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Abstract of the Thesis 
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by 
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in 
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2014 

 

With the advancement of affective computing technologies, spontaneous and complex emotions 

that were difficult or even impossible to recognize in the past are rapidly becoming the focus of 

many research. One intriguing example of these non-basic emotions is drug craving, a 

sophisticated concept which neuroscientists have studies for a long time. Nevertheless, it is not 

yet known whether craving is accompanied by a characteristic expressive behavior when it 

occurs, and only little work has been done on exploring the relationship between craving and 

facial expressions. 

   

In this thesis, we assume that drug-related stimuli can induce craving-related emotional states in 

drug users, and study the neurobiological and expressive behavior during these states by means 

of event-related potential (ERP) analysis and facial expression recognition. We design a passive 

image viewing task where cocaine users and control subjects watch neutral, drug-related, and 

non-drug emotional images. We record both electroencephalography (EEG) signals and the 

frontal face in real time to acquire a dataset that contains the subjects’ response to multiple 

emotional cues.  

 

We first aim to establish a baseline by showing that there is a meaningful difference in ERP 

values between the emotional categories. Individuals with cocaine use disorder (CUD) are 

expected to display higher magnitude of ERP for cocaine-related cues than for neutral cues. We 

show that, although to a weaker degree than previous studies, cocaine users react somewhat 

differently from healthy individuals when exposed to drug stimuli. After that, we use person-

specific tracking algorithm to register various facial points of interest. We extract geometric and 

appearance features from the tracked points and shape to build feature vectors that can capture 
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the possible occurrence of craving-related behavior. We use several methods of classification 

and try to distinguish drug cue-induced facial response from other facial expressions.  

 

Finally, we discuss the limitations of the current task design and the video dataset. Our results on 

ERP and facial activity show that our search for the possible expressive behavior correlated with 

craving is still inconclusive. We propose how the experiment could be improved in order to set a 

starting point for future research and make the task of facial expression recognition easier. 
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Chapter 1 

Introduction 
 

Recent years have witnessed significant advancements in the area of Affective Computing (AC). 

Human emotions play a huge role in how we react to our surroundings and what kind of 

decisions we make. The desire to understand this mechanism and to establish a standardized and 

solid model of emotions has attracted researchers from many fields including neuroscience, 

psychology and computer science. As a result, AC research has found promising applications in 

many domains, including affective-sensitive devices, mental health, education and gaming.  

Since Darwin conducted his research to explore emotions in a scientific way for the first time 

[1, 2], modeling emotions as a set of behaviors and expressions has become one of the prominent 

approaches to affection recognition [3]. Early studies have discovered some evidence that there 

is a small set of prototypical emotional facial expressions that are universal across different 

cultures [4, 5]. These emotions, which are surprise, happiness, sadness, fear, anger and disgust, 

are considered to be “basic” emotions in the sense that they are innate and cross-cultural [6]. 

Reactions such as head and shoulder movements, gaze direction, and especially facial 

expressions have been used in automatic systems to successfully distinguish between the basic 

emotions [7]. However, in recent years, significant amount of effort has been put into 

recognizing more complex emotional states such as fatigue [8], frustration [9], and pain [10]. 

These emotions are much more difficult to detect than the six basic emotions, since there is 

usually greater inter-person variability and the reactions are often more subtle.  

 

One of the interesting cases of this non-basic emotional state is drug craving. In the history of 

addiction research, the term ‘craving’ has been used to refer to various things including liking, 

wanting, urges, desires, need, intention or compulsion to use [11], but in general, craving is 

defined as ‘the subjective experience of a desire to use certain substance’. Drug craving has been 

the center of considerable attention over the past several decades, and it has been shown that 

drug-related cues can induce meaningful brain responses in substance users [12]. Despite these 

findings, there are no universal standards for measuring the state of craving as yet [13, 14]. 

Moreover, only a relatively few number of studies have discussed the relationship between 

craving and facial activity [15, 16, 17].  

 

The goal of this work is to explore the cue-induced responses for cocaine and other emotional 

stimuli in cocaine users and control subjects. We will use features acquired from two different 

modalities: the event-related potential (ERP) measured by electroencephalography (EEG), and 

facial expressions detected in the frontal face. The role of neuroscience in affective computing 

has been growing thanks to the advancement of brain imaging technology, and features extracted 

from EEG have shown promise for classifying different emotional states [18, 19]. It is therefore 

reasonable to include both EEG and facial features in our experiment.  
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In chapter 2, we provide an overview of research in affective computing with a focus on facial 

expression and EEG analysis. Chapter 3 briefly describes the history of craving analysis and 

presents some of the relevant studies. Experiment design and setup is discussed in chapter 4, and 

the results are shown in chapter 5. Conclusions and future work are presented in chapter 6. 
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Chapter 2 

An Overview of Affective Computing 
 

Affective computing aims to develop systems that can detect human emotions, express what a 

human would perceive as an emotion, and ultimately “feel” actual emotions [20]. The increase in 

computing power and the development of powerful sensors such as high resolution webcam and 

Kinect have led to significant advancements in the field, especially in affection detection. Since 

accurate detection of emotions is crucial to building a successful affective system, and because 

emotions are conceptual quantities with large individual variations, affection detection remains 

to be a very challenging and interesting problem. In the following subsections, different 

modalities that are used in affection detection will be discussed.  

 

 

2.1 Facial Expressions 
 

 

Human face plays a great role in delivering thoughts, emotions and intentions during 

communication. We perceive the complex movements of numerous facial muscles as facial 

expressions, and the ability to quickly intercept and interpret these expressions is one of the most 

fascinating functionality of our brain. In order to mimic this ability, it is important to understand 

how facial expressions are formed and design a good way of quantifying different facial 

behaviors.  

 

The Facial Action Coding System (FACS) developed by Ekman and Friesen [21] has provided 

researchers with the means to objectively measure facial motion. FACS describes the movement 

of different facial muscles in terms of “facial actions”. Each independent motion of the face is 

coded as an Action Unit (AU). These action units, 46 in total, are combined with each other to 

define the characteristics of various facial expressions. Since manually coding a facial image or 

video is very time consuming, there has been considerable effort to automatize this process [22]. 

Automated facial expression recognition system has many promising applications: examples 

include depression detection [23], neuropsychiatric disorder detection [24], and indexing and 

searching of video contents.  

 

Earlier works in facial recognition field mostly focused on the six basic emotions, and have used 

datasets consisting of facial expressions that are deliberate, or “posed”, under controlled 

environment. However, it is apparent that natural, spontaneous expressions are quite different 

from posed expressions, both in terms of facial behavior [25] and neural activities [26]. 

Spontaneous expressions display more smooth and synchronized movements in the facial 
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muscles, whereas posed expressions are less synchronized and show more variable dynamics 

[25, 26, 27]. Therefore, more effort is being put into identifying spontaneously occurring 

expressive behavior, such as distinguishing between natural versus deliberate smiles [25] and 

real versus faked pain [28],  

 

Also, more studies are moving beyond the six basic expressions and tackling more sophisticated 

everyday life emotions. Ji et al. [8] developed a complex Dynamic Bayesian Network (DBN) 

structure for detecting driver fatigue. Their model attempts to capture the relationship between 

physical and mental conditions of the driver, environmental factors that could influence fatigue 

(light, temperature, humidity, etc.), and sensory observations that result from fatigue. Ashraf et al. 

[10] explored machine learning approaches for recognizing pain expression from video. Dinges 

et al. [29] devised a system that discriminates between high and low levels of stress by 

examining facial expressions of subjects while they completed a set of computerized 

neurobehavioral tests. Kapoor et al. [9] presented a framework for detecting frustration from 

learners who are solving the Towers of Hanoi puzzle by combining facial expressions, body 

movement and skin conductance. Reed et al. [23], showed neutral, comedy and control video 

clips to individuals suffering from depression disorders, and found that those with current 

depressive symptomatology were more likely to express smile controls during smiles.  

 

Although coding schemes such as FACS are universal and easy to understand, they require 

access to large amounts of labeled data. This might not be feasible when we need to recognize 

naturally occurring behavior in highly uncontrolled settings, since the number of labeled datasets 

for natural expressions is significantly smaller compared to that of posed datasets. Therefore, 

some of the studies have tried automatic temporal segmentation or prior clustering of face events. 

In the early work of Hoey [30], a hierarchical dynamic Bayesian network was used to learn the 

high-level dynamics of facial expressions in a weakly supervised manner. Bettinger et al. [31] 

tracked each frame of video sequence with Active Appearance Models (AAM) and clustered 

facial behavior by segmenting the trajectories of features into sub-sequences. De la Torre et al. 

[32] devised a framework for segmenting facial events in the mouth region with automated face 

registration. Zhou et al. [33] approached the problem of unsupervised temporal clustering across 

different individuals as a versatile energy minimization problem, and used an extension of kernel 

k-means to solve it.  

 

In the following subsections, we will discuss two important problems that every automatic facial 

expression recognition algorithm must deal with: representing the facial data in an efficient and 

effective manner, and designing a classifier that can reliably distinguish one facial expression 

from another. 

 

 

2.1.1 Representation of Facial Data 
 

 

A good representation of facial structure and behavior is necessary in order for the facial 

recognition system to work. An ideal feature for face representation should be able to contain 

enough information to represent the facial regions of interest while not being too computation-

intensive. Most of the existing facial expression analysis algorithms use two types of features: 
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2D spatiotemporal features or 3D face models. 2D features can be largely classified into two 

types: geometric features and appearance features. Geometric features represent the shape and 

locations of specific facial landmarks such as eyes, brows and mouth corners. Facial feature 

points are extracted from these landmarks by means such as tracking or model fitting, and the 

points are used to define a feature vector that describes the behavior of that facial region. In 

contrast, appearance features aim to capture changes in skin texture of the face. They usually 

consist of different points of interest and texture descriptors, as well as local histograms with 

regional weights. One main drawback of 2D facial features is that they are dependent on the 

conditions of the dataset; a feature that is optimized for frontal face images wouldn’t work 

properly for profile images. To deal with this issue, some studies have used 3D face model to 

describe the underlying mechanisms of facial deformation.  

 

Geometric features are usually constructed by either detecting the shapes of the facial 

components (eyes, mouth, etc.) or tracking the locations of certain fiducial points (eye corners, 

tip of the nose, etc.). Since the displacement of these features is directly related to the facial 

muscle movement, many researchers have employed geometry-based descriptors as their tool for 

expression recognition. Pantic and Rothkrantz [34] extracted fiducial points from frontal and 

profile contours of face components (Figure 2.1). A similar definition of geometric features was 

used in a later study by Valstar and Pantic [35] where they proposed a fully automatic method 

for recognizing 22 AUs and modeling their temporal characteristics. Chang et al. [36] defined a 

face model with 58 feature points along the facial landmark contours and mapped the contour 

representation from high-dimensional space into a low-dimensional manifold. Kotsia and Pitas 

[37] proposed a system where a deformable grid is registered with the facial image region and 

the geometrical displacement of selected nodes is fed into a multiclass Support Vector Machine 

(SVM) classifier to recognize facial expressions.  

Figure 2.1: Geometry-based feature points used in the work of Pantic and Rothkrantz [34]. 
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Although geometric features are intuitive and informative, they require robust face registration 

and tracking algorithms in order to be effective. Although this is not very difficult in a controlled 

dataset with little pose variation, problems arise in many real-world situations where face 

direction is not necessarily fixed and factors such as lighting condition could create noise. 

Therefore, most of the related works either use well-controlled image datasets such as the Cohn-

Kanade database [38], or reinforce their geometric features with other modalities. 

Appearance features, on the other hand, reflect the model the changes in the texture of the facial 

skin. For example, appearance-base features can effectively recognize transient facial 

components like wrinkles and nasolabial folds. Several earlier studies have used optical flow 

analysis to detect facial movements, such as Yacoob and Davis [39], Essa and Pentland [40], 

Hoey and Little [41], and Yeasin and Bullot [42]. Some of the appearance feature extraction 

methods were based on Active Appearance Models (AAM). For example, Lucey et al. [43] 

defined three facial representations derived from the AAM: similarity normalized shape, 

similarity normalized appearance, and shape normalized (canonical) appearance.  

 

A widely adapted tool for appearance-based representation of the face is Gabor filter. Gabor 

filters are Gaussian kernel functions modulated by a sinusoidal wave. By using these filters, one 

can remove most of the variability in images caused by variation in lighting and contrast. It is 

known that the frequency and orientation representations of Gabor filter are similar to those of 

human visual cortical cells [44, 45]. Because of this property, Gabor filters have been applied to 

many areas including image analysis, face recognition and facial expression analysis 

[46, 47, 48, 49, 50, 51, 28]. For example, Littlewort et al. [28] designed a Gabor filter-based 

automatic AU detection system for distinguishing between posed and genuine pain expressions 

(Figure 2.2). 

 

Local Binary Patterns (LBPs) are appearance features that were originally introduced as a texture 

classifier [52] and have gained great popularity in facial expression recognition community in 

recent years [53, 54]. The LBP operator encodes the local intensity structure around each pixel 

by comparing the center pixel value from its neighbors and then concatenating the binary 

comparison values into a binary number (Figure 2.3). A histogram of the LBP labels computed 

over a region is used as a texture descriptor. LBP is a nonparametric method and is simple to 

compute, compared to Gabor wavelet representation which can be time consuming and memory 

Figure 2.2: Automatic facial expression system by Littlewort et al. [28] 
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intensive. LBP features are also resilient against monotonic illumination changes in face images 

[55]. Shan et al. [53] examined different machine learning methods, including template matching, 

SVM, linear discriminant analysis and the linear programming technique, to perform facial 

expression recognition using LBP features. The authors conclude that, compared to Gabor 

wavelets, LBP features can be calculated fast and lie in low-dimensional feature space while still 

retaining discriminative facial information. 

 

3D face models are aimed at tracking facial behavior under large amounts of head or body 

movements. If the 3D representation is robust and accurate enough, one can achieve view-

independency and accurately measure and integrate head pose information into expression 

recognition architecture. Chang et al. [56] and Yin et al. [57] created a 3D facial expression 

database for facial expression recognition. Cohn et al. [58] estimated head motion by fitting a 

cylindrical model to the head region. Dornaika and Davoine [59] used the Candide 3D face 

model [60] to represent shape units from interpersonal differences and mesh deformations caused 

by AUs (Figure 2.4). Li et al. [61] presented a 3D face recognition method based on sparse 

representation and low-level geometric features. 

 

 

2.1.2 Classifying Facial Expressions 
 

 

Once the features defined and extracted from the face, a classifier is used on the features to 

distinguish between different facial expressions. Many types of classifiers have been proposed 

for facial expression recognition. These include neural network [62], SVM [63], Bayesian 

network [64] and rule-based classifiers [34, 65]. The expression recognition methods can be 

further divided into frame-based and sequence-based methods.  

 

Frame-based expression recognition methods use the information of current image, with possible 

reference to a “neutral” image. Tian et al. [50] employed three-layer neural networks to 

recognize AU combinations present in images. Pantic and Rothkrantz [34] sampled the contours 

of facial components and extracted fiducial points from these contours. Based on the points, they 

recognized 32 AUs occurring alone or in combination by using rule-based classification. 

Although computationally simple, frame-based methods have the weakness of not being able to 

handle temporal dynamics of facial actions.  

 

Figure 2.3: The basic LBP operator [55]. 
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Sequence-based methods use temporal information of the image sequence to recognize the 

dynamic properties of facial expressions. Techniques such as Hidden Markov Models (HMMs), 

DBNs and rule-based classifiers were used for sequence-based classification.  

 

HMM is appropriate for modeling temporal behavior of facial expressions. For example, Cohen 

et al. [64] evaluated automatic facial expression recognition using a multi-level HMM structure, 

However, HMM is mostly used for representing the temporal dynamics of facial expression on 

the emotion level. Dependencies between the lower-level features such as AUs are not specified 

but rather implicitly learned. For example, modeling AU or AU combinations with HMM would 

usually require training a specific HMM topology for each of those AUs. 

 

In order to explicitly model complex relationship between facial features and action units in a 

straightforward manner, Dynamic Bayesian Network (DBN) are frequently used. Kaliouby and 

Robinson [66] implemented a system for inferring mental states from a video stream of facial 

expressions and head gestures in real-time by using a DBN model for the relationship between 

head movements, action units and mental states. Zhang and Ji [67] modeled the temporal 

relationships between the six basic expressions and the AUs with DBN. In their model, the 

lowest level is the sensory data layer containing actual information variables such as Brows, Lips, 

Eyelids, Mouth and Wrinkles. Intermediate levels consist of nodes that represent the presence of 

each AU, and nodes for modeling the conditional probabilities for AU combinations. The 

topmost level holds the node for expression classes. 

Figure 2.4: The Candid 3D model used in [61]. First row: Facial Shape units.  

Second and third rows: Positive and negative perturbations of Facial Action Units. 
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2.2 Body Language and Posture 
 

 

As a result of decreasing cost and increasing reliability of whole-body sensing technology, body 

expressions are becoming a very important modality in affective computing [68], since 

emotional expression usually occurs through combinations of multiple channels [69]. Mota and 

Picard [70] have used Tekscan’s Body Pressure Measurement System (BPMS) to infer the 

affective states of a user in a learning environment. This work was extended by D’Mello and 

Graesser [71], who developed a system to detect boredom, confusion, frustration and delight 

from gross body movements during a learning task. Several studies have explored the 

relationship between face and body movements in spontaneous affective behaviors [72, 73]. 

Although posture-based affect recognition hasn’t received as much attention as those based on 

facial expressions in the past, it is expected that the importance of body languages in emotion 

recognition will continue to grow.  

 

 

 

2.3 Speech 
 

 

Speech analysis has been a huge part of emotion research and human-computer interaction 

studies for a long time. As a result, meaningful relationships between emotional states and 

certain speech attributes have been discovered [74, 75]. For example, the pitch of the voice can 

act as an index into arousal. Most of the previous efforts were directed towards recognizing a 

subset of basic emotions from speech signals. However, recent studies have begun to focus on 

application-dependent affective states that are more complex [7], such as certainty [76], stress 

[77], trouble [78], and empathy [79]. Nonlinguistic vocalizations such as laughter, coughs cries 

have also begun to gather interest, due to the fact that listeners can detect some non-basic 

emotions like distress, anxiety and boredom rather accurately from these vocalizations [80].  

 

An increasing number of studies are attempting to fuse visual and audio cues for better affect 

recognition [7, 81]. Zeng et al. [82] presented the framework of Multi-stream Fused HMM 

(MFHMM) to couple audio and visual streams and detect 11 cognitive/emotive states. Sebes et al. 

[83] designed a Bayesian network topology for combining audio and visual modalities in a 

probabilistic manner and used it to classify person-dependent emotions. Petridis and Pantic [84] 

proposed an audiovisual approach to discriminating laughter from speech while comparing 

between feature and decision level fusion.  

 

 

2.4 Brain Imaging and EEG 
 

 

The field of affective neuroscience has been proposing new techniques and methods to 

understand human emotional process over the last several decades. Affective neuroscience aims 
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to understand the underlying neural circuitry of emotion and mood, and to offer better 

perspectives on conceptualizing emotions [85]. The methods used in affective neuroscience 

include electrophysiology and imaging techniques such as fMRI. Since these methods can 

capture activities in the brain which might not be apparent in visual or audio channels, they are 

being used more frequently in affect recognition studies. It has been reported that picture stimuli 

with different valence (unpleasant-to-pleasant) and arousal (low-to-high) ratings can influence 

event-related potential (ERP) amplitudes at several processing stages [18]. Based on this finding, 

researchers have been able to show emotional and neutral image cues to individuals and 

distinguish the ERP features between the two [86].  

 

Some studies in affective computing have tried using machine learning techniques and EEG 

signals to automatically classify emotions. AlZoubi et al. [19] calculated the power spectral 

density (PSD) from EEG of three subjects and evaluated the performance of several classifiers 

(NaiveBayes, K-Nearest Neighbor and Support Vector Machines). Sohaib et al. [87] conducted a 

similar experiment but added regression tree and artificial neural networks in the evaluation. 

These studies show that there is some promise for constructing EEG-based automatic recognition 

systems.  

 

Soleymani et al. [88] presented an emotion recognition system that combines EEG with 

information from the eyes (pupil diameter, gaze and blinking). Using these features, the authors 

were able to classify different levels of valence and arousal in video clips with SVM. 
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Chapter 3 

An Overview of Craving Analysis 
 

Researchers in the field of neuroscience and addiction have tried for a long time to accurately 

define the concept of craving. Although it is widely believed that craving has a close relationship 

to addiction, no single “ultimate” theory has been able to define the nature of craving, nor is 

there a universal agreement on the most appropriate ways to measure it [13, 14]. An increasing 

number of studies from a variety of biological and psychological perspectives have been trying 

to find answers to these open questions. In this section, we focus on past works on cue-elicited 

craving and attempts to measure craving by analyzing expressive behavior such as facial 

expressions. 

 

 

3.1 Existing Works on Cue-Elicited Craving Detection 
 

 

It is known that drug-related cues can act as a causal factor in drug use and relapse to drug use 

following treatment. Many works have investigated the relationship between drug-related cues 

and the EEG activities in human participants with history of chronic substance use, such as 

alcohol, cocaine, or tobacco [12, 89]. For example, Van de Laar et al. [90] observed that, when 

cocaine-abstinent patients and nondependent controls were exposed to neutral and cocaine-

related pictures and were asked to rate the valence of the pictures, patients exhibited larger N300, 

late slow positive wave (LSPW) and sustained slow positive wave (SSPW) amplitudes following 

the cocaine-related pictures. When exposed to drug cues, cocaine-addicted individuals [91] and 

alcohol-dependent patients [92] displayed increased cortical activation. Nicotine users, when 

given cigarette-related cues, have displayed an increase in theta and beta spectral power [93]. 

Also, while performing a psychological test such as Stroop task or dot-probe task, current 

smokers showed more biased attention toward smoking-related cues than non-smokers or former 

smokers do [94, 95]. Shadel et al. [96] compared the effect of exposure to in vivo cues and video 

cues, and concluded that video is a viable cue delivery channel for manipulating craving in 

smoking research. Tong et al. [97] reported that smokers who are exposed to smoking videos 

produced greater craving reactions in self-reported measures, as well as elevated skin 

conductance and skin temperature. 
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3.2 Facial Expression and Craving 
 

 

Since there is no single accepted definition of craving, researchers have used different measuring 

methods that are optimal for a particular research or clinical application [13, 14]. These measures 

can be largely divided into two groups: self-report measures and non-verbal measures. Self-

report measures are popular in the community because they display a high degree of face validity 

and can be easily constructed and collected. However, it might be incorrect to regard self-reports 

as a direct readout of one’s actual craving state. Moreover, there is the debate about whether an 

instrument for these measures should include the term “craving” or any other items that directly 

refers to some form of desire for a substance [14].  

 

Non-verbal measures are based on behavioral or neurobiological responses to stimuli. This 

includes drug reinforcement proxies, psychophysiological and neurobiological responding, 

cognitive processing, and expressive behavior [13]. Although non-verbal measures can provide 

us with a more accurate involuntary response from the subjects, those responses can be 

interpreted in different ways depending on what one’s theory of craving actually is.  

 

Facial expression could be employed as a non-verbal measurement of craving. If craving 

happens to be affective in nature, there is a possibility that craving will trigger some kind of 

characteristic facial behavior like other emotions do. To verify if this is indeed the case, we can 

use the established feature extraction and classification methods from the field of facial 

expression recognition. However, only few of the past works looked into the relationship 

between drug-cue response and facial expressions. This may have been due to extremely time-

consuming nature of manually labeling the facial expressions and the difficulty of extracting 

very subtle face deformations from subject’s responses. A notable work is that of Sayette and 

Hufford [98], where subjects were exposed to smoking and control cues while their faces were 

videotaped. Their goal was to create a strong urge, associated first with positive affect (during 

initial exposure to smoking cues) and then negative affect (when told to extinguish the cigarette) 

to find out if affective valence of the urge will change as a function of drug availability. Subjects 

were divided into nicotine-deprived and nondeprived groups. For smoking cue, they were told to 

light a cigarette and hold it for a fixed period without placing it in their mouths. Then they held a 

roll of tape which is similar in size and weight to a cigarette. Subjects were more likely to 

express positive AUs (combinations of AU 1, AU 6 and AU 12) during initial exposure to 

smoking cues, although the correlations between self-reported urge and the appearance of 

negative AU combinations (AU 4, 1 + 4, 4 + 17, 12 + 15 and 14 + 15) were not significant. In a 

later study [16], the authors assumed that subjects exposed to smoking cue will display 

ambivalence about smoking. Ambivalence is characterized by competing inclinations to 

approach and avoid drug use, and it has been recognized as a central feature of drug addiction. 

The authors tried to detect specific AU combinations that are regarded as positive affect-related 

(AU 12, 6 + 12 along with AU 1 + 2, 25, 26) and negative affect-related (AU 9, 10, 14, 15, 20, 1 

+ 4). Ambivalence was defined as the simultaneous occurrence of both a positive AU and a 

negative AU. They compared the results with self-report measures about smoking ambivalence 

completed by the subjects. The results showed that there was a strong correlation between 

ambivalent detected by AUs and self-report measures. 
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Chapter 4 

Experiment Design 
 

4.1 The Goal of the Experiment 
 

 

The purpose of this study is to understand the previous accomplishments in facial expression 

recognition and craving detection, and to explore the possible existence of facial behavior in 

drug cue-induced states which might be related to craving. In order to acquire a meaningful 

facial difference between the neutral and drug-induced state, it is necessary to first establish a 

neurobiological baseline so that we can distinguish the two states with some certainty. As 

explained in section 3.1, it is possible to expose substance users to drug-related and neutral cues 

and then observe the difference in EEG response. Assuming that cue-induced craving elicits a 

certain emotional state in drug users, we designed our experiment so that we can provide drug-

related and non-drug stimuli to subjects and measure the activities in the brain and the face. We 

first try to validate our dataset by showing that the brain signals for drug and non-drug stimuli 

exhibit statistical difference. Then we examine the face and search for possible behaviors that 

only appear during drug-related cues.  

 

Based on this assumption, we designed our experiment to follow two steps: the EEG analysis and 

the facial expression analysis. The following subjections discuss the participants and data 

collection environment, stimuli design, and the feature extraction and classification methods for 

both EEG and facial analysis steps. 

 

 

4.2 Data collection 
 

 

For this study, data from individuals with cocaine use disorders (CUD) and healthy control 

subject were used. CUD subjects are further divided into those who tested positive for recent 

cocaine use (CUD+) and those who tested negative (CUD-). The data was collected by the 

medical department of Brookhaven National Laboratory. In total, data from 19 CUD+ subjects, 

41 CUD- subjects and 47 control subjects were used.  
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Data collection was conducted in the ERP room of Brookhaven National Laboratory medical 

department, which is a long rectangular room about 10 feet wide with fluorescent lighting. On 

one end of the room is a wall-mounted monitor connected to a working computer, and a single 

couch placed in front of the monitor. Subjects are required to sit on the couch and watch the 

monitor while the experiment is in progress. 

 

For EEG capturing purposes, subjects wore a cap which is connected to electrodes that are 

placed on the head (Figure 4.1). EEG activity is recorded in real-time to a computer connected to 

the electrodes. To record facial expressions, a high resolution camcorder is mounted on top of 

the monitor, pointing to the subject’s face from a near-frontal angle (Figure 4.2). The camcorder 

captured 1080p videos in 60 frames per second during the task. The pitch and heading of the 

camcorder, as well as the zoom level, was adjusted for each subject in order to compensate for 

inter-subject differences such as sitting height.  

 
 

Figure 4.1: EEG cap and electrodes attached to the head. 

Figure 4.2: Monitor and camcorder configurations 
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4.3 Stimuli and Procedure 
 

 

The stimuli for this study follows the design explained in [86]. Ninety pictures were selected 

from the International Affective Picture System (IAPS) [99] for the task. IAPS is a database of 

pictures that are intended to elicit a range of emotions. These pictures include a wide spectrum of 

contents, ranging from everyday objects such as furniture and silverware to highly disturbing 

scenes such as mutilation and robbery. Each picture has been given a valence and arousal score 

based on a normative rating procedure. Among the ninety pictures that were selected, 30 were 

labeled as pleasant (e.g. smiling faces, family photos, nudes), 30 as unpleasant (e.g. violent or 

depressing images), and 30 as neutral (e.g. expressionless faces, household objects). The 

categories were arranged such that pleasant and unpleasant pictures would be more arousing than 

neutral pictures, and that each category would differ in their respective valence scores.  

 

On top of the three IAPS categories, 30 pictures of cocaine and individuals preparing or using 

cocaine were included as a fourth category. The images were acquired from freely available 

online sources and from a cocaine video used in a previous study [100]. Cocaine pictures were 

adjusted in overall size and human to non-human content ratio in order to match the pictures 

from the IAPS. Figure 4.3 shows an example image for each category.  

The 120 images were arranged in random order across all four categories to create a sequence. 

Each sequence is divided into four blocks of 30 pictures. Each picture was displayed on the 

screen for 2000ms, followed by a 500ms inter-trial interval.   

 

After EEG sensors were attached to the head, participants were given instructions about the task. 

They were told that they would be viewing a series of pictures depicting a wide range of contents 

that belong to pleasant, unpleasant, neutral, or drug categories. Participants were asked to 

concentrate on the screen and simply watch all of the pictures as they were displayed. After the 

sequence has ended, they rated each picture on valence (“rate how pleasant or unpleasant you felt 

about this picture”), arousal (“rate how strong of an emotional response you had to this picture”), 

like cocaine (“rate how much you like (or do not like) cocaine in response to this picture”), and 

want cocaine (“rate how much you want (or do not want) cocaine in response to this picture”). 

The rating process was done by a computerized version of the Self-Assessment Manikin (SAM) 

[101].  

Figure 4.3: Example images from each category. From left to right: pleasant, unpleasant, drug-

related and neutral. 
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4.4 EEG Analysis 
 

 

The EEG data is collected over 62 separate electrodes and digitized at a rate of 500 Hz. The 

dimension of the EEG data for each subject is 62 channels × 1101 timeframes × 120 trials. 

Because some trials were filtered during the preprocessing of the EEG signals, the actual number 

of trials for most subjects is lower than 120.  

 

 

4.4.1 Baseline for EEG Analysis 
 

 

Dunning et al. [86] has proposed a method to construct event-related potentials (ERPs) from 

EEG data by separately averaging trials based on picture type. They hypothesized that the two 

ERPs, the early posterior negativity (EPN) and the late positive potential (LPP), will be larger for 

both pleasant and unpleasant cues compared to neutral ones. Also, they expected that the LPPs 

elicited by drug cues will be larger than neutral cues in CUD subjects, but not in control subjects. 

After analyzing the results, they were able to verify that early and late LPP between the 400 – 

2000ms timeframe showed statistical difference between drug and neutral cues in CUD subjects 

but not in control subjects. The experiment design of our study, as well as some of the EEG data, 

is directly derived from their work. Among the 19 CUD+, 41 CUD- and 47 control subjects, 5 

CUD+, 17 CUD- and 19 controls have the same EEG data as used in [86].  

 

 

4.4.2 ERP Features 
 

 

We begin the construction of the ERP by first averaging trials based on the image categories 

(pleasant, unpleasant, neutral, and drug) on each subject. For each ERP averaged waveform, the 

average activity in the 200ms window prior to picture onset is used as the baseline. After 

adjusting the inter-subject variability, a 15Hz low pass filter was applied to reduce the noise. 

 

Since LPP was able to capture the difference between drug and other categories, we concentrate 

on early and late LPP features. In [86], early LPP is defined as the average activity in an early 

window (400 – 1000ms) after picture onset, and late LPP as the average in the late window 

(1000 – 2000ms). We further divide the time window into eight segments that span across the 

entire LPP range (400 – 2000ms). The individual length of each window is 200ms. Then, instead 

of averaging across early and late windows, we calculate the average for eight separate windows 

and use these values as ERP features.  

 

Scalp topographies from [86] show that drug-specific LPP modulation is maximal at fronto-

central recording sites (Figure 4.4). Therefore, we use the signals from the Cz, FCz, FC1, FC2, 

and Fz electrodes which correspond to this region.  
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Signal differences between the four groups were then calculated for each time window. This is 

done by conducting independent t-tests between the groups.  

 

 

4.5 Facial Expression Analysis 
 

 

Frontal face video was recorded during the picture viewing task for 10 subjects, two of which are 

control. Each video is approximately 6 to 10 minutes long, and contains audio signals of four 

different frequencies (one for each category) that are played at the onset of each picture cue. The 

video dimension is 1920 × 1080p and 60 frames per second. In the following subjections, we 

describe the means of tracking the face across the video, and what kind of features to extract 

from the tracked video. 

 

 

4.5.1 Face Tracking 
 

 

Due to the controlled environment of the experiment, the recorded facial videos display ideal 

qualities for tracking. The face is near-frontal for the most of the duration, with little or no 

Figure 4.4:  Scalp topography of pleasant minus neutral (left columns), unpleasant minus 

neutral (middle columns), and cocaine minus neutral (right columns) differences from [86]. 
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movement from the head or the body. The lighting condition is also consistent throughout the 

task.  

 

To maximize the stability and the accuracy of tracking, we decided to use person-specific Active 

Appearance Model (AAM). The main reasoning behind using the person-specific AAM is that, 

due to the small number of subjects in the dataset, it would be extremely difficult to train a 

reliable universal model for all subjects. Also, it has been shown that person-specific AAM 

performs substantially better than generic AAMs [102].  

 

We used the AAM-API implementation [103] for our purposes. For training, we selected 10 to 

12 still images from each subject’s video and manually labeled 77 landmark points on the brows, 

eyes, nose, mouth, and contour of the face (Figure 4.5). The training images were selected such 

that they contain all extents of the facial movement that are present in the video, in order to 

ensure that there are no unexpected jitters or registration failures in the final tracking result. After 

the labeling is complete, the images are then used to build an AAM model for each subject. Once 

the models are built, we ran the AAM tracking code on the entire video to locate the face and 

register the landmark points.  

 

 

4.5.2 Feature Extraction 
 

 

AAM provides the means to extract both geometric features (from the position of each landmark 

point) and appearance features (from the face texture of the warped shape). We first compensate 

for any head movement by aligning the tracked frames to the center-of-mass point of the contour 

points. Then, for each frame, we compute the difference of the landmark positions between the 

current frame and a “neutral” frame. The neutral frame is selected from the timeframe where the 

subject is watching a fixation screen before the experiment and no apparent expression appears 

on the face. The x- and y-displacement, moving velocity and direction of the points are 

calculated and concatenated as a feature vector with a dimension of (2 + 1 + 1) × 77 = 308. 

Figure 4.5: 77 landmark points that are used for 

training the AAM 
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To extract the appearance features, the face in each frame is normalized using the trained model 

to match the mean shape, and the face texture is warped accordingly. We calculate two types of 

appearance features. First, we follow the method proposed in [28] and pass the face images 

through a bank of Gabor filters of eight orientation and 9 spatial frequencies (2 – 32 pixels per 

cycle at 1/2 octave steps). Then the output magnitudes are saved as features for classifiers. We 

also compute the Local Binary Pattern (LBP) histograms of the face image as described in [54]. 

The face is divided into 6 × 6 cells, and rotation-invariant uniform LBPs were calculated in each 

cell with parameters P = 8 and R = 1. This results in local histogram of size 10, and the final 

feature dimension is 10 × 36 cells = 360. 
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Chapter 5 

Results 
 

In this section, we present the results from ERP and facial expression analysis. 

 

 

5.1 ERP Analysis 
 

 

In [86], the authors defined the LPP as the average activity in an early (400-1000 ms) and late 

(1000-2000 ms) time windows after picture onset. We follow this method by first calculating the 

grand average of LPP for each picture type (Figure 5.1). One of the CUD+ subjects was showing 

some unusually high values for neutral trials due to a possible error in the artifact rejection 

algorithm, which created the noisy spike in the averaged signal for CUD+. However, this occurs 

before the early LPP window (400ms after stimuli onset) and therefore does not directly affect 

the analysis. Regardless, we include both results, with and without this subject. The averaged 

signal of each category for this subject is shown in Figure 5.2, and Figure 5.3 shows the grand 

average without this subject.  

 

We first explore the early LPP window (400-1000 ms). In CUD+ subjects, cocaine-related 

compared to neutral LPPs was larger for both the entire group (t(18) = −2.34, p < 0.05) and 

without the noisy subject (t(17) = −2.16, p < 0.05). This was not the case for CUD- subjects 

(t(40) = 1.06, p > 0.25) and control subjects (t(46) = 0.34, p > 0.5). Also, cocaine LPPs in CUD+ 

did not differ from pleasant (all CUD+: t(18) = 0.11, p > 0.9; CUD+ without noisy subject: t(17) 

= 0.1563, p > 0.8) but was significantly smaller in CUD- (t(40) = 2.23, p < 0.05). Cocaine LPPs 

were not different from unpleasant in all CUD (all CUD+: t(18) = -0.21, p > 0.8; CUD+ without 

noisy subject: t(17) = -0.23, p > 0.8; CUD-: t(40) = 0.75, p > 0.4). In contrast, cocaine LPPs in 

controls were notably smaller than pleasant (t(46) = 2.48, p < 0.05) but not as much than 

unpleasant (t(46) = 1.43, p > 0.15) LPPs. Also, in control subjects, pleasant and unpleasant LPPs 

were not greater than neutral LPPs in a meaningful way (t(46) = -1.52, p > 0.1 and t(46) = -0.5, p 

>0.6, respectively), and did not differ from each other (t(46) = 0.89, p > 0.3). In CUD+, pleasant 

and unpleasant were both larger than neutral for all CUD+ (t(18) = -2.82, p < 0.01 and t(18) = -

2.39, p < 0.05, respectively) and CUD+ without the noisy subject (t(17) = -2.65, p < 0.015 and 

t(17) = -2.18, p < 0.05, respectively). Pleasant and unpleasant was not different from each other 

(all CUD+: t(18) = 0.37, p > 0.7; CUD+ without noisy subject: t(17) = 0.44, p > 0.6). As for 

CUD-, pleasant and unpleasant LPPs did not differ from neutral (t(40) = -1.3, p > 0.1 and t(40) = 

0.23, p > 0.8, respectively) and could not be differentiated from each other (t(40) = 1.37, p > 

0.15).  
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In summary, the magnitude of LPPs elicited by cocaine, pleasant, and unpleasant pictures was 

greater than that elicited by neutral pictures in CUD+, but not in CUD-. Cocaine was not 

distinguishable from either pleasant or unpleasant in CUD+, and only distinguishable from 

pleasant in CUD-. In control subjects, LPPs elicited by pleasant and unpleasant pictures were not 

significantly different from LPPs elicited by cocaine and neutral pictures, except that pleasant 

was larger than cocaine. This result loosely follows the findings in [86] for CUD+, but not for 

CUD- and controls. See Figure 5.4 for the grand average of LPP in [86]. 

 

In the late window (1000-2000 ms), cocaine LPPs was not significantly different from neutral 

LPPs for CUD+ (all CUD+: t(18) = −1.86, p > 0.05; CUD+ without noisy subject: t(17) = -1.69, 

p > 0.1), CUD- (t(40) = 0.34,  

p > 0.7) and control (t(46) = 0.83, p > 0.4). Cocaine LPPs in CUD+ did not differ from pleasant 

(all CUD+: t(18) = 0.63, p > 0.5; CUD+ without noisy subject: t(17) = 0.67, p > 0.5) but was 

again smaller in CUD- (t(40) = 2.21, p < 0.05). Cocaine LPPs were not distinguishable from 

unpleasant in all CUD (all CUD+: t(18) = 0.09, p > 0.9; CUD+ without noisy subject: t(17) = 

0.1, p > 0.9; CUD-: t(40) = 0.32, p > 0.7). 

 

In control subjects, cocaine LPPs was significantly smaller than pleasant (t(46) = 3.13, p < 

0.005) and unpleasant (t(46) = 2.18, p < 0.05) LPPs. Pleasant LPPs in control was greater than 

neutral (t(46) = -2.7, p < 0.01), but unpleasant LPPs was not (t(46) = -1.59, p >0.1). Pleasant and 

unpleasant did not differ from each other (t(46) = 0.88, p > 0.3). For all CUD, pleasant was 

larger than neutral (all CUD+: t(18) = -2.86, p < 0.01; CUD+ without noisy subject: t(17) = -

2.69, p < 0.015; CUD-: t(40) = -2.53, p < 0.05) but unpleasant was not (all CUD+: t(18) = -1.98, 

p > 0.05; CUD+ without noisy subject: t(17) = -1.81, p > 0.05; CUD-: t(40) = -0.66, p > 0.5). 

Pleasant and unpleasant was not different from each other in CUD (all CUD+: t(18) = 0.53, p > 

0.5; CUD+ without noisy subject: t(17) = 0.56, p > 0.5; CUD-: t(40) = 1.84, p > 0.05).  

 

In summary, pleasant LPPs was greater than neutral LPPs in all subjects, but unpleasant and 

cocaine LPPs could not be differentiated from neutral. Cocaine was clearly different from both 

pleasant and unpleasant in control, only different from pleasant in CUD-, and not different from 

any of them in CUD+, and only distinguishable from pleasant in CUD-. Again, this result 

follows some trends shown in [86], but also deviates in other places. Considering that 66 out of 

107 subjects are not used in [86] and are newly introduced in this work, we could conclude that, 

after adding a significant number of new data, the results still display some trends between LPPs 

of different categories that were observed in the previous study, although to a much weaker 

degree. Table 5.1 shows the results of t-tests for each of the smaller sub-windows (200ms each).  
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Figure 5.1:  Grand average late positive potentials of all subjects (at the average of sites Cz, 

FCz, FC1, FC2, and Fz) elicited by neutral, pleasant, unpleasant, and cocaine-related pictures. 

Stimulus onset occurs at 0 ms. 
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Figure 5.2: CUD+ subject with noisy data in the early window 
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Figure 5.3: Grand averaged late positive potentials, after removing the noisy subject. 
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Figure 5.4: Grand averaged late positive potentials from [86] 
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Table 5.1: t-test results between neutral and other categories for different time windows. 
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5.2 Facial Expression Analysis 
 

 

We extracted geometric and appearance facial features from video frames that correspond to 

each of the picture type (pleasant, unpleasant, neutral, and cocaine). Since each trial lasts for 

about 2 seconds, we acquired roughly 120 video frames for each image stimulus. We cut off the 

first 24 frames (400ms) and used the remaining 96 frames per trial for classification. Also, we 

ignored the video for all subjects that were rejected due to noisy EEG signals in section 5.1.  

 

We first tried an automatic AU detection scheme based on FACS. If there were specific facial 

behaviors appearing when certain types of images are shown, a robust AU detection system 

would be able to recognize it. We followed the framework design of [28] to implement the 

system. For each training face image that contains a certain AU, the Gabor filter output is 

calculated and the magnitudes were passed to the classifiers. For each action, a linear SVM was 

trained in a “one versus all” manner. Two databases were used to train the system: the Cohn-

Kanade dataset [38] and the MMI web-based dataset [104]. When tested on these databases by 

leave-one-subject-out cross validation, the system was able to reasonably detect several AUs that 

are considered important in facial expression analysis. Table 5.2 shows the classification 

performance for each of the trained AUs. However, when tested on the face video data, the 

system failed to detect any action units in most of the frames except only a few. By closely 

examining the face videos, it is apparent that the subjects are not moving their face or body 

during most of the task. Since the AU detection system was trained on databases with strong 

posed expressions, it is reasonable to think that it would not work well with spontaneous and 

very subtle expressions. 

 

 

 

 AU  Name N  Hit  FA  

          

 1  Inner brow raiser 281  82  11  

 2  Outer brow raiser 205  80  15  

 4  Brow lowerer 262  69  8  

 5  Upper lid raiser 179  76  9  

 6  Cheek raiser 160  74  5  

 7  Lid tightener 276  84  10  

 10  Upper lip raiser 26  15  3  

 12  Lip corner puller 113  84  12  

 15  Lip corner depressor 68  75  9  

 16  Lower lip depressor 23  13  4  

 20  Lip stretcher 50  40  8  

 

 

 

 

 

 

Table 5.2: Performance of the automatic AU detection system on Cohn-Kanade and MMI databases. 

N: Total number of positive examples. Hit: Hit rate.  FA: False alarm rate. 
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Classification with LBP histograms yielded similar results. When the grids of the whole face 

region were used for feature extraction, classification rate between pleasant, unpleasant, neutral 

and drug video frames did not produce meaningful outcomes (Figure 5.5). Most of the frames 

were labeled as neutral in CUD+ subjects, and control subjects showed no significant 

improvement above chance. It is notable that unpleasant category is recognized slightly better in 

CUD- subjects than others. 

 

Although grid-based LBP histograms are known to perform extremely well for many kinds of 

posed and spontaneous facial expressions, it usually cannot deal with the case where facial 

activity is extremely weak across all regions. It would be logical to say that the poor classifier 

performance is resulting from the difficulty of face videos themselves and not necessarily from 

the choice of facial features or classification methods.  

 

Lastly, we tried a sequence-based classification approach with geometric features rather than 

trying to classify each frames. In [34], the authors calculate the movement direction and 

magnitude of facial points and store them as feature vectors. Based on the definition of action 

units (for example, outer corner of the brow moving upward corresponds to AU2), they measure 

the movement of certain points and detects an action unit when it exceeds the pre-defined 

threshold. Although this method is less flexible and prone to issues of inter-subject variance, it is 

simple to compute and could prove useful when only miniscule facial movements are present in 

the dataset. We implement a similar method by first processing through the video frames of the 

entire single trial, cumulating the magnitude of facial point displacement over time, and then 

deciding whether an action has occurred within the duration of the current trial. Because the 

subjects seldom move in the video and the person-specific AAM provides us with a very reliable 

tracking, we can use a very low threshold value to detect small changes in facial landmark 

points. For each direction (upwards, downwards, left and right), we define the “displacement 

strength” for landmark points as follows: 

 

Displacement strength = (number of pixels moved / length of the face in pixels × 2) × (2 / time 

elapsed in seconds since motion onset). 

 

Figure 5.5: Confusion matrix for SVM classification with grid-based LBP features.  

From left to right: CUD+, CUD-, and controls. 
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This measure becomes large when the magnitude of motion is great and the movement is 

quicker. We divide the face into several regions of interest (brows, nose, mouth center, mouth 

corner). Within each region, we calculate the displacement strength of all points over the 

duration of a trial and then average the strengths to get the final value for that region.  

 

Among the 10 subjects, three CUD- subjects displayed noticeable motions that are somewhat 

consistent across picture types. Figures 5.6 and 5.7 show some of the motions that are detected 

from these subjects. The plot suggests that the brow, nose and mouth corner regions show 

somewhat distinguishable behavior between the picture types but not by a huge degree. If we use 

these values as features for training a linear SVM classifier, we can see that the result becomes 

slightly more reasonable but still doesn’t clearly separate between the categories (Figure 5.8). It 

is worth noting that, in all actions shown in Figures 5.6 and 5.7 except for the downwards brow 

motion, cocaine cues elicit facial response that is similar to those caused by unpleasant cues.  

Figure 5.6: Landmark points displacement strength in upwards brow motion (left) and 

downwards brow motion (right) 

Figure 5.7: Landmark points displacement strength in downwards lower-nose motion 

(left) and upwards mouth corner motion (right) 
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Figure 5.8: Confusion matrix for SVM classification with displacement strength features 
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Chapter 6 

Conclusions and Future Works 
 

In this thesis, we explore the problem of measuring drug cue-induced response by analyzing the 

neurobiological response from the brain and the expressive response from the face. We 

hypothesize that, like other human emotions, craving is an affective state and thus could trigger 

certain non-verbal expressions. Based on the previous findings in the neuroscience community, 

we design a two-step experiment for validating the relationship between drug cue-induced 

emotional states and facial expressions: First, we analyze the EEG to prove that cocaine users, 

when exposed to drug-related stimuli, exhibit different pattern of event-related potentials 

compared to neutral stimuli. Second, we study the facial behavior while the neural activity is 

taking place and try to discover what kind of expressions are related to drug-related response. 

We use several feature extraction and classification methods to distinguish between the facial 

response of drug stimuli and other cues. We show that the expression recognition techniques that 

we use do not yield significant results due to the fact that the collected face data mostly lacks of 

explicit facial expressions. However, some drug-cue induced activities in certain subjects suggest 

the possibility that there might still be some kind of craving expressions that are subject-

dependent in nature. 

 
 

 

6.1 Conclusion 
 

 

The experiment on drug cue-related behavior has produced a mixed result for its two stages. 

Following a previous study which has shown that cocaine cues elicit neural activities in cocaine 

users that are not seen in healthy individuals, we attempted to obtain similar results using a part 

of their dataset with new subjects added. When compared to the baseline research for EEG [86] 

we found that, even after the addition of new subjects, ERP readings still exhibited some of the 

traits that were shown in earlier works. In contrast, facial expression analysis task turned out to 

be much more difficult than initially expected. Visual examination of the recorded face videos 

reveals that most subjects keep their face and body fixed throughout the experiment and do not 

display explicit emotional behavior very often. Hence, many of the facial recognition techniques 

that are popular today cannot work well in this dataset.  

 

The reason why these videos did not contain enough facial information, despite the actual 

neurological activity that was taking place in the background, could be explained from several 

perspectives. One reason is that we do not know what the face of craving looks like and therefore 
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we’re searching in the dark. There has not been any past work in neuroscience or computer 

vision that has discovered a clear and universal definition for facial expression of craving. Basic 

emotions such as happiness or surprise usually have a set of well-defined action units that are 

strongly correlated to the occurrence of those emotions. For example, a smile is almost always 

characterized by the combination of AU6 (Cheek raiser) and AU12 (Lip corner puller), although 

some attributes such as smoothness and temporal development might vary according to the 

context. Many modern facial recognition systems take advantage of these characteristics to 

improve their performance. Those who attempt to detect more sophisticated and subtle emotions 

such fatigue or anxiety usually include other modalities like gaze and body gestures. Therefore it 

would be a quite challenging problem to recognize craving just by facial behaviors.  

 

Another reason is that the experiment is designed more with the ERP analysis in mind. In the 

affective computing community, it is customary to expose the individuals to visual cues for a 

longer time [88]. 2 seconds of displayed image followed by a 500ms interval is sufficient for 

many ERP related studies, but the face usually requires some time before it can actually deliver 

emotion. In some cases it can take several seconds before a facial expression reaches its apex 

[63]. Therefore, a sequence design with longer trial duration would be beneficial to face 

research.  

 

The last reason is that, because the subjects were doing a passive viewing task and were asked 

not to do anything else, they might have involuntarily suppressed some or all of the expressions 

that might have occurred. During the instruction phase, subjects are told to focus on the screen 

throughout the experiment, and no specific instruction is given on whether or not to express 

themselves. Also, it is possible for the cocaine users to feel uncomfortable to express their 

cravings in response to cocaine stimuli, especially when one or two people are in the room to 

supervise the task. These factors, plus the fact that each trial only lasts for two seconds, could 

create stress and therefore cloud the true emotion underneath. These three observations suggest 

that, in order to gain a better understanding at facial expression of craving, several important 

design choices will have to be considered in the future. 

 

 

6.2 Future Work 
 

 

As stated in section 6.1, the most important step for future research is to design a task that is 

suited for both ERP and facial expression studies, preferably with longer exposure time. An 

improved task design will hopefully result in stronger emotions beginning to appear on the face. 

One possible task is to expose the individual to drug stimuli and instruct him or her to actively 

suppress craving. Since suppressing an emotion requires conscious effort that is sometimes 

displayed on the face, it would be interesting to investigate what kind of facial movements occur 

while craving is being suppressed. Once we are able to detect more consistent facial expressions 

across subjects, we will be able to study the actual correlation between ERP readings and 

observed facial behavior.  
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