The attacker has a target decision for each player - a choice
of attack (bi = 1) or not attack (bi = 0) player i. Hence, the attacker’s pure
strategy is denoted by the vector b ∈ {0, 1}n.

Changing from “random” non-strategic attacks whose probability of oc-
currence is determined independent of the actions of the internal players,
to intentional attacks, ones that are deliberately carried out by an external
actor, gives reason for us to alter pi and qij because their original definitions
actually imply extra meaning with respect to the new aggressor.

The game parameter pi implicitly “encodes” bi because bi = 0 implies
pi = 0. Thus, we redefine

pi ≡ pi(bi) ≡ bip̂i

so that player i has intrinsic risk p̂i, and only has internal risk if targeted (i.e,
bi = 1). The new parameter p̂i represents the (conditional) probability that
an attack is successful at player i given that player i was directly targeted
and did not invest in protection.

1A part of this chapter has appeared in the proceedings of the Twenty-eighth Conference
on Uncertainty in Artificial Intelligence (UAI 2012).
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The game parameter qij “encodes” bi = 1, because a prerequisite is that
i is targeted before it can transfer the bad event to j. We redefine

qij ≡ qij(bi) ≡ biq̂ij

so that q̂ij is the intrinsic transfer probability from player i to player j, inde-
pendent of bi. The new parameter q̂ij represents the (conditional) probability
that an attack is successful at player j given that it originated at player i,
did not occur at i but was transferred undetected to j. Note that just as it
was the case with traditional IDS games, there is an implicit constraint on
the risk-related parameters: p̂i +

∑
j∈Pa(i) q̂ji ≤ 1, for all i.

Because the pi’s and qij’s depend on the attacker’s action b, so does the
safety and risk functions. In particular, we now have

eij(aj, bj) ≡ aj + (1− aj)(1− bj q̂ji) = (1− q̂ji)bj(1−aj),

si(aPa(i), bPa(i)) ≡
∏

j∈Pa(i) eij(aj, bj) ≡ 1 − ri(aPa(i), bPa(i)). Hence, for each
player i, the cost function becomes

Mi(ai, aPa(i), bi, bPa(i)) ≡ ai[Ci + αiri(aPa(i), bPa(i))Li]

+(1− ai)[bip̂i + (1− bip̂i)ri(aPa(i), bPa(i))]Li.

We assume the attacker wants to cause as much damage as possible. One
possible utility/payoff function U quantifying the objective of the attacker is

U(a, b) ≡
∑n

i=1 Mi(aPF(i), bPF(i))− aiCi − biC0
i .

which adds the expected players costs (for targeted and transferred bad
events) over all players, minus C0

i , the attacker’s own “cost” to target player
i.

Of course, many other utility functions of varied complexity are also pos-
sible. Indeed, one can consider increasingly complex and sophisticated utility
functions that may explicitly parse out the involved costs and induced losses
in finer-grain and painstaking detail. For instance, we could decompose the
cost to the attacker to target a specific site into different components such
as, perhaps, planning and setup costs, carry-out cost, the costs of getting
caught or retaliated against, etc. We leave these more complex variants for
future work.

We close out this section by presenting the attacker’s best-response cor-
respondence BR0 : {0, 1}n → 2{0,1}

n
:

BR0(a) ≡ arg max
b∈{0,1}n

U(a, b) . (4.1)
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Definition 12. A pure-strategy profile (a∗, b∗) ∈ {0, 1}2n is a PSNE of an
IDD game if, for each player i, a∗i ∈ BRi(a

∗
Pa(i), b

∗
PF(i)), and for the aggressor,

b∗ ∈ BR0(a∗).

4.1 Mixed Strategies in IDD Games

For all player i, denote by xi the mixed strategy of player i: the probability
that player i invests. Similarly, y denotes the joint probability mass function
(PMF) corresponding to the attacker’s mixed strategy so that for all b ∈
{0, 1}n, y(b) is the probability that the attacker executes joint-attack vector
b.

Denote the marginal PMF over a subset I ⊂ [n] of the internal players by
yI such that for all bI , yI(bI) ≡

∑
b−I

y(bI , b−I) is the (marginal) probability
that the attacker chooses a joint-attack vector in which the sub-component
decisions corresponding to players in I are as in bI .

Denote simply by yi ≡ y{i}(1) the marginal probability that the attacker
chooses an attack vector in which player i is directly targeted.

Slightly abusing notation, we redefine the function eij (i.e., how safe i is
from j), si and ri (i.e., the overall transfer safety and risk, respectively) as

eij(xj, bj) ≡ xj + (1− xj)(1− bj q̂ji),

si(xPa(i), bPa(i)) ≡
∏

j∈Pa(i) eij(xj, bj),

si(xPa(i), yPa(i)) ≡
∑
bPa(i)

yPa(i)(bPa(i))si(xPa(i), bPa(i)) ,

and ri(xPa(i), yPa(i)) ≡ 1− si(xPa(i), yPa(i)).
In general, the expected cost of protection to site i, with respect to a

mixed-strategy profile (x, y), can be expressed as

Mi(xi, xPa(i), yPF(i)) ≡ xi[Ci + αiri(xPa(i), yPa(i))Li]+

(1− xi)[p̂ifi(xPa(i), yPF(i)) + ri(xPa(i), yPa(i))]Li ,

where fi(xPa(i), yPF(i)) ≡∑
bPF(i)

yPF(i)(bPF(i)) bisi(xPa(i), bPa(i)) .

The expected payoff of the attacker is

U(x, y) ≡
∑n

i=1Mi(xPF(i), yPF(i))− xiCi − yiC0
i .
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Let ∆̂i ≡ Ci
Lip̂i

and ŝi(xPa(i), yPF(i)) ≡ fi(xPa(i), yPF(i)) + 1−αi
p̂i
ri(xPa(i), yPa(i)).

The best-response correspondence of defender i is then

BRi(xPa(i), yPF(i)) ≡


{1}, if ŝi(xPa(i), yPF(i)) > ∆̂i,

{0}, if ŝi(xPa(i), yPF(i)) < ∆̂i,

[0, 1], if ŝi(xPa(i), yPF(i)) = ∆̂i.

The best-response correspondence for the attacker is simply
BR0(x) ≡ arg maxy U(x, y).

Definition 13. A mixed-strategy profile (x∗, y∗) is a MSNE of an IDD game
if (1) for all i ∈ [n], x∗i ∈ BRi(x

∗
Pa(i), y

∗
PF(i)) and (2) y∗ ∈ BR0(x∗).

4.2 Model Assumptions

Note that the attacker has in principle an exponential number of pure strate-
gies! This affords the attacker unrealistic amount of power. Hence, we need
restriction on the attacker’s power. The simplest way is to allow at most
a single simultaneous attack. We can weaken this assumption to allow the
attacker at most K simultaneous attacks. Even then, the number of pure
strategies will grow exponentially in the number of potential attacks, which
still renders the attacker’s pure-strategy space unrealistic, especially on a
very large network with twenty-thousand nodes. Worst-case, we need to
consider up to 2n number of pure strategies for K attacks as K goes to n.

Assumption 1. The set of pure strategies of the attacker is

B = {b ∈ {0, 1}n |
∑n

i=1 bi ≤ 1} .

Although the above assumption is stated in terms of pure-strategies, it can
be easily extended to the mixed-strategy setting where we require

∑n
i=0 yi ≤ 1

and y0 is the probability of no attack.
The following assumptions are on the game parameters. The next as-

sumption states that every site’s investment cost is positive and (strictly)
smaller than the conditional expected direct loss if the site were to be at-
tacked directly (bi = 1); that is, if a site knows that an attack is directed
against it, the site will prefer to invest in security, unless the external risk
is too high. This assumption is reasonable because otherwise the player will
never invest regardless of what other players do (i.e., not investing would be
a dominant strategy).
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Assumption 2. For all sites i ∈ [n], 0 < Ci < p̂iLi.

The next assumption states that, for all sites i, the attacker’s cost to
attack i is positive and (strictly) smaller than the expected loss (i.e., gains
from the perspective of the attacker) achieved if an attack initiated at site
i is successful, either directly at i or at one of its children (after transfer);
that is, if an attacker knows that an attack is rewarding (or able to obtain
a positive utility), it will prefer to attack some nodes in the network. This
assumption is reasonable; otherwise the attacker will never attack regardless
of what other players do (i.e., not attacking would be a dominant strategy,
leading to an easy problem to solve).

Assumption 3. For all sites i ∈ [n], 0 < C0
i < p̂iLi +

∑
j∈Ch(i) q̂ijαjLj.

In the following, we will study the problem of finding and computing NE
in IDD games under the above three assumptions.

4.3 PSNE of IDD Games

It turns out that under these three assumptions, there is no PSNE in IDD
games. This is typical of attacker-defender settings. The following proposi-
tion eliminates PSNE as a universal solution concept for natural IDD games
in which at most one attack is possible. The main significance of this result
is that it allows us to concentrate our efforts on the much harder problem of
computing MSNE.

Proposition 3. No IDD game in which Assumptions 1, 2 and 3 hold has a
PSNE.

Proof. First note that Assumption 1 considerably simplifies some of the ex-
pressions involving external risk/safety. This is because any pure strategy in
B is either a vector of all 0’s, or exactly one 1. For instance, in this case we
have

si(aPa(i), bPa(i)) =

{∑
j∈Pa(i) bjeij(aj, 1), if bk = 1 for some k ∈ Pa(i),

1, if bk = 0 for all k ∈ Pa(i),

= 1−
∑

j∈Pa(i)

bj(1− aj)q̂ji,
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so that
ri(aPa(i), bPa(i)) =

∑
j∈Pa(i)

bj(1− aj)q̂ji,

and
bi si(aPa(i), bPa(i)) = bi.

Also, if the IDD game has a PSNE (a∗, b∗), then the attacker’s payoff in it is

U(a∗, b∗) =

max
i∈[n]

(1− a∗i )

p̂iLi +
∑

j∈Ch(i)

q̂ij(a
∗
jαj + (1− a∗j))Lj

− C0
i

+

where for any real number z ∈ R, the operator [z]+ ≡ max(z, 0); in addition,
if b∗k = 1 for some k ∈ [n], then

(1− a∗k)

p̂kLk +
∑

j∈Ch(k)

q̂kj(a
∗
jαj + (1− a∗j))Lj

− C0
k ≥max

i∈[n]
(1− a∗i )

p̂iLi +
∑

j∈Ch(i)

q̂ij(a
∗
jαj + (1− a∗j))Lj

− C0
i

+

. (4.2)

The proof of the proposition is by contradiction. Consider an IDD game
that satisfies the conditions of the proposition. Let (a∗, b∗) be a PSNE of the
game. We need to consider two cases at the PSNE: (1) there is some attack
and (2) there is no attack.

1. If there is some attack, then b∗k = 1 for some site k ∈ [n], and for all
i 6= k, b∗i = 0. In addition, because b∗ is consistent with the aggressor’s
best response to a∗, we have, using condition 4.2 above,

(1− a∗k)

p̂kLk +
∑

j∈Ch(k)

q̂kj(a
∗
jαj + (1− a∗j))Lj

 ≥ C0
k > 0 ,

The last condition and Assumption 3 implies a∗k = 0. Hence, by the
best-response condition of site k, we have

Ck + αkrk(a
∗
Pa(k), b

∗
Pa(k))Lk ≥ p̂kLk + (1− p̂k)rk(a∗Pa(k), b

∗
Pa(k))Lk .
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Because the attack occurs at k, the transfer risk rk(a
∗
Pa(k), b

∗
Pa(k)) =

rk(a
∗
Pa(k),0) = 0 at the PSNE. Therefore, the last condition simplifies

to
Ck ≥ p̂kLk ,

which contradicts Assumption 2.

2. If there is no attack, then b∗ = 0. In this case, the site’s best-response
conditions imply a∗ = 0. From the attacker’s best-response condition
we obtain

p̂kLk +
∑

j∈Ch(k)

q̂kjLj ≤ C0
k ,

which contradicts Assumption 3.

Now, we will concentrate our efforts on the much harder problem of com-
puting MSNE.

4.4 MSNE of IDD Games

We first consider the IDD games where the players’ investments cannot re-
duce the overall risk. This is the same setting in the original IDS games.

Assumption 4. For all internal players i ∈ N , the probability that player
i’s investment in security does not protect the player from transfers, αi, is 1.

For convenient, we will characterize the type of IDD games based on the
imposed assumptions.

Definition 14. We say an IDD game is transfer-vulnerable if Assumption 4
holds. We say an IDD game is a single-simultaneous-attack game if Assump-
tion 1 holds (i.e., at most one attack is possible).

Assumption 1, in the context of mixed strategies, implies the probability
of no attack y0 ≡ 1−

∑n
i yi. Assumptions 1 and 4 greatly simplify the best-

response condition of the internal players because now ŝi(xPa(i), yPF(i)) = yi.
Let L0

i (xi) ≡ (1 − xi)(p̂iLi +
∑

j∈Ch(i) q̂ijLj). It will also be convenient

to denote by L̄0
i ≡ L0

i (0) = p̂iLi +
∑

j∈Ch(i) q̂ijLj, so that we can express

L0
i (xi) = (1− xi)L̄0

i , to highlight that L0
i is a linear function of xi.
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Similarly, it will also be convenient to let M0
i (xi) ≡ L0

i (xi) − C0
i , and

denote M̄0
i ≡ M0

i (0) = L̄0
i − C0

i . Let η0
i ≡ C0

i /L̄
0
i . The best-response

condition of the attacker also simplifies under the same assumptions because
now U(x, y) =

∑n
i=1 yiM

0
i (xi).

Assumption 3 is reasonable in our new context because, under Assump-
tion 4, if there were a player i with η0

i > 1, the attacker would never attack
i, and as a result player i would never invest. In that case, we can safely
remove j from the game, without any loss of generality.

We now characterize the space of MSNE in IDD games, which will im-
mediately lead to a polynomial-time algorithm for computing all MSNE.

4.4.1 Characterization

The characterization starts by partitioning the space of games into three,
based on whether

∑n
i=1 ∆̂i is (1) <, (2) =, or (3) > than 1. The rationale

behind this is that now the players are indifferent between investing or not
investing when yi = ∆̂i, by the best-response correspondence the attacker’s
mixed strategy is restricted. The following result fully characterizes the set
of MSNE in single simultaneous attack transfer-vulnerable IDD games.

Proposition 4. The mixed-strategy profile (x∗, y∗) is an MSNE of a single-
simultaneous-attack transfer-vulnerable IDD game in which

1.
∑n

i=1 ∆̂i < 1 if and only if (1) 1 > y∗0 = 1−
∑n

i=1 ∆̂i > 0, and (2) for

all i, y∗i = ∆̂i > 0 and 0 < x∗i = 1− η0
i < 1.

2.
∑n

i=1 ∆̂i = 1 if and only if (1) y∗0 = 0, and (2) for all i, y∗i = ∆̂i > 0

and x∗i = 1− v+C0
i

L̄0
i

with 0 ≤ v ≤ mini∈[n] M̄
0
i .

3.
∑n

i=1 ∆̂i > 1 if and only if (1) y∗0 = 0, and (2) there exists a non-
singleton, non-empty subset I ⊂ [n], such that mini∈I M̄

0
i ≥ maxk/∈I M̄

0
k

if I 6= [n], and the following holds: (a) for all k /∈ I, x∗k = 0 and y∗k = 0,

(b) for all i ∈ J ≡ arg mini∈I M̄
0
i , x∗i = 0 and 0 ≤ y∗i ≤ ∆̂i, and in

addition,
∑

i∈J y
∗
i = 1−

∑
t∈I−J ∆̂i; and (c) for all i ∈ I − J , y∗i = ∆̂i

and 0 < x∗i = 1− mint∈I M̄
0
t +C0

i

L̄0
i

< 1.

As proof sketch, we briefly state that the proposition follows from the
restrictions imposed by the model parameters and their implication to indif-
ference and monotonicity conditions. We also mention that the third case in
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the proposition implies that if the M̄0
l ’s form a complete order, then the last

condition stated in that case allows us to search for a MSNE by exploring
only n− 2 sets, vs. 2n−2 if done naively.

It turns out a complete order is not necessary. The following claim allows
us to safely move all the internal players with the same value of M̄0

i in a
group as a whole inside or outside I.

Claim 4. Let I ⊂ [n], such that I ′ ⊂ I, |I ′| < |I| < n − 1. Suppose we
find an MSNE (x, y) such that I ′ = {i | yi > 0}, with the property that
minl∈I′ M̄

0
l = maxk/∈I′ M̄

0
k . In addition, suppose I satisfies minl∈I′ M̄

0
l =

minl∈I M̄
0
l ≥ maxk/∈I M̄

0
k . Then, we can also find (x, y) using the partition

imposed by I.

Proof. To simplify the notation, let v ≡ minl∈I M̄
0
l = minl∈I′ M̄

0
l , J ′ ≡

arg minl∈I′ M̄
0
l and J ≡ arg mini∈I M̄

0
i . The hypothesis implies that (x,y)

satisfies the following properties.

for all i /∈ I ′: xi = yi = 0

for all i ∈ J ′: xi = 0 and 0 ≤ yi ≤ ∆̂i; also
∑
i∈J ′

yi = 1−
∑

i∈I′−J ′
∆̂i

for all i ∈ I ′ − J ′: xi = 1− v + C0
i

L̄0
i

and yi = ∆̂i

We now show that (x, y) also satisfies the constraints when using I with
the properties stated in the claim. For that, it needs to satisfy the same
expressions as above, but with I ′ and J ′ replaced by I and J , respectively.

The first condition is satisfied because I ′ ⊂ I. The second condition is
satisfied for all i ∈ J−I ′, because i /∈ I ′ satisfies xi = 0 and 0 ≤ yi = 0 ≤ ∆̂i.
It is also satisfied for all i ∈ J ∩ I ′ because i ∈ J implies M̄0

i = v and,
because i ∈ I ′, i ∈ J ′. For the third condition, note that I − J ⊂ I ′ − J ′
because i ∈ I − J implies the inequality M̄0

i > v = maxk/∈I′ M̄
0
k ; hence, the

first inequality in the last expression implies i /∈ J ′, while the equality implies
i ∈ I ′.

Proof of Proposition 4

Throughout this proof, by the hypothesis of the proposition, we assume we
are dealing with single-simultaneous-attack transfer-vulnerable IDD games.
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We also use the same notation as that introduced before the statement of the
proposition in the main text.

First recall that Assumption 1, in the context of mixed strategies, implies
the probability of no attack y0 ≡ 1 −

∑n
i yi. This is because under this

assumption

y(b) =


yBi(bi) = yi, if bi = 1 for exactly one i ∈ [n],

y0, if bi = 0 for all i ∈ [n],

0, otherwise.

Recall also that, when used in combination, Assumptions 1 and 4 greatly
simplify the best-response condition of the internal players because now
ŝi(xPa(i), yPF(i)) = yi. In particular, we have 2

si(xPa(i), yPa(i)) ≡
∑
bPa(i)

yPa(i)(bPa(i))si(xPa(i), bPa(i))

=
∑
bPa(i)

yPa(i)(bPa(i))
∏

j∈Pa(i)

eij(xj, bj)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yjeij(xj, 1)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj(xj + (1− xj)(1− q̂ji))

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj(xj + (1− xj)− (1− xj)q̂ji)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj(1− (1− xj)q̂ji)

=

y0 +
∑

j∈[n]−Pa(i)

yj

+
∑

j∈Pa(i)

yj −
∑

j∈Pa(i)

yj(1− xj)q̂ji

= 1−
∑

j∈Pa(i)

yj(1− xj)q̂ji ,

2Note that eij(xj , 0) = 1.
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so that ri(xPa(i), yPa(i)) =
∑

j∈Pa(i) yj(1− xj)q̂ji, and

fi(xPa(i), yPa(i)) ≡
∑
bPF(i)

yPF(i)(bPF(i)) bi si(xPa(i), bPa(i))

=
∑
bPF(i)

yPF(i)(bPF(i)) bi
∏

j∈Pa(i)

eij(xj, bj)

=

y0 +
∑

j∈[n]−PF(i)

yj

× 0× 1 + yi +
∑

j∈Pa(i)

yj × 0× eij(xj, 1)

= yi .

Combining the last derivation above with Assumption 4 (i.e., αi = 1) leads
to

ŝi(xPa(i), yPF(i)) ≡ fi(xPa(i), yPF(i)) +
1− αi
p̂i

ri(xPa(i), yPa(i)) = yi ,

as claimed above. Hence, the best-response BRi of defender i directly de-
pends on yi only (i.e., BRi is conditionally independent of the mixed-strategies
xPa(i) of its parent nodes Pa(i) of defender node i in the network given the
probability yi that the attacker’s mixed-strategy y assigns to a direct attack
to i); thus, in what follows, we abuse notation and define

BRi(yi) ≡ BRi(xPa(i), yPF(i)) =


{1}, if yi > ∆̂i,

{0}, if yi < ∆̂i,

[0, 1], if yi = ∆̂i.

Next, we prove some useful properties of the MSNE.

Claim 5. In every MSNE (x, y), for all i ∈ [n], if the probability of a direct
attack to a defender i is yi = 0 then the probability of investment of defender
i is xi = 0. In addition, if yi = 0 for some i ∈ [n] then the probability of no
attack y0 = 0.

Proof. By BRi, yi = 0 < ∆̂i implies xi = 0. For the second part, if yi = 0
for some defender i ∈ [n], then, by BR0, we have

max
t
M0

t (xt) ≥M0
i (xi) = M̄0

k > 0,

and thus y0 = 0.
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Proposition 5. In every MSNE (x, y), an attack is always possible: y0 < 1.

Proof. The proof is by contradiction. Let (x, y) be an MSNE. Suppose there
is no attack: y0 = 1. Then,

∑n
i=1 yi = 1−y0 = 0, so that yi = 0 for all i ∈ [n].

Because yi = 0 for some i ∈ [n], Claim 5 yields y0 = 0, a contradiction.

Lemma 10. In every MSNE (x, y), the probability yi of direct attack to

defender i is no larger than ∆̂i < 1.

Proof. The proof is by contradiction. Suppose there is some MSNE in which
yi > ∆̂i for some i ∈ [n]. Then, xi = 1 and in turn M0

i (1) = −C0
i < 0.

Because the attacker can always achieve expected payoff 0 by not attacking
anyone, the last condition implies yi = 0, a contradiction.

Claim 6. Let y be the mixed-strategy of the attacker in some MSNE. If the
probability of no attack y0 > 0, then the probability of direct attack to defender
i is equal to the cost-to-conditional expected-loss of defender i: yi = ∆̂i for
all i ∈ [n].

Proof. The proof is by contradiction. By Lemma 10 yi ≤ ∆̂i for all i ∈ [n].

Suppose yi < ∆̂i for some i. Then, by BRi, we have xi = 0, and by BR0, we
have 0 ≥ M̄0

i > 0, a contradiction.

Lemma 11. In every MSNE (x, y) of an IDD game in which the total of

cost-to-conditional expected-loss of all defenders is
∑n

i=1 ∆̂i < 1, there may
not be an attack: y0 > 0.

Proof. By Lemma 10, yi ≤ ∆̂i for all i ∈ [n]. Using the last statement, note
that

1− y0 =
n∑
i=1

yi ≤
n∑
i=1

∆̂i < 1,

from which the lemma immediately follows.

As stated earlier, we partition the class of IDD games into three sub-
classes, based on whether

∑n
i=1 ∆̂i is (1) less than, (2) equal to, or (3) greater

than 1. We consider each subclass in turn.

Proposition 6. The mixed-strategy profile (x, y) is an MSNE of an IDD
game in which the total cost-to-conditional expected-loss of all defenders is∑n

i=1 ∆̂i < 1 if and only if it satisfies the following properties.
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1. There may not be an attack, and the probability of no attack is equal
to one minus the cost-to-conditional expected-loss of all defenders: 1 >
y0 = 1−

∑n
i=1 ∆̂i > 0.

2. Every defender has non-zero chance of being attacked directly, and this
probability equals the respective defender’s cost-to-conditional expected-
loss of defender: for all defenders i ∈ [n], yi = ∆̂i > 0.

3. Every defender invests some but none does fully, and in particular, the
probability a defender does not invest equals the respective cost-to-loss
ratio to the attacker: for all defenders i ∈ [n], 0 < xi = 1− η0

i < 1.

Proof. Suppose the mixed-strategy profile (x, y) satisfies the above proper-
ties. Then, every defender is indifferent (i.e., for all i ∈ [n], BRi(yi) = [0, 1],

because yi = ∆̂i), as is also the attacker (i.e., BR0(x) equals the set of all
probability distributions over n+1 events because M0

i (xi) = 0 for all i ∈ [n]).
Hence, (x, y) is an MSNE.

Now suppose (x, y) is an MSNE of the game. By Lemma 11, y0 > 0.

Hence, for all i ∈ [n], we have yi = ∆̂i > 0 by Claim 6. Both of the previous
sentences together imply M0

i (xi) = 0 for all i ∈ [n], because of BR0. Simple
algebra yields that xi = 1 − η0

i . Finally, because y0 +
∑n

i=1 yi = 1, we have

y0 = 1−
∑n

i=1 ∆̂i.

Proposition 7. The mixed-strategy profile (x, y) is an MSNE of an IDD

game in which
∑n

i=1 ∆̂i = 1 if and only if it satisfies the following properties.

1. There is always an attack: y0 = 0.

2. Every defender has non-zero chance of being attacked directly, and this
probability equals the respective defender’s cost-to-conditional expected-
loss of defender i: for all defenders i ∈ [n], yi = ∆̂i > 0.

3. No defender invests fully, and the possible investment probabilities are
connected by a 1-d line segment in Rn:

xi = 1− v + C0
i

L̄0
i

for all i ∈ [n]

with 0 ≤ v ≤ mini∈[n] M̄
0
i .
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Proof. Suppose the mixed-strategy profile (x, y) satisfies the properties above.
Then, every defender is indifferent: for all i ∈ [n], BRi(yi) = [0, 1], because

yi = ∆̂i. To test y ∈ BR0(x), note 0 ≤ (1 − xi)L̄
0
i − C0

i = M0
i (xi) =

maxt∈[n] M
0
t (xt) for all i ∈ [n], and

n∑
i=1

yiM
0
i (xi) =

n∑
i=1

yi max
t∈[n]

M0
t (xt) =

(
n∑
i=1

yi

)
max
t∈[n]

M0
t (xt) = max

t∈[n]
M0

t (xt).

Let the mixed-strategy profile (x, y) be an MSNE of the game. Let I ≡
I(y) ≡ {i ∈ [n] | yi > 0}. Note that yk = 0 for all k /∈ I. We first prove the
following lemma.

Lemma 12. I = [n].

Proof. The proof is by contradiction. Suppose I 6= [n]. By Proposition 5,
y0 < 1 = y0 +

∑n
i=1 yi so that yi > 0 for some i ∈ [n], and therefore I 6= ∅.

Also, there exists some k ∈ [n] − I, for which yk = 0. By Claim 5, we then
have for all k /∈ I, xk = 0. By BR0 and Assumption 3, for all i, t ∈ I 6= ∅
and k /∈ I,

M0
i (xi) = M0

t (xt) ≥ M̄0
k .

The condition above yields the following upper bound on the mixed strategies
of the defenders in i ∈ I, after applying simple algebraic manipulations: for
all i ∈ I, k /∈ I,

xi ≤ 1− M̄0
k + C0

i

L̄0
i

< 1.

By BRi, this implies that yi ≤ ∆̂i for all i ∈ I. Putting all of the above
together, we have

1 =
n∑
i=0

yi =
n∑
i=1

yi =
∑
i∈I

yi ≤
∑
i∈I

∆̂i ≤
n∑
i=1

∆̂i = 1.

Now, because I 6= [n] (by the hypothesis assumed to obtain a contradiction),

we have
∑

k/∈I ∆̂k > 0, and∑
i∈I

yi =
n∑
i=1

∆̂i =
∑
i∈I

∆̂i +
∑
k/∈I

∆̂k >
∑
i∈I

∆̂i ≥
∑
i∈I

yi,
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a contradiction.

By the last lemma and BR0, we have

(1− x1)L̄0
1 − C1 = · · · = (1− xn)L̄0

n − Cn ≥ 0

Let v ≡ (1 − x1)L̄0
1 − C1. Then, 1 − xi =

v+C0
i

L̄0
i

> 0. If v > 0 then y0 = 0.

Because xi < 1, we have yi ≤ ∆̂i for all i ∈ [n]. Thus, we have yi = ∆̂i

for all i ∈ [n] because otherwise if yt < ∆̂t for some t ∈ [n], then 1 =

y0 + yt +
∑n

i=1,i 6=t yi <
∑n

i=1 ∆̂i = 1, a contradiction. If, instead, v = 0,

for all i, we have xi = 1 − η0
i > 0, which implies yi = ∆̂i. Therefore,

y0 = 1−
∑n

i=1 yi = 1−
∑n

i=1 ∆̂i = 0.

Lemma 13. In every MSNE (x, y) of an IDD game in which
∑n

i=1 ∆̂i > 1,
the probability of no attack y0 = 0.

Proof. The proof is by contradiction. Suppose y0 > 0. Then, by Claim 6, we
have yi = ∆̂i for all i ∈ [n], and 1 =

∑n
i=0 yi =

∑n
i=1 ∆̂i > 1, a contradiction.

Proposition 8. In every MSNE (x, y) of an IDD game, the probability of

no attack y0 > 0 if and only if the game has the property
∑n

i=1 ∆̂i < 1.

Proof. The “if” part is Lemma 11. For the “only if” part, the case in which∑n
i=1 ∆̂i = 1 follows from Proposition 7; the case in which

∑n
i=1 ∆̂i > 1

follows from Lemma 13.

Proposition 9. In every MSNE (x, y) of an IDD game in which
∑n

i=1 ∆̂i >
1, no defender is fully investing and some defender is not investing at all
(i.e., xi = 0 for some i ∈ [n]).

Proof. The proof is by contradiction. Proposition 8 yields y0 = 0. Suppose
xi = 1 for some i ∈ [n]. Then, by BRi, yi ≥ ∆̂i, and by BR0 and the
fact that y0 = 0, we have 0 > −C0

i = Mi(xi) ≥ 0, which implies yi = 0, a
contradiction.

Now suppose 0 < xi < 1 for all i ∈ [n]. Then, by BRi, we have yi = ∆̂i for

all i ∈ [n]. Thus we have 1 =
∑n

i=1 yi =
∑n

i=1 ∆̂i > 1, a contradiction.

Proposition 10. The mixed-strategy profile (x, y) is an MSNE of an IDD

game in which
∑n

i=1 ∆̂i > 1 if and only if it satisfies the following properties.
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1. There is always an attack: y0 = 0.

2. There exists a non-singleton, non-empty subset I ⊂ [n], such that
mini∈I M̄

0
i ≥ maxk/∈I M̄

0
k , if I 6= [n], and the following holds.

(a) No defender outside I invests or is attacked directly: xk = 0 and
yk = 0 for all k /∈ I.

(b) Let J ≡ arg mini∈I M̄
0
i . No defender in J invests and the probabil-

ity of that defender being attacked directly is at most the defender’s
cost-to-expected-loss ratio: for all i ∈ J , xi = 0 and 0 ≤ yi ≤ ∆̂i;
in addition,

∑
i∈J yi = 1−

∑
t∈I−J ∆̂i.

(c) Every defender in I − J partially invests and has positive prob-
ability of being attacked directly equal to the defender’s cost-to-
expected-loss ratio: for all i ∈ I − J , yi = ∆̂i and

0 < xi = 1− mint∈I M̄
0
t + C0

i

L̄0
i

< 1.

Proof. For the “if” part, we need to show (x, y) form mutual best-responses.

For all k /∈ I, xk = 0 ∈ BRk(y) because yk = 0 < ∆̂k. For all j ∈ J ,

xj = 0 ∈ BRj(y) because yj ≤ ∆̂j. Finally, for all i ∈ I − J , xi ∈ BRi(yi) =

[0, 1] because yi = ∆̂i. Hence, we have xi ∈ BRi(yi) for all i ∈ [n]. For
the attacker, let v ≡ v(I) ≡ mini∈I M̄

0
i . We have for all k /∈ I, Mk(xk) =

M̄0
k ≤ maxl /∈I M̄

0
l ≤ mini∈I M̄

0
i = v, where the first equality holds because

xk = 0 and the second inequality by the properties of I. We also have for all
j ∈ J , Mj(xj) = M̄0

j = mini∈I M̄
0
i = v, where the first equality holds because

xj = 0 and the second follows from the definition of J . Finally, using simple
algebra, we also have for all i ∈ I − J ,

Mi(xi) = (1− xi)L̄0
i − C0

i

=

(
mint∈I M̄

0
t + C0

i

L̄0
i

)
L̄0
i − C0

i

= min
t∈I

M̄0
t + C0

i − C0
i = min

t∈I
M̄0

t = v.

Hence, we have for all i ∈ [n], Mi(xi) ≤ v. The expected payoff of the
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attacker under the given mixed-strategy profile is

n∑
i=1

yiMi(xi) =
∑
j∈J

yjMj(xj) +
∑
i∈I−J

yiMi(xi)

=
∑
j∈J

yjv +
∑
i∈I−J

yiv

= v

(∑
j∈J

yj +
∑
i∈I−J

yi

)

= v

(
n∑
i=1

yi

)
= v ≥Mi(xi),

for all i ∈ [n]. Hence, we also have y ∈ BR0(x), and the mixed-strategy
profile (x, y) is an MSNE.

We now consider the “only if” part of the proposition. Let (x, y) be an
MSNE and let I ≡ I(y) ≡ {i ∈ [n] | yi > 0} be the support of the aggressor’s
mixed strategy. We now show that I is a non-singleton and non-empty subset
of [n].

Claim 7. 1 < |I| ≤ n.

Proof. From Proposition 5, we have I 6= ∅. That I is not a singleton set
follows from Lemma 10.

By Proposition 8, we have y0 = 0. Applying Proposition 9, let t ∈ [n] be
such that xt = 0. Also by Proposition 9, the aggressor achieves a positive
expected payoff:

∑n
i=1 yiM

0
i (xi) = maxnl=1 M

0
l (xl) ≥ M0

t (xt) = M̄0
t > 0. For

all k /∈ I, because yk = 0, Claim 5 implies xk = 0.
By BR0, if I is a strict, non-empty and non-singleton subset of [n], we

have, for all i ∈ I and k /∈ I,

M̄0
i ≥M0

i (xi) = max
l∈I

M0
l (xl) ≥ M̄0

k > 0;

otherwise, if I = [n], we have, for all i ∈ [n],

M0
i (xi) = max

l∈[n]
M0

l (xl) = M0
t (xt) = M̄0

t > 0.
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Let v ≡ v(I) ≡ maxl∈IM
0
l (xl). Then, the above expressions imply that for

all i ∈ I, we have

0 < xi = 1− v + C0
i

L̄0
i

< 1.

In addition, we have that if I is a strict, non-empty and non-singleton subset
of [n], we have,

v = M̄0
t ≥ min

i∈I
M̄0

i ≥ v ≥ max
k/∈I

M̄0
k ;

and if, instead, I = [n], then

v = M̄0
t = min

i∈[n]
M̄0

i .

Hence, we have v = mini∈I M̄
0
i .

Let J ≡ J(I) ≡ arg mini∈I M̄
0
i . For all i ∈ J , we have M̄0

i = v, and thus

xi = 1− v + C0
i

L̄0
i

= 1− M̄0
i + C0

i

L̄0
i

= 1− L̄0
i − C0

i + C0
i

L̄0
i

= 0,

and by BRi, we have 0 ≤ yi ≤ ∆̂i.
For all i ∈ I − J , we have M̄0

i > v, and thus

0 = 1− M̄0
i + C0

i

L̄0
i

< xi = 1− v + C0
i

L̄0
i

< 1,

and by BRi, we have yi = ∆̂i.
Finally, we have

∑
i∈J yi = 1−

∑
i∈I−J ∆̂i, because y is a mixed-strategy

(i.e, a probability distribution).

Hence, from the proof of the last proposition we can infer that if the
M̄0

l ’s form a complete order, then the last condition allows us to search for
an MSNE by exploring only n− 2 sets, as opposed to 2n−2 if done naively.

It turns out a complete order is not necessary. The following claim allows
us to safely move all the defenders with the same value of M̄0

i in a group as
a whole inside or outside I.

Claim 8. Let I ⊂ [n], such that I ′ ⊂ I, |I ′| < |I| < n − 1. Suppose we
find an MSNE (x, y) such that I ′ = {i | yi > 0}, with the property that
minl∈I′ M̄

0
l = maxk/∈I′ M̄

0
k . In addition, suppose I satisfies minl∈I′ M̄

0
l =

minl∈I M̄
0
l ≥ maxk/∈I M̄

0
k . Then, we can also find (x, y) using partition I.
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Proof. To simplify the notation, let v ≡ minl∈I M̄
0
l = minl∈I′ M̄

0
l , J ′ ≡

arg minl∈I′ M̄
0
l and J ≡ arg mini∈I M̄

0
i . The hypothesis implies that (x, y)

satisfies the following properties.

for all i /∈ I ′: xi = yi = 0

for all i ∈ J ′: xi = 0 and 0 ≤ yi ≤ ∆̂i;

also
∑
i∈J ′

yi = 1−
∑

i∈I′−J ′
∆̂i

for all i ∈ I ′ − J ′: xi = 1− v + C0
i

L̄0
i

and yi = ∆̂i

We now show that (x, y) also satisfies the constraints when using I with
the properties stated in the claim. For that, it needs to satisfy the same
expressions as above, but with I ′ and J ′ replaced by I and J , respectively.

The first condition holds because I ′ ⊂ I. The second condition holds for
all i ∈ J − I ′, because i /∈ I ′ satisfies xi = 0 and 0 ≤ yi = 0 ≤ ∆̂i. It also
holds for all i ∈ J ∩ I ′ because i ∈ J implies M̄0

i = v, and because i ∈ I ′ and
i ∈ J ′. For the third condition, note that I − J ⊂ I ′ − J ′ because i ∈ I − J
implies the inequality M̄0

i > v = maxk/∈I′ M̄
0
k ; hence, the first inequality in

the last expression implies i /∈ J ′, while the equality implies i ∈ I ′.

Proposition 4 follows by combining Propositions 6, 7 and 10. We now
discuss properties of the characterization.

4.4.2 Security investment characteristics of MSNE

At equilibrium x∗, if x∗i > 0, the probability of not investing is proportional
to C0

i and inversely proportional to p̂iLi +
∑

j∈Ch(i) q̂ijLj. It is kind of re-

assuring at equilibrium, which is the (almost-surely) unique stable outcome
of the system, the probability of investing increases with the potential loss
a player’s non-investment decision could cause to the system. Hence, be-
havior in a stable system implicitly “forces” all players to indirectly account
for or take care of their own children. This may sound a bit paradoxical at
first given that we are working within a “noncooperative” setting and each
player’s cost function is only dependent on the investment decision of the
player’s parents. Interestingly, the existence of the attacker in the system is
inducing an (almost-surely) unique stable outcome in which an implicit form
of “cooperation” occurs. A defenders’s best response is independent of their
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parents, the source of transfer risk, if investment in security does nothing to
protect that player from transfers (i.e., αi = 1). This makes sense because
the player cannot control the transfer risk. Said differently, there is nothing
the player can do to prevent the transfer, even though the original potential
for transfers does depend on the parents’ investment strategies. In short,
rational/optimal noncooperative behavior for each player is not only to pro-
tect for the player’s own losses but also “cooperate” to protect the player’s
children.

4.4.3 Relation to network structure

How does the network structure and the equilibrium relate? As seen above,
the values of the equilibrium strategy of each player depend on information
from the attacker, the player and the player’s children. From the discussion
in the last paragraph, a player’s probability of investing at the equilibrium
increases with the expected loss sustained from a “bad event” occurring as a
result of a transfer from a player to the player’s children.

Let us explore this last point further by considering the case of uniform-
transfer probabilities (also studied by Kunreuther and Heal [2003] and Kearns
and Ortiz [2004]). In that case, transfer probabilities are only a function of

the source, not the destination: q̂ij ≡ δ̂i. The expression for the equilibrium
probabilities of those players who have a positive probability of investing

would simplify to x∗i = 1 − v+C0
i

p̂iLi+δi
∑
j∈Ch(i) Lj

, for some constant v. The last

expression suggests that
∑

j∈Ch(i) Lj differentiates the probability of investing
between players. That would suggest that the larger the number of children
the larger the probability of investing. A scenario that seems to further
lead us to that conclusion is when we make the further assumption of an
homogeneous system as first studied in the original IDS paper [Kunreuther
and Heal, 2003]: Li ≡ L, p̂i ≡ p̂, δi ≡ δ, and C0

i ≡ C0 3 for all players. Then,
we would get x∗i = 1− v+C0

L(p̂+δ|Ch(i)|) . So the probability of not investing, 1−x∗i ,
is inversely proportional to the number of children player i has.

On the attacker’s equilibrium strategy. The support of the attacker,
I∗ ≡ {i | y∗i > 0}, at equilibrium has the following properties: (1) players
for which the attacker’s cost-to-expected-loss is higher are “selected” first in

3Note that this does not mean that the expected loss caused by a player that does not
invest but is attacked, L (p̂+ δ|Ch(i)|), is the same for all players.
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the algorithm; (2) if the size of that set is t, and there is a lower bound on

∆̂i > ∆̂, and
∑n

i=1 ∆̂i > 1, then t < 1/∆̂ is an upper-bound on the number
of players that could potentially be attacked; (3) if we have a game with
homogeneous parameters, then the probability of an attack will be uniform
over that set I∗; and (4) all but one of the players in that set I∗ invest in
security with some non-zero probability (almost surely).

Algorithm 4: Compute all MSNE of a single-attack transfer-vulnerable
IDD game.

Input : A SATV IDD game G = (G = ([n], E), p̂, Q̂,L,C,C0)
Output: he set NE of all MSNE of G

1 foreach i = 1 to n do

2 ∆̂i ← Ci
p̂iLi

3 Ch(i)← {j ∈ [n] | (i, j) ∈ E}
4 L̄0

i ← p̂iLi +
∑

j∈Ch(i) q̂ijLj
5 η0

i ← C0
i /L̄

0
i

6 M̄0
i ← L̄0

i − C0
i

7 end foreach

8 if
∑n

i=1 ∆̂i < 1 then
9 Assign to NE the output of call to subroutine for this case given in

Algorithm 5 with input n, ηηη0, ∆̂̂∆̂∆
10 end if

11 if
∑n

i=1 ∆̂i = 1 then
12 Assign to NE the output of call to subroutine for this case given in

Algorithm 6 with input n, ∆̂̂∆̂∆, L̄0, C0

13 end if

14 if
∑n

i=1 ∆̂i > 1 then
15 Assign to NE the output of call to subroutine for this case given in

Algorithm 7 with input n, ∆̂̂∆̂∆, L̄0, C0, M̄0

16 end if
17 return NE
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Algorithm 5: Subroutine to compute the unique MSNE of a single-
attack transfer-vulnerable IDD game with

∑n
i=1 ∆̂i < 1.

Input : n, ∆̂̂∆̂∆, ηηη0

Output: The unique MSNE for this case as the set NE
1 S ← 0
2 foreach i = 1 to n do
3 xi ← 1− η0

i

4 yi ← ∆̂i

5 S ← S + yi
6 end foreach
7 y0 ← 1− S
8 NE ← {(x, y)}
9 return NE

Algorithm 6: Subroutine to compute (a simple linear representation
of) all MSNE of a single-attack transfer-vulnerable IDD game with∑n

i=1 ∆̂i = 1.

Input : n, ∆̂̂∆̂∆, L̄0, C0

Output: The set NE of all MSNE for this case
1 foreach i = 1 to n do

2 yi ← ∆̂i

3 end foreach
4 y0 ← 0
5 X ← {x ≥ 0 | (1− x1)L̄0

1 − C0
1 = · · · = (1− xn)L̄0

n − C0
n ≥ 0}

6 NE ← X × {y}
7 return NE

4.4.4 Computing All MSNE Efficiently

We now describe an algorithm to compute all MSNE in single-simultaneous-
attack transfer-vulnerable IDD games that falls off Proposition 4. We begin
by noting that the equilibrium in the case of IDD games with

∑n
i=1 ∆̂i ≤ 1,

corresponding to cases 1 and 2 of the proposition, has essentially an analytic
closed-form. Hence, we concentrate on the remaining and most realistic case
in large-population games of

∑n
i=1 ∆̂i > 1. We start by sorting the indices of
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Algorithm 7: Subroutine to compute (a simple simplex representa-
tion of) all MSNE of a single-attack transfer-vulnerable IDD game with∑n

i=1 ∆̂i > 1.

Input : n, ∆̂̂∆̂∆, L̄0, C0, M̄0

Output: The set NE of all MSNE for this case
1 (Val, Idx)← sort(M̄0, ’descending’)
2 t← 0
3 S ← 0
4 while t = n or S ≥ 1 do
5 t← t+ 1

6 S ← S + ∆̂Idx(t)

7 end while
8 k ← t

9 S ← S − ∆̂Idx(t)

10 v ← Val(t) while Val(t) = v and t < n do
11 t← t+ 1
12 end while
13 foreach i = 1 to k − 1 do
14 l← Idx(i)

15 xl ← 1− v+C0
l

L̄0
l

16 yl ← ∆̂l

17 end foreach
18 O ← ∅
19 foreach i = k to t− 1 do
20 l← Idx(i)
21 xl ← 0
22 O ← O ∪ {l}
23 end foreach
24 foreach i = t to n do
25 l← Idx(i)
26 xl ← 0
27 yl ← 0

28 end foreach

29 YO ← {yO | 0 ≤ yi ≤ ∆̂i, for all i ∈ O, and
∑

i∈O yi = 1− S}
30 NE ← {x} × {y−O} × YO
31 return NE
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the internal players in descending order based on the M̄0
i ’s. Let Val(l) and

Idx(l) be the lth value and index in the resulting sorted list, respectively.

Find t such that 1 − ∆̂Idx(t) ≤
∑t−1

l=1 ∆̂Idx(l) < 1. Let k = arg max{l ≥ t |
Val(l) = Val(t)} (i.e., continue down the sorted list of values until a change

occurs). For i = 1, . . . , t − 1, let l = Idx(i) and set x∗l = 1 − Val(t)+C0
l

L̄0
l

and y∗l = ∆̂l. For i = k + 1, . . . , n, let l = Idx(i) and set x∗l = 0 and
y∗l = 0. For i = t, . . . , k, let l = Idx(i) and set x∗l = 0. Finally, represent the
simplex defined by the following constraints: for i = t, . . . , k, let l = Idx(i)

and 0 ≤ y∗l ≤ ∆̂l;
∑k

i=t y
∗
Idx(i) = 1 −

∑t−1
i=1 ∆̂Idx(i). The running time of the

algorithm is O(n log n) (because of sorting).

Theorem 12. There exists a polynomial-time algorithm to compute all MSNE
of a single-simultaneous-attack transfer-vulnerable IDD game.

In cases in which the equilibria is not unique, it can be generated via
simple sampling of either a simple linear system or a simplex. In either case,
one can compute a single MSNE from that infinite set in polynomial time.

Let us revisit the types of games that may have an infinite MSNE set.
Note that the case in which

∑n
i=1 ∆̂i = 1 has (Borel) measure zero and is

quite brittle (i.e., adding or removing a player breaks the equality). For the

case in which
∑n

i=1 ∆̂i > 1, if the value of the M̄0
i ’s are distinct, 4 then

there is a unique MSNE! Algorithm 4 provides pseudocode of the algorithm
resulted from the characterization.

4Distinct M̄0
i ’s for the set of defenders at which the sum goes over one is sufficient to

guarantee unique MSNE.
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4.5 Experiments: Computing an ε-MSNE us-

ing BRGD

In the previous section, we established theoretical characteristics and compu-
tational tractability of single-simultaneous-attack IDD games with the high-
est transfer vulnerability parameter: αi = 1. In this section, partly motivated
by security problems in cyberspace, we concentrate instead on empirically
evaluating the other extreme of transfer vulnerability: games with low αi
values (i.e., near 0), so that investing in security considerably reduces the
transfer risk.

Our main objectives for the experiments presented here are (1) to demon-
strate that a simple heuristic, best-response-gradient dynamics (BRGD), is
practically effective in computing an (approximate) MSNE in a very large
class of IDD games with realistic Internet-scale network graphs in a reason-
able amount of time for cases in which the transfer vulnerabilities αi’s are low;
and (2) to explore the general structural and computational characteristics
of (approximate) MSNE in such IDD games, including their dependence on
the underlying network structure of the game (and approximation quality).

BRGD is a well-known technique from the work on learning in games [Fu-
denberg and Levine, 1998, Singh et al., 2000, Kearns and Ortiz, 2004, Heal
and Kunreuther, 2005a, Kearns, 2005]. Here, we use BRGD as a tool to
compute an ε-approximate MSNE, which is a mixed-strategy profile with the
property that the gain in utility (or reduction in cost) of any individual from
unilaterally deviating from their prescribed mixed-strategy is no larger than
ε. In particular, a mixed-strategy profile (x, y) is an ε-MSNE if for all sites i,
M(x, y) ≤M(0, y) + ε and M(x, y) ≤M(1, y) + ε and U(x, y) ≥ U(x, y′)− ε
for 1 ≥ ε ≥ 0 for all y′ ∈ [0, 1]n. A 0-approximate MSNE is an exact MSNE.
Notice that in the discussion of ε-MSNE, the cost functions and utility are
required to normalized between zero and one.

We obtained the latest version (March 2010 at the time) of the real struc-
ture and topology of the Autonomous Systems (AS) in the Internet from
DIMES (netdimes.org) [Shavitt and Shir, 2005]. The AS-level network has
27, 106 nodes (683 isolated) and 100, 402 directed edges; the graph length
(diameter) is 6, 253, the density (number of edges divided by number of pos-
sible edges) is 1.9920 × 10−5, and the average (in and out) degree is 3.70,
with ≈ 76.93% and 2.59% of the nodes having zero indegree and outdegree,
respectively. Figure 4.1 shows the indegree and outdegree distribution and
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Figure 4.1: Histograms of Indegree and Outdegree of the Nodes
of the Autonomous Systems from DIMES. The bar graphs show (the
logarithm (base 10) of) the number nodes with a particular outdegree (left)
and indegree (right) value. (The graphs only show the in/out degrees with
a non-zero number of nodes.)

Figure 4.2: Indegree and Outdegree of the Nodes of the Autonomous
Systems from DIMES. The scatter plot shows the indegree and outdegree
pairs of the AS nodes in logarithmic (base 10) scale.

Figure 4.2 shows the scatter plot of indegree and outdegree of the graph. All
the IDD games in the experiments presented in this section have this network
structure.

For simplicity, we call Internet games the class of IDD games with the
AS-level network graph structure. We considered various settings for model
parameters of Internet games. In particular, we generate the values of the
parameters according to Table 4.1. From the initialization, we have two
instances of IDD games. The first instance of IDD games has its parame-
ters’ values generated uniformly at random within some ranges. The second
instance of IDD games has its parameters’ values generated from the expec-
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Model Fixed: U = 0.5
Parameters Random: U ∼ Uniform([0,1])

αi U/20
Li 108 + (109) ∗ U
Ci 105 + (106) ∗ U
p̂i 0.9 ∗ p̃i

p̃i+
∑
k∈Ch(i) q̃ik

q̂ij 0.9 ∗ q̃ij
p̃i+

∑
k∈Ch(i) q̃ik

zi 0.2 + U/5
p̃i 0.8 + U/10

q̃ij zi
|Ch(j)|+|Pa(j)|∑

k∈Ch(i) |Ch(k)|+|Pa(k)|

C0
i 106

Table 4.1: Internet Games’ Model Parameters.

tation of the random instance. Therefore, the second instance of IDD games
is fixed and has only one single instance.

The attacker’s cost-to-attack parameter for each node i is always held
constant: C0

i = 106. For each run of each experiment, we ran BRGD with
randomly-generated initial conditions (i.e., random initializations of the play-
ers’ mixed strategies): xi ∼ Uniform([0, 1]), i.i.d. for all i, and y is a probabil-
ity distribution generated uniformly at random, and independent of x, from
the set of all probability mass functions over n+1 events. 5 The initialization
of the transfer-probability parameters of a node essentially gives higher trans-
fer probability to children with high (total) degree (because they are poten-
tially ”more popular”). The initialization also enforces p̂i+

∑
j∈Pa(i) q̂ji = 0.9.

Other initializations are possible but we did not explore then here.

4.5.1 Computing an ε-MSNE using BRGD

Given the lack of theoretical guarantees on the convergence rate of BRGD, we
began our empirical study by evaluating the convergence and computation/running-
time behavior of BRGD on Internet games. We ran ten simulations for each
ε value and recorded the number of iterations until convergence (up to 2, 000

5Recall the probability of no attack y0 = 1−
∑n

i=1 yi.
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Figure 4.3: Convergence Rate of Learning Dynamics. The plots above
present the number of iterations of BRGD as a function of ε under the two
experimental conditions: Internet games with fixed (top) and randomly-
generated parameters (bottom). Applying MSE regression to the top and
bottom graphs, we obtain a functional expression for the number of itera-
tions NF (ε) = 0.00003ε−2.547 ( R2 = 0.90415) and NR(ε) = 0.0291ε−1.589

(R2 = 0.9395), respectively (i.e., low-degree polynomials of 1/ε).

iterations). Figure 4.3 presents the number of iterations taken by BRGD
to compute an ε-MSNE as a function of ε. All simulations in this experi-
ment converged (except for ε = 0.001: 2 and all of the runs for single and
randomly-generated instances, respectively, did not). Each iteration took
roughly 1-2 sec. (wall clock). Hence, we can use BRGD to consistently
compute an ε-MSNE of a 27K-players Internet game in a few seconds!

We now concentrate on the empirical study of the structural characteris-
tics of the ε-MSNE found by BRGD. We experimented on both the single and
randomly-generated Internet game instances. We discuss the typical behav-
ior of the attacker and the sites in an ε-MSNE, and the typical relationship
between ε-MSNE and network structure.

A Single Internet Game

We first studied the characteristics of the ε-MSNE of a single Internet game
instance. The only source of randomness in these experiments comes from
BRGD’s initial conditions (i.e., the initialization of the mixed strategies x
and y). BRGD consistently found exact MSNE (i.e., ε = 0) in all runs.

Players’ equilibrium behavior. In fact, we consistently found that the
attacker always displays only two types of “extreme” equilibrium behavior,
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Figure 4.4: Attacker’s Equilibrium Strategy on an Internet Game In-
stance (Fixed). The graph shows the values of y∗i > 0 for each node i, sorted
in decreasing order (in log-log scale), for attacker’s Strategy A (blue/denser-
dots line) and Strategy B (red/sparser-dots line) at an MSNE of the single
instance of the Internet game.

corresponding to the two kinds of MSNE BRGD found for the single Internet
game: place positive probability of a direct attack to either almost all nodes
(Strategy A) or a small subset (Strategy B). Figure 4.4 shows a plot of the
typical probability of direct attack for those two equilibrium strategies for
the attacker when BRGD stops. In both strategies, a relatively small number
of nodes (about 1K out of 27K) have a reasonably high (and near uniform)
probability of direct attack. In Strategy A, however, every node has a positive
probability of being the target of a direct attack, albeit relatively very low
for most; this is contrast to Strategy B where most nodes are fully immune
from a direct attack. Interestingly, none of the nodes invest in either MSNE:
x∗i = 0 for all nodes i. Thus, in this particular Internet game instance, all
site nodes are willing to risk an attack!

Relation to network structure. We found that the nodes with (rela-
tively) high probability of direct attack are at the “fringe” of the graph (i.e.,
have low or no degree). In Strategy A, fringe nodes (with mostly 0 or 1 out-
degree) have relatively higher probability of direct attack than nodes with
higher outdegree. Similarly, in Strategy B, the small subset of nodes that are
potential target of a direct attack have relatively low outdegree (mostly 0,
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Figure 4.5: Attacker’s Equilibrium Strategy and the Degrees of the
Nodes. The top graph, which depicts Strategy A (all 27106 nodes), shows
the probability of attack (y-axis) of a node and its corresponding outdegree
(x-axis) in logarithmic (base 10) scale. The below graphs show the indegree
(y-axis) of a node and its corresponding outdegree (x-axis) in logarithmic
(base 10) scale of Strategy B: the graphs on the left and right consist of the
(1780) nodes with nonzero probability of attack and the (25326) nodes with
zero probability of attack, respectively.

and 0.0067 on average; this is in contrast to the average outdegree of 3.9639
for the nodes immune from direct attack). Figure 4.5 shows the relation
between the probability of attack and outdegree and the relation between
the indegree and outdegree of a typical simulation runs for strategy A and
for Strategy B as described above, respectively. We emphasize that these
observations are consistent throughout all runs of the experiment. In short,
we consistently found that the nodes with low outdegree are more likely to
get attacked directly in the single Internet game instance.

Randomly-Generated Internet Games

We now present results from experiments on randomly-generated instances
of ten Internet games, a single instance for each ε ∈ {0.001, 0.002, . . . , 0.009}.
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Figure 4.6: Attacker’s and Site’s ε-MSNE Strategies for a Randomly-
Generated Internet Game. The graphs show the empirical distributions
of the probability of attack (top) and histograms of the probability of invest-
ment (bottom), for different ε-value conditions encoded in the right-hand
side of the plots (i.e., from 0.001 to 0.009). In both graphs, the distributions
and histograms found for each ε value considered are drawn in the same cor-
responding graph superimposed. The top graph plots the distribution of yi
where the nodes are ordered decreasingly based on the yi value. The bottom
bar graph shows histograms of the probability of investing in defense/security
measures based on the following sequence of 10 ranges partitioning the unit
interval: ([0, 0.1], (0.1, 0.2], ..., (0.9, 1]).

For simplicity, we present the result of a single BRGD run on each instance.
6

Behavior of the players. Figure 4.6 shows plots of the attacker’s proba-
bility of direct attack and histograms of the nodes’s probability of investment
in a typical run of BRDG on a randomly-generated Internet game instance
for each ε value.

The plots suggest that approximate MSNE found by BRGD is quite sen-
sitive to the ε value: as ε decreases, the attacker tends to “spread the risk”
by selecting a larger set of nodes as potential targets for a direct attack,

6While some results presented here are for a single instance of the Internet game for
each ε, the results are typical of multiple instances. Our observations are robust to the
experimental randomness in both the Internet game parameters and the initialization of
BRGD. For the sake of simplicity of presentation, we discuss results based on a single
instance of the Internet game, and in some cases based on a single BRGD run. Note
that, for each ε value we considered, the Internet game parameters remain constant within
different BRGD runs. BRGD always converged within 2, 000 iterations (except 6 runs for
ε = 0.001).
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thus lowering the probability of a direct attack on any individual node; the
nodes, on the other hand, tend to deviate from (almost) fully investing and
(almost) not investing to a more uniform mixed strategy (i.e., investing or
not investing with roughly equal probability).

Figure 4.7: Attacker’s Strategy at ε-MSNE. The x-axis of the top left,
top right, and bottom left represents the ε value and their y-axis repre-
sents the number of iterations until convergence (or 2000 iterations max) to
some ε-MSNE, the number of nodes that are being attacked, and the highest
probability of attack, respectively. The bottom right scatter plot shows the
relation between the number of nodes that are being attacked and the highest
probability of attack in x-axis and y-axis, respectively.

A more thorough study confirms the above observation of the attacker and
it is illustrated by Figure 4.7. Figure 4.7 shows: (a) the number of iterations
taken by the BRGD for ε-MSNE to converge (top left); (b) the number
of nodes that are being targeted (top right); (c) the highest probability of
attack (bottom left); and (d) the scatter plot of the nodes that are being
targeted and the highest probability of attack (bottom right) for each of the
ten simulations. From this figure, we observe that, as ε decreases, (1) the
number of iterations takes for an ε-MSNE to converge increases (top left), (2)
the number of nodes that are being targeted increases (top right), and (3) the
highest probability of attack decreases (bottom left). From the bottom right
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Figure 4.8: Attacker’s ε-MSNE Strategy vs. Node Degrees. Average
indegree (top) and outdegree (bottom) of nodes potentially attacked in terms
of the ε-MSNE.

graph of Figure 4.7, we observe that there is a negative correlation between
the number of nodes that are being targeted and the highest probability of
an attack: as the highest probability of an attack increases, the number of
nodes that are being targeted decreases.

A possible reason to explain the behavior of the sites is that as more nodes
become potential targets of a direct attack, more nodes with initial mixed
strategies close to the “extreme” (i.e., very high or very low probabilities of
investing) will move closer to a more uniform (and thus less “predictable”)
investment distribution.

Relation to network structure. Figure 4.8 presents some experimen-
tal results on the relationship between network structure and the attacker’s
equilibrium behavior. The graphs show, for each ε value, the average inde-
gree and outdegree, across the BRGD runs of the ten randomly-generated
instances Internet games, of those nodes that are potential targets of a direct
attack at an ε-MSNE. In general, both the average indegree and outdegree
of the nodes that are potential targets of a direct attack tend to increase as
ε decreases. One possible reason for this finding could be the fact that the
values of αi generated for each player are relatively low (i.e., uniformly dis-
tributed over

[
0, 1

40

]
); yet, interestingly, such behavior and pattern, is exact

opposite of the theory for the case αi = 1.
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4.5.2 Case Study: A randomly-generated instances of
an Internet games at 0.005-MSNE

In this subsection, we provide a detail topological study of a randomly-
generated instances of an Internet games at 0.005-MSNE.

Topological structure of an attack to the Internet. In Figure 4.9,
we plot the topological structure of the top sites (in this case 402) with the
highest yi and their immediate neighbors at 0.005-MSNE. Notice that there
are a few isolated nodes and a few small ”node-parent-children” networks,
but in general, the largest network component tends to have a cluster-like
structure. Figure 4.9 also shows the number of connected components of
the network for the subgraph of the nodes that are most likely to be attacked
(and their neighbors) as well as the probability of investing of all nodes in
the network, along with some additional properties of the graphs.

Figure 4.10 and Figure 4.11 show the indegree and outdegree of the (402)
non-zero yi nodes and the remaining (26704) zero yi nodes, respectively. We
did not observe in our experiments any strong relationship between the yi’s
or xi’s in the ε-MSNE we found and the corresponding indegree or outdegree
of the node i. However, we observed that, among the nodes with non-zero
probability of attack, there was a slight tendency for those nodes with the
lowest probability of attack to also have low outdegree and for those nodes
with the highest probability of investing to also have low outdegree, but that
tendency did not seem significant enough.

As mentioned earlier, the behavior of the players are quite sensitive to the
ε value. Therefore, this could be one of the reasons that these nodes (with
the highest yi) have low outdegree.

4.6 Conclusion and Open Problem

In this chapter, we have introduced IDD games, a new class of security
games in which the attacker is explicitly model. Under various assumptions,
we show that there is no PSNE in the IDD games and we can compute all
MSNE of the IDD games. Despite the lack of algorithm on the general IDD
games, we use a well-known heuristic to show the behaviors of the sites and
the attacker at approximate NE. Below, we present a few possible extensions
and modifications of our model and some open problems.
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Figure 4.9: The Structure of an Attack to the Internet. The 3-d
graph top left corresponds to the top 402 Internet AS level nodes most likely
to be attacked according to our model at 0.005-MSNE, and their neighbors
(i.e., both parent and children family). The graph on the top right is a 2-d
projection of the 3-d graph on the top left. The self-loops mark the nodes
that are actually attacked. For the most part, the graph structures exhibit
very dense clustering. The bar graph on the bottom left corresponds to the
number of connected components (CC) of the top 402 Internet AS level nodes
that are most likely to be attacked. The bar graph on the bottom right shows
the number of nodes with the probability of investing in defense/security
measures within the range of ([0, 0.1], (0.1, 0.2], ..., (0.9, 1]). Some properties
of the graph corresponding to the network structure are shown on the upper
corner of the bottom left graph The graph consists of 1606 nodes, 2044 edges,
and 75 CC. Out of the 75 CC, the largest CC contains 1427 nodes and the
smallest CC consists of just one node (there are only four of them). There
are 46 of 2-CC (CC with only 2 nodes), 20 of 3-CC, 1 of 4-CC, 1 of 5-CC,
and 2 of 7-CC. The diameters and density of the graphs are 13 and 0.002,
respectively.
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Figure 4.10: Attacker’s Equilibrium Strategy vs Degree of the Nodes
at 0.05-MSNE These are plots on the 402 nodes with the highest yi. The
two graphs on top show the corresponding yi (y-axis) and its indegree and
outdegree in logarithmic (base 10) scale. Similarly, the two graphs at the
bottom show the corresponding xi (y-axis) and its indegree and outdegree in
logarithmic (base 10) scale.
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Figure 4.11: The degrees and strategies of the non-targeted nodes.
These are plots on the remaining 26704 nodes with zero yi. The two graphs
on top show the corresponding yi (y-axis) and its indegree and outdegree in
logarithmic (base 10) scale. Similarly, the two graphs at the bottom show
the corresponding xi (y-axis) and its indegree and outdegree in logarithmic
(base 10) scale.
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Attackers Can Affect Transfer Probabilities. We could extend the
strategy space of the attacker by allowing the attacker to affect transfer.
One particular instantiation of this idea is to have the network graph edges
represent the attacker’s targets, as opposed to just the node. The attacker’s
pure strategies would now be based on the edges (i, j), such that binary
action variable bij would now represent the attack, taking a value of one if
the attackers wants to attack j but only via a transfer from i.

Multiple Attackers with Multiple Attacks. While dealing with mul-
tiple attackers is outside the scope of this paper, we have in fact extended
the model in a natural way in that direction. However, we were able to
extend the representation results, but not the characterization or computa-
tional/algorithmic results. We leave that endeavor for future work. In prin-
ciple, the best-response gradient dynamics can also be used as a heuristic in
the multiple attackers’ case.

Open Problems. A thorough characterization of the equilibria of interde-
pendent defense games is lacking, specially for the case of multiple potential
attacks by multiple aggressors. Also, we need a better understanding of the
effect of network structure of the game and restrictions on the aggressors’
available strategies on the equilibria of the game.

Many computational problems in the context of interdependent defense
games remain open.

1. What is the computational complexity of the problem of computing
equilibria of interdependent defense games with arbitrary transfer vul-
nerability? (e.g., a single, multiple or all MSNE? MSNE with particular
properties?)

2. What is the computational complexity of the problem of identifying
“influential” agents, in the sense of Irfan and Ortiz [2014] (see also,
Kleinberg [2007] and the references therein)?

3. How is the complexity affected by network structure or restrictions on
the aggressors’ available strategies? For example, what if the network
graph is some type of chain, cycle or tree?
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Chapter 5

Computing Approximate Nash
Equilibrium In Interdependent
Defense Games1

Given that there is no PSNE in any IDD games, we shift our focus to comput-
ing an MSNE. In the previous chapter, we provide an algorithm to compute
all MSNE in an instance of IDD games where αi = 1 for all sites i. The
interpretation is that investment cannot protect the sites from indirect risk.
However, there is no result for the harder case of general αi.

5.1 On the Complexity of Computing an MSNE

Here, we consider the computational complexity of computing an MSNE in
general α-IDD games. A closer look at the model reveals something interest-
ing about IDD games: we can view computing an MSNE in IDD games as
a two-part process. Given an attacker’s strategy, we need to determine the
MSNE of the underlying game of the sites, or sites-game for short. The sites-
game could have many MSNE and each MSNE could yield a different utility
for the attacker (and the sites). Naively, the attacker can verify whether each
of the MSNE is in the attacker’s best response. Clearly, doing so depends
on whether we can efficiently compute all MSNE in the sites-game, which of
course depends on the given attacker’s strategy. For example, if

∑n
i=1 yi = 0,

1A part of this chapter has appeared in the proceedings of the Twenty-ninth AAAI
Conference on Artificial Intelligence (AAAI 2015).
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then the sites-game would have ’none invest’ as the only outcome, because
of Assumption 2 in Chapter 4.2. In the below, we will continue to study the
computational question of computing (approximate) MSNE in IDD games
under the model assumptions as specified and discussed in Chapter 4.2.

Our goal here is to show that there is an instance of IDD games, and an
attacker’s strategy in that instance, such that should we fix that attacker’s
strategy, we cannot compute all of the MSNE efficiently in the underlying
sites-game, unless P = NP . The implication is that the existence of an
efficient algorithm to compute an MSNE of IDD games based on the iterative
process just described, of checking whether each attacker’s strategy can be
part of an MSNE, would be unlikely.

To formally prove that we cannot always compute all of the MSNE in an
instance of the sites-games, as induced by an IDD game and an attacker’s
strategy, efficiently, we consider the Pure-Nash-Extension problem [Kearns
and Ortiz, 2004] for binary-action n-player games, which is NP-complete.
Recall that the problem takes a description of the game and a partial as-
signment a ∈ {0, 1, ∗}n as input. We want to determine whether there is
a complete assignment b ∈ {0, 1, ∗}n consistent with a. Note that proving
that computing an MSNE in IDD games is PPAD-complete would be more
appropriate, since there is always an MSNE, but we will leave this for future
work.

Theorem 13. Consider a variant of IDD games in which
∑n

i=1 Ri/p̂i ≤ 1.
There is an attacker’s strategy y such that if we fix y, then the Pure-Nash
Extension problem for the induced n-player sites-game is NP-complete.

Proof. First, we construct a graph structure and set the values of the pa-
rameters to define the IDD game based on an NP-complete problem. Next,
we show that if y exists, then the induced sites-game solves the NP-complete
problem. Finally, we show that such a y exists.

We first define the notations that will be used in the proof. In particular,
we consider the problem of determining whether there is a PSNE in the
sites-games while fixing some strategies of some players. More specifically,
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we denote the instances with PSNE as

sites-game = { ([n], (Ci)i∈[n], (αi)i∈[n], (Li)i∈[n], (p̂i)i∈[n], (q̂ji)j,i∈[n],i 6=j,

(ai)i∈S ⊆ {0, 1}|S|, (yi)ni=0 ⊆ [0, 1]n) : there exists a PSNE in

G with the players in S play according to (ai)i∈S

and the attacker plays (yi)
n
i=0 such that

n∑
i=0

yi = 1 }.

We will reduce our problem from Monotone 1 in 3-SAT where each clause
of the 3-SAT has exactly three variables and consists of (un-negated) vari-
ables. We use the term variable(s) by default for un-negated variable(s),
unless stated otherwise. The solution to the Monotone 1 in 3-SAT is to find
a satisfiable assignment such that exactly one variable is true in each clause.
The Monotone 1 in 3-SAT is known to be NP-complete [Garey and Johnson,
1979]. We denote the instances with satisfiable solutions as

M 1 in 3-SAT = { ((xi)i∈[m],∧ci=1Ci, Ci = (∨3
j=1xij)) : there exists a

satisfiable assignment with exactly one

variable true in each clause },

where there are m variables, c clauses, and each clause has three (un-negated)
variables. A satisfiable assignment is defined to be an assignment of all
variables i to zero or one, xi ∈ {0, 1}, such that the boolean formula ∧ci=1Ci
is true or satisfied (i.e., each clause Ci is true or satisfied and has exactly one
variable true).

Below, given an instance of Monotone 1 in 3-SAT

γ =
(
(xi)i∈[m],∧ci=1Ci, Ci = (∨3

j=1xij)
)
,

we are going to construct an instance of sites-games with partial assignments

β =([n], (Ci)i∈[n], (αi)i∈[n], (Li)i∈[n], (p̂i)i∈[n], (q̂ji)j,i∈[n],i 6=j,

(ai)i∈S ⊆ {0, 1}|S|, (yi)ni=0 ⊆ [0, 1]n such that
n∑
i=0

yi = 1),

that correspond to γ.

• There are n = 2c+m players: two players for each clause and a player
for each variable. The clause players and the variable players are in-
dexed from 1 to 2c and 2c+ 1 to 2c+m, respectively.
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• First, we find 1 > L′′ > C ′′ > 0 and 1 > p̂′′ > C′′

L′′
such that 0 <

C′′

L′′p̂′′
< 1. Next, we find q̂ ∈ [0, 1] such that 0 < q̂ < min{L′′p̂′′

3C′′
, 1}.

For completeness, we find 1 > α′′ > 0. For each variable player i ∈
{2c + 1, ..., 2c + m}, let Ci = C ′′, αi = α′′, Li = L′, p̂i = p̂′′, and
yi = Ci

Lip̂i
.

The variable players are indifferent from playing the action invest or
not invest.

• Next, using the values of the parameters defined above, we find 0 <
C < L < 1, 1 > p̂ > C

L
> 0, 0 < y < C

Lp̂
, and 1 > α > 0 such that

3C′′q̂
L′′p̂′′

> 1
1−α

(
C
L
− yp̂

)
> 2C′′q̂

L′′p̂′′
. Indeed, such value is alway possible as

we can make α and y to be arbitrarily small so that 1
1−α

(
C
L
− yp̂

)
≈ C

L
.

For each clause player i ∈ [c] such that Ci = (∨3
j=1xij), q(ij+2c)i = q̂ for

all j. To set the remaining parameters, for each clause player i ∈ [c],
set Ci = C, Li = L, αi = α, pi = p, and yi = y.

• Then, using the same values of the parameters defined for the variable
players, we find 0 < C ′ < L′ < 1, 1 > p̂′ > C′

L′
> 0, 0 < y′ < C′

L′p̂′
, and

1 > α′ > 0 such that 2C′′q̂
L′′p̂′′

> 1
1−α′

(
C′

L′
− y′p̂′

)
> C′′q̂

L′′p̂′′
.

For each clause player i ∈ {c+1, ..., 2c} such that Ci−c =
(
∨3
j=1x(i−c)j

)
,

q((c−i)j+2c)i = q for all j. To set the remaining parameters, for each

clause player i ∈ {c + 1, ..., 2c}, set Ci = C ′, Li = L′, αi = α′, pi = p′,
and yi = y′.

• Here, we construct a partial action profile for some of the players. In
particular, for each clause player i ∈ [c], ai = 0 and ai+c = 1. Thus, we
are giving a partial action profile of all clause players. For completness,
let y0 = 1−

∑n
i=1 yi.

Lemma 14. γ ∈ M 1 in 3-SAT =⇒ β ∈ sites-game.

Proof. Given a satisfiable assignment for γ, we show how to construct a PSNE
for β. Let x(1) = {i ∈ [m] : xi = 1} be the indices of the variables that are
assigned a value of one in the satisfiable assignment. For consistence, we let
ai to denote the action of any player i ∈ [n] and construct a PSNE as follows.
For each of the variable player i ∈ {2c+1, ..., 2c+m}, ai = 1 if (i−2c) ∈ x(1)
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and ai = 0 otherwise. Together with the partial action profile of the clauses,
we will call this constructed pure-strategy profile a = (a1, ..., an).

To show that a is a PSNE, we argue that each player is playing its best-
response. First, we consider the clause players. Recall that best-response
correspondence of a clause player i ∈ [c] is

BRi(xPa(i), yPF(i)) ≡


{1}, if ŝi(xPa(i), yPF(i)) > ∆̂i,

{0}, if ŝi(xPa(i), yPF(i)) < ∆̂i,

[0, 1], if ŝi(xPa(i), yPF(i)) = ∆̂i.

where ∆̂i ≡ Ci
Lip̂i

, ŝi(xPa(i), yPF(i)) ≡ yi + 1−αi
p̂i
ri(xPa(i), yPa(i)). Notice that, to

determine the best-response strategy of player i, without loss of generality, we

can also compare the values of 1
1−αi

(
Ci
Li
− yip̂i

)
and ri(xPa(i), yPa(i)). By our

construction, Pa(i) = {i1, i2, i3} (which corresponds to variables xi1 , xi2 , xi3
of clause i) and ri(xPa(i), yPa(i)) =

∑
j∈Pa(i)

C′′

L′′p̂
(1− xj)q̂.

Moreover, by the satisfiable assignment, exactly one variable in Pa(i) is
assigned to a value of one which corresponds to exactly one variable player
that plays action one. Therefore, ri(xPa(i), yPa(i)) = 2C′′q̂

L′′p̂
. By our construc-

tion, 3C′′q̂
L′′p̂′′

> 1
1−αi

(
Ci
Li
− yip̂i

)
> 2C′′q̂

L′′p̂′′
. It follows that ri(xPa(i), yPa(i)) <

1
1−αi

(
Ci
Li
− yip̂i

)
, and the i’s best-response is zero. This holds for all clause

players i ∈ [c]. On the other hand, for the clause player i ∈ {c + 1, ..., 2c},
ri(xPa(i), yPa(i)) = 2C′′q̂

L′′p̂
as well. By our construction, 2C′′q̂

L′′p̂′′
> 1

1−αi

(
Ci
Li
− yip̂i

)
>

C′′q̂
L′′p̂′′

, it follows that 1
1−αi

(
Ci
Li
− yip̂i

)
< ri(xPa(i), yPa(i)) and ai = 1 is the best-

response.
For each variable player i ∈ {2c + 1, ..., 2c + m}, i has no parent and

i’s overall risk is 0. To determine whether i plays the action invest or not
invest, we only need to compare the value of Ci

Li
and yip̂i. By construction,

Ci
Lip̂i

= yi for all variable players i, we have that the variable players are
indifferent between playing one and zero. Hence, the pure-strategy profile a
is a PSNE.

Lemma 15. β ∈ sites-game =⇒ γ ∈ M 1 in 3-SAT .

Proof. Now we show how to construct a satisfiable assignment for γ given a
PSNE of β. Let a = (a1, ..., an) be a PSNE of β. For each variable i ∈ [m], if
a2m+i = 1 then xi = 1 and if a2m+i = 0 then xi = 0. To show that each clause,
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say i ∈ [c], has exactly one variable that is true, we observe the best-response
of clause players i and c + i that correspond to clause i. Given the fixed
action of ai = 0 and ac+i = 1 at a PSNE, it implies that ri(xPa(i), yPa(i)) <

1
1−αi

(
Ci
Li
− yip̂i

)
and rc+i(xPa(c+i), yPa(c+i)) >

1
1−αc+i

(
Cc+i
Lc+i
− yc+ip̂c+i

)
. Since

3C′′q̂
L′′p̂′′

> 1
1−αi

(
Ci
Li
− yip̂i

)
> 2C′′q̂

L′′p̂′′
, 2C′′q̂
L′′p̂′′

> 1
1−αc+i

(
Cc+i
Lc+i
− yc+ip̂c+i

)
> C′′q̂

L′′p̂′′
,

Pa(c + i) = Pa(i), |Pa(i)| = 3, and the transfer risks are the same, we
have sc+i(aPa(c+i)) = 2C′′q̂

L′′p̂′′
. This implies that exactly one of the variables is

true.

It is easy to see that given a (partial) pure-strategy profile, we can verify
whether it is a PSNE of a sites-game in polynomial time. This fact, together
with Lemma 14 and Lemma 15, we have our hardness result.

Worst case, we need to consider the y just described, should other strate-
gies fail to be a part of any MSNE. Another challenge is that even if we
can compute all exact MSNE, there could be exponentially many of them to
check. In the next section, we look for efficient algorithms to compute an
approximate MSNE in various graph structures.

5.2 FPTAS to Compute ε-MSNE of Tree-like

IDD Games

In this section, we compute ε-MSNE in a subclass of IDD games. In par-
ticular, we study different graph structures among the sites. We note that
the attacker is connected to all of the sites even if we do not point it out
explicitly.

We have been using the notion of ε-MSNE in the pervious chapter without
formally defined it. Below, we provide a more formal definition.

Definition 15. A mixed-strategy (x∗, y∗) is an ε-MSNE of an IDD game if
(1) for all i ∈ [n], Mi(x

∗
i , x
∗
Pa(i), y

∗
i , y
∗
Pa(i)) ≤ minxiMi(xi, x

∗
Pa(i), y

∗
i , y
∗
Pa(i)) + ε,

and (2) U(x∗, y∗) ≥ maxy U(x∗, y)− ε.

An exact MSNE ≡ 0-MSNE. Moreover, we assume that all the cost and
utility functions are individually normalized to [0, 1] and ε ∈ [0, 1]; otherwise
ε is not well-defined.
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We will start off simple by considering a directed star (DS) graph struc-
ture. We show that there is a fully polynomial-time approximation scheme
(FPTAS) to compute an ε-MSNE in DS-IDD games. Roughly speaking, an
FPTAS’s running time is some polynomial of the input and 1

ε
for 1 < ε < 1

[Vazirani, 2001]. Then we generalize the result to directed trees (DT). De-
spite the simplicity of the graphs, one can envision very important real-world
applications such as protection of supply chains and other hierarchical struc-
tures (e.g. see Agiwal and Mohtadi [2008]).

5.2.1 Directed Stars

Let the source node correspond to player n, and the remaining n − 1 sink
nodes correspond to players’ 1, . . . , n−1. The directed star (DS) is equivalent
to a directed tree with a single root at n with n − 1 leaves and no internal
nodes.

Since the domain of the variables (i.e., mixed strategies) is [0, 1], a direct
optimization method to compute an MSNE would require solving a highly
non-linear optimization problem: cubic objective function for the attacker
with quartic constraints for the sites. An alternative is to discretize the
continuous space of the xi’s and yi’s.

Let X ≡ X (∆x) ≡ {0, τx, 2τx, . . . , (∆x − 1)τx, 1} and Y ≡ Y(∆y) ≡
{0, τy, 2τy, . . . , (∆y − 1)τy, 1} be the respective discretization of the interval
[0, 1] for the sites and the attacker, where τx ≡ 1

∆x
and τy ≡ 1

∆y
are the re-

spective discretization sizes, and ∆x and ∆y are the respective discretization
lengths. The discretization defines the domains of xi and yi to be X and
Y , respectively. Moreover, |X | = ∆x and |Y| = ∆y. Of course, there is an
extra constraint for the yi’s in Y :

∑n
i=1 yi ≤ 1 for y ∈ Yn. We will determine

the values of ∆x and ∆y to guarantee an ε-MSNE later in the section, but
for now, assume they are given. A simple brute-force algorithm to compute
an ε-MSNE is to check all possible discrete combinations and would take,

O
(

( 1
∆x

1
∆y

)n
)

time, to run in the worst case.

Indeed, we can apply the principle of dynamic programming [Bellman,
2003] and design an efficient algorithm to compute ε-MSNE that is provably
an FPTAS. The key idea is to realize that given a strategy (xn, yn) of the
root n, the leaves’ decisions are independent of each other. However, there is
a sum less than or equal to one constraint for the attacker (i.e.,

∑n
i=1 yi ≤ 1).

Indeed, for each possible combination of (xn, yn), we can run a dynamic
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programming algorithm (to be presented later) based on some ordering of the
nodes and obtain a (best) value for each (xn, yn). Clearly, the best (x∗n, y

∗
n)

that obtains the maximum value among all other (xn, yn)’s is the best possible
strategy for the attacker. This guarantees that the attacker would not deviate
to a different strategy. Moreover, the dynamic programming algorithm would
produce solutions that ensure the leave players are best-responding. More
formally, we define the following mathematical expressions for the dynamic
programming algorithm. This will give us an FPTAS for DS-IDD games.

Upstream pass: Collection of conditional ε-MSNE computation.
First, we impose an ordering on the leaves, that is, we order the leaves in
increasing order. Let M i(xi, yi, xn, yn) ≡Mi(xi, yi, xn, yn)−xiCi−yiC0

i be the
attacker’s utility for attacking i. For each leaf i = 1, . . . , n− 1, we compute
the set of individual conditional tables (in this order),

T i,n(xn, yn, vi, xi, yi, vi−1) ≡
M i(xi, yi, xn, yn)+

log (1[vi = yi + vi−1]) +

log
(
1
[
xi ∈ BRε

xi
(yi, xn, yn)

])
+

Ti−1,n(xn, yn, vi−1)

Ti,n(xn, yn, vi) ≡ max
(xi,yi,vi−1)

T i,n(xn, yn, vi, xi, yi, vi−1)

Wi,n(xn, yn, vi) ≡ arg max
(xi,yi,vi−1)

T i,n(xn, yn, vi, xi, yi, vi−1)

where T0,n(xn, yn, s0) = 0 for all (xn, yn, si0). Each Ti,n specifies the maximum
possible utility an attacker can get by attacking all the leaves up to i given
that the attacker will attack the root n with probability yn, the root n to
invest with probability xn, and the allowable remaining probability of an
attack vi. The first and the second log-terms are to ensure that the overall
probability of attack does not exceed the allowable limit and player i is
playing best-respond strategies, respectively. This is similar to the DL case.
Computing each “table of sets” T ’s and W ’s, given above, all take O(∆2

x∆
4
y)
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each. For n, the root of the tree, we compute

R0(s0, xn, yn, sn) ≡Mn(xn, yn)+

log (1[s0 = sn + yn])+

log (1[xn ∈ BRε
n(yn)])+

Rn(xn, yn, sn)

R0(s0) ≡ max
(xn,yn,sn)

R0(s0, xn, yn, sn)

W0(s0) ≡ arg max
(xn,yn,sn)

R0(s0, xn, yn, sn)

Clearly, computing R0 and W0 takes O(∆x∆
3
y). As mentioned earlier, for

each combination of (xn, yn), we are going to compute the best value an
attacker can obtain. The computation of R0 does exactly this.

Downstream pass: Assignment phase. The assignment phase is essen-
tially the backtracking phrase in the dynamic programming algorithm where
we follow the “back pointers” to find the mixed-strategies for the players and
the attacker. For the “downstream” or assignment pass, we are going to start
with the root and find s∗0 ∈ arg maxs0 R0(s0). Because of the discretization
result of Theorem 14, there always exists an ε-MSNE, and thus, there is a
s∗0 such that R0(s∗0) < −∞. We set the mixed-strategy of the root to be
some (x∗n, y

∗
n, s
∗
n) ∈ W0(s∗0). Starting from the opposite order of upstream

pass (i.e., n− 1, ..., 1), we set the mixed-strategies of the leaves according to
v∗n−1 ← s∗n, and for i = n− 1, . . . , 1,

(x∗i , y
∗
i , s
∗
i , v
∗
i−1) ∈ Wi(x

∗
n, y

∗
n, v

∗
i ) .

By construction the resulting (x∗, y∗) is an ε-MSNE of the DS-IDD game.
The key to show that this dynamic-programming algorithm produces an

ε-MSNE for the DS-IDD games is the discretization sizes. The question
is, how small can we make ∆x and ∆y and still guarantee an ε-MSNE in
the discretized space? A more general result about sparse discretization for
graphical games [Ortiz, 2014] provides the answer. Below, we formally state
the result of Ortiz [2014] for graphical games.

93



Theorem 14. [Ortiz, 2014] For anym-action graphical game and any ε > 0,
a (individually-uniform) discretization with [discretization size]

si =

⌈
2|Ai|maxj∈Pa(i)∪Ch(i) |Pa(j) ∪ Ch(j)|

ε

⌉
for each player i is sufficient to guarantee that for every true (i.e., not approx-
imate) MSNE of the game, its closest mixed-strategy profile in the induced
discretized space is also an ε-MSNE of the game.

In other words, to get an ε-MSNE, we need to set the discretization sizes
as specified above for each player in the game.

Lemma 16. Let ∆x = O(4n
ε

) and ∆y = O(2n2

ε
). There is a dynamic-

programming algorithm that computes an ε-MSNE of DL-IDD games in time
O(n(∆x∆

2
y)

2) = O(n
11

ε6
).

Proof. From Theorem 14, we need to set the appropriate discretization sizes
for the sites and the attacker. For each site i, |Ai| = 2 because i has only
two actions, and maxj∈Pa(i)∪Ch(i) |Pa(j) ∪ Ch(j)| = n because the attacker is
connected to all of the sites. Thus, we have ∆x = O(4n

ε
). There are n + 1

actions for the attacker (including no attack). Since the attacker has the
root node n as a neighbor, |Pa(n) ∪ Ch(n)| = n. Therefore, ∆y = O(2n2

ε
).

Moreover, the dynamic-programming has size at most O(∆2
x∆

4) and takes
at most O(n(∆x∆

2
y)

2) to run. A simply substitution gives us the claimed
running times.

Our next corollary follows from the above lemma and the definition of
FPTAS.

Corollary 2. There is an FPTAS to compute an ε-MSNE in DS-IDD games.

5.2.2 Directed Trees

We now generalize the last result even further to arbitrary DT-IDD games,
yielding one of our main technical results.

Theorem 15. Let ∆x = O(4n
ε

) and ∆y = O(2n2

ε
). There is a dynamic-

programming algorithm that computes an ε-MSNE of DL-IDD games in time
O(n(∆x∆

2
y)

2) = O(n
11

ε6
).
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Proof. Let n denote a site/node in the directed tree with a single source
(i.e., the root of the tree). Let (i1, . . . , ikn) be a sequence ordering the set of
children of n, Ch(n) ≡ {i1, . . . , ikn}, where kn ≡ |Ch(n)|. The following con-
ditions expresses the dynamic programming corresponding to the “upstream
pass” of the algorithm. For all n, except the root of the directed tree, we
(recursively) define

Rn(xn, yn, sn) ≡Tikn ,n(xn, yn, sn)

such that, for all j = 1, . . . , kn, we define

Tij ,n(xn, yn, vij) ≡ max
(xij ,yij ,sij ,vij−1

)
M ij(xij , yij , xn, yn)

+ log
(
1
[
vij = sij + yij + vij−1

])
+ log

(
1

[
xij ∈ BRε

xij
(yij , xn, yn)

])
+Rij(xij , yij , sij)

+ Tij−1,n(xn, yn, vij−1
) ,

Wij ,n(xn, yn, vij) is the arg max of the same optimization (i.e., the set of
“witnesses” containing the values of (xij , yij , sij , vij−1) that achieve the max-
imum values of the optimization given each (xn, yn, vij)), and, to simplify the
presentation, we use the boundary conditions (1) Ti0,n(xn, yn, si0) = 0 for all
(xn, yn, si0); and (2) if ij is a leaf of the tree, then Rij(xij , yij , sij) = 0 for all
(xij , yij , sij). If n is the root of the tree, we compute

R0(s0) ≡ max
(xn,yn,sn)

Mn(xn, yn)

+ log (1[s0 = sn + yn])

+ log (1[xn ∈ BRε
n(yn)])

+Rn(xn, yn, sn) , and

W0(s0) is the arg max of the same optimization (i.e., the set of “witnesses”
containing the values of (xn, yn, sn) that achieve the maximum values of the
optimization given each s0 in the discretized grid of probability values in
[0, 1]).

For the “downstream” or assignment pass, first find s∗0 ∈ arg maxs0 R0(s0).
Note that such s∗0 with R0(s∗0) < −∞ because of the properties of the dis-
cretization and the existence of MSNE. Set the values of the root node, de-
noted by n, to some (x∗n, y

∗
n, s
∗
n) ∈ W0(s∗0). Then (recursively) set the values
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of the children of n, in the reversed order in which the the dynamic program
computes the maximizations: set v∗ikn ← s∗n, and for j = kn, . . . , 1.

(x∗ij , y
∗
ij
, s∗ij , v

∗
ij−1

) ∈ Wij(x
∗
n, y

∗
n, v

∗
ij

) .

We repeat the same assignment process for all of the nodes in the tree. Recall
that there will always be at least one witness value during the assignment
phase because of the properties of the discretization and the existence of
MSNE. By construction (i.e., the properties of dynamic programming and
the discretization of Theorem 14), the resulting (x∗, y∗) is an ε-MSNE of the
DT-IDD game. The running time would be O(n∆2

x∆
4
y). Our result follows

by applying the same analysis of Lemma 16.

Corollary 3. There is an FPTAS to compute an ε-MSNE in DT-IDD games.

Note that our results are nontrivial within the context of the state-of-
the-art in computational game theory. We are working a graph structure
where there is one node (the attacker) connecting to all the nodes of the
tree (the sites). Naively applying the traditional well-known dynamic pro-
gramming algorithms by Kearns et al. [2001] and Elkind et al. [2006] to our
problem would not give us any FPTAS. In fact, their game representation
size is exponential in the number of neighbors instead of our linear represen-
tation size. Moreover, finding ε-MSNE in general degree-3 graphical games is
PPAD-hard Elkind et al. [2006]. Our IDD games have more than 3 degrees.
In fact, because the attacker is connected to all the nodes in the network, as
a graphical game with normal-form representation of the local payoff matri-
ces, the graph of the IDD games is completely connected (i.e., the attacker’s
mixed strategy imposes a global constraint). But the local payoff functions
in our case are compactly representable in parametric form. Still, we provide
an FPTAS to compute ε-MSNE in interesting subclasses of IDD games.

5.3 A Heuristic to Compute ε-MSNE

In this section, we introduce a heuristic to compute ε-MSNE on arbitrary
graphs. Previously, we show that showed that best-response-gradient dynam-
ics (BRGD) [Fudenberg and Levine, 1998, Nisan et al., 2007, Shoham and
Leyton-Brown, 2009] can efficiently solve Internet games (IGs), and can out-
put ε-MSNE up to ε = 0.001. Recall that BRGD begins by initializing xi
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and yi in [0, 1] for all sites i such that
∑n

i=1 yi ≤ 1. At each round, BRGD
update xi ← xi − 10 ∗ (Mi(1, yi, xPa(i), yPa(i)) − Mi(0, yi, xPa(i), yPa(i)) and
yi ← yi + 10 ∗ (Ui(x)−U(x, y)), where the Mi’s and U functions are normal-
ized to [0, 1] and we use 10 as the learning-rate/step-size in our case. Here,
we evaluate our heuristic using IGs randomly generated according above.

First we look at the attacker’s behavior at an ε-MSNE. We generate
a few IG instances and run BRGD until it converges to an ε-MSNE for
ε ∈ {0.001, 0.002, . . . , 0.009}. We observe that in a 0.001-MSNE, (1) there
is a positive, almost-deterministic correlation between the probability of an
attack and the utility the attacker obtained from attacking the sites and
(2) the attacker always target the sites with the highest potential utility
(i.e., the maximum utility the attacker can get by attacking the sites with
probability 1). This observation is consistent with other IGs and holds across
the different ε-MSNE for various ε values. Figure 5.1 shows evidence of this
behavior. Indeed, the main take away is that the attacker tends to favor (or
target) sites with highest expected utility. As observed, the attack seems to
have some distributional form.

In what follows, we assume that the attacker is using smoothed-best-
response [Fudenberg and Levine, 1998] and the attack distribution has the
form of a Gibbs-Boltzmann distribution. Although what follows is a rela-
tively standard derivation and relatively common across many communities
by now, we still provide the derivation for completeness.

Let (Shannon’s) entropy function be

H(y) ≡
n∑
i=0

yi ln
1

yi

s.t.
n∑
i=0

yi = 1

where y0 denotes the probability of no attack, y0 = 1 −
∑n

i=1 yi. As before
we assume that U is normalized to [0, 1]. Given x ∈ [0, 1]n, we can com-
pute y such that it maximizes the attacker’s utility by solving the following
maximization:

max
y≥0

U(x, y) + cH(y)

s.t.
n∑
i=0

yi = 1
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for some real-valued constant c > 0. As is standard for this type of problems,
the corresponding Lagrangian function and its first partial derivative with
respect to yi are

L(y, λ) ≡ U(x, y) + cH(y) + λ

(
1−

n∑
i=0

yi

)
and

∂L(y, λ)

∂yi
= Ui(x)− c(ln yi + 1)− λ .

Solving for yi, we have yi = exp(Ui(x)−λ−c
c

) ∝ exp(Ui(x)
c

). Hence the optimal
y∗ is unique and its individual components

y∗i ≡
exp(Ui(xi, xCh(i)))/c)∑n
i=0 exp(Ui(xi, xCh(i))/c)

.

The interpretation of c is that it controls the precision of the attacker and
make the utility more distinct. The parameter c is really the precision or
temperature parameter of the Gibbs-Boltzmann distribution: increasing c
leads to the uniform distribution, while decreasing c produces ε-MSNE with
lower ε because c restricts the effect of the entropic term in that case. In fact,
at temperature c = 0, we recover the original best-response for the attacker.

This form for the attacker’s mixed strategy y has several attractive prop-
erties: (1) sites with high utility will have higher probability of an attack and
(2) the respective expected utility and the probability of an attack are posi-
tively correlated (higher probability of attack implies higher expected utility
gain). We observe these characteristics in our experiments (Figure 5.1).

Based on the previous discussion, we propose the following heuristic to
compute ε-MSNE. The heuristic starts by initializing all of the sites invest-
ment level xi to 0. It then updates the probability of attack for each site
and increments the investment level of the site by a small amount (cur-
rently 0.001) for sites that do not satisfy the following condition: Ri ≥
yip̂i + (1 − αi)

∑
j∈Pa(i) yj(1 − xj)q̂ji. The algorithm terminates either when

all of the sites satisfy the condition or when it reaches the maximum number
of iterations. The condition, Ri ≥ yip̂i + (1 − αi)

∑
j∈Pa(i) yj(1 − xj)q̂ji, for

site i is the threshold for i to not invest. A nice property of this is that
given the attacker’s Gibbs-Boltzmann distribution, for any site i, given the
strategies of others, the attack decreases monotonically with xi. As a result,
no site has an incentive to increase its investment to violate the constraint
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Figure 5.1: Attack Distribution of Internet Game.

above. Consequently, to justify the use of the condition in our heuristic in
IGs, we observe that in all of the IGs we generated, the percentage of the
sites at the 0.001-MSNE we obtained that satisfies the above condition is
≥ 98%. The quality of an ε-MSNE obtained by our heuristic depends on the
percentage of the sites that satisfy the condition at an ε-MSNE. Note that
if a high percentage of the sites do not satisfy the condition at the ε-MSNE,
we can reverse the heuristic by initializing all of the sites investment level xi
to 1 and lower the xi’s until all sites satisfy the opposite constraint.

Algorithm 8 provides pseudocode for the resulting attacker-smoothed-
best-response heuristic to compute an approximate MSNE in arbitrary IDD
games as discussed.

5.3.1 Evaluation of Heuristic on Internet Games

To evaluate our heuristic, we randomly generated ten IGs and compare the
results to those obtained using BRGD.

The first question we address is, what is the relation between the constant
c and the actual approximation quality ε achieved in practice? Table 5.1
shows the impact c has on ε, for the smallest ε-MSNE we can obtain for an
instance of the IGs (others are similar). Take-home message: ε deceases with
c as expected. For the remaining of this section, we will fix c = 0.001 when
comparing to BRGD as BRGD cannot find ε-MSNE beyond 0.0009-MSNE
within 10,000 iterations (1 sec. per iteration).
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Algorithm 8: Compute an ε-MSNE in IDD Games

Input : An instance of an n-player IDD game, Tmax

Output: (x,y) - An ε-MSNE
1 Let xi ← 0 for all i = 1, 2, ..., n
2 Let iteration ← 0
3 Let increment ← 0.001
4 Let Converge ← false
5 while not Converge AND iteration < Tmax do
6 Converge = true

7 ȳi ← exp(Ui(x)
c

) for all i = 1, 2, ..., n
8 yi = ȳi∑n

i=0 ȳi
for all i = 1, 2, ..., n

9 foreach i = 1, 2, ...n do
10 if Ri < yip̂i + (1− αi)ri(xPa(i),yPa(i)) then
11 xi = xi+ increment (if xi > 1, xi = 0)
12 Converge = false

13 end if

14 end foreach
15 iteration = iteration + 1

16 end while

c smallest ε
0.05 0.06
0.01 0.008
0.005 0.004
0.001 0.0009
0.0005 0.0006
0.0001 0.0004

Table 5.1: Selection of the constant c for our heuristic.
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Figure 5.2: Properties of our heuristic.(a) BRGD vs. our heuristic run-
ning time; (b) Attacker’s attack and sites’ investment distribution on ε-MSNE

Figure 5.3: Combing BRGD and our heuristic Internet Games: BRGD
Improvement (y-axis represents the ε values)

Comparing Running Time of BRGD and Our Proposed Heuristic

Next we study the time that the ten IG instances took to converge to an
ε-MSNE using BRGD and our heuristic. We consider the running time in
terms of the number of iterations the algorithm takes to achieve a particular
ε-MSNE. Each iteration is roughly 1 sec. for both BRGD and our heuristic.
Figure 5.2(a) shows that the running time of our heuristic is considerably
faster than BRGD. The rate at which the number of iterations increases as
ε decreases seems extreme for our heuristic—it is almost constant!—relative
to that for BRGD. Not only is our heuristic faster than BRGD but it can
also find ε-MSNE with smaller ε.

As an application, we could run our heuristic until it reaches an ε-MSNE
or converges. Then use the output of our ε-MSNE to initialize BRGD. Fig-
ure 5.3 shows the relative improvement over our heuristic on some IGs. It
improves our 0.001/0.0009-MSNE to 0.0006-MSNE.
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Figure 5.4: Degrees of the targeted nodes at ε-MSNE Internet Games:
average indegree (top) and average outdegree (bottom) of the targeted sites
over ε-MSNE

Attacker and Sites’ Equilibrium Behavior

We study whether the same equilibrium behavior by the attacker and sites in
our earlier section. continues as we lower ε. The following results are a direct
output of our heuristic. Figure 5.2(b) shows the attack distribution (left) and
the investment distribution (right) at ε-MSNE, for different ε values, on an IG
instance. Our results are consistent with those of earlier section and persist
for lower ε values. We see that as ε decreases, the attacker targets more sites
while lowering the probability of the direct attack, and more sites move from
not invest to partially invest.

Network Structure of an Attack

Next, we present experimental results on the average indegree and outdegree
of the targeted sites at ε-MSNE to understand the “network structure of the
attack” as in earlier section. Figure 5.4 shows exactly this. To summarize
our experimental results, we can clearly observe that as ε decreases both the
average indegree and outdegree increase. The results for lower ε values indi-
cate the average indegree and outdegree are stabilizing and converging as ε
decreases. This is also consistent with the observations made by earlier sec-
tion. This consistency also adds evidence to the effectiveness of our proposed
heuristic for very low ε values.
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5.4 Conclusion

We study the problem of computing an ε-MSNE in IDD games. We show
that determining whether an attacker’s strategy can be a part of a MSNE
is unlikely to have an efficient algorithm. However, there is an FPTAS to
compute an ε-MSNE when the underlying game-graph is a DT. For general
IDD games, we construct a heuristic that computes ε-MSNE in IGs effectively
and efficiently. An open problem is to show that computing an MSNE in IDD
games is PPAD-hard. Another open problem is to generalize the FPTAS for
DT to directed acyclic graphs of bounded-width of some kind.
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Chapter 6

Learning Game Parameters
from MSNE: An Application to
Learning the Generalized IDS
Games

6.1 Introduction

A survey is an important tool for eliciting information from agents in large
populations. Many government agencies such as the Centers for Disease
Control and Prevention (CDC) in the United States sample some subsets of
the population, and elicit information from them via a survey or a question-
naire. For example, the CDC can ask an agent, “Did you take the H1N1
vaccine this month?”

We are particularly interested in this type of question because it reveals
the action an agent took previously. Indeed, if we believe that the agents are
rational, self-interested, and their decisions affect the decisions of others, then
we can attempt to learn and infer a game in which the actions the agents took
are the “best-responses” of all other agents, and no agent would benefit from
unilaterally deviating from their current action (i.e., from taking a vaccine to
not taking a vaccine, or vice versa). These actions (collectively) are known as
pure-strategy Nash Equilibrium (PSNE) and we will define it more formally
later. However, quite often, we do not get to see the completed survey of each
individual in the population. This is, perhaps, due to the large amount of
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data and information: it is impossible to keep track of all the details. Instead,
what we typically can publicly obtain is some compact representation of the
data that summarizes or aggregates the information collected.

More concretely, using the CDC vaccination data as our running exam-
ple, we can observe the monthly state vaccination percentages (along with
standard deviations) for different age groups, race groups, and types of vac-
cinations. These vaccination percentages represent the average behavior of
the people in the USA. Indeed, if we view each state as an agent, we can in-
terpret each vaccination rate at each state in the USA as the probability, or,
using game-theory parlance, the “mixed-strategy”, that the corresponding
“state agent” vaccinates against a particular disease. (Please keep in mind
that the state agent’s mixed-strategy really corresponds to the percentage
of people in that state that would decide to vaccinate against that partic-
ular disease.) Moreover, if we further consider the fact that the behaviors
(vaccination rates) of the state agents affect the vaccination rates of oth-
ers, then we can model the vaccination scenario, at the level of states, as
a game. In particular, agents are the states in the USA, actions are either
to vaccinate or not vaccinate, and the payoff of each state is some function
that roughly capture the average preferences or utilities of all the individu-
als in the population of that state. We assume that the payoff function is
implicit in the behavioral data and that we can learn it or infer it by try-
ing to “rationalize” each state’s behavior in the given dataset of vaccination
rates. Said differently, here, we do not know the exact game the agents are
playing and hence we do not know their payoffs. However, we have data that
potentially specify the mixed-strategies of the agents. Some may correspond
to an (equilibrium) outcome of the game. Therefore, using the vaccination
rates as mixed-strategies, we can learn a game that could partially capture
some of these mixed-strategies as outcomes, or, as we view it, mixed-strategy
Nash equilibria (MSNE) of the game. In addition, we do expect some of
these mixed-strategies to be noisy. Therefore, we assume that some of these
mixed-strategies may be approximate or ε-MSNE of the games and try to
find ε as small as possible to capture the variations.

In this work, not only we introduce a general machine learning (genera-
tive) framework to learn any arbitrary game given the data, we also provide
a way to learn a class of generalized interdependent security (α-IDS) games.
The α-IDS games are introduced in Chapter 3 and we will be using α-IDS
games to model vaccination decisions of the players.

We now describe the way we use the CDC data, and delay the details
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about our learning framework and the mechanisms we derive to learn α-IDS
games. Using the 2009-2010 states H1N1 vaccination percentages and their
standard deviations, we generate (up to) 5,000 (mixed-strategy) examples
according to normal distributions with means and standard deviations of
the states. Each example represents a single mixed-strategy profile of the
48-state in the continental USA (i.e., excluding Alaska and Hawaii). Given
these examples, we aim to learn an α-IDS game that would best explain the
generated data.

Our main interest for learning games is the ability they provide to poten-
tially interpret what would happen at an MSNE, even when the given data
may not be an exact MSNE, or be noisy. The mixed-strategies of the state
agents in our data may not correspond to the optimal equilibrium strategies.
Therefore, we may want to infer, for example, the (real) behavior at the level
of states at (either exact or near) equilibrium from noisy data, in which not
all examples may belong to the set of approximate MSNE of some game.

Thus, given the learned games, we can run a version of some learning-
heuristics/regret-minimization [Fudenberg and Levine, 1998], in which we use
the average vaccination rates as the initial mixed-strategy profiles to compute
ε-MSNE in these games. We expect that as ε goes to zero, we would be able
to capture the true equilibrium strategies of the state agents.

Contribution. We conclude the introduction with a summary of our
contributions. Our interest in this work is learning games from observed
mixed-strategy data. In contrast to previous work, in which the data are the
actions or pure strategies of the players [Honorio and Ortiz, 2014], we are
dealing with data that summarize the actions of all the individuals within a
state’s population using rates. In our model, we view each rate as represent-
ing the mixed strategy of each state agent.

In game-theoretic terms, we view these probabilities collectively as (ap-
proximate) MSNE. In particular, we

• propose and introduce a machine learning (generative) framework to
learn a game given the data;

• show that, under some mild conditions, maximizing the log-likelihood
of the game is equivalent to maximizing the number of (approximate)
MSNE under our framework;

• use our framework to derive a heuristic to learn α-IDS games given the
CDC vaccination data; and
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• experimentally show that our framework and learning heuristic are ef-
fective for inferring α-IDS games, and may be able to provide insight
into the behavior of state agents.

Related Work The closest work to ours is those of Honorio and Ortiz
[2014] where they provide a general machine learning framework to learn the
structure and parameters of games from discrete (e.g., “Yes/No” responses)
behavioral data. Moreover, they demonstrate their framework on learning
influence games [Irfan and Ortiz, 2014] using congressional voting data. For
the sake of completeness, all other previous methods assume that the actions
and payoffs are observable in the data [Wright and Leyton-Brown, 2010,
2012, Gao and Pfeffer, 2010, Vorobeychik et al., 2007, Ficici et al., 2008,
Duong et al., 2009, 2012] while others are interested in predicting future
behavior from the past behavior (system dynamics) [Kearns and Wortman,
2008, Ziebart et al., 2010]. We refer the reader to the related work section of
Honorio and Ortiz [2014] for a more detailed discussion.

6.2 A Framework to Learn Games from Data

Let V = {1, 2, ..., n} be a set of players. For each i ∈ V , let Ai be the set
of actions/pure-strategies available to i and ui : ×j∈VAj → R be the payoff
of i given the actions of i and other V − {i} agents. Let Xi be the set of
mixed-strategies of i, which is a simplex over Ai, and denote by ui(x) ≡
Ea∼x[ui(x)] the expectation over the probabilities xi of playing the pure-
actions. Recall from Chapter 1.2 that a mixed-strategy profile x∗ ∈ ×ni=1Xi

is a mixed-strategy Nash equilibrium (MSNE) of a non-cooperative game [von
Neumann and Morgenstern, 1944, Nash, 1950, 1951] if, for each player i,
x∗i ∈ arg maxxi∈Xi ui(xi, x

∗
−i), where x∗−i ≡ (x∗1, x

∗
2, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
n).

We denote the set of all MSNE of a game G as

NE(G) ≡ {x∗ | ∀i, x∗i ∈ arg maxxi∈Xi ui(xi, x
∗
−i)}

For the following definition, we assume that the utilities are normal-
ized between 0 and 1. Given ε > 0, a mixed-strategy profile x∗ ∈ X =
×ni=1Xi is an ε-MSNE of a non-cooperative game if, for each player i, x∗i ∈
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arg maxxi∈Xi ui(xi, x
∗
−i)− ε. We denote the set of all ε-MSNE of a game G as

NE ε(G) ≡ {x∗ | ∀i, ui(x∗i , x∗−i) ≥ ui(0, x
∗
−i)− ε and

ui(x
∗
i , x
∗
−i) ≥ ui(1, x

∗
−i)− ε} .

For the rest of the chapter, we assume that each agent has two actions
and the action set of each of the agents is either 0 or 1 (i.e., Ai = {0, 1} for
all i). As such, the mixed-strategies of the agents are in [0, 1] (i.e., Xi = [0, 1]
and with probability xi ∈ Xi, player i plays action 1).

It is easy to see that NE(G) ⊆ NE ε(G) ⊆ NE ε′(G) for all 0 < ε < ε′.
Note that an ε-MSNE might not be close to any exact MSNE.

6.2.1 A Generative Model for Behavioral Data on Joint-
mixed-strategies

We adopt a similar learning approach to that of Honorio and Ortiz [2014].
However, this time the generative model of behavioral data is over the set
of mixed-strategy profile. Hence, a probability density function (PDF) over
the n-dimensional hypercube [0, 1]n now defines the generative model. We
point out that our results are extensions analogous, but non-trivial, to those
of Honorio and Ortiz [2014] in a continuous space, as oppose to the use of a
probability mass function (PMF) over the set of pure-strategy profiles {0, 1}n,
a discrete space.

We begin by discussing the measurability of NE ε(G) of an arbitrary game
G, which is an important component of our generative model.

Measurability of NE ε(G)

Let (M,d) be a metric space where M = [0, 1]n ⊆ Rn and d : M ×M → R
is any well-defined distance function on M such that:

1. (Non-Negativity) For each x, y ∈ M , d(x, y) ≥ 0, and d(x, y) = 0 if
x = y,

2. (Symmetry) For each x, y ∈M , d(x, y) = d(y, x),

3. (Triangle-Inequaility) For each x, y, z ∈M , d(x, z) ≤ d(x, y) + d(y, z).
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The Borel σ-algebra B = B(M) is the smallest σ-algebra in M that contains
all open subsets of M .

Recall that an open subset U ⊂M of a metric space (M,d) open set with
respect to the metric space (M,d) if, for every p ∈ U , there is some δ > 0
such that

Bδ(p) ⊂ U,

where
Bδ(p) = {q ∈M : d(p, q) < δ}.

Moreover, the σ-algebra B is a nonempty collection of subsets of M such that

1. M is in B;

2. (Closed under complement) If A ∈ B, the complement of A is in B;
that is X \ A ∈ B;

3. (Closed under countable unions) If A1, A2, ...An are in B for some n,
then A = A1 ∪ A2 ∪ ... ∪ An is in B.

The Borel σ-algebra B is the smallest σ-algebra in M that contains all open
subsets of M . The elements of B are called the Borel sets of M . Therefore,
a Borel measure is any measure µ : B → R that maps the Borel sets to some
real number.

Let G be a game and the approximation parameter ε ≥ 0. We want to
show that NE ε(G) is (Borel) µ-measurable.

Lemma 17. The set of ε-MSNE, NE ε(G), is (Borel) µ-measurable for any
game G and any ε ≥ 0. That is, the open set(s) of NE ε(G) is (are) in B.

Proof. Recall that NE ε(G)

≡ {x∗ | ∀i, ui(x∗i , x∗−i) ≥ ui(0, x
∗
−i)− ε and ui(x

∗
i , x
∗
−i) ≥ ui(1, x

∗
−i)− ε}

≡ BRε
1(G) ∩ BRε

2(G) ∩ · · · ∩ BRε
n(G),

where

BRε
i(G) = {x | ui(xi, x−i) ≥ ui(0, x−i)− ε and ui(xi, x−i) ≥ ui(1, x−i)− ε}

for i ∈ V . Notice that BRε
i(G) of each player i is formed by two linear

inequalities and BRε
i(G) ⊆ [0, 1]n which is closed and bounded. The inter-

section of closed and bounded regions is still closed and bounded. It follows
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that NE ε(G) ⊆ [0, 1]n. It is clear that the open set(s) of NE ε(G) is (are) in B.
Notice that NE ε(G) might contain multiple closed and bounded components
but the open set of each individual component is in B. Therefore, NE ε(G) is
measurable.

In the following, we denote the µ-measure of NE ε(G) by |NE ε(G)| ≡
µ(NE(G)). We assume the statistical process generating the data is a sim-
ple mixture model: i.e., with probability q ∈ (0, 1), the process gener-
ates/outputs a mixed-strategy profile x by drawing uniformly at random from
the setNE ε(G); with probability 1−q, the process generates a mixed-strategy
profile x by drawing uniformly at random from NE ε(G) ≡ [0, 1]n −NE ε(G),
the complement of the NE ε(G). Said differently, our generative model of
behavioral data based on mixed-strategy profile is a mixture model with
mixture parameter q and mixture components defined in terms of the ap-
proximation parameter ε > 0 and a game G. Note that, in our context,
because µ([0, 1]n) = 1, we can view the Borel measure µ as a probability
measure. From now on, all references to measures are to the Borel (proba-
bility) measure, and µ denotes such measure. More formally, the PDF f for
the generative model with parameters (q,G, ε) over the hypercube of joint-
mixed-strategies [0, 1]n is

f(q,G,ε)(x) ≡q1[x ∈ NE ε(G)]

|NE ε(G)|
+ (1− q)1[x 6∈ NE ε(G)]

1− |NE ε(G)|
, (6.1)

for all x ∈ [0, 1]n. It is possible that the measure of NE ε(G) is zero. As such,
for large enough ε, the measure is of it will be greater than zero. However,
one can formally show that for any ε > 0, |NE ε(G)| > 0. The key to show
this fact is to realize that there is at least one MSNE in NE ε(G) for any
ε > 0. Using that MSNE, we can find a region surrounding it and this region
is determined by the value of ε. We do not present a formal proof here
because this is not our main focus. Instead, we concentrate on learning the
parameters of games with |NE ε(G)| > 0 for some ε > 0.

In order for Equation 6.1 to be valid, if ε = 1 or NE ε(G) = [0, 1]n, then
we need to require that q = 1. Note that NE ε(G) = ∅ is impossible since
every game has at least one MSNE, by Nash’s seminal result [Nash, 1950,
1951].

We assume that the behavioral data are i.i.d. instances drawn according
to f(q,G,ε).
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Definition 16. (Trivial and Non-trivial Games) We say that a game
G is trivial if and only if |NE ε(G)| ∈ {0, 1} and non-trivial if and only if
|NE ε(G)| ∈ (0, 1).

Let πε(G) be the true proportion of ε-MSNE in the game G where

πε(G) ≡ |NE ε(G)| . (6.2)

The following set of propositions is analogous to those Honorio and Ortiz
[2014] state and establishes the fact that there are different games with the
same set of ε-MSNE. Said differently, the game G is not identifiable with
respect to the generative model f(q,G,ε) defined in Equation 6.1. We side-step
the non-identifiability of G with respect to f(q,G,ε) using a common practice
in machine learning (ML): we invoke the Principle of Ockham’s Razor for
model (i.e., game) selection. In general, experts in the respective field (e.g.,
epidemiology) would provide the necessary bias for learning. Here, we impose
a particular bias that induces “sparse” or “compactly representable” games,
as we define formally in a later section. We note, however, that the games
are identifiable in terms of their ε-MSNE, with respect to f(q,G,ε), which is
our main interest, as we show and discuss later.

Proposition 11. Given the approximation parameter ε > 0 and a non-
trivial game G, the mixture parameter q > πε(G) if and only if f(q,G,ε)(x1) >
f(q,G,ε)(x2) for any x1 ∈ NE ε(G) and x2 /∈ NE ε(G).

Proof. Suppose that q > πε(G). For any x1 ∈ NE ε(G), f(q,G,ε)(x1) = q
|NEε(G)| .

On the other hand, for any x2 6∈ NE ε(G), f(q,G,ε)(x2) = 1−q
1−|NEε(G)| . Since

q > πε(G), we have

f(q,G,ε)(x1) =
q

|NE ε(G)|
> 1 >

1− q
1− |NE ε(G)|

= f(q,G,ε)(x2),

where the second inequality is because 1− q < 1− |NE ε(G)|.
Now we suppose that for any x1 ∈ NE ε(G) and x2 /∈ NE ε(G), f(q,G,ε)(x1) >

f(q,G,ε)(x2). It follows that

f(q,G,ε)(x1) =
q

|NE ε(G)|
>

1− q
1− |NE ε(G)|

= f(q,G,ε)(x2).
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The above inequality holds if we have

q

|NE ε(G)|
>

1− q
1− |NE ε(G)|

⇐⇒ q(1− |NE ε(G)|) > (1− q)|NE ε(G)|
⇐⇒ q − q|NE ε(G)| > |NE ε(G)| − q|NE ε(G)|
⇐⇒ q > |NE ε(G)|

This concludes the proof.

Definition 17. Given the approximation parameter ε > 0, we say the games
G1 and G2 are ε-approximation-equivalent, or ε-equivalent, if and only if
their approximate Nash equilibrium sets are identical, i.e.: G1 ≡ε−MSNE G2 ⇔
NE ε(G1) = NE ε(G2).

Lemma 18. Let G1 and G2 be two non-trivial games. Given the approxima-
tion parameter ε > 0, for some mixture parameter q > max(πε(G1), πε(G2)),
G1 and G2 are ε-equivalent if and only if they induce the same PDF over the
mixed-strategies of the agents, which belong to [0, 1]n by definition. Moreover,
G1 ≡ε−MSNE G2 ⇔ ∀x f(q,G1,ε)(x) = f(q,G2,ε)(x).

Proof. Suppose that G1 ≡ε−MSNE G2. It follows that NE ε(G1) = NE ε(G2).
By the PDF defined in Equation 6.1, for all x ∈ NE ε(G1),

f(q,G1,ε)(x) =
q

|NE ε(G1)|
=

q

|NE ε(G2)|
= f(q,G2,ε)(x),

and for all x 6∈ NE ε(G1),

f(q,G1,ε)(x) =
1− q

1− |NE ε(G1)|
=

1− q
1− |NE ε(G2)|

= f(q,G2,ε)(x).

Therefore, for all x, f(G1,q,ε)(x) = f(G2,q,ε)(x).
Now suppose that ∀x f(G1,q,ε)(x) = f(G2,q,ε)(x). For the sake of con-

tradiction, assume there is some y such that y ∈ G1 and y 6∈ G2. Since
f(G1,q,ε)(y) = f(G2,q,ε)(y), we have that

q

|NE ε(G1)|
=

1− q
1− |NE ε(G2)|

⇐⇒ q(1− |NE ε(G2)|) = (1− q)|NE ε(G1)|
⇐⇒ q(1− |NE ε(G2)|) + q|NE ε(G1)| = |NE ε(G1)|

⇐⇒ q =
|NE ε(G1)|

1 + |NE ε(G1)| − |NE ε(G2)|
.
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Because q > max(πε(G1), πε(G2)), we have that q > max (|NE ε(G1)|, |NE ε(G2)|).
Moreover,

|NE ε(G1)|
1 + |NEε(G1)| − |NE ε(G2)|

> max(|NE ε(G1)|, |NE ε(G2)|).

If max(|NE ε(G1)|, |NE ε(G2)|) = |NE ε(G1)|, then

|NE ε(G1)|
1 + |NEε(G1)| − |NE ε(G2)|

> |NE ε(G1)|

⇐⇒ |NE ε(G1)| > (1 + |NEε(G1)| − |NE ε(G2)|) |NE ε(G1)|,

which is a contradiction because |NEε(G1)| − |NE ε(G2)| ≥ 0.
On the other hand, if max(|NE ε(G1)|, |NE ε(G2)|) = |NE ε(G2)|, then

|NE ε(G1)|
1 + |NEε(G1)| − |NE ε(G2)|

> |NE ε(G2)|

⇐⇒ |NE ε(G1)| > (1 + |NEε(G1)| − |NE ε(G2)|) |NE ε(G2)|
⇐⇒ |NE ε(G1)| > |NE ε(G2)|+ |NEε(G1)||NE ε(G2)| − |NE ε(G2)|2

⇐⇒ 0 > |NE ε(G2)|+ |NEε(G1)||NE ε(G2)| − |NE ε(G2)|2 − |NE ε(G1)|
⇐⇒ 0 > (|NE ε(G2)| − |NE ε(G1)|)− |NE ε(G2)|(|NE ε(G2)| − |NEε(G1)|)
⇐⇒ 0 > (1− |NE ε(G2)|)(|NE ε(G2)| − |NE ε(G1)|),

which is a contradiction because |NE ε(G2)| > 0 and |NE ε(G2)|−|NE ε(G1)| >
0. Therefore such y does not exists and G1 ≡ε−MSNE G2.

6.2.2 Learning Parameters of the Games via MLE

In this section, we present a way to estimate the parameters of a graphical
game from data. We assume the data are i.i.d. draws from the generative
model just defined above.

For the following, we recall the Kullback-Leibler (KL) divergence between
two Bernoulli distributions with parameters p1, p2 ∈ (0, 1), which, using com-
mon practice to simplify the presentation, we denote by

KL(p1‖p2) ≡ p1 log
p1

p2

+ (1− p1) log
1− p1

1− p2

.
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Given a dataset D = {x(1), ..., x(m)} drawn i.i.d. according to fq,G,ε, let
π̂ε(G) be the empirical proportion of ε-MSNE, i.e.,

π̂ε(G) ≡ 1

m

m∑
l=1

1
[
x(l) ∈ NE ε(G)

]
Proposition 12. (Maximum-likelihood Estimation) The tuple (Ĝ, q̂, ε̂)
is a maximum likelihood estimator (MLE), with respect to dataset D, for the
parameters of the generative model f(q,G,ε), as defined in Equation 6.1 if and

only if q̂ = min
(
π̂ε̂(Ĝ), 1− 1

2m

)
, and (Ĝ, ε̂) ∈ arg max(G,ε) KL(π̂ε(G)‖πε(G)) .

Proof. For simplicity, we denote NE ε = NE ε(G), πε ≡ πε(G), and π̂ε ≡
π̂ε(G). For a nontrivial G, log f(G,q,ε)(x

(l)) = log q
|NEε| for x(l) ∈ NE ε and

log f(G,q,ε)(x
(l)) = log 1−q

1−|NEε| for x(l) 6∈ NE ε. The average log-likelihood

L̂(G, q, ε) =
1

m

m∑
l=1

log f(G,q,ε)(x
(l))

= π̂ε log
q

|NE ε|
+ (1− π̂ε) log

1− q
1− |NE ε|

= π̂ε log
q

πε
+ (1− π̂ε) log

1− q
1− πε

.

By adding and subtracting the term π̂ε log π̂ε, we have

L̂(G, q, ε) = π̂ε log
q

πε
+ (1− π̂ε) log

1− q
1− πε

+ π̂ε log π̂ε − π̂ε log π̂ε

= π̂ε log q − π̂ε log πε + (1− π̂ε) log
1− q
1− πε

+ π̂ε log π̂ε − π̂ε log π̂ε

= π̂ε log
π̂ε

πε
− π̂ε log

π̂ε

q
+ (1− πε) log

1− q
1− πε

.

Similarly, we add and subtract the term (1− π̂ε) log(1− π̂ε), and we have

L̂(G, q, ε) = π̂ε log
π̂ε

πε
+ (1− π̂ε) log

1− π̂ε

1− πε
− π̂ε log

π̂ε

q
− (1− π̂ε) log

1− π̂ε

1− q
= KL(π̂ε‖πε)−KL(π̂ε‖q).

To maximize the log-likelihood, the term KL(π̂ε||q̂) = 0 if and only if
q̂ = π̂ε. If π̂ε = 1, then we shrink q̂ = 1 − 1

2m
to make sure the PDF

is valid. Therefore, we find that the MLE is a tuple (Ĝ, ε̂), where Ĝ ∈
arg maxG KL(π̂ε̂(G)‖πε̂(G)).
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Let us make a few observations that follow immediately from the MLE
expression given above. First, if ε ≥ 1, then πε(G) = 1 for all games G, which
implies then π̂ε(G) = 1 for all games G. Hence, if ε̂ ≥ 1 the resulting KL

value is zero, so that Ĝ could be any game. Similarly, if πε̂(Ĝ) = 0 then we

have π̂ε̂(Ĝ) = 0, so that once again the resulting KL value is zero. Hence,

Ĝ could be any game. Said differently, in summary, if any trivial game is
an MLE, then every game, trivial or non-trivial, is also an MLE. Therefore,
we can always find non-trivial games corresponding to some MLE: the set of
MLEs always contain a tuple corresponding to a non-trivial game.

An informal interpretation of the MLE problem is that, assuming we can
keep the true proportion of ε-MSNE low, the learning problems becomes
one of trying to infer a game that captures as much of the mixed-strategy
examples in the dataset as ε-MSNE, but without implicitly adding more
ε-MSNE than it needs to. Thus, formulating the learning problem using
MLE brings out the fundamental tradeoff in ML between model complexity
and generalization ability (or “goodness-of-fit”), despite the simplicity of our
generative model.

One problem with the exact KL-based formulation of the MLE presented
above is that dealing with πε(G), even if it is well-defined (i.e., the setNE ε(G)
has positive measure). The following lemma provides bounds on the KL
divergence that will prove useful in our setting.

Lemma 19. Given a non-trivial game G with 0 < πε(G) < π̂ε(G), we can
upper and lower bound the KL divergence as

−π̂ε(G) log πε(G)− log 2 < KL(π̂ε(G)‖πε(G)) < −π̂ε(G) log πε(G) .

Proof. The proof for the above lemma follows closely of the same argument
of a similar bound in Honorio and Ortiz [2014]. The main distinction is that
we are dealing with ε-MSNE. We reproduce it here for completeness.

For simplicity, we denote πε ≡ πε(G) and π̂ε ≡ π̂ε(G). From the definition
of KL, we have

KL(π̂ε‖πε) = π̂ε log
π̂ε

πε
+ (1− π̂ε) log

1− π̂ε

1− πε
.

Since 0 < πε(G) < π̂ε(G), we have

α(πε) ≡ lim
π̂ε→0

KL(π̂ε‖πε) = 0 and β(πε) ≡ lim
π̂ε→1

KL(π̂ε‖πε) = − log πε.
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Moreover, the KL function is convex and

KL(π̂ε‖πε) ≤ α(πε) + (β(πε)− α(πε))π̂ε = −π̂ε log πε.

Thus, we have our upper bound.
To find a lower bound, we first find π̂ε such that ∂KL(π̂ε‖πε)

∂π̂ε
= β(πε) −

α(πε) = − log πε. Following the derivation, we have

∂KL(π̂ε‖πε)
∂π̂ε

=
∂
(
π̂ε log π̂ε

πε
+ (1− π̂ε) log 1−π̂ε

1−πε
)

∂π̂ε

= log π̂ε + 1− log πε − log(1− π̂ε)− 1 + log(1− πε)
= log π̂ε − log πε − log(1− π̂ε) + log(1− πε).

Given this, we find π̂ε such that

∂KL(π̂ε‖πε)
∂π̂ε

= − log πε

⇐⇒ log π̂ε − log πε − log(1− π̂ε) + log(1− πε) = − log πε

⇐⇒ log π̂ε − log(1− π̂ε) + log(1− πε) = 0

⇐⇒ log
π̂ε

1− π̂ε
= log

1

1− πε

⇐⇒ π̂ε

1− π̂ε
=

1

1− πε
⇐⇒ π̂ε(1− πε) = 1− π̂ε

⇐⇒ π̂ε =
1

2− πε

We now compute the maximum difference between the KL and the upper
bound (this will give us a lower bound on the KL). It follows that

lim
πε→0
−π̂ε log πε −KL(π̂ε‖πε) = lim

πε→0
−π̂ε log πε − π̂ε log

π̂ε

πε
− (1− π̂ε) log

1− π̂ε
1− πε

= lim
πε→0
−π̂ε log πε − π̂ε log π̂ε + π̂ε log πε − (1− π̂ε) log

1− π̂ε
1− πε

= lim
πε→0
−π̂ε log π̂ε − (1− π̂ε) log

1− π̂ε
1− πε

= −1

2
log

1

2
− (1− 1

2
) log

1

2
= log 2.
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Thus, our lower bound is the upper bound minus log 2. This shows that we
can bound the KL using the upper bound and the lower bound as claimed.

From the last lemma, it is easy to see that πε(G) is “low enough” then we
can obtain an approximation to the MLE by simply maximizing π̂ε(G) only:
i.e., arg maxG KL(π̂ε(G)‖πε(G)) ≈ arg maxG π̂

ε(G). We implicitly enforce the
constraint that πε(G) is “low enough” through regularization or some other
way that allows us to introduce bias into the model selection, as it is standard
in Machine Learning.

Therefore, we aim to develop techniques to maximize the number of ε-
MSNE in the data while keeping ε as small as possible. In what follows,
we will apply our learning framework to infer the parameters of generalized
Interdependent Security (α-IDS) games using the CDC vaccination data.

6.3 Application: Learning α-IDS Games

Given the CDC vaccination data, we want to learn a game that would explain
the behavior of the agents and how the behavior of the agents affect the
behavior of other agents (within the same population). In particular, we are
interested in understanding the behavior of an “average” individual in each
state when facing the question of “What is the probability that a member
of my population will transfer a virus/sickness to me if that member is ill?”
Therefore, we want to look at games that model such interaction.

As discussed in Chapter 3, generalized Interdependent Security (α-IDS)
games are one of the most motivated and well-studied games to model the
investment decisions of agents when facing transfer risks from other agents.
As Heal and Kunreuther [2005a] discusses, α-IDS games have applicability in
fire protection [Kearns and Ortiz, 2004], and, more importantly in vaccination
settings [Heal and Kunreuther, 2005b]. We refer the reader to a recent survey
by Laszka et al. [2014] for a broader concept of interdependent security,

In the vaccination setting, each agent decides whether or not to get vacci-
nated given (1) the agent’s implicit and explicit cost of vaccination and loss
of getting sick, (2) the vaccination decisions of other agents, and (3) the po-
tential transfer probabilities/risks from other agents. The CDC vaccination
data captures the “average” behavior of the people in each state through the
vaccination rates, but does not explicitly contain the costs or losses of any
individual, nor the transfer risk between individuals. Actually, it does not
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include the “average” costs, losses, or transfer risks even at the level of whole
states. In what follows, we put forward an approach to learn such quantities
at the state level from the CDC data on vaccination rates.

6.3.1 Generalized Interdependent Security Games

Recall, in the α-IDS games of n agents, each agent i determines whether or
not to invest in protection. Therefore, there are two actions i can play, and we
denote ai = 1 if i invests and ai = 0 if i does not invest. We let a = (a1, ..., an)
to be the joint-action profile of all agents and a−S to be the joint-action profile
of all agents that are not in S. There is a cost of investment Ci and loss Li
associated with the bad event occurring, either through a direct or indirect
(transferred) contamination. We denote by pi the probability that agent i
will experience the bad event from a direct contamination and by qji to be the
probability that agent i will experience the bad event due to transfer exposure
from agent j (i.e., the probability that agent j will transfer the contamination
to i). Moreover, the parameter αi ∈ [0, 1] specifies the probability that agent
i’s investment will not protect that agent against transfers of a bad event.
Given the parameters, the cost function of agent i is

Mi(ai, a−i) ≡ ai[Ci + αiri(a−i)Li]

+ (1− ai)[pi + (1− pi)ri(a−i)]Li

where ri(a−i) ≡ 1− si(a−i) and si(a−i) ≡
∏

j 6=i(aj + (1− aj)(1− qji)) are the
overall risk and safety functions of agent i.

As mentioned before, we aim to learn all the model parameters from a
given set of observed mixed-strategy profiles, which contain hopefully most,
but not necessarily all ε-MSNE.

Therefore, we need look at the cost function of the agents in terms of
mixed-strategies. Roughly speaking, we can do this by letting xi be the
probability that ai = 1 and take the expectation of the above cost function
(i.e., replace all a terms by x). Comparing the cost when ai = 1 and ai = 0,
we can derive a best-response correspondence for i.

Therefore, the cost function of player i becomes (in mixed-strategies)

Mi(xi, x−i) ≡ xi[Ci + αiri(x−i)Li]

+ (1− xi)[pi + (1− pi)ri(x−i)]Li.
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By definition, a mixed-strategy is an ε-MSNE in an α-IDS game if and only
if

Mi(xi, x−i)− ε ≤Mi(0, x−i) (6.3)

Mi(xi, x−i)− ε ≤Mi(1, x−i) (6.4)

It follows that from Equation 6.3 and Equation 6.4 that

xi[Ci + αiri(xPa(i))Li − (pi + (1− pi)ri(xPa(i)))Li] ≤ ε

−(1− xi)[Ci + αiri(xPa(i))Li − (pi + (1− pi)ri(xPa(i)))Li] ≤ ε

For simplicity, we let ∆i ≡ Ci + αiri(xPa(i))Li − (pi + (1− pi)ri(xPa(i)))Li.

6.3.2 Learning the Structure and Parameters of α-IDS
Games

As we argue in a previous section, we can approximate our MLE objective by
maximizing the number of ε-MSNE in the data, or equivalently, maximizing
π̂ε(G) over ε and G when the true proportion of the ε-MSNE of the game
is less than the empirical proportion of the ε-MSNE of the dataset (i.e.,
0 < πε(G) < π̂ε(G)). Below, we empirically show that the true proportion of
ε-MSNE in α-IDS games is very small. This would justify Lemma 19 and
our method of finding an α-IDS game that maximizes the number of ε-MSNE
in the dataset.

Figure 6.1 shows the sampled proportional of randomly generated 48-
player α-IDS games in various graph structures. In particular, we consider
two basic graph structures that specify the transfer risks among the players.
The first graph structure results from the geo-spatial adjacency of all states
in the U.S.A continental (i.e., excluding Alaska and Hawaii), where each of
the 48 players corresponds to a state of the US and the potential transfer
risks occur from neighboring states/players. The second graph structure is
based on the random graph generation of Erdös and Rényi [1959]. We refer
to the latter type of graphs as ER graphs. To generate an ER graph, we
need to specify the number of nodes and a probability p ∈ [0, 1] that denotes
the probability that the drawn ER graph will have an edge between any two
nodes. Clearly, a higher p value corresponds to a higher density of the graph.
In our case, we use ER graph as a way to generate different structures among
the 48 players with p ∈ {0.1, 0.2, ..., 0.9}. Given the graphs, we generate the
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Figure 6.1: Sampled proportional of ε-MSNE in random α-IDS
games. The plots show the sampled proportion of ε-MSNE of a fixed U.S.
State topology (left) and random topology with various density (right) of
random α-IDS games of 48 players. The x-axis represents the ε values and
the y-axis represents the sampled proportion of ε-MSNE.

values of the parameters of α-IDS games uniformly at random between zero
and one. Finally, we randomly sample 100,000 mixed-strategies and check to
see how many out of the 100,000 are ε-MSNE for ε ∈ {0.1, 0.2, ..., 0.9}. For
the random state α-IDS games, we generate 100 of them, and for each of them
we compute the sampled proportion of ε-MSNE for each ε ∈ {0.1, 0.2, ..., 0.9}.
Using this data, we construct the left boxplot of Figure 6.1. For this plot, we
observe that as ε goes to zero the sampled proportion of ε-MSNE decreases
exponentially. This suggests that the true proportion of ε-MSNE is very
small. Similarly for the random ER α-IDS games, we consider different
p ∈ {0.1, 0.2, ..., 0.9}, and for each fixed p, we generate 20 α-IDS games and
compute the sampled proportion of ε-MSNE of each of them. Using this
data, we construct the right boxplot of Figure 6.1. Again, we observe that
as ε goes to zero the sampled proportion of ε-MSNE decreases exponentially
regardless of the density and structure of the game graphs. Therefore, our
empirically results would help to justify the use of our proposed method to
learn the parameters of α-IDS games.
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Maximizing the Number of ε-MSNE in the Dataset

In our approach, we subdivide the optimization by first optimizing over G,
and then optimizing over ε. For any ε, we would like to apply a simple
gradient-ascent optimization technique to learn the game G. Unfortunately,
even the latter maximization is non-trivial due to the discontinuities induced
by the indicator functions defining the ε-MSNE constraints. Our goal is then
to further approximate π̂ε(G). First, we use a simple upper bound that results
from using Equation 6.3 and Equation 6.4, which correspond to satisfying
the ε-MSNE of the games:

π̂ε(G) = max
G

1

m

m∑
l=1

1
[
xl ∈ NEε(G)

]
≤max

G

1

m

m∑
l=1

n∑
i=1

1
[
xli∆

l
i ≤ ε

]
+ 1
[
−(1− xli)∆l

i ≤ ε
]
.

Then, we approximate the indicator function in the last upper bound with
another differentiable function. In the following subsection, we discuss what
is perhaps the simplest approximation to the indicator function: using the
logistic/sigmoid function. This is the standard approach leading to the fa-
mous BackProp algorithm used to train neural networks from data (see, e.g.,
the book by Haykin [1999], for more information).

Using the Logistic/Sigmoid Function

The first approximation to the upper bound above that we consider uses the
sigmoid function, s(x) ≡ 1

1+e−x
, which yields the following approximation to

the last upper bound:

max
G

1

m

m∑
l=1

n∑
i=1

s(−xli∆l
i + ε) + s((1− xli)∆l

i + ε).

To avoid overfitting and to introduce our bias for “sparse” (graphical) game
structures, we regularize the transfer parameters qji. In particular, those
transfer probabilities implicitly define the structure of the α-IDS games That
is, viewing α-IDS games from the perspective of a (directed, parametric)
graphical game, the directed graph capturing the direct transfer risks between
the players is such that each node in the graph represents a player in the
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game, and there is a directed edge (i.e., an arc) from node j to node i if and
only if qji > 0. The typical regularizer used to induce sparsity in the learned
structure is the L1-regularizer, which we impose over the qji’s. We denote by
λ > 0 the regularization parameter quantifying the amount of penalization
for large values of the qji’s.

max
G

1

m

m∑
l=1

n∑
i=1

S(−xli∆l
i + ε) + S((1− xli)∆l

i + ε) + λ

n∑
j=1

qji.

We “learn” λ using cross-validation. (This is the typical approach to find an
“optimal” λ in ML.)

Before continuing, there is an important normalization constraint on the
utility/costs functions required for the ε parameter for the approximation to
be meaningful. In particular, recall that in order to define ε-MSNE, we want
to ensure that the cost function of each player of α-IDS games is between
zero and one for each possible mixed strategy. The following expression leads
to a normalized cost function, denoted by M̃i, for player i:

M̃i(xi, x−i) ≡
Mi(xi, x−i)−mini

maxi−mini

where mini = {Ci, piLi}, maxi = {Ci + αiri(0−i)Li, [pi + (1− pi)ri(0−i)]Li},
and 0−i stands for the vector that sets all the elements of x−i to the value 0,
so that ri(0−i) = 1−

∏
j 6=i(1− qji).

Notice that, if the minimum and the maximum, respectively, of the cost
function of each player of α-IDS is exactly 0 and 1, respectively, then we
do not have to perform any normalization when computing and evaluating
ε-MSNE.

Unfortunately, working with the normalized costs M̃i’s is cumbersome.
Instead, we keep the ε-MSNE constraints in terms of the original (unnor-
malized) cost functions Mi’s and introduce additional constraints based on
the expressions for mini and maxi given above directly into the optimiza-
tion problem. Using primal-dual optimization, in which we denote by the
corresponding dual-variables/Lagrange-multipliers βi and γi for each addi-
tional cost-function normalization for each player i, we obtain the following
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minimax program:

min
δ,β

max
G

1

m

m∑
l=1

n∑
i=1

S(−xli∆l
i + ε) + S((1− xli)∆l

i + ε) + λ

n∑
j=1

qji

− δi(Ci − 1)(piLi − 1)

− γi(2− (Ci + αiri(0−i)Li))(2− ([pi + (1− pi)ri(0−i)]Li)) , (6.5)

where β = (β1, ..., βn) and γ = (γ1, .., γn) We intentionally enforce that
mini = {Ci, piLi} = 1 and maxi = {Ci+αiri(0−i)Li, [pi+(1−pi)ri(0−i)]Li} =
2 to avoid computational issues. As long as the difference of the mini and
maxi is close to 1, then we can easily see that the ε-MSNE definition will be
well-defined. We want to solve the above program subject to the respective
constraints on each of the variables. As stated previously, we follow the tradi-
tional approach of using gradient-ascent/descent optimization as a heuristic
to update, and eventually learn, the parameters.

Denote by (q′,G ′, ε′) the tuple we learn using the approach we propose
above. In this paper we assume that NE ε′(G ′) is measurable, so that the
learned generative model is well-defined.

6.4 Preliminary Experiment

As mentioned in the introduction, we will use the publicly-available CDC
state-level vaccination-rate data to learn an α-IDS game. In particular, we
will be using the 2009-2010 US states H1N1 vaccination percentages and
their standard deviations as shown below for a few US states.

Figure 6.2 shows the choropleth map of the percentage (darker colors
mean higher percentages) of sampled population in each state of the U.S.A
continental (i.e., excluding Alaska and Hawaii) that reported taking the
H1N1 vaccine in the year-period of 2009-2010. The vaccination percent-
ages range from 17.5% to 46.8% with MS and RI with the lowest and highest
percentages, respectively. Table 6.3 shows the vaccination percentages and
the standard deviations for some of the states in the US that are used to
generate Figure 6.2.

Viewing each state as a player in the network, we interpret the vacci-
nation percentages as mixed-strategies and generate m samples i.i.d accord-
ing to an n-variate product-of-normal distribution, where n = 48 in our
case, with the joint mean and standard deviations given by each state’s
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Figure 6.2: Choropleth map of vaccination percentage. This is the
choropleth map of percentage of sample population who reportedly took the
H1N1 vaccine in the US continent during (May) 2009 - 2010. Darker regions
correspond to higher vaccination percentage.

% H1N1 % Standard
State Vaccinated Deviation
MS 17.5% 1.5%
LA 21.1% 1.7%
OK 24.0% 1.6%

AR 29.3% 4.3%
NM 33.2% 2.6%
RI 46.8% 2.0%
TX 22.7% 1.5%

Figure 6.3: State vaccination percentage The columns of the table cor-
responds to some of the states, their vaccination percentages, and their stan-
dard deviations, respectively from left to right, as used to construct Figure
1.
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reported vaccination-rate and standard deviation in the CDC data, where
m ∈ {500, 1000, 1500, 2000, 2500, 5000}. The second and third column in Ta-
ble 6.3 provide examples for the corresponding mean and standard deviation
of some states, where the information in each row corresponds to that of the
respective individual example state listed in the first column of the table.
It is important to note that we do not have publicly available information
about any (higher-level) correlations among states in the CDC data. Hence,
each one of the m samples is a joint mixed-strategy of dimension n = 48, and
each component in the joint-mixed-strategy sample is drawn independently
according to the mean and variance of the respective state in the continental
US, as reported in the CDC data.

We impose an a priori bias for learning where only neighboring states
may transfer the virus. Therefore, we are restricting ourself to learning a geo-
spatially-informed continental-US-state-level α-IDS game. To actually learn
the values of the parameters of an α-IDS game, we take partial derivatives of
Equation 6.5 with respect to the parameters Ci, Li, αi, pi, and (qji)j∈Pa(i) for
each player i and use the standard gradient-ascent optimization technique.
The process terminates when the cost functions are normalized (i.e., mini =
{Ci, piLi} = 1 and maxi = {Ci + αiri(0−i)Li, [pi + (1 − pi)ri(0−i)]Li} = 2
for every i) and after exceeding some threshold on the maximum number of
iterations.

Moreover, we experiment with different regularization parameter values
of β, δ, λ, and ε and with various sample sizes.

In what follows, we present our learned α-IDS game with β = δ = −2,
λ = 1, ε = 0.35, and n = 1500 which we found through empirical observa-
tions and cross-validation achieved the best log-likelihood for the CDC H1N1
vaccination dataset.

6.4.1 Parameters of the Players of Learned α-IDS game

We begin by discussing the values of the parameters we learned for the players
in the learned α-IDS game from the CDC vaccination dataset.

Players’ Characteristics

The first thing to note is each player’s type. Recall that there are two types of
players in an α-IDS game, whose characterization of best-response behavior is
to exhibit either strategic complementarily (SC) or strategic substitutability
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(SS). If the player is SC, then the player will play the action vaccinate if there
are “enough” of his/her neighbors play the action vaccinate. On the other
hand, if the player is SS, then the player will play the action vaccinate if not
“enough” of his/her neighbors play the action vaccinate. Said differently, if
a reasonable amount of the player’s neighbor vaccinate, then the SS player
will not.

Indeed, in the vaccination setting, intuition suggest that one would expect
all players to be SS; there is no reason for his/her to vaccinate if enough
neighboring players around the player are protected from the virus. In fact,
all of the players we learned are SS. Figure 6.4 shows exactly this. Recall
that in the α-IDS game, to determine whether a player is SC or SS, we only
need to compare the player’s α and 1 − p values. If α > 1 − p, then the
player’s type is SC. If α < 1 − p, the the player’s type is SS. In Figure 6.4,
we plot the α and 1− p values of each player where the α values are on the
x-axis and the 1 − p values are on the y-axis. The line denotes the values
at which α = 1 − p. Notice that the line corresponding to α = 1 − p is not
shown as a straight diagonal because we draw the x- and y-axis to different
scales. We zoom in intentionally to the portion of the plot that contains the
data.

As observed from the figure, all of the points are above the line. This
indicates that all of the players are the type of SS (with 1 − pi > αi for all
player i).

It is important to note that there is no reason, a priori, as to why our
learning formulation and algorithms/heuristics would yield models in which
all players turned out to be SS. Although, a posteriori, that is the most
natural observation/result, consistent with our general intuition/expectation
about vaccination scenarios. Thus, the results presented in the plot provide
some partial, anecdotal, and favorable evidence that the game we learned is
not arbitrary.

Best-response Correspondences of the Players

Recall that to determine the best-response of a player, we look at his/her’s
best-response correspondence. In particular, the best-response correspon-
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Figure 6.4: Players’ Types. The x-axis denotes the α values of the players,
the y-axis denotes the 1−p values of they players, and the line is the equation
α = 1 − p. The plot is scaled to capture the α and 1 − p values. The plot
illustrates that our learning formulation produces values of the parameters
that are consistent with vaccination scenarios.
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Figure 6.5: Histograms of the ∆ values. x-axis is discretized into the
range of (0, 0.1], (0.1, 0.2], ..., (0.9, 1] and y-axis is the count of ∆ values in
the ranges.

dence of a SS player i is

BRss
i (aPa(i)) ≡


{0}, ∆ss

i < si(aPa(i)),

{1}, ∆ss
i > si(aPa(i)),

{0, 1}, ∆ss
i = si(aPa(i)) ,

where ∆ss
i = 1−

Ci
Li
−pi

1−pi−αi . In order for player i to have a non-trivial response,
the value of ∆ss

i has to be between zero and one. Indeed, in our learned IDS
games, the ∆ss

i for all players i is between zero and one. Figure 6.5 shows a
histogram of the ∆i values of each player i. The values fall roughly between
the range of (0.010, 0.999).

Transfer Risks of the Players

Recall that the transfer risks of a player are the (qji)j∈Pa(i) where qji is the
probability that a virus will transfer from j to i. Of course, our learned
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Figure 6.6: Values of the Safety Functions. The safety functions are
evaluated using the mean of vaccination (Left) and using a random mixed-
strategy (Right). The x-axis represents the transfer risks and the y-axis
represents the values of the safety functions.

transfer risks depend on the mixed-strategies of the players that we use to
learn the values. To show that our learned transfer risks is consistent with
the training examples, we compute the safety values of each player from his
neighbors using the vaccination-rate data (the mean rate we used to generate
the examples). More specifically, we compute eji = xj + (1− xj)(1− qji) for
each i and j ∈ Pa(i). We also compare the values of the eji to those of values
using some random mixed-strategies. The results are shown in Figure 6.6.

In Figure 6.6, we plot the qji and its corresponding eji values given the
mean vaccination-rate (left) and a random mixed-strategy (right). The left
plot shows an obvious regularity not observed on the right plot. This sug-
gests that the transfer risks that we learned are not random and correlated to
the training examples. Hence, the results presented in Figure 6.6 provide an-
other piece of evidence suggesting that our learned models are not arbitrary,
and that, on the contrary, they seem consistent with our general intuition
regarding real-world vaccination settings
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Structure of the Graph

The magnitude of the learned transfer-risk parameters determine the struc-
ture of the underlying game-graph induced from the data. Figure 6.7 shows
the learned game-graph in full (Top) and a zoomed in portion of the New
England area (Bottom). The nodes are the 48 US states excluding AK and
HI. The directed edges denote the transfer risks from a state to another state.
For instance, in the zoom-in version (Bottom), the probability that NY can
transfer the virus to MA is 0.142.

Equilibrium Behavior of the Players

Our main interest for learning games is the ability they provide to potentially
interpret what would happen at an MSNE, even when the given data may not
consists of all examples being exact MSNE, or may be noisy. Said differently,
the mixed-strategies of the state agents in our data may not correspond to the
“optimal” equilibrium strategies, by which we mean exact MSNE strategies.

In short, we want to infer and study the behavior of the players (i.e.,
US states), at an exact or approximate MSNE of the learned game model,
from noisy data, in which not all examples may belong to the set of ε-MSNE
of some fixed but unknown game. Thus, given the learned games, we can
run a version of some learning-heuristics/regret-minimization [Fudenberg and
Levine, 1998], in which we use the mean vaccination rates as the initial mixed-
strategy profile to compute ε-MSNE in these games.

Figure 6.8 shows the ε-MSNE we obtain after the best-response-gradient
dynamics converges, whenever it converges for ε ∈ {0.35, 0.15, 0.05, 0}. It
turns out that the mean vaccination-rates given in the CDC data is an 0.35-
MSNE of the learned game. Note that this observation is non-trivial because
there is no technical a priori reason to expect such a result: there is nothing in
our learning algorithm that enforces any such condition, and the data might
have as well led our learning algorithms to yield games for which such mean
vaccination-rates might not have been an 0.35-MSNE of the learned game.
Moreover, we are able to find an exact MSNE which is also a PSNE after
trying many initial mixed-strategies that are drawn uniformly at random
for the learning heuristic. A posteriori, it is somewhat reassuring to find
”free-riders” at MSNE of the learned games, which is again consistent with
the expectations of the behavior of players in vaccination-type settings. For
instance, according to our learned model, at an equilibrium, NH plays the
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Figure 6.7: Learned game-graph. The nodes are the 48 US states (ex-
cluding AK and HI) and the (directed) edges denote the transfer risks from
the source to destination. Top = Full Graph, Bottom = Zoom-in portion of
the New England Area.
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Figure 6.8: Equilibrium of the Learned α-IDS game. The ε-MSNE
to which best-response-gradient dynamics consistently converged for ε ∈
{0.35, 0.15, 0.05, 0}. Darker regions correspond to higher probability of vac-
cination (i.e., vaccination rates), for the respective ε-MSNE

action of not vaccinate while all of its neighbors vaccinate; we can see a
similar situation for KS.

6.5 Conclusion

In this chapter, we propose and discuss a new learning problem to learn
parameter values for game-models to capture and compactly represent ap-
proximate MSNE from mixed-strategy-based data. In particular, we first
propose a specific, simple generative model of mixed-strategy-based data,
which should serve as a starting point for future, potentially more sophisti-
cated models for behavioral data of such strategic nature, and how it might
have been collected or generated.

Given the generative model, we then propose a specific way to learn game-
model parameters with the objective of capturing and compactly represent-
ing (approximate) MSNE embedded within mixed-strategy-based behavioral
datasets. As a particular instance of our learning framework, we propose a
specific way to learn α-IDS games.

To illustrate the effectiveness of our proposed framework and methodol-
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ogy, we present the results of preliminary experiments to learn and study
models inferred from real-world, publicly-available data, the CDC dataset
on vaccination-rates for the continental US. Notwithstanding the prelimi-
nary nature of our experimental work, our experimental results show that
the learned parameters are consistent with our intuitive understanding of
both the local and global system behavior one would expect from data col-
lected in vaccination settings.

Of course, while our preliminary results are promising, we still need a
more thorough experimental evaluation for proper validation of the overall ef-
fectiveness of our proposed machine-learning framework and methodology, in-
cluding our biases for model selection and our learning algorithms/heuristics.
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Chapter 7

Conclusion

My doctoral thesis consists of the following components: (1) designing in-
creasingly more realistic variants of defense games; (2) studying computa-
tional questions in defense games such as equilibria computation and com-
putational implications of equilibria characterizations, (3) designing efficient
algorithms and effective heuristics for defense problems; and (4) designing
and applying new machine learning techniques to estimate game model pa-
rameters from behavioral data.

In particular, we first introduce α-IDS games to study the settings (i.e.,
airline security, fire protection, and vaccination) where each individual’s in-
vestment can partially protect transfer risks from others. We study the com-
putational complexity of computing NE in various classes of α-IDS games
and show that computing a PSNE in general α-IDS games is NP-complete.
For some instances of the games, we introduce efficient algorithms to com-
pute all NE for that instances. We then perform experiments to show the
behavior of the players in the games at ε-MSNE.

Next, we build from the α-IDS games and introduce IDD games that
model the present of an attacker who deliberately wants to cause harm to
the system. We focus on the case where there is only one attack. We show
that there is no PSNE in any IDD games and there is an efficient algorithm
to compute all NE in a class of IDD games. Moreover, we investigate the
question of computing ε-MSNE in IDD games and show that there is an
FPTAS to compute an ε-MSNE in directed tree structures. We perform
a series of experiments to show the behavior of the attacker and the play-
ers/sites/defenders in the system at ε-MSNE.

Finally, we study the question of learning the parameters of the games
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using mixed-strategies. We provide a simple and general machine learning
framework to learn the parameters of any games given mixed-strategies. As
an application, we apply the framework and use some machine learning tech-
niques to learn the parameters of α-IDS games given the CDC vaccination
data. Our experimental results show that the learned parameters are con-
sistent with our intuitive understanding of both the local and global system
behavior one would expect from data collected in vaccination settings.

Of course, this is just the beginning and there are quite a few open prob-
lems such as the complexity of computing PSNE and ε-MSNE in some classes
of α-IDS games and the complexity of computing ε-MSNE in general IDD
games. There are also some open questions in regard to modeling and study-
ing IDD games in the settings where there are multiple attackers and the
attacker(s) has (have) more than one attack. There are also some open
problems in regard to the work of learning the parameters of games from
mixed-strategies. Even through the preliminary results are promising, we
still need a more thorough experimental evaluation for proper validation of
the overall effectiveness of our proposed machine-learning framework and
methodology, including our biases for model selection and our learning algo-
rithms/heuristics. We refer the readers to the respective conclusion section
of the chapters for more detail in regard to the open problems.
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