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Abstract of the Dissertation

Natural Language Processing using Word Connection Networks

by

Yanqing Chen

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Word Connection Networks are graphs recording linguistic connections,
including both semantic and syntactic connections, between single words.
Specific Word Connection Networks of smaller sizes are frequently used in
our daily communications – we search for counterparts of words in another
language when doing translations and we group words by their sentiment
when express feelings. Word Connection Networks are usually consistent with
each other, which makes it an interesting and challenging idea to construct
integrated language resources with both inter-language and intra-language
connections to handle natural language processing tasks in a multilingual
environment.

We propose to collect large-scale word-level linguistic resources from the
web that reflect qualitatively different types of connections between words
across major languages and integrate them into Word Connection Networks.
Our data sources include translations from online machine translation sys-
tems, transliterations of entities across major languages, semantic relation-
ships between words from human annotations, distributed word representa-
tions which captured both semantic and syntactic features out of raw text
and quantified sentiment polarities from sentiment analysis researches / ap-
plications. These resources cover different aspects of language features and
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contribute to the completeness of Word Connection Networks; thus we have
strong and versatile knowledge bases to handle generalized natural language
processing tasks. Additionally, we do research on numbers, frequently ap-
pearing but usually being ignored in language tasks, to explore word-level
features inside their existence.

The core contributions of this thesis are deeper knowledge mining in Word
Connection Networks and extensions to generate valuable resources for var-
ious natural language processing tasks. Implementation of Word Connec-
tion Networks allows quantifying expressive power of connections from dif-
ference sources in a specific task. We make each single connection in Word
Connection Networks traceable and implement a propagation method for
information transitivity inside the graph, which allows us to discover a high-
confidence model of semantic or syntactic connections that does not currently
exist. We prove that inter-language connections preserve good features on
word level from more detailed intra-language connections. We successfully
finished several natural language processing tasks using connections in Word
Connection Networks and we have generated new resources, including high
frequency sentiment lexicons for 136 major languages and transliterations of
69 languages, by applying graph algorithms on Word Connection Networks.
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Chapter 1

Introduction to Word
Connection Networks

Word level features are useful in many natural language processing tasks.
For instance, WordNet [35] provides per-sense annotations and synonyms /
antonyms relationships in English and proved to be useful in tasks of word
sense disambiguation, information retrieval, automatic text classification, au-
tomatic text summarization and machine translation.

However, currently we have no existing word level connections resources
in multilingual world. It is interesting to construct integrated language re-
sources with large-scale inter-language and intra-language connections to
handle natural language processing tasks in multilingual environment.

We propose to make Word Connection Networks, graphs that record lin-
guistic connections, including both semantic and syntactic connections as
edges, between single words as vertices. Unlike other language resources
that emphasize grammar level or sentence level, Word Connection Networks
focus on word level features which are consistent and language-independent
in multilingual environment. Key research of Word Connection Networks is
to utilize multiple semantic and syntactic relationships between words and
store them using various connections as edges in the graph. For instance, we
will have connections of translations, synonyms and antonyms to generalized
sentiment analysis in multilingual world since these connections preserve sen-
timent features of words. We also have connections of script matching and
transliterations that can be easily extended to different languages and help
named entity recognitions and co-reference resolutions.

Word level features are usually consistent across languages. With graph-
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based implementation, we can quantify expressive power of connections in a
specific task and resolve potential conflicts, for instance, adjust confidence
level according to local agreement in the network. Additionally, we can mine
deeper on existing knowledge to discover new semantic or syntactic connec-
tions based on transitivity of corresponding information. Such newly created
high-confidence connections could be valuable towards natural language pro-
cessing tasks.

The challenging parts of this work include 1) huge size of lexicons in
multiple languages, 2) difficulty in generalizing resources and 3) lack of eval-
uation metrics in multilingual world. Constructing such a huge network is
non-trivial because of its scale since we have to collect valuable human an-
notations and results from online machine learning for about 100,000 most
frequent words in each of 136 languages to guarantee both coverage and ac-
curacy. We have to integrate different format of resources which include but
are not limited to translations, sentiment similarities, semantic resemblances,
transliterations. It is also reasonable to store single-word-features on vertices,
such as part of speech (POS) tags and distributed word representations. Last
but not least, there are few publicly available language resources that could
be compared against, especially for smaller language or dialects. We have to
do some tricks that utilize available resources to give a reasonable evaluation
in multilingual environment.

1.1 Functions of Word Connection Networks

Our motivation suggests that Word Connection Networks should have the
following functions:

• Keeping track of information from various sources – Word
Connection Networks need to keep track of as many valuable connec-
tions between words as possible. Useful pair-wise relationships between
words include sound similarities, semantic resemblances (e.g. synonyms
and antonyms), orthographical similarities and translations. All these
connections can fit into specific natural language processing tasks. Plus,
each type of connection allows basic transitions that can be used to
reach unknown words. We also keep some single-word features like
POS tags and word representations for potential uses in different lan-
guage tasks.
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• Conflicts resolving and relationship passing – It is important to
coordinate with existing language resources in Word Connection Net-
works . Connections between words are usually with different expres-
sive power. Whether connections of certain type should be weakened
or enhanced are based on tasks. For instance, “fresh” usually acts as
a positive sentiment lexicon (e.g. “fresh” fruits are good) but some-
times it points to a negative connotation (e.g. a “fresh” man is not
experienced). Resolving such kind of conflict means better utilization
of words and can greatly improve performances.

• Extensibility – We cannot manually fill in all information in Word
Connection Networks. However, we can simply learn new knowledge
based on current observations since information store in connections
are usually transitive. Graph propagation method are designed for
such demands. According to local graph structures, we can easily ap-
ply certain kind of propagation and create high-confidence connections
between target vertices.

From statistics of WordNet [35], on average a word would have less than
3 senses, thus corresponding number of semantic / syntactic connections are
rather small compared with size of vocabulary in the dictionary. We observe
that sparse connections in Word Connection Networks show great advan-
tages in storing and optimizing local graph algorithms as well as recording
more valuable information with simple changes of encoding in data structure.
Word Connection Networks cover more aspects as we gather more reliable
resources and add them into the network.

On the other hand, when applying algorithms like graph propagation,
Word Connection Networks can pass features from specific seed words to un-
documented part of the graph via different connections. We successfully ap-
ply graph propagation algorithms to create sentiment lexicons for 136 major
languages, proved that our Word Connection Networks can generate useful
information with an acceptable error rate and thus greatly increase the po-
tential of discovering various new resources across different languages in the
world.

Last but not least, Word Connection Networks offer excellent opportuni-
ties to improve current language resources. Word representations for multi-
sense words are dominated by their major usages. However, for some words
with evenly important POS tags, for instance, “round” and “run” (noun,
verb), the final representations will be averaged as act as an outliner to both
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groups of nouns and groups of verbs. Research shows that word representa-
tions trained with human inferences provides better features of multi-sense
words [46], it will be useful to discard low-quality word representations ac-
cording to human annotations in Word Connection Networks.

1.2 Constructing Word Connection Networks

This part describes how we leverage off a variety of NLP resources to con-
struct the framework of Word Connection Networks. Vertices in the network
are designed to represent vocabularies in major languages. However, we
definitely cannot represent all of them. It is required to pick a reasonable
number of representatives, balancing coverage of words and connections as
well as space of storage. As a reference, the Polyglot project [6] identified
100,000 most frequent words in each language’s Wikipedia, showing a high
coverage on web texts. Drawing a candidate lexicon from Wikipedia has some
downsides, for instance, limited observations of informal words, but such lex-
icons are representative and convenient for a large number of languages. In
particular, we collect a total of 7,741,544 high-frequency vocabulary words
from 136 languages to serve as vertices in our graph.

Edges should record possible semantic / syntactic connections between
words in different languages. Word Connection Networks adopt following
resources:

• Wiktionary – This growing resource has entries for 171 languages,
edited by people with sufficient background knowledge of specific lan-
guage. Wiktionary provides translations covering 382,754 vertices in
our graph.

• Machine translation – We script the Google translation API to get
even more translations connections. We make English as a hub, in
particular we ask for translations of each word in our English vocab-
ulary to or from 57 languages with available translators and also we
ask for translations of each word in 57 non-English dictionary to or
from English. Additionally, we use the phylogeny of languages to iden-
tify 35 closely related pairs of languages [103], such as Turkish and
Azerbaijani, to enrich our internal links. We believe close semantic
connections between close language pairs coordinate better. Details
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of close language pairs can be found in Table 1.1. In total, machine
translation establishes connections between 3.5 million vertex pairs.

Language pairs Language pairs Language pairs

Afrikaans Dutch Albanian Armenian Arabic Maltese
Armenian Lithuanian Azerbaijani Turkish Belarusian Russian
Bengali Marathi Bosnian Croatian Bulgarian Macedonian
Catalan Spanish Cebuano Filipino Croatian Serbian
Czech Slovak Danish Swedish Dutch Afrikaans

Estonian Finnish Filipino Cebuano Finnish Estonian
French Catalan Galician Portuguese German Yiddish
Greek Armenian Hebrew Arabic Hindi Urdu

Hungarian Finnish Icelandic Swedish Indonesian Malay
Irish Welsh Italian Spanish Japanese Korean

Kannada Tamil Khmer Vietnamese Korean Japanese
Lao Thai Latin Spanish Latvian Lithuanian

Lithuanian Latvian Macedonian Bulgarian Malay Indonesian
Maltese Arabic Marathi Bengali Norwegian Danish
Persian Marathi Polish Czech Portuguese Galician

Romanian Italian Russian Ukrainian Spanish Portuguese
Serbian Bosnian Slovak Czech Slovenian Bosnian
Swedish Danish Tamil Kannada Thai Lao
Turkish Azerbaijani Ukrainian Belarusian Urdu Hindi

Vietnamese Khmer Welsh Irish Yiddish German

Table 1.1: Close pairs suggested by phylogenic language trees. Languages on
the right are the closest language in our 136 candidates to the corresponding
language on the left. Notice that such relationships might not be symmetric
and some language may not have a clear closest neighbor (e.g. Chinese).

• Script matching – Natural flow brings words across languages with
little morphological change. Closely related language pairs (i.e. Rus-
sian and Ukrainian) share many characters/words in common. Though
not always true, words with exact same spelling usually have similar
meanings so this can improve the coverage of semantic links. Translit-
eration provides more than 36 million links in Word Connection Net-
works.

• WordNet – We gather synonyms and antonyms of English words from
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WordNet [35], which prove particularly useful in propagating sentiment
across languages. In total we collect over 100,000 pairs of synonyms
and antonyms.

Figure 1.1: Illustration of our Word Connection Networks. Edge represen-
tation keeps track of links between words and preserves source identity. For
each edge between corresponding word pair, we encode an integer recording
the existence of possible semantic links.

Figure 1.1 illustrates how we encode semantic relationships between two
words into integer value of corresponding edge. We store relationships from
a specific resource as a certain type of links. Though links usually agree in
both directions, we do not expect a bidirectional graph at the end. Multi-
sense words, particularly, link to different targets as the sense changes. To
avoid losing information, we use unidirectional links in our word translation
network.
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In next few chapters we will describe various multilingual features in Word
Connection Networks as we expect to integrate as many useful resources as
possible. Chapter 2 is about word representations we learned from Wikipedia
with its power to summarize and predict semantic / syntactic relationships
of word pairs. Chapter 3 describes our graph propagation method and how
we create sentiment labels for vertices in the graph. Chapter 4 talks about
an advanced text-based transliteration system with higher accuracy and cov-
erage on detecting borrowed words. Chapter 5 studies historical trend of
numbers, trying to figure out importance of numbers since numbers have a
stable expressive power across all possible languages. Chapter 6 describe an
application of finding historical analogous which uses knowledge integrated
in Word Connection Networks.
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Chapter 2

The Expressive Power of Word
Representations

Distributed word representations (a.k.a. word embedding) are high dimen-
sional numerical vector representation of words. Such representations are
trained via large amount of corpus [94, 6] without human intervention or
language dependent processing. Word representations are expected to cap-
ture semantic and syntactic features of words from large amount of context.
Training word representations are usually unsupervised and features captured
by embedding are task independent, which make them ideal for language
modeling and setting up inner language semantic or syntactic connections.
Word representations are fixed resources once training is complete and can
be directly applied to various natural language processing tasks.

However, embedding is hard to interpret and understand since points in
high dimensional spaces carry a lot of information that is hard to quantify
as shown in Figure 2.1. The efforts of visualizing the word embedding [96]
show one possibility. Figure 2.2 1 shows that without appropriate processing
(e.g. 2-D projection), it is difficult to reveal hidden connections in word
representations. Additionally, publicly available embedding generated by
multiple research groups use different data and training procedures and there
is not yet an understanding about the best way to learn these representations.
We did a detailed study to extract, analyze and explain information inside
word representation.

1Perozzi, B, Al-Rfou’, R, Kulkarni, V and Skiena, S. Inducing Language Networks
from Continuous Space Word Representations. Complex Networks V, volume 549, page
261–273, 2014.
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Word Numerical Representation

detroit

n dimensions︷ ︸︸ ︷
0.20, 1.76, 0.25, ..., 0.61, 0.57,−1.20

chicago 0.11, 0.93, 0.87, ... , -0.33, 0.07, -0.27
seattle 0.46, 0.45, 0.51, ... , 0.46, 0.39, -0.55

tree 1.54, 1.76, -1.27, ... , -0.10, 0.00, 0.68
run -0.55, 0.28, -0.48, ... , -0.54, -0.87, 0.65

Word Color Representation
detroit ...
chicago ...
seattle ...

tree ...
run ...

Figure 2.1: Numerical (top) and color (bottom) representation of sample
words. Word representation can group words with similar syntactic and se-
mantic behaviors together but it is hard for human to learn specific knowledge
inside word representations from numerical format. Color format converts
floating numbers to red-blue scale to better capture distances between words.
For instance, cities are close with each other, slightly faraway from ordinary
noun “tree” and distant from verb “run” in high dimensional space.

2.1 Our work

Our published work [23] 2 investigate four public released word embedding:
(1) HLBL, (2) SENNA, (3) Turian’s and (4) Huang’s. We use context-free
classification tasks rather than sequence labeling tasks (such as part of speech
tagging) to isolate the effects of context in making decisions and eliminate
the complexity of the learning methods. Specifically, our work makes the
following contributions:

• We show through evaluation about the quality to extract reliable se-
mantics in the absence of sentence structure from word representations
as independent resources. We discovered difference in the character-
istics of the publicly released word embedding according to how they

2ICML 2013 Workshop on Deep Learning for Audio, Speech, and Language Processing.
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are trained and indicate what features should be emphasized in the
optimization function.

• We explore the impact of the number of dimensions and the resolution
of each dimension on the quality of the information that can be encoded
in the embedding space. Our research shows the redundancy level of
word representations and indicates balance between time and quality
to capture the useful semantic information in the embedding.

• We demonstrate the importance of relative positions and orientations
of embedding pairs in encoding useful linguistic information. We run
two pair classification tasks and provide an example with one of them
where pair performance greatly exceeds that of individual words.
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Figure 2.2: 2-D visualization sample of word representations. Compared
with raw formats in Figure 2.1, correct processing including projection and
dimension reduction provides much better visualization for human to learn
specific knowledge inside word representations.

2.2 Related work

The original work for generating word embedding was presented by Bengio
et al. [10] as a secondary output when generating language model. Since
then, a significant interest grew in speeding up the generation process [11, 12].
These original language models were evaluated using perplexity.

There had been recent interest in the application of embedding for learn-
ing features and representations. SENNA’s embedding [25] was generated
using a model that is discriminating and non-probabilistic. In each train-
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ing update, an n-gram from the corpus was read, concatenating the learned
embedding of these n words. Then a corrupted n-gram was used by replac-
ing the word in the middle with a random one from the vocabulary. On
top of the two phrases, the model learned a scoring function that scored
the original phrases lower than the corrupted one. The loss function used
for training was hinge loss. [26] showed that embedding is able to perform
well on several NLP tasks in the absence of any other features. The NLP
tasks considered by SENNA all consist of sequence labeling, which imply
that the model might learn from sequence dependencies. Our work enriches
the discussion by focusing on term classification problems.

Turian et al. [94] duplicated the SENNA embedding with some differences;
they corrupt the last word of each n-gram instead of the word in the middle.
They also showed that using embedding in conjunction with typical NLP
features improves the performance on the Named Entity Recognition task.
An additional result of [94] showed that most of the embedding has similar
effect when added to an existing NLP task. However, this gave the wrong
impression. Our work illustrates that not all embedding are created equal and
there are significant differences in the information captured by each publicly
released model exist.

Mnih and Hinton [71] proposed a log-bilinear loss function to model lan-
guage. Given an n-gram, the model concatenated the embedding of the n-1
first words, and learned a linear model to predict the embedding of the last
word. Mnih and Hinton [72] later proposed Hierarchical log-bilinear (HLBL)
embedding to speed up model evaluation during training and testing by us-
ing a hierarchical approach (similar to [73]) that prune the search space for
the next word by dividing the prediction into a series of predictions that fil-
ter region of the space. The language model was eventually evaluated using
perplexity.

Huang et al. [45] incorporated global context to handle challenges raised
by words with multiple meanings, which was considered a fundamental chal-
lenge for neural language models that involves representing words which have
multiple meanings.

Mikolov et al. [70] investigated linguistic regularities captured by the rel-
ative positions of points in the embedding space, showing that it is possible
to find analogous relationship between words (e.g. King : Queen = Man :
Woman). Our results regarding pair classification are complementary.
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2.3 Experimental setup

We construct three term classification problems and two pair classification
problems to measure the quality of embedding.

2.3.1 Evaluation tasks

Our evaluation tasks are as follows:

• Sentiment polarity: We use Lydia’s sentiment lexicon [40] to create
sets of words which have positive or negative connotations and con-
struct the 2-class sentiment polarity test. The data size is 6923 words.
We also consider a 3-class version of the sentiment test, in which we
discriminate between words that are positive, negative, and neutral.
We pick our set of neutral words by randomly selecting from words not
occurring in our sentiment lexicon.

• Noun gender: We use Bergsma’s dataset [13] to compile a list of
masculine and feminine proper nouns. Names that co-refer more fre-
quently with she/he are respectively considered feminine/masculine.
Strings that co-refer the most with it, appear less than 300 times in the
corpus, or consist of multiple words are ignored. The total size is 2133
words.

• Plurality: We use WordNet [34] to extract nouns in their singular and
plural forms. The data consists of 3012 words.

• Synonyms and antonyms: We use WordNet to extract synonym
and antonym pairs and check whether we can part one kind from the
others. The relation is symmetric thus we put each word pair together
with their order-reversed-counterparts. There are 3446 different word
pairs. We also consider a 3-class version of this test which adds a new
group of containing words that are neither synonyms nor antonyms.

• Regional spellings: We collect the words that differ in spelling be-
tween UK English and the American counterpart from an online source
[63]. We make this task be a pair classification task to emphasize rel-
ative distances between corresponding embedding. In total we have
1565 word pairs in this task.
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Sentiment Noun Gender Plurality
Positive Negative Feminine Masculine Plural Singular

Samples
good bad Ada Steve cats cat
talent stupid Irena Roland tables table

amazing flaw Linda Leonardo systems system

Synonyms and Antonyms Regional Spellings
Synonyms Antonyms UK first US first

Samples
store shop rear front colour color color colour
virgin pure polite impolite syphon siphon siphon syphon

permit license friend foe aeon eon eon aeon

Table 2.1: Example data input for each task. Top 3 tasks are term-wise
comparisons accepting embedding of only one word as input. Bottom 2
tasks are pair-wise comparisons and we feed two word representations at a
time.

Notice that the task of “Synonyms and antonyms” should preserve sym-
metry (i.e. good is an antonym of evil implies that evil is an antonym of
good) while the “Regional spelling” task is asymmetric.

We ensure that for all tasks the class labels are balanced. This allows our
baseline evaluation to be either the random classifier or the most frequent
label classifier. Either of them will give an accuracy of 50%. Table 2.1 shows
examples of each of the 2-class evaluation tasks. The classifier is asked to
identify which of the classes a term or pair belongs to.

2.3.2 Embedding datasets

On the other hand, we choose the following publicly available embedding
datasets for evaluation.

• SENNA’s embedding [25] covers 130,000 words with 50 dimensions
for each word.

• Turian’s embedding [94] covers 268,810 words, each represented ei-
ther with 25, 50 or 100 dimensions.

• HLBL’s embeddings [72] covers 246,122 words. This embedding
was trained on same data used for Turian embedding for 100 epochs (7
days), and has been induced in 50 or 100 dimensions.
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• Huang’s embedding [45] covers 100,232 words, in 50 dimensions.
Huang’s embedding requires context to disambiguate which prototype
to use for a word. Our tasks are context free so we average the multiple
prototypes to a single point in the space, given the fact that this was
the approach which worked best in our testing.

It should be emphasized that each of these models has been induced
under substantially different training parameters. Each model has its own
vocabulary, used a different context size, and was trained for a different
number of epochs on its training set. While the control of these variables is
outside the scope of this study, we hope to mitigate one of these challenges
by running our experiments on the vocabulary shared by all these embedding
datasets. The size of this shared vocabulary is 58,411 words.

2.3.3 Classification

For classification we used Logistic regression and a SVM with the RBF-kernel
as linear and non-linear classifiers. There is a model-selection procedure by
running a grid-search on the parameter space with the help of the develop-
ment data. All experiments were written using the Python package Scikit-
learn [77]. For the term classification tasks we offered the classifier only the
embedding of the word as an input. For pairwise experiments, the input
consists of the embedding of the two words concatenated.

The average of four folds of cross validation is used to evaluate the perfor-
mance of each classifier on each task. 50%, 25%, 25% of the data is used, as
training, development and testing datasets respectively, for evaluation and
model selection.

2.4 Evaluation Results

Here we present the evaluation of both our term and pair classification results.

2.4.1 Term Classification

Figure 2.3 shows the results over all the 2-class term classification tasks using
logistic regression and RBF-kernel SVM. It is surprising that all the embed-
ding we considered did much better than the baseline, even on a seemingly
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hard test like sentiment detection. What’s more, there is strong performance
from both the SENNA and Huang embedding. SENNA embedding seems to
capture the plurality relationship better, which may be from the emphasis
that the SENNA embedding place on shallow syntactic features.

Sentiment Gender Plurality
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y

SENNA

HLBL-50

HLBL-100

Turian-25

Turian-50

Turian-100

Huang

Figure 2.3: Results of term-based tasks. To illustrate that strong perfor-
mance is still possible on such tasks, we report results by classifier type
separately. Unshaded areas show average results from the tasks across classi-
fiers using the geometric mean. Shaded areas represent improvements using
kernel SVM.

Table 2.2 shows examples of words from the test datasets after classifying
them using logistic regression on the SENNA embedding with most obvious
sentiment polarities and British spellings. For SENNA the performance of
Sentiment task is good, given the obvious contrast between the probabilities
of words – top words are given almost 100% probability and the bottom ones
are given almost 0%. The results of regional spelling task shown here use
term-wise setup (i.e. judge the regions by the embedding of a single word).
Despite not performing as well as the pair-wise spelling (i.e. induce regional
spelling by relative positions in embedding space), we can see that classifier
shows meaningful results. We can clearly notice that the British spellings of
words favor the usage of hyphens, s over z and ll over l.
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Positive Prob British Prob

S
e
n
ti

m
e
n
t

world-famous 99.85

R
e
g
io

n
a
l

S
p

e
ll
in

g

kick-off 92.37
award-winning 99.83 hauliers 91.54
high-quality 99.83 re-exported 89.46
achievement 99.81 bullet-proof 88.69
athletic 99.81 initialled 88.42
resilient 50.14 paralysed 50.16
ragged 50.11 italicized 50.04
discriminating 50.10 exorcise 50.03
stout 49.97 fusing 49.90
lose 49.83 lacklustre 49.78
bored 49.81 subsidizing 49.77
bloodshed 0.74 signaling 32.04
burglary 0.68 hemorrhagic 21.69
robbery 0.58 tumor 21.69
panic 0.45 homologue 19.53
stone-throwing 0.28 localize 17.50
Negative 1.0-Prob American 1.0-Prob

Table 2.2: Most positive and negative examples using logistic regression on
Sentiment task and Regional spelling task. Prob column measures how well
the example fit into one category. Word like resilient could have positive
and negative connotations in text and we find it close to the region were the
words are more neutral than being polarized.

2.4.2 Pair Classification

Sometimes however, the choice to use pair classification can make quite a
difference in the results. Figure 2.4 shows that classifying individual words
according to their regional usage performs poorly while redefining the prob-
lem to decide if the first word, in a pair of words, is the American spelling or
not improves the performance improves a lot. Such phenomenon indicates
that some words pairs are not separable by a hyper-plane in any subspace of
the original embedding space. Instead, we draw a similar conclusion as [70]
that the pairs’ positions relative to each other is what encodes such infor-
mation but not their absolute coordinates, and relationship between words
often indicate the relative difference vector between corresponding points.

In order to show how well linguistic information is encoded in the embed-
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Figure 2.4: Comparison between treating Region spelling task as term-based
test and as pair-based test. The result shows that difference between embed-
ding encoded more information than absolute positions in embedding space.

ding of word pairs, we present the results of our 2-class pair tasks in Figure
2.5. The embedding performs well as expected. Plus, an interesting differ-
ence between SENNA and Huang’s embedding can be observed here. In our
previous Plurality test, the SENNA embedding significantly outperformed
Huang’s. However in our regional spelling task (which might seem similar),
Huang’s embedding outperform SENNA in both term and pair classification
setups. We believe that Huang’s approach for building word prototypes from
significant differences in context provide a significant advantage on this task.

Given the fact that they way both HLBL and SENNA/Turian model
corrupted their examples favor words that can syntactically replace each
other; e.g. bad can replace good as easily as excellent can. The result of
this syntactic interchangeability is that both bad and excellent are close to
good in the embedding space. However, it is good to see these models may
capture the relation between a synonym and antonym well, indicating that
minor differences of context around synonyms and antonyms are captured
during the training.

In general, Huang’s embedding performed best on the 2-class tests. The
notable exception was the Plurality task, which was the strongest performing
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Figure 2.5: Results of pair-based tests on 2-class classification tasks. Un-
shaded areas show average results from the tasks across classifiers using the
geometric mean. Shaded areas represent improvements using kernel SVM.

task for each of the other embedding. Huang’s embedding seeks to primar-
ily capture semantic relationships. SENNA also performed strongly on the
2-class tests. On the 3-class tests, SENNA performs better than Huang’s
embedding.

To better explain these results, we performed a 3-class version of the
sentiment test, in which we evaluated the ability to classify words as having
positive, negative, or neutral sentiment value. The results are presented in
Figure 2.6. In order to show that embedding can still perform quite well on
this task, we have reported the nonlinear classifier separately from the linear
ones. The results are consistent with those from our 2-label test, and all
embedding performs much higher than the baseline score of 33%.

Besides, we conducted a similar 3-class version test on Synonyms and
antonyms task to investigate the depth to which semantic features are cap-
tured. We now evaluate between pairs of words that are synonyms, antonyms,
or have no such relation. While such a task is much harder for the embed-
ding, the results in Figure 2.7 show that a nonlinear classifier can capture the
relationship, particularly with the SENNA embedding. An analysis of the
confusion matrix for the nonlinear SVM showed that errors occurred roughly
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Figure 2.6: Performances on the 3-class version of Sentiment task. Unshaded
areas show average results from the tasks across classifiers using the geometric
mean. Shaded areas represent improvements using kernel SVM.

evenly between the classes. We believe that this finding regarding the encod-
ing of synonym/antonym relationships is an interesting contribution of our
work.

2.5 Information reduction

Distributed word representations exist in continuous space, which is quite
different from common language modeling techniques. Beside the powerful
expressiveness that we demonstrated previously, another key advantage of
distributed representations is their size - they require far less memory and
disk storage than other techniques. In this section we seek to understand
exactly how much space word embedding need in order to serve as useful
features. We also investigate whether the powerful representation that em-
bedding offer is a result of having real value coordinates or the exponential
number of regions which can be described using multiple independent dimen-
sions.

To understand the effect of such hyper-parameters we run two experi-
ments. The first reduces the resolution of each real-valued dimension and
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Figure 2.7: Performances on the 3-class version of Synonyms and antonyms
task. Unshaded areas show average results from the tasks across classifiers
using the geometric mean. Shaded areas represent improvements using kernel
SVM.

helps us understand the level of precision required for our tasks. The sec-
ond reduces the dimensions of embedding and provides insight into how the
dimensions of the embedding affect the final result.

2.5.1 Bitwise truncation

To reduce the resolution of the real numbers those make up the embedding
matrix. First we scale them to 32 bit integer values, then we divide the values
by 2b, where b is the number of bits we wish to remove. Finally, we scale the
values back to lie between (−1, 1). After this preprocessing we give the new
values as features to our classifiers. In the extreme case, when we truncate
31 bits, the values will be all either {1,−1}.

Figure 2.8 shows that when we remove 31 bits (i.e, values are {1,−1}),
the performance of an embedding dataset drops no more than 7%. This re-
duced resolution is equivalent to 250 regions which can be encoded in the new
space. This is still a high resolution, but surprisingly seems to be sufficient
at solving the tasks we proposed. A näıve approximation of this trick which
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may be of interest is to simply take the sign of the embedding values as the
representation of the embedding themselves. Figure 2.9 illustrate changes
of performance in different tasks. All tasks behave similarly and the most
distinguished threshold of resolution lies near 4 bits.
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Figure 2.8: Results of reducing the precision of the embedding, averaged by
the geometric mean of each dataset. Notice that after removing 31 bits, each
dimension of the embedding is a binary feature.
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Figure 2.9: Results of reducing the precision of the embedding, averaged by
the geometric mean of tasks.

2.5.2 Principle component analysis (PCA)

The bitwise truncation experiment indicates that the number of dimensions
could be a key factor into the performance of the embedding. To experiment
on this further, we run PCA over the embedding datasets to evaluate task
performance on a reduced number of dimensions. Figure 2.10 shows that
reducing the dimensions drops the accuracy of the classifiers significantly
across all embedding datasets and Figure 2.11 shows that such behavior exist
for all tasks. It is expected since the dimensionality reduction is unsupervised
but the slope is still an interesting point to discover.

If subtle semantic features such as sentiment polarity need more dimen-
sions to explain, shallow syntactic features such as gender and number agree-
ment may be preserved at the expense dimension redundancy. This gives us
insight into what the hierarchical structure of the embedding space looks
like. Shallow semantic features are present in all aspects of the space, and
when PCA chooses to maximize this variance of the feature space it is at the
expense of the other semantic properties.

Another key difference between the truncation experiment and the PCA
experiment is that the truncation experiment may preserve relationships cap-
tured by non-linearities in the embedding space. Linear PCA cannot offer
such guarantees and this weakness may contribute to the difference in per-

23



formance.
Looking at Figure 2.11, reducing the words embedding to points on a real

line almost deletes all the features that are relevant to the pair classification
and to less a degree the sentiment features. Despite the 10%-20% drop in
accuracy in the Plurality and Gender tasks, the classification is still higher
than random. The results shows shallow syntactic features such as gender
and number agreement are preserved at the expense of more subtle semantic
features such as sentiment polarity. This gives us insight into what the
hierarchical structure of the embedding space looks like. Shallow semantic
features are present in all aspects of the space, and when PCA chooses to
maximize this variance of the feature space it is at the expense of the other
semantic properties.
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Figure 2.10: Results of reducing the dimensions of the embeddings through
PCA, averaged by the geometric mean of each dataset.
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Figure 2.11: Results of reducing the dimensions of the embeddings through
PCA, averaged by the geometric mean of each task.

1 2 3 5 10 15 20 25 50
Dimensions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu
ra
cy

Synonym (RBF)
Plural (RBF)

Sentiment (RBF)
Synonym (linear)

Plural (linear)
Sentiment (linear)

Figure 2.12: Comparison of performance changes between linear classifiers
and nonlinear classifiers during PCA.

We also illustrate this phenomenon in Figure 2.12 by showing how per-
formance of the linear and non-linear classifiers converge for harder tasks
(sentiment and synonym) as we reduce the number of dimensions in PCA.
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2.6 Application of word representations

Previous work on distributed word representations mainly focused on speed-
ing up the training process with one metric for evaluation, perplexity. We
show that this metric is not able to provide a nuanced view of their quality.
We develop a suite of linguistic oriented tasks which might serve as a part
of a comprehensive benchmark for word embedding evaluation. The tasks
focus on words or pairs of them in isolation to the actual text. The goal here
is not to build a useful classifier as much as it is to understand how much
supervised learning can benefit from the features encoded in the embedding.

Word representations show a lot of promise to improve supervised learn-
ing and semi-supervised learning. As single-word features that could be inte-
grated in to Word Connection Networks , word representations are proved to
be valuable on many natural language processing tasks. Having dense rep-
resentations within groups of similar words provides a collection of unsuper-
vised language features from context that benefit many language processing
tasks, given the fact that information extracted from word representations
basically agree with human knowledge stored in Word Connection Networks.

We succeed in showing that the publicly available datasets differ in their
quality and usefulness, and our results are consistent across tasks and clas-
sifiers. Our future work will try to address the factors that lead to such
diverse quality. The effect of training corpus size and the choice of the ob-
jective functions are two main areas where better understanding is needed.

While our tasks are simple, the differences among task performance shed
light on the features encoded by embedding. We showed that in addition
to the shallow syntactic features like plural and gender agreement, there are
significant semantic partitions regarding sentiment and synonym/antonym
meaning. On the other hand, we demonstrate high redundancy in word
representations. Developing better approaches of training procedure/storing
mechanism/information retrieval will potentially improve the performance of
word representations on many natural language processing tasks.

Last but not least, word representations demonstrate an innovative idea
of enriching intra-language connections inside Word Connection Networks.
Multiple trustful relationships between words in each single language could be
extracted via specific distance function trained by machine learning methods.
Combined with inter-language connections across languages, we can capture
more interesting features in multilingual environment that are not displayed
from original data collections in Word Connection Networks.
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Chapter 3

Constructing Multilingual
Sentiment Lexicons

Sentiment analysis of English texts has become a large and active research
area, with many commercial applications including market research, opinion
polling, and product review analysis. But the barrier of language limits the
ability to assess the sentiment of most of the world’s population.

Although several well-regarded sentiment lexicons are available in English
[33, 64], the same is not true for most of the world’s languages. Indeed, our
literature search identified only 12 publicly available sentiment lexicons for
only 5 non-English languages (Chinese mandarin, German, Arabic, Japanese
and Italian). No doubt we missed some, but it is clear that these resources
are not widely available for most important languages.

Sentiment lexicons alone can tell enough information and produce com-
prehensive set of sentiments for in multilingual environment, though gram-
mar or sentence based sentiment analysis is definitely necessary to achieve
robust performance in different languages, including applying language spe-
cific negation words, amplifiers and sentence structures. We address this
lexicon gap by building high-quality sentiment lexicons through graph prop-
agation method in our Word Connection Networks for 136 world’s major
languages. We believe high-coverage of trustful sentiment lexicons in major
languages would greatly benefit natural language processing tasks in multi-
lingual world.
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3.1 Our work

We strive to evaluate transitivity and conflicts of connections in Word Con-
nection Networks and produce a comprehensive set of sentiment lexicons for
the worlds’ major languages. We make the following contributions in our
work [22]:

• New sentiment analysis resources – We have generated sentiment
lexicons for 136 major languages via graph propagation. We validate
our own work through other publicly available, human annotated sen-
timent lexicons. Indeed, our lexicons have polarity agreement of 95.7%
with these published lexicons, plus an overall coverage of 45.2%.

• Large-scale language knowledge graph – We have created a mas-
sive comprehensive Word Connection Networks of 7 million vocabulary
words from 136 languages with over 131 million semantic inter-language
links. This graph has highly heterogeneous types of edges which proves
valuable when doing alignment between definitions in different lan-
guages.

• Graph analysis and sentiment passing algorithms – We exper-
imented different graph propagation algorithms on Word Connection
Networks. We perform experiments to evaluate the importance of each
class of language resources to our final comprehensive sentiment with
a grid search to find best confidence level of each type of connections.
We successfully resolve potential conflictions of translations using dif-
ferent bridge languages and pass sentiment lexicons to many languages
without such resources.

• Extrinsic Evaluation – Since we do not have comparable sentiment
lexicons in all languages, we conduct an experiment to check if our prop-
agated sentiment lexicons can preserve relative opinions from Wikipedia
pages in different languages, assuming that Wikipedia keep their text in
a neutral point of view. In particular, we elucidate the sentiment consis-
tency of entities reported in different language editions of Wikipedia us-
ing our propagated lexicons compute sentiment scores for 2,000 distinct
famous historical figures. Language pairs among biggest 30 Wikipedia
languages exhibits a minimum Spearman sentiment correlation of 0.14
and an average correlation of 0.28.
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3.2 Related work

Sentiment analysis is an important area of NLP with a large and growing
literature. Excellent surveys of the field include [65, 76, 44], establishing
that rich online resources have greatly expanded opportunities for opinion
mining and sentiment analysis. Godbole et al. [40] built an English lexicon-
based sentiment analysis system to evaluate the general reputation of entities.
Taboada et al. [93] presented a more sophisticated model by considering
patterns, including negation and repetition using adjusted weights. Liu [64]
introduced an efficient method, at the state of the art, for doing sentiment
analysis and subjectivity in English.

Researchers had investigated topic or domain dependent approaches to
identify opinions. Jijkoun et al. [49] focused on generating topic specific
sentiment lexicons. Li et al. [62] extracted sentiment with global and local
topic dependency. Gindl et al. [38] performed sentiment analysis according
to cross-domain contextualization and Pak and Paroubek [75] focused on
Twitter, doing research on colloquial format of English.

Work had been done to generalize sentiment analysis to other languages.
Denecke [29] performed multilingual sentiment analysis using SentiWordNet.
Mihalcea et al. [69] learned multilingual subjectivity via cross-lingual pro-
jections. Abbasi et al. [1] provided a method of extracting specific language
features of Arabic, which requires language-specific expertise. Ahmad et al.
[4] demonstrated that their approach can basically handle sentiment words
in the financial arena, but making extension based on their approach re-
quires substantial human effort. There were other language-dependent ef-
forts [8, 50, 84, 2, 9, 42, 39, 41], all attempting to produce better sentiment
lexicons or sentiment analysis system in foreign languages.

The ready availability of machine translation to and from English had
prompted efforts to employ translation for sentiment analysis [9]. Banea et al.
[7] demonstrated that machine translation can perform quite well when ex-
tending the subjectivity analysis to multi-lingual environment, which makes
it inspiring to replicate their work on lexicon-based sentiment analysis.

Machine learning approaches to sentiment analysis are attractive, be-
cause of the promise of reduced manual processing. Boiy and Moens [16]
conducted machine learning sentiment analysis using multilingual web texts.
Deep learning approaches drafted off of distributed word embedding which
offer concise features reflecting the semantics of the underlying vocabulary.
Turian et al. [94] created powerful word embedding by training on real and

29



corrupted phrases, optimizing for the replaceability of words. Zou et al. [105]
combined machine translation and word representation to generate bilingual
language resources. Socher et al. [90] demonstrated a powerful approach
to English sentiment using word embedding, which can easily be extended
to other languages by training on appropriate text corpora and benefitted
language processing tasks in foreign languages.

3.3 Resource Statistics

3.3.1 Statistics of Word Connection Networks

We collect 5 types of connections that are useful in passing sentiment mes-
sages, including translations from Google, Wiktionary reference links, exact
script matching, synonyms and antonyms, covering 100,000 most frequent
Wikipedia words in each of 136 languages. We here provide basic statistics
of the Word Connection Networks in creating sentiment lexicons in Table
3.1.

Features Count
Languages 136

Vertices 7,741,544
Isolated vertices 1,732,755
Directed edges 131,773,405

Wiktionary connections 1,315,755
Script matching 66,474,432

Google Translation 23,866,910
Synonyms 97,664
Antonyms 2,754

Table 3.1: Statistics of Word Connection Networks. Isolated vertices are
vertices without any semantic links in Word Connection Networks. Synonyms
edges and Antonyms edges only consider those in English from SentiWordNet.

Figure 3.1 and Table 3.2 demonstrate links statistics in 10 biggest Wikipedia
families. Even though these languages have relatively good connectivity to
the rest of the network, typically we have 5% to 20% of the words dis-
connected from the rest of the graph. Such phenomena demonstrates the
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Figure 3.1: Count of different edges represented in log format of 10 biggest
Wikipedia languages. English acts as the hub of all languages thus it con-
tains many google translation links. Transliteration links provides word pairs
with spelling and sound similarity. Wiktionary links provides semantic con-
nections that are not discovered by Google translations.

Lang Isolated Avg Wiki Script Google
Code Vertices Deg. Deg. Deg. Deg.

Ar 16.77% 1.46 0.12 3.69 1.39
De 20.18% 1.05 0.37 9.58 0.79
El 14.43% 1.33 0.14 5.65 1.25
En 5.11% 31.28 4.50 12.59 28.90
Es 4.39% 1.86 0.66 11.36 1.34
Fr 6.24% 1.56 0.36 10.91 1.32
He 14.52% 1.17 0.07 3.25 1.13
Ro 8.19% 1.44 0.14 10.02 1.36
Ru 4.75% 1.89 0.28 4.28 1.71
Sv 15.33% 1.19 0.20 10.04 1.06

Table 3.2: Network statistics of 10 biggest Wikipedia languages. We calcu-
lated fraction of isolated vertices as well as average vertex degrees by edge
source to give a brief idea of the structure of Word Connection Networks.
English works as a hub in collecting translations from and to other languages
so it has a great number of average degrees.
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importance of selecting vocabularies according to tasks to avoid waste of
computational power.

3.4 Graph Propagation

Sentiment propagation starts from the polarities of a root English sentiment
lexicon. Through semantic links in our knowledge graph, words are able
to extend their sentiment polarities to their neighbors. We experimented
with both belief propagation algorithm [98] and label propagation algorithm
[104, 82]. Differences between two propagation methods are shown in Figure
3.2 that label propagation takes all paths from seed node to target vertex
into consideration, resolving conflictions multiple times, while belief propa-
gation utilizes only the best path between seed node and target vertex when
resolving conflictions.
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Figure 3.2: Illustration of label propagation and belief propagation. Initial
Red / Green nodes represent positive / negative seed words. Blank nodes will
be affected via links during propagation, gaining sentiment of close neighbors.
Label propagation resolves conflictions after each round belief propagation
record only the best path in parallel and resolve conflictions once at the end.

In detail, the belief propagation algorithm proceeds as shown in Algo-
rithm 1:
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Algorithm 1 Sentiment propagation algorithm

Input: Graph G = (V, E), wij ∈ [0, 1]
P as Positive seeds, N as Negative seeds

Output: Poli for each vertex i
Initialize: Poli, Pol

+
i , Pol−i = 0 for all i

1. Set α+
ij = α−ij = 0 for all i, j

2. For vi ∈ P :
3. F = {vi}
4. If found F extendable:
5. For (vk, vj) ∈ E where vk ∈ F
6. α+

ij = max{α+
ij, αik · wkj}

α−ij = min{α−ij, αik · wkj}
F = F ∪{vj}

7. For vj ∈ V :
Pol+i = Σvi∈P α+

ij

Pol−i = Σvi∈P α−ij
8. Repeat 1-7 using N to compute Pol−

9. Set β = ΣiPol
+
i ÷ ΣiPol

−
i

10. Poli = Pol+i - βPol−i

The variable T controls the max path length considered by the algorithm.
In practice, we found that restricting T to at most 1 or 2 hops is both more
efficient and reliable, since long paths from seeds rarely contribute to accurate
polarity scores. The variable w controls the confidence level of different types
of edges; for example we anticipate that transliteration edges may be less
accurate or reliable than vetted Wiktionary definitions. We distinguish both
α+ and α− because antonym word pairs lead to polarity reversal from seed
words in our algorithm.

3.4.1 Why not Label Propagation?

Certain previous studies [82] on constructing polarity lexicons use the label
propagation algorithm described in [104]. Label propagation is an iterative
algorithm where each vertex takes on weighted average of its neighbor’s values
from previous iteration.

Detailed comparison of these two propagation results can be found in
next section, but in summary our propagation algorithms perform slightly
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better than label propagation algorithm. Plus, since our Word Connection
Networks is a sparse graph, there are no needs to resolve conflicts after each
round of propagations. Considering only the best path will save processing
time and provide better summary for propagation results of each seed word.

3.4.2 Source English Sentiment Lexicons

We report results from using Liu’s lexicons [64] as seed words. Liu’s lexicons
contain 2006 positive words and 4783 negative words. Of these, 1422 positive
words and 2956 negative words (roughly 64.5%) appear among the 100,000
English vertices in our graph.

3.4.3 Parameterization of Edge Classes

Our knowledge network is comprised of links from a heterogeneous collection
of sources, of different coverage and reliability, and hence representatives of
each class presumably should not be weighted equally. An edge gains zero
weight if both negative and positive links exist. For edges defined by multiple
source classes, we use the maximum of the possible parameter values. We
conducted a grid search for optimal weight values for each connection type,
including Machine translation, Wiktionary, Script matching, WordNet syn-
onyms and antonyms, within the range of [-1.0, 1.0] with a step-length of 0.1.
To avoid potential over fitting problem, grid search starts from SentiWord-
Net English lexicons [33] instead of Liu’s. Our objective function maximizes
the overall agreement (e.g. accuracy) on our Liu’s dataset of published non-
English sentiment lexicons.

Table 3.3 shows some sample edge-weight sets and we hope this table can
tell more about the quality of our resources.

Our experiment demonstrates that Google translation and Wiktionary
resources provide the most reliable semantic links in extending sentiment.
Transliteration links prove very valuable to increase the connectivity of our
graph – particularly since we trust only short paths from seed words but
there are sometimes flip of sentiment polarity via transliteration links. Syn-
onym links prove less trustworthy than antonyms, primarily because due to
existence of multi-sense words, which often confuse sentiment propagation.
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Type Best -Ant -Syn -Google -Script -Wik

Wiktionary 0.8 1.0 1.0 1.0 1.0 0.1
Script matching 0.5 1.0 1.0 1.0 0.1 1.0
Google Translation 0.8 1.0 1.0 0.1 1.0 1.0
Synonyms 0.7 1.0 0.1 1.0 1.0 1.0
Antonyms -0.7 -0.1 -1.0 -1.0 -1.0 -1.0

Accuracy Performance 0.94 0.85 0.89 0.78 0.85 0.82

Table 3.3: Edge parameter weights and corresponding performances. Best
column demonstrates the optimized parameters via grid search. Following
columns each shows values and performances of weakening a certain type of
edges. Performances are measured via the agreement of our test dataset of
published non-English sentiment lexicons.

3.5 Lexicon Evaluation

We collected all available published sentiment lexicons from non-English lan-
guages to serve as standard for our evaluation, including Arabic, Italian,
Deutsch and Chinese. Coupled with English sentiment lexicons provides in
total seven different test cases to experiment against, specifically:

• Arabic: Wordlist in subjectivity analysis [2].

• German: Generated German language resources in [84].

• English: SentiWordNet [33].

• Italian: Sentiment lexicons in Italian tweets [8].

• Japanese: Collected from massive HTML documents [50].

• Chinese-1, Chinese-2: Chinese sentiment lexicons [41].

3.5.1 Testing Score

Given the fact that we are trying to do a generalized work in multi-lingual
environment and our dictionary is created from high-frequency words in each
dependent language, it is hard to tell if our lexicons cover a wider range com-
pared with those published sentiment lexicons. However, we could check how
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well our propagated sentiment lexicons agree with these previously defined
lexicons. We present the accuracy and F1 score achieved by each algorithm
variant on each text lexicon in the table below to evaluate the performance
of our propagation method.

Accuracy represents the ratio of correct sentiment words (identical po-
larity between our analysis and the published lexicons). F1 shows the com-
bination of precision and recall. Finally, Coverage reflects what fraction
of lexicons reflected by the published lexicon was correctly recovered by our
algorithm.

Test Propagation Accuracy F1 Coverage

Ar
Label 0.93 0.93 0.45
Belief 0.94 0.94 0.46

De
Label 0.97 0.97 0.31
Belief 0.97 0.97 0.32

En
Label 0.92 0.94 0.55
Belief 0.90 0.92 0.69

It
Label 0.73 0.77 0.29
Belief 0.72 0.76 0.32

Ja
Label 0.57 0.72 0.12
Belief 0.56 0.71 0.15

Zh-1
Label 0.95 0.94 0.62
Belief 0.94 0.94 0.65

Zh-2
Label 0.97 0.97 0.70
Belief 0.97 0.97 0.72

Table 3.4: Belief propagation vs label propagation, using Liu’s lexicons as
seed words. Accuracy represents the ratio of identical polarity between our
analysis and the published lexicons. F1 combines precision and recall. Cov-
erage reflects what faction of our lexicons overlap with published lexicons.

Comparing the two algorithms (belief vs. label propagation) in Table 3.4,
we see that belief propagation always yields better coverage, meaning that
we have less confusion on contradicting inputs. The situations where it loses
reflect minor losses of accuracy and F1 score. We see similar results in Table
3.5, where we begin from SentiWordNet. Again, belief propagation performs
better than label propagation. Finally, we conclude that Liu’s lexicons pro-
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vide substantially higher coverage and greater accuracy than SentiWordNet.

Test Propagation Accuracy F1 Coverage

Ar
Label 0.87 0.87 0.26
Belief 0.88 0.87 0.30

De
Label 0.89 0.91 0.14
Belief 0.88 0.91 0.19

En
Label 0.93 0.95 0.17
Belief 0.94 0.95 0.20

It
Label 0.78 0.82 0.14
Belief 0.80 0.83 0.18

Ja
Label 0.40 0.57 0.08
Belief 0.42 0.61 0.14

Zh-1
Label 0.86 0.86 0.33
Belief 0.85 0.85 0.37

Zh-2
Label 0.89 0.91 0.29
Belief 0.89 0.91 0.31

Table 3.5: Belief propagation vs label propagation, starting from SentiWord-
Net. Measure metrics have the same definition as Table 3.4.

Also, we draw a conclusion that starting from Bin Liu’s opinion lexicons is
better – simply because that this list contains more words with less confusion.

3.5.2 Per-language Analysis

It is important to compare the effectiveness of our propagation for each
of the 136 languages in our analysis, where many of these languages are
particular resource poor with respect to text volume and language links.
Statistics on all of sentiment lexicons are presented in Table 3.6, including the
size of our lexicons and the ratio of words labeled as of positive vs. negative
sentiment in each language. It reveals that very sparse sentiment lexicons
resulted for a small but notable fraction of the languages we analyzed.

In particular, only 21 languages yielded lexicons of less than 100 words.
Accumulated distribution of sentiment word count is shown in Figure 3.3.
Without exception, these are language with very small available definitions in
Wiktionary mapping indigenous words to other languages as shown in Figure
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Language Count Ratio Language Count Ratio Language Count Ratio
Afrikaans 2299 0.40 Albanian 2076 0.41 Amharic 46 0.63
Arabic 2794 0.41 Aragonese 97 0.47 Armenian 1657 0.43
Assamese 493 0.49 Azerbaijani 1979 0.41 Bashkir 19 0.63
Basque 1979 0.40 Belarusian 1526 0.43 Bengali 2393 0.42
Bosnian 2020 0.42 Breton 184 0.42 Bulgarian 2847 0.40
Burmese 461 0.48 Catalan 3204 0.37 Cebuano 56 0.54
Chechen 26 0.65 Chinese 3828 0.34 Chuvash 17 0.76
Croatian 2208 0.40 Czech 2599 0.41 Danish 3340 0.38
Divehi 67 0.67 Dutch 3976 0.38 English 4376 0.32
Esperanto 2604 0.40 Estonian 2105 0.41 Faroese 123 0.43
Finnish 3295 0.40 French 4653 0.35 Frisian 224 0.43
Gaelic 345 0.50 Galician 2714 0.37 German 3974 0.38
Georgian 2202 0.40 Greek 2703 0.39 Gujarati 2145 0.44
Haitian 472 0.44 Hebrew 2533 0.36 Hindi 3640 0.39
Hungarian 3522 0.38 Icelandic 1770 0.40 Ido 183 0.49
Interlingua 326 0.50 Indonesian 2900 0.37 Italian 4491 0.36
Irish 1073 0.45 Japanese 1017 0.39 Javanese 168 0.51
Kazakh 81 0.65 Kannada 2173 0.42 Kirghiz 246 0.49
Khmer 956 0.49 Korean 2118 0.42 Kurdish 145 0.48
Latin 2033 0.46 Latvian 1938 0.42 Limburgish 93 0.46
Lithuanian 2190 0.41 Luxembourg 224 0.52 Macedonian 2965 0.39
Malagasy 48 0.54 Malayalam 393 0.50 Malay 2934 0.39
Maltese 863 0.50 Marathi 1825 0.48 Manx 90 0.51
Mongolian 130 0.52 Nepali 504 0.49 Norwegian 3089 0.37
Nynorsk 1894 0.39 Occitan 429 0.40 Oriya 360 0.51
Ossetic 12 0.67 Panjabi 79 0.63 Pashto 198 0.50
Persian 2477 0.39 Polish 3533 0.39 Portuguese 3953 0.35
Quechua 47 0.55 Romansh 116 0.48 Romanian 3329 0.39
Russian 2914 0.43 Sanskrit 178 0.59 Sami 24 0.71
Serbian 2034 0.41 Sinhala 1122 0.43 Slovak 2428 0.43
Slovene 2244 0.42 Spanish 4275 0.36 Sundanese 476 0.50
Swahili 1314 0.42 Swedish 3722 0.39 Tamil 2057 0.40
Tagalog 1858 0.44 Tajik 97 0.62 Tatar 76 0.50
Telugu 2523 0.41 Thai 1279 0.51 Tibetan 24 0.63
Turkmen 78 0.56 Turkish 2500 0.39 Uighur 18 0.44
Ukrainian 2827 0.41 Urdu 1347 0.39 Uzbek 111 0.57
Vietnamese 1016 0.38 Volapuk 43 0.70 Walloon 193 0.32
Waray 44 0.61 Welsh 1647 0.42 Yiddish 395 0.43
Yoruba 276 0.50

Table 3.6: Statistics of propagated sentiment lexicons in major languages.
We tag 10 languages having most/least sentiment words with blue/green
color and 10 languages having highest/lowest ratio of positive words with
orange/purple color. Count shows number of propagated sentiment lexicons
and Ratio demonstrates the ratio of positive lexicons.
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Figure 3.3: Accumulated distribution of sentiment word count. About 20
languages have less than 100 propagated sentiment words. Totally 60 lan-
guages have less than 1,000 sentiment words.

3.4, the correlation between Wiktionary entries and sentiment word count.
By contrast, 48 languages had lexicons with over 2,000 words, another 16
with between 1,000 and 2,000: clearly large enough to perform a meaningful
analysis.

Further find that ratio of positive sentiment words is strongly connected
with number of sentiment words. Interestingly, the lexicon seems to be-
come more positive as it becomes smaller, possibly reflecting the fact that
many negative words reflect cultural nuances which do not translate well,
like shmuck, schlimeil, and putz in Yiddish. We believe that this ratio can
be considered as quality measurement for the success of the propagation. It
is noteworthy that English has the smallest ratio of positive lexicon terms.

3.6 Extrinsic Evaluation: Consistency of Wikipedia

Sentiment

To provide an extrinsic evaluation of our sentiment lexicons, we consider
the consistency of evaluation of different language Wikipedia pages about a
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Figure 3.4: Correlation between Wiktionary entries and sentiment word
count. Languages with less than 5,000 Wiktionary entries are usually those
we cannot find good propagations of sentiment lexicons, indicating that bet-
ter language resources are needed for these languages.

particular entity, particularly individual people. We assert that the sentiment
scale from “evil” to “hero” should show gross consistencies across cultures,
although there will also be considerable cultural variation as well. As our
candidate entities for analysis, we use the Wikipedia pages of 2,000 most
famous people according to their significance as measured in the recent book
Who’s bigger? [88]. Sentiment polarity for a page is simply computed by the
number of occurrences of positive polarity words - negative polarity words,
divided by the sum of both.

3.6.1 Normalizing across languages

We first show that our sentiment lexicons have strong correlations in their
absolute sentiment score in Figure 3.5. We pick 2 Latin languages: Spanish
and French. Both Figure 3.5a and Figure 3.5b shows that sentiment scores
of the same person calculated using our propagated lexicons show strong
correlation.
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(a) English-Spanish (b) English-French.

Figure 3.5: Sentiment score distribution of Wikipedia pages between English
and (left) Spanish / (right) French. We calculate sentiment scores using our
propagated sentiment lexicons. The green line estimated correlations and we
show that strong correlations exist in scores of the same person but different
language version.

Figure 3.6 presents a distribution of entity polarity by language using
our propagated sentiment lexicons. As we see that sentiment distribution of
almost all languages look like a bell-shape normal distribution curve, show-
ing that sentiment of famous people on Wikipedia fit in statistics. In “big”
languages such as English or Deutsch, a famous person’s Wikipedia page will
always contain a paragraph of brief introduction as well as multi-paragraphs
of his or her life history, which inevitably grants quite a large amount of
positive words. That’s the reason we see the center of sentiment distribu-
tion floating around positive side. While in languages with small group of
users, people’s pages might be incomplete thus only a small number of words
having polarity can be detected. We demonstrates how effectively Z-score
makes the distributions comparable. Combining information in Table 3.6,
the differing ratio of positive and negative polarity terms means sentiment
cannot be directly compared across languages. For more consistent valua-
tion we compute the z-score of each entity against the distribution of all its
language’s entities.
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(a) Absolute polarity.

(b) Z-score polarity.

Figure 3.6: Distribution of Wikipedia pages in 10 biggest Wikipedia lan-
guages. Top subfigure shows absolute sentiment value. Bottom subfigure
mitigated differences in lexicon polarity composition by normalization, en-
abling the results to be compared directly across languages.

3.6.2 Consistency between language pairs

We use the Spearman correlation coefficient to measure the consistence of
sentiment distribution across all entities with pages in a particular language
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pair. Figure 3.7 shows the results for the 30 biggest languages on Wikipedia
with first ten languages we have discussed previously. All pairs of language
exhibit positive correlation (and hence generally stable and consistent senti-
ment), with an average correlation of 0.28.

Figure 3.7: Heatmap showing sentiment correlation between 30 Wikipedia
languages on 2,000 most famous historical figures according to Who’s big-
ger? [88]. First 10 languages are 10 biggest languages discussed in previous
sections.

We conduct consistency experiment according to Z-scores on all 136 lan-
guages. It may look confusing on some minor languages but the result seems
persuasive on major languages. Table 3.7 illustrates sentiment consistency
over all 136 languages (represented by blue tick marks), with the ten under
discussion above granted labels. Respected artists like Steven Spielberg and
Leonardo da Vinci show as consistently positive sentiment as notorious fig-
ures like Osama bin Laden and Adolf Hitler are negative. Political figures
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Type Person Z-score distribution

Good
Leonardo da Vinci

Steven Spielberg

Bad
Adolf Hitler

Osama bin Laden

Neutral
Hillary Clinton

Tony Blair

Biased
Mao Zedong

Woodrow Wilson

Table 3.7: Z-score distribution examples of typical “good guys”, “bad guys”,
“neutral guys” and “biased historical figures”. We label 10 languages with
their language code and other using tick marks on the x-axis. It is obvious
that our Z-score measurement keep good consistency across languages in
categorizing good and bad people.
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like Tony Blair and Hillary Rodham Clinton are usually neutral with some
languages holding divergent opinions. There also exist biased opinions to-
wards some historical figures like Mao Zedong and Woodrow Wilson, showing
as outliners in specific languages that does not keep consistency with other
languages.

3.7 Application of multilingual sentiment lex-

icons

We have successfully extend sentiment lexicons in English to the rest of
the world. Given the fact that word-level features are usually comprehen-
sive without interacting with grammar or sentences, we expect our senti-
ment lexicons to contribute consistently to multilingual world. Till now our
sentiment lexicons have attracted 298 downloads with top interests of fol-
lowing languages: Arabic, English, Chinese, German, Spanish, Italian and
French. We also received requests of minor languages like Vietnamese, He-
brew, Bangladesh and even Kazakh, showing the increasing needs of corre-
sponding knowledge in the field of sentiment analysis for different languages.

On the other hand, we proved that propagation through Word Connec-
tion Networks is generally effective and trustful. It is possible to learn many
different language features, for instance, modifiers, negation terms and vari-
ous entity/sentiment attributions since similar approaches can be extended
to other multilingual natural language processing tasks via Word Connection
Networks with specific connections, dictionaries and seed words.

We demonstrate the consistency of our sentiment lexicons via Wikipedia
sentiment analysis and such consistency makes generalized sentiment lexicon
dictionary a nice weapon to handle online corpus with multiple languages
combined. It would also be interesting to mine deeper for biases (e.g. Are
there any differences between reputations of Mao Zedong in China and that
in the rest of the World?) for same entities across regions or languages and
reasoning from potential difference in cultures, histories and habitations. Our
multilingual sentiment lexicons construct a playground for those ideas to be
realized.

Conclusions in Chapter 2 show that word representation performs well on
distinguishing and categorizing sentiments but cannot be generalized to han-
dle multiple languages at one time. However, our graph propagation based
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on Word Connection Networks shows that we can construct reliable connec-
tions of basic language features between words across languages. It could
be another application to dig out more sentiment lexicons with higher accu-
racy and enhanced reliability considering together with word embedding, as
well as training language-dependent transition-matrices to match word rep-
resentations in different language spaces together and construct a generalized
multilingual spaces to analyze words and their features.
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Chapter 4

True Friends and False Friends:
Digging Deeper into
Transliterations

Transliterations play an important role in multilingual entity reference reso-
lution because proper names increasingly travel between languages in news
and social media. This process tends to create a substantial number of out
of vocabulary (OOV) words in the multilingual analysis of news and social
media. For instance, when “Gangnam style” topped the music charts of more
than 30 countries, a word imported from Korean suddenly became part of the
language spoken by millions of people around the world; news events like the
catastrophic failure at nuclear power plant bring words associated with new
people and places “Fukushima” across languages into common use. Plus, a
large number of borrowed words have already been integrated into daily lex-
icons in historic culture communication, acting as bridges across languages
connecting both pronunciations and semantic similarities.

Previous transliteration systems generally focus on a small number of
language pairs. Further, they only consider morphological similarity even
in translation systems, creating a problem of ”false friends” of word pairs
which look or sound alike but mean different things. We target the prob-
lem of generating transliterations between arbitrary pairs of 69 languages,
and detecting borrowed words and entities across these languages. Creat-
ing such transliterations between word pairs in Word Connection Networks
contributes to many language processing tasks, including entity resolution,
translation, topic classification and sentiment analysis, as well as facilitates
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studying linguistic phenomenon like cross-language morphologic evolution.
On the other hand, our very basic connections of exact script matching

perform badly when passing sentiment messages – words with same script
may not share same meaning if their pronunciations are different (e.g. “come”
in English and “come” in Spanish). Grid search experiment in Chapter 3
demonstrates that we need robust connections when considering semantic
transitivity, thus it is valuable to have a good transliteration system that
can generalize relationship between scripts and pronunciations across lan-
guages and help constructing more reliable connections between true friends
or borrowed words.

4.1 Our work

We train both transliteration models and semantic word embedding in an un-
supervised manner using large-scale corpus from Wikipedia. As an example,
Figure 4.1 shows our transliterations of the name obama into 25 non-Latin
scripts. We use lower cases characters to avoid overfitting problems in lead-
ing capital letters. We provide both our transliteration (constructed from
scratch) and lowest edit-distance match appearing in 100,000 most frequent
Wikipedia lexicons for these languages. Our closest match proves to equal
the gold standard for 20 out of 23 languages where it appears in the lexicon.
Further, our constructed best differs from the gold standard name within at
most one character substitution for 22 out of 25 languages.

Our major contributions are:

• Training methods for transliteration: We used Wikipedia to build
a training set for transliteration, starting from the cross-language links
between personal and place names in Wikipedia. We collect a dataset
with 576,403 items contributing one or more transliterations from En-
glish to other languages yielding reasonable training and testing sets
to learn transliterations. But this is a very dirty training set, be-
cause many such translation pairs are not transliterations (e.g. Es-
tados Unidos for United States). We develop unsupervised methods to
distinguish true transliterations from false, and thus clean the training
set.

• Accurate transliteration via substring matching: We use an ex-
pectation maximization approach to use statistics of string alignments
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Figure 4.1: Constructed best and detected best for word “obama” where
capitalization is disabled. Constructed best is generated via cost matrices
without any prior knowledge of vocabulary. Detected best is the best match
in 100,000 most frequent words in Wikipedia. Last column shows the rank of
gold standard reference if it appears in these 100,000 high frequency words.
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to train improved cost matrices via a Bayesian probability model. Our
methods employ substring matching instead of single-character tran-
sition matrices, enabling the recognition of phonemes, character bi-
grams, and beyond. We have trained models that permit us to con-
struct transliterations for any string between all pairs of 69 languages.
We evaluate our work against a recently-published transliteration sys-
tem [31] which has been integrated into the Moses statistical machine
translation system. We compare our transliteration to Moses on the
four languages it supports (Arabic, Chinese, Hindi, and Russian), out-
performing it in 61 of 64 standards over the set of languages.

• Distinguishing translations from false friends: Similarly spelled words
can have substantially different meanings. Such pairs that span lan-
guage boundaries are called false friends, e.g. ropa in Spanish means
clothes, not rope). By coupling transliteration pair analysis with se-
mantic tests using distributed word embedding, we can generate com-
prehensive lexicons of true and false friends. Our methods get very
good results in tests against human annotated standards for French
(F1=0.890) and Spanish (F1=0.825).

We use our approach to generate lexicons of true and false friends be-
tween English and 69 languages. We show that the lexically-closest
cohort of word pairs has a higher probability of being true friends than
words that are more lexically distant in 68 out of 69 languages, indi-
cating our methods provide a good signal to identify borrowed words.

We also provide a demo that can transliterate any English string to non-
Latin languages 1.

4.2 Related work

Transliteration research first associates with the field of orthographic sim-
ilarity detections since pronunciation correlated with orthographic writing
[18, 66, 30, 97, 56, 21]. This work shows reasonableness of character-based
transliteration between close languages (i.e. languages sharing characters)
but does not discuss on distant language pairs.

1https://soundaword.appspot.com/
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Similarly, work on cognate identification also focus on close language pairs
[87, 47, 86, 15, 55, 57, 85]. However, we believe multilingual transliterations
contribute to even distant languages (e.g. English and Japanese) when han-
dling OOV words and resolving ambiguities.

Further transliteration researches divide into two branches. One tries
to study delicate sound changing rules of specific languages [53, 3, 92, 37,
99, 48, 43]. Especially, an excellent ideas of using Wikipedia external links is
proposed in [51, 52] and achieve promising results in English-Hebrew translit-
eration using Moses [54]. However, all these systems are supervised and re-
quire extra linguistic background knowledge during processing. Plus, only
one among this work evaluates transliteration on up to 4 languages and it is
hard to generalize for multiple languages.

The other branch learns from only sequence of characters. One of the
great advantages against sound based transliteration is that multilingual
texts are much easier to obtain. Al-Onaizan and Knight [5] compares pho-
netic based systems with spelling based systems on transliterations between
English and Arabic. Pouliquen et al. [81] makes transliteration model based
on similar spelling rules in close languages. Recent work of Durrani et al.
[31] is integrated in Moses as a module, providing an unsupervised character-
based transliteration training model. Matthews [67] proposed a proper name
transliteration model on several language pairs. However, we believe uti-
lizing character-based transliteration model can provide us with even more
valuable information in natural language processing tasks.

4.3 Data collection and pre-processing

Transliteration is a kind of translations with phonetically close pronunciation.
It acts as a way to keep consistency in understanding a foreign word using
its original pronunciation with slight difference according to sound rules of
native language. Entities’ names are usually transliterations, since names are
hard to translate but famous people or companies need to have a reference
in foreign languages. For instance, Bill Clinton was once a world-known
president of United States and new lexicons will be created as references for
non-English native speakers. According to a marketing evaluation [36], over
40% of the brands choose to apply transliterations when creating their brand
names in aboriginal languages while only 20% of the brands choose to use
meaning translations as new description so that famous cities and countries
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like Singapore, enterprise names like Microsoft will usually have its unique
translation or transliteration.

Kirschenbaum and Wintner [51] use titles of Wikipedia external links to
build an aligned multilingual corpus. For a given language pair (i.e. English
and Hebrew), they search for all Wikipedia pages that contain co-references
of these languages and extract titles that shows names of the same thing in
different languages. However, their work requires language-specific knowl-
edge, for instance, they discard vowels (as a feature of Hebrew) and filter
out junk data using pre-defined consonant matching between English and
Hebrew.

We try to avoid such language dependent preprocessing. We query Free-
base in previously mentioned categories (i.e. people, locations, countries)
that are more likely to reflect transliterations in their names. In total we
collect 3,388,225 entries of possible transliterations to form up a precise mul-
tilingual transliteration dictionary through Wikipedia page titles. We then
perform a rough clean up procedure to (1) unify punctuation by converting
hyphens, dots, comma to underscores and, (2) remove entries which do not
adhere to certain formats (e.g. we accept only “first name + last name” or
“whole name” for people’s names ). Our final collection contains 576,403
English entries with multilingual mapping.

Latin languages usually have similar pronunciations rules for common
characters shared with English and there are less requirements to implement
transliterations. As an additional resource, we query Google translation API
to get formal translations of certain English proper nouns to all 69 languages.
By doing this, we enrich resource pools in Latin languages by adopting the
original orthography from Google translation and we increase the number
of training examples in smaller languages where we have less Wikipedia co-
references. We manually pick 1,373 entities without no multi-sense ambigui-
ties from the names of people [19], countries and capital cities [101], resulting
in more than 70,000 pairs of proper name transliteration from English. Table
4.1 shows statistics of final data size in each language. 80% of the final data
will be used for training, 10% is for tuning and the remaining 10% is for
testing.
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Largest Smallest

Lang Count Lang Count

French 183,270 Center-Khmer 1,585
German 178,715 Amharic 2,035

Italian 132,545 Gujarati 2,130
Polish 124,870 Maltese 2,415

Spanish 107,790 Yiddish 2,835
Russian 100,085 Kannada 3,100
Swedish 91,125 Telugu 3,840

Dutch 87,870 Swahili 4,620
Portuguese 86,515 Haitian 5,245
Norwegian 74,790 Urdu 6,115

Table 4.1: Languages with the largest and smallest set of possible entities
transliterations, i.e. reflecting the availability of training data.

4.4 Training transliteration model

The purpose of our training is to get a quantified measurement of transliter-
ation between any possible character strings in arbitrary scripts. One basic
assumption here is that string pieces only match in monotonically ascending
order. We expect to learn pairwise word segmentations and n-gram statistics
of correlated string pieces between different languages.

We apply an EM-based method to learn transliteration rules between
strings. The cost matrix is initialized so that cost of substituting any string
s1 in Language1 with string s2 in Langauge2 will be 1.0 times len(s1)+len(s2)
at the beginning, including empty strings. This way each training example
has a fixed cost equal to the total length of two strings.

We then start an R round EM iteration. In each round we go through all
training examples and compute the minimum-cost segmentation matching
according to our cost matrix. We store each observations of segmentation
matching during this round in observation table, as well as matching of con-
tinuous segmentation chucks. We measure the fitness of two strings using
the Bayesian setting mentioned in [89]. We consider each pair of string with
transliteration relationship to be a pair of “morphemes” and we implement
a simplified version without “stray morphemes” (i.e. all syllable could be
reproduced in another language if allowing slight changes) and realignments
(i.e. string pieces are matched in monotonically ascending order). In detail,
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we calculate relative probability of s1 matching with s2 according to the ob-
servation table Obs. Multi-matching of similar pronunciations might reduce
the value in probability thus high correlation in either direction would be
considered a signal of good matching.

P (s1, s2) = 0.5 · Obs(s1, s2)∑
i

Obs(s1, i)
+

Obs(s1, s2)∑
i

Obs(i, s2)

Since we include all continuous segmentations in our observation table, we
can measure how good it is to “fuse” two strings together into a longer chuck
for transliteration and thus decide the best split point for each string. We
update the cost of matching of strings s1 and s2 to be the relative matching
probability P (s1, s2) multiplied by len(s1) + len(s2). Figure 4.2 illustrates
the training procedure.

Figure 4.2: Illustration of the training procedure. Each round we compute
minimum-cost-matching and record matched string pieces for all training
examples and update costs matrix through a Bayesian model.

Data used in training example may be flawed as it sometimes does not
reflect transliteration (e.g. Estados Unidos for United States). Such training
examples act as outliners during our training and usually we cannot find any
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reasonable matching even for partial string pieces. We here define “Dirtiness”
to measure how many training examples are flawed in training a specific
language. Table 4.2 shows 10 cleanest and 10 dirtiest languages among 69
languages. Big languages appeared in Table 4.2 (e.g. Chinese, Korean) might
be “dirty”, however results of these languages may not be problematic since
their scales provide plenty of training examples. On the other hand, small
languages with high “dirtiness” like Khmer and Amharic usually perform
badly due to lack of high quality training data.

Dirtiest Cleanest

Lang Dirtiness Lang Dirtiness

Hungarian 41.00% Norwegian 1.23%
Amharic 36.09% Bulgarian 1.80%

Vietnamese 32.10% Macedonian 1.83%
Khmer 24.58% Latvian 1.99%

Thai 24.50% Russian 2.20%
Chinese 23.80% Greek 2.27%
Korean 22.20% Armenian 2.41%
Malay 20.11% Georgian 2.60%
Tamil 18.72% Czech 2.95%

Japanese 16.81% Latin 3.26%

Table 4.2: 10 cleanest and dirtiest languages, defined according to the ratio
of flawed examples (i.e. those cannot find correlations of transliterations) in
the training set.

4.5 Glances at character matching

Here we shown in Figure 4.3 heatmaps generated from our cost matrices.
Top 2 subfigures, Figure 4.3a and Fig. 4.3b, present 1-1 matching rules we
discover between characters in French and Spanish. The highlighted diago-
nals indicate strong similarity between identical Latin characters as expected,
making transliteration inside the same language family meaningless. How-
ever, these matrices reflect language differences: e.g. Spanish “y” more often
acts as English “j” than English “y”; French “q” does not often match with
English “q”; Spanish “b” is close to English “v” while the French “b” shows
similar behaviors as English “b”.
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On the other hand, languages in different language families may still
behave similarly. Our transliteration model discovered that Russian and
Hebrew characters also have such pronunciation similarity as shown in Figure
4.3c and Fig. 4.3d, which perfectly matches with how words are pronounced
in these languages.

(a) English-French (b) English-Spanish

(c) English-Russian (d) English-Hebrew

Figure 4.3: Probability/cost matrix for single character pairs between English
and a) French, b) Spanish, c) Russian and d) Hebrew. The bright diagonal
shows that we discover common equivalence for most Latin characters.

We list best matches of single English character in non-Latin languages
in Figure 4.4. Some languages, like Cyrillic families, demonstrate high sim-
ilarity towards English from character pronunciation and word-construction
rule and we successfully recovered such information in transliteration. Other
languages like Korean, though constructed in another way with different pro-
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nunciations, still show reliable correlation between characters that produce
pronunciations.

4.6 Experimental Results

We now show a quantified measurement of our transliteration model.

4.6.1 Baseline Model

We use the transliteration system described in [31] as baseline method to com-
pare our results. The Moses statistical machine translation system integrates
their work as a module, and allows training unsupervised transliteration for
OOV words. There are slight differences between our method and theirs –
we focus on generate and catenate transliteration string pieces while their
method targets phrase table with context evaluation, which is finding best
transliteration. We use the following parameters when configuring Moses:

• Maximum phrase length: 3

• Language model n-gram order: 3

• Language model smoothing & Interpolation: Automatically dis-
abled, Interpolate

• Alignment heuristic: grow-diag-final

• Reordering: Monotone

• Maximum distortion length: 0

• Model weights:

– Translation model: 0.2, 0.2, 0.2, 0.2, 0.2

– Language model: 0.5

– Distortion model: 0.0

– Word penalty: -1
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Figure 4.4: Best matches of single English character in some non-Latin lan-
guages, grouped by language families to show consistency between close lan-
guages. Languages do not always follow one on one character matching rule
(e.g. Korean) but there still exist high correlation between listed character
pairs.
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4.6.2 Test Results

We first compare both systems trained on our Wikipedia dataset. We focus
on the performance of phrase table, i.e. measurement of transliteration be-
tween string pieces since our dataset does not contain corpus context, We
generate the 100-best transliterations for entries in testing set on four lan-
guages of different language families: Chinese, Arabic, Hindi and Russian.

We repeated this test using third party datasets to check consistency of
training models. Here are the dataset we use:

• Chinese: Chinese - English Name Entity List sv1.0 (LDC2005T34)
Encoding: GB-2312 Script: Simplified Chinese Number of English
names: 572213 Chinese transliterations: 673385 Average number of
English characters per name: 6.08 Average number of Chinese charac-
ters per name: 2.87

• Arabic: Combination of 10001 Arabic Names (LDC2005G02) and [20]
made available for IWSLT-13. Encoding: Standard Arabic Technical
Transliteration System (SATTS) Number of English names 11367 Ara-
bic transliterations: 11367 Average number of English characters per
name: 14.06 Average number of Arabic characters per name: 15.40

• Hindi: Indian multi-parallel corpus [80].

• Russian: WMT-13 data [17] and [60].

We cleaned data and retained only name mapping to feed the model,
since our model does not rely on context and target a generalized method for
multiple languages. Note that Moses provides several language-specific op-
timization methods, including weights optimizing (e.g. Mert) and Language
Model Smoothing (e.g. Kneser-Ney) that might improve performance [31].
However, given our goal of unsupervised transliteration, we did not attempt
to employ these in our experiments.

Figure 4.3 shows the statistics. Our system generally outperforms Moses,
winning on 61 of 64 comparisons over the eight languages and metrics. The
absolute closest transliteration (top-1) result only matches the translation
target in roughly 1/3 of the test examples, indicating that there are typically
a large number of transliterations of similar edit cost. Indeed, the absolute
performance score substantially increases with top-20 and top-100 results,
showing the need to reduce ambiguity through context matching. Our high
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Dir Lang Model Top-1 Top-20 Top-100 Levenshtein 1
Wiki TP Wiki TP Wiki TP Wiki TP

From
ZH

Moses 26.7% 27.9% 44.3% 51.5% 66.1% 81.2% 64.8% 66.1%
Ours 30.0% 29.8% 52.4% 53.0% 85.0% 83.3% 75.0% 79.0%

AR
Moses 19.2% 20.0% 32.0% 45.0% 50.9% 80.2% 40.8% 41.6%
Ours 35.2% 25.3% 60.0% 55.2% 86.3% 83.1% 60.9% 54.6%

EN
HI

Moses 23.3% 25.3% 50.4% 55.4% 70.2% 79.3% 56.1% 53.7%
Ours 31.5% 30.1% 61.6% 62.5% 79.4% 83.4% 61.7% 60.3%

RU
Moses 35.1% 46.1% 63.6% 69.2% 79.5% 87.5% 60.2% 70.2%
Ours 40.2% 47.2% 68.1% 67.0% 82.5% 88.5% 70.5% 72.8%

To
ZH

Moses 15.6% 21.6% 32.7% 42.1% 53.5% 73.3% 45.0% 55.0%
Ours 24.1% 23.8% 51.1% 49.2% 80.4% 81.9% 60.2% 63.7%

AR
Moses 20.5% 20.3% 33.9% 43.9% 49.7% 79.7% 55.6% 45.6%
Ours 39.0% 26.0% 77.1% 57.1% 89.3% 82.3% 75.3% 55.3%

EN
HI

Moses 21.4% 23.1% 49.8% 56.8% 71.0% 78.7% 57.3% 62.0%
Ours 29.8% 29.9% 52.5% 59.7% 79.3% 79.9% 60.7% 60.1%

RU
Moses 35.4% 45.9% 62.9% 70.8% 78.6% 85.1% 60.1% 70.3%
Ours 39.3% 44.3% 68.7% 71.8% 81.8% 84.8% 70.0% 70.4%

Table 4.3: Comparison of performances on Wikipedia and third party (TP)
datasets. Top-k measures the percentage of correct transliterations in the top
k candidates. Levenshtein 1 measures the percentage of the highest ranked
transliteration that is no more than 1 substitution away from the reference
transliteration, given that we consider insertion / deletion to be a special
kind of substitution.

scores under Levenshtein 1 metric show that we generate reasonable translit-
eration for a large fraction of strings, retaining good lexical consistency with
respect to the gold standard. Moses’s performance substantially changes over
difference training set, where we do equally well on both corpora.

4.7 True and false friends detection

We first show how we pick threshold of defining “close” word pairs. Accord-
ing to the way we initialize our weight function, substitution of 2 non-related
characters will cost 2.0 (e.g. “mug” to “tug”). We pick threshold for each
of the 69 languages with best F1-score and separate these word pairs into
groups of low edit distance and high edit-distance. In order to reduce the
error of machine translation, we then eliminate all word pairs with differ-
ent capitalization since Google translation will sometimes treat capitalized
words differently(this does not affect languages without capitalization, like
Chinese).
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Fig. 4.5 shows statistics of 4 languages mentioned in previous tests, in-
cluding French, Russian, Arabic and Hindi. Chinese is not included since
most Chinese words are less than 3 characters and are not picked in the
first step. There is a drop near distance of 2.5 for all these four languages
and best F1-score are picked close to this point. Since initial value of sub-
stitution between two non-related characters is set to 2, such phenomenon
indicate a strong signal of “less likely to be transliteration”. Threshold of 2.5
help group 20% of the word pairs into a high-similarity group while remain-
ing word pairs are considered to be in low-similarity group, though they are
much closer than random word pairs.

(a) Precision: Percentage of finding real
translations

(b) Recall: Accumulative counts based
on sound edit distance

Figure 4.5: Distribution of sound edit-distance from English to one other
language. Figure 4.5b shows the distribution of distance measured by our
transliteration system. We discovered gaps near distance = 2.0 since the
initial cost of substitute one letter with an arbitrary letter is 2.0. Figure 4.5a
demonstrates the percentage that close pairs judged by our transliteration
system match with Google translations.

Although our transliteration model is accurate at detecting lexical simi-
larity across languages, words that look alike or sound alike do not necessarily
mean the same thing. False friends are word pairs across languages that look
the same, but mean something different. For example, the Spanish word ropa
means clothes, not rope. Such false friends are the bane of students learning
foreign languages.

For our transliteration tests to identify true language borrowings, we

62



must also establish that the words have similar semantics. One way is to
validate through Google translation. However, this is not the best way to
handle OOV words and we decide to try if word embedding can provide
supporting information. To perform such a test, we relied on the Polyglot
distributed word embedding presented in [6]. The L2 norm between two word
representations captures its semantic distance.

However, the Polyglot embedding do not reside in same geometric space of
latent dimensions for different languages. Thus instead of directly computing
the distance between representations across languages, we check how many
pairs of known translations lie within the 300 words closest words in each
language in case we are lack of direct translation evidences. This process is
illustrated in Figure 4.6.

Figure 4.6: Illustration of word embedding test. In case no direct evidences of
semantic similarity between “Cat” and “Gato” are found, we check number
of translations that links nearest neighbors of “Cat” and “Gato” . Since
( “Dog”, “Monkey”, “Duck”) matches perfectly with (“Perro”, “Mono”,
“Pato”), we can judge that (“Cat”, “Gato” ) has close semantic meanings.
(“Car” , “Gato”) will definitely fail this test.
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4.7.1 Evaluation against Human Annotation

For two languages (French and Spanish) we found published lists of true and
false friends with English. We did an evaluation of our results against these
human-annotated gold standards, in particular 1756 French-English cognates
and 541 false friends suggested in [47, 28], including [102, 95], as well as 1345
of Spanish-English cognates [91] plus 217 false friends [32].

Our performance of true and false friends distinguisher is shown in Table
4.4. Our methods yield substantial agreement with these published stan-
dards, demonstrating the general soundness of our approach.

Lang F1 Acc

French 0.890 89.2%
Spanish 0.825 82.3%

Table 4.4: Accuracy and F1 score for our true and false friends distinguisher
using Google translation and Word representation.

4.7.2 Cross-Language Scan

Emboldened by these results, we performed a search for lexically/semantically
similar words between English and all 69 of our transliterated languages. The
results appear in Table 4.5, showing statistics of true-friends and false friends
we detected, showing significant differences between behaviors of words with
low sound edit-distances and those with high sound edit-distances:

For each language, we report the number of false friends we identify (col-
umn N). The other three columns reflect different notions of true friends:
single-word translations according to Google (TP), near neighbors in embed-
ding test (EP), and those which survive both of these semantic tests (B).

Without a language-specific analysis of each of the classes, it is difficult to
determine which of these reflect language borrowings most accurately. The
quality of the word embedding varies substantially by language, as does the
quality of Google’s translation support. Our preferred measure of quality
is the ratio of word pairs which survive both tests (B) over all that having
Google translations (B+TP). The 33 languages colored red and green all
have a ratio of > 0.5, indicating the highest quality embedding. The red
languages denote the five with the best embedding with the poorest five (in
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Lang TP EP B N Lang TP EP B N
Afrikaans 405 173 260 583 Japanese 1048 414 1112 854
Albanian 639 295 533 1237 Kannada 737 201 330 1173
Amharic 2 0 0 1 Korean 150 488 307 81

Arabic 618 571 922 913 Latvian 812 376 491 2188
Armenian 1141 405 449 1003 Lithuanian 489 542 473 505

Azerbaijani 854 166 284 1244 Macedonian 2926 422 1769 1667
Basque 352 184 187 597 Malay 226 140 263 1465

Belarusian 1561 291 765 1295 Maltese 149 214 84 88
Bengali 661 227 280 1310 Marathi 410 181 225 751
Bosnian 760 282 389 1392 Norwegian 216 414 486 401

Bulgarian 2231 674 2599 1562 Nynorsk 472 184 267 382
Catalan 639 733 1255 1187 Persian 979 284 653 1753

Center Khmer 21 194 1 41 Polish 474 518 830 1294
Chinese 18 142 26 0 Portuguese 283 660 1150 567

Croatian 446 522 803 984 Romanian 388 618 1071 888
Czech 405 699 1142 387 Russian 854 1143 3344 1202

Danish 251 396 493 403 Serbian 1695 743 2022 1027
Dutch 208 431 360 449 Serbo-Croat 546 474 715 1442

Esperanto 522 410 638 750 Slovak 623 310 696 521
Estonian 245 161 150 605 Slovenian 518 296 552 632
Finnish 157 285 159 605 Spanish 530 788 1640 1115
French 486 949 2108 1804 Swahili 113 96 70 458

Galician 664 511 934 1343 Swedish 199 446 564 461
Georgian 1591 425 661 2434 Tagalog 211 118 161 587
German 174 640 674 1032 Tamil 386 189 239 1121

Greek 1257 436 1042 1693 Latin 352 346 158 1184
Gujarati 556 156 224 412 Telugu 821 231 399 1322
Haitian 220 235 76 75 Thai 267 109 65 799

Hebrew 670 466 864 1248 Turkish 263 350 534 1082
Hindi 1187 323 725 1043 Ukrainian 1718 781 3046 1361

Hungarian 227 141 244 2762 Urdu 338 111 146 879
Icelandic 349 82 95 1156 Vietnamese 46 20 10 2976

Indonesian 198 231 478 1802 Welsh 248 81 107 992
Irish 152 155 57 837 Yiddish 626 206 156 803

Italian 300 613 1272 581

Table 4.5: Statistics of True and False Friends between English and all 69
languages. TP denotes Google translation pairs which are not close in our
word embedding. EP denotes close embedding pairs not recognized as trans-
lations by Google, while B denotes words pairs passing both semantic tests,
N denotes false friends: word pairs which pass neither semantic test. Green
languages are those with the highest ratio of B / TP, showing a significant
correlation between our embedding and Google translation. At least 50%
of Google translation pairs survives our embedding test for all 33 Bolded
languages. By contrast, the Red languages are those where the embedding
test performed poorly.

yellow) reflect languages with excessively small training data (Amharic and
Khmer). Our methods have a particularly difficult time with Vietnamese,
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which bases a misleading similarity to Latin languages at the character level.
We also show in Figure 4.7 some detailed true and false friends between

English and Russian, based on judgement from our transliteration model
(i.e. how close are the pronunciations) together with our sentiment similarity
model (how close are the semantic meanings).

Figure 4.7: Detailed examples of true and false friends between English and
Russian. Right part lists words with low sound edit-distances. These words
are easily confused according to their pronunciations. Left part shows words
with slightly high edit distances, affected by small sound changes like inflec-
tions. Top part lists words that are semantically identical while lower parts
shows words having different meanings. We demonstrate that there are high
correlations between judgements from our transliteration model and senti-
ment similarity measurement and which part the words fall in.

4.7.3 Cross-Language Validation

Figure 4.8 provides a deeper assessment of our cross-language scan. For each
language, we identified which words in its 100,000 word vocabulary were lex-
ically very similar (edit distance ≤ 2, which is decided by initial value of
substitution) to a word in the English vocabulary. We then considered the
next closest 10,000 word pairs, which should also be enriched in real translit-
erations (by contrast, only 0.01% random word pairs have a translation link)
– but less enriched than the initial cohort. There is a huge boost in finding
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translations in low-distance group. The probability of find translation is more
than doubled compared with low-similarity group, indicating our cost ma-
trix measure sound consistency well. There are outliners however, including
languages with small and dirty datasets (e.g. Amharic, Khmer), languages
with short words (e.g. Chinese) and languages with lots of inflections (e.g.
Italian) that increases the final cost of alignment. Indeed, Figure 4.8 (top)
shows this to be true for 68 of 69 languages, denoted by points in the upper
left triangle.

To establish that our embedding test accurately eliminates false friends,
we pruned the lower half of each cohort according to the embedding test, i.e.
retained only those words whose distance in embedding space was below the
median value. Figure 4.8 (bottom) shows that this action dramatically shifts
each language up and to the right. With the exception of three outliner
languages (Vietnamese, Latin, and Maltese), well over 50% of our closest
cohort are now true friends (translations). For somewhat more than half of
the languages, the lexicographically second cohort is now rich in true friends
to the 50% level.

4.8 Transliteration and Word Connection Net-

works

We have developed transliteration models that accurately match transliter-
ations between 69 major languages. We successfully identify high frequency
borrowed words among high frequency Wikipedia words that appear in Word
Connection Networks. Further, we demonstrated that adding word embed-
ding to provide a semantic test enables us to distinguish true borrowings from
false friends. With such discovery we create a way of finding high-confidence
cross language references for out of vocabulary (OOV) words with gener-
alized resources. We have evaluated our transliterations against published
gold standards when available and against intrinsic measures when such stan-
dards are not available. With full usage of our transliteration model, we can
replace previous transliteration connections created by “exact script match-
ing” and make them more robust and more reliable in semantic transitions,
thus provide more precise semantic relationships between words in our Word
Connection Networks.

However, there exist several directions to improve the future quality of
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Figure 4.8: (top) Fraction of gold standard translations within very close edit
distance pairs (d < 2) versus the next closest 10,000 pairs. (bottom). Same
fractions after retaining only the 50% of pairs which are closest by embedding
distance. For 68 of 69 languages, the lexically closer pairs are more likely
to be translations (top). Further, eliminating pairs failing the embedding
test shifts all languages to the upper right, showing that the embedding test
accurately captures semantic similarity (bottom).
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our transliteration model:

• Phonetic information: Our models improve with additional train-
ing data, particularly for resource-poor languages. An exciting way
to increase this volume would be aligning speech translations as repre-
sented in a phonetic dictionary or sound system (e.g. IPA) as suggested
in [48]. We did experiment on some Latin languages. The result shows
that Phonetic information can improve the performance of transliter-
ation by resolving ambiguities (i.e. increasing top-1 and top-5 results
while reducing top-100 results). On the other hand, we did not col-
lect enough resources for all other languages. Processing each different
language somehow requires specific language background.

• Multiple transliteration: Though English Wikipedia has the richest
resources in the world, it is not guaranteed that English is the source
language of borrowed names. Since transliteration contains informa-
tion loss, doing transliteration on transliterated words would definitely
perfume badly. Currently we employ a star network of transliteration
pairs centered through English. Creating another center hub using
other important languages (e.g. Russian and Chinese) would improve
performance.

• Longer-range dependencies: As we target transliteration, our model
should utilize longer range dependencies to find out pronunciation rules
in different languages. Observe that a silent “e” at the end of English
words changes the pronunciation of vowels earlier in the word, so the
“li” is different in “lit” and “lite”. Our n-gram strategy somehow can
figure out such features (e.g. we can distinguish “ch” in “church” and
“ch” in “christmas”) but that can be improved. Under context the
Moses system with optimization exploits such phenomena, but we be-
lieve with we can learn such pronunciation features from the text itself.
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Chapter 5

Numbers: Standing out of the
Multilingual World

Numbers are totally independent from languages but play important roles
in context to list fact of truth and provide supporting evidences. We might
have lexicons representing specific numbers in single languages (e.g. nineteen
nighty-nine vs 1999) but the most widely used numerical symbols in multi-
lingual world remain unchanged. One good thing about numbers is that they
never have multiple meanings in dictionaries. Numbers always represent the
amount and they can be easily processed in any natural language processing
tasks. Numbers also act as a fixed point that remain unchanged no matter
in which language.

Our previous designs of Word Connection Networks do not take numbers
into consideration – training procedure of word embedding basically filter
out all numbers, transliteration would not work for numbers and sentiment
cannot not apply on numbers. Even synonyms of numbers exist, there are
no needs to adopt them. However, it is an interesting entry point to see
how much information we have lost by ignoring numbers (e.g. only different
digits are distinguished in training word representations [6]) and whether
there are specific numbers that should not be easily neglected in natural
language processing tasks.
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5.1 Our work

In this work, we try to capture the historical trend of numeracy during the
last 200 years which could give us extra knowledge about the history of
development in real world. We studied usage of numbers in multiple time
periods and we analyze preferences of precision level, including both the way
people round values and the tolerance they usually have, to match historical
features of events that once changed human’s culture. We quantify inflation
of the world from trends of numbers in multiple categories by making time
series of numbers with specific units/scales and statistics of distributions of
different numbers. We believe such meta-knowledge research on context of
numbers could figure out implicit preferences, heuristics, and assumptions
as well as knowledge context during a certain time period and thus provide
prior knowledge to improve the performances of natural language processing
tasks.

5.2 Related work

Related research on numeracy skills spans multiple areas in the field of social
sciences, including economics, histories, cultures and education. Cohen [24]
gave a brief introduction about the development of old-century-numeracy.
More than two hundred years ago, precollege work emphasized standard
admission requirements for universities like Latin and Greek. Even those
educated men who studied in the field of higher mathematics would likely
breezed through a book on basic “rules” of arithmetic in a year’s time, learn-
ing formulaic algorithms for manipulating numbers in a first-level college
course. Around 1800, the studies of practical arithmetic skills become far
more common and Harvard University started requiring basic arithmetic for
admission in 1802. Numeracy goes hand-in-hand with technological abilities
and becomes a necessity for commercial economies. However, the commer-
cial numeracy was completely context-specific that it probably retarded the
development of quantitative literacy. Starting in 1812 with the intensifica-
tion of market activity in the United States, an entirely new way to teach
arithmetic was introduced to public which remained controversial for many
decades but was proved highly beneficial for modern society.

Crayen and Baten [27] studied global trends in numeracy and its impli-
cation for long term growth during the time period from 1820 to 1949. They
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evaluate people’s numeracy skill using Whipple’s Index, which measures the
fraction of people who prefer to use multiples of 5 when reporting their own
ages. Countries with relative good numeracy skills (e.g. Italy and the U.S.)
demonstrate strong age-heaping characterized time series with low Whipple’s
Index while countries like Egypt and Turkey show a much higher Whipple’s
Index. They show the coefficient between the determinants of age-heaping
and factors in real life, including schooling, healthiness and country GDP.
They draw a conclusion that the numeracy estimates given in the Whipple’s
Index have considerable explanatory power: the coefficient of the Whipple’s
Index is consistently negative, as expected, and highly significant. Measuring
numeracy can thus provide new and useful insights for researchers and add
to long-term economic growth analysis. This turned out to be an interesting
application of examine people’s numeracy skills.

Psychology study [79] shows how numeracy skills affect decision making.
They conduct experiments on groups of people with various numeracy skills,
asking them to make decisions based on given information. Results show that
decisions maybe influenced by merely how the outcomes are framed without
any distorting. For instance, ground beef labeled as “75% lean” has no
difference with that labeled as “25% fat” and “10%” is of the same chance as
“4 of 40”. However, people with low numeracy skills may not understand the
information correctly and having wrong perceptions will prevent them from
making correct decisions. Conclusions in this work support the hypothesis
that adults with high numeracy skills are more likely to retrieve appropriate
numerical principles and transform numbers presented in one frame to a
different frame, while those with low numeracy skills will be more influenced
by irrelevant affective sources.

5.3 Data collections and methodology

Google books n-grams meet our demands to do quantitative analysis on his-
torical data. This data collection contains a large amount of number-related
corpus together with historical indicators. Michel et al. [68] described the
construction of Google books n-grams database from millions of digitized
books. Most books being selected into the database were drawn from over
40 university libraries around the world. The text was digitized by optical
character recognition (OCR) after the page was scanned with custom equip-
ment. Over 15 million books have been digitized, which occupies 12% of all
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books ever published.
Google books n-grams are usually applied to calculate the frequency of

occurrences of a specific term in an area and decide the most popular words
in a field during a certain period. For example, tracing back the histor-
ical data containing scientists’ name, “Galileo”, “Darwin” and “Einstein”
may be well-known scientists but “Freud” is more deeply ingrained in our
collective subconscious due to the fact that the count of “Freud” increased
dramatically since 1950. Besides, statistical studies on pairs of words to get
the relationship between word-pairs according to their co-occurrences. For
instance, peoples’ interests in “Evolution” was waning when “DNA” came
along, showing a shift of topic in the area of biology in 1950s. These kinds
of ideas help capturing features in old-time-corpus and open a new entry to
cultural studies.

Studies using Google books n-grams provide interesting entry points of
making use of statistics. Wijaya and Yeniterzi [100] tried to find the changes
in the words that co-occur with a certain entity over time to analyze the
semantic changes of the entity over time since such changes might not lead
to identifiable surge or decline in frequency when doing statistical analysis.
This kind of study would be helpful in some other applications when people
need to understand the most possible meaning under a culture environment,
like references correlations or micro reading, and also provide supporting
evidences for historical event extraction. Kulkarni et al. [59] successfully
discovered linguistic changes of words. Google books n-grams shows that the
count of word “gay” dramatically increased between 1960 and 1980 which
was probably caused by an entire new usage of “gay” related with several
historical events. The authors contribute not only to automatically identify
when changes occur but also what kind of changes occur (for instance, what
topics are in transition). From their figures the most common co-occurred
word-set of “gay” changed from “Young, World, Happy, Life, Lively” to
“Lesbian, Men, Lesbians, Movement, Liberation” and in 1970s the new usage
start to dominate the meaning of word “gay”.

One issue here is that Google book n-grams split numbers with delimiters
into multiple trunks (e.g. 2,147,483,647 is considered to be a 4-gram but not
a unigram). Since we can only keep track of 5-grams, we record only num-
bers which appear in Google book n-grams with proceeding and succeeding
non-number words to avoid wrong segmentations. Additionally, we need a
cleaning-up to recover numbers with delimiters as unigrams to keep the whole
number complete. We basically use statistics of numbers and corresponding
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“units” in Google books n-grams to generate time series of numbers quoted
in a specific field. Notice that “units” might appear before the number (e.g.
“$100”), right after the number (e.g. “100 dollars”) or after a multiplier (e.g.
“100 million dollars), we process to recover numbers with multiplier as well
as multi-chunk big numbers to their original numerical forms.

5.4 Time series comparison of different rep-

resentation of numbers

We start our first experiment from calculating the counts of three differ-
ent kinds of numbers: positive integers, positive floating numbers and text-
specified integers. The counts were aggregated from unigram data and we
build a time-series-line of “percentage of tokens that is a specific kind of
number representation” for each kind of number mentioned above based on
total aggregated counts per year. The result is shown in Figure 5.1.

The percentage of integers continuously increased since the beginning
of 1800s. Originally only less than 1% of the tokens are integers and this
number reaches 3% in late 1970s which shows that integer numbers gaining
more importance as a dominating representation of quantity. Notice that
the time series experienced a bump during early 1800s, which matches the
historical promotion of quantitative numeracy in 1812 as we mentioned in
the previous part. We can know from the figure that text-specified numbers
appear as many as integers at the beginning of 1800s, but were gradually
replaced by digit integers. Today only about 10% of the numbers are text-
specified. At the same time, floating numbers gain a ratio of about 7%, while
the rest 80% of numbers are digit integers.

The percentage of text numbers experienced a slow increment till 1880,
and decreased slowly since then. Considering that simple numerical words
are definitely used a lot when representing small numbers, as well as the word
“one” has meanings other than number, we believe proportion of these text
numbers would not change too much.

Floating numbers was not widely used until 1870 when the proportion
of floating numbers increased dramatically. We thought the phenomenon
might indicate a breakthrough that people started to have higher level of nu-
meracy skills. Cohen [24] mentioned several specific activities that gradually
extended peoples’ numeracy in America: taking censuses for military and po-
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Figure 5.1: Time-series showing the trend of different representations of num-
bers. The category “integers numbers” contain only integers formed by digits,
“floating numbers” contain real numbers formed by digits and floating point,
while “text numbers” represent number in the form of English words, i.e.
“nine”

litical uses, evaluating medical outcomes using simple statistics, revamping
arithmetic teaching to gear it to a new commercial order, compiling numer-
ical facts about the state(“statisticks” as in descriptive statistics) to help
statesmen govern, collecting voting statistics to improve the management of
party politics, and finally, mounting numerical arguments in the service of
the reform movements.

We got some information of text numbers from Figure 5.2. No doubt
that “one” was the most important numerical word and it occupies about
0.2% of all tokens over last 200 years. The difference between the top line
and the middle line shows the appearances counts of “one” per million words
since 1800s. We can see that “one” appear at almost a fixed rate during the
past centuries, but the fact is “one” has more meanings other than number, it
might be a noise generated by other usages of “one” and we have to check the
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Figure 5.2: Time series of text-specified numbers, with conditions of disabling
some of them. The top line is the original time series, the middle line shows
the situation if we discard the word “one”. The bottom line throw away all
numerical words from “one” through “nine”.

count of other words representing small integers. The same thing happened
when we compare the middle line with the bottom line, which indicates that
though the text-specified numbers are less used nowadays, there are still a
lot of situations where we are willing to use them, especially for small and
simple integers. What’s more, one digit numbers in text format (i.e. “one”
through “nine”) occupy 70% of the relative usage of text-specified numbers
and we guess that people are reluctant to use text since it cost much more
time to record a number with 2 or more digits by letters.

There is a similar trend when considering digit integers–the shape of the
time series remains same if we throw away all counts related with 1-digit-
numbers. Unlike what we see when discussing text numbers, the relative
percentage of 1-digit-integers was not fixed but the ratio between 1-digit-
integers and total digit integers seems to be a constant around 1

6
. If we did

not consider the usage of words “one” through “nine” with language specified
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meaning, we could draw a conclusion that digitized numbers is more likely to
be used when number of digits people needed to represent a number increases.

We also examine the mean and median values of numbers with different
digits. According to Benford’s law, 1 occurs as the leading digit about 30%
of the time, while larger digits occur in that position less frequently: 9 as the
first digit less than 5% of the time. We show the time series of mean and me-
dian value of 3-digit-numbers and 4-digit-numbers in Figure 5.3. The reason
to pick this range of numbers is that they balance well between randomness
(where 1-2 digits limit only a few possibilities) and statistics (the occur-
rences of 5 or more digits will be sparse). Take 3-digit-numbers for example,
we expect to see a mean value close to 300ish and a median value down to
200ish in average and that remains true as shown in Figure 5.3a. However,
this rule does not apply to 4-digit-numbers. We discovered in Figure 5.3b
that both mean and median value of 4-digit-numbers basically increase with
the same pace as current years, which support strongly the assumption that
4-digit-numbers are usually years, especially current years.

5.5 Preference of last digits

The following experiment focuses on people’s preferences of last digits. Gen-
erally speaking, numbers ending with 0 or 5 are easier to remember and act
as milestones in counting. We assume that people usually have a default
idea of setting precisions when using numbers, especially when errors caused
by differences between actual value and the rounded value can be tolerated.
For instance, when talking about time, 15 minutes will probably be more
common than 12 or 13 minutes even the latter one is more accurate. This
phenomenon can also indicate the increasing scale of numbers people are
dealing with as well as to what extent people actually care about the pre-
cision. If people do not have many chances to use numbers in large scale,
they will probably round the number in order to remember it easily; other-
wise they have to distinguish numbers from each other with more accurate
record.

We examined all digit numbers from 1gram data and calculate count of
appearances of numbers ending with 0 or 5. Figure 5.4 contains the result
showing time series of people’s preferences on numbers separated by different
number of digits. Though the number of last digit in integer should be
uniformly distributed, we can still believe that people would prefer those
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(a) 3 digit numbers

(b) 4 digit numbers

Figure 5.3: Time series of mean and median values of (top) 3-digit-numbers
and (bottom) 4-digit-numbers. The distribution of 3-digit-numbers basically
obey Benford’s law, supporting the fact that people does not have specific
usage of 3-digit-numbers in real-life. However, the usage of 4-digit-numbers
usually correlate with years, especially current years.

numbers ended with 0 and 5, i.e. “10th anniversary”, “about 5 years ago”.
After checking the time series of 2-digit-numbers, 3-digit-numbers and 4-
digit-numbers, we see almost fixed proportion of preferences on numbers
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Figure 5.4: Percentage of numbers ending with 0 or 5 in different categories.
Even of small numbers (i.e. less than 3 digits), there are about 30% of them
ending with 0 or 5, showing a significant difference on random baseline which
is 20%. 3-digit-numbers and 4-digit-numbers get closer to average due to the
need of precision (i.e. year).

ending with 0 and 5 (slightly higher than expected 20%) and the preference
is even higher when considering 2-digit-numbers. We kind of believe that
people meet too many 2-digit-numbers in their daily life and sometimes they
just pick those ends with 0 and 5 as meaningful samples. When 3-digit-
numbers and 4-digit-numbers come into consideration, people can hardly
figure out the accurate value. On the other hand, even if people could show
the accurate value, they might be unwilling to do that since everyone can
tolerate the error.

Interesting things happen when considering 5-digit-numbers. Over 50%
of the 5-digit-numbers end with 0 or 5, which means people did not even
care about the accuracy under most conditions when using 5-digit-numbers.
We checked and counted the appearance of all 5-digit-numbers in our raw
data and found that the following four have heavy weights: 10000, 20000,
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30000 and 50000. No doubt that these could not be accurate expression of
value in real life, and we can only explain that these numbers are used, most
probably, as a rounded or estimated value that help people understand the
scale clearly. Even if the line shows that there is a trend of making 5-digit-
numbers more accurate recently, which implies that people are dealing with
more and more large numbers and the distribution of last digit is becoming
more uniformly shaped, 5-digit-numbers are not so common in people’s daily
life as an accurate count. Also, the phenomenon gives us a hint that people
only have a direct accurate idea of numbers on a scale of thousand. That
may reflect the reason why people choose to separate big numbers by comma
every 3 digits in English.

5.6 Quantities with units

The next several experiments deal with numbers that appear together with
a defined unit. In order to finish this task, we firstly tried to extract all
specific types of 5-grams, whose last token represents a common unit in
some categories and tokens preceded the unit indicate a value. Secondly we
convert all different units in the same field into a fixed and most common
one for the sake of easy comparison.

5.6.1 Discussion of weight

For instances, in the statistics of mass value in people’s daily life, we’ll con-
vert all SI units into grams and all English units into pounds–we kind of
believe that these are the most appropriate units according to people’s daily
experiences, even that the basic SI units of mass is kilograms. In the follow-
ing graphs, X-axis will show the logarithm scale based on chosen unit. Y-axis
shows the accumulated percentage of total counts starting from the minimum
size people might talk about. The total time period between 1800 and 2000
will be separated into 5 sub-periods of 40 years in order to show the features
appeared in a specific time range. We can easily imagine that majority of
the data will fall within a small range since over 80% of the discussion in
a field will talk about a predictable unit scale, we may sometimes put our
interests on the larger-side-tail and the smaller-side-tail–the two parts that
reflect certain culture changing but not considered to be majority. These
parts will show differences between different time periods.
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Figure 5.5: Accumulated distribution of weights in (top) SI mass system,
unit gram and (bottom) English mass system, unit pound. The trend of
accumulation seems similar but the gap position indicates that there exist
huge differences in how people use these two systems in daily life.

In Figure 5.5 (top), the right part shows the larger-side-tail of the mass
that people are talking about in different time periods. Less than 5% of the
total mass discussion are focused on things that is heavier than 104 grams,
which is about 10 kilograms. Comparing the latest time line (1960-2000)
with ancient ones we see more discussion on heavier things. The left part
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shows smaller-side-tail of the same graph, implying that among 5% of the
time things less than 10−3 grams (1 milligram) was talked. The line shows
when the time come approach, people have more interests in things whose
weights are not perceivable previously. All lines show the same trend that
majority of people talk about things starting from the level of 0.01 gram.
The 99th percent line of weights increase from 109 grams (1,000 tonne) to
1018 grams, which shows people come up with a totally different world during
the last century. It also shows that the count people use “gram”, “milligram”
and other smaller units in SI system is significantly greater than the count
people use “kilogram” and “tonne”–that’s why the count of heavier weight
is not small but the proportion is still low.

Similar things happen when we consider the English system of mass
(pounds, ounces, grains, etc.). Since people seldom use English system to
measure light things recently and the unit “grain” is rare, English system
care less about things that can be measured by “pound”. We can see that
since people care less about light weights in English system, the proportion
of heavy item is higher than the one in SI system. The heaviest thing is
about 1015 pound, stay almost on the same level of SI system. In Figure 5.5
(bottom), we found that shapes of lines did not change much for all 5 differ-
ent time periods except the smaller-side-tail and the large-side-tail, showing
that things people care about in real books were similar during the past 200
years.

5.6.2 Discussion of lengths

We conducted similar experiments on “length” field using both SI system
and English system. The results are shown in Figure 5.6. On the larger-
side, since the English unit “mile” is still used widely, there should be no
significant difference between the 95% percentage number, which is about
106 feet (around 300 kilometers), but it seems that English system do not
have popular micro units that match “micrometers” and “millimeters” (once
there was “micron” but less popular now), thus the 95% point in SI system is
smaller, only reach 105 meters (100 kilometers). But the longest thing men-
tioned remained on the same level in two different systems, both increased
to the level of 1014 meters. On the smaller side, the lines show exactly the
same trend as time. Recently people care more about smaller size. And 100

feet start to become a threshold of popular discussion. When considering SI
system of length (meters, kilometers, millimeters), since it again focuses on
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delicate units and we can see large counts related with this scale and it shows
almost the same trend as the experiment result on mass.
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Figure 5.6: Accumulated distribution of lengths in (top) SI length system,
unit meter and (bottom) English length system, unit foot. We see similar
distributions and changing points as the weight system.

What’s more, we did an additional experiment comparing all length data
in a certain range (from 100 to 105 meters) and see whether choose to user
different system of units will share the same accumulated percentage style.

From the results in Figure 5.7, we can find that in the last 100 years,
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Figure 5.7: Compare distributions of object lengths between different length
systems. Dots show lengths distribution using SI units within the range of
1 meter to 100 kilometers. Lines show the lengths distribution within the
same range but use corresponding English units.

there are almost no differences in items length distributions between English
system and SI unit system. Such prefect matches suggest that nowadays,
even using different measuring units, the related objects are almost the same.
But in the old age, for instance, the beginning of 1800, people seem to have
their own point of view on measuring. One possible reason is that people
are not that agree with using floating numbers in daily life–which causes
“gaps” between consecutive values. In order to accurately measure length of
an object, there might be a preference of using different systems for different
range of lengths.

5.6.3 Discussion of currency

We also tried the experiment on money quantities dollars as shown in Figure
5.8. In this experiment we see a totally different shape, indicating a fast-
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developing world of measurement. From the figure we can see that the 95%
line was 108.5 dollars (316 million dollars) 40 years ago, while the most recent
data has the line of 109.5 (3.16 billion dollars). In old ages people never talk
about such big quantity of currency, which shows that people are not only
dealing with more and more large quantities in currency, but also suffering
from severe trend of inflations. If we consider that the inflation rate to be a
constant, then the estimated inflation rate would be 106% each year. On the
smaller side, people do talk about money starting from cents, but only in a
very small portion. Additionally, once in history there exist currency unit of
“half cent”, but we found no such evidences in our Figure.
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Figure 5.8: Accumulated distribution of US currency, unit dollar. The shape
is totally different from what we see in weight systems and length systems
as human world of currency changed a lot in past 100 years.

5.6.4 Discussion of time

Finally we have the result in time field. No doubt that we can trace back our
history to the beginning of the universe, but when people talk about time,
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we usually discuss on the level of minute as shown in the experiment result
Figure 5.9. We also see the trend that people are getting more interested
in longer time periods, especially those longer than human histories – longer
time periods are mentioned more during the development of science and
technologies.
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Figure 5.9: Accumulated distribution of time, unit minute. Longer time peri-
ods are mentioned more during the development of science and technologies.

Another experiment on quantities with units studies the value before a
certain unit only, to see how people thought about number usages before
units. We examine the distribution of numbers before a certain weight unit
gram and the observation is, if there is no larger units in the same field,
people tend to add “thousand” or “millions” before the largest unit in order
to represent a even larger scale; otherwise, people prefer to use a value ranges
in 10 times the level of an adjacent units. For instance, if people would discuss
a time period of 150 minutes, he would rather say 150 minutes or 2.5 hours;
if the time period is 730 minutes, people would probably change the unit to
“hours” and round it to a certain extent, which is 12 hours, instead. If in
one of the expression the value is perfectly rounded like “800 minutes” or “25
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hours”, such kind of expression will also be preferred. These phenomenon
might explain the appearance of “gaps” when consider only several possible
units since people might use another expression for better memory. With
an appropriate unit, people could easily have an idea of the scale and thus
understand the meaning better.

5.6.5 Quantities without defined unit systems

There are also some interesting nouns like “people”, “cars”, “towns” that can
imply the development of human society. The following Figure 5.10 shows
the number scales and the distribution of values of word “people”. The
smaller tail start from 1 (i.e. 100) –though there might be some irregular or
special expression of related with people since talking about 0.12 people is
meaningless.

No doubt that the total number of human beings on Earth is rapidly
increasing, but more than 1% of the information talking about people involves
a large scale (10,000 or more). As early as 1800s, the line of 95% reaches
1,000 people, which shows that the quantitative numeracy developed in the
old age for many practical reasons. It also indicates that people need more
sophisticated numeracy skills to handle with this information even in the
early 1800s to do census correctly, as well as other government issues.

We also examine the most popular words appeared after a number and we
show our results in Table 5.1. According to our previous experiment, we put
these words into three different categories: meaningful units, meaningful non-
unit-nouns and words without meanings. Here meaningful units specifies a
unit in a known category like “kilogram” or “feet”, units represent something
that can be described and listed like “pages” and “volumes”. Note that we
put the words like “millions” and “times” into this category. We thought
that it is correct if we only have three categories, but there is another idea
that create a new category for such words because they are probably used
to describe the noun following them–such examination need more knowledge
about 5grams since phrases like “several millions of ADJ NOUNS” would
appear quite often and occupy each possible position of token–and we now
simply assume that the appearance of non-unit-nouns and units remain the
same proportion as if we do not have these extra modification words. And
finally we have the third category, which contains words like “the”, “a”,
“of”, “in”. These are probably generated by the meaningless fragments of
n-grams – since the raw data did not consider any situation that two adjacent
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Figure 5.10: Distribution of numbers appearing before the word “people”.
There are some outliners talking about meaningless fraction number of peo-
ple, however majority of values ranges from 100 = 1 as expected.

words belonging to different short sentences, i.e., “In 1940, he started his new
life...”, we simply use them as references.

From our results we know that the proportion of reference sentences are
generally increasing and we thought the reason was that numbers are given
more usages other than acting as a number before a noun in recent decades.
Worlds are more digitized and even a number itself can become a source
of information, for example, the final score of a basketball match. Besides,
the number of unit-abbreviations increased dramatically in the last century–
statistics shows that 5 out of 10 most popular units are abbreviations, sup-
porting that people are dealing with a wider range of data from another
aspect. People should have a more systematic and efficient way of under-
standing these units. What’s more, we can make a conclusion that large
numbers and statistical usage of numbers appear more frequently in last 40
years–not only due to the increasing number of appearances of word “bil-
lion” and “percentage”, but also due to the bump of words that represent a
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month, like “November” and “April”. No doubt that the number followed
by a month will represent a date. If we take the fact that there are 4 units
related with time appeared in the most popular units list in to consideration,
we can make a conclusion that people now have a powerful database that
can trace back in history and trying to make their decision based on these
statistical information.

YEAR Most Popular Most Popular Proportion
Unit Words Nouns (Refs/Units/Nouns)

1800-1839 feet, miles,
years, inches,
acres, dollars,
degrees, days,
tons, pounds

men, vols, chap-
ter, inhabitants,
chap, parts, per-
sons, guns, mil-
lions, times

63.82%/23.76%/12.43%

1840-1879 feet, miles,
years, inches,
tons, cents,
acres, ft, days,
m

vols, men, chap-
ter, parts, vol,
pages, inhabi-
tants, persons,
times, kings

64.12%/22.88%/13.01%

1880-1919 feet, miles,
inches, years,
cc, ft, cents,
pounds, tons,
mm

vols, men, chap-
ter, illustrations,
pages, parts,
cases, shows,
times, persons

69.33%/21.89%/8.78%

1920-1959 feet, years,
miles, ft, mm,
days, inches,
hours, m ,ml

million, vols,
shows, men,
times, cases,
chapter, pages,
american, per-
sons

77.21%/16.70%/6.09%

1960-1999 years, m, mm,
mg, hours, cm,
ml, minutes,
months, miles

million, shows,
patients, figure,
men, fig, cases,
people, chapter,
billions

75.59%/17.26%/7.15%

Table 5.1: Statistics of most popular words after numbers in different time
periods in past 200 years.
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5.6.6 Benford’s law

Benford’s law, also named as first digit law, states that in lists of numbers
from many real-life sources of data, the leading digit is distributed in a spe-
cific, non-uniform way. According to this law, numbers with first digit of
1 appear about 30% of the time. Larger digits occur as the leading digit
with lower and lower frequency, to the point where 9 as a first digit occurs
less than 5% of the time. From our statistics, the median value among all
integers with certain number of digits always stay between the number start
with 2 and the number start with 3, which match with Benford’s law that
numbers starting with 1 and 2 occupy around (30% + 16% = )48% of the
time.
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Figure 5.11: Expectation and observation of numbers starting with different
leading digits that connect to unit “meter”, grouped by five 40-year-periods.
We find only minor gaps between expectations and observations except the
earlist period of 1800-1840.
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Figure 5.12: A stacked area graph showing the verification of Benford’s law.
Each strip represents the percentage of numbers starting with a certain digit,
in the order of 1, 2, 3, ... , 9 from bottom to top.

Figure 5.11 shows the statistics of all numbers followed by the unit “me-
ter” according to their first digit number in scientific notations. Since “me-
ter” might be the most common length unit in human being’s daily life, we
can simply assume that these numbers cover a quite big range of common
objects.

According to Benford’s law, the probability that a number start with d
should be about log10 (1 + 1

d
), thus the probability of a number whose leading

digit is 1 would be around 30%. And we can match the result number with
the width of the band in the graph to basically verify Benford’s law–it seems
quite correct based on the previous two figures. We also found that in Figure
5.11 the observed counts of digit 7 and 8 seem less than expected. The reason
would probably be “gaps” of possible value, given the fact that 7 meters or 70
meters might be less popular in real world (too short for distance measuring,
too long for object length, and even not good for rounding). We thought
it to be tolerable error if considering the habit of manually rounding, which
was similar as one of the situation mentioned in [74]. Figure 5.12 shows time-
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series using all values in the field of length without converting them into a
fixed unit, i.e. distinguish “2 miles” from “3.22 kilometers”. We expect to
see the value (number only) distribution with multiple different units instead
of a single “meter”. This time the proportion of digit 1 was little bit higher,
showing that people prefer memorize or record numbers with seemingly small
starting digit even if the actual values are exactly the same.
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Figure 5.13: Deviation from expectation over time indicating when the usage
of numbers suddenly changes. Peaks usually reflects the process of replac-
ing old arithmetic habit or increasing the digits used for counting due to
development of businesses.

We use a simple method to calculate the deviation of actual first-digit-
distribution from expectation of Benford’s law on all length values. The
formula we use was:

D =
9∑

k=1

|Ok − Ek|

where Ok represents the observed percentage of numbers starting with digit
k, and Ek shows the expected percentage by Benford’s law.

In Figure 5.13 we see quite a lot of noises during the period between 1840
and 1890, which we thought reflects the process of replacing old arithmetic
habit. The global trend is that the deviation get smaller and smaller, showing
that we have more data, more reliable measurement and more reasonable
distribution of numbers.

Finally Figure 5.14 shows smoothed distribution of number usages. The
time-series seem to be nicely smoothed and matched well with the expec-
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Figure 5.14: A stacked area graph showing the distribution of all numbers
regardless of the units. Layers from bottom to top represent 1, 2, 3, ... ,
9. We see clearly from the graph that smoothed distributions of numbers
match pretty well with Benford’s law, indicsating that most of the numbers
are used for naturally developing businesses.

tation of Benford’s law. However, the proportion of digit 1 is even higher.
After carefully examine the data, we found that values in the field of time
dominate the counts–we have a lot of 4-digit-number representing year infor-
mation. Plus, we have a special 60 base representation describing minutes
and another 12 base (or 24 base) representation for hours where the original
Benford’s law does not work well. All these provide us with many values
starting with 1 and reduce the appearances of 7, 8 and 9. The dominating
counts also eliminate possible fluctuation and it could hardly be changed as
a fixed cultural behavior.
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Chapter 6

Comparing Historical Figures
using Wikipedia

People who have their names on Wikipedia are usually historical figures with
impressive contributions in certain fields. Effective analogies among these
famous people arise continuous interests of questions like “Who are the next
Lincolns, Einsteins, Hitlers, and Mozarts?”. However, analogies of historical
figures usually combine multiple facets of these individuals, including shared
personality traits, historical eras and domains of accomplishment. Figure 6.1
gives the closest analogies examples on different aspects of Isaac Newton.

Analogies are of course highly subjective, and hence rest at least partially
in the eyes of the beholder: “there are a thousand Hamlets in a thousand
people’s eyes”. We are interested in building a generalized model to find
all these candidates with high similarity level based on connections and se-
mantics in their Wikipedia text. We would also like to automatically rank
categories tags – the human annotation that make best summarization – in
their Wikipedia text to give an clearer idea of why these people are mem-
orized. It could be very evocative when correctly identified examples like:
Martin Luther King and Nelson Mandela; George Washington and Mao Ze-
dong; Babe Ruth and Sachin Tendulkar.

In this work, we propose a method for identifying historical analogies
through the large-scale analysis of Wikipedia pages, as well as ranking human-
annotated Wikipedia categories by their impressive level using combined
resources of raw text and Wikipedia internal links. Over 600,000 histori-
cal figures have associated Wikipedia pages in English alone, a population
greater than San Francisco. Our methods readily generalize analysis of the
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Figure 6.1: Sample analogous historical figures of Isaac Newton and corre-
sponding explanations of similarity. Analogies are highly subjective thus it
is impossible to find perfectly fair and objective gold standards.

Wikipedia available in over one hundred other languages as well.
We first develop a baseline reference standard for historical analogies to

judge the effectiveness of our methods, which estimate “similarity between
people” by the number of shared Wikipedia categories. Later on we ask
volunteers to vote for the most important categories and use such data to
calibrate importance level of each category. There are few contradictions be-
tween these two criteria. However, adopting importance of categories makes
our evaluation more consistent with human beings, thus providing an even
more reasonable definition of ‘similarity” and better quantify performance of
our similarity detection algorithms.

The most obvious applications of this are in historical interpretation and
education, but we believe that the problem runs considerably deeper. Ho-
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mophily is the tendency of individuals to associate and bond with similar
others. Being able to identify similar individuals thus goes to the heart of
algorithms for suggesting friends in social networks, or even matching algo-
rithms pairing up roommates or those seeking romantic partners.

Specifically, our work makes the following contributions:

• We investigate four different unsupervised approaches to representing
the semantic associations of individuals: (1) Individual word frequency
using TF-IDF, (2) Weighted average of distributed word embedding,
(3) Topic analysis using LDA (Latent Dirichlet Allocation) and (4)
Deepwalk embedding generated from Wikipedia page links. All proved
effective, but Deepwalk embedding of Wikipedia links yielded an overall
accuracy of 91.4% in our evaluation. We create vector based representa-
tion of about 557,965 people on Wikipedia and measure their similarity.
We provide an interactive demonstration of our historical analogies at
http://peoplesimilarity.appspot.com/, where you can identify the most
similar historical figures to any individual you query.

• We propose that information extracted from Wikipedia categories to
be a reference standard to solve this task. Though not perfect as a de-
tailed measurement, these human labeled features imply some relation-
ships between similar people. We generated in total 3,000,000 triples
of variable and prescribed difficulty, providing an effective standard to
evaluate whether our distance measurement algorithms are reasonable.

• We compare two recent vector-based approaches with two traditional
statistical methods. Unlike TF-IDF and LDA, vector based measure-
ment (embedding) integrated distance function in its high dimensional
representation. This feature make it easy to do operations like pair-
wise distance calculating, clustering and density estimation. All these
approaches yield good qualities, but may focus on different aspects
of similarity. We also generated a model using linear combination of
previously mentioned models to get a better tradeoff between graph
structures and text semantics.

• We collect data from 176 human volunteers for the ranking of 500
most famous people’s Wikipedia categories. We adopt this data collec-
tion together with our similarity measurements to automatically rank
the descriptive power of Wikipedia categories of historical figures. We
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conduct a multi-level grid search to find the algorithm that can best
quantify the importance of Wikipedia categories. We demonstrate that
our ranking achieve an overall agreement of 75.41% with human voting
on 5-choices questions.

6.1 Related work

Distributed word representations, or word embedding, are dense numerical
representations of words that capture both semantic and syntactic features
of words. Training word embedding needs only raw text corpus as input
without human intervention or language dependent processing. The features
embedding capture are task independent which make them ideal for language
modeling. The original work for generating word embedding was presented
in [10]. The embedding was a secondary output when generating language
model.

There had been an interest in speeding up the generation process [11,
12] after [10]. Word embedding encodes many knowledge of languages and
SENNA [26] showed that embedding are able to perform well on several NLP
tasks in the absence of any other features. Huang et al. [45] applied local
information can lead to better clustering of word embedding. Al-Rfou et al.
[6] constructed word embedding for over 100 languages which provides even
more resources to analyze text in many other languages.

DeepWalk is a novel approach for learning latent representations of ver-
tices in a network [78]. It generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning) from sequences
of words to graphs. DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treating walks as the
equivalent of sentences. These latent representations encode social relations
in a continuous vector space, which is easily exploited by statistical models.
Applying DeepWalk to Wikipedia will create embedding for each page in this
huge graph thus provides statistical comparison between pages.

Latent Dirichlet allocation (LDA) is a generative model [14] and people
can estimate the probability distribution of topics of a certain document.
Krestel et al. [58] demonstrated good performances of LDA in tag recom-
mendation – LDA showed its excellence via the fact that the topics highly
agree with real tags when finding most important feature words of a page.
However, LDA still has some defects. One is that the probability distribution
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is not deterministic, especially when there are many related topics thus it is
hard to measure similarities using LDA only, the other is that LDA focus on
co-occurrence of words and semantic grouping of topics needs language de-
pendent resources, like synonyms [34]. We will show later that models using
word embedding performs as well as LDA when grouping topics.

All these method show some kinds of similarity measurement of pages
based on text (or corresponding links), but how well they can estimate peo-
ples’ views on historical figures has not be analyzed.

6.2 Data collection

We start the whole corpus processing from English Wikipedia dump. First of
all, we will check if a page is either a “Redirect” or a “Disambiguation” page.
These two kinds of pages are designed to resolve alias of pages. They contain
no text content but only redirection links to other pages. We ignore these two
types of pages and then split each page into two different parts: content part
and reference part. Content part contains main body of a Wikipedia page
with markup and reference part includes Wikipedia category information,
reference links and supplemental materials.

Before we remove Wikipedia markups to get raw text, we need links
between Wikipedia pages to create a huge adjacent list for all Wikipedia
article pages, recording whether there is a directed link from one page to
another. We only use links in content part of each page without looking at
references and categories links. This procedure helps us collect adjacent list
of totally 4,517,721 pages, occupying 0.5GB of disk space.

Next we link each wiki page to corresponding freebase page and check if it
falls into the category of a person. In order to make reasonable similarity, we
ignore pages that have less than 50 hits which may probably point to insignif-
icant people with very short introduction. We parse and tokenize all pages
pointing to a person and keep raw text in content part without references or
categories. We finally record 557,965 people’s Wikipedia text, approximately
occupying a size of 1.7GB in our database. Later on we will these Wikipedia
texts to refer to corresponding people when calculate similarities.

After that we extract category information for these 557,965 people from
reference part of their Wikipedia pages, which will be used to generate testing
bed based these “category description” of a person. We eliminated trivial
categories that makes no sense in comparing similarity, including “year of
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birth”, “year of death” and “living or not” using regular expressions and
created a hash table to store these category information. This category
information for people is about 0.15GB.

At last we intersect the raw text of people with SENNA’s dictionary
(which consists of 130,000 words) and tokenized page contents to build a
word-frequency table for each word and document which will be used later
in our models. We build these corpus, dictionary and TF-IDF using Gensim
topic modeling tools [83]. We use a blacklist to get rid of common stop words
and numbers in this step.

6.3 Model description

In this section we will describe four candidate vector models that can con-
vert a Wikipedia page, in our case neutral description of one’s history, to
feature vectors to fuel similarity measurements. These models are word level
TF-IDF, distributed word embedding, LDA topic modeling and Deepwalk
embedding.

6.3.1 TF-IDF model

TF-IDF is frequently used in natural language processing to reflect how im-
portant a word is to a document in a collection or corpus. TF-IDF can
easily remove common words with less descriptive power. Each page in our
experiment will be converted into feature vector of size ‖V ‖ where V is the
vocabulary that ever appear. We fill in 50 non-zero TF-IDF values in this
vector indicating top 50 description words with highest TF-IDF, discard-
ing the rest of “long tails”. Similarity between two people could then be
measured according to the distance, either L1 or L2 normalization, between
corresponding feature vectors.

TF-IDF model includes all possible words in its vector space, which makes
it useful to emphasize rare words that do not appear in SENNA’s dictionary.

6.3.2 Distributed word embedding model

Distributed word embedding model is a simple “composite” idea that create
articles’ embedding using words’ embedding. We apply a weighted average
model to average SENNA’s word representation of each word in the article
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using their TF-IDF value as weights. Embedding of person will be close
to the most important words in corresponding article and provides a good
estimate of similarity between people since word embedding group similar
words together. Figure 6.2 is a simplified projection illustrating separated
apart distribution of party leaders, musicians and physicists in our embedding
space.
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Figure 6.2: Sample entities and words example in projected embedding space,
distance between pairs shows their relevance. Entities will be attracted by
the most descriptive words and locate close to the “centroid”.

Embedding of the article has same dimension as embedding of word in
SENNA, which is 50. In our experiment distance function could be either
Euclidean distance or Manhattan distance.

Distributed word embedding model embedding would be a reasonable
extension of TF-IDF model since similar words in embedding spaces are
grouped together. It makes full use of close neighbors in embedding space
as synonyms thus greatly reduce the number of dimensions. However, dis-
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tributed word embedding can only handle words with an existing embedding
– any words that does not appear in SENNA’s dictionary will be discarded.

6.3.3 LDA model

LDA is a mature model providing probability distributions of topics. It is
based on co-occurrence of different words. Figure 6.3 shows an example of
top related topics for some entities.
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Figure 6.3: Examples of entities and top six related topics in LDA method.
We demonstrate each topic by showing representative words. The probability
of topic distribution differ a lot for party leaders, musician and physicists.

We convert each page in the corpus into a probability distribution of 500
possible topics. Pages have higher probability to fall into same topics should
be considered more similar.

Distance used to compare topic distribution similarity could be Euclidean
distance or Manhattan distance since we consider them to be a feature vector.
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However, as a probability distribution we can also apply Jensen–Shannon
divergence between LDA vectors in our experiment.

The advantage of LDA model is that output of each topic directly connect
with other natural language processing tasks, thus it is easy for human beings
to read and understand.

6.3.4 Deepwalk embedding model

Deepwalk is an online algorithm that creates statistical representation of
graph by learning via random walks in the graph. Walks are considered as
sentences metaphor and generate latent dimensions according to adjacent list.
Since Deepwalk does not use entire graph at once, it can handle huge graphs
of Wikipedia scale. With a hierarchical Softmax layer these latent dimensions
will be finally converted into vector representations. In Wikipedia, pages
sharing more links will sit closer in our Deepwalk embedding space. If a page
has too many outgoing links, its connected page will have lower chance to be
visited during random walk thus reduce weights of such links. We use the
package described in [78] and create 128-dimension feature vector for each
page in Wikipedia. Distance between two people will be set to either L1
or L2 normalization between embedding of corresponding pages. The final
embedding size of all Wikipedia pages (in total 4,517,721) is 5.5GB and that
for 557, 965 people is only 0.68GB.

Deepwalk fully utilizes connections in Wikipedia and train embedding of
an article using it local connections in the huge adjacent graph. However,
Deepwalk does not process of word itself. It might cause some disadvantages
in semantically locating highly correlated words and further understanding
the paragraph.

6.4 Wikipedia categories processing

We use extracted Wikipedia categories information to create a reference stan-
dard of “similarity” between people. Wikipedia categories are human anno-
tations that intended to group together pages on similar subjects. Existing
categories group people in many aspects, for example, nationality, job ti-
tles, awards, education histories. These features shows a reasonable part
in our memory to remember people which appears to be a good represen-
tation of “similarities” in real life. From our observation, most categories
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have strong signals of categorizing people, like “Nobel laureates in Physics”,
“Presidents of the United States”; some categories summarize interesting
background knowledge but not as powerful as we expected, like “Austrian
Roman Catholics”, “People from Newark, New Jersey”; some categories are
just too trivial to provide supporting evidences in our task, like “Living peo-
ple”.

We believe the importance of fame. Sometimes people with different fame
level are not comparable – even if they exactly live a very similar life style.
Historical figures with unbeatable contribution to their field are much easier
to establish analogies with people in other fields, for instance, “Gary Larson
is the Jimi Hendrix of comics”. Since Wikipedia text does not provide the
quantification of the fame feature, we turn into other sources to work as a
tradeoff.

We show in Figure 6.4 the distribution of Wikipedia categories of people.
“Famous level” is measured according to “ranking of fame” described in [88]
which is a combination of Wikipedia hits, article length and links. The
statistic shows that most people do not have many representative categories,
which indicates that we cannot resolve our task totally based on Wikipedia
categories. However, existing categories act as good summary of a person.
The most famous 10,000 people have 20 categories on average and 14.08%
of them occupying more than 30 categories. The most famous 50,000 people
usually have 13 categories. Remaining people who are not that famous often
capture 4 – 6 categories.

6.4.1 Constructing reference standard

We build up our reference standard based on the assumption that “the more
common categories shared between two people, the more similar they are”.
However, not all these categories are useful. The “living people” category ex-
ists to help wiki editors improve the quality of biographies of living persons
by ensuring that the articles maintain a properly sourced neutral point of
view to protect them from inappropriate information. It is definitely mean-
ingless to consider “living people” when performing an impressive analogy.
We did a rough cleaning step to eliminate categories that are too broad to
be representative in substantial similarity test like “living people” as well as
categories indicating people who were born or died in a given year or location.

Let F (X, Y ) be the number of shared categories between person X and
person Y in Wikipedia. We can calculate F (X, Y ) for any pair (X, Y ) in
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Figure 6.4: Distribution of Wikipedia category numbers on pages of people.
It is clear that we usually have more detailed information on famous historical
figures and the category comparison could be more precise. More famous
people usually occupy more Wikipedia categories. Overall average categories
between people lies between 8 and 9.

our database. In the next step we randomly select tuples of people (X, Y, Z)
from our database such that F (X, Y ) > F (X,Z), which means X shares
more common Wikipedia categories with Y than with Z, indicating Y is
more similar to X than Z is. According to distribution of Wikipedia cat-
egory numbers, F (X, Y ) > 3 usually indicates a high similarity thus we
consider pairs (X, Y ) to have high (or low) similarity if F (X, Y ) > 3 (or
0 < F (X, Y ) ≤ 3). We sample 500,000 tuples of (X, Y, Z) in each of these
3 cases, for both all-people-tests and most-famous-people tests, sorted in
difficulty level:

• Case I: High similarity VS Zero: F (X, Y ) > 3 and F (X,Z) = 0
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• Case II: Low similarity VS Zero: 0 < F (X, Y ) ≤ 3 and F (X,Z) =
0

• Case III: High similarity VS Low similarity: F (X, Y ) > 3 and
0 < F (X,Z) ≤ 3 and F (X, Y )− F (X,Z) ≥ 2

Case (X, Y, Z)

I

(Einstein, Aristotle, Celine Dion)
(Lincoln, Bill Clinton, Heath Ledger)
(Mozart, Charlie Chaplin, Larry Bird)
(Mao Zedong, W. Churchill, Marco Polo)
(Jesus, Isaac Newton, Sun Yat-sen)

II

(Einstein, Oppenheimer, Michael Jackson)
(Lincoln, Reagan, Gaddafi)
(Mozart, Brahms, Michael Phelps)
(Mao Zedong, Deng Xiaoping, Lady Gaga)
(Jesus, Moses, Kim Jong-il)

III

(Einstein, Richard Feynman, Hawking)
(Lincoln, Ulysses Grant, George W. Bush)
(Mozart, Beethoven, Dmitri Shostakovich)
(Mao Zedong, Joseph Stalin, Bruce Lee)
(Jesus, John the Baptist, Homer)

Table 6.1: Examples showing three cases of comparing different similarity
levels. (X, Y) is always closer than (X, Z) based on counts of common
Wikipedia categories. The accuracy will be judged by how well we recover
such comparisons from our vectors.

To evaluate our distance measurements on these 3 cases shown in 6.1, we
calculate for each tuple (X, Y, Z) the distance between X, Y as Dist(X, Y )
and the distance between X, Z as Dist(X,Z). If Dist(X, Y ) and Dist(X,Z)
indicates thatX is more similar to Y than Z, it agrees with what the tuple im-
plies and we answer this tuple-based query correctly. The final performance
of each measurement is reported as the percentage of correct tuples among
3 test cases as well as the overall percentages. As previously mentioned,
Dist function would be the Euclidean distance when measuring distance be-
tween points in embedding space (i.e. the Average embedding model) and
JS divergence (Jensen–Shannon divergence) for probability distributions.
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6.5 Which feature vector is better?

Table 6.2 listed accuracy of 4 candidate models with different parameters on
test of all people in Wikipedia and on test of 50,000 most famous people.

Overall
Model Parameters Case I Case II Case III Overall

Random N/A 50.00% 50.00% 50.00% 50.00%

TF-IDF
L2 85.89% 76.11% 77.87% 79.96%
L1 85.54% 75.72% 77.33% 79.53%

Word embedding
L2 96.95% 84.40% 74.97% 85.44%
L1 96.56% 84.26% 75.57% 85.46%

LDA
L2 98.70% 88.22% 75.39% 87.43 %
L1 98.17% 88.35% 77.26% 87.92 %
JS 97.69% 87.98 % 76.22% 87.29 %

Deepwalk
L2 99.51% 89.50% 84.97% 91.33%
L1 99.11% 89.13% 84.59% 90.98%

Most Famous 50,000 people
Model Parameters Case I Case II Case III Overall

Random N/A 50.00% 50.00% 50.00% 50.00%

TF-IDF
L2 87.75% 76.93% 78.24% 80.97%
L1 86.59% 75.38% 77.01% 78.94%

Word embedding
L2 96.89% 82.92% 90.23% 90.01%
L1 96.51% 82.90% 89.04% 89.48 %

LDA

L2 97.68% 83.71% 80.99% 87.46%
L1 97.95% 83.31% 81.26% 87.51%
JS 97.15% 83.89 % 81.14% 87.40%

Deepwalk
L2 98.73% 85.47% 91.59% 91.93%
L1 98.11% 84.85% 90.79% 91.24%

Table 6.2: Accuracy performance of candidate models with different param-
eters.

TF-IDF model is undoubtedly better than Random guess and it can an-
swer approximately 4 out of 5 questions correctly in general, which shows
that a quick glancing (only top 50 words with highest TF-IDF) at the distri-
bution of words in corpus can very well help finding the topic of an article.
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However, TF-IDF do not consider any syntactic changes of words (e.g. great
vs greatest) and synonyms (e.g. emperor vs monarch) so that it is hard to
capture similar semantic meanings behind different words. Plus, study on
error cases shows that TF-IDF focus too much on locations and names (e.g.
the last name of James Simons ranked highly in TF-IDF), which reduces the
ability to recognize more important words in similarity measurement.

Word embedding model solved some problems we have in TF-IDF models.
By applying distributed word embedding, words with similar syntactic and
semantic meanings will be clustered together and thus affect the embedding
of the article in a similar way. We also see that enabling TF-IDF weight
slightly increase the performance of DWE model from our experiments. This
shows that the procedure of averaging embedding itself may already encoded
frequency so that assigning rare words a higher weight cannot change much on
distinguishing entities. However, getting embedding for phrases and articles
still seem to be an interesting open question. Besides weighted average we
have tried, there might also be other ways of converting word embedding
to article embedding – an interesting idea was raised [61] which shows good
performance on creating embedding of articles but whether it is not cheap
enough to run on Wikipedia scale graph.

LDA model is very close to our Deepwalk embedding model in Case I and
Case II. However, it performs badly in Case III, where three entities all share
some similarities in topics. This might be fixed by a replacing Manhattan
distance with a better measurement (e.g. JS-diversion) but it will be way
expensive to perform on a Wikipedia scale graph. We also discovered that
increasing number of topics in LDA model does not really boost the accuracy,
which implies that topics itself is not strong enough comparing to semantics
in the article in our task of identifying analogous historical figures. What’s
more, we discovered that too detailed topics might not benefit similarity mea-
surement. For instance, Yao Ming could be tagged as “the famous Chinese
basketball player in NBA” and Jeremy Lin could be, generally speaking, a
good match of Yao Ming. However, for those who familiar with NBA, they
play totally different positions and they have different playing style. This
phenomenon indicates that we may not need that many dimensions or topics
to decide features of a person in our task.

Deepwalk embedding yielded an overall accuracy of 91.3% on all people
test and an even higher 91.93% on 50,000 most famous people test, winning
all other vector based model. One noticeable drop in Case II accuracy shows
that famous people will have more “weak” categories that do not provide
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strong support on similarity measurement. Another discovery is that impor-
tant historical event will usually pull people closer in Deepwalk embedding
space, for instance, Ward Hill Lamon is considered close enough to Abraham
Lincoln due to the famous assassination. Lamon was actually not any kind
of politician which shows that Deepwalk embedding focuses more on features
of co-working and it actually use little text information.

As we know, this accuracy table does not show everything we care about
“similarity”. For instance, “Genghis Khan” and “Napoleon” would be some-
what similar due to their military achievements as conquerors and their sig-
nificance in history as monarchs. But these two people lived in different ages,
rose from different locations and speak different languages thus it is hard to
have a path of links connecting them through Wikipedia. Our program is
able to find such relationships but the rank of “Napoleon” when querying
“Genghis Khan” is still lower than expected.

No doubt that fames of a person should be considered part of similarity,
so we did some combined experiments using Deepwalk embedding and sig-
nificant score of people introduced in [88]. Combining Deepwalk model with
significant score and LDA model which captures some interesting relationship
in historical behavior through text, we gladly found examples that “Joseph
Stalin” popping out to be the top 1 candidates when querying “Adolf Hitler”.
Table 6.3 shows some examples of finding analogous historical figures using
single or combined distance measurement from our previous experiments.

6.6 Descriptive power of Wikipedia categories

In previous section, we use count of shared Wikipedia categories as a reference
standard of measuring similarity between historical people. However, it is
clear that not all categories are created with equal descriptive power. For
instance, “Presidents of the U.S. ” are leaders of the most powerful country in
the world and people in this category definitely have more impact than local
senators or state lawyers; categories being abandoned like “year of births”
and “year of deaths” in previous experiment usually makes no sense. We seek
to quantify the importance of Wikipedia categories using feature vectors of
557,596 people we have generated and propose an algorithm to quantify and
rank these categories.
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Model
Albert Einstein Yao Ming Larry Page

Candidates C HE Candidates C HE Candidates C HE

Word

Max Planck 3 GOOD Yi Jianlian 4 GOOD Alan Kotok 0 OK
Ernst Mach 2 OK Luol Deng 1 OK Fred Brooks 1 OK

Erwin Schrödinger 2 GOOD Anthony Parker 0 OK Bob Wallace 0 BAD
Arthur Eddington 0 OK Andrés Nocioni 2 OK Robert Metcalfe 1 GOOD
Richard Feynman 4 GOOD James Yap 0 BAD R. P. Gabriel 2 GOOD

embedding

Paul Dirac 2 GOOD Mengke Bateer 5 GOOD Eric Eldred 0 BAD
Freeman Dyson 3 OK Vijay Singh 0 BAD Brendan Kehoe 0 BAD
Norbert Wiener 1 BAD C-M Wang 0 BAD Ted Nelson 0 OK

Georges Lemâıtre 1 BAD Yu Darvish 0 BAD Donald Davies 0 BAD
Enrico Fermi 3 GOOD Chris Bosh 2 GOOD M. Stachowiak 0 OK

LDA

Wolfgang Pauli 5 GOOD Yi Jianlian 4 GOOD Simson Garfinkel 0 GOOD
Emmy Noether 1 BAD Chris Bosh 2 GOOD Robert Metcalfe 1 GOOD

Erwin Schrödinger 2 GOOD Sun Yue 3 GOOD John Mashey 0 BAD
Eugene Wigner 4 GOOD Luol Deng 1 OK Ray Tomlinson 0 BAD
Norbert Wiener 1 BAD Bob Cousy 1 BAD M. J. Dominus 0 BAD

Esther Lederberg 0 BAD Steve Nash 2 OK R. Piquepaille 0 BAD
David Hilbert 0 OK Herschel Walker 0 BAD Ellen Spertus 1 BAD

Felix Ehrenhaft 0 OK R. Tomjanovich 2 OK Jon Lebkowsky 0 OK
Paul Ehrenfest 1 OK A. Kavaliauskas 1 OK R. P. Garbriel 2 GOOD
Ralph Kronig 1 OK Mengke Bateer 5 GOOD D. Giampaolo 1 OK

Deepwalk

Richard Feynman 4 GOOD Yi Jianlian 4 GOOD Sergey Brin 12 GOOD
Max Planck 3 GOOD Jeremy Lin 0 GOOD Eric Schmidt 6 GOOD

Freeman Dyson 3 OK Kobe Bryant 2 OK Bill Gates 6 GOOD
David Bohm 1 OK Wang Zhizhi 5 GOOD Marc Andreessen 2 GOOD

Stephen Hawking 2 GOOD Michael Jordan 1 OK Mark Zuckerberg 6 GOOD
David Hilbert 0 OK Deron Williams 2 OK Esther Dyson 0 BAD
Oppenheimer 4 GOOD Mengke Bateer 5 GOOD John Doerr 3 OK

Werner Heisenberg 4 GOOD Dwyane Wade 3 OK John Battelle 0 GOOD
Hermann Bondi 1 BAD LeBron James 3 OK Joi Ito 0 BAD

Erwin Schrödinger 2 GOOD Steve Francis 2 OK Jimmy Wales 1 OK

Linear
Max Planck 3 GOOD Yi Jianlian 4 GOOD Bill Gates 6 GOOD

Erwin Schrödinger 2 GOOD Mengke Bateer 5 GOOD Eric Schmidt 6 GOOD

comb
Richard Feynman 4 GOOD Chris Bosh 2 GOOD Simson Garfinkel 0 GOOD
Freeman Dyson 3 OK Michael Jordan 1 OK Sergey Brin 12 GOOD

of
Wolfgang Pauli 5 GOOD LeBron James 3 OK Robert Metcalfe 1 GOOD

David Bohm 1 OK Jeremy Lin 0 GOOD Marc Andreessen 2 GOOD

Deepwalk
Eugene Wigner 4 GOOD Charles Barkley 2 GOOD Mark Zuckerberg 6 GOOD

R. Millikan 2 OK Tony Parker 1 OK John Battelle 0 GOOD

and LDA
Stephen Hawking 2 GOOD Steve Francis 2 OK Marissa Mayer 4 OK
George Gamow 2 OK Juwan Howard 2 GOOD Steve Jobs 5 GOOD

Table 6.3: Examples of 10 closest neighbors we find using our vector based
models and comparison to our reference standard. C column represents count
of common Wikipedia categories between pairs of people and HE column
shows human evaluation after reading their bibliography, if it is a GOOD,
OK or BAD match according to general knowledge.

6.6.1 Collecting human annotations

We start a project on Crowdflower, a leading people-powered data enrich-
ment platform, to collect gold standard of the importance level of Wikipedia
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categories. We pick 500 most famous people according to the fame ranking
in our previous experiment to collect information from human volunteers.
For each Wikipedia person we manually select 4 categories which are good
enough to make description, plus 1 random category to make up a question
with 5 choices. Each volunteer is required to pick the most important and
descriptive one among these 5 choices as shown in Figure 6.5.

Figure 6.5: Question samples to collect human wisdom. For each question
we collect 20 answers and the distribution of these answers indicate overall
importance of each category.

We collect 10 answers for each question regarding a Wikipedia person.
In total we gathered 5,000 answers from 176 volunteers, covering 1076 most
important categories. Each answer makes a clarification that one choice is
dominating the other four. We assume more descriptive categories will have
more votes and the distribution of these votes implies importance of each
Wikipedia categories.

Our observations on the data collection show that some correlative cat-
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egories are highly confusing as they often co-appear and they share similar
descriptive power. Table 6.4 lists top 10 most confusing category pairs.

Category pairs Co-Prob

French Open champions
Wimbledon champions 100.00%

Australian film actors
Australian television actors 100.00%

Association football forwards
Brazilian footballers 86.60%

Holocaust perpetrators
Nazi Germany ministers 86.60%

National Basketball Association All-Stars
Parade High School All-Americans (boys’ basketball) 81.65%

Eastern Orthodox saints
People celebrated in the Lutheran liturgical calendar 75.59%
American novelists
American short story writers 67.94%

American jazz singers
Traditional pop music singers 67.61%

American rhythm and blues singer-songwriters
American soul singers 67.36%

African-American rappers
Pseudonymous rappers 62.90%

Table 6.4: 10 most confusing category pairs in our questions. Co-Prob of two
categories A and B is defined as the geometric mean of P (A|B) and P (B|A).
Since candidate choices are manually picked from existing Wikipedia cate-
gories, such co-occurrence reflect some level of general human background
knowledge preference.

Since the table is made based only on the categories of 500 most famous
people, it is not accurate enough to measure the co-occurrences of all category
pairs. However, it points out that people have high tolerances on categories
with similar importance level.

6.6.2 Definition of close neighbors

We demonstrated in previous section that distance between our feature vec-
tors indicate similarity between corresponding Wikipedia people. However,
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distance in embedding space is not linear – pairs with twice the distance does
not necessarily mean half the similarity. On the other hand, observation on
word embedding shows that only pairs within a certain range show signals
of similarity. This might still be true for our feature vectors on Wikipedia
people. Such ranges are not pre-defined and usually it is correlated with the
density of embedding in a certain area of the embedding space.

We propose two basic approaches. One is to limit close neighbors by
count, considering the closest K neighbors in embedding space to be close
neighbors. Since relationship of close neighbors is not always reversible under
this definition, this strategy will usually create asymmetric results. The other
is to pick close neighbors by distance, marking all neighbors within a certain
distance of D as close. With this strategy, if a point in space is semi-isolated
then nothing would be considered similar to it. Both two approaches are
reasonable and will be considered as a hyper-parameter in our experiment.

6.6.3 Ranking a category

We propose two methods to quantify how important a Wikipedia category
is when describing people.

The first one measures “tightness” of a category, which is defined to be the
ratio of close neighbors inside category and close neighbors outside category.
This is a simple and direct measurement because category with more inside
close neighbors will be more stable and more likely to become close neighbors
and sharing similarities with “members inside this category”. However, this
method does not consider the size of the category well. For larger categories
with more corresponding people, it is even harder to maintain all close neigh-
bors to be members inside the category. More points on the high-dimensional
convex hull will establish close neighbor relationships with points outside the
category, thus reducing the value of “tightness”.

Let Tcat be the tightness of category, then we have:

Tcat =
∑
X∈cat
Y ∈cat

(X,Y )∈closeneighbors

/
∑
X∈cat

(X,Y )∈closeneighbors

The other measurement focuses on balancing the effect of both size of the
category and the probability of inside-category pairs become close neighbors.
We assume that the probability of “a pair is inside a category” is independent
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from the probability of “a pair qualify as close neighbors”. Consider a point
A and the probability of its close neighbor B is also a member of the category
will be:

Pcat =

∑
X∈cat∑

X

If we randomly pick C close neighbors, the probability of having K close
neighbors in the group will be:

P (cat,K,C) =

(
C

K

)
(Pcat

K ∗ (1–Pcat)
C–K)

We then count the average number of close neighbors G from observations
in embedding space and the surprise level of the category will be defined as:

Scat,C =
∑
X≥G

P (cat,G,C)

Here C will set to a fixed number 100 as a hyper parameter.
Both measurement of tightness and surprise level will be experimented to

find the best agreement with human annotations.

6.7 Evaluating category ranking

We then conduct a grid search with following choices:

• Feature vectors: (TF-IDF, Word embedding, LDA, Deepwalk)

• Distance function: (L1, L2 and JS for LDA)

• Close neighbors: (Count and Distance). We will test on cases of average
close neighbors of 5, 10, 25, 50, 100 and corresponding distance that
keep the same number of close neighbors.

• Measurement: (Tightness and Surprise level)

Final quality will be evaluated according to the agreement with human
annotations, i.e. probability of agreeing with top voted choice as well as the
second, third, fourth, last choices.
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Since each vote provides 4 comparisons, agreeing with voting for i-th
choice means we are making (5 – i) correct judgements, thus we set up an
overall accuracy:

Overall =
5∑

i=1

Agreement with ith vote ∗ (5–i) ∗ 0.25

Since there exist confusing category pairs, the best category is not always
dominating. The best ranking constructed using topological order of the gold
standard vote can achieve an overall accuracy of 84.56%.

All experiments are conducted on 50,000 most famous people to avoid
meaningless comparisons.

6.7.1 Influence of feature vectors

We first discuss the influence of four different feature vectors in Table 6.5.

Feature vector Best performance
Agreements

1st 2nd 3rd 4th 5th
TF-IDF 72.49% 43.71% 24.73% 14.25% 12.45% 4.87%

Word embedding 71.68% 42.13% 24.23% 17.40% 10.71% 5.54%
LDA 73.31% 44.07% 25.10% 16.29% 9.11% 5.44%

Deepwalk 74.64% 46.47% 24.79% 14.97% 8.32% 5.44%

Feature vector Parameters
Corresponding Distance

5 10 25 50 100
TF-IDF (Count=25, L1, Surprise) 3.3716 3.5729 3.9743 4.1376 4.4433

Word embedding (Count=25, L2, Surprise) 0.4770 0.5046 0.5463 0.5828 0.6255
LDA (Count=25, L1, Surprise) 0.1352 0.1972 0.3091 0.4223 0.5639

Deepwalk (Count=50, L2, Surprise) 1.0092 1.0704 1.1740 1.2823 1.4366

Table 6.5: Best performance of each feature vectors. Deepwalk outperforms
the others and achieve 74.64% overall accuracy and 46.47% agreement with
human top votes. Corresponding distance gives the threshold of distance to
guarantee a certain average of close neighbors for overall.

The rank of embedding basically follow the same order of previous sim-
ilarity test. Distance distribution of TF-IDF and Word embedding is less
reasonable – the gap between each threshold is linear but the count of close
neighbors included is doubled, which suggests that close neighbors definitions
in LDA and Deepwalk are more stable. Overall Deepwalk works slightly bet-
ter than LDA. Considering the best performance to be 84.56% under out ex-
periment, Deepwalk actually correcting 15.73% wrong answers. Agreement
with 1st vote from human is also much higher.
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6.7.2 Influence of distance measurement

Table 6.6 shows statistics of how distance measurement changes the perfor-
mance.

Feature vector Distance Best Overall 1st 2nd 3rd 4th 5th

TF-IDF
L2 71.85% 42.17% 25.12% 15.84% 11.70% 5.17%
L1 72.49% 43.71% 24.73% 14.25% 12.45% 4.87%

Word embedding
L2 71.68% 42.13% 24.23% 17.40% 10.71% 5.54%
L1 71.32% 41.16% 24.35% 18.31% 10.97% 5.21%

LDA
L2 73.25% 44.39% 24.03% 16.67% 10.02% 4.89%
L1 73.31% 44.07% 25.10% 16.29% 9.11% 5.44%
JS 73.10% 43.99% 24.12% 17.33% 9.41% 5.14%

Deepwalk
L2 74.64% 46.47% 24.79% 14.97% 8.32% 5.44%
L1 74.37% 46.09% 24.91% 14.91% 8.57% 5.52%

Table 6.6: Best performance of each feature vectors and distance measure-
ment combinations. Best Overall shows the best performance achievable and
the last 5 columns demonstrate per-rank agreement. There are no big gaps
between L1 normalization and L2 normalization for all four types of feature
vectors. Also, JS divergence does not yield better performances.

There are no big gaps between L1 normalization and L2 normalization
for all four types of feature vectors. Also, JS divergence does not yield better
performances. This phenomena probably indicates the redundancy in word
embedding so that no matter which normalization function was chosen, there
will be a factor that preserve the property of making similar embedding close
enough.

6.7.3 Influence of defining close neighbors

Figure 6.6 shows 10 different definitions of close neighbors with corresponding
performances.

It is clear that judging close neighbors using only the value of distance is
worse. The reason is that density of local surrounding of semi-isolated points
(e.g. person with few introduction text and Wikipedia links) is much lower
than those frequently mentioned historical figures. Setting threshold to be
a certain diameter will create uneven distribution of close neighbors, thus
lower quality and stability of similarity measurement.

On the other hand, both count and distance threshold shows a peak within
the range of 25 to 50 average close neighbors, which is approximately 0.05%
to 0.1% of the whole data collection. Neither increasing nor decreasing this
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Figure 6.6: Different definition of close neighbors and corresponding best
performance. We experimented strategies of making a fixed number of close
neighbors for each point as well as creating a comparable number of close
neighbors overall using a distance limitation. Fixed number strategy outper-
forms the distance definition.

value will give better performances. We believe such criteria would still work
even under more sophisticated circumstance, e.g. considering all 557,596
people since points in the embedding space are usually evenly distributed.

6.7.4 Influence of importance measurement

Table 6.7 lists comparisons between “tightness” and “surprise level”. One
interesting observation is, the best performance of all Tightness measurement
happens when creating an average of 100 close neighbors for each point in
embedding space. However, we discovered that Surprise level measurement
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still outperforms Tightness even with much fewer close neighbors, indicating
that the size of category should be carefully examined during the procedure.

Feature vector Measurement Best performance 1st 2nd 3rd 4th 5th

TF-IDF
Tightness 68.22% 37.81% 23.18% 19.28% 13.56% 6.18%
Surprise 72.49% 43.71% 24.73% 14.25% 12.45% 4.87%

Word embedding
Tightness 67.94% 37.77 % 23.20% 18.65% 13.82% 6.57%
Surprise 71.68% 42.13% 24.23% 17.40% 10.71% 5.54%

LDA
Tightness 68.56% 36.49% 26.23% 19.24% 11.11% 6.93%
Surprise 73.31% 44.07% 25.10% 16.29% 9.11% 5.44%

Deepwalk
Tightness 65.65% 34.51% 24.85% 18.49% 13.03% 9.11%
Surprise 74.64% 46.47% 24.79% 14.97% 8.32% 5.44%

Table 6.7: Best performance of each feature vectors and importance level
measurement. Surprise level measurement outperforms Tightness, indicating
that the size of category should be carefully examined during the procedure.

6.8 Categories with bad performances

We try to make a deep analysis based on the best ranking, which is generated
using Deepwalk embedding, L2 normalization, each person having 25 close
neighbors and measured via Surprise level. We list all categories with more
votes but less surprise level in our data collection. Table 6.8 shows the top
10 of them:

As we can see, 3 out of 10 categories (Prime Ministers of the United King-
dom, Presidents of the United States, First Ladies of the United States) are
political leaders whose titles are so recognizable that they bestowed enough
to distinguish this person from the others. However, such categories have a
long history – it is quite possible that there are less similarity between U.S.
presidents in 1800s and U.S. presidents after 2000 except the title itself and
Deepwalk did not find supporting evidences from Wikipedia links. “The Bea-
tles Members” plays a special role since the size of the category is too small
while the descriptive power is unbelievably large. The remaining categories
are rough and generalized, sometimes with confusions, which makes it hard
to process.
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Category Count Probability
Prime Ministers of the United Kingdom 162 85.26%

Presidents of the United States 116 82.86%
American pop singer-songwriters 111 58.42%

The Beatles members 80 72.73%
American rhythm and blues singers 75 62.50%

American male professional wrestlers 54 60.00%
First Ladies of the United States 52 86.67%

American rock singers 50 83.33%
American rock guitarists 50 71.43 %
American horror writers 12 62.50%

Table 6.8: Categories disagree most with votes. Count shows number of
times human vote for this category but not higher-ranked ones. Probability
shows the chance of this category being answered whenever it appears.

6.9 Conclusion

We have proposed models for constructing feature vectors and measuring
the similarity between historical figures, and demonstrated that it works ef-
fectively over a representative evaluation environment. We tested our mod-
els on approximately 600,000 historical figures from Wikipedia pages, and
investigate several approaches to similarity detection to uncover historical
analogies. Our Deepwalk embedding of Wikipedia links yielded an overall
accuracy of 91.3% in our evaluation and shows a good match of human anno-
tated Wikipedia categories and a combination of our model can make query
results even more reasonable.

These models naturally extend to analyzing figures in different languages,
and also to extend to other classes of entities like locations (i.e. cities and
countries) and organizations (companies and universities) and we are able
to identify similar individuals for suggesting friends in social networks, or
even matching algorithms pairing up roommates or those seeking romantic
partners.

The final target of our application is not only focusing on identifying
analogous historical figures on English version of Wikipedia. Considering
possible applications of finding similar people via their personal webpage or
resume (which focus on text) or their social network friends list (using graph
structures), we are glad to see that our models can be applied to various types
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of text and graphs and our models do not cost much for even Wikipedia scale
corpus. Such utility could help improve algorithms of online recommending
systems. With embedding of other language [6] we can even create an multi-
lingual embedding space for people of different language backgrounds.

We are currently working to parameterize our methods so we can cap-
ture different tradeoffs between personality, temporal, and topic-based analo-
gies. An inspection of our closest matches suggests that topic-based analogies
dominate the nearest matches when considering text only, but more revealing
analogies may result from restricting the analyzed word features to particular
parts of speech or sentiment polarity.

Finally, we explain similarity more precisely using human-interpretable
names of Wikipedia categories as dimensions/topics obtained using our learn-
ing procedures. We collect better knowledge to understand the importance
of these particular strong or overrepresented features in our analysis. Our
ranking of similarities provides excellent knowledge that can properly define
weights of certain aspects to reduce the ambiguity of “similarity” and greatly
improve the performance.
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