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Abstract of the Dissertation

On Selected Problems on Wireless Networks

by

Navid Hamed Azimi

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

This dissertation is a collection of several pieces of mostly unrelated projects
conducted during the several past years in Wings lab in Department of Com-
puter Science in Stony Brook University. The only common theme of these
various project is the use of wireless links as the underlying medium of com-
munication and building block of the network.

The first chapter is dedicated to the pice de rsistance of this thesis. The chapter
explores a practical and cost competitive method for constructing a mostly
wireless data center network. Conventional wired data center (DC) network
designs offer extreme cost vs. performance tradeoffs. Recent results make the
case for a promising alternative to the current dominant architectures where an
oversubscribed network is augmented with reconfigurable inter-rack wireless
or optical links.

Inspired by the promise of reconfigurability, the chapter presents FireFly, an
inter-rack network solution that pushes DC network design to the extreme on
three key fronts: (1) all links are reconfigurable; (2) all links are wireless; and
(3) the non-ToR switches are eliminated altogether. This vision, if realized, can
offer significant benefits in terms of increased flexibility, reduced equipment
cost, and minimal cabling complexity.
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In order to achieve this vision, one need to look beyond traditional RF wireless
solutions due to their large interference footprint which limits range and data
rates. Thus, this work make the case for using free-space optics (FSO). The
chapter demonstrates the viability of FSO by building a proof-of-concept pro-
totype of a steerable small form factor FSO device using commodity compo-
nents. In addition, it address practical algorithmic and system-level challenges
in network design and management to near-optimally leverage the benefits of
the FireFly vision.

The second chapter addresses the problem of preserving generated data in a
sensor network in case of node failures. The chapter focus on the type of node
failures that have explicit spatial shapes such as circles or rectangles (e.g.,
modeling a bomb attack or a river overflow). Two different schemes for in-
troducing redundancy in the network is considered, simply replicating data
or by using erasure codes, with the objective to minimize the communication
cost incurred to build such data redundancy. It is proven that the problem is
NP-hard using either replication or coding. A O(α)-approximation algorithm
for each of the schemes is proposed, where α is the “fatness” of the potential
node failure events. In addition, a distributed approximation algorithm using
erasure codes is designed. Simulation results show that by exploiting the spa-
tial properties of the node failure patterns, one can substantially reduce the
communication cost, compared with resilient data storage schemes in the prior
literature.

The third chapter studies the effect of introducing delayed scheduling of user
traffic on the performance of broadband cellular networks. The work is moti-
vated by the studies which have indicated the traffic load on the cellular base
stations varies significantly over time. This gives an opportunity to accom-
modate additional traffic with the same network capacity if some of the traffic
(e.g., p2p, cloud sync) can be amenable to delayed scheduling without hurt-
ing the user experience any significantly. In this chapter, various algorithmic
problems that can arise in this context is studied. Using a model where all
flows can have certain flexibility in scheduling (via use of a deadline), optimal
or near-optimal algorithms to determine the minimum network capacity for
two different models is developed. In addition, various semi-online and online
algorithms for online scheduling of flows, and analyze their performance are
developed.

In particular, even though the online scheduling problem is shown to be in-
tractable, the proposed semi-online algorithm can schedule flows optimally
if aided by historical data and slightly additional network capacity over the
optimal. Finally, using flow level traffic traces collected at the core of a com-
mercially operated cellular network, the effectiveness of these techniques is
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evaluated. Evaluations show that delayed scheduling, when done efficiently
(using an offline optimal algorithm), can accommodate the same traffic with
much lower network capacity (up to 50only modest delays. While such an
optimal solution needs an offline approach, one can demonstrate that online
scheduling can be almost equally effective when historical traffic data can be
exploited for estimation purposes.

The fourth chapter studies the problem of channel assignment in femtocells.
Femtocells are short-range devices deployed to provide increased coverage and
capacity in a small area. They offer a way to increase the capacity of a cellular
network by relaying cellular traffic to the wired network. In this chapter, the
problem of optimizing the overall capacity of a femtocell network, as defined
by Shannon’s law and physical interference, by appropriate power and channel
assignment to the femtocells is studied. In particular, an approximation algo-
rithm for the objective of maximizing the total network capacity is designed
for large uniform networks with arbitrary coverage regions. The second ob-
jective of maximizing the minimum capacity at a femtocell in the network is
considered, and an algorithm for arbitrary networks is designed which has an
appropriate performance guarantee if there is a lower-bound on the distance of
any two femtocells. Through simulations, it is demonstrated the performance
of our designed algorithms by comparing them with a bound on the optimal
values.

The fifth chapter addresses the problem of optimal spectrum management in
continuous frequency domain in multiuser interference channels. The objec-
tive is to maximize the sum of user capacities. The main results are as follows:
(i) For frequency-selective channels, it is proven that in an optimal solution,
each user uses maximum power; this result also generalizes to the case where
the objective is to maximize the product of user capacities (i.e., proportional
fairness). (ii) For the special case of two users in flat channels, we solve the
problem optimally.
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FireFly: A Reconfigurable Wireless
Data Center Fabric using Free-Space
Optics
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1.1 Introduction
A robust data center (DC) network must satisfy several goals: high through-
put [1, 2], low equipment and management cost [1, 3], robustness to dynamic traffic
patterns [4–7], incremental expandability [8, 9], low cabling complexity [10], and
low power and cooling costs. With respect to cost and performance, conventional
designs are either (i) overprovisioned to account for worst-case traffic patterns, and
thus incur high cost (e.g., fat-trees or Clos [1, 2, 11]), or (ii) oversubscribed (e.g.,
simple trees or leaf-spine architectures [12]) which incur low cost but offer poor
performance due to congested links.

Recent work suggests a promising middleground that augments an oversub-
scribed network with a few reconfigurable links, using either 60 Ghz RF wire-
less [5, 6] or optical switches [7]. Inspired by the promise of these flexible DC
designs,1 we envision a radically different DC architecture that pushes the network
design to the logical extreme on three dimensions:
1. All inter-rack links are flexible;
2. All inter-rack links are wireless;
3. We get rid of the core switching backbone!

This extreme vision, if realized, promises unprecedented qualitative and quan-
titative benefits for DC network operators and applications. First, it can reduces
infrastructure cost without compromising on performance. Second, topological
flexibility increases the effective operating capacity and can improve application
performance by alleviating transient congestion. Third, it unburdens DC operators
from dealing with operational headaches from cabling complexity and its atten-
dant overheads (e.g., obstructed cooling) [10]. Fourth, it can enable DC operators
to experiment with, and benefit from, new topology structures that would other-
wise remain unrealized because of cabling costs. Finally, the ability to flexibly turn
on/off links can take us closer to the vision of energy proportionality (e.g., [13]).

This chapter describes FireFly ,2 a first but significant step toward realizing
this vision in practice. Figure 1.1 shows a high-level overview of FireFly. Each
ToR is equipped with reconfigurable wireless links which can connect to other ToR
switches. However, we need to look beyond traditional radio-frequency (RF) wire-
less solutions (e.g., 60GHz) as their interference characteristics limit range and ca-
pacity. Thus, we envision a new use-case for Free-Space Optical communications
(FSO) as it can offer very high data rates (tens of Gbps) over long ranges using low
transmission power and with low interference footprint [14]. A logically central-
ized FireFly controller reconfigures the topology and forwarding rules to adapt to
changing traffic patterns.

1We use the terms flexible and reconfigurable interchangeably.
2FireFly stands for Free-space optical Inter-Rack nEtwork with high FLexibilitY.
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Figure 1.1: High-level view of the FireFly architecture. The only switches are the
Top-of-Rack (ToR) switches.

While prior work made the case for using FSO links in DCs [15, 16], these
fail to establish a viable hardware design and also do not address practical network
design and management challenges that arise in reconfigurable designs. Our work
bridges this gap along three dimensions:

• Practical steerable FSO devices (S1.3): Commodity FSO designs are bulky,
power-hungry, and offer fixed point-to-point links. Our vision imposes new
form-factor, cost, and steerability requirements which are fundamentally dif-
ferent from traditional FSO use-cases. To this end, we establish the viability
for a small-form factor FSO design which repurposes commodity optical de-
vices. We demonstrate two promising “steering” technologies using switchable
mirrors [17] and Galvo mirrors [18].
• Network provisioning (S1.4): Given budget and physical constraints, the Fire-

Fly network hardware must be suitably provisioned to handle unforeseen traffic
patterns. Here, we argue that flexible network designs should strive to optimize
a new notion of dynamic bisection bandwidth. While it is hard to analytically
reason about network topologies that optimize this metric, we show that random
regular graphs are surprisingly good in practice.
• Network management (S1.5,S1.6): The FireFly controller needs fast and ef-

ficient topology selection and traffic engineering algorithms to optimally adapt
to changing traffic conditions. However, state-of-art off-the-shelf solvers fail to
scale beyond 32-rack DCs. Thus, we develop fast heuristics that achieve near-
optimal performance (S1.5). In addition, the FireFly controller must ensure
that performance is not adversely impacted during reconfigurations. We design
simple but effective mechanisms that ensure that the network always remains
connected, there are no black holes, and that the per-packet latency is bounded.

We evaluate our FSO prototype using a range of controlled lab experiments
and a longitudinal study in a real DC setting. We find that the links are robust to
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real environmental disturbances and achieve wireline-equivalent throughput, and
the steering mechanisms are fast, precise, and accurate. We evaluate the end-to-
end performance of FireFly using a combination of detailed packet-level simula-
tions [19], large scale flow-level simulations, and virtual emulation platforms [20].
We compare FireFly against state-of-art “augmented” designs and overprovisioned
DC architectures. Overall, we find that FireFly can achieve close-to-optimal perfor-
mance of a full bisection bandwidth network at 40-60% cost, and can outperform
existing augmented architectures by up to 1.5× on realistic workloads.

Even looking beyond the (favorable) cost and performance, we believe there
is value in exploring this research agenda—FireFly is an enabler that fundamen-
tally changes DC designs by eliminating the “pain points” of constantly manag-
ing/upgrading core switches, rethinking topologies for higher data rate, and dealing
with cabling issues! We hope that our work establishes that all-wireless, coreless,
and fully flexible designs are not pipe dreams, and that the technology to achieve
this vision is within our reach.

1.2 Motivation and Overview
We begin with motivating key aspects of our vision: full flexibility, wireless links,
and use of free-space optics.

1.2.1 Case for Full Flexibility
A key intuition behind FireFly’s design is that a fully-flexible inter-rack network can
yield near-optimal bisection bandwidth even without any core (non-ToR) switches.

To provide the basis for this intuition, we consider an abstract model of a DC
network with n racks (and hence n ToR switches) and l servers per rack. We
consider two abstract DC designs: (a) FBB: a full-bisection bandwidth network,
and (b) Flexible(f ): an architecture with only ToR switches, each of which has f
flexible ports that can be rewired to connect another ToR switch. (The flexible ports
are in addition to the ports connected to the servers.)

Next, we evaluate the evacuation time (i.e., time to fully satisfy) a given inter-
rack traffic matrix. Computing evacuation time for FBB is straightforward as there
is no congestion. For Flexible(f ), we can compute the evacuation time optimally by
computing a sequence of reconfigurations (rewiring plus traffic engineering) using
bi-partite matchings. The reconfigurations are done at most once for each non-zero
matrix entry.

Using these algorithms, we compute the evacuation times over a range of syn-
thetically generated demand matrices. Figure 1.2 show the normalized performance
and cost of Flexible(f ) w.r.t. FBB, as we vary the number of flexible ports on each
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Figure 1.2: A fully-flexible network can offer optimal (full-bisection) performance
at a fraction of the cost.

ToR. We model the cost as a (constant) multiple of the total number of ports in
the architecture. The key takeaway is that the coreless fully-flexible Flexible(f )
architecture yields optimal performance when f is equal to the number of servers
per rack. At this point, its cost is only 40% of FBB; for a complete FatTree (i.e.,
n = l2/2 [1]. Note that this result is independent of the number of racks, number
of servers/rack, and the traffic distribution.3

An actual realization of Flexible(f ) will be less optimal because of limited flex-
ibility, non-zero reconfiguration latency, and other system-level inefficiencies. We
show that our instantiation of Flexible(f ) via FireFly results in only a minimal
degradation in this cost-performance tradeoff.

1.2.2 Case for Wireless via Free-Space Optics
To realize a Flexible(f )-like inter-rack network, conceptually we need a “patch-
panel” between racks. Of course, this is infeasible on several fronts: (1) it requires
very high fanout and backplane capacity (potentially nullifying the cost benefits),
(2) the cabling complexity would be high [10], and (3) it introduces a single-point
of failure [4, 21]. Thus, we turn to reconfigurable wireless links between the ToR
switches.

Given the trajectory of prior work, the seemingly natural solution is RF-based
wireless (e.g., 60GHz) [5, 6]. However, eliminating interference in RF links is
hard, even with highly directional antennas that use narrow beams [5, 6, 22]. In
effect, we need RF beams with angular divergence of about 1 milliradian, which in
turn requires antennas of unrealistic sizes—a few meters in size even in microwave
frequencies.This issue is fundamental due to the large wavelengths of RF and holds
for any RF band or technology. In addition, regulations over RF bandwidth and
transmit power further limit achievable data rates.

3We can analytically show that the normalized performance of Flexible(f ) w.r.t. FBB is
min(f/l, 1). We refer the interested reader to Appendix A.1.
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Such RF-specific limitations can be circumvented if we use a different part of
the EM spectrum with much lower wavelengths. In particular, free-space optics
(FSO) is a relatively established technology that uses modulated visible or infrared
(IR) laser beams [14]. Unlike traditional optical links, the laser beam is transmitted
through the air, instead of being enclosed in a fiber. It is possible to create very
narrow FSO beams resulting in minimal interference and power attenuation. Fur-
ther, optical spectrum is unregulated, with no bandwidth limitations. Thus, FSO
links can easily offer Gbps–Tbps bitrates at long distances (several kms) using low
transmit power (few watts) [14, 23, 24].

1.2.3 FireFly System Overview
Building on the previous insights, FireFly uses a fully-flexible inter-rack fabric en-
abled by wireless FSO links (Figure 1.1). FireFly uses traditional wires for intra-
rack connections. We assume an out-of-band control network to configure the ToR
switches and the FSO devices (e.g., [25]).
FSO Links. Each ToR is equipped with a number of steerable FSO devices. We
exploit the space above the racks to establish an obstruction-free optical path. To
ensure that the FSO devices do not obstruct each other, we use ceiling mirrors [5]
as shown in Figure 1.1. The requirements of such mirrors are quite minimal and
conventional mirrors work sufficiently well (S1.3).4 The FSO devices export APIs
to the controller for reconfiguration.
Network Provisioning. In the limit, we would like to have a very large number of
FSO devices per ToR. In practice, however, there are physical and geometric con-
straints. For instance, FSO devices will have a finite size that constrains the number
of such devices per ToR. Thus, we need to suitably provision or preconfigure the
network so that the network is robust to future (and unforeseen) traffic patterns.
Network Management. The FireFly controller dynamically selects the runtime
topology and configures forwarding paths, based on prevailing traffic demands and
events. Following prior work, we leverage software-defined networking (SDN) ca-
pabilities to implement the FireFly data plane [26–28]; i.e., each ToR switch in
FireFly is SDN-capable. Each SDN-capable ToR switch also reports observed traf-
fic demands to inform the controller logic. FireFly can use other demand estimation
algorithms; e.g., host buffer sizes [28] or new switch features [27]. Since our focus
is on FireFly-specific aspects, we do not discuss these extensions.

In the following sections, we describe the design of a viable steerable FSO link,
network preconfiguration, and run-time network management.

4One alternative to a ceiling mirror is to vertically position the FSO devices on each ToR at
different heights to avoid obstructing each other. We do not explore this in this work.
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Figure 1.3: FSO link design, prototype and performance. (a) Optical path and
associated networking gear (drawing not to scale). (b) One end point of the 10 Gbps
link prototype running in a DC over ≈ 20m); the inset shows a zoomed in version.
The FSO link connects to a similar set up on the other end. (c) Distribution of per-
sec TCP throughputs on a 10 Gbps FSO link over ≈ 20m on optical bench (Lab)
and DC racks (DC), over days of continuous runs. Throughput distribution on wired
optical fiber is used for comparison.

1.3 Practical Steerable FSO Design
In order for the FireFly vision to deployed in a DC, the FSO devices must ideally
have a small form factor (e.g., so we can pack several devices on each ToR), be low-
cost commodity devices (e.g., as we envision thousands of such devices in a single
DC), with low power footprint relative to traditional switches, and be steerable to
enable flexibility.

At first glance, these requirements seem to be fundamentally at odds with the
trajectory of today’s commercial FSO devices [29]. They are bulky, expensive, and
power-intensive. The main technical challenge has been that achieving robust links
at high data-rates and long ranges (a requirement in both traditional deployments
and FireFly) is hard. It has traditionally required relatively powerful lasers, expen-
sive and custom mechanisms for dynamic alignment for outdoor use. The problem
in context of FireFly is even more challenging, since FireFly requires steerable links
while the conventional FSO deployments target fixed point-to-point links.

In this section, we demonstrate (perhaps surprisingly) that (a) it is viable to
repurpose commodity DC-centric optical networking gear to establish robust and
sufficiently long FSO links in a DC, and (b) we can leverage existing commodity
optical technologies to steer the FSO beam with high precision and low latency.

1.3.1 FSO Link Engineering
As a first step, we demonstrate that it is possible to engineer an FSO optical
link using commodity DC-grade optical networking equipment that can achieve
high data rates, at ranges sufficient for DC-scale deployment, and with sufficient
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(mis)alignment tolerance. The intuition on why this is technically feasible without
the additional overheads in commercial FSO devices, is that in the indoor controlled
DC setting concerns about outdoor environmental factors largely disappear! How-
ever, we do need to carefully design the optical path to balance the tradeoff between
the laser beam divergence and misalignment tolerance, as we discuss below.

We engineer the FSO system by coupling two optical fiber end points directly
with a free-space link without any opto-electric conversion thus saving on both
power and cost. This Fiber–FSO–Fiber link connects to standard optical intercon-
nect technology widely used in DCs (e.g., 10GBASE-SR). A typical example of
this interface is optical SFP (small form-factor pluggable) or its variants such as
SFP+.

This approach requires optical designs on both ends: (i) on the transmit side,
where the fiber ‘launches’ the laser beam in free space, and (ii) on the receive side,
where the laser beam is received into the fiber (Figure 1.3(a)). Normally, when the
laser beam comes out of the fiber into free space it diverges with a significantly large
angle. To minimize divergence, we collimate the beam using a suitably designed
lens located at its focal length from the transmitting fiber endpoint.5 A similar lens
near the receiving fiber end point focuses the beam back to the fiber.

The above optical design is done carefully to ensure that the laser beam main-
tains a sufficient width [31] so that it can tolerate minor misalignments due to rack
vibrations and other effects. However, this presents a tradeoff: wider beams can
tolerate misalignments better, but suffer from a poorer power density at the receiv-
ing end. The design we develop shows that a good balance is indeed possible using
optical SFPs used for long range fiber communications (e.g., 10GBASE-LR can
go up to 10 km). They use highly sensitive detectors that can work with very little
received power. Our current prototype (described below) has been tested for up
to about 20 m link length suitable for a small DC. The 20 m tests are primarily a
limitation of our lab set up, but the general design can easily extend to 100 m (see
Appendix A.2).

This approach satisfies all the design requirements except steering. The lens is
small (about 3 cm diameter) with focal length about the same. Even considering
additional hardware (e.g., mounts or adapters), the footprint of the assembly is only
5 cm across. The costs are also very modest when procured in volume: ≈ $50 for
the lens and $50 for the assembly. We acknowledge that there might be an additional
cost of using optical SFP (≈$100), if (wired) optical links are not already used.
Finally, there is no additional power burden beyond the SFP power consumption as
the design does not add any new opto-electronic conversion.
Prototype. We have developed a proof-of-concept prototype following the design

5For brevity, we skip the details of the optical design. We only state the basic approach and
relevant tradeoffs. A similar approach has been used in [30] but in a different context.
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outlined above. We have been able to successfully use both 1 Gbps and 10 Gbps
links with very similar optical set ups. The prototype links use 1000BASE-LX
(1GBASE-LR) SFP (SFP+) for the 1 Gbps (10 Gbps) case and multi-mode fibers
for their larger diameter. We first use standard optical bench set up to validate
the design using controlled experiments and then test the link in a production DC.
Figure 1.3(a) shows the general setup.6 For the current design the collimated laser
beam maintains a ≈4 mm diameter after it converges. To get up to a 20 m length on
a small optical bench, we use a standard technique used by optical engineers: the
beam path is made to reflect multiple times back and forth via mirrors. This also
validates use of mirrors on the beam path and demonstrates that any optical loss
due to reflections is well tolerated.
Link Performance. We test the link by running continuous TCP transfers over the
FSO link for several days at a time for several selected link lengths with the set up
on the optical bench. The results are very similar for different lengths. For brevity
we only report the results for the longest tested case (≈20m) for the 10 Gbps link.
See Figure 1.3(c). Note that the distribution of TCP throughputs is almost identical
to that observed over regular fiber links, demonstrating no additional loss in the
FSO links. To study misalignment tolerance, we shift the transmit side set up in
tiny incremental steps (using a translating mount) perpendicular to the beam axis
keeping the receive side fixed. We see no throughput loss until 6 mm shift, beyond
which the link becomes unstable. As we will see below, this 6 mm tolerance is
sufficient to handle minor misalignments due to rack vibrations and environmental
issues in a DC.

To understand the link performance “in the wild,” we set up the link in a pro-
duction (university run) DC environment. Unlike the optical bench, this real en-
vironment has several key differences that can produce mis-alignments: (1) racks
experience vibrations due to several factors (e.g., server fans, discs, HVAC and UPS
units [33]) and (2) the beam could ‘wander’ due to fluctuating air density caused by
temperature variations. We set up the FSO link with the optical components placed
on top of the rack using magnetic bases. Two racks are used at ≈20 m apart. See
Figure 1.3(b). We use mirrors on the beam path - one on each end - for ease of
alignment. The reader can view these mirrors as proxies for mirrors to be used in
steering (next subsection). Alignment is done manually with the help of an infra-
red viewer (more on this in S1.9). The TCP transfer experiment is run continuously
over several days as before. The statistics of per-sec TCP throughput is almost
identical again to the optical bench and wired cases (Figure 1.3(c)). This estab-

6Note that typical optical SFPs require two fibers and thus two optical paths for duplex com-
munication. However, single fiber SFPs [32] that use WDM principles to multiplex both links on
a single fiber are beginning to be available. For 1 Gbps experiments we use such SFPs. Due to
current unavailability of such devices for 10 Gbps, we use fiber for the return path for the 10 Gbps
experiments; all reported performance measurements are from the FSO path.
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lishes the potential of our design. The average TCP throughput is ≈ 9.3 Gbps —
note that no commodity RF technology exists in small-form factor that can deliver
such throughput at 20 m range.

In summary, the above design is the basis for a low-cost, commoditizable, and
small-form factor FSO link at high data rates over ranges sufficient for DC scale.
Our experiments suggest that the link is likely robust to realistic (mis)alignment
concerns due to environmental effects in DCs. The only remaining issue is that this
link is still point-to-point and not steerable; we address this next.

1.3.2 Developing Steering Mechanisms
Having established the viability of a point-to-point FSO link using commodity
devices, the only requirement left is to make the beam steerable to enable flexi-
bility to point to other racks. Our goal is to establish a design roadmap that is
commoditizable. We explore two promising solutions: switchable mirrors and
Galvo mirrors. We do not claim these are optimal in any sense or that the only
steering alternatives. Our choice is pragmatic in that we want to establish a fea-
sible roadmap using off-the-shelf components. (There are a variety of other beam
steering approaches [34], but they are not off-the-shelf technologies.) Both solu-
tions offer different tradeoffs w.r.t. latency, degree of flexibility, and cost/power,
and at this time, no one solution is strictly better. Thus, we believe it is instructive
to understand and evaluate the promise of both alternatives and the tradeoffs they
offer.
Switchable Mirrors (SMs). Switchable mirrors (SM) are made from a special liq-
uid crystal material that can be electrically controlled to rapidly switch between re-
flection (mirror) and transparent (glass) states at millisecond timescales [17]. While
the intended use cases are different (e.g., rear-view mirrors that switch between a
regular mirror and a back-up camera display), we can use them for beam steering
as shown Figure 1.4(a).

Each FSO device has multiple SMs, with each SM aligned (during a pre-
configuration step as discussed in S1.4) to target a point on a ceiling mirror and
thus, a receiving FSO. The link is established by switching one of the SMs to the
mirror state, while leaving the rest in the transparent state. (This is done at both
ends, but we only show transmit side for clarity.)

SMs directly satisfy our design requirements. It can be miniaturized as it only
needs to be slightly larger than the beam diameter: 1 cm2 is sufficient. A SM of this
size is expected to have low cost (< $5) at volume [35]. Power consumption is also
low: only 40 mW for the stated size [17]. We have evaluated the reconfiguration la-
tency using an off-the-shelf 12” x 15” SM [17], and it is≈250 msec. The switching
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latency decreases with the decrease in the surface area, and is estimated [35] to be
≈10-20 msec latency for the 1 cm2 SM size we envision.
Galvo Mirrors (GMs). Galvo mirrors (GMs) [18] are typically used in laser scan-
ning applications. Here, a small mirror, few mm across, rotates (up to specific
angular limits) around an axis on the plane of the mirror in response to an electrical
signal. The laser beam is made to reflect from this mirror. The mirror rotation de-
flects the reflected beam by a specified angle depending on the signal. Using a pair
of such mirrors at right angles, we can steer the beam within a desired rectangular
cone. In our context, equipping an FSO device with a GM enables us to target any
receiver within a pre-configured rectangular cone chosen offline. See Figure 1.4(b).

As proof of concept, we evaluate the response parameters of GMs using an off-
the-shelf GM [36] using the setup shown in Figure 1.4(b). The mirror rotation is
controlled programmatically changing the applied voltage. Here, two detectors re-
ceive the reflected beam from the mirror alternately as the mirror is fed by a square
wave (100 Hz) from a function generator. We measure the time between the instant
the voltage trigger is initiated (via the square wave generator) and the time the mir-
ror settles to its new position. Figure 1.4(c) shows that the steering latency is linear
w.r.t. the steering angle and ≤ 0.5 ms even for angles up to about ±20◦. We mea-
sured the pointing error to be ≤ 10µrad, which translates into ≈1 mm positioning
error at 100 m, which is well within the 6 mm tolerance of the FSO link.

The GM is inexpensive (≈$100) and small (few inches across). But, off-the-
shelf GMs have a somewhat higher average power consumption (7 W measured)
due to the use of an electro-mechanical system. That said, MEMS-based scanning
mirrors that provide the same functionality as GMs are already being commodi-
tized [37] and can reduce the power to a few milliWatts.

1.3.3 Design Summary
Our hardware design and experiments establish the viability of using FSO in the DC
and also confirm the promise of both SM and GM-based approaches. In summary,
the device roadmap we outlined will have: (1) a rough form factor of 3”x6”; (2) a
range of≈100m and a misalignment tolerance of 6mm; (3) a power footprint of 3W
(most of this is in SFP, assuming MEMS-based GMs); and (4) an estimated per-port
cost of 300$ (100$ for the SFP and 200$ for the FSO+steering when produced in
volume).

The two steering mechanisms introduce slightly different constraints and trade-
offs for the FireFly network design (discussed next): (1) k SMs at an FSO can
switch the FSO beam between a set of k arbitrarily chosen but pre-aligned re-
ceivers, and (2) A GM on an FSO can steer the beam to any receiver within the
coverage-cone that the GM has been pre-oriented to target.
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Figure 1.5: A PCFT with candidate links (solid and dashed). The set of solid links
(when active) represents one possible realizable-topology (τ1), and the set of dashed
lines represents another (τ2).

1.4 Network Pre-Configuration
Ideally, we want a dense flexible network by placing a large number of FSO devices
on each rack, with each FSO device equipped with a large number of SMs or high-
coverage GMs. In practice, we have physical limitations, e.g., the size/cost of the
FSO devices, size of SM, angle of GMs etc. Given these constraints, our goal is to
design a high performance DC network.

At a high level, there are two network design problems in FireFly, that occur at
different timescales:
• First, we need to provision the network hardware (e.g., how many FSOs) and

also pre-align/pre-orient the SMs/GM at each FSO. This is done offline in a
pre-configuration phase.
• Second, given a pre-configured network, we need to reconfigure the network in

near real-time to implement a runtime topology suited for the current traffic.
We focus on the first problem in this section, and defer the second problem to the
next section.

1.4.1 Preliminaries and Objective

Preliminaries. Consider a FireFly network, i.e., a set of FSOs on each rack with
pre-aligned SMs or pre-oriented GMs. We can establish a candidate (bi-directional)
link between a pair of FSOs a and b if (i) a has an SM aligned towards b and vice-
versa or (ii) a is located in the coverage-cone of the GM at b and vice-versa. At
any instant, only one candidate link per FSO can be an active link. For example,
in Fig. 1.4(a), links (TX, RX-1) and (TX, RX-2) are candidate links, and link (TX,
RX-1) is active in Fig. 1.4(a)(i) while (TX, RX-2) is active in Fig. 1.4(a)(ii).

We refer to the set of all candidate links as the pre-configured flexible topology
(PCFT). Given a PCFT, we refer to a set of candidate links that can be active simul-
taneously as a realizable-topology. Because only one candidate link per FSO can
be active at any time, a realizable topology is a matching in the PCFT graph over
FSOs (Figure 1.5).
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Metric of Goodness. Our goal is to provision the DC network with a PCFT that can
deliver the best performance. If we knew the expected (set of) traffic demands, then
we can design a customized PCFT. However, given that DC workloads are variable
and unpredictable [2], we need a traffic-oblivious analogous to the traditional bi-
section bandwidth metric [38]. Unfortunately bisection bandwidth only applies to a
static topology, and is not meaningful for a flexible network. More formally, given
a topology t and considering all possible partitions P of t into two equi-sized sets
of racks, the bisection bandwidth is defined as minp∈P BW(t, p), where BW (t, p)
is the cut-size in t corresponding to p. In a flexible design, the topology t can be
changed, and the bisection bandwidth notion fails to capture this aspect.

Thus, we introduce a new notion of dynamic bisection bandwidth (DBW) as
the metric of goodness to evaluate a PCFT. The dynamic bisection bandwidth of a
PCFT Π can be defined as follows. Let T be the set of realizable-topologies of a
given PCFT Π. Then, the dynamic bisection bandwidth (DBW) for a PCFT Π is
defined as: minp∈P maxt∈T BW(t, p). Note that this reflects the ability to choose
the best realizable-topology t for each given partition p.

To illustrate this, consider the PCFT in Figure 1.5 again. If we consider τ1 (solid
lines) as a static topology, its bisection bandwidth is zero due to the partition {(2,3),
(1,4)} of racks. Similarly, the bisection bandwidth of τ2 (dashed lines) can be seen
as 2. However, the DBW of the overall PCFT is 4, since τ1 yields a bandwidth of 4
for all equi-partitions except for {(2,3), (1,4)}, for which τ2 yields a bandwidth of
4.
Constrained Optimization. Our goal is to design a PCFT that operates within
the given cost and physical constraints and optimizes the DBW. For clarity, we
focus on the SM and GM problems independently in this chapter and defer hybrid
architectures for future work (S1.9). In each case, we solve the overall budgeted
PCFT selection problem in two steps. First, we develop techniques to design a
PCFT with maximum DBW for a fixed configuration (i.e., fixing #FSOs, coverage
angle, and #SMs per FSO). Then, given the price/size constraints, we exhaustively
search the space of feasible combinations of these network parameters and pick
a feasible PCFT with the highest DBW. Since preconfiguration runs offline, this
brute-force step is reasonable.

1.4.2 SM-PCFT Design Problem

Problem Formulation. Given the number of racks n, number of FSOs m per
rack, and the number of SMs k per FSO, the SM-PCFT problem is determine the
alignments of each SM such that the resulting PCFT has maximum DBW.

Said differently, we want a PCFT with maximum DBW, under the constraint
that the number of candidate links at each FSO is at most k . From this view, the

14



SM-PCFT problem falls in the class of network design problems [39], but is differ-
ent from prior work due to the novel DBW objective. For instance, even the special
case of k = 1, the SM-PCFT problem reduces to constructing an m-regular graph
over n nodes with maximum (static) bisection bandwidth. Even this simple case
is harder than the well-studied problem of determining an upper-bound on the bi-
section bandwidth of m-regular graphs of size n, for which approximate results are
known only for very small values of m and n [40]
Random Graphs for SM-PCFT. One promising approach to constructing a SM-
PCFT solution is to consider random regular graphs. This is based on the intuition
that graphs with (static) bisection bandwidth are likely to have high DBW. (Because
random graphs have near-optimal spectral gap [41], they are good “expanders” and
have high static bisection bandwidth.) We can construct an n-node regular graph
of degree mk , and then group the mk edges on each node into m sets of k edges
each (corresponding to each of the m FSOs). For every edge connecting a pair of
FSOs (a, b), we align one SM each of a and b towards each other. Because of the
randomness, there is a small chance of some random instance performing poorly;
thus, we generate many different solutions, and pick the one with the best DBW.7

1.4.3 GM-PCFT Design Problem

Problem Formulation. Given the data center layout, the number of racks n, num-
ber of FSOs per rack m, and uniform coverage-angle (see Fig.1.4(b)) of GMs, the
GM-PCFT problem is to determine the orientation of the GM on each FSO such
that the resulting PCFT has the maximum DBW.

Note that we cannot directly use a random graph as a GM-PCFT solution, since
an FSO a’s neighbors in a PCFT must be colocated in a coverage-cone of the GM
at a. Thus, this problem imposes certain geometric constraints. In particular, for
a pair (a, b) to form a (bi-directional) candidate link in the resulting PCFT, the
coverage-cone of GM at a must cover b and vice-versa. A naive approach is to
iteratively pick a pair of FSOs (a, b) at a time and orient their GMs towards each
other. However, this approach may create only one candidate link per FSO/GM,
and hence, could result in a sparse PCFT with poor DBW.
Block-based Heuristic. To address the shortcomings of the above strawman ap-
proach, we use a “block”-based approach. The intuition here is to create a random
graph at a coarser block granularity, where each block is a group of nearby FSOs
that fall within a GM’s coverage cone.

7One subtle issue is even computing DBW is hard. To estimate the DBW for a given random
instance, we extend the Kernighan-Lin [38] heuristic for estimating the bisection bandwidth. Our
experiments suggest this is within 5-7% of the true DBW. Due to space constraints, we do not discuss
the DBW estimation in depth.
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The approach runs in m iterations, and in each iteration we fix the orientation
of the GM on the ith FSO of each rack, as described below. (The numbering of
FSOs is arbitrary; we just need some ordering.) In each iteration, we randomly
partition the set of racks into disjoint blocks. The only requirement here is that
each block of racks is colocated and small enough to be covered by a GM (when
oriented appropriately) on any FSO in the DC. That is, for each block B and FSO
a /∈ B , there exists an orientation of GM at a such that all racks in B fall within
its coverage cone. At first glance, this partitioning requirement may seem complex,
but we observe that a simple grid-based partitioning scheme is sufficient for all
practical purposes. Next, we create a random block-level matching Mi over the
blocks. Now, for each edge (B1,B2) ∈ Mi, we orient the GM on each i-FSO in
each rack within block B1 (correspondingly B2) towards B2 (B1). By construction,
the partitioning algorithm guarantees that a GM on any i-FSO in B1 can cover (with
some orientation) all i-FSOs on racks in B2.

We note that the partitioning in each iteration i can be different. In particular,
we can create random partitioning schemes: starting from the basic grid, we can
do a random offset to create a new partitioning scheme. Finally, as in the case of
SM-PCFT, we generate many randomized GM-PCFT solutions, and pick the best.

1.5 Real-time Reconfiguration
We consider two types of reconfigurations in FireFly: (1) periodically optimiz-
ing the network based on estimated demands; and (2) triggered by certain network
events (e.g., planned migrations or elephant flows).

1.5.1 Periodic Reconfiguration
Given a PCFT and the prevailing traffic load, the periodic-reconfiguration problem
is to optimally select a realizable-topology and set up routes for the current traffic-
flows.

This constrained optimization is captured by the integer linear program (ILP)
shown in Figure 1.6.8 Let κ be the set of candidate links in the PCFT, C be the
(uniform) link capacity, E be the given epoch size (say a few seconds), and Di ,j be
the estimated traffic demand (volume) between a pair of racks (i , j ). This demand
can be obtained by using the measurement counters from the SDN switches from
previous epoch(s). We use the subscripts a, b, c, d to refer to FSOs, and i , j , k to
refer to racks, and FSOs(k) to denote the set of FSOs on the top of rack k .

8This problem is much harder than the optimization problem considered in S1.2.1, since we
were assuming arbitrary flexibility or that the PCFT was essentially a complete graph.
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max
∑
i ,j

Ti ,j , subject to : (1.1)

∀b :
∑

a s.t (a,b)∈κ
la,b ≤ 1; ∀a :

∑
b s.t. (a,b)∈κ

la,b ≤ 1 (1.2)

∀a, b :
∑
i ,j

f i ,j
a,b ≤ lab × C × E (1.3)

∀i , j , k :
∑
a

∑
b∈FSOs(k)

f i ,j
a,b =

∑
b∈FSOs(k)

∑
d

f i ,j
b,d (1.4)

∀i , j :
∑

a∈FSOs(i)

∑
b

f i ,j
a,b =

∑
a

∑
b∈FSOs(j )

f i ,j
a,b = Ti ,j (1.5)

∀i, j : Ti ,j ≤ Di ,j (1.6)

∀(a, b) ∈ κ : la,b ∈ {0, 1}; ∀i , j , a, b : f i ,j
a,b ≥ 0 (1.7)

Figure 1.6: ILP formulation for periodic reconfiguration.

There are two key sets of control variables: (i) The binary variable la,b captures
topology selection and is 1 iff a candidate link (a, b) is chosen to be active; and
(ii) f i ,j

a,b captures the traffic engineering (TE) strategy and captures the flow volume
corresponding to the inter-rack traffic between i and j routed over the link (a, b).
Let Ti ,j be the total traffic volume satisfied for the flow (i , j ).

For clarity, we consider a simple objective function that maximizes the total
demand satisfied across all rack pairs as shown in Eq (1.1). Eq (1.2) captures the
requirement that each FSO can have at most 1 active link. Eq (1.3) ensures that the
total flow on each link (on average) does not exceed the capacity. Eq (1.4) are flow
conservation constraints, for each flow (i , j ) and a rack k . Eq (1.5) captures the
volume of the demand satisfied using a constraint over the ingress and egress racks.
Eq (1.6) ensures that the volume satisfied is at most the demand, for each rack pair.
Finally, we have constraints on the range of the control variables.

Unfortunately, solving the given ILP using state-of-art solvers like Gurobi or
CPLEX can takes several hours (S1.8.4). Given the poor performance of current
solvers, we follow a heuristic strategy and decouple the optimization problem into
two stages. First, we solve the “integer” problem of selecting the active links, and
then given this realizable-topology, we compute the flow routes.
Greedy Matching for Topology Selection. Recall from S1.4 that a realizable-
topology is essentially a matching over FSOs in the PCFT graph. Thus, a simple
starting point is to select the maximum-weighted matching, where each candidate
link (a, b) is weighted by the inter-rack traffic demand Di ,j between the racks i and
j . In effect, this maximizes the total demand that can be served using direct links.
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However, this can be very inefficient if the given PCFT does not have direct links
between racks with high traffic demands.

The high-level idea behind our heuristic is to extend the traditional Blossom
algorithm for computing the maximum matching to incorporate multi-hop traffic.
Recall that the Blossom algorithm improves the matching at each stage, by com-
puting an alternating path. We define a new “benefit” function that captures multi-
hop traffic and then pick the path with the highest benefit. Specifically, we use
the intuition that shorter inter-rack paths imply lower resource usage and higher
network throughput [9]. Thus, we define the benefit of an alternating path L as
the decrease in the weighted-sum of inter-rack distances if L were used to modify
the current matching. More formally, given a matching τ , the benefit of a L, that
would modify the matching τ to τ ′, is the total reduction in the network footprint:∑

ij Di ,j (hi ,j − h ′i ,j ), where hi ,j and h ′i ,j are the inter-rack distances between racks
(i , j ) in τ and τ ′ respectively (when seen as graphs over racks).9

We run this extended Blossom algorithm until there is no alternating path that
can improve the network footprint and then output the final topology at this stage.
Flow Routing. Given a specific realizable-topology (i.e., values of la,b), the resid-
ual TE problem is solvable in polynomial-time as a multi-commodity flow (MCF)
problem. However, even this takes hundreds of seconds on 256- or 512-rack DCs
(S1.8.4), which is not acceptable.

To address this, we use a greedy algorithm to compute the values of these flow
variables. Essentially, we extend the traditional augmenting-path approach for max-
flow algorithms and greedily pick an augmenting path for a yet-unsatisfied com-
modity. We run the algorithm until no more augmenting paths can be picked; i.e.,
the network is saturated. From this solution, we use the “path stripping” idea to
convert the values of the f i ,j

a,b variables into end-to-end paths.

1.5.2 Triggered Reconfigurations
In addition to periodically reconfiguring the network, FireFly can also run more
localized reconfigurations triggered by certain traffic events. Such reconfigurations
may be very frequent but likely require minimal and localized (topology and flow-
route) changes. We currently support two types of triggers. First, if we detect ele-
phant flows that have sent more than 10 MB of aggregate data [27] we activate links
to create a shorter or less-congested path for this flow. Second, if traffic between a
particular pair of racks exceeds some configurable threshold, then we create a direct
link between them, if this does not require deactivation of recently-activated and/or
heavily-used links.

9If there is no path, we just use a large constant.
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1.6 Correctness during Reconfigurations
Reconfigurations inherently cause some network flux as link activations may cause
other links to be deactivated and/or forwarding table updates. This raises natural
concerns about network performance during these reconfigurations.
Requirements and Challenges. A reconfiguration essentially specifies: (i) addi-
tion and/or deletion of (candidate) links from the given realizable topology, and (ii)
corresponding changes to the network forwarding tables (NFTs). Our goal is to
ensure that: (i) network remains connected at all times, (ii) there are no black holes
(e.g., all forwarding table entries refer to available/usable links), and (iii) packet
latency remains bounded (and thus, delivery is guaranteed).

The main challenges in implementing sound data plane strategies arise from two
factors: (i) Activation or deactivation of candidate links incur a non-zero latency
(few msecs); and (ii) We may need to execute reconfigurations concurrently if the
triggers occur frequently (e.g., for every elephant flow arrival). At a high level,
these are related to the problem of consistent updates [42, 43]. The key difference
is that we can engineer simpler domain- and requirement-specific solutions rather
than use more general-purpose but heavyweight techniques proposed in prior work.

1.6.1 Handling sequential reconfigurations
We begin by focusing on correctness when we are executing one reconfiguration at
a time and defer concurrent execution to the next subsection.

Avoiding Black Holes

To see why “black holes” may arise, consider a reconfiguration that changes the
network’s (realizable) topology from τ to τ ′ by “steering” FSOs a and b towards
each other, and in the process activating the link (a, b) and deactivating some link
(a, c). Suppose the NFTs change fromF toF ′. Now, there is a period of time (when
GM/SMs at a is changing state) during which neither (a, b) nor (a, c) is available
for communication. During this period, irrespective of when the NFTs get updated
(say, even atomically) from F to F ′, some entries in the NFTs may refer to either
(a, b) or (a, c), inducing black holes in the network.
Our Solution. To avoid black holes, we split a reconfiguration into multiple steps
such that: (i) link deletion is reflected in the NFTsbefore their deactivation is initi-
ated, and (ii) link addition is reflected only after the activation is complete. Thus,
a reconfiguration that involves deactivation (activation) of a set of links 5 (∆) is
translated to the following sequence of steps:

S1: Update the NFTs to reflect deletion of5.
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Figure 1.7: Packet (in-flight location shown by a square) continues to “swing” from
B to A and back, due to a rapid sequence of reconfigurations.

S2: Deactivate5 and activate ∆.
S3: Update the NFTs to reflect addition of links ∆.

One additional invariant we maintain is that every switch has a “default” low
priority rule at all times to reach every destination rack via some active outgoing
link. We do so to explicitly ensure that packets can reach their destination, possibly
on sub-optimal paths, as long as the network is connected (see below).

Maintaining Connectivity

To ensure network connectivity at all times, we simply reject reconfigurations that
might result in a disconnected network in step S1 above. That is, we add a step S0
before the three steps above.

S0: Reject the reconfiguration, if deletion of links5 disconnects the network.
To reduce the chance of such rejections, we also extend our reconfiguration

algorithms to retain a connected subnetwork from the prior topology. The high-
level idea here is to construct a rack-level spanning tree using the current graph, and
explicitly remove these links/FSOs from consideration during the greedy matching
step.

Bounded Packet Latency

If reconfigurations occur at a very high frequency, then we may see unbounded
packet latency. Fig. 1.7 shows a simple example where a packet can never reach its
destination because the links/routes are being reconfigured quite rapidly.
Our Solution. The example also suggests a natural strategy to avoid such cases—
we can delay or reject reconfigurations to allow the in-flight packets to use one of
the interemdiate topologies to reach its destination. We introduce a small delay of
x units between two consecutive NFTs-updates, where x is the maximum packet
latency in a fixed realizable topology. This ensures that each packet “sees” at most
two configurations during its entire flight. This, bounds the packet latency by (2x+
z) where z is the total NFTs-update time.
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1.6.2 Handling Concurrent Reconfigurations
Computing and executing a reconfiguration can take a few tens of msecs in a large
DC. To achieve good performance, we may need to reconfigure the network fre-
quently; e.g. for every elephant flow arrival in the network, which may happen
every msec or less. Thus, we need mechanisms that allow reconfigurations to be
executed concurrently. (We could also batch reconfigurations, but that merely de-
lays the problem rather than fundamentally solving it because the batch may not
complete before the next set of reconfigurations arrive.)

We observe that to handle concurrent reconfigurations, we need to extend the
approach from S1.6.1 to handle two concerns.

• Connectivity: One concern of course is that each reconfiguration in isolation
may not disconnect the network but combining them might. Thus, to ensure
network connectivity, the controller maintains a atomic global topology variable
G, and uses this variable to accept/reject in step S0. (G is also updated by
accepted reconfigurations in S1 and S3.)
• Conflicting reconfigurations: In step S0, we also reject any reconfiguration that

“conflicts” (in terms of link activiations or deactivations) with already-accepted
but yet-unfinished reconfigurations. That is, we follow a non pre-emptive strat-
egy of allowing outstanding reconfigurations to complete.

We note that no other changes are required to S1.6.1 to handle concurrency.
Black holes are still avoided since only non-conflicting reconfigurations are exe-
cuted concurrently and packet latency is bounded since a minimum time-interval
already precludes concurrent processing of different NFTs-updates.

1.6.3 Overall Scheme
Based on the previous building blocks, our overall scheme is as follows. Each
reconfiguration ρ that deletes and adds a set of links5 and ∆, is translated into the
following four steps. Here, G is as described in S1.6.2.

C0: Accept ρ if (i) deletion of links 5 does not disconnect G, and (ii) ρ doesn’t
conflict with any unfinished accepted reconfigurations.

C1: Update G and NFTs to reflect deletion of5.
C2: Deactivate5 and activate ∆.
C3: Update G and NFTs to reflect addition of links ∆.

In addition, as suggested in S1.6.1, we ensure (a) availability of default rules,
and (b) a minimum time-interval of x (= maximum packet latency) units between
consecutive NFTs-updates.

We can analytically prove (see Appendix A.3) that the above overall scheme
ensures that (i) there are no black holes, (ii) network remains connected, and (iii)
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packet latency is bounded by (2x+z), where z is the NFTs-update time. This claim
holds irrespective of how the NFTs are updated across the network; i.e., we do not
require atomic updates.

1.7 FireFly Controller Implementation
We implement the FireFly controller as modules atop the POX controller. We chose
POX/OpenFlow primarily for ease of prototyping and experimentation. We use cus-
tom C++ modules for the PCFT generation and reconfiguration optimization algo-
rithms. For reconfiguration, we implement heuristics to “dampen” reconfigurations
by checking if there is a significant (e.g., more than 10%) improvement in the ob-
jective function from Figure 1.6. We use a simple data plane translation logic to
convert the output of the optimization solver. Specifically, we translate the “flow”
variables into prefix-range based forwarding entries [44] and use these in the com-
mon case. For elephant flows, we set up exact flow rules to explicitly ensure that
elephants traverse the intended path. We use a simple demand estimation module
that leverages existing OpenFlow capabilities to estimate the inter-rack demands
and uses the observed traffic from the previous epoch as the input to the controller.
Our prototype does not implement elephant flow detection; for the evaluations, we
currently assume this information is available out of band.

1.8 Evaluation
We established the performance of individual steerable FSO links in S1.3. In this
section, we focus on:

1. Performance w.r.t. other DC architectures (S1.8.1);
2. Impact on performance during reconfigurations (S1.8.2);
3. Optimality of the preconfiguration algorithms (S1.8.3);
4. Optimality and scalability of reconfiguration (S1.8.4);
5. Sensitivity analysis w.r.t. degree of flexibility and reconfiguration latency

(S1.8.5); and
6. Cost comparison w.r.t. prior DC architectures (S1.8.6).

For (1), we use a combination of detailed packet-level simulations using htsim
and augment it with larger-scale flow-level simulations using a custom flow-level
simulator. For (2), we use a detailed system-level emulation using MiniNet. For
(3) and (4), we use offline trace-driven evaluations. For (5), we use the flow-level
simulation. Finally, for (6) we use public cost estimates and projections from S1.3.
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1.8.1 System Performance

Setup and Workloads. We consider three classes of architectures: (1) FireFly
(both SM and GM) with 10Gbps links, (2) (wired) 10Gbps full-bisection band-
width networks such as FatTree [1], and (3) augmented architectures such as c-
Through [7] and 3D-Beamforming (3DB) [5] with a 5Gbps (i.e., 1:2 oversub-
scribed) core. (We do not compare Flyways [6] since it is subsumed by 3D-
Beamforming.) By default, FireFly has 48 FSOs per rack with each equipped with
10 SMs; we assume a rack size of 4′ × 2′, which is sufficient to hold up to 64 FSO
devices (S1.3.3). We also evaluated Jellyfish [9], but do not show this for ease of
visualization since the result was close to FatTree (≈ 10% lower). We assume an
overall reconfiguration latency of 20 msecs for FireFly, and conservatively use zero
latency for c-Through/3DB. We use ECMP routing for FatTree and backbone cores
of 3dB and c-Through, and route the “overflow” traffic to their augmented links [5].
For FireFly, we use the flow distribution and data plane translation from S1.5,1.7.

Following prior work, we use synthetic traffic models based on DC measure-
ments [2, 5]. As a baseline, we consider a Uniform model where flows be-
tween pairs of racks arrive independently with a Poisson arrival-rate λ/s, with an
empirically-derived flow size distribution [2]. We use λ as the knob to tune the
link saturation level. Based on prior observations, we also consider the Hotspot
model [2]. Here, in addition to the Uniform baseline, a subset of rack pairs have
a higher arrival-rate λ2 and a fixed large flow size of 128MB [5]. For Uniform
loads, we use the label Uniform X where X is average load per server (in Gbps)
by choosing suitable λ. For Hotspot loads, we use the label Hotspot(Y,X)
where Y is the % of racks that are hotspots and X is the additional average load
on each hotspot server; all Hotspot workloads use a baseline Uniform 5 as
background traffic.
Performance Comparison. There are two key metrics here: (1) the average
throughput per server, and (2) flow completion time (FCT). For ease of visualiza-
tion, we do not show error bars over multiple runs, since the results were consistent
across multiple runs. We also do not show FireFly-GM (with 40◦ coverage-angle
GMs) results, since they are similar to the default FireFly-SM.

As a starting point, we use htsim for a detailed packet-level simulation. We ex-
tended htsim to support short flows, arbitrary traffic matrices, and route reconfig-
urations. Due to scaling limitations of htsim, even on a high-end server (2.6GHz,
64 GB RAM), we could only scale to a 64-rack DC at our 10 Gbps workloads. Fig-
ure 1.8(a) and 1.8(b) show a box-and-whiskers plot of the FCT for long/short flows
respectively for a 30 secs run. The result shows that FireFly’s performance is close
to the full-bisection bandwidth network in both cases. c-Through and 3DB do not
perform as well because their augmented network is not sufficient to compensate
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for the oversubscription. Thus, their tail performance for long flows suffers. We
also see that the FCT for short flows is similar across FireFly and FatTree.

Figure 1.8(c) shows the effective average per-server throughput in the 64-rack
setup for different workloads. For the Uniform the average is over all servers
whereas for Hotspot the average is over the hotspot servers. In short, we see that
FireFly’s performance is close to the full-bisection bandwidth network and ≈ 1.5×
better than the augmented architectures.
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Figure 1.8: Flow completion times (FCT) and average throughput per-server using
the htsim simulator on a 64-node topology for different workloads

To scale to larger DCs, we use a custom flow-level simulator. We do so after
confirming that these simulations roughly match the packet-level simulations. In
general, the flow-level simulations overestimates the throughput 5-7% for all archi-
tectures since it does not model packet-level effects. Since our goal is to compare
the relative performance of these architectures, these simulations are still instruc-
tive. Figure 1.9 shows that the earlier performance results continue to hold for the
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Figure 1.9: Scalability evaluation using a flow-level simulator

most saturating workloads even at larger scales. The only drop is at 512 racks for
Uniform10; here the number of FSOs/rack is slightly sub-optimal as the number
of racks grows. We revisit this in S1.8.5.

We also measured the packet latency (number of hops) statistics and found that
the average latency were 3.91 (FireFly), 4.81 (FatTree), and 3.9 (3dB, c-Through),
while the maximum was 5 for FireFly and 6 for the rest.

1.8.2 Performance during Flux
Because packet- or flow-level simulations do not give us a detailed replay of the
events at the FireFly controller and in the network, we use Mininet for this eval-
uation [20]. Due to scaling limitations, we scale down the DC size to 32 racks and
the link rates to 10 Mbps, and correspondingly scale the workload down. Since our
goal is to understand the relative impact of reconfigurations w.r.t. the steady state
behavior, we believe this setup is representative. For the following result, we con-
sider a HotSpot workload, with seven distinct reconfigurations as elephant flows
arrive.

We poll the virtual switches to obtain link utilization and loss rates and use a
per-rack-pair ping script to measure inter-rack latency. We bin these measurements
into two logical bins: (a) During reconfigurations and (b) Steady state (i.e., no active
reconfiguration). Figure 1.10 shows the distribution link utilization, loss rate, and
inter-rack latency for each bin. While there is a small increase in the “tails”, the
overall distributions are very close. This suggests that the impact on the network
during reconfigurations is quite small and that our mechanisms from S1.6 work as
expected.

1.8.3 Preconfiguration Efficiency
As before, we use 48 FSOs per rack and 10 SMs per FSO for SM-PCFT, and assume
GMs with an coverage-angle of 40◦ for GM-PCFT. We generate ≈ 15n (n is the
number of racks) random instances and pick the best. We normalize the estimated
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Figure 1.10: Comparing network performance during reconfigurations and in
steady state

#Racks Normalized DBW w.r.t. upper bound
SM-PCFT GM-PCFT

64 0.96 0.84
128 0.93 0.84
256 0.91 0.85
512 0.94 0.88

Table 1.1: Efficiency of the PCFT algorithms

DBW w.r.t an upper bound of nm
2

.10 Table 1.1 shows that the SM-PCFT and GM-
PCFT solutions achieve ≥ 91% and ≥84% of the upper bound across different DC
sizes. The lower performance of GM-PCFT is likely because of less randomness
due to a block-level construction. (This does not however impact the performance
of the runtime topology in practice for the workloads we consider.)

We also evaluate an incremental expansion scenario where we want to retain
most existing PCFT as we add new racks similar to Jellyfish [9]. We find that incre-
mentally constructed PCFTs perform nearly identical w.r.t. a PCFT computed from
scratch (not shown). We posit that this stems from the incremental expandability of
random graphs [9].

1.8.4 Reconfiguration Efficiency
Table 1.2 shows the computation time and optimality gap of the FireFly two-step
heuristic from S1.5.1. We consider two points of comparison: (a) Full-LP, a LP

10Any equi-sized partition of n racks with m FSOs can have at most nm/2 active links (one per
FSO) in a “cut”.
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# Racks Time (ms) Optimality Gap
Full-LP Greedy-LP FireFly two-step (%)

32 138 110 27 2.8%
128 4945 208 54 2.6%
256 1.7×106 3.3×104 60 1.3%
512 6.4×108 1.9×107 68 2.8%

Table 1.2: Scalability and optimality of the FireFly reconfiguration algorithm.

relaxation of Figure 1.6, which also yields an upper-bound on the optimal, and
(b) Greedy-LP which uses greedy topology selection but solves the flow routing
LP using Gurobi. Our approach is several orders of magnitude faster—Full-LP
and Greedy-LP simply do not scale for ≥ 32 racks. This is crucial as the Fire-
Fly controller may need to periodically reoptimize the network every few seconds.
Moreover, the (upper bound) on the optimality gap is ≤ 2.8%. Finally, we note that
triggered reconfigurations (S1.5.2) incur only 5-10 msec (not shown). Most of the
time is actually spent in route computation, which can be run in parallel to allow a
high rate of concurrent reconfigurations.

FSO=24 FSO=36 FSO=48
#SM → 5 10 15 5 10 15 5 10 15

n=256 4.3 8.4 9.1 5.84 9.14 9.24 8.6 9.2 9.32
n=512 3.4 4.3 5.7 3.84 5.96 9.21 4.3 8.7 9.14

(a) Varying # of FSOs/rack and SMs/FSO in SM-based networks

FSO=24 FSO=36 FSO=48
n=256 8.95 9.12 9.2
n=512 9.01 9.29 9.37

(b) Varying # of FSOs/rack in GM-based networks

Table 1.3: Average throughput per-server on Uniform10 for varying network pa-
rameters.

1.8.5 Sensitivity Analysis
Given that we are projecting cost and form-factors for a new technology, a natural
concern is the robustness of our results w.r.t. key parameters: number of FSOs/rack,
number of SMs per FSO, and the reconfiguration latency.

Table 1.3 shows the average per-server throughput on a range of FireFly instan-
tiations. The key observation is that performance of GM-based networks degrades
minimally as the #FSOs decreases even for a 512-racks network. For SM-based
networks, performance at 512-rack degrades drastically vs. #FSOs, while the 256-
rack network performs close to full-bisection FatTree even when #FSOs=24. Inter-
estingly, increasing the number of SMs can compensate for decrease in #FSOs; a
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Architecture Equip (M$) Cable (M$) Power (M$) Total
Cu Fiber Cu Fiber Cu Fiber Cu Fiber

FatTree 44 29 7 2 1 2 53 35
3DB 26 17 5 2 1 1 32 21
cThru 26 17 5 2 1 1 32 21
FireFly 20 0 1 20

Table 1.4: Cost of equipment, power, and cabling assuming 512 racks with 48
servers/rack. Since these are estimates, we round to the nearest million.

512-rack DC with 36 FSOs still performs well with #SMs=15. Overall, this sensi-
tivity analysis suggests that we have a significant amount of leeway in our cost (see
below) and form factor estimates, before FireFly’s performance suffers.

Finally, with respect to total reconfiguration latency, we observe that varying
the latency from 10msec to 50 msec has minimal (¡ 5%) impact on FireFly’s perfor-
mance (not shown). Again, this is a positive result that we can achieve pretty good
performance even with unoptimized steering delays and network update times.

1.8.6 Cost Comparison
Table 1.4 summarizes the equipment, power, and cabling cost of different DC ar-
chitectures. We consider a DC with 512 racks and 48 servers/rack, and compute
costs for both copper- and fiber-based realizations for the wired architectures.

We estimate equipment costs based on a per-port 10GbE cost of 200$. Fiber-
based architectures (including FireFly) also incur a cost of 100$ per-port for SFPs
(10GbE SFP+ ports) [45]. FireFly uses a 96-port (10G) ToR switch on each rack
with 48 FSOs, the full-bisection FatTree needs 1536 96-port (10G) switches, while
the 1:2 oversubscribed cores of c-Through/3DB use roughly half the ports of Fat-
Tree. FireFly has an additional cost for FSO devices, which we estimate to be 200$
per device, including SMs or a GM (see S1.3). For 3DB, we assume there are 8
60 GHz radios per rack with each assembly costing 100$. For c-Through, we con-
servatively assume the 512 optical switch to be 0.5M$. We assume ceiling mirrors
(FSO, 3DB) have negligible cost.

For cabling, we assume an average cost of $1 and $3 per meter for copper
and optical-fiber respectively, and use an average per-link length of 30m [3]. We
estimate the 5-yr energy cost using a rate of 6.5cents/KWHr, per-port power con-
sumption of 3W (fiber) and 6W (copper), ignore the energy cost of SMs, 60GHz
radios, and optical switch.

We see that the total cost of FireFly is 40-60% lower than FatTree and is com-
parable (or better) than the augmented architectures. Furthermore, as the previous
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section showed, FireFly’s performance will not suffer even if we use only 2/3 of the
#FSO devices per rack.

1.9 Discussion

Hybrid SM-GM Architectures. To simplify the discussion, we considered SM
and GM designs independently. As future work, we can consider combining the
benefits in complementary ways in the PCFT design; e.g., use GMs to target farther
racks (as the coverage-cone grows with distance) and SMs to target nearby racks.
Pre- and re-alignment. We envision using external (portable) tools for pre-
aligning SMs/GMs, as this will be done infrequently and speed is not critical.
(Precomputing the alignment/orientation parameters is a simple geometry com-
putation.) While our FSO design can tolerate minor misalignments (S1.3), long
term operation may need occasional alignment corrections. Here, we can use the
feedback from the digital optical monitoring support available on optical SFPs for
realignment; GMs can directly use such feedback to realign, but SMs may need
additional micro-positioning mechanisms (e.g., piezoelectrics).
Beyond 10 Gbps. Current long-range connector standards for 40/100 Gbps (e.g.,
40GBASE-LR4 or 100GBASE-LR4) use WDM to multiplex lower rate channels on
the same fiber, one in each direction. However, just like the 10 GbE standard that
we have used, there are still two optical paths (with two fibers) for duplex links.
Single-fiber solutions are not commodity yet at these speeds as the market is still
nascent. We expect, however, single-fiber commodity solutions will be available
in future at all speeds just like the 1 GbE case [32] we have used. Otherwise, we
will need two optical paths for each (duplex) link or develop custom single path
solutions.11

1.10 Related Work

Static Wired Topologies. Early DCs used tree-like structures, which had poor per-
formance due to oversubscription. This motivated designs that provide full bisec-
tion bandwidth [1, 9, 11], which are overprovisioned to handle worst-case patterns.
In addition to high cost, such structured networks are not incrementally expand-
able [9]. In contrast, FireFly is flexible, eliminates cabling costs, and amenable
to incremental expansion. Other efforts proposed architectures where servers act

11Short range connector standards for 40/100 Gbps use multiple (≤12) fiber strands rather than
WDM. We do not know if our optical design can extend to such multi-strand connectors.
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as relay nodes (e.g., [46]). However, they are not cost competitive [3] and raise
concerns about isolation and CPU usage.
Optical Architectures. High traffic volumes coupled with the power use of copper-
based Ethernet, has motivated the use of optical links. Early works such as c-
Through [7] and Helios [21] suggested hybrid electric/optical switch architectures,
while recent efforts have considered all-optical designs [4, 47]. The use of free-
space optics in FireFly avoids the cabling complexity that such optical designs will
also incur. Furthermore, by using multiple FSOs per rack, FireFly can create richer
topologies (at the rack level) than simple matchings [4, 7, 21, 47]. Moreover, Fire-
Fly doesn’t need optical switching, thus eliminating concerns about cost/scalability.
Finally, optical switching can disconnect substantial portions of the optical network
during reconfiguration. While FireFly also has transient link “off” periods, these
are localized enabling us to avoid black holes and disconnections using simpler
data plane strategies (S1.6).
Wireless in DCs. The FireFly vision is also inspired by Flyways [6] and 3D-
Beamforming [5]. However, RF wireless technology suffers from high interfer-
ence and range limitations and limits performance. The use of free-space (wireless)
optics in FireFly eliminates interference concerns. Shin et al., consider a static all-
wireless (not only inter-rack) DC architecture using 60 Ghz links [22]. However,
this requires radical restructuring of DC layout and has poor bisection bandwidth
due to interference.
Consistency during Reconfigurations. Recent work identified the issue of con-
sistency during network updates [42, 43]. FireFly introduces unique challenges
because the topology changes as well. While these techniques can also apply to
FireFly, they are more heavyweight for the specific properties—no black holes,
connectivity, and bounded packet latency—we are interested in. Thus, we can de-
vise simpler domain-specific solutions. Other work focuses on avoiding link con-
gestion [48] during updates. While FireFly’s mechanisms do not explicitly address
congestion, our results (S1.8.2) suggest that this impact is quite small.
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Chapter 2

Data Preservation Under Spatial
Failures in Sensor Networks
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2.1 Introduction
In this chapter, we address the problem of data preservation in a wireless sensor
network after node failures. We focus on smart dust type networks [49] where
the network consists of a large number of cheap unreliable nodes. This design
philosophy contrasts with the traditional ‘centralized’ sensing mechanism in which
a small number of powerful sensing stations were used (e.g., the weather stations).
Here we use the sheer number of sensors for both wide area coverage and high
resolution data collection. Having a large number of nodes also increases the system
redundancy and robustness to failures. Since nodes are cheap and unreliable, they
are likely to fail for many reasons. Nevertheless we have prepared redundant nodes
in the proximity to take over both the sensing tasks and the data that has been
generated.

Sensor nodes may fail to operate for many reasons. Since the nodes are in-
expensive (thus crappy), they may suddenly stop functioning for no reason. The
nodes may also be destroyed by animals, humans, or natural disasters (earthquake,
fire, river overflow, etc). They may be destroyed by adversarial attacks (a bomb
explosion for example). The nodes may also be temporarily disabled by jamming,
traffic congestion, or energy depletion. In case of such unfortunate events we can
revoke the replacement sensors to take over the sensing tasks. However the data
stored on the nodes that have been destroyed is lost unless we design data storage
schemes resilient to node failures, which is the topic of this chapter.

We focus in the chapter on node failures with some spatial patterns, which are
arguably the most common type. There is often strong spatial correlation among
the failed nodes. The events that destroyed one node may very likely influence a
nearby node and destroy it as well. We model such spatial failure patterns by some
explicit geometric shapes, where all the nodes contained in the shape fail at the
same time. The location and orientation of the shape could be variable or known
depending on the scenarios. An example could be a bomb attack with a circular
shape and variable location (it can happen anywhere in the network) or break of a
dam with fix location and orientation (the location of the dam and area affected are
known).

We assume that there are k nodes within the network generating data of inter-
est and some additional n nodes that can be used for extra storage and relay for
communication. To preserve data generated in the network, we necessarily need
to introduce sufficient redundancy by storing the data at some other node. Due to
the small form factor and cheap costs, individual nodes memory cannot scale to the
size of the network. More specifically, we assume over time the data generated by
one data node would eventually occupy almost all of an individual node’s memory.
The nodes also have severe communication, computation and memory limitations.
Thus our algorithm will try to use as little communication as possible.
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Contributions. We address the problem of introducing sufficient redundancy with
minimal communication cost to a network such that the entire network data can be
retrieved after a failure. We use two approaches to introduce data redundancy in the
network.

• Replication: Each data packet is copied into multiple storage nodes in the
network. The retrieval algorithm is simply pulling the data out of the storage
nodes that contains a copy.

• Erasure codes: An erasure code of multiple data packets would be computed
and stored in the storage node. In particular, we use random linear codes as
in [50]. That is, each codeword is a linear combination of the original data
(called symbols) with random coefficients. The retrieval process consists of
one sensor node locally pulling relevant data from the network so as to solve
a system of linear equations to decode the data.

Each method has its own advantages and disadvantages. Generally speaking, data
replication allows for straight-forward data recovery from a surviving node holding
the data. Using erasure codes, we can potentially use the limited storage nodes
in a more efficient and effective manner, since a storage node can possibly hold
information helpful for multiple data nodes. The downside is that data recovery
requires the decoding cost of solving a linear system of equations.

Using any of the two approaches, our objective is to minimize the amount of
data transmissions for introducing redundancy. We prove that such an optimization
problem is NP-hard using any of the two approaches. Therefore, we propose O(α)
approximation algorithms, where α is the fatness’ of the given potential spatial node
failures.
chapter Organization. The rest of the chapter is organized as follows. In Sec-
tion 2.2, we present our network and cost models, and give an exact formulation of
the problems. In Section 2.3, we discuss the problem with replication as the choice
method of generating redundancy. In Section 2.4, we discuss the problem using
erasure codes. We present our simulation results in Section 2.5. We defer some of
the tedious proofs of our results to Section 2.6.

2.2 Problem Formulation and Related Work
In this section, we start by describing our network model. We then give the formal
formulation of the problem using each of the redundancy schemes and then, we
discuss the related work done in this area.
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Network Model. Consider a network of sensor nodes deployed in a plane. In our
network models, each node is either a data node or a storage node, but never both.
Each data node generates data of interest, while the storage nodes can be used for
storage of replicated data. We assume that over time each data node generates data
whose size is almost the size of an individual node memory and each data node
stores a copy of its own data. Thus, a data node cannot be used for storage of other
nodes’ data. Throughout the article, we assume that the total number of storage
nodes is more than the total number of data nodes in the network. Also, each node
is aware of its own location and the coordinates of its neighbors relative to itself.

The major focus of the chapter is to design a redundant data storage scheme
with minimal communication cost such that the network data can be recovered af-
ter node failures with spatial patterns. Below, we formally define our model of
communication cost and node failure patterns.
Communication Graph and Costs. We use r to denote the uniform transmission
radius of the sensor nodes, and two nodes can communicate directly with each other
if the Euclidean distance between them is less than r. The communication graph
of the network is defined over the set of all nodes as vertices and has an undirected
edge between two nodes i and j if they can communication directly with each other.
The communication distance between two nodes i and j is the distance between i
and j in the communication graph.

Definition 1 (Communication Cost.) Let d be a data node and S be a set of storage
nodes. We use C(d, S) to denote the cost of transmitting one packet of data from d
to all the nodes in S. For simplicity, we assume C(d, S) to be equal to the size of S
plus the communication distance between d and the nearest destination in S.

The above cost model is reasonable if S is clustered in a region and we use
Geocast [51] like technique to broadcast a message to S. We note that the above
communication cost model is only for the sake of simplicity of presentation, and the
results of this chapter hold even for the most general cost model wherein C(d, S) is
the size of the minimum Steiner tree over d ∪ S in the communication graph.
Failure Pattern (the geometric definition): A failure pattern on the network is a
closed 2-dimensional geometric shape. Both location and orientation of the failure
in the plane can be known or unknown. When a failure occurs, the location and
orientation of the failure pattern is determined and all the nodes contained in the
failure area simultaneously fail (are destroyed).

As an example, a bomb attack can be defined as a failure pattern with circular
shape with variable location, since it can happen anywhere in the network domain.
Destruction of a dam on the other hand can be defined as a stripe shape failure
which can only happen in a predefined fix location.
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An important observation is that a spatial failure with fixed location and orien-
tation always destroys a fixed subset of nodes. Furthermore for every given subset
of nodes a closed shape can be found to enclose only the nodes in the subset. Fol-
lowing these observations we can present a failure as a subset of nodes it destroys
rather than its shape. This gives a combinatorial definition of failures.
Failure Patterns (the combinatorial definition): A failure pattern can be defined
as a subset of nodes in the network.

We assume that no two failures happen simultaneously, i.e. after a failure there
is sufficient time for the network to reorganize. We also assume that the cost of data
recovery is not a concern. Once a failure is sensed a mobile central station with
unlimited resources can do the recovery.

Next we present two problem formulations, for the two methods of introducing
redundancy.

2.2.1 Redundancy with Replication
In this subsection, we give the formal definition of the problem when, to allow
recovery from failures, we simply replicate data at other storage nodes. We start
with defining storing set as follows.

Definition 2 (Storing Set.) For a given data node d, a storing set is a set S(d) of
storage node such that no failure destroys the data node and all the nodes in the set
S(d).

Note that in our model the size of data is almost the size of the available storage
of a node, and thus, we cannot store more than one data packets in each node.
Therefore, the storing sets for different data nodes should be disjoint. We can now
formally define the problem as follows.
Minimum Cost Data Replication (MCDR) Problem. Given a network with data
and storage nodes and a set of failure patterns, find a set of disjoint storing sets, one
for each data node, such that the sum of communication costs from a data node to
its storing sets is minimized. Formally, if D is the set of data nodes, then for each
d ∈ D, we find a storing set S(d) ⊆ S such that

∑
d∈D

C(d, S(d)) is minimum.

Theorem 1 The MCDR problem is NP-hard. Moreover, it is also NP-hard to ap-
proximate the MCDR problem within any finite approximation ratio.

We defer the proof of the above theorem to Section 2.6.
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2.2.2 Redundancy with Erasure Codes
The second scheme to introduce redundancy is to use decentralized erasure codes
as introduced in [50]. In this scheme, each of the data nodes pre-routes its packets
to specific storage nodes. Each storage node creates and stores a codeword of all the
data packets it receives. The codeword is constructed by cascading linear combina-
tion of chunks of input data packets and in order to decode the data one should pull
the network data and solve a system of linear equations. The details of coding and
decoding procedures for decentralized random linear codes can be found in [52].

One can represent this erasure coding scheme by a bipartite graph between data
nodes and storage nodes such that there is an edge between a data node d and a
storage node s if d pre-routes its packet to s. Since each data node stores a copy
of its own data, in the recovery phase, the data of surviving data nodes can be
eliminated from the codewords of surviving storage nodes. Hence the necessary
condition for recovering data after a failure is to recover the data of destroyed data
nodes from the surviving storage nodes. As shown in [50], the necessary condition
for successful recovery is the existence of a maximal matching between destroyed
data nodes and the surviving storage nodes [53, 54]. We can now formulate our
problem as follows.
Minimum Cost Data Coding (MCDC) Problem. Given a network with D and S
as the set of data and storage nodes respectively and a set of failure patterns, the
MCDC problem is to construct a bipartite graph G′(D ∪ S,E ′) with minimum sum
of edge weights where:

• The weight of an edge (s, d) in E ′ is the cost of communication between s
and d, and

• The set of edges E ′ is such that for any given failure pattern F , the induced
subgraph in G′ over (D∩F )∪ (S−F ) has a matching of size |D∩F |. Here,
we have used F to denote the set of nodes destroyed by F .

Note that for a failure F , (D∩F ) is the set of destroyed data nodes and (S−F )
is the set of surviving storage nodes. Thus, the above condition ensures that there
is a matching of size equal to the number of destroyed data nodes between the set
of destroyed data nodes and the surviving storage nodes.

Theorem 2 The MCDC problem is NP-hard.

We defer the proof of the above theorem to Section 2.6.
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2.2.3 Related Work
Increasing data persistence in the presence of node failure has been a subject of
increasing research in recent years. One popular approach to this problem is to use
network coding. The usefulness of network coding for data storage was investigated
in [55] where authors show a simple distributed scheme using network coding can
perform as well as the case when there is complete coordination between nodes.

Dimakis et. al. in [50, 52, 56] and Lin et. al. in [57, 58] purposed two differ-
ent schemes for decentralized implementation of Fountain codes in wireless sensor
networks. Both algorithms use limited global information such as the total number
of nodes and sources. Aly et.al in [59] use simple random walks to implement a
decentralized Fountain code without presence of any global information. Kamra et.
al. in [60] purposed a different approach with the goal of enhancing data persistence
in network in case of node failure. It uses growth codes to maximize the amount of
information available for decoding at any chosen moment.

All of the previous research on this topic use a probabilistic node failure model
without any spatial pattern for node failure. To the best of our knowledge, this
is the first word addressing the problem of preserving the data in case of spatial
attacks/failure on a wireless sensor network. Although any of previous methods
can be used for designing failure tolerant network, the present of spatial pattern
for node failure allows for reducing the required redundancy and communication
significantly.

2.3 Approximation Algorithm for the MCDR Prob-
lem

In this section, we design an algorithm for the MCDR problem which yields a
solution with a near-optimal cost on an average, for uniformly random networks.
Survival Matching Algorithm (SMA). Note that in our MCDR problem if we
restrict the size of storing sets to be just one storage node, then the MCDR prob-
lem can be easily reduced to the minimum-cost 2D-matching problem (in bipartite
graphs). For the unrestricted MCDR problem, our approximation algorithm called
the Survival Matching Algorithm (SMA) essentially solves the restricted MCDR
problem optimally (i.e., restricts the storing sets to just one storage node and finds
the minimum-cost 2D-matching in an appropriately defined bipartite graph). We
will later show that SMA’s solution is within a constant factor of the unrestricted
optimal solution for uniformly random networks.
SMA Description. Given a network of data and storage nodes, SMA starts with con-
structing a bipartite graph Gs(D ∪ S,Es) between data and storage nodes wherein
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Algorithm 1 Survival Matching Algorithm (SMA)
- Create a weighted bipartite graph Gs = (D ∪ S,Es) over the set of data nodes
D and storage nodes D. An edge (d, s) is in Es if and only if there is no failure
set that contains both d and s. The weight on each edge (d, s) ∈ Es is equal to
the communication cost between d and s.
- Find the minimum-weighted perfect matching M in Gs.
- For each edge (d, s) ∈M , create the storing set {s} for the data node d.

there is an edge between a data node d and a storage node s if and only if d and s
do not exist together in any particular failure set. Essentially, an edge (d, s) ∈ Es
signifies that {s} can be picked as a storing set for the data node d. Thus, a per-
fect matching in Gs yields a set of disjoint storing sets of size one each, and hence
is a solution (not necessarily optimal) to the MCDR problem. In addition, each
edge (d, s) in Gs is assigned a weight equal to the communication cost between
d and s, and we actually find a minimum-cost perfect matching in Gs. Note that
minimum-cost perfect matching problem can be solved in polynomial time [61].
See Algorithm 1 for a formal description of SMA.
Approximation Proof. We now show that in uniformly random networks with
spatial failures, SMA delivers a solution whose cost is at most α times the optimal
cost with high probability. Here, α is the fatness (as defined below) of the given set
of spatial failures.
Fatness of Spatial Failures. Fatness is a well-known concept in geometry which
quantifies how a geometric object is spread in all directions [62]. For a given object
O, its fatness is defined as follows. Let C and C ′ be two concentric circles such
that C fully contains O and C ′ is fully contained in O. Then, the fatness of O is
defined as the maximum possible value for the ratio Radius(C)

Radius(C′)
over all possible such

concentric circles C and C ′. In this work, we extend the concept of fatness to a set
of geometric objects (spatial failures) as below.

Definition 3 (Fatness) For a given set of spatial failures F , let (i) R′ be the radius
of the largest circle that can be contained in each of the failures, and (ii) R be the
radius of smallest circle that can contain each of the failures. The fatness α of the
set of spatial failures F is defined as the ratio R/R′.

Proof Outline. We compute the approximation ratio of SMA by estimating (i) a
lower bound on the optimal cost, and (ii) the expected cost of the SMA solution, in
the below two lemmas respectively.
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Lemma 1 For any instance of the MCDR problem, the optimal cost of a solution is
at least (|D|R′)/(2r) where R′ (as defined above) is the radius of the largest circle
that can be contained in each of the failures, |D| is the number of data nodes, and
r is the transmission radius of the nodes.

PROOF: Consider a storing set and two (storage) nodes s1 and s2 in it that are
farthest from each other. Distance between s1 and s2 must be at least R′, since oth-
erwise all the nodes in the storing set can be contained in a circle of radius R′ and
thus in any given spatial failure with appropriately chosen location and orientation
(which contradicts the definition of a storing set). Now, the minimum communi-
cation cost between a data node to (s1, s2) is at least half the communication cost
between s1 and s2 which is at least R′/r. Thus, the total cost of a set of |D| storing
sets is at least (|D|R′)/(2r).

The proof of the below lemma is rather tedious, and is deferred to Section 2.6.

Lemma 2 Consider a uniformly random network, i.e., with uniformly, indepen-
dently, and randomly distributed data and storage nodes, in a square region of size
q × q. Lets given failure patterns be such that R̂ ≤ q/2, where R̂ (as defined in
Definition 3) is the radius of the smallest circle that can contain each of the given
failure patterns.

In such networks, SMA delivers a valid solution with a very high probability
(converges to 1 for large networks). In addition, the expected cost of the delivered
solution is O(|D|R/r), where |D| is the total number of data nodes, and r is the
transmission radius of the nodes.

From the above two lemmas, we get the following theorem.

Theorem 3 For uniformly random networks in a square region of q×q, where given
failure patterns are such that R̂ ≤ q/2, SMA delivers a valid solution with a very
high probability and the expected approximation ratio (over all random networks
for which SMA delivers a valid solution) is O(α) where α is the fatness of the given
failure patterns.

Significance of Theorem 3. Note that if we allow arbitrarily large failures, then
no valid solution may not even exist. Further, since the decision version of MCDR
problem is NP-complete (as shown in Section 2.6.3), it is unlikely that a polyno-
mial algorithm can always return a valid solution if one exist. Thus, an algorithm
returning a solution with high probability is the best we can hope for.
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Finally, since it is NP-hard to approximate the MCDR problem in general (see
Theorem 1), the above average approximation-ratio over almost all random net-
works is of significance.
Distributed Algorithm. To the best of our knowledge, there are no efficient dis-
tributed approximation algorithm known for the minimum-cost matching problem,
which is a special case of our MCDR problem. We plan to address this direction in
our future work.

2.4 Approximation Algorithms for the MCDC Prob-
lem

In this section, we store erasure codes of data packets to generate data redundancy.
We start by showing that SMA of the previous section can be used to also solve the
MCDC problem with an approximation ratio for random networks. We also design
a distributed approximation algorithm, and prove its performance guarantees.
Using SMA for the MCDC Problem. Here, we show that SMA for the MCDR
problem can also be used to yield an approximation solution for the MCDC problem
in random networks. Firstly, note that the output of SMA, viz., a set of disjoint
storing sets, can be used to construct a valid solution G′ for the MCDC problem
by connecting each data node to each storage node in its storing set. Similar to the
arguments in Lemma 1, we can show that the optimal cost of any instance of an
MCDC problem is at least |D|R′/2r. Thus, by Lemma 2, which also applies to the
MCDC solution yielded by SMA, we have the following approximation result.

Theorem 4 For uniformly random networks, the MCDC solution delivered by SMA
(as described above) has an average approximation ratio of O(α), where α is the
fatness of the given spatial failures.

Distributed Storage Algorithm (DSA). The main advantage of storing linear com-
bination of data (as in the MCDC problem) over simple replication (as in the MCDR
problem) is that the decisions of where to store the data can be made locally by the
data nodes, i.e. the data nodes don’t have to globally compete for exclusive use
of storage nodes. However, the drawback of this linear combination approach is
that recovery of data cannot be guaranteed for all failures, since in case of some
failure the relevant remaining linear equations may not yield a full rank system.
Below, we present a distributed algorithm that guarantees recovery of data with a
high probability in random networks.
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DSA Description. Consider a uniformly random network of data nodes and storage
nodes. Without loss of generality, we assume the density of the network to be
one unit. For each data node, we define its storage region to be the rectangle of
size 2 × φ at a vertical distance of 2R below, as shown in Figure 2.1. Here, R is
the radius of the smallest circle that can contain all failures, and φ is a constant (see
Equation 2.1) which depends on desired probability of recovery and ratio of number
of data to storage nodes and is defined later (see Equation 2.1). More formally, if
(x, y) are the coordinates of the data node, then its storage region is a rectangle with
the left-most top coordinate equal to (x − 1, y − 2R) and has a length of 2 and a
height of φ.

The bipartite graph G′(D ∪ S,E ′) returned by DSA consists of edges that con-
nect a data node to each storage node in its storage region. The implementation
of DSA entails each data node broadcasting its data to all the storage nodes in its
storage region, and each storage node stores a linear combination of all the data
packets received from various data nodes.

2Rmax

u = (x, y)

S(u)

r

φ

Figure 2.1: Storage region of a data node in DSA.

Theorem 5 Given a uniformly random network and a set of failure patterns, the
solution returned by DSA allows successful recovery of data with a probability of
(1− ε), when there is a single failure, if the value of φ is chosen as:

φ =
1

n
max((n+ k)c2 + (k − n)R, c2(n+ k)), (2.1)

where k and n are the number of data and storage nodes respectively, R is the
radius of the smallest circle that can contain each failure, and c is the smallest real
number such that g(c) > (1 − ε) where g(x) is the Gaussian error function. Note
that when k < n, the above equation simplifies to φ = c2(n+ k)/n.

The proof for the above theorem is quite involved and hence, is deferred to
Section 2.6. We now prove the average approximation ratio of DSA.
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Figure 2.2: The communication cost of various algorithms for increasing (a) poten-
tial failure sizes, (b) network size, and (c) ratio of data nodes to storage nodes.

Theorem 6 For uniformly random networks, DSA returns a solution with an ex-
pected approximation-ratio of O(α).

PROOF: Using arguments similar to Lemma 1, we can show that the minimum
cost for a solution to MCDC is (|D|R′)/(2r). Below, we show that the expected
cost of DSA’s solution is O(|D|R/r) which will prove the theorem.

In DSA, a data node broadcasts its data to a rectangular region of size rφ located
at a vertical distance of 2R. Since our choice of φ value is O(1) (see Equation 2.1)
when number of data nodes is less than the number of storage nodes, the commu-
nication cost incurred by each data node is O(2R/r) = O(R/r). Thus, the total
expected cost of the DSA solution is O(|D|R).

2.5 Simulations
In this section, we provide simulation results of our algorithm. We compare our
algorithms with Dimakis’ algorithm [56] in terms of the total communication cost
under spatial failures with different radii in networks of different sizes. We show
that our algorithm incurs much less communication cost than Dimakis’ algorithm,
and achieves very similar successful recovery probability.
Comparison of Communication Costs. Figure 2.2(a) compares the cost of SMA
and DSA to the decentralized erasure codes as used in [56]. Our experiment is per-
formed on a network with 10, 000 sensor nodes, 20% of them are data nodes. All
nodes are uniformly distributed in a 100 × 100 rectangle area. The communicate
radius is 2.5. The X-axis is the radius of circular potential failure, varying from 5 to
15. The Y-axis is the total communication cost. For the algorithm in [56], each data
node sends its data to exactly log k storage nodes. Since the algorithm in [56] does
not adjust to different failure size, the curve of [56] on the figure is a line. From
the figure, we can find SMA and DSA need much fewer messages than the algo-
rithm in [56]. And the recovery probability is very similar, the theoretical recovery
probabilities are all more than 99.99%. In our simulations, all three algorithms can
successfully recover data.
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Figure 2.3: The total communication cost for different desired probability of suc-
cessful recovery.

Fig 2.2(b) is the comparison of total communication costs when the network size
is increasing. The X-axis is the network size. In particular, x2 nodes are uniformly
randomly distributed in an x×x area. x varies from 100 to 1000. For each network,
20% nodes are data nodes, the communication radius is 2.5, and the potential failure
radius 0.1x. The Y-axis is the total message costs, on a log scale. We can find, in
every size of the network, our DSA algorithm is one order of magnitude better.

We are also concerned about the communication costs for networks with differ-
ent fractions of data nodes. Fig 2.2(c) shows the result. This time we fix the network
size. We have 250, 000 nodes uniformly randomly distributed in a 500 × 500 area,
but the ratio of data nodes changes. The X-axis is the ratio of the data nodes, vary-
ing from 10% to 80%. The communication radius is 2.5, and the potential failure
size is 50. The Y-axis shows the total cost of messages to distribute data. We can
find that when the ratio of data nodes increases, the cost is increasing fast. Espe-
cially when the radio is bigger than 0.5, which means there are more data nodes
than storage nodes. However, for the type of network we are considering there are
enough number of redundant (i.e., storage) nodes, so this situation is rare.
Probability of Successful Recovery for DSA. For DSA, the size of the storage
rectangle would affect the probability of successful recovery. To achieve higher
probability, we need a larger storage rectangle, which means higher cost during the
data distributing phase. Fig 2.3 shows the relationship between the communication
cost and the probability of successful recovery. X-axis is the recovery probability,
varying from 0.9837 to 1 − 7 × 10−7. Y-axis is the total communication cost. All
simulations are ran on a sensor network with 10,000 nodes uniformly randomly dis-
tributed in a 100×100 area. 20% nodes are data nodes, and the potential failure size
is 10, and communication radius is 2.5. Our result shows that the communication
cost grows slowly if we keep the success probability to be lower than 0.9998.

In the last two sets of simulations, we did not include SMA algorithm. SMA is
a centralized algorithm with running time O(n3). It is computationally too heavy
for the large network that we are testing.
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2.6 Proofs
In this section, we present proofs of Lemma 2, Theorem 5, and the NP-hardness
results in the three subsections.

2.6.1 Proof of Lemma 2
Lemma 2: Consider a uniformly random network, i.e., with uniformly, indepen-
dently, and randomly distributed data and storage nodes, in a square region of size
q × q. Lets given failure patterns be such that R̂ ≤ q/2, where R̂ (as defined in
Definition 3) is the radius of the smallest circle that can contain each of the given
failure patterns.

In such networks, SMA delivers a valid solution with a very high probability
(converges to 1 for large networks). In addition, the expected cost of the delivered
solution is O(|D|R/r), where |D| is the total number of data nodes, and r is the
transmission radius of the nodes.
Proof of Lemma 2. Here, we prove only the second claim, i.e., the expected cost of
the SMA solution is O(|D|R/r). The first claim that SMA delivers a valid solution
with high probability is observed in Corollary 1 later in this subsection.

Recall that the MCDR problem is to find disjoint storing sets of arbitrary size.
In contrast, SMA finds singleton storing sets (i.e., a maximal matching) which it
can do it optimally since min-cost matching problem can be solved in polynomial
time. Thus, in order to bound the cost of the SMA solution, it is sufficient to show
that in uniformly random networks there exists a matching cost O(|D|R/r) with
high probability.

We show the above by introducing an algorithm (CMA) that finds a matching
of expected cost O(|D|R̂) with probability that converge to 1 for large networks.
Note that unlike SMA, CMA doesn’t always find a matching when a matching exist.
However, the number of such instances converge to 0 as the size of network increase
and the cost of those instances is not infinte(bound by the size of the network), hence
we can claim that the expected cost of SMA is the same as expected cost of CMA.
Cell Matching Algorithm (CMA). CMA works by creating a grid in the network
with initial unit square cells. Then at each if there exist unmatched data nodes
CMA try to find a matching for it in the cell assigned to it. At each stage the size
of the cells and cost of matching increase however the number of nodes needs to be
matched decrease with a faster rate, which result in a expected cost of O(k.R̂).

CMA starts by dividing the network region into cells of unit square size, and
then repeats the following steps until all the data nodes have been paired/matched
to some storage node.

• If all the data nodes of a cell are already matched (in an earlier step), mark the
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cell as complete; remaining cells are considered incomplete at this stage.
Note that in the initial stage, all cells are incomplete.

• For each incomplete cell, we assign the cell at vertical distance of 2R below
to be its “storage cell”.

• For each yet-unmatched data node in an incomplete cell, try to find an un-
matched storage node in the storage cell of its cell.

• Merge pairs of all (complete as well as incomplete) horizontally-adjoining
cells to construct new cells of double the width (but the height remains unit).

In the end, when each cell has become a full row, we match the remaining data
nodes to the remaining unmatched (possibly, very far away) storage nodes in the
network.

See Figure 2.4 for a brief illustration of CMA. In the first step, cell 3 is the
storage cell of cell 1. In the second step, cells 1 and 2 are merged to form a cell(1,2).
Similarly, cells 3 and 4 are merged to get a cell (3,4). In the next step, the storage
cell of (1, 2) is the new cell (3, 4).

1 2

43

2R

A

B

· · ·

Figure 2.4: Cell Matching Algorithm.

Estimating the Cost of CMA Matching. To estimate the cost of the matching deliv-
ered by CMA, let us first compute an upper bound on the cost of matching nodes in
each cell at each step. At the ith step (for the first step, we use i = 0), we have the
following.

• The expected number of nodes in each cell is 2i, since the size of a cell is
2i × 1 and we assume unit density.

• The maximum communication distance between two nodes that can be
matched is O

(
(1/r)

√
R2 + 22i

)
= O(2iR/r).

To bound the cost incurred in matching/pairing nodes in the ith step, let us as-
sume the worst case scenario that each node in each incomplete cell actually gets
matched. In such a case, an incomplete cell incurs a maximum cost of O(22iR) in
the ith step.
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In the very last stage (after each cell is a full row), all the yet-unmatched nodes
are matched wherever possible. But, since at this stage, 2i is equal to length of the
network, the cost is still bounded by O(22iR).

Finally, we show in Lemma 3 that the expected number of incomplete cells at
each step i is ((Number of Cells) ×O(e(−2(i−1)/2))). Now, since the number of cells
containing a data node is bounded by |D| at each step, we get the overall cost of
CMA solution as:∑

i

|D|O(e(−2(i−1)/2))O(22iR/r) = O(|D|R/r).

Lemma 3 In CMA (as described in the above lemma), the probability of any par-
ticular cell being incomplete in the ith step is O(e(−2(i−1)/2))).

PROOF: For a cell to be incomplete in step i, it should contain an unmatched
data node. This means that the number of data nodes in at least one of its two
constructing cell at step i − 1 should be more than the number of the storage node
in its storage area. For step i, let U − i to be the difference between data nodes of a
cell and storage nodes of its storing cell. The probability of a cell being incomplete
at step i is at most twice the probability of Ui−1 < 0. Below we compute the
probability distribution function (pdf) of Ui and show that it decrease with a super
exponential rate as i increases. To be more precise, we show that the probability of
Ui < 0 is O(e(−2i/2)) which means the probability of a cell being incomplete at step
i is O(e(−2(i−1)/2)).
Computing pdf of Ui. For an arbitrary rectangle X over a uniformly random net-
work, both the number of data nodes and number of storage nodes in X are random
variables (denoted as DX and SX respectively). By computing the pdf of DX and
SX we can compute the pdf of the number of data and storage nodes (denoted as
Di and Si respectively) in a cell at step i. Since we have Ui = Si −Di we can use
pdf’s of Di and Si to compute the pdf of Ui.

As mentioned before, for sake of simplicity, we assume the network density to
be one unit. We use n and k to denote the total number of data and storage nodes in
the network. Since the density of the network is 1, the total area of the network is
n+ k.
Computing distribution of DX and SX . Recall that for a region/set X , DX and SX
are the number of data and storage nodes respectively inX . For a randomly selected
rectangle X of length l and height w, DX and SX are random variables with a
binomial distribution of number of experiments equal to k and n respectively and a
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success probability of lw/(n + k).1 Since both n and k are large numbers, we can
use the normal approximation [63] for the above binomial distributions. Thus, we
have

DX ∼ N

 µ = klw
(n+k)

,

σ2 = klw
(n+k)

(
1− lw

(n+k)

)


SX ∼ N

 µ = nlw
(n+k)

,

σ2 = nlw
(n+k)

(
1− lw

(n+k)

)


where µ is the mean and σ is the variance of the distribution.
Probability distribution of Ui. In step i of our algorithm, each cell has a size of
(l = 1, w = 2i). We have,

Di ∼ N

 µ = k2i

(n+k)
,

σ2 = k2i

(n+k)

(
1− 2i

(n+k)

)


Si ∼ N

 µ = n2i

(n+k)
,

σ2 = n2i

(n+k)

(
1− 2i

(n+k)

)


And the probability distribution of Ui = Si −Di is

Ui ∼ N

 µ = (n−k)2i

(n+k)
,

σ2 = 2i
(

1− 2i

(n+k)

)


Computing Pr(Ui < 0). Since we want to compute an upper-bound for the proba-
bility of Ui < 0 we can replace the variance with a higher value. This allow us to
omit the term 1− 2i

(n+k)
. We get,

Ui ∼ N

 µ = (n−k)2i

(n+k)
,

σ2 = 2i


1The probability of a particular node i to be in X is equal to (Area of X)/(Total Area of the

Network). The number of data nodes in X is the repeat of this single trial k times.
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Base on normal distribution properties [63] the probability of Ui < 0 is O(1 −
g(ci)) where g(x) is the Gaussian error function and

ci =
µ

σ
=
n− k
n+ k

2i/2

We have (1− g(ci)) < e−ci
2 [63], Hence the probability of Ui < 0 is O(e−ci

2
).

Notice that at different stages of CMA, n and k are constants and, n−k
n+k

> 0. Hence,
the probability of Ui < 0 is O(e−2i/2).

Lemma 4 CMA (as described above) finds a matching with a very high probability,
which converges to 1 for large networks.

PROOF: For a network of size q × q, CMA performs log q steps. By Lemma 3,
the probability of a cell containing unmatched data nodes at the end of the final step
is O(e−2lgq/2) = O(e−

√
q). Since the total number of cells at the final step is q, the

probability of existence of an incomplete cell at the end of the final step is at most
O(q.e−

√
q) which converges to 0 as q goes to infinity. Thus, the probability of CMA

not finding a matching converges to zero for large networks.

Corollary 1 In uniformly random network in a square region of size q × q, where
given failure patterns are such that R̂ ≤ q/2, SMA delivers a valid solution with a
very high probability (converges to 1 for large networks).

2.6.2 Proof of Theorem 5
In this subsection, we present proof of Theorem 5. We use the following two basic
notations throughout this subsection. Let G′(D∪S,E ′) be the solution returned by
DSA for a network with D and S as the set of data and storage nodes.

• We useDX and SX to denote the set of data and storage nodes respectively in
X , where X is a geographic region in the network or a set of network nodes.

• For a set of data nodes δ, we use N(δ) to denote the set of storage nodes that
are connected by an edge in G′ to some data node in δ. In other words, N(δ)
is the set of storage nodes that lie in the storage region of some data node in
δ.
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Theorem 5.
Given a uniformly random network and a set of failure patterns, the solution

returned by DSA allows successful recovery of data with a probability of (1 − ε),
when there is a single failure, if the value of φ is chosen as:

φ =
1

n
max((n+ k)c2 + (k − n)R, c2(n+ k))

where k and n are the number of data and storage nodes respectively,R is the radius
of the smallest circle that can contain each failure, and c is the small real number
such that g(c) > (1− ε) where g(x) is the Gaussian error function.
Proof of Theorem 5. As discussed in Section 2.2.2, for successful recovery of data
when a failure F occurs, the induced subgraph of G′ over (D ∩F )∪ (S −F ) must
have a matching of size |D ∩ F |. Here, we are using F to also denote the set of
nodes destroyed by F . Thus, to prove the theorem, we need to show that such a
matching exists with a probability of (1− ε).

Without loss of generality, let us assume the given failure F to be a square region
of size 2R× 2R. Recall that R is radius of the smallest circle that can contain each
given failure. We will prove the theorem using the following sequence of claims.

• First, note that F does not destroy any node in N(DF ), since the storage
region of a data node is more than a distance of 2R. Thus, it suffices to show
that with a probability of (1 − ε), there is a matching of size |DF | in the
induced subgraph in G′ over (DF ∪ N(DF ); note that DF = (D ∩ F ) and
that only the nodes in N(DF ) are useful in finding a matching.

• By Hall’s Theorem [64], the above desired matching does not exist iff there
is δ ⊂ DF such that |δ| > |N(δ)|. We show that the probability of this event
is at most ε using the following two steps.

– First, we show in Lemma 5 that if there exist a set δ ⊂ DF such that
|δ| > |N(δ)| then there is rectangular region L in the region F such that
|DL| > |N(DL)|.

– Then, in Lemma 6, we show that the probability of such a rectangle
L existing is less than ε. Intuitively, this is true due to proportionally
smaller size of L in comparison to the union of the storage regions of
the data nodes in L.

We now prove the two lemmas used in the above proof.

Lemma 5 If there exists a set δ ⊂ DF such that |δ| > |N(δ)|, then there is a
rectangular region L in the failure region F such that |DL| > |N(DL)|.
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PROOF: Consider δ ⊂ DF such that |δ| > |N(δ)|. Let Bδ be the smallest
axis-aligned rectangle that contains δ. Without loss of generality, let us assume that
δ ⊂ DF is the set with smallest Bδ that satisfies |δ| > |N(δ)|.

Since δ is contained in Bδ , we have |DBδ
| > |δ|. Since, |δ| > |N(δ)|, we get

|DBδ
| > |N(δ)|. Below, we show that N(δ) = N(DBδ

), which will imply that

|DBδ
| > |N(DBδ

)| and thus, showing the Bδ is the desired rectangle L.

Showing N(δ) = N(DBδ
). Essentially, we wish to show that expanding the set of

data nodes from δ to DBδ
doesn’t necessarily increase their total storage region.

Let us assume that there is a storage node z such that z is in N(DBδ
) but not in

N(δ); let z be the highest (with largest y-coordinate) such storage node. As shown
in Figure 2.5, consider the four rectangles Z1, Z2, Z3, and Z4. Here, Z1 and Z2

partition the rectangle Bδ at a horizontal line at a vertical distance of 2R + φ from
z, and Z3 and Z4 partition N(DBδ

) based on z.2 We claim the following.

1. Since z is the highest storage node that is in N(DBδ
) but not in N(δ), each

storage node in Z3 is in N(δ).

2. Each data node is Z1 stores its data only in the storage nodes in Z3, since
DSA stores data in storage nodes that are at a vertical distance of at most
2R̂ + φ.

3. Number of data nodes in Z1 that are in δ must be less than the number of
storage node in Z3 that are in N(δ), since otherwise δ wouldn’t be the data
set with smallest enclosing rectangle that satisfies |δ| > |N(δ)|.

The above three claims imply that if we omit the set of data nodes in Z1 from
δ, we get a set of data nodes δ′ with a smaller enclosing rectangle (Z2) that satisfies
|δ′| > |N(δ′)| — which is a contradiction to our original premise. Thus, no such
storage node z exists, and hence, N(DBδ

) ⊆ N(δ) which implies N(DBδ
) =

N(δ).

Lemma 6 For a given failure region F , the probability of existence of a rectangle
L in F such that |DL| > |N(DL)| is less than ε.

PROOF: Recall from lemma 3, for an arbitrary rectangle X over a uniformly
random network, both the number of data nodes and number of storage nodes in X

2For simplicity, we have used N(DBδ
) to denote the rectangular region corresponding to the

union of the storage regions of nodes in DBδ
.
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z

S(Bd′)

Figure 2.5: Partitioning of rectangles Bδ and N(DBδ
) based on z.

are random variables. We use the probability distribution functions (pdf) of these
two random variables to compute the pdf of the difference between the number of
data nodes in X and the number of storage nodes in the storage region of X . We
then show that if φ is chosen as defined in Equation 2.1, the probability is smaller
than ε.

As computed in lemma 3 for a rectangle X of size (l, w) expected number of
strange node and data nodes is,

DX ∼ N

 µ = klw
(n+k)

,

σ2 = klw
(n+k)

(
1− lw

(n+k)

)


SX ∼ N

 µ = nlw
(n+k)

,

σ2 = nlw
(n+k)

(
1− lw

(n+k)

)


Distribution of the difference (U).
As computed in lemma 3, for a rectangle of size (l, w) expected number of

strange node and data nodes is,

DX ∼ N

 µ = klw
(n+k)

,

σ2 = klw
(n+k)

(
1− lw

(n+k)

)


SX ∼ N

 µ = nlw
(n+k)

,

σ2 = nlw
(n+k)

(
1− lw

(n+k)

)


Consider a random rectangle X of size l × w, and let Y be its storage region
(i.e., union of the storage regions of the data nodes inX). Note that Y is a rectangle
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of size (l + 2) × φ. We now wish to compute the pdf of the random variable
U = SY −DX . Our goal is to bound the probability of U < 0.

Now, given two independent random variables V1 and V2 with normal approxi-
mations V1 = N (µ1, σ1

2) and V2 = N (µ2, σ2
2) respectively, the probability distri-

bution of (V1 − V2) is given byN (µ0 + µ1, σ1
2 + σ2

2). Since the random variables
DX and SY are independent, we get the below as the distribution for U = SY −DX .
Recall that Y is of size (l + 2)× φ.

U ∼ N


µ = n(l+2)(w+φ)

ws
− klw

(n+k)
,

σ2 = klw
(n+k)

(
1− lw

(n+k)

)
+

n(l+2)(w+φ)
(n+k)

(
1− (l+2)(w+φ)

(n+k)

)


Simplifications. In order to estimate the probability of U < 0, the above pdf must
be significantly simplified. We use the following tactics to simplification.

• The mean of U is greater than zero and we want to upper-bound the proba-
bility of U < 0. Thus, we can consider a higher value for σ and a lower value
for µ. Thus, we omit the terms (1− (l+2)(w+φ)

(n+k)
) and (1− (l+2)(w+φ)

(n+k)
) in σ and

use l + 2 instead of l in both µ and σ.

• We can multiply both the mean and standard deviation with a positive number
without changing the probability. So, we multiple them both by (1/(l + 2)).

Applying the above simplifications, we get:

U ∼ N

 µ = n(w+φ)
(n+k)

− kw
(n+k)

,

σ2 = n(w+φ)
(n+k)

+ kw
(n+k)


Bounding Pr(U < 0). Now we want to bound the probability of U < 0 by ε, over all
possible values of w, by choosing an appropriate value for φ. Since U has a normal
distribution, the probability of U < 0 is less than ε if µ > cσ where c = g(1 − ε)
and g(x) is the Gaussian error function.3 Since both mean and standard deviation
of U are positive numbers, we may rewrite the inequality as µ2 > (cσ)2. Thus, the
following equation ensures the desired upper bound on Pr(U < 0)(

n(w + φ)

(n+ k)
− kw

(n+ k)

)2

> c2.

(
n(w + φ) + kw

(n+k)

(n+ k)

)
3This is a known characteristic of normal distributions.
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For given values of n and k, we want to choose φ such that the above equation
holds for all values of 0 ≤ w ≤ R. Solving the above (omitting details), we get

φ = (1/n)max
(
(n+ k)c2 + (k − n)R, c2(n+ k)

)

2.6.3 NP-Hardness Proofs
Proof of Theorem 1. We show that our MCDR problem is NP-hard by reducing the
well-known 3D-matching (3DM) problem, which is known to be NP-complete [65],
to the decision version of the MCDR problem. The decision version of MCDR
problem is to check if there is a set of disjoint storing sets (irrespective of the cost),
one for each of the data nodes. We start with defining the 3DM problem.
3D-matching. Given three disjoint (unordered) sets X , Y , and Z where |X| =
|Y | = |Z|, and a relation T ⊆ X×Y ×Z, is there a subrelation M ⊆ T of size |X|
(called a maximal 3D-matching) such that for all pairs of elements (xi, yi, zi) and
(xj, yj, zj) in M we have xi 6= xj , yi 6= yj , and zi 6= zj . Note that M must contain
an element (xi, yi, zi) for each element xi ∈ X .

Now, consider an instance (i.e., the sets X , Y , Z, and the relation T ) of the
3DM problem. Let T ′ = X × Y × Z − T . We now construct an instance of our
MCDR decision problem from the above as follows.
Constructing an MDNR Instance. Consider a network consisting of data nodes X
and storage nodes Y ∪ Z. We create two types of failure sets:

• For each data node x ∈ X , we add two failures viz., x ∪ Y and x ∪ Z.

• We add a failure set corresponding to each tuple in T ′.

Now, we show that the above instance of MCDR has a solution if and only if the
3DM instance has a maximal matching. First, its easy to see that any maximal
matching of the 3DM instance gives a solution to the MCDR problem. Below, we
show that a solution to the MCDR problem gives a maximal matching to the 3DM
instance.

Note that the first type of failure sets dictate that each storing set must contain
a node from Y as well as Z. Since |X| = |Y | = |Z| and an MCDR solution
must contain |X| disjoint storing sets, each storing set in any MCDR solution must
contain exactly two storage nodes (one for each Y and Z). Further, for a data node
x ∈ X , if its storing set is (y, z), then (x, y, z) must not be in T ′ and hence must be
in T . Thus, the set of storing sets yields a maximal matching.
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To prove that MCDR is NP-hard to approximate, note that an approximate algo-
rithm for MCDR can be also used to solve the above defined decision version of the
MCDR problem which is NP-complete. Thus, MCDR is NP-hard to approximate.
Proof of Theorem 2. We prove MCDC is NP-Hard by reducing the GRAPH-
COLORING problem to the decision version of the MCDC problem. In the
decision version of the MCDC problem, the objective is to determine if there is
a solution G′ that has a total edge weight of at most a given quantity. Given an
instance (G, k) of GRAPH-COLORING, we construct an instance of the MCDC
problem as follows.

• The set of data nodes D is V , the set of vertices of G.

• The set of storage nodes are the k colors plus an additional special node s′.

• For each edge (i, j) ∈ E, we construct a failure {i, j, s′}.

• For each pair of data and storage nodes, the communication cost is one.

• The objective is to find a solution G′ of total cost at most |V | = |D|.

Note that the above instance of MCDC has a solution of cost at least |D|, since
in the solution G′ each data node must be connected to at least storage node. Also,
if there is a solution of cost |V , then each data node graph must be connected to
exactly one storage node in G′. In such a case, the MCDC solution G′ yields a k-
coloring of the graph G since (i) each data node is connected to exactly one storage
node in G′, and (ii) if (i, j) is an edge in G, then data ndoes i and j cannot be
connected to the same storage nodes in G′ because otherwise the failure {i, j, s′}
would not allow recovery of data at i or j.

On the other hand, if graph G has a valid k-coloring then we can construct a
graph G′(D ∪ S,E ′) of total edge weight |D| by connecting each data node to the
storage node corresponding to its assigned color. It is easy to verify that G′ is a
valid solution to the MCDC problem instance.
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Chapter 3

Minimizing Capacity Requirements
of Cellular Networks via Delayed
Scheduling
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3.1 Introduction
Broadband cellular networks are emerging to be the most common means for mo-
bile data access worldwide. Predictions from industry analysts indicate that the
volume of data through cellular data networks will increase exponentially in near
future [66]. The impact of this data volume on the operators’ networks has been
carefully analyzed [67]. It is widely anticipated that severe congestion in the cellu-
lar network infrastructure is in the offing if not already happening.

The research community has been responding to this challenge using various
means. Moving from macro-cells to femto-cells [68] or automatic offloading traffic
to WiFi networks [69] have been widely considered. Operators are adding capac-
ity by employing more spectrally-efficient technologies such as WiMax or LTE,
adding more spectrum and macro-cells. But these are very capital intensive pro-
cesses. Spectrum deregulation is also being considered by policy makers [70].
From a more immediate and practical standpoint, cellular operators have started
adding pressure on consumers to reduce traffic load by moving away from flat-rate
to usage-based pricing model [71], and more recently, throttling data speeds of high
volume users [72]. While such strategies can encourage the consumer to optimize
usage, they are ultimately detrimental to widespread adoption of cellular networks
by discouraging use of bandwidth hungry applications on mobile devices.
Delayed Scheduling. We consider an alternative approach that can be deployed
without any additional capital cost while only minimally hurting – if at all – user
experience. Several recent studies have reported that the aggregate cellular network
traffic load in a region exhibits a diurnal behavior with peak traffic appearing dur-
ing mid-day and very low volumes during the night [73, 74]. Individual base station
traffic also fluctuates widely during the day [73]. Thus, if certain lower-priority traf-
fic can be deferred from peak times to the off-peak times, the congestion issue can
be easily alleviated. Many traffic types are amenable to such deferred scheduling.
Examples include large downloads such as apps, e-books, videos/pictures, or sync
services such as email or cloud-based data. Often, the originating application type
(e.g., p2p) is a sufficient hint that a flow can be deferred. At other times, a hint
from the programmer or directly from the user may be needed to decide on such
flows. Regardless of such mechanics, it is conceivable that a significant reduction
of congestion is possible by such deferral. The operator no longer has to design the
network for the peak-demand and/or can accommodate much more traffic than is
currently possible, without hurting user experience any significantly.
Model. In this work, we address various algorithmic problems that arise in the con-
text of the above philosophy of allowing the flows to be deferred. The basic idea is
to have a ‘deadline’ associated with every flow indicating by when the flow should
be completed. The deadline provides a way to specify priority or scheduling laxity.
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It can be specified manually or via a profiling mechanism at the application layer
depending on the type and size of the flow and probably other contextual informa-
tion.

Each flow has an associated location, which determines the set of base stations
(BS) that can serve the flow. This exploits the fact that the BSes may have over-
lapped coverage areas. This is a very reasonable assumption in dense deployments.
Recent papers on energy savings (e.g., [74, 75]) exploit this fact to turn down BSes
to save energy while providing adequate coverage.

We allow a scheduled flow to be preempted to accommodate other (perhaps,
more urgent) flows, and rescheduled as many times as necessary, perhaps at neigh-
boring BSes that also covers the location of the flow. Any form of ‘rescheduling,’
however, only happens at flow arrival or completion (scheduling epoch), allowing
such scheduling to work at a higher layer and at a much longer time scale than and
independent of the link layer scheduling at the air interface.1 The actual instan-
taneous transmission bit rate for the flow could be variable and dependent on the
actual radio resource (e.g., bandwidth) allocated at the air interface and the SNR at
the mobile client.
Problems Addressed. With the above modeling approach, we address the following
problems:

• Determine the minimum capacity needed for the BSes to schedule all the
given flows successfully within their respective deadlines. This problem is
addressed in two different contexts: all BSes have the same (uniform) capac-
ity or non-uniform capacities. For the former, we design a polynomial-time
optimal algorithm, while for the latter, we show the problem to be NP-hard
and design a near-optimal algorithm.

• Given the capacity of BSes, schedule the flows in an online manner, so as to
maximize the number of flows finished before their deadline. We show the
problem to be NP-hard (even, in its offline form). Thus, we consider a special
(and more pertinent) case of the problem, and design online and semi-online
algorithms with provable performance guarantees.

The focus of this work is to provide efficient solutions for the above problems,
under above reasonable modeling assumptions, and to demonstrate potential perfor-
mance improvements via use of real data (cellular network traces). Encouraged by
the results here, our future work will focus on investigating the engineering issues
of deploying such mechanisms in a real network.

1The median flow inter-arrival time per BS in the data set we are using (described later) is
roughly around 100ms to give the reader an idea about the time-scale.
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3.2 Model, Problem Formulation, and Related Work
In this section, we describe our model of the cellular network and flow arrivals, give
a formal description of the problems addressed, and discuss related work.

3.2.1 Model
Informally, we address the problem of optimizing peak capacity of cellular base
stations (BS), when we have the flexibility of delaying (within certain constraints)
the incoming flows. Below, we explain our model of the cellular network, cellular
BS, and flows.
Cellular Network and Base Station. A cellular network infrastructure consists of
a number of cellular base stations (BS) distributed in a two-dimensional geographic
region. Each BS is associated with a coverage region of arbitrary shape and size.
Base Station Capacity. Each BS is associated with a capacity. The capacity is best
looked upon as the number of channels available to serve the flows. But, in general,
the notion of capacity is some measure of the BS’s resources to handle the data
demands, e.g., amount of bandwidth or number of channels.2 Capacities may or
may not be uniform across BSes; in this work, we consider both settings. The
optimization objectives considered in this work are to minimize (i) the uniform
capacity, or (ii) the sum of non-uniform capacities.
Flows. Each flow is a sequential stream of data packets, typically semantically
related, similar to a TCP or UDP socket connection. For simplicity and clarity,
we assume flows and tower capacities to be downlink only; incorporating uplink
flows and capacities into your model is straightforward.3 Put it at the end of ”socket
connection. Each flow i arrives in the system at a particular time ai and geographic
location li, is of a certain size number of bits/packets) si, and has a deadline di
associated with it. The deadline is the time by which the entire flow must be served
(as defined below). Note that the deadline value can be used to make a flow ”non-
deferrable.”
Mobility. For simplicity of presentation, we assume that the location li remains
static (i.e., does not change during its lifetime, even if it is delayed). Our devel-
oped techniques easily generalize to the case when the location li may change over
time, which corresponds to the setting wherein the originating user of the flow is
mobile. We discuss generalization of our techniques to mobile users in the end of
section 3.3.

2We implicitly assume that a BS’s capacity is independent of the load and capacity of the neigh-
boring BSes.

3To incorporate uplink flows and capacities: (i) our LP formulation of Section III and IV can be
easily changed, and (ii) in Section V, we just need to define and use an additional concept similar to
the g-capacity. See Appendix for details.
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Base Station Serving a Flow; Transmission Rates αijt. A flow i arriving a loca-
tion li can be served by any BS j whose coverage region contains li. A BS serves
a flow in its coverage region using exactly one unit of its capacity (e.g., one of its
channels). We will relax this assumption, i.e., allow a flow to be served using an
arbitrary fraction of a BS capacity, towards the end of Section 3.3 and 3.4. Also, the
rate at which a flow i is served by BS j at time t is given by the bit-rate parameter
αijt; this parameter essentially captures the variable link quality dependent bit rate
of the downlink.4

Preemption and Parallelism. To reflect a practical setting, in our model, we allow
a flow being served to be preempted by another flow. The preempted flow can
be resumed later, perhaps, at another BS. Thus, essentially, a flow can be broken
into parts and each part served at different BSes5 at different times. However, we
do not permit “parallelism,” i.e., different parts of the same flow must be served
sequentially.
Completely Served. A flow is considered completely served if all the parts of it are
finished before the deadline.
Model Assumptions and Justifications. We have used some simplifying assump-
tions to make the problem tractable and to facilitate evaluation over the available
network traces which have limited amount of information. We assume that each
BS’s capacity is constant and independent of the neighboring BSes’ capacities. In-
terference management across BSes is assumed to be perfect (e.g., via prior fre-
quency planning). We assume that the flow size is either known or can be estimated
at the flow arrival, and that a flow a continuous stream of packets rather than dis-
continuous bursts. We do not account for any overhead cost for network controlled
hand-offs to move around loads onto different neighboring BSes. But such costs are
not hard to account for in the optimization problem. Note that in our schemes such
hand-offs only happen at flow arrival or completion times which serve as scheduling
epochs.

3.2.2 Problem Motivation, Formulations, and Contributions
In the context of the above described model, we consider the following offline and
online problems. The motivation behind the offline problems is to determine opti-
mal capacity needs based on historical traffic information. They can also be used
to future traffic growth that can be sustained with the existing network capacities.

4In particular, the parameter α allows us to model the fact that neighboring towers may take
longer to serve a flow than the original tower where the flow arrives.

5We assume that a network controlled hand-off (NCHO) [76, 77] mechanism can be used to
achieve this.
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More importantly, our offline algorithms are also used to estimate “traffic indica-
tors” which are useful in driving the online algorithms.

1. Minimize Uniform Capacity (MUC). Consider a cellular network consist-
ing of BSes with given coverage regions, wherein each BS has a uniform
capacity. Given the historical data on a set of flows with associated param-
eters, the MUC problem is to compute the minimum uniform capacity such
that all the given flows can be served within their deadlines.

In Section 3.3, we design a polynomial-time optimal algorithm for the MUC
problem.

2. Minimize Total Capacity (MTC). Consider a cellular network consisting of
BSes with given coverage regions, wherein different BSes may have different
capacities. Given the historical data on a set of flows with associated param-
eters, the MTC problem is to assign capacities to the BSes such that all the
given flows can be served within their deadlines, while minimizing the total
sum of capacities.

In Section 3.4, we show that MTC is NP-hard, and design a polynomial-time
near-optimal algorithm for the problem.

3. Online Scheduling of Flows (OSF). Consider a cellular network consisting
of BSes with given coverage regions and capacities (possibly, non-uniform).
At any time instant, a flow may arrive with the associated parameters. The
OSF problem is to schedule the flows to BSes in an online manner (i.e., as
the flows arrive), while maximizing the number of flows that are completely-
served.

In Section 3.5, we show the above problem to be intractable, and design
online and semi-online algorithms for a certain special case of the problem
which is more relevant in our context.

3.2.3 Related Work

Theoretical Studies. The offline scheduling problems (MUC/MTC) discussed in
this word are similar to the preemptive scheduling problems on identical machines
with arrival times and deadlines with the objective of minimizing the number of
machines. Although there is a considerable literature on this subject, our model
has a key difference: ours is the first preemptive scheduling problem that uses a
constraint on the set of machines that can schedule a job. The constraint makes a
significant difference as many preemptive scheduling problems with various objec-
tive functions [78, 79] (including our MTC problem) are polynomial without such
a constraint, but can become NP-hard with the constraint.
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The other key difference of our addressed problems with the prior literature
is our unique objective of minimizing the number of machines that yield a valid
schedule. There has been a considerable amount of work on preemptive schedul-
ing with various objectives such as finding a valid schedule [80], and on mini-
mizing makespan [81][82], number of late jobs [83], lateness [84], job-completion
costs [85], etc. However, to the best of our knowledge, there is no work on the
objective of minimizing the number of machines for scheduling jobs with arrival
times, lengths, and deadlines.

Our online scheduling problem OSF is again a preemptive scheduling prob-
lem of jobs with arrival times and deadlines on machines, with the objective of
maximizing the number of finished jobs. This problem without the job-machine
pairing constraint of our model, has been studied before [86, 87] for a number of
different objective functions such as minimizing makespan [88], guaranteed perfor-
mance [89], etc. However, the constraint on the set of machines a job can use makes
our problem much different than the prior-addressed problems.
Load Balancing in Cellular Networks Part of our work is related to the broad topic
of load balancing, as we consider “spatial shift” of traffic flows to neighboring
BSes that also cover a given flow. This general concept has been widely used at
the link layer. For example, see papers on channel assignment, where wireless
resources are redistributed rather than traffic [90–92]. In the same note, myriads
of scheduling-based approaches are possible at the link layer [93–96]. In contrast,
our work reflects scheduling at a higher layer, scheduling at the flow level rather
than at the packet/frame level. We thus ignore physical/link layer issues such as
power, channels, interference and packet scheduling, instead focus on longer term
scheduling of flows – either in whole or in part – assuming the capacity at the BS
is largely independent of the traffic in the neighboring BSes. Similar load shifting
has been used in cellular networks in the context of energy saving [74].

3.3 Minimizing Uniform Capacity (MUC) Problem
In this section, we address the MUC problem. As mentioned before, the offline
MUC problem serves the purpose of determining optimal capacity needs of a net-
work using historical traffic information. In our context, we also use our offline al-
gorithms to estimate “traffic indicators” to drive our online algorithm (as described
in Section 3.5). We design an algorithm based on a Linear Programing (LP) formu-
lation, and show that it returns an optimal solution.
LP Formulation, and Challenges. To define a linear program for the MUC prob-
lem, we need to divide the time into intervals (not necessarily of same size), and
then, for each interval, determine the mapping that defines which flows are served
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by each BS. Normally, representation of such a mapping will require use of bi-
nary/integer variables, which are not allowed in a linear program. However, our
model allows preemption of flows at any time instant – which facilitates represen-
tation of the mapping, since preemption allows a BS to serve an arbitrary fraction
of a flow, within any time interval. In particular, we represent the mapping in terms
of the time used by a flow at a BS for each interval. However, even with the above
mapping, we still need to represent, for each interval, an actual “schedule” of flows
onto BSes that satisfies the constraints of “non-parallelism.” We will show (through
Lemma 8) that if intervals and linear constraints are chosen appropriately, then the
existence of such a schedule can be guaranteed. In particular, we define the intervals
as the time intervals (of possibly different sizes) between time instants of interest
(i.e., arrival time or deadline of a flow), as formally defined below; the number of
such intervals is polynomial in size of a given MUC problem. The set of equations
in our LP formulation are defined as follows.
Variables. Based on the above observations, we define the following notations and
variables, for our LP formulation.

• T = {T1, T2, . . . , } is the finite set of time “instants”, where Tt is either an
arrival time or a deadline of one of the given flows. We assume Tt’s to be in
increasing order; thus, Tt < Tt+1 for all t.

• Variables i, j, t to denote a flow, a BS, and a time instant, respectively.

• Variable k to denote the uniform capacity of BSes.

• Variable xijt to denote the amount of time the flow i is served by BS j, during
the time interval Tt to Tt+1.

Equations. On the above variables, we define the following equations:

1. xijt = 0 for all t, and for all i, j, where the location li of flow i is not in the
coverage region of cell j.

2. xijt = 0 for all j, and for all i, t where Tt < ai (the arrival time) or Tt ≥ di
(the deadline).

3.
∑

t,j αijtxijt = si, for all i, where αijt is the given bit-rate (a constant in the
LP) and si is the size of the i flow. This represents the constraint that all the
flows must be completely served.

4.
∑

i xijt ≤ k(Tt+1 − Tt), for all j, t. This represents the constraint that the
capacity of each BS j is at most k. Note that the values Tt+1 and Tt are
constants.
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5.
∑

j xijt ≤ (Tt+1 − Tt), for all i, t. This equation attempts to “represent” the
non-parallelism constraint, i.e., (a) no flow is served by two different BSes at
the same time, and that (b) a flow is served using exactly a unit capacity of a
BS. We will show that this equation is sufficient to “represent” the above two
constraints, as shown in Lemma 8.

6. Objective. Minimize k.

Integral BS Capacities. Note that the above LP returns a real number for the uniform
capacity variable k. For example, for the simple MUC instance where there is only
one BS and a single flow of size 1 with a deadline of 2, the above LP would return
the value of k as 1/2. However, when a flow is served by a unit-capacity only, a BS
capacity of 1/2 is not sufficient. In particular, we need to return an integral value for
the BS capacity (e.g., when the capacity signifies number of channels and each flow
is served by a channel). Thus, our overall algorithm for the MUC problem, called
the LP-based algorithm, is to return dKe as the final value, where K is the objective
value returned by the above LP. We now prove the correctness and optimality of
this algorithm.
Proof of Correctness and Optimality.

Lemma 7 The solution (dKe) returned by the above LP-based algorithm is a
“valid” MUC solution, i.e., using a uniform BS capacity of dKe, it is possible
to completely-serve all flows.

PROOF: To prove the lemma, we need to show that an assignment of values to
the LP variables that satisfies all the LP equations has a corresponding “schedule”
of flows onto BSes (i.e., a function that maps BSes to a set of flows being served
for each time instant) satisfying all the constraints of our model of serving a flow at
a BS. In essence, we need to prove the following claim:

For any given t, the xijt values of an LP solution can be converted to a schedule
of flows onto BSes such that at any time instant: (a) each BS is using exactly a unit
of capacity to serve a flow, and (b) a flow is not being served by multiple BSes.

Once we prove the above claim, it is easy to see that the proof of the lemma
follows. The proof of the claim is tedious and rather non-trivial, and hence, deferred
to the Appendix (see Lemma 8).

Lemma 8 Given a cellular network with BSes with varying capacities and flows.
Let the capacity of BS j be kj . Consider a time interval [0, T ]. We are given real
values {xij} for each flow i and BS j, signifying that the flow i must be served by
BS j for xij time. The {xij} values are such that (a) for each BS j,

∑
i xij ≤ kjT ,
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and (b) for each flow i,
∑

j xij ≤ T . We claim that there is a schedule of flows onto
the BSes (i.e., mapping of BSes to flows, for each time instant) such that at any time
instant: (i) A BS uses exactly a unit capacity to serve a flow, and (ii) Each flow is
served by at most one BS.

Theorem 7 The solution (dKe) returned by the above LP-based algorithm is an
optimal solution of the given MUC problem.

PROOF: It is easy to see that an optimal solution to the MUC problem satisfies
all the equations of our LP formulation. Now, since the LP formulation returns a
solution with a minimum value of k, and hence, with a minimum value of dke, the
theorem follows.

Using Non-Unit Capacity to Serve a Flow. We can easily generalize our model
and techniques to the case wherein a flow can be served using an arbitrary fraction
of a BS’s capacity. Such a model depicts the situation wherein the BS’s capacity
signifies the size of the available downlink bandwidth, and a flow can be served
using any fraction of this bandwidth. To generalize our algorithm to allow use of an
arbitrary fraction of BS’s capacity to serve a flow, we make the following changes
to our LP formulation:

• We let the variable xijt signify the total amount of BS i’s resources
(fractional-capacity times allocated-amount-of-time) used to serve flow j in
the tth interval.

• We change the 5th equation to:

for all i, t,
∑
j

(xijt/k) ≤ (Tt+1 − Tt).

Note that in the above model, the BS capacity can be an arbitrary real number. We
can easily generalize Lemma 8 for the above model, which proves the optimality
of the solution delivered by the above modified LP, when we allow an arbitrary
fraction of a BS’s capacity to serve a flow.
Bounding the Capacity. In the above model, we can also bound the amount of ca-
pacity that can be used to serve a flow, e.g., a bound on the number of channels that
can be used to serve a flow. If c is such an upper bound on the amount of capacity,
then we change the 5th equation to:

for all i, t,
∑
j

(xijt/c) ≤ (Tt+1 − Tt).

64



However, we need to change the LP solution K to the next multiple of c, i.e., return
cdK/ce as the final solution, for the proof of Lemma 8 to work. This introduces
an additive approximation factor of c to the solution delivered by the LP-based
algorithm, i.e., if |OPT| is the optimal BS capacity then the solution returned by
the above LP-based algorithm is at most |OPT|+ c.
Handling Mobility. Note that mobility of users can be modeled by defining the
location attribute li associated with the flows to be varying over time. Thus, the
location attribute is better represented as lit for each time instant t. The above can
be incorporated in our LP formulation as follows:

• Firstly, the time instants of interest will now also include time instants when
a location of a flow crosses the boundary of a BS’s coverage region.

• Secondly, due to the mobility, the set of BSes, whose coverage region con-
tains the flow’s location, changes over time. This can be incorporated by
defining the first set of equations of LP appropriately, i.e., constraining xijt
to be zero for every i, j, t where the location of i at time t is not contained in
the coverage region of j.

With the above two changes, it is easy to see that the optimality claim of LP-based
algorithm can be extended to the MUC problem with mobility.

3.4 Minimizing Total Capacity (MTC) Problem
In this section, we address the MTC problem. As mentioned for the MUC problem,
the purpose of an offline algorithm is to optimal the capacity needs of a cellular
networks, based on historical traffic information. We start with showing that the
MTC problem is NP-hard, and then modify the LP from the previous section to
design a near-optimal algorithm for the MTC problem.

Theorem 8 MTC Problem is NP-Hard.

PROOF: Consider an instance of the disk-set-cover problem, where we are given
points and fixed unit-disks in a Euclidean plane, and the problem is to select a
minimum number of disks that cover all the given points [97].

Given an instance of a disk-set-cover, we construct an instance of our MTC
problem as follows. For each disk, we construct a cell with its coverage region as
the disk. For each point, we construct a flow at the point’s location, with arrival time
as 0, size as 1, and deadline as n, where n is the total number of points in the discrete
unit disk cover instance (and hence, the number of flows in the constructed instance
of MTC). Thus, all the flows in the system have the same arrival time, deadline, and
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size. Now, it is easy to see that any BS can serve all the flows in its coverage region
using only a unit-capacity. Thus, the optimal solution of MTC assigns a capacity of
either 0 or 1 to the BSes. It is now easy to verify that the optimal solution of MTC
yields an optimal solution of the original discrete unit disk cover instance. Thus,
the MTC problem is NP-hard.

Near-Optimal Algorithm For MTC Problem. Our approximation algorithm is
based on the LP formulation from the previous section. We use the same variables
and notations from the LP of the previous section, except that we use {k1, k2, . . . , }
to denote the capacities of the various BSes, i.e., kj is the capacity of the jth BS. In
our below LP formulation for MTC, the non-optimality of the LP solution comes
from the fact that the capacity variables are treated as real numbers by the LP (when
they are in fact positive integers).

The LP formulation for the MTC problem consists of the same equations as the
LP in the previous section for the MUC problem, except that the fourth and sixth
set of equations are changed to the following respectively.

4.
∑

i xijt = kj(Tt+1 − Tt), for all j, t.

6. Objective. Minimize
∑

j kj .

The above LP returns a solution with real values for the {kj} variables. We take
a ceiling of these values to yield integral values for kj , and return that as the solution
for MTC. Thus, if {Kj} are the values returned by the LP, we return {dKje} as
the final MTC solution. Below, we show that the solution {dKje} is such that∑

jdKje ≤ (|OPT| + J), where |OPT| is the optimal total capacity and J is the
total number of BSes in the given problem instance.
Proof of Correctness and Near-Optimality. The following lemma, whose proof is
similar to the proof of Lemma 7, states that the above LP-based algorithm delivers
a “valid” solution to a given MTC problem.

Lemma 9 The solution, {dKje}, returned by the above LP-based algorithm is a
“valid” MTC solution, i.e., using the BS capacities {dKje}, it is possible to serve
all flows within their deadlines.

Theorem 9 The solution, {dKje}, returned by the above LP-based algorithm is
such that the sum of capacities

∑
jdKje is at most |OPT|+ J , where |OPT| is the

optimal sum of capacities and J is the number of BSes in the input.
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PROOF: It is easy to see that any valid solution of the MTC problem satisfies the
equations of the LP formulation. Thus, |OPT|, the value of the optimal solution to
the MTC problem is more than

∑
jKj , the value of the optimal LP solution. Since,∑

jdKje ≤ (
∑

jKj) + J , we have
∑

jdKje ≤ |OPT|+ J .

Corollary 2 If |OPT| is at least J , i.e., if each BS uses at least a unit capacity (in
other words, no BS is turned off), then the above LP-based algorithm for the MTC
problem is 2-approximate.

Using Non-Unit Capacity to Serve a Flow; Mobility. As in the previous section,
we can generalize our techniques to allow use of fractional capacity of a BS to serve
a flow. However, in the case of the MTC problem, we need to use a bound c on the
units of capacity that can be used to serve a flow in order to maintain the linearity of
our LP program. Thus, as before, we let xijt signify the total amount of resources
used in tth interval, and change the 5th equation to:

for all i, t,
∑
j

(xijt/c) ≤ (Tt+1 − Tt).

Then, if {Kj} is the solution of the LP program, then we return {cdKj/ce} as the
solution of the MTC problem. With the above change, we can show that the total
capacity of the modified-LP is at most |OPT| + cJ , where |OPT| is the optimal
total capacity and J is the number of BSes in the input.

Finally, mobility can be handled for the case of MTC problem in the similar
way as was done for the case of MUC problem.

3.5 Online Scheduling of Flows
In this section, we consider the online version of our problem, i.e., given a cellular
network, we want to schedule the arriving flows onto BSes, so as to maximize the
number of flows that are completely served. We prove that this problem is NP-
hard, and consider the special case of the problem in which the input is such that
all the flows can be completely served. For this special case of the problem, we de-
sign various semi-online and online algorithms, and prove appropriate performance
guarantees. For sake of clarity, we assume a BS uses a unit-capacity to serve a flow.
We discuss relaxation of this assumption towards the end of the section.
Online Scheduling of Flows (OSF). Consider a cellular network consisting of
BSes with given capacities and coverage-regions. At any instant, a new flow with
an associated size and deadline may arrive at a location. The OSF problem is to
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schedule the arriving flows in an online manner, so that the number of completely-
served flows is maximized. Recall that a flow is considered completely-served if it
finishes completely before its deadline, and note that the schedule delivered by an
online algorithm may not completely-serve all the flows.

We claim that the OSF problem is intractable. In fact, even the offline version
of the problem can be shown to be NP-hard, as the below theorem states. Proof is
differed to Appendix.

Theorem 10 Given a cellular network with possibly non-uniform BS capacities,
and flows, the problem of determining (even offline) a schedule of flows onto BSes
so as to maximize the number of completely-served flows is NP-hard.

Online Scheduling of Completely-Servable Flows (OSCF). Since the above OSF
problem is NP-hard, we consider the OSF problem wherein we restrict ourselves
to “completely-servable” instances. A completely-servable instance of an OSF
problem is an instance for which there exists a schedule of given flows onto BSes
such that all the flows are completely-served. We refer to this restricted version as
the OSCF problem. We can easily modify our LP formulation to deliver a schedule
that completely-serves all flows of a completely-servable instance. However, we
have shown through a counter example that there is no optimal online-algorithm
possible for the OSCF problem. See below theorem.

Proposition 1 The offline version of the OSCF problem can be solved optimally in
polynomial time.

Theorem 11 There is no online algorithm for the OSCF problem that, for every
input instance, generates a schedule that completely-serves all the flows.

PROOF: We prove the theorem using a counter example. Consider a network
with two BSes each of unit capacity. We assume the bit-rates to be uniformly unit.
We represent a flow i as (ai, si, di, Ri), where ai is the arrival time, si is the size,
di is the deadline, and Ri is the set of BSes where the flow can be scheduled (Ri

essentially represents the location of the flow with respect to the coverage-regions
of the BSes).

At t = 0, three flows arrive in the system (0, 1, 3, {1}), (0, 1, 3, {2}), and
(0, 2, 2, {1, 2}). For this instance, the third flow must be scheduled immediately
at t = 0. Since the problem (till now) is symmetric with respect to the BSes, we
can assume without loss of generality that the online algorithm schedules the third
flow on the first BS. Since the second BS is free, we schedule the second flow on
the second BS at t = 0; this can not hurt the algorithm.
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Figure 3.1: Subregions. Here, five BSes with circular coverage-regions give rise to
13 subregions.

Now, at t = 1, if the fourth flow (1, 2, 3, {1}) arrives, then either this or the third
flow will never be completely served. But, this instance is certainly a completely-
servable instance, since the first and fourth flows could have been scheduled on the
first BS, and the second and third flows on the second BS.

In the following subsection, we design a semi-online algorithm that solves the
OSCF optimally when aided with appropriate statistics on historical traffic pattern
and slightly additional capacity. We also present a purely-online heuristic that is
optimal for non-overlapping coverage regions.

3.5.1 Semi-Online and Online Algorithms
In this section, we start with designing a semi-online algorithm for the OSCF prob-
lem, which is aided by appropriate statistics on historical traffic patterns. We will
show that our semi-online algorithm solves the OSCF problem optimally if it is
allowed to use certain additional capacity (depending on the variations in traffic
patterns) than that used by the optimal offline algorithm. We also design a purely
online heuristic. We start with a few definitions.
Covering BS; Remaining Size sit. For a flow i, a BS j is said to be its covering BS
if j’s coverage region contains li, the location of the flow i.

For a flow i, the remaining size at a time instant is denoted by sit and is defined
as the size of the remaining (i.e., not yet served) part of the flow i. More formally,
in terms of notations of previous two sections, sit = si −

∑
j

∑
t′<t xijt′ .

Allowable Delay wit. At a time instant t, the allowable delay wij of a flow i is the
maximum amount of time by which the remaining part of i can be delayed, while
being completely-served. More formally, wit = (di − t) − sit/αit, where di is the
deadline, sit is the remaining size at t, and αit = minj αijt (the minimum bit-rate
across BSes).
Subregions rm. Given a 2D network region, we define a subregion rm as the set of
points in the 2D plane that lie within the same set of coverage regions. Note that
the set of subregions are disjoint. See Figure 3.1. For circular coverage-regions, it
is easy to show that the total number of subregions is O(n2) where n is the number
of BSes [98].
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Traffic Indicators fp(rm, t). Consider a cellular network and a set of completely-
servable historical instances of flows {M1,M2, . . . , }. Each Mp is essentially a set
of flows with associated parameters, such that the flows can be completely-served
by some schedule Sp. For a subregion rm, time instant t, and an instance Mp, we
define the traffic indicator fp(rm, t) as the number of flows located in rm that are
being served by a BS at time t, in a schedule Sp of Mp that completely-serves all
flows. Note that Sp can be computed in polynomial-time by Proposition 1.
Semi-Online Global (SOG) Algorithm. Given cellular network and a set of
completely-servable historical instances {M1,M2, . . . , }, let fp(rm, t) be the traf-
fic indicators as defined above. Let

g(rm, t) = maxp fp(rm, t).

The Semi-Online Global (SOG) algorithm uses the above g values to schedule a
given online instance of flows as follows.

At each time instant t, for each subregion rm, pick g(rm, t) (or less, if not
available) flows (with non-zero remaining size) located in rm with least allowable
delays. Let this set of flows for the entire network be S. Find the largest subset
S ′ of S that can be scheduled onto BSes at time t; this can be done by finding the
maximum-matching problem between S and “servers,” where a BS of capacity k is
represented by k servers. Finally, we can also add more flows (that are not in S) to
schedule, if possible.
Performance of SOG Algorithm. We now show that the SOG algorithm solves the
OSCF problem optimally when aided with slightly additional capacity, which de-
pends upon the variation of f values across historical instances and the deviation of
the input instance from the historical instances. We start with a definition.

Definition 4 (g-Capacities.) For a given cellular network and set of historical in-
stances of flows {M1,M2, . . . , }, we define the g-capacity for each BS as follows.
On the given cellular network, consider the following instance of flows: For each
subregion rm and time instant t, we create g(rm, t) flows of size 1, arrival time t,
and deadline t+ 1. We solve this MTC problem using the LP-based algorithm, and
call the resulting BS capacities as the g-capacities of the BSes.

Theorem 12 Given a cellular network and set of historical instances of flows
{Mp}. The SOG algorithm would completely-serve all the flows of any instance
Mp, if it uses the g-capacities for the BSes.

PROOF: Consider an instance Mp. Now, by definition of f values, there exists
a schedule Sp that schedules fp(rm, t) flows (onto some BSes) from each subregion
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rm at each instant t. Using an exchange argument, we can assume that the fp(rm, t)
flows being scheduled are the ones with the least allowable delay, for each rm and
t. Since SOG uses the g-capacities, it has sufficient capacity to schedule g(rm, t)
flows for each rm and t. Since g(rm, t) ≥ f(rm, t), the theorem follows.

By the above theorem, note that if we had only one historical instance M1, then
the SOG algorithm can completely-serve all the flows in M1 using at most n + O
total network capacity, where O is the optimal capacity needed and n is the number
of BSes in the network. This is because g(rm, t) = f1(rm, t) for all rm, t, and
hence, the sum of g-capacities is at most n + O by Theorem 9. In general, if (i)
there is minimal deviation in fp(rm, t) values across the given historical instances,
and (ii) the given input to SOG is “similar-enough” to the historical instances, then
SOG will completely-serve all the flows of the given input with minimal additional
capacity compared to the optimal required.
Semi-Online Localized (SOL) Algorithm. The above SOG algorithm is not local-
ized, since it needs to solve the matching problem at each time instant. We can also
consider the simpler Semi-Online Localized (SOL) algorithm that instead computes
a maximal matching greedily, which can be done in a localized manner. Note that
any maximal matching is of size at least half of the maximum matching.
Purely-Online (PO) Heuristic. The above semi-online algorithms are aided by the
g values computed from historical data, and hence, is not purely online algorithm.
Below, we present a purely-online (PO) heuristic, which is motivated by the fact
that it is optimal for networks with non-overlapping coverage-regions.
Heuristic Description. At a high-level, the PO heuristic does the following at each
time instants of “interest.” It orders the flows (with non-zero remaining size) in
increasing order of their allowable delays at that instant. Then, it tries to “match”
these flows with BSes greedily, as described in detail below. The time instants of
interest (at which the above is done) are: (i) arrival of a new flow, (ii) completion
of a flow, and (iii) passing of the deadline of a non-scheduled flow.

To match flows onto BSes, we consider the flows in the increasing order of
their allowable delays, and try to schedule each flow i as follows. If there is a
covering BS j of i that is free, then we schedule i on j. Else, we try free up
some serving BS of i, by finding an “alternating path” and “shuffle” some flows
along this path as follows. We find an alternating sequence of flows and BSes
(x1, y1, x2, y2, . . . , xm, ym) such that (i) each xq is a flow and each yq is a BS, (ii)
x1 = i and y1 is a covering BS of x1, (iii) for all q ≥ 1, yq is currently serving
xq+1, (iv) ym is a covering BS of xm, and (v) ym is currently free (i.e., not serving
any data request). If such an alternating path exists, then we stop serving all the
flows {x2, x3, . . . , xm}, and reschedule each flow xq to yq. The above is thus able
to schedule x1 = i on y1, if an alternating path as described above exists. If there
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(a) Uniform Tower Capacities. (b) Non-uniform Tower Capacities.

Figure 3.2: Total capacity requirements for varying delay factors, for various offline
algorithms.

is no alternating path, then we do not schedule i at this point and consider the next
flow in order.

As mentioned before, the motivation and intuition behind the above PO heuristic
is that it can be shown to be optimal for the special case of the OSCF problem when
the coverage regions of the BSes are disjoint. However, the non-optimality of the
heuristic for the general case of arbitrarily overlapping coverage regions cannot be
bounded.

Theorem 13 The above PO heuristic solves the OSCF problem optimally, if the
coverage regions of the BSes are disjoint.

PROOF: Note that due to disjoint coverage regions, it is sufficient to prove the
theorem for the case of a single BS. For the single BS, the PO heuristic essentially
schedules flows in the order of allowable delays. Now, consider the schedule of an
offline algorithm that schedules all the flows within their deadlines; such a schedule
exists by definition of the OSCF problem. In such a schedule, we can show that
if there is a time instant wherein a flow with higher allowable-delay is scheduled
before a flow with a lower allowable-delay, then “exchanging” them in the offline
schedule still ensures that all flows are scheduled within their deadlines.

Using Non-Unit Capacity to Serve a Flow. We now discuss how our techniques
of this section can be extended to allow non-unit capacities to serve a flow. If c is
the bound on the number of units of capacities of a BS that can be used to serve a
flow, then we make the following changes: (i) Extend the definition of allowable
delay as follows: wit = (di − t) − sit/(cαit). (ii) Make dce copies of each flow
in S, when solving the matching problem for SOG and SOL. (iii) Allow multiple
units of flow to be scheduled simultaneously (up to the bound of using c units of BS
capacity at a time) at each BS, in the PO Heuristic.

3.6 Simulations
In this section, we analyze the performance of our various algorithms on real cel-
lular network data set collected at the core of a commercially operated 2G/3G net-
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Figure 3.3: Percentage of dropped flows for varying total network capacity, for
various semi-online/online algorithms. Here, the starting network capacity value is
the near-optimal capacity requirement as computed by the LP-based algorithm.

work. The data used in the evaluation consists of flow level (UDP or TCP flows)
statistics collected for 101 base stations for a one week period in 2007. The re-
gion covered is about 80 square km spanning both dense urban and suburban areas.
There are about 1 million flows in the data set considered.6 In the data set, each
flow has an arrival time, BS-id where it is served, and a flow size. We assume that
the flows to be served at a constant rate equal to its size divided by its duration.7

Since obviously there is no delayed scheduling in this network, the flows are
immediately served with no delay. Flows that are served are recorded in the data
set. Flows that could not be served due to unavailability of network resources do
not have any record.

Using a simulation model with this data set, we will show that (i) there is a
considerable reduction in capacity requirements, when flows are allowed to be de-
layed even by a small factor, and (ii) with slightly additional capacity than the near-
optimal network capacity (computed by the offline LP-based algorithms), our online
semi-online algorithms are able to completely-serve all the flows.
Flow Locations, Coverage Regions, Delay-Factors. Since our data set neither in-
cludes the exact flow locations nor the BS coverage regions, we determine the set of
covering BSes for a flow as follows: (i) We construct the Voronoi diagram over the
BS locations; (ii) If a flow i arrives at a BS j, then we assume that it can be served
by any BS j′ whose Voronoi region is adjacent to that to j.8 Essentially, a flow i

6For proprietary reason we are unable to provide further details about the network. We believe
that the missing details will not hurt the readers’ understanding of our work.

7Technically, we are given flow duration, how long within this duration the flow was inactive
(i,e., no resource scheduled) and number of bytes served for this flow. However, it is impossible to
decipher from this aggregated information: (i) when the flow was descheduled either for resource
limitations or plain inactivity (in 3GPP standard the resources can be scheduled even when a flow
is dormant, until an inactivity timer fires), (ii) what bit rates the flow was served with when it was
indeed scheduled.

8In our data set, the distribution of BSes is roughly uniform: more than 70% of the geographi-
cally closest neighbors are within 1 to 2 miles. Thus, coverage assumption based on Voronoi is not
too different from a coverage assumption based on the geographic distance.
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arriving at BS j can be served by j and any of its “neighboring” BSes. Defining
the serving BSes of a flow in the above manner precludes the need to artificially
generate flow-locations (which are absent from the network trace).

Also, the flows in our data do not have deadlines associated with them. So, we
run simulations for various “delay-factors” and define deadlines based on the delay-
factor; in particular, for a delay-factor of c, the deadline of a flow i is computed to be
ai+cαijtsi = ai+csi where ai and si are the given arrival time and size respectively
and αijt is assumed to be 1 (for lack of record of low-level parameter values in our
data).
LP-Based Offline Algorithms: Delay Factor vs. Capacity Requirements. We
start with analyzing the effect of deferring flows on the capacity needs of the net-
work. Thus, in Figure 3.2, for varying delay-factor, we plot the total network ca-
pacity required to completely-serve all the flows as computed by our LP-based al-
gorithms. We consider both cases, viz., the uniform as well as non-uniform BS ca-
pacities, and use all 7 days of data.9 In the graph, for comparison purposes, we also
plot two values corresponding to the case of delay-factor of one (i.e, no-delays): (i)
capacity requirements when each flow can be served only by the BS it arrived at as
recoded in the data set, and (ii) capacity requirements when a flow can be served by
multiple BSes (as determined by Voronoi tessellation described above). We refer to
these values as Baseline and Spatial-Shift Only respectively.

As expected, the capacity requirements decrease with the increase in the delay-
factor. The decrease is substantial even with minimal delays. For example, even
with a delay factor of 1.25 (flows can be delayed only up to one-fourth of their size),
the capacity requirements reduce by about 50% for the non-uniform case and about
20% for the uniform case. This changes to about factors of 3 and 2 respectively
for a delay factor of 3 (i.e., flows can be delayed up to twice their size). Note that
a sizable reduction comes from the ability of “load balancing” via scheduling on
less-loaded neighboring BSes.
Semi-Online and Online Algorithms: Capacity Requirements vs. Percentage
of Flows Dropped. In this set of plots, we run various semi-online/online algo-
rithms, viz., (i) Semi-Online Global (SOG), (ii) Semi-Online Localized (SOL), and
(iii) Purely-Online (PO). We run the above algorithms over Wednesday’s data (the
results were similar for other weekdays), while using the remaining four week-
days of data to compute the statistical g values used by the semi-online algorithms.
For increasing total network capacity, we plot the number of flows that were not

9To solve the LP program over 1 million flows and about 100 BSes in a reasonable amount of
time, we employed the following divide-and-conquer strategy: we divided the data into appropriate
3-4 hour durations, computed the LP solution for each input independently, and then “combined” the
solutions to get a valid (but, perhaps, suboptimal) LP solution. Thus, the network capacity numbers
for LP in Figure 3.2 and 3.4 are perhaps a slight overestimate of the best possible LP-based solution.
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Figure 3.4: The g-capacity of the network, and the near-optimal offline capacity
requirement, for varying delay-factors.

completely-served (i.e., dropped). See Figure 3.3. Here, we vary the network capac-
ity by proportionally increasing all the BS capacities starting from (i) the value of
the near-optimal LP-based solution (for the non-uniform case) for the given flows,
till (ii) the algorithm is able to completely-serve all flows. We ran the algorithms
for three different delay-factors. We observe that both the traffic indicators as well
as the global-matching scheme have considerable impacts on reduction of capacity
requirements. In particular, SOG uses very minimal additional capacity (about 5%
more) over the offline capacity needs, to completely-serve all the flows. Even with
the same capacity as the offline capacity, the drops are marginal (less than 10%).
g-capacities vs. Near-Optimal Capacities. In Figure 3.4, we show for various delay-
factors: (i) the near-optimal (LP) network capacity needed to completely-serve all
seven days of flows, and (ii) the g-capacity of the network, based on all seven days
of data. We observe that the g-capacity of the network is only slightly higher (only
about 5-15%) than the offline capacity, which suggests that SOG needs only slightly
higher network capacity to completely-serve all the flows in any of the historical in-
stances. In effect, this simulation result shows that the variation of fp(rm, t) values
across the historical instances is minimal enough that the inefficiency introduced by
semi-online processing of flows as done in SOG is minimal compare to the near-
optimal offline processing.
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Chapter 4

Capacity Optimization of Femtocell
Networks
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4.1 Introduction
Mobile data traffic is predicted to grow exponentially in the next few years [99],
and thus, cellular networks are in increasing demand for more capacity. Since spec-
trum bandwidth is limited, spatial reuse is the most feasible way to accommodate
such increasing demand. Femtocell technology has been emerging as a solution
to the increase of both capacity and coverage, while reducing both the capital ex-
penditures and operating expenses of cellular networks. Essentially, femtocells are
small cellular base stations, typically designed for use in homes or small businesses;
they extend coverage indoors, by connecting to the service provider’s network via
broadband.

In this chapter, we consider the problem of assigning channels and powers to the
femtocells in order to maximize either the total network capacity or the minimum
capacity available to any femtocell. The resource allocation problem in femtocells
is unique and challenging for various reasons. Firstly, the femtocell deployments
are unplanned, and significantly more dense compared to the planned deployments
of macrocells. Hence, while interference in macrocell networks may be localized
at macrocell edges, it is more pervasive across femtocells. Thus, techniques such
as fractional frequency reuse that are effective for macrocells are inadequate for
femtocell networks [100]. Secondly, unlike WiFi networks, femtocells operate syn-
chronously on licensed spectrum bands [100].

To the best of our knowledge, the only work on femtocells’ capacity maximiza-
tion is [101]; however, they provide a non-polynomial algorithm which is impracti-
cal for large networks. Since interference is the major factor that reduces capacity,
intuitively minimizing interference implies higher capacity. A recent work [100]
addresses the problem of interference mitigation in femtocell networks through
careful resource management; however, their technique is based on a simplistic
(pairwise) interference model. In our work, we model capacity based on Shannon’s
law and physical interference model [102]. To the best of our knowledge, our paper
is the first to provide an approximation algorithm for power and channel assign-
ment to maximize the total network capacity in femtocell networks as defined by
Shannon’s law.
Our Contributions. In this study, we consider the problem of power and chan-
nel assignment to maximize the total network capacity or the minimum capacity
at a femtocell in a femtocell network. In the context of the above problem, our
contributions in this work are:

• We show that the addressed problems are NP-hard (see Section 5.2).

• For the problem of maximizing the total network capacity, we provide a
constant-factor approximation algorithm for large uniform networks, for fem-
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tocells with arbitrary coverage regions, and generalize it to an efficient heuris-
tic for general networks (see Section 4.3).

• For the problem of maximizing the minimum capacity at a femtocell, we
provide an algorithm with appropriate performance guarantees for general
networks wherein there is a lower bound on the minimum distance between
femtocells. Our algorithm is based on our-designed constant-approximation
algorithm for the related problem of minimizing the number of channels used
in a femtocell network (see Section 4.4).

• Finally, we demonstrate the efficiency of our algorithms through extensive
simulations, wherein we show that our algorithms deliver solutions with ob-
jective value close to an upper bound on the optimal value, and much better
than that delivered by a naive divide-and-conquer algorithm (see Section 4.5).

4.2 Model and Problem Definition
In this section, we describe our model, formulate the problems addressed, and prove
their NP-hardness.
Femtocells and Network Architecture. Femtocells are short-range, low-power
base stations installed by customers to provide increased coverage and capacity in
a small area, such as a home or a small office. Femtocells communicate with the
service providers directly through a wired link (e.g., broadband in the house). In
our assumed architecture, each femtocell is assigned a channel (part of the available
spectrum) and a power by a central entity (called the spectrum broker) for commu-
nication with devices in its region. The assignment of powers and channels should
be ideally done in such a way that: (i) each femtocell is able to provide cover-
age in its required “coverage region” (i.e., say the home it is deployed in), and (ii)
some notion of “aggregate” resulting capacity across the entire network region is
maximized.

To facilitate the above, each femtocell communicates with the spectrum broker
through the wired link; in particular, each femtocell relays appropriate parameters
(e.g., ambient noise) to the spectrum broker, and the spectrum broker periodically
determines (in a global manner) the power and channel to be assigned to the femto-
cell.

A femtocell communicates with its “users/devices” (which are in its coverage
region) as follows. It divides the assigned channel into “sub-channels” (also called
Physical Resource Blocks or PRBs), and uses one or more sub-channels to com-
municate with each user. The femtocell uses orthogonal sub-channels for different
users, and hence, there is no interference among the users within a femtocell. Thus,
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in this study, we focus on mitigating the interference at users across different fem-
tocells – which we implicitly model by considering the worst case scenario, i.e.,
each femtocell is using all the sub-channels (i.e., the entire assigned channel) at all
times.

Below, we formally describe our model of a femtocell.

Definition 5 (Femtocell) A femtocell f is a small device associated with a
fixed (unless otherwise specified) location, a coverage region, and a maximum
transmission power denoted by P . The coverage region can be of arbitrary shape,
and let r be the distance from the femtocell’s center to the farthest point in any
coverage region.

Also, the purpose of deploying a femtocell at its location is to provide cellular
coverage to any device(s)1 within its coverage region. The femtocell communicates
with device(s) in its coverage region using an assigned channel and a transmission
power that is less than P , the maximum allowed.

The maximum transmission power P allowed for a femtocell takes into account
both the technical limits of a femtocell as well as additional power constraints re-
quired to limit signal leakage outside the femtocell’s coverage region.

We now define the capacity available in a femtocell coverage region, for a given
assignment of channels and powers to femtocells in the given network.
Capacity in a Coverage Region. Consider a set of femtocells, each associated
with its location and coverage region. Let l(f) denote the location of a femtocell
f . Also, let each femtocell f be assigned a channel c(f) of bandwidth B and
a transmission power P (f). Let s be the number of sub-channels. Then, the sub-
channel’s capacity Cs(f, p) available due to f at a point pwithin its coverage region
is given by Shannon’s law as follows.

Cs(f, p) =

1

s
B log2

(
1 +

1
s
P (f)d−αl(f),p∑

f ′|f ′ 6=f,c(f ′)=c(f)
1
s
P (f ′)d−αl(f ′),p + 1

s
N

)
=

1

s
B log2

(
1 +

P (f)d−αl(f),p∑
f ′|f ′ 6=f,c(f ′)=c(f) P (f ′)d−αl(f ′),p +N

)
,

where α is the path-loss exponent, da,b is the distance between two locations a and b,
and N is the ambient noise. Thus, the total capacity C(f, p) yielded by a femtocell
at a point p is

1Our model allows both open and closed access. In case of closed access, a femtocell ignores
non-registered devices even if they are in its coverage region.
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C(f, p) = B log2

(
1 +

P (f)d−αl(f),p∑
f ′|f ′ 6=f,c(f ′)=c(f) P (f ′)d−αl(f ′),p+N

)
,

Since our purpose is to guarantee a certain capacity at every point in a femtocell’s
coverage region, we define the capacity yielded by a femtocell in its coverage region
A(f) as:

C(f) = min
p∈A(f)

C(f, p). (4.1)

Problems Addressed. We address the problems of assignment of channels and
powers to the given femtocells so as to maximize two different notions of “aggre-
gate” capacity of the femtocell network; in particular, we aim to maximize the total
or minimum capacity.
Maximize-Total-Capacity (MTC) Problem. Given a set F of femtocells, k homo-
geneous channels, the MTC problem is to assign a channel c(f) and transmission
power P (f) to each femtocell f ∈ F , such that (i) P (f) ≤ P , the maximum
transmission power, and (ii) the total capacity

∑
f∈F C(f) is maximized.

Maximize-Minimum-Capacity (MMC) Problem. Given a set F of femtocells, k ho-
mogeneous channels, the MMC problem is to assign a channel c(f) and transmis-
sion power P (f) to each femtocell f ∈ F , such that (i) P (f) ≤ P , the maximum
transmission power, and (ii) the minimum capacity minf∈F C(f) is maximized.

In the problems above, each femtocell receives one channel. We are going to
extend these problems to multiple channels in the following sections.

We start with stating the NP-hardness of both of the above problems; the proof
of the above theorem is deferred to Appendix B.1. In the following sections, we will
circumvent this intractability by designing appropriate approximation algorithms.

Theorem 14 MTC and MMC problems are NP-hard.

Sub-channel Assignment to Users. Each femtocell divides the assigned channel
into sub-channels (PRBs), and partitions the sub-channels into disjoint sets (to en-
sure no interference) across its users. If we assume that each femtocell uses all of
its sub-channels (i.e., the entire spectrum of the channel assigned), then, for down-
link communication, the capacity received by a user is independent of the location
and sub-channels assigned to the users of other femtocells. Thus, the assignment of
sub-channels (to their users) by the femtocells can be done independently of each
other, without any impact on performance.

4.2.1 Related Work
To the best of our knowledge, the only work on femtocells’ capacity maximization
is [101]. However they provide an exponential algorithm which cannot be applied to
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realistically large networks. Under appropriate assumptions, maximizing the capac-
ity is the dual problem of minimizing the interference. A recent work [100] gives
a method for assigning channels in order to minimize the interference. However
they use a pairwise interference model, which has the limitation that interference is
determined statically, and does not take into account that changing channel assign-
ment and transmission power can change the interference patterns. On the other
hand, our work is based on the physical (SINR) model [102], which is a more re-
alistic interference model. Another recent work, [103], focuses on minimizing the
interference between femtocells and macrocells using a distributed algorithm. How-
ever, they only prove that femtocells reach a Nash equilibrium, while our method
aims at maximizing the capacity. The authors of [104] show how to maximize the
capacity by time isolation by scheduling femtocells’ transmissions in time slots.
However, their method requires synchronization between femtocells, while we do
not assume any synchronization. Heuristic methods for fractional frequency reuse
are proposed in [105] and [106]. While assigning orthogonal channel guarantees
better capacity for certain femtocells, it does not necessarily optimize the network
capacity, which is our main objective. Many recent works [103, 107–110] have
studied the problem of the signal leaking outside the femtocell areas. In this study,
we handle the leaking problem by imposing an upper bound on the transmission
power. This bound can be estimated with appropriate sensors or it can be deter-
mined using a method similar to the one of [103]. Other works [111–113] focus
on determining the optimal power assignment to femtocells, without addressing the
channel assignment problem. There are methods [114–116] to optimize the cov-
erage of a femtocell network, while our objective is to optimize capacity in given
coverage regions.

Channel assignment in wireless networks has been discussed in many papers
(see [117] for a survey). The major difference respect to these works is that our
model does not explicitly consider individual users, but each femtocell is respon-
sible for coverage inside an entire area. Fallgren [118] considered the problem of
jointly assigning users to base station, assigning powers and channels for general
wireless networks. He showed that maximizing the total Shannon capacity is NP-
hard to approximate within any constant factor. However, his result does not apply
to our problem because femtocells are only required to provide coverage inside
their respective coverage regions. The problem of jointly assigning channels and
powers has also been considered in the context of power minimization, [119, 120].
Even though they consider the problem of assigning and power and channels to the
base stations (without any predetermined user assignment), therein the challenge
is to select minimum number of base stations to keep active, while we focus on
maximizing the capacity with all femtocells.
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4.3 The Maximizing-Total-Capacity (MTC) Problem
In this section, we address the objective of maximizing the total capacity in a femto-
cell network. In particular, we design an algorithm that provably returns a constant-
factor approximate solution for large uniform networks. We start by giving a brief
description of the algorithm.
Basic Idea. The basic idea of the algorithm is to assign channels to femtocells
(nodes) in such a way that the femtocells assigned any particular channel are
“spread out” as much as possible across the network. To facilitate the above, we
compute a certain distance R for the given network, and assign channels to nodes
such that any pair of nodes assigned the same channel are at least R distance away
from each other. For a given R, assignment of channels to nodes under the above
constraint is done by extracting a large “k-dependent subgraph” from the R-disk
graph over the given nodes, and then, k-coloring the nodes in the extracted sub-
graph. For uniformly random networks, R can be computed directly from the
uniform density of the network, while for general networks, the “best” R can be
searched in an efficient manner.
Algorithm for Uniform Networks. Now, we give a formal description of our
algorithm to solve the MTC problem. We start by describing our algorithm for
uniform networks. Before giving a formal description of our algorithm, we give a
formal definition of the k-dependent set and uniform networks.

Definition 6 (k-dependent Set.) For a graph G(V,E) and a positive number k, a
set of vertices V ′ ⊂ V is called a k-dependent set of G, if V ′ induces a subgraph in
G where each node degree is at most k.

There is a PTAS (polynomial-time approx. scheme) [121] to compute the max-
imum k-dependent set in a graph.

Definition 7 (Uniform Random Network.) A femtocell network is said to be
uniformly random if it can be generated by a Poisson point process. In a uniformly
random network, the expected number of femtocells (nodes) in any constant-size
disk is a constant.

Proof of Approximation. We now show that the above MTC-Algorithm is a
constant-factor approximation algorithm for the MTC problem, for large uniform
networks. The proof is mainly based upon the claim that in large uniform networks
with unit-disk coverage regions, the following assignment of powers and channels
yields a constant-factor approximate network capacity: (i) assign the power uni-
formly, and (ii) assign the available channels uniformly with the same density. By
observing that our algorithm assigns power and channels in the similar manner as
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above, we can deduce that our algorithm is also near-optimal (within a constant
factor) for unit-disk graphs. We then generalize our approximation result to general
coverage regions.

Theorem 15 The MTC-Algorithm delivers a constant-factor approximate solution
for the MTC problem, for large uniform networks.

PROOF: The proof is built over a lemma which is proved later, for sake of
clarity of presentation. The proof of the theorem can be presented in the following
sequence of steps.

1. First,

(a) We note that the in MTC-Algorithm the density of distribution of dif-
ferent channels is same. This is the direct result of two facts. The graph
being colored is a unit disk graph of a large size constructed from uni-
formly distributed node in the plain and our coloring algorithm pick a
color for every node with uniform random probability from list of avail-
able colors.

(b) We show that for any particular channel, the distribution of the nodes
with the said channel is uniform random. Assume a very large circle C
of radius xR such that xR is very large but much smaller than size of
the network. The expected number of colored nodes in xR with is at
most x2K. The total number of nodes for of each particular channel is
at most (x + 1)2. Since we have k channels, the expected number of
nodes of the same channel is x2 and the ratio of the expected number of
nodes versus the maximum is x2

(x+1)2
which is almost equal to 1 for large

x. Hence, the expected number of nodes of any channel in any circle
of size xR imposed on the network is almost constant which means
that the distribution of the nodes of all channels are uniform constant
distribution in the plain.

2. First, we note that the MTC-Algorithm yields a solution wherein (i) for any
particular channel, the set of nodes assigned that channel are uniformly dis-
tributed across the network, and (ii) the density of distribution of different
channels is same. To see the above, observe that the value of R ensures that
in any disk of radius R, the expected number of femtocells is k. Also, in G,
these k nodes are connected to each other, and each is assigned a different
channel. Thus, for any channel c, the expected number of nodes assigned the
channel c is exactly 1 in any disk of radius R. This implies the above two
claimed properties of MTC-Algorithm’s solution.
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3. Second, as shown in the following lemma, for unit-disk coverage regions
(i.e., for (r, 1) pseudo-disks), there is a constant-factor approximate solution
for the MTC problem that (i) assigns uniform power to all nodes, and (ii) sat-
isfies both the above given properties (that are satisfied by MTC-Algorithm’s
solution). See Lemma 10.

4. Third, for large uniform networks of size n, the expected number of nodes
in G that have degree more than (k − 1) can be shown2 to be at most n/2.
Recall, that G is the R-disk graph over the set of femtocells, where R is as
defined in Step 2 of the algorithm.

5. From the above three points, it is easy to see that MTC-Algorithm would yield
a constant-factor approximate MTC solution for unit-disk coverage regions;
here, the constant of approximation is twice of the constant in the second
claim above.

6. The above approximation proof can be extended to general coverage regions
as follows. Since each femtocell has a point that is at a distance of r from the
center, the capacity C(f) of a femtocell with a general coverage region is the
same as the capacity of a femtocell with a coverage region of a disk of radius
r. Thus, the above result holds.

Now, to complete the proof, we only need to prove the claim used in the second
point of the above theorem. We do so in the following lemma.

Lemma 10 For an MTC problem on large uniform random networks with unit-
disk coverage regions, there is a solution within a constant-factor of the optimal
that (a) assigns uniform power to all nodes, and (b) assigns channels to nodes,
such that (i) for any particular channel, the set of nodes assigned that channel
are uniformly distributed across the network, and (ii) the density of distribution of
different channels is same.

PROOF: The proof of the lemma follows from the following three main claims.

1. Consider a set of femtocells with unit-disk coverage regions and
undetermined locations, and a network region A. Suppose there is only
one available channel. For the problem of placement (determining locations)
and assignment of powers to the femtocells to maximize total network capac-
ity, it can be shown that the solution, wherein the femtocells are distributed

2For a Poisson distribution of density λ, the probability that there are more than λ nodes is given
by
∑∞
k=λ λ

k/(k!eλ) ≤ 1/2.
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uniformly in A and assigned uniform power, achieves near-optimal (within
a constant factor) network capacity. The above claim follows directly from
a prior single-channel result [122] on placement and power-assignment of
sender-nodes to maximize aggregate throughput over a set of links. Here,
each sender is transmitting to a single receiver that is within a constant
distance of the sender.

2. Now, consider a large network of uniformly distributed femtocells, and two
available channels h1 and h2. Each femtocell is assigned uniform power P
and one of the channels, and let S1 and S2 be the sets of femtocells that are
assigned h1 and h2 respectively. Assume, S1 and S2 are uniformly distributed.
The total capacity of the femtocell network is maximized when the density of
distribution of the nodes in S1 and S2 is the same.

The proof of the above claim is rather non-trivial, and is given in the next
paragraph.

3. Now, based on the above two points, the lemma can be proved as follows.
Start with an arbitrary optimal MTC solution O. Since the total network
capacity is the sum of the network capacities for each channel, by the first
claim above, the solution O’s total capacity cannot reduce if it is changed as
follows: (i) assign uniform power P , the maximum transmission power, to
all femtocells, and (ii) reassign channels, s.t., for any particular channel, the
set of nodes assigned that channel is uniformly distributed. Note that at this
point the solution may still have different distribution densities for different
channels. Now, by the second claim above, the solution O’s capacity cannot
reduce if the channels are reassigned to make the distribution densities for
different channels the same; this can be done, by considering two channels at
a time. This proves the lemma.

To complete the proof of the lemma, we now prove the second claim above.
Proof of Second Claim Above. Let us consider a femtocell f assigned the channel
h1 and the uniform power P . Let p be a point in f ’s coverage region. Let rp be the
distance of p from f ’s location, Now, we can compute the capacity C(f, p) at p due
to f as:

C(f, p) = B log

(
Pr−αp∑

i Pr
−α
i +N

+ 1

)
where ri is the distance from p to a femtocell i, and i ranges over the set S1 − {f};
recall, that S1 is the set of femtocells using the first channel h1. For infinitely large
networks, the above can be written in terms of the probability distribution of the
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femtocells to get the expected capacity at p due to f .

C(f, p) = B log

(
Pr−αp

Pδ1

∫∞
y

(2πr)r−αdr +N
+ 1

)
where δ1 is the density of distribution of femtocells in S1, and y > 0 (since all
other femtocells are a non-zero distance away). By replacing

∫∞
y

(2πr)r−αdr with
an appropriate constant3 c1 we get:

C(f, p) = B log

(
Pr−αp

Pc1δ1 +N
+ 1

)
Now, the above quantity is minimum when rp is the maximum possible, i.e., 1, since
we are considering unit-disk coverage regions. Thus, by Equation (4.1), we get:

C(f) = min
p
C(f, p) = B log

(
P

Pc1δ1 +N
+ 1

)
Note that the above value of C(f) applies to any femtocell f in S1 (since S1 is a
uniform distribution in a large (infinite) network of femtocells). Similarly, we can
compute the expected capacity of a femtocell in S2, i.e., a femtocell assigned the
second channel h2. If δ2 is the density distribution of femtocells in S2, then the total
network capacity of the femtocells in (S1 ∪ S2) per unit area of the network is

C = Bδ1 log

(
P

Pcδ1 +N
+ 1

)
+Bδ2 log

(
P

Pcδ2 +N
+ 1

)
For appropriate constants c1 and c2, the above can be written as

C = B

(
δ1 log

(
c1

δ1 + c2

+ 1

)
+ δ2 log

(
c1

δ2 + c2

+ 1

))
(4.2)

For a constant δ1 + δ2, we show below that the above equation is maximized when
δ1 = δ2, which proves the theorem.
Maximizing Equation (4.2). Let δ1 + δ2 = δ, where δ is a constant. We show that
for any value of δ1 and δ2 other that δ/2, Equation (4.2) has a lower than maximum
value. We start by substituting δ1 and δ2 with δ/2 + x and δ/2 − x respectively,
which makes the body of the logarithm as:(

c1

δ
2

+ x+ c2

+ 1

) δ
2

+x(
c1

δ
2
− x+ c2

+ 1

) δ
2
−x

3This integral converges since α > 2.
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Let f1(x) = c1/(
δ
2

+ x+ c2) + 1 and f2(x) = c1/(
δ
2
− x+ c2) + 1. We are going to

show that (i) (f1(x))x(f2(x))−x maximizes for x = 0, and that (ii) f1(x)f2(x) also
maximizes at x = 0. This should suffice to prove that (4.2) maximizes at x = 0.

(i) We show that any value x > 0 gives the expression a smaller (or equal) value
than at x = 0. Thus, we need to show that:(

c1

δ
2

+ x+ c2

+ 1

)x(
c1

δ
2
− x+ c2

+ 1

)−x
≤ 1

where the right hand side is the value of the expression for x = 0. Reorga-
nizing the terms and using the fact that x > 0 we get

δ
2

+ c1 + c2 + x
δ
2

+ c2 + x

δ
2

+ c2 − x
δ
2

+ c1 + c2 − x
≤ 1

which can be easily verified.

(ii) To show that f1(x)f2(x) maximizes at x = 0, we show that any value x > 0
gives the expression gives a smaller (or equal) value than x = 0. Thus, we
need to show that:(

c1

δ
2

+ x+ c2

+ 1

)(
c1

δ
2
− x+ c2

+ 1

)
≤

(
c1

δ
2

+ c2

+ 1

)2

where the right hand side is the value of the expression for x = 0. We observe
that the right hand side is bigger than 1, while the left hand side is less than 1
(as shown in (i) above).

Heuristic for General Networks. We now discuss how the MTC-Algorithm can
be efficiently adapted for general (i.e., non-uniform) networks. Note that for uni-
form networks, R depends upon the uniform density, which is not well-defined for
arbitrary networks. Thus, to adapt MTC-Algorithm for arbitrary networks, essen-
tially, we need to find an appropriate R. The purpose of R is to ensure that pairs of
nodes assigned the same channel are at least a certain distance away. Thus, a high
value of R is desirable. On the other hand, a very high value of R will result in a
small size of (k − 1)-dependent set. Thus, ideally, we desire a large R as well as a
large (k − 1)-dependent set. Note that an increase in R results in a decrease in size
of the maximum (k− 1)-dependent set. Based on the above observations, we adapt
the MTC-Algorithm as follows, for general networks.

• For efficiency, we use the known PTAS [121] for computing a near-optimal
(k−1)-dependent set (instead of the original simple approach, which sufficed
for the case of uniform networks).
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• We try to find the highest value of R that results in a “large enough” (k− 1)-
dependent set. This can be achieved by starting with a small R, iteratively
doubling it, and computing the (k − 1)-dependent set for each R until the
dependent set becomes smaller than desired.

Assigning Multiple Channels to Femtocells. In our original problem formula-
tion, we assigned a single channel to each femtocell. However, in certain con-
text/protocols, e.g., Long Term Evolution (LTE) [123], each femtocell can be as-
signed multiple channels. In particular, in LTE, each femtocell can be assigned up
to four contiguous channels. Below we generalize our algorithm and results for
the case where each femtocell can be assigned up to t contiguous channels. The
algorithm is the following.

• For j from 1 to t:

– Group channels into “super-channels”, each containing j contiguous
channels.

– Execute the MTC-Algorithm to assign the super-channels.

• Keep the solution with largest total capacity among those obtained above.

It is easy to show the following approximation factor.

Theorem 16 The above described algorithm delivers a t-factor approximate solu-
tion for the MTC problem, for large uniform networks, when each femtocell may be
assigned up to t contiguous channels.

4.4 The Maximizing-Minimum-Capacity (MMC)
Problem

In this section, we address the MMC problem, wherein the objective is to maxi-
mize the minimum capacity. Our algorithm for the MMC problem is based on the
solution of another complementary problem, viz., the Minimum-Channels (MC)
problem which aims to minimize the number of channels used while ensuring that
a certain minimum capacity is guaranteed within each femtocell’s coverage region.
We design an approximation algorithm for the MC problem, and use it to design
an algorithm for our MMC problem. We start by defining the Minimum-Channels
problem.
Min-Channels (MC) Problem. Given a set of femtocells F (with associated lo-
cations and coverage regions) and a minimum capacity requirement Cmin, the MC
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problem is to assign channels and powers to the given femtocells in order to ensure
that the capacity C(f) at each femtocell’s region is at least Cmin. The objective of
the problem is to use the minimum number of channels.
Basic Idea for Algorithm. The algorithm for the MC problem is based on the simple
intuition that to maximize capacity, we should minimize interference, and thus,
assign any particular channel only to sufficiently far away nodes. For a given set
of femtocells and Cmin, the below lemma computes a value R such that if nodes
that are assigned the same channel are at least R distance from each other, then
C(f) ≥ Cmin for each femtocell, when femtocells are assigned uniform power. We
will use this result to design an algorithm and show that it delivers an approximate
solution to the MC problem.

Lemma 11 Consider a femtocell network consisting of a set F of femtocells with
associated locations and coverage regions. Let Cmin be the given capacity require-
ment for each femtocell. Let us define the value R to be such that:

R ≥ 2√
3

(
r + α

√
6ζα−1

/(
r−α

β
− N

P

))
,

where N is the ambient noise, α is the path-loss exponent, β = 2Cmin/B − 1 for
a given bandwidth B, ζα−1 is the Riemann zeta function for (α − 1), r is from
Definition 5, and P is some power value (used below).

We claim that if each femtocell is assigned the uniform power P , and chan-
nels are assigned to femtocells in such a manner that any two femtocells assigned
the same channel are at least R distance away, then the capacity C(f) for each
femtocell f is at least Cmin.

PROOF: As defined in the lemma, let β = 2Cmin/B−1 whereB is the bandwidth.
For the power and channel assignment suggested in the lemma, let us compute the
minimum SINR at any point p in a femtocell’s coverage region. The SINR at p in a
coverage region of a femtocell f is at least

P r−α

Imax +N
,

where Imax is the maximum interference possible at p due to other femtocells as-
signed the same channel as f . The value of Imax can be bounded because each pair
of femtocells assigned the same channel is at least a distance R away. In fact, it is
easy to see that the interference at the location of f is maximized when all femto-
cells assigned the same channel as f are placed on a triangular lattice [124, 125] as
shown in Fig. 4.1. In such a scenario, there are 6 femtocells on the first hexagon of
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R

F

Figure 4.1: Highest density placement of femtocells.

edge-length R, 12 femtocells on the second hexagon of edge-length 2R, and so on.
In general, there are 6i femtocells on the ith hexagon of edge-length iR. It is easy
to see that a femtocell on the ith hexagon is at a distance of at least

√
3

2
iR from the

center (f ’s location). Thus, the total interference at f ’s location is at most
∞∑
i=1

6Pi

(√
3

2
iR

)−α
.

To bound the total interference at a point p in f ’s coverage region, note that p is at
most at distance r from f ’s location. Thus, the interference Imax at a point p in f ’s
coverage region can be bounded as:

Imax≤
∞∑
i=1

6Pi

(√
3

2
iR− r

)−α
≤

∞∑
i=1

6Pi

(√
3

2
iR− ir

)−α

=
∞∑
i=1

6Pi1−α
(√

3

2
R− r

)−α
= 6P

(√
3

2
R− r

)−α ∞∑
i=1

i1−α

The series
∑∞

i=1 i
1−α converges to the Riemann zeta function ζα−1 for α > 2. For

example, if α = 2.5 then ζ1.5 ' 2.612. Plugging this into the above bound for Imax,
we get that the minimum SINR at p is at least

P r−α

6Pζα−1

(√
3

2
R− r

)−α
+N

.

Now, it is easy to verify that the above quantity is greater than β for the given value
of R, and thus, the capacity at the point p due to f is at least Cmin.

Approximation Algorithm for the MC Problem. Based on the above Lemma, we
propose the following algorithm for the MC problem.

Assign channels to the femtocells greedily, while ensuring that each pair of fem-
tocells within a distance of R are assigned different channels. Set all femtocells’
powers to P .
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Theorem 17 If the minimum distance between any pair of femtocells is bounded
below by a constant, then the MC-Algorithm is a constant-factor approximation
algorithm for the MC problem.

PROOF: If the distance between any pair of femtocells is bounded below by
r′, then any disk of radius R can contain at most R2/r′2 femtocells. Thus, Algo-
rithm 4.4 uses at most R2/r′2 channels, where R is from Lemma 11. Since the
optimal MC solution uses at least one channel, and R2/r′2 is a constant (as each of
the parameters in R is a constant), the theorem follows.

Note that it is reasonable to assume a lower bound between any pair of femto-
cells, since deployment of femtocells is expected to be spread out — generally, one
per building/room, which can be assumed to be of a minimum size.
Algorithm for the MMC Problem. Based on the above approximation algorithm
for the MC problem, we can now design an efficient algorithm for the MMC prob-
lem. Recall that the MMC problem is to maximize the minimum capacity across
the set of given femtocells with associated locations and coverage regions, using
the given number of available channels.

Starting with a “small-enough” Cmin, perform a binary search on Cmin, to find the
largest Cmin such that the MC-Algorithm uses no more than the allowed number of
channels.

Theorem 18 In the above algorithm for the MMC problem, if we were to use a
polynomial-time optimal algorithm for MC problems (in lieu of the constant-factor
approximation algorithm MC-Algorithm), then MMC-Algorithm becomes a PTAS
for the MMC problem.

PROOF: The proof of the following theorem follows from the fact that the num-
ber of channels used by an optimal MC algorithm is monotonically non-decreasing
with increase in the input parameter Cmin.

Even though, the above theorem falls short of showing that our proposed al-
gorithm for the MMC problem (MMC-Algorithm) is an approximation algorithm,
it nevertheless provides strong theoretical evidence of the competitiveness of the
proposed MMC-Algorithm. We corroborate the above theoretical evidence further
through extensive simulations.
Assigning Multiple Channels to Femtocells. The MMC problem has been for-
mulated to assign a single channel to each femtocell. However, in certain con-
text/protocols, e.g., Long Term Evolution (LTE) [123], each femtocell can be as-
signed multiple channels. We generalize our algorithm to assign up to t contiguous
channels as follows.
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• For j from 1 to t:

– Group channels into “super-channels”, each containing j contiguous
channels.

– Execute the MMC-Algorithm to assign the super-channels.

• Keep the solution with largest minimum capacity among those obtained
above.

4.5 Simulations
In this section, we present the results of our simulations. In particular, we compare
the objective value of our algorithms’ solutions with (i) an appropriately derived
upper bound on the optimal value, and (ii) the objective value of a simple divide
and conquer algorithm’s solution. We consider three different network settings:

• Uniform: femtocells’ locations generated at random, with uniform density,
inside circular regions of increasing radii.

• Urban: femtocells placed in houses selected at random from a dense urban
area. We used Google Earth to determine the house locations (the locations
of the houses we are choosing from are drawn in Fig. 4.2(a)).

• Rural: femtocells placed in houses selected at random from a residential
rural area. Again, we used Google Earth to determine the house locations
(the locations of the houses we are choosing from are drawn in Fig. 4.2(b)).

We start by giving the details of how we obtained the upper bound on the op-
timal objective value, and then, describe the simple divide and conquer algorithm.
We then present various parameters of our simulations, followed by our simulation
results.
Upper Bound on Optimal Value. The upper bound on the optimum value is ob-
tained by tessellating the network, and solving a mixed integer quadratic program
(MIQP) optimally in each “tile.” This MIQP is similar to the one used in [101], but
with our desired objective function (for more details, please see Appendix B.2). The
size of each tile is chosen so that the corresponding MIQP can be solved optimally
within reasonable time; we chose the size of each tile to contain approximately 20-
25 femtocells. Each tile is then padded with a boundary of width 25 m, with all the
femtocells in this boundary-region considered in the computation of the interfer-
ence. Essentially, we compute the capacity of each femtocell in the tile excluding
the ones in the above defined boundary-region (as they are considered within their
own tile), but for the sake of computing interference we include the femtocells in
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(a) (b)

Figure 4.2: Locations of houses extracted from Google Earth: (a) from a dense
urban area, and (b) from a residential rural area.

the boundary-region also. However, since for each tile, we ignore the interference
due to far away femtocells (which are neither in the tile nor in the boundary-region),
the computed capacity values represent an upper bound on the optimal values. The
above method works for both objectives, viz., maximum total capacity and maxi-
mum minimum capacity.
Divide and Conquer Algorithm. The divide-and-conquer algorithm starts with the
entire network region, and recursively splits it into two halves of equal size. The
lowest level of the recursion tree represents subregions where the number of fem-
tocells is at most the number of available channels; here, in these subregions, each
femtocell is assigned a different channel. Thus, the above divide-and-conquer algo-
rithm assigns different channels to femtocells in the same subregion (lowest level
of recursion), while ignoring the interplay between femtocells across subregions.
Parameter Values. In all simulations, we use the following parameter values. We
assume 8 available channels. The path-loss exponent is set to α = 2.5 for commu-
nications within the coverage region, since it is indoor, and for the outdoor com-
munications it is set to α = 3.5 for the Uniform and Urban environments, and
to α = 3.0 for the Rural one [126]. The bandwidth of each channel is set to
B = 5 MHz, the noise is set toN = 10−10 W in the Uniform and Rural settings,
and to N = 10−8 W in the Urban setting. The maximum power for a femtocell is
set to 1 W in all settings and simulations [123]. The coverage regions of femtocells
are disks of radius 10 m for all settings. We ran two sets of experiments:

• Increasing regions: Network regions are circular regions of radius ranging
from 100 m to 1 km. In the Random setting, the network density is kept
constant to 1/(400π), while in the Urban and Rural settings, femtocells
are randomly placed in 25% of the houses selected from the locations shown
in Fig. 4.2.
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Figure 4.3: Results for small size networks in which the optimum can be computed
exactly. Plots (a) and (b) are for our MTC-Algorithm, and plots (c) and (d) are
for our MMC-Algorithm. The figures correspond to: (a) and (c) networks with
constant density of femtocells in circular regions of increasing sizes, and (b) and
(d) networks with increasing density of femtocells in circular regions radius 100 m.

• Increasing density: Network regions are circular regions of radius 1 km.
In the Random setting, the network density ranges from 1/(40000π) to
1/(400π), while in the Urban and Rural settings, the number of selected
houses ranges from 5 % to 50% (candidate house locations are shown in
Fig. 4.2).

Simulation Results for the MTC problem. Simulations results for small net-
works of constant density of femtocells in circular regions of increasing sizes are
shown in Fig. 4.3(a), and for small networks of increasing density in circular re-
gions of radius 100 m are shown in Fig. 4.3(b). In these cases, the optimum can be
computed exactly. For comparison purpose, we plot the average network capacity
instead of the total network capacity. As we can see, both our MTC-algorithm and
the Divide and Conquer Algorithm give optimal solutions for networks with only 5
femtocells as this is smaller than the number of channels. However, for networks
with more femtocells than channels, our algorithm remains very close to the opti-
mum, while the solution of the Divide and Conquer method gradually degrades as
the network size increases. The results for the MTC problem for larger networks
with constant density of femtocells in regions of increasing size and for for larger
networks with increasing density of femtocells in a circular region of radius 1 km
are shown in Fig. 4.4(a),(b),(c) and 4.4(d),(e),(f) respectively. Also in this case, we

94



25 100 225 400 625 900 1225160020252500
0

10

20

30

40

50

60

70

80

OPT Upper Bound
MTC-Algorithm
Divide & Conquer

Number of Femtocells

A
ve

ra
g

e 
C

ap
ac

ity
 (

M
 b

ps
)

227 454 681 908 1136 13631590181720442271
0

10
20
30
40
50
60
70
80
90

100

OPT Upper Bound
MTC-Algorithm
Divide & Conquer

Number of Femtocells

A
ve

ra
ge

 C
a

p
a

ci
ty

 (
M

 b
ps

)

(a) (d)

12 45 107 187 299 432 582 752 932 1136
0

10

20

30

40

50

60

70

80

OPT Upper Bound

MTC-Algorithm

Divide & Conquer

Number of Femtocells

A
ve

ra
ge

 C
a

p
a

ci
ty

 (
M

 b
ps

)

227 454 681 908 1136 13631590181720442271
0

10
20
30
40
50
60
70
80
90

100

OPT Upper Bound
MTC-Algorithm
Divide & Conquer

Number of Femtocells

A
ve

ra
g

e 
C

ap
ac

ity
 (

M
 b

ps
)

(b) (e)

7 25 62 109 173 251 324 410 496 588
0

10

20

30

40

50

60

70

80

OPT Upper Bound
MTC-Algorithm
Divide & Conquer

Number of Femtocells

A
ve

ra
ge

 C
a

p
a

ci
ty

 (
M

 b
ps

)

118 235 353 470 588 705 823 940 10581175
0

20

40

60

80

100

120

OPT Upper Bound
MTC-Algorithm
Divide & Conquer

Number of Femtocells

A
ve

ra
g

e 
C

ap
ac

ity
 (

M
 b

ps
)

(c) (f)

Figure 4.4: Maximum average capacity for our MTC-Algorithm for: (a),(b),(c)
networks with constant density of femtocells in regions of increasing size, and
(d),(e),(f) networks with increasing density of femtocells in a circular region of
radius 1 km. The scenarios are: (a),(d) uniform, and non-uniform in (b),(e) urban
and (c),(f) rural settings, respectively.

observe that the solution of our algorithm is better than that of the naive divide-
and-conquer approach. More importantly, for the MTC problem, we see that our
heuristic for general networks, when run on rural and urban scenarios, gives similar
performance as the approximation algorithm for uniform networks. For networks
of size larger than 25, the the optimal networks was derived with the method de-
scribed above (by combining optimal solutions of subnetworks of 20-25 femtocells
each). For this reason, in Fig. 4.4(a),(b),(c), the value of the optimum is lower for
25-size networks. Our MTC algorithm performs better for smaller networks, and
the capacity slightly decreases as the network size increases. This can be justified
by the fact that the overall interference increases as the network’s size grows, so
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small errors are amplified in larger networks. This is even more pronounced for the
Divide and Conquer algorithm.
Simulation Results for the MMC problem. Simulation results with small net-
works with constant density of femtocells in circular regions of increasing sizes,
and with small networks of increasing density in circular regions of radius 100 m
are shown in Fig. 4.3(c) and 4.3(d) respectively. In these cases, the optimum can
be computed directly. Similarly to what happened for the MTC problem, both our
MCC-algorithm and the Divide and Conquer Algorithm give optimal solutions for
networks with only 5 femtocells, as this is smaller than the number of channels.
However, for networks with more femtocells than channels, our algorithms remain
very close to the optimum, while the solution of the Divide and Conquer method
gradually degrades as the network size increases. The results for the MMC prob-
lem for larger networks with constant density of femtocells in regions of increasing
size are shown in Fig. 4.5(a),(b),(c), and for larger networks with increasing den-
sity of femtocells in a circular region of radius 1 km is shown in Fig. 4.5(d),(e),(f).
The naive Divide-and-Conquer algorithm performs particularly bad for the MMC
problem, in comparison with our MMC-Algorithm for the MMC problem which is
based on the approximation-algorithm for the MC problem. We can observe that the
rate at which the optimal solution decreases in Fig. 4.5(d),(e),(f) is smaller for larger
networks. This is due to the method we used to derive the upper bound optimum by
combining optimal solutions of subnetworks of 20-25 femtocells each.
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Figure 4.5: Maximum of minimum capacity for our MMC-Algorithm for:
(a),(b),(c) networks with constant density of femtocells in regions of increasing
size, and (d),(e),(f) networks with increasing density of femtocells in a circular re-
gion of radius 1 km. The scenarios are: (a),(d) uniform, and non-uniform in (b),(e)
urban and (c),(f) rural settings, respectively.

97



Chapter 5

Optimal Spectrum Management in
Two User Interference Channels
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5.1 Introduction
This chapter addresses the problem of maximizing sum of user capacities in mul-
tiuser communication systems in a common frequency band. We consider a con-
tinuous frequency domain. For frequency-selective channels, we prove that in an
optimal solution, each user must use the maximum power available to it. This
maximum-power result also holds in the case wherein the objective is to maximize
the product of user capacities; this objective is generally used to achieve propor-
tional fairness. For the special case of two users in flat channels, we present an
optimal spectrum management solution.

In a multiuser communication system, users either have to partition the avail-
able frequency (FDMA), or use frequency sharing (i.e., each user uses the entire
spectrum), or a combination of the two (i.e., use partially-overlapping spectrums).
Intuitively, FDMA is the optimal answer in the case of strong cross coupling (also
referred to as strong interference scenario), and frequency sharing is optimal when
the cross coupling is very weak. In the intermediate case, the optimal solution
may be a combination of the two strategies [127] (i.e., users may use partially-
overlapping spectrums).

There exist an extensive literature on the effect of cross coupling on choosing
between FDMA and frequency sharing. The works in [128] and [129] provide suf-
ficient conditions under which FDMA is guaranteed to be optimal; these conditions
are group-wise conditions, i.e., each pair of users need to satisfy the condition. Re-
cently, Zhao and Pottie [127] derived a tight condition which when satisfied by a
pair of users guarantees that the given pair uses orthogonal frequencies (i.e, FDMA
for the pair). Their result holds for any pareto optimal solution.

In the general interference scenarios in multiuser systems, the weighted sum-
rate maximization problem is a non-convex optimization problem, and is generally
hard to solve [130]. However, two general approaches have been proposed: (i) One
approach considers the Lagrangian dual problem decomposed in frequency after
first descretizing the spectrum [131]; the resulting Lagrangian dual problem is con-
vex and potentially easier to solve [132, 133]. More importantly, [133] proves that
the duality gap goes to zero when the number of “sub-channels” goes to infinity.
However, the time-complexity of their method is a high-degree polynomial in the
number of sub-channels (thus, becoming prohibitively expensive for the continu-
ous frequency domain problem). (ii) The second approach changes the formula-
tion of the problem to get an equivalent primal domain convex maximization prob-
lem [127]. Eventhough, the above approaches almost reduce the spectrum man-
agement problem to a convex optimization problem, they fall short of designing an
optimal or approximation algorithm with bounded convergence.

The recent works in [127, 134] find the optimal solution for the special case of
two “symmetric” users; their result is very specific, and doesn’t generalize to non-
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symmetric links. In another insightful work, [135] gives a characterization of the
optimal solution for the two-user case which essentially yields a four to six variable
equation. Our work essentially improves on these results and solves the problem
for the general case of two users, using an entirely different technique.
Discrete Frequency Spectrum Management. In other related works, [133] and [136]
consider the spectrum management problem in discrete frequency domain, wherein
the available spectrum is already divided into given orthogonal channels and user
power spectral densities are constant in each channel. Their motivation for consid-
ering the discrete version is to facilitate a numerical solution [133]. The discrete
version is shown to be NP-hard (even for two users), and in [129] the authors give a
sufficient condition for the optimal to be an FDMA solution. Even when restricted
to FDMA solutions, they observe that the discrete version remains inapproximable,
but provide a PTAS [136] for the continuous version (when restricted to FDMA
solutions). Note that, for two users, the discrete version remains NP-hard [129],
while the continuous version has been solved optimally (Section 5.4). Thus, dis-
cretizing the spectrum seems to make the spectrum allocation problem only harder,
contrary to the motivation in [133]. Moreover, discretization of a given spectrum
can actually reduce achievable capacity.
Our Results. In this chapter, we address the following spectrum management prob-
lem: Given a spectrum band of width W and a set of n users each with a maximum
transmit power, the SAPD (spectrum allocation and power distribution) problem
is to determine power spectrum densities of the users in the continuous frequency
domain to maximize the sum of user capacities (as computed by the generalized
Shannon-Hartley theorem). For the above SAPD problem, we present the follow-
ing results.

• For frequency-selective channels, we show that in an optimal SAPD solution,
each user must use the maximum transmit power. We extend the result to the
case wherein the objective is to maximize the product of user capacities.

• For the special case of two users in flat channels, we design an optimal solu-
tion for the SAPD problem. This is a direct improvement of the recent recent
in [127] which solves the problem optimally for the special case of two users
with symmetric (equal channel gains and noise) and flat channels.

5.2 Problem Formulation, and Notations

Model, Terms, and Notations. We are given a set of users i (formed by a transmit-
ter si and a receiver ri) and a frequency spectrum [0,W ]. The background noise at
the receiver of user i is assumed to be white, i.e., constant across the spectrum, and

100



has a constant value of Ni (Watts/Hz) at each frequency. We use hij(x) to denote
channel gain between the sender of user i and the receiver of user j at frequency x.
Power Spectrum Density (PSD) pi(x); Total Power. For a user i, the power spectral
density (PSD) is a function pi : [0,W ] 7→ R≤0 that gives the power at each fre-
quency of the signal used by the transmitter si to communicate with its receiver
ri. Thus, pi(x) is the power of si’s signal at frequency x. We allow arbitrary PSD

functions. The total power used by a user i is given by
W∫
0

pi(x)dx.

Maximum Total Power. Each user i is associated with a maximum total power Pi,
which is the bound on the total power used by its transmitter si. That is, each PSD
function pi(x) must satisfy the below condition:

W∫
0

pi(x)dx ≤ Pi. (5.1)

Spectrum Used. Given a PSD function pi(x) for a user i, the spectrum used by user
i is defined as {x|pi(x) > 0}, i.e., the set of frequencies wherein the power is
non-zero. Thus, disjoint spectrums are orthogonal.
User Capacity. Given PSD functions {pi(x)} for a set of users in a communication
system, the (maximum achievable rate) capacity Ci of a user i can be determined
using the generalized Shannon-Hartly theorem as below. Here, we assume that
the signals to be Gaussian processes, and treat interference as noise, as in prior
works [128, 129, 133, 136].

Ci =

W∫
0

log

(
1 +

pi(x)hii(x)

Ii(x) +Ni

)
dx. (5.2)

Above, hii is the channel gain, and Ii(x) is the total interference on frequency x at
the receiver ri due to other users. The interference Ii(x) is computed as follows.

Ii(x) =
∑
j 6=i

pj(x)hji(x).

Spectrum Allocation and Power Distribution (SAPD) Problem. Given a set of
users {1, 2, . . . , n}, maximum total power values Pi for each user i, noiseNi at each
receiver ri, and an available frequency spectrum [0,W ], the Spectrum Allocation
and Power Distribution (SAPD) problem is to determine the PSD functions {pi(x)}
for the given users such that the total (system) capacity

∑
iCi is maximized, under

the constraint of Equation 5.1 (i.e., the total power used by each user i is at most
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Pi). Note that determination of PSD functions also gives the allocation of spectrum
across users (i.e., spectrums used by each user).

5.3 Optimal SAPD Solution Uses Maximum Power
In this section, we prove that in an optimal SAPD solution, each user uses max-
imum total power. We note that our result does not contradict the prior results
of [137, 138] which consider a different and very restricted model. In particular,
[137, 138] consider a model wherein each user uses a constant PSD across the
available spectrum (i.e., each user either uses the entire spectrum with a constant
PSD or remains silent). For this model, they show that to achieve maximum sum of
user rates either (i) each user uses maximum power, or (ii) one of the users is silent
(with the other user using maximum power). In contrast, in our model (wherein
each user can use an arbitrary PSD function, and thus, an arbitrary subset of the
spectrum), we show that each user must use maximum power to achieve maximum
sum of user capacities. In fact, it is easy to see from our Lemma 13 that, in our
model, the sum of rates achieved when one user is silent is always sub-optimal.

Theorem 19 For frequency-selective channels, in an optimal SAPD solution, each

user uses maximum power, i.e., for each user i,
W∫
0

pi(x)dx = Pi.

PROOF: Let n be the number of users. Consider an optimal solution {pi(x)},
where pi(x) is the PSD of the ith user. Assume that the claim of the theorem doesn’t
hold, i.e., there is a user k such that

p′ = Pk −
∫ W

0

pk(x)dx > 0.

Below, we use p′ to improve on the given solution, which will contradict our as-
sumption that the given solution is optimal and thus, proving the theorem.

Now, for an appropriate constant ε (as determined later), we change the given
optimal solution as follows.

• First, in the spectrum [0, ε], we power-off all the users, i.e., for all i, we set
pi(x) = 0 for x ∈ [0, ε].

• Second, we uniformly add the power p′ to k’s PSD in the spectrum [0, ε], i.e.,
we set pk(x) to p′/ε for x ∈ [0, ε].

The first change causes a decrease in the capacity of every user (including k), while
the second change results in some new capacity for k. We can compute these
amounts as follows.
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• The decrease 5i in capacity of each user i (including k) due to the changes
can be computed as:

5i =

∫ ε

0

log

(
1 +

pi(x)hii(x)

Ii(x) +Ni

)
dx

≤ ε log(1 +
pmaxhmax
Nmin

) (5.3)

Above, Nmin = miniNi, pmax = maxi,x pi(x), and hmax = maxi,x hii(x),
where x ∈ [0, ε] and i varies over all users.

• The new capacity C ′k of user k in [0, ε] after the second change is:

C ′k =

∫ ε

0

log

(
1 +

(p′/ε)hkk(x)

Nk

)
dx

≥ ε log(1 +
p′hmin
Nkε

) (5.4)

Above, we have used hmin = minx hkk(x).

Now, the overall increase in the sum of capacities of all the users is

C ′k −
∑
i

5i.

Below, we pick an ε that will ascertain C ′k >
∑

i5i. Such an ε will imply that
the above suggested changes result in an increase in the sum of user capacities, and
thus, proving the theorem. In particular, using Equation 5.3 and 5.4, we pick an ε
such that:

ε log(1 +
p′hmin
Nkε

) > ε
∑
i

log(1 +
pmaxhmax
Nmin

)

log(1 +
p′hmin
Nkε

) > n log(1 +
pmaxhmax
Nmin

)

1 +
p′hmin
Nkε

> (1 +
pmaxhmax
Nmin

)n

ε <
p′hmin

Nk((1 + pmaxhmax
Nmin

)n − 1)
.

Since the above expression is positive, there exists an ε for which the above sug-
gested changes result in an increase in the sum of user capacities. This contradicts
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the assumption that the original solution is optimal, and thus, proving the theorem.

Theorem 19 can be easily generalized to the case wherein the objective is to
maximize the product of user capacities, i.e., to achieve proportional fairness. We
defer the proof to Appendix C.1.

Theorem 20 For the SAPD problem wherein the objective is to maximize the prod-
uct of user capacities, the optimal solution uses maximum power for each user.

5.4 Optimal SAPD Solution for Two Users in Flat
Channels

In this section, we present an optimal solution for the SAPD problem for the special
case of two users in flat channels. In this section, we use hij to denote the channel
gain, i.e., hij(x) = hij for all x. We start with an important lemma. The lemma’s
proof is very tedious (see Appendix C.2).

Lemma 12 For a two user SAPD problem in flat channels, there exists an optimal
solution wherein the PSD of each user is constant in the spectrum shared by the
users. More formally, there exists an optimal solution such that if S1 and S2 are the
spectrums used by the respective users, then for x ∈ (S1∩ S2), pi(x) = ci for some
constants ci (i = 1,2).

A somewhat related result from [128] states that any SAPD solution for n users
can be expressed using piecewise-constant PSD’s over appropriate 2n pieces of the
available spectrum; this result requires 4 pieces for n = 2 users. In contrast, our
above lemma implies a stronger result for an SAPD solution for two users, and is
essential to our result.
Optimal SAPD Solution for Two Users. Consider a system with two users and
an available spectrum [0.W ]. The optimal SAPD solution can take three possible
forms, viz., (i) the users use disjoint subspectrums, (ii) both users use the same
subspectrum, (iii) the users use partially-overlapping (i.e., non-disjoint and non-
equal) subspectrums. We can solve the first and the second cases optimally by using
the below Lemmas 13 and 14 respectively. We defer the proofs to Appendix C.3,
but Lemma 13 is a slight generalization of a result from [139] while Lemma 14
follows easily from Equation 5.2 and Lemma 12.

104



Lemma 13 Consider a system of two users {1, 2}, and an available spectrum
[0,W ]. If the spectrums used by the two users are disjoint, then the maximum
system capacity is

W log(1 +
P1h11

WN1

+
P2h22

WN2

),

and is achieved by dividing the spectrum in the ratio N2P1h11 : N1P2h22.

It is easy to see from the above lemma that the system capacity obtained when
one of the users is silent is always less than that obtained by the partitioning the
spectrum as suggested in the lemma.

Lemma 14 Consider a system with two users, and an available spectrum [0,W ].
If the spectrums used by the two users is equal, then the maximum system capacity
possible is:

W log(1 +
P1h11

P2h21 +WN1

) +W log(1 +
P2h22

P1h12 +WN2

).

In the following paragraph, we show how to compute an optimal solution for the
remaining third case, viz., wherein users use partially-overlapping subspectrums.
The overall optimal SAPD solution can be then computed by taking the best of the
optimal solutions for the above three cases.
Optimal Partially-Overlapping SAPD Solution. Consider an SAPD solution that
is optimal among all partially-overlapping SAPD solutions. In such a solution, the
available spectrum can be divided into three subspectrums S1, S2, and S12, where
S1 and S2 are used exclusively by user 1 and 2 respectively and S12 is used by both
the users. We assume S1 and S2 to be non-zero; the cases wherein one of them is
zero are easier (see Appendix C.4. Now, since the noise is white, we can assume
without loss of generality, that these three subspectrums are contiguous. It is easy
to see that each user 1 must use a constant PSD in S1, and user 2 must use a constant
PSD in S2. Also, by Lemma 12, we know that each user must use a constant PSD in
S12, and each of the three subspectrums. Finally, by Lemma 18 (see Appendix C.3),
the PSD of user 1 in S1 must be greater than its PSD in S12; similarly, the PSD of
user 2 in S2 must be greater than its PSD in S12. Now, let σ1 and σ2 be the PSD’s
in S12 of user 1 and 2 respectively, σ1 + c1 be the PSD of user 1 in S1, and σ2 + c2

be the PSD of user 2 in S2. See Figure 5.1. The total system capacity can now be
written as follows.

B = S1 log(1 + (σ1+c1)h11
N1

) + S2 log(1 + (σ2+c2)h22
N2

)+

S12(log(1 + σ1h11
σ2+N1

) + log(1 + σ2h22
σ1+N2

))
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To find the optimal SAPD solution of the above form, we need to essentially find
values of the seven variables S1, S2, S12, σ1, c1, σ2 and c2 such that the above B is
maximized. We do so by determining six independent equations that must hold
true for an optimal B. These six equations will help us eliminate all but one of the
seven variables in B, yielding a formulation of B in terms of a single variable. We
can then differentiate B with respect to the remaining variable, find the root of the
differential equation equated to zero, and thus, determine the value of all the seven
variables. Below, we derive the six equations (Equations 5.5 to 5.10) that relate the
above seven variables. Below, S1, S2 and S12 refer to the sizes of the corresponding
spectrums.

• Since W is the size of the total available spectrum, we have (by a simple
application of Lemma 13):

W = S1 + S2 + S12 (5.5)

• Since P1 and P2 are the maximum total power of users 1 and 2 respectively,
by Theorem 19, we have:

P1 = S1(σ1 + c1) + S12σ1 (5.6)
P2 = S2(σ2 + c2) + S12σ2 (5.7)

• Note that the PSD’s of the users 1 and 2 in S1 and S2 respectively should
satisfy the values computed in Lemma 13, else the solution can be improved.
Thus, we have:

S1

S2

=
N2P1h11

N1P2h22

(5.8)

• Below, we show how to derive the remaining two equations, which require
some tedious analysis.

Remaining Two Equations (Eqns 5.9-5.10). Let us now consider a small portion of
the spectrum called S — taken partly from S1 and S12. In an optimal solution,
redistribution of power within S should not lead to an improved total capacity.
Without any loss of generality, let us assume S to be of size (w+ 1), with w > 0 in
the exclusive part (S1) and 1 in the shared part (S3). See Figure 5.1. Thus, the total
power used by the first user in S is w(c1 + σ1) + σ1. Let the optimal distribution
of this total power for user 1 within S be in the ratio of k : (1 − k) (0 ≤ k ≤ 1)
between the exclusive and shared parts of S. Now, the total capacity of both users
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(σ1,	  σ2)	  (c1+σ1,	  0)	  

S	  

w	   1	  

(0,	  c2+σ2)	  

S2	  S12	  S1	  

Figure 5.1: S1 and S2 are subspectrums used exclusively by users 1 and 2 respec-
tively, and S12 is the subspectrum used by both the users. The shaded part of the
spectrum is S (used to derive the final two equations) and is composed of two sub-
spectrums of width 1 and w respectively. The top of the figures denotes the PSDs
used by the users, e.g., (c1 + σ1, 0) signifies that the PSD values of the two users is
c1 + σ1 and 0 respectively in S1.

in S for the above power distribution is given by:

C(k) = w log(1 + k(w(c1+σ1)+σ1)h11
wN1

)+

log(1 + (1−k)(w(c1+σ1)+σ1)h11
σ2h21+N1

)+

log(1 + σ2h22
h12(1−k)(w(c1+σ1)+σ1)+N2

)

Since C(k) is connected and derivable for 0 ≤ k ≤ 1, C(k) can be optimal only
at k = 0, 1, or when dC

dk
= 0. Having k = 0 or 1 will contradict our choice of S;

thus, dC(k)
dk

must be zero at optimal C(k). Since we started with an optimal SAPD
solution, where the capacity C(k) must also be optimal, the value of dC

dk
must be

zero for the k = w(c1+σ1)
w(c1+σ1)+σ1

(based on the distribution of power in the original
solution), and this must be true for any w in (0, x] where x is the size of S1 (the
exclusive part of the spectrum).

Analyzing dC(k)/dk. We computed dC(k)
dk

at k = w(c1+σ1)
w(c1+σ1)+σ1

. After simplifica-
tion, the numerator in the resulting expression can be written asw(σ1+c1)Γ1+σ1Γ1,
where

Γ1 = h22N
2
1σ2 + 2h22h11N1σ1σ2 + h22h11c1N1σ2

+ h22N1σ
2
2 − c1N

2
2h11

2 + c1h11h22σ
2
2

− c1h22N2h11
2σ2 + 2N2h11σ1σ2 + h22N2h11σ

2
2

+ h22h11
2σ2

1σ2 − c1h11
2σ2

1 + h11σ
2
1σ2

+ 2h22h11σ1σ
2
2 +N2

2h11σ2 − 2c1N2h11
2σ1

Since the numerator of dC(k)
dk

should be zero regardless of w’s value in (0, x], we
must have that Γ1 is zero. Similarly, for user 2, we must have Γ2 = 0, where Γ2 is
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similarly defined as Γ1. Thus, we get the fifth and sixth equations as:

Γ1 = 0 (5.9)
Γ2 = 0 (5.10)

Eliminations of Variables. It is easy to verify that the derived six equations are inde-
pendent, and hence, are sufficient to eliminate six (out of the total seven) variables
as desired. However, the order of elimination needs to be chosen carefully cho-
sen to avoid getting into a unsolvable polynomial of high degree. We choose the
following order of elimination. From Equation 5.5, we get:

S12 = W − S1 − S2

Substituting the above in Equation 5.6 and 5.7, and solving the resulting two equa-
tions for S1 and S2, we get

S1 =
−Wσ2

1 + P2σ1 + P1c2 −Wc2σ2

c1c2 − σ1σ2

S2 =
−Wσ2

2 + P1σ2 + P2c1 −Wc1σ1

c1c2 − σ1σ2

We can now write Equation 5.8 as follows.

−Wσ2
1+P2σ1+P1c2−Wc2σ2

c1c2−σ1σ2
−Wσ2

2+P1σ2+P2c1−Wc1σ1
c1c2−σ1σ2

=
N2P1h11

N1P2h22

In the above equation, we substitute c1 and c2 by the expressions derived from Equa-
tions 5.9 and 5.10 respectively. Note that Equations 5.9 and 5.10 are linear in c1 and
c2 respectively, and hence, facilitating the above substitutions. After the above sub-
stitutions and tedious simplications, we actually get a fourth-degree equation in σ1

(in terms of σ2). Since four-degree equations have closed-form solutions, we solve
the resulting equation to express σ1 in terms of σ2. The resulting expressions are
extremely long and tedious, and hence omitted here (see [140] for details). The
above allows us to express B solely in terms of σ2. Thus, the single-variable equa-
tion dB/d(σ2) = 0 can be solved efficiently using well-known numerical methods,
since dB/d(σ2) is connected and derivable in σ2 with bounded derivatives, and σ2

has a bounded range (see Appendix C.5). Finally, as B is continuous and bounded,
we can then use the roots of dB/d(σ2) = 0 to compute the optimal B.
Note on Multiple Roots. Note that some of the intermediate equations in the above
described process may not be linear, and hence may yield multiple roots. That only
results in multiple expressions for B (in terms of σ2), and hence, multiple possible
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sets (but, at most 16 sets) of parameter values. We compute the total system capacity
B for each of these set of values, and pick the one that yields the largest value of
B.
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Appendix A

A.1 Evacuation Time of Flexible(f )
Here, we formally prove the claim mentioned in S1.2.1, with regards to the total
evacuation time of the Flexible(f ) architecture.

Theorem 21 Consider an inter-rack traffic matrix D , wherein each entry Dij rep-
resents the total traffic demand from source-rack i to the destination rack j. Assume
that each unit of data takes a unit time to be evacuated over any link.

The total evacuation time for the Flexible(f ) architecture, when f ≤ l is at most

l

f
M +

1

f
max
ij

(Dij + Dji) ≈
l

f
M

units, where M is the evacuation time for FBB (full-bisection network) and l is the
number of machines per rack. For f > l, the evacuation time is same as that for f =
l. Moreover, the number of reconfigurations needed to achieve the above evacuation
time is less than the number of non-zero entries in the given traffic matrix.

PROOF: We start with considering the simple case of f = 1. Consider an
undirected multigraph G over the set of racks, where the number of edges between
a rack i and j is Dij + Dji . Each undirected edge in G represents a unit-demand
between the pair of racks. Now, any matching in G represents a set of packets that
can be evacuated in a unit time since: (i) a matching inG represents a valid “wiring”
of the Flexible(f ) architecture, and (ii) each link (i, j) can evacuate one unit of data
from i to j or from j to i in a unit time.

Thus, the total time to evacuate the given traffic demand matrix in CorelessFlex-
ible (1) is equal to the minimum number of matchings the given graph G’s edges
can be partitioned into (or equivalently, the minimum number to colors needed to
color the edges ofG such that no two edges incident on a node have the same color).

123



Now, using the classical result from Vizing [141], G can be decomposed into

max
ij

(∆i + µij)

matchings, where ∆i is the degree of a node i and µij is the number of edges
between the nodes i and j in G. The extension to a general f is straightforward.
Essentially, when 1 ≤ f ≤ l, the Flexible(f ) architecture can evacuate f matchings
of G in one unit time. Thus, the evacuation time for a general f ≤ l is:

1

f
max
ij

(∆i + µij).

Now, note that the total evacuation time of FBB is exactly 1
l

maxi ∆i, since it can
send or receive l units of data from a rack in a unit time. Thus, the total evacuation
time of Flexible(f) is

l

f
M +

1

f
max
ij

(Dij + Dji).

We note that M is expected to be much larger than 1
f

maxij(Dij + dji) (especially,
for a large number of racks) and thus, total evacuation time of Flexible(f ) is ≈
M(l/f).

To bound the number of reconfiguration, we can show that the number of
different matchings in the partitioning of G above can be bounded by the num-
ber of non-zero entries in the traffic matrix. We skip the details here.

A.2 FSO Link for Long Distances
Here, we briefly corroborate the claim that our FSO link design should work for
distances up to 100m and more. Recall from Figure 1.3 the basic schematic of our
FSO link design. Here, the light beam emanating from an optical fiber is first colli-
mated at the transmitter using the collimation lens, and then focused into an optical
fiber at the receiver using another lens. We argue below that, with our design, the
loss of power due to beam divergence and air-attenuation is expected to be minimal
for longer distances (say, up to 100m), and hence, the FSO link should work at such
distances.

• We note that the collimation lens in our design has been chosen appropriately
to ensure the beam remains collimated for a distance of up to 100m with
a width of roughly 4mm. Since the diameter of our receiving lens is greater
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NFTs-update (adds X)  
due to ρ2 that activates Ld 

(implies concurrent execution of ρ1 and ρ2)    
 

(a) (b)

Figure A.1: Correctness proof for avoidance of black holes.

than 25mm, a 4mm wide beam is fully “gathered” by the receiving lens. Thus,
we can easily ignore the power loss resulting from beam divergence.

• Now, we show that the signal attenuation due to scattering and reflection in
the air is also negligible. Note that, while attenuation of an infra-red laser
beam can be high in fog or rain, it is minimal in clear whether. In particu-
lar, [142] estimates the value of attenuation-coefficient for a beam of 1310nm
wavelength that we use in our design to be 3.5dBm/km. This suggests a
power loss of 0.35dBm over a 100m link, which is much lower than the
power-losstolerance of the detectors at SFPs. For comparison, a typical com-
mercial optical cable [143] has an attenuation of 0.38dBm/km which results
in a power loss of 3.8dBm over 10km, the range of 10GBASE-LR SFP’s used
in our system. Further, we note that the above attenuation-coefficient is for
outdoor environments, and the indoor attenuation-coefficient (which is more
relevant in our context) is much lower.

A.3 Correctness of Data Translation Scheme
Here, we formally prove that our data translation scheme of S1.6.3 ensures the
desired properties. We start with an observation.

Observation 1 At any instant, the set of edges in Gis a subset of the actual set of
active links in the networks.1

Theorem 22 The overall scheme of S1.6.3 ensures that (a) there are no black holes
(i.e., all rules in NFTs refer to active links), (b) the network remains connected, and

1This is true because we only allow non-conflicting reconfigurations to execute concurrently;
we skip the tedious details.
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(c) the packet latency is bounded by (2x + z), where x is the maximum packet
latency in a fixed topology and z is the NFTs-update time. The above claim holds
irrespective of how the NFTs are updated across the network; i.e., we do not require
atomic updates.

PROOF: We start with stating a couple of assumptions we have implicitly made in
our translation scheme: (i) In steps C1 and C3, the update to G occurs before the
NFTs-updates, and (ii) the NFTs-updates (in C1 or C3, from different concurrent
reconfigurations) finish in the same order as the corresponding updates to G.2

Avoidance of Black Holes. Consider the first instant t when a black hole is created
in the network. There are only two possible events that can induce a black hole,
viz., (i) A new forwarding rule that refers to an inactive link is added, or (ii) A link
that is being used in a forwarding rule is deactivated. We consider each of these
cases below.

1. Lets say a rule that refers to an inactive link li is added at time t during an
NFTs-update to F1. Let the corresponding update of G variable to G1 to have
occurred at time t1 (< t). Now, G1 must include the edge/link li (since F1,
which is based on G1, has a rule that refers to it). By Observation 1, li is
active at t1. Thus, li must have been deactivated at time t2 between t1 and t
(by a reconfiguration say ρ2). See Figure A.1(a). This is impossible because
it requires the corresponding step C1 of ρ2 to have occurred before t2, which
yields one of the following two contradictions, viz., (1) If step C1 of ρ2 occurs
between t1 and t2, then updates to G(from ρ1 and ρ2) occur in reverse order of
corresponding NFTs-updates, or (2) If any part of step C1 ρ2 (i.e, update to
G) occurs before t1, then two conflicting reconfigurations (i.e., ρ2 and another
that activates li before t1) have executed concurrently.

2. Lets say, at time t, a link ld, that is being used in an existing forwarding-rule
X , is deactivated. Let the deactivation be due to a reconfiguration ρ1, and the
corresponding step C1 to have finished at time t1 (< t) and have updated the
variable G to G1 and the NFTs to F1. Thus, G1 must not contain ld and F1

must not refer to ld. Thus, there must have been an NFTs-update t1 and t that
added the rule X , and this must be due to a reconfiguration ρ2 that activates
ld. See Figure A.1(b). Now, ρ1 and ρ2 are obviously conflicting, but have
executed concurrently. This is contradictory to our scheme.

We note that the above argument does not assume a minimum time-interval
between updates, and hence, avoidance of black holes is guaranteed even if NFTs-
updates are allowed to execute concurrently.

2This is due to NFTs-changes being sent to the network switches in the form of “deltas,” and
hence are received (and thus, finished) at each switch in a deterministic order.
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Network Connectivity. Note that G is guaranteed to be connected at all times. Thus,
by Observation 1, the underlying network topology must be connected at all times.
Bounded Packet Latency. The minimum time-interval of x between two updates,
where x is the maximum packet latency in a fixed topology, ensures that each packet
encounters at most two NFTs during its flight. Thus, the packet latency is bounded
by 2x+ z.
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Appendix B

B.1 NP-Hardness Proofs
In this section, we prove Theorem 14 which states that both the MTC and MMC
problems are NP-hard.

PROOF: We start by defining the decision version of both problems.

Decision-MTC: Given a set of n femtocells (each associated with a location, cov-
erage region, and a maximum transmission power), a constant C, and a number of
available channels, is there an assignment of channels and powers to the femtocells
so that the sum of all capacities is nC?

Decision-MMC: Given a set of femtocells (each associated with a location, cover-
age region, and a maximum transmission power), a minimum capacity requirement
Cmin, and a number of available channels, is there an assignment of channels and
powers to the femtocells so that each femtocell f ’s capacity C(f) is at least Cmin?

We reduce from the problem of 3-coloring a planar graph of degree 4, which is
proved to be NP-complete in [144]:

3-Coloring: given a planar graph of degree 4, is it possible to color all nodes
with 3 colors such that no two adjacent nodes have the same color?

The construction is as follows. We are going to model nodes and edges with a
combination of femtocells. In particular, each node of the graph is represented with

A

B

C
A

B

C
B

A
B

C

A

AA

CC

B

Figure B.1: Construction of femtocells corresponding to a node of the graph.
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Figure B.2: Chain of femtocells representing edges of the graph.

femtocells placed as in Figure B.1, and each edge with a chain as in Figure B.2 (we
assume that the graph is drown with enough space to accommodate these construc-
tions). The four corners of the graph-node gadget are attached at one end of the
edge gadget (femtocells with double border in Figures B.1 and B.2).

The parameters are chosen in such a way that, in an optimal solution, neighbor
femtocells will receive different channels. A possible choice of parameters is the
following. We assume there are exactly 3 channels. Femtocells’ coverage regions
are disks of radius r = 1. The bandwidth is set to B = 1 MHz, and the path loss
parameter is set to α = 5. The maximum power is set to P = 1 W, and the noise is
set to N = 1/100 W.

The following two lemmas can be proved by simply computing the capacity
using Shannon’s formula.

Lemma 15 If all adjacent femtocells receive a different channel, then each femto-
cell has a capacity 4 ≤ C ≤ 5.6 Mbps.

Lemma 16 If two adjacent femtocells receive the same channel, then both these
femtocells have a capacity C ≤ 1 Mbps.

The purpose of our construction is to impose that if two graph nodes are adjacent
in the input graph, then the corresponding femtocells receive different channels. In
particular, the color of each graph node corresponds to the channel assigned to
the femtocells marked with “A” in Figure B.1. The femtocells marked with “B”
and “C” can assume any of the other 2 colors. By the way edges are constructed
(see Figure B.2), the start and the end nodes get different channels, if all adjacent
femtocells receive a different channel.

By the two lemmas above, a solution to the Decision-MTCwith total capacity
at least 4n guarantees that all adjacent femtocells receive different channels. In fact,
the total capacity would decrease by at least 3 if two adjacent femtocells receive
the same channel, or by at least 4 if one femtocell does not receive any channel.
Also, note that if one femtocell uses less than the maximum power, its capacity is
also decreased. Hence, if we can find a solution to Decision-MTC with C = 4
(i.e., total capacity 4n), then we also get a solution to the 3-Coloring problem.
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A similar argument can be made for the Decision-MMC problem. If there
is a solution to Decision-MMC with Cmin = 4, then there is a solution to the
3-Coloring problem.

B.2 MIQP
In our simulations, we computed an upper bound on the optimum using a Mixed
Integer Quadratic Program (MIQP). In this section, we show how this MIQP is
constructed.

Using Shannon’s formula, the capacity of a femtocell f can be expressed as

Cf = log2(1 + SINRf ) = log2(1 + Pr−α/(If +N)),

where P is the power, r is the distance from the femtocell’s center to the farthest
point in any coverage region, α is the path loss exponent, If is the (maximum)
interference perceived in any point of the coverage region of f , and N is the noise.

Using this formula, we can write the following non-linear mixed integer pro-
gram for the MTC problem:

max C

s.t. C ≤
∑
f

log2(1 + Pr−α/(If +N)) (B.1)∑
c

acf = 1, ∀f (B.2)

acf + acg − 1 ≤ scfg, ∀c, f, g (B.3)
scfg ≤ acf , ∀c, f, g (B.4)
scfg = scgf , ∀c, f, g, f < g (B.5)

If =
∑
g 6=f

∑
c

scfgP (dfg + r)−α, ∀f (B.6)

where df,g = distance between femtocells f and g, and we used the following vari-
ables:
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C ≥ 0 is total capacity;
acf ∈ {0, 1} represents whether channel c

is assigned to femtocell f ;
scfg ∈ {0, 1} represents whether channel c

is “shared” by femtocells f
and g;

If ≥ 0 is the interference of femto-
cell f .

The meaning of the constraints in the following:

(B.2) each femtocell has exactly one channel;

(B.3) if two femtocells have the same channel, then they “share” a channel;

(B.4) a femtocell can “share” a channel only if it has that channel;

(B.5) channels are symmetric;

(B.6) interference formula.

These problems are non-linear because of the logarithm in Equation B.1. The
authors of [101] handle them by using a branch and bound technique in conjunction
with their own solver. However, we use a slightly different technique based on
Taylor series that allows us to use a standard solver. We now show the details of
our substitution.

First, we observe that for femtocell f

log2(1 + SINRf ) =

= log
(
1 + Pr−α/(If +N)

)
/ log 2 =

= log
(
(If +N + Pr−α)/(If +N)

)
/ log 2 =

= log
(
ε(If +N + Pr−α)/(ε(If +N))

)
/ log 2 =

=
(
log
(
ε(If +N + Pr−α)

)
− log(ε(If +N))

)
/ log 2,

where for the sake of applying Taylor expansion we multiplied both the numerator
and the denominator for an opportunely chosen small constant ε.

Then, using the Taylor expansion of log(1 + x), we get

log
(
ε(If +N + Pr−α)

)
− log(ε(If +N)) =
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=
(
ε(If +N + Pr−α)− 1

)
−
(
ε(If +N + Pr−α)− 1

)2
/2

+
(
ε(If +N + Pr−α)− 1

)3
/3−O

(
(ε(If +N + Pr−α)− 1)4

)
− (ε(If +N)− 1) + (ε(If +N)− 1)2 /2

− (ε(If +N)− 1)3 /3 +O
(
(ε(If +N)− 1)4

)
=

= εPr−α − ε2P 2r−2α/2 + ε3P 3r−3α/3

+ εPr−α(ε(If +N)− 1)(ε(Pr−α + If +N)− 2)

+O
(
(ε(If +N)− 1)4 − (ε(If +N + Pr−α)− 1)4

)
= ε3Pr−αI2

f + ε3Pr−α(Pr−α + 2N − 3/ε)If + ϕ(Pr−α, N, ε)

−O(K)

where in the last step we assumed that P , r, α, and N are constants and they con-
tribute to the constant term ϕ(), and we set K = (ε(If +N)− 1)4 − (ε(If +N +
Pr−α)− 1)4.

Now, we observe that K is negative since its second term is bigger than the
first one. Hence, if we do not include the error term O(K) in the constraints of
the MIQP, we obtain a solution that is larger than the true optimum (i.e., an upper
bound on the optimum).

This allows to write the MIQP for MTC as follows

max C

s.t. C ≤
∑
f

(
Pr−αI2

f + Pr−α(Pr−α + 2N − 3/ε)If
)

∑
c

acf = 1, ∀f

acf + acg − 1 ≤ scfg, ∀c, f, g
scfg ≤ acf , ∀c, f, g
scfg = scgf , ∀c, f, g, f < g

If =
∑
g 6=f

∑
c

scfg(dfg + r)−α, ∀f

The MIQP for MMC is analogous but the first constraint should replaced with

C ≤ Pr−αI2
f + Pr−α(Pr−α + 2N − 3/ε)If , ∀f.
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Appendix C

C.1 Proof of Theorem 20

Proof of Theorem 20. We make the same changes as suggested in Theorem 19’s
proof. The suggested changes will result in the objective value changing from

(ΠiCi) to (Ck + C ′k −5k)Πi 6=k(Ci −5i),

where Ci is the total capacity of user i. Note that (Ck − 5k) ≥ 0. Let η′ be the
ratio of the above objective values (new to old value). Below, we show that there
exists an ε that makes η′ > 1. This would imply that the given optimal solution is
suboptimal (a contradiction), and thus, proving the theorem.

Now, using Eqn 5.3 and 5.4, we get:

η′ =

(∏
ineqk

Ci −5i

Ci

)
Ck + (C ′k −5k)

Ck

≥

(∏
i 6=k

Cmin −5i

Cmin

)
Cmax + (C ′k −5k)

Cmax

≥
(
Cmin −5max

Cmin

)n−1
Cmax + (C ′k −5k)

Cmax

≥ (1− a1ε)
n−1(1 + a2ε log(1 +

a3

ε
)− a4ε)

where a1, a2, a3, a4 are appropriate positive constants (independent of ε) and5max

is the expression in Equation 5.3. Let η denote the last expression above. We can
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now state the following:

(i) limε→0 η = 1.

(ii) dη
dε

= (1− a1ε)
n−1×(

−a1(n−1)(1+a2ε log(1+a3/ε)−a4ε)
1−a1ε +

a2 log(1 + a3/ε)− a2ε
(1+a3/ε)ε2

− a4

)
= (1− a1ε)

n−1.ξ

Also, one can easily verify that limε→0+ ξ = +∞ and (1 − a1ε)
n−1 is always pos-

itive. Thus, dη
dε

is positive when ε → 0+, which implies (from (i) above) that there
exists an ε > 0 such that η > 1 and thus η′ > 1.

C.2 Proof of Lemma 12

Proof of Lemma 12. Instead of directly proving Lemma 12, we prove the following
lemma.

Lemma 17 Consider two users 1 and 2, and an SAPD solution (not necessarily
optimal) {p1(x), p2(x)} where each user uses the entire available spectrum [0,W ].
We claim that there always exists an SAPD solution {p′1(x), p′2(x)} with equal or
higher total capacity such that either (i) both the PSD functions p′i(x) are constant
in [0,W ], or (ii) one of the users does not use the entire spectrum [0,W ].

Lemma 12 can be easily inferred from Lemma 17 by using contradiction. Lets
consider an SAPD problem instance for two users, which has no optimal solu-
tion wherein the PSDs of the two users is constant in the shared part of the spec-
trum. From the set of optimal solutions, lets pick the one with minimum size of
the shared spectrum. According to lemma 17, we can find another solution with
equal or higher capacity in which either the size of the shared spectrum is reduced
or the users use constant PSD’s in the shared spectrum. In either case, we get a
contradiction. We now present the proof of Lemma 17.
Proof of Lemma 17. We start with defining a couple of notations.
k-rectangular SAPD Solution. An SAPD solution {p1(x), p2(x)} is considered to
be k-rectangular if there exists frequency valueswi, such that 0 = w0 < w1 < w2 <
. . . < wk−1 < wk = W such that for each j (1 ≤ j ≤ k) and x (wj−1 ≤ x < wj),
we have p1(x) = c1j and p2(x) = c2j for some constants c1j and c2j .
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2-rectangular SAPD Solution. First, we prove the lemma for the special case
when the given SAPD solution {p1(x), p2(x)} is 2-rectangular. Without loss of
generality, let us assume that the given SAPD solution is the optimal 2-rectangular
SAPD solution, under the given total powers (viz.,

∫W
0
p1(x)dx and

∫W
0
p2(x)dx

respectively). Now, we can write the given optimal 2-rectangular SAPD solution as
follows.

• For 0 ≤ x < w, p1(x) = σ1, p2(x) = σ2.

• For w ≤ x < W , p1(x) = σ1 + ∆1, p2(x) = σ2 + ∆2.

Above, σi > 0, ∆i + σi > 0, for each i. Let Ψ1 and Ψ2 be the aggregate (sum over
two links) capacity per unit-bandwidth in the two sub-spectrums [0, w] and (w,W ]
respectively. Without loss of generality, let us assume Ψ1 ≤ Ψ2. We consider the
following four cases.
Ψ1 = Ψ2 = Ψ and ∆1∆2 = 0. In this case, the given solution can be easily con-
verted to a 1-rectangular solution of equal or higher capacity.
Ψ1 = Ψ2 = Ψ and ∆1∆2 > 0. Without loss of generality, we assume ∆2 ≥ ∆1 >
0.1 Note that, in either sub-spectrum, if we “scale-up” the PSD value of each link,
then the aggregate capacity (per unit-bandwidth) would increase. Thus, for any
a > 1, the PSD value of a.σ1 and a.σ2 would result in a higher aggregate capacity
than Ψ1 (= Ψ2). Now, since ∆i > 0, there exists a > 1 such that a.σi < σi + ∆i

for each i. For such an a, changing the PSD value in the second sub-spectrum from
σi + ∆i to aσi results in an increase in the aggregate capacity (with lower total
power). Thus, the given solution is not an optimal 2-rectangular solution. QED.
Ψ1 = Ψ2 = Ψ and ∆1∆2 < 0. Without loss of generality, we can assume ∆1 > 0
and ∆2 < 0. Now, if W > 2w, let [g1, g2] = [0, 2w] otherwise let [g1, g2] = [W −
2w,W ]. Let X(b) and Y (b) be such that logX(b) and log Y (b) are the capacities
per unit-bandwidth of the first and second links when they use a constant PSD value
of σ1 + b∆1 and σ2 + b∆2 respectively; here, b ∈ [− σ1

∆1
,− σ2

∆2
] ⊇ [0, 1]. Below, we

show how to choose appropriate b values to create a better 2-rectangular solution, or
an equal-capacity solution wherein one of the links does not use the entire spectrum.

Let Xmax be the maximum value of X(b) over the above range of b. Since
the above function X(b) is reversible, we can define the function f = Y (X−1) :
[0, Xmax] 7→ R≥0 such that f(x) gives the capacity-per-bandwidth of the second
link when the capacity/bandwidth of the first link is x due to constant PSD values
of σ1 + b∆1 and σ2 + b∆2 respectively for some b; note that, b is unique for a
given x. We can show (we omit the details here) that the second-derivative of the
function (d(df(x)/dx)/dx) cannot be zero in [0, Xmax]. Thus, the function f(x)

1If both are negative, then we can reverse the role of the two sub-spectrums.
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has no inflection point in the range [0, Xmax], and hence, we can plot the various
possibilities for the f(x) relative to y = 2Ψ/x as shown in Figure C.1. Note that
f(x) is maximum at x = 1, and is 1 atXmax, and intersects the y = 2Ψ/x plot at two
x values corresponding to b = 0 and b = 1 (since Ψ1 = Ψ2 = Ψ). Moreover, since
X(b) is monotonically increasing in b, we get the values/ranges of b as depicted in
the figure. Now, for each of the four possibilities of f(x) depicted in the Figure C.1,
we can prove the lemma as follows.

b=1
f(x

)=
1

x
=

1
f(x

)
is

m
a
x

b=−σ1

∆1

b=0

xf(x)=2Ψ

xf(x)=2Ψ

f(x)

x

b=−σ2

∆2

x
=

X
m

a
x

Figure C.1: Red and blue (dotted) curves are the possible shapes of f(x); here, the
black (solid) curve is y = 2Ψ/x.

• If f(x) is one of the two red plots, then we pick b = 1/2. For b = 1/2, we get
X(b)Y (b) > 2Ψ and hence logX(b) + log Y (b) > Ψ. Now, if we can choose
constant PSD values of σ1+b∆1 and σ2+b∆2 for the two links respectively
in [g1, g2], we get a 2-rectangular solution in [0,W ] of higher total capacity
within the given power constraint. QED.

• If f(x) is the blue or the black plot, then we choose two values of b, viz.,
bl and br, so as to use PSD values of σi + bl∆i in [g1, w] and σi + br∆i

in [w, g2] for each link i. For our purposes, we need to choose bl and br
such that they satisfy the following three conditions: (i) −σ1/∆1 ≤ bl ≤
0, and 1 ≤ br ≤ −σ2/∆2 (to ensure that b is in the valid range and the
capacity/bandwidth is at least Ψ in each sub-spectrum), and (ii) bl + br = 1
(to ensure that the total power used is at most the total power in the original
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solution, for each link), and (iii) σi + bl∆i or σi + br∆i is zero for some i (so
that one of the links uses zero power in one of the sub-spectrums). To satisfy
the above three conditions, we choose the pair (bl, br) as (−σ1/∆1, 1+σ1/∆1)
if 1 + σ1/∆1 < −σ2/∆2, or (1 + σ2/∆2,−σ2/∆2) otherwise. The above
yields an SAPD solution of higher capacity wherein one of the links doesn’t
use the entire spectrum. QED.

Ψ1 < Ψ2. In this case, we consider sub-spectrums [g1, w] and [w, g2] for some ap-
propriate g1 and g2 (determined later), and increase the aggregate capacity within
these sub-spectrums by appropriate redistribution of power.

Let r = (g2 − w)/(w − g1), the ratio of the two sub-subspectrums, and
τ = (g2 − g1). Let P ′1 and P ′2 be the total power used by link 1 and 2 in
[g1, g2], i.e., P ′i = τ(σi + ∆ir/(r + 1)). Let Φ(r) be the aggregate capac-
ity per bandwidth in [g1, g2] when the PSD values are P ′1/τ and P ′2/τ respec-
tively for the two links. We now show that a “large-enough” r will ensure that
(1 + r)Ψ(r) > Ψ1 + rΨ2, which will imply that in [g1, g2] the 1-rectangular solu-
tion yields a higher total capacity than the given solution. Observe the following:
(i) limr→0+ Φ(r) = Ψ1, (ii) limr→∞Φ(r) = Ψ2, and (iii) φ(r) is connected. Since
limr→∞+ (1 + r)Φ(r) = (1 + r)Ψ2 > Ψ1 + rΨ2, there exists a large-enough r for
which (1 + r)Ψ(r) > Ψ1 + rΨ2. Once we find the appropriate r, we can determine
g1 and g2 as follows: If (r + 1)w < W , then pick [g1, g2] = [0, (r + 1)w], else
pick [g1, g2] = [w − (W − w)/r,W ]. Then, in [g1, g2], we use power-signals of
σi + ∆ir/(r+ 1) for link i, yielding a 2-rectangular solution with a higher-capacity
than the given solution. QED.
k-rectangular Solution. This can be easily proven by induction on k, using the
above result on k = 2 as the base case.
Arbitrary SAPD Solution. Let p1(x) and p2(x) be the power-distribution functions
for the given solution, and let P ∗i =

∫W
0
pi(x)dx be the total powers used by the

links. Assume that there is no solution of equal or higher capacity, in which one
of the link doesn’t use the full spectrum. Let us construct an n-rectangular solution
that “approximates” the given solution as follows: First, we divide the spectrum
[0,W ] into n equi-sized sub-spectrums, and then, within each sub-spectrum we use
a constant PSD value of minimum pi(x) in that sub-spectrum. Note that the total
power used by the link i in the above n-rectangular solution is atmost P ∗i . Let Fn be
the total capacity of the above n-rectangular solution, and letR be the total capacity
of the 1-rectangular solution that uses a constant PSD of Pi/W for each link. Since
the lemma holds for k-rectangular solutions, we get that Fn ≤ R for any n. Now,
if C is the total capacity of the given solution, then by definition C = limn→+∞ Fn.
Thus, we get C ≤ R, which completes the proof.
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C.3 Proofs of Lemma 13 and 18

Proof of Lemma 13. First, it is easy to see that the union of the disjoint spectrums
must be the entire available spectrum. Let the links use disjoint spectrums of size
yW and (1− y)W where 0 ≤ y ≤ 1. Since both links should use maximum power
for maximum capacity, we can compute the total capacity as follows.

C = yW log(1 +
P1h11

yWN1
) +W (1− y) log(1 +

P2h22

(1− y)WN2
)

We can find the optimal value of y by solving for dC/dy = 0. We have:

dC(y)
dy

= W
(

log(1 + P1h11
yWN1

)− log(1 + P2h22
(1−y)WN2

)−
P1h11

yWN1(1+
P1h11
yWN1

)
+ P2h22

(1−y)WN2(1+
P2h22

(1−y)WN2
)

)
The root of the equation dC/dy = 0 is:

y =
N2P1h11

N1P2h22 +N2P1h11

.

Hence, the PSD’s of link 1 and 2 are N1P2h22+N2P1h11
WN2h11

and N1P2h22+N2P1h11
WN1h22

re-
spectively and the optimal value of C is:

C = W log(1 +
P1h11

WN1

+
P2h22

WN2

)

Lemma 18.

Lemma 18 Consider a communication system with a single user 1, and an avail-
able spectrum [0,W ]. Let the interference (from other users) in the sub-spectrums
[0, w] and (w,W ] be constant and equal to I and I ′ respectively. If I > I ′, then to
achieve maximum capacity for user 1, its PSD value in [0, w] should be lower than
in (w,W ].

PROOF: It is easy to see that for optimal capacity: (i) the PSD should be constant in
each of the sub-spectrums, and (ii) the link should use maximum power. Now, if we
divide the total power of P1 into the two sub-spectrums in the ratio of k : (1 − k),
for some 0 ≤ k ≤ 1, we get link capacity as:

C(k) = w log(1 +
kP1h11

w(I +N1)
) + (W − w) log(1 +

(1− k)P1h11

(W − w)(I′ +N1)
)

By solving dC/dk = 0, we get k = w
W

+ w
WP1h11

(I ′ − I)(W − w) which give us
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the PSD values of 1
W

(P1 + (W − w)(I ′ − I)/h11) and 1
W

(P1 + w(I − I ′)/h11) in
the two sub-spectrums. This proves the lemma, since the first PSD value is always
greater than the second PSD value.

C.4 Cases for S1 or S2 = 0.

Case where S1 or S2 is of Zero Size. Let S1 = 0 and S2 > 0. In this case, Equa-
tions 5.8 and 5.9 are not valid. At the same time, the variables S1 and c1 are elimi-
nated from the system, and hence, we have two fewer equations and variables which
only simplifies the problem. We can use the exact same order of elimination and
technique to yield an optimal solution for this case. This case of S2 = 0 and S1 > 0
is similarly handled, and the case of S2 = 0 and S1 = 1 is already handled by
Lemma 14.

C.5 Upper Bound of σ2

Upper bound of σ2. Here, we show that there exists an upper bound for σ2. Since
the PSD’s used by users 1 and 2 in S1 and S2 is (c1 + σ1)S1 and (c2 + σ2)S2

respectively, we have the following (by applying Lemma 13, and using the PSD
values computed therein):

c1 + σ1 =
N2(c1 + σ1)S1h11 +N1(c2 + σ2)S2h22

(S1 + S2)N2h11

,

c2 + σ2 =
N2(c1 + σ1)S1h11 +N1(c2 + σ2)S2h22

(S1 + S2)N1h22

,

and c2 + σ2 = (c1 + σ1)N2h11
N1h22

. Let ς = N2h11
N1h22

and γ = max(ς, 1). Let P = P1 +P2,
and recall that c1, c2, σ1, and σ2 are positive numbers. Thus, we have:

P = (c1 + σ1)S1 + (c2 + σ2)S2 + (σ1 + σ2)S12

P >
1

ς
(c2 + σ2)S1 + σ2S2 + σ2S12

γP > (γ/ς)σ2S1 + γσ2(S2 + S12)

γP > σ2(S1 + S2 + S12) (as γ ≥ 1, ς)

γP/W > σ2

Thus, γP/W is an upper bound on σ2, where γ = max(1, N2h11
N1h22

).
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