

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Cache-Adaptive Algorithms

A Dissertation presented

by

Roozbeh Ebrahimi Soorchaei

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

August 2015

Copyright by

Roozbeh Ebrahimi Soorchaei

2015

Stony Brook University

The Graduate School

Roozbeh Ebrahimi Soorchaei

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Michael A. Bender - Dissertation Advisor

Associate Professor, Department of Computer Science

Joseph S. B. Mitchell - Dissertation Advisor

Professor, Department of Applied Mathematics and Statistics

Rob Johnson - Chairperson of Defense

Assistant Professor, Department of Computer Science

Jie Gao - Committee Member

Associate Professor, Department of Computer Science

Jeremy T. Fineman - External Committee Member

Assistant Professor, Department of Computer Science, Georgetown University

This dissertation is accepted by the Graduate School

Charles Taber

Dean of the Graduate School

ii

Abstract of the Dissertation

Cache-Adaptive Algorithms

by

Roozbeh Ebrahimi Soorchaei

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Memory efficiency and locality have substantial impact on the performance of programs,

particularly when operating on large data sets. Thus, memory- or I/O-efficient algorithms

have received significant attention both in theory and practice. The widespread deployment

of multicore machines, however, brings new challenges. Specifically, since the memory is

shared across multiple processes, the effective memory-size allocated to each process fluctu-

ates over time.

This dissertation studies algorithms in the context of a memory allocation that changes

over time, which we call the cache-adaptive setting. The cache-adaptive model applies to

operating systems, databases, and other systems where the allocation of memory to processes

changes over time.

Analytic techniques are provided for studying the behavior of recursive cache-oblivious

algorithms in the cache-adaptive model. These techniques make analyzing algorithms in

the cache-adaptive model almost as easy as in the Disk Access Model (DAM) [1]. These

techniques are applied to analyze a wide variety of algorithms — Master-Method-style algo-

rithms, Akra-Bazzi-style algorithms, collections of mutually recursive algorithms, and algo-

rithms, such as the cache-oblivious FFT algorithm [31], that break problems of size N into

subproblems of size Θ(N c).

While the cache-oblivious sorting algorithm Lazy Funnel Sort [15] does not have the

former recursive structures, it is nonetheless proved to be optimally cache-adaptive.

Paging algorithms are studied in the context of cache-adaptive model. It is proved that

the Least Recently Used (LRU) policy with resource augmentation is competitive with the

iii

optimal offline strategy. Moreover, Belady’s Longest Forward Distance (LFD) [8] policy is

shown to remain optimal even when the memory size changes.

Because cache-oblivious algorithms are well understood, frequently easy to design, and

widely deployed, there is hope that provably good cache-adaptive algorithms can be deployed

in practice.

iv

Dedicated to my beloved wife, Golnaz, and dearest parents, Robab and Asad.

v

Contents

1 Introduction 1

1.1 Memory Hierarchy Models . 3

1.2 Previous Work . 6

1.3 Thesis Contributions and Organization . 8

2 The Cache-Adaptive Model 11

2.1 Optimality in the Cache-Adaptive Model . 12

2.2 Justification for the Cache-Adaptive Model 13

3 Cache-Adaptive Analysis 15

3.1 Square Memory Profiles . 15

3.2 Progress Bounds and Progress Optimality in the Cache-Adaptive Model . . . 17

3.3 Square Profiles are Adequately Rich for Studying Progress Optimality 19

3.4 Progress Optimality vs. Competitive Optimality 21

3.5 Recursions in the Cache-Adaptive Model . 22

4 Optimality Criteria for Recursive Cache-Oblivious Algorithms 24

4.1 Classes of Recursive Cache-Oblivious Algorithms 24

4.2 Structure of N -Fitting Square Profiles For Recursive Algorithms 26

4.3 Optimality Criteria For Generalized Compositional Regular Algorithms . . . 31

4.4 Optimality of Generalized Regular Algorithms 37

4.5 Optimality Criteria for (a, b, c)-Regular Algorithms 38

5 Deriving Progress Bounds 43

5.1 A Progress Bound for the Näıve Matrix Multiplication Problem 46

5.2 A Progress Bound for the Näıve All Pairs Shortest Paths Problem 48

5.3 Progress Bounds for the LCS and Edit Distance Problems 50

5.4 A Progress Bound for the Multipass Filter problem 52

5.5 A Progress Bound for the FFT Problem . 53

vi

5.6 A Progress Bound for the Sorting Problem 55

6 Optimal Recursive Cache-Adaptive Algorithms 57

6.1 Optimal Matrix Multiplication and Floyd-Warshall APSP 57

6.2 Optimal Jacobi Multipass Filter . 58

6.3 Optimal LCS and Edit Distance . 63

6.4 Optimal Matrix Transpose . 66

7 Suboptimal Cache-Adaptive Algorithms 68

7.1 Matrix Multiply: A Tale of Two Algorithms 68

7.2 Cache-Oblivious Fast Fourier Transform . 70

8 Optimal Cache-Adaptive Sorting 76

8.1 The Lazy Funnel Sort (LFS) Algorithm . 76

9 Page Replacement Policies in the Cache-Adaptive Model 81

9.1 Constant Competitiveness of a Resource-Augmented LRU 82

9.2 Optimal (Offline) Page Replacement in the CA Model 84

10 Foresight and Simulation of Square Profiles 87

10.1 Square Profiles are Adequately Rich for Studying Optimality of Cache-Oblivious

Algorithms . 89

vii

List of Figures

1.1 The DAM model of computation. 4

1.2 The ideal-cache model of computation. 5

1.3 The changes in memory size are attributed to the arrival/departure of other

asynchronous process in the system. 6

1.4 The cache-adaptive model of computation. 7

3.1 The inner square memory profile. 16

3.2 The usable profile beneath each square profile. 20

3.3 Bottomed-out nodes in the cache-oblivious analysis. 22

3.4 Bottomed-out nodes in the cache-adaptive model. 23

5.1 The DAG of computation, Gψ, for the LCS and Edit Distance problems. . . 51

5.2 The DAG of computation, Gη, for the Jacobi Multipass Filter problem. . . . 53

9.1 Comparing states of the memory after original I/Os and swapped I/Os. . . . 84

viii

Acknowledgments

First, I would like to thank my incredible advisors, Professor Michael A. Bender and Professor

Joseph S.B. Mitchell for all their support, patience, encouragement and guidance throughout

the past six years.

I am deeply grateful to Michael for his great lessons on good academic writing, giving pre-

sentations, and thinking about research problems. I enjoyed our long chats about algorithms

and beyond it: books, movies, cooking, and everything else.

I am also very grateful to Joe for being an incredible teacher; everything I know about

computational geometry I have learned from him. I also learned from him the value of

academic integrity, thoroughness and persistence in research.

I would like to express my sincere gratitude to Professor Jie Gao. Though Jie was not

my academic advisor, through most of my PhD career, she acted like one to me. I am deeply

indebted to her as I have learned from her how to seek interesting research problems, pursue

them with persistence and efficiently write about them. She is undoubtedly one of the most

professional, efficient and pleasant individuals I have had the privilege of knowing in my life.

I have also had the privilege of working with the incredibly smart and knowledgeable

Professor Rob Johnson. This dissertation and the cache-adaptive project in general would

have never happened if it wasn’t for him and his brilliant ideas. I am deeply grateful to him.

Micheal Bender introduced me to the research problems concerning cache-adaptivity in

the summer of 2012 and this dissertation is the outcome of a collaborative research project

done with a fantastic group of researchers including him, Professor Jeremy Fineman, Golnaz

Ghasemiesfeh, Professor Rob Johnson and Sam McCauley. I have learned from all of them

and I would like to thank them all sincerely.

My deep gratitude goes to brilliant Professors Grant Schoenebeck, Ker-I Ko, Ben Moseley

and Jing Chen, whom I have had the privilege of working with on projects that are not

included in this dissertation. I have learned a lot about social networks and stochastic

processes from Grant, computational complexity from Ker-I, scheduling algorithms from

Ben and game theory from Jing.

I have been very fortunate to meet amazing friends at Stony Brook— Moussa, Neda,

Mayank, Jon, Pablo and Akshay. They made my time here memorable and I hope that

our friendship continues in the future. I also would like to thank all my friends from the

algorithms lab and its frequent visitors. I had the privilege of working with some of them,

and I am regretful that I didn’t get to work with the others. I enjoyed the lively and colorful

environment of the lab and I hope it continues to be that way for the years to come.

ix

I also want to thank Cynthia Scalzo, the extremely delightful graduate secretary of the

computer science department, for all the help she has given me over the past six years.

Last but not least, I would like to express my deepest gratitude to my beloved Golnaz

and dearest parents, Robab and Asad, for all the selfless love and support they have given

me throughout my life. If it wasn’t for their encouragements and their beliefs in my abilities,

I wouldn’t have done any of this. I am truly blessed to have them all in my life.

Golnaz and I endured very difficult times at Stony Brook and if it wasn’t for her numerous

sacrifices in those circumstances, I wouldn’t have been be able to finish my studies. Golnaz

also acted as my best colleague as she was the one who opened my eyes to research problems

in social networks and we worked together on a couple of extremely fun papers.

x

Chapter 1

Introduction

Memory fluctuations are the norm on most computer systems. Each process’s share of

memory changes dynamically as other processes start, stop, or change their own demands

for memory. This phenomenon is particularly prevalent on multicore computers.

External-memory computations can especially suffer from these fluctuations. Examples

include:

∗ joins and sorts in a database management system (DBMS),

∗ irregular, I/O-bound shared-memory parallel programs,

∗ cloud computing services running on shared hardware,

and essentially any external-memory computation running on a time-sharing system.

Database and scientific computing researchers and practitioners have recognized this

problem for over two decades [18, 41, 42], and have developed many sorting and join algo-

rithms [56, 43, 44, 57, 58, 32] that offer good empirical performance when memory changes

size dynamically. However, most of these algorithms are designed to perform well in the

common case, but they perform poorly in the worst case [6, 7].

In contrast to this reality, most of today’s performance models for external-memory com-

putation assume a fixed internal memory size M (see, e.g., [51]) and hence algorithms de-

signed in these models cannot cope when M changes. This means that most external-memory

algorithms cannot take advantage of memory freed by the departure of other processes, and

they can begin thrashing if the system takes back too much memory.

Thus, there is a gap between the state of the world, where memory fluctuations are

the rule, and today’s tools for designing and analyzing external-memory algorithms, which

assume fixed internal-memory sizes.

1

Barve and Vitter [6, 7] took the first major step towards closing this gap by showing that

worst-case, external-memory bounds are possible in an environment where RAM changes

size. Barve and Vitter generalized the DAM model [1] to allow the memory size M to

change periodically. They give worst-case optimal algorithms for sorting, FFT, matrix mul-

tiplication, LU decomposition, permutation, and buffer trees. However, their algorithms are

quite complicated to describe, and possibly more complicated to implement.

On the other hand, the empirically efficient adaptive algorithms do not have theoretical

performance bounds and are not commonly used in today’s DBMSs, even though the prac-

tical need for such algorithms has, if anything, increased. We attribute this lacuna to the

difficulty of designing, analyzing, and implementing memory-adaptive algorithms.

We define the cache-adaptive (CA) model, an extension of the DAM [1]1 and ideal

cache [31, 47] models. The CA model describes systems in which the available memory to

a process/algorithm can change dynamically.

We show that cache adaptivity is sometimes achievable via more manageable algorithms,

by leveraging the cache-oblivious technology [31, 47]. Cache-oblivious algorithms are not

parameterized by the memory hierarchy, yet they often achieve provably optimal performance

for any static hierarchy. We characterize how these algorithms adapt when the memory

changes dynamically.

We put forward analytic tools that simplify the analysis of algorithms in the cache-

adaptive model. We exhibit this simplicity by studying several classes of cache-oblivious

algorithms in the cache-adaptive setting.

∗ We characterize the optimality criteria of recursive cache-oblivious algorithms that

adhere to a Master-Method [25] style of recursion, which we call (a, b, c)-regularity.

Through this analysis, we prove the optimal cache-adaptivity of a number of most

useful cache-oblivious algorithms such as the cache-oblivious in-place näıve matrix

multiplication algorithm of Frigo et al. [31], the cache-oblivious Floyd-Warshall All

Pairs Shortest Paths algorithm of Park et al. [45] and cache-oblivious matrix transpose

algorithm of Frigo et al. [31].

∗ We generalize this analysis to handle non-homogeneous recursions of the Akra-Bazi

form [2] and even collections of multiple/mutually recursive algorithms. We offer a gen-

eral recipe for figuring out whether a recursive algorithm is optimally cache-adaptive.

We use this recipe to show the optimal cache-adaptivity of mutually recursive algo-

rithms such as the cache-oblivious dynamic programming algorithms of Chowdhury

1Also called the external-memory (EM) or I/O model.

2

and Ramachandran [21] for Longest Common Subsequence (LCS) and Edit Distance

problems and the cache-oblivious Jacobi Multipass Filter Algorithm of Prokop [47].

∗ Our analytic techniques work for algorithms that do not adhere to the general recursion

forms. As an example, we use them to exhibit that the cache-oblivious Fast Fourier

Transform (FFT) algorithm of Frigo et al. [31] is a O(log log) factor from being optimal

in the cache-adaptive model.

∗ We also establish that the cache-oblivious Lazy Funnel Sort (LFS) algorithm of Bro-

dal and Fagerberg [15], which falls outside the recursive classes described above, is

optimally cache-adaptive.

∗ We establish that cache-obliviousness does not always lead to cache-adaptivity, by

proving that a variation of the cache-oblivious näıve matrix multiplication algorithm

of Frigo et al. [31], MM-Scan, that is optimal in the DAM model, is a Θ(logN) factor

away from being optimal in the cache-adaptive model when solving problem instances

of size N .

Alongside studying algorithms, we study page replacement policies. We prove that the

online Least Recently Used (LRU) policy with resource augmentation is competitive with the

optimal policy in the CA model. We also establish that Belady’s Longest Forward Distance

(LFD) [8] policy is an optimal offline page replacement policy in the CA model.

The memory-adaptive model of Barve and Vitter [6] allows algorithms to know about

the future memory allocations a number of steps ahead. We characterizes the performance

of optimal algorithms designed in their model in our cache-adaptive setting by showing that

if those algorithms are given roughly twice as much knowledge about the future memory

allocations, they remain optimal in the cache-adaptive setting.

Because cache-oblivious algorithms are well understood, frequently easy to design, and

widely deployed, there is hope that provably good cache-adaptive algorithms can be deployed

in practice. We hope that our analyses gives algorithm designers clear guidelines for creating

optimally cache-adaptive algorithms.

1.1 Memory Hierarchy Models

Numerous memory models have been proposed to analyze the performance of external mem-

ory algorithms. Here, we give a summary of a few of the most relevant memory models.

Then, we briefly introduce the cache-adaptive model of computation. A thorough exposi-

tion of this model is presented in chapter 2.

3

The DAM model of computation In the DAM model of computation [1], the system

consists of a two-level memory hierarchy, comprising an internal memory of size M and an

external memory that is arbitrarily large. Data is transferred between the memory and disk

in chunks of fixed size B. Figure 1.1 gives a schematic view of the DAM model. A DAM

algorithm manages its own page replacement, and the internal memory is fully associative.

In the DAM model, in-memory computation comes for free, and performance is measured

by the number of I/Os or block transfers, which serves as a proxy for running time. Thus,

in each time step2 of the algorithm one block is transferred between memory and disk.

The DAM model has been the most successful model for analyzing external memory algo-

rithms for nearly four decades. DAM is not only a simple and elegant theoretical framework

that has harbored the conception of hundreds of algorithms and data structures, but also

is a very good and practical approximation of the Input/Output (I/O) communication cost

between internal and external memories. The practicality and widespread usage of exter-

nal memory algorithms in real industrial computation systems is a testament to the later

claim. For comprehensive surveys on external memory algorithms and data structures see

[50, 51, 3, 4].

Figure 1.1: The DAM model of computation.

The ideal-cache model A cache-oblivious algorithm [31] is analyzed using the ideal-

cache model [31, 47], which is the DAM model augmented to include automatic, optimal

page replacement. The algorithm is not parameterized by M or B, but it is analyzed in

terms of M and B. Figure 1.2 gives a schematic view of the ideal-cache model. The beauty

of this restriction is that an optimal cache-oblivious algorithm is simultaneously optimal for

any fixed choice of M and B.

2Often when we write external-memory and cache-oblivious algorithms, we avoid the word “time” and

express performance in terms of I/Os. In the cache-adaptive context, we prefer to use the word ”time step”

explicitly.

4

Automatic page replacement in the ideal-cache model is necessary because the algorithm

has no knowledge of B or M . The optimal page replacement assumption is justified since

the Least Recently Used (LRU) page replacement policy is constant-competitive when given

a constant memory augmentation [49].

Figure 1.2: The ideal-cache model of computation.

Interested readers can consult [26] for a nice survey of cache-oblivous algorithms. See [16,

10] for discussions on the limits of cache-obliviousness.

The memory-adaptive model Barve and Vitter [7] generalize the DAM model to allow

the memory size M to change periodically. They assume that the size of the available

memory to the external memory algorithm changes in a sequence of allocation phases. In

each allocation phase, Si, the algorithm is given Si blocks of memory with 2Si available I/Os.

The algorithm is given explicit knowledge about the current and the next sizes of allocation

phases, and the number of I/Os left in the current phase.

Unfortunately, since its conception, the memory-adaptive model of Barve and Vitter has

not seen much follow-up work.

The cache-adaptive model The cache-adaptive (CA) model extends the DAM and

ideal-cache models. In the CA model, the memory size is not fixed; it can change during an

algorithm’s execution. We attribute the changes to the memory size to arrival/departure of

other asynchronous processes in the system under consideration (See fig. 1.3).

As with the DAM model, computation is free and the performance of algorithms is

measured in terms of I/Os. Figure 1.4 gives a schematic view of the cache-adaptive model.

As in the ideal-cache model, when we consider a cache-oblivious algorithm in the CA model,

we assume that the system manages the content of the memory automatically. But, non-

oblivious algorithms can manage the content of memory on their own.

5

Figure 1.3: The changes in memory size are attributed to the arrival/departure of other

asynchronous process in the system.

The memory profile is the function m : N→ N, which indicates the size, in blocks, of

the memory at the time of the tth I/O.3 The memory profile in machine words is the

function M(t) = Bm(t).

We place no restrictions on how the memory size changes from one I/O to the next (unlike

previous approaches [6]). However, since an algorithm can only load one block into memory

per time step, it may not be able to take advantage of all available memory immediately.

Thus, we assume that memory only increases by 1 block per time step, i.e. that

m(t+ 1) ≤ m(t) + 1. (1.1)

When the size of memory decreases, a large number of blocks may need to be written back

to disk, depending on whether the blocks are dirty. In this works, we do not charge these

write-backs to the application.

The cache-adaptive model assumes that an algorithm can query the current size of mem-

ory, m(t), at each time step t.

1.2 Previous Work

Barve and Vitter [7] generalize the DAM model to allow the memory size M to change

periodically. They assume that the size of the available memory to the external memory

3Throughout, we use the terms block and page interchangeably.

6

Figure 1.4: The cache-adaptive model of computation.

algorithm changes in a sequence of allocation phases. In each allocation phase, Si, the

algorithm is given Si blocks of memory with 2Si available I/Os. The algorithm is given

explicit knowledge about three variables:

∗ the current size of memory, Si,

∗ how many I/Os are left in this allocation phase,

∗ and the size of memory in the next allocation phase, Si+1.

They give optimal sorting, matrix multiplication, LU decomposition, FFT, and permuta-

tion algorithms. They also present a dynamically optimal (in an amortized sense) memory-

adaptive version of the buffer tree data structure [7]. Their algorithms and analyses are

complicated. Probably due to this complexity, their work has seen very little follow-up work

in more than 15 years.

Empirical studies of adaptivity have been carried out by Zhang and Larson [57] and Pang,

Carey, and Livny [43, 44] on memory-adaptive sorting and join algorithms. Other papers

discussing aspects of adaptivity include [6, 7, 18, 32, 41, 42, 44, 56, 58]. However, most of

these algorithms are designed to perform well in the common case, but they perform poorly

in the worst case as shown by Barve and Vitter [6, 7].

The notion of cache-obliviousness was proposed by Frigo et al. [47, 31]. Because cache-

oblivious algorithms can be optimal without resorting to memory parameters, they can be

uniformly optimal on unknown, multilevel memory hierarchies [31]. Consult [26] for a survey

of cache-oblivious algorithms. See [53, 38, 17, 31, 12, 11, 22, 20, 54, 30, 19] for discussions

of implementations and performance analysis of cache-oblivious algorithms. See [16, 10] for

discussions on the limits of cache-obliviousness.

Cache-oblivious programming has been used as a framework to design algorithms for

multicore systems. Blelloch et al. [13] define a class of recursive algorithms, HR, that per-

7

form well on multicore systems[13]. Cole and Ramachandran [23] define BP and HBP, two

classes of recursive cache-oblivious algorithms that also behave well on multicores. Blelloch,

Gibbons, and Simhadri [14] prove results for algorithms with low recursive depth. It is an

open research question to determine which of these classes are also cache-adaptive.

There are also paging results in different models where the memory size fluctuates. Pe-

serico [46] considers an alternative model for page replacement policies when the memory

size fluctuates. Peserico’s page-replacement model does not apply to the cache-adaptive

model, because the increases/decreases in the cache size appear at specific locations in the

page-request sequence, rather than at specific points in times.

Katti and Ramachandran consider page replacement polices for multicore shared-cache

environments [37]. Several authors have considered other aspects of paging where the size

of internal memory or the pages themselves vary [35, 5, 55, 33, 40, 39] e.g., because several

processes share the same cache. For example, [39] considers a model where the application

itself adjusts the memory size, and [35, 55] consider a model where the page sizes vary.

1.3 Thesis Contributions and Organization

We formally introduce the cache-adaptive model in chapter 2. We define the notion of a

memory profile that describes changes in allocations of memory to an algorithm over time.

We then argue that competitive optimality is the the natural choice for studying optimality

of algorithms in this model (see section 2.1).

Chapter 3 provides analytic tools for studying the behavior of algorithms in the cache-

adaptive model. We introduce square memory profiles, a class of profiles that are well-

behaved and easy to work with. We show that in most settings an analysis on square profiles

transfers to all memory profiles. It should be noted that the memory adaptive model of

Barve and Vitter [6] is completely defined on square profiles.

In section 3.2, we present an axiomatization of an algorithm’s progress in solving a

problem in the cache-adaptive model. We state almost all of our optimality criteria theorems

(in chapter 4) in terms of problems that have progress functions associated with them and

these progress functions should satisfy our axiomatization. Section 3.2 also defines the notion

of progress optimality. Progress optimality views a memory profile as distributing a resource

(memory) over time. In this perspective, an algorithm is optimally progressing if it uses this

resource at maximum (optimal) capacity most of the time.

Later in chapter 5, we provide tools to explicitly derive progress functions for problems.

To this end, we use machinery from lower bound proof techniques of the DAM model, like

the red-blue pebble game of Hong and Kung [34], the red pebble game of Savage [48], and

8

the information-tree lower bound technique of Aggarwal and Vitter [1]. The tools presented

in chapter 5 allow for a seamless porting of optimality analysis in the DAM model to the

optimality analysis in the cache-adaptive model.

In section 3.3, we prove that progress optimality on square profiles and progress optimality

on general profiles are equivalent in the cache-adaptive model. Since studying optimality

on square profiles is considerably simpler than studying it on general memory profiles, we

restrict our analysis to square profiles.

In section 3.4, we prove that if an algorithm is optimally progressing, then it is opti-

mally cache-adaptive in the CA model. However, it remains an open question whether all

competitively optimal algorithms are also optimally progressing in the CA model.

In chapter 4, we characterize optimality criteria for several classes of recursive cache-

oblivious algorithms. These classes include Master-Method-style recursions [25], Akra-Bazi-

style recursions [2] and classes of multiple/mutual recursions composed from Akra-Bazi style

functions. We offer a general recipe for figuring out whether a recursive algorithm is optimally

cache-adaptive.

Chapter 6 applies the recipe theorems proved in chapter 4 together with explicit progress

bounds derived in chapter 5 to exhibit the cache-adaptive optimality of several cache-

oblivious algorithms:

∗ the cache-oblivious in-place näıve matrix multiplication algorithm of Frigo et al. [31],

∗ the cache-oblivious Floyd-Warshall All Pairs Shortest Paths algorithm of Park et

al. [45],

∗ the cache-oblivious Jacobi Multipass Filter algorithm of Prokop [47],

∗ the cache-oblivious dynamic programming algorithms of Chowdhury and Ramachan-

dran [21] for Longest Common Subsequence (LCS) and Edit Distance problems,

∗ and the cache-oblivious matrix transpose algorithm of Frigo et al. [31].

In chapter 7, we establish that cache-obliviousness does not always lead to cache-adaptivity.

We prove that a variation of the cache-oblivious näıve matrix multiplication algorithm of

Frigo et al. [31], the MM-Scan algorithm, that is optimal in the DAM model, is a Θ(logN)

factor away from being optimal in the cache-adaptive model when solving problem instances

of size N .

In section 7.2, we show that the analytic techniques of chapter 4 can be used to analyze

algorithms that don’t fit in the general recipe theorem of chapter 4. As an example, we show

that the cache-oblivious FFT algorithm of Frigo et al. [31] is a O(log logN) factor away from

being optimal when solving problem instances of size N .

9

In chapter 8, we establish that the Lazy Funnel Sort algorithm of Brodal and Fager-

berg [15], which falls outside the recursive classes we have studied thus far, is optimally

progressing and cache-adaptive.

We study page replacement policies in the CA model in chapter 9. In section 9.1, we prove

that the online Least Recently Used (LRU) policy with resource augmentation is competitive

with the optimal policy in the CA model. We also show that Belady’s Longest Forward

Distance (LFD) policy [8] is an optimal offline policy in the CA model, see section 9.2.

In chapter 10, we study the notion of foresight into future allocations of memory. The

memory-adaptive model of Barve and Vitter [6] allows algorithm to know the future memory

allocations a number of steps ahead. We formalize this look-ahead mechanism by the notion

of k-prescience.

We show that any k-prescient algorithm that is optimal on square profiles is optimal on all

profiles if it is given 2k + 1-prescience. This result characterizes the performance of optimal

algorithms designed in the Barve and Vitter’s memory-adaptive model in our cache-adaptive

model.

Finally, in section 10.1 we exhibit that square profiles are adequately rich for studying

optimality of cache-oblivious algorithms in the cache-adaptive model.

10

Chapter 2

The Cache-Adaptive Model

The cache-adaptive (CA) model extends the DAM and ideal-cache models. As with the

DAM model, computation is free and the performance of algorithms is measured in terms

of I/Os. As in the ideal-cache model, when we consider a cache-oblivious algorithm in the

CA model, we assume that the system manages the content of the memory automatically.

But, non-oblivious algorithms can manage the content of memory on their own. In the CA

model, the memory size is not fixed; it can change during an algorithm’s execution.

Definition 2.1. The memory profile is the function m : N→ N, which indicates the size,

in blocks, of the memory at the time of I/O number t.1 The memory profile in machine

words is the function M(t) = Bm(t). 2

We assume that the memory profile never drops to 0 blocks, meaning that for all t,

m(t) ≥ 1 and M(t) ≥ B.

Definition 2.2. We say that a memory profile is usable if the increases are limited by 1

block per time step, i.e. that

m(t+ 1) ≤ m(t) + 1. (2.1)

We place no restrictions on how the memory size changes from one I/O to the next (unlike

previous approaches [6]). However, since an algorithm can only load one block into memory

per time step, it may not be able to take advantage of all available memory immediately.

Therefore, it suffices to work with usable profiles when analyzing algorithms in the cache-

adaptive model.

When the size of memory decreases, a large number of blocks may need to be written

back to disk, depending on whether the blocks are dirty. In this dissertation, we do not

1Throughout, we use the terms block and page interchangeably.
2Usually a machine word is considered to be the size of an integer number in the architecture of the

machine. In most of today’s architectures, an integer is 4 bytes.

11

charge these write-backs to the application, but we believe that the model can be extended

to do so.

In this work, we focus exclusively on memory-monotone algorithms, defined as follows.

Definition 2.3. An algorithm is memory monotone if it runs no more than a constant

factor slower when given more memory.

Memory monotonicity is used to rule out degenerate algorithms that use a fast algorithm

when given a non-square profile but a slow algorithm when given a square profile (see the

next section for the definition of a square profile). All cache-oblivious algorithms and almost

all “reasonable” DAM-model algorithms are memory monotone. Many paging algorithms

like LRU and Belady’s optimal offline paging algorithm [8] are also memory monotone. One

notable exception is the FIFO paging algorithm, which was recently shown not to be memory

monotone [9, 29].

Tall-Cache Assumption The performance bounds for cache-oblivious algorithms com-

monly rely on a so-called tall-cache assumption, which means that there is a constant

H(B), polynomial in B, such that the memory size has to satisfy M ≥ H(B). For example,

for cache-oblivious sorting or matrix transpose, H(B) = Θ(B2) [31]. We support these kinds

of analyses in the CA model as follows.

Definition 2.4. In the CA model, we say that a memory profile M is H-tall if for all

t ≥ 0, M(t) ≥ H(B).

Assumption 2.5. When we consider a H(B)-tall memory profile M , we assume without

loss of generality that M(0) = H(B).

2.1 Optimality in the Cache-Adaptive Model

Optimality in the CA model captures the spirit of optimality in the DAM model, but accom-

modates the complications presented by the changing memory size. Roughly speaking, an

algorithm is considered “asymptotically optimal” if its worst-case I/O performance is within

a constant factor of the best possible. In the DAM model, the memory size is static, so the

extra I/Os can go anywhere—granting the algorithm a constant factor more time and more

speed are equivalent. In contrast, the effectiveness of each I/O in the CA model varies with

the memory profile. Thus, granting an algorithm more time at the end is a nonstarter, be-

cause the memory profile could drop precipitously. The CA model instead defines optimality

by granting the algorithm extra speed.

12

Definition 2.6. Giving an algorithm A c-speed augmentation means that A may perform

c I/Os in each step of the memory profile.

Definition 2.7 (Speed-augmented profiles). If m is any memory profile, under c1-speed

augmentation m is scaled into the profile m′(t) = m(bt/c1c).

Definition 2.8. An algorithm A that solves problem P is competitively optimal in the

cache-adaptive model if there exists a constant c such that on all memory profiles and all

sufficiently large input size N , the worst-case running time of a c-speed augmented A is

better than the worst-case running time of any other (non-augmented) memory-monotone

algorithm.

Note that this notion of optimality requires an algorithm to outperform all other memory-

monotone algorithms, including non-oblivious algorithms that optimize cache usage by look-

ing ahead in the profile.

As in the DAM model, memory augmentation is needed to show that LRU is constant

competitive. We also use memory augmentation to simplify our analyses.

Definition 2.9. For any memory profile m, we define a c2-memory augmented version of

m as the profile m′(t) = c2m(t). Running an algorithm A with c2-memory augmentation

on the profile m means running A on the m′.

2.2 Justification for the Cache-Adaptive Model

The CA model is intended to capture performance on systems in which memory size changes

asynchronously in response to external events, such as the start or end of other tasks. Since

these events are asynchronous, changes in memory size should be pegged to wall-clock time.

We construct the CA model as an extension of the DAM model, i.e., the DAM model

is the special case that m(t) is static. The DAM model, however, has no explicit notion of

time. Instead, performance is measured by the number of I/Os. This I/O counting can be

reinterpreted as time, with an I/O taking unit time and computation taking 0 time. On

real systems, I/Os dominate computation, so the number of I/Os is a good approximation

to wall-clock time for I/O-bound algorithms.

In the CA model, we explicitly measure time in terms of I/Os. This is the same approach

adopted by Barve and Vitter [6]. For example, the arrival of a new process at a particular

time can be modeled by having memory drop after a certain number of I/O steps.

13

Page Replacement in the CA Model The CA model assumes that page replacement

is performed automatically by the system for cache-oblivious algorithms. We show that

optimal replacement can be simulated by a resource-augmented online LRU policy in the

CA model. We prove that LRU with 4-memory and 4-speed augmentation always completes

sooner than OPT (see section 9.1).

For all other non-oblivious algorithms in the cache-adaptive model, we assume that the

algorithm is in charge of performing the page replacement.

14

Chapter 3

Cache-Adaptive Analysis

In this chapter we provide analytic tools for studying the behavior of algorithms in the

cache-adaptive model.

3.1 Square Memory Profiles

We introduce a class of memory profiles called square profiles . Proving cache-adaptive

optimality on square profiles is easier and cleaner. Moreover, as we show multiple times

during this thesis, optimality on square profiles is extendable to all profiles.

Definition 3.1. A memory profile m is square if there exist boundaries 0 = t0 < t1 < . . .

such that for all t ∈ [ti, ti+1), m(t) = ti+1 − ti. In other words, a square memory profile is a

step function where each step is exactly as long as it is tall (see fig. 3.1).

We define an inner square profile m′ for a profile m by placing maximal squares below

m, proceeding left to right, as illustrated in fig. 3.1. The inner square boundaries are

the left/right boundaries of the squares in m′.

Definition 3.2. For a memory profile m, the inner square boundaries t0 < t1 < t2 < . . .

of m are defined as follows: Let t0 = 0. Recursively define ti+1 as the largest integer such

that ti+1 − ti ≤ m(t) for all t ∈ [ti, ti+1). The inner square profile of m is the profile m′

defined by m′(t) = ti+1 − ti for all t ∈ [ti, ti+1).

The following lemma enables us to analyze algorithms even in profiles where the memory

size drops precipitously. Intuitively, the lemma states that the (i+ 1)st interval in the inner

square profile is at most twice as long as the ith interval, and the available memory in

the original memory profile during the (i + 1)st interval is at most four times the available

memory in the ith interval of the inner square profile.

15

t

m(t)

ti ti+1 ti+2t∗i t∗i+1

ti+1 − ti
ti+2 − ti+1

2(ti+1 − ti)

(ti+1 − ti) + (ti+2 − ti)

m′(t)

4(ti+1 − ti)

Figure 3.1: The inner square profile of the memory profile m. The inner square boundaries

comprise ti, ti+1, and ti+2. The figure also illustrates the proof of lemma 3.3.

Lemma 3.3. Let m be a usable memory profile (see definition 2.2). Let t0 < t1 < . . . be the

inner square boundaries of m, and let m′ be the inner square profile of m.

1. For all t, m′(t) ≤ m(t).

2. For all i, ti+2 − ti+1 ≤ 2(ti+1 − ti).

3. For all i and t ∈ [ti+1, ti+2), m(t) ≤ 4(ti+1 − ti).

Proof. 1. By construction of m′ in definition 3.2.

2. By construction of the inner square boundaries in definition 3.2, for each i there exists

a t∗i ∈ [ti, ti+1] such that m(t∗i) = m′(ti) = ti+1− ti. Since m can only increase by one in

each time step, m(ti+1) ≤ m(t∗i)+(ti+1−t∗i). Substituting for m(t∗i) and because t∗i ≥ ti,

we obtain m(ti+1) ≤ 2(ti+1 − ti). Also by construction the inner square boundaries,

ti+2 − ti+1 ≤ m(ti+1), we must have ti+2 − ti+1 ≤ 2(ti+1 − ti).

3. Similarly, for all t ∈ [ti+1, ti+2), m(t) ≤ m(t∗i) + (t − t∗i) ≤ (ti+1 − ti) + (ti+2 − ti) =

(ti+1 − ti) + (ti+2 − ti+1) + (ti+1 − ti). Hence we get m(t) ≤ 4(ti+1 − ti).

16

3.2 Progress Bounds and Progress Optimality in the

Cache-Adaptive Model

In this section, we present an axiomatization of the notion of an algorithm’s progress in the

cache-adaptive model. In chapter 5, we show that lower bound proofs in the DAM model

could be used to derive explicit functions, which satisfy our axiomatization, for various

problems that we study. This allows for a seamless porting of DAM lower bounds into the

cache-adaptive model.

A problem has a progress bound if there exists (1) a progress requirement function

R(N) representing the amount of progress that an algorithm must make to solve a problem

of size N and (2) a progress limit function ρ(M) representing the most progress that

any algorithm can make when running on profile M .

Notation 3.4. We represent a memory profile of finite duration n as a string of integers

S0S1 · · ·Sn−1, meaning the profile has Si machine words i time steps after its start. String

concatenation is written as m1‖m2. We write �N to represent the profile S0 · · ·SdN/Be−1

where Si = N for all i. We also treat a profile M as a function, i.e., we write M(t)

to indicate the size of memory t time steps after the start of the profile. If t ≥ n, then

M(t) = 0.

We define an ordering on the profiles of finite duration. We use this ordering to compare

the progress of different memory profiles.

Definition 3.5. Let M and U be any two profiles of finite duration. We say that M is

smaller than U , M ≺ U , if there exists profiles L1, L2 . . . Lk and U0, U1, U2 . . . Uk, such

that M = L1‖L2 . . . ‖Lk and U = U0‖U1‖U2 . . . ‖Uk, and for each 1 ≤ i ≤ k,

(i) If di is the duration of Li, Ui is a profile with duration ≥ di.

(ii) As standalone profiles, Li is always below Ui.
1

Definition 3.6. A function ρ : N∗ → N is monotonically increasing if for any pair of

profiles M and U , if M ≺ U then ρ(M) ≤ ρ(U).

Definition 3.7. A monotonically increasing function ρ : N∗ → N is square-additive if

(i) ρ(�M) is bounded by a polynomial in M ,

(ii) ρ(�M1 ‖ · · · ‖�Mk
) = Θ(

∑k
i=1 ρ(�Mi

)).

1A memory profile is a function of time. A function f is below function g on interval I if f ≤ g on I.

17

Definition 3.8. A problem has a progress bound if there exists a monotonically increasing

polynomial-bounded progress-requirement function R : N→ N and a square-additive

progress limit function ρ : N∗ → N such that: For any profile M , if ρ(M) < R(N),

then no memory-monotone algorithm running under profile M can solve all problem instances

of size N .

We also refer to the progress limit function ρ simply as the progress function or

progress bound . The notion of progress is problem-specific.

Example 3.9. The external-memory sorting lower bound [1] says that, given M memory,

a comparison-based sorting algorithm can learn at most O(BM logM) bits of information

per I/O and must learn Ω(N logN) bits to sort. Thus, R(N) = Ω(N logN) and ρ(M) =

O (
∑∞

t=0BM(t) logM(t)).

Some progress bounds, e.g., for sorting, bound the maximum possible progress per I/O,

whereas others bound the maximum possible progress that can be made over multiple I/Os.

For example, the progress bound for standard matrix multiplication states that, given M

memory and M/B I/Os, no algorithm can perform more than O(M3/2) elementary multi-

plications [34, 36], see chapter 5 for a complete derivation of these two progress bounds.

Observation 3.10. If algorithm A has linear space complexity, then the amount of progress

R(N) that A must complete in order to solve a problem of size N is O(ρ(�N)).

In the cache-adaptive model, an algorithm is optimal if it can beat every other algorithm

using a constant speed augmentation (see definition 2.8).

A memory profile can be seen as a distribution of a resource (memory) over time. In this

interpretation, using the memory profile in an optimal capacity can be taken as a measure of

optimality. We define an algorithm to be optimally progressing if it always makes within

a constant factor of the maximum possible progress on a profile.

Definition 3.11. For an algorithm A and problem instance I we say a profile M of length

` is I-fitting if A requires exactly ` time steps to process input I on profile M . A profile

M is N-fitting if A, given profile M , can complete its execution on all instances of size N ,

and there exists at least one instance I of size N for which M is I-fitting.

Definition 3.12. An algorithm A for problem P is optimally progressing with respect

to ρ (or simply optimally progressing if ρ is understood) if, for every N-fitting profile M ,

ρ(M) = O(R(N)).

In section 3.4, we investigate the relationship between the competitive optimality (defi-

nition 2.8) and progress optimality (definition 3.12) notions in the cache-adaptive model. In

most parts of the current thesis, we work with the latter notion, as it is more intuitive and

much easier to work with.

18

3.3 Square Profiles are Adequately Rich for Studying

Progress Optimality

In this section, we exhibit that the class of all square profiles is adequately rich to capture

the intricacies of progress optimality analysis on general memory profiles. In other words,

analyzing progress optimality in the cache-adaptive model can be restricted to square profiles.

We exhibit this richness by proving two results. We first prove that the progress bound

of a profile M and its inner square profile M ′ are within a constant factor of each other (see

theorem 3.13 below). An immediate corollary of the above result is that if an algorithm

is optimally progressing on square profiles, then it is optimally progressing on all memory

profiles.

However, as an observant reader might have noticed, not all square profiles are usable

(see definition 2.2). We prove that for each square profile M , there exists a usable memory

profile U below M such that ρ(U) = Θ(ρ(M)) (see theorem 3.15 below).

Theorem 3.13. If ρ is square additive and M is a profile with inner square profile M ′, then

ρ(M) = Θ(ρ(M ′)).

Proof. Since ρ is monotonic and M ′(t) ≤ M(t) for all t, ρ(M ′) ≤ ρ(M). Let M ′
4,4 be the

4-speed and 4-memory augmented version of M ′. Since ρ is square-additive and ρ(�N) is

bounded by a polynomial in N , we have that ρ(M ′
4,4) = O(ρ(M ′)).

We prove that M ≺M ′
4,4, and by monotonicity of ρ we get that

ρ(M ′) ≤ ρ(M) ≤ ρ(M ′
4,4) = O(ρ(M ′)),

which means that ρ(M) = Θ(ρ(M ′)).

Let M [Si] denote the profile M restricted to the interval Si. Let k + 1 be the number

of squares in M ′. Define L1 = M [S1 ∪ S2], L2 = M [S3], . . . , Lk = M [Sk+1], and note that

M = L1‖L2‖ . . . ‖Lk. Also, define Ui to be a 4-speed 4-memory augmented version of square

Si and allow U ′k = Uk‖Uk+1. Notice that M ′
4,4 = U1‖U2‖ . . . Uk−1‖U ′k.

In order to prove that M ≺ M ′
4,4, we show that U ′k and each Ui, 1 ≤ i ≤ k − 1 satisfies

the two conditions of definition 3.5.

We start by considering U1 and L1. If M is H(B)-tall, by assumption 2.5 we have that

M(0) = H(B). By definition 3.2, we have that t1 = H(B) and since m(t + 1) ≤ m(t) + 1,

we have that for all t ∈ [0, t1), M(t) ≤ 2t1. Moreover, by lemma 3.3, we know that S2 is at

most twice as long as S1 and for all t ∈ [t1, t2), M(t) ≤ 4(t1 − t0) = 4|S1|. Hence, t2 ≤ 3t1,

and for all t ∈ [0, t2), M(t) ≤ 4|S1|. Because U1 is a 4-speed 4-memory augmented version

of S1, we have that (i) U1 has a longer duration than L1 = M [S1 ∪M2], and that (ii) L1 is

below U1.

19

Similarly, for each Ui, 2 ≤ i ≤ k, by lemma 3.3, we know that Si+1 is at most twice as long

as Si and for all t ∈ [ti+1, ti+2), M(t) ≤ 4(ti+1−ti) = 4|Si|. Because Ui is a 4-speed 4-memory

augmented version of Si, we have that (i) Ui has a longer duration than Li = M [Si+1], and

that (ii) Li is below Ui.

By repeating the above argument for Uk, we see that (i) Uk has a longer duration than

Lk = M [Sk+1], and that (ii) Lk is below Uk. This means that U ′k = Uk‖Uk+1 also satisfies

both of the above conditions.

Therefore, we have shown that M ≺M ′
4,4 and the statement of the theorem follows.

The immediate corollary of theorem 3.13 is that progress optimality on square profiles

results in progress optimality on all memory profiles.

Corollary 3.14. If an algorithm is optimally progressing on square profiles, then it is opti-

mally progressing on all memory profiles.

Other reincarnations of the argument of theorem 3.13 are used in chapter 9 in the analysis

of the LRU paging algorithm, and also in section 10.1 to show that competitive optimality

of cache-oblivious algorithms on square profiles transfers to competitive optimality on all

profiles.

M(t)

t

U(t)

W

Figure 3.2: The usable profile beneath each square profile.

Theorem 3.15. Let ρ be square additive. For every square memory profile M , there exists

a usable memory profile U below M such that, ρ(U) = Θ(ρ(M)).

Proof. Let M = �M1 ‖�M2 ‖ . . .�Mk
be any square profile. We construct a usable profile U

as follows. We allow �U1 = �M1 .

20

(i) For each i ≥ 2 if Mi ≤Mi−1, we let �Ui = �Mi
.

(ii) Otherwise if Mi > Mi−1, we let U grow by 1 block at a time until it reaches Mi.

Afterwards, we allow U(t) = Mi until the boundary of �Mi
ends.

See fig. 3.2 for an illustration. It is obvious that U ≺ M , so by monotonocity of ρ, we have

that ρ(U) ≤ ρ(M).

We now argue that ρ(U) = Ω(ρ(M)). To exhibit this, we show that there exist mutually

disjoint squares �Wi
, that all fit below U and for each i, �Wi

is at most 2 times shorter than

�Mi
. Since each �Wi

fits below U , we have that W ≺ U where W = �W1 ‖�W2 ‖ . . .�Wk
.

On the other hand, since ρ is square-additive, ρ is bounded by a polynomial and thus

ρ(�Wi
) = Θ(ρ(�Mi

)). Square-additivity of ρ also means that ρ(W) = Θ(ρ(M)). Since

ρ(W) ≤ ρ(U) the statement follows.

It remains to show that such �Wi
exist for each i. For each i, if �Ui = �Mi

(as in case (i)

above), we allow �Wi
= �Mi

. Otherwise (as in case (ii) above), we let �Wi
be a square that

is grown from the rightmost point of �Mi
diagonally to left until it touches U , see fig. 3.2.

Note that because U increases linearly at the beginning of �Mi
until it reaches Mi, the point

of �Wi
intersecting U is always on or above the diagonal of �Mi

. Therefore, the height of

Wi is at least 1/2 the height of Mi.

3.4 Progress Optimality vs. Competitive Optimality

In this section, we prove that if an algorithm is optimally progressing, then it is optimally

cache-adaptive (lemma 3.16) in the CA model. However, it remains an open question whether

all competitively optimal algorithms are also optimally progressing in the CA model.

Lemma 3.16. If an algorithm A is optimally progressing, then it is optimally cache adaptive.

Proof. Let N be a sufficiently large input size. Suppose M is an N -fitting profile for some

other algorithm E . With some (unknown and possibly Ω(1)) speed augmentation c, A can

solve all problems of size N on M ′, the inner square profile of M . Let M ′
c be the c-speed

augmented version of M ′, where c is chosen to be as small as possible, so that M ′
c is N -fitting

for A.

M ′
c replaces each square in M ′ with c squares of the same height, therefore by square-

additivity of ρ we have that

ρ(M ′
c) = cΘ(ρ(M ′)).

21

Figure 3.3: Bottomed-out nodes in the cache-oblivious analysis.

Since A is optimally progressing and M ′
c is N -fitting ρ(M ′

c) = O(R(N)). We have

ρ(M ′
c) = cΘ(ρ(M ′)) = O(R(N))

= cΘ(ρ(M)) by theorem 3.13.

On the other hand, since M is N -fitting for E , we have that ρ(M) ≥ R(N), so it must be

the case that c = O(1).

We have that with c = O(1) speed augmentation, A can solve all problems of size N in

M ′. Because M is always above its inner square profile M ′, and A is memory-monotone (ref.

to definition 2.3), A on M is no more than f = O(1) times slower than A on M ′. Therefore,

with cf = O(1) augmentation, A can solve all problems of size N on M and hence has a

running time no worse than E on M .

3.5 Recursions in the Cache-Adaptive Model

We analyze different types of recursive algorithms in the cache-adaptive model. Recursive

cache-oblivious algorithms have base cases of constant size. In contrast, their I/O complexity

is expressed by a recurrence, where the base case is a function of M or B.

The recurrence “bottoms out” at nodes in the recursion tree with input size at most

M . This is because once a subproblem is brought fully into memory, subsequent recursive

calls do not incur I/Os. We refer to such nodes as bottomed-out nodes; see fig. 3.3. The

number of block transfers needed to complete a bottomed-out node is usually linear in the

input size of the node.

Bottomed out nodes in a recursion tree in DAM are at the same depth (as long as the

tree has a regular structure) since M is fixed. In contrast, in the CA model, where the

22

Figure 3.4: Bottomed-out nodes in the cache-adaptive model.

memory size changes over time, the height of bottomed-out nodes can vary; see fig. 3.4. The

running time of a recursive algorithm in the CA model is influenced by the height of these

bottomed-out nodes in different periods of time.

When a cache-efficient recursive algorithm is not making recursive calls, the work it

does must be I/O efficient. We refer to this work as a linear scan . Note that under our

definition, a linear scan need not access a sequence of consecutive elements, as in a classical

linear scan. However, it must be efficient—accessing Ω(B) useful locations on average, plus

O(1) additional I/Os.

Definition 3.17. We say that an algorithm L is a linear scan of size ` if it accesses `

distinct locations, it performs Θ(`) memory references, and its I/O complexity is Θ(1+`/B).

This definition captures a wide variety of efficient cache-oblivious behaviors. Note that,

in the definition, a linear scan may not access every element of its input (e.g., a search for

a specific item in an array), it may not access the pages in sequential order (e.g., matrix

transpose), and the order of accesses can be data-dependent (e.g., the merge operation from

merge-sort).

Note further that the definition of a scan depends implicitly on the memory profile. For

example, a matrix transpose is a linear scan only when m is h-tall.

Definition 3.18. Algorithm A has space complexity f(N) if for all problems of size N ,

the number of distinct memory locations accessed by A while processing the input is Θ(f(N)).

23

Chapter 4

Optimality Criteria for Recursive

Cache-Oblivious Algorithms

In this chapter, we study optimality criteria for recursive cache-oblivious algorithms. In

section 4.1 we define several classes of recursive cache-oblivious algorithms. Later, we char-

acterize the optimality criteria for these classes of recursive algorithms in the cache-adaptive

model.

We prove algorithms are optimally (or sub-optimally) progressing by analyzing their

performance on their worst-case profiles, as defined below.

Definition 4.1. Algorithm A’s worst-case profile for inputs of size N among all

profiles that are λ-tall is

WA,N,λ = argmax{ρ(M) |M is an N-fitting, λ-tall profile}.

When λ is omitted, we assume that λ equals the tall-cache requirement for A, H(B),

WA,N = WA,N,H = argmax{ρ(M) |M is an N-fitting, H-tall profile}.

To bound the progress of WA,N , we bound the progress of its inner square profile. Theo-

rem 3.13 shows that they have asymptotically the same progress.

The following observation shows that ρ(WA,N) can’t be too small.

Observation 4.2. If A has linear space complexity, then ρ(WA,N) = Ω(ρ(�N)), because we

can construct an N-fitting profile that contains at least one square of size Θ(N).

4.1 Classes of Recursive Cache-Oblivious Algorithms

We now introduce (a, b, c)-regular algorithms. This general class comprises any algorithm

that recursively divides a problem of size N into a subproblems of size N/b, and then does

24

a linear scan of size Θ(N c).

Definition 4.3. Let a ≥ 1/b, 0 < b < 1, and 0 ≤ c ≤ 1 be constants. An algorithm is

(a, b, c)-regular if, for inputs of sufficiently large size N , it makes

(i) exactly a recursive calls on subproblems of size bN , and

(ii) performs Θ(1) linear scans before, in between or after recursive calls. The size of the

biggest linear scan is Θ(N c).

Definition 4.4. When the size of a linear scan in an invocation of an algorithm is ≤ B, we

refer to it as an overhead reference. An overhead reference costs Θ(1) I/Os.

Observation 4.5. As the recursion of a recursive algorithm deepens, the size of input de-

creases, and linear scans become smaller. Some of these linear scans might turn into overhead

references at the deeper levels of the recursion.

Also, all linear scans of size Θ(N0) = Θ(1) are overhead references.

Definition 4.6. Let f ≥ 1, 0 ≤ c ≤ 1, ai > 0, and 0 < bi < 1 be constants for i = 1, 2 . . . , f .

An algorithm A is a generalized regular (GR) algorithm if, on an input of size N ,

makes

(i) exactly ai recursive calls to subproblems of size biN ,

(ii) performs Θ(1) linear scans before, in between or after recursive calls. The size of the

biggest linear scan is Θ(N c).

We make use of the following notation throughout multiple proofs.

Notation 4.7. The linear scans of an invocation of a GR algorithm on an input of size x

can be categorized as:

• L1(x): d1 = Θ(1) linear scans before any of the subcalls.

• L2u(x): d2u = Θ(1) linear scans between subcall u and subcall u+ 1.

• L3(x): d3 = Θ(1) linear scans at the end of all subcalls.

The following tweak of the definition 4.6 allows us to model classes of algorithms with

multiple recursive subroutines that call each other. Examples of such algorithms include

the cache-oblivious longest-common-subsequence (LCS) algorithm [21], the cache-oblivious

dynamic programming edit-distance algorithm [21], and the Jacobi Multipass Filter algo-

rithm [47].

25

Definition 4.8. Let 0 ≤ cj ≤ 1 and fj ≥ 1 be constants for j = 1, . . . , e. Also let aji > 0,

and 0 < bji < 1 be constants for j = 1, . . . , e, and i = 1, . . . , fj. Algorithms A1, . . . , Ae are

generalized compositional regular (GCR) algorithms if, for all i, Aj on an input of

size N makes

(i) exactly aji calls to algorithm Aji on subproblems of size bjiN . Algorithm Aji is one

of A1, . . . , Ae.

(ii) performs Θ(1) linear scans before, in between or after its calls. The size of the biggest

linear scan is Θ(N cj).

Algorithms A1, . . . , Ae are perfect generalized compositional regular (PGCR) algorithms, if,

for every j, the size of all of Aj’s linear scans is Θ(N cj).

4.2 Structure of N-Fitting Square Profiles For Recur-

sive Algorithms

The worst-case profile WA,N , or its inner square profile, does not have to respect the recursive

structure of A. For example, squares can cross recursive boundaries, cover multiple recursive

invocations, span multiple linear scans, etc. Any analysis based solely on the recursive

structure of the algorithm must handle the fact that the profile may not nicely line up with

the algorithm.

To solve this problem, we first establish a mapping from squares of any N -fitting square

profile to recursive calls and linear scans performed by A.

Definition 4.9. When A executes on a square profile M(t), we say a square S of M over-

laps a linear scan L if at least one memory reference of L is served during S. Similarly,

we say S encompasses A’s execution on a subproblem if every memory reference A makes

while solving the subproblem is served during S. Finally, we say S contains an overhead

reference R if at least half of the references of R are served during S.

Definition 4.10. Let A1, . . . , Ae be generalized compositional regular (GCR) algorithms all

with linear space complexity. We say that a square profile M of length ` is N-chargeable

with respect to Aj, if every square S of M satisfies at least one of the following three

properties when M is considered with respect to Aj’s execution on any problem instance of

size N that takes exactly ` steps to process.

(i) S encompasses an execution of any of A1, . . . , Ae on a subproblem of size Θ(|S|).

26

(ii) S overlaps a linear scan of size Ω(|S|).

(iii) S contains Θ(|S|/B) overhead references.

The progress of an N -chargeable square profile with respect to Aj can be charged to

the recursive entities in Aj’s execution on problem instances of size N .

The following fundamental lemma shows that N -fitting square profiles of linear space

complexity regular algorithms (definition 4.3, definition 4.6 and definition 4.8) areN -chargeable.

Thus, we can use a charging scheme to bound the progress of WAj ,N by charging the squares

of WAj ,N to recursive entities in in Aj’s execution on problem instances of size N ; see theo-

rem 4.14.

Lemma 4.11. Let e be a constant and let A1, . . . , Ae be perfect generalized compositional

regular (PCGR) algorithms, all with linear space complexity. Then every N-fitting square

profile for Aj is N-chargeable with respect to Aj.

Proof. Let M be an N -fitting profile for Aj and let S be a square of M and let σ be the

sequence of memory references generated while solving a problem instance of size N for which

M is I-fitting. We prove that S must have one of the three properties in definition 4.10 with

respect to σ.

Let N ′ be such that every A1, . . . , Ae can solve problems of size less than or equal to

N ′ using at most |S|/3B I/Os and |S| memory. Since every A1, . . . , Ae has linear space

complexity, N ′ = Θ(|S|).
Let b = min{bji} = Θ(1). Note that every root-to-leaf path of the recursion tree must

contain a subproblem whose size is in the range [bN ′, N ′], so we can expand the recursion

tree to subproblems of size between bN ′ and N ′. Let E1, . . . , Et be the leaves of this partially

expanded recursion tree, so that each Ei corresponds to an execution of an Ai on a problem

of size between bN ′ and N ′.

General properties of linear scans As before, we use notation 4.7 to describe different

types of linear scans in the recursive structure of Aj. Let Φ be any subsequence of memory

references that does not contain a complete execution of any Ai. Thus Φ can contain only

• references generated by linear scans performed at the end of an execution of one of the

Ais (L3-type linear scans),

• references generated by an L2u-type linear scan between two recursive calls,

• references generated by linear scans performed at the beginning of an invocation of one

of the Ais (L1-type linear scans).

27

If Φ lies between two complete executions, then it may contain some number of L3-type

scans, followed by an L2-type scan, followed by some number of L1-type scans. If Φ consists

of references in σ before the first complete execution of any Ai, then it contain references

from only L1-type scans. If Φ follows the last complete execution of any Ai in σ, then it will

contain references from only L3-type scans.

Property (i) If the square S encompasses an execution of any of A1, . . . , Ae on a problem

of size at least bN ′, then we are done, since bN ′ = Θ(N ′) = Θ(|S|).

Properties (ii) and (iii) Suppose S does not encompass an invocation of Aj on a

subproblem of size at least bN ′. We show that S must either satisfy property (ii) or property

(iii). In this case, S can intersect at most two of the leaves Ei and Ei+1 of our partially

expanded recursion tree (one at the beginning and one at the end). Furthermore, by the

choice of N ′, these executions can occupy at most 2/3rds of the I/Os of S. Thus at least 1/3

the I/Os of S must be a contiguous sequence of memory references that does not contain a

complete execution of any Ai. Call this subsequence Φ.

Let Z1, Z2, Z3 be the set of linear scans of type L1, L2u, and L3, respectively, in Φ. Since

S does not encompass a subproblem, the linear scans in Z1 all belong to only one sequence of

L1-type slide-down moves on the recursion tree. Similarly, the linear scans in Z3 all belong

to only one sequence of L3-type climb-up moves in the recursion tree.

Let I(.) denote the I/O complexity of a set of linear scans and allow

z = max{I(Z1), I(Z2), I(Z3)}.

Since at least 1/3 of I/Os in S are overlapping linear scans, we have that z ≥ |S|/9B. There

are three cases to be considered.

Case of z = I(Z2) In this case Z2 is comprised of linear scans in only one L2u set.

Since A1, . . . , Ae are all perfect, all linear scans in L2u are of size Θ(Ny) for some constant y.

If y = 0, then all scans in L2u are overhead references and cost Θ(1) I/Os. Since, there are

only d2u = Θ(1) linear scans in L2u, we deduce that z = I(Z2) = Θ(1). Since z ≥ |S|/9B,

S contains d2u = Θ(|S|/B) overhead references and thus satisfies property (iii).

If otherwise y > 0, let E be the biggest linear scan in L2u. Because there are only

d2u = Θ(1) linear scans in L2u, then E is a linear scan of size Ω(z) = Ω(|S|). Thus, S would

satisfy property (ii).

28

Case of z = I(Z3) Here, Z3 is comprised of linear scans of type L3 from several

invocations of (possibly) different Aj algorithms. Let Lj3 denote the set of all L3 type linear

scans in Z3 that are executed in algorithm Aj’s invocations.

Let Lm3 be the set among all Lj3s with the biggest I/O cost and let Am be the algorithm

that produced these scans. Since there are e = Θ(1) compositional algorithms, we have that

I(Lm3) ≥ I(Z3)/e.

Let x1 ≤ · · · ≤ xk be the problem sizes solved by each of the invocations of Am that

generated one of the L3-type linear scans in Z3. Let Lm3 (xi) denote the linear scans generated

by the invocation of Am on problem of size xm. Let q = max{bji} (note that 0 < q < 1).

Note that, since A1, . . . , Ae are PGCR algorithms and the sequence of linear scans in L3

come from invocations of A1, . . . , Aj in exactly one sequence of climb-up moves, xi ≤ qk−ixk

for all i. Also, we have that

Lm3 = Lm3 (x1) ∪ Lm3 (x2) · · · ∪ Lm3 (xk).

If k = 1, then the analysis in case (z = I(Z2)) shows that S either satisfies property (ii)

or property (iii).

So, we assume that k > 1. Since Am is perfect, all linear scans in each L3
m(xi) are all of

size Θ(xcmi) for a constant cm.

If cm = 0, then all linear scans in L3
m are overhead references. Since each overhead

reference costs Θ(1) I/Os and I(L3
m) = Ω(|S|/B) there must be Ω(|S|/B) overhead references

in L3
m and S satisfies property (iii).

Otherwise, assume that cm > 0. By definition, each invocation of Am can only perform

a constant number of L3-type linear scans, so we can write I(L3
m) as:

I(L3
m) = I(L3

m(x1)) + I(L3
m(x2)) + · · ·+ I(L3

m(xk))

= Θ

(
1 +

xcm1
B

)
+ Θ

(
1 +

xcm2
B

)
+ · · ·+ Θ

(
1 +

xcmk
B

)
.

Let v be the biggest index such that the size of the biggest linear scan in L3
m(t) is ≤ B

for each 1 ≤ t ≤ v. We compare

σ1 = I(L3
m(x1)) + . . . I(L3

m(xv))

and

σ2 = I(L3
m(xv+1)) + . . . I(L3

m(xk)).

(a) If σ1 ≥ σ2, we argue that S must satisfy property (iii). By definition of v, we have

that all the linear scans in σ1 are overhead references and cost Θ(1) I/Os. Since we

have that σ1 ≥ I(L3
m)/2 = Ω(|S|/B), there must be Ω(|S|/B) overhead references in

L3
m(x1) ∪ L3

m(x2) . . . ∪ L3
m(xv).

29

(b) If σ2 > σ1, we argue that S must satisfy property (ii). In this case, we show that

I(L3
m(xk)) = Ω(|S|/B) and so L3

m(xk) is a linear scan of size Ω(|S|) overlapped by S.

By definition of v, we have that the biggest linear scan in L3
m(xv+1) is of size > B.

Because xi+1 ≥ xi/q for each i. we have that the biggest linear scan in L3
m(xt) has size

bigger than Ω(B) for v + 1 ≤ t ≤ k. Hence, we can write

σ2 = I(L3
m(xv+1)) + · · ·+ I(L3

m(xk)) = Θ

(
xcmv+1

B

)
+ · · ·+ Θ

(
xcmk
B

)
.

Consider the geometric series Ψ = (xk)
cm + (qxk)

cm + · · · + (qk−vxk)
cm with constant

coefficient (q)cm . Note that Ψ ≥∑k
t=v+1 x

cm
t , because xi ≤ qk−ixk. We have that

|L3
m(xk)| = Θ(xcmk) = Ω(Ψ) = Ω

(
k∑

t=v+1

xcmt

)
= Ω(Bσ2) = Ω(|S|).

Case of z = I(Z1) The analysis in this case is identical to the case of z = I(Z3).

We have established that each square S satisfies one of the three properties and the proof

is complete.

Definition 4.12. Let A1, . . . , Ae be a set of generalized compositional regular algorithms.

Let S be an overhead-containing square of an N-fitting profile for Aj. For each overhead

reference r in Aj, we let caller(r) be the call of any of A1, . . . , Ae that created the reference

r, and rank(r) be the input size of caller(r). Also we define

E(S) = {r|r is an overhead reference contained in S},
X(S) = caller

(
argmaxr∈E(S) rank(r)

)
.

X(S) is the highest rank invocation of any of A1, . . . , Ae that produced any of the overhead

references in S.

The following lemma bounds the size of squares of an N -chargeable profile which do not

satisfy property (i) nor property (ii) in definition 4.10.

Lemma 4.13. Let A1, . . . , Ae be a set of generalized compositional regular algorithms all with

linear space complexity and let q = max{bji}. Let M be an N-chargeable profile with respect

to Aj. Each square of M that does not satisfy property (i) nor property (ii) in definition 4.10

has size O
(
B log1/qX(S)

)
.

30

Proof. Let S be a square of M that does not satisfy property (i) nor property (ii). Because

M is N -chargeable with respect to Aj, we have that S must contain Θ(|S|/B) overhead

references.

Let b = min{bji} = Θ(1), and expand the recursion to subproblems of size between bN ′

and N ′, where N ′ is chosen so that every A1, . . . , Ae can solve problems of size less than or

equal to N ′ using at most |S|/3B I/Os and |S| memory. Since every A1, . . . , Ae has linear

space complexity, N ′ = Θ(|S|).
S does not satisfy property (i), so it can not encompass a subproblem of size N ′. The

overhead references contained in S belong to the sequence of references between at most two

invocations of any of A1, . . . , Ae on subproblems of size N ′.

X(S) is the highest rank invocation of any of A1, . . . , Ae that produced any of the over-

head references in S. The size of the biggest subcall for any A1, . . . , Ae on a subproblem of

size X(S) is qX(S). This means that between any two invocations of any of A1, . . . , Ae on

two subproblems that are overlapped by S there are at most O(log1/qX(S)) linear scans,

and consequently, overhead references.

Since S contains Θ(|S|/B) overhead references, and there can be at most O(log1/qX(S))

overhead references contained in S, we have we have that |S1| = O(B log1/qX(S)).

4.3 Optimality Criteria For Generalized Compositional

Regular Algorithms

In this section, we present theorems on the optimality criteria for generalized compositional

regular (GCR) algorithms.

Theorem 4.14’s statement is complicated not because memory is changing size, but be-

cause it covers a wide variety of recursive forms, including algorithms that have several

mutually recursive functions.

Theorem 4.14. Let 0 ≤ cj ≤ 1 and fj ≥ 1 be constants for j = 1, . . . , e. Also let aji > 0,

and 0 < bji < 1 be constants for j = 1, . . . , e, and i = 1, . . . , fj. Suppose A1, . . . , Ae

are generalized compositional regular algorithms all with linear space complexity, tall-cache

requirement H(B), and progress bound ρ.

Let b = max{bji} and λ ≥ H(B) be constants. Then there exist functions T1, . . . , Te;
U1, . . . ,Ue; V1, . . . ,Ve such that the progress of the worst-case λ-tall profile for Aj, ρ(WAj ,N,λ),

is O(Tj(N) + Uj(N) + Vj(N)) and the Tj, Uj and Vj satisfy the recurrences

31

Tj(N) =


max

ρ (�N) ,

fj∑
i=1

ajiTji(bjiN)

 if λ < N

Θ(ρ(�λ)) if N ≤ λ;

Uj(N) =



Θ (ρ(�Ncj)) +

fj∑
i=1

ajiUji(bjiN) if N = Ω(λ) and N cj = Ω(λ)

fj∑
i=1

ajiUji(bjiN) if N = Ω(λ) and N cj 6= Ω(λ)

0 if N 6= Ω(λ);

Vj(N) =



fj∑
i=1

ajiVji(bjiN) if B log1/bN = Ω(λ) and N cj > B

Θ(ρ(�B log1/bN)) +

fj∑
i=1

ajiVji(bjiN) if B log1/bN = Ω(λ) and N cj ≤ B

0 if B log1/bN 6= Ω(λ).

where Tji, Uji and Vji are one of T1, . . . , Te; U1, . . . ,Ue; V1, . . . ,Ve depending on the structure

of Aj.

Theorem 4.15 tells us when the bound given in theorem 4.14 is tight.

Theorem 4.15. Suppose A1, . . . , Ae are generalized compositional regular algorithms with

linear space complexity, tall-cache requirement H(B), and progress bound ρ. Let λ be equal

to max{H(B), (B log1/bB)1+ε}. When for all j, cj = 1, we have that Vj(N) = 0 and

ρ(WAj ,N,λ) = Θ(Tj(N) + Uj(N)).

Theorems 4.14 and 4.15 give us a characterization for when GCR algorithms are optimally

progressing with respect to progress function ρ and progress requirement function R as

follows:

• Solve the recurrence in theorem 4.14 to obtain Tj(N)+Uj(N)+Vj(N), an upperbound

on the progress that any algorithm can make on Aj’s worst-case N -fitting profile.

• If Tj(N) + Uj(N) + Vj(N) = O(R(N)), then Aj is optimally progressing and, by

lemma 3.16, optimally cache adaptive.

• If Tj(N)+Uj(N)+Vj(N) 6= O(R(N)) then, Aj is O ((Tj(N) + Uj(N) + Vj(N))/R(N))

away from being optimally progressing and cache-adaptive. In this case, if all cj = 1,

then Aj is Θ((Tj(N) + Uj(N))/R(N)) away from being optimally progressing.

32

Proof of Theorem 4.14

Lemma 4.11 shows that all N -fitting profiles for perfect generalized compositional regular

algorithms are N -chargeable. However, algorithms A1, . . . , Aj are not necessary perfect

(according to definition 4.8), so lemma 4.11 does not apply to them.

We modify A1, . . . , Aj to get padded algorithms A′1, . . . , A
′
e and exhibit that the

padded algorithms are PGCR algorithms. Each A′j operates exactly in the same way as Aj,

except that on in each invocation of size Y , A′j pads all linear scans of Aj to be as big as

the biggest linear scan in Aj’s invocation of size Y , Θ(Y cj). The padding operation can be

done by scanning an auxiliary array of appropriate size.

We argue that ρ(WAj ,N,λ) ≤ ρ(WA′j ,N,λ
). We take WAj ,N,λ as a profile and modify it to

get a profile Φj and show that Φj is N -fitting for A′j. Consider WAj ,N,λ and in a bottom-up

manner extend squares of WAj ,N,λ so that these squares are big enough to serve all padded

linear scans in A′j. Since WAj ,N,λ is N -fitting for Aj, by definition Z ′j is N -fitting for A′j. By

definition 3.5 we have that WAj ,N,λ ≺ Φj. Hence, by definition 3.6

ρ(WAj ,N,λ) ≤ ρ(Φj) ≤ ρ(WA′j ,N,λ
). (4.1)

Let Mj be any λ-tall N -fitting profile for A′. We bound the progress of Mj thus bounding

ρ(WA′j ,N,λ
) from above. Lemma 4.11 shows that Mj is N -chargeable.

IfN ≤ λ, because A′j is PCGR and has linear space complexity, if one unrolls the recursion

of A′j a constant number of times, whole executions of subproblems can be completed inside

a single square of size λ. It follows that Mj must consist of Θ(1) squares of size λ, so

ρ(Mj) = Θ(ρ(�λ)) = Θ(Tj(N)) for any j = 1, . . . , e.

Now, let N > λ. Because Mj is N -chargeable, every square S in Mj satisfies one of the

three properties in definition 4.10.

Charging the subproblem-encompassing squares First, we charge the progress

of each subproblem-encompassing square to the covered subproblem. When a square S is

charged to a subproblem Z, all subproblems of Z are encompassed by S. Because A′j has

linear space complexity, S has size Θ(|Z|). Therefore, the progress of all squares charged to

subproblems is bounded by Θ(Tj(N)) where Tj(N) satisfies the recurrence

Tj(N) =


max

ρ (�N) ,

fj∑
i=1

ajiTji(bjiN)

 if λ < N

Θ(ρ(�λ)) if N ≤ λ.

33

Charging the linear-scan-overlapping squares If a square S overlaps a linear scan

L of size Ω(|S|) executed by the top-level invocation of A′j and L is the biggest linear scan

overlapped by S, we charge it to L. At the top-level invocation of A′j, all linear scans are of

size Θ(N cj).

We develop a recursive relation Uj(N) that bounds the total progress of all linear-scan-

overlapping squares for an invocation of A′j on a problem instance of size N .

Let N0 be the size of input in an invocation for A′j. If N0 6= Ω(λ), then because Mj is λ-

tall, no square of Mj can be charged to a linear scan executed in any part of the subproblem

A′j(N0), as squares are much bigger than these linear scans. Therefore, Uj(N0) = 0.

Now consider an input size of N1 = Ω(λ) for A′j. If N
cj
1 6= Ω(λ) , then because Mj is

λ-tall, no square in Mj can be charged to a linear scan executed in the top level invocation

of A′j(N1). However, other subcalls of A′j might execute linear scans that are large enough.

Therefore, Uj(N1) =
∑fj

i=1ajiUji(bjiN1).

For larger N , multiple squares may have their progress charged to a single linear scan

of size |L|, but all but at most two of those squares will be contained entirely within the

linear scan. Thus, the total size of all the squares charged to a single linear scan of size |L|
will be Θ(|L|). Suppose S1, . . . , Sk are the squares charged to L. Since ρ(�X) = Ω(X), we

must have that
∑
ρ(Si) = O(ρ(�∑

|Si|)) = O(ρ(�|L|)). Thus the progress of all the squares

charged to linear scans executed by the top-level invocation of A′j on a problem instance of

size N can be upper-bounded by Θ (ρ(�Ncj)).

Therefore, the progress of all squares charged to linear scans is upperbounded by Uj(N)

where

Uj(N) =



Θ (ρ(�Ncj)) +

fj∑
i=1

ajiUji(bjiN) if N = Ω(λ) and N cj = Ω(λ)

fj∑
i=1

ajiUji(bjiN) if N = Ω(λ) and N cj 6= Ω(λ)

0 if N 6= Ω(λ).

Charging the overhead-containing squares Finally, we charge each overhead-

containing square S1 to the recursive call that corresponds to the subproblem X(S1), the

highest rank subproblem that produced any of the overhead references in S1 (see defini-

tion 4.12). By lemma 4.13, the size of each overhead-containing square, S1, of Mj that

is not subproblem-encompassing nor linear-scan-overlapping is O(B log1/bX(S1)).

If cj = 0, then all linear scans of A′j are overhead references. Otherwise, A′j’s linear scan

convert to overhead references when N cj ≤ B.

34

We develop a recursive relation Vj(N) that bounds the total progress of all overhead-

containing squares for an invocation of A′j on a problem instance of size N . At the top-level

invocation of A′j of size N , we only account for overhead-containing squares whose highest

rank overhead are produced at the current invocation. Hence, their size is O(B log1/bN).

Let N3 be the size of input in an invocation for A′j. If B log1/bN3 6= Ω(λ), then because

Mj is λ-tall, no square of Mj can be charged to the recursive call A′j(N3), because squares are

much bigger than a series of overhead references whose highest ranked reference is executed

in A′j(N3). Therefore, Vj(N3) = 0.

Now consider N4 to be an input size for A′j, such that B log1/bN4 = Ω(λ). If N
cj
4 6= O(B),

then the linear scans in the top-level invocation of A′j are not overhead references. However,

other subcalls of A′j might execute overhead references. Hence, Vj(N4) =
∑fj

i=1ajiVji(bjiN4).

Since each invocation ofA′j executes Θ(1) overhead references, the progress of all overhead-

containing squares that contain an overhead executed by the top-level invocation of A′j can

be upper-bounded by Θ(ρ(�B log1/bN)). Therefore, the progress of all overhead-containing

squares is upperbounded by Vj(N) where

Vj(N) =



fj∑
i=1

ajiVji(bjiN) if B log1/bN = Ω(λ) and N cj > B

Θ(ρ(�B log1/bN)) +

fj∑
i=1

ajiVji(bjiN) if B log1/bN = Ω(λ) and N cj ≤ B

0 if B log1/bN 6= Ω(λ).

We have charged squares of every type in Mj. Therefore, by square-additivity of ρ we have

that ρ(Mj) = O(Tj(N) + Uj(N) + Vj(N)).

Since, Mj can be any N -fitting profile for A′j, we have shown that

ρ(WAj ,N,λ) ≤ ρ(WA′j ,N,λ
) by eq. (4.1),

≤ O(Tj(N) + Uj(N) + Vj(N)),

which finishes the proof of the theorem.

Proof of Theorem 4.15

We first prove that when cj = 1, and Mj is λ-tall we have that for all j, Vj(N) = 0. Note

that when N1 ≤ B, B log1/bN ≤ B log1/bB. Because λ ≥ (B log1/bB)1+ε, we have that

B log1/bN 6= Ω(λ). Therefore the middle case in Vj(N) never happens for any of Vj(N)s.

Thus for all j, Vj(N) = 0.

35

We describe how to build an N -fitting profile for Aj, Mj, such that ρ(Mj) = Θ(Tj(N) +

Uj(N)). Consider Θ(Tj(N) +Uj(N)) and among the two terms in the Θ, pick the term that

is bigger.

First, assume that Uj(N) is bigger. We construct an N -fitting profile W j
N such that

ρ(W j
N) = Θ(Uj(N)) as follows. Memory starts at λ. Whenever the algorithm begins a linear

scan of size L ≥ 2λ with memory size λ, it will necessarily incur at least (L−λ)/B = Θ(L/B)

cache misses, no matter how memory changes size during the linear scan. Thus we can

increase the size of memory to O(L) at the first page fault during the linear scan and

decrease it to size λ on the last page fault during the scan, which will be Θ(L/B) time steps

later. Thus, W j
N will contain a square of size Θ(L) for every linear scan of size L = Ω(λ)

performed during the execution of Aj on a problem of size N . When all linear scans of Aj

are finished, the profile W j
N continues at height λ until it becomes N -fitting for Aj.

Since each Ai performs linear scans of size N cj on inputs of size N , square-additivity and

monotonicity of ρ entail that ρ(W j
N) = Ω(Uj(N)).

Now assume that Tj(N) is bigger. We first construct a slightly different recurrence on

functions T ′j(N), show that T ′j(N) = Θ(Tj(N)), and then construct a profile W j
N such that

ρ(W j
N) = Θ(T ′j(N)).

Let sj(N) be the space complexity of Aj on problems of size N . Let b = min{bji}. Let

T ′j(N) =


max

ρ(�N ,
fj∑
i=1

ajiT ′ji(bjiN)

 if sj(N) ≥ 2λ/b

Θ(ρ(�λ)) otherwise.

Since Tj and T ′j differ only in a constant factor of the sizes of their base cases, T ′j(N) =

Θ(Tj(N)).

T ′j(N) is the max among a finite number of terms. Take any term, Φ, that is maximal,

i.e. T ′j(N) = Φ. Because T ′j(N) is based on the recursive structure of Aj, Φ is the sum of

terms ρ(�n1) + · · · + ρ(�nt) corresponding to different subproblems of A1, . . . , Aes of sizes

n1, . . . , nt such that no two subproblems are included in one another. Note that, for each of

these problems, their space complexity is at least 2λ, by the definition of T ′j.
Given these non-overlapping subproblems of size n1, . . . , nt, we construct W j

N as follows.

Memory starts out at size λ. Whenever the algorithm begins solving a problem of size ni

with λ memory, it will necessarily incur Θ(nj/B) page faults because the problem’s space

complexity is linear (and at least 2λ by definition of T ′j(N)). Thus we can increase memory

to size Θ(nj) on the first page fault during the algorithms execution on the problem, and

decrease it to size λ on the last page fault during the algorithm’s execution on the problem,

which must be at least Θ(nj/B) time steps later. After all subproblems in Φ are finished,

36

profile W j
N is continued at height λ until W j

N becomes N -fitting for Aj.

By square-additivity and monotonicity of ρ, we have that

ρ(W j
N) = Ω(ρ(�n1) + · · ·+ ρ(�nt)) = Ω(T ′j(N)) = Ω(Tj(N)).

4.4 Optimality of Generalized Regular Algorithms

As a corollary of theorem 4.14, we get the following theorem for generalized regular (GR)

algorithms.

Theorem 4.16. Let 0 ≤ c ≤ 1 and f ≥ 1, ai > 0, and 0 < bi < 1 be constants for

i = 1, . . . , f . Suppose A is a generalized regular algorithm with linear space complexity,

tall-cache requirement H(B), and progress bound ρ.

Let b = max{bi} and λ ≥ H(B) be constants. Then there exist functions T ,U ,V such

that the progress of the worst-case λ-tall profile for A, ρ(WA,N,λ), is O(T (N)+U(N)+V(N))

and the T , U and V satisfy the recurrences

T (N) =


max

{
ρ (�N) ,

f∑
i=1

aiT (biN)

}
if λ < N

Θ(ρ(�λ)) if N ≤ λ;

U(N) =



Θ (ρ(�Nc)) +

f∑
i=1

aiU(biN) if N = Ω(λ) and N c = Ω(λ)

f∑
i=1

aiU(biN) if N = Ω(λ) and N c 6= Ω(λ)

0 if N 6= Ω(λ);

V(N) =



f∑
i=1

aiV(biN) if B log1/bN = Ω(λ) and N c > B

Θ(ρ(�B log1/bN)) +

f∑
i=1

aiV(biN) if B log1/bN = Ω(λ) and N c ≤ B

0 if B log1/bN 6= Ω(λ).

Moreover, when c = 0, U(N) = 0.

Proof. The statement of the theorem is derived directly from theorem 4.14.

We show that when c = 0, U(N) = 0. Because λ ≥ H(B) ≥ B, when c is equal to 0 we

have that N c 6= Ω(λ) and the first case in U(N) does not happen. Hence U(N) = 0.

37

The following theorem is a corollary of theorem 4.15.

Theorem 4.17. Suppose A is a generalized regular algorithm with linear space complexity,

tall-cache requirement H(B), and progress bound ρ. Let λ = max{H(B), (B log1/bB)1+ε}.
When c = 1, V(N) = 0 and ρ(WA,N,λ) = Θ(T (N) + U(N)).

4.5 Optimality Criteria for (a, b, c)-Regular Algorithms

In this section we exhibit that when ρ is determined, for example when ρ(�X) = Θ(Xp) for

a constant p, it is easy to utilize theorem 4.16 to derive an explicit term for the progress of

worst-case profiles for (a, b, c)-regular algorithms.

This characterization can be used to figure out the optimality criteria for (a, b, c)-regular

algorithms in the cache-adaptive model.

We make use of the following two lemmas, which we prove at the end of this section.

Lemma 4.18. Let A be an (a, b, c)-regular algorithm with linear space complexity and tall-

cache requirement H(B). Suppose also that, in the DAM model, A is optimally progressing

for a problem with progress bound ρ(�N) = Θ(Np), for constant p. Then, p = log1/b a.

Lemma 4.19. Assume that B ≥ 4. Pick a δ ∈ (0, 0.1), and let d = 3(1 + δ). If Z is bigger

than (dB logB)1+δ, we have that Z1/(1+δ) > B logZ.

Theorem 4.20. Let A be an (a, b, c)-regular algorithm with linear space complexity and tall-

cache requirement H(B). Suppose also that, in the DAM model, A is optimally progressing

for a problem with progress bound ρ(�N) = Θ(Np), for constant p. Assume that B ≥ 4, pick

an ε ∈ (0, 0.1), and let d = 3(1 + ε) and λ = max{H(B), (dB log1/bB)1+ε}.
Then, ρ(WA,N,λ) is bounded by O(X (N)), where

X (N) =

Θ
(
N log1/b a log1/b

N
λ

)
if c = 1 and a = 1/b

Θ(N log1/b a) otherwise.

Proof. By lemma 4.18, we have that because A is optimally progressing in the DAM model,

38

p = log1/b a. By theorem 4.14, ρ(WA,N,λ) = O(T (N) + U(N) + V(N)). where

T (N) =

max
{

Θ
(
N log1/b a

)
, aT (bN)

}
if λ < N

Θ
(
λlog1/b a

)
if N ≤ λ;

U(N) =


Θ
(
N c log1/b a

)
+ aU(bN) if N = Ω(λ) and N c = Ω(λ)

aU(bN) if N = Ω(λ) and N c 6= Ω(λ)

0 otherwise;

V(N) =


aV(bN) if B log1/bN = Ω(λ) and N c > B

Θ
(
(B log1/bN)log1/b a

)
+ aV(bN) if B log1/bN = Ω(λ) and N c ≤ B

0 if B log1/bN 6= Ω(λ).

Solving the recursion for T (N) using the Master method we get

T (N) = Θ
(
N log1/b a

)
.

As for U(N), we note that a(bN)c log1/b a = a1−cN c log1/b a. When 0 < c < 1, we have that

U(N) becomes a geometric series and solves to Θ
(
N c log1/b a

)
. When c = 1, we have that

U(N) is the summation of log1/bN/λ terms, each of them equal to Θ
(
N log1/b a

)
. And when

c = 0, N c 6= Ω(λ). Hence,

U(N) =


Θ
(
N log1/b a log1/b

N
λ

)
if c = 1

0 if c = 0

Θ
(
N c log1/b a

)
otherwise.

We bound V(N) from above. Note that as long as N0 > λ ≥ (dB log1/bB)1+ε, by

lemma 4.19 we have that

N
1/(1+ε)
0

log1/bN0

> B ⇒ N
1/(1+ε)
0 > B log1/bN0.

And when N1 ≤ λ, we have B log1/bN1 ≤ B log1/b λ < λ1/(1+ε) < λ by another application

of lemma 4.19 because λ ≥ (dB log1/bB)1+ε. Therefore V(N) = O(Z(N)) where

Z(N) =

Θ

(
N

log1/b a

1+ε

)
+ aZ(bN) if N > λ

Θ
(
λlog1/b a

)
if N ≤ λ.

= O
(
N log1/b a

)
by applying the Master method.

The theorem statement follows from summing the terms for T (N), U(N) and V(N).

39

Theorem 4.21. Suppose A is an (a, b, c)-regular algorithm with tall-cache requirement H(B)

and linear space complexity. Suppose also that, in the DAM model, A is optimally progressing

for a problem with progress bound ρ(�N) = Θ(Np), for constant p. Assume that B ≥ 4, pick

an ε ∈ (0, 0.1), and let d = 3(1 + ε) and λ = max{H(B), (dB log1/bB)1+ε}.

1. If c < 1, then A is optimally progressing an optimally cache-adaptive among all λ-tall

profiles.

2. If c = 1, then A is Θ
(
log1/b

N
λ

)
away from being optimally progressing and O

(
log1/b

N
λ

)
away from being optimally cache-adaptive.

Proof. Suppose M is a square N -fitting profile for A. By lemma 4.18, we have that p =

log1/b a. If c < 1, then by theorem 4.20 the maximum possible progress that any algorithm

can make on M is ρ(M) = Θ(N log1/b a). Since A has linear space complexity, R(N) =

O(ρ(�N)) = O(N log1/b a) by observation 3.10. Therefore, ρ(M) = Θ(R(N)).

If c = 1, then by theorems 4.17 and 4.20 A is a factor of Θ(log1/bN/λ) away from being

optimally progressing. Hence, with O(log1/bN/λ) speed augmentation A can out outperform

any other memory-monotone algorithm.

Proof of Lemma 4.18

Let M1 = H(B) and let M2 ≥ H(B) be an arbitrary constant. Since A is optimally

progressing in the DAM model, by lemma 3.16 it is optimally cache-adaptive on both profiles

M1 and M2. However in the DAM model, optimally cache-adaptive is equivalent to the usual

worst-case optimality.

Let eA,M1,N be the minimum time required for A to solve all instances of size N given

M1, and eA,M2,N the equivalent time with respect to M2. Define

M ′
1(t) =

M1 if t ≤ eA,M1,N ,

0 otherwise;
M ′

2(t) =

M2 if t ≤ eA,M2,N ,

0 otherwise.

We compute eA,M1,N and eA,M2,N

eA,M1,N = Θ

(
M1

B

(
alog1/bN/M1

))
= Θ

(
M1

B

((
N

M1

)log1/b a
))

eA,M2,N = Θ

(
M2

B

(
alog1/bN/M2

))
= Θ

(
M2

B

((
N

M2

)log1/b a
))

.

Since ρ is square-additive, we can compute the progress of ρ on M ′
1 and M ′

2 as the sum of ρ

on squares �M1 and �M2 respectively. Remember that each square �X is X words tall and

40

X/B time steps wide. Hence, M ′
1 fits between

⌈
eA,M1,B

M1/B

⌉
−1 and

⌈
eA,M1,B

M1/B

⌉
of �M1s. Similarly,

M ′
2 fits between

⌈
eA,M2,B

M2/B

⌉
− 1 and

⌈
eA,M2,B

M2/B

⌉
of �M2s.

ρ(M ′
1) = Θ


eA,M1,B
M1/B∑
i=1

ρ(�M1)

 = Θ

(
eA,M1,B

M1/B
ρ(�M1)

)
= Θ

((
N

M1

)log1/b a

ρ(�M1)

)

ρ(M ′
2) = Θ


eA,M2,B
M2/B∑
i=1

ρ(�M2)

 = Θ

(
eA,M2,B

M2/B
ρ(�M2)

)
= Θ

((
N

M2

)log1/b a

ρ(�M2)

)
.

Since A is optimally progressing on both M1 and M2, ρ(M ′
1) = O(R(N)) and ρ(M ′

2) =

O(R(N)). Since M ′
1 and M ′

2 are N -fitting profiles for A, we get that ρ(M ′
1) = Θ(R(N)) and

ρ(M ′
2) = Θ(R(N)).

Therefore, ρ(M ′
1) = Θ(ρ(M ′

2)) and we get

ρ(M ′
1) = Θ

((
N

M1

)log1/b a

ρ(�M1)

)
= Θ

((
N

M2

)log1/b a

ρ(�M2)

)
= ρ(M ′

2). (4.2)

By simplifying eq. (4.2), we get that

ρ(�M2) = Θ

((
M2

M1

)log1/b a
ρ(�M1)

)
= Θ

(
M

log1/b a

2
ρ(�M1)

(M1)
log1/b a

)
.

Since M2 is an arbitrary constant, we can allow M2 = (M1)
2 and then we will have

ρ(�M2
1
) = Θ

(
M

log1/b a

1 ρ(�M1)
)
.

Since ρ(�X) = Θ(Xp), we have that ρ(�X2) = Θ(ρ(�X)2). Thus,

ρ(�M2
1
) = Θ

(
M

log1/b a

1 ρ(�M1)
)

= Θ (ρ(�M1)
2)⇒ ρ(�M1) = Θ

(
M

log1/b a

1

)
.

Therefore, we have shown that for an arbitrary M2

ρ(�M2) = Θ

(
M

log1/b a

2
ρ(�M1)

(M1)
log1/b a

)
= Θ

(
M

log1/b a

2

)
.

Proof of Lemma 4.19

First, as ε is in (0, 0.1), we have that d = 3(1 + δ) < 3.3 < B.

41

Second, notice that as long as δ ∈ (0, 0.1), f(x) = x1/(1+δ)/ log x is a strictly increasing

function in x on [e,∞). Let x0 = (dB logB)1+δ, and observe that

log x0 = 3(1 + δ) (log d+ logB + log logB) < 3(1 + δ) logB.

Therefore,

x
1/(1+δ)
0

log x0
=
dB logB

log x0
> B since d = 3(1 + δ).

Since x1/(1+δ)/ log x is strictly increasing on [e,∞) and Z > (dB logB)1+δ, we get that

Z1/(1+δ) > B logZ.

42

Chapter 5

Deriving Progress Bounds

In this chapter, we exhibit that one can derive progress bounds, which satisfy the axioms of

definition 3.8, for several important problems:

• the näıve matrix multiplication problem,

• the näıve all pairs shortest paths problem,

• the longest common subsequence (LCS) and edit distance problems,

• the multipass filter problem,

• the fast fourier transform (FFT) problem,

• the comparison-based sorting problem.

These derivations allow us to apply the general results of chapter 4 to determine the cache-

adaptivity of algorithms which solve these problems (see chapter 6).

We utilize the powerful red-blue pebble game technique of Hong and Kung [34] together

with the similar red pebble game technique of Savage [48], and also the information tree lower

bound techniques of Aggarwal and Vitter [1] to define appropriate functions that satisfy the

axioms of definition 3.8.

We begin by describing a computation DAG [34, 48] which is an abstract way of describing

computational dependencies of algorithms.

Definition 5.1. Computational dependencies of an algorithm A can be described by a com-

putation DAG, G. G is comprised of input/output nodes that have no incoming/outgoing

edges. These nodes correspond to the input/output of the problem.

Each internal node of G represents a computation step by the algorithm. Node u is con-

nected to node v via a directed edge (u→ v), if computing node v requires data/information

from node u.

43

We adopt a notion of progress that bears similarity to the red pebble game approach

of [48]. We define R and ρ with respect to DAGs of computation.

Definition 5.2. Given a DAG of computation, G, for a problem instance of size N we define

R(N) to be the number of nodes in G.

We let ρ(�S) to be the maximum number of nodes of G computable using a fixed memory

of size S and S/B I/Os, maximized over all initial memory contents, and also maximized

over all problem instances.

Similarly, for a memory profile M we allow ρ(M) to be the maximum number of nodes

of G computable using profile M , maximized over all initial memory contents, and also

maximized over all problem instances.

We can also define R and ρ for families of DAGs.

Definition 5.3. For a family of DAGs, {Gi}, such that the number of nodes in all Gis
is the same, we define ρ(�S) = maxi{ρ(�S,Gi)}. Similarly, for a profile M , we let

ρ(M) = maxi{ρ(M,Gi)}.
As before, we allow R(N) to be the number of nodes of any of Gi for a problem instance

of size N .

The above definition is a natural generalization of the notion of an S-span which is

defined on a red pebble game [48].

Definition 5.4 (From [48]). Given a DAG of computation, G, the red pebble game is

played using the following rules.

(Initialization) A pebble can be placed on an input node at any time.

(Computation Step) A pebble can be placed on (or moved to) any non-input node only if all

its immediate predecessors carry pebbles.

(Pebble Deletion) A pebble can be removed at any time.

(Goal) Each output node must be pebbled at least once.

The red pebble game is an abstraction of data transfer and computation in a two-level

memory hierarchy. A pebble placement on an input/output node is akin to reading/writing

a portion of the input/output data. A pebble placement on an internal nodes corresponds

to a computation step in the DAG G that is done in memory. Removal of a pebble models

the erasure or overwriting of the value associated with the node on which the pebble resides

from memory.

44

Definition 5.5 (From [48]). Given a computation DAG, G, the S-span of G, is the maxi-

mum number of nodes of G that can be pebbled with S pebbles in the red pebble game maxi-

mized over all initial placements of S red pebbles. (The initialization rule is disallowed.)

Many DAM lower bound proofs use the machinery of information speed function from

[34] to lower bound the I/O complexity of algorithms.

Definition 5.6 (From [34]). Consider a DAG of computation G. We refer to node-disjoint

paths from input nodes to output nodes as lines.

We say that the information speed function is Ω(F (d)) if for any two nodes u, v

on the same line that are at least d apart, there are F (d) nodes in G satisfying the following

two properties.

(a) None of these nodes belong to the same line.

(b) Each of these nodes belongs to a path connecting u and v.

In the following lemma, we give a tool to transform the bounds on the information speed

function into bounds on the S-span. Its proof is a restructuring of the argument of Theorem

5.1 in [34]. This transformation allows us to seamlessly port some DAM lower bounds to

progress bounds in the cache-adaptive model. Later, we exhibit this porting for LCS (see

lemma 5.23) and Jacobi Multipass Filter (see lemma 5.28) problems.

Lemma 5.7. For any DAG, G, where all input nodes can reach all output nodes through

lines (definition 5.6), if the information speed function is Ω(F (d)) where F is monotonically

increasing and F−1 exists, then S-span of G is O(SF−1(S)).

Proof. Let IS be any initial placement of S pebbles, and let RPG(IS) denote the nodes that

could be pebbled in the red pebble game using the S pebbles in IS.

First, note that the nodes of RPG(IS) must be on at most S lines, because there are

initially S pebbles on nodes and lines are node-disjoint.

Claim 5.8. RPG(IS) has at most F−1(S) + 1 nodes on any line.

Proof. Suppose that the claim is false for some line. Then on this line there are two nodes

u and v in RPG(IS) that are F−1(S) + 1 apart. WLOG assume that v is a decedent of u.

Hence, there should be z = F (F−1(S) + 1) nodes satisfying properties (a) and (b) in

definition 5.6. Because F is monotone increasing, we have that z > S.

We argue that all of these z nodes must be in RPG(IS). Because they satisfy property

(a) they are on some path from u to v. But any valid pebbling in the red pebble game should

pebble all the nodes on all paths that connect u and v to be able to pebble v.

45

However, by property (a), these z nodes must belong to distinct lines. But this is a

contradiction, because z > S and nodes of RPG(IS) can be on at most S lines.

The lemma follows from the above claim, because nodes of RPG(IS) are on at most S

lines. So |RPG(IS)| = O(SF−1(S)).

5.1 A Progress Bound for the Näıve Matrix Multipli-

cation Problem

The matrix multiplication problem is formally defined as follows.

Definition 5.9. The matrix multiplication problem is concerned with computing C =

A×B, where

Cij =
∑
k

Aik ×Bkj. (5.1)

For simplicity we assume that A, B, and C are all
√
N ×

√
N matrices.

A Cache-Oblivious Matrix Multiplication Algorithm

Frigo et al. [31] give a cache-oblivious recursive matrix multiplication algorithm, MM-

Inplace. The MM-Inplace algorithm computes eight sub-products of quadrants of ma-

trices A and B “in place”, adding the results of the elementary multiplication into the

output matrix. We refer the interested reader for a complete exposition to [31]; we give the

pseudo-code for this algorithm in section 6.1 – see algorithm 1.

We argue that the matrix multiplication problem has a progress function ρ and progress

requirement function R(N) which together constitute a progress bound for the matrix mul-

tiplication problem.

Frigo et al. [31] showed that the MM-Inplace algorithm is optimal in the DAM model

among algorithms that multiply two
√
N×
√
N matrices using just inner products to compute

entries in the product matrix , i.e. each Cij is computed by using eq. (5.1). The additions

in these inner products are allowed to be performed in any order. We refer to the class of

these algorithms as Näıve-MM .

Several authors have established a lower bound for the Näıve-MM algorithms. Hong and

Kung [34] give a lower bound on the I/O complexity of Näıve-MM algorithms by analyzing

the powerful red-blue pebble game technique on the computation DAG of any Näıve-

MM algorithm. Savage [48] also gives a similar lower bound using the red pebble game .

46

Finally, Irony et al. [36] give the same lower bound using a geometric argument that bounds

the maximum number of elementary multiplications that can be done in a fixed memory of

size Z and Z/B I/Os.

Definition 5.10. We define ρµ and Rµ to be the ρ and R of definition 5.2 defined on the

family of DAGs of Näıve-MM algorithms.

Savage [48] proves the following lemma which upperbounds the size of an S-span for

Näıve-MM algorithms.

Lemma 5.11 (From [48]). If G is a DAG of any Näıve-MM algorithm, an S-span of G is

at most 2S3/2, when S < N2 (the input matrices do not fit in memory).

Lemma 5.12. We have that ρµ(�S) = Θ(S3/2) and Rµ(N) = Θ(N3/2). Moreover, ρµ and

Rµ constitute a progress bound for the Näıve-MM problem.

Proof. We first show that ρµ(�S) = Θ(S3/2) for the class of Näıve-MM algorithms. Let Gi
be the family of DAGs in Näıve-MM. By lemma 5.11, we have that S-span of any of DAGs

in Gi is at most 2S3/2. Since any computation of nodes of a DAG corresponds to a pebbling

strategy in the red pebble game, we have that ρµ(�S) ≤ 2S3/2.

As exhibited by the MM-Inplace algorithm, some DAGs in Gi correspond to recursive

evaluations of eq. (5.1). Consider one of these DAGs, F . We argue that ρµ(�S,F) = Ω(S3/2).

Since, ρ is maximized over all DAGs in Gi, we have that ρµ(�S) ≥ ρµ(�S,F) = Ω(S3/2).

Consider a recursive evaluation of eq. (5.1) and a level of recursion in which two subma-

trices A1 and B1 of size
(
S1/2/3

)
×
(
S1/2/3

)
are multiplied. Both A1 and B1 can be brought

into memory using ≤ 2S/9B I/Os and they fit together in a memory of size S. Multiplying

them in memory takes no extra I/Os and writing the inputs and the result back takes at

most S/3B I/Os. To perform the multiplication of A1 and B1 Θ
((
S1/2/3

)3)
= Θ(S3/2)

operations of F must be completed. Therefore, we have that ρµ(�S,F) = Ω(S3/2).

Functions ρµ and Rµ constitute a progress bound We have that the size of each DAG

of computation in Gi for a problem of size N is the same number Rµ(N) = Θ(N3/2), because

eq. (5.1) contains Θ(N3/2) multiplications and additions.

Consider any DAG E in Gi. If ρµ(M, E) < Rµ(N) for a profile M , then no algorithm

whose DAG is E can compute all nodes of the E in M . Thus, if ρµ(M) = maxi{ρµ(�S,Gi)}
is less than Rµ(N), no algorithm can solve all problem instances of size N in M .

We now prove square-additivity (definition 3.7) and monotonicity (definition 3.6) of ρµ.

47

Square-additivity We have already established that ρµ(�S) = Θ(S3/2), therefore

ρµ(�S) is bounded by a polynomial in S.

Consider the profile Z = �z1 ‖ . . . ‖�zk . We first argue that ρµ(Z) ≤ ∑` ρµ(�z`). The

memory available at the beginning of �z`+1
is at most z`+1. By definition, no matter the

initial content of cache after the execution of an algorithm on �z1 ‖ . . . ‖�z` , the maximum

number of nodes of any of Gis computable in �z`+1
by using z`+1 memory and z`+1/B I/Os

is ρµ(�z`+1
). Therefore, we have that ρµ(Z) ≤∑` ρµ(�z`).

Next, we argue that ρµ(Z) = Ω (
∑

` ρµ(�Z`)). Remember that F is a DAG in Gi which

corresponds to a recursive evaluation of eq. (5.1). We already have argued that ρµ(�zi ,F) =

Ω(S3/2) = Ω(ρµ(�zi)).

Now, we show that ρµ(Z,F) = Ω (
∑

` ρµ(�z` ,F)) = Ω (
∑

` ρµ(�z`)). Because ρµ is

defined to be the maximum over all DAGs in Gi, we have that ρµ(Z) ≥ ρµ(Z,F) =

Ω (
∑

` ρµ(�z`)).

For each square �z` , we consider the recursive evaluation of eq. (5.1) at a level in which

two submatrices A` and B` of size
(
z
1/2
` /3

)
×
(
z
1/2
` /3

)
are multiplied. As before, one can

see that multiplying A` and B` can be done in �z` and it includes computing Ω(z
3/2
`) nodes

of F .

Since ρµ is also taken as the maximum among all problem instances, there exists a

(possibly huge) problem instance, I, such that for each �z` , there are subproblems (A` and

B`) in I that are untouched (not computed) in any of any of the previous squares (�zt for

t < `). Therefore, we get that ρµ(Z,F) = Ω (
∑

` ρµ(�z` ,F)) = Ω (
∑

` ρµ(�z`)).

Monotonicity Let M ≺ U be two memory profiles. Then, we have M = L1‖ . . . ‖Lk
and U = U0‖U1‖ . . . ‖Uk, such that Ui is both above Li and has a longer duration. Since for

each Ui is above Li and has a longer duration than it, it must be the case that maximum

number of nodes computable in U is bigger or equal than those in M .

5.2 A Progress Bound for the Näıve All Pairs Shortest

Paths Problem

We first define the All Pairs Shortest Paths (APSP) problem.

Definition 5.13. Given a weighted graph Q, that does not have negative cycles, the All

Pairs Shortest Paths (APSP) problem is concerned with finding the length (sum of

weights on edges) of shortest paths between all pairs of nodes.

48

The dynamic programming solution of Floyd-Warshall [28, 52] to the APSP problem is

based on the following recursive relation.

Allow SP(i, j, k) be the shortest possible path from i to j using nodes only from the set

{1, 2, . . . , k} as intermediate points along the way. Let w(i, j) be the weight of the edge

between nodes i and j. SP(i, j, k) satisfies the recursive relation

SP(i, j, 0) = w(i, j)

SP(i, j, k + 1) = min{SP(i, j, k), SP(i, k + 1, k) + SP(k + 1, j, k)}. (5.2)

For simplicity we assume that Q has
√
N nodes and the adjacency matrix of Q occupies

N =
√
N ×

√
N space.

A Cache-Oblivious Floyd-Warshall APSP Algorithm

Park et al. give a recursive cache-oblivious algorithm for the APSP problem. We refer the

interested reader for a complete exposition of this algorithm to their paper [45]. We present

the pseudo-code for the FW-APSP algorithm in section 6.1 – see algorithm 2.

Park et al. exhibit that FW-APSP is optimal in the DAM model among all algorithms

that solve the APSP problem by computing the Θ
(√

N
3
)

= Θ(N3/2) operations needed

to implement the type of computation defined by eq. (5.2). We refer to the class of such

algorithms as Näıve-APSP .

Definition 5.14. We define ρα and Rα to be the ρ and R of definition 5.2 defined on the

family of DAGs of Näıve-APSP algorithms.

Lemma 5.15. Family of DAGs produced by algorithms in Näıve-APSP is a subfamily of

DAGs produced by algorithms in Näıve-MM.

Proof. We claim that the data dependencies of eq. (5.2) is equivalent to a particular ordering

on the additions and multiplications in eq. (5.1). To see this, map the addition/min nodes

in DAGs of Näıve-APSP to the multiplication/addition nodes in DAGs of Näıve-MM respec-

tively. In this interpretation eq. (5.2) is a computation of eq. (5.1), where Ait×Btj must be

computed and added to the previous value for Cij before any of Ai`×B`j multiplications for

all ` > t.

This means that the each DAG produced by a Näıve-APSP algorithm has a corresponding

DAG in Näıve-MM.

Lemma 5.16. If G is a DAG of any Näıve-APSP algorithm, an S-span of G is at most

O(S3/2), when S < N2 (the input matrices do not fit in memory).

49

Proof. The statement is a direct corollary of lemma 5.15 and lemma 5.11.

Lemma 5.17. We have that ρα(�S) = Θ(S3/2) and Rα(N) = Θ(N3/2). Moreover, ρα and

Rα constitute a progress bound for the Näıve-APSP problem.

Proof. We have that the size of each DAG of computation in Näıve-APSP for a problem

of size N is the same number Rα(N) = Θ(N3/2), because eq. (5.2) contains Θ
(√

N
3
)

=

Θ(N3/2) additions and min operations.

The rest of the proof is almost identical to the proof of lemma 5.12 except that we utilize

lemma 5.16 to bound ρα(�S) from above.

5.3 Progress Bounds for the LCS and Edit Distance

Problems

We begin by a short exposition of the Longest Common Subsequence problem.

Definition 5.18. A sequence X = (x1, . . . , xm) is a subsequence of sequence Y = (y1, . . . , yn)

if there exists a strictly increasing function f : [1,m] → [1, n] such that for all i ∈ [1,m],

xi = yf(i).

Definition 5.19. Given two sequences X and Y , the Longest Common Subsequence

(LCS) problem is concerned with finding the longest subsequence of X that is also a subse-

quence of Y .

The dynamic programming solution [25] to the LCS problem is based on the following

recursive relation. Given sequences X = (x1, . . . , xm) and Y = (y1, . . . , yn), define c[i, j] to

be the length of the LCS for (x1, . . . , xi) and (y1, . . . , yj). c[i, j] can be computed from the

following recursive relation

c[i, j] =


0 if i = 0 or j = 0

c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max{c[i− 1, j], c[i, j − 1]} if i, j > 0 and xi 6= yj.

(5.3)

Once the value of c[m,n] is determined and all entries of the c[i, j] are available, one can

trace back the sequence of decisions that led to the value computed for c[m,n], and thus

retrieve the elements on an LCS of X and Y .

A naive implementation of the above recursion computes the table c in a row-major or

column-major order and is very cache inefficient, as it incurs Θ(mn/B) I/Os.

We give a short description of the Edit Distance problem as well.

50

Definition 5.20. Given two sequences X and Y , the Edit Distance problem is concerned

with finding the smallest cost edit sequence that transforms X to Y .

The edit operations are: delete(xi) of cost D(xi) that deletes xi from X, insert(yj)

of cost I(yj) that inserts yj into X, and substitute(xi, yj) of cost S(xi, yj) that replaces

xi with yj in X.

The Recursive LCS (and Edit Distance) Algorithm

Chowdhury and Ramachandran in [21] describe a cache-oblivious optimal recursive algorithm

for the LCS problem that also works for the Edit Distance problem by changing the character

transformation cost function. We refer the interested reader for a complete exposition of

this algorithm to [21]; we only give a high-level picture in section 6.3. They prove that

Recursive-LCS is optimal in DAM model among all algorithms that execute the Θ(N2)

operations needed to implement the type of computation defined by eq. (5.3).

All the algorithms in this class share a unique DAG of computation, Gψ that is described

by the data dependencies of eq. (5.3), see fig. 5.1.

Chowdhury and Ramachandran also prove that the Edit-Distance algorithm, which

is derived by replacing the cost function of Recursive-LCS, is optimal in DAM among a

similar class of algorithms. Thus, both problems share a unique DAG of computation, Gψ.

Figure 5.1: The DAG of computation, Gψ, for the LCS and Edit Distance problems.

Definition 5.21. We define ρψ and Rψ to be the ρ and R of definition 5.2 defined on Gψ.

To prove the an upper bound for the S-span of Gψ, we use the following bound by

Chowdhury and Ramachandran [21] together with lemma 5.7.

51

Lemma 5.22 (From [21]). The information speed function for Gψ satisfies FGψ(d) = Ω(d).

The inverse of FGψ(d) exists, and F−1Gψ
(d) = O(d).

Lemma 5.23. An S-span of Gψ is at most O(S2), when S < N2 (the dynamic programming

table does not fit in memory).

Proof. The bound follows from lemma 5.7 and the upper bound on F−1Gψ
(S).

Lemma 5.24. We have that ρψ(�S) = Θ(S2) and Rψ(N) = Θ(N2). Moreover, ρψ and Rψ

constitute a progress bound for the LCS problem.

Proof. Computing LCS from eq. (5.3) for a problem of size N requires Θ(N2) operations, so

Rψ(N) = |Gψ(N)| = Θ(N2).

The rest of the proof is a repetition of the argument of lemma 5.12, except that here we

only have a unique DAG Gψ, and we utilize lemma 5.23 to bound ρψ(�S) from above.

5.4 A Progress Bound for the Multipass Filter problem

We first define the multipass filter problem.

Definition 5.25. A one-dimensional multipass filter on an array A of size N is com-

prised of computing values of generations At+1 from values at generation t according to some

update rule. A typical update function is

At+1
i ←

(
Ati−1 + Ati + Ati+1

)
/3 (5.4)

We consider computing N generations of the update rule on A that has N elements.

Multipass filters are used in Jacobi iteration for solving heat-diffusion equations and

simulation of lattice gases with cellular automata.

The Cache-Oblivious Recursive Jacobi Multipass Filter Algorithm

Prokop [47] gives a recursive cache-oblivious Jacobi Multipass Filter algorithm. We refer

the interested reader to [47] for a complete exposition; we only give the pseudo-code in

section 6.2.

Prokop [47] proves that Jacobi is optimal in DAM model among all algorithms that exe-

cute the Θ(N2) operations needed to implement the type of computation defined by eq. (5.4).

All the algorithms in this class share a unique DAG of computation, Gη that is described

by the data dependencies of eq. (5.4), see fig. 5.2.

52

Figure 5.2: The DAG of computation, Gη, for the Jacobi Multipass Filter problem.

Definition 5.26. We define ρη and Rη to be the ρ and R of definition 5.2 defined on Gη.

To prove the an upper bound for the S-span of Gη, we use the following bound by

Prokop [47] together with lemma 5.7.

Lemma 5.27 (From [47]). The information speed function for Gη satisfies FGη(d) = Ω(d).

The inverse of FGη(d) exists, and F−1Gη
(d) = O(d).

Lemma 5.28. An S-span of Gη is at most O(S2), when S < N2 (the N generations of

computing the array does not fit in memory).

Proof. The bound follows from lemma 5.7 and the upper bound on F−1Gη
(S).

Lemma 5.29. We have that ρη(�S) = Θ(S2) and Rη(N) = Θ(N2). Moreover, ρη and Rη

constitute a progress bound for the multipass filter problem.

Proof. Computing N generations of a multipass filter from 5.4 on an array of size N requires

Θ(N2) operations, so Rη(N) = |Gη(N)| = Θ(N2).

The rest of the proof is a repetition of the argument of lemma 5.12, except that here we

only have a unique DAG Gη, and we utilize lemma 5.28 to bound ρη(�S) from above.

5.5 A Progress Bound for the FFT Problem

We first define the Discrete Fourier Transform (DFT) problem.

53

Definition 5.30. Let X be an array of N complex numbers. The Discrete Fourier Trans-

form (DFT) of X is an array Y defined by the formula

Y [i] =
N−1∑
j=0

X[j]w−ijN i = 0, . . . , N − 1; (5.5)

where wN = e2π
√
−1/N .

DFT is the most important discrete transform used to perform Fourier analysis in many

practical applications such as digital signal processing, image processing, solving partial dif-

ferential equations, or even multiplying large integers. Directly computing eq. (5.5) requires

Θ(N2) operations.

A Fast Fourier Transform (FFT) algorithm is a recursive method of computing a

DFT by computing only Θ(N logN) operations.

Definition 5.31. Let N = N1N2 be any integer factorization of N . A Cooley-Tukey Fast

Fourier Transform (FFT) algorithm [24] A computes eq. (5.5) by computing

Y [i1 + i2N1] =

N2−1∑
j2=0

((
N1−1∑
j1=0

X[j1N2 + j2]w
−i1j1
N1

)
w−i1j2N

)
w−i2j2N2

; (5.6)

when N is Ω(1). When N = O(1), A computes eq. (5.5) directly.

The w−i1j2N terms are called twiddle factors [27].

Note, that the inner and outer summations in eq. (5.6) are both DFTs. This observation

helps FFT algorithms to recursively compute DFTs.

The Cache-Oblivious FFT Algorithm

Frigo et al. give a recursive cache-oblivious FFT algorithm, CO-FFT. We refer the interested

reader for a complete exposition of this algorithm to [31]. We present the pseudo-code and

a high-level description for the CO-FFT algorithm in section 7.2 – see algorithm 8.

The class of Cooley-Tukey FFT algorithms (definition 5.31) describes a unique DAG of

computation Gφ. Frigo et al. [31] prove that CO-FFT is optimal in DAM model among all

Cooley-Tukey FFT algorithms by using a lower bound given by Hong and Kung [34], who

study Gφ.

Definition 5.32. We define ρφ and Rφ to be the ρ and R of definition 5.2 defined on Gφ.

Savage [48] proves the following lemma which upperbounds the size of an S-span for Gφ.

54

Lemma 5.33 (From [48]). The S-span of Gφ on N input nodes is at most 2S logS (when

S ≤ n).

Lemma 5.34. We have that ρφ(�S) = Θ(2S logS) and Rφ(N) = Θ(N logN) ρφ and Rφ

constitute a progress bound for the Cooley-Tukey FFT problem.

Proof. A Cooley-Tukey FFT algorithm needs to compute Rφ(N) = |Gφ(N)| = Θ(N logN)

operations from 5.6 to solve a problem of size N .

The rest of the proof is a repetition of the argument of lemma 5.12, except that here we

only have a unique DAG Gφ, and we utilize lemma 5.33 to bound ρφ(�S) from above.

5.6 A Progress Bound for the Sorting Problem

We use the external memory sorting lower bound of Aggarwal and Vitter [1] to define a

progress bound for the sorting problem.

Definition 5.35. Given an array A of N elements and a total ordering defined on the

elements of A, the comparison-based sorting problem is concerned with producing an

output array of the elements of A in ascending order.

Definition 5.36. We defineRγ(N) to be the number of bits information that any comparison-

based algorithm should learn to be able to sort all input instances of size N .

We define ργ(�X) to be the maximum number of bits of information that could be learned

about the ordering of elements in the input array using a fixed memory of X and X/B I/Os,

maximized over all initial memory contents and also maximized over all problem instances.

Similarly, we define ργ(M) to be the maximum number of bits of information that could

be learned about the ordering of elements in the input array in the profile M , maximized over

all initial memory contents and also maximized over all problem instances.

Lemma 5.37. We have that ργ(�S) = Θ(S lgS) and Rγ(N) = Θ(N lgN). Moreover, ργ

and Rγ constitute a progress bound for the comparison-based sorting problem. 1

Proof. We rephrase the argument of Aggarwal and Vitter from [1]. Any comparison-based

sorting algorithm must learn enough bits to be able to distinguish and generate all the N !

possible outcomes of the sort. Since each comparison has two possibles outcomes, it is one

bit of information. Therefore, we have that N lgN/2 ≤ Rγ(N) = lgN ! ≤ N lgN .

When the memory size is S, we have that each time an algorithm reads in a block, it can

compare every element in that block with every other element in memory. These comparisons

1We use the notation lg = log2.

55

are not all independent though, so the total number of distinct outcomes learnable for each

block is bounded by
(
S
B

)
B!.

Thus, using S/B I/Os, the number of bits learnable by any algorithm maximized over

all initial memory contents is bounded by

ργ(�S) ≤ S

B
lg

((
S

B

)
(B!)

)
≤ S

B
lg

((
eS

B

)B
(B!)

)
≤ O(S lgS).

We now argue that ργ(�S) = Ω(S lgS). Consider an input array C of size S/2. Since C

fits in memory, an external sorting algorithm, like the external merge-sort can load C into

memory, sort it and write it back using a memory of size S and S/B I/Os. Since C can

range over all inputs of size S/2, the algorithm should be able to distinguish between all the

possible S! outcomes. Therefore, we have that ργ(�S) = Ω(Rγ(S/2)) = Ω(S lgS).

It follows from definition that if ργ(M) < Rγ(N), no comparison-based sorting algorithm

can solve all problems of size N .

Monotonicity of ργ follows from definition. We argue that ργ is square-additive. Consider

the profile Z = �z1 ‖ . . . ‖�zk . A repetition of the argument of lemma 5.12 shows that

ργ(Z) ≤∑` ργ(�z`).

Assume that I is in arbitrary (and possibly huge) problem instance. For each square �z` ,

we focus on a subarray of z`/2 consecutive elements in I, which are untouched by previous

squares �zt for all t < `. Like, above, these z`/2 elements can be loaded into a memory of

size z`, sorted inside memory and written back using z`/B I/Os.

Since ργ is taken as the maximum among all problem instances, the subarrays for each

�z` can range over all possible inputs of size z`/2 as well. This means that for each `, it

must be the case that ργ(�z`) = Ω(Rγ(z`/2)) = Ω(z` lg z`) and ργ(Z) = Ω (
∑

` ργ(�z`)).

56

Chapter 6

Optimal Recursive Cache-Adaptive

Algorithms

In this chapter, we exhibit several applications of the optimality criteria theorems of chapter 4

to prove optimality of algorithms in the cache-adaptive model.

6.1 Optimal Matrix Multiplication and Floyd-Warshall

APSP

We present the pseudo-code for the MM-Inplace and FW-APSP algorithms (see algo-

rithm 1 and algorithm 2 respectively). For complete descriptions refer to [31] and [45]

respectively.

We can now apply theorem 4.21 to show that MM-Inplace and FW-APSP algorithms

are optimally progressing.

Theorem 6.1. For all Θ(B2)-tall memory profiles, the MM-Inplace algorithm [31] and the

FW-APSP algorithm [45] are optimally progressing and cache-adaptive for the Näıve-MM

and Näıve-APSP classes respectively.

Proof. Both MM-Inplace and FW-APSP require a Θ(B2)-tall cache to be optimal in the

DAM model.

By lemma 5.12, we have that ρµ(�X) = Θ(X3/2) and Rµ(N) = Θ(N3/2) constitute a

progress bound for the näıve matrix multiplication problem. And by lemma 5.17, we have

that ρα(�X) = Θ(X3/2) and Rα(N) = Θ(N3/2) constitute a progress bound for the näıve

APSP problem.

57

Algorithm 1 The cache-oblivious matrix multiply with O(1) additive over-

head [31]. In this code, A, B, and C are passed by reference.

1: function MM-Inplace(N ,i,j,k,C,A,B)

2: if N = O(1) then

3: C[i][k]← A[i][j]×B[j][k]

4: else

5: i′ ← i+ N
2

; j′ ← j + N
2

; k′ ← k + N
2

6: MM-Inplace(N/2, i, j, k, C,A,B)

7: MM-Inplace(N/2, i, j, k′, C, A,B)

8: MM-Inplace(N/2, i′, j, k, C,A,B)

9: MM-Inplace(N/2, i′, j, k′, C, A,B)

10: MM-Inplace(N/2, i, j′, k, C,A,B)

11: MM-Inplace(N/2, i, j′, k′, C, A,B)

12: MM-Inplace(N/2, i′, j′, k, C,A,B)

13: MM-Inplace(N/2, i′, j′, k′, C, A,B)

14: end if

15: end function

Since both MM-Inplace and FW-APSP are (a, b, c)-regular algorithms, and c = 0 we

have that by theorem 4.21, they are optimally progressing and cache-adaptive on all Θ(B2)-

tall memory profiles. Note that there exists an ε ∈ (0, 0.1) such that max{Θ(B2), (3(1 +

ε)B log4B)1+ε} = Θ(B2).

6.2 Optimal Jacobi Multipass Filter

The recursive cache-oblivious Jacobi algorithm [47] is described as the composition of three

mutually recursive functions: JacobiM, JacobiO and Jacobi. We present the pseudo-code

for the Jacobi algorithm (see algorithm 4). For a complete description refer to [47].

We use theorem 4.14 to prove that the Jacobi algorithm (algorithm 4) is optimally

progressing and optimally cache-adaptive.

Theorem 6.2. Assume that B ≥ 4. Pick an ε ∈ (0, 0.1) arbitrary close to 0, and let

d = 3(1 + ε) and λ = (dB log2B)1+ε. For all λ-tall memory profiles, the cache-oblivious

Jacobi algorithm of [47] is optimally progressing and optimally cache-adaptive among all

algorithms that execute the Θ(N2) operations needed to implement the type of computation

defined by eq. (5.4).

58

Algorithm 2 The cache-oblivious Floyd-Warshall APSP algorithm with O(1)

additive overhead [45]. The initial call to the recursive algorithm passes the

entire input adjacency matrix of the graph as each argument (passed by refer-

ence).

Let A =

(
A1 A2

A3 A4

)
, B =

(
B1 B2

B3 B4

)
and C =

(
C1 C2

C3 C4

)
.

1: function FW-APSP(A,B,C)

2: if
√
N = O(1) then Iterative-FW(A,B,C).

3: else

4: FW-APSP(A1, B1, C1)

5: FW-APSP(A2, B1, C2)

6: FW-APSP(A3, B3, C1)

7: FW-APSP(A4, B3, C2)

8: FW-APSP(A4, B4, C4)

9: FW-APSP(A3, B4, C3)

10: FW-APSP(A2, B2, C4)

11: FW-APSP(A1, B2, C3)

12: end if

13: end function

Proof. The Jacobi algorithm is computing N generations of the update rule in defini-

tion 5.25, on an array A of size N . And the algorithm in [47] is described as if, it computes

the whole N × N matrix of N generations. However, Jacobi can be adapted to use only

one auxiliary array of size N in addition to the original array A. Thus, the space complexity

of all the subroutines in the Jacobi algorithm is linear.

Lemma 5.29 shows that ρη(�X) = Θ(X2) and Rη(N) = Θ(N2) constitute a progress

bound for the multipass filter problem among all algorithms that execute the Θ(N2) opera-

tions needed to implement the type of computation defined by eq. (5.4).

Since all three subroutines of the algorithm are computing the computations of eq. (5.4),

the progress bound applies to all three of the functions.

We apply theorem 4.14 by allowing λ = (dB log2B)1+ε. Let A1, A2, A3 represent Ja-

cobiM, JacobiO and Jacobi respectively.

59

Algorithm 3 The Iterative-FW subroutine.

1: function Iterative-FW(A,B,C) . Let the matrices A,B,C be of size√
N ×

√
N .

2: for k = 1 to
√
N do

3: for i = 1 to
√
N do

4: for i = 1 to
√
N do

5: A[ij] = min{A[ij], B[ik] + C[kj]}.
6: end for

7: end for

8: end for

9: end function

By simultaneously solving T1(N) and T2(N), we get that

T1(N) =

max {Θ(N2), 3T1(N/2) + T2(N/2)} if λ < N

Θ(λ2) if N ≤ λ.

= Θ(N2);

T2(N) =

max {Θ(N2), 3T2(N/2) + T1(N/2)} if λ < N

Θ(λ2) if N ≤ λ.

= Θ(N2).

Therefore, for T3(N), we have

T3(N) =

max {Θ(N2), 2T1(N/2) + 2T2(N/2)} if λ < N

Θ(λ2) if N ≤ λ

= Θ(N2).

Since c1 = c2 = c3 = 0, we have that N ci 6= Ω(λ) for i = 1, 2, 3. Therefore,

U1(N) =

3U1(N/2) + U2(N/2) if N = Ω(λ) and N0 6= Ω(λ)

0 otherwise.

U2(N) =

3U2(N/2) + U1(N/2) if N = Ω(λ) and N0 6= Ω(λ)

0 otherwise.

60

Algorithm 4 The Jacobi Multipass Filter algorithm [47].

1: function Jacobi(A,N)

2: JacobiM (A,N, 0, N, 0).

3: JacobiO (A,N,N/2, N, 0).

4: JacobiM (A,N, 0, N, 0).

5: JacobiO (A,N, 0, N,N/2).

6: end function

1: function JacobiO(A,N ,s,w,τ)

2: if w > 2 then

3: JacobiO (A,N, (s+ w/4), w/2, τ).

4: JacobiM (A,N, (s+ w/4), w/2, (τ + w/4)).

5: JacobiO (A,N, s, w/2, (τ + w/4)).

6: JacobiO (A,N, (s+ w/2), w/2, (τ + w/4)).

7: end if

8: end function

U3(N) =

2U1(N/2) + 2U2(N/2) if N = Ω(λ) and N0 6= Ω(λ)

0 otherwise.

We conclude that U1(N) = U2(N) = U3(N) = 0.

Since c1 = c2 = c3 = 0, we have that N ci = O(B) for i = 1, 2, 3. Therefore,

V1(N) =


3V1(N/2) + V2(N/2) if B log1/bN = Ω(λ) and N0 > B

Θ
(
(B log1/bN)2

)
+ 3V1(N/2) + V2(N/2) if B log1/bN = Ω(λ) and N0 ≤ B

0 if N 6= Ω(λ);

V2(N) =


3V2(N/2) + V1(N/2) if B log1/bN = Ω(λ) and N0 > B

Θ
(
(B log1/bN)2

)
+ 3V2(N/2) + V1(N/2) if B log1/bN = Ω(λ) and N0 ≤ B

0 if N 6= Ω(λ);

V3(N) =


2V1(N/2) + 2V2(N/2) if B log1/bN = Ω(λ) and N0 > B

Θ
(
(B log1/bN)2

)
+ 2V2(N/2) + 2V1(N/2) if B log1/bN = Ω(λ) and N0 ≤ B

0 if N 6= Ω(λ).

Note that as long as N0 > λ ≥ (dB log2B)1+ε, by lemma 4.19 we have that

N
1/(1+ε)
0

log2N0

> B ⇒ N
1/(1+ε)
0 > B log2N0.

61

Algorithm 5 The JacobiM subroutine.

1: function JacobiM(A,N ,s,w,τ)

2: if w > 2 then

3: JacobiM (A,N, s, w/2, τ).

4: JacobiM (A,N, (s+ w/2), w/2, τ).

5: JacobiO (A,N, (s+ w/4) + 1, w/2, τ).

6: JacobiM (A,N, (s+ w/4), w/2, τ + w/4).

7: else

8: p← τ mod 2.

9: q ← (τ + 1) mod 2.

10: A[p][s mod N]←(
A[q][(s− 1) mod N]+

A[q][s mod N] + A[q][(s+ 2) mod N]
)
/3.

11: A[p][(s+ 1) mod N]←(
A[q][s mod N]+

A[q][(s+ 1) mod N] + A[q][(s+ 2) mod N]
)
/3.

12: end if

13: end function

And when N1 ≤ λ, we have B log1/bN1 ≤ B log1/b λ < λ1/(1+ε) < λ by another application

of lemma 4.19 because λ ≥ (dB log1/bB)1+ε.

Therefore, we have that V1(N) = O(Z1(N)) and V2(N) = O(Z2(N)) where

Z1(N) =

Θ
(
N2/(1+δ)

)
+ 3Z1(N/2) + Z2(N/2) if N > λ

Θ(λ2) if N ≤ λ

Z2(N) =

Θ
(
N2/(1+δ)

)
+ 3Z2(N/2) + Z1(N/2) if N > λ

Θ(λ2) if N ≤ λ

By manually solving the recursions for Z1(N) and Z2(N) simultaneously, we get thatZ1(N) =

O(N2) and Z2(N) = O(N2).

Finally, we have that V3(N) = O(Z3(N)), where

Z3(N) =

Θ
(
N2/(1+δ)

)
+ 2V1(N/2) + 2V2(N/2) if N > λ

Θ(λ2) if N ≤ λ.

= O
(
N2
)
.

62

Therefore, ρη(WJacobi,N,λ) = O(T3(N)+U3(N)+V3(N)) = Θ(N2). Since ρη(WJacobi,N,λ) =

O(N2) = O(Rη(N)), Jacobi is optimally progressing and optimally cache-adaptive.

6.3 Optimal LCS and Edit Distance

The Recursive-LCS dynamic programming algorithm of Chowdhury and Ramachandran [21]

is described as the composition of two recursive functions. We describe a high-level descrip-

tion of these mutually functions when the size of |X| = |Y | = N . A complete exposition can

be found in [21].

The first function, LCS-Output-Bounary, is a recursive procedure that computes the

LCS length at the boundary of the subproblem being considered. LCS-Output-Bounary

on a problem of size N

(i) makes 4 recursive calls on subproblems of size N/2;

(ii) and besides recursive calls makes O(1) additional memory references.

The second function, Recursive-LCS, is a recursive algorithm that besides computing

the LCS length, computes an actual LCS. Recursive-LCS on a problem of size N

(i) makes 3 recursive calls to Recursive-LCS on subproblems of size N/2;

(ii) makes 3 calls to LCS-Output-Bounary on subproblems of size N/2;

(iii) and makes a linear scan of size Θ(N).

Recursive-LCS is optimal in the DAM model and unlike previous algorithms, it does

not require a tall cache assumption.

Theorem 6.3. Assume that B ≥ 4. Pick an ε ∈ (0, 0.1) arbitrary close to 0, and let

d = 3(1 + ε) and λ = (dB log2B)1+ε. For all λ-tall memory profiles, the cache-oblivious

Recursive-LCS and Edit-Distance algorithms [21] are optimally progressing and op-

timally cache-adaptive among all algorithms that execute the Θ(N2) operations needed to

implement the type of computation defined by eq. (5.3).

Proof. Both the Recursive-LCS and LCS-Output-Boundary functions have linear

space complexity as they recycle the auxiliary space required by the dynamic programming

table.

By lemma 5.24, ρψ(�X) = Θ(X2) and Rψ(N) = Θ(N2) constitute a progress bound

for the LCS problem among all algorithms that execute the Θ(N2) operations needed to

implement the type of computation defined by eq. (5.3).

63

Since both of the subroutines of the algorithm compute the LCS length, the progress

bound applies to both of the functions.

We apply theorem 4.14 by allowing λ = (dB log2B)1+ε. Suppose A1, A2 signify the

LCS-Output-Boundary and Recursive-LCS functions respectively.

We first solve T1, U1 and V1. Since c1 = 0 and LCS-Output-Boundary does not have

a subcall to Recursive-LCS, we have that:

U1(N) =


Θ (ρ(�N)) + 4U1(N/2) if N = Ω(λ) and N0 = Ω(λ)

4U1(N/2) if N = Ω(λ) and N0 6= Ω(λ)

0 if N 6= Ω(λ);

= 0

As for T1(N), we have that

T1(N) =

max {Θ (N2) , 4T (N/2)} if λ < N

Θ (λ2) if N ≤ λ;

= Θ(N2).

Because c1 = 0, we have that N0 = O(B) and

V1(N) =

Θ
(
(B log1/bN)2

)
+ 4V1(N/2) if B log1/bN = Ω(λ) and N0 ≤ B

0 if B log1/bN 6= Ω(λ).

We bound V1(N) from above. Note that as long as N0 > λ ≥ (dB log2B)1+ε, by lemma 4.19

we have that
N

1/(1+ε)
0

log2N0

> B ⇒ N
1/(1+ε)
0 > B log2N0.

And when N1 ≤ λ, we have B log1/bN1 ≤ B log1/b λ < λ1/(1+ε) < λ by another application

of lemma 4.19 because λ ≥ (dB log1/bB)1+ε.

Therefore, V1(N) = O(Z1(N)) where

Z1(N) =

Θ
(
N2/(1+δ)

)
+ 4Z1(N/2) if N > λ

Θ (λ2) if N ≤ λ.

= O
(
N2
)

by applying the Master method.

64

We have that c2 = 1. We now solve U2:

U2 =

Θ(N2) + 3U2(N/2) + 3U1(N/2) if N = Ω(λ)

0 otherwise.

=

Θ(N2) + 3U2(N/2) if N = Ω(λ)

0 otherwise.

= Θ(N2).

As for V2(N) we get

V2(N) =


3V2(N/2) + 3V1(N/2) if B log1/bN = Ω(λ) and N1 > B

3V2(N/2) + 3V1(N/2) + Θ
(
(B log1/bN)2

)
if B log1/bN = Ω(λ) and N1 ≤ B

0 otherwise.

Note that when N1 ≤ B, B log2N ≤ B log1/bB. Because λ ≥ (dB log2B)1+ε, we have that

B log2N 6= Ω(λ). Therefore the middle case in V2(N) never happens.

V2(N) =

3V2(N/2) + 3V1(N/2) if B log1/bN = Ω(λ) and N1 > B

0 if B log1/bN 6= Ω(λ).

=

3V2(N/2) +O(N2) if B log1/bN = Ω(λ) and N1 > B

0 if B log1/bN 6= Ω(λ).

= O(N2) by applying the Master method.

Finally, we show that T2(N) = Θ(N2).

T2(N) =

max {Θ(N2), 3T2(N/2) + 3T1(N/2)} if N > λ

Θ(λ2) if N ≤ λ.

= Ω(N2).

We also have that

T2(N) < X(N) =

3X(N/2) + Θ(N2) + 3T1(N/2) if N > λ

Θ(λ2) if N ≤ λ.

=

3X(N/2) + Θ(N2) if N > λ

Θ(λ2) if N ≤ λ.

= O(N2).

65

Hence, we have concluded that T2(N)+U2(N)+V2(N) = Θ(N2). Therefore, ρψ(WLCS,N,λ) =

O(N2).

Since ρψ(WLCS,N,λ) = O(N2) = O(Rψ(N)), Recursive-LCS is optimally progressing

and optimally cache-adaptive. Since Edit-Distance has the same progress bound, the

above argument holds for it as well.

6.4 Optimal Matrix Transpose

Definition 6.4. Given a matrix A, the matrix transpose problem is concerned with com-

puting the matrix AT , where [AT]ij = [A]ji.

We describe a cache-oblivious algorithm, M-Transpose, for the matrix transpose prob-

lem. For a matrix A, allow A1, A2, A3, A4 to be the four sub-quadrants of A. We have that

the transpose of A, AT , satisfies

A =

(
A1 A2

A3 A4

)
⇒ AT =

(
AT1 AT3
AT1 AT4

)
. (6.1)

The M-Transpose algorithm is a variant of the cache-oblivious algorithm of Frigo et

al. [31], see algorithm 6. Like the algorithm in [31], M-Transpose requires a tall cache of

size Θ(B2) to be optimal in the DAM model and incurs Θ(N/B) I/Os.

Algorithm 6 The cache-oblivious matrix transpose [31]. The algorithm writes

AT into the output matrix B.

1: function M-Transpose(A, B)

2: if size(A) = 1 then Write A into B.

3: else

4: M-Transpose(A1, B1).

5: M-Transpose(A2, B3).

6: M-Transpose(A3, B2).

7: M-Transpose(A4, B4).

8: end if

9: end function

Theorem 6.5. For all Θ(B2)-tall memory profiles, the M-Transpose algorithm is opti-

mally progressing and cache-adaptive and it takes Θ(N/B) I/Os to finish.

66

Proof. Let ρτ (�S) = S/B be the duration of a square �S and Rτ (N) = N be the size of the

input. ρτ is trivially monotone and square-additive. Furthermore, since all algorithms that

solve all inputs of size N , must read the input, ρτ and Rτ constitute a progress bound for

the matrix transpose problem.

M-Transpose is an (a, b, c)-regular algorithm with c = 0 and a = 4 = 1/b. Therefore,

by theorem 4.21 it is optimally progressing and cache-adaptive. Note that there exists an

ε ∈ (0, 0.1) such that max{Θ(B2), (3(1 + ε)B log4B)1+ε} = Θ(B2).

The I/O complexity of M-Transpose is evident from the analysis of Frigo et al. [31].

67

Chapter 7

Suboptimal Cache-Adaptive

Algorithms

In this chapter, we establish that cache-obliviousness does not always lead to cache-adaptivity.

We prove that a variation of the cache-oblivious näıve matrix multiplication algorithm of

Frigo et al. [31], MM-Scan, which is optimal in the DAM model, is a Θ(log) factor away

from being optimal in the cache-adaptive model.

In section 7.2, we show that the analytic techniques of chapter 4 can be used to analyze

algorithms that don’t fit the Akra-Bazzi form. As an example, we show that the cache-

oblivious FFT algorithm of Frigo et al. [31] is a O(log logN) factor away from being optimal

when solving problem instances of size N .

7.1 Matrix Multiply: A Tale of Two Algorithms

The cache-oblivious matrix multiplication algorithm of Frigo et al. [31], MM-Inplace has

another variation, MM-Scan (see algorithm 7), which performs the additions different than

MM-Inplace.

Both algorithms divide each input matrix into four submatrices and perform eight recur-

sive calls to compute submatrix products. Both algorithms run in O(N3/2/
√
MB) I/Os in

the DAM model, which is optimal [34, 36]. Both algorithms require a tall cache of Θ(B2).

Remarkably, only MM-Inplace is optimally progressing and cache adaptive; and MM-

Scan is a Θ(log(N/B2)) factor away from being optimal in the cache-adaptive model.

The two matrix multiplication algorithms differ in how they combine the eight matrix

sub-products. Algorithm MM-Scan adds the eight matrix sub-products in one final linear

scan, yielding a recurrence of T (N) = 8T (N/4) + Θ(1 + N/B) in DAM. Algorithm MM-

Inplace computes the eight matrix sub-products “in place,” adding the results of elementary

68

multiplications into the output matrix, and yielding a recurrence of T (N) = 8T (N/4)+O(1)

in DAM. Both recurrences have the same asymptotic solution in DAM.

Algorithm 7 The cache-oblivious matrix multiply with Θ(1 + N/B) linear

scan [31].

Let A =

(
A1 A2

A3 A4

)
, B =

(
B1 B2

B3 B4

)
, X =

(
X1 X2

X3 X4

)
and Y =

(
Y1 Y2

Y3 Y4

)
.

1: function MM-Scan(N ,A,B)

2: if N = O(1) then

3: return A×B
4: else

5: X1 ←MM-Scan(N/2, A1, B1)

6: X2 ←MM-Scan(N/2, A1, B2)

7: X3 ←MM-Scan(N/2, A3, B1)

8: X4 ←MM-Scan(N/2, A3, B2)

9: Y1 ←MM-Scan(N/2, A2, B3)

10: Y2 ←MM-Scan(N/2, A2, B4)

11: Y3 ←MM-Scan(N/2, A4, B3)

12: Y4 ←MM-Scan(N/2, A4, B4)

13:

14: C ← X + Y . Linear scan

15: return C

16: end if

17: end function

Theorem 7.1. On all Θ(B2)-tall memory profiles, the CO matrix multiplication algorithm

MM-Scan is a Θ(log(N/B2)) factor away from being optimal when solving problem in-

stances of size N .

Proof. By lemma 5.12, we have that ρµ(�X) = Θ(X3/2) and Rµ(N) = Θ(N3/2) constitute a

progress bound for the näıve matrix multiplication problem.

MM-Scan is an (8, 1/4, 1)-regular algorithm. Hence, by theorem 4.21 it is a Θ(log4(N/B
2))

factor away from being optimally progressing.

Since MM-Inplace is optimally progressing, MM-Scan requires a speed augmentation

of Θ(log4(N/B
2)) to be able to beat MM-Inplace in solving problem instances of size N

69

on all profiles. Hence, MM-Scan is a Θ(log(N/B2)) factor away from being optimal.

7.2 Cache-Oblivious Fast Fourier Transform

We present the pseudo-code for the cache-oblivious FFT algorithm of Frigo et al. [31], CO-

FFT (see algorithm 8). Note that in the base case, when N = O(1), the algorithm computes

the DFT directly. For a complete description we refer the interested reader to [31].

CO-FFT is not a GR algorithm because its recursive calls are on subproblems of size√
N , rather than on subproblems a constant factor smaller. Consequently, a square S may

contain subproblems of size only Θ
(√
|S|
)

instead of Θ(|S|), so the charging scheme of

theorem 4.14 does not work “out of the box”.

Algorithm 8 The CO-FFT algorithm [31].

1: function CO-FFT(R,N)

2: Pretend that the input is a row-major
√
N ×

√
N matrix R. Perform an

in-place matrix transpose operation by calling M-Transpose(R) (see al-

gorithm 6). . At this stage, the inner sum corresponds to a DFT of the√
N rows of the transposed matrix.

3: for each row Ri of the matrix do

4: CO-FFT(Ri,
√
N).

5: end for

6: A linear scan to multiple each element of R by a by the twiddle factors (can

be computed on the fly).

7: M-Transpose(R), so that the inputs to the next stage are arranged in

contiguous locations.

8: for each row Ri of the matrix do

9: CO-FFT(Ri,
√
N).

10: end for . Compute
√
N DFTs of the rows of the matrix recursively.

11: M-Transpose(R), in place so as to produce the correct output order.

12: end function

However, a square S must either intersect a linear scan of size Ω(|S|) or contain enough

subproblems of size Ω
(√
|S|
)

so that their total size sums to Θ(|S|). Lemma 5.34 shows that

ρφ(�X) = Θ(X logX) and Rφ(N) = Θ(N logN) constitute a progress bound for Cooley-

Tuckey FFT algorithms. We divide the progress of S among all the subproblems contained

70

in S. CO-FFT uses the cache-oblivious matrix-transpose algorithm, M-Transpose (algo-

rithm 6), as a subroutine, so it has a tall-cache requirement, i.e. H(B) = Θ(B2).

Theorem 7.2. On all Θ(B2)-tall memory profiles, CO-FFT is a Θ(log log (N/B2)) fac-

tor away from being optimally progressing, and O(log log (N/B2)) factor away from being

optimally cache-adaptive.

The following lemma is a modified version of lemma 4.11 tailored for the specific appli-

cation of the CO-FFT algorithm. We prove lemma 7.3 at the end of this section.

Lemma 7.3. If M is an N-fitting profile for CO-FFT, then every square, S, of M satisfies

at least one of the following two properties

(i) S encompasses k consecutive executions of CO-FFT on subproblems of size `, where

k` = Θ(|S|).

(ii) S overlaps a linear scan of size Ω(|S|).

Proof of Theorem 7.2

Consider a “canonical bad profile” for CO-FFT which has large boxes whenever CO-FFT

performs a linear scan. The recursion for this profile is then

MFFT,N =

�N ‖M
√
N

FFT,
√
N
‖�N ‖M

√
N

FFT,
√
N
‖�N if N ≥ Θ(B2)

Θ(�B2) otherwise.

We have that ρφ(�N) = Θ(N logN), Therefore ρφ(MFFT,N) satisfies the recurrence

ρφ(MFFT,N) =

2
√
Nρφ(MFFT,

√
N) + Θ(N logN) if N ≥ Θ(B2)

Θ(B2 logB) otherwise,

which solves to ρφ(MFFT,N) = Θ(N logN log log(N/B2)). Thus, CO-FFT can be at least a

log log(N/B2) factor away from being optimally progressing.

To prove that this bound is tight, let WFFT,N be CO-FFT’s worst case profile for inputs

of size N . We will show that ρφ(WFFT,N) = O(N logN log log(N/B2)).

Lemma 7.3 implies that every box S of WFFT,N either intersects a linear scan of size

Ω(|S|) or encompasses k consecutive executions of the FFT algorithm on subproblems of

size `, where kl = Θ(|S|). We will account for the progress of the two cases separately.

71

Charging the linear-scan-overlapping squares If a square S overlaps a linear scan

L of size Ω(|S|) executed by the top-level invocation of CO-FFT and L is the biggest linear

scan overlapped by S, we charge it to L. We develop a recursive relation U(N) that bounds

the total progress of all linear-scan-overlapping squares for an invocation of CO-FFT on a

problem instance of size N .

Let N0 be the size of input in an invocation for CO-FFT. If N0 6= Ω(B2), then because

WFFT,N is Θ(B2)-tall, no square of WFFT,N can be charged to a linear scan executed in any

part of the subproblem CO-FFT(N0), as squares are much bigger than these linear scans.

Therefore, U(N0) = 0.

For larger N , multiple squares may have their progress charged to a single linear scan of

size |L|, but all but at most two of those squares will be contained entirely within the linear

scan. Thus, the total size of all the squares charged to a single linear scan of size |L| will

be Θ(|L|). Suppose S1, . . . , Sk are the squares charged to L. Since ρφ(�X) = Θ(X logX) =

Ω(X), we must have that
∑
ρφ(Si) = O(ρφ(�∑

|Si|)) = O(ρφ(�|L|)). Thus, the progress of

all the squares charged to linear scans executed by the top-level invocation of CO-FFT on

a problem instance of size N can be upper-bounded by Θ (ρφ(�N)) = Θ(N logN).

Therefore, the progress of all squares charged to linear scans of CO-FFT is upper-

bounded by U(N) where

U(N) =

2
√
NU(
√
N) + Θ(N logN) if N = Ω(B2)

0 otherwise
,

which has the solution U(N) = O(N logN log log(N/B2)).

Charging the subproblem-encompassing squares Let T (N) denote the total

progress of all the subproblem-encompassing squares in WFFT,N .

Consider a box S encompassing CO-FFT’s execution on k successive subproblems of

size `. The total possible progress on S is bounded by Θ(k` log k`). However, from the

structure of the CO-FFT algorithm, we must have that k ≤ l, so k` log k` = Θ(k` log `),

which is the total progress from a single box placed over each of the subproblems covered by

S. Since a box that covers a subproblem must cover all subproblems of that subproblem, we

can bound T (N) by finding a set of non-overlapping subproblems that cover all subproblems

of the input. Hence, T (N) can be bounded by

T (N) = max
0≤i≤log log N

H(B)

O(2iN1−2−iN2−i logN2−i)

= O(N logN)

(7.1)

72

Therefore, by square-additivity of ρφ we have that ρφ(WFFT,N) = O(U(N) + T (N)) =

O(N logN log log(N/B2)). Since Rφ = Θ(N logN), CO-FFT is a Θ(log log(N/B2)) fac-

tor away from being optimally progressing and a O(log log(N/B2)) factor away from being

optimally cache-adaptive.

Proof of Lemma 7.3

Let M be an N -fitting profile for CO-FFT and let S be a square of M and let σ be the

sequence of memory references generated while solving a problem instance of size N for

which M is I-fitting. We prove that S must have one of the two properties (i) or (ii) with

respect to σ.

Let N ′ be such that CO-FFT can solve problems of size ≤ N ′ using at most |S|/3B
I/Os and |S| memory. Since CO-FFT has linear space complexity, N ′ = Θ(|S|).

Note that every root-to-leaf path of the recursion tree must contain a subproblem whose

size is in the range [
√
N ′, N ′], so we can expand the recursion tree to subproblems of size

between
√
N ′ and N ′. Let E1, . . . , Et be the leaves of this partially expanded recursion tree,

so that each Ei corresponds to an execution CO-FFT on a subproblem of size ` ∈ [
√
N ′, N ′].

General properties of linear scans As before, we use notation 4.7 to describe different

types of linear scans in the recursive structure of CO-FFT.

If Φ is a subsequence of memory references between two complete executions of CO-

FFT, then it may contain some number of L3-type scans produced at the end of recursive

calls, followed by an L2-type scan produced between recursive calls, followed by some number

of L1-type scans produced at the beginning of recursive calls. If Φ consists of references in σ

before the first complete execution of CO-FFT, then it contain references from only L1-type

scans. If Φ follows the last complete execution of CO-FFT in σ, then it contains references

from only L3-type scans.

We first argue that overhead references cannot comprise a significant part of S. The

size of linear scans in CO-FFT is Θ(N) on inputs of size N . When these linear scans

become so small so that their size is less than B, it must be the case that the input size

N1 is O(B). Thus, based on the recursive structure of the CO-FFT algorithm, the biggest

sequence of consecutive overhead references in σ can have a length of at most B log logN1 =

O(B log logB). Since M is Θ(B2)-tall, even the biggest sequence of consecutive overhead

references cannot comprise a Ω(|S|) portion of square S.

Property (i) If the square S encompasses k consecutive executions of CO-FFT on

subproblems of size ` ∈ [
√
N ′, N ′], where k` = Θ(|S|) then we are done.

73

Property (ii) Suppose S does encompass k ≥ 0 consecutive executions of CO-FFT on

subproblems of size ` ∈ [
√
N ′, N ′], but k` 6= Ω(|S|). We show that S must satisfy property

(ii).

Note that S can intersect at most two separate sequences of consecutive executions of

CO-FFT on subproblems of size `, because if a third intersection occurs it must be in the

middle section of S and S has to encompass all the ` consecutive subproblems of size `; see

the structure of CO-FFT. Due to the choice of N ′ and `, it follows that `` = Θ(|S|) which

is in contradiction of our assumption that S does not satisfy property (i).

Since S can intersect at most two consecutive sequence of leaves of E1, . . . , Et of our

partially expanded recursion tree (one at the beginning and one at the end) and neither

sequence of leaves comprise a Θ(|S|) portion of S, at least Ω(|S|) I/Os of S must be a

contiguous sequence of memory references that does not contain a complete execution of

CO-FFT. Call this subsequence Φ.

Let Z1, Z2, Z3 be the set of linear scans of type L1, L2, and L3, respectively, in Φ. Since

S does not encompass a subproblem, the linear scans in Z1 all belong to only one sequence of

L1-type slide-down moves on the recursion tree. Similarly, the linear scans in Z3 all belong

to only one sequence of L3-type climb-up moves in the recursion tree.

Let I(.) denote the I/O complexity of a set of linear scans and allow

z = max{I(Z1), I(Z2), I(Z3)}.

Since at least Ω(|S|) of I/Os in S are overlapping linear scans, we have that z = Ω(|S|/B).

There are three cases to be considered.

Case of z = I(Z2) Since Φ does not encompass a subproblem, Z2 is comprised of a

of a single linear scan L in one L2 set. The size of this linear scan is linear in the size of the

invocation call. Therefore, |L/B| = Ω(z) = Ω(|S|/B) and |L| = Ω(|S|). Thus, S satisfies

property (ii).

Case of z = I(Z3) In this case Z3 is comprised of linear scans from several invocations

of CO-FFT, where each invocation has produced exactly one linear scan of type L3. Let

x1 ≤ · · · ≤ xk be the problem sizes solved by each of these invocations.

Since the linear scans of CO-FFT are linear in the size of input call, we have that

I(Z3) = Θ(1 + x1/B) + . . .+ Θ(1 + xk/B).

We have already argued that a sequence of consecutive overhead references can at most

create log logB I/Os. Since I(Z3) = Ω(z) = Ω(|S|/B) = Ω(B), we have that overhead

74

references cannot comprise a significant part of I(Z3). Assume that xb is the smallest

problems size which produces a non-overhead linear scan in Z3. We must have that

Θ(xb/B) + Θ(xb+1/B) + . . .+ Θ(xk/B) = Ω(I(Z3)).

On the other hand, due to the structure of CO-FFT, we have that xi = (xi−1)
2 for all

i = 2, . . . , k. This means that the above sum is a power series and no matter the values of

k and b, the I/O cost of the biggest linear scan dominates the sum, that is

Θ(xk/B) = Ω (Θ(xb/B) + Θ(xb+1/B) + . . .+ Θ(xk/B))

= Ω(I(Z3)) = Ω(|S|/B).

Thus, xk = Ω(|S|) and S has property (ii).

Case of z = I(Z1) The analysis in this case is identical to the case of z = I(Z3).

We have established that each square S satisfies one of the two properties and the proof

is complete.

75

Chapter 8

Optimal Cache-Adaptive Sorting

In this chapter we study the comparison-based sorting problem. The cache-oblivious sorting

algorithm of Brodal and Fagerberg [15], Lazy Funnel Sort (LFS), is a simpler variation of

the Funnel Sort algorithm in [31]. LFS does not adhere to the recursive forms that we have

studied thus far. Nonetheless, we prove that the LFS algorithms is optimally progressing

and optimally cache-adaptive.

8.1 The Lazy Funnel Sort (LFS) Algorithm

We start with a short exposition of the LFS algorithm [15]. At the core of the LFS algorithm

lies the concept of a k-merger , a perfectly balanced binary tree with k leaves and a binary

merger at each internal node. Each leaf has a sorted input stream, and the root has an

output stream with capacity kd, where d ≥ 2 is a tuning parameter. The size of buffers

between internal nodes are defined recursively: Consider a horizontal cut in the tree at half

its full height: D0 = dlg(k)/2e. The buffers between nodes of depth D0 and D0 + 1 have size

dkd/2e. The subtree above depth D0 is the top tree and all the subtrees rooted below are

bottom trees . The sizes of the buffers in the top and bottom trees are defined recursively.

Upon each invocation, a k-merger merges kd elements into its output buffer. We call a

complete invocation of a k-merger, producing kd elements in the output buffer, a round of

execution of that k-merger. A k-merger together with its internal buffer is linearized in a

recursive Van Emde Boas layout. First, the top subtree is laid out in a contiguous array and

then all the bottom subtrees are laid out in contiguous arrays. The work flow of a k-merger

is based on recursive calls to the underlying binary merger tree. A call is made to the root of

a k-merger to fill its output stream by merging its two input buffers. When one of the buffers

runs out of elements, a recursive call is made to the child node to fill it. For a complete

description and analysis we refer the interested reader to [15].

76

LFS cannot use a single N -merger to sort the input array, since an N -merger would have

superlinear size. Instead, LFS calls itself recursively to produce N1/d sorted streams of size

N1−1/d and then merges these using an N1/d-merger.

We use the following lemma by Brodal and Fagerberg [15].

Lemma 8.1 (From [15]). Let d ≥ 2. The size of a k-merger (excluding its output buffer)

is bounded by pk(d+1)/2 for a constant p ≥ 1. Assuming that M is 2pB(d+1)/(d−1)-tall, if a

k-merger together with one block from each of its input buffers fit in memory, it performs

O(kd/B + k) I/Os to output kd elements to its output buffer.

Theorem 8.2. Let C = (4p)2d/(d+1), where p ≥ 1 is the constant from lemma 8.1 and allow

M to be any CB2d/(d−1)-tall memory profile. An LFS algorithm based on k-mergers that

have output buffers of size kd is optimally progressing and cache-adaptive on M if d ≥ 2.

Proof. By lemma 5.37, we have that ργ(�S) = Θ(S lgS) and Rγ(N) = Θ(N lgN) constitute

a progress bound for the comparison-based sorting problem.

We show that if M = �S1‖ . . . ‖�Sj is an N -fitting square profile for LCS, then ργ(M) =

O(Rγ(N)).

In the LFS algorithm, each input element must pass through Θ(lgN) binary mergers to

reach to the buffer at the root of the tree. As such, the total task of LFS is for all N elements

to climb C(N) = Θ(lgN) binary mergers. Let φ(�Si
) denote the total number of

individual climbs that the LFS algorithm achieves during �Si
. Because M is

N -fitting for LFS we must have that

j∑
i=1

φ(�Si) = NC(N) = Θ(N lgN). (8.1)

Later in this section, we prove the following lemma.

Lemma 8.3. Let C = (4p)2d/(d+1), where p ≥ 1 is the constant from lemma 8.1 and allow

M = �S1‖ . . . ‖�Sj to be a CB2d/(d−1)-tall square memory profile. We have that the total

number of individual climbs on the binary mergers that the LFS algorithm achieves during

�Si, φ(�Si), is Ω(Si lgSi).

The statement of theorem 8.2 follows from lemma 8.3, because if M is N -fitting for LFS,

77

it must be the case that
∑

i φ(�Si) = C(N)N . Therefore,

ργ(M) = Θ

(∑
i

ργ(�Si)

)

= O

(∑
i

φ(�Si)

)
by lemma 8.3 and the fact that ργ(�S) = Θ(S lgS)

= O(C(N)N) = O(Rγ(N)),

and thus LFS is optimally progressing.

Proof of Lemma 8.3. We are going to argue that certain x-mergers, which we refer to as

active trees, are operational in each �Si .

The recursive definition of buffer sizes also defines recursive subtrees. We roll out the

recursive definition of these subtrees until we reach an x-merger such that x is the biggest

value for which

xd ≤ Si/C. (8.2)

Remember that C = (4p)2d/(d+1) ≥ 4 and p is the same constant from lemma 8.1. We refer

to such a subtree as an active tree . Note that since x is the biggest such value, we have

that

x2d > Si/C. (8.3)

An active tree is a little different than the notion of base tree in [15], because it is

not the biggest x-merger that fits in memory during �Si , but rather the biggest x-merger

that can perform at least one round during �Si while fitting in memory. This difference is

essential in our analysis, since we measure finished rounds of x-mergers in �Si .

Lemma 8.4. Let C = (4p)2d/(d+1), where p ≥ 1 is the constant from lemma 8.1. If Si is

CB2d/(d−1)-tall, an active tree with one block from each of its input buffers fits in a memory

of size Si. We have that xd−1 > B and it takes an active tree ≤ 4pxd/B I/Os to perform

one round of operation.

By lemma 8.4, we have that one round of an active tree operations takes at most 4pxd/B

I/Os. Since �Si contains Si/B I/Os, we have that in �Si , αi ≥ Si/4px
d rounds of operations

of active trees finish.

We exhibit that αi ≥ 2. This means that even with the worst alignment of a square and

the operations of the active tree, LFS completes at least one round of operation of an active

tree during �Si .

78

We have

αi ≥
Si

4pxd

≥ Cxd

4pxd
because

Si
C
≥ xd by eq. (8.2)

≥ C

4p
=

(4p)2d/(d+1)

4p
= (4p)(d−1)/(d+1) ≥ 2 because d ≥ 2 and p ≥ 1.

During each round of operation of an active tree, xd elements climb up lg x binary mergers.

Therefore, the total number of climbs in �Si by LFS, φ(�Si), is bounded from below:

φ(�Si) = Ω

(
Si

4pxd

)
xd lg x

= Ω

(
Si

1

8dp
lg
S1

C

)
Since x > (Si/C)1/2d by eq. (8.3)

= Ω(Si lgSi).

It only remains to prove lemma 8.4.

Proof of Lemma 8.4. We show that the x-merger itself and the set of input buffer blocks

both take at most Si/4 memory.

The size of an active tree (an x-merger) is bounded by px(d+1)/2 by lemma 8.1. We have:

px
d+1
2 ≤ p(Si/C)

d+1
2d since x ≤ (Si/C)

1
d by eq. (8.2)

≤ p

4p
(Si)

d+1
2d since C = (4p)2d/(d+1)

� Si/4 since d ≥ 2.

Since an x-merger has x leaves, one block from each input buffer will occupy a total of x

blocks of memory. Therefore

Bx ≤ B(Si/C)
1
2d since x ≤ (Si/C)

1
d by eq. (8.2)

≤ (Si/C)
d−1
2d (Si/C)

1
2d since Si ≥ CB

2d
d−1 by tallness of Si

≤ (Si/C)
1
2

� Si/4 since C ≥ 4.

which gives us the desired space bound.

79

To finish one round, an active tree needs to load the x-merger structure together with one

block from each of its input buffers into memory which takes at most (1 + px(d+1)/2/B) + x

I/Os.

By definition, the x-merger outputs xd elements to its output buffer. Since reading/writing

of data is performed in batches and is I/O efficient, we have that reading and writing back

these elements takes at most 2(1 + xd/B) I/Os.

We show that xd−1 > B:

xd−1 >
(

(Si/C)
1
2d

)d−1
since x > (Si/C)

1
2d by eq. (8.3) (8.4)

≥ (Si/C)
d−1
2d

≥ B
2d
d−1

d−1
2d since Si ≥ CB

2d
d−1 by tallness of Si

≥ B.

Equation (8.4) means x < xd/B. On the other hand, since d ≥ 2, we have that px(d+1)/2/B ≤
pxd/B,

Therefore, the total number of I/Os required for an active tree to finish one round of its

operation is bounded by

2(1 + xd/B) + (1 + px(d+1)/2/B) + x ≤ 3 + 3pxd/B

≤ 4pxd/B since xd/B > x ≥ 2.

Note that x ≥ 2, because there can be no 1-merger.

80

Chapter 9

Page Replacement Policies in the

Cache-Adaptive Model

This section gives competitive analyses for page replacement when the size of memory

changes over time. Since we measure time in terms of I/Os, two paging algorithms may

become out-of-sync when one has a page fault and the other has a page hit. Thus, two al-

gorithms may have wildly different amounts of memory available to them when they service

the same request. This section shows how to deal with this alignment issue.

We first show that LRU with resource augmentation is competitive with OPT in sec-

tion 9.1. Then we prove that Belady’s Longest Forward Distance (LFD) policy [8] is optimal

when the size of cache changes over time in section 9.2.

We start by inspecting a formal view of a page replacement policy in the cache-adaptive

model. We model the state of the memory as the set C of pages currently in the memory and

the size of the memory. Between each page request, the page replacement algorithm may

perform some sequence of I/Os and specify a set of pages to be evicted from the memory

(since memory changes, we may need to evict more than one page). We name an I/O

operation by an ordered pair (D, p), where D is the set of pages to be deleted from memory

and p is the page to be loaded after performing the deletions. Note that when memory grows,

D may be the empty set. As in the standard model, no block from disk can have more than

one paged copy in cache at a time.

In the CA model, a page replacement policy P is a sequence of I/O operations P =

(D1, p1), (D2, p2), . . . for a sequence of page requests σ = 〈σ1, σ2, . . . 〉. A page replacement

policy is feasible if σi is always in memory when it is accessed and C always fits in memory.

A policy is on-demand if: 1) When σi+1 is not in memory after σi is accessed, it

immediately performs one I/O to bring σi+1 into memory; 2) The policy makes no other

I/Os. We require that all policies are feasible.

81

9.1 Constant Competitiveness of a Resource-Augmented

LRU

We utilize square profiles, lemma 3.3 and an inductive charging approach to prove competi-

tiveness of LRU with a variable-sized cache. We show that LRU with 4-memory and 4-speed

augmentation is competitive with the optimal page replacement algorithm. This shows that,

given some resource augmentation, real LRU-based systems can implement the CA model.

Notation 9.1. For a sequence of page accesses σ = (σ1, . . . , σn), memory profile m(t), and

page replacement algorithm P , let CP (m,σ) be the number of I/Os required to process σ in

m while using page replacement algorithm P . Let C(m,σ) denote COPT(m,σ).

The following lemma enables us to convert simultaneously between LRU and OPT and

square and general profiles.

Lemma 9.2. Let m be any memory profile. Let m′ be the inner square profile of m. Let

σ = (σ1, σ2, . . . , σn) be any sequence of page accesses. Then CLRU(m′4,4, σ) ≤ 4COPT(m,σ).

Proof. Since OPT and LRU can never place more than one page in cache per time step, we

may assume without loss of generality that m(t+ 1) ≤ m(t) + 1 for all t, that is the memory

profile is usable. Let 0 = t0 < t1 < . . . be the inner square boundaries of m.

We prove by induction on i that for all page sequences σ, if COPT(m,σ) ∈ [ti+1, ti+2),

then CLRU(m′4,4, σ) ≤ 4ti+1.

Base case i = 0 We argue that if OPT can process σ in the first two intervals of m, then

LRU can process it in the first interval of m′4,4. Suppose COPT(m,σ) < t2. From lemma 3.3,

t2 = t2− t0 = (t2− t1) + (t1− t0) ≤ 2(t1− t0) + (t1− t0) = 3(t1− t0) = 3t1. Since the cache is

empty at time t0 = 0, this implies that σ can refer to at most t2 ≤ 3t1 distinct pages. Since,

during interval [0, 4t1), profile m′4,4 always has size at least 4t1 pages, LRU can load all the

pages referenced by σ into memory, and this will require at most 3t1 I/Os. Thereafter, no

further I/O will be required. Thus CLRU(m′4,4, σ) < 4t1.

Inductive step The inductive assumption is that for all σ′, if COPT(m,σ′) ∈ [ti+1, ti+2),

then CLRU(m′4,4, σ
′) ≤ 4ti+1. Suppose that COPT(m,σ) ∈ [ti+2, ti+3). Let σ′ be the prefix

of σ that OPT services in [t0, ti+2). Consequently, COPT(m,σ′) < ti+2. By the inductive

hypothesis, CLRU(m′4,4, σ
′) ≤ 4ti+1.

Let σ′′ be the remainder of σ, i.e. σ = σ′||σ′′. Observe that, since OPT can process

σ′′ in ti+3 − ti+2 ≤ 2(ti+2 − ti+1) time steps and with a cache whose initial size is at most

2(ti+2 − ti+1), σ
′′ can contain references to at most 4(ti+2 − ti+1) distinct pages.

82

We now only need to show that LRU can process any suffix of σ′′ in interval [4ti+1, 4ti+2).

The memory available during this interval in m′4,4 is 4(ti+2 − ti+1). Thus LRU can load all

the distinct pages referenced by σ′′ into memory, which will require at most 4(ti+2 − ti+1)

I/Os. Thereafter, it can serve all the page requests in σ′′ with no further I/O.

Theorem 9.3. LRU with 4-memory and 4-speed augmentation always completes sooner than

OPT.

Proof. Take σ, m, and m′ as in lemma 9.2. Since m′4,4 always has less memory than m4,4,

CLRU(m4,4, σ) ≤ CLRU(m′4,4, σ). Thus, by lemma 9.2, CLRU(m4,4, σ) ≤ 4COPT(m,σ).

The following lemma shows that LRU requires speed augmentation to be competitive.

Sleator and Tarjan have previously proven that LRU requires memory augmentation to be

constant competitive [49]. Therefore theorem 9.3 is, up to constants, the best possible.

Lemma 9.4. There exists a memory profile m(t) and a page request sequence σ, such that

a non-speed augmented LRU performs arbitrarily worse than OPT.

Proof. Consider the following memory profile for LRU:

mLRU(t) =


cM t ≤ cM + 1

2cM + 1− t cM + 1 < t < 2cM − 4

5 2cM − 4 ≤ t

Assume that memory augmentation of LRU is c where c ≥ 2, i.e. LRU starts with cM

memory and OPT starts with M memory. Thus mOPT (t) = bmLRU (t)
c
c. Let H = M −

b (c−1)M−4
c
c. Consider a sequence of page requests σ = {σi}i≥1 as follows:

σ = (a1, ..., acM , acM+1, a1, ..., aM−1, aM , ..., acM−5, a1, ..., aH−1, a1, ..., aH−1, a1, ...).

LRU and OPT both fault on all the first cM + 1 page requests because all of them are new

pages. Furthermore, LRU will also fault on page requests σcM+2 = a1, . . . , σ2cM−4 = acM−5.

This happens because at page request σcM+1 = acM+1, LRU will evict a1 and therefore must

bring it again at σcM+2. The same thing happens for all requests in σcM+2, . . . , σ2cM−4. When

accounted in the memory profile function, LRU will have a memory size of 5 at time 2cM−4.

Since OPT has a full insight into future, it will keep pages a1, ..., aM−1 in its memory and

thus will not fault on page requests σcM+2 = a1, . . . , σ(c+1)M+1 = aM−1. However, on requests

σ(c+1)M+2 = aM , . . . , σ2cM−4 = acM−5, OPT will fault on cM − 5 −M pages. At time step

2cM − 4, the memory of OPT has decreased to H = M − b (c−1)M−4
c
c pages. Again, because

of the insight into future, OPT could keep pages a1, . . . aH−1 in memory. So OPT will not

fault on any pages after σ2cM−4. Since H ≥ M+4
c

+1 > 5, LRU, will fault on all page requests

after σ2cM−4. Therefore, without speed augmentation, LRU is not cache-adaptive.

83

{p} {q}(F, p), p ∈ F (E, q), p ∈ E

(E, q), p /∈ E

{p}

{p,q}

C C’

(F, p), p /∈ F

(a) State of memory, C ′, after original I/Os

{p} {q}(F, q), p ∈ F (E[q/p], q), p ∈ E

(E[q/p], p), p /∈ E

{q}

{p,q}

C C”

(F, q), p /∈ F

(b) State of memory, C ′′, after swapped I/Os

Figure 9.1: Comparing states of the memory after original I/Os and swapped I/Os. In the

figures: 1) Each circle represents a state of the memory and its label shows whether p or q

are in memory. There may be other pages in the cache although we don’t represent them in

the label. Blank label means that neither p nor q are in the cache; 2) Each arrow with its

label represents an I/O.

9.2 Optimal (Offline) Page Replacement in the CA

Model

Now we examine a replacement policy known to be optimal in the DAM model. Belady’s

algorithm [8] is an offline policy that evicts the page with Longest Forward Distance (LFD).

In other words, LFD evicts the page whose next request comes latest. We prove that LFD

is an optimal page replacement policy in the CA model.

Even though we require that all policies are feasible, but with changing cache size it may

be that there isn’t an optimal on-demand policy. As such, the proof needs to show that LFD

is optimal among all feasible policies in the CA model.

We begin with a method to transform a non on-demand policy into an on-demand one,

thus showing that there exists an optimal adaptive on-demand policy. This method simplifies

the proof that Belady’s algorithm is optimal.

Lemma 9.5 (The Swap Method). Suppose a page-replacement policy P is on-demand up

until serving page request σi. There exists a policy that agrees with P up to page request σi,

has the same number of I/Os as P and is on-demand up until serving page request σi+1.

Proof. If P is on-demand for σi+1, then we are done. Otherwise, there is at least one I/O

performed by P between σi and σi+1. If σi+1 is already in cache when σi is accessed, all

of these I/Os can be moved after σi+1 and we are done—the resulting policy is on-demand

until σi+1, is feasible, and has the same number of I/Os.

Otherwise, let (D′, σi+1) be the first I/O after σi to load σi+1. We want (D′, σi+1) to be

the first and only I/O after σi is accessed. Let (F, p) and (E, q) be consecutive I/Os, and

84

let E[q/p] denote replacing any occurrence of p with q in E. We show that we can swap

(D′, σi+1) with the I/O before it using the swap method :

(F, p), (E, q)→
{

(F, q), (E[q/p], p) if p 6∈ E
(F, q), (E[q/p], q) otherwise.

It can be shown via case-by-case analysis (see fig. 9.1), that the swap method does not

change the state of memory after (E, q). Thus, the policy is still feasible. We continue to

swap (D′, σi+1) with the previous I/O until it occurs immediately after σi is accessed. We

can then move all other page accesses after σi+1, again retaining feasibility.

The resulting policy is on-demand until σi+1. We never changed any I/O before σi, nor

did we change the number of I/Os.

Theorem 9.6. LFD is an optimal page replacement policy for a variable-sized cache.

Proof. Among all on-demand optimal algorithms, consider the algorithm, OPT, that matches

LFD’s behavior for the longest time. We will create another on-demand optimal algorithm,

G, that matches LFD’s behavior for one more step and arrive at a contradiction.

Let σi be the first page request for which OPT and LFD diverge in their behavior. If

memory increases, an on-demand algorithm does not need to evict any page. Thus, the

divergence happens only when memory decreases or stays the same. Before processing σi

the two algorithms have the same pages in memory, so σi must be a page miss for both of

them. Since they diverge at σi, they replace σi with different pages. Let q be the page that

LFD discards and p be the page that OPT discards. Let t be the first time after i that

OPT discards q. We will alter OPT’s behavior between i and t to create a new optimal

algorithm B. B will service σi the same way that LFD does (by replacing q) and will satisfy

CostB(σ) = CostOPT (σ). B is not necessary on-demand, so we use lemma 9.5 to convert B
into an on-demand policy G with same number of I/Os as OPT.

By the definition of LFD, the next request to p, σa, comes before the next request to q,

say σb. Therefore, the sequence of page requests, σ, looks like this:

σ = 〈σ1, . . . , σi, . . . , σa = p, . . . , σb = q, . . . 〉.

Policy B, unlike OPT, services σi by discarding q (like LFD). There are two general cases:

Either i < t < a or t ≥ a. In both of the cases we should be careful of the effect of memory

changes in the behavior of the algorithms.

1. If i < t < a, we need to describe how B services all the requests σx for x ∈ (i, t) and

for x = t. We will argue that B and OPT converge after x = t. In these cases, σx 6= p.

85

1.a. x ∈ (i, t): In this case B misses exactly when OPT misses. Whether or not the

memory changes, B would be matching the behavior of OPT on every fault. OPT

and B would share all but one page of their memory.

1.b. x = t: Since at σt OPT discards q, σt must be page fault for OPT and since t < a

and OPT and B share all but one page of their memory, σt must be a fault for B
as well. At time t memory profile can only stay the same or decrease. Hence OPT

would load σt and discard q ∪ D where D is the set of other possible discarded

pages. At this point, B stops mimicking OPT and acts in a way to converge to

OPT. So B discards p∪D and loads σt. The two algorithms would have the same

memory state servicing σt. For the rest of sequence, B will continue mimicking

OPT. Since they did the same number of I/Os upto and including σt, their total

cost would be equal.

2. If t ≥ a. We will describe the behavior of B on x ∈ (i, a) and on x = a. We will argue

that B and OPT converge after x = a.

2.a. x ∈ (i, a): The same as in case 1.a happens here too.

2.b. x = a < t: Since b > a and OPT discarded p at time step i, OPT will fault on

σa = p. OPT would load p and discard D. Since at time a memory might increase,

D might be an empty set. Unlike OPT, B would not fault on σa. However, B
would perform a non on-demand I/O (D, q) (deleteD and load q). This I/O causes

the state of memory of B and OPT to become equal and they would converge

afterwards. Note that their cost is also equal.

2.c. x = a = t: Since b > a and OPT discarded p at time step i, OPT will fault on

σa = p. OPT would load p and discard D ∪ q. Unlike OPT, B would not fault

on σa. However, B would perform a non on-demand I/O (D ∪ p, p) (delete D ∪ p
and load p). This I/O causes the state of memory of B and OPT to converge as

in case 2.b.

Using lemma 9.5, we will convert the non on-demand policy B into an on-demand policy

G. G is an algorithm with the same cost (number of operations) as OPT and also matches

LFD at σi which is a contradiction with the fact that OPT is the longest on-demand optimal

algorithm which matches LFD.

86

Chapter 10

Foresight and Simulation of Square

Profiles

In this chapter we show that, if an algorithm is optimal on square profiles then, with some

foresight, we can use simulation to obtain an algorithm that is optimal on arbitrary profiles.

In particular, this means that, with some additional foresight and resource augmentation,

algorithms optimal in Barve and Vitter’s model [6] are optimal on arbitrary profiles.

An algorithm in the CA model takes an instance of a problem to solve, the block size,

and oracular access to the memory profile in which it will execute, and generates a sequence

of page requests. Thus, algorithms may have arbitrary foresight about the memory available

in the future, but we also consider “k-prescient” algorithms that only look a limited distance

into the future. The performance of an algorithm on inputs of size N in profile m is its worst

case performance on any problem of size at most N .

Definition 10.1. In this paper, an algorithm A for solving a problem Q takes as input

an instance, I ∈ Q, an oracle for memory profile m, and the block size B and generates a

sequence of page accesses, σ = Am(·)(I, B) (we will omit B unless necessary). An algorithm

is k-prescient if, during every time step t, it never queries oracle m on a value larger than

t+ km(t). Define

C(m,A,N) = max
I∈Q,|I|≤N

C(m,Am(·)(I)).

Theorem 10.2. If there exists a k-prescient algorithm that is optimal among all memory

monotone algorithms on square profiles, then there exists a 2(k + 1)-prescient algorithm

that, with 4-memory and 4-speed augmentation, is optimal among all memory-monotone

algorithms on all profiles.

Proof. Let A be any such algorithm. To construct an optimal algorithm on all memory

profiles, we will use prescience to simulate a square profile when answering A’s oracle queries.

87

For any input I and memory profile m, define Sm(·)(I) = Am
′(·)(I). When, at time t, A

queries its oracle for the memory that will be available at time t′, S must compute the inner

square profile of m and return m′(t′) to A. Since A is k-prescient, we know that t′ ≤ t+km(t).

Therefore, since m can only increase by one in each time step, m(t′) ≤ m(t) + km(t) =

(k + 1)m(t). Thus the inner square interval containing t′ is at most (k + 1)m(t) long, and

hence S can compute m′(t′) by querying m on inputs no larger than 2(k + 1)m(t). Hence S

is 2(k + 1)-prescient.

We prove by contradiction that S is optimal. Suppose that S is not optimally cache

adaptive. We will derive a contradiction that A is optimal by constructing, for any augmen-

tation factors c1 and c2, an algorithm, R′ that outperforms A on inputs of a certain size on

a square profile.

Let c1 be any memory augmentation factor and c2 be any speed augmentation factor.

Since S is non-optimal, there exists a memory profile m, integer N , and algorithm R such

that 4c2C(m,R,N) < C(m4c1,4c2 , S,N). Let z be the largest query to m that R makes while

processing any input of size N .

We now simulate R running on m as follows. Define u(t) = m(t) when t ≤ z and u(t) = 1

for t > z. We can imagine that the first z values of m are effectively hard-coded into u. In

memory profile p, the simulation R′ performs R′p(·)(I) = Ru(·)(I).

We now have the following inequalities:

c2C(m′4,4, R
′, N) ≤ 4c2C(m,R,N) (Def. of R′ and lemma 9.2)

< C(m4c1,4c2 , S,N) (Non-optimality of S)

≤ C(m′4c1,4c2 , A,N) (Def. of A and since m′4c1,4c2 ≤ m4c1,4c2)

So, even if we give A c1-memory augmentation and c2-speed augmentation, R′ always finishes

faster than A in profile m′4,4. This contradicts the optimality of A on square profiles.

The reader may have noticed that, since R′ embeds a prefix of m into the body of its

algorithm, it may be very large. In fact, its size may depend on N . This is not a problem in

this proof, however, because we have shown that if S is not optimal, then, roughly speaking,

there exists a (possibly very large) program that is faster than A on at least one square

profile. Since A is optimal on all square profiles, no program of any size can outperform A

on any memory profile. Thus the contradiction is achieved.

We also note that R′ is no more prescient than R. In fact, R′ never queries its oracle.

Thus if A is competitive on all square profiles with all algorithms that make no oracle queries,

then A is competitive with all algorithms of arbitrary prescience on all memory profiles.

The Barve-Vitter model assumes that, when an algorithm is allocated s blocks of memory,

that allocation will last for exactly s I/Os. Thus their model assumes memory profiles are

88

square. This squareness entails some prescience, though: at the beginning of an allocation of

s blocks, the algorithm knows the current size of memory will not change for s I/Os. Thus,

algorithms in the Barve-Vitter model are a subset of the class of 1-prescient algorithms in

the CA model.

10.1 Square Profiles are Adequately Rich for Studying

Optimality of Cache-Oblivious Algorithms

Note that a 0-prescient algorithm can still query m(t) during time t. Cache-oblivious algo-

rithms meet an even stronger condition– they do not query m at all.

Observation 10.3. An algorithm A is cache oblivious if it never queries m and does not

depend on B.

Definition 10.4. Let T (N,M,B) denote the I/O complexity of an algorithm in the DAM

model. An algorithm is said to satisfy the regularity condition [31], if T (N,M,B) =

O ((T (N, 2M,B)).1

We get the following theorem immediately:

Theorem 10.5. Let m be a memory profile and let m′ be its inner square profile. Suppose

that a memory-monotone cache-oblivious algorithm A finishes at time t on profile m. Given a

constant factor speed augmentation, A finishes no later than t on m′ if either of the following

holds.

1. A is given 4-memory augmentation.

2. If A satisfies the regularity condition.

Proof. 1. In the proof of theorem 10.2, we construct a simulator for an algorithm A that

shows A is optimal for all profiles. The only purpose of the simulator is to answer

A’s oracle queries. However, if A is cache-oblivious, then it makes no queries. Hence

no simulator is needed: A itself is optimal on all profiles with 4-memory and 4-speed

augmentation.

1Frigo et al. [31] showed that cache-oblivious algorithms that satisfy the regularity condition can be

“ported” to systems with LRU page replacement instead of optimal page replacement. We are unaware of

any CO algorithm that doesn’t satisfy this condition.

89

2. Since A satisfies the regularity condition, giving it less memory inside each square of

the inner square profile increases its running time by a constant factor c. Therefore,

the same inductive charging argument in the proof of theorem 10.2 shows that A with

4c-speed augmentation is optimal on all memory profiles.

This theorem demonstrates that cache-oblivious algorithms are a useful tool for building

cache-adaptive algorithms that do not require prescience. The theorem also demonstrates

that one needs to consider only square profiles when proving that a cache-oblivious algorithm

is optimally cache-adaptive.

90

Bibliography

[1] A. Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.

[2] M. Akra and L. Bazzi. On the solution of linear recurrence equations. Computational

Optimization and Applications, 10(2):195–210, 1998.

[3] L. Arge. Handbook of massive data sets. chapter External Memory Data Structures,

pages 313–357. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[4] L. Arge. External geometric data structures. In Computing and Combinatorics, volume

3106 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004.

[5] R. D. Barve, E. F. Grove, and J. S. Vitter. Application-controlled paging for a shared

cache. SIAM J. Comput., 29(4):1290–1303, 2000.

[6] R. D. Barve and J. S. Vitter. External memory algorithms with dynamically changing

memory allocations. Technical report, Duke University, 1998.

[7] R. D. Barve and J. S. Vitter. A theoretical framework for memory-adaptive algorithms.

In Proc. 40th Annual Symposium on the Foundations of Computer Science (FOCS),

pages 273–284, 1999.

[8] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM

Journal of Research and Development, 5(2):78–101, 1966.

[9] L. A. Belady, R. A. Nelson, and G. S. Shedler. An anomaly in space-time character-

istics of certain programs running in a paging machine. Communications of the ACM,

12(6):349–353, 1969.

[10] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu, J. Iacono, and A. López-

Ortiz. The cost of cache-oblivious searching. Algorithmica, 61(2):463–505, 2011.

91

[11] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and

J. Nelson. Cache-oblivious streaming B-trees. In Proc. 19th Annual ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA), pages 81–92, 2007.

[12] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul. Cache-oblivious string B-trees.

In Proc. 25th Annual ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems (PODS), pages 233–242, 2006.

[13] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and

M. Kozuch. Provably good multicore cache performance for divide-and-conquer algo-

rithms. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 501–510, 2008.

[14] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious al-

gorithms. In Proc. 22nd Annual ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), pages 189–199, 2010.

[15] G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In Proc. of the

29th International Colloquium on Automata, Languages and Programming (ICALP),

pages 426–438. Springer-Verlag, 2002.

[16] G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proc. 35th

Annual ACM Symposium on Theory of Computing (STOC), pages 307–315, 2003.

[17] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious sorting

algorithm. Journal of Experimental Algorithmics, 12:2.2:1–2.2:23, 2008.

[18] K. P. Brown, M. J. Carey, and M. Livny. Managing memory to meet multiclass workload

response time goals. In Proc. 19th IEEE International Conference on Very Large Data

Bases (VLDB), pages 328–328, 1993.

[19] R. Chowdhury, M. Rasheed, D. Keidel, M. Moussalem, A. Olson, M. Sanner, and C. Ba-

jaj. Protein-protein docking with F2Dock 2.0 and GB-Rerank. PLoS ONE, 8(3), 2013.

[20] R. A. Chowdhury, H.-S. Le, and V. Ramachandran. Cache-oblivious dynamic program-

ming for bioinformatics. IEEE/ACM Trans. Comput. Biology Bioinform., 7(3):495–510,

2010.

[21] R. A. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In

Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 591–

600, 2006.

92

[22] R. A. Chowdhury and V. Ramachandran. The cache-oblivious gaussian elimination

paradigm: theoretical framework, parallelization and experimental evaluation. Theory

of Computing Systems, 47(4):878–919, 2010.

[23] R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. In Proc. of the

37th International Colloquium Conference on Automata, Languages and Programming

(ICALP), pages 226–237, 2010.

[24] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex

Fourier series. Mathematics of Computation, 19:297–301, 1965.

[25] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algorithms. MIT

Press, 2001.

[26] E. D. Demaine. Cache-oblivious algorithms and data structures. Lecture Notes from

the EEF Summer School on Massive Data Sets, 2002.

[27] P. Duhamel and M. Vetterli. Fast fourier transforms: a tutorial review and a state of

the art. Signal Processing, 19(4):259–299, 1990.

[28] R. W. Floyd. Algorithm 97: Shortest path. Communincations of the ACM, 5(6):345–,

1962.

[29] P. Fornai and A. Iványi. FIFO anomaly is unbounded. CoRR, abs/1003.1336, 2010.

[30] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. In Proc. of

the IEEE, 93(2):216–231, 2005.

[31] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-

rithms. In Proc. 40th Annual Symposium on the Foundations of Computer Science

(FOCS), pages 285–298, 1999.

[32] G. Graefe. A new memory-adaptive external merge sort. Private communication, July

2013.

[33] A. Hassidim. Cache replacement policies for multicore processors. In Proc. 1st Annual

Symposium on Innovations in Computer Science (ICS), pages 501–509, 2010.

[34] J.-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc. 13th

Annual ACM Symposium on the Theory of Computation (STOC), pages 326–333,

1981.

93

[35] S. Irani. Page replacement with multi-size pages and applications to web caching. In

Proc. 29th Annual ACM Symposium on the Theory of Computing (STOC), pages 701–

710, 1997.

[36] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-

memory matrix multiplication. Journal of Parallel and Distributed Computing,

64(9):1017–1026, 2004.

[37] A. K. Katti and V. Ramachandran. Competitive cache replacement strategies for shared

cache environments. In Proceedings of the 2012 IEEE 26th International Parallel and

Distributed Processing Symposium (IPDPS), pages 215–226, 2012.

[38] R. Ladner, R. Fortna, and B.-H. Nguyen. A comparison of cache-aware and cache-

oblivious static search trees using program instrumentation. Experimental Algorithmics,

pages 78–92, 2002.

[39] A. López-Ortiz and A. Salinger. Minimizing cache usage in paging. In Proc. 10th

Workshop on Approximation and Online Algorithms (WAOA), 2012.

[40] A. López-Ortiz and A. Salinger. Paging for multi-core shared caches. In Proc. Innova-

tions in Theoretical Computer Science (ITCS), pages 113–127, 2012.

[41] R. T. Mills. Dynamic adaptation to CPU and memory load in scientific applications.

PhD thesis, The College of William and Mary, 2004.

[42] R. T. Mills, A. Stathopoulos, and D. S. Nikolopoulos. Adapting to memory pressure

from within scientific applications on multiprogrammed COWs. In Proc. 8th IEEE

International Parallel and Distributed Processing Symposium (IPDPS), page 71, 2004.

[43] H. Pang, M. J. Carey, and M. Livny. Memory-adaptive external sorting. In Proc. 19th

International Conference on Very Large Data Bases (VLDB), pages 618–629. Morgan

Kaufmann, 1993.

[44] H. Pang, M. J. Carey, and M. Livny. Partially preemptible hash joins. In Proc. 5th

ACM SIGMOD International Conference on Management of Data (COMAD), page 59,

1993.

[45] J.-S. Park, M. Penner, and V. K. Prasanna. Optimizing graph algorithms for improved

cache performance. Transactions on Parallel and Distributed Systems, 15(9):769–782,

2004.

[46] E. Peserico. Paging with dynamic memory capacity. CoRR, abs/1304.6007, 2013.

94

[47] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Department of Electrical En-

gineering and Computer Science, Massachusetts Institute of Technology, June 1999.

[48] J. E. Savage. Models of Computation: Exploring the Power of Computing. Addison-

Wesley Longman Publishing Co., Inc., 1st edition, 1997.

[49] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, February 1985.

[50] J. S. Vitter. External memory algorithms and data structures: Dealing with massive

data. ACM Comput. Surv., 33(2):209–271, June 2001.

[51] J. S. Vitter. Algorithms and data structures for external memory. Foundations and

Trends in Theoretical Computer Science, 2(4):305–474, 2006.

[52] S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962.

[53] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious mesh layouts.

24(3):886–893, 2005.

[54] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson. An experimental

comparison of cache-oblivious and cache-conscious programs. In Proc. 19th Annual ACM

Symposium on Parallel Algorithms and Architectures (SPAA), pages 93–104, 2007.

[55] N. E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

[56] H. Zeller and J. Gray. An adaptive hash join algorithm for multiuser environments. In

Proc. 16th International Conference on Very Large Data Bases (VLDB), pages 186–197,

1990.

[57] W. Zhang and P. Larson. A memory-adaptive sort (masort) for database systems.

In Proc. of the 6th International Conference of the Centre for Advanced Studies on

Collaborative research (CASCON), pages 41–. IBM Press, 1996.

[58] W. Zhang and P. Larson. Dynamic memory adjustment for external mergesort. In

Proc. of the 23rd International Conference on Very Large Data Bases (VLDB), pages

376–385. Morgan Kaufmann Publishers Inc., 1997.

95

