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Abstract of the Dissertation

Shape-Based Analysis

by

Krishna Chaitanya Gurijala

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

Shape analysis plays a critical role in many fields, especially in medical analy-
sis. There has been substantial research performed for shape analysis in manifolds.
On the contrary, shape-based analysis has not received much attention for volumet-
ric data. It is not feasible to directly extend the successful manifold shape analysis
methods, such as heat diffusion, to volumes due to the huge computational cost.
The work presented herein seeks to address this problem by presenting two ap-
proaches for shape analysis in volumes that not only capture the shape information
efficiently but also reduce the computational time drastically.

The first approach is a cumulative approach and is called the Cumulative Heat
Diffusion, where the heat diffusion is carried out by simultaneously considering all
the voxels as sources. The cumulative heat diffusion is monitored by a novel opera-
tor called the Volume Gradient Operator, which is a combination of the well-known
Laplace-Beltrami operator and a data-driven operator. The cumulative heat diffu-
sion is computed by considering all the voxels and hence is inherently dependent
on the resolution of the data. Therefore, we propose a second approach which is
a stochastic approach for shape analysis. In this approach the diffusion process is
carried out by using tiny massless particles termed shapetons. An appropriate dis-
tance value is chosen as new definition of time step. The shapetons are diffused in
a Monte Carlo fashion across the voxels until the pre-defined distance value (serves
as single time step) is reached. The direction of propagation for the shapetons is
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determined by the volume gradient operator. The shapeton diffusion is a novel dif-
fusion approach and is independent of the resolution of the data. These approaches
robustly extract features and objects based on shape.

Both shape analysis approaches are used in several medical applications such
as segmentation, feature extraction, registration, transfer function design and tu-
mor detection. This work majorly focuses on the diagnosis of colon cancer. Vir-
tual colonoscopy is a viable non-invasive screening method, whereby a radiologist
can explore a colon surface to locate and remove the precancerous polyps (protru-
sions/bumps on the colon wall). To facilitate an efficient colon exploration, a robust
and shape-preserving colon flattening algorithm is presented using the heat diffu-
sion metric which is insensitive to topological noise. The flattened colon surface
provides effective colon exploration, navigation, polyp visualization, detection, and
verification. In addition, the flattened colon surface is used to consistently register
the supine and prone colon surfaces. Anatomical landmarks such as the taeniae coli,
flexures and the surface feature points are used in the colon registration pipeline and
this work presents techniques using heat diffusion to automatically identify them.

Shape analysis in graphs is vital to represent and visualize relationships be-
tween data items. Graph embedding methods play an important role in visualizing
the data items and their relationships by providing an automatic and clutter free lay-
out. A novel graph embedding approach is presented that will compute the global
characteristics of a graph, such as hyperbolic or parabolic type, and also the Ricci
curvature in the local neighborhood, which can analyze the structure of the graph.
The method has three stages. In the first stage, the graph is embedded on a topolog-
ical surface. In the second stage it is embedded on a Riemann surface by computing
the Ricci flow and finally in the third stage it is embedded onto a surface in three
dimensional Euclidean space. The approach is general, practical, and theoretically
rigorous.
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Chapter 1

Introduction

1.1 Preface

There has been substantial research on volume data analysis using various pa-
rameters, such as voxel intensity, gradient, curvature, and size. However, not much
attention has been given for shape-based volume analysis and hence incorporating
shape information for volume analysis still remains a challenge. This is not the
scenario in the case of manifolds, where diffusion based techniques, such as heat
diffusion have become popular for manifold shape analysis. However, the heat dif-
fusion theory has been solely applied to manifolds and no previous attempts have
been made to exploit this lucrative heat diffusion process for volumes. Directly
extending the manifold heat diffusion idea to volumes is not trivial, mainly due
to the extremely high computational cost. Even in the case of manifolds, where
the heat diffusion has been successful, the shape analysis is limited to 3D models
of modest resolution due to the high complexity of the heat kernel computation.
Therefore, when dealing with large volumetric data, there is a need for a novel dif-
fusion approach which not only allows an efficient shape analysis but also reduces
the computational overhead. Hence, in this work we present two approaches for
shape-based analysis, the first one being a cumulative approach and the second one
being a stochastic approach.

The first approach presented is a cumulative approach which is a modified heat
diffusion process, called the Cumulative Heat Diffusion. Unlike the conventional
heat diffusion process, where the diffusion is carried out by considering each node
separately as the source, we simultaneously consider all the voxels as sources and
carry out the diffusion, hence the term cumulative heat diffusion. Accordingly, the
initial heat is assigned to all the voxels at once. The manifold heat diffusion process
is governed by the heat kernel evaluation which is expressed using the Laplace-
Beltrami Operator. However, just using the Laplace-Beltrami operator would not
suffice for volumetric data which also possess the intensity on the voxels. Hence,
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we propose to also use the voxel intensity by introducing a new operator to evalu-
ate the cumulative heat diffusion process for volumes, called the Volume Gradient
Operator and the heat diffusion is carried out using this operator. The volume gra-
dient operator is defined as a combination of Laplace-Beltrami operator and a data
driven operator, which is a function of the half gradient. The half gradient is the
absolute value of the difference between the voxel intensities. The volume gradi-
ent operator is used to determine the initial heat values of the voxels and also find
the edge weights that monitor the heat diffusion process. The cumulative heat dif-
fusion method is conceptually sound and simple to implement, which makes it an
attractive approach for shape-based volume analysis.

The cumulative heat diffusion method, however, cannot be adopted for real-
time shape analysis due to the dependency on the size of the volume. In addition,
the heat diffusion is carried out only between the voxels and their corresponding
1-ring neighboring voxels per time step. Hence, the number of time steps required
to capture the shape information increases with the increasing number of voxels.
In other words, the rate of heat flow is influenced by the resolution of the data.
Therefore, we present a second approach which is a Monte Carlo based real-time
diffusion process for shape-based analysis of volumetric data. This diffusion pro-
cess is a stochastic approach and is carried out by using tiny massless particles
termed shapetons. These shapetons are used to capture the shape information. Ini-
tially, the shapetons are randomly distributed inside the voxels of the volume data.
The shapetons are then diffused in a Monte Carlo fashion across the voxels to ob-
tain the shape information. Owing to its success in capturing the shape information,
the volume gradient operator is used to monitor the direction of propagation for the
shapetons. The shapetons are diffused for a pre-defined distance which accounts
for one time step. As a result, the diffusion of the shapeton particles is independent
of the resolution of the data and only depends on the distance value chosen. The
distance value is a user defined parameter and hence can be chosen based on the
application. All the shapetons are diffused simultaneously and all the computations
are evaluated in parallel using a GPU, thereby facilitating a real-time monitoring of
the final result.

One major area where the shape analysis and visualization can be immensely
helpful is medical analysis. Both the shape analysis approaches are used in several
medical applications such as segmentation, shape-based transfer function design
and polyp detection inside the colon surface. In several medical diagnosis cases, the
shape information plays a vital role. For example, structures on the colon wall have
shapes that are indication of malignancy or pre-malignancy. Flattening the twisted
3D colon surface to a 2D domain is proven to be a successful approach for effective
colon exploration and polyp detection. We present a novel shape-preserving flatten-
ing algorithm for the colon surface. By using the heat diffusion metric [33, 94], we
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proposed a new colon flattening algorithm that is efficient, shape-preserving, and
robust to topological noise. Unlike previous approaches, which require a manda-
tory topological denoising to remove fake handles, our algorithm directly flattens
the colon surface without any denoising. In our method, we replace the original Eu-
clidean metric of the colon surface with a heat diffusion metric that is insensitive to
topological noise. Using this heat diffusion metric, we then solve a Laplacian equa-
tion followed by an integration step to compute the final flattening. The presented
flattening method is conformal (shape-preserving) and the shape of the polyps are
well preserved. We further show how the supine-prone colon registration pipeline
is made robust by using our flattening approach. The registration of supine and
prone colon surfaces using the flattened colon surfaces needs anatomical landmarks
and reliable feature points to ensure a consistent registration. The anatomical colon
landmarks include taeniae coli and the flexures. We present techniques to automat-
ically identify these anatomical landmarks for the colon surfaces. In addition, the
end points of the haustral folds (i.e., colon folds) serve as reliable feature points. We
detect these points using a max-flow min-cut approach which serve as constraints
in registering the supine and prone surfaces using a quasi-conformal approach.

Another area where understanding shape characteristics and topology plays a
vital role is in graph analysis. Graphs are used to represent and visualize relation-
ships between data items. Graph embedding methods play an important role in
visualizing the data items and their relationships by providing an automatic and
clutter free layout. Graphs play fundamental roles in many engineering fields. For
example, they have been used to model social relations of communities, traffic be-
tween telecommunication switches, networking with wireless sensor nodes and air-
line routes among cities. We present a novel graph embedding approach that will
compute the global characteristics of a graph, such as hyperbolic or parabolic type,
and also the Ricci curvature in the local neighborhood, which can analyze the struc-
ture of the graph. The pipeline of the algorithm has three stages. In the first stage,
the graph is embedded onto a topological surface. In the second stage it is em-
bedded onto a Riemann surface and in the last stage it is finally embedded onto a
surface in R3. This method removes the edge crossings completely, and preserves
the topological structure of the graph. This approach is general, practical for visual-
izing large scale graphs, and rigorous with solid theoretic foundations. By virtue of
our graph embedding approach, local changes in the graph do not affect the overall
embedding and thus finds applications in visual graph comparison and visualizing
changes in dynamic graphs.
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1.2 Volume Rendering

In a traditional computer graphics rendering pipeline, pre-defined surfaces are
rendered [47]. These surfaces can be represented as discrete meshes, with triangular
meshes often being a popular choice due to the guarantee that the vertices of each
mesh will lie within a plane. It is also possible to use continuous representations,
such as non-uniform rational B-spline (NURBS) surfaces [121]. Volumes can be
rendered in a similar manner by first extracting an isosurface [105]. On the other
hand, direct volume rendering (DVR) allows for the volume tiself to be directly ren-
dered without the need to extract surfaces which would be typically rendered in a
computer graphics pipeline. Maximum intensity projection (MIP) rendering of vol-
umes can also be accomplished, which yields a 2D image that appears similar to an
x-ray [111]. However, this technique is not applicable for a great many applications
due to its visual limitations.

In order to perform DVR, an optical model must be established, and there are
several possibilities [107]. The most common model is the emission-absorption
model, in which the elements of the volume are considered as particles within a
cloud which are able to both emit their own light and absorb incident light. This
leads to the following so-called volume rendering integral:

I(D) = I0T (D)+

D∫
0

g(s)T ′(s)ds. (1.1)

In this equation, the result I(D) represents the radiance reaching the camera from
D. The first term represents the background illumination I0 multiplied by the trans-
parency of the cloud T (D). The second term represents the integration over all
sample positions s, multiplying each sample’s source value g(s) by the transparency
between s and the eye T ′(s).

This volume rendering integral in the continuous domain can be discretized
into compositing for use with discretely sampled data. In this case, composition
is possible using both back-to-front and front-to-back methods. For back-to-front
compositing, the following is performed at each sample step:

Cdst ← (1−αsrc)Cdst +Csrc. (1.2)

For front-to-back compositing, the following is performed at each sample step:

Cdst ←Cdst +(1−αdst)Csrc,
αdst ← αdst +(1−αdst)αsrc.

(1.3)

In both instances, Cdst and Csrc are the destination and source colors, while αdst
and αsrc are the destination and source opacities. Note that while front-to-back
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compositing requires extra maintenance of the opacity term through the integration,
it also allows for early termination of the composition when the opacity reaches a
sufficient level (often αdst = 0.95).

There are a number of methods for performing the actual volume rendering. A
technique has been introduced where the voxels are splatted onto the screen space
and rendered as disks [154]. A method known as shear warp was also proposed
where the viewing transformation would be factored into a 3D shear parallel to the
volume slices, a projection would create a distorted image, and a 2D warp would
then be used to undistort the final image [93]. The volume as a whole can also
be decomposed into individual slices which are then rendered and composited with
typical 2D texture rendering in the graphics pipeline. The method known as ray
casting involves shooting rays through the volume data and sampling at regular
points along the rays [101]. Ray casting typically provides the best image quality
and is the preferred method of performing DVR [135].

When sampling through the volume, interpolation is needed to obtain sample
values not lying at an exact voxel. Nearest neighbor interpolation is the quickest and
easiest method, though it leads to undesirable quality for the rendered image. Tri-
linear interpolation provides significantly better results for moderately more work,
and is the most commonly used interpolation method for volume rendering. More
advanced methods have also been used to achieve better results, such as tricubic
interpolation or the use of Voronoi splines [109], though the tradeoff between speed
and quality is not advantageous.

When rendering volumes, which often consist of singular scalar density values
for each voxel, it is desirable to map these scalar values to optical properties, such as
color and opacity. A 1D transfer function is used to provide such a mapping [120].
Multi-dimensional transfer functions can also be used to give more control over
the mapping. Most commonly, a 2D transfer function is utilized with density and
gradient magnitude as the two axes. The rendering of isosurfaces within volumes
can be improved by utilizing peak finding [88].

To convey greater realism and recognition of the objects being rendered, illumi-
nation and shading are used. Based on the gradient information at each sampling
point, shading calculations can be performed using a typical illumination model,
such as Blinn shading. Gradients are often estimated as a simple central differ-
ence in each of the three axes. These gradients can be calcualted on-the-fly or pre-
computed, based on the needs of the renderer. When more precision is required,
better methods of gradient estimation have been proposed [71].

There have been a number of improvements to increase the quality of rendering,
both in visual quality and speed. Stochastic jittering can be used to slightly offset
the positions of rays so that wood-grain effects are reduced [41]. Pre-integrated
transfer functions have been introduced to account for values between two dis-
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cretely sampled values [42]. Empty space skipping has been introduced to allow
a ray caster to not sample from regions which do not contain displayable voxels
[103]. Direct interval volume visualization has also been presented as a way of
representing sharp isosurfaces so that they are visualized accurately [4].

Although specialized hardware for volume rendering was developed [118, 119],
it has become common today to utilize commodity graphics hardware for this task
[41]. The graphics processing unit (GPU) used for gaming provides a high level of
SIMD performance at a relatively low cost and can allow for real-time ray casting
[137]. More recently, general processing on the GPU has become popular, with
NVidia C-like CUDA language being widely adopted [35].

1.3 Shape Analysis

1.3.1 Deterministic Methods

Spectral and diffusion geometry methods have been popularly used for shape
analysis in mesh surfaces. The Laplace-Beltrami Operator and the heat diffusion
methods have become attractive due to their properties specifically in shape anal-
ysis. The Laplace-Beltrami operator is used to express the heat kernel [102]. A
discrete Laplace-Beltrami operator has been defined and its convergence to the con-
tinuous case has been discussed [19, 129]. For triangular meshes, one of the most
common discretizations of the LBO is by using the cotangent weight scheme which
was originally introduced [39, 122]. The heat diffusion process is governed by the
heat kernel. The heat kernel has been used to define a shape signature called the
heat kernel signatures and used for applications such as shape comparisons and fea-
ture extractions in a most effective manner [140]. Bronstein et al. [24] have used
the heat kernel signature for non-rigid shape recognition. Ovsjanikov et al. [116]
have used the heat kernel to map isometries between a pair of shapes. Zobel et
al. [162] have generalized the heat kernel signature from the functional space to the
differential form space. Raviv et al. [127] have generalized the surface heat kernel
signature to volumes for shape retrieval. Vaxman et al. [147] have proposed a multi-
resolution approach to evaluate the heat diffusion process with a reduced running
time. Recently, the physical phenomenon of waves governed by the Scrodinger
wave equation has been used for shape analysis by Aubry et al. [11].

Shape has been used for volume classification previously. Sato et al. [132] pro-
posed a volume classification based on shapes where they detect pre-defined shapes
such as edge lines and blobs by measuring the multi-scale responses to 3D filters.
Skeleton based approaches were extensively used to study shapes and for shape
based volume visualization. Hilaga et al. [65] used skeletons for shape matching
and volume visualization. Pizer et al. [123] proposed a framework of stable me-
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dial representation for segmentation of objects, registration and statistical 3D shape
analysis. Several other attempts using skeletons for shape-based volume classi-
fication were done by Correa et al. [34] and Reniers et al. [128]. Motivated by
these ideas, Praßni et al. [125] presented a shape-based transfer function using the
curve-skeleton of the volumetric structure. Bruckner and Moller [25] introduced
similarity maps for volume analysis in which they represent the similarity of iso-
surfaces for different isovalues. Later Haidacher and Bruckner [60] extended the
idea of the similarity maps to multimodal data and used it for analysis, fusion and
classification of multimodal data.

1.3.2 Stochastic Methods

The Monte Carlo simulation technique has formally existed since the early
1940s, where it had applications in research into nuclear fusion. However, with
the increase in computer technology and power this technique become more widely
used. This is because computers are now able to perform millions of simulations
much more efficiently and quickly than before. This is an important factor because
it means that the technique can provide an approximate answer quickly and to a
higher level of accuracy. Monte-Carlo methods, in visualiztion for volumes, have
been largely used for photorealistic rendering by a photon mapping technique which
was developed by Jensen [75, 76, 77]. Visualization of global illumination involves
the evaluation of light scattering on different surfaces. This scattering is performed
by Monte Carlo sampling against the surfaces. The main reason to use Monte Carlo
methods is due to their ability to approximate an answer qucikly, that would be very
time-consuming to find out the answer to, if we were using other methods to deter-
mine the exact answer. In simple words, Monte Carlo methods are used to simulate
problems that are too difficult and time-consuming to use other methods for.

Probabilistic methods are used to simulate problems that are too difficult and
time-consuming to use other methods for. Brownian motion and random walks
are known to address problems in a probabilistic way. The successful approach of
shape analysis using heat kernel is also related to Brownian motion. Bass [17] has
showed that Brownian motion, which is a significant concept in particle theory, and
the heat kernel are related. In general, any diffusion process is connected with the
study of Brownian motion [27, 145, 151] in probability theory. Kac [84] has dis-
cussed the relation between the random walks and the theory of Brownian motion.
Hence, diffusion phenomenon, Brownian motion and random walks are all related
in probability theory.

Probabilisitic and stochastic methods have been used on mesh surfaces for var-
ious other applications. Methods such as random walks and markov random fields
are used in applications such as mesh smoothing and segmentation. Lai et al. [95]
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have used the random walk to develop an interactive and automatic mesh segmen-
tation method. Meila and Shi [108] have re-interpretated the spectral methods for
clustering and segmentation with probabilistic foundation. Castellani et al. [26]
have modeled local areas of a surface using a Hidden Markov Model which they
used for object recognition on cluttered scenes. Fattal et al. [45] have presented a
blue-noise sampling using a statistical mechanics interacting particle model.

1.4 Surface Mapping

Colon flattening, a method in which the entire inner surface of the colon is
displayed as a succinct 2D image, has been used successfully for several medical
imaging applications. Initial attempts to flatten the colon surface include iterative
methods based on electrical field lines [14, 148, 149, 150], cartographic projec-
tion [117], and some others [15, 16, 104]. However, most of these methods deform
the colon surface or do not preserve the local shapes well. Conformal geometry, an
approach where the local angles are preserved, has been well established in the field
of computer graphics, especially in the creation of texture maps [40, 62, 136, 159].
Discrete Ricci flow is a more recent method of computing conformal maps of struc-
tures [81, 85] and is very useful in the construction of geometric structures [79]
and to obtain optimal surface parameterizations using inverse curvature maps [155].
Colon flattening techniques have been proposed using conformal mapping [61, 158]
and holomorphic 1-form parameterization [68, 134]. The conformally flattened
colon was used in the detection of colonic polyps [69] and supine-prone colon reg-
istration [158]. Further, surface parameterization using harmonic functions has also
been used in graphics [143] and medical imaging of the brain [6, 7, 53, 63, 106, 138]
and blood vessels [161].

All the above methods require a mandatory pre-process of topological denoising
because of the topological noise (fake handles), without which the flattening would
be unsuccessful. While some of these methods use colon surfaces that have been
manually denoised, others utilize a topological denoising algorithm [59, 83, 160].
A fast topological denoising algorithm for conformal colon flattening has also been
proposed [68].

1.5 Graph Embedding

Generation of good graph layouts have received much attention in graph vi-
sualization. The force-directed method is a popular graph layout approach where
the nodes are modeled as rigid bodies, and edges are modeled as elastic springs.
Several energy models [36, 48, 114, 146] have been proposed based on different
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aesthetics. Force-directed algorithms for graph layouts have been generalized to
calculate the layout of a graph in an arbitrary Riemannian geometry [90] where
the Euclidean notions of distance, angle, and force-interactions are extended to
smooth non-Euclidean geometries via projections to and from appropriately cho-
sen tangent spaces. Hyperbolic and spherical layouts are demonstrated. However,
force-directed methods perform well only for relatively small graphs and encounter
difficulties for large scale graphs, due to the local optimality of the energy and the
time complexity of the global optimization. To improve computational efficiency,
fast multilevel algorithms [8], GPU-accelerated force-based models [49] and sim-
plified energy functions [91] have been proposed to generate high quality layouts
for large graphs. Space filling curves are used to compute graph layouts for visu-
alizing network data [112]. This method is very fast and guarantees that there will
be no nodes that are collocated. However, it focuses only on the node location,
and ignores the edge crossings. Compared to all the above graph layout methods,
our Ricci flow graph embedding approach ensures no edge crossings, and has good
scalability since the convergence of the Ricci flow is exponentially fast [31].

A range of visual graph comparison techniques have been proposed using side-
by-side view [5, 66, 98], superimposed views [2, 43] and animations [38, 156].
Dynamic graph visualization is closely related to visual graph comparison and sev-
eral approaches have been proposed using small multiples [44, 46, 124], difference
graphs [3, 64], by animating the transitions between time steps [12, 21, 50, 52, 115]
and 3-D cubes [13]. A main challenge for such methods is to provide stability to
the layout [23, 50, 72, 92]. Visualizing the changes in graphs requires a trade-off
between the layout and the stability. The key factor influencing stability is how the
graph is laid out when some changes occur. If a stable layout is used, then regard-
less of the changes the graph can be visualized well [9, 10, 51]. Stability, alternately
can be defined as preserving the mental map of the users. The mental map is the
image users have of the information and preserving it implies minimizing changes
in the visual representation. Our graph layout based on Ricci flow energy optimiza-
tion provides a stable graph layout that helps in identifying the changes in the graph
easily. It not only provides a stabilized layout across all the time steps but also
provides an optimized layout for each of the time steps. In addition, our approach
achieves high mental map preservation. We employ an approach similar to that of
small multiples where the graphs for all time steps are displayed side-by-side and
the corresponding structural changes are highlighted between time steps.
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Chapter 2

Cumulative Shape Analysis

In this chapter, a simple, yet powerful method called the cumulative heat dif-
fusion is introduced. Through the cumulative heat diffusion, one can obtain the
shape information in different scales and perform a shape-based volume analysis.
The cumulative heat diffusion reduces the computational cost drastically compared
to conventional heat diffusion and hence makes the shape analysis for volumetric
datasets feasible. Unlike the conventional heat diffusion process, where the diffu-
sion is carried out by considering each node separately as the source, the cumulative
heat diffusion simultaneously considers all the voxels as sources and carries out the
diffusion. Accordingly, the initial heat is assigned to all the voxels at once. More-
over, a new operator, called the volume gradient operator, is introduced for the eval-
uation of cumulative heat diffusion. The volume gradient operator is a combination
of the Laplace-Beltrami operator and a data-driven operator which is a function of
the half gradient. The half gradient is the absolute value of the difference between
the voxel intensities. The volume gradient operator by its definition captures the
local shape information. It is used as the weighting parameter for the heat diffusion
process and to assign the initial heat values.

This chapter is organized as follows. Section 2.1 presents the motivation. Sec-
tion 2.2 describes the algorithm with a detailed description of the volume gradient
operator and the cumulative heat diffusion process for volume analysis. Various
properties of the method are discussed in Section 2.3. Section 2.4 discusses the
influence of the parameter p and Section 2.5 provides some results of the method.

2.1 Motivation

Much research has been undertaken on incorporating information for volume
data analysis from various parameters such as voxel intensity, gradient, curvature,
and size. However, incorporating shape information for volume analysis still re-
mains a challenge. Some studies have been done using pre-defined shapes [34,
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65, 123, 125, 128, 132]. However, in most volumetric datasets, especially medical
datasets, the shape is complex and cannot be perfectly pre-defined. Shape analysis
has become sophisticated for manifolds, thanks to heat diffusion theory and related
techniques [102, 130, 131]. The heat diffusion process, governed by a partial differ-
ential equation on the shape, captures the geometric information. It has many useful
properties; namely it is stable, informative, isometric invariant, robust to noise and
independent of the initial conditions [140]. According to the heat theory, the heat
flow or diffusion is successfully able to differentiate the shapes, irrespective of ori-
entation and scaling, while enforcing no shape restrictions (i.e., there is no need
to pre-define the shapes). These merits form the motivation of our work in this
chapter.

Nevertheless, in order to evaluate the heat diffusion on the entire mesh surface,
the heat flow on all the paths of the mesh surface has to be considered. Due to its
extremely high computational cost, directly extending the manifold heat diffusion
idea to volumes is not trivial. A multi-resolution approach to evaluate the heat dif-
fusion process was proposed to reduce the running time [147]. Though theoretically
it is possible, no attempt has been made to use the heat diffusion for shape-based
volume analysis. For the first time, we apply the heat diffusion theory directly
to volumetric data by introducing a cumulative heat diffusion process. Unlike the
mesh surfaces, the volumetric datasets have the intensity values stored on a regular
Cartesian 3D grid and hence need an additional operator to monitor the heat dif-
fusion process. Therefore, in this cumulative heat diffusion process for volumes,
we propose to use the voxel intensity along with the LBO, by introducing a new
operator called the volume gradient operator.

2.2 Algorithm

The cumulative heat diffusion is a modified heat diffusion on volumes used for
shape-based volume analysis. The diffusion process is carried out by considering
all the voxels as sources simultaneously. A new operator, volume gradient operator
(VGO) is used to assign the initial heat values and determine the edge weights that
monitor the heat diffusion process. At the end of the cumulative heat diffusion, for
a certain value of time t, all the voxels will have final heat values. By virtue of the
heat diffusion theory, when t is very large, all the voxels belonging to a single object
will have the same heat values. Similarly, all the objects with similar shapes will
also have the same heat values, independent of their position, scale and orientation
(as will be discussed in the Section 2.3.4). These heat values of all the voxels at each
time step are stored and displayed in a histogram for visualization purposes. This
histogram created by using the heat values is used in volume analysis, such as for
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exploration and classification. The evaluation of the histogram, the interpretation
of the information depicted in the histogram and some of the properties of our
cumulative heat diffusion are discussed in the Section 2.3. This cumulative heat
diffusion process is simple to implement on volume data whereas the conventional
heat diffusion is not feasible in practice. Figure 2.1 shows the result of applying
the cumulative heat diffusion approach for object classification based on shape.
Figures 2.1(a), (b) and (c) show the results on MRI head, abdominal stent and foot
datasets. Figure 2.1(d) shows the corresponding heat histogram of the foot data.

Figure 2.1: Classifying objects based on their shape using our cumulative heat diffusion
on (a) MRI head, (b) abdominal stent, and (c) foot volumetric datasets. The shape-based
volume exploration reveals various organs such as kidneys, liver, pancreas and spinal cord
(for the abdominal stent), brain, eye sockets and cranium (for the MRI head) and different
shaped bones (for the foot). (d) The corresponding heat histogram of the foot data where
each vertical line represents a bone of the foot.

2.2.1 Cumulative Heat Diffusion

We will now introduce the cumulative heat diffusion on volume data where
voxels are the data elements. The difference between the normal heat diffusion
process and the cumulative heat diffusion is the way the diffusion process is carried
out and the way the initial conditions are defined. In the conventional heat diffusion
process, the initial heat is assigned by considering one voxel as the source at a time.
The initial heat assigned to the source voxel is a fixed constant value not exceeding
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1 (it can be any random value less than 1) while the initial heat of all the other voxels
is assigned to zero. The heat is diffused from this source voxel for a given number
of time steps t and at the end, the heat remaining on the source is recorded as the
final heat value of that voxel after a time t. This entire process of assigning the
initial heat value and carrying out the diffusion is repeated by considering each of
the voxels separately as a source. In each step, all the voxels are taken into account
to determine the diffusion process. This explains the large time complexity of t×n2

in the conventional heat diffusion process. To reduce the computational cost, in our
cumulative heat diffusion approach, instead of considering each voxel as a source
separately, we consider all the voxels as sources simultaneously. The way we do
the heat initialization makes it possible for our cumulative heat diffusion to produce
results identical to those of the conventional process.

Let V be a volume, then the cumulative heat diffusion process over V is gov-
erned by the following heat equation:

ΓV k(x, t) =−∂k(x, t)
∂ t

(2.1)

where ΓV is the edge weight which is determined by using the volume gradient
operator of V and k(x, t) is the temperature (heat) at location (voxel) x at time t.
ΓV is used to determine the amount of heat flow between voxels in the cumulative
heat diffusion process. It is evaluated using Equations 2.4 and 2.5 explained in the
Section 2.2.2. Finally on the discrete volume data, the cumulative heat diffusion is
estimated using the discrete version of ΓV which is evaluated as follows:

ΓV fi =− ∑
j∈N(i)

V GO(i, j)( fi− f j) (2.2)

where N(i) is the set of all the 1-ring neighboring voxels j of voxel i, f is the cor-
responding heat of the voxels and V GO(i, j) is the weighting factor of the edge
between the voxels i and j.

We virtually extend the boundary of the volume data so that the heat will go over
the boundary and after a large time step the heat of the background voxels will be
zero. This virtual extension of the boundary also gets rid of the problem of dealing
with the complicated boundary conditions. The solution k(x, t) of Equation 2.1 with
the initial conditions k(x,0) = InitH(x) determines the amount of heat at voxel
x at time t. InitH(x) is the initial heat on voxel x defined by Equation 2.3 and
is pre-computed using the volume gradient operator. The respective initial heat
values are assigned to all the voxels simultaneously. Thus, the initial heat value
assigned to the voxels is not a random fixed constant number (as it was in the case of
the conventional heat diffusion), rather each voxel has a different initial heat value
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decided by using the volume gradient operator. The initial heat value InitH(v0)
assigned to the source voxel v0 is determined by using the sum of the weights of the
six edges around the voxel so that the initial heat describes the local shapes and is
defined as follows:

InitH(v0) = 1− ∑v∈N(v0)(V GO(v0,v))

max∀i∈N0(∑v′∈N(i)(V GO(i,v′)))
(2.3)

where N0 is the set of all voxels. Equation 2.3 is defined such that all the initial heat
values lie between 0 and 1 to start with.

Finally, for a given time step t, the cumulative heat diffusion process is carried
out by allowing the heat assigned using Equation 2.3 to flow based on Equation 2.2.
As all the voxels are considered as sources simultaneously, the total computational
time for the cumulative heat diffusion for a given large time t is of the order t ·
n where n is the number of voxels in the volume data. Thus, we have reduced
the computational time by a factor of n when compared to the conventional heat
diffusion. As n is a large number, we have achieved an order of magnitude speed
up through the use of our cumulative heat diffusion process in obtaining the shape
information of the volume data.

2.2.2 Volume Gradient Operator

Much information about the structure of the volume can be obtained from the
intensity of the voxels and from comparing the intensity of the neighboring voxels.
A lot of research has gone into using the intensity and the gradient (difference of the
intensities with the neighboring voxels) of the voxels for volume analysis [86, 87].
Motivated by this idea, we propose to use the intensity of the voxels to define an
operator which monitors the heat diffusion process in obtaining the shape informa-
tion. This will be the first time that an operator based on voxel intensities (along
with the LBO) is being used in the theory of heat diffusion. In addition, the intensity
of the voxels would provide a better initial framework to start the diffusion process
rather than starting with a random initial condition. Hence, we propose an operator
called volume gradient operator that helps in the estimation of the cumulative heat
diffusion process. We tried different possibilities such as the method by Levin et
al. [100] but from our experience our approach gave the best results.

The volume gradient operator is a modification of the Laplace-Beltrami opera-
tor. It also considers the intensities on the volume grid points. The volume gradient
operator is defined as a combination of LBO and the intensity information, as shown
in Equation 2.4. The Laplace-Beltrami operator term, denoted by ∆, in Equation 2.4
captures the geometric information of the grid and the Fv term considers the inten-
sity information, which is defined by Equation 2.5 as a function of the half gradient.
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In the case of regular grids (which is the most common representation of a volumet-
ric dataset), ∆ can be ignored, which leaves only the Fv term and hence results in
V GO = Fv. We have used regular volume grids (voxelized volumes) and hence just
consider the Fv evaluation. Though we have just used the regular volume grids, in
general, the volume gradient operator definition can be applied to irregular volume
grids too (in this case ∆ cannot be ignored). This shows the benefit of our method
over the discrete Laplacian, which does not work for irregular grids.

V GO(v0,v) = ∆(v0,v)+Fv(v0,v) (2.4)

where ∆ is the LBO and Fv is the data-driven operator.

Figure 2.2: v0 at the center is the source voxel, v1,v2,v3,v4,v5,v6 are the 1-ring neighboring
voxels of v0.

We use Figure 2.2 to explain Fv and the half gradient. Suppose v0 is the voxel
under consideration (source) and v1, v2, v3, v4, v5 and v6 are the 1-ring neighboring
voxels in positive x, positive y, positive z, negative x, negative y and negative z
directions, respectively. Then, Fv is defined by the following equation:

Fv(v0,v) = 1− p∗hg(v0,v) where v ∈ {v1,v2,v3,v4,v5,v6} (2.5)

where hg is the half gradient and p is a user defined value. The effect of p on
the result is explained in detail in Section 5.1. The half gradient is defined as the
absolute value of the difference of the voxel intensities. As each voxel has six 1-ring
neighboring voxels, six half gradients are obtained per voxel. The half gradients hg
of the voxel v0 are given by:

hg(v0,v) = |
I(v)− I(v0)

res
| where v ∈ {v1,v2,v3,v4,v5,v6} (2.6)

15



where I gives the intensity of the corresponding voxel, res is the size of the voxel
which will account for the distance between the two voxels under consideration.
By taking the absolute value in the half gradient computation, we are ensuring that
the edge weight between two neighboring voxels (for example say V GO(v0,v1) and
V GO(v1,v0)) will be the same value. In other words, we are avoiding any conflicts
while assigning the weights to the edges between the voxels. We add an additional
constraint where the value of volume gradient operator is equated to 0 if it is less
than 0 and equated to 1 if it exceeds 1. Thus, the volume gradient operator is defined
in such a way that all the edge weights lie in the range of [0, 1].

2.3 Properties

2.3.1 Equalized Histogram

When there is a low number of distinct shapes in the given volume data, a his-
togram of the normalized heat values would help to clearly distinguish between
the different shapes and features. However, volume data is often complicated, hav-
ing many objects and features with subtle differences in terms of shape, especially
in medical datasets. It is impossible to capture the difference between these fea-
tures using normalized histograms as the variation of the heat values is not uniform.
Hence, we use an equalized histogram instead of the normalized histogram for visu-
alization. Histogram equalization increases the global contrast inside the histogram
by effectively spreading out the most frequent intensity values. The intensities are
better distributed in the histogram through equalization.

Figures 2.3(a) and (b) show the difference between using the equalized his-
togram and the normalized histogram, respectively. Figure 2.3(a) shows many lines,
each line indicating an object of specific shape and all the lines are well-distributed.
However, Figure 2.3(b), which is the normalized histogram of the same heat val-
ues, shows fewer lines than Figure 2.3(a). This is because the normalized histogram
does not distribute the heat values well and hence most of the features cannot be dis-
cerned using the histogram. Thus, we use the equalized histogram instead of the
normalized histogram.

2.3.2 Histogram Analysis

The equalized heat histogram is useful to analyze the volume data at different
scales. The horizontal axis of the histogram denotes the equalized heat values and
the vertical axis denotes the time steps as shown in Figure 2.3(a) and these labels
hold good for all the figures showing equalized histograms. The shape information
obtained at different time steps is synonymous with the shape information obtained
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(a) (b)

Figure 2.3: The histogram (a) with equalization and (b) with normalization. The horizontal
axis in (a) denotes the equalized heat values, while the horizontal axis in (b) denotes the
normalized heat values. The vertical axis in both (a) and (b) denotes the time steps.

at different scales. The heat values at a particular time step incorporate the shape
information of the data at that time step, or in other words, at that scale. Thus, by
choosing a desired time step from the histogram the shape information at different
scales is analyzed. At small number of time steps, local shape features are detected
and for large number of time steps, global shape information is captured.

Figure 2.4 shows the result of cumulative heat diffusion at different time steps
on a synthetic cube volume data. The figure shows the result for 6 different time
steps, namely 20, 100, 750, 900, 1000 and 1100. For a small time step, say 20,
local features such as corners and edges of the cube are detected. With increasing
time steps, the heat flows gradually and captures larger features. The heat initially
resides on the edges and starts moving towards the corners of the cube. This is cor-
rect as the initial heat values are determined by using the volume gradient operator
which in turn involves the half gradients. As the gradient captures the local shape
information, very local features are obtained initially. The heat keeps accumulating
at the corners of the cube and eventually covers the entire volume. Thus, when t =
1100 the entire volume of the cube is obtained. From the results in Figure 2.4, it is
interesting to observe that the rate of diffusion is slower at sharp corners or edges
and is faster at flatter areas. It is clear that the rate of cumulative heat diffusion from
t = 100 to t = 750 is less than the rate of cumulative heat diffusion from t = 900 to t
= 1100. It has only taken around 200 time steps to capture all the faces of the cube

17



Figure 2.4: The progress of different features being captured at different time steps, which
in turn depicts different scales.

while it has almost taken 800 time steps to capture the corners, thus emphasizing
the point that the heat flow is slower at sharper areas compared to the flatter areas.
This observation is very useful in determining the number of time steps required
for the diffusion process in order to obtain specific features. Hence, based on the
complexity, shape structure and scale of the desired features of the given data the
number of time steps required to obtain the entire feature would vary. For example,
pointed features would require more time steps compared to flat shaped features.

Figure 2.4 also shows the corresponding heat histogram obtained by carrying
out the cumulative heat diffusion process for 4000 time steps on the cube data set.
The respective locations of the time steps corresponding to the results shown are
marked in pink lines. The area shown by the green box at the bottom of the his-
togram shows the initial heat values of all the voxels. Initially, all the voxels that are
close to the boundary of an object (both inside and outside) have the same heat val-
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ues and so all the curves merge as marked by the red box. With the increasing time,
the heat flows and the heat values of all the background voxels move to the value
of zero while the voxels belonging to an object have different heat values. This
phenomenon can be seen on the histogram when some of the curves diverge. The
background voxels eventually join the white line shown on the left border of the his-
togram while the voxels inside the objects converge to different lines based on their
shape information. With the increasing time, we can observe from the histogram
that the heat diffuses inside the volume, eventually stabilising and converging to
different lines which represent different shapes identified in the dataset. For ex-
ample, in Figure 2.4, we obtain a single red line shown on the right border of the
histogram at t = 1100 when the entire volume of the cube is obtained. In this case,
as there is only a single shaped structure, which is the cube, only one single line is
obtained in the histogram. If there are several different shaped structures present
in the volume, several different lines can be seen in the histogram where each line
represents individual shapes as shown in Figure 2.6. The time step where the heat
values for all the voxels are stabilized is chosen as an optimum time step where
all the shape information can be obtained. Though the background is assigned the
color white, it is rendered as transparent in the images shown in the Figure 2.4.

We have used a simple synthetic cube data set of size 32x32x32 to compare
the results obtained by using the conventional heat diffusion and our cumulative
heat diffusion. Theoretically, the results obtained by considering all the voxels as
sources simultaneously and using a single voxel as a source separately will produce
the same results at steady state (i.e., for large number of time steps). The steady
state result is not affected by the initialization or the evolution of the heat diffusion.
The steady state result will smooth out the differences between the initialization
conditions. On top of that the initial heat condition in our cumulative heat diffusion
is similar to the result obtained after the first time step of the conventional heat
diffusion. Figure 2.5 shows the visual comparison of the identical results obtained
by using the cumulative heat diffusion (bottom) and conventional heat diffusion
(top) for different time steps. A noteworthy observation here is that our cumulative
heat diffusion method requires fewer time steps than the conventional heat diffusion
method to obtain identical results. Figure 2.5 shows that to obtain a similar result to
our method using 30 time steps, the conventional method requires 100 time steps.
This shows that the cumulative heat diffusion converges faster than the conventional
method.

2.3.3 Object Classification

The cumulative heat diffusion, with the help of the heat histogram, is able to
detect different objects present in the given dataset based on their shape. After a
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Figure 2.5: Visual comparison of the identical results obtained by using the conventional
heat diffusion (top) and the cumulative heat diffusion (bottom). Fewer number of time steps
is required by the cumulative heat diffusion than the conventional heat diffusion to obtain
identical results.

certain time, all the voxels from a single object will have similar heat values and
hence will converge to a single line in the histogram. Hence, by using the histogram,
the cumulative heat diffusion is used in shape-based object classification in volume
data.

We use the foot dataset to show the object classification using the cumulative
heat diffusion. Figure 2.6 shows the result of our cumulative heat diffusion on
the foot data for 106 time steps. The rendering in Figure 2.6 is based on the heat
values after the last time step. The diffusion process and the heat values of the
voxels for all the time steps can be visualized in the histogram. Each line in the
histogram represents a shape in the foot data. Objects with similar shape have their
corresponding histogram lines also close to each other. The color range is varied
such that all similar shaped objects are assigned similar colors. The color of the line
in the histogram is synonymous with the color of the object in the data.

The distance between the lines in the heat histogram is an indication as to how
similar or dissimilar each object is compared to others in terms of shape, as the
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Figure 2.6: The classification of different bones with different shape in the foot dataset.
Each of the lines in the histogram represents a certain bone with a certain shape. All the
bones with similar shape are depicted by lines that are very close to each other. The top half
of the three toe bones in the middle are identified by the first three lines in the histogram,
which are relatively close to each other, thus showing that the bones are almost similar
in shape. The results, by separately focusing on the individual lines, are also displayed
showing each of the toe bones separately.

difference between the heat values of similar shaped objects is very small. The
lines of objects with similar shape are closer when compared to the lines of the
objects that do not have similar shape. For example, in Figure 2.6 we can see that
the first three lines in the histogram represent three toe bones (in the middle) at the
top of the foot. All three bones are more similar in shape to each other than the
other bones and hence the corresponding lines in the histogram are closer. In this
way, the similar objects in a volume dataset can be classified from other shapes with
the aid of the heat histogram.

2.3.4 Shape Analysis

Cumulative heat diffusion displays advantageous properties such as invariance
to scaling and orientation. These have been proved both theoretically and experi-
mentally in several previous works [1, 24, 130, 131]. We generated two synthetic
data sets to support the scale and orientation invariance of our method. The first
synthetic data consists of a cube and two spheres of different sizes. The second
synthetic data consists of two cubes and two cuboids with different sizes and ori-
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entation. Figures 2.7(a) and (b) show the result of our cumulative heat diffusion
on the first and second synthetic data respectively for 40000 time steps. In both
Figures 2.7(a) and (b) the rendering is based on the heat values of the voxels after
the last time step. The diffusion process and the heat values of the voxels for all the
time steps can be visualized in the histogram.

(a) (b)

Figure 2.7: Invariance to scale and orientation of our approach using synthetic data sets.
In (a) and (b) objects with different shape are identified. (a) The lines in the histogram
representing the two spheres (different sizes) are close to each other identifying them as
similar shape, establishing invariance of scale; (b) The two cubes are of different size,
while the two cuboids are of different size and orientation. The corresponding lines in the
histogram are close to each other identifying them as similar shapes, showing invariance to
scale and orientation.

The histogram in Figure 2.7(a) shows that the final heat of all the voxels in the
volume converges to one of the three lines indicating that there are three different
objects in the given data. Of the three lines, two lines which pertain to the two
green spheres are very close to each other. The line pertaining to the cube is far
away from the two lines showing that the two spheres, though of different sizes, are
classified as similar shape and the cube as a different shape. This shows the scale
invariance of our approach. Similarly, the histogram in Figure 2.7(b) shows that the
final heat of all the voxels in the volume converges to one of the four lines indicating
that there are four different objects in the given data. All the four lines are close
to each other showing that the objects in the data are almost of similar shape. In
addition, for the four lines, the distance between the left two lines (pertaining to the
two blue cubes) and the distance between the right two lines (pertaining to the two
purple cuboids) is smaller than the distance between the two lines in the middle.
This in turn indicates that there are two distinct pairs of objects, namely a cube and
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a cuboid with similar shape, which is true for the given data. Despite the different
dimensions and orientation, the final result correctly recognises all the shapes, thus
showing that the cumulative heat diffusion is invariant to both orientation and scale.

As discussed earlier, we use the normalized volume gradient operator to as-
sign the initial heat value to all the voxels. In addition, the edge weights are also
determined by the volume gradient operator. The calculation of volume gradient
operator itself involves the use of the absolute value of the half gradient. This use
of the absolute values in all the calculations makes sure that the cumulative heat
diffusion is not affected by change in the orientation and scaling of the objects in
the data. This property of our method is very useful to detect all objects with sim-
ilar shape at different scales and orientations in the given volume simultaneously.
All the objects with similar shape irrespective of their scale and orientation would
converge to very close lines in the heat histogram.

2.4 Parameter

The shape information obtained does not entirely depend on the time step be-
ing considered. It also depends on how clearly the boundary is defined between
different objects so that they can be clearly identified as different shapes. If the
boundary between two objects or shapes is not clear then our approach will see
both the objects as a single object of certain shape and the heat flow will work its
way accordingly. In addition, we have also seen that sharper features take more
time steps to be recognised when compared to flat surfaces as the rate of diffusion
is slower at sharper areas than on the flatter areas. Choosing the boundary will also
decide the amount of sharpness and smoothness in the volume data desired by the
user. Choice of clear boundaries between objects and the time step is dependent
on the application and is entirely in the hands of the user. Using the histogram the
user can select the time step of his choice to understand the different shape-based
features present in the volume at different time steps or scales. We discussed the
different results obtained by choosing different time steps in the previous sections.
We will now discuss an application of our approach where the user can decide the
boundary between the objects based on his requirement.

In our volume gradient operator definition, we used a user defined parameter,
p. This parameter is used to decide the boundaries of the objects by the user for
the given data. The volume gradient operator is a function of the half gradient and
gradients work well in identifying the object boundaries and edges [110]. Using the
parameter p along with the half gradient in the volume gradient operator definition
will give the user the extra flexibility to make a choice of the object boundaries.
Hence, by changing the value of p, the user can draw a clear boundary between
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(a) (b)

(c) (d)

Figure 2.8: Comparison of choosing different values for p, which is a user determined
quantity. (a), (b), (c) and (d) are the results obtained by choosing p = 2, 5, 10 and 15,
respectively on the engine dataset for 100 time steps. (a) and (b) show a clear difference in
features obtained (enclosed in blue ellipses and green boxes). Though the features obtained
in (c) and (d) are almost similar, the features are sharper in (c) than in (d).

different objects and also decide on the level of smoothness or sharpness in the
data. We leave it as a user dependent parameter so the user can choose the value
based on his/her requirement. This choice of p made by the user will also affect the
amount of heat flow during the cumulative heat diffusion process. Thus the results
of cumulative heat diffusion might vary locally or globally for different values of p
based on how well the objects are distinguished and how sharp the features are.

Figure 2.8 shows the result of choosing different values of p on the engine
dataset. Figures 2.8(a)-(d) show the result when p = 2, 5, 10 and 15 respectively for
100 time steps. In Figures 2.8(a) and (b), there is a lot of difference in the features
obtained such as those marked in blue and green. In Figures 2.8(c) and (d), though
the features present are almost the same, the features in Figure 2.8(c) are clearer
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and sharper than those in Figure 2.8(d). The features in Figures 2.8(c) and (d) are
better than those in Figures 2.8(a) and (b). The small round hole on the engine is
clear and the edges of the big hole are sharper. Thus, based on what features the
user wishes to focus on and what features the user wants to analyze, the user can
choose different values of p.

2.5 Results

The heat values obtained at the end of a time step will incorporate the shape
information at that time step. This information can be used to design a shape-based
transfer function. By choosing different time steps, the shape information obtained
from the volume data at different scales can be visualized at once in the histogram,
thereby aiding a volume exploration based on shape. By choosing a small number
of time steps, local shape can be obtained, and by choosing a large number of time
steps, global shape information is obtained. Thus, the heat histogram is used to
design the transfer function to visualize both the local and global shape of the data.
We provide a tool for the user to design a transfer function using the heat histogram.
After the cumulative heat diffusion process is carried out for a large number of
time steps, the corresponding heat histogram is generated using the equalized heat
values obtained. The user can then choose a desired time step (vertical axis), which
provides all the shape information (heat values) obtained until that time step. The
user can then assign different colors and opacities to these heat values (horizontal
axis), which forms a 1-D transfer function for exploring the data based on the shape
information.

Figure 2.9 shows the result of our shape-based transfer function on MRI head
data for t = 4× 105. We were able to segment different parts of the data such as
cranium (outer part), brain and eye sockets based on the shape information. Fig-
ure 2.9(a) shows all the segmented parts of the MRI head data by using our transfer
function. Figure 2.9(b) shows just the outer cranium that covers the brain while
Figure 2.9(c) shows the brain. The cerebral fluid around the brain is captured in
Figure 2.9(d).

The results of the transfer function can also be varied by varying the value of
p. As the cumulative heat diffusion process is not real time, if the value of p is
changed, the cumulative heat diffusion is repeated on the entire data for the required
number of time steps and a new heat histogram is obtained which can then be used
for transfer function design.

Figure 2.10 shows the result of our approach on aneurysm data. The aneurysm
is correctly classified into an isolated blob (yellow), the thin vessel regions (green)
and a large vessel (red). All the thin vessels are tube like structures and have similar

25



(a) (b)

(c) (d)

Figure 2.9: Results of the shape-based tranfer function designed using the heat histogram
on the MRI head dataset. (a) The successfully classified cranium, brain and eye sockets; (b)
The segmented cranium; (c) The segmented brain; (d) The cerebral fluid around the brain.

shape. Hence, the cumulative heat diffusion method classifies all the thin vessels as
the same shape (tube like structures) and hence have similar color. The aneurysm
(blob) in the data has a completely different shape and hence it was clearly recog-
nised as shown in Figure 2.10. It is important to note that the intention of our
method is to provide a shape-based volume visualization and not to provide a re-
liable segmentation technique. Generally in visualization, segmentation errors do
not pose a big problem and can be tolerated. Though Figure 2.10 provides a “weak”
segmentation (the yellow color seen in the red area and the green area) all the shapes
can still be clearly discerned, providing very good shape-based volume visualiza-
tion. We do not propose to use our method as a reliable segmentation method or use
it as a sole segmentation method. Instead, we demonstrate that our cumulative heat
diffusion based volume analysis provides information about shapes, which can be

26



Figure 2.10: Objects with different shape in the aneurysm volume data. The aneurysm
blob (yellow), the thin vessels (green), and the large vessel (red) are correctly distinguished
based on their shape.

exploited to build improved tools for shape-based volume visualization. The data
was run for a sufficiently long time in order to capture all the shape information in
the dataset. We ran the cumulative heat diffusion on the data for 105 time steps.

In Figure 2.11, we show the result of our diffusion process on the visible female
right hand dataset. Figure 2.11(a) shows the result of considering a small number
of time steps of t = 1000. Hence, we can see local shape information, which in this
case provides simple yet useful information. We can observe from Figure 2.11(a)
that all the joints between the finger bones and the joint at the wrist have the same
shape and thus the same color (red). Similarly, all the finger bones have similar
stem-like shape and thus have the same color (blue). This can also be confirmed
visually from the figure. The joint present at the wrist is also identified to be of
similar shape as that of other joints though it is of larger size, which shows that our
method successfully detects similar shaped features irrespective of size and orien-
tation. However, we can see mixed colors of red and blue in the green box. The
region inside the green box consists of two finger joints in a very small space and
thus the entire region has been classified as a shape that is in between the shape of
the stem-like bones and the shape of the joints. As the difference between the differ-
ent shapes is very subtle in this region, the colors have been mixed. Figure 2.11(b)
shows the result of considering a large (steady) number of time steps of t = 106.
At this steady state time, all the global shape information is obtained. In this case,
we can observe that it has been classified into three parts, namely the bone (white),
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(a) (b)

Figure 2.11: The results of classifying the visible female right hand for (a) small (t =
1000), and (b) large (t = 106) number of time steps. (a) All the joints between the finger
bones and the joint at the wrist have the same shape and hence the same color (red). All
the fingers have similar stem-like shape and hence the same color (blue). (b) The hand has
been classified based on the global shape information into bone (white), skin (blue) and the
area on which the hand rests (red).

the skin (blue) and the area on which the hand rests (red). These results show the
power of our method in utilising both the local and the global shape information for
visualizing similar features and objects in otherwise complex volumes.

A comparison in terms of the running times by using our approach and directly
using the conventional heat diffusion on different volume datasets is given in Ta-
ble 2.1. The third column of the table shows the number of iterations (time steps) for
which the cumulative diffusion process was carried out. The fourth column shows
the value of p used for the datasets. The fifth column gives the time taken per iter-
ation by the conventional heat diffusion (HD in Table 2.1) process on volumes (we
run the HD for only 1 iteration to get the time) while the last column gives the time
taken per iteration by our approach of using cumulative heat diffusion (CHD in Ta-
ble 2.1) on volumes. We can clearly see that in all the cases, for the same number of
iterations, the time taken for the cumulative heat diffusion process is smaller than
the conventional heat diffusion by a very large factor, thus showing that our method
reduces the computational time drastically. All tests were conducted on a system
equipped with an Intel Xeon E5620 CPU and NVIDIA GeForce GTX 480 graphics
board.
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Table 2.1: Comparison of the running times of our cumulative heat diffusion with the
conventional heat diffusion for the same number of time steps.

Dataset Resolution
# Iterations
(time steps)

p
Time (sec)

per HD
iteration

Time
(msec)

per CHD
iteration

Foot 256×256×256 1x105 7.0 80,531 4.8
Engine 256×256×128 5.2x104 10.1 11,744 1.4

Aneurysm 256×256×256 1x105 7.5 85,564 5.1
Abdominal

Stent 512×512×174 1x105 8.0 2,098,201 46.1

MRI Head 256×256×256 4x105 6.0 352,322 21.3
Visible

Female Hand 176×187×190 1x106 10.0 112,559 18.2

Bonsai 256×256×256 1x106 8.5 845,572 50.4
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Chapter 3

Stochastic Shape Analysis

In this chapter, we introduce a Monte Carlo based real-time diffusion process
for shape-based analysis of volumetric data. The diffusion process is carried out by
using tiny massless particles termed shapetons, that are used to capture the shape
information. Initially, these shapetons are randomly distributed inside the voxels of
the volume data. The shapetons are then diffused in a Monte Carlo fashion to obtain
the shape information. The direction of propagation for the shapetons is monitored
by the volume gradient operator. This operator is known to successfully capture the
shape information and thus the shape information is well captured by the shapeton
diffusion method. All the shapetons are diffused simultaneously and all the results
can be monitored in real-time. We demonstrate several important applications of
our approach including colon cancer detection and design of shape-based transfer
function. We also present supporting results for the applications and show that this
method works well for volumes.

The rest of this chapter is organized as follows. Section 3.1 provides the motiva-
tion. Section 3.2 describes the algorithm with a detailed description of the shapeton
diffusion process. We discuss how our shapeton diffusion method can robustly ex-
tract the features based on their shape information in the volume data. Various
properties of the method are discussed in Section 3.3. The influence of different pa-
rameters on the result is analyzed in Section 3.4. Section 3.5 discusses applications
of our method to colon cancer detection and transfer function design and Section
3.6 presents the results of the method.

3.1 Motivation

The cumulative heat diffusion approach is a cumulative shape analysis approach
and is computed by considering all the voxels as the sources for diffusion. As
a result, the cumulative heat diffusion process is dependent on the resolution of
the data. Higher resolution of the data leads to higher computational time. In
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addition, the diffusion is carried out only between voxels and 1-ring neighboring
voxels per time step and hence the number of time steps required to capture the
shape information increases with the increasing number of voxels. In other words,
the rate of heat flow is influenced by the resolution of the data. As a result, the
diffusion based methods suffer from the problem of long running times. Monte
Carlo methods are popular due to their ability to quickly approximate an answer that
otherwise would be very time-consuming to determine. Such probabilistic methods
are used to simulate problems that are too difficult and time-consuming as compared
to other methods. The motivation of this chapter is to address these challenges using
a Monte Carlo approach. We introduce a Monte Carlo based shape analysis method
for volumes which not only obtains efficient results but also provides a means of
real-time shape analysis.

The new diffusion based shape analysis method uses new particles, termed as
shapetons. This is the first time the diffusion particles (in our case, the shapetons)
are diffused across the voxels separated by some distance, rather than just between
the adjacent voxels. The method is independent of the size of the volume; it only
depends on the number of shapetons. This independence on the resolution (size) of
the data is an important contribution. In addition, using probabilistic methods for
shape analysis is in itself a contribution. Furthermore, to the best of our knowledge,
this is the first time volume analysis based on shape with real-time monitoring of the
result is being carried out. Consequently, we achieve orders of magnitude improve-
ment in the computational cost compared to other diffusion based shape analysis
methods for volumes.

3.2 Algorithm

The shapeton diffusion process efficiently captures the shape information in
volumes and in addition facilitates a real time monitoring of this information. The
diffusion particles, the shapetons, are able to capture the majority of the shape in-
formation and hence the name shapetons. Initially, these shapetons are randomly
distributed inside the data. The primary idea of our approach is that each shapeton is
diffused based on the local shape information in a probabilistic manner. The prob-
ability that a shapeton moves in a particular direction is based on how much the
region in that direction contributes to the shape information. In continuous space,
generally the shape information around each shapeton can be represented in the
form of an uneven distribution. This is because the local shape information around
the shapeton is not uniform (varies depending on the data). The area of this shape
distribution would give a measure of the shape information obtained around the
shapeton. A random number is used to select a fraction of the area. This fractional
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area indicates the shape information obtained in that direction and in turn the prob-
ability for the shapeton to move in that direction. In other words, the probability of
shapeton diffusion is based on the ratio of the area of a sub-region to the area of the
total shape distribution.

For the sake of simplicity, an illustrative example of shape distribution in the 2D
case is shown in Figure 3.1. In Figure 3.1, s is the shapeton and the boundary around
it indicates the shape distribution around that shapeton. Assume the area of the total
shape distribution to be A. A random number r is chosen such that r ∈ (0,1]. If we
assume the interval (0,1] to be a straight line of length 1, then r will represent a
position which is at a distance of r from the starting point of 0 (length of the blue
line segment) as shown in Figure 3.1. If we map the total area, A of the shape
distribution to this line, then choosing r will be analogous to choosing a sub-region
of the shape distribution whose area will be A1 = r×A (shown by the blue region in
Figure 3.1). This A1 gives the measure of the shape information obtained from that
particular region and the probability for the shapeton to propagate in that direction,
as indicated by the arrow. Hence, the probability of the shapeton to propagate in
a particular direction is given by r = A1

A . By evaluating the angle enclosed by this
randomly chosen region, the direction of the shapeton propagation is estimated. As
can be seen, the region to the left of the shapeton covers more area which indicates
that relatively more shape information is obtained in that region. Consequently, the
shapeton also has higher probability to move in that direction. Hence, it is essential
to first estimate the shape distribution around each shapeton in order to determine
its direction of propagation.

Figure 3.1: The shape distribution around the shapeton s. The probability of the shapeton
diffusion to propagate in the direction shown by the arrow is based on the ratio of the areas
of the region shown in blue to the total area of the shape distribution.

We deal with voxel-based volumes and hence only deal with discrete space of
shape information. In discrete space, the shape information is measured in terms
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of the edge weights (around each voxel) evaluated using the volume gradient op-
erator. These edge weights are distributed linearly based on the angle between the
weights (linear interpolation of the edge weights). The shape distribution around
the shapeton is estimated by evaluating the edge weights and the areas between
them in the discrete case. Thus, the area between the edge weights would give a
measure of the shape information contributed by that particular region. In the dis-
crete case, the red lines in Figure 3.1 are nothing but the edge weights and the area
between the weights is calculated by using the angle between them. This infor-
mation captures the local shape information and is used to decide the direction of
the shapeton diffusion. The probability evaluation and the estimation of shapeton
propagation direction is same as explained above for the continuous case. The fi-
nal accumulated density of shapetons after the entire diffusion process indicates the
amount of shape information obtained.

3.2.1 Volume Data

The difference between the shapeton diffusion method and previous diffusion
based methods such as the cumulative heat diffusion is that, this is a particle-based
(shapetons) diffusion process while the latter is not. In cumulative heat diffusion,
the medium of diffusion is heat which is distributed on the voxels and during the
diffusion process the heat flows only between the 1-ring neighboring voxels along
the edges joining them in each time step. Therefore, conventionally the diffusion
process is highly dependent on the resolution of the data, that is, finer data (higher
resolution) would require more time steps while a coarser data (lower resolution)
would need fewer time steps to capture the same amount of shape information. On
the contrary, in this approach, during the diffusion process the shapetons are moved
inside the volume, across the voxels, for a pre-defined distance in each time step.
As a result, the shapetons have the freedom to move anywhere inside the volume
and not just between the 1-ring neighboring voxels. Therefore, the rate of shapeton
diffusion is not affected by the resolution of the data and is independent of the
size of the data. Please note that all the pre-defined distance values are chosen by
considering a [0,1] normalized space of the volume data. Hence, the distance value
will always lie in the interval [0,1].

Initially, all the shapetons are randomly distributed inside the voxels. The
shapetons accumulate most of the shape information along their path and conse-
quently the shape information is obtained at a much faster rate. In order to describe
the direction along which the shapetons travel in each time step, two angles are used,
namely the longitudinal angle and the latitudinal angle. We now describe the elab-
orate process of shapeton diffusion in detail. In general, any voxel is surrounded
by six adjacent voxels in a volume. Thus, for any shapeton s inside a voxel (say
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v0), there are six adjacent voxels (say v1, v2, v3, v4, v5 and v6). The edge weights

Figure 3.2: v1,v2,v3,v4,v5,v6 are the 1-ring neighboring voxels of the source voxel v0 and
w1, w2, w3, w4, w5 and w6 are the corresponding edge weights, respectively.

w1, w2, w3, w4, w5 and w6 between the voxel v0 and its adjacent voxels, as shown
in the Figure 3.2, are determined using the volume gradient operator, defined by
Equation 3.1. This volume gradient operator captures the local shape information
of the volume. There is a parameter p in the volume gradient operator definition
that influences the final result. We discuss the effect of the parameter p in Section
3.4.3. For i ∈ {1,2,3,4,5,6}:

wi =V GO(v0,vi) = ∆(v0,vi)+Fv(v0,vi) (3.1)

where ∆ is the Laplace-Beltrami Operator and Fv is a data-driven operator:

Fv(v0,vi) = 1− p ·hg(v0,vi) (3.2)

where hg is the half gradient and p is a user defined value. The half gradient hg of
the voxel v0 is given by:

hg(v0,vi) = |
I(vi)− I(v0)

res
| (3.3)

where I gives the intensity of the corresponding voxel, res is the size of the voxel
which accounts for the distance between the two voxels under consideration.

We use these six edge weights to create a shape distribution diagram around the
shapeton, as shown in Figure 3.3. This shape distribution accounts for the shape
information around the voxel v0 (the shapeton is inside this voxel) and is used to
determine the direction of shapeton diffusion in a probabilistic manner. The six
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weights form eight regions where each region represents an octant of a sphere. We
call this octant of the sphere octavusphere (derived from Latin). Therefore, the six
weights form eight octavuspherical regions where sets of three weights form a sin-
gle octavuspherical region, as shown in Figure 3.3. In spherical coordinates we
normally need two angles (say θ and φ ) to describe the direction of shapeton prop-
agation. The angle θ is measured with respect to the x-axis on the x− y plane and
the angle φ is measured with respect to the y-axis on the y− z plane. In geograph-
ical terms, we refer to the angle θ as the longitudinal angle and the angle φ as the
latitudinal angle.

Figure 3.3: The shape distribution around the shapeton s shown using the edge weights.
The probabilistically estimated angles φ and θ define the direction of the shapeton propa-
gation.

Since we have to determine two angles probabilistically, namely θ (longitude)
and φ (latitude), two random numbers are drawn, one for each of them. We do it in
a step-by-step manner. Firstly, the value of the angle φ is determined by employing
the first random number. Fixing this value of φ , the value of the angle θ is then
estimated by employing the second random number. In a given octavuspherical
region both φ and θ vary between 0 and π

2 . As explained earlier, the probability
of the shapeton diffusion should take into account the shape information around
it, which is indicated by the volume of the octavuspherical region enclosed by the
edge weights. In other words, the probability of the shapeton to move in a certain
octavusphere is based on the ratios of the volumes of the octavuspheres to the whole
volume. The volumes are evaluated by using the integral in Equation 3.4 involving
the edge weights and the angles between them. By employing the first random
number over the volumes of the octavuspherical regions, a particular octavusphere
region is selected and the corresponding value of φ is estimated. This angle φ
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splits the selected octavuspherical region into two sub-regions, which are separated
by a sector shown by the green and blue regions in Figure 3.3. By employing a
second random number over the area of this sector the final value of θ is estimated.
More details about the steps involved in calculating the longitude and latitude for
shapeton propagation are given below.

• We evaluate the volume of the eight octavuspheres (say V1, V2, V3, V4, V5, V6,
V7 and V8). To be specific, the volume of region i is Vi where i ∈ {1,2, ...,8}.
The formula to calculate the volume of the octavusphere formed by the weights
(say w1, w2 and w3) is given by the integral shown in Equation 3.4. A more
detailed explanation and derivation of the formula is provided in Chapter 7.1.

V =
∫ π

2

0

∫ π

2

0

f 3

3
· sin(θ)dθ dφ (3.4)

where the angles θ and φ define the longitude and latitude angles, respec-
tively, as mentioned earlier. Here, f denotes the shape information in a given
direction. It is a function of angles θ and φ and is determined by the edge
weights of that octavuspherical region. We assume that the shape informa-
tion is distributed linearly based on the angles θ and φ . Thus, f is defined as
follows:

f =
(w1 · (π

2 −θ)+W ·θ)
π

2
(3.5)

W is given by:

W =
(w2 · (π

2 −φ)+w3 ·φ)
π

2
(3.6)

Finally, the sum of the volumes of the eight octavuspherical regions V =
V1 +V2 +V3 +V4 +V5 +V6 +V7 +V8 is computed.

• One of these octavuspherical regions is selected in a probabilistic manner
by using a Russian roulette. For this, initially a random value is chosen in
the interval (0,1]. This value is multiplied by the sum of the volumes V to
obtain a fraction of the volume, say V ′. Based on the value of V ′ one of the
octavuspherical region is selected, using the condition shown in Equation 3.7.

If, 0 <V ′ ≤V1, then region 1

If,
k−1

∑
i=1

Vi <V ′ ≤
k

∑
i=1

Vi, and k > 1, then region k (3.7)

This selection of the octavuspherical region based on the value of V ′ also
results in the selected region being split into two sub-regions, with one of the
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regions forming an angle φ , as shown in Figure 3.3. This angle φ is what
has to be determined. The volume of the sub-region enclosed by the angle
φ is given by ∑

k
i=1Vi−V ′ where k is the region selected. Using this volume,

the angle φ is then estimated by solving the equation of the volume shown in
Equation 3.4 for φ (taking θ to be between 0 and π

2 ). Since the evaluation of
the volume involves a complex fourth degree equation in φ (refer to Chapter
7.1), we do not solve this equation to determine φ . Alternatively, we use a
binary search approach to estimate the angle φ . We perform a binary search
on the volume of the selected octavusphere to estimate the value of φ . On
average, the binary search required four iterations to compute the φ value.
More details about how we employ the binary search are described in Chapter
7.3.

• Now that the angle φ is decided, we have to determine the angle θ to com-
pletely define the final direction of shapeton propagation. As described ear-
lier, the angle φ divides the selected octavusphere into two sub-regions. The
two sub-regions are separated by a sector between them. The area of this
sector is used to probabilistically detemine the value of θ . In Figure 3.3, this
sector is shown by the green and blue regions.

• The area A of the sector is computed by solving the integral shown in Equa-
tion 8.7. A more detailed explanation and derivation of the forumla is pro-
vided in Chapter 7.2. Thus, the area A is given by:

A =
1
2
· (
∫

π/2

0
r2 dθ

′) (3.8)

for some arbitrary angle θ ′ between 0 and π/2. r is defined using linear
interpolation of weights and the angles between them (which is π/2 in this
case) as follows:

r =
(w1 · (π

2 −θ ′)+W ′ ·θ ′)
π

2
(3.9)

where W ′ is obtained using Equation 3.6 by replacing φ with the already
estimated φ value.

• After the area of the sector is computed, a random number is chosen in the
interval (0,1]. This value is multiplied with the area A to get a fraction of the
area (say A′). In Figure 3.3, A is given by the sum of the areas of the green
and blue regions and A′ is given by the area of the green region. The angle
enclosed by the sector whose area is A′ (green area in Figure 3.3) is θ which
is to be determined. By using the binary search approach (Chapter 7.3), we

37



find the value of θ for which the area of the sector is A′. On average, the
binary search needed four iterations.

Thus, the angles of φ and θ are estimated by employing two random numbers in
a Monte Carlo manner. Now that we have evaluated both φ and θ , we have the final
direction for the shapeton to move. This entire process of evaluating the direction
of propagation is carried out simultaneously for all the shapetons.

Once the direction of propagation for the shapeton is determined, the shapeton
is moved in that direction for a pre-defined distance. This accounts for one time
step of the shapeton. After each time step, all the steps described above are re-
peated to calculate the new direction for the shapeton to diffuse. Similarly, all the
shapetons are diffused inside the volume for the required number of time steps. Af-
ter each time step, the number of shapetons inside each voxel is summed up to get
the accumulated density of shapetons. That is, the number of shapetons inside each
voxel after each time step is added to the accumulated shapeton count obtained in
that voxel through the previous time step. The accumulated number of shapetons
in each voxel indicates the probability of the shapetons to appear at that location.
For all the voxels corresponding to objects of similar shape, the shapetons have a
similar probability to visit them. Hence, the number of shapetons within each voxel
would be the same for all voxels corresponding to objects of similar shape.

The diffusion of shapetons in volumes is influenced by the volume gradient op-
erator which incorporates the local shape information. Thus, the shapetons capture
the shape information along their path of diffusion and the accumulated number of
the shapetons inside the voxels quantifies the shape information obtained. There-
fore, the final position of the shapetons after a certain number of time steps would
accumulate all the shape information until that time step and can be used for an-
alyzing the volume data based on shape. When the shapeton diffusion process is
carried out for a large number of time steps, a stable state or convergence is at-
tained, after which the result does not change much. Stable state indicates that all
of the global shape information has been obtained. However, en route to the sta-
ble state, additional shape information such as the local features or smaller objects
is obtained which is useful for volume analysis based on shape. The next section
describes how different parameters can be manipulated to analyze both local and
global shape information inside the volume data.
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3.3 Properties

3.3.1 Shape Classification

We now show that the shapeton diffusion method is indeed successful in clas-
sifying different shapes. The shapetons are diffused based on the volume gradient
operator in volumes, which captures the shape information. Hence, the probability
of a shapeton to go in a particular path is influenced by the shape information. The
accumulated number of shapetons per voxel in a shape such as a cube would be
different from a shape such as a sphere since both of them have different shape and
thus bear different probabilities for the shapetons to capture them.

Figure 3.4: Shape classification capability of the shapeton diffusion approach shown using
a synthetic data consisting of a cube, two cuboids of different size and orientation and a
sphere.

We use a synthetic data consisting of a cube, two cuboids of different size and
orientation and a sphere to confirm this. Figure 3.4 shows the result of using the
shapeton diffusion method on the synthetic data. We consider a large number of
2,500 time steps to make sure that a stable state is reached. In each time step, the
shapeton was moved by a distance of 0.01. We can clearly see from Figure 3.4
that all the shapes have been identified and distinguished successfully (shown by
the different colors). The colors are assigned based on the number of shapetons
accumulated. The shapeton propagation is based on the shape information (volume
gradient operator) and hence the number of shapetons accumulated per voxel is the
same in similar shaped objects. This fact can be observed in Figure 3.4 where both
cuboids have the same color. In addition, the color of the cube is almost similar to
that of cuboids indicating that they have almost similar shape. The cube and the
sphere have also been classified as different shapes, thus asserting that the shapeton
diffusion method serves as a powerful tool in finding objects with similar shape
and distinguishing them from objects with other shape. An important observation
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that can be made from Figure 3.4 is that both cuboids have been identified as sim-
ilar shape irrespective of their size and orientation. This further confirms that the
shapeton diffusion method can recognize different shapes independent of their size
and orientation.

3.3.2 Invariance to Deformations

The shapeton diffusion method displays some lucrative properties such as in-
variance to deformations. We generated a synthetic data to establish this property.
The synthetic data consists of a cuboid, a deformed cuboid, a sphere and a deformed
sphere. Figure 3.5 shows the result of the shapeton diffusion on this synthetic data.
Again the diffusion process is carried out for a large number of time steps to ensure
a stable state is reached and all the objects in the volume data are obtained.

Figure 3.5: Objects of similar shape identified successfully irrespective of their deforma-
tions.

You can observe that although the cuboid has been deformed, the number of
shapetons accumulated per voxel in both the cuboid and its deformed version are
the same and hence both have similar color. Likewise, the sphere and its deformed
version have similar color. The sphere and the cuboid have also been distinguished
from each other. We used 1000 shapetons for 2500 time steps to obtain the results.
The results in Figure 3.5 show that the shapeton diffusion method is successful in
identifying objects of similar shape though they have been deformed, thus showing
that it is invariant to deformation.

3.4 Parameters

The shapeton diffusion process is an efficient method in classifying different
objects based on their shape. The shape information is obtained irrespective of the
size and deformation of the objects. However, the amount of shape information
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obtained is influenced by a number of parameters such as the number of shapetons,
the value of the pre-defined distance, and the value of p. We provide a detailed
analysis of the effect of each of the parameters on the shapeton diffusion process.
In the remainder of the paper, for all the results, the rendering is based on the
accumulated number of shapetons in the voxels for a given number of time steps
and the colors are assigned such that a higher shapeton count is shown in red and
the color changes from red to blue with the decrease in the shapeton count.

3.4.1 Steady State and Number of Shapetons

For any Monte Carlo method the higher the number of samples, the better the
results. The same is true with our method as well. As we increase the number of
shapetons, the probability of the shapetons to take a particular path increases and
hence the rate of accumulation of shapetons at a particular feature increases. Thus,
the shape information is obtained much faster in terms of the number of iterations
with the increase in the number of shapetons. If the number of shapetons is reduced,
it takes more iterations to capture a specific feature, which otherwise would have
taken fewer iterations using more shapetons. However, there is a tradeoff. Though
the number of iterations decreases, the time taken for each iteration (time step)
increases with the increase in the number of shapetons.

We say that the shapeton diffusion process has reached a steady state if the rate
of change of the accumulated shapeton density on all the voxels is uniform. For
this, we check if the rate of change of the accumulated shapeton density on all the
voxels after every time step (∆t = 1) is below a threshold value as follows:

∆s(t) = ∑
i∈V

(st(i)− st−1(i))2 ≤ ε (3.10)

where ∆s(t) denotes the rate of change in the accumulated shapeton density for all
the voxels after t time steps, V denotes the number of voxels in the volume, st(i)
and st−1(i) are the accumulated shapeton densities on voxel i after t and t−1 time
steps respectively and ε is the threshold value. In all our datasets, we choose the
threshold value to be 0.05. This threshold value chosen is not an accurate estimation
and is chosen experimentally by observing the shapeton diffusion process on several
datasets. As future work, we plan on finding a way to provide a more accurate
estimate of the threshold value that will be dependent on the dataset. However,
for now the threshold value works well for all our experiments. We check if the
condition in Equation 3.10 is satisfied continuously in atleast 90% of the last 50
time steps. The 10% leverage is given to account for some unexpected changes
caused due to the probabilistic movement of the shapetons. The number of time
steps after which all these requirements are satisfied is chosen to be the point where
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a steady state is reached. For example, assume for a particular data, the condition
in Equation 3.10 is satisfied at t = 100 and furthermore the condition remains to be
valid in 46 of the next 50 time steps (i.e., until t = 150), then the time steps needed
to reach the steady state is taken to be 150. Once the steady state is reached, there
would not be much change in the amount of shape information obtained.

Table 3.1: Comparison of the timings for different number of shapetons using a synthetic
cube data.

# Shapetons
Time (msec)
per time step

# Time steps
(iterations)

Total time
(sec) for

convergence
4,000 0.057 7,100 0.40
8,000 0.087 4,400 0.38

15,000 0.129 2,800 0.35
30,000 0.215 1,600 0.34
65,000 0.236 1,500 0.35

150,000 0.310 1,200 0.37

Due to the probabilistic nature, the convergence to a steady state by using our
approach is slow. This limitation is overcome by utilizing the parallel aspect of our
approach and as a result achieving remarkable reduction in the computational time.
The number of shapetons used for carrying out the shapeton diffusion should not be
too small, otherwise it is possible that a steady state is never attained despite using
any number of time steps. It is a case when the number of shapetons used are not
adequate to diffuse over the entire mesh model to capture the shape information.
Hence, sufficient number of shapetons are needed for the shapeton diffusion to be
carried out. We will now discuss how an optimal value for the number of shapetons
is chosen experimentally for each dataset.

A comparison of the time taken per iteration and the total time taken for con-
vergence (reach a stable state) using different number of shapetons on a synthetic
cube data is given in Table 3.1. The first column of the table shows the number
of shapetons used. The second column of the table shows the corresponding time
taken (in msec) per time step (iteration). The third column shows the total num-
ber of time steps required to reach the convergence. By convergence we mean that
the entire global shape information of the cube is obtained, that is, the shapetons
cover the entire cube volume (similar to the result shown in Figure 3.6(d)). The last
column of the table shows the total time (in sec) taken for convergence by using
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the number of shapetons shown in the first column. From the second column of
Table 3.1, we can observe that the time taken per time step increases with increas-
ing number of shapetons, which is expected. However, the total number of time
steps needed to obtain the shape of the cube in each of the cases is not the same
and keeps decreasing. This tradeoff between the time taken per time step and the
total number of time steps gives an optimum value for the number of shapetons to
be used for a particular dataset. In the synthetic cube case, we can observe that the
total time taken decreases until the number of shapetons used is 30,000 and later
the total time increases to obtain the same result inspite of an increase in the number
of shapetons. Thus, without any loss of generality, we can say that 30,000 is the
optimal value of the number of shapetons to be used for this cube data to obtain
the result with minimal time. Similarly, different datasets have different optimal
number of shapetons to be used.

We use the same synthetic cube dataset to show a comparison of the results
obtained with the change in the number of shapetons keeping the number of time
steps to be a constant. Figure 3.6 shows the results of the synthetic cube data using
different number of shapetons for 1,600 time steps. Note that Figure 3.6 only shows
a comparison of the results using the same number of time steps and does not con-
sider the total time taken for these iterations as it differs based on the time taken
per iteration. Figure 3.6(a) shows the result using 4,000 shapetons; Figure 3.6(b)
shows it using 8,000 shapetons; Figure 3.6(c) shows it using 15,000 shapetons, and
finally Figure 3.6(d) shows the result using 30,000 shapetons. The entire shape of
the cube volume data is captured in Figure 3.6(d) in 1,600 time steps. However,
using the same number of time steps some of the shape information is still missing
by using fewer shapetons in Figures 3.6(a), (b) and (c). Moreover, the amount of
uncovered regions increases with the decreasing number of shapetons. This com-
parison demonstrates that a decrease in the number of shapetons would require more
iterations to capture the same amount of shape information.

3.4.2 Effect of the Distance Value

When a shapeton travels a pre-defined distance (defined by the user), it is said to
complete one time step or iteration of the diffusion process. This distance value also
affects the diffusion process of the shapetons and the shape information captured.
When we use a large distance value, the shapetons travel a larger distance in one
time step. Thus, if we increase the distance value the diffusion process converges
faster in terms of the number of time steps when compared to a lower distance value.
The smaller distance values cause the shapetons to move slowly, thereby resulting in
more time steps needed to capture the global shape. However, the catch here is that
we cannot obtain the local features using a large distance value because most of the
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(a) (b)

(c) (d)

Figure 3.6: Comparison of the results obtained on a synthetic cube data using 1600 time
steps and (a) 4,000 shapetons (b) 8,000 shapetons (c) 15,000 shapetons, and (d) 30,000
shapetons.

shapetons will travel over the smaller features missing them completely. Smaller
distance values are useful in obtaining and analyzing local features. Therefore, the
distance value is an indication of the shape information obtained at different scales
of the data. Intricate local shape details are obtained by using a smaller distance
value, while global shape information is obtained using a higher distance value
(with a smaller number of time steps). It is not that the smaller distance value is
unable to capture the global shape information, it is just that it takes more time
steps to obtain the global shape information using a smaller distance value. On the
contrary, a higher distance value is unable to obtain the local features despite using
more time steps.

Figure 3.7 shows the results of the shapeton diffusion on the aneurysm dataset
using different distance values for the same number of 400 time steps. Figure 3.7(a)
shows the result for a distance value of 0.001; Figure 3.7(b) shows it for a distance
value of 0.005; Figure 3.7(c) shows it for a distance value of 0.01, and Figure 3.7(d)
shows the result for a distance value of 0.05. For small distance values even the
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(a) (b)

(c) (d)

Figure 3.7: Effect of the different distance values on the aneurysm volume data using 400
time steps. Smaller features such as the narrow blood vessels (shown in the red circle) are
captured using small distance values of 0.001 in (a) and 0.005 in (b) which are absent when
larger distance values of 0.01 in (c) and 0.05 in (d) are used.

smaller features such as the narrow blood vessels (shown in the red circle) are cap-
tured. As the distance value is increased, only the relatively larger features such as
the aneurysm blob are captured by the shapetons. The smaller features such as the
narrow vessels are missing in Figures 3.7(c) and (d), where a higher distance value
is used.

3.4.3 Effect of p

The direction of shapeton propagation is guided by the volume gradient oper-
ator. The volume gradient operator has a parameter p which influences the result
obtained. p is a user defined parameter that is used to decide the boundaries of the
objects in a given volume data. The clarity of the boundary determines how clearly
the different shapes are identified. The parameter p gives the user extra flexibility
in deciding the object boundaries. A large p value would enhance the local shape
differences within an object and hence result in more sub-objects. Therefore, by
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increasing the value of p the local internal objects within an object can be obtained.
However, we tend to lose some of the global shape information for larger values of
p. Thus, the final results obtained might vary both locally and globally for different
values of p based on how well the objects are distinguished and how sharp the fea-
tures are. All these effects of p are shown experimentally using the engine data in
Figure 3.8.

(a) (b) (c) (d)

Figure 3.8: Comparison of choosing different values for p. (a), (b), (c) and (d) are the
results obtained by choosing p = 4, 9, 15 and 20, respectively, on the engine dataset for
1,300 time steps. Internal parts such as the pipe (shown in the red ellipse), the outer rim
around the pipe (shown in the orange circle) and the beam (shown in the yellow box) are
captured in (b), (c) and (d), respectively. For large values of p in (d) some of the global
shape information is missing (shown in the pink circle).

Figure 3.8 shows the result of choosing different values of p on the engine
dataset. Figures 3.8(a), (b), (c) and (d) show the result when p = 4, 9, 15 and
20, respectively for 1,300 time steps with a pre-defined distance of 0.05. We can
observe that different parts of the engine are captured by using different values of
p. In Figure 3.8(b) where p = 9, the internal pipe (shown in the red ellipse) is
separated which was not when p = 4 in Figure 3.8(a). Similarly, when p = 15 in
Figure 3.8(c) the outer rim around the pipe (shown in the orange circle) is captured.
Finally, when p = 20 in Figure 3.8(d) the beam of the engine (shown in the yellow
box) is captured. We can see that by increasing the value of p more internal parts
of the engine are captured as the local shape differences between these parts are
enhanced. However, some of the global shape information is missing (shown in the
pink circle) in Figure 3.8(d). This is because a high value of p divides the same
object into much smaller sub-parts and because the pre-defined distance used was
relatively high, these smaller sub-parts are not captured. The same is the reason
why the internal pipe from Figure 3.8(b) is missing in Figures 3.8(c) and (d). In this
way, different parts of the engine based on their shape can be obtained and analyzed
using different values of p. This facilitates a better analysis and understanding of
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the data. As the convergence of shapetons can be monitored in real time, even
though the value of p is changed, the new result can be obtained very fast. This was
not the case in cumulative heat diffusion. Thus, based on what features the user
wishes to focus on and what features the user wants to analyze, different values of
p can be selected.

3.4.4 Convergence

When optimal values for all the parameters (number of shapetons, distance
value) are used, the shapeton diffusion process is bound to converge to a steady
state. This can be theoretically explained as follows. If the number of shapetons
used for the diffusion process in our method tends to a very large value (say infinite),
our method would be similar to the conventional heat diffusion process. The only
difference would be that the heat can then diffuse in any direction instead of only
between voxels as was the case in Gurijala et al. [57]. The process of heat diffusion
is evaluated by using the VGO in case of volumes, which is a partial differential
equation. The well-known solution for this partial differential equation is obtained
by using random walks which is nothing but a Monte Carlo approach. Since our
method is also based on a Monte Carlo approach, it will serve as a solution of the
partial differential equation and hence it must converge.

3.5 Applications

3.5.1 Transfer Function Design in Volumes

The shapetons accumulate all the shape information over different time steps
while diffusing inside the volume. This information can be used to design a shape-
based transfer function. The user can assign different colors and opacities to the
final accumulated shapeton count, which forms a 1-D transfer function based on
the shape information.

Figure 3.9 shows a volume rendered image of a CT chest dataset with a transfer
function designed using the shape information obtained by the shapeton diffusion
method. We were able to classify different parts of the data, such as the rib bones
(shown in red), the sternum (shown in dark green), the clavicle bones (shown in ma-
genta), the soapula (shown in fluorescent green), and small bones of the spinal cord
(shown in blue) based on the shape information. Figure 3.9 shows all the segmented
parts of the CT chest data by using the transfer function designed using the shape
information obtained by the shapeton diffusion process. All the ribs have similar
curved shape and hence have been classified as the same shape indicated by the
same color. Even the small but important part named xiphoid (greyish blue shown
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Figure 3.9: Volume rendering with the shape-based transfer function on the CT chest
dataset. The rib bones (red), the sternum (dark green), the clavicle bones (magenta) and
the soapula (fluorescent green) are obtained. The small bones of the spinal cord (blue),
xiphoid (greyish blue in the black circle) - a small part present at the tip of the sternum are
also classified.

in the black circle), which is present at the tip of the sternum has been classified by
the shape-based transfer function. The number of shapetons used was 65,000 with
a distance value of 0.05. The diffusion process was carried out for 1,600 time steps,
for a total time of 3.10 sec.

3.5.2 Colon Cancer Detection

We used the shapeton diffusion approach to detect the polyps (precursors of col-
orectal cancer) on the colon surface, obtained from a CT scan of the patient’s ab-
domen for virtual colonoscopy (VC) [67]. We used real volumetric colon data from
VC to show the effectiveness of the shapeton diffusion process in polyp detection.
The volumetric colon is electronically cleansed CT data. Figure 3.10 shows the
result of the polyp detection using the shapeton diffusion method on the real colon
data. Figure 3.10(a) shows the result obtained by the shapeton diffusion method and
Figure 3.10(b) shows the volume rendering result of the corresponding location of
the polyp inside the colon. Since polyps have a blob-like shape, different from the
shape of the colon walls, we were able to successfully detect the polyps using the
shapeton diffusion method. Figure 3.10(a) shows one such polyp (shown in blue)
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(a) (b)

Figure 3.10: Polyp detection inside the colon using the shapeton diffusion method. (a)
Polyp (shown in blue) detected using the shapeton diffusion approach; (b) Volume rendering
of the corresponding location inside the colon confirming the presence of the polyp.

detected. We confirmed the position of the polyp by examining the corresponding
location inside the colon volume data. This result can be seen in Figure 3.10(b).
It took just 4,000 time steps using 65,000 shapetons to achieve this result. The p
value was chosen to be 15. The reason to choose a high value for p is to get a clear
boundary of the polyps. Since a smaller scale is needed for the polyp detection, a
low distance value of 0.005 was chosen. The total time taken was 5.44 sec.

3.6 Results

We used several datasets to demonstrate the efficiency of the shapeton diffusion
method. Figures 3.11(a)-(e) show the object classificaiton capability of the shapeton
diffusion approach based on the shape information for hydrogen atom, visible fe-
male hand, CT abdomen, MRI brain and visible female feet volumetric datasets,
respectively. In Figure 3.11(a) both the orbitals of similar shape are clearly distin-
guished from the nucleus (center) and the orbit (around the nucleus) in a hydrogen
atom as inidicated by different colors. In Figure 3.11(c), the shape-based volume
exploration of the CT abdomen reveals various organs such as the kidneys, liver,
pancreas, and vital parts such as the aortic vessel, spinal cord and pelvic bones us-
ing 260,000 shapetons and a pre-defined distance of 0.01. All the internal organs
have different shapes and by virtue of the shapeton diffusion method, they have been
identified successfully. Furthermore, it has just taken only 2.13 sec using 2,600 time
steps to obtain this result. In Figure 3.11(d), we are able to separate the brain from
the cranium and eye sockets in the MRI head data, using the shape-based transfer
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Figure 3.11: Classifying objects based on their shape using our shapeton diffusion ap-
proach on (a) hydrogen atom, (b) visible female hand, (c) CT abdomen, (d) MRI head, and
(e) visible female feet volumetric datasets.

function designed by the shapeton diffusion approach. We used 65,000 shapetons
for a pre-defined distance value of 0.01 and 4,160 time steps which accounted for
a total time of 2.82 sec. Figures 3.11(b) and (e) show that the bones and the joints
between the bones are identified in the visible female hand and feet data, respec-
tively. While we used 65,000 shapetons and a pre-defined distance of 0.01 in both
the cases, the number of time steps were 460 and 420 with a total time of 0.34 sec
and 0.27 sec for the visible female hand and feet, respectively.

We compared the shapeton diffusion approach with the cumulative heat diffu-
sion (CHD) approach, in terms of the running time per iteration and the number of
time steps required to obtain visually similar or even better results. Table 3.2 shows
the comparison results using different volume datasets. The third column shows the
value of p used for each dataset. The fourth column shows the number of iterations
(time steps) for which the cumulative heat diffusion was carried out. The fifth col-
umn gives the time taken (in msec) per iteration by the cumulative heat diffusion on
volumes. The sixth column shows the number of iterations (time steps) for which
the shapeton diffusion was carried out to obtain a visually similar or better result
compared to that of the cumulative heat diffusion. The seventh column gives the
time taken (in msec) per iteration by the shapeton diffusion approach. Finally, the
eighth and ninth columns give the total time (in sec) taken by the cumulative heat
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Table 3.2: Comparison of the running times of the shapeton diffusion approach with the
cumulative heat diffusion (CHD) for different volumes.

Dataset Resolution p
# Iterations

CHD

# Iterations
shapeton
diffusion

Foot 256x256x256 7.0 100,000 2,800
Engine 256x256x128 10.0 52,000 1,100

Aneurysm 256x256x256 7.5 100,000 3,100
MRI Head 256x256x256 6.0 400,000 4,160

CT Abdomen 512x512x174 8.0 100,000 2,600
CT Chest 384x384x240 6.0 100,000 1,600

Visible Female
Hand

176x187x190 10.0 1000,000 4,600

Visible Female
Foot

176x187x190 9.0 500,000 4,200

Dataset

Time
(msec) per

CHD
iteration

Time
(msec) per
shapeton
diffusion
iteration

Total time
(sec) for

CHD

Total time
(sec) for
shapeton
diffusion

Foot 4.8 0.69 480 1.90
Engine 1.4 0.74 73 0.81

Aneurysm 5.1 0.69 510 2.10
MRI Head 21.0 0.68 8400 2.82

CT Abdomen 46.0 0.82 4600 2.13
CT Chest 32.0 1.93 3200 3.10

Visible Female
Hand 18.0 0.73 18000 3.36

Visible Female
Foot 13.0 0.63 6500 2.65

diffusion and the shapeton diffusion approach, respectively. For the sake of compar-
ison we have used the same value of 0.01 for the distance (that defines the iteration)
in the shapeton diffusion approach in all the cases. For all datasets, the shapeton dif-
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fusion method took far fewer time steps and less time per iteration when compared
to the cumulative heat diffusion method to obtain similar results. Furthermore, the
total time taken for the shapeton diffusion method is orders of magnitude faster than
the previous method. All tests were conducted on a system equipped with an Intel
Xeon E5620 CPU and NVIDIA GeForce GTX 480 graphics board.

(a) (b)

Figure 3.12: Visual comparison of the results obtained for the visible female hand dataset
using (a) the shapeton diffusion method and (b) the cumulative heat diffusion method.

For the sake of completion, we also provide a visual comparison of the results
obtained by using the shapeton diffusion method with that of the results obtained us-
ing the cumulative heat diffusion method using the visible female hand dataset (see
Figure 3.12). Figure 3.12(a) shows the results obtained using the shapeton diffusion
approach, while Figure 3.12(b) shows the result obtained by using the cumulative
heat diffusion method. In Figure 3.12(b) 1,000 time steps were considered while
in Figure 3.12(a) only 460 time steps were considered for a distance value of 0.01.
Since we wanted to capture the local features, a smaller distance value was used.
The same p value of 10 was used in both the cases. We can clearly observe that
visually better results were obtained using the shapeton diffusion method compared
to the cumulative heat diffusion method. We can also see that a better distinction
of shapes was obtained using the shapeton diffusion method even in very local re-
gions, as indicated by the region in the green box in Figure 3.12(b). The joints
have been clearly distinguished from the hand bones. Furthermore, the result was
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obtained in much less time compared to the cumulative heat diffusion approach,
further emphasizing the superiority of the shapeton diffusion method.
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Chapter 4

Colon Landmark Detection

The colon is a very complicated structure with a large number of folds and
bends. Colonic landmarks and features serve as tools to assist in the study of the
colon surface segment by segment. In addition, identification of landmarks and fea-
ture points plays a vital role in the registration of supine and prone colon surfaces.
Nearly accurate colon registration is achieved by flattening the colon surfaces and
using the colon feature points as constraints. We present methods to identify the
locations of the taeniae coli and the four major flexures which form the prominent
anatomical landmarks on the colon surface. The colon surface is cut open along
these landmarks and the obtained segments can be used to study the surface of the
colon. We define new feature points on the flattened colon surfaces and use well
established graph based algorithms for their detection.

This chapter is organized as follows. Section 4.1 presents the motivation. Sec-
tion 4.2 describes the methods to identify the anatomical landmarks of taeniae coli
and flexures. Section 4.3 describes the detection of feature points on the colon
surface.

4.1 Motivation

Virtual colonoscopy (VC) has been developed as a non-invasive, comfortable,
accurate and low cost alternative to the conventional optical colonoscopy for the
early detection of colorectal cancer. In VC, CT scans are typically acquired with
the patient in both supine (facing up) and prone (facing down) positions to improve
the detection rate. However, the shape of the colon is flexible and changes very
easily with the change in position of the patient. Thus, to understand the surface
of the colon and to help the user know the current position inside the colon during
navigation, some landmarks and feature points are necessary. These landmarks and
features can be used for applications in the VC system such as virtual navigation,
virtual dissection, registration of the colon surfaces, polyp matching, and polyp

54



bookmarking. The landmarks and feature points also help to toggle between the
positions in supine and prone colons to confirm a polyp location. The motivation
of this chapter is the detection of these landmarks and feature points on the colon
surface.

Taeniae coli are the significant anatomical landmarks stretching along the entire
length of the colon. We extend previous ideas to extract the taeniae coli on the
colon surface. In addition, there are four major flexures (bends) which also serve
as good anatomical landmarks. We present a method to identify the locations of
the four major flexures, which are the prominent flexures in the colon, using the
CT colon data. The colon surface is cut along the taenia coli and the flexures to
obtain precisely five flat colon segments. These segments are used for segment
wise comparison of supine and prone colon surfaces, to know about the haustral
folds and to understand the intricacies of the surface of the colon. Furthermore, we
detect feature points which assist in the colon registration.

4.2 Anatomical Landmarks

The colon anatomical landmarks are extracted which are used in splitting the
colon for later processing. The important anatomical landmarks include the taenia
coli and flexures, which do not change despite the change in position of the patient.
Corresponding anatomical landmarks in the supine and prone colon models are
extracted and then used to cut each colon into its anatomical segments, as well as
slicing the colon open for flattening. The main taenia coli is identified and used as a
consistent cutting line between the supine and prone colons. This consistent cutting
line is important for the robustness of the registration as the boundaries should be
the same between the two colon models. The flexures are used to split the colon into
five consistent sections which can be processed individually. This splitting reduces
the computational burden and allows for better results by having multiple aligned
boundaries along the length of the colon.

4.2.1 Taeniae Coli

Taeniae coli are three bands of longitudinal muscle on the surface of the colon
which run from the appendix to the sigmoid colon and are ideal references for vir-
tual navigation. The three taeniae coli are named taenia omentalis, taenia mesolica,
and taenia libera according to the position on the transverse colon. Taeniae coli are
located where the haustral folds meet and hence can be regarded as ridge breakers
for the haustral folds [32, 96, 153]. It is relatively easy to extract the taenia omen-
talis as it is clearly visible on the transverse and ascending colons. The taeniae coli
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detection is based on the detection of haustral folds. Using the haustral folds, the
taenia omentalis is initially extracted from which the taenia mesolica, and taenia
libera are later extracted as straight lines approximated at one third and two thirds
of the circumference of the colon.

(a) Prone (b) Supine

Figure 4.1: Haustral folds (blue) on the (a) prone and (b) supine colon surfaces.

The sense of direction along the colon surface is defined by using the centerline
of the colon. The haustral folds are detected by using the characteristic hyperbolic
curvature of the folds. By using heat diffusion, curvature-based filter [74], and
connected components, the haustral folds are detected. The curvature filter helps
to obtain a rough set of all points which form potential candidates for the folds
and these folds are assigned a different color to identify the taeniae coli quickly.
These points are obtained using an experimentally determined threshold value. For
the datasets we used, the points belonging to the haustral folds were chosen such
that they lie in the threshold range of [-4.5,-0.5]. Finally, by finding the connected
components and performing a certain amount of geometrical processing, we obtain
the haustral folds. Figure 4.1 shows the haustral folds detected in prone and supine
colons. Using these haustral folds, the taeniae coli are extracted by using the fuzzy
C-means clustering algorithm iteratively [73]. Figure 4.2 shows the front and back
views of the taeniae coli on the prone colon surface. The detected taeniae coli are
used in colon flattening.

Figure 4.3 shows the extracted taenia coli on the colon surface. Automatic
extraction of the taeniae coli through the entire colon is often possible. In some
datasets, where automatic extraction of taeniae coli is not possible, manually placed
markers could be used to improve the reliability. Out of the 9 datasets that we tested
the algorithm, manual markers were needed on two datasets. The taeniae coli is
extracted to use as a guide to virtually cut open the colon so that it can later be used
for feature points detection. Considering this requirement, detection of the taeniae
coli using our algorithm is reliable and very accurate. The haustral fold detection
and the taeniae coli detection is performed on the original colon surface directly.
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(a) Front view (b) Back view

Figure 4.2: Taenia coli (in red) on the prone colon surface.

(a) Transverse colon (b) Ascending colon

Figure 4.3: Taenia coli (yellow) shown in the (a) transverse and (b) ascending segments.

4.2.2 Flexures

The five segments of the colon, starting from the cecum, are the ascending colon
(A), the transverse colon (T), the descending colon (D), the sigmoid colon (S), and
the rectum (R). A method is needed to identify the locations of the four major flex-
ures between these five segments in the colon. These flexures are further anatomical
landmarks which help in virtual navigation, supine-prone alignment and splitting.
The first major flexure occurs between the ascending colon and the transverse colon
(A-T flexure). This is the flexure close to the liver and is called the hepatic flexure.
The second major flexure occurs between the transverse colon and the descending
colon (T-D flexure). This flexure is close to the spleen and is named the splenic
flexure. The third flexure occurs between the descending colon and the sigmoid
(D-S flexure), and the final flexure is between the sigmoid and the rectum (S-R

57



flexure). All of these flexures form very sharp bends and are distinguishable from
other smaller bends. Theoretically, the A-T flexure forms the topmost point of the
ascending colon and the T-D flexure forms the topmost point of the descending
colon.

(a) Front view (b) Back view

Figure 4.4: The four flexures on the prone colon, which divide the colon surface into five
segments, depicted in various colors.

For the detection of these flexures, the 3D centerline through the colon is uti-
lized [20, 78]. This centerline is projected onto a 2D coordinate system in the
positive z−x and positive y− z planes. The bends in the centerline are identified by
iteratively evaluating the slopes along the projected curves in the two planes. Not
all of the bends are important, so small bends are discarded based on a threshold and
only the major bends are retained. All of these detected bends are sorted based on
their z-coordinate (up direction). The T-D flexure is identified as the bend with the
highest z-coordinate and the A-T flexure is identified as the bend with second high-
est z-coordinate. In the event that the A-T flexure has a higher z-coordinate than the
T-D flexure, the order of the two points along the centerline can be used to confirm
the correct identifications. The S-R flexure is the bend with the lowest z-coordinate.
The next bend in the sorted order after the T-D flexure whose y-coordinate is compa-
rable to that of the T-D flexure forms the D-S flexure. These four positions are then
mapped back to the 3D coordinate system and the corresponding 3D coordinates of
the centerline are obtained.

However, the points that are obtained are those on the centerline and not on the
surface. Using these points, the areas on the surface where the flexures are present
need to be marked. For each point, a plane is defined othogonal to that point on
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(a) Hepatic flexure (b) Splenic flexure

Figure 4.5: (a) Hepatic and (b) splenic flexures (marked in red band) on the colon surface

the centerline. The intersection of the plane with the mesh surface is computed
and a polyline is marked by joining the intersection points using the well-known
Dijkstra’s shortest path algorithm. Consequently, the flexures on the surface are
extracted. The four extracted flexures between the five segments of the colon are
illustrated in Figure 4.4 on the prone colon surface. Figure 4.5 shows the hepatic
and the splenic flexures marked on the colon surface.

4.3 Surface Features

In order to align the two colon surfaces, it is necessary to identify and correlate
feature points on the two surfaces. For this task, the problem of feature detection
and matching in 3D is changed into a 2D image matching problem. This is ac-
complished through the use of conformal mapping. Each colon segment is mapped
conformally to a planar rectangle, allowing for all work to then be accomplished
within the 2D domain. The results for corresponding segments are shown in Fig-
ure 4.6. Since the conformal modules of corresponding segments are not equal, the
segments are not conformally equivalent, and thus the requirement for additional
feature points to align the two segments.

4.3.1 Feature Detection and Matching

Given a mapping of each colon segment onto a planar rectangle, the mean cur-
vature is color encoded to generate color images. The mean curvature on vi, H(vi),
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(a) Segment A (b) Segment T (c) Segment D
Mod = 5.41089; Mod = 6.20148; Mod = 7.77978;

3.85803 5.87936 6.15164

Figure 4.6: Conformal modulus comparison between three different segments of the supine
and the corresponding segments of the prone (Ascending, Transverse, and Descending). In
each column, the left image shows the flattened rendering of the supine and the right image
shows the flattened rendering result of the prone. The conformal module for each segment
is defined as the ratio of height to width for the flat rectangle map, Mod = height/width.
Each of the segment pairs is not conformally equivalent.

is approximated by

H(vi) = ∑
[vi,v j]∈E

wi j < vj−vi,ni >,

where ni is the normal at the vertex vi, <,> is the inner product in R3, and wi j is
the cotangent weight. An example of the color encoded colon surfaces in 3D and
2D are shown in Figure 4.7.

These color coded flattened colon segments are analyzed to obtain specific fea-
ture points for the registration. The well known graph cut approach from computer
vision is used to find the regions of interest. In the case of the colon, the desired
regions of interest on the flattened supine and prone images are the folds. A graph
is constructed using the pixels of the image as the nodes. Assuming a virtual sink
and source, edges are constructed with appropriately assigned weights. Using the
max-flow min-cut method to solve the energy minimization problem [22], all of the
pixels belonging to the folds are obtained. The appropriate assignment of weights
ensures efficient detection of the folds.
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(a) Supine (b) Supine curvature (c) Flat supine

(d) Prone (e) Prone curvature (f) Flat prone

Figure 4.7: Color encoding mean curvature on corresponding supine and prone segments:
(a) and (d) original colon surface segments; (b) and (e) color encoded mean curvatures; (c)
and (f) color encoded mean curvature on the flattened surfaces.

Due to the drastic change in position of the patient in supine and prone, the
colon tends to stretch, contract, and move, resulting in the distortion of the folds. In
addition, some areas might be densely populated with folds, while other areas are
sparsely populated. To prevent any ambiguities, only the significant folds are cho-
sen which have a lower chance of distortion. Therefore, all of the folds whose length
and size are below a certain threshold are discarded. For this, a pre-processing step
is performed using a breadth-first search to find all of the connected components
among the extracted folds. The prominent folds form larger connected components
and thus by defining an experimental threshold value, all the smaller components
are discarded. By varying the threshold, it is possible to modify the number of
detected folds based on the requirements. Figure 4.8(a) shows the segmentation
results for both the supine and prone surfaces.

After applying the threshold all of the significant folds are now detected. These
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folds can be approximated as ellipses and hence the axial end points form good
feature points for registration. These axial points of the detected folds are extracted
and form the feature point set. Figure 4.8(b) shows the detected features (in green)
on both supine and prone surfaces.

(a) Segmentation (b) Features (c) Matching (d) Constraint
results points

Figure 4.8: Feature detection and matching for the flat images between supine and prone
(see Figures 4.7(d) and (g)). In each frame, supine is on the left and prone is on the right:
(a) segmentation results using graph cut; (b) feature detection results (in green); (c) feature
matching results using graph matching; (d) matching features used to constrain the regis-
tration. Two corresponding feature points are encoded in the same color on the supine and
prone flat images in (c) and (d).

Feature matching is performed on each segment of the colon separately. Finding
a correspondence between the extracted feature points in supine and prone is again
formulated as an energy minimization problem by defining an objective function.
The dual decomposition approach is employed for energy optimization, which is
solved as an instance of the well-known graph matching problem [144].

Suppose the feature point sets are S1 and S2 on supine and prone respectively,
and the matching is φ : S1→ S2, then the objective function is defined as

E(φ) = λ ∑
p∈S1

|p−φ(p)|2 +(1−λ ) ∑
q∈S2−φ(S1)

|q|2,

where λ is determined experimentally.
The objective function is chosen depending on the geometrical compatibility of

feature correspondences and the spatial coherence of the matched features. It is de-
fined by considering the weighted sum of two energy terms. The first term includes
the geometric distance between the feature points within a pre-defined neighbor-
hood. The second term evaluates the effect of including the distance of the un-
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matched features in the objective function. Minimization of this function using the
dual decomposition approach will result in a unique set of feature correspondences.

Due to the large deformation between supine and prone, their folding patterns
are highly inconsistent. Figure 4.8(a) shows that the number of significant folds is
different for supine and prone. Therefore, it is impossible to find the correspon-
dence for all feature points on supine and prone, as shown in Figure 4.8(b) and (c).
In the graph matching algorithm, it is attempted to try and utilize all of the matched
features, and ignore those that are unmatched. In practice, it was found that the
feature points near the taenia coli (that is, the border of the rectangle) are more reli-
able and accurate than those in the middle. Therefore, the algorithm emphasizes the
feature points near the borders more than those in the middle. Table 4.1 shows the
number of correctly and incorrectly matched feature points in different segments of
supine and prone colons.

Table 4.1: Number of feature correspondences in supine and prone colon segments.

Colon Segment
# border

feature points

# Correctly
matched

feature points

# Incorrectly
matched

feature points
Prone Whole 125 114 11
Prone Ascending 29 28 1
Prone Transverse 37 34 3
Prone Descending 27 25 2
Prone Sigmoid 17 13 4
Prone Rectum 15 14 1
Supine Whole 134 114 20
Supine Ascending 30 28 2
Supine Transverse 42 34 8
Supine Descending 31 25 6
Supine Sigmoid 16 13 3
Supine Rectum 15 14 1

The experimental results demonstrate that the colon registration result is sat-
isfactory even without the unreliable middle feature points. The points which are
used as constraints for the alignment step of the registration algorithm are shown in
Figure 4.8(d).
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Chapter 5

Colon Flattening

In this chapter, we propose a new colon flattening algorithm that is efficient,
shape-preserving, and robust to topological noise. Unlike previous approaches,
which require a mandatory topological denoising to remove fake handles, our al-
gorithm directly flattens the colon surface without any denoising. In our method,
we replace the original Euclidean metric of the colon surface with a heat diffusion
metric that is insensitive to topological noise. Using this heat diffusion metric, we
then solve a Laplacian equation followed by an integration step to compute the fi-
nal flattening. We demonstrate that our method is shape-preserving and the shape
of the polyps are well preserved. The flattened colon also provides an efficient
way to enhance the navigation and inspection in virtual colonoscopy. We further
show how the existing colon registration pipeline is made more robust by using our
colon flattening. We have tested our method on several colon wall surfaces and the
experimental results demonstrate the robustness and the efficiency of our method.

This chapter is organized as follows. Section 5.1 provides the motivation. Sec-
tion 5.2 describes the flattening algorithm using the heat diffusion metric. We dis-
cuss how our flattening algorithm is used to flatten the colon surface. We compare
our flattening algorithm to several existing techniques in Section 5.3. Section 5.4
discusses applications of our method to polyp visualization, colon registration and
handle detection and Section 5.5 presents the results of the method.

5.1 Motivation

Colorectal cancer is the second leading cause of cancer related mortality in the
United States [70]. Optical colonoscopy (OC), whereby precancerous polyps (pro-
trusions/bumps on the colon wall) can be located and removed, has been recom-
mended for screening and has greatly reduced the mortality from colorectal can-
cer [28]. Virtual colonoscopy (VC) has been developed as a non-invasive, comfort-
able, accurate and low cost alternative to the conventional OC for the early detection
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of colorectal cancer. [67, 82]. VC is a non-invasive screening method, whereby a ra-
diologist can explore a colon surface in a way similar to that of a gastroenterologist
performing an OC. The radiologist is mainly interested in visualizing the inner sur-
face of the colon where polyps might be detected. VC uses computed tomographic
(CT) scan of a patient’s abdomen and provides a virtual fly-through visualization
system through the virtual colon reconstructed from the CT scan [67]. VC has many
advantages, including non-invasiveness, cheaper, faster, and higher patient tolera-
bility [67]. However, VC has a fundamental problem, which it shares with OC. Due
to the twisted nature of the colon and the numerous colonic haustral folds, the nav-
igation using the inner endoluminal view is very challenging and sizable sections
of the colon are not inspected, resulting in an incomplete examination. As a result,
polyps hidden behind folds and sharp bends are missed. An efficient supplemental
approach is flattening, where the colon is cut open and flattened onto a 2D plane.
This not only facilitates comprehensive inspection of the colon but also reduces the
time for inspection.

Several flattening techniques have been proposed for the colon surface, whereby
the entire colon can be mapped from the 3D domain to a 2D rectangular domain.
The colon mesh surface serves as the input. This mesh surface is extracted from
the CT images by performing electronic cleaning, segmentation, and mesh extrac-
tion. However, the major problem here is that the extracted colon surface includes
topological noise, such as handles, as shown in Figure 5.1(a). A close-up view of
a handle is also shown in Figure 5.1(a). This topological noise is due to two rea-
sons. The first is due to artifacts present in the CT scan. The second is due to the
colon surface reconstruction method. Although many surface reconstruction meth-
ods are capable of generating water-tight surfaces from the CT data, the resulting
models may still exhibit topological errors in the form of small handles. These
high-frequency topological features unnecessarily increase the complexity of the
colon model and make it unsuitable for subsequent processing tasks, such as colon
flattening, 3D navigation, and polyp detection. Hence, in all previous methods for
colon flattening, these unnecessary noisy features were either removed manually or
by some topological denoising techniques. However, owing to the large surface of
the colon, the use of these denoising methods is time-consuming and incurs high
computational overhead.

The motivation of this chapter is to address this problem. We have introduced a
new colon flattening algorithm using the heat diffusion metric, which is efficient, ro-
bust (insensitive to any topological noise) and shape-preserving. In this method, we
use the extracted colon mesh directly without performing any topological denois-
ing. To start, we compute the heat diffusion distances (HDDs) for the entire colon
mesh (with noise). This HDD is used as a metric for the flattening. We compute
this metric for an appropriate time step and replace the original Euclidean metric
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Figure 5.1: (a) A 3D colon model with topological noise, such as handles. A handle is
shown in a close-up view. (b) The flattening of the 3D colon in (a) to a 2D rectangle
using our method with heat diffusion Riemannian metric (flattening of only the transverse
segment of the colon is shown). A colonic polyp (protrusion on colon wall) that is adjacent
to a fold is shown in a close-up view.

of the colon surface with this new metric. In the next step, we solve a Laplacian
equation on the colon surface to obtain a harmonic form. By applying the Hodge
star operator on this harmonic form, we obtain another form that is perpendicular
to the harmonic form. Finally, we integrate these two metric forms on the colon
surface to obtain the flattened colon. We render the flattened colon image using
direct volume rendering to provide a view similar to that of the endoluminal view,
as can be seen in Figure 5.1(b). We demonstrate how the existing colon registration
pipeline is turned more robust by using this new method for colon flattening. Fur-
thermore, we show that the method enhances the colon navigation by preserving
the important features, such as the polyps and folds. In addition, we also present
an efficient handle detection and removal approach on the flattened colon using the
flattening approach.

The novel flattening method has the following advantages:

1. Robustness: The method of using the heat diffusion metric for flattening is
insensitive to topological noise, such as fake handles. As a result, by using
this flattening algorithm, the entire global shape is preserved after flattening
in spite of having many handles. On the contrary, other methods, such as
the Ricci flow, produce a highly distorted flattening result of the colon in the
presence of noise.

2. Efficiency: The method is very efficient since we need to solve only one
Laplacian equation for the entire colon surface. On the other hand, other
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methods, such as the holomorphic 1-form [68], require solving of 2g Poisson
equations, where g is the number of handles on the colon surface. In case of
a large number of handles (which is typical), this method performs far better
than the other methods.

3. Shape preserving: The method is shape preserving. Even under the con-
straint of preserving the global shape, the local shape distortion is still un-
der control. The final result obtained by using this method on a colon sur-
face with noise is very similar to the one obtained by using other conformal
based methods on the same colon surface with noise removed. Therefore, the
method exhibits a good trade off between conformality and robustness.

5.2 Algorithm

Let the original input surface with handles be approximated by a triangular mesh
M. This mesh M has a number of handles varying from tens to hundreds. Let γ0
be the outer boundary and γk,1 ≤ k ≤ n be n inner boundaries or holes (holes are
not handles) of M with topological noise. A larger value of n (greater number of
holes) indicates a more complicated topology of M. Let V be the vertex set and E
be the edge set of the mesh M. We denote vi as the ith vertex, [vi,v j] as the edge,
[vi,v j,vk] as the face, and θi as the corner angle at vertex vi. Let the functions on M
be approximated by the piecewise linear functions defined on the vertices, f (vi).

5.2.1 Heat Diffusion Metric

The heat diffusion process on the surface is governed by a partial differential
equation defined as follows:

∂u(p, t)
∂ t

=−∆gu(p, t), (5.1)

where u(p, t) is the temperature or heat at a point p ∈ S at time t and ∆g is the
Laplace-Beltrami Operator (LBO) defined as:

∆g = e−2ϕ(x,y)(
∂ 2

∂x2 +
∂ 2

∂y2 ). (5.2)

where e−2ϕ(x,y) represents the area term. The solution to Equation 5.1 with the
initial condition, u0(p) = δ (p− q), is called the heat kernel and is denoted as
Kg,t(p,q). Intuitively, the heat kernel can be interpreted as the amount of heat
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transferred from a point p to a point q in a given time t. The heat kernel is iso-
metric invariant and hence any definition using the heat kernel is also isometric
invariant.

Theorem 5.2.1. Let φ : (S1,g1)→ (S2,g2) be a diffeomorphism. Then, the heat
kernels K1, K2, such that K1(p,q, t) = K2(φ(p),φ(q), t), for all p, q, t, then φ is an
isometry.

The LBO has an eigendecomposition of the form: ∆gΦk = λkΦk, k = 0,1,2, · · · ,
where 0 = λ0 < λ1 ≤ λ2 ≤ λ3 · · · are the eigenvalues and Φk : S→ R are the corre-
sponding eigen functions. Then, the heat kernel is defined as:

Kg,t(p,q) =
∞

∑
i=0

e−λitΦi(p)Φi(q) (5.3)

Using the definition of the heat kernel, the heat diffusion distance (HDD) at a time
t is then given by:

dg,t(p,q) = Kg,t(p, p)+Kg,t(q,q)−2Kg,t(p,q) (5.4)

An equivalent spectral expression of the heat diffusion distance is:

d2
g,t(p,q) =

∫
S
|Kg,t(p,r)−Kg,t(q,r)|2dr =

∞

∑
i=1

e−2λit(Φi(p)−Φi(q))2 (5.5)

where r is some point on the surface S. Equation 5.5 shows that the diffusion
distance is the L2 distance between two probability distributions of Brownian mo-
tions (random walks), Kg,t(p,r) and Kg,t(q,r). Essentially, the mapping, p →
(e−λ1tΦ1(p),e−λ2tΦ2(p), · · ·) embeds the surface to an infinite dimensional func-
tional space. The definition in Equation 5.5 shows that the heat diffusion distance
is the same as the classical Euclidean metric in this functional space. Therefore, the
heat diffusion distance is a Riemannian metric.

The heat diffusion distance (HDD) given by Equation 5.5, introduced by Lafon
et al. [33, 94], is computed as an average of all paths connecting two points on
the surface. The HDD (diffusion process) can be obtained by the convolution of
the signal and its heat kernel. Consequently, the Laplacian surface smoothing is
achieved by performing diffusion on the surface that filters out the high frequency
components. However, as the surface changes during smoothing, the heat kernels
are also evolving. The evaluation of HDD smooths out the small perturbations (e.g.,
handles) on the surface and hence makes the HDD insensitive to the topological
noise. As a result, the flattening algorithm using the HDD is more robust.
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Using the vertex positions, we compute the edge lengths directly as li j = |vi−
v j|. We call this set of edge lengths the induced Euclidean metric. We compute the
heat diffusion metric g by using the induced Euclidean metric. For every edge in
the mesh we evaluate a new edge length value (HDD) and we call this set of new
edge lengths the heat diffusion metric. For every face, [vi,v j,vk] of the mesh M, the
corner angles are computed by using the Euclidean cosine law as θi = cos−1((l2

i j +

l2
ki− l2

jk)/(2li jlki)). We evaluate the cotangent edge weight for every edge in M by
using this corner angle to obtain a weighted adjacency matrix W := (wi j), where
wi j is the cotangent edge weight of the edge [vi,v j]. The cotangent edge weight is
defined as follows [122]:

Definition 5.2.1 (Cotangent Edge Weight). Suppose edge [vi,v j] is adjacent to two
faces [vi,v j,vk] and [v j,vi,vl], then the weight of the edge is given by: wi j =(cotθk+
cotθl)/2.

In the next step, using W and the function values at the vertices, the LBO at each
vertex is computed to obtain a Laplace-Beltrami matrix, L. In the discrete case, the
LBO on a vertex is defined as follows:

Definition 5.2.2 (Discrete Laplace-Beltrami Operator). Suppose edge [vi,v j] is ad-
jacent to two faces [vi,v j,vk] and [v j,vi,vl], then the Laplace-Beltrami Operator, ∆g
on vertex vi is given by ∆g f (vi) = ∑[vi,v j]∈E wi j( f (v j)− f (vi)).

We perform eigendecomposition of L and compute the eigenvalues and their
corresponding eigen functions. Using these eigenvalues and eigen functions, we
finally compute the HDD lengths of every edge in M using Equation 5.5. The set
of all new edge lengths forms the heat diffusion metric g.

The number of eigenvalues and the number of time steps used have an effect
on the heat diffusion metric. In our case, we have used the first 50 eigenvalues and
the corresponding eigen functions to calculate the HDD for the edges. Also, we
choose the value of time step t in Equation 5.5 to be 8 for all our cases. These
respective values have been chosen experimentally by assessing the quality of the
mesh that is obtained by replacing the edge lengths with the HDD values. The
quality of the mesh is assessed by measuring the “closeness” of each of its faces
to an equilateral triangle. For each face of the mesh we compute the ratio of its
circumradius to two times its inradius. For an equilateral triangle, this ratio is equal
to 1. The faces with ratio > 0.6 are considered as good quality faces and < 0.6 are
considered as bad quality faces. We obtain the histogram of the faces of the mesh
based on their ratio values. Two meshes are said to be of similar quality if they
have a comparable number of bad quality faces and also comparable histograms
(using L2-norm comparison). We have observed that by increasing the number of
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eigenvalues the quality of the obtained mesh improves. However, the quality did
not change much after 50 eigenvalues.

The value of the time step represents the length of the path over which the heat
diffusion metric is averaged. Each handle has two loops, the handle loop and the
tunnel loop [37]. In general, their lengths are about 8 edges. Hence, we chose the
value of t to be 8 so that only the handles are filtered out. If the value of t is too
small, the heat diffusion metric becomes close to the induced Euclidean metric. On
the other hand, if the value of t is too large, the heat diffusion metric will smooth
out all the features on the surface that would make two different surfaces yield the
same result.

We articulate the difference between the HDD and the geodesic distance by
means of a simple experiment. For this, we consider a hand model as our input
where the index finger is touching the thumb as shown in Figure 5.2(a). In Fig-
ure 5.2(b) we detached the two fingers, by manually cutting both the fingers at the
location indicated by the red arrow, so that the topology in the two hand models
is totally different. In both models, we choose two points p and q such that p is a
point on the tip of the pinky finger and q is a point on the thumb nail. By using these
two points as epicenters, for any point x on the surface, we compute the following
distance function, f :

f (x) = d(p,x)+d(q,x)−d(p,q) (5.6)

Here, d can represent either the HDD or the geodesic distance. We evaluate f using
both HDD and geodesic distance values for both hand models and color encode f .
The color changes from blue to red with increasing f values. Figures. 5.2(c) and
(d) show the color encoded distance function using geodesic distance values for the
hand models in Figures 5.2(a) and (b), respectively. It can be clearly seen that the
distance function changes dramatically when the topology changes. We can also
see that the geodesic distance between the points p and q, shown by a white path,
has changed when the topology changed. On the other hand, Figures 5.2(e) and (f)
show the color encoded distance function using HDD values for the hand models
in Figures 5.2(a) and (b), respectively. It can be seen that the results are more
consistent, showing that the topological changes do not affect the HDD function.
This experiment shows that HDD is more robust to topological noises, and hence a
better choice as compared to geodesic distance.

In fact, the HDD of an edge [p,q] and the original edge length are completely
different. Theoretically, the HDD dg,t(p,q) is related to all paths starting from p
and ending at q with length t. When t is large, the random paths cover large regions
of the surface. Thus, HDD is a global concept. In contrast, the edge length of [p,q]
is local. In other words, the HDD is inversely related to the connectivity of points
p and q, by paths of length t, hence insensitive to topological noises.
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(a) (c) (e)

(b) (d) (f)

Figure 5.2: Comparison between geodesic distance and HDD using a hand model with (a)
thumb and index finger touching, and (b) thumb and index finger detached by manually
cutting at the location indicated by the red arrow. With points p and q as epicenters, color
encoded (c) geodesic distance function of (a); (d) geodesic distance function of (b); (e)
HDD function of (a); (f) HDD function of (b). When the topology changes in (b), (d)
changes drastically (the geodesic path between p and q in white also changes), while (f) is
not affected and is consistent.

5.2.2 Conformal Flattening Algorithm Based on HDD

We first present brief theoretical fundamentals required to explain our colon
flattening algorithm and to compare our method with the existing methods for colon
flattening.
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Conformal Mapping

Let S be a surface embedded in R3 and g be a Riemannian metric tensor that
defines the inner products on tangent planes at every point on S. Let ḡ be another
metric of S, such that

ḡ = e2ϕg, (5.7)

where ϕ : S→ R is a scalar function defined on S. Then, by means of direct com-
putation, it is easy to verify that ḡ preserves angles. Hence ḡ is said to be conformal
(angle-preserving) to the original metric g.

Given two surfaces with Riemannian metrics (S1,g1) and (S2,g2), consider a
mapping φ : (S1,g1)→ (S2,g2) between them. φ is said to be a conformal mapping
if the pull back metric induced by φ satisfies the following relation:

φ
∗g2 = e2ϕg1. (5.8)

If a Riemann surface (S,g) is orientable, then for every point p on the surface, there
exists a neighborhood U(p) and a local coordinate system (u,v) on U(p), such that
the metric g can be represented as: g = e2ϕ(u,v)(du2 + dv2). Here the coordinates,
(u,v) are called as isothermal parameters or isothermal coordinates. According
to [29], we can cover the whole surface by a collection of isothermal coordinate
charts. All isothermal coordinate charts form a conformal structure of the surface.
The surface with a conformal structure is called a Riemann surface.

Theorem 5.2.2. All oriented metric surfaces are Riemann surfaces.

Conformal mapping, by definition is angle preserving. For example, if any two
intersecting curves γ1 and γ2 are mapped to f (γ1) and f (γ2) by a conformal map
f , then the intersection angle between γ1 and γ2 equals to the intersection angle
between f (γ1) and f (γ2).

Hodge Theory

Let (x,y) be the isothermal (local) coordinates, then a differential 1-form de-
noted by ω has the local representation: ω = f (x,y)dx+ g(x,y)dy. Let d denote
the exterior differential operator. If f : S→ R is a function defined on S, then the
gradient of f , called the exact 1-form, is given by: d f = fxdx+ fydy. The exterior
differential operator acting on ω is given by:

dω = (gx− fy)dx∧dy. (5.9)

If dω = 0, then ω is called a closed 1-form. Exact 1-forms must be closed. The
space of all closed 1-forms is denoted as Ker d1 and the space of all exact 1-forms
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is denoted by Img d0. Then, the first dimensional cohomology group H1(S,R) is
given by:

H1(S,R) =
Ker d1

Img d0 (5.10)

Each element in H1(S,R) is a cohomological class. Two closed 1-forms are said to
be in the same class if they differ by an exact 1-form.

Under isothermal parameters, the Hodge star operator is defined as:

∗( f dx+gdy) =−gdx+ f dy,∗ f = f dx∧dy,∗(gdx∧dy) = g. (5.11)

The co-differential operator δ is defined as δ = ∗d∗. A differential 1-form ω is
said to be a harmonic 1-form, if dω = 0 and δω = 0. All harmonic 1-forms form
a group which is isomorphic to the first cohomology group based on the following
Hodge theorem:

Theorem 5.2.3 (Hodge). Each cohomological class has a unique harmonic 1-form.

Current work focuses on genus zero surfaces with mutiple boundaries, ∂S =
γ0,γ1 · · ·γn. Then, the first cohomology is n dimensional. One can choose n har-
monic 1-forms {ωk},1 ≤ k ≤ n, forming the basis of H1(S,R) by:

∫
γ j

ωi = δ
j

i ,

where δ
j

i is the Kronecker symbol. Intuitively, a closed 1-form can be interpreted
as a curl free vector field; a harmonic 1-form is both curl free and divergence free.
Hodge theorem claims fixing the topological condition and the cohomological class.
It further claims that the harmonic form exists and is unique.

Holomorphic Differentials

Suppose ω is a harmonic 1-form, then its Hodge dual ∗ω is also a harmonic
1-form. The pair, η = ω + i∗ω is called a holomorphic 1-form. On a Riemann
surface, all the holomorphic 1-form form a group, which is isomorphic to the first
cohomology group.

The holomorphic 1-form can be treated as the complex derivative of a confor-
mal map φ : S→ C, and the conformal map φ can be recovered by integrating the
holomorphic 1-form φ =

∫
η . In practice, from the harmonic 1-form basis {ωk},

we can construct the holomorphic 1-form basis {ηk = ωk + i∗ωk},k = 1,2, · · · ,n.
Then we can construct any holomorphic 1-form by linearly combining the basis,
and obtain the conformal mapping by integration.
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Flattening Algorithm

We map the surface M with the heat diffusion Riemannian metric g conformally
onto C which represents a (u,v)-planar domain. For this, we first replace all the
edge lengths in M with the edge lengths from the heat diffusion metric and denote
the new mesh also by M. Since M has n inner boundaries, the cohomology group
and therefore its harmonic 1-form basis are n dimensional (Theorem 3.2).

The first step of our algorithm is to compute the basis for exact harmonic 1-
forms of M. To compute the exact harmonic 1-forms, we first compute the harmonic
functions, fk : M → R by solving the following Dirichlet problem on M for each
inner boundary component γk:

∆g fk ≡ 0
fk|γk = 1
fk|γi = 0,0≤ i≤ n, i 6= k

(5.12)

The Laplace matrix ∆g in Equation 5.12 is positive definite and thus, non-
degenerate. The stability of the Laplace matrix, measured by its condition num-
ber [89], depends on the mesh triangulation quality. In our case, the triangles in the
mesh are close to Delaunay (Laplace matrix has a good condition number) and thus
the linear system is stable. In the discrete case, the harmonic function is defined as
follows:

∆g f (vi) = ∑
[vi,v j]∈E

wi j( f (v j)− f (vi)) = 0. (5.13)

Equation 5.13 is the discrete Laplacian equation. The discrete harmonic function
satisfies the mean value property where a function value at a vertex f (vi) is equal
to the mean of the function values of the neighboring vertices, f (v j)’s. Thus, Equa-
tion 5.13 is equivalent to:

f (vi) = ∑
[v j,vi]∈E

wi j

∑k wik
f (v j), (5.14)

The discrete harmonic function fk on M is thus computed by using Equation 5.14
and by solving the linear system in Equation 5.12. For solving the linear system we
use the publicly available UMFPACK library. Once the harmonic function fk is ob-
tained, the exact harmonic 1-form d fk is computed as the gradient of the harmonic
function as follows:

d fk([vi,v j]) = fk∂ [vi,v j] = f (v j)− f (vi). (5.15)

The n-dimensional exact harmonic 1-form basis is denoted by {d f1,d f2, · · · ,d fn}.
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The next step of our algorithm is to compute the holomorphic 1-form basis. For
this we compute the Hodge star of the exact harmonic 1-form ∗(d fk) using Equa-
tion 5.11, which is called the conjugate harmonic 1-form. The conjugate harmonic
1-form is also harmonic (Section 3.3). Intuitively, the exact harmonic 1-form and
its conjugate harmonic 1-form are orthogonal everywhere. While using the Hodge
star operator, in general, a regularization step is performed based on Hodge decom-
position to decompose ∗(d fk) into exact, coexact and harmonic components [141].
The exact and coexact components are discarded and only the harmonic component
is retained. However, in our method, since we use a reasonably good resolution
mesh the Hodge star operator is accurate enough to avoid the regularization step.
Finally, by pairing each base exact harmonic 1-form with its conjugate, we obtain
the set of basis for the holomorphic 1-form on M as ηk = d fk + i∗(d fk). Then, the
holomorphic 1-form basis is represented by {η1,η2, · · · ,ηn}.

In the final step, using the holomorphic 1-form basis, we compute the induced
conformal mapping φ : M→ C by integration that maps the surface M to a planar
domain C. To start with, for each of the inner boundaries γk, we find the correspond-
ing shortest paths τk connecting γk to the outer boundary γ0. We cut M along one of
these τk’s to obtain a simply connected mesh M̄. Then, we compute a unique holo-
morphic 1-form η = ∑

n
k=1 λkηk, λk ∈R, as a linear combination of the holomorphic

1-form basis, such that it satisfies the following topological condition:

Img
∫

γ0

η = 2π, Img
∫

γk

η =−2π, Img
∫

γi

η = 0, i 6= 0,k (5.16)

where Img denotes the imaginary part. Here, λk’s are a set of unknowns which
are obtained by solving the linear system in Equation 5.16. We then choose a base
vertex p ∈ γ0. For any vertex q ∈ M̄, we choose an arbitrary integration path con-
necting p and q in M̄. Finally, the conformal mapping is obtained by integrating η

over this path as follows:

φ(q) = exp(
∫ q

p
η) (5.17)

Equation 5.17 maps the surface M to a 2D annulus. Note that several confor-
mal maps are possible by changing the topological conditions in Equation 5.16.
If we just compute the integral in Equation 5.17 without the exponential, then the
mapping computed will map M onto a rectangle.

Since the mesh M̄ is simply connected and η is holomorphic, the integration
result is independent of the choice of the path and hence any arbitrary path can be
chosen for integration to obtain the conformal mapping. In fact, the results after
integration by choosing different paths are the same. In Equation 5.17, we are
effectively integrating d fk and ∗(d fk) to obtain the conformal mapping of the mesh.
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Algorithm 5.1: Heat diffusion metric based discrete conformal mapping.
Input: Surfaces M, heat diffusion metric g.
Output: The conformal parameterization of M.
1. Replace the edge lengths in M with edge lengths from g.
2. Compute the harmonic function by solving the linear system 5.12.
3. Compute exact harmonic 1-form, d f ([vi,v j]) = f (v j)− f (vi) for each edge.
4. Compute the Hodge star of d f by using Equation 5.11.
5. Compute special holomorphic 1-form η satisfying the topological condition in Eq. 5.16.
5. Integrate η to get the final 2D coordinate for each vertex, using Eq. 5.17.

Both the fields d fk and ∗(d fk) are harmonic 1-forms and since any harmonic 1-form
is closed (Section 3.2), it implies that both these fields are locally integrable. In our
case, we assume that the fake handles on the surface are tiny (which is typical),
which implies that the corresponding tunnel and the handle loops are short [37].
Hence, the integration of the conjugate harmonic 1-form ∗(d fk) (Hodge star of
exact harmonic 1-form d fk) is very close to zero. In practice, the harmonic 1-forms
corresponding to the tiny handles can be neglected. Since the complex derivative
(η) in Equation 5.17 is a holomorphic 1-form, it is equivalent to saying that the
mapping obtained by integration satisfies the Cauchy-Riemann equation [99, 113]
(Section 3.3). This proves that our mapping is indeed conformal with respect to the
given heat diffusion metric.

We summarize our conformal mapping algorithm in Algorithm 5.1. Our flat-
tening algorithm requires the input mesh to be a two dimensional manifold. In the
entirety of our algorithm, we assume that the handles on the mesh surface are tiny.
If the handles are large, then the harmonic 1-forms corresponding to the handles can
no longer be ignored and it in turn affects the integration for computing the confor-
mal maps. Moreover, we assume that the input mesh surface has good resolution so
that the Hodge star regularization is unnecessary.

5.2.3 Generality of our Algorithm

As described above, our flattening algorithm is general and can handle flattening
problems with complicated topologies containing any number of inner boundaries
or holes. We now illustrate the different steps of our flattening algorithm using a
genus zero surface with an arbitrary number of holes. For this, we use a complicated
topology of a human face surface S with four boundary components, namely γ0 is
the outer boundary and γ1,γ2 and γ3 are the inner boundaries. Thus, n = 3 in this
case. We first evaluate the heat diffusion Riemannian metric g for the face surface.
Then, we compute the corresponding exact harmonic 1-forms (d f1,d f2,d f3), con-
jugate harmonic 1-forms (∗(d f1),

∗(d f2),
∗(d f3)) using Hodge star, and holomor-
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: The flattening of (a) human face surface with outer boundary γ0 and inner
boundaries γ1,γ2,γ3 using our algorithm. (b) Checker board mapping of (a), showing that
angles are well preserved. (c) Slit map showing the flattening of (a). Level set visualization
of: (d) exact harmonic 1-form, d f1 with respect to γ1; (e) Hodge star of (d), ∗(d f1); (f)
holomorphic 1-form, η1 by combining (d) and (e).

phic 1-forms (η1,η2,η3), as described earlier. All the 1-forms can be visualized
by using level sets. Figures 5.3(d), (e) and (f) show the level set visualization of
the exact harmonic 1-form (d f1), the conjugate harmonic 1-form (∗(d f1)), and the
holomorphic 1-form (η1), respectively, with respect to the inner boundary γ1, that
is k = 1 in Equation 5.12. Similar results can be obtained with respect to the inner
boundaries γ2 and γ3 as well.

Now, using the holomorphic 1-form basis, we construct a conformal mapping
from the input surface (S,g) to a planar annulus domain by integration using Equa-
tion 5.17. This integration is carried out along an arbitrary path using the special
holomorphic 1-form (linear combination of η1, η2 and η3) satisfying Equation 5.16.
This method is popularly known as slit mapping [152, 157] where one of the inner
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boundaries of S is mapped to a circle and all the remaining boundaries are mapped
to the concentric circular slits. Figure 5.3(c) shows the flattening result of the face
where γ0 is mapped to the outer radius, γ1 is mapped to the inner radius, and γ2
and γ3 are mapped to the slits using our algorithm. To obtain the flattening in Fig-
ure 5.3(c), we cut the face along the shortest path connecting γ1 and γ0 and solve
Equation 5.16 also over γ1. Two additional slit map results are possible with respect
to the other two inner boundaries, γ2 and γ3. If we map a checker board pattern onto
the flat annulus in Figure 5.3(c) and have it correspondingly mapped back onto Fig-
ure 5.3(a), the angles and shapes inside the checker board are preserved since our
algorithm is conformal. This fact is confirmed in Figure 5.3(b), illustrating that our
algorithm is indeed angle (shape) preserving.

5.2.4 Colon Flattening

The colon surface is a special case with a simple topology (cylindrical) hav-
ing only two boundary components, namely γ0 and γ1 (n = 1). Thus, the colon
surface has only one holomorphic 1-form base, η1. Then, the unique holomor-
phic 1-form η for integration is obtained as η = λ1η1, satisfying the condition:
Img

∫
γ0

η = 2π, Img
∫

γ1
η = −2π , which is a simpler form of Equation 5.16. Fi-

nally, a conformal mapping of the colon surface is obtained by integration using
Equation 5.17. However, in the case of colon flattening, the common practice is to
map the colon onto a rectangle since it is the more intuitive way to visualize the
colon surface. Hence, we compute the logarithm of the integral in Equation 5.17
which now maps the colon to a rectangle instead of an annulus. In other words,
we are effectively only computing the integral part of Equation 5.17 without the
exponential. Thus, the colon surface is conformally mapped to a planar rectangle
to obtain a flattened rectangular map of the colon surface. We chose conformal
mapping for the colon flattening due to the following main reason: In VC, after
the colon surface is flattened, it is mandatory to preserve the local shapes. Con-
formal maps, by definition, are angle preserving (local shape preserving) (Section
3.1). Consequently, polyps can still be identified based on their circular shape on
the flattened colon image.

5.2.5 Euclidean versus Heat Diffusion Flattening

Our conformal flattening algorithm can be used either with the heat diffusion
metric or with the original Euclidean metric. We now show that our flattening al-
gorithm is more robust using the heat diffusion metric (obtained using the HDD)
when compared to using the original Euclidean metric. For this, we consider a
patch of a teapot surface with the handle and p0, p1, p2, p3 being four corners on
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the boundary as shown in Figure 5.4(a). We now manually cut the handle along a
loop indicated by the red line in Figure 5.4(b). We then use our flattening algorithm
to map both the teapots in Figures 5.4(a) and (b) to a planar rectangle by using the
heat diffusion metric as well as the original Euclidean metric. The teapot handle is
collapsed onto the plane after flattening. Figures 5.4(c) and (d) show the conformal
flattening results by using the original metric for Figures 5.4(a) and (b), respec-
tively. Figures 5.4(e) and (f) show the conformal flattening results by using the heat

(a) (c) (e)

(b) (d) (f)

Figure 5.4: Comparison of our flattening algorithm using the original Euclidean metric and
heat diffusion metric. (a) Teapot patch with handle; (b) Teapot patch with handle cut along
a loop, shown in red; (c) Conformal module of (a) using Euclidean metric; (d) Conformal
module of (b) using Euclidean metric; (e) Conformal module of (a) using heat diffusion
metric; (f) Conformal module of (b) using heat diffusion metric.

diffusion metric for Figures 5.4(a) and (b), respectively. When a surface is confor-
mally mapped to a planar rectangle, the ratio between the height and the width of
the rectangle is called the conformal module of the surface. It can be clearly seen
that the conformal modules based on the original metric changed much, due to the
cutting of the handle (change in topology) whereas the conformal modules based
on the heat diffusion metric are similar. These experimental results confirm that
the heat diffusion metric is preferrable for our flattening algorithm than the original
metric, due to its insensitivity to topological noise.
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5.3 Comparison

The current approach is much more efficient and robust to topological noise
when compared to previous methods. Here, we compare our method to the well
known conventional holomorphic 1-form method, the conventional topological de-
noising method, and the Ricci flow method and show that ours fairs better for colon
surfaces with noise.

5.3.1 Conventional Holomorphic 1-form Method

In the conventional holomorphic 1-form method, the most time consuming part
is solving the Poisson equations [68]. Every handle on the mesh corresponds to two
cohomological classes. Since the harmonic 1-forms are computed for all the coho-
mological classes, if the colon surface has g handles, then the Poisson equations in
the conventional holomorphic 1-form method need to be solved 2g times [68]. In
practice, there may be more than a hundred fake handles and therefore the compu-
tation is very time consuming. Hence, though theoretically this method can also be
used for flattening noisy colons, it is not efficient. On the contrary, in our method,
we need to solve only a single Laplace equation. This is because we only consider
the cohomological class corresponding to a cylinder and ignore all the other classes
(the colon is roughly cylindrical). Hence we compute only one harmonic 1-form,
by solving only one Laplace equation given by Equation 5.12. Thus, our method is
virtually independent of the number of handles, thereby increasing the efficiency.

5.3.2 Conventional Topological Denoising

In the conventional topological denoising method, initially, for each handle, two
loops, namely the handle loop and the tunnel loop are computed [37]. Then, the
handle is cut along one of these loops, which are then filled with two small disks to
ultimately remove the handles. In this method, it is extremely challenging and time
consuming to compute the two loops for each handle since there might be hundreds
of handles. Moreover, the topological surgery on the meshes is also complicated. In
our method, by virtue of the metric used, all the fake handles present on the colon
surface are collapsed and flattened on the destination plane. Consequently, all the
vertices near the handles have non-zero curvatures. Thus, by simply evaluating
the Gaussian curvature of the vertices the handles can be easily located (handles
occur at vertices with non-zero curvatures). The handles can then be removed by
removing the neighborhood of these vertices with non-zero curvature and filling
small disks into the holes. This provides a simpler and more efficient way to remove
handles compared to the traditional denoising method. We provide more elaborate
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details of the handle detection and removal using our method in Section 6.

5.3.3 Ricci Flow Method

The Ricci flow method deforms the Riemannian metric to the constant curvature
uniformization metric [81], which induces constant curvatures everywhere. This
constant is solely determined by the topology of the surface. The colon surface is a
topological cylinder. Hence, the uniformization metric induces zero Gaussian cur-
vature for the interior points, and a zero geodesic curvature along the boundaries.
However, for colon surfaces with topological noise (fake handles), the Ricci flow
converges to a negative constant curvature metric and hence they cannot be flattened
onto the Euclidean plane. Therefore, the Ricci flow method is intrinsically vulner-
able to topological noise. On the contrary, our method is insensitive to topological
noise and a robust flattening is achieved.

Figure 5.5: The flattening of the ascending segment of a colon using (a) Ricci flow, and (b)
our method.

For comparison, we show in Figure 5.5 a flattened result of the ascending colon
segment, using both ours and the Ricci flow approach. Figure 5.5(a) shows the
flattening result of the colon segment using the Ricci flow method and Figure 5.5(b)
shows the flattening result of the colon segment using our method. It can be clearly
seen that the Ricci flow flattening is non-regular and the global shape is lost. This
is because the Ricci flow method is sensitive to noise, such as handles. On the other
hand, the colon flattening using our approach is regular and the entire global shape
is preserved.
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Table 5.1: Comparison of the running times of our colon flattening approach with the colon
flattening using the Ricci Flow method.

Model
Num.

#Faces

Time
(sec)
Ricci
Flow

Time
(sec) Our
Method

192 (Supine) 56,800 125.7 11.2
192 (Supine A) 12,500 35.6 3.4
192 (Supine T) 23,100 62.2 5.2
192 (Prone) 52,900 112.5 12.3
192 (Prone A) 12,800 33.6 3.3
192 (Prone T) 22,700 57.2 5.4
241 (Supine) 55,900 121.5 11.4
241 (Prone) 53,100 110.8 11.3

We compared our method with the Ricci flow approach, in terms of the colon
flattening running times. Table 5.1 shows the comparison results using different
colon models and segments. The first column shows the number and segment of
the colon model used. 192 and 241 are model numbers of the colon, A represents
the ascending segment of the colon and T represents the transverse segment. The
second column shows the number of faces in the colon model. The third column
gives the time taken (in sec) for flattening the colon models using the Ricci flow
method. Finally, the fourth column gives the time taken (in sec) for flattening using
our method. Table 5.1 shows that for all the colon models, our method is an order of
magnitude faster than the Ricci flow method. Note that the timing details provided
in Table 5.1 only show the time taken for flattening and do not include the time
taken for the metric evaluation. Since both methods use different metrics, for the
sake of comparison we only use the time taken for flattening. All the experiments
were conducted on a system equipped with an Intel(R) Xeon(R) CPU with a 1.87
GHz processor.

5.4 Applications

Our major focus is to achieve a robust colon flattening, thereby avoiding the
time-consuming topological denoising step. Since the shape information is pre-
served in the flattened colon, we show its application for polyp visualization, espe-
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cially in hidden regions such as behind the folds. We also show how the supine and
prone colon registration pipeline becomes more robust by using our method.

5.4.1 Polyp Visualization and Detection

One of the important applications of colon flattening is to provide a better way
for the physicians to visualize and even detect the polyps. Specifically, polyps
behind haustral folds are hidden and missed during the VC fly through of a 3D
model. The polyps are small protrusions or bumps on the colonic wall. By using
our method, all the shapes on the colon surface are preserved even after flattening.
Therefore, the polyps can be clearly seen as bumps and hence form an effective
means of polyp visualization. Furthermore, the volume rendering of the flattened
colon provides a realistic rendering of polyps. In addition, the physician can zoom-
in at the suspicious regions to confirm the location of the polyps. Thus, even rela-
tively small polyps can be seen, as shown by few examples in Figure 5.6.

(a) (b) (c)

Figure 5.6: Close up view of the polyps (bumps on the colon wall). (a) Polyp 1 in Fig-
ure 5.9(a); (b) Polyp 2 in Figure 5.9(a); (c) Polyp 3 in Figure 5.9(c), which is hidden behind
a colonic fold indicated by the red arrow.

Figure 5.6 shows a close up view of some of the polyps (protrusions) observed
by navigating along the flattened colon surface. Figure 5.6(a) shows a close up view
of polyp 1 in Figure 5.9(a), which is a large polyp. Figure 5.6(b) shows a close up
view of polyp 2 in Figure 5.9(a) which is a relatively small polyp. Figure 5.6(c)
shows a close up view of polyp 3 in Figure 5.9(c) that is hidden behind a fold
(pointed to by the red arrow). It is difficult to find such polyps during navigation
using a conventional VC system. However, when a flattened colon is available,
even polyps hidden behind colonic folds can be observed, as seen in Figure 5.6(c).
Another example of a close up view of a polyp is shown in Figure 5.1(b). These
close up views help the physician to verify that the suspicious regions detected are
indeed polyps and not some leftover stool. The shape of polyps can be identified and
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their sizes can be measured. Note that our technique does not provide an automatic
method of polyp detection but rather makes it easy to locate, confirm, and visualize
polyps, especially in areas which are otherwise hard to navigate. By performing
size and shape analysis on the flat colon, we can detect the polyps automatically,
which we plan to do in the future.

5.4.2 Colon Registration

Shape registration is very fundamental for shape analysis problems, especially
for abnormality detection in medical applications. The colon deformation and the
diverse shapes of polyps make it difficult to distinguish polyps from other non-
threatening objects in the colon. Hence, for a VC procedure, CT scans of the
abdomen are commonly acquired with the patient in both supine (facing up) and
prone (facing down) positions to improve the visualization of the colon wall, re-
duce false positives, and improve sensitivity. Comparisons between the supine and
prone colon surfaces can be facilitated by computerized registration between these
scans.

Registration of supine and prone colon surfaces using quasi-conformal mapping
has been described by Zeng et al. [54, 158]. In their approach, a costly topological
denoising step is performed on both supine and prone colon surfaces before the
start of the registration pipeline. Using the same registration approach, we show the
registration of noisy supine and prone colon surfaces. We use our colon flattening
approach to obtain the rectangular maps of supine and prone colon surfaces with
handles. By virtue of our method, the flattening is not affected by the handles. We
then obtain the surface feature points on these supine and prone flattened maps.
Finally, using these feature points as constraints, we register the supine to prone
using quasi-conformal mapping steps [158]. Therefore, we improved the robustness
of the supine and prone colon registration algorithm [158] by directly registering
the supine and prone colon surfaces with handles, which otherwise was impossible
without denoising.

We have analytically evaluated the quality of the registration by a distance
measurement between corresponding features located on the registered colon sur-
faces [158]. Since our registration is in the 2D space using the flattened colon
surfaces, a point in R3 on the original colon surface corresponds to a point in R2 on
the registered surface. For two corresponding points (polyps or feature points used
as constraints) on the supine and prone flattened colons, we compute the L2 norm
of their 2D coordinates with the width of the flattened images fixed to a unit length
of 1. We also compute the 3D distance error by measuring the distance between
the same two corresponding feature points on the supine and prone original colon
surfaces (see [158] for details of the evaluation procedure). We have evaluated the
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(a) (b)

Figure 5.7: Registered flattened views of the ascending colon segments with handles of (a)
supine and (b) prone colon surfaces. Two polyps found on (a) (shown in yellow circles) can
be located on (b) (shown in yellow circles) at nearly the same position.

registration using a total of 6 pairs on 2 datasets by considering 16 pairs of fea-
ture points. The average distance error is 0.0385 in R2 and 8.14 mm in R3, which
is comparable to the error values of Zeng et al. [158]. Figure 5.7 provides a visual
verification for supine-prone colon registration. Figures 5.7(a) and (b) show the reg-
istered flattened views of the ascending colon segments of supine and prone colon
surfaces with handles, respectively. Two polyps found on the flattened supine sur-
face (yellow circles in Figure 5.7(a)) can be located on the flattened prone surface
(yellow circles in Figure 5.7(b)) at nearly the same position. Moreover, the images
of the registered segments in Figure 5.7 show very good alignment of the supine
and prone colon structures and a good correspondence between their features, such
as folds and polyps.

5.4.3 Handle Detection and Removal

Our method of colon flattening using the heat diffusion metric is insensitive to
topological noise and hence the flattening process does not require any denoising
as a mandatory pre-processing step. Nonetheless, it is important to remove these
topological artifacts such as the tiny handles, so that they do not obstruct any further
processing of the data, that is, if the user wants to perform any further simplifica-
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tion of the colon data for other applications. In all the previous methods, the handles
were detected and removed directly on the 3D model. Hence, only a limited visual-
ization of the location of the handles was obtained. On the contrary, in our method,
we detect the handles on the flattened colon surface and thus obtain a clear visual-
ization of the handles. This helps us to know the location of the handles better.

By using the heat diffusion metric, the region around the handles is smoothed
while flattening. As a result, a small overlapped region is formed at the location of
the handles. In other words, a non-zero curvature is formed for all the vertices in
the regions with handles. Thus, the problem of handle detection would simply boil
down to the problem of finding all the vertices with non-zero curvature. Therefore,
we calculate the Gaussian curvature for each vertex of the colon mesh. We then
mark all the vertices which have a non-zero Gaussian curvature. These vertices
are nothing but the vertices around the handles. In this way, all the handles can be
detected in a fast and effective way.

Figure 5.8: Handles detected by computing the Gaussian curvature for each vertex. Red
areas indicate handles detected (one shown in close-up view) and the green area shows the
zero Gaussian curvature region.

Figure 5.8 shows the result obtained by using our approach to detect handles
for one third segment of a flattened colon surface (starting from the cecum on the
left). The green color represents the regions with zero Gaussian curvature and the
red color represents the regions with non-zero Gaussian curvature. Hence, all the
red regions on the colon surface in Figure 5.8 show the handles detected using our
approach. Figure 5.8 also shows the close up view of a red-colored region, which
confirms that it indeed is a handle (flipped triangles). Once all the handles have
been detected, they can be easily removed. For this, we delete the faces around
the vertices with non-zero Gaussian curvature (red regions representing handles)
and subsequently fill the resulting holes with small disks. Thus, all the handles are
removed to obtain a flattened colon surface free of topological noise.

We compared the speed of our approach of handle detection and removal with a
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previous approach [68]. Using our approach, the average time for the entire process
of handle detection and removal on the colon surfaces with around 55,000 faces
was 2.8 secs. On the other hand, the previous approach took an average of 800
secs to detect and remove all the handles using the same colon surface. Thus, we
have obtained more than two orders of magnitude gain in speed using our approach
of noise removal. In total, there were 43 handles on the colon surface shown in
Figure 5.8. We tried our approach on four other colon surfaces and all the handles
in all cases were detected proving the accuracy and efficiency of our approach. We
also verified the handle count obtained by our method with that obtained by the
previous method [68] and the value matched in all cases.

5.5 Results

5.5.1 Flat Colon Rendering

The result of our method is a colon surface flattened onto a 2D rectangle, which
also results in polyps being flattened. The shape of the polyps is a good clue for
polyp detection and hence the rendering of the flattened colon image is crucial
for their detection. Volume rendering of flattened colons has been presented and
suggested for use in VC navigation [68]. We perform the volume rendering of the
flattened colon in the same way and obtain a high-quality image of the flattened
colon. The volume rendered flattening result of a colon mesh model using our
method is shown in Figure 5.9. Since the colon is very long, we show the flattening
result in three parts. The colon stretches from the rectum which is on the left of
Figure 5.9(a) to the cecum which is on the right of Figure 5.9(c). We can clearly
see how easy it is to examine the whole interior colon region using our method.
Moreover, important features such as the polyps and the haustral folds are clearly
visible and well preserved. We show the location of three polyps (1, 2 and 3)
on the flattened colon surface, marked in yellow circles in Figures 5.9(a) and (c).
The resolution of the rendered image in Figure 5.9 is 3000× 200. The rendering
was performed on a system equipped with an Intel Xeon E5620 CPU and NVIDIA
GeForce GTX 480 graphics board.

Polyp 1 is a large polyp of size 6.1× 9.6 mm and can directly be inspected in
Figure 5.9(a). However, polyp 2 of size 3.1×3.7 mm and polyp 3 of size 3.8×2.5
mm are relatively small and hard to recognize. Therefore, in a clinical applica-
tion, the resolution should be at least four times higher than the one used in Fig-
ure 5.9, such as shown in Figure 5.6. The rendering using the GPU provides a
real-time high-quality zoom-in functionality, which allows the physicians to inter-
actively inspect suspicious regions. By having a flattened colon visualization, we
are providing a better means of navigation so that no area of the colon is missed.
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(a)

(b)

(c)

Figure 5.9: A flattened image for a whole colon dataset is shown in three images. The
rectum of the colon is on the left of (a) and the colon stretches to the cecum, which is on
the right of (c). The colonic polyps and the haustral folds are well preserved. Three polyps,
1 and 2 in (a) and 3 in (c) are shown within the yellow circles.

This flattened colon visualization opens an additional option for the physician to
improve the colon surface exploration.

We have also shown our results to a radiologist who was involved with the early
conception of VC and has over ten years of experience in reading them. He noted
that the flat rendering was realistic, and that the anatomical features such as folds,
and especially significant polyps (≥6 mm in diameter) are well preserved and easily
noticeable (he had not been exposed to flattened rendering prior to viewing this
work). In addition, we have cross-verified the location of the polyps on the flattened
colon by checking with the VC and OC reports provided by the Walter Reed Army
Medical Center. We plan to conduct in the near future a more comprehensive study
with radiologists.

5.5.2 Implementation

The pipeline was implemented in C++ in a Windows environment. The volu-
metric rendering was performed on the GPU using OpenGL and Cg. The colon data
used in this work come from volumes with an approximate size of 512×512×400
voxels. Preprocessing of the volumes includes electronic cleansing, segmentation,
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triangular mesh extraction, and skeleton extraction. The meshes obtained are very
large (typically over 1.5 million faces) and are simplified to approximately 5% of
their original size. We have successfully obtained flattening results for six differ-
ent colon models. Apart from the flattening of the whole colon, we have also seg-
mented the colon into three segments, namely ascending, transverse and descending
segments. Thus, we have tested our colon flattening approach successfully with a
total of 24 cases, including the segments and the whole colon surfaces. The whole
process of colon flattening for an entire colon model with around 55,000 faces took
an average of 23.93 sec, not including the time taken for the pre-processing of the
colon. It took on average 12.38 sec to evaluate the heat diffusion metric using 50
eigenvalues and eigen functions and an average time of 11.55 sec to obtain the
flattening using this heat diffusion metric.
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Chapter 6

Graph Embedding

In this chapter, we propose a novel, and general approach for embedding planar
graphs onto a sphere based on Ricci flow obtained by optimizing a convex energy.
The embedding has no edge-crossings, and is more intuitive to visualize graphs.
The method has three stages, first the graph is embedded on a topological surface,
then on a Riemann surface, and finally on a surface in three dimensional Euclidean
space. We employ an efficient Newton’s method to optimize Ricci flow. The pro-
posed method produces a consistent and topologically stable graph layout. Any
local structural changes of the graph do not affect the overall embedding. As a re-
sult, we apply our method for efficient visual graph comparison and in identifying,
understanding and visualizing dynamic graphs. Our experimental results demon-
strate the efficacy, efficiency and robustness of our graph embedding method.

This chapter is organized as follows. Section 6.1 provides the motivation. Sec-
tion 6.2 provides the necessary theoretical background and Section 6.3 describes
the algorithm. Section 6.4 and Section 6.5 describe the application of our approach
to visual graph comparison and dynamic graph visualization respectively. Using
our method to visualize sensor network data is shown in Section 6.6.

6.1 Motivation

Graphs are used to represent and visualize relationships between data items.
Graph embedding methods play an important role in visualizing the data items
and their relationships by providing an automatic and clutter free layout. A graph
G(V,E) is an abstract structure, modeling a relation E over a set V of nodes. Graphs
play fundamental roles in many engineering fields. For example, they have been
used to model social relation of communities, traffic between telecommunication
switches, networking with wireless sensor nodes and airline routes among cities.
Graphs are abstract and ubiquitous and it is high desirable to develop general, prac-
tical and rigorous algorithms to visualize graphs.
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(a) (b)

Figure 6.1: Embedding a graph onto (a) Riemann surface H2/Γ; (b) surface in R3 (torus in
this case).

Conventionally, graphs are mapped into low dimensional Euclidean spaces Rn

(n ≤ 3), the unit sphere S2 or the hyperbolic plane H2. Planar graphs can be eas-
ily embedded onto the unit sphere. But for most non-planar graphs, such kind of
mappings do not preserve the topological structures (connectivity) of the graph.
Moreover, edge crossings are unavoidable. The visual clutter (edge crossing) poses
a great obstacle for analyzing graphs. Many methods have been proposed to im-
prove the visualization of graphs by reducing edge crossings. However, finding
layouts of general graphs without edge crossings remains one of the most challeng-
ing problems in graph visualization.

In this work, we propose a novel graph embedding (layout) approach using
Ricci flow energy optimization. This method removes the edge crossings com-
pletely, and preserves the topological structure of the graph. This approach is gen-
eral, practical for visualizing large scale graphs, and rigorous with solid theoretic
foundations.

Several criteria that define a good graph visualization (aesthetics) have been de-
termined [18, 126, 139]. We believe that the following two criteria are essential for
any good graph embedding approach: (1) the embedding should have no overlap-
ping vertices and no edge-crossings and (2) the embedding ensures that the resulting
layout conveys the correct information to the user, that is, the node connectivity is
preserved. Our proposed graph embedding approach using Ricci flow fulfills both
these criteria. Our approach provides connectivity preserving, topologically stable
and consistent graph layout.

Our method is based on the fact that all graphs can be embedded onto a two
dimensional surface. Our algorithm pipeline has three stages. In the first stage, the
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graph is embedded onto a topological surface. In the second stage it is embedded
onto a Riemann surface and in the last stage it is finally embedded onto a surface
in R3. Figure 6.1 shows the results illustrating the embedding of an example graph
onto a Riemann surface and onto a surface in R3 (torus). Figure 6.1(a) shows the
embedding of the graph onto a Riemann surface (stage two) and Figure 6.1(b) shows
the final embedding of the graph onto a torus (stage three).

1. Embedding on Topological Surface A rotation system of graph G with vertex
set {v1,v2, ...,vn} is a collection Π = {π1,π2, ...,πn} such that πi is a cyclic permu-
tation of the edges incident with vi. An embedded graph is denoted by GΠ where G
is a connected graph and Π is a rotation system of G. πi is called the Π−clockwise
orientation around vi. If the valence of vi is k, then the edges’ orientation around vi
is {eπi(1),eπi(2), ...,eπi(k)}. A rotation system Π determines an embedding surface
of G, denoted as GΠ.

2. Embedding on Riemann Surface In this step, we assign a geometric structure
(Riemannian metric) to the topological surface R using Ricci flow [31, 80]. Ricci
flow deforms a Riemannian metric proportional to its Gaussian curvature, such that
the curvature evolves according to a heat diffusion process. Eventually, Ricci flow
leads to a Riemannian metric, such that the curvature is constant everywhere.

The graph G and its dual graph together tessellate the surface R such that each
cell is a quadrilateral. By adding the diagonals to the quadrilaterals, the topological
surface of GΠ becomes triangulated. By running Ricci flow, a constant curvature
Riemannian metric is produced on GΠ. A topological surface with a constant cur-
vature Riemannian metric is called a Riemann surface. A Riemann surface has
canonical representations. Genus zero Riemann surface can be represented as the
unit sphere S2. Genus one Riemann surface is represented as the quotient space
R2/Γ, where Γ is a translation graph acting on R2, generated by two translations.
High genus Riemann surfaces can be represented as the quotient space H2/Γ, where
Γ is generated by 2g hyperbolic rigid motions. Our method will give such Riemann
surface representations and embed the graph on these Riemann surfaces to make
the navigation much easier.

3. Embedding on Surface in R3 A Riemman surface with non-zero genus can be
cut open along a special set of geodesics. For genus one surfaces, the open Riem-
man surface is a parallelogram. For high genus surfaces, the open Riemann surfaces
are hyperbolic polygons. These Riemann surfaces (may to be parallelogram or hy-
perbolic polygon) are called as fundamental polygons. For high genus surfaces,
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the fundamental polygons are Euclidean convex polygons on the Hyperbolic disk
model of H2.

(a) (b)

(c) (d)

Figure 6.2: Embedding of different graphs onto a surface in three dimensional Euclidean
space by using our three stage Ricci flow based embedding approach. (a) Genus zero graph
embedded onto a sphere; (b) Genus one graph embedded onto a torus; (c) Genus two graph
embedded onto a torus; (d) High genus graph embedded onto a Riemann surface.

Figure 6.2 shows the embedding of different graphs onto a surface in three di-
mensional Euclidean space by using our three stage Ricci flow based embedding
approach. Figure 6.2(a) shows the embedding result of a genus zero (planar) graph
onto a sphere. Figure 6.2(b) shows the embedding result of a genus one graph onto
a torus. Figure 6.2(c) shows the embedding result of a genus two graph onto a
torus. Finally, Figure 6.2(d) shows the embedding result of a high genus graph onto
a Riemann surface.

Our Ricci flow graph embedding results in a consistent layout that helps to ef-
ficiently deal with problems that pertain to identifying and tracking the structural
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changes in graphs. We show how our embedding method successfully addresses
two of the important problems - visual graph comparison and dynamic graph visu-
alization. Visual graph comparison is a challenging task which not only involves
matching graphs but also provides a means that allows the users to visually confirm
it. Generally, two isomorphic graphs differ in topology and node positions making
it a non-trivial task to visually know if they are similar. Our method matches the
graphs in terms of connectivity and facilitates visual graph comparison. Dynamic
graph visualization is a more recent topic of research and it addresses the problem
of graphs changing over time where vertices and edges are added and removed over
time. Most of these changes occur at local sub-regions of the graph. Irrespective of
the structural changes over time our embedding approach provides a stable graph
layout that preserves the mental map, making it easy to understand the changes of
the graph with minimum user effort.

This work proposes a novel method to embed undirected graphs on surface for
visualization purposes. The main contributions of this paper are:

1. Develop an algorithm to embed a graph onto a topological surface based on
rotation system GΠ, and reduce the genus of GΠ to a relative small genus
GΠ′ .

2. Generalize discrete Ricci flow from triangular mesh setting to general graph
setting.

3. Develop a method to embed a graph onto a Riemann surface.

4. Application to dynamic graph visualization and visual graph comparison

The method is general, practical, rigorous, and the embedding results have no edge
crossings. Moreover, our method uses Newton’s method which is computationally
more efficient compared to the conventional gradient descent method. Our method
provides a stable graph layout that is not affected by local structural changes which
forms the motivation to address the challenges of graph comparison and dynamic
graph visualization.

6.2 Theory

We present here brief theoretical fundamentals required to explain our Ricci
Flow graph layout.
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Algebraic Topology Let S denote a manifold.
A curve is defined as a continuous mapping γ : [0,1]→ S
A closed curve (loop) through a point p is a curve, such that γ(0) = γ(1) = p
Let γ1,γ2 : [0,1]→ S be two curves. A homotopy connecting γ1 and γ2 is a

continuous mapping F : [0,1]x[0,1]→ S, such that F(0,1) = γ1(t),F(1, t) = γ2(t)
We say γ1 is homotopic to γ2 if there exists a homotopy between them.
Let q be a base point ∈ S, then all the oriented closed curves (loops) through

q can be classified by the homotopy. All the homotopy classes form the so-called
fundamental group of S, denoted as π1(S,q).

For a genus g closed surface, one can find canonical homotopy group generators
{a1,b1,a2,b2, · · · ,ag,bg}, such that ai · a j = 0, bi · b j = 0, ai · b j = δi j, where the
operator r1 · r2 represents the algebraic intersection number between two loops γ1
and γ2, and δi j is the Kronecker symbol.

Let p : S̃→ S be a continuous surjective map, such that for each point q∈ S with
a neighborhood U , its corresponding preimage p−1(U) = ∪iŨi is a disjoint union
of open sets Ũi, and the restriction of p on each Ũi is a local homeomorphism. Then
(S̃, p) is a covering space of S and p is called a projection map. The automorphisms
of S̃, τ : S̃→ S̃, are called deck transformations, if they satisfy p◦τ = p. All the deck
transformations form a group, termed as covering group, and denoted as Deck(S̃).

If a covering space S̃ is simply connected (i.e., π1(S̃) = {e}), then S̃ is called a
universal covering space of S.

Combinatorial Topology of Graph A graph is represented as a vertex set and an
edge set denoted by {v1,v2, ...,vn} and {e1,e2, ...,em}, respectively. Each edge ei
has two vertices as end points. The valence of a vertex vi is defined as the number
of edges incident with vi as an end point.

We treat embedding of a graph G to be purely combinatorially. A rotation
system of graph G with vertex set {v1,v2, ...,vn} is denoted as a collection Π =
{π1,π2, ...,πn} such that πi is a cyclic permutation of the edges incident with vi.
The embedded graph is denoted by GΠ where G is a connected graph and Π is a
rotation system of G. πi is called the Π− clockwise orientation around vi. If the
valence of vi is k, then the edges’ orientation around vi is {eπi(1),eπi(2), ...,eπi(k)}.

Let v1 and v2 be the two end vertices of an edge e1. Then the triplets (v1,e1,v2)
and (v2,e1,v1) are defined as two edge sides of the edge e1. Similarly, the triplet
(eπ2(i+1),v2,eπ2(i)) is defined as a corner of a vertex v2. This corner is denoted as v̂i

2
(i = 0,1, ...,k−1 where k is the valence of v2).

A chain C of a graph G is an alternating sequence of vertices and edges such
that any two consecutive elements are related. We call the chain is closed if the first
and the last elements are vertices. Then, the first and the last vertex of the closed
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chain are termed as its extremities. Thus, it can be seen that a chain is made up of
edge sides and corners. A closed chain with the same extremities is a circle.

Consider a chain sequence x0,y0,x1,y1, ...,xr−1,yr−1,xr (xi is vertex, yi is edge
and r is an interger greater than 1) of vertices and edges, where the indices are
expressed as modulo of r and yi is an edge joining xi and xi+1 for i = 0,1, ...,r−1.
Since the indices are expressed as a modulo of r, we have x0 = xr and thus this
chain is a circle. Suppose xi = v j and if yi−1 = π j(a+ 1) and yi = π j(a), then the
chain sequence is called a facial walk of GΠ.

Suppose GΠ has a set of facial walk { f1, f2, ..., fs} and if a corner v̂i
a appears in

the facial walk f j sequence, we denote as v̂i
a ∈ f j. The genus g of GΠ is defined by

Euler’s formula
V −E +F = 2−2g(GΠ)

where V, E and F are the number of vertices, edges and facial walks of GΠ respec-
tively. The genus g(G) is the minimum genus over all the embeddings of G.

In graph GΠ, a vertex va may appear in a facial walk f j more than once. The
maximum times va appears in a facial walk f j is k, where k is the valence of va. In
other words v̂i

a ∈ f j,(i = 0,1, ...,k− 1). An embedded graph GΠ is quasiplanar if
no vertex appears more than once in any facial walk of GΠ.

Theorem 6.2.1 (Graph Embedding). A connected graph G can be embedded on a
topological surface Σ without edge crossings.

We will now describe a simple method to construct the embedding surface Σ for
any connected graph G. In fact, the vertex set of Σ is exactly the same as the vertex
set, V of G, and the edge set of Σ is the same as the edge set, E of G. Σ is well
defined, if and only if we can construct its face set F . We use the rotation system
of the graph to determine the embedding and the steps to construct the embedding
surface are as follows:

1. For each edge e connecting vertices vi,v j, we associate two halfedges (ori-
ented edges), one from vi to v j, denoted as [vi,v j]; the other from v j to vi
denoted as [v j,vi].

2. We define the next pointer for each halfedge. Suppose v j is a vertex, its
neighboring vertices are sorted clockwisely {vi0,vi1, ...,vik−1}. Then

[vil ,v j].next := [v j,vil+1].

3. For each halfedge h0, we trace along its next pointer, to get a consecutive
sequence of halfedges, {h0,h1,h2, · · · ,hm}, where hk.next = hk+1 and h0 =
hm. Then this loop of halfedges form a face. By repeating this halfedge
tracing procedure, we can exhaust all faces of the embedding surface.
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Figure 6.3: Two different embeddings using different rotation systems of K5 graph. (a)
Initial embedding; (b) Embedding with minimum genus of K5 graph.

Hence, the rotation system Π is used to determine an embedding surface of G,
denoted as GΠ. Note that once a rotation system Π is fixed, then it induces the face
set uniquely.

The above method gives a local algorithm to compute one embedding surface of
a connected graph G. However, the embedding may have high genus. The genus of
a connected, orientable surface is an integer representing the maximum number of
cuttings along non-intersecting closed simple curves without rendering the resultant
manifold disconnected. In other words, it is equal to the number of handles on it. It
is a NP-hard problem to find the embedding surface with the minimal genus [142].

Definition 6.2.2 (Graph Genus). The genus of a graph G is the minimal genus of
its embedding surfaces,

genus(G) := min
Π

genus(GΠ).

In this current work, we introduce some heuristic ideas to decrease the genus
of the embedding surface. Figure 6.3 shows two different embeddings of a K5
graph. Figure 6.3(a) shows an initial embedding of K5 while Figure 6.3(b) shows
the embedding surface of the same K5 graph with minimum genus. The minimum
genus is equal to 1.

6.2.1 Riemann Surface

Intuitively, a Riemann surface R is a topological surface with an atlas, such that
all transitions are complex analytic functions. Equivalently, a closed Riemann sur-
face can be treated as a surface with a special Riemannian metric g, which produces
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constant Gaussian curvature everywhere. If the genus of surface equals to 0, 1 or
other, the corresponding constant curvature is equal to +1, 0, −1 respectively. The
existence of such kind of Riemanian metric is guaranteed by the uniformization
theory [133].

6.2.2 Topological Surface

If the uniformization metric g of a Riemann surface R can be assigned to the
universal covering space R̃ of R, then R̃ can be isometrically embedded onto any of
the following three domains: the sphere S2, the plane R2 or the hyperbolic plane
H2. For example, if R is of genus one, then its deck transformations Deck(R̃) are
translations onto a plane and if R is of high genus, its deck transformations are
hyperbolic rigid motions. The deck transformation group is represented by Γ. Then
the original Riemann surface can be represented as the quotient space: R2/Γ for
torus, H2/Γ for high genus case.

Let q be one point on R, such that its pre-images q̃k’s form an orbit. A sim-
ply connected domain Ω(R) in R̃ is called a fundamental domain, if it intersects
each orbit in one point. Furthermore, assume that q is the base point, and a set of
canonical fundamental group generators {a1,b1, · · · ,ag,bg} are geodesics. A fun-
damental domain bounded by the preimages of the generators is called a canonical
fundamental domain, and its boundary is a 4g-side geodesic polygon given by,

∂Ω(R) = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · ·agbga−1
g b−1

g

which is called a canonical fundamental polygon.
There are two models for the hyperbolic plane H2. The first model is the

Poincaré disk and the second model is the Klein model. Both of them are unit
disks on the complex plane. For the Poincaré model, the metric is given by

ds2 =
dzdz̄

(1− zz̄)2 .

The rigid motions are Möbius transformations given by,

z→ z− z0

1− z̄0z
.

The geodesics are circular arcs, which are orthogonal to the unit circle. On the other
hand, in case of the Klein’s model, the rigid motions are real projective transforma-
tions, and the the geodesics are straight lines.

Figure 6.4 illustrates all the concepts. The Figure 6.4(a) shows a genus two sur-
face with a set of canonical fundamental group generators. The Figure 6.4(b) shows
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Figure 6.4: Embedding a finite portion of the universal covering space of a genus two graph
onto the hyperbolic plane using (a) canonical fundamental group generators to obtain (b)
canonical fundamental polygon.

a finite portion of its universal covering space that is embedded onto the Poincaré
disk. Fundamental domains are color encoded, whose boundaries are canonical
fundamental polygons.

6.2.3 Surface Ricci Flow

Let S be a topological surface with a Riemannian metric g, then the isothermal
coordinates (u,v) locally satisfy:

g = e2λ (u,v)(du2 +dv2).

The Gaussian curvature of the surface is given by:

K(u,v) = ∆gλ , (6.1)

where ∆g = e−2λ (u,v)( ∂ 2

∂u2 +
∂ 2

∂v2 ) is the Laplace-Beltrami operator induced by g. Al-
though the Gaussian curvature is intrinsic to the Riemannian metric, Gauss-Bonnet
theorem [133] claims that the total Gaussian curvature is a topological invariant:∫

S
KdA = 2πχ(S),

where χ(S) is the Euler number of the surface.
Let g1 and g2 be two Riemannian metrics on the topological surface S. If there

is a differential function λ : S→ R, such that

g2 = e2λ g1,
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then the two metrics are conformal equivalent. The Gaussian curvature determined
by g1 and g2 are denoted by K1 and K2 respectively and they satisfy the following
Yamabe equation

K2 =
1

e2λ
(K1−∆g1λ ).

Let g = (gi j). Then the surface Ricci flow is defined as follows:

dgi j

dt
=−Kgi j.

During the flow, the Gaussian curvature will evolve according to a heat diffusion
process. If the total area is preserved, the surface Ricci flow will converge to a spe-
cial metric whose Gaussian curvature is constant everywhere. [30]. This provides
an alternate argument to prove the Poincaré uniformization theorem: all closed sur-
faces can be conformally deformed to one of the three canonical spaces, the unit
sphere S2, the plane E2 or the hyperbolic space H2.

6.2.4 Discrete Surface Ricci Flow

Surface Ricci flow is a powerful tool to construct conformal Riemannian met-
rics by prescribed Gaussian curvatures. Discrete surface Ricci flow generalizes the
curvature flow method from smooth surface to discrete triangular meshes.

Suppose Σ is a triangular mesh, we say the mesh exhibits a Euclidean (or hyper-
bolic) background geometry, if each face is a Euclidean (or hyperbolic ) triangle. A
discrete Riemannian metric on a mesh Σ is a piecewise constant metric with cone
singularities at the vertices. The edge lengths are sufficient to define a discrete Rie-
mannian metric, as long as the edge lengths satisfy the triangle inequality for every
face.

The angles of each triangle are determined by the edge lengths. According to
different background geometries, there are different cosine laws. For simplicity, in
each face [vi,v j,vk], we use ei to denote the edge against the vertex vi, and li to
denote the edge length of ei. The cosine laws are given as:

l2
k = l2

i + l2
j −2lil j cosθk E2

cosh lk = cosh li cosh l j− sinh li sinh l j cosθk H2

The discrete Gaussian curvature Ki on a vertex vi ∈ Σ can be computed as the
angle deficit as follows:

Ki =

{
2π−∑[vi,v j,vk]∈Σ θ

jk
i , vi 6∈ ∂Σ

π−∑[vi,v j,vk]∈Σ θ
jk

i , vi ∈ ∂Σ
(6.2)

100



where θ
jk

i represents the corner angle attached to vertex vi in the face [vi,v j,vk], and
∂Σ represents the boundary of the mesh.

The Gauss-Bonnet theorem still holds on meshes as follows:

∑
vi∈V

Ki +λ ∑
fi∈F

Ai = 2πχ(M), (6.3)

where Ai denotes the area of face fi, and λ represents the constant curvature for the
background geometry with values of 0 for the Euclidean geometry, and −1 for the
hyperbolic geometry.

Generally, we associate each vertex vi with a circle (vi,γi) centered at vi with
radius γi. On an edge [vi,v j], two circles intersect at an angle Θi j. During the
conformal deformation, the radii of circles can be modified, but the intersection
angles are preserved.

Let u : V → R be the discrete conformal factor, which measures the local area
distortion. If the vertex circles are with finite radii, then ui can be formulated as:

ui =

{
logγi E2

log tanh γi
2 H2 (6.4)

In the Euclidean case, the edge length is given by:

li j =
√

γ2
i + γ2

j +2γiγ j cosΘi j

In hyperbolic geometry, the edge length is given by [31] and [80]

li j = cosh−1(coshγi coshγ j + sinhγi sinhγ j cosΘi j)

In all configurations, the discrete Ricci flow is defined as follows:

dui(t)
dt

= (K̄i−Ki), (6.5)

where K̄i is the user defined target curvature, Ki is the curvature induced by the cur-
rent metric. The discrete Ricci flow has exactly the same form as the smooth Ricci
flow, which conformally deforms the discrete metric according to the Gaussian cur-
vature.

The discrete Ricci flow can also be formulated in the variational setting as a
negative gradient flow of a special energy form. This energy is called entropy energy
and is given by:

f (u) =
∫ u

u0

n

∑
i=1

(K̄i−Ki)dui, (6.6)
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where u0 is an arbitrary initial metric.
Computing the desired metric with user-defined curvature {K̄i} is equivalent to

minimizing the discrete entropy energy. The existence, uniqueness of the solution,
and the exponential convergence rate of discrete Ricci flow have been proved in
[31].

6.3 Algorithm

Based on the theory, this section explains the algorithmic pipeline of our Ricci
flow embedding of a graph onto a surface. We call the embedding surface as the
background surface. The topology of the background surface is determined by the
graph. There are three major stages, namely:

1. Embedding onto a topological surface

(a) Given an abstract graph G, we get initial GΠ0 (Π0 = {π0
1 ,π

0
2 , ...,π

0
n}) by

randomly assigning a cyclic permutation of the edges incident with vi.

(b) Using our genus reduction algorithm, we can reduce the genus of GΠ0

monotone and get the relative small genus GΠk .

(c) On the topological surface GΠk , the dual graph ˜GΠk of GΠk is computed.
Both GΠk and ˜GΠk form a quadrilateral tessellation of the topological
surface Σ.

2. Embedding onto a Riemann surface

(a) By using Ricci flow on Σ, a constant curvature Riemannian metric is
obtained.

(b) Depends on the topology of the Σ, the surface is embedded onto one of
the three canonical spaces using the constant curvature metric, namely
the sphere S2 (genus 0), the plane R2 (genus 1), or the hyperbolic space
H2 (high genus). Finally, the canonical fundamental polygon is com-
puted.

3. Embedding onto a surface in R3

(a) The fundamental polygon obtained is used to embed the graph onto the
corresponding surface in R3, namely genus zero graph to a unit sphere,
genus one graph to a torus and high genus graphs to various surfaces
based on their genus number.

Figure 6.5 illustrates the different steps of the pipeline. We will now elaborate
each of these stages in more detail.
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Figure 6.5: Three major stages of the algorithm pipeline for graph embedding: stage one
- the embedding of a graph G onto a topological surface; stage two - the embedding of the
graph onto a Riemann surface in R2; stage three - the embedding of the graph onto a surface
in R3.

6.3.1 Embedding on Topological Surface

In this stage, we compute the topological embedding surface of the input graph
G. There are two steps in the algorithm:

1. Initial Embedding Surface: We randomly choose a rotation system Π. We
then trace the edges to form the faces and obtain the initial embedding surface
GΠ.

2. Optimizing the genus : We apply a heuristic method to reduce the genus of
the embedding surface.

The key to minimizing the genus of the embedding surface is to maximize the num-
ber of faces. For this, we first find a special subset of vertices Ω, such that vi ∈ Ω

if and only if that there exists a face f of GΠ, such that vi appears in f for multiple
times. Then we apply a genetic algorithm to change the cyclic order of all vertices
in Ω. In practice, by applying the genetic algorithm, the genus can be reduced to be
one third of the initial value.

The graph GΠ defines a tessellation of the topological surface Σ. Each simply
connected component in the complement of GΠ in Σ is called a face. Using these
faces, the dual graph G̃Π can be constructed directly as follows: Each face of GΠ

corresponds to a vertex of G̃Π and each vertex of GΠ corresponds to a face of G̃Π.
Each edge of GΠ separates two faces, that is, there exists an edge connecting the
two face vertices in G̃Π.

We call the union D := GΠ∪ G̃Π as the overlapping graph. As shown in Figure
6.6, on the overlapping graph D, there are three types of nodes:

1. Vertex node vi corresponding to a vertex in GΠ, is represented as a red round
dot.

2. Face node f j corresponding to a face in GΠ, is represented as a green round
dot.
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Figure 6.6: Different steps illustrating the embedding a planar graph (genus 0) onto the
sphere. (a) Input graph and its dual; (b) The reduced graph; (c) Ricci flow result; (d)
Spherical embedding.

3. Edge node ekl
i j corresponding to an intersection of an edge [vi,v j] in GΠ, and

an edge [ fk, fl] in the dual graph G̃Π, where [vi,v j] is the common edge of the
faces fk and fl .

Each facet on the overlapped graph D is a topological quadrilateral, with two edge
nodes, one vertex node vi and one face node f j, we denote the quadrilateral as
2(vi, f j). By adding the diagonal connecting vi and f j, each quadrilateral is divided
to 2 triangles, thus obtaining a triangulated graph. Let us denote this triangulated
graph by R. All the following steps are carried out on this triangulated graph.

Figure 6.6(a) shows an example of the overlapping graph. The k-th vertex is
labeled as k, and the j-th face is denoted as f j. Note that, face f8 represents the
infinite face.

6.3.2 Embedding onto Riemann Surface

In this stage, Ricci flow is run on the triangulated graph, R, that is obtained from
the previous stage. Each triangle has one vertex node vi, one face node f j and one
edge node ek, [vi, f j,ek], as shown in Figure 6.7.

Ricci Flow

Circle Packing Metric For each vertex node vi, we associate a circle C(vi,γi),
centered at vi with radius γi. For each face node f j, we associate a circle C( f j,γ j),
centered at f j with radius γ j. For each edge node ek, we associate a circle with
zero radius all the time, denoted by C(ek,0). The circles associated with the vertex
node and the face node intersect each other at a right angle. The intersection angle
between the circles associated with the edge node and all other circles is zero.
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Figure 6.7: Circle packing metric for Euclidean and Hyperbolic Ricci flow.

Hessian Matrix The Ricci flow is computed by optimizing the corresponding
Ricci energy. For this optimization, Newton’s method is employed. In order to
use Newton’s method to optimize the Ricci energy, we need to compute its Hessian
matrix.

For Euclidean Ricci flow, the elements of the Hessian matrix are given by:

∂θi

∂u j
=

h
lk
,
∂θi

∂ui
=− h

lk
,

For hyperbolic Ricci flow, the elements of the Hessian matrix are given by:

∂θi

∂u j
= − sinhri sinhr j

cosh2 ri cosh2 r j−1
(6.7)

∂θi

∂ui
=

coshri coshr j sinhri sinhr j

cosh2 ri cosh2 r j−1
. (6.8)

Boundary Condition If the triangulated graph, R is of genus one, then we use
Euclidean Ricci flow, such that the target curve is zero for all nodes. Similarly, if
the triangulated graph, R is with high genus, then we use hyperbolic Ricci flow with
zero target curvature everywhere.

If the input graph is a planar graph, then the triangulated graph, R is of genus
zero. In this case, some preprocessing is needed as follows. Figure 6.6 shows the
results of different steps for embedding a genus zero (planar) graph onto a spherical
surface (R3). We select one edge node to be mapped to the infinity point. We call
it the infinity edge node and denote it as e∞. The choice of the edge node could be
arbitrary. Figure 6.6(b) shows an example when the edge node e∞ = [v1,v2]∩ [ f1, f8]
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(a) (b)

Figure 6.8: Embedding a genus one graph onto a torus. (a) Shows the flattening of the
genus one graph onto R2; (b) Shows the final embedding of the genus one graph onto a
torus (surface in R3)

is selected as the infinity edge node. Suppose the infinity edge node is given by
e∞ = [vi,v j]∩ [ fk, fl], then we remove all the quadrilateral facets adjacent to vi,v j or
fk, fl in the overlapping graph D, to get the reduced graph Ḡ. Now, there are four
quadrilaterals adjacent to e∞, each quadrilateral having a unique edge node other
than e∞. Let these edge nodes be denoted as {e1,e2,e3,e4}. The target curvature is
set to be π

2 for these four nodes, and zero everywhere else, including the boundary
nodes.

Embedding in Constant Curvature Space Once the boundary conditions of the
triangulated graph R are decided for different genus cases (0, 1 and greater than
1), we map R to a plane R2 or a hyperbolic plane H2, consequently obtaining the
canonical fundamental polygon.

Genus Zero For genus zero graph, the graph R is flattened onto a plane. We
choose a root face randomly, and embed it onto the plane isometrically. The neigh-
bors of this face are then enqueued into a queue. When the queue is not empty, we
pop the first face, say [vi,v j,vk]. Two out of the three vertices of this face must have
been embedded already. Let these two vertices be vi and v j. Then vk is the intersec-
tion of two circles (vi, lik) and (v j, l jk) and the normal of vi,v j,vk is consistent with
that of the plane. After embedding this head face, we check all the faces sharing an
edge with it. If they have not yet been embedded, then they are enqueued into the
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queue. By repeating this procedure, we flatten face by face, and eventually flatten
the whole mesh onto the plane. The planar image, thus obtained is a rectangle.

Genus One If the graph R is of genus one, then the corresponding cut graph
Γ is used to find the embedding. We compute the cut graph Γ of R as follows.
Essentially, if two faces share a common edge, then one can go from one face to the
other. We first choose a root face. Starting from this face, we then perform a breadth
first search to transverse all the faces of the triangulated graph R. Finally, all those
edges which have not been covered during the search form the cut graph. In the
next step, we prune the cut graph to remove all the dangling edges. The vertices
in graph R whose valence in Γ is greater than 2 are defined as the nodes of the cut
graph Γ. These nodes separate the cut graph into segments. Let these segments be
denoted by {s1,s2, · · · ,sn}.

We then slice open the graph R along the cut graph to obtain a simply connected
graph R̄. R̄ is then isometrically flattened onto a plane in the way similar to genus
zero case. The resulting planar image of R̄ is still denoted as R̄.

Each segment sk ∈ Γ has two images on the boundary of R̄, denoted as s+k and
s−k . There exists a rigid motion ηk which maps s−k to s+k . All such rigid motions
combinedly form a group called the Deck transformation group. By acting the
group dynamics on R̄, we can cover the whole plane.

We apply all ηk’s and η
−1
k ’s to cover a finite portion of the universal covering

space of R, denoted by R̃. We then choose a base vertex v0 on R arbitrarily and com-
pute a set of canonical fundamental group generators using the method by Lazarus
et al. [97]. These generators are lifted to the covering space to obtain the funda-
mental domains, whose corner points are preimages of the base vertex. Finally, we
use straight lines to connect the corners to get the canonical fundamental polygon,
which is a parallelogram.

High Genus If the graph R is of high genus (greater than 1), the process of em-
bedding a finite portion of graph R onto the hyperbolic space and subsequently
computing a canonical fundamental polygon is very similar to the genus one case.

We compute a cut graph Γ of R and slice R along the cut graph to obtain a
simply connected mesh R̄. We then isometrically map R̄ to the hyperbolic space
H2. Later, the generators of the deck transformation group are computed by using
the segments of Γ. By acting the deck transformations on R̄ a finite portion of the
universal covering space of R is computed. We then choose a base vertex v0 on
R arbitrarily and compute a set of canonical fundamental group generators [97].
These generators are then lifted to the covering space to obtain the fundamental
domains. Finally, we use the hyperbolic geodesics to straighten the boundary of the
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fundamental domain, to get canonical fundamental polygon.
All the computations in this case are carried out using hyperbolic geometry. By

using the Poincaré disk model for hyperbolic plane, all hyperbolic ruler and com-
pass constructions can be converted to Euclidean ones. For detailed explanations
see [31, 80].

6.3.3 Embedding on a surface in R3

The canonical fundamental polygons obtained from the previous stage belong
to a genus zero, genus one or higher genus category. For a genus zero graph, the
background surface is the unit sphere. For a genus one graph, the background
surface is a torus T : [0,2π]→ [0,2π]→ R3,

T (u,v) = (r cos(u)cos(v)+Rcos(u),r sin(u)cos(v)+Rsin(u),r sin(v))

where r,R are the two shape parameters. We represent the torus using a triangular
mesh.

Finally, if for a high genus graph, say a genus g surface (g > 1), we compute
the union of g tori to construct the background surface S. Hence, in this case the
embedding is similar to the embedding in genus one case onto a torus but with
a union of g tori. We will now discuss embedding of genus zero and genus one
graphs onto the respective background surfaces, namely the sphere and torus. The
background surface for any high genus surface (genus greater than 1) differs based
on the genus number. The embedding itself is similar to the case of the genus one
graphs.

Genus Zero

Using the result from the previous step, for a genus zero graph G, the reduced
triangulated graph R is flattened onto a place which is a planar rectangle. We use a
stereographic projection to map the whole plane to the unit sphere as follows: S2,
τ : (u,v)→ (x,y,z)

τ(u,v) =
(

2u
1+u2 + v2 ,

2v
1+u2 + v2 ,

−1+u2 + v2

1+u2 + v2

)
.

where (u,v) is the coordinate system in the planar rectangle domain while (x,y,z)
is the coordinate system in the spherical domain. Stereographic projection maps
planar circles and lines to spherical circles. In Figure 6.6, let e∞ = [vi,v j]∩ [ fk, fl],
then the vertical lines of the rectangle are mapped to the vertex node circles of vi
and v j and the horizontal lines correspond to the face node circles of fk and fl .
Thus, the graph is embedded on a unit sphere as shown in Figure 6.6(d).
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Genus One

In case of genus one graph, the embedding onto a background surface S is ob-
tained in a different manner. Suppose we were to construct a background surface S.
We then apply Ricci flow to this background surface to find its flat metric and flatten
a portion of its universal covering space onto a plane. Thus, we obtain a fundamen-
tal polygon which is a parallelogram. Now we have a fundamental polygon of the
background surface S and fundamental polygons for the reduced graph R of a genus
one graph G. Both the fundamental polygons of the graph R and the background
surface S are parallelograms, denoted as Ω(R) and Ω(S) individually. Then we can
find a linear map τ : Ω(R)→Ω(S), which matches the two parallelograms.

We denote the mapping from the surface to its fundamental domain as φR : R→
Ω(R) and φS : S → Ω(S). Then, the mapping from graph R to the background
surface S is given by: φ : R→ S,

φ = φ
−1
S ◦ τ ◦φR.

Thus, φ embeds the input graph G onto the surface S in R3.

6.4 Results

In this section, we report our experimental results, which shows the efficacy
and efficiency of our method. The algorithms were implemented using C++ on
Windows platform. All the experiments were conducted on a CPU1.2GHz, 3GB
RAM laptop.

Genus Zero Examples Figure 6.9 shows the embedding result for a genus zero
graph. The graph has 3k nodes and 6k edges. Figure 6.9(a) shows the embedding
result onto a complex sphere using Ricci flow. Figure 6.9(b) shows the spherical
embedding result of the graph while Figure 6.9(c) shows the spherical embedding
of its corresponding overlapped graph. Figure 6.9(d) shows the spherical embed-
ding result with circle packing. The time cost taken for all the computations is 28
seconds. Out of this, the majority of the time was taken in the computation of Ricci
flow.

Genus One Examples Figure 6.10 shows the embedding results of a genus one
graph. The graph in 6.10 has 10K nodes and 18k edges. The Figure 6.10(a) shows
the embedding of the fundamental domains onto the plane. Figure 6.10(b) shows
the embedding of the graphs onto the torus. The total running time is around one
minute.
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(a) (b)

(c) (d)

Figure 6.9: Embedding of a genus zero graph showing (a) embedding onto a complex
sphere using Ricci flow, (b) spherical embedding of the graph itself, (c) spherical embedding
of its overlapped graph, (d) spherical embedding with circle packing.

High genus Figure 6.11 shows the embedding results of a genus two graph. Fig-
ure 6.11(a) shows the embedding result onto a Riemann surface H2/Γ, where dif-
ferent fundamental domains are color-encoded differently. The corresponding Deck
transformation group generators of Γ are shown in Table 6.1. Figure 6.11(b) shows
the final embedding of the graph onto a surface in R3.

Similar results are shown for more high genus graphs in Figure 6.12. Figures
6.12(a) and (b) show the embedding result of two genus two graphs onto Riemann
surfaces. The corresponding Deck transformation group generators for graphs in
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(a) (b)

Figure 6.10: Embedding of a genus one graph showing (a) embedding onto a plane, (b)
embedding in R3.

(a) (b)

Figure 6.11: Genus 2 graph embedding on (a) Riemann surface H2 and (b) surface in R3

(torus)
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(a) (b)

(c) (d)

Figure 6.12: Embedding results of two genus 2 graphs (a) and (b) onto Riemann surfaces.
Embedding results of two genus 3 graphs (c) and (d) onto Riemann surfaces.
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Table 6.1: Deck transformation group generators of the graph in Figure 6.11

Group real(z) img(z) θ

0 0.554278 0.784424 2.13226
1 -0.595666 0.638663 1.16896
2 0.959107 -0.0515265 -2.13223
3 0.820739 0.298469 -1.16883
4 0.763219 -0.536063 1.67342
5 0.92414 -0.274074 2.21251
6 -0.455089 -0.814097 -1.67339
7 0.333543 -0.904376 -2.21247

Table 6.2: Deck transformation group generators of the graph in Figure 6.12(a)

Group real(z) img(z) θ

0 0.473141 0.793373 1.68923
1 -0.0444407 0.926901 1.77595
2 0.843724 -0.376077 -1.68923
3 0.89841 0.232338 -1.77595
4 -0.511646 -0.718428 1.47841
5 0.241374 -0.875041 1.4262
6 -0.668161 0.575745 -1.47841
7 -0.90069 -0.112767 -1.4262

Figures 6.12(a) and (b) are shown in Tables 6.2 and 6.3, respectively. Similarly,
Figures 6.12(c) and (d) show the embedding result of two genus three graphs onto
Riemann surfaces. Their corresponding Deck transformation group generators are
shown in Tables 6.4 and 6.5, respectively.

Our graph embedding approach finds useful applications for visual graph com-
parison and dynamic graph visualization, particularly for genus zero graphs which
are embedded onto a sphere. The spherical embedding provides a novel way to
represent the nodes of the graph with circles on a sphere. In the next two sections,
we will show how our approach efficiently helps in visual graph comparison and to
easily identify regions of change in dynamically changing graphs. Note that all the
graphs used in the later sections are genus zero graphs (planar graphs). To clearly
illustrate the efficiency of our approach to visual graph comparison and dynamic
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Table 6.3: Deck transformation group generators of the graph in Figure 6.12(b)

Group real(z) img(z) θ

0 -0.423878 0.767216 1.16253
1 -0.867863 0.127443 1.39665
2 0.872451 0.0844032 -1.16252
3 0.275935 0.832636 -1.39664
4 0.140488 -0.936178 1.9649
5 0.636244 -0.688274 1.90233
6 -0.810489 -0.489155 -1.9649
7 -0.443586 -0.825681 -1.90229

Table 6.4: Deck transformation group generators of the graph in Figure 6.12(c)

Group real(z) img(z) θ

0 -0.483681 -0.846774 2.31836
1 -0.228992 -0.959415 2.51752
2 -0.949812 -0.220979 -2.31836
3 -0.746462 -0.644755 -2.51752
4 0.574592 -0.803201 2.53001
5 0.837867 -0.511424 2.44972
6 0.00927105 -0.987523 -2.53001
7 0.31892 -0.928367 -2.44972
8 0.0897692 0.93249 1.59591
9 -0.705865 0.527996 1.34124

10 0.93445 -0.0663243 -1.59591
11 0.674762 0.567205 -1.34124

graph visualization, we only use planar graphs and not high-genus graphs.

6.5 Visual Graph Comparison

Visual graph comparison is a challenging task which allows the users to vi-
sually answer the question whether two given graphs are isomorphic. In several
situations, researchers are confronted with the task of graph comparison to find out
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Table 6.5: Deck transformation group generators of the graph in Figure 6.12(d)

Group real(z) img(z) θ

0 0.684803 -0.664529 1.69622
1 0.911636 -0.204362 1.81809
2 -0.573648 -0.762549 -1.69622
3 0.0250182 -0.933926 -1.8181
4 0.277177 0.927289 2.24515
5 -0.13187 0.967995 2.29782
6 0.897412 0.362412 -2.24513
7 0.635588 0.741912 -2.29781
8 -0.954146 0.186617 2.30815
9 -0.919973 -0.315278 2.16587
10 -0.503332 0.831792 -2.30815
11 -0.776821 0.585064 -2.16585

if two graphs are indeed the same. Two graphs are said to be isomorphic or simi-
lar if there is a one-to-one structural correspondence between the nodes of the two
graphs. Generally, two similar graphs differ in terms of topology, node positions,
and ordering of the nodes, making it a non-trivial task to know if two given graphs
are similar. Graph matching methods provide an answer to this question algorithmi-
cally but do not provide any visual confirmation. It is always desirable to present the
matched graphs to the end users in a way that allows easy comparison. Our method
is a graph invariant deterministic approach which implies that applying our method
to the same graph any number of times will yield exactly the same graph layout, re-
gardless of the node ordering. Moreover, two similar graphs when embedded onto
a sphere using Ricci flow differ only by a Möbius transformation. Irrespective of
the order of the nodes our method results in the same node positions (represented
as circles on the sphere) for the same graphs, that is, two isomorphic graphs yield
the exact same visual layout. By a mere glance, users can immediately deduce that
the two graphs are exactly similar. This ability of our method also lets the users to
visually identify the regions that change in the graph, thereby facilitating dynamic
graph visualization (discussed in detail in the next section).

We illustrate the visual graph comparison ability of our method by using a sim-
ple graph shown in Figures 6.13(a) and (b). Figures 6.13(a) and (b) show two dif-
ferent layouts of the same graph. Both the graphs are isomorphic and structurally
similar, that is, all the nodes have the similar connectivity, yet they differ topo-
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(a) (b)

(c) (d

Figure 6.13: Illustration of visual graph comparison ability of our approach using two very
simple isomorphic graphs (a) and (b). Ricci flow circle packing layout (c) and (d) for (a)
and (b) respectively clearly showing the similarity between graphs.

logically. The similarity of the two graphs is not quite obvious by simple visual
observation of the two graphs. In addition, the nodes have been ordered differently
as shown by their labels. Figures 6.13(c) and (d) show the Ricci flow embedding
for the graphs in Figures 6.13(a) and (b), respectively. It can clearly be seen that
both the results look exactly similar visually, thus confirming that both the graphs
are indeed the same. The edges (connectivity), the nodes and their corresponding
labels have also been shown to provide further confirmation. One can notice that
the two graph embeddings are similar not only in terms of structural connectivity
of nodes but also have equal radius for circles representing the same nodes in both
the graphs. Moreover, the user can rotate, zoom, apply Möbius transformation to
the embedding on the sphere to visually compare and deduce the similarity between
two graphs.

Figures 6.14(a) and (b) show two different layouts of a same graph representing
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(a) (b)

(c) (d)

Figure 6.14: Ricci flow graph layout (c) and (d) of two isomorphic graphs (a) and (b)
respectively. It is difficult to see the similarity between (a) and (b) but by using our approach
the similarity is clearly captured by simple visual observation.

real-world data. It is a sub-graph of a graph representing email transactions. The
node labels are also removed to increase the difficulty. This illustrates that finding
a correspondence between the nodes is extremely difficult by simple observation,
especially with larger graph size and no node labels. Figures 6.14(c) and (d) show
the Ricci flow layouts for the graphs in Figures 6.14(a) and (b), respectively. The
node positions are consistently placed on the sphere, thereby aiding a very good
visual graph matching and comparison. Colors have also been assigned to the cir-
cles to further aid the visual graph comparison. Two corresponding nodes in the
two graphs have the same color and same circular radius, thus providing a visual
evidence of successful graph matching. The added color information for the nodes
helps to establish correspondences between the nodes of the two graph even without
any additional information such as the node labels or attributes.

117



6.6 Dynamic Graph Visualization

Dynamic graph visualization is a more recent topic of research and it addresses
the problem of graphs changing over time where vertices and edges are added and
removed over time. Our Ricci flow based embedding provides a consistent and
stable graph layout for all the time steps which helps in efficiently capturing the
evolution of dynamic graphs. The overall layout is not affected by the local struc-
tural changes and the mental map of the graph is preserved. As a result, the users
can easily estimate the regions of the graph and how much of the graph changes by
simple visual observation.

The two important criteria to be considered for visualizing dynamic graphs are
readability and mental map preservation. Readability refers to graph embedding for
individual time steps such that there are no edge crossings and no node overlaps.
The mental map refers to the cognitive model of the graph that the user creates
internally. Preservation of mental map for dynamic graphs is commonly defined
as minimising the movement of nodes between time steps. It can be achieved by
ensuring that nodes that appear in consecutive graphs in the sequence remain in
more or less the same positions, so that they can easily be identified as the same
nodes over time. Research has shown that it is a difficult task to get an acceptable
consensus between these two criteria. If each of the individual time steps is em-
bedded without regard to the changes, the position of the nodes change drastically
and the mental map is disturbed. On the other hand if the position of nodes is fixed,
individual graph embedding will involve lot of edge crossings. Several studies have
also showed that it is important to have a consistent mental map over all the time
steps of the dynamic graphs [9, 10]. Not having a consistent mental map can cause
confusion and make it difficult to track and observe changes in dynamic graphs.
Our Ricci flow based graph embedding method achieves a stable graph layout with
no edge crossings and preserves the mental map over all time steps. As a result, the
differences between the original and modified graphs are easily comprehended by
the user.

The stability of our embedding approach helps to visualize the following in
dynamic graphs: (1) the region of change in the graph between time steps; (2)
mental map preservation; (3) track the progress of a node or a set of nodes over
time. We use a simple graph to illustrate all the above shown in Figure 6.15(a).
For the sake of illustration, we manually made minimal changes to the graph by
inserting a node or two at each time step to obtain three modified versions of the
graph as shown in Figures 6.15(b), (c) and (d), thus forming a sequence of graphs
representing three progressive time steps. We use color to highlight the regions of
change between two graphs from different time steps. Archambault et al.[30] and
Zamen et al.[45] confirmed that changes between two graphs are best highlighted by
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(a) (b)

(c) (d)

Figure 6.15: Dynamic graph visualization using manually generated sequence of graphs
depicting four different time steps, (a), (b), (c) and (d). The regions of change are high-
lighted in green. In order to see the local adjustments made by our approach some of the
nodes are highlighted in orange and light blue.

using color. All the regions of change between adjacent time steps are highlighted
using green color. It should be noted that the green highlighting only indicates the
regions of the graph that have been affected and do not indicate what exactly the
changes are. The green highlighting serves more as bookmarks for the users to
detect the structural changes in the graph. Since the graph layout remains stable
at all time steps, highlighting only the regions of change easily draws the users’
attention to regions of the graph that are changing. The green regions typically
indicate how many regions have been affected by the changes, approximately which
portion of the graph is being affected, and the nodes whose connectivity (structural
information) has changed. Red or grey color is used to indicate the rest of the graph
that is not affected by the structural changes between time steps.

The users can focus on the regions highlighted in green and by virtue of our
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method can easily identify the changes by simple visual observation as shown by
the graphs in Figures 6.15(b), (c) and (d). This simplicity of being able to observe
the changes in dynamic graphs, is in itself a contribution on its own. We mimic
the approach of small multiples to show all the graphs in the sequence side-by-
side with all the regions of change indicated in green. When nodes are inserted
or removed, our method makes local adjustments to maintain the overall layout.
Figures 6.15(b), (c) and (d) show that the radius of some of the nodes change, some
examples of which are highlighted by the circles in orange and light blue color. The
key feature of our approach is the preservation of mental map of the graph and our
algorithm ensures this by locally altering the radius of some of the nodes. However,
there is no or minimal change in the position of the nodes which helps in tracking
the nodes over all the time steps easily. Figure 6.15 also illustrates that overall graph
layout remains intact regardless of the changes, thus preserving the mental map.

(a) (b) (c)

Figure 6.16: Ricci flow based embedding of a dynamic graph for three time steps in se-
quential order (a), (b) and (c). The changes in the graph between time steps are highlighted
using green, as shown in (b) and (c). The zoomed part of the regions enclosed by the blue
box is shown in the bottom row. Three nodes highlighted using light blue, pink and orange
colors in (a), (b), (c) are used as query nodes and are tracked over all time steps. The mental
map of the graph across time steps is preserved, despite the changes.

Figures 6.16(a), (b), and (c) illustrate the dynamic graph visualization of a real-
world graph for three progressive time steps. The zoomed regions enclosed in blue
boxes are shown so that the changes can be noticed clearly. All the regions of
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change between adjacent time steps are highlighted in green color. Figure 6.16 also
shows that the overall layout of the graph is not disturbed much due to the changes.
Our method is not just adept in identifying the regions of change between adjacent
time steps but it can identify the changes between any two time steps. Any two
time steps can be chosen and the corresponding regions of change between them
are highlighted.

Graphs consist of some nodes that are not affected over time and remain in the
graph from beginning to end. Sometimes it is desirable to track such nodes. By
virtue of our method, the layout of the graph is unaffected by the local structural
changes and hence a particular node or a set of nodes can be tracked over time. The
user can highlight a node or a specific set of nodes by selecting the corresponding
circles. The user needs to highlight the nodes of his interest in one of the time steps
and the same nodes are highlighted in all the time steps automatically. The position
of these nodes, the change in their radii, and the change in their connectivity can be
tracked over all the time steps. An illustration of this can be seen in Figure 6.16.
Three nodes have been chosen for tracking by highlighting them using orange, pink
and light blue colors as shown in Figures 6.16(a), (b) and (c). There is no change in
the pink and orange nodes between Figures 6.16(a) and (b) but there is a noteworthy
change for the light blue node. Both the radius and the connectivity of the light blue
node have slightly varied due to the changes in the graph around it. For the same
reason, there are changes in the orange and pink nodes between Figures 6.16(b) and
(c).

6.7 Sensor Networks

In recent years, there has been a fantastic growth in the use of mobile devices
with wireless sensor capabilities. As a result, participatory sensing applications
have gained lot of interest. The participatory sensing has applications in monitor-
ing health and wellness, increase public awareness on civic issues, capture road
traffic and transportation data (which is vital for monitoring the traffic flow and de-
velopment of projects such as google car) etc. In addition, interest has also been
developed on studying and monitoring the change in the connectivity between the
sensor networks caused due to various factors such as mobility, environmental fac-
tors and power issues. All the aforementioned applications deal with large range
of wireless sensor networks. By using our layout and visualization approach we
are able to explore, observe and study the mobility, link dynamics and connectivity
changes for sensor networks over time.

The graph data is obtained by simulating a sensor network scenario under spe-
cial constraints. Each node in the graph indicates a specific device. All these de-
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(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

Figure 6.17: Hourly snapshots of a sensor network data for five hours. (a1)-(e1) show
the regions of change between adjacent time steps highlighted in green. All the unaffected
regions are shown in red. (a2)-(e2) show the regions of change (in green) between adjacent
time steps by additionally assigning colors to other nodes. Colors help to visually notice
the correspondence between the nodes across all the time steps. (a3)-(e3) track the progress
of some query nodes, highlighted in blue, over all time steps.

vices keep moving and have variable power levels. We used a defined geographical
boundary for our simulation and any device that goes out of this boundary is said
to have left the network. All the devices which are in 1-hop connectivity range of
other devices are connected by an edge. If any device leaves the network, changes
its position or loses power, the connectivity of the neighboring devices is changed
and is updated accordingly.

Our approach yields, what we term as a navigable snapshot of the sensor net-
work. The graph layout helps the users to navigate and gain knowledge about the
topology of the network and hence the term navigable snapshot. Figure 6.17 shows
the hourly snapshots of the network for five hours using our method. Figures 6.17
(a1)-(e1) show the regions of change between adjacent time steps highlighted in
green and the rest of the nodes in red. This provides information regarding which
regions of the graph are being affected by the change and how much of the region
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is affected. Figures 6.17(a2)-(e2) provide the same information about the region
of changes but this time all the nodes are assigned color. Assigning color to the
nodes provides a visual correspondence between the nodes across all time steps.
Moreover, information about the changes in 1-hop connectivity of different nodes,
particularly around the regions of change, can be easily visualized. In addition, it
helps in tracking the progress of certain nodes of interest. Such tracking results
are shown in Figures 6.17(a3)-(e3). We have chosen a set of nodes highlighted in
blue as the set of query nodes in order to track the progress of these nodes. While
some of the nodes are not affected across time steps, some of the nodes disappear
after few time steps. Being able to visualize all the changes over all the time steps
simultaneously helps to know the regions of the network where the changes occur
more frequently, thereby differentiating more problematic regions of the network
from stable regions of the network.

We also collected a short, informal user feedback of our embedding approach
from 9 users (6 male and 3 female), out of which, 5 users were researchers in
the field of wireless sensor networks. We let them use our method to visualize
different kinds of data including the sensor network data. We asked them some
general questions such as: How do you like the visualization system? Does it help
in visualizing dynamic graph data? Does assigning colors to the nodes help to track
them over time? etc. The overall feedback was that our method provided a more
refreshing and natural way to visualize the data. Our approach was well liked by
the users. 3 of the users particularly mentioned that they were impressed by the
spherical interface for graph visualization. The researchers from sensor network
liked the representation of nodes as circles. They mentioned that it now allows them
to have additional information about the nodes such as the number of neighbors,
frequency values, bar charts etc. on the graph itself without having to make separate
tables.

123



Chapter 7

Conclusions and Future Work

7.1 Summary

A large amount of research has been done on manifold shape analysis using
spectral methods and diffusion based methods, such as heat diffusion and Laplace-
Beltrami operator. The heat diffusion method using the heat kernel have proven to
be successful shape analysis technique for 3D mesh models with modest resolution.
In contrast, there has been little research on shape analysis for volumetric data, and
hence the research here was performed to provide computationally efficient shape-
based volume analysis methods.

Presented herein were two methods for effective shape analysis using volumet-
ric data. The first method was a cumulative approach which is a modified heat
diffusion approach, called the cumulative heat diffusion. The diffusion of heat is
carried out by considering all the voxels as sources and the accumulated heat val-
ues after each time step is recorded. The final heat values of the voxels encode
the shape information and can be used to create a shape-based voxel classification.
The second method was a stochastic approach using a new set of diffusion parti-
cles, called the shapetons. The shapetons are diffused in a Monte Carlo manner
across the voxels. The shapeton propagation is guided by taking the local shape in-
formation into account (volume gradient operator) and hence the final accumulated
shapeton count of the voxels encode the shape information. The shape analysis
plays a crucial role in medical applications. The two shape analysis methods pre-
sented successfully demonstrate their application to medical analysis in the areas of
segmentation, shape-based transfer function design and tumor (polyp) detection in
colon.

Using a 3D mesh model of a colon presents problems during navigation, as oc-
clusions can cause questions to be raised as to one’s precise location. To mitigate
this problem, a map with no occlusions would be useful, and a 2D map would be
preferred so that the entire colon surface can be viewed at once. For this, a robust
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conformal flattening method was presented which will create an efficient 2D flatten-
ing of the colon surface. This shape-preserving flattened colon provides an effective
means of polyp visualization, detection and verification. Furthermore, the supine
and prone colon registration pipeline is made robust by utilizing this flattening al-
gorithm. The colon registration pipeline requires anatomical landmarks and feature
points to ensure consistent registration. Herein were presented techniques to au-
tomatically identify prominent anatomical landmarks on the colon surface, namely
the taeniae coli and the flexures. Also presented was a graph based approach to
identify a set of feature points on the colon surface using the haustral folds of the
colon.

Finally, a novel graph embedding approach was presented using Ricci flow that
helps to efficiently compute the global shape characteristics and topology of the
graphs. The approach is general, practical and theoretically rigorous. Furthermore,
the consistency of the approach successfully facilitated graph comparison by simple
visual observation and to easily track the local changes in dynamic graphs, particu-
larly for genus zero (planar) graphs.

7.2 Future Work

7.2.1 Short Term Plan

Controlled Stochastic Shape Analysis

In the stochastic shape analysis approach, the result obtained at the stable state
is the one with actual relevance than the results obtained at intermediate time steps.
This approach is not efficient in analyzing the shape information at different scales
(time steps). Figures 7.1(a) and (b) show the progressive results for the synthetic
cube data, obtained with increasing number of times steps using the cumulative
heat diffusion and the shapeton diffusion respectively. It can clearly be seen that
meaningful shape information is obtained in the intermediate stages of the cumu-
lative heat diffusion approach, whereas not much useful local shape information is
obtained in the stochastic shapeton diffusion approach. While the cumulative heat
diffusion captures the local shape information such as the corners and edges of the
synthetic cube data, no such information is captured using the shapeton diffusion
approach. Consequently, while different time steps are synonymous to different
scales in the cumulative approach, there is no such relationship between the time
step and the scale in the stochastic approach.

In the shapeton diffusion approach, the shapetons are randomly distributed ini-
tially. Though the diffusion of shapetons is guided by the volume gradient oper-
ator, the initial random distribution of the shapetons causes random results in the
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(a)

(b)

Figure 7.1: Comparison of progressive shape information obtained with increasing number
of time steps using (a) cumulative heat diffusion and (b) shapeton diffusion approach.

intermediate stages of the diffusion process. Moreover, the shapetons are not dif-
fused between the voxels and moved for a pre-defined distance per single time step.
One has less control of the diffusion process with this new definition of the time
step. However, the shape information obtained at the stable state after large number
of time steps is similar in both the cumulative and stochastic approaches. Hence,
as part of the future work, we plan to develop a method that allows a controlled
stochastic shape analysis and establishes a relationship between the shape informa-
tion at different scales and the time step.

Heat Visualization of Complex Volume Data

The cumulative heat diffusion captures the hierarchical shape information. How-
ever, when the level of complexity of the volume data increases, the number of
objects with different shapes also increases. In that case, the subtle variations of
shapes between different objects are all captured by the heat diffusion, which makes
the histogram difficult to analyze, as shown in Figure 7.2. We can see that the his-
togram is cluttered (circled in white) with many lines. Each of the lines corresponds
to one or many of the leaves of the bonsai tree. Due to this clutter, the leaves of the
bonsai cannot be classified perfectly.

For the future work, we are planning to explore alternate ways (for example con-
formal welding) to visualize the heat values in the cumulative heat diffusion process
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Figure 7.2: Bonsai dataset showing the leaves, trunk and the pot. The region circled in
white shows the cluttered area with the lines pertaining to the leaves of the bonsai tree.

so that shape information for complex volumetric data can be better visualized.

7.2.2 Long Term Plan

Automatic Parameter Selection

In the computation of the shape information, there is a parameter p, which de-
cides the boundary of an object, in the cumulative heat diffusion method. Whenever,
p is changed, the whole heat diffusion process needs to be re-run. The parameter
p should be selected based on the shape of the given data. It might be possible to
automatically determine the most proper p based on the boundary conditions in the
data. Furthermore, we also intend to focus on finding the optimum time step t. A
small time step t only depicts the local shapes. For a certain time step t (called
optimum time step), the voxels belonging to each object have the same heat. For
any time step bigger than the optimum one, the heat of the voxels will not change
and the extra iterations are a waste of computational time. The time step t is also
based on the shapes in a data. Proper estimations of p and t will be helpful in the
cumulative heat diffusion method and they are the future directions.

In the long term, we would like to analyze the shape information of each voxel
in synthetic datasets, such as a sphere, to map the shape information to particular
shapes. Based on the difference of the shape information and the shapes, we want
to construct a shape database. Using the shape database, it might be possible to
automatically identify a shape.
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Augmented Heat Diffusion

Heat diffusion is a powerful method of shape analysis and it can be used in
conjunction with other methods. Statistical methods, conformal welding, template
based methods and knowledge based methods have proven to be successful ap-
proaches for shape analysis by making use of already known shape information.
By augmenting the topological and geometrical shape information obtained with
these methods to heat diffusion, we can increase the accuracy of our results. As
of now heat diffusion is a successful classification method and only supports weak
segmentation. However, if the heat diffusion method is augmented with statistical
shape analysis methods such as principal component analysis or with prior knowl-
edge about the data, then it can also be used as a powerful segmentation tool.

In the long term, we would like to augment the previously successful meth-
ods with heat diffusion to not only obtain perceptually and semantically relevant
shape information but also achieve accurate segmentation and classification based
on shape.

Graph Embedding

It is an NP-hard problem to find a minimal genus embedding surface for a given
graph. In this work, we introduced some heuristic ideas to decrease the genus
of the embedding surface. However, the problem still remains challenging and
requires more research, particularly for large complicated graphs. In the long term,
we would like to explore better methods to smooth the embedding of graphs on
surfaces, and to reduce the genus of the embedding surfaces.
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Chapter 8

Appendix

8.1 Volume of the Region Formed by the Edge Weights

Let w1, w2 and w3 be the three weights which form a octavuspherical region.
Let the weight w1 be aligned in the direction of x−axis, the weight w2 be aligned
in the direction of y−axis and the weight w3 be aligned in the direction of z−axis.
Let φ be the angle measured along the latitudinal direction, that is, along the y− z
plane and θ be the angle measure along the longitudinal direction, that is, along the
x− y plane. The angle between all these weights is π

2 since it is a octavusphere.
Though the angle between all the weights in π

2 , we show the volume computation
for a general case by considering an arbitrary angle Φ ∈ [0, π

2 ] so that the equation
can be used to calculate the volume of any sub-region in the octavusphere. This in
turn is helpful in the binary search approach explained in Section 7.3. Hence, in the
general case, the angle φ will vary from 0 to Φ and the angle θ will vary from 0 to
π

2 . Using these limits, the volume of the region is given by the integral defined as
follows:

V =
∫

Φ

0

∫ π

2

0

∫ R

0
r2 · sin(θ)dr dθ dφ (8.1)

where r is the radius of an arbitrary point inside the sub-region of the octavusphere.
As described above, θ will be the angle formed by this radius r with w1 and φ will
be the angle between the projection of r on to the y−z plane and the weight w2. We
get rid of the variable r by integrating Equation 8.1 with respect to r in the limits 0
and R which would arrive us at the following equation:

V =
∫

Φ

0

∫ π

2

0

R3

3
· sin(θ)dθ dφ (8.2)

where R is a point on the curve joining the three weights and hence is defined in
terms of weights w1, w2 and w3 as follows:
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R =
w1 · (π

2 −θ)+A ·θ
π

2
(8.3)

where A is given by:

A =
w2 · (π

2 −φ)+w3 ·φ
π

2
(8.4)

By solving the integral in Equation 8.2, we get the volume of the region as:

V = − 1
12
· (384 ·w3

3 +1152 ·w2
2 ·w3−144 ·w2

2 ·π2 ·w3 +144 ·w2 ·π2 ·w2
3

+48 ·w3
2 ·π2−48 ·w3

3 ·π2−1152 ·w2 ·w2
3−384 ·w3

2)/π
6 ·Φ4

−1
9
· (576 ·w2 ·π ·w2

3−192 ·w1 ·π2 ·w2 ·w3 +144 ·w2
2 ·π3 ·w3

−576 ·w1 ·π ·w2
3−48 ·w1 ·π3 ·w2 ·w3−72 ·w3

2 ·π3 +24 ·w1 ·π3 ·w2
3

+96 ·w1 ·π2 ·w2
2−1152 ·w2

2 ·π ·w3−576 ·w1 ·π ·w2
2 +24 ·w1 ·π3 ·w2

2

+576 ·w3
2 ·π−72 ·w2 ·π3 ·w2

3 +96 ·w1 ·π2 ·w2
3

+1152 ·w1 ·π ·w2 ·w3)/π
6 ·Φ3− 1

6
· (96 ·w1 ·π3 ·w2 ·w3

−96 ·w1 ·π3 ·w2
2 +24 ·w1 ·π4 ·w2 ·w3 +96 ·w2

1 ·π3 ·w2

−576 ·w1 ·π2 ·w2 ·w3 +36 ·w3
2 ·π4−288 ·w2

1 ·π2 ·w2−36 ·w2
2 ·π4 ·w3

−24 ·w1 ·π4 ·w2
2−288 ·w3

2 ·π2−96 ·w2
1 ·π3 ·w3 +288 ·w2

2 ·π2 ·w3

+576 ·w1 ·π2 ·w2
2 +288 ·w2

1 ·π2 ·w3)/π
6 ·Φ2− 1

3
· (144 ·w2

1 ·π3 ·w2

+48 ·w3
2 ·π3 +24 ·w3

1 ·π4−48 ·w3
1 ·π3−w3

1 ·π6−48 ·w2
1 ·π4 ·w2

−6 ·w3
2 ·π5 +6 ·w1 ·π5 ·w2

2 +24 ·w1 ·π4 ·w2
2

−144 ·w1 ·π3 ·w2
2)/π

6 ·Φ (8.5)

Equation 8.5 is a general equation that can be used to evaluate the volume of
any sub-region in the octavusphere. This equation is used in the angle estimation
using the binary search approach explained in Section 7.3. However, if you want
to compute the volume of the entire octavusphere, it can simply be obtained by
replacing the value of Φ in Equation 8.5 with π

2 . Thus, the volume of the entire
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octavusphere is given by:

V =
1

12
· (2 ·w3

1 ·π3−16 ·w1 ·π ·w2
2 +48 ·w2

1 ·π ·w2

−16 ·w1 ·π ·w2
3−48 ·w3

1 ·π−16 ·w1 ·π ·w2 ·w3

+48 ·w2
1 ·π ·w3−24 ·w2 ·w2

3−4 ·w1 ·π2 ·w2
2

+3 ·w2
2 ·w3 ·π2 +96 ·w3

1 +96 ·w1 ·w2
2 +3 ·w3

3 ·π2

−144 ·w2
1 ·w2−24 ·w3

3 +3 ·w3
2 ·π2 +3 ·w2 ·w2

3 ·π2

−144 ·w3 ·w2
1−24 ·w2

2 ·w3 +96 ·w1 ·w2
3

−4 ·w3 ·w1 ·π2 ·w2−24 ·w3
2 +96 ·w1 ·w2 ·w3

−4 ·w2
3 ·w1 ·π2)/(π2) (8.6)

8.2 Area of the region formed by the edge weights

Let w1 and w2 be the edge weights. These edge weights along with the arc con-
necting them enclose the region whose area is to be evaluated. The angle between
these weights is π

2 . However, we evaluate the area by considering an arbitrary an-
gle, Θ between the weights to obtain a generalized formula for the area. Using this
formula, the area of any sub-region between the weights can be evaluated, which in
turn is used in the binary search approach explained in Section 7.3.

The weights are assumed to be linearly distributed based on the angles between
them. To find the area of the region formed by the weights and the arc joining
them, we consider an arbitrary position between them on the arc which indicates
the weight of an arbitrary direction between w1 and w2. Let us denote this by
w′. Assume the angle between w′ and w1 be θ . Since the weights are linearly
distributed, the value of w′ is given in terms of w1, w2 as follows:

w′ =
w1 · (π

2 −θ)+w2 ·θ
π

2

= w1 · (1− (
2 ·θ

π
))+w2 · (

2 ·θ
π

)

By varying θ between 0 and Θ, the area of the region is given by the following
integral:

A =
1
2
·
∫

Θ

0
w′2 dθ

=
1
2
·
∫

Θ

0
(w1 · (1− (

2 ·θ
π

))+w2 · (
2 ·θ

π
))2 dθ

=
1
2
·
∫

Θ

0
[w2

1 · (1−
2 ·θ

π
)2 +

4 ·w2
2

π2 ·θ
2 +4 ·w1 ·w2 ·

θ

π
· (1− 2 ·θ

π
)]dθ
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Finally, solving this integral in the limits we obtain the area of the region as:

A =
2

3 ·π2 · (w2−w1)
2 ·Θ3 +

1
π
·w1 · (w2−w1) ·Θ2 +

1
2
·w2

1 ·Θ (8.7)

As mentioned earlier, Equation 8.7 is a general equation used to find the area of
the region formed by the edge weights when the angle between them is any arbitrary
angle Θ. Equation 8.7 is used in area computation for angle estimation by using the
binary search approach explained in Section 7.3. However, for the whole sector,
the angle between the weights enclosing the region will be π

2 . Then, the area of the
whole sector is obtained by replacing Θ of Equation 8.7 with π

2 , which is given by:

A =
1

48
· (2 ·w1

π
− 2 ·w2

π
)2 ·π3 +

1
8
·w1 · (

2 ·w2

π
− 2 ·w1

π
) ·π2 +

1
4
·w2

1 ·π

=
π

12
· (w2

1 +w2
2 +w1 ·w2)

In the algorithm in Section 3.2, w2 should be replaced with W ′ to obtain the area
of the sector (Refer to Equation 3.9 of Section 3.2).

8.3 Binary search

In general, binary search is used to find the position of a specific value in a
sorted array of values. This is achieved by recursive comparison of the value with
the middle element of the array and discarding a half of the array in each iteration.
In the approach, we employ this technique with a slight modification to estimate
the value of the angle that evalutes an area or volume. Let θ be the angle to be
computed, A denote the total area or total volume of the region under consideration,
α be the angle enclosing the total region whose area or volume is A and A′ be the
area or the volume of the sub-region defined by θ . In all the evaluations the value
of α is π

2 . Let α i1/2 represent the half angle at ith iteration and A i1/2 represent
the corresponding area or volume of the region defined by α i1/2. The intial value
of half angle, which is given by α 01/2 is equal to α

2 . Hence, the initial value of
A i1/2, which is given by A 01/2 denotes the area or volume of the region defined
by α 01/2 =

α

2 . Here note that A 01/2 is not equal to A
2 , rather it is the area or the

volume of the region defined by half of the angle α

2 . The value of A 01/2 or in
general the value of any A i1/2 is computed by using Equations 8.5 (for volume)
or 8.7 (for area) in Sections 7.1 and 7.2, respectively.

In the first iteration, the value A′ is compared with the value A 01/2. In the
subsequent iterations, the value A′ is compared with the value A i1/2. If A′ is smaller
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than A i1/2, then the values of α i1/2 and A i1/2 are updated as follows.

α i1/2 = α (i−1)1/2−
α

(2i+1)

A i1/2 = Area/Volume of region defined by the
updated α i1/2 (8.8)

If A′ is greater than A i1/2, then the values of α i1/2 and A i1/2 are updated as
follows.

α i1/2 = α (i−1)1/2 +
α

(2i+1)

A i1/2 = Area/Volume of region defined by the
updated α i1/2 (8.9)

Based on these conditions, this process is repeated recursively until |A′−A i1/2|< ε

where ε is a threshold value. In the calculation, we choose the value of ε to be
0.01. Hence, in this approach we get an approximate estimate of the angle θ which
evaluates the area or volume A′. Since the area or volume of the region defined by a
larger θ value is greater than the area or volume of the region defined by a smaller
θ value, this approach of using the binary search to estimate the required angle is
justified.
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[111] L. Mroz, H. Hauser, and E. Gröller. Interactive high-quality maximum in-
tensity projection. Computer Graphics Forum, 19(3):341–350, 2000.

[112] C. Muelder and K.-L. Ma. Rapid graph layout using space filling curves.
IEEE Transactions on Visualization and Computer Graphics, 14(6):1301–
1308, 2008.

[113] Z. Nehari. Conformal Mapping. New York:Dover, 1982.

[114] A. Noack. An energy model for visual graph clustering. Proceedings of
Symposium on Graph Drawing, pages 425–436, 2003.

[115] S. C. North. Incremental layout in dynadag. Graph Drawing, 1027:409–418,
1995.
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