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Abstract of the Dissertation

Formal Analysis of DNS Attacks and Their Countermeasures
Using Probabilistic Model Checking

by

Tushar Suhas Deshpande

Doctor of Philosophy
in

Computer Science

Stony Brook University
2013

The Domain Name System (DNS) is an internet-wide, hierarchical naming system used to
translate domain names into physical IP addresses. Any disruption of the service DNS pro-
vides can have serious consequences. We present a formal analysis of two notable threats
to DNS, namely cache poisoning and bandwidth amplification, and the countermeasures
designed to prevent their occurrence. Our analysis of these attacks and their countermea-
sures is given in the form of a cost-benefit analysis, and is based on probabilistic model
checking of Continuous-Time Markov Chains. We use CTMCs to model the race between
legitimate and malicious traffic in a DNS server under attack, i.e., the victim. Counter-
measure benefits and costs are quantified in terms of probabilistic reachability and reward
properties, which are evaluated over all possible execution paths.

The results of our analysis support substantive conclusions about the relative effective-
ness of the different countermeasures under varying operating conditions. We also validate
the criticism that the DNS security extensions devised to eliminate cache poisoning render
DNS more vulnerable to bandwidth amplification attacks (BAAs).

We also model the DNS BAA as a two-player, turn-based, zero-sum stochastic game
between an attacker and a defender. The attacker attempts to flood the victim’s band-
width with malicious traffic by choosing an appropriate number of zombies to attack. In
response, the defender nondeterministically chooses among five basic BAA countermea-
sures, so that the victim can process as much legitimate traffic as possible. We use our
game-based model of DNS BAA to generate optimal attack strategies that vary the number
of zombies and the optimal defense strategies that combine the basic BAA countermea-
sures to optimize the attacker’s and the defender’s payoffs. Such payoffs are defined using
probabilistic reward-based properties, and are measured in terms of the attack strategy’s
ability to minimize the volume of legitimate traffic that is eventually processed and the
defense strategy’s ability to maximize the volume of legitimate traffic that is eventually
processed.
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Chapter 1

Introduction

DNS (Domain Name System) is a critical infrastructure component of the Internet that pro-
vides name-to-IP-address resolution; i.e., it translates domain names into physical IP ad-
dresses. DNS is implemented by a distributed hierarchical database and a query-response
protocol, allowing it to scale with the growing size of the Internet. It is widely acknowl-
edged that the initial design of DNS did not take into account the threats that came along
with the immense growth of the Internet. Numerous medium- and large-scale DNS attacks
have prompted the development of sophisticated countermeasures, each of which can neg-
atively impact DNS performance and robustness (availability). Countermeasure impact on
DNS deserves systematic study since the effectiveness of a countermeasure depends on
the attack dynamics, and the cost associated with a countermeasure can easily outgrow the
benefit it provides.

For the most prevalent threats to DNS, there is no universally deployed countermea-
sure. Cache poisoning attacks exploit the aggressive data caching that DNS servers use
to efficiently carry out name resolution. If a DNS server’s cache is eventually corrupted,
users trying to access a network location are routed to a malicious IP address. The Kamin-
sky attack is a special case of cache poisoning that hijacks an entire domain [25, 35].
This causes the corrupted DNS server to reply with a malicious IP address whenever it is
asked to resolve a name within the hijacked domain. At least two non-cryptographic coun-
termeasures have been developed for cache poisoning, namely UDP (Uniform Datagram
Protocol) port randomization and DNS query duplication.

Alternatively, proposed DNS security extensions [7] eliminate cache poisoning but
incur significant upgrade costs and may make DNS severs more vulnerable to another
important threat: Bandwidth Amplification attack. BAAs exploit a network of computers
to flood a DNS server with excessively large DNS responses to presumed requests that
have never been made. If the available bandwidth for legitimate DNS traffic is exhausted,
the attack ends into a Distributed Denial of Service (DDoS) incident. Defense mechanisms
that have been used include packet filtering, random drops, and aggressive retries, but
various hybrid solutions may be more effective under certain circumstances.

This dissertation extends the formal analyses we previously conducted in [5] and [20]
toward a versatile cost-benefit analysis framework for DNS attack countermeasures. As
before, our analyses of cache poisoning and BAA are based on probabilistic model check-
ing of Continuous Time Markov Chains (CTMCs) using the PRISM model checker [39].
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Our CTMC models represent the attack dynamics and their impact on legitimate query
processing by a DNS server.

Countermeasure effectiveness can be studied through different model variants, one
for each countermeasure we consider, provided that costs and benefits are quantified in a
consistent manner within our cost-benefit analysis framework. We define cost and ben-
efit metrics that reflect positive and negative effects on DNS server, and compute these
metrics by model checking probabilistic reachability and reward properties in the counter-
measure model variants. For a parameterized countermeasure, an automated model-repair
process [9] can be used to determine an optimal configuration of the parameters for a
given attack probability. These are the parameter settings used in our cost-benefit analysis,
which ranks countermeasures in terms of their net benefit value. Our cost-benefit anal-
ysis framework was first applied in [20] for the above-mentioned BAA countermeasures
(packet filtering, random drops, and aggressive retries).

Although, the cost-benefit analysis performed using CTMCs lets us identify the most
cost-effective countermeasure strategies, it requires us to first determine the optimal con-
figuration of model parameters. Moreover, we compute the net benefit of each counter-
measure separately and then, compare them to identify the most cost-effective counter-
measure. In doing so, we assume that the same countermeasure is applied at all the time.
However, in practice, the optimal way to apply the countermeasure may require us to use
multiple countermeasures, with each countermeasure being applied for a fraction of total
time. Game-theoretic modeling of DNS attacks provides a way to synthesize interesting
defense strategies that combine multiple countermeasures to provide the best protection
against an attack. Game-theoretic modeling also obviates the need to determine the opti-
mal configuration of model parameters, as such configuration is automatically identified
during the synthesis of optimal defense strategies. Therefore, we model the DNS BAA as a
two-player, turn-based zero-sum game played between the attacker and the defender. The
game is modeled using PRISM-games, an extension of the PRISM model checker that lets
us model two-player, turn-based, zero-sum stochastic games and specify interesting prob-
abilistic and reward-based properties. PRISM-games then generates the optimal strategies
for a player, guaranteeing that the player can optimize a property irrespective of any strat-
egy chosen by the adversary. In the DNS BAA game, the attacker chooses the number
of zombies or the compromised machines used to launch a DNS BAA and the defender
tries to prevent the attack by choosing the best possible countermeasures. For attacker, we
specify two goals or payoffs, which seek to: maximize the difference between legitimate
packets dropped per zombie and legitimate packets received per zombie or maximize the
difference between bogus packets received and legitimate packets received. The defender
chooses defense strategies that would minimize the attacker’s gains. For both these prop-
erties, we record the optimal attack and defense strategies generated by PRISM-games.
An optimal attack strategy varies the number of zombies used to launch the attack, while
an optimal defense strategy is typically composed of two or more countermeasures.

The main contributions of this dissertation can be summarized as follows:

• We present our cost-benefit analysis framework and apply it to additional BAA
countermeasures and, for the first time, to DNS cache poisoning countermeasures.

• We use our cost-benefit analysis framework to compare two main cache poisoning
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countermeasures: UDP port randomization and duplicate DNS queries. Our results
show that redundancy in dispatched DNS queries is less cost effective than the UDP
port-randomization alternative.

• Our cost-benefit analysis framework is extended to analyze two hybrid BAA coun-
termeasures, formed via a combination of packet filtering, random drops, and ag-
gressive retries. Our results show that they are more cost effective than any one
BAA countermeasure in isolation.

• We recapitulate our results of [20] for DNSSec [7], a recently proposed security
extension of DNS that uses digital signatures to authenticate the source of DNS data.
Together, with our new results for the hybrid BAA countermeasures, we conclude
that DNSSec derives significantly less benefit from the countermeasures.

• We model the DNS BAA as a stochastic game and generate optimal attack and
defense strategies.

The rest of this paper is organized as follows. Chapter 2 provides background material
on the DNS cache poisoning and BAA attacks along with the countermeasures designed
to prevent them. Chapter 3 introduces probabilistic model checking for CTMCs and ex-
plains how the PRISM model checker can be used to compute probabilistic reachability
and reward-based properties. Chapter 4 presents our formal cost-benefit analysis frame-
work. Chapter 5 presents our CTMC model for the DNS cache poisoning attack and the
cost-benefit analysis results for the two countermeasures. Chapter 6 describes our CTMC
model for the DNS BAA and the cost-benefit analysis results for the basic and hybrid
countermeasures. Chapter 7 introduces stochastic game-based modeling with PRISM-
games. Chapter 8 describes our stochastic game-based model of the DNS BAA. Chapter 9
discusses related work, while Chapter 10 offers our concluding remarks.
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Chapter 2

DNS Attacks and Countermeasures

DNS translates user-friendly urls into the numeric IP addresses. It is implemented using hi-
erarchically organized DNS servers. At the root of this hierarchy is the root DNS server,
which manages top-level domain servers such as those for com, edu, and org. Top-level
domain servers manage individual domains like google.com, stonybrook.edu, and
wikipedia.org. Each DNS server stores the mapping of urls to IP addresses for the
domains that it manages.

2.1 Domain Name System (DNS)
DNS (Domain Name System) is a hierarchical naming system for the internet based on
an underlying client-server architecture, which is also hierarchical in nature. The pri-
mary function of a DNS server is to perform url-resolution: the process of translat-
ing a url or domain name, such as mail.google.com, into a physical IP address,
such as 209.85.132.83. The DNS is implemented using hierarchically organized
domain name servers. At the top of this hierarchy is the root DNS server. The root
DNS server manages name servers for the top-level domains such as com, edu, and
org. The top level domain name servers manage individual domains like google.com,
stonybrook.edu, and wikipedia.org. The individual domain name servers such
as google.com manage name servers for their subdomains such as mail.google.
com and translate.google.com. Each domain name server maps the urls in its
domain to their IP addresses.

Question Section
mail.google.com

Answer Section
209.85.132.83

Authority Section (optional)

Additional Section (optional)

Figure 2.1: Authoritative Answer (AA) for a DNS
query.

Question Section
mail.google.com

Answer Section (empty)

Authority Section
ns1.google.com

Additional Section
216.239.32.10

Figure 2.2: Referral Response (RR) for a
DNS query.
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When a DNS server receives a url-resolution query from a client, typically a web
browser, it first checks to see if it can answer the query authoritatively based on a lo-
cally maintained database of resource records mapping domain names to IP addresses. If
the queried name matches a corresponding resource record in its local database, the server
gives an authoritative answer (AA), using the local resource record to resolve the queried
name. The structure of an authoritative answer for a DNS query is shown in Fig. 2.1. The
Question Section contains the url to be resolved. The Answer Section contains the IP ad-
dress for the url in the Question Section [25]. If no local information exists for the queried
name, the server then checks to see if it can resolve the name using information cached
locally from previous queries. If a match is found, the server answers with the appropriate
cache entry and the query is completed [56].

If the queried name does not find a matched answer at its preferred server—either
from its cache or local database—the query process can continue, using recursion to fully
resolve the name. Such recursive queries involve assistance from other DNS servers to
help resolve them. The response to the last recursive query is the AA response (if the
url is valid). Typically, DNS servers of the internet service providers (ISPs) are config-
ured to support recursive queries. Such recursive DNS servers are also called as DNS
resolvers. The root and other top-level domains, on the other hand, are configured to be
non-recursive. A non-recursive DNS server provides a referral response (RRs) to a DNS
query: a pointer (referral) to another DNS server that presumably has authority for a lower
portion of the DNS namespace and can assist in resolving the query. The structure of a
referral response for a DNS query is shown in Fig. 2.2. The Question Section contains
the url to be resolved. The Answer Section is empty. The Authority Section and the Addi-
tional Section respectively contain the name and IP address for the DNS server to which
the referral response points [25].

How is a DNS query resolved? Assume that a user, who has connected his computer
into the Stony Brook University’s Computer Science Department’s network, types the url
mail.google.com in the web browser. The browser creates a DNS query for the
domain mail.google.com and sends it to the ISP’s DNS server, which in this case
is the DNS server of the domain cs.stonybrook.edu. This DNS server, henceforth
referred as the local DNS server, is a DNS resolver. So, it first searches its cache for the
IP address of the requested domain. If the IP address for the url mail.google.com
is found in the cache, then the cached IP address is returned to the web browser and the
url resolution process concludes. However, if the IP address of the requested domain is
not found in the cache, then the local DNS server tries to resolve client’s query using
recursion by first contacting the root DNS server. The root replies back with a RR
response referring the local DNS server to the name server of the com domain. The local
DNS server then contacts the com domain name server, which replies back with another
RR response referring the local DNS server to the name server of the google.com.
Finally, the local DNS server contacts the google.com’s domain name server, which
replies with the AA response containing IP address of the mail.google.com. The
local DNS server updates its cache with this IP address and then forwards it to the web
browser.
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2.2 DNS Cache Poisoning
A DNS resolver caches the IP addresses of recently resolved urls for a period of time
known as the time to live (TTL) period. If the TTL for a url has not expired, then the
cached address is used in response to all queries for that url. This in turn means that if the
cache gets corrupted, i.e., if for a url an incorrect IP address is cached, then a corrupted
answer is returned to the web browser. The browser then opens the incorrect web site,
which could be a source of malware or a phishing site.

Let us examine the mechanics of a cache poisoning attack. Assume that an attacker
wants to corrupt the cache of the DNS server for cs.stonybrook.edu by replacing
the cache entry for mail.google.com with an incorrect value (IP address). In this
case, cs.stonybrook.edu’s DNS server is the victim of the attack and the url mail.
google.com is the target of the attack. The attacker then forces the victim DNS server
to issue a DNS query for the target url [21, 5].

The DNS query is sent from a fixed UDP port, the source port, which is typically
port 53. A unique 16-bit query id is associated with each DNS query, and is used to
match a DNS response with the associated DNS request. While the victim waits for the
correct DNS response, i.e., the DNS response containing the correct IP address of the
target url, the attacker sends multiple bogus DNS responses to the victim, each of which
uses a randomly generated query id and contains the IP address of a malicious web site.
If the query id of one of these bogus responses matches the query id of the victim’s query,
then the victim accepts the bogus response, thereby corrupting its cache. The victim will
subsequently respond to all requests for the target url with the corrupted cache entry.

2.3 DNS Cache Poisoning countermeasures
Full protection against DNS cache poisoning can be achieved only with cryptographic ex-
tensions to DNS such as those deployed by DNSSec [27] and DNSCurve [13]. These pro-
tocols use public-key cryptography to sign DNS records. As such, a forged DNS record is
not accompanied with a valid signature and is rejected. Deploying these countermeasures,
however, involves making significant changes to the existing DNS infrastructure. There-
fore, the following two types of non-cryptographic countermeasures have been proposed
for DNS cache poisoning.

• UDP Port Randomization (PRAND) Instead of using a fixed UDP port on which
to send DNS queries, a randomly chosen 16-bit UDP source port is used [40]. The
attacker must correctly guess the 16-bit source-port id in addition to the unique
16-bit query id assigned to each DNS query. The effective transaction strength
thus becomes 216 · 216 = 232, as the attacker has to guess a 32-bit number [25].
The randomization level can be further increased by using 0x20-bit encoding [19],
XQID [30], and WSEC-DNS [46].

• Redundant DNS Queries (RDQ) In this countermeasure, redundant DNS queries
are used to provide protection against DNS cache poisoning. This countermeasure
works as follows [57].

1. k randomly selected ports are designated for the secure mode.
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2. These k ports operate in secure mode for w seconds.

3. Any answer received on these k ports during the w-second time bound is
treated as an attempted cache poisoning, and a duplicate DNS query is gen-
erated.

4. The duplicate query is resolved using the normal DNS operation. An additional
table is used to keep track of the original DNS requests for which the retries
are in progress. This table contains one entry per original DNS request.

5. If the answer to the duplicate query matches the answer to the first request,
then the first answer is accepted.

6. If the answer to the duplicate query does not match the answer to the first
request, then another duplicate query is sent.

7. Step 6 is repeated until a duplicate query returns an answer that matches the
answer to the first query.

8. When the w-seconds secure-mode time window expires, the k ports resume
their normal operation, i.e., they are no longer in a secure mode and do not
send duplicate queries.

9. Steps 1- 8 are repeated with a new set of k randomly chosen ports.

Since a response is cached only if both the original query and the duplicate query
receive identical responses, an attacker has to guess the correct <query id, port id>
twice, thereby reducing the likelihood of an attack.

Stronger security is obtained with higher values of k and w. It is, therefore, rea-
sonable to set k to the number of all available UDP ports and w to infinity; i.e., the
secure mode is enabled for all available ports all the time.

Although both PRAND and RDQ mitigate DNS cache poisoning, they cannot fully
eliminate it, as there exists no built-in mechanism within DNS for establishing trust be-
tween a DNS server issuing a query and a DNS server responding to that query. The
DNS Security Extensions (DNSSec) use digital signatures and public-key encryption to
authenticate the authoritative DNS servers [27]. A DNSSec response is accepted only if
it is verified to have come from an authenticated server, thereby eliminating any possi-
bility of cache poisoning. DNSSec, however, requires significant infrastructure upgrades.
Also, because of the increased request and response size, DNSSec may be more vulnera-
ble to DDoS attacks, the most prominent of which is BAA. Therefore, we need to study
DNSSec’s behavior in presence of BAAs to determine if DNSSec is more vulnerable than
DNS to a BAA, and if we have effective countermeasures for BAAs.

2.4 DNS Bandwidth Amplification Attack (BAA)
The DNS Bandwidth Amplification Attack (BAA) is a distributed denial-of-service attack
in which a network of computers floods a DNS resolver with large responses to requests
that have never been made. A typical DNS response size is 512 bytes. However, during
BAA, the victim DNS resolver can receive DNS responses that are as large as 4000 bytes.
These unwanted responses consume both the bandwidth and the computational power of
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Attacker

Zombie1

Legitimate Clients 

(Web Browsers and 

DNS Resolvers)

(4.2) Legitimate DNS traffic.  

Consists of incoming and 

outgoing DNS requests and 

responses

Victim DNS 

Resolver

Zombie2 Zombien

(1) Initiate attack by asking zombies to 

generate spoofed "ANY" type DNS queries

Open DNS 

Resolver

Open DNS 

Resolver

Open DNS 

Resolver

(2) Spoofed "ANY" type DNS queries 

that replace source-address field with 

victim's IP address

root

com edu org

google oracle
stony

brook
gatech

DNS

(4.1) Amplified DNS responses, 

i.e., bogus responses are 

forwarded to victim
(3) Open DNS resolvers 

recursively resolve "ANY" type 

queries, thereby retrieving 

amplified DNS responses

Figure 2.3: Schematic diagram of DNS BAA

the victim DNS server. The BAA is a major cause of the DNS disruption; a number of
incidents involving BAA have been reported since 2002.

How to generate amplified DNS responses? Typical DNS queries, such as the ones
described in section 2.1 simply seek to know the IP address for a desired url. Such queries
are known as “A” type queries [4]. The responses to A type DNS queries are average sized,
because they contain only the required IP addresses.1 However, it is also possible for a
client to issue another kind of DNS requests, the “ANY” type requests. They ask a DNS
server to return SOA (Start of Authority) record for the domain, the IP addresses of various
name servers for the domain, the IP addresses of the mail servers for the domain, and IP
addresses for desired urls. If the security extension of DNS, the DNSSec, is enabled, such
responses also contain cryptographic signatures (RRSIG records) associated with name
servers. So, the size of a response to an ANY type query can be much larger than size of
a response to an A type query. Using ANY type queries, it is possible to generate DNS
responses that are 50 times larger than the request size. So, the amplification factor (AF),
i.e., the ratio of the response size to the request size is 50 [48]. For DNS, the AF can be as
high as 73 [36, 58], while the AF for DNSSec can be as high as 271.2 [18]. The fact that
a small sized DNS request can generate a substantially larger response makes the BAA
possible.

1The AA and RR responses in Figs. 2.1 and 2.2 are examples of the responses generated for A type
queries.
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Let us now understand how an attacker can launch a DNS BAA. Let us assume that the
attacker decides to launch a BAA on the DNS resolver for the domain cs.stonybrook.
edu, henceforth referred as the victim server. Fig. 2.3 depicts a BAA.

1. The attacker prepares for the BAA by

• Acquiring control of a large number of compromised hosts (zombies) to be
used as attack sources.

• Acquiring a list of open DNS resolvers. A DNS resolver is open if it is able to
provide recursive name resolution service for clients outside of its administra-
tive domain [22]. Typically, DNS resolvers are configured to answer requests
from only those clients that are within their own domain [47]. For example, the
DNS resolver of cs.stonybrook.edu can answer DNS queries originat-
ing from machines that are connected to Stony Brook University’s Computer
Science Department’s network, however, it would reject queries generated by
clients that are in some other domain, such as google.com. Open DNS re-
solvers, on the other hand, accept queries from any DNS client. Because of
this property, open DNS resolvers are used in BAAs.

2. The attacker commands the zombies to send the previously found open DNS re-
solvers a number of requests that would generate amplified responses (Step 1 from
Fig. 2.3). E.g., the zombies may send a number of ANY type requests to the open
DNS resolvers (Step 2 from Fig. 2.3). Moreover, these queries are spoofed, i.e., the
source-address fields of these queries have been replaced with the victim’s IP ad-
dress. The open DNS resolvers resolve the spoofed queries (Step 3 from Fig. 2.3)
and direct the large number of amplified response that they receive to the victim
server (Step 4.1 from Fig. 2.3), thereby exhausting victim’s available bandwidth.

2.5 DNS BAA countermeasures
Three basic countermeasures are suggested to prevent the DNS BAA.

• Filtering (FTR): Filtering tries to identify and block the attack traffic. It offers
relatively high accuracy with a false-positive rate as low as 10% [55, 45, 33, 31, 64].
The computational demands of FTR depend on the filtering mechanism and the
attack strength.

• Random Drops (RND): RND regulates incoming traffic by randomly dropping
the DNS packets [41, 32]. During a BAA, the traffic arriving at the victim mainly
comprises the bogus packets, and a randomly dropped packet is, therefore, likely to
be bogus. RND has negligible computational demands.

• Aggressive Retries (AGR): AGR encourages the legitimate clients to generate traf-
fic at a higher rate. In AGR, increasing the number of retries by one doubles the
amount of legitimate traffic generated during each retry [59, 37]. The downside is
the increased server workload and the increased bandwidth consumption.

It is possible to combine the basic BAA countermeasures to get a better protection.
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• Random Drops with Aggressive Retries (RDR): RDR is obtained by combining
RND with AGR.

• Aggressive Retries with Filtering (AGF): By combining AGR with FTR we get
the AGF.

Both RDR and AGF try to filter out the attack traffic while explicitly increasing the pro-
portion of the legitimate traffic.
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Chapter 3

Probabilistic Model Checking using
CTMCs

Our cost-benefit analysis of countermeasures aimed at preventing cache poisoning and
bandwidth amplification attacks on DNS servers is based on CTMC models of these at-
tacks. CTMCs provide a natural modeling formalism in which the arrival processes for
benign and malicious server requests and, concomitantly, the race between these two types
of requests can be represented. The resulting probabilistic behavior can be analyzed using
probabilistic model checking, a highly successful automated analysis technique.

CTMC-based modeling inherently involves the fundamental Markov property assump-
tion: the conditional probability distribution of future model states depends only on the
present state. This implies that the waiting time for transitions is governed by a negative
exponential distribution, and, consequently, transition times occur according to a Poisson
process. Poisson distributions are commonly used to model arrival processes for client
requests in client-server systems, such as the processes generating DNS traffic.

For BAA, we note that the validity of the Markov property for representing bandwidth
sharing has been shown in [24]. Bandwidth sharing, under the common assumption of
Poisson session arrivals, is insensitive to the flow size and the packet arrival process. We
can, therefore, reasonably assume that the conditional probability distribution of future
states depends only on the present state.

Definition A labeled CTMC is a tuple C = (S, s, R, L) where:

– S is a finite set of states;

– s ∈ S is the initial state;

– R : S × S → R≥0 is the transition rate matrix;

– L : S → 2AP is a labeling function which assigns to each state s ∈ S the set L(s)
of atomic propositions that are valid in the state.

The transition rate matrix R associates a rate with each pair of states in the CTMC. A
transition can occur from state s to state s′ ifR(s, s′) > 0. The probability of this transition
taking place within t time units is 1−e−R(s,s′)·t. The time spent in state s before a transition
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taking place is exponentially distributed with rateE(s), whereE(s) =
∑

s′∈S R(s, s′). An
execution of a labeled CTMC C = (S, s, R, L) is represented by a path. Formally, a path
ω is a non-empty sequence of states s0s1s2 . . . where si ∈ S and P (si, si+1) > 0 for all
i ≥ 0.

Probabilistic model checking is an automated formal verification technique for mod-
eling and analyzing systems or processes with probabilistic behavior, e.g., the CTMC
of a queuing system. Model checking tools like PRISM [39] involve a combination of
graph-theoretic algorithms for reachability analysis and iterative numerical solvers. Thus,
it is possible to evaluate properties of the form P=?(ψ) that compute the probability of
some path that satisfies ψ. Path formula ψ is interpreted over the paths of the probabilis-
tic model, which could be a Discrete Time Markov Chain (DTMC), a Continuous Time
Markov Chain (CTMC), or a Markov Decision Process (MDP). We typically define prop-
erties of the form F prop, where F is the “eventually” linear temporal operator and prop
is a state assertion that evaluates to true or false for a single model state.

PRISM also allows us to assign rewards to states and transitions, such that they accu-
mulate over time. If at time t the model has reached the n th state of some path, the cu-
mulative reward is the sum of rewards accumulated in the preceding states (or transitions).
Reward can be also interpreted as cost. PRISM lets us write reward-based properties,
which compute expected cumulative rewards. These properties can be used to compute
measures such as expected number of legitimate packets lost. A reward-based property in
PRISM is of the form R{“rewardId”} =?[ψ], where the R operator signifies a reward-
based property, rewardId is the identifier representing the reward structure to be used, and
ψ is a path formula. This property, upon its evaluation, would return the expected reward
accumulated for the reward structure rewardId until path property ψ is satisfied.

A model in PRISM is constructed as the parallel composition of its modules, where
each module consists of variables and commands. The variables represent possible states
for the module. The commands describe the module’s behavior, i.e., the way in which
the module’s state evolves over time. Each command comprises a guard and one or more
update actions:

[] g ⇒ λ1 : u1 + ... + λn : un ;

Guard g is a predicate over model variables, whereas each update ui describes, by assign-
ing new values to the variables, a transition that the module can make. For CTMCs, λi is
the transition’s rate, the parameter of a negative exponential distribution that governs the
waiting time of the transition. If the guard is true, the updates are executed according to
their rates. Commands can be labeled and this allows modules to interact with each other
by synchronizing on identically labeled commands. In this case, the rate of the resulting
transition is the product of the rates of the individual transitions.

Building a CTMC model with PRISM involves identifying model variables, model
actions, and rates for the actions. Model parameters are the variables that can take a range
of values. By varying the values of model parameters, their impact on model behavior
can be ascertained. In contrast, model constants are the variables that are assigned a fixed
value.

PRISM also provides the R operator to analyze reward-based properties. Four dif-
ferent types of reward-based properties are supported, but, for our analysis, we use only

12



cumulative reward properties of the form (C ≤ t). These are appropriate for evaluating
the effects of BAA countermeasures in the small time period during which the attack has
to be mitigated.
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Chapter 4

Cost-Benefit Analysis via Probabilistic
Model Checking

Cost-benefit analysis is a technique for evaluating an activity by comparing its benefits
with its costs [51]. A cost-benefit analysis serves two purposes. First, it is used to de-
termine the viability of an activity and secondly, it is used to compare the performance
of available alternatives. For a given activity, assume that we have identified benefits
B1, B2, ..., Bn and costs C1, C2, ..., Ck. Then, the net benefit is computed as

net benefit =
n∑

i=1

Bi −
k∑

j=1

Cj (4.1)

Benefits are measures of improvements caused by the activity in question, whereas costs
represent undesired side-effects. For example, consider packet filtering, which acts as a
deterrent against DNS BAA attacks and reduces the attack probability by filtering bogus
traffic. Packet filtering, however, also has false positives; i.e., it filters out some of the
legitimate traffic. So, we define a benefit metric for packet filtering that reflects the increase
in the percentage of the legitimate traffic in the total traffic, and a cost metric that reflects
the false-positive rate.

In a cost-benefit analysis, it is possible to assign weights in order to take into account
the relative importance of benefits and costs [34]. While computing the net benefit, each
benefit and cost metric is multiplied by its weight [14]. Although weighted cost-benefit
analysis can give more accurate results, the determination of suitable weights is specific to
the needs and policies of the organization [54]. For this reason, in our cost-benefit analysis,
we assume all benefits and costs to be equally important, and do not include weights in the
cost-benefit analysis. Cost and benefit metrics are computed in our framework by model
checking appropriate probabilistic reachability and reward properties.

Cost and benefit metrics are selected so that they satisfy the following criteria [60].

1. Common unit of measurement: In performing a cost-benefit analysis, we compute
the net benefit using Equation (4.1). This is possible only if all benefit and cost
metrics are expressed in a common unit. A practical approach is to represent all
metrics as unit-less quantities such as percentages.
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2. Avoidance of double counting: Often, the impact of an activity can be measured
in more than one way; e.g., in a typical attack scenario, the effectiveness of a coun-
termeasure can be measured as the reduction in the attack probability, the increase
in the time needed for the attack to succeed, or the increase in the attacker’s ef-
fort. Including all these metrics as benefits in a cost-benefit analysis would count
the same effect multiple times. In such cases, care must be taken so that all coun-
termeasure effects are represented in the cost-benefit analysis by a single metric.
Statistical techniques like the Pearson product-moment correlation coefficient [61]
help us to detect highly correlated measurements of candidate metrics, in order to
avoid double-counting.

Our cost-benefit analysis aims to evaluate and compare the effectiveness of different
countermeasures designed to protect a DNS server. For this reason, selected metrics should
cover all countermeasure effects on DNS robustness and performance, but should not refer
to the usage of resources for implementing a countermeasure (e.g., CPU time, memory
usage). Thus, our cost-benefit analysis cannot be directly used for economic evaluation of
the countermeasures, where multiple concerns have to be taken into account.

In carrying out our cost-benefit analysis, we identified two cases. 1) The countermea-
sures under consideration are controlled by the same parameters. This is the case for DNS
cache poisoning (see Chapter 5): both countermeasures depend on the same parameter,
port id bits. 2) The countermeasures have different parameters; this is the case for
the BAA countermeasures (see Chapter 6).

In the first case, the common parameters are systematically varied to compute costs,
benefits, and associated net benefit values. If for certain parameter values a countermea-
sure’s net benefit > 0, then the countermeasure is profitable for those cases.

In the second case, we identify the parameter settings that produce a desired value for
a particular quantity, such as the desired attack probability. This approach can be seen as
a version of the model repair problem for probabilistic systems considered in [9]. With
countermeasure parameter values determined in this manner, we then evaluate other prob-
abilistic and reward-based properties, which are used to compute benefits, costs, and net
benefits. This allows us to compare the five BAA countermeasures we consider in Chap-
ter 6, each of which is controlled by different parameters, thereby identifying the counter-
measure that offers the highest net benefit while achieving the desired attack probability.

Our cost-benefit analysis concludes with a comparison of the net benefits observed for
properly selected model parameter values. A countermeasure offering the maximum net
benefit is the best performing countermeasure among all alternatives.
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Chapter 5

Cost-Benefit Analysis for DNS Cache
Poisoning Countermeasures

We present the PRISM CTMC model for the DNS cache poisoning attack and its two coun-
termeasures. We use this model to compute the net benefit for the two countermeasures.
(Note: Appendix A contains the fully documented model code)

5.1 CTMC model of DNS Cache Poisoning countermeasures
Our model defines five modules.

• Client Server (CS): CS is the victim of the attack. It is recursive, maintains a cache,
and is authoritative for the domain cs.stonybrook.edu. If a url is successfully
resolved, then its IP address is stored in the CS’s cache until the TTL expires.

• Client Machine (CM): CM is a normal desktop or a laptop computer that is served
by the CS. CM begins query resolution process by asking the CS to resolve the url
mail.google.com.

• Non-Authoritative Servers (NAS): NAS represents all intermediate non-authoritative
DNS servers that are involved in the url resolution process. NAS always return re-
ferral responses asking the requester to query some other DNS server that is more
likely to know the IP address of the requested url. The NAS module collectively
represents the root DNS server and the com DNS server.

• Domain Server (DS): DS is the authoritative name server for the target domain
(google.com). It returns an authoritative response containing the IP address for
any url within the target domain.

• Attacker Server (AS): AS is the authoritative DNS server for the domain badguy.
com. This domain is controlled by the attacker.

The model parameters are the following:

• port id bits: Defines the range of the number of port id bits as 1..port id bi-
ts. The number of available ports is 2port id bits.
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• guess: The overall rate at which the AS sends bogus responses to the CS. These
responses may be correct or incorrect guesses, depending on if the attacker was able
to correctly guess the source-port id.

• popularity: The rate at which the TTL associated with the CS’s cache entry for
mail.google.com has a positive value. The more popular a url, the more likely
it is to have a live cache entry. Popularity is characterized as low, medium, and high
according to its value: a popularity rate of 1-3 is used for less popular sites, 4-7 for
medium-popularity sites, and 8-9 for very popular sites.

• other legitimate requests rate: The rate at which requests from DNS
servers other than CS arrive at the DS. The parameter other legitimate req-
uests rate is therefore used to represent the load on the DS. If the load on the DS
is high, then it takes more time to process the DNS requests and return the responses.

• NAS count: Represents the number of non-authoritative servers (NASs) involved
in the url resolution. The minimum value of NAS count is 1, since at least one
NAS, the root name server, is involved in resolution of any url. NAS count
determines the number of recursive queries generated by CS. CS generates one re-
cursive query for each NAS. Additionally, one recursive query is generated when
CS communicates with DS. Therefore, the number of recursive queries generated
by CS is NAS count + 1. The higher the NAS count, the longer the CS has to
wait to obtain the correct IP address for a requested url. This gives an attacker more
time to attack, thereby increasing the attack probability.

Each module defines certain actions that synchronize with appropriate actions from
other modules. Since our model is a CTMC, each action (CTMC transition) has an associ-
ated rate. Actions also have associated guards that need to be satisfied for their execution
to take place. We now describe some of the important actions for each module. Unless
stated otherwise, each action is executed with a constant rate of 1.

Actions Defined for AS
The attacker has two opportunities for corrupting the CS’s cache: when the CS is waiting
for a referral response from the NAS, and when the CS is waiting for the authoritative
response from the DS. This is reflected in the following actions.

a. Send correct guess to CS while in race with DS: The AS sends a bogus response
to the CS that correctly matches the CS’s source-port id, thereby poisoning its cache.
This action synchronizes with action Receive correct guess from AS while in race
with DS of CS, and has an associated rate given by parameter guess.

b. Send correct guess to CS while in race with NAS: The AS sends a bogus response
to the CS that correctly matches the CS’s source-port id, thus poisoning its cache.
This action synchronizes with action Receive correct guess from AS while in race
with NAS of CS, and has an associated rate given by parameter guess.
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Actions Defined for CS

a. Send url-resolution request to NAS: With rate 1 − popularity/10, the TTL of
the target url’s cache entry is set to 0. In this case, the requested url does not exist
in the cache, and a query is sent to the NAS. With rate popularity/10, the TTL
is set to 1. In this case, the IP address for the requested url is cached, and query is
marked as answered. This action synchronizes with action Process request sent by
CS of NAS.

b. Receive response from DS: In this case, the DS has won the race with the AS and
cache poisoning has been avoided. This action is synchronized with action Process
request sent by CS of DS. Its rate is determined by a number of factors, including
the rate at which the TTL of the target url is given the value 0.

c. Receive correct guess from AS while in race with DS: Let n = max query id
· max query id, where max query id is the constant 65,536 (216). This action
executes with rate 1/n and synchronizes with action Send correct guess to CS while
in race with DS of AS. The combined arrival rate for correct guesses is obtained by
multiplying the rates of these two synchronizing actions: (1/n) · guess.

d. Receive correct guess from AS while in race with NAS: This action executes with
rate 1/n, where n = max query id · max query id and synchronizes with action
Send correct guess to CS while in race with NAS of AS. The rate for this action is
similar to the rate for the Receive correct guess from AS while in race with DS.

Action Defined for NAS

a. Process request sent by CS: A url-resolution request is received from the CS. A
referral response directing CS to DS is sent to the CS. This action synchronizes
with action Send url-resolution request to NAS of CS and executes at the rate of
1/(NAS count).

Actions Defined for DS

a. Process request sent by CS: A url-resolution request is received from the CS. An
authoritative response is sent to the CS. The rate for this action is given by 1/oth-
er legitimate requests rate.

We now describe how the basic CTMC model of DNS cache poisoning can be extended to
analyze the two countermeasures PRAND and RDQ.

• Modeling PRAND: PRAND is implemented by varying the parameter port i-
d bits. We vary port id bits from 1 to 16. Setting port id bits = 0 has
the effect of turning off port randomization.
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• Modeling RDQ: We can see that each duplicate query is an instance (execution) of
PRAND. Therefore, RDQ can be analyzed from the results of PRAND. We present
the formulas for computing the attack probability after the nth retry. For PRAND,
with a given attack setting (guess, port id bits), let p be the attack probability
and q = (1 − p) be the probability of obtaining the correct target IP address. Let n
be the number of times a duplicate query is sent. We consider the following cases.

– n = 1 The probability of an attack during the first retry is the probability of an
attack followed by an attack, which is p · p = p2.

– n = 2 The probability of attack during the second retry is the probability of an
attack followed by a failed attack followed by an attack, which is p · q · p =
p2 · q.

– n = 3 The probability of attack during the third retry is the probability of an
attack followed by a failed attack followed by a failed attack followed by an
attack, which is p · q · q · p = p2 · q2.

Generalizing, we obtain

probability of attack during the nth retry = p2 · q(n−1) (5.1)

Similarly, we can derive

probability of no attack during the nth retry = q2 · p(n−1) (5.2)

Now, let us determine the probability of attack and the probability of no attack, i.e.,
a failed attack, after the nth retry.

probability of attack after the nth retry
= probability of attack during(first retry OR second retry
OR third retry OR . . . OR nthretry)
= p2 + p2 · q + p2 · q2 + · · ·+ p2 · q(n−1)
= p · (1− qn)

(5.3)

We can similarly determine

probability of no attack after the nth retry = q · (1− pn) (5.4)

It is possible, however, that in spite of performing n retries we may not get an answer
that matches the answer to the first request. In this case, we are required to perform
the (n+ 1)st retry.

probability of another retry required after the nth retry
= 1− (p · (1− qn) + q · (1− pn))
= p · q · (pn−1 + qn−1)

(5.5)

Since p < 1 and q < 1, from Equations (5.3)-(5.5) we observe that with increasing
n, the probability of attack after the nth retry tends to p, the probability of no attack
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after the nth retry tends to q, and the probability of another retry required after the
nth retry tends to zero. This suggests that if we have identical attack settings for
RDQ and PRAND, then in RDQ, an attacker has to perform a greater number of
guesses to achieve the attack probability that is equal to the attack probability p
observed for PRAND.

Two variants of RDQ: Depending on the restrictions imposed on n, we can identify
two variants of the RDQ.

1. Unrestricted n (RDQ1): As seen in Chapter 2.2, when RDQ is deployed, a
new url-resolution request received from the client machine is resolved nor-
mally yielding an IP address. This answer, however, is not trusted and a du-
plicate query is generated. In RDQ1, we do not impose any upper limit on n.
Therefore, duplicate queries are repeatedly generated until the most recent du-
plicate query returns a response that matches the untrusted response obtained
by resolving the client’s original query. For a given attack setting, we then
determine the expected value of n. The expected value of n can be computed
as follows. From Equation (5.5), we observe that the probability that another
retry is required after the nth retry is p · q · (pn−1 + qn−1). We find the value of
n for which p · q · (pn−1 + qn−1) = 0. Let us denote this value of n as the nmax.
This ensures that after nmax retries, we would obtain an answer that matches
the answer received for the original query. We can then find the expected value
of n, the nexpected, by evaluating

nexpected =
nmax∑
i=1

i · (p · q · (pi−1 + qi−1)) (5.6)

For given values of p and q, both nmax and nexpected can be evaluated by running
a simple script, a Groovy version of which is available in Appendix A.

2. Restricted n (RDQ2): We impose an upper limit, nmax, on the number of
times duplicate queries are generated. We restrict nmax to the range 1 . . . 4 and
compute nexpected. For identical attack settings, let n′expected be the value of
nexpected for RDQ1. Then, nexpected for RDQ2 is computed by evaluating the
following conditional expression.

nexpected = (n′expected < nmax) ? n′expected : nmax (5.7)

5.2 Benefit and cost metrics
• For PRAND

The attack probability is the probability of the victim receiving a bogus response
from the AS before the victim receives the correct response from the DS. In PRAND,
as we increase the value of port id bits, we expect the attack probability to
decrease. The attack probability, p, is computed by evaluating the Continuous
Stochastic Logic (CSL) formula P=? [F "attacked"], where the state as-
sertion "attacked" becomes true when the AS correctly guesses the victim’s
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source-port id. Let p be the attack probability observed for a given attack setting,
and p0 be the attack probability observed with no port randomization, i.e., with
port id bits = 0. Then, we define the percentage decrease in the attack proba-
bility (p0 − p), over p0 as the benefit metric B1:

B1 =
p0 − p
p0

· 100. (5.8)

For PRAND, the net benefit is simply

net benefit = B1. (5.9)

• For RDQ
Benefit B1 from equation (5.8) is also applicable to RDQ, and the value of p is com-
puted using equation (5.3). The expected number of retries, nexpected, give rise to
a new cost C1 by increasing CS’s bandwidth usage. We define C1 as the percent-
age increase in CS’s bandwidth usage over its bandwidth usage when RDQ is not
deployed. The bandwidth usage depends directly on the number of retries, so

C1 = nexpected · 100. (5.10)

The number of retries performed also increase the response time for CS. It can be
easily observed, however, that both the bandwidth usage and the response time di-
rectly depend on nexpected. Therefore, in the cost-benefit Analysis, we include a
cost metric based on increased bandwidth usage alone. Another cost metric, C2,
is associated with RDQ. C2 is the percentage representation of the probability of
the query not getting resolved despite performing the nexpected retries. This is pos-
sible if nexpected < nmax, which is true for low values of port id bits. Using
Equation (5.5), we can compute

C2 = p · q · (pnexpected−1 + qnexpected−1) · 100. (5.11)

For RDQ, the net benefit is thus computed as

net benefit = B1 − C1 − C2. (5.12)

5.3 Experimental results
Because PRAND and RDQ have the same control parameter, viz., port id bits, we
do not follow a model-repair-based approach to find optimal parameter settings for a given
attack probability. We instead vary port id bits and record the observed costs and
benefits. This lets us compare how the two countermeasures perform for different values
of port id bits.

For a domain with medium popularity (popularity = 5), handling a moderate oth-
er legitimate requests rate of 100, we apply both PRAND and RDQ. We
vary port id bits from 1 to 16 and record the net benefits computed using Equa-
tions (5.9) and (5.12). Then, for three different values of the guess rate – 10000, 100000,
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Figure 5.1: nexpected computed using Equation (5.6) for RDQ1
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Figure 5.2: Attack probability for PRAND and RDQ at different guess rates for varying number
of port id bits. [Color codes: black - PRAND, red - RDQ1, and blue - RDQ2]

and 1000000 – we plot the net benefit against port id bits. We assume that on aver-
age CS generates five recursive queries in resolving a url. Therefore, NAS count is set
to 4.

Since RDQ encompasses PRAND’s behavior, the attack probability p in RDQ tends
to zero as port id bits increases. In such cases, according to Equation (5.6), RDQ1

is required to perform zero retries. In both variants of RDQ, however, at least one retry
is always performed. So, for RDQ1, nexpected tends to 1 as port id bits increases. In
general, n varies between 1 and 25, sometimes increasing to 100 (see Fig. 5.1). So, for
RDQ2, we set nmax = 2. Henceforth, we refer to RDQ2 with nmax = 2 as simply RDQ2.

Fig. 5.2 plots the attack probability observed for PRAND and RDQ at different guess
rates versus port id bits. The black plot shows the attack probability observed for
PRAND, the red plot shows the attack probability observed for RDQ1, and the blue plot
shows the attack probability observed for RDQ2. We observe that the attack probability
increases with increasing guess rate. This shows that the more guesses an attacker gener-
ates, the higher is the probability of the attack being successful. We also see that the attack
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Figure 5.3: Net benefit for PRAND and RDQ for varying number of port id bits with guess
= 10000.
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Figure 5.4: Net benefit for PRAND and RDQ for varying number of port id bits with guess
= 100000.

probability observed for both variants of RDQ is always less than the attack probabil-
ity observed for PRAND. This supports the observation of [57] that RDQ offers superior
protection than PRAND against DNS cache poisoning. We see that for lower values of
port id bits, RDQ2 offers a lower attack probability than the attack probability ob-
served for RDQ1. This happens because, as seen from Fig. 5.1, for lower port id bits,
RDQ1’s nexpected ≥ 2. We also recall that for RDQ2, nmax = 2. So, according to Equa-
tion (5.3), RDQ2 offers a lower attack probability than the attack probability observed for
RDQ1.

Figs. 5.3-5.5 plot the net benefits for PRAND and RDQ versus port id bits at
varying guess rates. From our experiments, we observe that the net benefit for RDQ2 is
always greater than−200, since for RDQ2, nmax = 2. As seen from Fig. 5.1, however, for
some values of port id bits, RDQ1 can have a large nexpected, thereby causing its net
benefit to fall below −200. In order to improve the readability of Figs. 5.3-5.5, we limit
the negative net benefit at−200.1 This ensures that we plot observed net benefit values for
RDQ2, while eliminating highly negative net benefit values for RDQ1. Figs. 5.3-5.5 show

1This technique is similar to the techniques used to discretize data during data mining [29].
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Figure 5.5: Net benefit for PRAND and RDQ for varying number of port id bits with guess
= 1000000.

port id bits
PRAND RDQ1 RDQ2

B1 B1 C1 C2 B1 C1 C2

1 0.23 25.33 200 24.99 25.33 200 24.5

4 6.78 21.01 200 12.5 33.4 300 24.88

7 43.49 64.38 200 12.05 72.6 300 20.26

10 86.5 91.95 200 2.72 98.24 1300 6.29

13 98.1 99.08 200 0.49 99.96 6900 0.94

16 99.76 99.99 200 0.12 99.99 1400 0.12

Table 5.1: Costs and benefits for PRAND and RDQ, with guess = 100000

that both variants of RDQ offer lower net benefit than the net benefit offered by PRAND.
Table 5.1 shows the cost and benefit values for PRAND and RDQ when guess =

100000. We see that both variants of RDQ offer higher B1 than PRAND. For RDQ,
however, the increase in B1 is insufficient to overcome the cost (C1 + C2). So, the net
benefit of RDQ is less than the net benefit of PRAND.

5.4 Observations
From the cost-benefit analysis results presented in section 5.3, we observe that PRAND
always performs better than RDQ. We would like to point out, however, that the cost-
benefit Analysis results could be different if a weighted cost-benefit Analysis were used.
From Table 5.1, we see that it is because of cost C1 that RDQ performs worse than the
PRAND. RDQ’s benefit B1 can increase only up to 100, whereas C1 is introduced due to
extra bandwidth usage and can exceed 100 depending on value of nexpected. In practice,
the actual monetary cost associated with bandwidth usage may not be too significant. So,
a smaller weight may be assigned to C1 or C1 may not even be included in the cost-benefit
Analysis. In this case, the net benefit for RDQ would be B1 − C2, which then would be
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always greater than the net benefit of PRAND, thereby causing RDQ to become a preferred
choice over PRAND.

Another observation that can be made from Table 5.1 is that with increasing port i-
d bits, cost C2 decreases for both variants of RDQ. As port id bits increases,
RDQ’s PRAND behavior causes the attack probability p to approach zero. As seen from
equation (5.11), cost C2 will also approach zero in this case.

From Figs. 5.3-5.5, we observe that at lower guess rates, e.g., when guess = 10000,
as port id bits increases, the net benefits of RDQ1 become equal to those of RDQ2.
This again happens because with increasing port id bits, the attack probability p
tends to zero and the probability q of obtaining the correct target IP address tends to one.
As can be seen from Equation (5.8), this causes benefit B1 to approach 100.

RDQ retries a query n times until a response is received that matches the untrusted
response obtained by resolving the original client query. The expected number of such
retries, nexpected, is computed using Equations (5.6) and (5.7). These equations show that
as the attack probability p decreases, fewer retries are required. So, as p tends to zero,
nexpected tends to 1. It can be seen from Equation (5.10), as nexpected tends to 1, cost
C1, the percentage increase in the CS’s bandwidth usage because of RDQ, tends to 100.
Moreover, as discussed in the previous paragraph, cost C2 tends to zero. Therefore, the net
benefits for both variants of RDQ approach zero.

5.5 Efficiency considerations
During our cost-benefit analysis of the countermeasures against the DNS cache poison-
ing and the DNS BAA, we evaluated a number of probabilistic reachability and reward
properties. While model checking a property, PRISM loads the model in memory and cre-
ates a graph-based state-space representation of the model, which is then used for model
checking. For a model to be useful in practice, the amount of memory needed by its graph-
based state-space representation and the time required to evaluate a property should not
be unreasonably high. In a PRISM model, only those parameters that appear in the guards
for various actions affect the state-space size. Any parameters that are used as rates for
various actions do not increase the size of a model’s state-space. Also, in general, model
checking reward properties takes more time than model checking probabilistic reachability
properties. In our DNS cache poisoning model, we vary the guess rate and the number
of port id bits. Both these parameters are used in expressions referring to rates; this
helps limit the state-space size to 13 states and 16 transitions. The in-memory size of
the model never exceeded 5.73 KB, whereas the model construction time never exceeded
0.005 sec. The time to model check the probabilistic reachability property was limited to
0.002 sec.
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Chapter 6

Cost-Benefit Analysis for DNS
Bandwidth Amplification Attack
Countermeasures

We present the PRISM CTMC model for the DNS BAA and its five countermeasures,
which include three primary countermeasures and two hybrid countermeasures. Using
this model, we perform a cost-benefit analysis of the BAA countermeasures. We also
show how this model can be used to analyze the impact of BAA on the DNSSec. (Note:
Appendix B contains the fully documented model code)

6.1 CTMC model of DNS BAA
The basic CTMC model of the BAA consists of two primary modules.

• Client Server (CS): CS is the victim server. It has a finite bandwidth, which is
shared by legitimate DNS traffic and BAA traffic.

• Net: Net represents all DNS resolvers and clients that generate legitimate and attack
traffic for the CS.

Model parameters: Since the CS is a DNS resolver, it handles both the legitimate
DNS requests and the legitimate DNS responses. In order to let the CS process the le-
gitimate DNS requests and the legitimate DNS responses in a uniform way, we define an
abstraction called legitimate DNS packet. The size of a legitimate DNS packet is computed
as the weighted average of the sizes of the legitimate DNS requests and the legitimate DNS
responses that flow through the CS’s network. The weights denote the frequencies with
which the legitimate requests and the legitimate response are observed in the legitimate
traffic. Since, DNS is a client-server system, one request generates one response. So, typi-
cally the legitimate DNS requests and the legitimate DNS responses appear with the same
frequency. Then, we can compute the size of a legitimate DNS packet as the average of
the size of a legitimate DNS request (60 bytes) and the size of a legitimate DNS response
(512 bytes) [58]. A legitimate DNS packet size is, therefore, 60+512

2
= 286 bytes.

In BAA, the attacker sends many unwanted bogus DNS responses to the victim. As
seen from section 2.4, each bogus DNS response is AF times larger than a legitimate
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DNS request, i.e., AF = size of bogus DNS response
size of legitimate DNS request

. However, the legitimate DNS traffic
transmitted to the CS consists of both the legitimate DNS requests and the legitimate
DNS responses, which are collectively represented using the abstraction legitimate DNS
packets. So, we need to adapt the definition of AF to use the legitimate DNS packet
size instead of the legitimate request size. The modified definition for the AF is, AF
= size of bogus DNS response

size of legitimate DNS packet
. The maximum size of a bogus DNS response can be 4380

bytes [58]. So, the AF is then computed as 4380 bytes
286 bytes

= 15.31.
We observe that because a bogus DNS response is AF times larger than a legitimate

DNS packet, one bogus DNS response can be considered to be composed of AF legitimate
DNS packets. So, the BAA, which introduces bogus DNS responses into the CS’s network,
can be considered to introduce additional legitimate DNS packets into the CS’s network,
where one bogus DNS response is equivalent to AF legitimate DNS packets. So, for a
given number of bogus DNS responses, we can obtain the equivalent number of legitimate
DNS packets by multiplying the number of bogus DNS responses with the AF. So, the
number of bogus DNS responses and number of legitimate DNS packets can be measured
using a single unit called packets. However, to do so, we need to ensure that we multiply
the number of bogus DNS response by the AF.

The rate at which the legitimate DNS packets arrive at and flow out of the CS is called
the Rl. As the consumption of CS’s bandwidth chiefly depends on the attack strength, we
set the Rl to a moderate value of 100 packets per second. In our model, the parameter
zombies represents the number of zombies used in the BAA. Each zombie sends a fixed
number of DNS responses to the CS per second. So, we can define the bogus rate, i.e.,
the rate at which each zombie sends bogus DNS packets to the CS as follows.

bogus rate = number of bogus DNS reaponses sent per second · AF (6.1)

Since, it is the number of zombies that mainly influences the attack strength, we assume
that each zombie sends a moderate number of 10 bogus DNS responses to the CS every
second. So, the bogus rate = 10 · AF packets per second. Zombies further increase
the arrival rate of bogus DNS packets. The net arrival rate for the bogus DNS packets, Rb,
measured in packets per second is

Rb = bogus rate · zombies (6.2)

CS’s bandwidth, BW, represents the finite capacity of the its network to simultaneously
transmit the DNS traffic. Bandwidth is typically expressed in bits per second. A typical
DNS server has approximately 1 Mbps [65] of dedicated bandwidth. Since, the legitimate
DNS packet size is 286 bytes, we can say that 1 Mbps bandwidth can transmit 1Mb

286
= 458

packets per second. So, we set BW to 458 packets per second. Bandwidth can be modeled
by using a finite-sized queue that represents the packets that have been transmitted to the
CS and are waiting to be served. The growth and shrinkage of CS’s available queue capac-
ity models the way legitimate and bogus packets consume CS’s bandwidth. The advantage
of using a queue to represent the bandwidth is that we can take into consideration the ef-
fects of the rate at which the CS serves the incoming DNS packets, i.e., the serve rate.
The higher the serve rate, the faster the CS processes queued packets, thereby freeing
up the bandwidth at a faster pace. A typical value for serve rate is 12666 packets per
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Description Parameter Value Units
Amplification factor AF 15.31
Legitimate DNS
packet rate

Rl 100 packets per
second

Number of zombies zombies
Rate at which each
zombie sends the bo-
gus DNS packets

bogus rate 10 · AF packets per
second

Net arrival rate for
bogus DNS packets

Rb bogus rate · zombies packets per
second

CS’s bandwidth BW 458 packets per
second

CS’s serve rate serve rate 12666 packets per
second

Table 6.1: DNS BAA model parameters

second [1]. When a queued packet is served, the available queue capacity is incremented
by 1. Table 6.1 summarizes the model parameters and constants.

We now describe the three primary actions in our BAA model.

• Receive Legit Packet: A legitimate DNS packet is received by the CS and a position
in CS’s queue is occupied. This action is defined in modules CS and Net and occurs
at the rate Rl for the Nofix case, i.e., when no countermeasure is applied.

• Receive Bogus Packet: This action is defined in modules CS and Net and repre-
sents the receipt of bogus packets by the CS and the corresponding reduction of the
available queue capacity. For the Nofix case, this action occurs at the rate of Rb.

• Client Request: This action is defined in modules CS and Net and represents the
dispatching of a client request to the CS with rate Rl. This action can be executed
if the queue capacity is available. After having been executed once, this action is
permanently disabled. It is used as a handle for computing the attack probability.

The CTMC model of the BAA can be extended to model the three basic countermea-
sures as follows. Table 6.2 summarizes the countermeasure parameters.

• Modeling FTR: FTR is implemented by augmenting the basic CTMC BAA model
with a new module called the Filter. Filter is configured using two parameters:
detection fraction (df) and false positive fraction (fpf). The
df is the fraction of attack traffic identified and filtered, whereas the fpf is the
fraction of legitimate traffic incorrectly identified as bogus. Studies of different
filtering algorithms show that on average FTR has a high df of 0.9 and fpf as low
as 0.1. FTR decreases the effective rate of the action Receive Legit Packet to Rl ·
(1−fpf) and the effective rate of the action Receive Bogus Packet to Rb · (1−df).
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Description Parameter
Fraction of bogus DNS packets correctly filtered df
Fraction of legitimate DNS packets incorrectly filtered fpf
Fraction of bogus and legitimate DNS packets randomly dropped rdf
Number of times the legitimate DNS packets are resent retries

Table 6.2: DNS BAA countermeasure parameters

• Modeling RND: RND is implemented by a new module called the RandomDrop-
per. It is controlled by the parameter random drop fraction (rdf), the
fraction of incoming legitimate and bogus packets randomly dropped. RND reduces
the effective rate of the action Receive Legit Packet to Rl · (1−rdf) and the effec-
tive rate of the action Receive Bogus Packet to Rb · (1−rdf).

• Modeling AGR: AGR is implemented by adding a new parameter, the retries
to the basic CTMC BAA model. The retries represent the number of times the
legitimate DNS packets are resent to increase the share of legitimate traffic. AGR
increases the effective rate of the action Receive Legit Packet to Rl · 2retries.

Now, we explain how to use the basic CTMC BAA model for modeling the two hybrid
countermeasures.

• Modeling RDR: RDR, the combination of RND and AGR, is implemented using
the module RandomDropper along with the parameter retries. RDR is thus
controlled by rdf and retries. It increases the effective rate of the action Re-
ceive Legit Packet to Rl · (1−rdf) · 2retries and decreases the effective rate of the
action Receive Bogus Packet to Rb · (1−rdf).

• Modeling AGF: AGF is combination of AGR and FTR. It is implemented using the
module Filter and the parameter retries. AGF is controlled by retries, df,
and fpf. It increases the effective rate of the action Receive Legit Packet to Rl

· (1−fpf) · 2retries and decreases the effective rate of the action Receive Bogus
Packet to Rb · (1−df).

Modeling the DNSSec BAA: As we showed in [20], the PRISM model for the DNSSec
BAA can be obtained by assigning proper values to BW and AF. For DNSSec, BW = 112
and AF = 16.32. The DNSSec has a high AF and its response size can be much larger than
a DNS response. So, fewer DNSSec packets can be accommodated in a bandwidth of a
given capacity.

6.2 Benefit and cost metrics
During a BAA, the CS’s bandwidth is consumed by a large number of unwanted ampli-
fied DNS responses. So, the legitimate client requests may end up not getting serviced.
The CS has to, however, ensure that legitimate client requests are still serviced. The CS,
therefore, needs to ensure that the attack probability, i.e., the probability that a legitimate
client request is eventually not satisfied, is set to zero. The observed attack probability,
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p, is computed using the CSL formula P=? [F DenialOfService] with predicate
DenialOfService becoming true, when the Client Request action is not completed
by the CS under attack. To achieve the zero attack probability for its clients, the CS ap-
plies the countermeasures. It is possible to ensure the zero attack probability by adjusting
countermeasure parameters such as rdf for RND and retries for AGR.

Once the CS ensures that is is able to secure the zero attack probability for its clients,
it can try to ensure that its own capabilities are efficiently utilized. E.g., the CS may try to
ensure that the majority of the packets that it processes are the legitimate packets. The CS
may also want to process as few packets as possible. It would also like to ensure that fewer
legitimate packets are dropped because of the false-positive action of the countermeasures
such as FTR and RND. We define two benefit metrics and one cost metric to measure how
efficiently a countermeasure can help the CS to better utilize its capabilities. All benefit
and cost metrics are computed as percentage values. Benefit B1 is the percentage of legit-
imate packets in total packets processed. A good countermeasure offers high B1. Benefit
B2 is the percentage time spent in the states where the bandwidth is available. A high
value of B2 ensures that a countermeasure keeps the victim’s bandwidth free, signifying
that the victim receives as few packets as possible. Cost C1 represents the false positive-
based cost associated with FTR, RND, RDR, and AGF. C1 is defined as the percentage of
the legitimate packets dropped.

For computing benefit and cost metrics, we define three reward properties P1, P2 and
P3 of the form R{"<reward definition>"}=? [C<=t], that evaluate the accu-
mulated quantities in time t for rewards R1, R2, R3 as follows. The transition reward R1

assigns a unit yield to the actions Receive Legit Packet and Client Request. So, property
P1 counts the total number of legitimate packets received, say PK1. R2 is another transi-
tion reward with unit yield attached to the action Receive Bogus Packet. The property P2

counts the total number of bogus packets received, say PK2. Then,

B1 =
PK1

PK1 + PK2

· 100 (6.3)

Reward R3 is a state reward that assigns a unit yield per unit of time spent in the states
where the victim’s bandwidth has not been exhausted. Therefore, property P3 yields the
total time T1 spent in states where bandwidth is available. Then,

B2 =
T1
t
· 100 (6.4)

where t is the time duration for which the countermeasure effects are evaluated, which is
same as the time-bound used for evaluating P3.

Both FTR and AGF drop fpf fraction of the incoming legitimate traffic. Similarly,
RND and RDR both drop rdf fraction of the incoming traffic, including bogus and legit-
imate traffic. AGR does not have any false positives. Therefore,

C1 =


fpf · 100, for FTR and AGF
rdf · 100, for RND and RDR
0, for AGR

(6.5)
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Figure 6.1: Net benefits for FTR, RND, and AGR

Finally the net benefit is computed as

net benefit = B1 +B2 − C1 (6.6)

6.3 Experimental results
The cost-benefit analysis of the DNS BAA countermeasures is an example of the cost-
benefit analysis “with model repair”. This approach was selected, since all BAA counter-
measures have different control parameters, e.g., the df and the fpf for FTR, the rdf
for RDR, and the retries for AGR. So, the control parameters for the BAA coun-
termeasures cannot be used as the basis for comparing the countermeasure performance.
However, we can use a “desired attack probability” as the basis for comparing the coun-
termeasure performance. The cost-benefit analysis is, therefore, performed in two phases.
In the first phase, we use model repair to determine the minimum values of the counter-
measure parameters that produce the zero attack probability for different attack settings,
i.e., for different number of zombies. If during the first phase, we find that the counter-
measure is indeed able to achieve the zero attack probability, then we perform the second
phase. For RND, AGR, RDR, and AGF it is theoretically possible to adjust the rdf and
the retries to achieve the zero attack probability. However, for FTR, the df and the
fpf are fixed, so it is not always possible to achieve the zero attack probability and the
observed attack probability, p, can be more than zero. Therefore, the second phase is al-
ways performed for RND, AGR, RDR, and AGF. However, the second phase for FTR is
performed only if the FTR can achieve the zero attack probability. In the second phase, we
use the countermeasure parameter values identified in the first phase to compute the costs
and the benefits, and subsequently the net benefits. We can then select the countermeasure

31



that offers the highest net benefit for a given attack setting.
In [20], we analyzed the performance of FTR, RND, and AGR. We reproduce those

experimental results here. Since effects of the BAA have to be mitigated in a small time
interval, the time-bound t referred in the equation (6.4) is selected, such that it allows the
model dynamics to reasonably evolve, while at the same time prevents it from attaining
steady-state (where countermeasure’s effects are independent of the available bandwidth).
By experimentation we found t = 0.1.

From Figs. 6.1(a)-6.1(d) we observe, that for all countermeasures, the net benefit de-
creases with increasing number of zombies. This shows that the protection offered by
a countermeasure weakens as the attack strength rises. From Figs. 6.1(a) and 6.1(c), we
see that for DNS, FTR is the most cost-effective countermeasure when zombies≤ 1000.
Thereafter, AGR offers the highest net benefit. The FTR has a constant high df with low
fpf. So, FTR, in general, offers a superior performance. However, when the number
of zombies exceeds a certain threshold, e.g., 1000 for DNS, then FTR cannot achieve
the zero attack probability. Therefore, the second phase of the cost-benefit analysis is not
performed for FTR when the number of zombies exceed 1000. This can be clearly seen
from Fig. 6.1(c), which shows the net benefits for only RND and AGR. A similar behavior
is observed for DNSSec from Figs. 6.1(b) and 6.1(d), where FTR is the best countermea-
sure when zombies ≤ 800. Thereafter, AGR becomes the countermeasure offering the
highest net benefit. AGR has no false positives and it proactively increases the proportion
of the legitimate DNS traffic. So, it can cope up with high number of zombies.

We can thus conjecture, that the combination of FTR and AGR, i.e., the AGF might
offer the best performance. It would be also interesting to study how the RDR, i.e., the
combination of RND and AGR, behaves. We can expect RDR to perform better than RND.
The combination of FTR and RND is less interesting, since both FTR and RND are based
on the same principle of filtering out the bogus traffic. Therefore, we extended our BAA
model to analyze AGF and RDR.

Determining countermeasure parameters for AGF and RDR:

• RDR: Since RDR is a combination of RND and AGR, we determine rdf and
retries. For a given number of zombies, we know the rdf required by RND
and the retries required by AGR to achieve the zero attack probability. E.g.,
when zombies = 500, then for RND, rdf = 0.82 and for AGR, retries = 4.
Clearly for RDR, 0 < rdf < 0.82 and 0 < retries < 4. So, we set retries
to 1, 2, and 3 and for each retry, identify the minimum rdf required to produce
the zero attack probability. For each set of (retries, rdf) we compute the net
benefit. We choose the (retries, rdf) that offers the highest net benefit for a
particular number of zombies.

• AGF: Since AGF is a combination of FTR and AGR, we need to determine df,
fpf, and retries. The df and the fpf are constant with df = 0.9 and fpf
= 0.1. We initialize retries to zero and keep it constant as long as the filtering
mechanism of AGF can maintain the zero attack probability. Thereafter, we iden-
tify the lowest possible number of retries that in combination with filtering can
reduce the attack probability to zero. E.g., for DNS we observe, that the FTR can
provide the zero attack probability when zombies≤ 1000. For zombies> 1000,
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zombies
FTR RND AGR RDR AGF

df fpf rdf retries rdf retries df fpf retries

200 0.9 0.1 0.44 2 0.4 1 0.9 0.1 0

500 0.9 0.1 0.82 4 0.79 2 0.9 0.1 0

800 0.9 0.1 0.89 5 0.87 3 0.9 0.1 0

2000 0.96 7 0.95 4 0.9 0.1 3

5000 0.98 8 0.98 5 0.9 0.1 5

8000 0.99 9 0.99 6 0.9 0.1 6

Table 6.3: DNS BAA countermeasure parameters required to achieve zero attack probability

zombies
FTR RND AGR RDR AGF

B1 B2 C1 B1 B2 C1 B1 B2 B1 B2 C1 B1 B2 C1

200 3.2 100 10 0.4 98.7 44 0.9 55.8 0.5 93.1 40 3.2 100 10

500 1.3 100 10 0.2 100 82 1.2 22.3 0.4 99.9 79.5 1.3 100 10

800 0.8 100 10 0.1 100 89.5 1.4 13.9 0.4 99.9 86.7 0.8 100 10

2000 0.1 100 95.8 2.1 5.5 0.3 99.9 95.1 1.4 55.5 10

5000 0.03 100 98.4 1.7 2.2 0.3 99.9 98.1 2 22.1 10

8000 0.02 100 99 2.1 1.4 0.3 99.9 98.8 2.4 13.7 10

Table 6.4: DNS BAA countermeasures costs and benefits

we vary retries to achieve zero attack probability and record the least number of
retries for which the zero attack probability is observed.

We now present the results of the cost-benefit analysis for RDR and AGF. Table 6.3
shows the countermeasure parameter values necessary to achieve the zero attack proba-
bility for the DNS. The empty cells in the table indicate that FTR’s df of 0.9 and fpf
of 0.1 are insufficient to achieve the zero attack probability for the given number of zom-
bies. For DNS, Figs. 6.2(a)-6.2(d) show the net benefits offered by FTR, RND, AGR,
RDR, and AGF. These net benefits have been computed using countermeasure parame-
ter values from Table 6.3. Table 6.4 shows the costs and benefits observed for various
BAA countermeasures. From Figs. 6.2(a)-6.2(d), we observe that AGF offers the highest
net benefit. For zombies ≤ 1000, both AGF and FTR offer identical net benefits since,
as seen from Table 6.3, when zombies ≤ 1000, for AGF, the retries are set to zero.
When zombies> 1000, AGF can use its aggressive retries to ensure that the attack prob-
ability still remains zero. Also, AGF’s capability of filtering bogus packets with low false
positives ensures that the benefit B2 remains high in presence of aggressive retries. This
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Figure 6.2: Net benefits for FTR, RND, AGR, RDR, and AGF

lets the AGF to have the highest net benefit.
RDR, on the other hand, offers higher net benefit than RND, but lower net benefit

than AGR. RDR’s aggressive retries increase benefit B1 and marginally decreases cost
C1, thereby causing RDR’s net benefit to be greater than the net benefit of the RND.
However, RDR’s random drop action affects the redundant legitimate traffic introduced by
the aggressive retries. This causes RDR’s B1 to be strictly less than the B1 of the AGR.
Therefore, RDR’s net benefit is always less than AGR’s net benefit.

For DNSSec, the relative performance of BAA countermeasures is similar to their per-
formance for the DNS. However, DNSSec, being more susceptible to the BAA, needs
higher values of the countermeasure parameters for achieving the zero attack probability.
So, as seen from Figs. 6.2(a)-6.2(d), generally all countermeasures provide less net ben-
efit for DNSSec than the net benefit they provide for DNS. However, we see that when
zombies > 500, AGR is more beneficial for DNSSec than it is for DNS. AGR works by
resending the legitimate packets at a doubled rate during each retry. The average size of
a legitimate DNSSec packet is 1163.5 bytes as compared to an average legitimate DNS
packet size of 286 bytes. So, AGR increases volume of legitimate traffic for DNSSec far
more rapidly as compared to DNS, which rapidly increases B1, hence increasing the net
benefit.

6.4 Observations
As seen from section 6.3, the cost-benefit analysis not only helps us to identify the best
performing countermeasure, but also lets us develop new countermeasures. Originally, we
modeled the countermeasures described in the literature, i.e., FTR, RND, and AGR. How-
ever, the cost-benefit analysis allowed us to design and analyze interesting combinations
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of these individual countermeasures. This led us to AGF, the countermeasure with the
highest net benefit.

6.5 Efficiency considerations
In the DNS BAA model, the parameter BW appears in a guard and therefore, affects the
state-space size. The state-space size increases with the value of the BW. Other param-
eters such as the number of zombies, df, fpf, rdf, retries, and AF are used in
expressions of rates, so they do not affect model’s state-space size. For DNS the BW = 458,
whereas for DNSSec the BW = 112. So, the size of the DNSSec BAA model is, in fact,
smaller than the size of the DNS BAA model. For DNS BAA model, the state-space con-
sists of 918 states and 2292 transitions. The in-memory size of the model never exceeded
1.73 KB and the model construction time was 0.087 sec. The maximum times to model
check probabilistic reachability property and the reward properties were 1.093 sec and
3.99 sec respectively. For DNSSec BAA model, the state-space contains 226 states and
512 transitions. The maximum in-memory size of the model was 1.39 KB and the model
construction time was 0.027 sec. The time to model check the probabilistic reachability
property and the reward properties never exceeded 0.246 sec and 1.044 sec respectively.
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Chapter 7

Stochastic Game-Based Modeling with
PRISM

7.1 From MDPs to Stochastic Games
As discussed in Chapter 3, a model in PRISM is constructed as the parallel composition
of its modules. A module is described by a collection of commands or actions, each of
which comprises a guard and one or more updates:

[] g ⇒ λ1 : u1 + ... + λn : un ;

The guard g is a predicate over model variables, whereas each update ui describes by as-
signing new values to the model variables, a transition that the module can make. For
DTMCs and MDPs, λi is the probability with which update ui takes place while for
CTMCs, λi represents the transition rate associated with update ui. DTMCs and CTMCs
both allow only stochastic transitions, so in a DTMC or a CTMC model, at any given state
only one command can be active. However, MDPs allow both stochastic and nondeter-
ministic behaviors. Therefore, in an MDP, multiple commands can remain enabled in a
given state and one of those commands is nondeterministically selected.

A stochastic game is played with one or more players. At every state s of the game,
a player has several possible moves or actions to choose from. The game begins with
some initial state. Each player Pi then chooses an action ai from the set of actions Ai(s)
available for player Pi in state s. The player Pi gets a payoff 1 r(s, ai) that depends on
the current state and the chosen action. Once each player Pi selects an action ai ∈ Ai(s),
the next state is chosen according to the probability distributions p(s, ai). The next state,
therefore, depends on the current state s and the probability distributions p(s, ai). This
process is repeated in the new state and the game can continue for a finite or infinite
number of steps. The total payoff is the sum of the payoffs obtained in each step [44].

We know that a PRISM MDP model is composed of a number of modules where each
module consists of one or more commands. At any given state, one or more commands
are enabled, thereby indicating the set of actions available in that state. At each state, one
of the available action is nondeterministically chosen and the model moves into the next
state which is determined by the current state and the probability distribution associated

1Payoff represents desirability of the game’s outcome for each player [52].
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with the selected action. This is accompanied by accumulation of the reward associated
with the selected action. The same procedure is repeated at each state of the model.

So, we observe that in both MDPs and stochastic games, at any given state, the players
involved choose an action. Each player gets some payoff determined by the action chosen.
The model (or the game) then proceeds to the next state, which is determined by the
current state and the probability distribution associated with the chosen action. The same
procedure is repeated in the new state. As we can see, there is a close similarity between an
MDP and a stochastic game. In fact, MDPs are stochastic games with a single player [44].

7.2 PRISM-games
PRISM always had support for model checking MDPs [23]. PRISM-games extended
PRISM’s MDP model checking capabilities to support Stochastic Multi-player Games
(SMG), in order to analyze systems with both probabilistic and competitive behaviors [15].
PRISM-games supports analysis of a subset of stochastic games, viz., the two-player, turn-
based, zero-sum stochastic games. Such games are played between only two players and
at any given stage of the game only one player is allowed to make a move. Moreover, these
games are zero-sum games, meaning that the gain of one player is exactly balanced by the
loss of the other player [63]. Turn-based games can be used to model situations where
multiple components execute under the control of a central scheduler and each compo-
nent nondeterministically chooses an action. Zero-sum games typically arise in situations
where two players are competing for a resource such as bandwidth. So, one player’s gain
is other player’s loss and the total of all gains and losses equals zero.

PRISM-games supports rPATL, an extension of the Probabilistic Alternating-time Tem-
poral Logic. rPATL can be used to specify quantitative properties for SMGs. Using rPATL,
we can write properties, which for a coalition of players, can identify a strategy such that
either an expected probability of an event or an expected value of the accumulated reward
is maximized or minimized.

Since PRISM-games is a fairly new tool (released in 2012), only a few case studies
featuring it are available. Four case studies featuring PRISM-games are available:

• Microgrid Demand-Side Management (MDSM) [15]

• Collective Decision Making for Sensor Networks (CDMSN) [15]

• Futures Market Investor (FMI) [42]

• Team Formation Protocol (TFP) [17]

In the MDSM case study, PRISM-games was used to design a protocol that would
incentivize households participating in a microgrid to adhere to the policy of fair usage
while submitting electrical loads to the central distribution manager. Before submitting a
load, each household checks if the cost is within an agreed limit. If yes, then the household
executes a job, else it starts the job with a pre-negotiated probability. This policy reduces
the peak demand and the total cost of energy as long as all households adhere to this policy.
However, it is always possible for an unscrupulous household to deviate from this policy
and execute a load even if its cost exceeds the agreed limit. The original MDSM protocol
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did not have any provision for punishing the offender, however, the PRISM-games model
of the MDSM helped to devise a strategy that would deter a household from deviating from
the MDSM protocol. By using PRISM-games, it was found that the distribution manager
can punish a deviant household by canceling one job per time step if the cost exceeds the
limit. Because of this, a household that constantly abuses the system can find its jobs being
canceled, which would force it to adhere to the MDSM protocol.

In the CDMSN case study, PRISM-games was used to discover the optimal size for
a coalition of sensors to ensure that the sensor network can quickly recover from failure
of one or more sensors, thus, improving its robustness. The optimal coalition size also
minimizes the time taken to establish consensus among the sensors to decide upon a target
to which the information is to be transmitted. The FMI case study analyzes the futures
market scenario where the investor tries to maximize his return against the futures market
which in turn tries to minimize the investor’s return. In the TFP case study, PRISM-games
was used to find the optimal size for the coalition of agents which cooperate to achieve a
goal irrespective of any strategies employed by the agents hostile to them.

7.2.1 Structure of a PRISM SMG
A PRISM SMG model consists of i modules, M1, M2, . . . , Mi. A module is used to group
together related commands. E.g., in our model, the defender module consists of commands
that enable several BAA countermeasures. We can define players P1, P2, . . . , Pj , such that
each player comprises of one or more modules. A module can be part of multiple players
as long as we ensure that each command in a module is assigned to exactly one player.
E.g., if a module M consists of commands C1, C2, C3, and C4, then commands C1 and
C2 could be part of player P1 and commands C3 and C4 could be part of player P2. The
player ...endplayer construct is used to signify a player and all commands under
its control, e.g., we can define player P1 as,

player P1
C1, C2

endplayer

A PRISM SMG model can, thus, contain multiple players. However, PRISM-games
supports only two-player games. To satisfy the two-player constraint while model check-
ing a property, we are required to divide all players in a SMG into two groups or coalitions
with each group representing one player. These two groups of players act as adversaries
of each other. E.g., the coalition of players P1 and P2 is specified as << P1, P2 >>. All
remaining players form the other coalition.

7.2.2 Cumulative rewards in PRISM-games rPATL and optimal strate-
gies

PRISM allows us to specify and analyze properties based on costs and rewards, which help
us to evaluate interesting quantitative properties about a model’s behavior. E.g., reward-
based properties can be used to compute properties such as “expected time to reach a
desired state” or “expected power consumption. In a game-based model, we can use
reward-based properties to define the players’ payoffs. So, it is important to understand
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how PRISM evaluates the reward-based properties. For simplicity, we explain evaluation
of reward-based properties for the DTMCs. Consider a DTMC D = (S, S, P, L), where
S is a finite set of states, S ∈ S is the initial state, P : S × S → [0, 1] is the transition
probability matrix such that

∑
s′∈S P (s, s′) = 1 for all s ∈ S, and L : S → 2AP is a la-

beling function which assigns to each state s ∈ S the set L(s) of atomic propositions that
are valid in the state. PRISM supports two kinds of rewards: state rewards (ρ : S → R≥0)
and transition rewards (ι : S × S → R≥0). PRISM’s reward-based properties allow us to
compute the expected accumulated values of a reward until a target set T ⊆ S is reached.
ExpReach(s, T ), the expected reward accumulated starting from state s until the target
states T ⊆ S are reached, is defined using following linear equation system [38]:

ExpReach(s, T ) = (7.1)
0 if s ∈ T
∞ if ProbReach(s, T ) ≤ 1

ρ(s) +
∑

s′∈S P (s, s′) · (ι(s, s′) + ExpReach(s′, T )) otherwise

ProbReach(s, T ) is the probability that a path starting in state s would reach a state in the
target set T ⊆ S. It is defined as following linear equation system [8]:

ProbReach(s, T ) = (7.2)
1 if s ∈ T
0 if T is not reachable from s∑

s′∈S P (s, s′) · ProbReach(s′, T ) otherwise

From equation (7.1), we see that if we use only the state rewards and if while evaluating
ExpReach(s, T ) the cycles in the state transition graph cause states s′ to be repeatedly
visited, then ExpReach(s, T ) would start to stabilize.

The rPATL extends reward-based property evaluation approach from equation (7.1)
to SMGs that contain n players, P1, P2, . . . , Pn. Let us consider a reward-based rPATL
property in PRISM-games:

<< P1, P2, . . . , Pk >> Rmax/min{“rewardDef”} =? [F φ] (7.3)

This property asks the PRISM-games to generate an optimal strategy for the coalition
C1 of players containing players P1, P2, . . . , Pk where (k < n). Such optimal strategy
either maximizes or minimizes the expected accumulated value of reward “rewardDef”
until some state from the target set of states that satisfy the state formula φ is eventually
reached. Since the game is also a zero-sum game, PRISM-games simultaneously generates
the optimal strategy for the adversarial coalition C2 of players Pk+1, Pk+2, . . . , Pn, such
that it reduces reward obtained by coalition C1. PRISM-games returns both the generated
optimal strategy and the expected accumulated reward. In case the target set of states is
not reached, the accumulated reward value is set to infinity.

Optimal strategies generated by PRISM-games and Nash equilibrium: Typically,
the goal of a game-theoretic analysis is to determine if there exists a Nash equilibrium for
a game. A Nash equilibrium represents a set of strategies for all players in a game, where
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no player can hope to better its payoff by unilaterally switching to another strategy [62].
In game-based models of security attacks, Nash equilibria represent optimal strategies for
defender and attacker, by virtue of which, the defender can minimize the impact of the
attack and the attacker can cause the maximum damage. Therefore, it is interesting to
study the relationship between optimal strategies generated by PRISM-games and Nash
equilibrium. Let us assume a two-player zero-sum game with players P1 and P2. Let
us consider a property prop1: << P1 >> Rmax{“reward1”} =? [F φ1]. This causes the
PRISM-games to generate a strategy for P1, using which P1 can guarantee that the expected
value of reward “reward1” accumulated before reaching states satisfying φ1 is maximized.
This means that P1 has identified a strategy that would allow it to maximize the expected
accumulated value of reward “reward1” in face of the maximum opposition from P2. So,
P1 has no incentive to switch to any other strategy, since it is bound to reduce the expected
accumulated value of reward “reward1” (or the payoff). Similarly, in this process, P2 has
identified a strategy that would minimize P1’s payoff. Since the game is a zero-sum game,
any reduction in P1’s payoff is a gain for P2. So, P2 too has maximized its own payoff and
it has no incentive to switch to any other strategy. Therefore, we can infer that an optimal
strategy generated by PRISM-games is indeed a Nash equilibrium.

Analyzing the nature of an optimal countermeasure strategy: Once PRISM-
games generates an optimal strategy, we can explore it interactively using the PRISM
simulator [16]. We enter the desired model parameter values and explore the model by
executing one move at a time. At every state explored, the simulator highlights the move
suggested by the optimal strategy. By executing these moves, we can continue our explo-
ration of the model, and at each state we can record the optimal action chosen.
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Chapter 8

Game-Based Model of the DNS BAA

8.1 Two-player, turn-based stochastic game for the DNS BAA
The DNS BAA game is played between two players, the attacker and the defender. The
attacker tries to flood victim’s bandwidth with unwanted amplified DNS responses while
the defender tries to mitigate the attack by employing various countermeasures. Fig. 8.1
shows the schematic diagram of our modeling approach for the DNS BAA. Fig. 8.1 shows
various entities involved in the DNS BAA, such as the attacker, the legitimate clients, the
defender, and the victim DNS resolver. Through the remainder of this section, we would
discuss how these entities are modeled in our two-player, turn-based stochastic game for
the DNS BAA. (Note: Appendix C contains the fully documented model code)

8.1.1 Modules and players
The stochastic game for the DNS BAA developed using the PRISM-games model checker
consists of two modules corresponding to the two players. We also have a third module
to represent the victim server. So, the stochastic model for the DNS BAA consists of
following three modules. These modules have also been shown in Fig. 8.1.

• Attacker (AS): Nondeterministically chooses the number of zombies to launch the
BAA. Attacker can use up to 100 zombies to launch the BAA. Attacker can disable
the attack by setting the number of zombies to zero. Moreover, we assume that the
attacker can attack continuously for at most MAX SUCC ATTACKS seconds. Then,
the attacker must wait for ATTACKER LATENCY seconds before it can attack again.

It should be noted that as seen from Fig. 2.3, the victim receives amplified bogus
DNS responses from the open DNS resolvers that resolve the spoofed queries gen-
erated by zombies. However, because the open DNS resolvers simply reflect the
bogus DNS responses to the victim, while modeling the attack it is reasonable to
assume that the bogus traffic originates directly from the zombies. So, we exclude
open DNS resolvers from our model. Moreover, since each zombie sends bogus
DNS responses at a fixed rate, we could assume that the bogus traffic originates
from the attacker (Step 1.1 from Fig. 8.1). The rate at which the bogus traffic arrives
can, therefore, be computed by multiplying the rate at which each zombie sends
bogus DNS responses to the victim with the number of zombies.
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Figure 8.1: Modules and players in DNS BAA stochastic game

• Defender (DFD): Nondeterministically determines whether to disable countermea-
sures (Nofix) or apply one of the five BAA countermeasures. If defender opts to en-
able the countermeasures, then it may nondeterministically select FTR, AGR, RND,
RDR, or AGF (Step 2 from Fig. 8.1).

• Client Server (CS): CS is the victim server. It is a DNS resolver. CS has a finite
network bandwidth, which is shared by the legitimate DNS traffic (Step 1.2 from
Fig. 8.1) and the BAA traffic (Step 1.1 from Fig. 8.1). CS’s bandwidth is BW packets
per second. If the packets arrive at a rate r, which is higher than the available
bandwidth, then the excess packets, BW-r are dropped per second (Step 3.2 from
Fig. 8.1).

Our model does consist of three players, however, PRISM-games support only two-
player games. So, we divide these three players into two groups or coalitions. The first
coalition contains the AS and the second coalition contains the DFD and the CS. Each
group represents one player and the two groups act as adversaries of each other.

Model constants and parameters: The model constants and parameters as well as
the countermeasure parameters are same as those described in section 6.1. However, we
introduce a new parameter, called maxTime that represents the maximum time for which
the model is allowed to execute. Note that we were not required to model time explicitly
in the CTMC model presented in chapter 6, as CTMCs model the time implicitly. Also,
in the DNS BAA SMG, we no longer model bandwidth using a queue. Instead, we model
the bandwidth simply as a rate. This decision was necessitated by a need to limit the DNS
BAA SMG’s state-space size. Modeling the time explicitly increases the state-space. If
the bandwidth is modeled using a queue, then the state-space size becomes too large for
the model checker to handle. Moreover, to study the effects of the BAA it is sufficient to
ensure that if the packet arrival rate is less than bandwidth, then all packets are received,
and that if the packet arrival rate is greater than bandwidth, then the excess packets are
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dropped. If CS’s serve rate is sufficiently high, then all packets received per second
would be processed instantaneously. So, we can remove the parameter serve rate as
well.

8.1.2 Sequence of moves
PRISM-games requires that the players in an SMG play the game in a turn-based manner.
So, we need to ensure that in any given state of the game, only one player is able to make
a move. This is achieved by introducing a scheduling variable named sched. If sched
= 0, then CS is enabled, if sched = 1, then DFD is enabled, and if sched = 2, then AS
is enabled. This leads to following sequence of moves:

1. Initially, AS is enabled (sched = 2). Time is set to 0

2. AS nondeterministically chooses the number of zombies

3. AS enables DFD (sched = 1)

4. DFD nondeterministically chooses one of the five countermeasures or decides to
disable the countermeasures

5. DFD enables CS (sched = 0)

6. CS receives legitimate and bogus packets with probabilities that reflect the selected
countermeasure, the arrival rates of the legitimate and bogus DNS packets, and the
CS’s bandwidth.

7. CS enables AS (sched = 2) and increments time by 1

8. Goto step 2

This sequence of moves is repeated for the desired duration of the experiment.

8.1.3 DNS BAA SMG
Fig. 8.2 shows the SMG for the DNS BAA. In an SMG, each model state is controlled
by only one player. The player Pi controlling a state Sj is represented as Pi : Sj , e.g.,
AS : Sinit means that only AS’s actions are enabled in Sinit state. At every state, the
controlling player nondeterministically chooses one of the available actions. In Fig. 8.2,
the label on each transition denotes the model action a, along with its probability p, as
(a, p).

As seen from subsection 8.1.1, the DNS BAA SMG has three players: the attacker
(AS), the defender (DFD), and the victim or the client server (CS). From Fig. 8.2, we see
that AS and DFD have nondeterministic actions. In the state AS : Sinit, the AS non-
deterministically chooses the number of zombies, in the state DFD : S2, the DFD
nondeterministically decides to turn on or to turn off the countermeasures, and in the
state DFD : Scm on

3 , the DFD nondeterministically chooses a countermeasure from FTR,
RND, AGR, RDR, or AGF. However, the CS’s actions are probabilistic, as it receives le-
gitimate and bogus packets with probabilities that reflect the selected countermeasure, the
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Figure 8.2: The DNS BAA SMG: Player Pi controlling a state Sj is represented as Pi : Sj . The
label on each transition denotes the model action a, along with its probability p, as (a, p).
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arrival rates of the legitimate and bogus DNS packets, and its bandwidth. We observe
that in the state CS : SFTR

5 , the CS executes action Receive Packet and with probability
pcmb receive, a bogus packet is received and the next state is CS : SFTR

b received, with probability
pcml receive, a legitimate packet is received and the next state is CS : SFTR

l received, with prob-
ability pcmb drop, a bogus packet is dropped and the next state is CS : SFTR

b dropped, and with
probability pcml drop, a legitimate packet is dropped and the next state is CS : SFTR

l dropped, such
that

(
pcmb receive + pcml receive + pcmb drop + pcml drop

)
= 1. We now derive expressions for the (i)

probability pcmb receive with which the CS receives a bogus packet, (ii) probability pcml receive
with which the CS receives a legitimate packet, (iii) probability pcmb drop with which the CS
drops a bogus packet, and (iv) probability pcml drop with which the CS drops a legitimate
packet.

As observed from Fig. 8.1, the DFD sits at the periphery of the CS’s network. All
traffic first passes through the DFD before reaching the CS. So, there are two places where
a packet can be dropped:

1. At the DFD, if DFD uses FTR, RND, RDR, or AGF

2. At the CS, if CS’s bandwidth is full

First, we compute the rate Rcm
b in at which bogus packets pass through the DFD, the

rate Rcm
l in at which legitimate packets pass through the DFD, the rate Rcm

b out at which bogus
packets are dropped at the DFD, and the rateRcm

l out at which legitimate packets are dropped
at the DFD as follows:

Rcm
b in =


Rb if cm = Nofix , AGR

Rb · (1− df) if cm = FTR,AGF

Rb · (1− rdf) if cm = RND,RDR

(8.1)

Rcm
l in =



Rl if cm = Nofix

Rl · (1− fpf) if cm = FTR

Rl · (1− rdf) if cm = RND

Rl · 2retries if cm = AGR

Rl · 2retries · (1− rdf) if cm = RDR

Rl · 2retries · (1− fpf) if cm = AGF

(8.2)

Rcm
b out =


0 if cm = Nofix , AGR

Rb · df if cm = FTR,AGF

Rb · rdf if cm = RND,RDR

(8.3)

Rcm
l out =



0 if cm = Nofix , AGR

Rl · fpf if cm = FTR

Rl · rdf if cm = RND

Rl · 2retries · rdf if cm = RDR

Rl · 2retries · fpf if cm = AGF

(8.4)

45



Next, we compute the probability pcmb in with which a bogus packet passes through
the DFD and reaches the CS, the probability pcml in with which a legitimate packet passes
through the DFD and reaches the CS, the probability pcmb out with which a bogus packet is
dropped at the DFD, and the probability pcml out with which a legitimate packet is dropped
at the DFD as follows:

pcmb in =

{
Rcm

b in

Rb+Rl
if cm = Nofix , FTR,RND

Rcm
b in

Rb+Rl·2retries
if cm = AGR,RDR,AGF

(8.5)

pcml in =

{
Rcm

l in

Rb+Rl
if cm = Nofix , FTR,RND

Rcm
l in

Rb+Rl·2retries
if cm = AGR,RDR,AGF

(8.6)

pcmb out =


0 if cm = Nofix , AGR
Rcm

b out

Rb+Rl
if cm = FTR,RND

Rcm
b out

Rb+Rl·2retries
if cm = RDR,AGF

(8.7)

pcml out =


0 if cm = Nofix , AGR
Rcm

l out

Rb+Rl
if cm = FTR,RND

Rcm
l out

Rb+Rl·2retries
if cm = RDR,AGF

(8.8)

Once a packet passes through the DFD, CS would receive it subject to CS’s bandwidth
availability. So, pcmb receive can be computed as the probability that bogus packet arrived
at CS AND CS received it. The pcmb drop can be computed as (the probability that a bogus
packet is dropped by DFD) OR (the probability that bogus packet arrives at CS AND is
dropped by CS because of bandwidth congestion). Similarly, we can compute pcml receive
and pcml drop.

pcmb receive =

{
pcmb in ·

(
BW

Rcm
b in+Rcm

l in

)
if BW < Rcm

b in +Rcm
l in

pcmb in otherwise
(8.9)

pcml receive =

{
pcml in ·

(
BW

Rcm
b in+Rcm

l in

)
if BW < Rcm

b in +Rcm
l in

pcml in otherwise
(8.10)

pcmb drop =

{
pcmb out + pcmb in ·

(
1− BW

Rcm
b in+Rcm

l in

)
if BW < Rcm

b in +Rcm
l in

pcmb out otherwise
(8.11)

pcml drop =

{
pcml out + pcml in ·

(
1− BW

Rcm
b in+Rcm

l in

)
if BW < Rcm

b in +Rcm
l in

pcml out otherwise
(8.12)
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8.1.4 Attacker’s and defender’s payoffs and optimal attack and de-
fense strategies

As described in subsection 8.1.1, to ensure that we have a two-player game, we divide the
three players into two groups or coalitions: first group contains only the AS (attacker) and
second group contains the DFD (defender) and the CS (victim). The DNS BAA game is
played between these two coalitions, which are adversaries of each other.

Payoffs and net benefits: When we performed cost-benefit analysis of DNS cache-
poisoning countermeasures (Chapter 5) and DNS BAA countermeasures (Chapter 6), we
computed net benefits for each countermeasure. Then, we chose the countermeasure that
offered the highest net benefit. The net benefit, therefore, indicates the desirability of a
countermeasure. Similarly, for a given player, the payoff indicates the desirability of a
game’s outcome for that player. In a game, a player tries to generate a strategy that max-
imizes its payoff. So, we see that both net benefit and payoff serve a similar purpose.
They both signify desirability of an activity, such as the choice of countermeasures. So,
we would like to define the attacker and defender payoffs in a way similar to the net ben-
efits defined for BAA countermeasures. However, certain limitations of PRISM rewards
prevent us from defining such payoffs.

From section 6.2 and section 6.3, we see that we first computed individual benefits and
costs for the entire duration of the experiment and then we subtracted the total cost from
the total benefit to obtain the net benefit. However, PRISM rewards allow us to assign
rewards to model’s states or transitions. A typical PRISM reward definition thus looks
like:

rewards "rewardDef"
<condition> : <rewardValue>;
endrewards

where a numeric reward of <rewardValue> is assigned to a state that is identified by
the condition <condition>. By writing a reward-based property

<<P1>> Rmax{"rewardDef"}=? [F maxTime]

we can ask PRISM-games to generate a strategy for player P1 such that it maximizes
expected accumulated values of reward rewardDef until time reaches maxTime. Let
us assume that we define a payoff using the net benefit definition from section 6.2. We
could then define a reward structure as follows:

rewards "NetBenefit"
<condition_1> : B1;
<condition_2> : B2;
<condition_3> : -C1;
endrewards

If we ask PRISM-games to identify a strategy that maximizes this payoff, then PRISM-
games identifies a strategy that maximizes nbf 1+nbf 2+. . .+nbf maxTime, where nbf t = net
benefit computed at time t, i.e., the instantaneous value of the net benefit. Actually, the net
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benefit should have been computed only at the end of the experiment. This is possible only
if we use counters to explicitly maintain the count of the legitimate packets received over
the duration of the experiment, the count of legitimate packets dropped over the duration
of the experiment, and so on. Keeping such counters increases the model’s state-space,
which makes this approach infeasible. Therefore, we use simpler payoff definitions that
consider only a single benefit or cost metric.

Attacker’s payoffs: We define two payoff functions for the attacker, because we want
to study how a payoff definitions affect the generated optimal strategies.

• Payoff 1: Maximize the difference between legitimate packets dropped per zombie
and legitimate packets received per zombie.

rewards "AttackerPayoff_1"
sched=0 & legitPacketDropped & zombies>0 : 1/zombies;
sched=0 & legitPacketReceived & zombies>0 : -1/zombies;
sched=0 & legitPacketDropped & zombies=0 : 1;
sched=0 & legitPacketReceived & zombies=0 : -1;
endrewards

If zombies > 0, then we assign a positive unit reward per zombie, when a le-
gitimate packet is dropped and assign a negative unit reward per zombie, when a
legitimate packet is received. When zombies = 0, i.e., when the attack is paused,
we assign a positive unit reward if a legitimate packet is dropped and assign a nega-
tive unit reward if a legitimate packet is received.

• Payoff 2: Maximize the difference between bogus packets received and legitimate
packets received

rewards "AttackerPayoff_2"
sched = 0 & legitPacketReceived : -1;
sched = 0 & bogusPacketReceived : 1;
endrewards

We can see that the attacker payoff 2 is related to benefit B1 defined for the BAA
CTMC model (section 6.2). The attacker wants to maximize the difference between
bogus packets received and legitimate packets received. So, the defender tries to
minimize such difference. If the accumulated reward value is positive, then it means
that the number of bogus packets received is twice the number of the legitimate
packets received, i.e., benefit B1(percentage of legitimate packets processed among
total packets processed) is less than 50.

Defender’s payoffs: Since our game is a zero-sum game, the defender’s payoff is ex-
actly opposite to the attacker’s payoff. The defender always chooses a move that would be
most disadvantageous to the attacker. So, we do not need to explicitly define the defender’s
payoffs.

Generating optimal attack and defense strategies: To generate the optimal attack
and defense strategies, we define rPATL reward-based properties for the coalition of play-
ers containing the AS. These reward-based properties are of the form:
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time
rdf=0.99, retries=6 rdf=0.99, retries=2 rdf=0.9, retries=6 rdf=0.9, retries=2
zombies cm zombies cm zombies cm zombies cm

1 75 FTR 75 FTR 75 FTR 75 FTR
2 75 FTR 75 FTR 75 FTR 75 FTR
3 0 Nofix 0 AGR 0 Nofix 0 AGR
4 75 FTR 75 FTR 75 FTR 75 FTR
5 75 FTR 75 FTR 75 FTR 75 FTR
6 75 FTR 75 FTR 75 FTR 75 FTR
7 75 FTR 75 FTR 75 FTR 75 FTR
8 0 Nofix 0 AGR 0 Nofix 0 AGR
9 75 FTR 75 FTR 75 FTR 75 FTR
10 75 FTR 75 FTR 75 FTR 75 FTR
11 75 FTR 75 FTR 75 FTR 75 FTR
12 75 FTR 75 FTR 75 FTR 75 FTR
13 0 Nofix 0 AGR 0 Nofix 0 AGR
14 75 FTR 75 FTR 75 FTR 75 FTR
15 75 FTR 75 FTR 75 FTR 75 FTR
16 75 FTR 75 FTR 75 FTR 75 FTR
17 75 FTR 75 FTR 75 FTR 75 FTR
18 0 Nofix 0 AGR 0 Nofix 0 AGR
19 75 FTR 75 FTR 75 FTR 75 FTR
20 75 FTR 75 FTR 75 FTR 75 FTR

Table 8.1: Result set 1 — Optimal attack and defense strategies generated for attacker Payoff 1

<<AS>> R{"AttackerPayoff_n"}max=? [ F time=maxTime ]

Upon evaluation of such properties, PRISM-games returns the expected accumulated re-
ward value and the optimal strategies for the two coalitions of players, viz. the coalition
containing the AS and the coalition containing the DFD and the CS.

8.2 Experimental results
Using different values of rdf and retries, we generate optimal attack and defense
strategies for the both attacker payoffs, Payoff1 and Payoff2. We set Rl to 100 packets per
second, AF to 15.31, Rb to zombies · 10 · AF packets per second, BW to 458 packets
per second, MAX SUCC ATTACKS to 5 seconds, ATTACKER LATENCY to 2 seconds, df
to 0.9, and fpf to 0.1. We set rdf to 0.99 and 0.9, so that we cover the cases where
rdf > df and rdf ≤ df. We set retries to 6 (high) and 2 (low). Finally, we set the
maxTime to the maximum value that is permitted by the constraints imposed by model’s
state-space size. In order to prevent the state-space explosion, we set maxTime to 20
seconds.

Result Set 1 — Optimal attack and defense strategies for Payoff 1: Table 8.1
presents the optimal attack and defense strategies generated for the attacker Payoff 1. From
Table 8.1, we observe that the attacker never attacks for five continuous seconds, so as to
escape the latency. We observe that though the attacker can use up to 100 zombies, it uses
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time
rdf=0.99, retries=6 rdf=0.99, retries=2 rdf=0.9, retries=6 rdf=0.9, retries=2
zombies cm zombies cm zombies cm zombies cm

1 100 RDR 100 RDR 100 AGR 25 FTR
2 100 RDR 100 RDR 100 AGR 25 FTR
3 100 RDR 100 AGF 0 Nofix 0 AGR
4 100 RDR 0 AGR 100 AGR 25 FTR
5 0 Nofix 100 RDR 100 AGR 25 FTR
6 100 RDR 100 RDR 100 AGR 25 FTR
7 100 RDR 100 RDR 100 AGR 25 FTR
8 100 RDR 0 AGR 0 Nofix 0 AGR
9 100 RDR 100 RDR 100 AGR 25 FTR
10 0 Nofix 100 RDR 100 AGR 25 FTR
11 100 RDR 100 RDR 100 AGR 25 FTR
12 100 RDR 100 RDR 100 AGR 25 FTR
13 100 RDR 0 AGR 0 Nofix 0 AGR
14 100 RDR 100 RDR 100 AGR 25 FTR
15 0 Nofix 100 RDR 100 AGR 25 FTR
16 100 RDR 100 RDR 100 AGR 25 FTR
17 100 RDR 100 RDR 100 AGR 25 FTR
18 100 RDR 0 AGR 0 Nofix 0 AGR
19 0 Nofix 100 RDR 100 AGR 25 FTR
20 100 RDR 100 RDR 100 AGR 25 FTR

Table 8.2: Result set 2 — Optimal attack and defense strategies generated for attacker Payoff 2
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at most 75 zombies. To understand why this happens, we need to revisit the definition of
the attacker Payoff 1. We see that the attacker Payoff 1 assigns unit reward per zombie
when a legitimate packet is dropped and a unit negative reward per zombie when a legit-
imate packet is received. This causes the attacker to use just enough number of zombies
that are required to maximize its payoff, since using more zombies than required may, in
fact, reduce the payoff. So, the attacker uses 75 zombies as opposed to 100 zombies. We
observe that when the attacker uses high number of zombies, e.g., 75, then the defender
uses FTR, as FTR drops high percentage of bogus packets with minimum false-positives.
But, when the attacker pauses the attack, then the defender either turns off the countermea-
sures or uses AGR, because both Nofix and AGR ensure that as many legitimate packets
are received without any packets getting dropped as false-positives. We see that when
high number of retries, e.g., retries = 6, are used, then the defender prefers Nofix
over AGR, but when the number of retries are low, then the defender chooses AGR over
Nofix. This happens because, when retries = 2, the total rate at which the legitimate
packets flow = Rl · 22 = 400 packets per second. This rate is higher than the base value
of Rl (100 packets per second), but it is still lower than the victim’s bandwidth (BW) of
458 packets per second. So, the victim is able to accept all 400 packets sent per second,
which is certainly better than accepting merely 100 packets per second, as accepting 400
packets per second rapidly increases the proportion of legitimate traffic received among
total legitimate packets sent. In fact, AGR is preferred over Nofix as long as Rl ·2retries ≤
BW. However, when retries = 6, the total rate at which the legitimate packets flow =
Rl · 26 = 6400 packets per second, which is higher than the victim’s bandwidth. So,
if in this case, the victim employs AGR, then more legitimate packets are going to be
dropped because of the bandwidth congestion. This can be avoided by using Nofix, as the
bandwidth is sufficient to accept all 100 packets sent per second.

We also observe that none of the optimal strategies generated used RND or RDR. This
happens, because when RND is used, the values of probability pRND

l receive that a legitimate
packet is received are always less than the corresponding probability values observed for
FTR and AGR. Moreover, pRND

l receive = pNofix
l receive, because RND drops rdf of legitimate and

bogus traffic. So, selecting RND or RDR does not help the victim to increase the fraction
of legitimate packets received. The victim, therefore, chooses either FTR or Nofix.

Result Set 2 — Optimal attack and defense strategies for Payoff 2: Table 8.2
presents the optimal attack and defense strategies generated for the attacker Payoff 2. From
Table 8.2, we again see that the attacker never attacks for five continuous seconds. We
also see that the defender does use RDR. RND’s primary responsibility is to rate limit the
incoming traffic, and while doing so drop as many bogus packets as possible. When we use
the attacker Payoff2, then the attacker tries to ensure that more bogus packets are received
than the legitimate packets, so it prefers to use as many zombies as possible, which is 100.
The defender, on the other hand, tries to drop as many bogus packets as possible. So, when
rdf > df, then the defender uses RDR (RND + AGR), since RDR reduces the number
of bogus packets received with a greater probability than FTR. If rdf ≤ df, then victim
uses AGR or FTR, because now AGR and FTR drop many bogus packets and allow a high
number of legitimate packets to be received. We also see that when the attacker pauses the
attack, then the defender uses FTR if the number of retries are high, else it uses AGR.
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Chapter 9

Related Work

Several works present formal analysis of Denial of Service (DoS), however, none of them
analyze the DNS BAA. Also, to the best of our knowledge, we are the first to formally
model DNS cache poisoning and perform cost-benefit analysis of its countermeasures.

A noteworthy alternative to our work is [53], which uses a game-theoretic framework
to study bandwidth attacks. The attack is modeled as a traffic injection game between
the attacker and the defender. Defender’s effectiveness is analyzed from the payoffs of
different strategies used in the traffic injection game, however, only one type of defense is
considered, viz., the filtering.

A DoS-resistant 3-way handshaking in the Transmission Control Protocol is modeled
in [3] using the probabilistic rewriting logic. Instead of using a formal stochastic model
like a CTMC, a timed probabilistic model is generated from the developed algebraic spec-
ification, which is then analyzed by statistical model checking. This simulation-based
analysis cannot be as accurate as the probabilistic model checking approach. Statistical
model checking is also used in [6] for analyzing the ASV protocol as a DoS countermea-
sure.

A Discrete Time Markov Chain model is presented in [10], quantifying DoS threats
against an authentication protocol. In [43], the authors present a cost-based analysis to
compare the cost imposed on the attacker against the cost for defending honest partici-
pants in a protocol under DoS attack. This approach is instantiated into a probabilistic
model checking framework. CTMC based analysis with reward properties is proposed
in [26] to analyze a DDoS attack against the Mobile IP and Seamless IP diversity based
Generalized Mobility Architecture. Both [10, 26] provide no analysis and comparison of
related countermeasures.

An amplification attack is modeled in [49] using states where some measure compar-
isons hold true. This measure checking is implemented with rewriting logic, an executable
specification that is model checked in the Maude tool. This approach tries to automati-
cally look up for known attacks and verify that a patch for an attack achieves its aim, but
no comparison between alternative solutions is supported.

In [28], the authors propose the Highly-Available Redundantly-Distributed DNS or
the HARD-DNS, a distributed network of DNS resolvers to provide a robust protection
against DNS cache poisoning and DDoS. HARD-DNS uses quorum techniques to provide
reliable answers in presence of cache poisoning and IP-cloaking to protect the connection
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between resolvers and HARD-DNS. Authors evaluate performance of HARD-DNS by de-
ploying it on the PlanetLab [11], an open-source platform for testing large-scale services.
Such simulation-based performance valuation usually costs considerably more than our
formal model-based approach. Also, formal model-based results are more reliable than
any simulation-based results.

Game-theoretic approaches have been used in past to analyze the DoS and the DDoS
attacks. These works model DoS or the DDoS as a two-player games played between an
attacker and a defender. The defenders use filtering and rate limiting as countermeasures
against the attack. Majority of these works [53, 50, 67, 12, 2] analyze effectiveness of
individual countermeasures, however, [66] studies multi-layer protection where filtering,
rate-limiting, and bandwidth capacity extension are used in conjunction to combat DDoS.
The payoff functions are defined for attacker and defender, which reflect the benefits ob-
tained and the costs incurred. The typical metrics used as benefits and costs are: the
bandwidth share utilized by the legitimate traffic, the number of legitimate packets incor-
rectly dropped, the number of bogus packets allowed to pass through the filter, and the
costs associated with adding more bandwidth or using more number of zombies. The pay-
offs are defined as functions of: various thresholds and drop rates (DR) used by filtering
mechanism, rate at which legitimate packets arrive (LR), number of zombies used by the
attacker (Z), rate at which each zombie sends bogus traffic (BR), and the manner in which
the attack traffic is generated (ATG), i.e., whether the attack traffic is sent continuously in
bursts. Once payoff functions are defined, they are used to determine the Nash equilib-
ria strategies for attacker and defender. Nash equilibria are computed using various game
solvers and the results are verified by simulating the attack using network simulation tools
such as NS2. The Nash equilibria return the values of DR that would maximize defender’s
payoff and values of values of Z, BR, and ATG that would maximize attacker’s payoff.
Neither defender nor attacker has any incentive to deviate from the Nash equilibria.

Some similarities do exist between our work and the earlier works, especially in the
choice of the model parameters and the types of countermeasures. However, our work is
different in several aspects. Along with FTR and RND, we analyze AGR too. We also
analyze RDR and AGF, the composite countermeasures formed by combining FTR, RND,
and AGR. Our two-player model of the DNS BAA allows generation of more interesting
optimal attack and defense strategies where the number of zombies chosen to launch the
attack and the countermeasures chosen to prevent the attack are varied over the duration of
the experiment, instead of using a fixed number of zombies and a fixed countermeasure.
We design the two-player game for the DNS BAA using PRISM-games, which has the
ability to generate optimal strategies. Therefore, we do not need to use a separate game
solver to find the optimal strategies. Also, reward-based properties in PRISM offer a con-
venient way to define payoff functions. So, we can easily define multiple payoff functions
and generate optimal strategies for them.
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Chapter 10

Conclusions

We used the probabilistic model checker PRISM to formally model and analyze the DNS
cache poisoning and the bandwidth amplification attacks, both of which pose a major
threat to the reliability and availability of DNS. We also modeled various countermeasures
designed to prevent these attacks from occurring, and used the resulting models to perform
a countermeasure cost-benefit analysis.

Our cost-benefit analysis of the two cache poisoning countermeasures revealed that
the superior protection offered by RDQ over PRAND comes at the cost of increased band-
width usage. RDQ and PRAND are short-term fixes for the DNS cache poisoning problem,
while the cryptography-based DNSSec offers a long-term solution. We therefore investi-
gated if DNSSec is vulnerable against other DNS attacks, notably BAA. We formally
proved that DNSSec is, in fact, more vulnerable than DNS to a BAA.

Our cost-benefit analysis of the BAA countermeasures showed a significant variation
in the performance of five BAA countermeasures, with AGF offering the highest net ben-
efit. Moreover, model-checking times did not exceed four seconds for all reward and
probabilistic reachability properties considered, for both cache poisoning and BAA. In the
process, we developed a general cost-benefit analysis framework for probabilistic systems
based on probabilistic model checking. This framework helped us to think about new and
efficient ways to counter the threat posed to DNS by BAA, as seen in the development
of two superior BAA countermeasures; viz., RDR and AGF, each of which is formed by
combining two basic countermeasures.

We successfully modeled the DNS BAA as a two-player, turn-based, zero-sum stochas-
tic game using PRISM-games, where the attacker tries to flood the victim’s bandwidth
with large-sized unwanted responses and the defender tries to mitigate the attack by ap-
plying a countermeasure. Our stochastic model of the DNS BAA allowed us to generate
the optimal attack and defense strategies where the attacker tries to either maximize the
difference between legitimate packets dropped per zombie and legitimate packets received
per zombie or maximize the difference between bogus packets received and legitimate
packets received, while the defender chooses the best possible countermeasures to oppose
the attacker. Our results showed that the generated optimal attack and defense strategies
depend on the countermeasure parameters, the payoff function used, and any scheduled
interruptions that the attacker may have to experience.

We believe that our stochastic game-based model of the DNS BAA can be further
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enhanced by allowing the PRISM-games engine to choose the optimal values of counter-
measure parameters as well. As it can be seen from section 8.2, we generated the optimal
attack and defense strategies by setting rdf to 0.99 and 0.9 and by setting retries to
6 and 2. We could extend our model, so that PRISM-games itself chooses the rdf and
retries values from a given range of values. Such extension would be interesting, as it
would allow the PRISM-games to identify the optimal countermeasure parameter values,
thereby generating more effective defense strategies.

We could also extend the stochastic game-based model of the DNS BAA to generate
the optimal attack and defense strategies for more complex payoff functions. For example,
the attacker may try to maximize the percentage of legitimate packets dropped per zombie.
This payoff function needs to be evaluated over the entire model run. So, it is challenging
to define such payoff functions using PRISM-games rewards, because PRISM-games al-
lows us to assign rewards only to individual states of the model. A possible way to extend
our model to support this payoff function is by maintaining counters in the model to keep
track of the number of legitimate packets received and the number of legitimate packets
dropped. The reward could then be defined as

rewards "AttackerPayoff"
time=maxTime: ((numLegitPacketsReceived)/
(numLegitPacketsReceived + numLegitPacketsDropped))
/zombies

endrewards

However, usage of counters increases the state-space a lot, and therefore, it may be in-
feasible. Also, if the number of zombies change over the course of the model run, then
only the latest value of number of zombies would be used during the reward evaluation,
which would invalidate the reward definition. This can be avoided by using the average
number of zombies utilized over the course of the model run, which would require us to
use another counter variable, thereby increasing the model’s already big state-space.
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Appendix A

PRISM Code for CTMC Model of DNS
Cache Poisoning

Model source code:

ctmc

/ / P o p u l a r i t y r e l a t e s t o t h e l i k e l i h o o d of IP a d d r e s s o f a
/ / r e q u e s t e d u r l t o be cached i n CS’ s cache .
c o n s t d ou b l e p o p u l a r i t y ;

/ / Range of 16− b i t que ry i d s
c o n s t q u e r y i d =65536;

/ / Number o f p o r t i d b i t s
c o n s t p o r t i d b i t s ;

/ / Range of p o r t i d s a s d e t e r m i n e d by p o r t i d b i t s
c o n s t p o r t i d = pow ( 2 , p o r t i d b i t s ) ;

/ / Ra te a t which t h e AS s e n d s bogus r e s p o n s e s t o t h e CS
c o n s t g u e s s ;

/ / Ra te a t which r e q u e s t s from DNS s e r v e r s o t h e r t h a n CS
/ / a r r i v e a t t h e DS
c o n s t o t h e r l e g i t i m a t e r e q u e s t s r a t e ;

/ / Number o f non−a u t h o r i t a t i v e s e r v e r s ( NASs ) i n v o l v e d i n
/ / t h e u r l r e s o l u t i o n .
c o n s t NAS count ;

/ / CM i s a normal d e s k t o p machine t h a t r e q u e s t s a u r l t o be
/ / r e s o l v e d
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module CM

r e q u e s t s e n t : boo l i n i t f a l s e ;
a n s w e r r e c e i v e d : boo l i n i t f a l s e ;

[ c l i e n t i s s u e s u r l r e s o l u t i o n r e q u e s t ] r e q u e s t s e n t = f a l s e
−> ( r e q u e s t s e n t ’= t r u e ) ;

[ f o r w a r d a u t h o r i t a t i v e a n s w e r t o C M ] a n s w e r r e c e i v e d =
f a l s e

−> ( a n s w e r r e c e i v e d ’= t r u e ) ;

endmodule

/ / CS i s t h e v i c t i m of t h e a t t a c k
module CS

/ / Time−to− l i v e t h a t d e t e r m i n e s v a l i d i t y o f a cache e n t r y .
/ / With p r o b a b i l i t y o f p o p u l a r i t y / 1 0 , t h e cache e n t r y i s
/ / v a l i d ( t t l = 1 ) and wi th p r o b a b i l i t y (1− p o p u l a r i t y / 1 0 ) ,
/ / t h e cache−e n t r y has e x p i r e d .
t t l : [ 0 . . 2 ] i n i t 2 ;

q u e r y a u t h o r i t a t i v e s e r v e r : boo l i n i t f a l s e ;
q u e r y n o n a u t h o r i t a t i v e s e r v e r s : boo l i n i t f a l s e ;
queue : boo l i n i t f a l s e ;
n o n a u t h o r i t a t i v e s e r v e r s q u e u e : boo l i n i t f a l s e ;
a u t h o r i t a t i v e s e r v e r q u e u e : boo l i n i t f a l s e ;
q u e r i e s a n s w e r e d : boo l i n i t f a l s e ;
c o r r e c t g u e s s : boo l i n i t f a l s e ;
v a l i d a n s w e r r e c e i v e d : boo l i n i t f a l s e ;

/ / Cache i s p o i s o n e d i f AS c o r r e c t l y g u e s s e s <query id ,
/ / p o r t id> and t h e bogus answer a r r i v e s a t CS b e f o r e
/ / l e g i t i m a t e answer
c o r r u p t e d a n s w e r r e c e i v e d : boo l i n i t f a l s e ;

/ / The a u t h e n t i c answer i s r e c e i v e d
a n s w e r f r o m d o m a i n r e c e i v e d : boo l i n i t f a l s e ;

/ / C l i e n t que ry i s s a t i s f i e d by a cached answer
[ c l i e n t i s s u e s u r l r e s o l u t i o n r e q u e s t ] queue = f a l s e &

q u e r i e s a n s w e r e d = f a l s e &
n o n a u t h o r i t a t i v e s e r v e r s q u e u e = f a l s e
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−> p o p u l a r i t y / 1 0 : ( queue ’= t r u e ) & ( t t l ’ = 1 ) & (
q u e r i e s a n s w e r e d ’= t r u e ) & ( v a l i d a n s w e r r e c e i v e d ’= t r u e
) ;

/ / No cached answer i s found . So , c l i e n t s ’ s que ry would be
/ / r e s o l v e d r e c u r s i v e l y .
[ c l i e n t i s s u e s u r l r e s o l u t i o n r e q u e s t ] queue = f a l s e &

q u e r i e s a n s w e r e d = f a l s e &
n o n a u t h o r i t a t i v e s e r v e r s q u e u e = f a l s e

−> (1 − p o p u l a r i t y / 1 0 ) : ( queue ’= t r u e ) & ( t t l ’ = 0 ) & (
n o n a u t h o r i t a t i v e s e r v e r s q u e u e ’= t r u e ) ;

[ s e n d r e q u e s t t o N A S ] queue = t r u e &
n o n a u t h o r i t a t i v e s e r v e r s q u e u e = t r u e &
q u e r y n o n a u t h o r i t a t i v e s e r v e r s = f a l s e

−>( q u e r y n o n a u t h o r i t a t i v e s e r v e r s ’= t r u e ) ;

[ r e c e i v e a n s w e r f r o m N A S ] q u e r y n o n a u t h o r i t a t i v e s e r v e r s =
t r u e & a u t h o r i t a t i v e s e r v e r q u e u e = f a l s e &

c o r r e c t g u e s s = f a l s e
−> ( n o n a u t h o r i t a t i v e s e r v e r s q u e u e ’= f a l s e ) & (

a u t h o r i t a t i v e s e r v e r q u e u e ’= t r u e ) & (
q u e r y n o n a u t h o r i t a t i v e s e r v e r s ’= f a l s e ) ;

[ r e c e i v e a n s w e r f r o m a t t a c k e r w h i l e i n r a c e w i t h N A S ]
q u e r y n o n a u t h o r i t a t i v e s e r v e r s = t r u e &
a u t h o r i t a t i v e s e r v e r q u e u e = f a l s e & c o r r e c t g u e s s =
t r u e

−> ( n o n a u t h o r i t a t i v e s e r v e r s q u e u e ’= f a l s e ) & (
q u e r y n o n a u t h o r i t a t i v e s e r v e r s ’= f a l s e ) & (
q u e r i e s a n s w e r e d ’= t r u e ) & ( a n s w e r f r o m d o m a i n r e c e i v e d
’= t r u e ) & ( c o r r u p t e d a n s w e r r e c e i v e d ’= t r u e ) ;

[ s e n d r e q u e s t t o D S ] a u t h o r i t a t i v e s e r v e r q u e u e = t r u e &
q u e r y a u t h o r i t a t i v e s e r v e r = f a l s e −> (
q u e r y a u t h o r i t a t i v e s e r v e r ’= t r u e ) ;

[ r e c e i v e a n s w e r f r o m D S w h i l e i n r a c e w i t h A S ]
q u e r y a u t h o r i t a t i v e s e r v e r = t r u e & q u e r i e s a n s w e r e d =
f a l s e & c o r r e c t g u e s s = f a l s e

−> ( a u t h o r i t a t i v e s e r v e r q u e u e ’= f a l s e ) & ( q u e r i e s a n s w e r e d
’= t r u e ) & ( q u e r y a u t h o r i t a t i v e s e r v e r ’= f a l s e ) & (
a n s w e r f r o m d o m a i n r e c e i v e d ’= t r u e ) & (
v a l i d a n s w e r r e c e i v e d ’= t r u e ) ;
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[ r e c e i v e a n s w e r f r o m A S w h i l e i n r a c e w i t h D S ]
a u t h o r i t a t i v e s e r v e r q u e u e = t r u e & q u e r i e s a n s w e r e d =
f a l s e & c o r r e c t g u e s s = t r u e

−> ( a u t h o r i t a t i v e s e r v e r q u e u e ’= f a l s e ) & ( q u e r i e s a n s w e r e d
’= t r u e ) & ( q u e r y a u t h o r i t a t i v e s e r v e r ’= f a l s e ) & (
a n s w e r f r o m d o m a i n r e c e i v e d ’= t r u e ) & (
c o r r u p t e d a n s w e r r e c e i v e d ’ = t r u e ) ;

[ f o r w a r d a u t h o r i t a t i v e a n s w e r t o C M ] q u e r i e s a n s w e r e d =
t r u e & queue = t r u e

−> ( queue ’= f a l s e ) & ( q u e r i e s a n s w e r e d ’= f a l s e ) ;

[ C o r r e c t G u e s s ] c o r r e c t g u e s s = f a l s e &
q u e r y a u t h o r i t a t i v e s e r v e r = t r u e

−> 1 / ( q u e r y i d ∗ p o r t i d ) : ( c o r r e c t g u e s s ’= t r u e ) ;

[ C o r r e c t G u e s s I n R a c e W i t h N A S ] c o r r e c t g u e s s = f a l s e &
q u e r y n o n a u t h o r i t a t i v e s e r v e r s = t r u e

−> 1 / ( q u e r y i d ∗ p o r t i d ) : ( c o r r e c t g u e s s ’= t r u e ) ;

endmodule

/ / NAS r e p r e s e n t s a l l i n t e r m e d i a t e non−a u t h o r i t a t i v e DNS
/ / s e r v e r s i n c l u d i n g r o o t , and com t h a t a r e i n v o l v e d i n t h e
/ / u r l r e s o l u t i o n p r o c e s s
module NAS

[ s e n d r e q u e s t t o N A S ] t r u e −> t r u e ;

[ r e c e i v e a n s w e r f r o m N A S ] t r u e −> ( 1 / ( NAS count−1) ) : t r u e ;

endmodule

/ / DS i s t h e a u t h o r i t a t i v e name s e r v e r f o r t h e t a r g e t
/ / domain go og l e . com
module DS

a u t h o r i t a t i v e s e r v e r e n a b l e d : boo l i n i t f a l s e ;

[ s e n d r e q u e s t t o D S ] a u t h o r i t a t i v e s e r v e r e n a b l e d = f a l s e
−> ( a u t h o r i t a t i v e s e r v e r e n a b l e d ’= t r u e ) ;

[ r e c e i v e a n s w e r f r o m A S w h i l e i n r a c e w i t h D S ]
a u t h o r i t a t i v e s e r v e r e n a b l e d = t r u e −> (
a u t h o r i t a t i v e s e r v e r e n a b l e d ’= f a l s e ) ;
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[ r e c e i v e a n s w e r f r o m D S w h i l e i n r a c e w i t h A S ]
a u t h o r i t a t i v e s e r v e r e n a b l e d = t r u e

−> 1 / ( o t h e r l e g i t i m a t e r e q u e s t s r a t e ) : (
a u t h o r i t a t i v e s e r v e r e n a b l e d ’= f a l s e ) ;

endmodule

/ / AS i s t h e a u t h o r i t a t i v e DNS s e r v e r f o r a t t a c k e r ’ s domain
/ / badguy . com .
module AS

a t t a c k e r e n a b l e d : boo l i n i t f a l s e ;

[ s e n d r e q u e s t t o N A S ] a t t a c k e r e n a b l e d = f a l s e −> (
a t t a c k e r e n a b l e d ’= t r u e ) ;

[ r e c e i v e a n s w e r f r o m N A S ] a t t a c k e r e n a b l e d = t r u e −> (
a t t a c k e r e n a b l e d ’= f a l s e ) ;

[ r e c e i v e a n s w e r f r o m a t t a c k e r w h i l e i n r a c e w i t h N A S ]
a t t a c k e r e n a b l e d = t r u e −> ( a t t a c k e r e n a b l e d ’= f a l s e ) ;

[ s e n d r e q u e s t t o D S ] a t t a c k e r e n a b l e d = f a l s e −> (
a t t a c k e r e n a b l e d ’= t r u e ) ;

[ r e c e i v e a n s w e r f r o m D S w h i l e i n r a c e w i t h A S ]
a t t a c k e r e n a b l e d = t r u e −> ( a t t a c k e r e n a b l e d ’= f a l s e ) ;

[ r e c e i v e a n s w e r f r o m A S w h i l e i n r a c e w i t h D S ]
a t t a c k e r e n a b l e d = t r u e −> ( a t t a c k e r e n a b l e d ’= f a l s e ) ;

[ C o r r e c t G u e s s ] a t t a c k e r e n a b l e d = t r u e & g u e s s > 0 −>
g u e s s : t r u e ;

[ C o r r e c t G u e s s I n R a c e W i t h N A S ] a t t a c k e r e n a b l e d = t r u e &
g u e s s > 0 −> g u e s s : t r u e ;

endmodule

Properties file:

/ / Compute t h e a t t a c k p r o b a b i l i t y t h a t CS’ s cache i s
/ / po i soned , i . e . , CS r e c e i v e s a c o r r u p t e d answer from AS
/ / b e f o r e t h e a u t h e n t i c answer from DS a r r i v e s
P=? [ F c o r r u p t e d a n s w e r r e c e i v e d ]
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Groovy script to determine countermeasure parameters for RDQ:

/ / The d a t a f i l e c o n t a i n s 30 v a l u e s o f a t t a c k
/ / p r o b a b i l i t i e s p , w i th one e n t r y p e r l i n e .
d a t a = new F i l e ( ‘ d a t a . t x t ’ )

d a t a . e a c h L i n e { l i n e −>
/ / Read each v a l u e o f a t t a c k p r o b a b i l i t y ‘ ‘ p ’ ’
p = l i n e . toDoub le ( )

/ / The p r o b a b i l i t y ‘ ‘ q ’ ’ o f s u c c e s s f u l l y g e t t i n g
t h e

/ / c o r r e c t t a r g e t IP a d d r e s s
q = 1 − p

/ / The uppe r bound f o r t h e number o f r e t r i e s i s s e t
/ / t o 10000
n u p p e r b o u n d = 10000

/ / We i n i t i a l i z e n max t o 1
n max = 1
w h i l e ( n max < n u p p e r b o u n d ) {

/ / p n o r e s p o n s e i s t h e p r o b a b i l i t y o f RDQ
/ / n e e d i n g a n o t h e r r e t r y a f t e r t h e
/ / n t h r e t r y ( e q u a t i o n 6 )
p n o r e s p o n s e = p ∗ q ∗ ( p ∗∗ ( n max−1) + q ∗∗ (

n max−1) )

/ / I f p n o r e s p o n s e i s ve ry c l o s e t o 0 , t h e n
/ / i t means t h a t we have found n max
i f ( p n o r e s p o n s e ∗ 1000 < 1) {

/ / Now, we compute n e x p e c t e d u s i n g
/ / t h e v a l u e o f n max t h a t we have
/ / found
n e x p e c t e d = 0
1 . up to ( n max ) { j −>

/ / We use e q u a t i o n 7
p n o r e s p o n s e = p ∗ q ∗ ( p
∗∗ ( j −1) + q ∗∗ ( j −1) )

n e x p e c t e d += j ∗
p n o r e s p o n s e

}
/ / P r i n t t h e i n t e g e r v a l u e o f
/ / n e x p e c t e d
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p r i n t l n ( Math . c e i l ( n e x p e c t e d ) .
t o I n t e g e r ( ) )

b r e a k
}
n max++

}
}
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Appendix B

PRISM Code for CTMC Model of DNS
BAA

Model source code when AGF is used:

/ / A model f o r t h e DNS bandwid th a m p l i f i c a t i o n (BAA) a t t a c k
/ / w i th ‘ ‘AGF’ ’ a s t h e c o u n t e r m e a s u r e
ctmc

/ / bogus r a t e f o r each zombie machine
c o n s t b o g u s r a t e =10;

/ / number o f zombies p a r t i c i p a t i n g i n t h e a t t a c k
c o n s t zombies ;

/ / ba se a r r i v a l r a t e f o r l e g i t i m a t e p a c k e t s
c o n s t Rl =100;

/ / d e t e c t i o n f r a c t i o n f o r f i l t e r i n g
c o n s t d ou b l e d f = 0 . 9 ;

/ / f a l s e−p o s i t i v e f r a c t i o n f o r f i l t e r i n g
c o n s t d ou b l e f p f = 0 . 1 ;

/ / number o f a g g r e s s i v e r e t r i e s , s t a r t s from 0
c o n s t r e t r i e s ;

/ / i n c r e a s e d r a t e o f l e g i t i m a t e p a c k e t s based on r e t r i e s
c o n s t a c t u a l R l = c e i l ( pow ( 2 , r e t r i e s ) ) ;

/ / a m p l i f i c a t i o n f a c t o r
c o n s t d ou b l e AF ;
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/ / Bandwidth s i z e (458 f o r DNS and 112 f o r DNSSec )
c o n s t BW;

/ / r a t e a t which t h e CS p r o c e s s e s t h e queued p a c k e t s
c o n s t s e r v e r a t e = 12666 ;

/ / A s u c c e s s f u l BAA a t t a c k i s e x p e r i e n c e d when f o r t h e
/ / v i c t i m , BW queue = BW. Th i s means t h a t t h e v i c t i m ’ s
/ / bandwid th i s f u l l and i t can no l o n g e r a c c e p t incoming
/ / p a c k e t s . Any incoming p a c k e t s a r e dropped t i l l
/ / bandwid th i s f r e e d .
f o r m u l a Bandwid thExp i red = ( BW queue=BW) ;
f o r m u l a D e n i a l O f S e r v i c e = ( l e g i t i m a t e R e q u e s t I n i t i a t e d = f a l s e

) & Bandwid thExp i red ;

/ / Implements t h e p a c k e t f i l t e r mechanism
module F i l t e r

[ r e c e i v e b o g u s p a c k e t ] t r u e −> (1− df ) : t r u e ;

[ r e c e i v e l e g i t p a c k e t ] t r u e−> (1− f p f ) : t r u e ;

[ c l i e n t r e q u e s t ] t r u e−> (1− f p f ) : t r u e ;

endmodule

/ / The DNS s e r v e r f o r t h e c l i e n t machine . The CS i s
/ / t h e v i c t i m of t h e BAA a t t a c k .
module CS

/ / Queue f o r a l l incoming p a c k e t s . Growth and s h r i n k a g e o f
/ / t h i s queue r e p r e s e n t s t h e way CS’ s bandwid th i s consumed
/ / and f r e e d up
BW queue : [ 0 . .BW] i n i t 0 ;

/ / The BW queue i s i n c r e m e n t e d by 1 wi th Rl when a
/ / l e g i t i m a t e p a c k e t i s r e c e i v e d .
[ r e c e i v e l e g i t p a c k e t ] ( Bandwid thExp i red = f a l s e )
−> a c t u a l R l : ( BW queue ’= BW queue +1) ;

/ / The l e g i t i m a t e p a c k e t s t h a t a r e n o t s e r v i c e d due t o BAA
[ l e g i t p a c k e t l o s t ] Bandwid thExp i red = t r u e
−> a c t u a l R l : t r u e ;

/ / When bogus t r a f f i c a r r i v e s , t h e BW queue i s i n c r e m e n t e d
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/ / by 1 wi th t h e r a t e d e t e r m i n e d by AF . The e f f e c t i v e r a t e
/ / o f t h i s a c t i o n i s b o g u s r a t e ∗ zombies ∗AF
[ r e c e i v e b o g u s p a c k e t ] Bandwid thExp i red = f a l s e
−> AF : ( BW queue ’= BW queue +1) ;

/ / Bogus t r a f f i c t h a t a r r i v e s a f t e r bandwid th e x p i r a t i o n
[ b o g u s p a c k e t l o s t ] Bandwid thExp i red = t r u e
−> AF : t r u e ;

/ / Se rve ( o u t g o i n g ) t r a f f i c
/ / The BW queue i s dec remen ted by 1 wi th s e r v e r a t e .
[ s e r v e q u e u e d p a c k e t ] BW queue > 0
−> s e r v e r a t e : ( BW queue ’= BW queue−1) ;

/ / A s i n g l e a c t i o n from c l i e n t which i s used t o compute t h e
/ / p r o b a b i l i t y o f f a i l u r e . The BW queue i s i n c r e m e n t e d by
/ / 1 wi th r a t e Rl when a l e g i t i m a t e p a c k e t i s r e c e i v e d
[ c l i e n t r e q u e s t ] ( Bandwid thExp i red = f a l s e )
−> ( BW queue ’= BW queue +1) ;

endmodule

/ / R e p r e s e n t s t h e ‘ ‘ r e s t o f t h e i n t e r n e t ’ ’ e x c l u d i n g CS
module Net

l e g i t i m a t e R e q u e s t I n i t i a t e d : boo l i n i t f a l s e ;

[ r e c e i v e b o g u s p a c k e t ] t r u e −>b o g u s r a t e ∗ zombies : t r u e ;

[ b o g u s p a c k e t l o s t ] t r u e −>b o g u s r a t e ∗ zombies : t r u e ;

[ r e c e i v e l e g i t p a c k e t ] ( Bandwid thExp i red = f a l s e )
−> 1 : t r u e ;

[ l e g i t p a c k e t l o s t ] ( Bandwid thExp i red = t r u e )
−> 1 : t r u e ;

/ / A s i n g l e a c t i o n from c l i e n t which i s used t o compute t h e
/ / p r o b a b i l i t y o f f a i l u r e .
[ c l i e n t r e q u e s t ] ( l e g i t i m a t e R e q u e s t I n i t i a t e d = f a l s e )
−> a c t u a l R l : ( l e g i t i m a t e R e q u e s t I n i t i a t e d ’= t r u e ) ;

endmodule
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/ / Reward d e f i n i t i o n s

r e w a r d s ‘ ‘R1 ’ ’
[ r e c e i v e l e g i t p a c k e t ] t r u e : 1 ;
[ c l i e n t r e q u e s t ] t r u e : 1 ;
e n d r e w a r d s

r e w a r d s ‘ ‘R2 ’ ’
[ r e c e i v e b o g u s p a c k e t ] t r u e : 1 ;
e n d r e w a r d s

r e w a r d s ‘ ‘R3 ’ ’
BW queue < BW : 1 ;
e n d r e w a r d s

Properties file:

/ / Time−bound f o r e v a l u a t i n g c u m u l a t i v e reward−based
/ / p r o p e r t i e s . For our e x p e r i m e n t s , we s e t t t o 0 . 1
c o n s t d ou b l e t ;

/ / P r o b a b i l i t y t h a t t h e c l i e n t i s n o t s e r v i c e d due t o BAA
P=? [ F D e n i a l O f S e r v i c e ]

/ / Cumula t ive reward−based p r o p e r t y P1
R{ ‘ ‘R1 ’ ’}=? [ C<=t ]

/ / Cumula t ive reward−based p r o p e r t y P2
R{ ‘ ‘R2 ’ ’}=? [ C<=t ]

/ / Cumula t ive reward−based p r o p e r t y P3
R{ ‘ ‘R3 ’ ’}=? [ C<=t ]
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Appendix C

PRISM Code for Stochastic
Game-Based Model of DNS BAA

Model source code when AGF is used:

/ / Game−based model o f DNS BAA.
smg

/ / Maximum bandwid th a v a i l a b l e .
c o n s t i n t BW = 458 ;

/ / Maximum t ime f o r which t h e model s h o u l d run .
c o n s t i n t maxTime = 2 3 ;

/ / Ra te a t which a s i n g l e zombie s e n d s bogus p a c k e t s
c o n s t d ou b l e b o g u s r a t e = 10 ∗ AF ;

/ / A m p l i f i c a t i o n f a c t o r
c o n s t d ou b l e AF = 1 5 . 3 1 ;

/ / L e g i t i m a t e p a c k e t r a t e
c o n s t d ou b l e Rl = 100 ;

/ / T o t a l r a t e a t which bogus p a c k e t s a r r i v e
f o r m u l a Rb = b o g u s r a t e ∗ zombies ;

/ / D e t e c t i o n f r a c t i o n
c o n s t d ou b l e d f = 0 . 9 ;

/ / F a l s e−p o s i t i v e f r a c t i o n
c o n s t d ou b l e f p f = 0 . 1 ;

/ / Random drop f r a c t i o n
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c o n s t d ou b l e r d f ;

/ / Number o f r e t r i e s
c o n s t i n t r e t r i e s ;

c o n s t i n t MAX SUCC ATTACKS;
c o n s t i n t ATTACKER LATENCY;

/ / D e f i n e s t h e t ime f o r which t h e d e f e n d e r must w a i t b e f o r e
/ / i t can re−e n a b l e t h e c o u n t e r m e a s u r e s a f t e r h av i ng
/ / d i s a b l e d them once . Th i s i s t y p i c a l l y ve ry low and
/ / t h u s i t i s s e t t o z e r o
c o n s t i n t DEFENDER LATENCY = 0 ;

/ / For b r e v i t y , we d e f i n e CS’ s p r o b a b i l i t i e s o f r e c e i v i n g
/ / p a c k e t s when e i t h e r FTR or AGR used . Such p r o b a b i l i t i e s
/ / can be d e f i n e d i n a s i m i l a r way i f d e f e n d e r u s e s
/ / Nofix , RND, RDR, o r AGF.

/ / CS’ s p r o b a b i l i t i e s o f r e c e i v i n g p a c k e t s i f FTR i s used
f o r m u l a bw fac to r FTR = (BW < ( Rb in FTR + Rl in FTR ) ) ? (BW

/ ( Rb in FTR + Rl in FTR ) ) : 1 ;
f o r m u l a Rb in FTR = Rb ∗ (1 − df ) ;
f o r m u l a Rl in FTR = Rl ∗ (1 − f p f ) ;
f o r m u l a Rb drop FTR = Rb ∗ df ;
f o r m u l a Rl drop FTR = Rl ∗ f p f ;
f o r m u l a p b r e c e i v e F T R = ( Rb in FTR / ( Rb + Rl ) ) ∗ (

bw fac to r FTR ) ;
f o r m u l a p l r e c e i v e F T R = ( Rl in FTR / ( Rb + Rl ) ) ∗ (

bw fac to r FTR ) ;
f o r m u l a p b drop FTR = ( Rb drop FTR / ( Rb + Rl ) ) + (

Rb in FTR / ( Rb + Rl ) ) ∗ (1 − bw fac to r FTR ) ;
f o r m u l a p l d r o p F T R = 1 − ( p b r e c e i v e F T R +

p l r e c e i v e F T R + p b drop FTR ) ;

/ / CS’ s p r o b a b i l i t i e s o f r e c e i v i n g p a c k e t s i f AGR i s used
f o r m u l a bw factor AGR = (BW < ( Rb in AGR + Rl in AGR ) ) ? (BW

/ ( Rb in AGR + Rl in AGR ) ) : 1 ;
f o r m u l a Rl AGR = c e i l ( Rl ∗ pow ( 2 , r e t r i e s ) ) ;
f o r m u l a Rb in AGR = Rb ;
f o r m u l a Rl in AGR = Rl AGR ;
f o r m u l a Rb drop AGR = 0 ;
f o r m u l a Rl drop AGR = 0 ;
f o r m u l a p b rece ive AGR = ( Rb in AGR / ( Rb + Rl AGR ) ) ∗ (

bw factor AGR ) ;
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f o r m u l a p l r e c e i v e A G R = ( Rl in AGR / ( Rb + Rl AGR ) ) ∗ (
bw factor AGR ) ;

f o r m u l a p b drop AGR = ( Rb drop AGR / ( Rb + Rl AGR ) ) + (
Rb in AGR / ( Rb + Rl AGR ) ) ∗ (1 − bw factor AGR ) ;

f o r m u l a p l drop AGR = 1 − ( p b rece ive AGR +
p l r e c e i v e A G R + p b drop AGR ) ;

/ / Keep t r a c k of t h e e l a p s e d t ime .
g l o b a l t ime : [ 0 . . maxTime ] i n i t 0 ;

/ / S c h e d u l i n g v a r i a b l e . I n i t i a l i z e d t o two t o e n a b l e
/ / t h e d e f e n d e r .
g l o b a l sched : [ 0 . . 2 ] i n i t 2 ;

g l o b a l b a s e D i s t E n a b l e d : boo l i n i t f a l s e ;
g l o b a l f t r D i s t E n a b l e d : boo l i n i t f a l s e ;
g l o b a l a g r D i s t E n a b l e d : boo l i n i t f a l s e ;
g l o b a l r n d D i s t E n a b l e d : boo l i n i t f a l s e ;
g l o b a l r n d A g r D i s t E n a b l e d : boo l i n i t f a l s e ;
g l o b a l f t r A g r D i s t E n a b l e d : boo l i n i t f a l s e ;

/ / P l a y e r d e f i n i t i o n s
p l a y e r DFD

Defende r
e n d p l a y e r

p l a y e r CS
C l i e n t S e r v e r

e n d p l a y e r

p l a y e r AS
A t t a c k e r

e n d p l a y e r

/ / Defende r n o n d e t e r m i n i s t i c a l l y c h o o s e s a c o u n t e r m e a s u r e
module Defende r

disableCM : boo l i n i t f a l s e ;
d e f e n d e r L a t e n c y : [ −1 . .DEFENDER LATENCY] i n i t

DEFENDER LATENCY;
readyToChooseDefense : boo l i n i t f a l s e ;

/ / Turn t h e c o u n t e r m e a s u r e on / o f f
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[ ] sched = 1 & ! readyToChooseDefense & d e f e n d e r L a t e n c y =
DEFENDER LATENCY

−> ( disableCM ’= f a l s e ) & ( readyToChooseDefense ’= t r u e ) ;

[ ] sched = 1 & ! readyToChooseDefense & ! disableCM
−> ( disableCM ’= t r u e ) & ( d e f e n d e r L a t e n c y ’=−1) ;

[ ] sched = 1 & disableCM & d e f e n d e r L a t e n c y <
DEFENDER LATENCY & ! readyToChooseDefense

−> ( d e f e n d e r L a t e n c y ’= d e f e n d e r L a t e n c y + 1) & (
readyToChooseDefense ’= t r u e ) ;

/ / Enab le NoFix
[ ] sched = 1 & t ime < maxTime & disableCM &

readyToChooseDefense & d e f e n d e r L a t e n c y <
DEFENDER LATENCY

−> ( b a s e D i s t E n a b l e d ’= t r u e ) & ( f t r D i s t E n a b l e d ’= f a l s e ) & (
a g r D i s t E n a b l e d ’= f a l s e ) & ( r n d D i s t E n a b l e d ’= f a l s e ) & (
f t r A g r D i s t E n a b l e d ’= f a l s e ) & ( rndAgrDi s tEnab l ed ’= f a l s e ) &

( readyToChooseDefense ’= f a l s e ) & ( sched ’= 0) ;

[ ] sched = 1 & t ime < maxTime & disableCM &
readyToChooseDefense & d e f e n d e r L a t e n c y =
DEFENDER LATENCY

−> ( disableCM ’= f a l s e ) & ( b a s e D i s t E n a b l e d ’= t r u e ) & (
f t r D i s t E n a b l e d ’= f a l s e ) & ( a g r D i s t E n a b l e d ’= f a l s e ) & (
r n d D i s t E n a b l e d ’= f a l s e ) & ( f t r A g r D i s t E n a b l e d ’= f a l s e ) & (
rndAgrDi s tEnab l ed ’= f a l s e ) & ( readyToChooseDefense ’= f a l s e
) & ( sched ’= 0) ;

/ / Enab le FTR
[ ] sched = 1 & t ime < maxTime & ! disableCM &

readyToChooseDefense
−> ( b a s e D i s t E n a b l e d ’= f a l s e ) & ( f t r D i s t E n a b l e d ’= t r u e ) & (

a g r D i s t E n a b l e d ’= f a l s e ) & ( r n d D i s t E n a b l e d ’= f a l s e ) & (
f t r A g r D i s t E n a b l e d ’= f a l s e ) & ( rndAgrDi s tEnab l ed ’= f a l s e ) &

( readyToChooseDefense ’= f a l s e ) & ( sched ’= 0) ;

/ / Enab le AGR
[ ] sched = 1 & t ime < maxTime & ! disableCM &

readyToChooseDefense
−> ( b a s e D i s t E n a b l e d ’= f a l s e ) & ( f t r D i s t E n a b l e d ’= f a l s e ) & (

a g r D i s t E n a b l e d ’= t r u e ) & ( r n d D i s t E n a b l e d ’= f a l s e ) & (
f t r A g r D i s t E n a b l e d ’= f a l s e ) & ( rndAgrDi s tEnab l ed ’= f a l s e ) &

( readyToChooseDefense ’= f a l s e ) & ( sched ’= 0) ;
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[ ] sched = 1 & t ime = maxTime −> ( sched ’= 0) ;

endmodule

/ / C l i e n t S e r v e r ( CS ) i s t h e v i c t i m DNS s e r v e r .
module C l i e n t S e r v e r

r e a d y T o S c h e d u l e D e f e n d e r A n d A t t a c k e r : boo l i n i t f a l s e ;
l e g i t P a c k e t R e c e i v e d : boo l i n i t f a l s e ;
b o g u s P a c k e t R e c e i v e d : boo l i n i t f a l s e ;
l e g i t P a c k e t D r o p p e d : boo l i n i t f a l s e ;
bogusPacke tDropped : boo l i n i t f a l s e ;

/ / Handle FTR
[ ] sched = 0 & f t r D i s t E n a b l e d & t ime < maxTime& !

r e a d y T o S c h e d u l e D e f e n d e r A n d A t t a c k e r
−> p b r e c e i v e F T R : ( l e g i t P a c k e t R e c e i v e d ’= f a l s e ) & (

bogusPacke tRece ived ’= t r u e ) & ( l e g i t P a c k e t D r o p p e d ’=
f a l s e ) & ( bogusPacke tDropped ’= f a l s e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) +

p l r e c e i v e F T R : ( l e g i t P a c k e t R e c e i v e d ’= t r u e ) & (
bogusPacke tRece ived ’= f a l s e ) & ( l e g i t P a c k e t D r o p p e d ’=
f a l s e ) & ( bogusPacke tDropped ’= f a l s e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) +

p b drop FTR : ( l e g i t P a c k e t R e c e i v e d ’= f a l s e ) & (
bogusPacke tRece ived ’= f a l s e ) & ( l e g i t P a c k e t D r o p p e d ’=
f a l s e ) & ( bogusPacke tDropped ’= t r u e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) +

p l d r o p F T R : ( l e g i t P a c k e t R e c e i v e d ’= f a l s e ) & (
bogusPacke tRece ived ’= f a l s e ) & ( l e g i t P a c k e t D r o p p e d ’=
t r u e ) & ( bogusPacke tDropped ’= f a l s e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) ;

/ / Handle AGR
[ ] sched = 0 & a g r D i s t E n a b l e d & t ime < maxTime& !

r e a d y T o S c h e d u l e D e f e n d e r A n d A t t a c k e r
−> p b rece ive AGR : ( l e g i t P a c k e t R e c e i v e d ’= f a l s e ) & (

bogusPacke tRece ived ’= t r u e ) & ( l e g i t P a c k e t D r o p p e d ’=
f a l s e ) & ( bogusPacke tDropped ’= f a l s e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) +

p l r e c e i v e A G R : ( l e g i t P a c k e t R e c e i v e d ’= t r u e ) & (
bogusPacke tRece ived ’= f a l s e ) & ( l e g i t P a c k e t D r o p p e d ’=
f a l s e ) & ( bogusPacke tDropped ’= f a l s e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) +
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p b drop AGR : ( l e g i t P a c k e t R e c e i v e d ’= f a l s e ) & (
bogusPacke tRece ived ’= f a l s e ) & ( l e g i t P a c k e t D r o p p e d ’=
f a l s e ) & ( bogusPacke tDropped ’= t r u e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) +

p l drop AGR : ( l e g i t P a c k e t R e c e i v e d ’= f a l s e ) & (
bogusPacke tRece ived ’= f a l s e ) & ( l e g i t P a c k e t D r o p p e d ’=
t r u e ) & ( bogusPacke tDropped ’= f a l s e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= t r u e ) ;

/ / Enab le t h e a t t a c k e r
[ ] sched = 0 & t ime < maxTime &

r e a d y T o S c h e d u l e D e f e n d e r A n d A t t a c k e r
−> 1 : ( sched ’= 2) & ( t ime ’= t ime + 1) & (

l e g i t P a c k e t R e c e i v e d ’= f a l s e ) & ( bogusPacke tRece ived ’=
f a l s e ) & ( l e g i t P a c k e t D r o p p e d ’= f a l s e ) & (
bogusPacke tDropped ’= f a l s e ) & (
r ead yT oS ch ed u l eD ef en de rAn dA t t ac ke r ’= f a l s e ) ;

[ ] sched = 0 & t ime = maxTime −> t r u e ;

endmodule

/ / The a t t a c k e r s e n d s l a r g e volumes o f p a c k e t s t o t h e
/ / v i c t i m DNS s e r v e r .
module A t t a c k e r
zombies : [ 0 . . 1 0 0 ] i n i t 0 ;

s u c c A t t a c k s : [ 0 . . MAX SUCC ATTACKS] i n i t 0 ;
a t t a c k L a t e n c y : [ 0 . . ATTACKER LATENCY] i n i t 0 ;
a t t a c k E n a b l e d : boo l i n i t f a l s e ;

[ ] sched = 2 & t ime <= maxTime & ! a t t a c k E n a b l e d &
s u c c A t t a c k s = MAX SUCC ATTACKS & a t t a c k L a t e n c y <
ATTACKER LATENCY

−> ( a t t a c k E n a b l e d ’= f a l s e ) & ( a t t a c k L a t e n c y ’= a t t a c k L a t e n c y
+1) & ( zombies ’ = 0 ) & ( sched ’ = 1 ) ;

[ ] sched = 2 & t ime <= maxTime & ! a t t a c k E n a b l e d &
s u c c A t t a c k s = MAX SUCC ATTACKS & a t t a c k L a t e n c y =
ATTACKER LATENCY

−> ( a t t a c k E n a b l e d ’= f a l s e ) & ( s u c c A t t a c k s ’ = 0 ) & (
a t t a c k L a t e n c y ’ = 0 ) ;
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[ ] sched = 2 & t ime <= maxTime & ! a t t a c k E n a b l e d &
s u c c A t t a c k s < MAX SUCC ATTACKS

−> ( a t t a c k E n a b l e d ’= f a l s e ) & ( zombies ’ = 0 ) & ( sched ’ = 1 ) & (
s u c c A t t a c k s ’ = 0 ) ;

[ ] sched = 2 & t ime <= maxTime & ! a t t a c k E n a b l e d &
s u c c A t t a c k s < MAX SUCC ATTACKS

−> ( a t t a c k E n a b l e d ’= t r u e ) & ( s u c c A t t a c k s ’= s u c c A t t a c k s + 1) ;

/ / N o n d e t e r m i n i s t i c a l l y choose number o f zombies t o use t o
/ / l a u n c h t h e DNS BAA
[ ] sched = 2 & t ime <= maxTime & a t t a c k E n a b l e d −> ( zombies

’ = 1 ) & ( a t t a c k E n a b l e d ’= f a l s e ) & ( sched ’ = 1 ) ;
[ ] sched = 2 & t ime <= maxTime & a t t a c k E n a b l e d −> ( zombies

’=100) & ( a t t a c k E n a b l e d ’= f a l s e ) & ( sched ’ = 1 ) ;
[ ] sched = 2 & t ime = maxTime −> ( sched ’ = 1 ) ;

endmodule

r e w a r d s ‘ ‘ A t t a c k e r P a y o f f 1 ’ ’
sched = 0 & l e g i t P a c k e t D r o p p e d & zombies > 0 : 1 / zombies ;
sched = 0 & l e g i t P a c k e t R e c e i v e d & zombies > 0 : −1/ zombies ;
sched = 0 & l e g i t P a c k e t D r o p p e d & zombies = 0 : 1 ;
sched = 0 & l e g i t P a c k e t R e c e i v e d & zombies = 0 : −1;
e n d r e w a r d s

r e w a r d s ‘ ‘ A t t a c k e r P a y o f f 2 ’ ’
sched = 0 & l e g i t P a c k e t R e c e i v e d : −1;
sched = 0 & b o g u s P a c k e t R e c e i v e d : 1 ;
e n d r e w a r d s

Properties file:

/ / G e n e r a t e o p t i m a l a t t a c k s t r a t e g y t h a t would maximize
/ / a t t a c k e r ’ s p a y o f f a c c u m u l a t e d ove r t h e d u r a t i o n o f t h e
/ / e x p e r i m e n t
<<AS>> R{ ‘ ‘ A t t a c k e r P a y o f f 1 ’ ’}max=? [ F t ime =maxTime ]
<<AS>> R{ ‘ ‘ A t t a c k e r P a y o f f 2 ’ ’}max=? [ F t ime =maxTime ]
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