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Abstract of the Dissertation 
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by 
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in 
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Stony Brook University 

2013 

 

Virtual Machine Introspection (VMI) is a new and important technique developed specifically 
for virtualized environments. VMI provides the ability to perform virtual machine (VM) 
monitoring by gathering VM run-time states from the hypervisor and analyzing those states to 
obtain information about a running operating system (OS) without installing an agent inside the 
VM. The agentless VMI approach has enabled the development of applications that combine the 
best of two worlds: efficient centralization and effective monitoring. 

VMI’s primary drawback is the semantic gap problem. The semantic gap refers to the difficulty 
in interpreting low level run-time OS states obtained through VMI into a high level model of the 
OS's state. We approached the problem through the creation of the real-time kernel data structure 
monitoring (RTKDSM) system. The RTKDSM system leverages the rich OS analysis 
capabilities of Volatility, an open source forensics framework, to simplify and automate analysis 
of VM run-time states of Windows and Linux OSes. The RTKDSM system is designed as an 
extensible software framework, which can be extended by writing Volatility plugins to perform 
new VM analysis tasks. In addition, the RTKDSM system is built to perform real-time 
monitoring of the extracted OS states in guest VMs to detect changes made to these states. This 
feature is especially important for effective security monitoring of VMs. To improve the 
efficiency of the RTKDSM framework, we reduce the overhead of monitoring changes to guest 
OS states.  

The RTKDSM system is capable of supporting a wide range of VMI applications due to the 
RTKDSM framework’s flexibility and extensibility. Leveraging the RTKDSM framework, VMI 
developers can easily create new VMI applications. To demonstrate the practicality and 
effectiveness of the RTKDSM framework, we built three novel applications on top of the 
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framework: (1) an inter-VM data flow tracking tool, (2) a VM lock down tool to restrict the 
execution environment to running only approved user applications, and (3) a tool for detection of 
malicious attacks that manipulate privileges of running processes. These systems are expected to 
contribute to enhanced system monitoring in virtual machine environments. 
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1 Introduction 

1.1 Motivation and Challenges 

Cloud computing ushers in an era of consolidated information technology infrastructure 

that is elastic, available, and scalable. Virtualization is a critical building block in this evolution 

enabling multiplexing of the underlying computing resources. With the growth of virtualization, 

re-design of traditional agent-based monitoring technologies is underway by moving monitoring 

functionalities out of virtual machines (VMs) to delegate responsibilities to automated services in 

the cloud using the virtual machine introspection (VMI) technology. The cloud computing 

industry has witnessed a growing adoption of the VMI technology for building a wide range of 

agentless tools including intrusion detection systems, virtual firewalls, malware analysis, and live 

memory forensics [1-3]. In the agentless approach, users can focus on using their VMs without 

the burden of monitoring VM operations. Furthermore, such approach de-couples the monitoring 

system from the monolithic OS and eliminates the need for homogeneous environments where 

every VM runs a common monitoring suite. 

VMI was first introduced to describe the operation of the Livewire intrusion detection 

system [4], which was placed in a special management VM isolated from the other VMs to 

observe their execution. Using the VMI approach, the management VM reconstructs the internal 

state of the monitored VMs through low level information, such as memory pages. Access to this 

information is possible because the hypervisor on which the management VM runs has complete 

access to all memory in the monitored VMs and can read it as needed. Given a VM’s entire 

physical memory, it is possible for a VMI application in the management VM to access the 
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contents of the monitored VM’s kernel and user-space memory and to extract the memory-

resident critical OS data structures. From these data structures, the VMI application can then 

infer exactly what the OS is doing.  

While enabling the implementation of centralized agentless monitoring architectures, 

VMI has to overcome the so-called semantic gap to providing efficient monitoring of VMs. 

Since native OS application programming interfaces (APIs) are not available to VMI, the low 

semantic level in which data are captured by the hypervisor makes it difficult to render the OS 

high-level semantic views needed to make decisions. Given the low level VM views, the first 

step in overcoming the semantic gap is to gather information about the state of the OS by 

locating and examining the internal data structures that the in-guest APIs use. This step generally 

requires tedious, prolonged, and error-prone efforts to accurately translate the acquired low level 

views to the OS structures in the VM. The process is particularly challenging in closed source 

OSes such as Windows, where details of data structures must be obtained using reverse 

engineering. Even for systems where the OS source code is available, reconstructing data 

structures can be an overwhelming task. Moreover, the time and efforts spent reverse-

engineering the internals of one OS version may not be applicable to future versions. The lack of 

automated VMI frameworks that aggregate the underlying data structure knowledge of multiple 

OS flavors and versions to eliminate reverse-engineering efforts presently poses a significant 

challenge for developers of VMI applications.  

This work contributes toward the goal of providing automated frameworks for 

development of VMI applications. 
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1.2 Dissertation Contributions 

1.2.1 Real-Time Kernel Data Structure Monitoring System 

 In Chapter 2, we present the real-time kernel data structure monitoring (RTKDSM) 

system that allows developers of VMI applications to perform real-time analysis and monitoring 

of OS data structures in a VM memory. We demonstrate how applying the vast data structure 

knowledge in an existing open source computer forensics platform enables the development of 

VMI tools to proceed more rapidly and with significant reduction in effort. Our system does not 

require VMI application developers to know the version of the guest OS in advance, since it is 

determined on the fly by the framework, nor does it require access to the OS source code, 

making it also suitable for real-world production execution environments. 

 The RTKDSM system is able to identify at run-time data structures of interest in memory 

of monitored VMs and to react to changes in those data structures. Responding to changes 

effectively in real-time requires the system to react to a potentially large volume of events 

impacting system performance. As VMI developers may need to track changes to rapidly 

changing data structures or to a large number of data structures, we introduce a performance 

optimization technique to reduce the monitoring overhead.  

 To demonstrate the applicability of the RTKDSM system, we developed three agentless 

monitoring systems: payment card data flow tracking tool (vCardTrek), cloud-based application 

whitelisting solution (CLAW), and access token manipulation detection tool (ATOM) (Figure 

1.1). These systems are expected to contribute to enhanced monitoring in cloud computing 

centers. 
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Figure 1.1 The RTKDSM system provides the underlying interfaces for the development of 
vCardTrek, CLAW, and ATOM. 

 

1.2.2 Payment Card Data Flow Tracking Tool 

 Credit and debit card payment processing systems are key elements in financial 

transactions. Negligence in securing these systems makes them vulnerable to hacking attacks, 

which may lead to significant monetary losses for both merchants and the financial 

organizations. To reduce this risk, mandatory security compliance regulations, such as the 

Payment Card Industry Data Security Standard (PCI DSS), were developed and adopted by the 

industry. A key pre-requisite of the PCI DSS compliance process is the ability to identify the 

components of the payment systems directly involved with the card data (i.e. process, transmit, 

or store). However, existing data flow tracking tools cannot fully automate the process of 

identifying system components that interact with card data, because they either can not examine 

encrypted communications or they use an instrumentation-based approach and thus require a 
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priori detailed knowledge of the payment card processing systems.  

 In Chapter 3, we describe the implementation and evaluation of a novel tool called 

vCardTrek to identify the card data flow in commercial payment card processing systems 

running on virtualized servers. vCardTrek performs real-time monitoring of network 

communications between virtual machines and inspects the memory of the communicating 

processes for unencrypted card data. Our implementation can accurately identify the system 

components involved in card data flow even when the communications among system 

components are encrypted. Effectiveness of this tool is demonstrated through its successful 

discovery of the card data flow of several open- and closed-source payment card processing 

applications. 

1.2.3 Cloud-Based Application Whitelisting 

In Chapter 4, we present a cloud-based application whitelisting system called CLAW, 

which leverages the centralized monitoring capability of the VMI technology to guarantee that 

only application binaries in a pre-approved set are allowed to run in each VM under its 

management. By applying the RTKDSM system, CLAW performs its security policy 

enforcement without installing any agents inside the monitored VMs. We describe the key 

techniques in the design and implementation of CLAW and compare them with previous 

hypervisor-based application whitelisting systems.  

1.2.4 Access Token Manipulation Detection Tool 

The direct kernel object manipulation (DKOM) technique is used by hackers to 

manipulate OS-critical data structures without the use of application programming interfaces 

(APIs). Rootkits often use this technique to hide their presence by manipulating data structures 
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of running processes. In a similar DKOM attack, called access token manipulation, rootkits 

escalate process privileges by overwriting the malicious process’s privileges with those of a 

more privileged account.  

In Chapter 5, we present the design, implementation, and evaluation of an access token 

manipulation detection tool called ATOM. ATOM performs real-time monitoring of the running 

processes’ access tokens storing process privileges and is able to detect attacks on access tokens 

for privilege escalation purposes. A key design decision of ATOM was to apply the RTKDSM 

system to monitor the access tokens’ states. Effectiveness of the tool was demonstrated through 

its successful discovery of real world access token manipulation attacks. 

 



 

7 

 

2 Real-Time Kernel Data Structure Monitoring System 

2.1 Introduction 

 VMI systems fall into one of the two categories: those that are semantically aware and 

those that are semantically unaware. Semantic awareness capability indicates whether a VMI 

system seeks to extract different OS characteristics to carry out its operations. For instance, a 

semantically aware VMI system may parse VM memory to build a list of running processes and 

to obtain process-specific information. Semantically unaware VMI systems are largely unaware 

of the OS semantics associated with the VMs they manage.  

 In this study, we present a real-time kernel data structure monitoring (RTKDSM) system 

for use by semantically aware VMI applications. The RTKDSM system that has the ability to 

automatically identify OS kernel data structures and continuously track all changes that occur to 

the data structures marked as structures of interest by semantically aware VMI systems. The 

RTKDSM system is designed as a modular component suitable for integration into VMI tools to 

ensure continuous monitoring of critical data. We have implemented a working prototype of the 

RTKDSM system for the Xen hypervisor.  

2.2 Related Work 

2.2.1 Semantically Aware Systems 

The availability of VMI firstly triggered the development of security monitoring systems, 

which were mainly divided into passive and active monitoring systems. Passive monitoring 

systems were only able to inspect a VM and report an attack instead of preventing it [3-6]. 

Conversely, active monitoring systems interposed on events of interest within the monitored VM 
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and prevented malicious acts instead of relying on mere detection [2, 7, 8]. While some of these 

VMI systems were entirely agentless, others bridged part of the semantic gap by placing 

components inside the monitored VM. 

Livewire, the first host-based intrusion detection system, monitored VMs to gather 

information and detect attacks from within the monitored VM by acquiring semantic awareness 

through analysis of kernel dumps [4].  

Another semantically aware system, Lares, inserted internal “hooks” into the monitored 

VM that activated an external monitoring control upon execution [2]. The monitor interrupted 

execution and passed control to a security mechanism to deliver understanding of the OS’s 

semantics. 

VMwatcher demonstrated how VMI could be used for passive out-of-VM anti-virus 

monitoring [3].  VMwatcher reconstructed OS states from a snapshot a VM memory. The 

authors presented a detailed description of how the OS states were reconstructed that clearly 

highlighted both the need for expert knowledge of the OS to implement a VMI system and the 

fragility of the approach to changes of the OS.  

VMwall application-level firewall executed outside of the VM and intercepted network 

connections to and from the hosted VMs [1]. It applied VMI to correlate each flow to 

sending/receiving processes through extraction of process and socket data structures, and used 

predefined policies to decide whether a connection should be allowed.  

2.2.2 Semantically Unaware Systems 

AntFarm was specifically designed to monitor a VM’s memory management unit (MMU) 
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to infer information about the VM’s processes and OS [9]. AntFarm was semantically unaware 

of the monitored system but built up such awareness over time.  

LycosID system used cross-view validation techniques to compare running processes 

visible from high and low abstraction layers [8]. The system then patched running code to enable 

reliable identification of hidden processes. No detailed implementation information about the 

monitored OS, such as versions and patch levels of the target OS, was required.  

Manitou, a VMI system designed to detect malware, compared known instruction-page 

hashes with memory-page hashes at runtime [7]. If no match was found, the instruction page was 

considered corrupted and marked as non-executable. Similarly, Patagonix, a system that ensured 

no binary code could be covertly executed on the monitored system, used the processor MMU to 

receive notifications whenever binary code was executed and identified the code using the binary 

format specification [10]. Unrecognized code, whether malicious or in a form that could not be 

understood, was reported by the system. The Patagonix approach was OS-agnostic so long as an 

executable file format could be understood by the monitor and the executed code could be 

identified. 

2.2.3 VMI Frameworks For Semantically Aware Systems 

Several research studies have attempted to developed frameworks to make it easier for 

researchers to experiment with the many uses of VMI without focusing on low-level details. 

XenAccess framework was developed as a monitoring library for the Xen hypervisor [6]. 

The purpose of this library was to provide memory and disk monitoring capabilities for both 

open source and closed source OSes. XenAccess library required the kernel symbol and address 

information associated with the guest OS to perform memory mapping and conversions. The 
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symbol information was sensitive to the guest OS and was not very portable. XenAccess was 

only able to generate a list of running processes and loaded modules. XenAccess was later 

extended to create the LibVMI library to provide introspection functions for reading and writing 

memory in multiple virtualization platforms [11]. 

  Hay and Nance created the VIX tools to perform forensic analysis of VMs running on 

Xen [12, 13]. The VIX tools were designed to allow a forensic investigator to perform live 

analysis of a VM system. VIX consisted of a library of common functions and a suite of tools 

which mimicked the behavior of common Unix command line utilities, such as ps, lsmod, 

netstat, lsof, who, and top. Using VIX, unobtrusive live system analysis was performed on the 

target VM without changing the system state during the data acquisition process. 

A whole-system binary code extractor, called Virtuoso, generated out-of-box code for use 

in VMI [14]. Using Virtuoso, developers could create VMI programs to monitor VMs running a 

variety of different OSes. 

In another study, a novel technique called process implanting was proposed to narrow the 

semantic gap by implanting a process into the monitored VM and executing it under the cover of 

an existing running process to bridge the semantic gap between the VMI application and the 

monitored VM [15]. With the protection and coordination from the hypervisor, the implanted 

process ran with a degree of stealthiness and exited gracefully without leaving negative impact 

on the VM. The downside of this approach was that any reliance on functionality on the 

monitored VM ran the risk of deception by malware present in that VM, as if the implanted 

process were running as a process on the VM itself. 

Table 2.1 summarizes the existing VMI frameworks and compares the RTKDSM system 
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with the described VMI frameworks. 

Table 2.1 VMI frameworks summary. 

System Detection of 
Changes 

Exposed to the 
Monitored OS 

Built on the Existing Forensic 
Framework 

RTKDSM System Synchronous No Yes 

XenAccess Asynchronous No No 

VIX Asynchronous No No 

Virtuoso Asynchronous No No 

Process Implanting Synchronous Yes No 

 

2.2.4 Real-Time Data Structure Monitoring Systems 

A number of studies have developed out-of-VM real-time data structure monitors to 

detect integrity violations. Table 2.2 compares the RTKDSM system to these monitors. 

Petroni et al. [16] proposed a framework for detecting attacks against dynamic kernel 

data structures using a coprocessor-based external monitor. The monitoring system periodically 

compared actual observed dynamic kernel data structures in the snapshots of kernel memory 

with specifications of correct kernel data structures and reported any semantic integrity 

violations against the kernel’s dynamic data. The data structure extractions were performed 

asynchronously with the monitored system’s execution. The asynchronous nature of this 

processing rendered this approach vulnerable to dynamic data attacks launched and withdrawn 

between snapshot periods. On the contrary, the system developed in this study is able to extract 

and analyze the data structures synchronously, overcoming the limitation of the coprocessor-

based approach. 
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Table 2.2 Real-time data structure monitoring systems summary. 

System Detection 

Mode 

Monitoring Exposed to 

monitored OS 

Supports closed 

source OSes 

Supports HVM 

RTKDSM Synchronous Passive No Yes Yes 

Petroni et al. Asynchronous Passive No Yes No 

Sentry Synchronous Active Yes No No 

Rhee et al. Synchronous Active No Yes No 

 

In another related study, Srivastava et al. [18] developed Sentry, a VM-based system that 

prevented illegitimate changes to critical kernel data structures. Sentry’s memory protection 

required modifications to the monitored OS to identify locations of dynamically-allocated kernel 

data objects. Code instrumentations were introduced within the monitored OS’s kernel to 

activate and deactivate protections on kernel object construction and destruction. The 

instrumentation passed the physical page frame number (PFN) of the newly allocated memory 

page holding a kernel data structure requiring protection to the hypervisor. When the memory 

protection module in the hypervisor received a request to add protection for the monitored VM’s 

page, it added the PFN to a list of protected pages and removed the page’s write permission 

causing page faults on all attempted kernel object alterations. Sentry allowed only those 

alterations invoked by legitimate kernel functionality. Sentry assumed that existing techniques 

could protect the core kernel code’s integrity, so an attacker would not be able to remove the 

instrumentation. The system required the OS source code in order to partition a structure into 

secure and insecure parts. This kind of protection was difficult to design for a closed source 

operating system such as Windows. Compared Sentry, the RTKDSM system offers an advantage 

of not requiring modifications to the monitored OS. 
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Rhee et al. [17] proposed a solution to prevent dynamic rootkit attacks on kernel data 

structures using QEMU emulator as an external monitor. The system monitored the execution of 

the OS at the instruction level within QEMU. At runtime, the system identified data structures in 

memory and intercepted all writes to their address ranges. The system relied on writing a policy 

that described how the monitor should identify the data structure in a raw memory as well as the 

characteristics of an attack against the data structure. Only limited details were given regarding 

the data structures extraction mechanisms used by the system. The methodology described in the 

study was only portable to VM monitors that supported memory interposition to translate guest 

instructions into host instructions. Unlike in the RTKDSM system, such methodology could not 

be extended to support commercial hypervisors that did not support memory interposition, such 

as Xen and VMWare ESX. 

2.3 Background 

2.3.1 Xen Hypervisor 

The RTKDSM architecture is designed and implemented using the popular open-source 

Xen hypervisor [19, 20] capable of supporting multiple types of guest OSes, including Windows 

and Linux. This section gives an overview of Xen and describes concepts used in our prototype 

implementation. 

The Xen hypervisor is the lowest and most privileged software layer, which is added to a 

single physical machine to abstract the underlying hardware by creating multiple interfaces to 

VMs. To present a VM with the illusion that it is running on the bare hardware, the hypervisor 

dynamically partitions and shares the available physical resources such as CPU, memory, 
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network connections, and I/O devices among multiple concurrently running VMs. The operating 

system and software applications are executed on top of the VMs. 

The first VM, which boots automatically after the Xen hypervisor is loaded, is called the 

Dom0 domain. The Dom0 domain is typically a modified version of UNIX operating system. By 

default, Dom0 is granted special privileges for managing and controlling other VMs including 

access to the raw memory of other VMs known as DomU domains. DomUs may either be 

unmodified closed-source OSes, if the host processor supports x86 virtualization (hardware 

assisted virtualization) or modified OSes with special drivers that support Xen features (para-

virtualization). Hardware assisted virtualization approach uses help from hardware capabilities 

developed by Intel (VT-x hardware) and AMD (AMD-V hardware). This technology made 

virtualization of closed-source OSes possible without requiring modifications to the guest OS. 

Para-virtualization is the technique whereby the hypervisor and the OS running in a VM 

communicate through hypercalls. This technique requires modifications to the guest OS to 

introduce the hypercalls. 

This study focuses on Hardware Virtual Machines (HVM), which utilize hardware 

assisted virtualization technology. 

2.3.2 Dirty Page Tracking 

To perform real-time monitoring of kernel data structures, the RTKDSM system builds 

on top of the existing log dirty mode technique and the shadow paging technique. 

2.3.2.1 Shadow Paging Technique 

In the shadow paging technique, Xen maintains two versions of page tables for each VM: 
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guest OS page tables controlled by the guest OS and shadow page tables controlled by the 

hypervisor. The guest OS translates virtual addresses into physical addresses of the VM via its 

guest page tables. The real page tables, exposed to the hardware MMU, are shadow page tables 

maintained by the hypervisor. The structure of shadow page table is the same as the guest page 

table. To avoid an extra level of indirection on every memory access, the shadow page tables 

map directly from the guest virtual addresses into the hardware machine addresses. Each shadow 

entry is created on-demand according to the guest page table entry. The hypervisor detects all 

modifications to the guest page tables and ensures that the shadow page table entries being used 

by the hardware for translations correspond to those of the guest OS environment. This is 

commonly done by write protecting the guest page tables and trapping any access to the page 

table pointer by a guest VM.  When an entry is added or changed in a guest page table, Xen 

translates the physical address into its corresponding machine address, performs any necessary 

adjustments, and then updates the corresponding shadow page table. This process is called page 

table entry (PTE) propagation. 

2.3.2.2 Log Dirty Mode 

The Xen’s log dirty mode capability was originally designed for live VM migration to 

track dirty memory pages between consecutive migration rounds. VM live migration employs an 

iterative copy mechanism to ease performance degradation during migration. In the first 

iteration, all the VM pages are transferred to the designated host without pausing the VM. 

Subsequent iterations copy only those pages dirtied during the previous transfer phase. To do so, 

the hypervisor enables the log dirty mode of the shadow page tables to record dirty pages. The 

principle of the log dirty mode is as follows. Initially, all the shadow entries are marked as read-

only, regardless of the permission of its associated guest entries. When the guest OS attempts to 
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modify a memory page, a shadow page write-fault occurs and is intercepted by the hypervisor. If 

the write is permitted by its associated guest entry, the hypervisor grants write permission to the 

shadow entry and marks the page as a dirty one accordingly. Subsequent write accesses to this 

page do not incur any shadow page faults in the current round. 

2.3.3 Forensic Memory Analysis 

The field of memory analysis first became popular within the digital forensics 

community. Forensic monitoring and analysis occurs after a system is known to have been 

attacked. Instead of detecting or preventing an attack, the goals in this case are to learn more 

about what happened during the attack. Memory snapshots of a running system are taken and 

analyzed post-intrusion to determine details about the activities happening on the machine at the 

time of the snapshot. 

The memory analysis has evolved from a basic technique, such as string matching, to 

more complex methods, such as list traversal [6, 21, 22] and signature-based scanning [23-26]. 

The list traversal method works by looking at hard-coded locations and offset values to identify 

the well-known key data structures and using these data structures to derive other data structures 

by traversing linked lists. Often, for a given version of an OS or application software these hard-

coded locations and offset values are consistent on different machines and at different times. 

Finding the appropriate values in the first place typically involves reverse engineering, source 

code analysis, or vendor-provided debugging symbols. Conversely, signature-based scanning 

involves a linear scan of physical memory looking for a constant pattern of bytes using known 

signatures. For instance, some Windows data structures are tagged with a four byte ASCII 

identifier as well as size information and therefore can be easily found in memory using 
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signature-based scanning. 

2.3.3.1 Volatility Framework 

The runtime state information accessed using the RTKDSM system is memory as it 

stores current OS states of the system in OS data structures. Our system utilizes the open-source 

Python-based Volatility forensic memory analysis framework for extraction and analysis of such 

data structures in the monitored VM memory [22]. Volatility supports the following operating 

systems and versions:  

• Windows  

o 32-bit Windows XP Service Pack 2 and 3  

o 32-bit Windows 2003 Server Service Pack 0, 1, 2  

o 32-bit Windows Vista Service Pack 0, 1, 2  

o 32-bit Windows 2008 Server Service Pack 1, 2  

o 32-bit Windows 7 Service Pack 0, 1  

o 64-bit Windows XP Service Pack 1 and 2  

o 64-bit Windows 2003 Server Service Pack 1 and 2  

o 64-bit Windows Vista Service Pack 0, 1, 2  

o 64-bit Windows 2008 Server Service Pack 1 and 2  

o 64-bit Windows 2008 R2 Server Service Pack 0 and 1  

o 64-bit Windows 7 Service Pack 0 and 1  

o Image Identification 

o Processes and DLLs 

o Process Memory 

o Kernel Memory and Objects 
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o Networking 

o Registry 

o Malware/Rootkits 

o Win32k / GUI Memory 

o File Formats 

o File System 

o Miscellaneous 

• Linux  

o 32-bit Linux kernels 2.6.11 to 3.5  

o 64-bit Linux kernels 2.6.11 to 3.5  

o OpenSuSE, Ubuntu, Debian, CentOS, Fedora, Mandriva, etc. 

• Mac OSX  

o 32-bit 10.5.x Leopard  

o 32-bit 10.6.x Snow Leopard  

o 64-bit 10.6.x Snow Leopard  

o 32-bit 10.7.x Lion  

o 64-bit 10.7.x Lion  

o 64-bit 10.8.x Mountain Lion 

Volatility is a modular framework in which most of the functionality is implemented by 

plugins performing a certain function, such as identifying a list of running processes. Plugins are 

declared as Python classes by extending base Volatility classes. When using Volatility as a 

library, it can be extended by new plugins from within one’s code without embedding them into 

the library itself. Volatility currently includes over 100 known plug-ins divided info the 

following major groups: 

• Windows 
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o Image Identification 

o Processes and DLLs 

o Process Memory 

o Kernel Memory and Objects 

o Networking 

o Registry 

o Malware/Rootkits 

o Win32k / GUI Memory 

o File Formats 

o File System 

o Miscellaneous 

• Linux / Mac OSX / Android 

o Processes 

o Process Memory 

o Kernel Memory and Objects 

o Networking 

o Malware/Rootkits 

o System Information 

o Miscellaneous 

Volatility provides support for a variety of processor architectures through the use of 

address spaces (AS) intended to abstract the handling of different memory images and formats 

and to facilitate random access to a memory image by a plugin. A valid AS for a given memory 

image is derived by Volatility automatically. The derived AS is used to satisfy a read request by 

a plugin. Exactly how the read request is satisfied is not important to the plugin code, so long as 

the read request is satisfied. Volatility supports the following ASes: 

• FileAddressSpace - direct file AS 
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• Legacy Intel x86 AS  

o IA32PagedMemoryPae  

o IA32PagedMemory  

• Standard Intel x86 AS  

o JKIA32PagedMemoryPae  

o JKIA32PagedMemory  

• AMD64PagedMemory - AMD 64-bit AS 

• WindowsCrashDumpSpace32 - this AS supports windows Crash Dump format (x86)  

• WindowsCrashDumpSpace64 - this AS supports windows Crash Dump format (x64)  

• WindowsHiberFileSpace32 - this AS supports windows hibernation files (x86 and x64)  

• EWFAddressSpace - this AS supports expert witness (EWF) files  

• FirewireAddressSpace - this AS supports direct memory access over firewire  

• LimeAddressSpace - this AS supports LiME (Linux Memory Extractor)  

• MachOAddressSpace - this AS supports 32- and 64-bit Mac OSX memory dumps  

• ArmAddressSpace - this AS supports memory dumps from 32-bit ARM 

• VirtualBoxCoreDumpElf64 - this AS supports memory dumps from VirtualBox virtual 
machines  

• VMware Snapshot - this AS supports VMware saved state and VMware snapshot files  

Once an AS is loaded, most plugins begin accessing data structures (objects) within the 

AS. Objects are declared as Python classes by extending the base object classes. Any time that 

data are needed from an AS, it will usually be accessed through an object. Examples of objects 

include EPROCESS and ETHREAD objects corresponding to the process and thread in 

Windows OS. Volatility’s object manager parses objects using profiles, which are collections of 

data structure definitions (member fields and offsets) relating to a certain OS. 
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Concrete examples of an object, a profile, and a plugin are given in Table 2.3. The profile 

defines the _MYOBJECT data structure, which is 0x4 bytes long and has only one field, Id, at 

the offset 0x0 within the data structure. The corresponding object is declared as the 

_MYOBJECT class. This class has one member function getID, which returns the value of the 

field Id. The MyPlugin plugin defines the calculate function that carries out the main operation 

against a memory image being analyzed. This function acquires a valid address space and yields 

Ids for all _MYOBJECT objects carved from the address space. The plugin assumes there is 

already a Volatility API imported as myobjects.list to produce all _MYOBJECT objects. These 

results are processed by the plugin's render function rendering the output in a text form. The 

render function accepts the object Ids (data) yielded by the calculate function. 

Table 2.3 Examples of a Volatility profile, a Volatility object, and a Volatility plugin. 

PROFILE OBJECT PLUGIN 

'_MYOBJECT' : [ 0x4, { 

    'Id' : [ 0x0, ['unsigned 
long']], 

} ] 

import volatility.obj as obj 

 

class _MYOBJECT(obj.CType): 

    def getID(self): 

        return self.Id 

import volatility.plugins.common as common  

import volatility.utils as utils 

import volatility.obj as obj 

import volatility.win32.myobjects as myobjects 

 

class MyPlugin(common.AbstractWindowsCommand): 

def calculate(self): 

    address_space = utils.load_as(self._config) 

    for myobject in myobjects.list(address_space) 

        yield myobject.getID() 

def render_text(self, outfd, data): 

    for id in data: 

        outfd.write("Id: {0}\n".format(ID)) 
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2.3.3.2 Data Structure Classification 

We classify OS kernel data structures into two types: 

1) Global data structures created at the system initialization time and located at fixed offsets.  

Typically, there are small numbers of global data structures of particular types per an OS 

instance. Examples include the System Service Descriptor Table (SSDT), Kernel 

Debugger Block (KDBG) and Kernel Processor Control Region (KPCR) structures in 

Windows OS. We further classify these data structures into static and dynamic. Static 

global data structures do not change at run-time. Field values within dynamic global data 

structures may be updated by the system during its run-time. 

2) Dynamically created data structures generated by the system post-initialization at run-

time.  

Numbers of such data structures per OS instance may widely very during the system run-

time. Examples include: EPROCESS (process), ETHREAD (thread), TOKEN (process 

access token), ADDRESS_OBJECT (socket), TCPT_OBJECT (connection), and 

FILE_OBJECT (file) in Windows OS. Dynamically created data structures may be 

derived from the global data structures. For instance, the KDBG and KPCR data 

structures contain the memory addresses of a large number of kernel variables. Examples 

include PsLoadedModuleList (points to the list of currently loaded kernel modules) and 

PsActiveProcessHead (pointer to the start of the kernel's list of EPROCESS structures). 

For those data structures that can not be derived automatically from the global data 

structures, Volatility scanners may be used to identify unlinked structures at run-time. 
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2.4 Design and Implementation 

2.4.1 Assumptions and Requirements 

The development of the RTKDSM system was driven by the following requirements: 

1) The system did not require any modifications to the monitored OS and no additional 

software needed to be installed in the monitored VM.  

2) The system imposed minimal performance overhead and operated seamlessly in the 

background with the monitored VM running at full speed. 

The following assumptions were made when developing the system:  

1) The Trusted Computing Base (TCB) for our system included the hypervisor and all of the 

software in the monitoring VM. 

2) Kernel data structures of the introspected OS conformed to known semantic and syntactic 

data structure layouts even in a compromised state.  

This assumption is common to most current VMI-based solutions. It is fairly difficult for 

an attacker to modify the layout of these data structures as such modifications would 

require updating all code in the system that uses them or, otherwise, the affected OS 

would no longer function properly. These updates would also be challenging to perform 

and to hide. Although Bahram et al. [27] demonstrated the feasibility of semantic and 

syntactic data structure manipulation attacks to subvert introspection, this type of attacks 

could be defeated using data structure invariant inference and enforcement tools [28] and 

by generating robust signatures for kernel data structures [29]. 
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3) Kernel data structures of interest were assumed to be memory-resident at the time of scan 

and, once identified, were never moved (paged) between physical memory and the page 

file. While the kernel might keep some data in the paged memory whose contents might 

be swapped into a file, the most critical and frequently accessed kernel objects, such as 

those used in this study, were known to be permanently kept in the non-paged memory.  

So, the rest of this study referred to the non-paged memory and non-paged kernel data 

structures only. 

2.4.2 Design 

The RTKDSM system is composed of two agents: the introspection agent and the 

monitoring agent. The introspection agent gathers and analyzes kernel data structures in the 

monitored VM. The monitoring agent is hosted in the hypervisor. Its purpose is to detect write 

attempts to the monitored kernel data structures (Figure 2.1).  

 

Figure 2.1 Logical layout and workflow of the system. 
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The RTKDSM system is designed to operate in two modes: (1) data structure 

identification and analysis and (2) data structure monitoring. The identification and analysis 

mode may be used by VMI monitors to request the RTKDSM system to identify locations of 

data structures and to return values of specific fields within data structures. The VMI monitor is 

responsible for deducing the semantic meaning of the returned values. The monitoring mode is 

used by VMI monitors to request the RTKDSM system to monitor data structures for changes in 

real-time. The VMI request has the following format: (mode, data_structure_type, 

data_structure_offset, field_name1, field_name2, …, field_nameN). Examples of data structure 

types (data_structure_type) include: EPROCESS (process), TOKEN (token), and ETHREAD 

(thread) in Windows OS. Examples of field names (field_name) include: ImageFileName 

(EPROCESS), UserAndGroupCount (TOKEN), and CreateTime (ETHREAD). The RTKDSM 

system provides VMI application developers with pre-configured lists of supported data structure 

types and field names for each data structure type. These lists are derived from the Volatility 

profiles. 

The overall algorithmic outline of the RTKDSM comprises the following high-level 

steps: 

1) Upon a request from a VMI monitor (Step 1 of Figure 2.1), the introspection agent 

searches the physical memory of the monitored VM (Figure 2.1, Step 2) to locate data 

structures specified in the request. If the identification mode is used, the introspection 

agent extracts the memory offsets of the identified data structures or values of the 

requested fields and returns the results to the VMI monitor (Step 8 of Figure 2.1). 

Examples of VMI requests in the identification mode include: 
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• (identification, EPROCESS, 0x0, ‘’) request instructs the introspection agent to 

identify all EPROCESS data structures and returns the memory locations of the 

identified data structures to the VMI monitor.  

• (identification, EPROCESS, 0x0, ‘ImageFileName’) request instructs the 

introspection agent to identify all EPROCESS data structures and returns the 

names of the corresponding processes.  

• (identification, EPROCESS, 0x000fabcd, ‘ImageFileName’) instructs the 

introspection agent to return the name of the process whose EPROCESS data 

structure is located at the 0x000fabcd offset. 

If the monitoring mode is requested, the introspection agent extracts the monitored VM’s 

physical page frame numbers (PFN) of those memory pages where the monitored data 

fields reside including their address ranges within the page (Step 3 of Figure 2.1). 

Examples of VMI requests in the monitoring mode include: 

• (monitoring, EPROCESS, 0x000fabcd, ‘ImageFileName’) instructs the RTKDSM 

system to calculate the offset of the ImageFileName field within the EPROCESS 

data structure located at the 0x000fabcd offset, calculate the corresponding PFN, 

and to monitor the ImageFileName field for changes in real-time. When a change 

in the field is detected, the new value is returned to the VMI monitor. 

• (monitoring, EPROCESS, 0x000fabcd, ‘’) instructs the RTKDSM system to 

calculate the PFN (or multiple PFNs if the data structure crosses page boundaries) 

for the entire EPROCESS data structure located at the 0x000fabcd offset and to 
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monitor the entire data structure in real-time. When a change in the data structure 

is detected, the VMI monitor is notified of the change. 

2) The introspection agent stores the calculated PFNs and the address ranges in a list, called 

the monitored list. The monitored list is delivered to the monitoring agent (Step 4 of 

Figure 2.1). The monitoring agent continuously monitors data structures in real-time by 

intercepting all memory writes to the pages in the monitored list (Step 5 of Figure 2.1).  

3) On intercepting a write on a page, if the write is within one of the monitored address 

ranges, the monitoring agent allows the write operation to proceed and notifies the 

introspection agent of the corresponding PFN (Step 6 of Figure 2.1) for real-time analysis 

of the updated page (Figure 2.1, Step 7). If the memory page hosts a data structure known 

to cross page boundaries and to reside on multiple pages, the analysis involves the entire 

set of PFNs comprising the data structure. Subsequently, the VMI monitor is notified of 

the new state of the data structure (Figure 2.1, Steps 8) and is responsible for deducing 

the semantic meaning of the returned values. If the write is not within any of the known 

monitored memory ranges, the monitoring agent allows the write operation to proceed 

without notifying the introspection agent. 

2.4.3 Implementation 

We implemented a prototype RTKDSM architecture using the Xen hypervisor and HVM 

Windows-and Linux-based VMs. In our implementation, the introspection agent is deployed in 

the Dom0 domain. The monitoring agent is implemented in the Xen hypervisor. The RTKDSM 

system implementation involves the following steps: 

1) Request from a VMI Monitor: A VMI monitor requests the RTKDSM system to either 
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identify data structures (in the identification mode) or to perform real-time monitoring of 

a data structure (in the monitoring mode) (Step 1 of Figure 2.2).  

 

Figure 2.2 System implementation. 

 

2) Memory mapping: To analyze the memory of a running VM, we first have to access the 

VM’s memory. As the Volatility framework does not have built-in mechanisms to map 

the memory of a running VM, we configured the RTKDSM system to access the VM 

memory using the XenAccess API [6] (Step 2 of Figure 2.2). XenAccess is a Dom0 user-

space library built upon the low-level APIs provided by Xen to facilitate VM state 

introspection. The Xen distribution provides a Xen Control library (libxc) for a Dom0 
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process to act on the VMs, including pausing a VM, resuming a paused VM, reading a 

VM’s physical memory page, modifying a VM’s physical memory page, etc. 

Specifically, libxc provides a xc_map_foreign_range() function that is designed to map 

the physical memory space of a target VM into a Dom0 process’s virtual address space so 

that the latter can easily manipulate the target VM’s physical memory. XenAccess uses 

this API function to map the physical memory pages of the VM. Specifically, we 

leverage the PyXaFS file system, which is part of the XenAccess tool suite, to map 

physical memory pages of a VM inside Dom0. PyXaFS exposes the memory of a VM as 

a regular file and allows the introspection agent to read a live VM’s memory as if it were 

a normal file. PyXaFS is designed for integration with the Volatility framework as an 

address space. 

3) Data Structure Search: To allow the RTKDSM system perform its data structure searches, 

we extended the Volatility framework with two new plugins called rtkdsm.py (real time 

kernel data structure monitoring plugin) for Windows OS and rtkdsm_linux.py for Linux 

OS. The rtkdsm.py and rtkdsm_linux.py plugins utilize the existing Volatility list 

traversal and signature-based scanning algorithms for extraction of data structures. In the 

current implementation, the plugins’ functionality is limited to identification and 

monitoring of only those data structures that are used in the vCardTrek, CLAW, and 

ATOM studies but can be easily extended to support other data structures documented in 

the Volatility profiles. The plugins are written in Python, and when used in the 

monitoring mode, can directly access a memory page and a data structure within the 

memory page by supplying the data structure type and offset. The rtkdsm plugins are also 

used to calculate offsets and lengths of data fields that require monitoring. Data fields’ 
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offsets and lengths within the data structure are determined using the Volatility profiles. 

For instance, a VMI monitor may issue a request to monitor the ImageFileName field 

storing the process name. This field is defined by a Volatility profile as 16 bytes long and 

located at the 0x174 offset from the top of the EPROCESS data structure. 

Given the VM’s physical memory mapped using PyXaFS, the introspection agent 

searches the mapped pages for target data structures (Step 3a of Figure 2.2) or analyzes a 

particular data structure at a known offset (Step 3b of Figure 2.2). This live system 

analysis is unobtrusive to the target VM and does not change the system state during the 

data acquisition process. In the monitoring mode, the data structure and fields offsets are 

converted to PFNs (Step 4a of Figure 2.2), which are delivered to the monitoring agent 

for real-time monitoring.  

4) Monitoring: The monitored PFN list is mapped for shared access from the hypervisor 

context between the introspection agent and the monitoring agent (Step 4b of Figure 2.2). 

We added a new hypercall to the hypervisor to trigger this sharing. The list is stored 

using a page-level bitmap. The bitmap maintains one bit for each page of physical 

memory assigned to the monitored VM. The monitoring agent manages the bitmap by 

setting the appropriate bits for the monitored PFNs.  

All writes to the memory pages corresponding to those in the PFN list are intercepted by 

the monitoring agent. This is achieved by marking the pages as read-only (Step 5 of 

Figure 2.2) and configuring the hypervisor to recognize page faults caused by writes to 

these read-only pages (Step 6 of Figure 2.2). To reduce the amount of code modifications 

in the hypervisor for implementing this mechanism, we developed an extension to the 
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Xen’s log dirty mode to support continuous tracking of modifications to memory pages. 

Specifically, we leveraged the shadow paging infrastructure to configure the hypervisor 

to intercept writes to monitored memory pages. Unlike the log dirty mode where all 

shadow entries are destroyed on its activation, we destroyed only those shadow page 

table entries that corresponded to the PFNs of memory pages with the identified data 

structures. When the monitored VM attempted to access a page without an existing 

shadow entry, a shadow page fault occurred, and the shadow entry was re-constructed. In 

Xen, the PTE propagation logic is implemented in the _sh_propagate function (defined in 

xen/arch/x86/mm/shadow/multi.c) — the “heart” of the shadow paging code, which 

constructs the shadow PTEs from the corresponding guest entries. In the_sh_propagate 

function, we intercepted the propagation of entries between the guest page tables and 

shadow page tables, and then write-protected designated frames of the guest OS’s 

physical memory by setting the shadow PTEs with read-only bit if the physical memory 

page referenced by the PTE was marked as containing a data structure in the PFN list. 

The shadow PTE flags were otherwise identical to the original guest PTE flags. By doing 

so, all the shadow entries corresponding to the monitored pages were effectively marked 

as read-only. 

When set on a page, the read-only bit caused the processor to trap into the hypervisor 

whenever a write was detected on the page and transfer control to the _sh_page_fault 

function, the Xen’s page fault handling routine.  In the log dirty mode, such writes 

resulted in the page marked dirty and write permissions being granted to the accessed 

page, so as to avoid traps on subsequent writes. In our implementation, if the write was 

within a monitored address range on the page, we allowed the write in a three-step 
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procedure: 

i. Marked the page as writable and re-executed the faulting instruction as if no fault 

occurred. 

ii.  Set the trap flag, commonly used by single-stepping debuggers for the guest OS, 

to cause a debug exception after the writing instruction was executed. We trapped 

this exception in the hypervisor and then re-set the page to read-only restoring the 

protected state. 

iii.  If the write was within the monitored range, we notified the introspection agent of 

the write (Step 7 of Figure 2.2) via an event channel established between the 

introspection and the monitoring agents at the beginning of the monitoring. 

Notifications were delivered via two types of memory pages created by the 

hypervisor and shared with Dom0: a descriptor page of 4 KByte to notify 

availability of data to the introspection agent and a data page of 4 KByte to share 

the details of the updated page including the offset of the write and the PFN. 

5) Repeat Analysis: Upon receiving a notification from the monitoring agent, only the page 

(or a set of pages if the data structure was known to span multiple pages) where the 

modification occurred was re-analyzed by the introspection agent (Step 8 of Figure 2.2). 

The rtkdsm plugins extracted the new value of the field where the change had occurred 

and returned it to the calling VMI monitor (Step 9 of Figure 2.2).  

6) Modifications to the monitored list: The monitored PFN list was designed to be modified 

at run-time by adding new or deleting existing entries. Each time an update was made to 

the monitored list, the system forced propagation of new PTE mappings in the shadow 
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page cache. 

2.4.4 Limitations 

An inherent limitation of the RTKDSM system is its performance penalty in the 

monitoring mode. While the OS inside the monitored VM accesses and manipulates data at the 

granularity of machine words, the RTKDSM system intercepts writes only at the page level. This 

is because the commodity x86 processors do not offer a mechanism for generating faults upon 

access to specific byte-level memory addresses. Even though the RTKDSM system is able 

distinguish between monitored and non-monitored addresses within a single page, page faults 

will still occur and introduce performance cost for writes to all other addresses that do not 

contain target data on the page. 

Consequently, the RTKDSM implementation results in two types of page faults. First, 

when the shadow entry does not exist, both read and write access generate a shadow page fault. 

Second, when an attempt is made to modify a page through an existing shadow entry without a 

write permission, a shadow page fault occurs. The second type is the predominant source of 

overhead in the RTKDSM system and is likely to cause a significant performance impact on the 

guest OS by VMI monitors relying on monitoring of a large number of dynamic data structures 

that are constantly written to. In the worst case, every write to every kernel data structure may be 

monitored resulting in the costs being extremely high. So it is important to provide a mechanism 

to reduce the number of page faults of the second type.  

We extended the RTKDSM design of the monitoring agent to operate in two modes: 1) 

the “always-on” mode that continuously monitors the VM kernel data structures; 2) the “periodic 

polling” mode that performs periodic checks after a pre-defined period of time T. In the 
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“periodic polling” approach, the monitoring agent intercepts a write to a monitored page and 

enables the write flag on the page for a specified period of time T. Once T elapses, the 

introspection agent re-analyzes the page, and the monitoring agent enables the read-only flag on 

the page. As the next write is intercepted, another detection round comprising the above steps is 

repeated.  

Although the “periodic polling” mode prevents the hypervisor from accounting for 

potentially unrelated and/or spurious modifications as relevant, reducing the frequency of checks 

introduces the possibility of evasion when used in VMI security systems. A malicious data 

structure modification can go undetected if it occurs between two consecutive checks. This is 

especially possible when the polling interval is predictable. To prevent adversaries from 

exploiting the periodic nature of the polling mode, we support randomization of the timing 

parameter T using intervals pulled from a uniform distribution in the interval (T-∂t, T+∂t), with 

∂t < T. As the security provided to a system is closely related to the frequency of checks, the 

“always-on” mode vs. “periodic polling” mode should be considered in each individual instance 

with the following consideration in mind: the “always-on” provides increased security, while the 

“periodic polling” mode reduces performance overhead. The greater the period of time between 

checks, the more time an attacker has to execute a sophisticated attack and to avoid detection by 

removing the traces of the intrusion between subsequent checks. 

Another limitation of the RTKDSM system is its inability to detect inconsistencies in OS 

data structures undergoing updating, for instance, a multi-word field might be updated in parts 

but the system would try to analyze each update before updating of the entire field is completed. 
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2.5 Evaluation 

2.5.1 Experimental Setup 

Our testbed consisted of a virtualized server that used Xen version 3.3 as the hypervisor 

and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. The host system had Duo CPU 

P8600 processor running two cores at 2.4GHz and 2GB of system memory. The RTKDSM 

system was installed in the Dom0 domain. In addition, the virtualized server hosted 2 VMs 

running a default installation of Windows XP OS with the IIS web server, MSSQL database 

server, Internet Explorer, and MS Office installed on each of the machines and 2 VMs running a 

default installation of Ubuntu Jaunty (Linux kernel 2.6.28) with the Apache web server, MySQL 

database server, and Firefox installed on each of the machines (Figure 2.3). These VMs were 

configured with 512Mb RAM. 

 

Figure 2.3 Windows OS test environment 

 

2.5.2 Spurious Page Fault Experiments 

We conducted experiments to estimate the probability of spurious updates, i.e. updates 

that might occur outside of monitored kernel data structures. Specifically, we recorded page 

faults caused by real-time monitoring of the data structures listed in Table 2.4 over the period of 

one minute in idle Windows and Linux VMs. In the Windows VM, the experiments included: (1) 
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monitoring of the PsActiveProcessHead structure, (2) monitoring of the TCBTable structure, (3) 

monitoring of 50 EPROCESS structures, (4) monitoring of 50 ETHREAD structures, (5) 

monitoring of 50 TOKEN structures, and (6) monitoring of 50 PEB_LDR_DATA structures. In 

the Linux VM, the experiments included: (1) monitoring of the init_task structure, (2) 

monitoring of 50 task_struct structures, and (3) monitoring of 50 files_struct structures. Prior to 

each experiment, the test VMs were rebooted bringing the environment into a known and 

reproducible state. The script shown in Figure 2.4 was then executed to invoke 50 processes 

inside the test VM. 

 

Figure 2.4 A sample Windows OS command script to invoke 10 processes. 

 

In the Windows VM, the RTKDSM system located the PsActiveProcessHead structure, 

the TCBTable structure, and enumerated all EPROCESS, ETHREAD, TOKEN, and 

PEB_LDR_DATA data structures corresponding to the processes invoked by the script. The 

PsActiveProcessHead, TCBTable, EPROCESS, ETHREAD, TOKEN, and PEB_LDR_DATA 

data structures were then monitored for updates in real-time using the RTKDSM system. In the 

Linux VM, the RTKDSM system located the init_task structure and enumerated all task_struct 

and files_struct data structures corresponding to the processes invoked by the script. The 

init_task, task_struct, and files_struct data structures were then monitored for updates in real-

time using the RTKDSM system. Table 2.5, Table 2.6, Table 2.7, Table 2.8, Table 2.9, Table 

2.10, and Table 2.11 show the results of these experiments. 
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Table 2.4 Data structures used in the experiments. 

OS Data Structure Description 

Windows OS 

PsActiveProcessHead Points to the first and the last EPROCESS (see below) data structure. 

TCBTable Transmission Control Block Table lists network connections. 

EPROCESS Represents a running process. 

ETHREAD Represents a running thread. 

TOKEN Represents authorization information for a running process. 

PEB_LDR_DATA Represent a list of loaded modules. 

Linux OS 

init_task Points to the first and the last task_struct (see below) data structure. 

task_struct 

Represents a running task. This structure also stores the process 

authorization information similar to TOKEN in Windows OS and thread 

related information similar to ETHREAD in Windows OS. 

files_struct Represents a list of files used by a process. 

 

Table 2.5 Page faults on pages containing the PsActiveProcessHead, TCBTable, and init_task 
structures in the idle Windows VM #1 and Linux VM # 1 recorded during 1 minute. 

Data Structure Inside the structure Outside the structure 

PsActiveProcessHead 0 11258 

TCBTable 0 1812 

init_task 0 5634 
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Table 2.6 Page faults on pages containing EPROCESS structures for the 50 calc.exe test 
processes in the idle Windows VM #1 recorded during 1 minute. 

Process 

number 

Number of page faults 

Inside the EPROCESS structure Outside the EPROCESS structure 

6 0 26 

7 0 18 

14 0 54 

15 0 1828 

20 0 28 

23 36 290 

25 0 149 

31 0 49 

32 0 37 

34 0 65 

35 0 6 

37 0 6 

38 0 91 

41 0 59 

42 0 76 

46 0 34 

47 0 11 

50 0 51 

All other processes 0 0 
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Table 2.7 Page faults on pages containing ETHREAD structures for the 50 calc.exe test 
processes in the idle Windows VM #1 recorded during 1 minute. 

Process  

number 

Number of page faults 

Inside the ETHREAD structure Outside the ETHREAD structure 

3 5,304 0 

11 5,698 5 

14 0 214 

17 0 43 

19 5,465 0 

26 5,338 0 

27 5,347 0 

31 5,317 4 

39 5,569 0 

47 0 1028 

All other processes 0 0 

 

Table 2.8 Page faults on pages containing TOKEN structures for the 50 calc.exe test processes in 
the idle Windows VM #1 recorded during 1 minute. 

Process  

number 

Number of page faults 

Inside the TOKEN structure Outside the TOKEN structure 

4 0 16 

11 0 34 

49 0 28 

All other processes 0 0 
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Table 2.9 Page faults on pages containing PEB_LDR_DATA structures for the 50 calc.exe test 
processes in the idle Windows VM #1 recorded during 1 minute. 

Process  

number 

Number of page faults 

Inside the PEB_LDR_DATA structure Outside the PEB_LDR_DATA structure 

All processes 0 0 

 

Table 2.10 Page faults on pages containing task_struct structures for the 50 gcalctool test 
processes in the idle Linux VM #1 recorded during 1 minute. 

Process 

number 

Number of page faults 

Inside the task_stuct structure Outside the task_struct structure 

15 0 178 

16 0 24 

18 0 226 

30 0 75 

All other processes 0 0 
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Table 2.11 Page faults on pages containing files_struct structures for the 50 gcalctool test 
processes in the idle Linux VM #1 recorded during 1 minute. 

Process 

number 

Number of page faults 

Inside the files_stuct structure Outside the files_struct structure 

1 0 16 

4 0 44 

21 0 186 

34 0 52 

37 0 242 

46 0 36 

All other processes 0 0 

 

Although updates to the PsActiveProcessHead, TCBTable, init_task, EPROCESS, 

task_struct, and files_struct data structures were infrequent, the pages hosting these structures 

contained varieties of other unrelated data structures, which experienced frequent updates. 

Several ETHREAD data structures changed quite rapidly leading to a large number of page 

faults on the corresponding pages. Updates outside of the ETHREAD data structures were 

infrequent. Updates to the pages containing the TOKEN and PEB_LDR_DATA data structures 

were rare. 

2.5.3 Performance Experiments 

We used a combination of micro/synthetic and application benchmarks to understand the 

direct computational overhead introduced by the RTKDSM system on the test VMs. In Windows 

OS, we used the PCMark05 benchmark [30] to measure the impact of the running RTKDSM 
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system on the VM’s CPU, memory, and hard drive. In Linux OS, we used the NBench 

benchmark [31] to measure the impact of the running RTKDSM system on the VM’s CPU, FPU, 

and system memory speed. We also ran the Apache HTTP performance benchmark as an 

application benchmark for both the Windows OS and Linux OS [32]. This benchmark heavily 

relied on both threading and I/O operations. Additionally, we ran the file compressing 

application (gzip) in Linux OS to evaluate the performance incurred by extensive I/O operations 

based on the time required to compress a 20 MB file. 

2.5.3.1 “Always-On” Mode 

We assessed the performance of the RTKDSM system in the “always-on” monitoring 

mode. In Windows VMs, the experiments included: (1) monitoring of the PsActiveProcessHead 

structure, (2) monitoring of the TCBTable structure, (3) monitoring of EPROCESS structures of 

10, 25, and 50 processes, (4) monitoring of ETHREAD structures of 10, 25, and 50 threads, (5) 

monitoring of TOKEN structures of 10, 25, and 50 processes, and (6) monitoring of 

PEB_LDR_DATA structures of 10, 25, and 50 processes. In Linux VMs, the experiments 

included: (1) monitoring of the init_task structure, (2) monitoring of task_struct structures of 10, 

25, and 50 processes, and (3) monitoring of files_struct structures of 10, 25, and 50 processes. 

Prior to each experiment, the test VMs were rebooted bringing the environment into a known and 

reproducible state. The script shown in Figure 2.4 was then executed to invoke a required 

number of processes inside a test VM. 

The performance overhead was first measured with only 1 running VM and then with 2 

VMs running concurrently for each OS. Each benchmark was run 3 times against one test VM 

for each OS. Table 2.12 and Table 2.13 show the average results of running the PCMark05 and 
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Apache benchmarks in Windows OS. Table 2.14 and Table 2.15 show the average results of 

running the NBench, gzip, and Apache benchmarks in Linux OS. In the Apache benchmark, the 

average process time per request was used for comparison. The results shown have been 

calculated with respect to the speed of the Xen system with the RTKDSM system enabled with 

zero pages monitored.  

The performance results demonstrated the performance overhead generally increased as 

the number of monitored structures increased. Additionally, the performance overhead also 

increased as the number of monitored VMs grew within the host. The performance was also 

affected by the type of a benchmark used in the experiments. Particularly, the Apache benchmark 

had a significant impact on the performance due to spurious page faults resulting from running 

this benchmark. However, the outputs generated by the RTKDSM system would be sufficiently 

fast for use in systems that either monitored data structures in memory regions, which did not 

incur many page faults, such as those hosting TOKEN and PEB_LDR_DATA data structures or 

systems that could tolerate reduced performance, for instance, in a VM replay for live forensic 

analysis of running VMs [33]. 
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Table 2.12 Performance in the “always-on” mode using the PCMark05 benchmark in Windows OS. 

Benchmark 
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# of EPROCESS  

structures  

monitored per VM 

# of TOKEN  

structures  

monitored per VM 

# of ETHREAD 

 structures  

monitored per VM 

# of PEB_LDR_DATA 

 structures  

monitored per VM 

10 25 50 10 25 50 10 25 50 10 25 50 

CPU 1 1.1% 0.9% 1.2% 1.1% 1.6% 0.7% 0.9% 1.0% 1.2% 1.3% 1.7% <0.2% <0.2% <0.2% 

2 2.0% 1.7% 2.3% 2.7% 3.1% 1.3% 2.1% 2.5% 2.2% 2.6% 3.3% <0.2% <0.2% <0.2% 

Memory 1 0.1% 0.1% 0.2% 0.2% 0.3% 0.2% 0.2% 0.3% 0.2% 0.3% 0.3% <0.2% <0.2% <0.2% 

2 0.6% 0.5% 1.0% 1.2% 1.5% 0.8% 1.0% 1.3% 0.9% 1.0% 1.5% <0.2% <0.2% <0.2% 

HDD 1 3.5% 2.8% 6.7% 6.8% 8.7% 3.6% 4.3% 4.9% 8.7% 9.1% 11.9% <0.2% <0.2% <0.2% 

2 5.3% 4.5% 7.2% 13.1% 13.6% 5.7% 8.5% 9.2% 9.7% 14.7% 15.1% <0.2% <0.2% <0.2% 
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Table 2.13 Performance in the “always-on” mode using the Apache benchmark in Windows OS. 

Number of 
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# of EPROCESS  

structures  

monitored per VM 

# of TOKEN  

structures  

monitored per VM 

# of ETHREAD  

structures  

monitored per VM 

# of PEB_LDR_DATA  

structures  

monitored per VM 

10 25 50 10 25 50 10 25 50 10 25 50 

1000/5 1 8.7% 3.3% <0.5% 45.1% 50.2% <0.5% 0.4% 0.6% 13.7% 46.2% 106.1% <0.5% <0.5% <0.5% 

2 12.2% 5.9% <0.5% 56.9% 78.9% <0.5% 2.1% 2.4% 15.9% 56.3% 131.8% <0.5% <0.5% <0.5% 

1000/10 1 8.0% 2.8% <0.5% 41.6% 48.3% <0.5% 0.3% 0.5% 12.3% 42.2% 99.8% <0.5% <0.5% <0.5% 

2 11.5% 5.2% <0.5% 51.6% 66.7% <0.5% 1.7% 2.1% 15.3% 53.4% 124.6% <0.5% <0.5% <0.5% 

5000/5 1 10.3% 4.4% <0.5% 62.5% 78.4% <0.5% 0.4% 0.6% 32.0% 63.1% 121.3% <0.5% <0.5% <0.5% 

2 13.9% 6.9% <0.5% 64.8% 75.3% <0.5% 2.3% 2.6% 37.5% 76.7% 141.4% <0.5% <0.5% <0.5% 

5000/10 1 10.1% 4.1% <0.5% 61.4% 71.6% <0.5% 0.4% 0.6% 28.1% 60.4% 116.8% <0.5% <0.5% <0.5% 

2 13.6% 6.5% <0.5% 63.8% 75.1% <0.5% 2.1% 2.3% 33.9% 72.6% 132.7% <0.5% <0.5% <0.5% 
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Table 2.14 Performance in the “always-on” mode using the NBench & gzip benchmarks in 
Linux OS. 

Benchmark # of VMs 

Monitoring of  

init_task 

# of task_struct  

structures monitored  

per VM 

#of files_struct  

structures monitored  

per VM 

10 25 50 10 25 50 

NBench Memory Index 1 0.2% 0.1% 0.2% 0.2% 0.1% 0.1% 0.2% 

2 0.4% 0.3% 0.5% 0.5% 0.2% 0.3% 0.5% 

NBench Integer Index 1 0.7% 0.5% 0.9% 1.1% 0.5% 0.6% 0.9% 

2 1.2% 0.9% 1.3% 1.6% 1.0% 1.1% 1.4% 

NBench Floating-Point 1 0.7% 0.4% 0.5% 0.5% 0.3% 0.5% 0.6% 

2 1.1% 0.7% 0.7% 0.8% 0.5% 0.8% 0.8% 

gzip 1 2.7% 1.9% 2.3% 2.6% 1.8% 2.4% 2.8% 

2 3.8% 2.9% 3.7% 3.9% 3.1% 3.5% 3.5% 
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Table 2.15 Performance in the “always-on” mode using the Apache benchmark in Linux OS. 

# of requests / concurrency # of VMs 

Monitoring of  

init_task 

# of task_struct  

structures monitored  

per VM 

# of files_struct  

structures monitored  

per VM 

10 25 50 10 25 50 

1000/5 1 6.5% <0.5% 23.2% 25.4% <0.5% 14.4% 22.1% 

2 8.3% <0.5% 28.3% 30.7% <0.5% 17.3% 26.7% 

1000/10 1 5.9% <0.5% 21.7% 24.2% <0.5% 13.6.7% 20.7% 

2 7.9% <0.5% 26.6% 29.8% <0.5% 17.1% 24.2% 

5000/5 1 7.4% <0.5% 27.4% 30.6% <0.5% 21.5% 32.4% 

2 8.9% <0.5% 34.1% 38.2% <0.5% 29.1% 39.2% 

5000/10 1 7.0% <0.5% 27.2% 29.2% <0.5% 20.8% 31.3% 

2 8.7% <0.5% 33.9% 36.2% <0.5% 28.9% 38.8% 

 

2.5.3.2 “Periodic Polling” Mode 

We assessed the performance of the RTKDSM system in the “periodic polling” 

monitoring mode using the Apache HTTP benchmark only. As this benchmark was shown to 

cause significant performance deteriorations in the “always-on” monitoring mode, switching to 

the “periodic polling” monitoring mode was expected to improve the performance. 

In the Windows VMs, the experiments included: (1) monitoring of the 

PsActiveProcessHead structure, (2) monitoring of the TCBTable structure, (3) monitoring of 

EPROCESS structures of 10, 25, and 50 processes, (4) monitoring of ETHREAD structures of 

10, 25, and 50 threads, and (5) monitoring of TOKEN structures of 10, 25, and 50 processes. In 
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the Linux VMs, the experiments included: (1) monitoring of the init_task structure; (2) 

monitoring of task_struct structures of 10, 25, and 50 processes, and (3) monitoring of 

files_struct structures of 10, 25, and 50 processes. Prior to each experiment, the test VMs were 

rebooted bringing the environment into a known and reproducible state. The script shown in 

Figure 2.4 was then executed to invoke a required number of processes inside a test VM. 

In each experiment, the benchmark was run 3 times against one test VM per each OS. 

The average process time per request was used for comparison. Table 2.16, Table 2.17, Table 

2.18, Table 2.19, Table 2.20, and Table 2.21 show the average results of running the Apache 

benchmarks in Windows OS and Linux OS with the timing parameter T set to 50 msec, 10 msec, 

and 5 msec. The results shown have been calculated with respect to the speed of the Xen system 

with the RTKDSM system enabled with zero pages monitored. 

The performance results demonstrated the “periodic polling” approach significantly 

decreased the performance overhead observed in the “always-on” mode. The recorded write 

bursts involving spurious updates caused by the Apache benchmark to the monitored pages 

lasted in the 1 to 15 msec range. Hence, the improvement in the performance was due to a 

significantly reduced number of page fault interceptions that excluded page faults caused by such 

write bursts.  
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Table 2.16 Performance in the “periodic polling” mode for the PsActiveProcessHead, TCBTable, and init_task data structures. 

Number of requests / concurrency 

PsActiveProcessHead TCBTable init_task 

T=50 

msec 

T=10 

msec 

T=5 

msec 

T=50 

msec 

T=10 

msec 

T=5 

msec 

T=50 

msec 

T=10 

msec 

T=5 

msec 

1000/5 <0.5% 1.3% 2.7% <0.5% <0.5% <1.0% <0.5% 1.1% 2.2% 

1000/10 <0.5% 1.2% 2.5% <0.5% <0.5% <1.0% <0.5% 0.9% 2.1% 

5000/5 <0.5% 1.8% 3.5% <0.5% <0.5% <1.0% <0.5% 1.5% 3.2% 

5000/10 <0.5% 1.5% 3.3% <0.5% <0.5% <1.0% <0.5% 1.3% 3.0% 

 

Table 2.17 Performance in the “periodic polling” mode for the EPROCESS data structure. 

Number of requests / concurrency 

# of EPROCESS structures,  

T=50 msec 

# of EPROCESS structures,  

T=10 msec 

# of EPROCESS structures,  

T=5 msec 

10 25 50 10 25 50 10 25 50 

1000/5 <0.5% 3.1% 3.8% <0.5% 4.1% 5.2% <0.5% 7.3% 9.7% 

1000/10 <0.5% 2.5% 2.9% <0.5% 2.9% 3.4% <0.5% 6.4% 8.1% 

5000/5 <0.5% 3.4% 4.2% <0.5% 4.4% 5.3% <0.5% 7.9% 10.1% 

5000/10 <0.5% 2.8% 3.3% <0.5% 3.1% 3.8% <0.5% 6.5% 8.8% 



 

50 

 

Table 2.18 Performance in the “periodic polling” mode for the ETHREAD data structure. 

Number of requests / concurrency 

# of ETHREAD structures, T=50 msec # of ETHREAD structures, T=10 msec # of ETHREAD structures, T=5 msec 

10 25 50 10 25 50 10 25 50 

1000/5 <0.5% 3.5% 5.1% 1.5% 5.2% 8.1% 2.8% 8.1% 15.6% 

1000/10 <0.5% 3.2% 4.8% 1.5% 4.9% 7.7% 2.7% 7.9% 15.2% 

5000/5 <0.5% 3.8% 5.7% 2.1% 5.9% 8.4% 3.9% 9.3% 17.3% 

5000/10 <0.5% 3.4% 5.6% 1.9% 5.8% 8.1% 3.6% 8.8% 16.9% 

 

Table 2.19 Performance in the “periodic polling” mode for the TOKEN data structure. 

Number of requests / concurrency 

# of TOKEN structures, T=50 msec # of TOKEN structures, T=10 msec # of TOKEN structures, T=5 msec 

10 25 50 10 25 50 10 25 50 

1000/5 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1% 

1000/10 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1% 

5000/5 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1% 

5000/10 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1% 
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Table 2.20 Performance in the “periodic polling” mode for the task_struct data structure. 

Number of requests / concurrency 

# of task_struct structures, T=50 msec # of task_struct structures, T=10 msec # of task_struct structures, T=5 msec 

10 25 50 10 25 50 10 25 50 

1000/5 <0.5% 1.3% 1.5% <0.5% 3.2% 3.9% <0.5% 5.8% 6.9% 

1000/10 <0.5% 1.3% 1.3% <0.5% 3.1% 3.4% <0.5% 5.7% 6.7% 

5000/5 <0.5% 1.5% 2.1% <0.5% 3.9% 4.4% <0.5% 6.3% 8.8% 

5000/10 <0.5% 1.3% 1.9% <0.5% 3.5% 4.3% <0.5% 6.0% 8.5% 

 

Table 2.21 Performance in the “periodic polling” mode for the files_struct data structure. 

Number of requests / concurrency 

# of files_struct structures, T=50 msec # of files_struct structures, T=10 msec # of files_struct structures, T=5 msec 

10 25 50 10 25 50 10 25 50 

1000/5 <0.5% 1.1% 1.3% <0.5% 2.8% 3.4% <0.5% 4.7% 6.4% 

1000/10 <0.5% 0.9% 1.2% <0.5% 2.7% 3.3% <0.5% 4.7% 6.3% 

5000/5 <0.5% 1.1% 1.6% <0.5% 3.6% 4.2% <0.5% 5.2% 7.9% 

5000/10 <0.5% 1.0% 1.4% <0.5% 3.5% 3.9% <0.5% 4.8% 7.5% 
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2.6 Summary 

We presented the design and implementation of RTKDSM, a real-time kernel data 

structure monitoring system, capable of automatically identifying OS data structures supported 

by the open source Volatility forensic framework in memory of a running VM and tracking 

updates to the identified data structures in real-time. To demonstrate the applicability of the 

RTKDSM system under real-life conditions, we built three systems described in Chapters 3, 4, 

and 5 correspondingly: (1) payment card data flow tracking tool (vCardTrek), (2) cloud-based 

application whitelisting system (CLAW), and (3) access token manipulation attack detection tool 

(ATOM). By demonstrating the applications of the RTKDSM system, we hoped to promote the 

creation of new VMI tools through the techniques described in the following chapters.  
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3 Automated Discovery of Credit Card Data Flow for PCI DSS 

Compliance 

3.1 Introduction 

Among organizations increasingly targeted by ongoing cyber security attacks are retail 

businesses. These businesses make high-value targets for financially motivated cyber attackers 

because of the valuable credit and debit card data used in payment transactions. In the recent 

years, hackers have exploited weaknesses in payment card processing systems to steal sensitive 

customer card data [34]. 

To reduce security vulnerabilities in payment card processing systems, the Payment Card 

Industry Security Standards Council developed and released the Payment Card Industry Data 

Security Standard (PCI-DSS) [35]. All merchants that store, process, or transmit card data are 

required to comply with the PCI-DSS security requirements to ensure that not only the payment 

processing infrastructure, but the data it carries are better protected from unauthorized exposure. 

Noncompliant entities receive monthly fines and eventually may lose their ability to process card 

payments.  

The key pre-requisite for PCI DSS compliance is the construction of the card data flow 

diagram for a payment processing network that accepts card charges and provides card 

processing service. Merchants must determine precisely how card data flow through their 

payment processing systems from their inception, what systems they traverse, and where they 

reside. A card data flow could start from a card swipe at a store, or a card number input by a user 
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into an E-commerce web site, and consists of all intermediate stops in a merchant’s IT network 

at which the card information is examined or processed. This discovery process and the resulting 

card data flow diagram help merchants understand which IT equipments in the organization 

interact with the card data so as to implement the security of these IT equipments according to 

the PCI DSS compliance requirements. 

In practice, this pre-requisite poses a challenge to merchants. As the payment card 

processing infrastructure is implemented and later maintained, it often deviates from the 

originally documented design. Without consistent tracking and auditing of changes, such 

deviations in many cases remain undocumented. Today, no known tool exists that could 

automatically discover the card data flow of a distributed payment card processing system in 

heterogeneous computing environments. The only available solution to this problem today is 

manual card data flow reconstruction based on outputs from data loss prevention (DLP) tools and 

system design documents. DLP tools work by searching network packets and data stored on disk 

for clear text card numbers. Although highly effective when dealing with unencrypted data, the 

DLP tools are largely powerless when card data are encrypted in transit and on storage. 

Likewise, manual review of system design documents is an extremely labor-intensive and time-

consuming effort. The required information is often difficult to extract because it is spread across 

a variety of IT elements and applications. Therefore, building the card data flow for a given 

payment card processing infrastructure is considered a daunting task that at this point requires 

significant manual efforts. 

We developed an automated tool called vCardTrek capable of building the card data flow 

in a distributed payment card processing system hosted on virtualized physical servers. We focus 

on virtualized servers because virtualization technology is quickly rising to predominate in 
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merchants’ data centers, and many payment card processing systems start to run inside virtual 

machines [36-38]. A key design decision of the vCardTrek tool is to apply the RTKDSM system 

to track card data flows.  

To the best of our knowledge, vCardTrek is the first known tool to leverage VMI to 

automatically discover the card data flow of distributed applications running in virtualized 

environments. We have implemented a working prototype for the Xen hypervisors. Our 

implementation does not require modifications to the hypervisor, VMs, guest OS, or payment 

card processing system components themselves. We have demonstrated the effectiveness of 

vCardTrek by applying it to 3 commercial payment card processing systems and successfully 

building the card data flow path for each of them. We expect the availability of vCardTrek could 

significantly decrease the efforts and costs in meeting the security regulations stipulated in the 

PCI DSS standard. 

3.2 Related Work 

Previous research efforts approached the automated data flow tracking problem from 

different angles, including a process-wide flow tracking, cross-process flow tracking, and cross-

host flow tracking using fine-grained dynamic taint analysis (DTA).  In DTA, data of interest are 

marked as tainted, and the taint propagation is monitored along with the data. The DTA data 

flow tracking mechanisms lead to increased level of detail, but either require a priori knowledge 

of the applications and hosts participating in information exchange so they can be properly 

instrumented or incur significant performance overheads that make such approaches unsuitable 

for interactive distributed network applications in production environments. Although our 

approach is more coarse-grained than the DTA methods and thus leads to a reduced level of 
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detail in the produced data flow, it removes the need for application-specific instrumentations 

and the associated performance penalties. 

Several studies have explored the problem of data flow tracking in cross-host distributed 

systems. These can be roughly divided into dynamic binary instrumentation (DBI) and emulator-

based implementations both using the DTA technique. Unlike these studies, we consider the 

most generic black-box approach that can be easily integrated into production environments, 

where no previous knowledge of the components participating in the data flow is provided, and 

only passive non-intrusive (i.e. require no modification of the monitored system) monitoring 

instruments with low performance impact are used. 

3.2.1 Dynamic Binary Instrumentation Systems 

The data flow tracking tool described in [39] is built upon a DBI framework and is 

designed to track information flow between processes which may be located in different host 

systems. In this implementation, hosts and processes participating in the information flow are 

manually identified, and a DBI tool is then attached to each of the identified processes to track 

information flow within the process boundary. Additionally, a flow manager is placed in each 

participating host to relay taint information between interacting processes and to handle cross-

host communications and data flow concatenations.  

In another related study [40], a single process DBI framework is extended to perform 

cross-process and cross-host transfer of taint information by intercepting and instrumenting the 

system calls used for cross-process as well as for cross-host communication. As these 

implementations require prior knowledge of the hosts and the processes involved in the 

information flow, these tools can not be utilized for data flow tracking where systems and 
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processes participating in the data flow are unknown a priori.  

3.2.2 Emulator-Based Systems 

Several DTA studies explored the use of emulators to perform fine-grained taint 

propagation and tracking between processes and hosts in virtualized networks. In these 

implementations, the typical approach is to instrument hardware emulators, such as QEMU [41], 

with taint tracking instructions and monitor the taint propagation at the hardware level [42]. 

Taint tracking data structures are used to keep taint status flags of every byte in the system 

including physical memory, CPU registers, and device state. The emulator propagates taint flags 

whenever their corresponding values in hardware are involved in an operation. 

In a related study, Data Flow Tomography [43] built on QEMU emulator implements 

fine-grained data flow analysis system to track and visualize data flow on a networked set of 

virtual machines each running on a separate physical host. The Data Flow Tomography method 

uses full instruction emulation and is inherently heavy weight both in memory and time. 

Hardware emulation is extremely slow and incurs significant performance overheads making this 

approach unsuitable for interactive network applications in production environment. To be a 

useful tool in the life cycle of a system, methods will be needed to speed up the analysis. While 

data flow tracking within a single machine is rarely problematic, the scalability of the approach 

as the number of nodes increases beyond two is certainly a question. This method also requires 

QEMU installation on every machine involved in the data flow. 

Some research has been done to explore more efficient means for dynamic taint analysis. 

Zhang et. al. [44] implemented Neon, an extension of the [42] approach developed to prevent 

data leaks. Neon focuses on taint propagation across applications, systems, and networks. Neon 
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implementation is based on the Xen hypervisor combined with demand emulation via QEMU, in 

which a running system dynamically switches between virtualized and emulated execution, and 

emulation is only used when tainted data is being processed by the CPU.  This implementation 

leads to increased performance compared to using a processor emulator alone [43]. However, 

because propagating taint requires the invocation of QEMU, the Neon implementation incurs 

significant execution time overhead due to tag processing from the emulator and thus does not 

significantly improve performance. 

3.3 Design and Implementation 

3.3.1 Payment Card Processing System 

vCardTrek is designed for a payment card processing system consisting of multiple 

distributed application components all running on distinct VMs as separate processes and 

communicating with one another using synchronous requests.  A payment request using a credit 

or debit card number is sent to the entry component in the system, e.g. a card swipe at a point-of-

sale terminal at a store. Each application component forwards the request to the next component 

along the card processing path and blocks until the corresponding response is received. Once the 

payment card processing system verifies that an input request’s card information is accurate and 

sufficient funds are available in the account, the request is granted permission to proceed with 

the purchase. Additional processing steps within the merchant’s network may be triggered after a 

payment request is authorized, such as submission of payment data to storage, marketing data 

collection, payment reconciliation and settlement etc. 
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3.3.2 Assumptions 

Two assumptions were made when developing the tool:  

1) Each card data handling component processes each request in a synchronous fashion, i.e., 

it reacts to an input request immediately and does not queue it for later processing.  

2) When applying vCardTrek to a network to discover the card data flow, the network is in a 

“quiescent” state in the sense that only one test payment transaction is running through 

the payment system and a false positive caused by multiple concurrent requests is 

unlikely. 

3.3.3 Requirements 

The vCardTrek development is driven by the following requirements, which are derived 

from analyzing card data flows in real-world production environments: 

1) The tool does not require any modifications to the guest OS or the application 

components of the target payment card processing system, and no additional software 

needs to be installed on the VMs on which the payment system runs.  

2) The tool does not make any assumptions on the internal operations of the target payment 

application system being tracked other than the following: (a) the target application runs 

on a virtualized environment, and (b) credit and debit card numbers are transiently stored 

in memory in a particular form. 

3.3.4 System Overview 

To identify the trajectory of the card data flow, a payment request is sent to the entry 
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point of a payment card processing system, and vCardTrek is employed to determine the set of 

VMs and the corresponding processes exchanging network packets as a result of this request 

(Step 1 of Figure 3.1). 

 

Figure 3.1 (1) Inter-VM network communications are tracked by vCardTrek, and (2) the memory 
of the interacting processes is inspected for card data. 

 

Because network communications among payment system processes may be encrypted, it 

is not always possible to detect card data from intercepted network packets. Therefore, 

vCardTrek searches the memory spaces of the communicating processes for the card data as they 

travel from the entry-point process to other card data handling processes along the way (Step 2 of 

Figure 3.1). Even though card data may be encrypted during their IPC transmissions, they are 

decrypted and operated on during their processing, and therefore the clear text version of card 

data can be traced in the interacting processes’ memory. Once the processes whose memory 

contains card data are found the machines involved in the card data flow are readily identified.  

The card data flow trajectories from multiple VMs spread over several physical hosts can 
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be further concatenated to determine how card data flow among networked hosts within the 

organization (Figure 3.2). 

 

Figure 3.2 Card data flow concatenation from multiple physical hosts. 

 

3.3.5 Main Components 

We implemented the card data flow tracking tool for the Xen hypervisor and fully-

virtualized (HVM) Windows-based VMs (payment card processing systems predominantly run 

Windows OS). In our implementation, we deploy vCardTrek in Dom0 and run the components 

of the payment card processing system in DomUs (Figure 3.3). The vCardTrek algorithmic 

outline comprises the following high-level steps:  

(1) vCardTrek traces inter-VM TCP connections starting from the entry-point VM that 

receives the test input request; 

(2) vCardTrek searches the memory space of communicating processes bound to the 
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intercepted TCP connections for the card number used as a test input at the entry-

point VM; 

(3) The card data flow path is reconstructed based on the results from (1) and (2). 

 

Figure 3.3 (1-2-3) Network connections are intercepted, and the processes participating in the 
network connections are determined; (4-5) the memory of the identified processes is searched for 
card data, and the card data flow is reconstructed. 

 

3.3.5.1 Tracing of Inter-VM Communications 

vCardTrek makes use of the packet filtering tool ebtables to intercept all packets sent to 

or from VMs. Ebtables is an open source utility that filters packets at an Ethernet bridge [45]. As 

of the Linux kernel 2.6, the ability to perform bridge mode filtering using ebtables is natively 

included in the kernel and supported by default. Through command line arguments, ebtables is 

instructed to pass intercepted packets to vCardTrek using netlink sockets. Tracing of inter-VM 
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communications begins with the entry-point process and continues recursively on each 

intercepted network connection. 

When vCardTrek receives a packet from ebtables (Step 1 of Figure 3.3), it parses the 

packet to extract its source and destination MAC addresses and port numbers (src MAC, src port, 

dst MAC, dst port) from the packet header. The src and dst MACs are then resolved to the VM 

IDs using XenStore. In Xen, XenStore stores information about each VM during its execution 

including the VM IDs and the corresponding MAC addresses. vCardTrek initiates a VMI request 

to the RTKDSM introspection agent (Step 2 of Figure 3.3) to extract all open sockets for the 

source and destination VMs so it can identify the processes bound to the source and destination 

sockets (Step 3 of Figure 3.3). vCardTrek invokes VMI requests in a multi-threaded fashion and 

never blocks on these requests allowing the RTKDSM introspection agent to perform the VM 

analysis in parallel using separate threads. The summary of the data structures accessed by 

vCardTrek is provided in Table 3.1. 

Table 3.1 The data structures accessed by vCardTrek. 

Operating System Version Data Structures 

Windows XP  

Windows 2003 

_ADDRESS_OBJECT' - socket  

_TCPT_OBJECT – TCP connection 

_EPROCESS - process 

Windows Vista 

Windows 2008 

Windows 7 

_TCP_LISTENER - socket 

_TCP_ENDPOINT – TCP connection 

_EPROCESS - process 
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vCardTrek maintains a table of all the (src MAC, src port, dst MAC, dst port) 

connections being currently analyzed to avoid issuing redundant requests while a VMI request 

processing is in progress. Upon completion of the VMI request, the corresponding connection 

record is removed from this connection table. 

3.3.5.2 Searching the Process Memory 

vCardTrek identifies the portions of the VMs’ memory space that belong to the identified 

processes, so that it can focus on those portions only, and searches these memory portions for the 

test card number used in the test transaction (Step 5 of Figure 3.3). vCardTrek starts with the 

entry-point process and continues recursively on each intercepted network connection. 

The memory search is conducted using the following patterns. Payment card numbers are 

sequences of 13 to 16 digits. The card issuer is identified by a few digits at the start of these 

sequences. For instance, Visa card numbers have a length of 16 and a prefix value of 4. 

MasterCard numbers have a length of 16 and a prefix value of 51-55. Discover card numbers 

have a length of 16 and a prefix value of 6011. Finally, American Express numbers have a length 

of 15 and a prefix value of 34 or 37. Therefore, finding these card numbers in memory can be 

accomplished by searching for ASCII strings that match the following regular expression: 

((4\d{3})|(5[1-5]\d{2})|(6011))-?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}. However, sequences of 13 

to 16 digits with proper prefix values are not always card numbers. Each potential card number 

obtained by the above search procedure has to be further verified using the Luhn algorithm [46], 

which is a simple checksum formula that is commonly used to validate the integrity of a wide 

variety of identification numbers. 

When vCardTrek does not find the test card number in a process’s memory, there are 
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three possible explanations. First, the process does not receive the test card data at all. Second, 

the process receives an encrypted version of the test card data, but does not decrypt it. Third, the 

process receives the test card data either in clear text or in encrypted form, but vCardTrek scans 

the process at an inopportune time, e.g. before the decryption of an encrypted card number or 

after the clear text card number is overwritten. 

To increase the probability of card detection, vCardTrek scans each communicating 

process multiple times. The first scan examines every memory page in the process. If the card 

number is not found in the first scan, vCardTrek re-scans the memory. Each subsequent scan 

only inspects those memory pages that are modified since the last scan. We exploit the Xen’s 

dirty page tracking capability to identify modified pages between consecutive scans. This 

incremental scanning approach significantly decreases the card number search overhead in 

subsequent scans. If no card number is found after a specified number of scans of a given 

process, vCardTrek assumes the process is not in the card data flow. 

Just because no card number is found in a process does not mean that the process cannot 

be part of a card data flow.  For example, the process can receive an encrypted card number and 

pass it on to the next process without decrypting it. Therefore, vCardTrek has to scan all 

communicating processes regardless of whether the sending process contains the test card 

number. 

3.3.5.3 Card Data Flow Reconstruction 

To build the card data flow, the processes whose memory contains the test card data and 

the communication connectivity among them are combined into a graph.  When two processes of 

a payment card processing system communicate, there are three possible state combinations after 
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searching their memory pages, as shown in Figure 3.4(A): (1) The test card data found in the 

memory of both processes, (2-3) the test card data found in the memory of either process but not 

both, and (4) the test card data is found in the memory of neither process.  

Similarly, when vCardTrek scans a process’s memory in a VM that serves as a card 

receiver and as a card sender, there are three possible state combinations, as shown in Figure 

3.4(B). 

 

Figure 3.4 (A) 4 possible states of two inter-VM communicating processes (grey rectangle - the 
card number found in process memory, white rectangle - no card number found in process 
memory. The arrow indicates the direction of connection initiation, not traffic flow);   (B) 4 
possible states of processes within a VM at packet receiving time and at packet sending (the 
same process may serve as the receiving and sending process). 

 

3.4 Evaluation 

In this section, we describe experiments demonstrating distributed card data flow tracking 

using vCardTrek. We tested the tool on three payment card processing systems: two e-commerce 
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shopping carts and a point-of-sale system (Table 3.2). 

Table 3.2 Evaluation suites and testing results. 

System Name 

AbleCommerce 

System 

osCommerce 

System 

CreditLine 

System 

Software Description Commercial shopping cart 

system used by > 10,000 

stores worldwide [47] 

E-commerce management 

software program [48] used 

by >12,000 online shops 

Client-server application 

designed as point-of-sale 

system [49] 

Language/Platform ASP.NET/MSSQL PHP/MySQL Windows executable 

DomU Client  Internet Explorer browser Internet Explorer browser Client application  

DomU Server  IIS 5.1 web server with 

.NET framework v3.5 

IIS 5.1 web server running 

PHP v5.3.3 

Server application 

DomU DB  MSSQL’05 Express Server MySQL 5.1.52  N/A 

Encryption in Transit SSL  SSL N/A 

Results The test card number was 

found in Client and Server 

DomUs. 

The test card number was 

found in Client, Server, and 

DB DomUs. 

The test card number was 

found Client and Server 

DomUs. 

Average Time to 

Identify the Flow, sec 
9 7 8 
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3.4.1 Card Data Flow Tracking Across Multiple VMs Hosted on the Same Physical Host 

3.4.1.1 Experimental Setup 

Our testbed consisted of a virtualized server that used Xen version 3.3 as the hypervisor 

and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. vCardTrek was installed in the 

Dom0. In addition, the virtualized server hosted three DomU domains (DomU Client, DomU 

Server, DomU DB) running Windows XP. The payment card processing systems were installed 

in these three domains as outlined in Table 3.2 and were running simultaneously to mimic the 

real-world production environments with multiple services running on the communicating hosts. 

3.4.1.2 Experiments 

When conducting our experiment, we selected several items for purchase and submitted 

credit card information at checkout. Following the payment card processing requests, vCardTrek 

determined the set of machines exchanging packets, identified the processes involved in these 

communications, and inspected the processes’ memory for the card number used in the 

transaction, while allowing the applications to run throughout the analysis. The testing results are 

presented in Figure 3.5. 

Additionally, we also captured network packets exchanged between machines to 

determine if an accurate card data flow could be built by only inspecting the contents of the 

sniffed packets without applying vCardTrek. As expected, we could not detect the test card 

number in the sniffed packets due to the SSL encryption configured on these communications 

(Figure 3.6, Figure 3.7, and Figure 3.8). 
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Figure 3.5 Processes involved in card data flow (CreditLine flow at the top, osCommerce flow in 
the middle, and AbleCommerce flow at the bottom). 

 

   

Figure 3.6 AbleCommerce Card Data Flow (machines found to participate in the card data flow 
are shown in grey) (left) using vCardTrek; (right) using a packet sniffer. 

 

   

Figure 3.7 osCommerce Card Data Flow (machines found to participate in the card data flow are 
shown in grey) (left) using vCardTrek; (right) using a packet sniffer. 
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Figure 3.8 CreditLine Card Data Flow (machines found to participate in the card data flow are 
shown in grey) (left) using vCardTrek; (right) using a packet sniffer. 

 

In some cases, vCardTrek was also able to identify other card related information 

including the card expiration date, CVV number, and the cardholder’s name within the same 

memory segment as the corresponding card number as shown in Figure 3.9. 

 

Figure 3.9 Detailed information uncovered about a test card, including the card number 
(4556156372833798), the card expiration date (0412), the CVV number (354), and the 
cardholder’s name (Jon Jones) were identified within the process memory. 

 

When running the tests, we observed the timings and the portions of memory from which 

card data were extracted and classified the card data extraction instances into four categories: 

1) Transient/Stack: The card data were uncovered from a stack region while the associated 

transaction was being processed. 
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2) Persistent/Stack: The card data were uncovered from a stack region after the associated 

transaction was completed. 

3) Transient/Heap: The card data were uncovered from a heap region while the associated 

transaction was being processed. 

4) Persistent/Heap: The card data were uncovered from a heap region after the associated 

transaction was completed. 

The successful card data extractions vCardTrek was able to perform against the test 

payment card processing systems fell into category (1), (3) and (4). Category (2) was rare 

because memory words allocated on the stack were automatically freed and possibly overwritten 

when they were no longer needed. In contrast, memory words allocated from the global heap had 

a much longer life time, because application programs needed to explicitly free them when they 

were no longer needed, but application programs rarely did so. As a result, card data stored on 

the heap existed for at least the duration of the associated transaction, which typically took up a 

few seconds to complete, and in many cases continued to exist even after the associated 

transaction is completed. 

3.4.2 Card Data Flow Tracking Across Multiple VMs Hosted on Multiple Physical Hosts 

All communications in the first experiment occur between VMs running on top of the 

same hypervisor, while in the real world the processes in a payment card processing system are 

more likely to reside in multiple VMs spread over multiple physical hosts. In the following 

experiment, we demonstrate the capability of vCardTrek to work equally effective in a multi-

physical-host setting. 
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3.4.2.1 Experimental Setup 

Our testbed consisted of three virtualized servers that used Xen version 3.3 as the 

hypervisor and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. vCardTrek was 

installed in the Dom0 on each physical host. Each physical host was running one DomU domain. 

The first virtualized server hosted DomU Client, the second virtualized server hosted DomU 

Server, and the third virtualized server hosted DomU DB all running Windows XP. The payment 

card processing systems were installed in these three domains as outlined in Table 3.2 and were 

running simultaneously to mimic the real-world production environment with multiple services 

running on the communicating hosts. 

3.4.2.2 Experiments 

When conducting our experiment, we selected several items for purchase and submitted 

credit card information at checkout. Following the payment card processing requests, vCardTrek 

determined the set of machines exchanging packets, identified the processes involved in these 

communications, and inspected the processes’ memory for the card number used in the 

transaction, while allowing the applications to run throughout the analysis. The card data flow 

trajectories from the three VMs spread over three physical hosts were then concatenated to build 

the card data flow. The testing results are presented in Figure 3.10. 
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Figure 3.10 Card data flow across multiple VMs hosted on multiple physical hosts. 

 

3.5 Limitations 

The test environments used to date have been useful in demonstrating the vCardTrek 

effectiveness but they are rather simplistic and do not display many of the characteristics of 

large-scale deployments. Although we tested three different settings, they all involved just four 

processes distributed across three VMs interacting in almost identical fashion. Unlike the simple 

test scenarios described in this work where the number of factors influencing the correctness of 

the data flow reconstruction is minimal, the task of the card flow identification becomes 

increasingly more complex in real-world production setups. For instance, if two VMs 

communicate for reasons not related to payment data flow, such as periodic updates, heartbeats, 

replications, backups, other services running on the communicating hosts, and so on, then these 

connections may be mixed up with those for card data processing. These additional 

communications could significantly increase the workload of the card data flow tracking tool. 

Moreover, network delays may also critically affect the ability to track a card number within a 

process.  
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More complex environments may introduce a race condition that may affect the 

effectiveness of the system: the target process (which may be running on a different physical 

machine) may have completed its processing (all of it, or just the part that involves the card data 

in its unencrypted form) before vCardTrek on that physical machine manages to analyze the 

process' memory. Additionally, we have also assumed that the system is in a “quiescent” state 

where only one simulated transaction takes place at a time. This assumption is quite restricting 

from a practical point of view, given that in a production setting it would be quite difficult to 

ensure that there are no other ongoing transactions.  

Finally, it is possible that a card number can be handled by processes in an encrypted 

form and is never decrypted during its processing, as revealed by some of our experiments. This 

issue will affect the accuracy of the derived data flow diagram vCardTrek produces.  

3.6 Summary 

This study presented the vCardTrek tool that automatically tracked card data flow of 

payment card processing applications running in a virtualized environment and identified the 

system components involved in card data processing. The primary use of this tool is to ensure 

compliance with Payment Card Industry Data Security Standard (PCI DSS) that has been widely 

adopted by commercial and financial institutions. The key features of vCardTrek include: 1) the 

ability to discover the card data flow of a distributed payment card processing system; 2) 

independence of applications and platforms; and 3) the ability to deal with communication 

protocols that encrypt messages. We have demonstrated the vCardTrek effectiveness by testing it 

with three different commercial applications, and vCardTrek successfully identified the correct 

card data flow for each tested application. 
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4 Cloud-Based Application Whitelisting 

4.1 Introduction 

A cloud service that has proven commercially significant, especially in the private cloud 

space, is virtual desktop infrastructure (VDI), which gives each end user a dedicated virtual 

machine (VM) as her desktop computer and manages these VMs in a centralized manner. By 

virtue of the centralized management architecture, VDI makes more efficient use of the 

underlying computing resources and enforces high-level security policies on these desktop VMs 

consistently and persistently. 

As desktop computing is being virtualized, protection of desktop VMs also evolves from 

an agent-based approach, which installs the security agent inside every VM to be protected, to an 

agentless approach, which deploys the security agent on every physical machine on which the 

VMs to be protected run.  The agentless approach not only greatly simplifies security agent 

maintenance and upgrade, but also effectively shields the agents from being attacked if the VMs 

are compromised [4]. 

A standard way for an attacker to take control of a victim user machine is to (1) hijack an 

existing application running on the machine, and (2) then download and execute additional 

malicious helper programs to actually perform damaging acts, such as stealing information or 

mounting attacks against other machines. Attackers perform the hijacking step by taking 

advantage of vulnerabilities in applications, e.g., buffer or integer overflow. Many solutions [50-

52] have been proposed to deter such vulnerability-exploiting hijack attacks, but see limited 

commercial adoption. In contrast, mainstream anti-virus (AV) products are designed to stop the 
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“download and execute” step by creating a blacklist of known malicious programs and 

preventing an unknown program module from being loaded into an active address space if it 

matches any entry in the blacklist. This blacklisting approach is losing steam because new 

malware samples are programmatically generated from existing ones and as a result it is difficult 

if not impossible for AV companies to keep their blacklists up to date. Blacklisting is effective 

when there are fewer malicious programs than benign programs. Today, because the number of 

malicious programs is much larger than the number of benign programs, and the gap is widening, 

whitelisting, which prevents an unknown program module from being loaded into an active 

address space if it is not in a whitelist of known good programs, seems to be a more promising 

approach to keeping malicious helper programs out. In addition to defending against malware, an 

application whitelisting system could also be used to prevent illegal, pirate or personal software 

from running on corporate VMs assigned to employees. 

This study describes the design and implementation of a cloud-based application 

whitelisting system called CLAW, which checks an executable file or a library module against a 

whitelist before it is loaded into the address space of a user process, and aborts the program load 

operation if the executable file or library module is not in the whitelist. Moreover, CLAW runs 

outside the VM on which the user process runs, and performs this check without installing any 

agent inside the VM. We have successfully implemented a CLAW prototype on the Xen 

hypervisor and targeted it at Windows and Linux VMs. The run-time performance overhead of 

out-of-VM application whitelisting is shown to be under 10% in this prototype. 

4.2 Background 

The design goal of CLAW is to detect when an executable file or library module is to be 



 

77 

 

loaded into a user process in a VM and check if the executable file or library module is in a white 

list. To motivate the design of CLAW, we start with a description of how the Windows OS and 

Linux OS load code into a user process’s address space. We also describe Windows and Linux 

data structures that are relevant to the design and implementation of CLAW. It is mandatory to 

reconstruct these data structures in order to extract and analyze code regions in the process 

address space without having access to the APIs inside the VM. 

4.2.1 Code Regions 

Code regions in the address space of running processes are classified into the following 

three categories, summarized in Table 4.1, according to the type of sources used to populate 

them: 

Table 4.1 Code source types in memory. 

Source Code Introduced Using 

Binary File 
1) a benign on-disk binary 

2) a malicious on-disk binary 

Private  

Allocation 

1) native system calls 

2) system call hooking techniques to prevent binary registration 

3) remote thread injection 

Other 

1) hot-patching of the existing code 

2) function-pointer hooking 

3) modifying the return address on the stack 

 

We discuss the three code source types for both Windows and Linux OS in more details 

below. 
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4.2.1.1 Code in File-Backed Address Space Regions 

4.2.1.1.1 Windows OS 

The application is typically made up of a base executable that loads library components 

containing additional functionality. The executable and the library components are represented 

by on-disk files that are mapped into a process’s address space when the application is launched 

or during run-time. File-backed address space regions contain data from on-disk files. Windows 

OS differentiates between files that are mapped as data, and files that are mapped as executable 

images. The code that loads a file into memory has to specify whether the file is loaded as a data 

file or an image file. Data files have arbitrary content and structure and are simply mapped one to 

one to their address space regions. Image files, on the other hand, must be stored in the portable 

executable (PE) format and may contain data as well as executable code. A PE file contains 

several sections each with its own read/write permission characteristics. Data sections may be 

read-only or writable. Code sections in general are executable and read-only. Image files can be 

mapped as data files. However, if a data file is not stored in the PE format, the system loader will 

refuse to load it as an image. When a new process is started or a library component is loaded, the 

NtMapViewOfSection native system call is used to map a code section into a process’s address 

space in memory. The description of the NtMapViewOfSection system call and its parameters is 

given in Table 4.2. 

4.2.1.1.2 Linux OS 

The binary loader maps the executable file along with the loadable segments of any 

required libraries into memory using the mmap system call. The mmap system call exposes an 

interface that allows for associating a memory range with a file descriptor. The description of the 

mmap system call and its parameters is given in Table 4.3. 
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Table 4.2 Windows system calls. 

System Call Parameters and their description 

NtMapViewOfSection 

(IN SectionHandle, IN ProcessHandle, IN OUT BaseAddress, IN ZeroBits, 
CommitSize, IN OUT  SectionOffset, IN OUT PULONG ViewSize, IN 
InheritDeposition, IN AllocationType, IN Protect) 

SectionHandle – a handle to Section object, successfully created by a call to 
NtCreateSection or NtOpenSection 

ProcessHandle – a handle to the process that the view should be mapped into 

BaseAddress – a pointer to the variable receiving virtual address of mapped 
memory 

Protect – specifies the type of protection for the region, such as 
PAGE_EXECUTE_READWRITE 

NtProtectVirtualMemory 

(IN ProcessHandle, IN BaseAddress, IN NumberOfBytesToProtect, IN 
NewAccessProtection, OUT OldAccessProtection) 

ProcessHandle – a handle to the process that the protection should be set for 

BaseAddress – a pointer to base address to protect 

NumberOfBytesToProtect – a pointer to size of region to protect 

NewAccessProtection – specifies the type of protection for the region, such 
as PAGE_EXECUTE_READWRITE 

NtAllocateVirtualMemory 

(IN ProcessHandle, IN OUT BaseAddress, IN ZeroBits, IN OUT 
RegionSize, IN AllocationType, IN Protect) 

ProcessHandle – a handle to the process to allocate memory in 

BaseAddress – a pointer to a variable that will receive the base address of 
the allocated region of pages.  

RegionSize – a pointer to a variable that will receive the actual size of the 
allocated region of pages 

Protect - specifies the type of protection for the region, such as 
PAGE_EXECUTE_READWRITEs 
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Table 4.3 Linux system calls. 

System Call Parameters and their description 

mmap (void *start, size_t length, int prot, int flags, int fd , off_t offset) 

mmap function asks the system to map length bytes starting at offset from the file 
specified by the file descriptor fd into memory, preferably at address start. If start 
is 0, mmap returns the actual place where the object is mapped. prot describes the 
desired memory protection and can be a bitwise-or of the values PROT_NONE  / 
PROT_READ / PROT_WRITE / PROT_EXEC  

mprotect (const void *addr , size_t len, int prot) 

mprotect changes protection for the calling process's memory page(s) containing 
any part of the address range in the interval [addr, addr+len-1]. prot describes the 
desired memory protection and can be a bitwise-or of the values PROT_NONE  / 
PROT_READ / PROT_WRITE / PROT_EXEC 

 

4.2.1.2 Code in Private Address Space Regions 

4.2.1.2.1 Windows OS 

Private address space regions are created through dynamic memory allocation calls and 

contain volatile data, which only exist when the hosting process is alive. Two types of code exist 

in private address space regions: dynamically generated code and injected code. Dynamically 

generated code is created by the process itself at run time while injected code is forcibly loaded 

into a process’ address space by another process. Examples of applications that may generate 

dynamic code include just-in-time (JIT) compilers, interpreters, and executable unpackers.  

To create code in private address space regions, Windows applications first allocate new 

address space regions by calling the NtAllocateVirtualMemory system call with proper 

read/write/execute permission setting, and later follow by writing code into the allocated regions. 

Setting these regions to be writable is necessary because the code may modify itself as it is being 

executed.  In addition, applications could use the NtProtectVirtualMemory system call to modify 



 

81 

 

the permissions of private address space regions later on. The usage of these two system calls is 

given in Table 4.2.  

While dynamic code generation sees a great deal of legitimate usage, code injection is 

almost exclusively used by malicious programs. A common code injection attack is to inject a 

user space rootkit code into the address space of a system daemon process. There are three 

common code injection attacks:  

1) Hooking the Native Loader: Assume a user space shell code is placed on a victim 

host via an initial exploitation. The shell code then hooks the file loading system call 

to trick the dynamic loader into loading a malicious binary in memory rather than 

from an intended file on disk [53]. Because the malicious binary is registered with the 

victim process, a query for modules loaded into the victim process allows for 

detection of the injected code. 

2) Reflective Library Injection: The code loaded through a remote exploitation contains 

a minimal PE loader that can load additional code without relying on the native loader 

[54]. Because the native loader is not involved, the loaded code is largely 

undetectable to the operating system and the hosting process. The only indicator that 

the loaded code exists is a chunk of private address space region is allocated with 

read/write/execute permissions. 

3)  Remote Thread Creation: The Windows API CreateRemoteThread allows a process 

to start a thread in another process. Common use cases of this system call include 

injecting a thread into a remote process being debugged to issue a breakpoint or 

injecting a thread into a process to query heap or other process information. Using 
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this API, a malicious process starts a new thread in a victim process by passing it the 

address of a piece of code already injected into the victim process. 

4.2.1.2.2 Linux OS 

To create code in private address space regions, Linux applications first allocate new 

address space regions by calling the mmap system call with read, write, and execute memory 

protection flags and the anonymous flag not tired to a file descriptor, and later follow by writing 

code into the allocated regions. In addition, applications could use the mprotect system call to 

modify the permissions of private address space regions later on. The usage of these two system 

calls is given in Table 4.3. 

4.2.1.3 Other 

Code may also be introduced via run-time overflow attacks that alter the execution path 

through hot-patching of existing code or control-sensitive data structures, e.g., changing a return 

address or a function pointer by overflowing a buffer. CLAW does not provide protection against 

attacks using these types of code. 

4.2.2 Relevant Kernel Data Structures 

4.2.2.1 Windows OS 

EPROCESS: The kernel creates an EPROCESS data structure for each running process 

to hold a variety of information about the process. EPROCESS structures for all active processes 

are linked in a doubly linked list (Figure 4.1). The PsActiveProcessHead kernel symbol points to 

the doubly-linked list of EPROCESS structures. The PsActiveProcessHead pointer includes two 

pointers, a forward (Flink) pointer and a backward (Blink) pointer. The Flink pointer points to 
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the active process links of the first EPROCESS. The Blink pointer points to the active process 

links of the last EPROCESS structure in the active process list. 

 

Figure 4.1 Windows code and memory management data structures. 

 

PEB: The process environment block (PEB) component in a process’s EPROCESS data 

structure contains a pointer to the virtual address of the memory-mapped PE image of the 

program loaded into the process, and a pointer to the virtual address location of the 

PEB_LDR_DATA object that maintains information about all DLLs loaded into the process 

(Figure 4.2) [55]. PEB is actually stored in a process’s user address space rather than in the 

kernel because it needs to be modified in user space. PEB_LDR_DATA contains pointers to 

doubly-linked lists of loaded modules that are sorted in load order (InLoadOrderLinks), in 
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memory order (InMemoryOrderLinks), and in initialization order (InInitializationOrderLinks). 

PEB_LDR_DATA is modified as modules are loaded or unloaded. Each loaded module is 

represented as a LDR_DATA_TABLE_ENTRY structure, which is an element of a doubly-

linked list of loaded modules, and contains details about the module name, base address and size. 

 

Figure 4.2 The PEB data structure. 

 

VAD: For each block of consecutive memory addresses that share the same memory-

related settings, Windows maintains a virtual address descriptor (VAD) entry storing the 

following information: start and end addresses, protection settings (read-only, writable, 

executable), data source type (file-backed memory or private address space), information about 

the associated file (if file-backed memory). All entries for a process are aggregated in a VAD 

tree (VadRoot) (Figure 4.1). 



 

85 

 

CONTROL_AREA : A VAD object points to a CONTROL_AREA object that stores 

detailed information about different subsections of a file. 

SUBSECTION: For each mapped file, there are one or more SUBSECTION objects 

which store important mapping data. For data files, there is normally only one subsection, since 

the complete address range has the same characteristics, but for image files, multiple subsections 

may exist: one for each PE section plus one for the PE header. This is due to different 

characteristics of PE sections, e.g. some may be read-only while others are writable or 

executable. Each subsection contains a pointer to the next subsection. 

FILE : FILE object is used by Windows to track a single open instance of a file. The file 

object contains a pointer to the Unicode name of the file. Another most important pointer is the 

SECTION_OBJECT_POINTERS field described next. 

SECTION_OBJECT_POINTERS: Due to the different mapping and usage 

characteristics of data files and image files, different control areas are used. If, for example, a file 

is first mapped as a data file, a corresponding data section control area is created. If then the 

same file is mapped as an image, an image section control area is created as well. Both objects 

are of the same type except that for data files normally only one subsection is created, while for 

image files the number of subsections equals the number of PE sections in the related file plus 

one for the PE header. In fact, Windows internally maps each executable, which is about to be 

loaded first as a data file and then in a second step as an image. This results in the creation of two 

different control areas, from which either is used depending on the type of the created view. To 

maintain these different control areas per file, in the file object Windows stores one unique array 

for each opened file that contains pointers to the related data and image control areas. Either of 
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these two pointers may be zero, but not both of them. This array is called 

SECTION_OBJECT_POINTERS and is pointed to by each file object. The 

SECTION_OBJECT_POINTERS structure contains three pointers as seen in Figure 4.2. The 

first is called the DataSectionObject, the next is called the SharedCacheMap, and the final 

pointer is called the ImageSectionObject. DataSectionObject and ImageSectionObject are related 

and are actually pointers to the data and image control areas correspondingly. The 

SharedCacheMap is a pointer to the SHARED_CACHE_MAP structure, which is used by the 

operating system to maintain the cache. 

4.2.2.2 Linux OS 

TASK_STRUCT: The kernel creates a task_struct for every process running on a Linux 

system. The task_struct structure holds information about the current state of the process (Figure 

4.3). task_struct structures for all active processes are linked in a doubly linked circular list. The 

global variable init_task is of type task_struct and represents the head to the doubly-linked list of 

task_struct structures. The init_task includes forward and backward pointers. The forward 

pointer points to the active process links of the first task_struct. The backward pointer points to 

the active process links of the last task_struct structure in the active process list. 

VM_AREA_STRUCT : The vm_area_struct descriptor (similar to VAD in Windows 

OS) represents a memory region owned by the process and contains the start and the end 

addresses of the region. All vm_area_struct structures are linked together in an address-ordered 

singly linked list. Each vm_area_struct points to the associated mm_struct structure (similar to 

VadRoot in Windows OS) that describes a process’ address space. There is only one mm_struct 

per process shared by all user-space threads. The vm_file field of each memory region descriptor 
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contains the address of a file object for the mapped file; if that field is null, the memory region is 

not associated with a file. 

 

Figure 4.3 Linux code and memory management data structures. 

 

FILE : The file object contains fields that allow the kernel to identify both the process 

that owns the memory mapping and the file being mapped. The file structure includes a pointer 

to the dentry data structure.  

DENTRY : Dentry structures are created by the virtual file system to represent a directory 
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entry (directory or file). The dentry structure contains the name of the directory entry and a 

pointer to the inode structure. 

INODE : The mapped file is identified by the inode data structure, which is an in-memory 

representation of a disk inode. The i_mapping field of each inode object points to the 

address_space object of the file.  

ADDRESS_SPACE: The address_space structure represents the virtual memory image 

of the file and holds the search tree of pages for a file. The address_space structure allows for 

ordered enumeration of all physical pages pertaining to an inode. In turn, the i_mmap field of 

each address_space object point to a vm_area_struct data structure. While a single file may be 

represented by multiple vm_area_struct structures corresponding to the file portions mapped by 

multiple processes into their address space, there is only one address_space structure for the file 

no matter how many processes have mapped a particular file. 

4.2.2.3 System Call Table Structures 

The function pointers (addresses) of individual system calls exported by the kernel are 

stored in the system call table (Figure 4.4). In Windows OS, the system call table is represented 

by the system service dispatch table (SSDT) data structure. In Linux OS, the system call table is 

represented by the sys_call_table data structure. When an application makes a system call, it 

places the associated system call number in the EAX register, which is used as an index into the 

system call table. Each system call pointer in the table is four byte long. Thus, to get a system 

call offset into the system call table, the system call number in the EAX register is multiplied by 

4. The address stored at the calculated offset points to the actual system call function in the 

kernel address space in memory. 
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Figure 4.4 System call dispatching. 

 

4.2.3 System Call Interception in Xen Hypervisor 

User applications invoke system call requests by either executing software interrupts (INT 

0x2E in Windows OS and INT 0x80 in Linux OS) or by the fast system call entry mechanism 

using the Intel SYSENTER/SYSEXIT or AMD SYSCALL/SYSRET instruction pairs. The fast 

system call entry mechanism was introduced due to performance issues on Pentium processors 

with the software interrupt method. All Windows versions starting with XP and Linux kernels 

starting with 2.6 use the fast system call entry method.  

On a Xen para-virtualized platform, capturing system calls and their arguments is 

straightforward. Each trap from a DomU transfers control to the hypervisor, which forwards the 

trap to the Dom0 domain. However, the situation is more complex on an HVM platform. On 

such a platform, traps are directly forwarded to the kernel of the HVM by the hardware without 
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the involvement of the hypervisor. Fortunately, it is still possible to capture system calls on the 

HVM platform, although differently on AMD and Intel hardware. When an application needs to 

execute a system call, it normally specifies the requested system call number in the EAX register 

and a pointer to the user stack in the EDX register and then issues the SYSENTER instruction.  

The SYSENTER instruction passes control to the address specified in the model specific register 

(MSR) containing the entry point of the system call handler. Execution of this instruction results 

in transition into kernel mode. Once in kernel mode, the system call number is read from the 

EAX register and is looked up in the system call table. On the Intel platform, interception of 

system calls can be achieved by guaranteeing that the MSR points to an unmapped memory 

address, causing a trap to the hypervisor by a page fault. Conversely, AMD supports control 

flags that can be set to trigger transfers to the hypervisor on system calls. The hypervisor then 

forwards the relevant information, such as the values of the registers containing the system call 

number and parameters, to the Dom0 domain for system call processing. While these methods of 

interception are certainly effective, they introduce performance overhead because they require 

that every system call trigger an exit to the hypervisor. 

4.3 Related Work 

4.3.1 Code Verification Systems 

Several studies have explored the problem of code verification in memory of running 

processes using the out-of-VM approach (Table 4.4). These can be roughly divided into (1) 

periodic code verification methods that periodically check the static code portions of the running 

program to detect if the program has been tampered with; (2) continuous run-time code integrity 

verification methods to detect code tampering attempts; (3) on-demand code verification 
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methods to ensure only approved code is allowed to be loaded by a program into the process’ 

address space at load-time. All these methods work by calculating hashes of sections of memory, 

such as kernel text or user program memory during a known good state that are then used as a 

comparison baseline at the time of code verification.  

Table 4.4 Code verification systems. 

System 
Name 

User Space (U) / Kernel Space 
(K) Monitoring 

Code Verification Type Virtualization Type 

CLAW U On-demand Full virtualization 

Livewire U Periodic Software-based (Type 2) 

Copilot K Periodic Coprocessor-based 

SBCF K Periodic Full virtualization 

NICKLE K Continuous run-time Emulator, Software-based 
(Type 2) 

Secvisor K Continuous run-time Custom-made hypervisor 

Manitou U/K Continuous run-time Full virtualization 

Patagonix U/K Continuous run-time Full virtualization 

HIMA U On-demand Para-virtualization 

X-Spy K On-demand Para-virtualization 

 

4.3.1.1 Periodic Code Verification 

The Livewire intrusion detection system used an integrity checker to detect if a running 

user-level program had been tampered with by periodically computing a hash of the immutable 

sections (.text) of a running program, and comparing it to a known good hash [4]. 

The Copilot integrity monitor implemented a detection strategy based on MD5 hashes of 

the host kernel’s text, the text of any loaded kernel modules, and the contents of some of the host 
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kernel’s critical data structures [16]. Copilot calculated “known good” hashes for these items 

when they were believed to be in a correct, non compromised state. The Copilot monitor then 

periodically recalculated these hashes throughout host kernel run-time and watched for results 

that differed from the known good values to detect cases where a rootkit had modified some of 

the kernel’s existing executable instructions. 

Similarly to the Copilot approach, state-based control flow integrity (SBCFI) monitor 

kept a copy of the kernel code’s hash, and at each control flow integrity check, it made sure the 

kernel’s code had not been modified by comparing it against the “known good” hashes [56]. 

The periodic nature of this group of methods introduces the possibility of evasion. An 

attacker can modify the code and revert back to the original code between two consecutive 

checks without the security monitor detecting the code tampering. 

4.3.1.2 Continuous Run-Time Code Verification 

A hypervisor-based NICKLE was developed to transparently prevent unauthorized kernel 

code execution [57]. NICKLE computed a priori off-line cryptographic hash of the kernel’s code 

and on each VM startup performed the authentication of the loaded kernel code by comparing it 

with the known correct value. The authenticated kernel code was copied into a shadow physical 

memory of the target VM that was not accessible from within the VM. If the hash values did not 

match, the kernel module’s code was not copied into the shadow memory. At run-time each 

kernel instruction fetch was verified by comparing the shadow memory maintained by the 

hypervisor with the actual physical memory at that location. Any differences indicated the 

presence of a rootkit, and thus the code was prevented from executing on the guest system. Linux 

kernel modules (LKMs) also required authentication before their insertion since NICKLE could 
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not distinguish between a valid and a malicious kernel module. A disadvantage of this kind of 

authentication scheme was that it needed to be manually performed every time a module was 

inserted into the kernel, and in-depth analysis was necessary to ensure that the LKM did not 

invalidate the kernel. 

A small hypervisor system SecVisor was proposed to enforce the write+execute property 

of memory pages of the VM with the goal of preventing unauthorized code from running with 

kernel-level privileges [58]. The write+execute property stated that the pages of kernel memory 

could be either writable or executable, but never both. SecVisor used a white-list based approval 

policy containing “known good” SHA-1 hashes of all kernel runtime code to allow loading of 

kernel code at runtime. All code that was attempted to be loaded into kernel memory from the 

time the kernel was started was checked against the whitelist approval policy. SecVisor required 

modifications of the kernel code and thus did not support closed-source OSes. Moreover, 

SecVisor was not able to function if the OS kernel had mixed pages that contained both code and 

data. 

Litty and Lie proposed a hypervisor-based system, called Manitou, for validating the 

executing code of both user applications and the kernel within a guest VM [7]. The hypervisor 

maintained a list of cryptographic hashes of the in-memory representations of application and 

kernel-level code pages that might be run within the VM. Manitou authenticated executing code 

by taking a cryptographic hash of the content of a page right before executing code contained on 

that page. Only pages that matched those in the trusted list were allowed to execute.  

A hypervisor-based Patagonix system based on Manitou was designed to detect rootkits 

that avoided tampering with files on disk by injecting malicious code into binaries as they ran. 
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Patagonix identified covertly executing binaries by inspecting the code as it executed in memory 

and verifying the integrity of the executing binaries [10]. The executing code was identified 

using a trusted external database that contained cryptographic hashes of binaries. Patagonix 

compared the executing binaries reported by the OS with the good known binaries it identified 

and reported any discrepancies to the administrator. Patagonix did not handle the on-demand 

loading of running programs to measure them in their entirety. 

As the continuous run-time code verification methods employ the VM executable 

memory protection, this approach may lead to spurious page faults impacting the performance of 

the system. 

4.3.1.3 On-Demand Code Verification 

The goal of CLAW is to track on-demand code loading events and to perform verification 

of the loaded code prior to its first execution. This objective is related to the group of methods 

that focus on providing code integrity measurements by actively monitoring system events. 

A hypervisor-based HIMA was developed to measure the integrity of VMs running on 

top of the hypervisor by measuring user-level programs to be loaded into the guest VM and 

validating the integrity of the measured programs throughout the program execution [59]. HIMA 

monitored all the system calls that changed the VM’s program memory layout, including loading 

and removing kernel modules, creation and termination of user processes, and loading and 

unloading of libraries. On intercepting the appropriate event, HIMA computed the SHA1 hash of 

the program code and initial data segment as they got loaded into the memory. HIMA completed 

all its measurements before the control jumped to the loaded program to guarantee that no 

instruction ran inside the system before being measured. After measuring the program, HIMA 
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added a new entry to the measurement list, and ensured consistency of the integrity measurement 

of user programs by capturing any attempt to modify measured programs throughout their 

execution. HIMA measured para-virtualized Linux systems only. 

A hypervisor-based X-Spy system was implemented as an intrusion detection and 

protection framework [60]. One of the X-Spy’s functions was to monitor system calls within a 

Linux OS for the purpose of protecting the integrity of the kernel. System calls were traced using 

the INT 0x80 instruction interception. X-Spy used a whitelisting technique by which all kernel 

modules allowed to be loaded were explicitly specified along with their respective SHA-1 hash 

values. If the module or binary to be loaded at run-time was not specified in the whitelist or if it 

had an incorrect hash value, X-Spy prevented it from being loaded by preventing the system call 

from reaching the VM kernel space. The memory scanning technique was used to computer the 

hash of the binary that involved loading the complete .text and .data sections of a binary into 

memory by setting the program counter to the next page and asking the VM kernel to load the 

page, and then hashing it while handling the page fault. If the hash could not be verified, the 

hypervisor invalidated all of the memory and returned the control back to the guest domain. 

Because of the invalid .text section to which the VM pointed, the process crashed. 

The scope of the above tools was limited to para-virtualized VMs only whereas the 

CLAW was specifically designed for fully-virtualized VMs. 

4.3.2 System Call Interception Systems 

A number of systems have been developed for detection of malicious processes by 

analyzing system calls (Table 4.5). We cover the related work including hardware emulators, 

para-virtualized systems, and fully virtualized systems. 
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Table 4.5 Comparison of system call monitoring systems. 

System Name Virtualization Type System Call Interception Mechanism 

CLAW full virtualization System call table + MSR invalidation 

Ether full virtualization MSR invalidation 

VMScope emulator Instruction tracking 

TTAnalyze emulator Instruction tracking 

XView emulator Instruction tracking 

Onoue et al. [61] para-virtualization Guest OS binary code patching & Native 
system call trapping chain 

Xenini para-virtualization Native system call trapping chain 

HIMA para-virtualization Native system call trapping chain 

X-Spy para-virtualization Native system call trapping chain 

 

4.3.2.1 Hardware Emulators 

Out-of-VM system call tracing has been employed in emulator-based environments for 

malware analysis to identify malware startup mechanisms, command and control channels, and 

access to sensitive information. Examples of such systems include VMScope [62], TTAnalyze 

[63], and XView [64], which are based on dynamic binary translation technique of QEMU [41].  

TTAnalyze automated the process of analyzing a malware process where the malware 

under analysis was executed inside an emulator environment, and relevant Windows API and 

native system calls were tracked and logged. The instruction pointer value of the virtual 

processor was compared to the start addresses of all operating system functions to determine the 

exact system function invoked by the malware process. TTAnalyze monitored the CR3 register 

value to determine whether or not the system call invoked by current instruction belonged to the 

malware process.  
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An emulator based system VMScope allowed viewing of the system call events of a VM-

based honeypot by intercepting and interpreting the parameters and return values of various 

internal system calls invoked inside the VM.  

XView used a dynamic cross-view based approach to detect processes hidden by rootkits. 

In order to identify a rootkit process, XView dynamically maintained a list of active processes 

built outside the monitored VM and comparing it with the list reported by the guest system. The 

outside view containing active processes was constructed by intercepting low-level system calls 

used to create and terminate processes and interpreting system call arguments and the return 

values of these system calls. 

4.3.2.2 Para-Virtualized Systems 

The code verification systems, HIMA and X-Spy, described earlier also made use of 

system call monitoring to detect code loading events. 

Onoue et al. [61] proposed a security system that controlled the system call execution of 

processes using the para-virtualization version of Xen to intercept events related to system calls. 

The hypervisor intercepted system calls invoked by processes in the monitored VM and 

restricted their execution based on the security policy defined by a user. When a system call 

invoked by a process matched with an allow-rule in the security policy, it was allowed to 

execute. Otherwise, a system call violating the security policy was forced to fail.  

Xenini was developed as a system for detecting intrusions in the para-virtualized XEN 

hypervisor by intercepting and analyzing system call traces [65]. Xenini disabled the fast system 

calls facility and used the 0x80 software interrupt to intercept system calls.  
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4.3.2.3 Fully Virtualized Systems 

The Ether analyzer was developed for malware analysis on fully virtualized hardware 

platforms utilizing hardware virtualization extensions [66]. Ether was able to trace all system call 

executed by the target OS by exploiting the x86 fast system call entry mechanism. The 

performance evaluation of the system showed that tracing added extra latency to system calls, 

however, the majority of this latency was due to notifications of the Ether user space component 

and a full in-hypervisor implementation would have had much lower latencies. 

4.4 System Architecture 

4.4.1 Overview 

CLAW assumes that the administrator has determined a set of approved permitted 

executable files and library modules and then prepared a whitelist that consists of the SHA-1 

cryptographic hash values of these executable files and library modules (Step 1 of Figure 4.5). At 

run time, CLAW intercepts every program load operation in the VMs that it protects, applies the 

SHA-1 function to the executable file or library module being loaded, and uses the resulting 

SHA-1 value to look up the whitelist. Creation and maintenance of a whitelist according to its 

list of allowed programs is actually non-trivial, especially in the face of constant software 

patches and upgrades, and growing sophistication of software installation. But this issue is 

outside the scope of this study. 

The design of CLAW should attain the following functionalities outside the monitored 

VMs:  

1) Detecting new loaded programs in monitored VMs before they are executed in 
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monitored VMs,  

2) Checking the hash values of loaded programs against the whitelist, and  

3) Aborting the processes holding loaded programs if the whitelisting checks do not 

go through. 

The Issue 1 could be addressed by intercepting system calls associated with specific 

program loading operations. However, because the performance overhead of system call 

interception may be substantial, monitoring kernel or processor data structures as a result of 

program loading operations may be more efficient. 

 

Figure 4.5 The CLAW architecture. 
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For Issue 2, CLAW computes a loaded program’s hash value by applying the SHA-1 

hash function to the in-memory PE/ELF image rather than the on-disk PE/ELF file of the loaded 

program. It would have been very difficult to access the on-disk files of loaded programs without 

installing any agent in the monitored VMs.   

For Issue 3, to simplify the interaction between CLAW and the monitored VMs, CLAW 

aborts a process holding an illegitimate loaded program by zeroing out the address space region 

holding the loaded program. This approach is simple and effective, and does not require any 

cooperation from monitored VMs.  

As shown in Figure 4.5, CLAW is composed of a front-end component running in a 

monitoring VM and a back-end component running inside the hypervisor. The back-end 

component of CLAW suspends a monitored VM when detecting a new loaded program in a user 

process running in the VM. After suspending a VM, the back-end component notifies the front-

end component to extract the detected loaded program and verify if the associated hash value is 

in the whitelist. CLAW’s front-end component is able to access the address space of each 

monitored VM and make sense of the kernel data structures of monitored VMs using the real-

time kernel data structure monitoring system. This architecture enables active monitoring of the 

protected VMs without requiring installation of any agents inside them. 

The current CLAW implementation is built on the Intel VT hardware and the Xen 

hypervisor and is designed to support guest VMs running both Linux Ubuntu Jaunty and 

Windows XP.  
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4.4.2 Design and Implementation  

4.4.2.1 Verification of Code in File-Backed Space 

4.4.2.1.1 Creation of a New Process 

CLAW continuously watches for newly created processes in each monitored VM so that 

it can verify the executable files being loaded before they are executed. To intercept process 

creation operations in Windows OS, CLAW keeps track of the Flink and Blink pointers in the 

structure pointed to by PsActiveProcessHead. If CLAW observes a write to either Blink or Flink 

on the page containing this structure (Step 2a of Figure 4.5), it traverse the processes lists to 

determine if a new EPROCESS structure has been created or if an existing process has been 

terminated. The process creation steps in Windows OS, as shown in Figure 4.6, up to the image 

mapping into the process’ address space have already been done. As soon as the back-end 

component of CLAW detects a new process in a VM, it suspends the VM, and notifies CLAW’s 

front-end component to take over. The front-end component uses the process’s EPROCESS data 

structure to track down the new process’s PEB data structure, and eventually the address space 

region mapping of the PE file used in the newly created process (Step 3 of Figure 4.5). 

 

Figure 4.6 Windows OS process creation flow. 
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To intercept process creation operations in Linux OS, CLAW keeps track of the forward 

and backward pointers in the init_task structure. If CLAW observes a write to the forward or the 

backward pointer on the page containing the init_task structure, it traverse the processes list to 

determine if a new task_struct structure has been created or if an existing process has been 

terminated. As soon as the back-end component of CLAW detects a new process in a VM, it 

suspends the VM, and notifies CLAW’s front-end component to take over. The front-end 

component uses the process’s task_struct to track down the start and end addresses of the .text 

section of the ELF file used in the newly created process. 

The front-end component verifies the legitimacy of the binary file by applying the SHA-1 

hash function to the file’s .text immutable code section and comparing the resulting hash value 

against all cryptographic hash values in the whitelist (Step 4 of Figure 4.5).  If there is a match, 

CLAW allows the new process to run as usual by returning control to the monitored VM. If no 

match is found, the front-end component of CLAW zeros out the address space region holding 

the executable file and effectively prevents the process from continuing. 

4.4.2.1.2 Loading of a Library Into an Existing Process 

To detect new library modules loaded into an existing process in a Windows VM, the 

back-end component of CLAW monitors writes to the pages that contain the backward (Blink) 

pointer to the InLoadOrderLinks module list of all user processes in that VM. When CLAW’s 

front-end component detects a write to the Blink (Step 2b of Figure 4.5) field on any of these 

pages, CLAW’s back-end component analyzes the last LDR_DATA_TABLE_ENTRY member 

appended to the corresponding list to verify the newly loaded module (Step 3 of Figure 4.5). 

More concretely, using the DllBase field, CLAW locates the in-memory PE image of the library 

module, computes a SHA-1 hash value for the PE image’s .text section, and checks the resulting 
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hash value against the whitelist (Step 4 of Figure 4.5). If no match is found, CLAW’s front-end 

component zeros out the address space region for the library module and returns control to the 

VM. This design works for program loading operations for library modules that are either on-

disk or in-memory, and therefore covers the type of code injection attacks that eventually use the 

native loader. 

To detect new library modules loaded into an existing process in a Linux VM, the back-

end component of CLAW intercepts the mmap system call. This call is used (1) in creating and 

associating a memory range with contents of a library component and (2) for creating memory 

ranges not tired to file descriptors such as those used in code injection attacks. We apply the 

system call interception mechanism described in the next section to verify both file-backed 

address space mappings and private address space regions. 

4.4.2.2 Verification of Code in Private Space 

In Windows OS, code in private address space regions is created by a 

NtAllocateVirtualMemory system call possibly followed by a NtProtectVirtualMemory system 

call. In Linux OS, code in private space regions is created by a mmap system call possibly 

followed by a mprotect system call. CLAW’s back-end component supports a system call 

interception mechanism that captures these two system calls, and notifies the front-end 

component to analyze the captured system call’s target address space. If the write and execute 

permissions of the target address space region are turned on, CLAW’s front-end component sets 

the target address space region as non-executable, so that when the target address space region is 

first executed later on, a page fault occurs. At that instant, CLAW’s front-end component 

computes a SHA-1 hash value of the target address space region and looks up the whitelist with 
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the resulting hash value. The above design works effectively against all code injection attacks 

described in the Background section. Unfortunately, it also tends to fail dynamically generated 

code, i.e., those produced by JIT compilers, interpreters and executable unpackers, because it is 

unlikely for the whitelist to include dynamically generated code. To address this false positive 

problem, CLAW offers the option to disable whitelisting checks for processes that run JIT 

compilers, interpreters and executable unpackers. 

CLAW’s system call interception mechanism works as follows:  

1) System Call Table Extraction: In Windows OS, every executing thread stores a pointer to 

the SSDT at a known offset inside its ETHREAD data structure. CLAW locates the 

SSDT data structure in memory through the ETHREAD of the executing threads. In 

Linux OS kernel versions 2.6 and above, the System.map file holds the kernel address for 

the system_call_table array. The CLAW system uses this file to locate the sys_call_table 

data structure in memory. 

2) System Call Capturing: CLAW turns off the present (P) bit on the memory pages pointed 

to by the system call table entries associated with the system calls that are to be 

intercepted, for example, NtAllocateVirtualMemory / NtProtectVirtualMemory and 

mmap/mprotect (Figure 4.7). Turning off the present bit of a page containing system call 

routines causes a page fault whenever the monitored VM invokes a systems call in that 

page and transfers control to the hypervisor (Step 2c of Figure 4.5). CLAW’s back-end 

component then turns on the present bit of the page causing the page fault, and turns off 

the present bit of the page containing the return address of the invoked system call, and 

resumes the system call.  When the invoked system call returns, another page fault occurs 
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because the present bit on the return address-containing page is off. At this point, 

CLAW’s front-end component is notified to analyze the system call’s input and output 

arguments (Step 3 of Figure 4.5).  

After the analysis of the arguments is complete, CLAW’s back-end component turns on 

the present bit of the page causing the page fault, and continues the system call’s return to 

user mode.  

 

Figure 4.7 The CLAW system call interception steps – we enable/disable the present bit on 
system call entry/return. 

 

3) Handling of Concurrent Identical System Calls: Modifying the permission of a kernel 

space page affects all user processes running on top of the kernel because the kernel 

address space is shared by all processes. Therefore, when the present bit of a page 

containing system call routines is turned on because one of the system calls in it is 

invoked, it is not possible to intercept other system calls in the same page. To solve this 

problem, we modify the SYSENTER_EIP_MSR register to point to an invalid page 

whenever there is at least one system call in execution (Figure 4.8). With this mechanism, 

system call interception works correctly even when some system calls are being 

executed, because every SYSENTER system call will trigger a page fault due to the 

setting of the SYSENTER_EIP_MSR register.  
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Figure 4.8 Combination of the CLAW and the MSR-register based system call interception. 

 

In summary, CLAW features two system call interception mechanisms. When no system 

call is in execution, it uses a fine-grained interception mechanism that traps only for pages 

containing system calls that are to be intercepted. However, as soon as one or more system calls 

are invoked and being executed, it switches to a coarse-grained interception mechanism that 

stops all system calls. Note that as soon as the coarse-grained interception mechanism is enabled, 

the fine-grained one is disabled.  

Because a page could contain multiple system call routines, when system calls that co-

reside with a system call to be intercepted are called, they also trigger a page fault. When such 

page faults arise, CLAW simply ignores them and moves on. 

4.4.3 Key Data Structures Monitored by CLAW 

Table 4.6 provides the summary of the key data structures actively monitored by CLAW. 
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Table 4.6 Summary of the data structures monitored by CLAW. 

OS  Data Structures (Fields)  Actions Taken 

Windows  

PsActiveProcessHead (Flink,Blink) On write, traverse the processes lists to 
determine if a new EPROCESS 
structure has been created or if an 
existing process has been terminated. 

_PEB_LDR_DATA 
(InLoadOrderModuleList) 

On write, analyze the last 
_LDR_DATA_TABLE_ENTRY 
member appended to the list to verify 
the newly loaded module. 

Linux  

init_task (next, prev) On write, traverse the processes lists to 
determine if a new task_struct structure 
has been created or if an existing 
process has been terminated. 

 

4.5 Evaluation 

In this section, we describe the experiments conducted to evaluate the effectiveness and 

performance impact of the CLAW system. 

4.5.1 Experimental Setup 

The test machine consisted of a virtualized server that used Xen version 3.3 as the 

hypervisor and Ubuntu 9.04 (Linux kernel 2.6.26) as the Dom0 kernel. The host system used a 

Duo CPU P8600 processor containing two CPU cores at 2.4GHz and 2GB of system memory. 

The CLAW prototype was installed in the Dom0 domain. In addition, the virtualized server 

hosted a DomU domain running a default installation of Windows XP and configured with 

512MB RAM. 
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4.5.2 Experiments 

4.5.2.1 Effectiveness 

After initializing the CLAW prototype, we ran the Internet Explorer application as the 

benign sample. CLAW was successful in identifying Internet Explorer as a trusted application, 

which was allowed to execute.  

In the next test, we used the Metasploit Framework to exploit a buffer overflow in the 

Microsoft Server Service (MS08-067) [67, 68]. We then ran a payload introduced via the buffer 

overflow vulnerability that injected malicious code into the running Internet Explorer process via 

a remote thread injection attack. Execution of the injected code was prevented. Next, we 

configured the Metasploit framework to use a reflective library injection payload that allowed 

the library to load itself into the target address space without using the native loader (e.g., the 

library did not appear in the list of loaded modules in the PEB). When we executed the exploit, 

CLAW detected a call to allocate a private virtual memory in the process with the write/execute 

permissions and blocked execution of the injected code because it was not in the whitelist.  

4.5.2.2 Performance 

VM performance is impacted by the following CLAW monitoring components: (1) data 

structure monitoring (the PsActiveProcessHead + _PEB_LDR_DATA monitoring); (2) system 

call interception (present bit-based system call interception + MSR-based system call 

interception).  

To measure the run-time CLAW overhead, we selected the PCMark industry standard 

benchmarking application [30] to run several benchmarks for the data structure monitoring and 
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the system call interception components. The results of testing appear in Table 4.7. Each of the 

benchmarks was first run without CLAW to obtain the baseline performance and then re-run 

with (1) the PsActiveProcessHead monitoring enabled and the _PEB_LDR_DATA and CLAW 

system call interception disabled; (2) the PsActiveProcessHead and _PEB_LDR_DATA 

monitoring enabled and the CLAW system call interception disabled; (3) the 

PsActiveProcessHead and _PEB_LDR_DATA monitoring disabled and the CLAW system call 

interception enabled; (4) all system call interception using the MSR-based system call 

interception based approach (continuous interception of all system calls) enabled.  

Table 4.7 Run-time performance of CLAW. 

Benchmark PsActiveProcessHead  

Monitoring 

PsActiveProcessHead  

+ 

_PEB_LDR_DATA  

Monitoring 

CLAW’s  

System  

Call  

Interception 

MSR 

System  

Call  

Interception of all 
system calls 

CPU 2.4% 2.6% 0.8% 7.9% 

Memory 1.3% 1.3% 4.6% 64.3% 

HDD 3.7% 3.8% 1.1% 29.5% 

 

Among the three schemes used in CLAW to detect program loading, the CLAW system 

call interception incurs the least overhead because it is targeted at specific pages containing 

system call routines of interest. The MSR-based system call interception incurs the most 

overhead. The overhead incurred by monitoring of the PsActiveProcessHead structure is 

somewhat higher than expected, because there are modifications to the same page holding the 

process list that trigger spurious write protection faults. The overhead incurred by 
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_PEB_LDR_DATA monitoring is negligible as components of this structure are located in user 

address space pages and are rarely modified.  

Because it is difficult to measure the run-time performance degradation of interaction 

with applications, we focus on their startup time instead. We measured the startup time of three 

interactive applications: MS Office Word, Mozilla Firefox, and Adobe Acrobat. We ran these 

applications and used the PassMark AppTimer [69] tool to measure the time between when an 

application was started and when its main window for use input appeared, with and without the 

CLAW. These measurements also included the code verification times while the VM was 

suspended, and appear in Table 4.8. Even though the percentage overheads are more substantial 

than batched programs, the start-up overhead time of all three interactive applications are less 

than one second, which are reasonable and acceptable user experiences. 

Table 4.8 Startup performance of CLAW. 

Applications Total Startup Time, msec Overhead 

MS Office Word 1,764 37% 

Mozilla Firefox 366 43% 

Adobe Acrobat 1,487 17% 

 

To evaluate the performance advantage of the PsActiveProcessHead and 

_PEB_LDR_DATA data structure monitoring over interception of system calls involved in new 

process creation and code mapping using libraries, we extended the CLAW system call 

interception mechanism to include monitoring of the NtCreateSection and NtMapViewOfSection 

system calls. NtCreateSection is always invoked when a new process is started to create a section 

object. NtMapViewOfSection is used to map views of section objects created using 
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NtCreateSection into a process address space. Invocation of NtMapViewOfSection with the 

request of mapping a view of a section combined with the page protection flag argument set to 

allow executions indicates that the process is mapping a new executable region. To extract the 

code region used in mapping a view, we look up the NtMapViewOfSection’s section handle 

argument among the handles owned by the requesting process to locate the address of the 

corresponding section object. The list of handles owned by the process can be found using the 

corresponding process EPROCESS structure. We use the identifies section object to traverse the 

related memory structures in the kernel memory of the VM to extract the subsection 

corresponding to the .text section of the file and verify the identity of the region using SHA-1 

hashing. The performance benchmark results of the NtCreateSection and NtMapViewOfSection 

system call interception are provided in Table 4.9. Startup performance results are provided in 

Table 4.10. 

Table 4.9 Run-time performance of NtCreateSection and NtMapViewOfSection system call 
interception. 

Benchmark PsActiveProcessHead  

+ 

_PEB_LDR_DATA  

Monitoring 

CLAW’s  

System  

Call  

Interception of  

NtCreateSection & 

NtMapViewOfSection 

CPU 2.6% 1.1% 

Memory Latency 1.3% 3.2% 

HDD 3.8% 1.3% 
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Table 4.10 Startup performance of CLAW using NtCreateSection and NtMapViewOfSection 
system call interception. 

Applications Total Startup Time, msec Overhead 

MS Office Word 1,996 52% 

Mozilla Firefox 538 110% 

Adobe Acrobat 1,623 28% 

 

Interception of the NtCreateSection and NtMapViewOfSection system calls has a minor 

run-time performance advantage while the start-up overhead time using these system calls has 

significantly increased. The increase in the start-up time is due to parsing of the system call 

arguments that requires traversing and parsing of series of data structures in the kernel address 

space. Although our experiments show that direct interception of the NtCreateSection and 

NtMapViewOfSection system calls has a better run-time performance, the PsActiveProcessHead 

and _PEB_LDR_DATA data structure monitoring may be beneficial in addressing scenarios 

where the NtCreateSection and NtMapViewOfSection system calls are hooked by malicious 

user-space code to bypass invocations of the actual NtCreateSection and NtMapViewOfSection.  

4.6 Limitations 

Code verifications performed by the CLAW at load-time include the binary code of the 

executable file and libraries in its initially loaded state. However, a process may be exploited 

over the course of its execution through an application vulnerability, such as a buffer overflow, 

and new unverified code may be introduced by manipulating the existing code and thus, 

bypassing the CLAW load-time defense mechanisms. Our current system does not specifically 

defend against these attacks. 
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The CLAW does not detect malicious activity that does not introduce any unapproved 

code into the system but rather uses the approved code. For instance, a malicious process could 

attempt to tamper with the non-control data of a process that may be used by the application 

while carrying out its computations and interactions and indirectly modify its operations without 

injecting additional code. Examples of such attacks and a proposed defense mechanism are 

described in Chapter 5.  

Finally, false positives may also arise from processing code dynamically generated by 

JIT compilers, interpreters, and packed executables. In our future work, we will investigate how 

these special cases can be addressed by CLAW. 

4.7 Summary 

We presented the CLAW, a system that verified the code identity in the VM execution 

environment. The CLAW verified binary code in user processes by computing a cryptographic 

hash over the executable file and its dependencies (library components) at their load-time 

mapping. These verifications were taken when a process and libraries were loaded in memory 

but before their first execution. The CLAW also tracked and analyzed code in executable 

memory regions allocated at run-time. We developed a prototype of our approach for the 

Windows and Linux operating systems. The results showed that the system was able to reliably 

identify whitelisted codes in applications while blocking unapproved codes. Successful 

identification of the malicious code introduced through code injection attacks further 

demonstrated CLAW’s effectiveness in dealing with sophisticated attacks designed to hide the 

code’s presence. The concepts and techniques discussed in this study could be applied to other 

operating systems and hypervisors. 
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5 Access Token Manipulation Attack Detection Tool 

5.1 Introduction 

Many real-world software applications are susceptible to attacks that alter the target 

program’s control data (e.g., return addresses and function pointers) in order to execute injected 

malicious code. Because control-data attacks have been pre-dominant, many defensive 

techniques have been developed to protect program control flow integrity to prevent such 

attacks. With the advancement of control flow protection techniques, attackers have devised a 

new group of attacks to bypass the defenses. These attacks target non-control data and are less 

straightforward to construct than control data attacks because they require in-depth semantic 

knowledge of the target data. The current range of defensive techniques against non-control data 

attacks is limited. This is because data structures frequently targeted by non-control attacks 

change rapidly making it difficult to differentiate between normal and abnormal states. 

The stealthiest of non-control data attacks is the direct kernel object manipulation 

(DKOM) attack, which directly accesses and writes to kernel data structures stored in memory 

without using any APIs. A unique example using the DKOM technique is the hidden process 

attack in which the attacker manipulates the doubly linked list of running processes to unlink a 

malicious process and hide it from the OS view [70]. Other examples of hidden object attacks 

include driver and network data hiding to create false views of loaded drivers and network usage.  

In this study, we focus on DKOM-based access token manipulation attacks that target 

authorization and authentication data assigned to a running process. The access token 

manipulation is a post-exploitation technique allowing the attacker to escalate privileges on an 



 

115 

 

already compromised Windows host. The access token data structure determines the access 

privileges associated with a running Windows process and is derived from the user’s log-on 

session. When a process attempts to perform various actions, the privileges in the access token 

are compared to the required privileges to determine if access should be granted or denied. 

Privilege escalation is achieved either by altering (token patching) or copying (token stealing) 

the access token of a target process.   

In the token patching attack, the attacker alters the access token of a target process to 

raise the process’s privileges to the maximum level on the local system. Rootkits are known to 

make use of the token patching attack by directly overwriting portions of the kernel memory 

storing the process’s access token with new privileges. In the token stealing attack, the attacker 

copies an already existing token of a user who has previously logged into the compromised 

machine and swaps the target process’s access token with the copied token to assume the user’s 

privileges. Because tokens of logged-in users may have domain-wide privileges, the token 

stealing attack magnifies the dangers of the token patching attack by allowing the attacker to 

compromise additional machines on the network domain. 

We describe the design and implementation of a novel defensive tool called ATOM that 

watches access tokens of running processes to detect access token manipulation attacks. ATOM 

has an agentless architecture built on top of the RTKDSM system. We have successfully 

implemented an ATOM prototype on the Xen hypervisor and targeted it at Windows and Linux 

VMs.  
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5.2 Background 

5.2.1 Access Token Data Structure 

Every Windows process has an associated EPROCESS data structure (Figure 5.1). The 

EPROCESS keeps track of various process-specific data including a pointer to its own access 

token in the Token member of the _EX_FAST_REF type (Figure 5.2). The pointer points to the 

TOKEN data structure (Figure 5.3). The exact memory address of the TOKEN structure is 

calculated from the Token member by XORing the Token value with 0xFFFFFFF8. The XOR 

operation is required because the last 3 bits of the Token value are used to keep a reference count 

for optimization purposes. Thus, token addresses always end with the last three bits equal to 

zero. 

 

Figure 5.1 _EPROCESS data structure. 
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. 

 

Figure 5.2  EX_FAST_REF data structure. 

 

 

Figure 5.3 TOKEN data structure in Windows XP. 
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The TOKEN data structure is composed of static and dynamic parts (Figure 5.4). The 

static part has a well-defined structure and does not change in size. It stores the count of 

privileges in the PrivilegeCount field and the count of the security identifiers (SIDs) in the 

UserAndGroupCount field. The dynamic part contains all the user privileges and SIDs. The 

exact number of these varies depending on the credentials of the user who created the process.  

 

Figure 5.4  Static and variable parts of the token in Windows XP [70]. 

 

The UserandGroups field stores a pointer to a dynamically allocated array of 

PSID_AND_ATTRIBUTES structures storing security identifiers (SIDs) including a SID for the 

user and all of the SIDs for the groups to which the user belongs (Figure 5.5).  



 

119 

 

 

Figure 5.5 SID_AND_ATTRIBUTES and SID data structures. 

 

Each PSID_AND_ATTRIBUTES structure is composed of two fields: Sid, which is a 

pointer to the SID structure holding SID information, and Attributes, which stores a series of 

binary flags that hold the SID attributes. When a SID is added to the token, the 

UserAndGroupCount value is incremented. The Security Descriptor Definition Language form 

of a SID can be illustrated using the following example: “S-1-5-21-2833009033-2652595096-

1975694352-1012”, where “1” is the revision, “5” is the identifier authority that created the SID, 

“21-2833009033-2652595096-1975694352” is the computer identifier, and “1012” is the 

account or group identifier. 

The Privileges field of the TOKEN data structure stores a pointer to a dynamically 

allocated array of LUID_AND_ATTRIBUTES structures (Figure 5.6). Each 

LUID_AND_ATTRIBUTES structure is composed of two fields: Luid storing the privilege ID 

and Attributes storing a series of binary flags that define whether a privilege associated with a 

given LUID is enabled or disabled. In the Privileges list, some of the privileges are disabled by 

default (Figure 5.7). 
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Figure 5.6 LUID_AND_ATTRIBUTES data structure. 

 

 

Figure 5.7 SIDs and Privileges contained in the process’s access token using Sysinternals’ 
Process Explorer tool [71]. 
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5.2.2 Token Manipulation Attacks 

This section describes the post-exploitation process using token manipulation attacks. 

5.2.2.1 Access Token Patching 

Access token patching attacks are commonly launched by kernel level rootkits. There are 

two main rootkit families: control-data manipulating rootkits and non-control data manipulating 

rootkits.  

Control data manipulating rootkits, known as hooking rootkits, change the kernel control 

flow path in such a way that control first flows to the attack code. The original code is either 

never invoked or executed after the attack code is executed. Hooking may come in several 

variations including import/export table hooking, system service dispatch table hooking, 

interrupt descriptor table hooking, and inline function hooking. These methods allow an attacker 

to gain control of the execution path by patching function pointers in a table through which a set 

of calls or events are routed or by modifying the binary code of a target function.  

Non-control data manipulating rootkits do not change the control flow directly but 

manipulate values of critical variables, which in turn directly or indirectly influence the 

algorithms used by the kernel. Such rootkits often target kernel data with dynamic characteristics 

without injecting any code into the kernel memory space. These rootkits use DKOM techniques 

to dynamically change certain kernel data structure, such as the access token data structure. 

Non-control data manipulating rootkits launch access token manipulation attacks to raise 

privileges of a malicious process without making a single call to any of the process or token 

related APIs. This can be accomplished by modifying data contained in the TOKEN data 
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structure directly in memory. When modifying the TOKEN data structure, rootkits patch the SID 

list and the Privileges values. The FU rootkit is one example of an access token patching rootkit 

[70]. The FU rootkit operates using the following steps: 

1) Finds the EPROCESS data structure for the target process using the process PID; 

 

2) Finds the TOKEN data structure associated with the EPROCESS data structure; 

 

3) Finds the privileges in the token and adds new privileges; 

The fact that many privileges are disabled by default when a token is created proves to be 

useful for an attacker in order to add privileges and groups to a process token. If a desired 
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privilege already exists in the token but is disabled, the rootkit enables the privilege. If a 

desired privilege does not exist in the token, the rootkit finds a disabled privilege and re-

uses its space by overwriting it with the new privilege. By enabling or overwriting 

disabled privileges already contained in the token, the attacker can avoid increasing the 

token's size and overwriting memory regions adjacent to the process's token some of 

which may be invalid.  

4) Finds the SIDs in the token and adds new SIDs; 

Disabled privileges may also be overwritten to make room for new SIDs. 

5) Finally, modifies the PrivilegeCount and UserAndGroupCount counts. 

In Windows versions prior to Windows Vista, there were no integrity checks on the 

UserAndGroup list of SIDs and therefore, it was possible to add SIDs by finding dead space in 

the token structure to overwrite it with. In the recent versions of Windows starting with Vista, 

new fields SidHash and RestrictedSidHash have been added in the access token structure (Figure 

5.8 and Figure 5.9). These two fields contain the hashes of the SIDs stored in the dynamic part of 

the token in order to prevent accidental or intended modification of this part of the access token. 

The hashes are checked every time the token is used. Despite the added integrity checks, access 

token manipulation attacks are still possible with three main alternatives to bypass these defense 

measures: 

1) Applying the hash algorithm after modifying the SID lists; 

2) Avoiding SID list patching and acting only on the Privileges; 

3) Directly swapping the TOKEN value of the attacker’s process with the value in the 
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EPROCESS structure of a victim process using the token stealing attack as described in 

the next section.  

 

Figure 5.8 TOKEN data structure in Windows Vista. 

 

 

Figure 5.9 _SID_AND_ATTRIBUTES_HASH data structure. 
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5.2.2.2 Access Token Stealing  

During normal operations of a system, there are tokens of some variety present depending 

on the system’s function and its usage environment. If the system is compromised, these tokens 

can be used by the attacker in token stealing attacks to achieve privilege escalation. The token 

stealing attack involves the exchange of a malicious process’s token with an access token of 

another process running on the same system. 

There are two main types of access tokens useful for this attack: primary tokens and 

impersonation tokens. Every process has a primary token that describes the security context of 

the user account associated with the process. Impersonation is the ability of a process to 

temporarily impersonate a security context different from the context of the process by starting a 

thread using a different access token. The main reason for impersonation is to enable a service 

running under a certain security context act on behalf of connecting clients by executing threads 

under the clients’ own security context. There are four impersonation levels: Anonymous, 

Identification, Impersonation, and Delegation, of which the Impersonation level and the 

Delegation level have the most significant security implications (Figure 5.10).  

 

Figure 5.10 Impersonation levels. 

 

The Impersonation level tokens, which are normally created as a result of a non-
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interactive login, allow a thread to impersonate the security context on the local system but do 

not allow access to external systems. A common example would be an FTP server impersonating 

client requests. The Delegation level tokens, which are normally created as a result of an 

interactive login, allow a thread to impersonate the security context on any system. Examples 

include logging in using remote access services and solutions.  

By hijacking Delegation level tokens, an attacker can gain domain level privileges to 

access systems that are otherwise secure from direct remote exploits. This is possible because 

Delegation tokens contain authentication credentials and so can be used to access external 

systems for which those credentials are valid.  

A token stealing attack normally involves the following steps: 

1) Enumeration of tokens present on the compromised system;  

2) Selection of a Delegation or Impersonation token; 

3) Starting a new process and swapping the process’s token with the token selected in the 

previous step. 

The swapping in the last step can be accomplished by calling an existing API, such as 

ImpersonateLoggedOnUser in Windows OS. In this study, however, we only consider DKOM-

based token stealing attacks that directly overwrite the value of the Token member of the 

EPROCESS structure in memory to point to a different access token [72]. 
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5.3 Related Work 

5.3.1 Control Data Manipulating Rootkits 

Methods for detection of control data manipulating rootkits can be roughly divided into 

static control data monitoring methods and execution path monitoring methods. Static control 

data monitoring methods detect signs of a rootkit intrusion by checking known invariant data 

regions in memory for suspicious entries. Violations of such invariants suggest the kernel has 

been compromised. Execution path monitoring methods identify known program execution paths 

in advance and monitor run-time execution paths to ensure they conform to the known paths. 

Deviations from know execution paths are suggestive of rootkit presence. 

5.3.1.1 Static Control Data Monitoring 

5.3.1.1.1 Periodic Checks 

Co-processor based Copilot was designed to detect kernel rootkits overwriting the 

addresses of the kernel’s system call handling functions in the system call table with the 

addresses of their own doctored system call handling functions as well as modifying the host 

kernel’s text or the text or any loaded LKMs [16]. Copilot extracted the memory addresses of the 

system call table and the kernel text from the host kernel and its System.map file at configuration 

time, calculated known “good hashes” for these items, and monitored the related memory 

regions throughout the host kernel run-time using periodic checks to detect changes to these 

kernel memory regions. The fundamental limitation of Copilot was its inherent inability to detect 

modifications as they occurred. A clever rootkit might conceivably modify and rapidly repair the 

host kernel between checks as a means of avoiding detection. 
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5.3.1.1.2 Continuous Monitoring 

The hypervisor-based intrusion detection system Livewire employed similar methods to 

detect signs of malicious rootkit activity [4]. To detect modifications to sensitive portions of the 

kernel memory continuously in real-time, Livewire marked the code sections and system call 

table derived from the debugging information of the kernel binary as read-only. If a program 

tried to modify these sections of memory, the monitor was notified about the malicious attempt, 

and the VM was halted. 

In another related study, Paladin leveraged the virtual machine technology to propose a 

solution for real-time detection and containment of rootkit attacks. Paladin relied on specification 

of access control policies tailored to protect memory areas and system files that could be a target 

of rootkit attacks [73]. The memory access control policies included policies to protect the kernel 

system call table, the interrupt table, and the kernel code from being overwritten in memory by 

defining legitimate applications that could write into kernel memory. To obtain the knowledge 

about the guest OS semantics, Paladin ran a driver inside the host OS to facilitate symbol 

lookups in the System.map file for kernel text segment, system call table, and interrupt descriptor 

table. Given the specifications of the access control policies and the physical addresses of the 

protected memory regions, Paladin used the hypervisor to monitor write accesses across the 

system for validity. Any time an illegal access was detected, the process attempting 

modifications was killed.  

Static control data monitoring systems make themselves vulnerable to rootkits that take 

this type of discovery method into account and evade the security monitors, for instance, by 

manipulating the system call table dispatch handler and redirecting the system call to a 

completely fabricated table filled with pointers to malicious system call handlers. A static control 
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data monitor would continue to monitor the original, unchanged system call table, which would 

no longer used by the kernel. Furthermore, monitoring for writes in known static data locations 

would not prevent rootkits from hijacking function hooks within data structures that were meant 

to be overwritten. 

5.3.1.2 Execution Path Monitoring 

5.3.1.2.1 Periodic Checks 

State-based control flow integrity (SBCFI) performed a static analysis of the kernel’s 

source code and compiled binary for global variables and function pointers reachable from the 

global variables and built an approximation of kernel control-flow graph that would be followed 

at run-time by a legitimate kernel [56]. Function pointers were tracked and validated periodically 

at run-time to determine consistency with the control-flow graph using a monitor placed in a 

separate security VM. The monitor process traversed the target kernel’s memory in parallel with 

the target VM’s execution. Because the monitoring was done periodically, the SBCFI monitor 

could only be used to reliably discover persistent changes: if an attacker modified the kernel for a 

short period, but undid the modifications in time less then the next check period, then monitor 

might fail to discover the change. Additionally, due to the lack of dynamic run-time information, 

SBCFI was only able to achieve an approximation of kernel control-flow graph. The static nature 

of the SBCFI system and learning inextensibility (due to the rapidly changing nature of the 

Linux kernel) were some shortcomings of this approach. The performance of SBCFI was also 

shown to incur close to 40% overhead on a typical machine running on Xen. 

5.3.1.2.2 Continuous Monitoring  

HookSafe, a hypervisor-based system, was designed to detect control flow modifying 

rootkits [74]. On initialization, HookSafe used an in-guest kernel module to allocate memory 
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pages from the non-paged pool and copy protected kernel hooks from their original locations to 

the newly allocated memory pages. It then loaded the indirection layer code in the guest OS to 

regulate accesses to these memory pages. The hypervisor was notified through a hypercall about 

the allocated memory pages to detour all accesses to protected hooks to the hook indirection 

layer.  For read accesses, the indirection layer simply read from the shadow hooks and returned 

to the hook site. For write accesses, the indirection layer issued a hypercall and transferred the 

control to the hypervisor to validate the write request according to values seen in the offline 

normal operation profiling phase. By re-locating hooks to dedicated memory pages, HookSafe 

avoided the unnecessary page faults caused by trapping writes to irrelevant data that might be co-

located with hooks on the same page. Hooks allocated at run-time were identified by 

instrumenting the guest OS memory allocation functions and utilizing the run-time context 

information to infer whether a particular kernel object of interest containing an embedded hook 

was being allocated. If one such kernel object containing a kernel hook was being allocated, a 

hypercall was issued to HookSafe to create a shadow copy of the hook. The HookSafe 

implementation required modifications to the monitored OS and therefore could not be extended 

to support closed source OSes. 

5.3.1.2.3 Offline Analysis 

From another perspective, HookFinder [75] based on a whole system emulator was 

developed to automatically analyze an unknown potentially malicious binary and identify if this 

code installed any hooks into the system. HookFinder was designed for malware analysis rather 

than on-line detection. By instrumenting CPU instructions with taint propagation capabilities, 

HookFinder considered any changes made by the malware as tainted and tracked taint 

propagation throughout the system. HookFinder recognized a specific change as a hooking point 
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if the control flow was affected by some tainted value. Though effective in identifying specific 

hooks registered in the malware code, HookFinder could not discover other hooks that did not lie 

in the execution paths of any of these programs, and therefore would go undetected. 

The HookMap implementation collected a list of sequentially executing kernel 

instructions when handling a system call and identified the control-flow transfer instructions that 

could potentially be exploited by rootkit for hiding purposes [76].  

5.3.2 Non-Control Dynamic Data Manipulating Rootkits 

The control data manipulating rootkit detection methods that detect violations based on 

changes to static kernel content, control flow, or the executing binaries can not be applied to 

detection of rootkit attacks on non-control data structures as they often include data and 

functions pointers that are meant to be overwritten. Additionally, attacks against such data may 

be performed by using already approved kernel code which satisfies kernel code integrity. 

Therefore, a number of specialized methods have been developed to combat such attacks.  

5.3.2.1 Periodic Checks 

Petroni et al. [77] extended the capability of Copilot [16] for detection of attacks against 

dynamically allocated constantly-changing kernel objects using a co-processor. The monitor 

relied on an expert to describe the correct operation of the system via specifications of security-

relevant data structures and constraints on how these data structures interoperated. The monitor 

periodically compared actual observed dynamic kernel data values in the snapshots of kernel 

memory with the specifications of constraints on kernel dynamic data values and reported any 

semantic integrity violations.  
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The cross view detection method in a hypervisor-based VMwatcher implementation 

leveraged the self-hiding nature of rootkits to infer rootkit presence by detecting discrepancies 

between process lists from different points of detection [3]. VMwatcher approach used an 

introspection-based method to obtain a view of the processes running in the system and invoked 

a standard API function from within the OS to get the API view of the processes running in the 

system. The two results were compared, and the difference in the results revealed hidden rootkit 

processes.  

The above systems use a periodic sampling approach that may be exploited by the 

malware to remain undetected in between two consecutive snapshot periods making this 

approach far less attractive due to its lack of immediacy. Conversely, ATOM is able to extract 

and analyze the data structures continuously, overcoming the limitations of the periodic checks 

approach. 

5.3.2.2 Continuous Monitoring  

Srivastava et al. [18] developed Sentry, a VM-based system that prevented illegitimate 

changes to dynamically allocated kernel data objects from occurring by mediating access to these 

objects. Sentry introduced modifications to the monitored OS kernel to identify locations of 

newly constructed dynamically-allocated kernel data object. The need for mediated access to a 

newly constructed data object was communicated by the kernel to the hypervisor at the time that 

it constructed the object. Similar to page protections manipulation approach used in the 

RTKDSM system, the OS passed the physical page frame number (PFN) of the newly allocated 

memory page holding kernel data object requiring protection to the hypervisor. When the 

memory protection module in the hypervisor received a request to add protection for the 
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monitored VM’s page, it added the PFN to a list of protected pages and removed the page’s write 

permission causing page faults on all attempted kernel object alterations. Sentry only allowed 

alterations invoked by legitimate kernel functionality. Sentry implementation also made 

alterations to the memory layout of kernel data structures to separate security critical and non-

critical fields for increased performance and therefore required access the OS source code.  

Rhee et al. [17] proposed the KG system that prevented rootkit attacks targeting dynamic 

data by detecting changes to monitored kernel data structures. KG monitored the execution of the 

OS at the instruction level using QEMU emulator as an external monitor. For each kernel data 

structure requiring protection, a policy was written describing how the data structure should be 

identified in a raw view of memory as well as the characteristics of an attack against that data 

structure. The policies were derived using the kernel source code and the analysis of functions 

used to access given kernel data structures. At runtime, the system identified data structures of 

interest in memory and intercepted all writes to their address ranges. The methodology described 

in the study was only portable to VM monitors that supported memory interposition to translate 

guest instructions into host instructions and therefore, it could not be extended to support 

commercial hypervisors that did not provide memory interposition, such as Xen and VMWare 

ESX, unlike in ATOM developed in this study. 

A hypervisor-based VMhuko was designed to provide real-time protection for static and 

dynamic kernel data by mediating access to these data using access control policies [78]. 

VMhuko relied on the static analysis of the OS source code to extract information about data 

structures as well as their related normal kernel object access patterns and to build access control 

policies for the extracted kernel objects. Locations of all static kernel objects were identified at 

run-time using the kernel debug symbols and system map information in Linux. Dynamic kernel 
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objects were located at run-time using the assumption that all dynamic data were accessible from 

global kernel data structures residing at well-known locations. For instance, the init_task global 

data structure was assumed to be first accessed by rootkits to locate and traverse the task linked 

list and then manipulate the dynamically allocated task_struct structures. Therefore, init_task 

was monitored for read accesses. Memory pages containing static objects and pointer-valued 

fields of global kernel data structures were marked as protected using not-writeable or not-

present fields and monitored for abnormal read and write kernel access patterns by comparing 

function call traces to known good ones obtained from the static analysis of the sources code. All 

rootkits used in the evaluation were system call table modifying rootkits running as self-hiding 

processes. Although the average VMhuko performance overhead was reported as 17%, no details 

were provided regarding the number of static and dynamic objects monitored in their 

experiments. The VMhuko protection would be difficult to design for a closed source OS such as 

Windows where the source code could be unavailable. Furthermore, a disadvantage of this kind 

of implementation was that the source code analysis needed to be manually performed every 

time a module was inserted into the kernel to ensure that valid accesses by the module were not 

invalidate by VMhuko. Additionally, due to the lack of dynamic run-time information, VMhuko 

was only able to achieve an approximation of normal kernel access activity. 

5.3.3 Summary of Methods 

Static control data monitoring methods including Copilot, Paladin, and Livewire, are 

intended for protection of a small number of invariant data structures positioned at fixed 

locations and known at compile time. These methods are not suited well for advanced attacks 

targeting dynamic non-control kernel data where locations of data and the number of instances 

are not known in advance. While the Copilot architecture was later extended to support detection 
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of such attacks [77], the new extension was based on an asynchronous approach and suffered 

from inherent inability to detect attacks launched and withdrawn between two subsequent 

periodic snapshots as a means of avoiding detection. Paladin served as a good detection and 

prevention mechanism but the specifications of memory access control policies for protected 

memory regions were static and a comprehensive survey of them was infeasible especially when 

dealing with dynamically allocated objects. The Sentry, KG, and VMhuko architectures might be 

considered extensions of the Paladin approach for protection of dynamically allocated objects. 

However, these extensions either required OS modifications to detect object allocations or the 

availability of the kernel source code to construct access control policies that might be difficult 

to obtain for a closed source OS such as Windows. In our implementation, we extended the static 

control data monitoring approach to protecting against attacks on dynamic non-control data. 

Execution path monitoring methods are a subset of the general concept of protecting 

invariant data known at compile time or enumerable data derivable from the invariant data. 

Although these methods may be extended to support dynamically allocated control data, such 

extensions may not be applicable to guard data structures unreachable from the global variables 

and lacking semantic relationships with others [65]. 
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Table 5.1 Non-control data manipulating rootkit detection systems. 

Name Monitor 
OS Semantics 

Acquisition 

Detection/ 
Prevention 

(D/P) 

Continuous/ 
Periodic 

(C/P) 

Requires OS 
Modifications 

(Y/N) 

Requires 
the OS 
source 
code 
(Y/N) 

ATOM hypervisor VMI D C N N 

VMwatcher hypervisor VMI D P N N 

Copilot 
extension 

co-
processor 

Manual 
specifications 

D P N N 

Sentry hypervisor OS 
instrumentation 

P C Y Y 

KG 
hardware 

emulator 

OS source 
code, kernel 

debug symbols 
P C N Y 

VMhuko hypervisor 
OS source 

code, kernel 
debug symbols 

P C N Y 

 

5.4 System Architecture 

5.4.1 Overview 

As shown in Figure 5.11, ATOM is composed of a front-end component running in the 

monitoring VM and a back-end component running inside the hypervisor. The back-end 

component suspends the monitored VM on detecting a new process. After suspending the VM, 

the back-end component notifies the front-end component to extract the new process’s access 

token and analyze the privileges and the SIDs in the token using the real-time kernel data 

structure monitoring system. Following the token analysis, the front-end component asks the 

back-end component to resume the VM execution and to initiate the monitoring of the memory 

portion containing the extracted access token. The back-end component tracks all attempts to 
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overwrite the privileges and the SIDs in the access token. When a write is detected, the back-end 

component notifies the front-end component to analyze the altered access token and to alert the 

administrator if an access token manipulation attack is detected. 

5.4.2 System Design and Implementation 

The ATOM architecture is built on the Intel VT hardware and the Xen hypervisor, and is 

designed to support VMs running both Linux Ubuntu Jaunty and Windows XP. 

5.4.2.1 Creation of a New Process 

We assume the hypervisor component is started before any malicious process is running. 

ATOM continuously watches for newly created processes in each monitored VM so that it can 

extract its access token. To intercept process creation operations, ATOM keeps track of the Flink 

and Blink pointers in the structure pointed to by PsActiveProcessHead. If ATOM observes a 

write to either Blink or Flink on the page containing this structure (Step 1 of Figure 5.11), it 

traverse the processes lists to determine if a new EPROCESS structure has been created or if an 

existing process has been terminated. The process creation steps in Windows OS, as shown in 

Figure 5.12, up to the access token set up have already been done. As soon as the back-end 

component of ATOM detects a new process in a VM, it suspends the VM, and notifies ATOM’s 

front-end component to take over. The front-end component uses the process’s EPROCESS data 

structure to track down the new process’s TOKEN data structure so it can analyze the privileges 

and SIDs. 
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Figure 5.11 The ATOM architecture. 

 

 

Figure 5.12 Windows OS process creation flow. 

 

5.4.2.2 Access Token Analysis 

The process’s TOKEN data structure is identified in the physical memory using the value 
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of the Token field in the corresponding EPROCESS data structure. The rtkdsm.py plugin 

implemented in the RTKDSM system links up a process to a particular user account by 

extracting all the SIDs contained in the process’s access token and mapping the SIDs’ values to 

their corresponding usernames and user groups. While some of the SIDs have well-known values 

and can be easily mapped to their associated user or group name, other SIDs require additional 

processing to determine the username associated with each SID. This additional processing 

involves extraction of information from the machine’s registry. Specifically, we process the 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList 

registry key hive shown in Figure 5.13 to extract the list of all local user account SIDs on the 

machine.  

 

Figure 5.13 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows 
NT\CurrentVersion\ProfileList key hive 

 

The username for each SID can be inferred by looking at the ProfileImagePath string 

value inside the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows 

NT\CurrentVersion\ProfileList\<SID> key. Using the Volatility’s registry-related APIs, we 

extract all the local user account SIDs on the machine contained as subkeys in the 

“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList” 



 

140 

 

registry key hive. The ProfileImagePath string value is usually of the 

%SystemDrive%\Documents and Settings\<username> form, where the value of the <username> 

string is the actual username. We use the Volatility’s registry-related APIs to extract the SIDs in 

the ProfileList key hive and map them to their usernames. Apart from the individual account 

SIDs, we also extract well-known group SIDs. These SIDs have been set aside for specific 

purposes and are the same on any Windows machine. 

5.4.2.3 Access Token Monitoring 

ATOM performs real-time monitoring of the extracted token using the following steps: 

1) Using the rtkdsm.py plugin, ATOM accesses and saves the current values of the SIDs, 

privileges, and the counts of the privileges and SIDs; 

2) The front-end component requests the RTKDSM system to calculate memory ranges 

containing the Token member of the EPROCESS, the SIDs, privileges, and their counts. 

The back-end component is notified to monitor the calculated ranges for writes. 

For Windows XP and older Windows version, the following formula is used to calculate 

the variable memory region size containing the SIDs and the privileges: (Size of 

_LUID_AND_ATTRIBUTES structure) * PrivilegeCount + (Size of 

_SID_AND_ATTRIBUTES structure) * UserAndGroupCount + (Size of _SID structure) 

* UserAndGroupCount. For Windows Vista and later Windows versions, the following 

formula is used to calculate the variable memory region size: (Size of 

_SEP_TOKEN_PRIVILEGES structure) + (Size of _SID_AND_ATTRIBUTES 

structure) * UserAndGroupCount + (Size of _SID structure) * UserAndGroupCount.  
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The two formulas differ because in Windows Vista and later, the privileges are stored in a 

bitmap form inside an SEP_TOKEN_PRIVILEGES structure as shown in Figure 5.14. 

Each field (Present, Enabled, and EnabledByDefault), being of type UINT64, has the 

potential of holding up to 64 distinct privileges, each identified by an index within the 

bitmap; the Present field holds the active privileges bitmap, while the Enabled and 

EnabledByDefault fields keep track of the status of the privileges similar to the Attributes 

field in older Windows implementations. 

 

Figure 5.14 _SEP_TOKEN_PRIVILEGES structure in Windows Vista and later Windows 
versions 

 

3) If a write is detected at a monitored memory region (Step 2 of Figure 5.11), the front-end 

component is notified by the back-end component so it can repeat the token analysis. 

Depending on the memory region where the write is detected, we classify write instances 

into the 4 categories: 

i. False token stealing attack - a write is detected to the Token field of the 

EPROCESS data structure.  The new address is different from the previous 

address, and it points to an invalid token. For instance, following the process 

termination, the Token field of the EPROCESS structure is overwritten as a result 

of the EPROCESS data structure de-allocation.  
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ii.  True token stealing attack - a write is detected to the Token field of the 

EPROCESS data structure. The new value points to a valid token. ATOM extracts 

the new values of the privileges/SIDs, their counts and compares them to the 

previously saved values, and alerts the administrator about the changes (Step 4 of 

Figure 5.11). 

iii.  False token patching attack – a write is detected to the privileges/SIDs following 

a system call. To modify a process token, Windows provides the 

NtAdjustPrivilegesToken and NtAdjustGroupsToken system calls. We intercept 

the NtAdjustPrivilegesToken and NtAdjustGroupsToken system calls using the 

CLAW system call interception technique (Step 3 of Figure 5.11). If the write to 

the token is caused by a system call, we consider it a false token patching attack 

and thus, do not notify the administrator. In our implementation, we do not 

consider adversarial attempts to evade detection by invoking a token-modifying 

system call concurrently with a DKOM attack. 

iv. True token patching attack – a write is detected to the privileges/SIDs and their 

counts, and it is not a result of the NtAdjustPrivilegesToken and 

NtAdjustGroupsToken system calls. Using the rtkdsm.py plugin, ATOM extracts 

the new values of the privileges/SIDs/their counts, compares them to the 

previously saved values, and alerts the administrator about the changes (Step 4 of 

Figure 5.11). 

5.4.3 “Always-on” and “Periodic Polling” Monitoring Modes  

The ATOM implementation supports both the “always-on” and “periodic polling” 
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monitoring modes. The system operations and the related security implications were described in 

the RTKDSM system.  

5.4.4 ATOM Implementation for Linux OS 

5.4.4.1 Background 

5.4.4.1.1 Process Credentials 

In the kernel versions < 2.6.29, user privileges are stored in the uid, euid, gid, and egid 

fields of the task_struct data structure (Figure 5.15). In the kernel versions >= 2.6.29, the 

task_struct was changed along with the logic of how access to the process credentials (Figure 

5.16). The cred data structure was introduced and contains the uid, euid, gid, and egid fields. 

 

Figure 5.15 The task_struct data structure. 
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Figure 5.16 The task_struct and cred data structures in Linux kernel versions >= 2.6.29. 

 

5.4.4.1.2 Rootkit Attacks on Process Credentials 

To alter the process's credentials in the kernel versions < 2.6.29, Linux rootkits overwrite 

the credentials fields with 0 as shown in Figure 5.17. Later 2.6 Linux versions adopted a cred 

structure to hold all information related to the privileges of a process. To alter the process's 

credentials in the kernel versions >= 2.6.29, rootkits overwrite the credentials as shown in Figure 

5.17. The prepare_creds function first prepares a new set of credentials by allocating and 

constructing a duplicate of the process's credentials.  The commit_creds function commits the 

new credentials to the current process. To simplify the privilege escalation path, a number of 

rootkits simply find another process that has the privileges of root and that never exits, usually 

PID 1, and set the cred pointer of the target process to that of PID 1’s. This effectively gives the 

attacker’s process full control, and the rootkit does not have to attempt the non-trivial task of 

allocating its own cred structure. 
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Figure 5.17 Rootkit attacks on process credentials in Linux OS. 

 

5.4.4.2 Implementation 

5.4.4.2.1 New Process Detection 

To intercept process creation operations, ATOM keeps track of the forward and 

backward pointers in the init_task structure. If ATOM observes a write to the forward or the 

backward pointer on the page containing the init_task structure, it traverse the processes list to 

determine if a new task_struct structure has been created or if an existing process has been 

terminated. As soon as the back-end component of ATOM detects a new process in a VM, it 

suspends the VM, and notifies ATOM’s front-end component to take over.  

The rtkdsm_linux.py plugin implemented in the RTKDSM system operates similarly to 

the rtkdsm.py plugin in Windows OS. The process’s credentials are found in the physical 

memory using the corresponding task_struct data structure. The rtkdsm_linux.py plugin reads the 

values of the uid, euid, gid, and egid contained within this data structure. 
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5.4.4.2.2 Credentials Monitoring 

ATOM performs continuous monitoring of the process’s credentials. The monitoring 

involves the following steps: 

1) Using the rtkdsm_linux.py plugin, ATOM accesses and saves the values of the uid, euid, 

gid, and egid; 

2) The front-end component requests the RTKDSM system to calculate memory ranges 

containing the uid, euid, gid, and egid fields. The back-end component is notified to 

monitor the calculated ranges for writes. 

3) If a write is detected at a monitored memory region, the front-end component is notified 

by the back-end component to repeat the analysis of the credentials. Depending on the 

memory region for which the write has been detected, we classify write instances into the 

4 categories: 

i. True credentials stealing attack - a write is detected at the cred field of the 

task_struct data structure. The new value points to a valid cred data structure. 

ATOM extracts the new values of the credentials, compares them to the 

previously saved values, and alerts the administrator about the changes. This 

credentials stealing attack is specific to the Linux versions >= 2.6.29 only. 

ii.  False credentials stealing attack - a write is detected at the cred field of the 

task_struct data structure. The new address is different from the previous address, 

and it points to an invalid cred. For instance, following the process termination, 

the cred field of the task_struct structure is overwritten as a result of the 

task_struct data structure de-allocation. 
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iii.  False credentials patching attack – a write is detected to the uid, euid, gid, and 

egid following a system call. We intercept the setuid and setgid system calls using 

the CLAW system call interception technique. If the write is caused by a system 

call, we consider it a false credentials patching attack and thus, do not notify the 

administrator. 

iv. True credentials patching attack – a write is detected to the uid, euid, gid, and 

egid, and it is not caused by a system call. Using the rtkdsm_linux.py plugin, 

ATOM extracts the new values of the uid, euid, gid, and egid, compares them to 

the previously saved values, and alerts the administrator about the changes. The 

credentials patching attack may occur in all Linux 2.6 versions. 

5.4.5 Summary of Data Structures Monitored by ATOM 

Table 5.2 provides a summary of the key data structures actively monitored by ATOM. 

5.5 Evaluations 

5.5.1 Experimental Setup 

Our testbed consisted of a virtualized server that used Xen version 3.3 as the hypervisor 

and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. The host system had Duo CPU 

P8600 processor running two cores at 2.4GHz and 2GB of system memory. The ATOM system 

was installed in the Dom0 domain. In addition, the virtualized server hosted a DomU domain 

running a default installation of Windows XP OS with the IIS web server. This domain was 

configured with 512Mb RAM. 
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Table 5.2 Summary of the data structures monitored by ATOM. 

OS  Data Structures (Fields)  Actions Taken 

Windows  

PsActiveProcessHead (Flink,Blink) On write, traverse the processes lists to 
determine if a new EPROCESS structure 
has been created or if an existing process 
has been terminated. 

_EPROCESS (Token) On write, the front-end component is 
notified by the back-end component to 
repeat the analysis of the token. 

_TOKEN (UserAndGroupCount, 
UserAndGroups, Privileges)  

On write, the front-end component is 
notified by the back-end component to 
repeat the analysis of the token. 

Linux  

init_task (next, prev) On write, traverse the processes lists to 
determine if a new task_struct structure 
has been created or if an existing process 
has been terminated. 

task_struct (uid, euid, gid, egid) On write, the front-end component is 
notified by the back-end component to 
repeat the analysis of the credentials. 

 

5.5.2 Experiments 

5.5.2.1 Effectiveness 

5.5.2.1.1 Token Patching Attack 

To demonstrate the effectiveness of the ATOM in detecting token patching attacks, we 

performed an attack using the Fu rootkit [70, 79]. Fu allows the intruder to hide information from 

user-mode applications and kernel-mode modules by directly modifying kernel data structures 

used by the operating system, such as, removing entries from the process and loaded modules 
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linked lists. In addition, Fu is capable of modifying a process's token to change the process’s 

privileges and replacing the process’s owner SID. 

Prior to the attack, the Fu rootkit was loaded in the test VM. The malicious process was 

then started in the VM. The ATOM system running in the “always-on” mode detected the new 

process and began monitoring its token. The Fu rootkit was directed to modify the malicious 

process’s privileges and SIDs contained in the token. The ATOM system detected the writes to 

the token and alerted the administrator about the attack. 

We further performed a token patching attach with the system running in the “periodic 

polling” mode with the timing parameter T set to 50 msec. We modified privileges in the 

malicious process’s token and immediately restored them to their original values to avoid 

detection. Although the first write was detected by ATOM, the overall attack involving 

overwriting of multiple privileges was not. Despite an improved performance in the “periodic 

polling” approach as was shown in Chapter 2, the “periodic polling” mode reduced the ATOM 

effectiveness and provided a lesser degree of assurance. The experiment illustrated that system 

execution in the “periodic polling” mode introduced a window of vulnerability between two 

consecutive checks on the monitored data structures. However, by setting the timing parameter T 

to 5 msec, the ATOM system was routinely able to detect the token patching attempts. 

5.5.2.1.2 Token Stealing Attack 

To demonstrate the effectiveness of the ATOM system in detecting token stealing 

attacks, we performed a token stealing attack using the attack code presented in [72]. We started 

two processes in the test VM – a victim process running with the privileges of the 

“Administrators” user group and a malicious process running with the privileges of the “Users” 
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user group. The ATOM system running in the “always-on” mode detected the new processes and 

began monitoring their tokens. The token stealing code copied the desired access token from the 

victim process and exchanged the original value of the Token field in the malicious process with 

the address of the copied token. Following this operation, the malicious process had the same 

access rights as the victim process. The ATOM system detected the write to the Token field of 

the malicious process and alerted the administrator about the attack. 

5.5.2.2 Performance Assessment 

The VM performance is impacted by the following ATOM monitoring components: (1) 

monitoring of the PsActiveProcessHead structure; (2) monitoring of the EPROCESS data 

structures; (3) monitoring of the TOKEN data structures; (4) CLAW system call interception. 

The performance impact of the PsActiveProcessHead, EPROCESS, and TOKEN data structure 

monitoring using the RTKDSM system in “always-on” and “periodic polling” mode was shown 

in Chapter 2. The performance impact of the CLAW system call interception was shown in 

Chapter 4. 

5.6 Summary 

We presented a detection system called ATOM that used the RTKDSM system to 

intercept DKOM-based access token manipulation attacks targeting non-control data. This class 

of attacks is difficult to detect using the existing defensive methods for control-data manipulating 

attacks. The ATOM defensive approach consisted of monitoring all write accesses to memory 

pages containing access tokens of running processes and real-time analysis of tokens when 

updates targeting privileges in a token were detected. To avoid false positives caused by the OS 
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supported token-modifying system calls, we installed a system call interception mechanism 

enabling ATOM to differentiate between writes caused by system calls vs. DKOM writes. Our 

evaluation of ATOM showed that the system was able to successfully detect DKOM-based token 

manipulation attacks using the presented techniques. 

The semantic knowledge and memory locations of data structures targeted by DKOM 

attacks were the key data required by our implementation. Both of these data could be obtained 

through the Volatility framework for any of its supported data structures and provided as an 

input into the ATOM system making the ATOM approach directly applicable for protection of 

other critical data structures that might be targeted by DKOM attacks. 
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6 Conclusions and Future Work 

6.1 Conclusions 

Over the last few years, VMI technology has evolved to monitor VM behavior in an 

agentless fashion. VMI provides a constellation of information about the states of all running 

VMs making the agentless approach superior to the traditional in-host agent-based monitoring. 

The contribution of VMI is especially prominent in security tools, such as virus scanners and 

intrusion detection systems. By de-coupling security tools from the internal OS execution 

environment, VMI makes them resilient to malicious attacks.  

However, the VMI approach comes at a cost - VMI applications must deal with the 

semantic gap issues requiring extensive knowledge and reconstruction of the guest OS data 

structures. Reconstruction is commonly done from scratch leading to correctness challenges, 

increasing the likelihood of buggy introspection, and limiting flexibility and extensibility of VMI 

tools. As a result, generality of manual reconstructions is poor since the VMI tool is tied to the 

guest OS. This problem is exacerbated if the guest OS is closed-source.  

As forensic analysis tools aim to tackle many of the same issues that plague VMI tools, 

the forensic community has already done much of the work bridging the semantic gap to support 

multiple operating systems and a large number of kernel data structures. Several VMI studies 

have previously proposed the use of forensic methods and tools for rapid data structure 

reconstruction. However, existing forensic analysis tools are designed for an offline analysis and 

thus, lack capabilities required by VMI tools to implement active monitoring techniques capable 

of analyzing and detecting events as they occur. 
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6.1.1 RTKDSM 

This research focuses on describing the RTKDSM framework designed to automatically 

reconstruct kernel data structures of interest and to continuously monitor states of the 

reconstructed data structures in real-time to support active monitoring. The RTKDSM system is 

the first VMI framework leveraging a forensic framework to track changes in the reconstructed 

data structures in real-time. By building on top of the forensic tool acumen, the RTKDSM 

system reduces the complexity of developing VMI applications associated with data structure 

reconstruction and by extension the likelihood of buggy introspection. Leveraging the Volatility 

framework, the RTKDSM system eliminates effort duplications supporting the common modular 

motif in computer science. These ideas have been previously proposed but not developed to be 

practically usable. This objective has been achieved in this study. The RTKDSM system is 

capable of supporting a wide range of VMI applications due to the RTKDSM framework’s 

flexibility and extensibility, which has been lacking until now. This research has demonstrated 

effectiveness and practicality of the RTKDSM framework by building three novel system 

prototypes, vCardTrek, CLAW, and ATOM, which can be easily adapted for data flow tracking 

and security monitoring in industrial settings. 

6.1.2 vCardTrek 

vCardTrek is the first published example of a VMI system used for the development of a 

VMI tool for data flow tracking, thus moving the concept of VMI-based monitoring beyond the 

usual virus and intrusion detection applications. Moreover, the main difference between 

vCardTrek and other tools with a similar goal is that by applying VMI, it does not rely on 

machine or application instrumentation when dealing with multiple machines. The conceptual 
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framework devised in this work could be applied to designing similar tools for real-world 

payment card processing applications running on real-world computing environments. 

Table 6.1 Summary of the data structures used by vCardTrek, CLAW, and ATOM. 

System Data Structures 

vCardTrek 

ADDRESS_OBJECT 

TCPT_OBJECT 

EPROCESS 

CLAW 

PsActiveProcessHead  

PEB_LDR_DATA  

init_task 

ATOM 

PsActiveProcessHead 

EPROCESS 

TOKEN 

init_task 

task_struct 

 

6.1.3 CLAW and ATOM 

The problems addressed by CLAW and ATOM systems are challenging because of the 

four restrictive requirements: (1) acting in a preventive mode, that is, the ability to detect events 

as they occur, (2) OS-independence, that is, no modifications to the monitored OS or installation 

of agents inside the OS, (3) direct applicability of the approach to HVM machines, which are the 

main stream in virtualization, and (4) finally, the ability to intercept system calls selectively. The 

main difference between these tools and other previously published tools with similar goals is the 

ability to address the four requirements in one system made possible due to the novelty of the 
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RTKDSM and CLAW system call interception techniques developed in this dissertation. 

6.2 Future Work 

6.2.1 RTKDSM 

The RTKDSM system currently provides a solid foundation for active monitoring in a 

virtualized environment. Yet, our experience working with the RTKDSM system highlighted 

some areas that would benefit from additional research. An important problem that needs to be 

addressed by the future research is how to enable the RTKDSM system to automatically and 

dynamically choose between the “always-on” and the “periodic polling” mode without affecting 

VMI applications’ performance and the timeliness of detection. Our research has shown that 

some data structures are consistently allocated on memory pages that experience frequent 

spurious updates unrelated to the data structure itself making the “periodic polling” mode more 

suitable for monitoring of such data structures. For this group of data structures, the next step is 

to quantify the number of kernel data structures changes that may be missed as a result of 

different polling frequencies in the “periodic polling” mode to help determine the optimal polling 

interval to ensure timeliness of detection. Our research has also shown that some data structures 

are allocated in memory pages that are rarely updated, thereby monitoring of such data structures 

can be done in the “always on” mode without impacting the performance. Hence, the next stage 

of our work is to investigate memory locations common to various data structure types and to 

add capabilities to the RTKDSM system to dynamically choose the appropriate monitoring mode 

depending on the data structure type. Furthermore, machine learning techniques may be applied 

to efficiently train the RTKDSM system to choose between the “always-on” and “periodic 

polling” mode. 
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6.2.2 ATOM and CLAW  

From our experience developing the ATOM system, the next stage of this work is to 

generalize the ATOM approach by applying it to any Volatility-supported data structure type. 

This step will require updating the CLAW system call interception mechanism with system calls 

lists relevant to various data structure types enabling the extensibility of the ATOM approach to 

detection of DKOM attacks on any kernel data structure. Because the RTKDSM approach is able 

to detect changes in general, rather than focusing on specific symptoms of known DKOM 

attacks, the future ATOM system will be able to detect both known as well as unseen previously 

DKOM attacks. 

6.2.3 vCardTrek 

The next stage of our vCardTrek work is to develop support for persistent TCP 

connections and intra-host cross-process communications. Specifically, in our implementation, 

we monitor TCP connections to track card data flow across multiple VMs.  vCardTrek initiates a 

search of the memory of a VM only when it is involved in a newly established TCP connection. 

In the future, we plan to support persistent TCP connections, which may stay open for a long 

time and service multiple transactions. Also, our coarse-grained data flow tracking mechanism 

does not currently handle data flow tracking of cross-process communications within the same 

VM. More research is required to determine the extent to which data flow tracking can be 

implemented via cross-process intra-host TCP connections, pipes, and shared memory.  This is 

an important direction of future research. Finally, we would like to conduct additional 

evaluations of vCardTrek on testbeds that mimic production environments to identify actual 

limitations of the tool’s current design or implementation. 



 

157 

 

Bibliography 

[1] A. Srivastava and J. Giffin. Tamper-resistant, application-aware blocking of malicious 

network connections. In Proceedings of the 11th International Symposium on Recent 

Advances in Intrusion Detection (RAID 2008), pages 39-58, September 2008. ISBN:978-

3-540-87402-7.doi:10.1007/978-3-540-87403-4_3. 

http://dl.acm.org/citation.cfm?id=1433011. 

[2] B. D.  Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure 

active monitoring using virtualization. In Proceedings of the IEEE Symposium on 

Security and Privacy (IEEE SP 2008), pages 233-247, May 2008. ISBN:978-0-7695-

3168-7.doi:10.1109/SP.2008.24. http://dl.acm.org/citation.cfm?id=1398072. 

[3] X. Jiang, A.  Wang, and D. Xu. Stealthy malware detection through VMM-based “out-of-

the-box” semantic view reconstruction. In Proceedings of the 14th ACM Conference on 

Computer and Communications Security (CCS 2007), pages 128-138, October 2007. 

ISBN:978-1-59593-703-2.doi:10.1145/1315245.1315262. 

http://dl.acm.org/citation.cfm?id=1315262. 

[4] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for 

intrusion detection. In Proceedings of the Network and Distributed Systems Security 

Symposium (NDSS 2003), pages 191-206, February 2003. 

[5] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible monitoring of virtual 

machines. In Proceedings of the 23rd Annual Computer Security Applications 

Conference (ACSAC 2007), pages 385-397, December 2007. ISBN:978-0-7695-3060-4. 

doi:10.1109/ACSAC.2007.10. 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4413005. 

[6] B. D. Payne. XenAccess Library. http://code.google.com/p/xenaccess/. 

[7] L. Litty and D. Lie. Manitou: A layer-below approach to fighting malware. In 

Proceedings of the 1st Workshop on Architectural and System Support for Improving 

Software Dependability (ASID 2006), pages 6-11, October 2006. ISBN:1-59593-576-2. 



 

158 

 

doi:10.1145/1181309.1181311. http://dl.acm.org/citation.cfm?id=1181311. 

[8] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. VMM-based hidden 

process detection and identification using Lycosid. In Proceedings of the 4th ACM 

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE 

2008), pages 91-100, March 2008. ISBN:978-1-59593-796-4. 

doi:10.1145/1346256.1346269. http://dl.acm.org/citation.cfm?id=1346269. 

[9] S. T.  Jones, A. C.  Arpaci-Dusseau, and R. H.  Arpaci-Dusseau. Antfarm: Tracking 

processes in a virtual machine environment. In Proceedings of the 2006 USENIX Annual 

Technical Conference (USENIX ATEC 2006), pages 1-14, June 2006. 

http://dl.acm.org/citation.cfm?id=1267360. 

[10] L. Litty, H.A. Lagar-Cavilla, and D. Lie. Hypervisor support for identifying covertly 

executing binaries. In Proceedings of the 17th USENIX Security Symposium (USENIX SS 

2008), pages 243-258, July 2008.doi:10.1.1.145.2378. 

http://dl.acm.org/citation.cfm?id=1496728. 

[11] B. D. Payne. Simplifying virtual machine introspection using LibVMI. 

http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf. 

[12] B. Hay and K. Nance. Forensics examination of volatile system data using virtual 

introspection. ACM SIGOPS Operating Systems Review, vol. 42, issue 3, pages 75-83, 

April 2008. doi:10.1145/1368506.1368517. http://dl.acm.org/citation.cfm?id=1368517. 

[13] K. Nance, M. Bishop, and B. Hay. Investigating the implications of virtual machine 

introspection for digital forensics. In Proceedings of the International Conference on 

Availability, Reliability and Security (ARES 2009), pages 1024-1029, March 2009. 

ISBN:978-1-4244-3572-2.doi:10.1109/ARES.2009.173. 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5066605. 

[14] B.  Dolan-Gavitt, T.  Leek, M.  Zhivich, J.  Giffin, and W. Lee. Virtuoso: Narrowing the 

semantic gap in virtual machine introspection. In Proceedings of the 32nd IEEE 

Symposium on Security and Privacy (IEEE SP 2011), pages 297-312, May 2011. 

ISBN:978-1-4577-0147-4. 

[15] Z. Gu, Z. Deng, D.  Xu, and X. Jiang. Process implanting: A new active introspection 



 

159 

 

framework for virtualization. In Proceedings of the 30th IEEE Symposium on Reliable 

Distributed Systems (SRDS 2011), pages 147-156, July 2011. ISBN:978-0-7695-4450-2. 

doi:10.1109/SRDS.2011.26. http://dl.acm.org/citation.cfm?id=2085362. 

[16] N. Petroni, T. Fraser, J. Molina, and W. Arbaugh. Copilot—a coprocessor-based kernel 

runtime integrity monitor. In Proceedings of the 13th USENIX Security Symposium 

(USENIX SS 2004), pages 179-194, August 2004. doi:10.1.1.93.5047. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.5047. 

[17] J. Rhee, R. Riley, D. Xu, and X. Jiang. Defeating dynamic data kernel rootkit attacks via 

VMM-based guest-transparent monitoring. In Proceedings of the International 

Conference on Availability, Reliability and Security (ARES 2009), pages 74-81, March 

2009.ISBN:978-1-4244-3572-2.doi:10.1109/ARES.2009.116. 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5066457. 

[18] A. Srivastava, I. Erete, and J. Giffin. Kernel data integrity protection via memory access 

control. Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/30785. 

[19] Xen Project.  http://www.xenproject.org/. 

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, 

and A. Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM 

Symposium on Operating Systems Principles (SOSP 2003), pages 164–177, December 

2003.ISBN:1-58113-757-5.doi:10.1145/945445.945462. 

http://dl.acm.org/citation.cfm?id=945462. 

[21] C. Betz. DFRWS 2005 Forensics Challenge: Memparser Analysis Tool. 

http://www.dfrws.org/2005/challenge/memparser.shtml. 

[22] Volatile Systems, LLC. The Volatility framework: Volatile memory artifacts extraction 

utility framework. https://www.volatilesystems.com/default/volatility. 

[23] A. Schuster. Pool allocations as an information source in Windows memory forensics. In 

Proceedings of the International Conference on IT-Incidents Management & IT-

Forensics (IMF 2006), pages 104-115, October 2006. 

[24] A. Schuster. Searching for processes and threads in Microsoft Windows memory dumps. 



 

160 

 

The International Journal of Digital Forensics and Incident Response, vol. 3, pages 10-

16, September 2006. doi:10.1016/j.diin.2006.06.010. 

http://dl.acm.org/citation.cfm?id=2296386. 

[25] Bugcheck. Grepexec: Grepping executive objects from pool memory. Uninformed 

Journal, vol. 4, June 2006. http://www.uninformed.org/?v=4&a=2. 

[26] A. Schuster. Ptfinder. http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html. 

[27] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, and D. Xu. DKSM: Subverting virtual 

machine introspection for fun and profit. In Proceedings of the 29th IEEE Symposium on 

Reliable Distributed Systems (SRDS 2010), pages 82-91, November 2010. ISBN:978-0-

7695-4250-8.doi:10.1109/SRDS.2010.39. 

http://doi.ieeecomputersociety.org/10.1109/SRDS.2010.39. 

[28] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference and enforcement of kernel 

data structure invariants. In Proceedings of the 24th Annual Computer Security 

Applications Conference (ACSAC 2008), pages 77-86, December 2008. ISBN:978-0-

7695-3447-3. doi:10.1109/ACSAC.2008.29. http://dl.acm.org/citation.cfm?id=1468197. 

[29] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust signatures for kernel 

data structures. In Proceedings of the 16th ACM Conference on Computer and 

Communications Security (CCS 2009), pages 566-577, November 2009. ISBN:978-1-

60558-894-0. doi:10.1145/1653662.1653730. http://dl.acm.org/citation.cfm?id=1653730. 

[30] Futuremark. PCMark05. http://www.futuremark.com/benchmarks/pcmark05/. 

[31] Linux/Unix nbench. http://www.tux.org/~mayer/linux/bmark.html. 

[32] ab - Apache HTTP server benchmarking tool. 

http://httpd.apache.org/docs/2.2/programs/ab.html. 

[33] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Revirt: Enabling intrusion analysis 

through virtual-machine logging and replay. In Proceedings of the 5th USENIX 

Symposium on Operating Systems Design and Implementation (OSDI 2002), pages 211-

224, 2002. doi:10.1145/844128.844148. http://dl.acm.org/citation.cfm?id=844148. 

[34] Privacy Rights Clearinghouse. Chronology of Data Breaches. 



 

161 

 

https://www.privacyrights.org/data-breach-header-top. 

[35] PCI Security Standards Council. https://www.pcisecuritystandards.org/. 

[36] Pippard, Inc. Bringing virtualization and thin computing technology to POS. 

http://www.retailsolutionsonline.com/doc/Brining-Virtualization-And-Thin-Computing-

0001. 

[37] Microsoft Corporation. Restaurant chain upgrades systems and cuts 2,000 servers using 

virtual machines. 

http://download.microsoft.com/documents/customerevidence/7146_jack__in_the_box_cs

.doc. 

[38] Micros Systems, Inc. Micros Systems announces deployment of micros 9700 HMS at M 

Resort Spa Casino in Las Vegas. http://www.micros.com/NR/rdonlyres/3E357BE8-

70DB-468D-B9AB-68F0E784527F/2296/MResort.pdf. 

[39] H.C. Kim, A.D. Keromytis, M. Covington, and R. Sahita. Capturing information flow 

with concatenated dynamic taint analysis. In Proceedings of the 4th International 

Conference on Availability, Reliability and Security (ARES 2009), pages 355-362, March 

2009. ISBN:978-1-4244-3572-2. 

[40] A. Zavou, G. Portokalidis, and A.D. Keromytis. Taint-Exchange: A generic system for 

cross-process and cross-host taint tracking. In Proceedings of the 6th International 

Workshop on Security (IWSEC 2011), pages 113-128, November 2011. ISBN:978-3-642-

25140-5. http://dl.acm.org/citation.cfm?id=2075670. 

[41] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual 

Conference on USENIX Annual Technical Conference (ATEC 2005), pages 41-46, June 

2005. http://dl.acm.org/citation.cfm?id=1247401. 

[42] A. Ho, M. Fetterman, C.  Clark, A Warfield, and S. Hand. Practical taint-based protection 

using demand emulation. In Proceedings of the 1st ACM SIGOPS/EuroSys European 

Conference on Computer Systems (EuroSys 2006), pages 29-41, October 2006. ISBN:1-

59593-322-0. doi:10.1145/1217935.1217939. http://dl.acm.org/citation.cfm?id=1217939. 

[43] B. Mazloom,  S. Mysore, B. Agrawal, and T. Sherwood. Understanding and visualizing 



 

162 

 

full systems with data flow tomography. In Proceedings of the 13 International 

Conference on Architectural Support for Programming Languages and Operating 

Systems (ASPLOS 2008), pages 211-221, March 2008. ISBN:978-1-59593-958-6. 

doi:10.1145/1346281.1346308. http://dl.acm.org/citation.cfm?doid=1346281.1346308. 

[44] Q.   Zhang, J.  McCullough, J.  Ma, N.  Schear, M.  Vrable, A.  Vahdat, A. C.  Snoeren, 

G. M.  Voelker, and S.  Savage. Neon: System support for derived data management. In 

Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual 

Execution Environments (VEE 2010), pages 63-74, July 2010. ISBN:978-1-60558-910-7. 

doi:10.1145/1735997.1736008. http://dl.acm.org/citation.cfm?id=1736008. 

[45] Ebtables. http://ebtables.sourceforge.net/. 

[46] H.P. Luhn. Computer for verifying numbers, U. S. P. Office, 1954. 

[47] Able Solutions Corporation. AbleCommerce: Featured clients. 

http://www.ablecommerce.com/Featured-Clients-C49.aspx. 

[48] osCommerce Corporation. osCcommerce: Open source e-commerce solutions. 

http://www.oscommerce.com/. 

[49] 911 Software Corporation. Payment processing software. http://www.911software.com/. 

[50] T. Chiueh. Program semantics-aware intrusion detection. 

http://www.ecsl.cs.sunysb.edu/PAID/index.html. 

[51] L. Lam and T. Chiueh. Checking array bound violation using segmentation hardware. In 

Proceedings of the 2005 International Conference on Dependable Systems and Networks 

(DSN 2005), pages 388-397, June 2005. ISBN:0-7695-2282-3. 

doi:10.1109/DSN.2005.25. http://dl.acm.org/citation.cfm?id=1078297. 

[52] Wikipedia. Address space layout randomization. 

http://en.wikipedia.org/wiki/Address_Layout_Randomization. 

[53] Nologin.org. Remote library injection. 

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf. 

[54] S. Fewer. Reflective dll injection, October 2008. 

http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf. 



 

163 

 

[55] A. Walters. Fatkit: Detecting malicious library injection and upping the "anti”. 

http://www.4tphi.net/fatkit/papers/fatkit_dll_rc3.pdf. 

[56] N. L. Petroni and M. Hicks. Automated detection of persistent kernel control-flow 

attacks. In Proceedings of the 14th ACM Conference on Computer and Communications 

Security (CCS 2007), pages 103-115, November 2007. ISBN:978-1-59593-703-2.  

doi:10.1145/1315245.1315260. http://dl.acm.org/citation.cfm?id=1315260. 

[57] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of kernel rootkits with 

VMM-based memory shadowing. In Proceedings of the 11th International Symposium on 

Recent Advances in Intrusion Detection (RAID 2008), pages 1-20, September 2008. 

ISBN:978-3-540-87402-7.doi:10.1007/978-3-540-87403-4_1. 

http://dl.acm.org/citation.cfm?id=1433008. 

[58] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny hypervisor to provide lifetime 

kernel code integrity for commodity OSes. In Proceedings of the 21st ACM SIGOPS 

Symposium on Operating Systems Principles (SOSP 2007), pages 335-350, December 

2007.ISBN:978-1-59593-591-5.doi:10.1145/1294261.1294294. 

http://dl.acm.org/citation.cfm?id=1294294. 

[59] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang. HIMA: A hypervisor-based integrity 

measurement agent. In Proceedings of the 25th Annual Computer Security Applications 

Conference (ACSAC 2008), pages 461-470, December 2009. ISBN:978-0-7695-3919-

5.doi:10.1109/ACSAC.2009.50. http://dl.acm.org/citation.cfm?id=1723256. 

[60] B. Jansen, H.V. Ramasamy, M. Schunter, and A. Tanner. Architecting dependable and 

secure systems using virtualization. In Architecting Dependable Systems. Lecture Notes 

in Computer Science, vol. 5135, pages 124-149, Springer-Verlag, Berlin, Heidelberg 

(2008).ISBN:978-3-540-85570-5.doi:10.1007/978-3-540-85571-2_6. 

http://dl.acm.org/citation.cfm?id=1428281. 

[61] K. Onoue, Y. Oyama, and A. Yonezawa. Control of system calls from outside of virtual 

machines. In Proceedings of the 2008 ACM Symposium on Applied computing (SAC 

2008), pages 2116-2121, March 2008. ISBN:978-1-59593-753-7. 

doi:10.1145/1363686.1364196. http://dl.acm.org/citation.cfm?id=1364196. 



 

164 

 

[62] X. Jiang and X. Wang. "Out-of-the-box” monitoring of VM-based high-interaction 

honeypots. In Proceedings of the 10th International Conference on Recent Advances in 

Intrusion Detection (RAID 2007), pages 198-218, September 2007. ISBN:3-540-74319-7. 

http://dl.acm.org/citation.cfm?id=1776450. 

[63] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for analyzing malware. In 

Proceedings of the 15th European Institute for Computer Antivirus Research Annual 

Conference (EICAR 2006), pages 180-192, April 2006. 

[64] L.  Xu and Z. Su. Dynamic detection of process-hiding kernel rootkits. Technical Report 

CSE-2009-24, University of California at Davis, 2009. 

http://leo.cs.ucdavis.edu/techrep/CSE-2009-24.pdf. 

[65] C. Maiero and M. Miculan. Unobservable intrusion detection based on call traces in 

paravirtualized systems. In Proceedings of International Conference on Security and 

Cryptography (SECRYPT 2011), SciTePress, July 2011. 

[66] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hardware 

virtualization extensions. In Proceedings of the 15th ACM Conference on Computer and 

Communications Security (CCS 2008), pages 51-62, October 2008. ISBN:978-1-59593-

810-7.doi:10.1145/1455770.1455779. 

http://dl.acm.org/citation.cfm?id=1455770.1455779. 

[67] Rapid7. Metasploit penetration testing software. http://www.metasploit.com. 

[68] Microsoft. MS08-067: Vulnerability in server service could allow remote code execution. 

http://support.microsoft.com/kb/958644. 

[69] Passmark Software. AppTimer.  http://www.passmark.com/products/apptimer.htm. 

[70] G. Hoglund and J. Butler. Rootkits: Subverting the Windows kernel. Addison-Wesley 

Professional, 2005. ISBN:0321294319. http://dl.acm.org/citation.cfm?id=1076346. 

[71] Microsoft. Sysinternals Process Utilities. http://technet.microsoft.com/en-

us/sysinternals/bb795533.aspx. 

[72] C. Barta. Token Stealing. http://www.ntdsxtract.com/downloads/Token_stealing.pdf. 

[73] A.  Baliga, X. Chen, and L. Iftode. Paladin: Automated detection and containment of 



 

165 

 

rootkit attacks. Rutgers University Department of Computer Science, 2006. 

[74] Z.  Wang, X. Jiang, W.  Cui, and P. Ning. Countering kernel rootkits with lightweight 

hook protection. In Proceedings of the 16th ACM Conference on Computer and 

Communications Security (CCS 2009), pages 545-554, November 2009. ISBN:978-1-

60558-894-0. doi:10.1145/1653662.1653728. http://dl.acm.org/citation.cfm?id=1653728. 

[75] H.  Yin, Z. Liang, and D. Song. Hookfinder: Identifying and understanding malware 

hooking behaviors. In Proceedings of the 15th Annual Network and Distributed System 

Security Symposium (NDSS 2008), February 2008. 

[76] Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering persistent kernel rootkits through 

systematic hook discovery. In Proceedings of the 11th International Symposium on 

Recent Advances in Intrusion Detection (RAID 2008), pages 21-38, September 2008. 

ISBN:978-3-540-87402-7.doi:10.1007/978-3-540-87403-4_2. 

http://dl.acm.org/citation.cfm?id=1433009. 

[77] N. L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh. An architecture for 

specification-based detection of semantic integrity violations in kernel dynamic data. In 

Proceedings of the 15th USENIX Security Symposium (USENIX SS 2006), pages 289-

304, August 2006. http://dl.acm.org/citation.cfm?id=1267356. 

[78] D. Tian, D. Kong, H. Changzhen, and P. Liu. Protecting kernel data through 

virtualization technology. In Proceedings of the 4th International Conference on 

Emerging Security Information Systems and Technologies (SECURWARE 2010), pages 

5-10, July 2010. ISBN:978-0-7695-4095-5.doi:10.1109/SECURWARE.2010.9. 

http://dl.acm.org/citation.cfm?id=1916038. 

[79] J. Butler, J. Undercoffer, and J. Pinkston. Hidden processes: the implication for intrusion 

detection. In Proceedings of the 2003 IEEE Workshop on Information Assurance, pages 

116-121, June 2003. 


