

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Run-Time Deep Virtual Machine Introspection and Its Applications

A Dissertation Presented

by

Jennia Hizver

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

July 2013

Copyright by

Jennia Hizver

2013

ii

Stony Brook University

The Graduate School

Jennia Hizver

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Tzi-cker Chiueh – Dissertation Advisor

Professor, Department of Computer Science

Jie Gao - Chairperson of Defense

Associate Professor, Department of Computer Science

Scott Stoller

Professor, Department of Computer Science

Steven Murdoch
Senior Research Associate, Computer Laboratory, University of Cambridge

This dissertation is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

iii

Abstract of the Dissertation

Run-Time Deep Virtual Machine Introspection and Its Applications

by

Jennia Hizver

Doctor of Philosophy

in

Computer Science

Stony Brook University

2013

Virtual Machine Introspection (VMI) is a new and important technique developed specifically
for virtualized environments. VMI provides the ability to perform virtual machine (VM)
monitoring by gathering VM run-time states from the hypervisor and analyzing those states to
obtain information about a running operating system (OS) without installing an agent inside the
VM. The agentless VMI approach has enabled the development of applications that combine the
best of two worlds: efficient centralization and effective monitoring.

VMI’s primary drawback is the semantic gap problem. The semantic gap refers to the difficulty
in interpreting low level run-time OS states obtained through VMI into a high level model of the
OS's state. We approached the problem through the creation of the real-time kernel data structure
monitoring (RTKDSM) system. The RTKDSM system leverages the rich OS analysis
capabilities of Volatility, an open source forensics framework, to simplify and automate analysis
of VM run-time states of Windows and Linux OSes. The RTKDSM system is designed as an
extensible software framework, which can be extended by writing Volatility plugins to perform
new VM analysis tasks. In addition, the RTKDSM system is built to perform real-time
monitoring of the extracted OS states in guest VMs to detect changes made to these states. This
feature is especially important for effective security monitoring of VMs. To improve the
efficiency of the RTKDSM framework, we reduce the overhead of monitoring changes to guest
OS states.

The RTKDSM system is capable of supporting a wide range of VMI applications due to the
RTKDSM framework’s flexibility and extensibility. Leveraging the RTKDSM framework, VMI
developers can easily create new VMI applications. To demonstrate the practicality and
effectiveness of the RTKDSM framework, we built three novel applications on top of the

iv

framework: (1) an inter-VM data flow tracking tool, (2) a VM lock down tool to restrict the
execution environment to running only approved user applications, and (3) a tool for detection of
malicious attacks that manipulate privileges of running processes. These systems are expected to
contribute to enhanced system monitoring in virtual machine environments.

v

Table of Contents

1 Introduction ... 1

1.1 Motivation and Challenges... 1

1.2 Dissertation Contributions.. 3

1.2.1 Real-Time Kernel Data Structure Monitoring System ... 3

1.2.2 Payment Card Data Flow Tracking Tool .. 4

1.2.3 Cloud-Based Application Whitelisting ... 5

1.2.4 Access Token Manipulation Detection Tool .. 5

2 Real-Time Kernel Data Structure Monitoring System .. 7

2.1 Introduction .. 7

2.2 Related Work.. 7

2.2.1 Semantically Aware Systems .. 7

2.2.2 Semantically Unaware Systems .. 8

2.2.3 VMI Frameworks For Semantically Aware Systems ... 9

2.2.4 Real-Time Data Structure Monitoring Systems .. 11

2.3 Background .. 13

2.3.1 Xen Hypervisor ... 13

2.3.2 Dirty Page Tracking .. 14

2.3.2.1 Shadow Paging Technique .. 14

2.3.2.2 Log Dirty Mode ... 15

2.3.3 Forensic Memory Analysis ... 16

2.3.3.1 Volatility Framework .. 17

2.3.3.2 Data Structure Classification ... 22

2.4 Design and Implementation ... 23

2.4.1 Assumptions and Requirements .. 23

2.4.2 Design ... 24

vi

2.4.3 Implementation ... 27

2.4.4 Limitations .. 33

2.5 Evaluation... 35

2.5.1 Experimental Setup ... 35

2.5.2 Spurious Page Fault Experiments ... 35

2.5.3 Performance Experiments ... 41

2.5.3.1 “Always-On” Mode... 42

2.5.3.2 “Periodic Polling” Mode ... 47

2.6 Summary .. 52

3 Automated Discovery of Credit Card Data Flow for PCI DSS Compliance 53

3.1 Introduction .. 53

3.2 Related Work.. 55

3.2.1 Dynamic Binary Instrumentation Systems ... 56

3.2.2 Emulator-Based Systems .. 57

3.3 Design and Implementation ... 58

3.3.1 Payment Card Processing System ... 58

3.3.2 Assumptions .. 59

3.3.3 Requirements .. 59

3.3.4 System Overview .. 59

3.3.5 Main Components ... 61

3.3.5.1 Tracing of Inter-VM Communications ... 62

3.3.5.2 Searching the Process Memory ... 64

3.3.5.3 Card Data Flow Reconstruction .. 65

3.4 Evaluation... 66

3.4.1 Card Data Flow Tracking Across Multiple VMs Hosted on the Same Physical Host
 68

3.4.1.1 Experimental Setup ... 68

vii

3.4.1.2 Experiments ... 68

3.4.2 Card Data Flow Tracking Across Multiple VMs Hosted on Multiple Physical Hosts
 71

3.4.2.1 Experimental Setup ... 72

3.4.2.2 Experiments ... 72

3.5 Limitations ... 73

3.6 Summary .. 74

4 Cloud-Based Application Whitelisting .. 75

4.1 Introduction .. 75

4.2 Background .. 76

4.2.1 Code Regions .. 77

4.2.1.1 Code in File-Backed Address Space Regions ... 78

4.2.1.2 Code in Private Address Space Regions ... 80

4.2.1.3 Other .. 82

4.2.2 Relevant Kernel Data Structures ... 82

4.2.2.1 Windows OS ... 82

4.2.2.2 Linux OS ... 86

4.2.2.3 System Call Table Structures .. 88

4.2.3 System Call Interception in Xen Hypervisor .. 89

4.3 Related Work.. 90

4.3.1 Code Verification Systems ... 90

4.3.1.1 Periodic Code Verification .. 91

4.3.1.2 Continuous Run-Time Code Verification ... 92

4.3.1.3 On-Demand Code Verification ... 94

4.3.2 System Call Interception Systems .. 95

4.3.2.1 Hardware Emulators .. 96

4.3.2.2 Para-Virtualized Systems .. 97

viii

4.3.2.3 Fully Virtualized Systems ... 98

4.4 System Architecture ... 98

4.4.1 Overview ... 98

4.4.2 Design and Implementation .. 101

4.4.2.1 Verification of Code in File-Backed Space... 101

4.4.2.2 Verification of Code in Private Space ... 103

4.4.3 Key Data Structures Monitored by CLAW .. 106

4.5 Evaluation... 107

4.5.1 Experimental Setup ... 107

4.5.2 Experiments .. 108

4.5.2.1 Effectiveness ... 108

4.5.2.2 Performance .. 108

4.6 Limitations ... 112

4.7 Summary .. 113

5 Access Token Manipulation Attack Detection Tool ... 114

5.1 Introduction .. 114

5.2 Background .. 116

5.2.1 Access Token Data Structure .. 116

5.2.2 Token Manipulation Attacks... 121

5.2.2.1 Access Token Patching ... 121

5.2.2.2 Access Token Stealing .. 125

5.3 Related Work.. 127

5.3.1 Control Data Manipulating Rootkits ... 127

5.3.1.1 Static Control Data Monitoring ... 127

5.3.1.2 Execution Path Monitoring ... 129

5.3.2 Non-Control Dynamic Data Manipulating Rootkits ... 131

5.3.2.1 Periodic Checks ... 131

ix

5.3.2.2 Continuous Monitoring ... 132

5.3.3 Summary of Methods .. 134

5.4 System Architecture ... 136

5.4.1 Overview ... 136

5.4.2 System Design and Implementation ... 137

5.4.2.1 Creation of a New Process .. 137

5.4.2.2 Access Token Analysis ... 138

5.4.2.3 Access Token Monitoring ... 140

5.4.3 “Always-on” and “Periodic Polling” Monitoring Modes 142

5.4.4 ATOM Implementation for Linux OS .. 143

5.4.4.1 Background ... 143

5.4.4.2 Implementation.. 145

5.4.5 Summary of Data Structures Monitored by ATOM ... 147

5.5 Evaluations ... 147

5.5.1 Experimental Setup ... 147

5.5.2 Experiments .. 148

5.5.2.1 Effectiveness ... 148

5.5.2.2 Performance Assessment... 150

5.6 Summary .. 150

6 Conclusions and Future Work ... 152

6.1 Conclusions .. 152

6.1.1 RTKDSM .. 153

6.1.2 vCardTrek ... 153

6.1.3 CLAW and ATOM ... 154

6.2 Future Work ... 155

6.2.1 RTKDSM .. 155

6.2.2 ATOM and CLAW ... 156

x

6.2.3 vCardTrek ... 156

Bibliography .. 157

xi

List of Tables

Table 2.1 VMI frameworks summary. .. 11

Table 2.2 Real-time data structure monitoring systems summary. ... 12

Table 2.3 Examples of a Volatility profile, a Volatility object, and a Volatility plugin. 21

Table 2.4 Data structures used in the experiments. .. 37

Table 2.5 Page faults on pages containing the PsActiveProcessHead, TCBTable, and init_task
structures in the idle Windows VM #1 and Linux VM # 1 recorded during 1 minute. 37

Table 2.6 Page faults on pages containing EPROCESS structures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded during 1 minute. ... 38

Table 2.7 Page faults on pages containing ETHREAD structures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded during 1 minute. ... 39

Table 2.8 Page faults on pages containing TOKEN structures for the 50 calc.exe test processes in
the idle Windows VM #1 recorded during 1 minute. ... 39

Table 2.9 Page faults on pages containing PEB_LDR_DATA structures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded during 1 minute. ... 40

Table 2.10 Page faults on pages containing task_struct structures for the 50 gcalctool test
processes in the idle Linux VM #1 recorded during 1 minute. ... 40

Table 2.11 Page faults on pages containing files_struct structures for the 50 gcalctool test
processes in the idle Linux VM #1 recorded during 1 minute. ... 41

Table 2.12 Performance in the “always-on” mode using the PCMark05 benchmark in Windows
OS. .. 44

Table 2.13 Performance in the “always-on” mode using the Apache benchmark in Windows OS.
... 45

Table 2.14 Performance in the “always-on” mode using the NBench & gzip benchmarks in
Linux OS. .. 46

Table 2.15 Performance in the “always-on” mode using the Apache benchmark in Linux OS. .. 47

Table 2.16 Performance in the “periodic polling” mode for the PsActiveProcessHead, TCBTable,
and init_task data structures. ... 49

Table 2.17 Performance in the “periodic polling” mode for the EPROCESS data structure. 49

Table 2.18 Performance in the “periodic polling” mode for the ETHREAD data structure. 50

Table 2.19 Performance in the “periodic polling” mode for the TOKEN data structure. 50

Table 2.20 Performance in the “periodic polling” mode for the task_struct data structure. 51

xii

Table 2.21 Performance in the “periodic polling” mode for the files_struct data structure. 51

Table 3.1 The data structures accessed by vCardTrek. ... 63

Table 3.2 Evaluation suites and testing results. .. 67

Table 4.1 Code source types in memory. .. 77

Table 4.2 Windows system calls. .. 79

Table 4.3 Linux system calls. ... 80

Table 4.4 Code verification systems. .. 91

Table 4.5 Comparison of system call monitoring systems. .. 96

Table 4.6 Summary of the data structures monitored by CLAW. .. 107

Table 4.7 Run-time performance of CLAW. .. 109

Table 4.8 Startup performance of CLAW... 110

Table 4.9 Run-time performance of NtCreateSection and NtMapViewOfSection system call
interception. .. 111

Table 4.10 Startup performance of CLAW using NtCreateSection and NtMapViewOfSection
system call interception... 112

Table 5.1 Non-control data manipulating rootkit detection systems. ... 136

Table 5.2 Summary of the data structures monitored by ATOM. .. 148

Table 6.1 Summary of the data structures used by vCardTrek, CLAW, and ATOM. 154

xiii

List of Figures

Figure 1.1 The RTKDSM system provides the underlying interfaces for the development of
vCardTrek, CLAW, and ATOM. .. 4

Figure 2.1 Logical layout and workflow of the system. ... 24

Figure 2.2 System implementation. .. 28

Figure 2.3 Windows OS test environment .. 35

Figure 2.4 A sample Windows OS command script to invoke 10 processes. 36

Figure 3.1 (1) Inter-VM network communications are tracked by vCardTrek, and (2) the memory
of the interacting processes is inspected for card data. ... 60

Figure 3.2 Card data flow concatenation from multiple physical hosts. 61

Figure 3.3 (1-2-3) Network connections are intercepted, and the processes participating in the
network connections are determined; (4-5) the memory of the identified processes is searched for
card data, and the card data flow is reconstructed. ... 62

Figure 3.4 (A) 4 possible states of two inter-VM communicating processes (grey rectangle - the
card number found in process memory, white rectangle - no card number found in process
memory. The arrow indicates the direction of connection initiation, not traffic flow); (B) 4
possible states of processes within a VM at packet receiving time and at packet sending (the
same process may serve as the receiving and sending process). .. 66

Figure 3.5 Processes involved in card data flow (CreditLine flow at the top, osCommerce flow in
the middle, and AbleCommerce flow at the bottom). ... 69

Figure 3.6 AbleCommerce Card Data Flow (machines found to participate in the card data flow
are shown in grey) (left) using vCardTrek; (right) using a packet sniffer. 69

Figure 3.7 osCommerce Card Data Flow (machines found to participate in the card data flow are
shown in grey) (left) using vCardTrek; (right) using a packet sniffer. ... 69

Figure 3.8 CreditLine Card Data Flow (machines found to participate in the card data flow are
shown in grey) (left) using vCardTrek; (right) using a packet sniffer. ... 70

Figure 3.9 Detailed information uncovered about a test card, including the card number
(4556156372833798), the card expiration date (0412), the CVV number (354), and the
cardholder’s name (Jon Jones) were identified within the process memory. 70

Figure 3.10 Card data flow across multiple VMs hosted on multiple physical hosts. 73

Figure 4.1 Windows code and memory management data structures. ... 83

Figure 4.2 The PEB data structure. ... 84

Figure 4.3 Linux code and memory management data structures. ... 87

xiv

Figure 4.4 System call dispatching. .. 89

Figure 4.5 The CLAW architecture. ... 99

Figure 4.6 Windows OS process creation flow. ... 101

Figure 4.7 The CLAW system call interception steps – we enable/disable the present bit on
system call entry/return. .. 105

Figure 4.8 Combination of the CLAW and the MSR-register based system call interception. .. 106

Figure 5.1 _EPROCESS data structure. .. 116

Figure 5.2 EX_FAST_REF data structure. .. 117

Figure 5.3 TOKEN data structure in Windows XP. ... 117

Figure 5.4 Static and variable parts of the token in Windows XP [70]. 118

Figure 5.5 SID_AND_ATTRIBUTES and SID data structures. .. 119

Figure 5.6 LUID_AND_ATTRIBUTES data structure. ... 120

Figure 5.7 SIDs and Privileges contained in the process’s access token using Sysinternals’
Process Explorer tool [71]. ... 120

Figure 5.8 TOKEN data structure in Windows Vista. .. 124

Figure 5.9 _SID_AND_ATTRIBUTES_HASH data structure. ... 124

Figure 5.10 Impersonation levels. ... 125

Figure 5.11 The ATOM architecture. ... 138

Figure 5.12 Windows OS process creation flow. ... 138

Figure 5.13 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProfileList key hive .. 139

Figure 5.14 _SEP_TOKEN_PRIVILEGES structure in Windows Vista and later Windows
versions ... 141

Figure 5.15 The task_struct data structure. ... 143

Figure 5.16 The task_struct and cred data structures in Linux kernel versions >= 2.6.29. 144

Figure 5.17 Rootkit attacks on process credentials in Linux OS. ... 145

xv

Acknowledgements

First and foremost, I want to express my deepest gratitude to my advisor, Dr. Chiueh, for his

patience, thoughtfulness, and a sharp eye for detail. His guidance and mentorship were of the

highest quality. Without his support, this dissertation would have never come into being. I strive

to achieve the same brilliance of mind and the ability for great visions.

I am indebted and thankful to my committee members, Dr. Gao, Dr. Murdoch, and Dr. Stoller for

their support, advice, and helpful insights. Their time and contributions are much appreciated.

This achievement was only possible because of my parents, Maria and Roman, whose love,

support, and understanding have carried me through life. Thank you for believing in me!

To my family, Genevieve and Ilia, who have supported me through good times and bad.

xvi

Publications

[1] J. Hizver and T. Chiueh. Cloud-based application whitelisting. In Proceedings of the 6th

IEEE International Conference on Cloud Computing (CLOUD 2013), pages 636-643,

July 2013.

[2] J. Hizver and T. Chiueh. Tracking payment card data flow using virtual machine state

introspection. In Proceedings of the 27th Annual Computer Security Applications

Conference (ACSAC 2011), pages 277-285, December 2011. ISBN: 978-1-4503-0672-0.

doi:10.1145/2076732.2076771. http://dl.acm.org/citation.cfm?id=2076771.

[3] J. Hizver and T. Chiueh. Automated discovery of credit card data flow for PCI DSS

compliance. In Proceedings of the 2011 IEEE 30th International Symposium on Reliable

Distributed Systems (SRDS 2011), pages 51-58, July 2011. ISBN: 978-0-7695-4450-2.

doi:10.1109/SRDS.2011.15. http://dl.acm.org/citation.cfm?id=2085039.2085350.

[4] J. Hizver and T. Chiueh. An introspection-based memory scraper attack against

virtualized point of sale systems. In Proceedings of the 2011 International Conference on

Financial Cryptography and Data Security (FC 2011), Lecture Notes in Computer

Science, vol. 7126, pages 55-69, March 2011. ISBN:978-3-642-29888-

2.doi:10.1007/978-3-642-29889-9_6.http://dl.acm.org/citation.cfm?id=2341444.2341451.

1

1 Introduction

1.1 Motivation and Challenges

Cloud computing ushers in an era of consolidated information technology infrastructure

that is elastic, available, and scalable. Virtualization is a critical building block in this evolution

enabling multiplexing of the underlying computing resources. With the growth of virtualization,

re-design of traditional agent-based monitoring technologies is underway by moving monitoring

functionalities out of virtual machines (VMs) to delegate responsibilities to automated services in

the cloud using the virtual machine introspection (VMI) technology. The cloud computing

industry has witnessed a growing adoption of the VMI technology for building a wide range of

agentless tools including intrusion detection systems, virtual firewalls, malware analysis, and live

memory forensics [1-3]. In the agentless approach, users can focus on using their VMs without

the burden of monitoring VM operations. Furthermore, such approach de-couples the monitoring

system from the monolithic OS and eliminates the need for homogeneous environments where

every VM runs a common monitoring suite.

VMI was first introduced to describe the operation of the Livewire intrusion detection

system [4], which was placed in a special management VM isolated from the other VMs to

observe their execution. Using the VMI approach, the management VM reconstructs the internal

state of the monitored VMs through low level information, such as memory pages. Access to this

information is possible because the hypervisor on which the management VM runs has complete

access to all memory in the monitored VMs and can read it as needed. Given a VM’s entire

physical memory, it is possible for a VMI application in the management VM to access the

2

contents of the monitored VM’s kernel and user-space memory and to extract the memory-

resident critical OS data structures. From these data structures, the VMI application can then

infer exactly what the OS is doing.

While enabling the implementation of centralized agentless monitoring architectures,

VMI has to overcome the so-called semantic gap to providing efficient monitoring of VMs.

Since native OS application programming interfaces (APIs) are not available to VMI, the low

semantic level in which data are captured by the hypervisor makes it difficult to render the OS

high-level semantic views needed to make decisions. Given the low level VM views, the first

step in overcoming the semantic gap is to gather information about the state of the OS by

locating and examining the internal data structures that the in-guest APIs use. This step generally

requires tedious, prolonged, and error-prone efforts to accurately translate the acquired low level

views to the OS structures in the VM. The process is particularly challenging in closed source

OSes such as Windows, where details of data structures must be obtained using reverse

engineering. Even for systems where the OS source code is available, reconstructing data

structures can be an overwhelming task. Moreover, the time and efforts spent reverse-

engineering the internals of one OS version may not be applicable to future versions. The lack of

automated VMI frameworks that aggregate the underlying data structure knowledge of multiple

OS flavors and versions to eliminate reverse-engineering efforts presently poses a significant

challenge for developers of VMI applications.

This work contributes toward the goal of providing automated frameworks for

development of VMI applications.

3

1.2 Dissertation Contributions

1.2.1 Real-Time Kernel Data Structure Monitoring System

 In Chapter 2, we present the real-time kernel data structure monitoring (RTKDSM)

system that allows developers of VMI applications to perform real-time analysis and monitoring

of OS data structures in a VM memory. We demonstrate how applying the vast data structure

knowledge in an existing open source computer forensics platform enables the development of

VMI tools to proceed more rapidly and with significant reduction in effort. Our system does not

require VMI application developers to know the version of the guest OS in advance, since it is

determined on the fly by the framework, nor does it require access to the OS source code,

making it also suitable for real-world production execution environments.

 The RTKDSM system is able to identify at run-time data structures of interest in memory

of monitored VMs and to react to changes in those data structures. Responding to changes

effectively in real-time requires the system to react to a potentially large volume of events

impacting system performance. As VMI developers may need to track changes to rapidly

changing data structures or to a large number of data structures, we introduce a performance

optimization technique to reduce the monitoring overhead.

 To demonstrate the applicability of the RTKDSM system, we developed three agentless

monitoring systems: payment card data flow tracking tool (vCardTrek), cloud-based application

whitelisting solution (CLAW), and access token manipulation detection tool (ATOM) (Figure

1.1). These systems are expected to contribute to enhanced monitoring in cloud computing

centers.

4

Figure 1.1 The RTKDSM system provides the underlying interfaces for the development of
vCardTrek, CLAW, and ATOM.

1.2.2 Payment Card Data Flow Tracking Tool

 Credit and debit card payment processing systems are key elements in financial

transactions. Negligence in securing these systems makes them vulnerable to hacking attacks,

which may lead to significant monetary losses for both merchants and the financial

organizations. To reduce this risk, mandatory security compliance regulations, such as the

Payment Card Industry Data Security Standard (PCI DSS), were developed and adopted by the

industry. A key pre-requisite of the PCI DSS compliance process is the ability to identify the

components of the payment systems directly involved with the card data (i.e. process, transmit,

or store). However, existing data flow tracking tools cannot fully automate the process of

identifying system components that interact with card data, because they either can not examine

encrypted communications or they use an instrumentation-based approach and thus require a

5

priori detailed knowledge of the payment card processing systems.

 In Chapter 3, we describe the implementation and evaluation of a novel tool called

vCardTrek to identify the card data flow in commercial payment card processing systems

running on virtualized servers. vCardTrek performs real-time monitoring of network

communications between virtual machines and inspects the memory of the communicating

processes for unencrypted card data. Our implementation can accurately identify the system

components involved in card data flow even when the communications among system

components are encrypted. Effectiveness of this tool is demonstrated through its successful

discovery of the card data flow of several open- and closed-source payment card processing

applications.

1.2.3 Cloud-Based Application Whitelisting

In Chapter 4, we present a cloud-based application whitelisting system called CLAW,

which leverages the centralized monitoring capability of the VMI technology to guarantee that

only application binaries in a pre-approved set are allowed to run in each VM under its

management. By applying the RTKDSM system, CLAW performs its security policy

enforcement without installing any agents inside the monitored VMs. We describe the key

techniques in the design and implementation of CLAW and compare them with previous

hypervisor-based application whitelisting systems.

1.2.4 Access Token Manipulation Detection Tool

The direct kernel object manipulation (DKOM) technique is used by hackers to

manipulate OS-critical data structures without the use of application programming interfaces

(APIs). Rootkits often use this technique to hide their presence by manipulating data structures

6

of running processes. In a similar DKOM attack, called access token manipulation, rootkits

escalate process privileges by overwriting the malicious process’s privileges with those of a

more privileged account.

In Chapter 5, we present the design, implementation, and evaluation of an access token

manipulation detection tool called ATOM. ATOM performs real-time monitoring of the running

processes’ access tokens storing process privileges and is able to detect attacks on access tokens

for privilege escalation purposes. A key design decision of ATOM was to apply the RTKDSM

system to monitor the access tokens’ states. Effectiveness of the tool was demonstrated through

its successful discovery of real world access token manipulation attacks.

7

2 Real-Time Kernel Data Structure Monitoring System

2.1 Introduction

 VMI systems fall into one of the two categories: those that are semantically aware and

those that are semantically unaware. Semantic awareness capability indicates whether a VMI

system seeks to extract different OS characteristics to carry out its operations. For instance, a

semantically aware VMI system may parse VM memory to build a list of running processes and

to obtain process-specific information. Semantically unaware VMI systems are largely unaware

of the OS semantics associated with the VMs they manage.

 In this study, we present a real-time kernel data structure monitoring (RTKDSM) system

for use by semantically aware VMI applications. The RTKDSM system that has the ability to

automatically identify OS kernel data structures and continuously track all changes that occur to

the data structures marked as structures of interest by semantically aware VMI systems. The

RTKDSM system is designed as a modular component suitable for integration into VMI tools to

ensure continuous monitoring of critical data. We have implemented a working prototype of the

RTKDSM system for the Xen hypervisor.

2.2 Related Work

2.2.1 Semantically Aware Systems

The availability of VMI firstly triggered the development of security monitoring systems,

which were mainly divided into passive and active monitoring systems. Passive monitoring

systems were only able to inspect a VM and report an attack instead of preventing it [3-6].

Conversely, active monitoring systems interposed on events of interest within the monitored VM

8

and prevented malicious acts instead of relying on mere detection [2, 7, 8]. While some of these

VMI systems were entirely agentless, others bridged part of the semantic gap by placing

components inside the monitored VM.

Livewire, the first host-based intrusion detection system, monitored VMs to gather

information and detect attacks from within the monitored VM by acquiring semantic awareness

through analysis of kernel dumps [4].

Another semantically aware system, Lares, inserted internal “hooks” into the monitored

VM that activated an external monitoring control upon execution [2]. The monitor interrupted

execution and passed control to a security mechanism to deliver understanding of the OS’s

semantics.

VMwatcher demonstrated how VMI could be used for passive out-of-VM anti-virus

monitoring [3]. VMwatcher reconstructed OS states from a snapshot a VM memory. The

authors presented a detailed description of how the OS states were reconstructed that clearly

highlighted both the need for expert knowledge of the OS to implement a VMI system and the

fragility of the approach to changes of the OS.

VMwall application-level firewall executed outside of the VM and intercepted network

connections to and from the hosted VMs [1]. It applied VMI to correlate each flow to

sending/receiving processes through extraction of process and socket data structures, and used

predefined policies to decide whether a connection should be allowed.

2.2.2 Semantically Unaware Systems

AntFarm was specifically designed to monitor a VM’s memory management unit (MMU)

9

to infer information about the VM’s processes and OS [9]. AntFarm was semantically unaware

of the monitored system but built up such awareness over time.

LycosID system used cross-view validation techniques to compare running processes

visible from high and low abstraction layers [8]. The system then patched running code to enable

reliable identification of hidden processes. No detailed implementation information about the

monitored OS, such as versions and patch levels of the target OS, was required.

Manitou, a VMI system designed to detect malware, compared known instruction-page

hashes with memory-page hashes at runtime [7]. If no match was found, the instruction page was

considered corrupted and marked as non-executable. Similarly, Patagonix, a system that ensured

no binary code could be covertly executed on the monitored system, used the processor MMU to

receive notifications whenever binary code was executed and identified the code using the binary

format specification [10]. Unrecognized code, whether malicious or in a form that could not be

understood, was reported by the system. The Patagonix approach was OS-agnostic so long as an

executable file format could be understood by the monitor and the executed code could be

identified.

2.2.3 VMI Frameworks For Semantically Aware Systems

Several research studies have attempted to developed frameworks to make it easier for

researchers to experiment with the many uses of VMI without focusing on low-level details.

XenAccess framework was developed as a monitoring library for the Xen hypervisor [6].

The purpose of this library was to provide memory and disk monitoring capabilities for both

open source and closed source OSes. XenAccess library required the kernel symbol and address

information associated with the guest OS to perform memory mapping and conversions. The

10

symbol information was sensitive to the guest OS and was not very portable. XenAccess was

only able to generate a list of running processes and loaded modules. XenAccess was later

extended to create the LibVMI library to provide introspection functions for reading and writing

memory in multiple virtualization platforms [11].

 Hay and Nance created the VIX tools to perform forensic analysis of VMs running on

Xen [12, 13]. The VIX tools were designed to allow a forensic investigator to perform live

analysis of a VM system. VIX consisted of a library of common functions and a suite of tools

which mimicked the behavior of common Unix command line utilities, such as ps, lsmod,

netstat, lsof, who, and top. Using VIX, unobtrusive live system analysis was performed on the

target VM without changing the system state during the data acquisition process.

A whole-system binary code extractor, called Virtuoso, generated out-of-box code for use

in VMI [14]. Using Virtuoso, developers could create VMI programs to monitor VMs running a

variety of different OSes.

In another study, a novel technique called process implanting was proposed to narrow the

semantic gap by implanting a process into the monitored VM and executing it under the cover of

an existing running process to bridge the semantic gap between the VMI application and the

monitored VM [15]. With the protection and coordination from the hypervisor, the implanted

process ran with a degree of stealthiness and exited gracefully without leaving negative impact

on the VM. The downside of this approach was that any reliance on functionality on the

monitored VM ran the risk of deception by malware present in that VM, as if the implanted

process were running as a process on the VM itself.

Table 2.1 summarizes the existing VMI frameworks and compares the RTKDSM system

11

with the described VMI frameworks.

Table 2.1 VMI frameworks summary.

System Detection of
Changes

Exposed to the
Monitored OS

Built on the Existing Forensic
Framework

RTKDSM System Synchronous No Yes

XenAccess Asynchronous No No

VIX Asynchronous No No

Virtuoso Asynchronous No No

Process Implanting Synchronous Yes No

2.2.4 Real-Time Data Structure Monitoring Systems

A number of studies have developed out-of-VM real-time data structure monitors to

detect integrity violations. Table 2.2 compares the RTKDSM system to these monitors.

Petroni et al. [16] proposed a framework for detecting attacks against dynamic kernel

data structures using a coprocessor-based external monitor. The monitoring system periodically

compared actual observed dynamic kernel data structures in the snapshots of kernel memory

with specifications of correct kernel data structures and reported any semantic integrity

violations against the kernel’s dynamic data. The data structure extractions were performed

asynchronously with the monitored system’s execution. The asynchronous nature of this

processing rendered this approach vulnerable to dynamic data attacks launched and withdrawn

between snapshot periods. On the contrary, the system developed in this study is able to extract

and analyze the data structures synchronously, overcoming the limitation of the coprocessor-

based approach.

12

Table 2.2 Real-time data structure monitoring systems summary.

System Detection

Mode

Monitoring Exposed to

monitored OS

Supports closed

source OSes

Supports HVM

RTKDSM Synchronous Passive No Yes Yes

Petroni et al. Asynchronous Passive No Yes No

Sentry Synchronous Active Yes No No

Rhee et al. Synchronous Active No Yes No

In another related study, Srivastava et al. [18] developed Sentry, a VM-based system that

prevented illegitimate changes to critical kernel data structures. Sentry’s memory protection

required modifications to the monitored OS to identify locations of dynamically-allocated kernel

data objects. Code instrumentations were introduced within the monitored OS’s kernel to

activate and deactivate protections on kernel object construction and destruction. The

instrumentation passed the physical page frame number (PFN) of the newly allocated memory

page holding a kernel data structure requiring protection to the hypervisor. When the memory

protection module in the hypervisor received a request to add protection for the monitored VM’s

page, it added the PFN to a list of protected pages and removed the page’s write permission

causing page faults on all attempted kernel object alterations. Sentry allowed only those

alterations invoked by legitimate kernel functionality. Sentry assumed that existing techniques

could protect the core kernel code’s integrity, so an attacker would not be able to remove the

instrumentation. The system required the OS source code in order to partition a structure into

secure and insecure parts. This kind of protection was difficult to design for a closed source

operating system such as Windows. Compared Sentry, the RTKDSM system offers an advantage

of not requiring modifications to the monitored OS.

13

Rhee et al. [17] proposed a solution to prevent dynamic rootkit attacks on kernel data

structures using QEMU emulator as an external monitor. The system monitored the execution of

the OS at the instruction level within QEMU. At runtime, the system identified data structures in

memory and intercepted all writes to their address ranges. The system relied on writing a policy

that described how the monitor should identify the data structure in a raw memory as well as the

characteristics of an attack against the data structure. Only limited details were given regarding

the data structures extraction mechanisms used by the system. The methodology described in the

study was only portable to VM monitors that supported memory interposition to translate guest

instructions into host instructions. Unlike in the RTKDSM system, such methodology could not

be extended to support commercial hypervisors that did not support memory interposition, such

as Xen and VMWare ESX.

2.3 Background

2.3.1 Xen Hypervisor

The RTKDSM architecture is designed and implemented using the popular open-source

Xen hypervisor [19, 20] capable of supporting multiple types of guest OSes, including Windows

and Linux. This section gives an overview of Xen and describes concepts used in our prototype

implementation.

The Xen hypervisor is the lowest and most privileged software layer, which is added to a

single physical machine to abstract the underlying hardware by creating multiple interfaces to

VMs. To present a VM with the illusion that it is running on the bare hardware, the hypervisor

dynamically partitions and shares the available physical resources such as CPU, memory,

14

network connections, and I/O devices among multiple concurrently running VMs. The operating

system and software applications are executed on top of the VMs.

The first VM, which boots automatically after the Xen hypervisor is loaded, is called the

Dom0 domain. The Dom0 domain is typically a modified version of UNIX operating system. By

default, Dom0 is granted special privileges for managing and controlling other VMs including

access to the raw memory of other VMs known as DomU domains. DomUs may either be

unmodified closed-source OSes, if the host processor supports x86 virtualization (hardware

assisted virtualization) or modified OSes with special drivers that support Xen features (para-

virtualization). Hardware assisted virtualization approach uses help from hardware capabilities

developed by Intel (VT-x hardware) and AMD (AMD-V hardware). This technology made

virtualization of closed-source OSes possible without requiring modifications to the guest OS.

Para-virtualization is the technique whereby the hypervisor and the OS running in a VM

communicate through hypercalls. This technique requires modifications to the guest OS to

introduce the hypercalls.

This study focuses on Hardware Virtual Machines (HVM), which utilize hardware

assisted virtualization technology.

2.3.2 Dirty Page Tracking

To perform real-time monitoring of kernel data structures, the RTKDSM system builds

on top of the existing log dirty mode technique and the shadow paging technique.

2.3.2.1 Shadow Paging Technique

In the shadow paging technique, Xen maintains two versions of page tables for each VM:

15

guest OS page tables controlled by the guest OS and shadow page tables controlled by the

hypervisor. The guest OS translates virtual addresses into physical addresses of the VM via its

guest page tables. The real page tables, exposed to the hardware MMU, are shadow page tables

maintained by the hypervisor. The structure of shadow page table is the same as the guest page

table. To avoid an extra level of indirection on every memory access, the shadow page tables

map directly from the guest virtual addresses into the hardware machine addresses. Each shadow

entry is created on-demand according to the guest page table entry. The hypervisor detects all

modifications to the guest page tables and ensures that the shadow page table entries being used

by the hardware for translations correspond to those of the guest OS environment. This is

commonly done by write protecting the guest page tables and trapping any access to the page

table pointer by a guest VM. When an entry is added or changed in a guest page table, Xen

translates the physical address into its corresponding machine address, performs any necessary

adjustments, and then updates the corresponding shadow page table. This process is called page

table entry (PTE) propagation.

2.3.2.2 Log Dirty Mode

The Xen’s log dirty mode capability was originally designed for live VM migration to

track dirty memory pages between consecutive migration rounds. VM live migration employs an

iterative copy mechanism to ease performance degradation during migration. In the first

iteration, all the VM pages are transferred to the designated host without pausing the VM.

Subsequent iterations copy only those pages dirtied during the previous transfer phase. To do so,

the hypervisor enables the log dirty mode of the shadow page tables to record dirty pages. The

principle of the log dirty mode is as follows. Initially, all the shadow entries are marked as read-

only, regardless of the permission of its associated guest entries. When the guest OS attempts to

16

modify a memory page, a shadow page write-fault occurs and is intercepted by the hypervisor. If

the write is permitted by its associated guest entry, the hypervisor grants write permission to the

shadow entry and marks the page as a dirty one accordingly. Subsequent write accesses to this

page do not incur any shadow page faults in the current round.

2.3.3 Forensic Memory Analysis

The field of memory analysis first became popular within the digital forensics

community. Forensic monitoring and analysis occurs after a system is known to have been

attacked. Instead of detecting or preventing an attack, the goals in this case are to learn more

about what happened during the attack. Memory snapshots of a running system are taken and

analyzed post-intrusion to determine details about the activities happening on the machine at the

time of the snapshot.

The memory analysis has evolved from a basic technique, such as string matching, to

more complex methods, such as list traversal [6, 21, 22] and signature-based scanning [23-26].

The list traversal method works by looking at hard-coded locations and offset values to identify

the well-known key data structures and using these data structures to derive other data structures

by traversing linked lists. Often, for a given version of an OS or application software these hard-

coded locations and offset values are consistent on different machines and at different times.

Finding the appropriate values in the first place typically involves reverse engineering, source

code analysis, or vendor-provided debugging symbols. Conversely, signature-based scanning

involves a linear scan of physical memory looking for a constant pattern of bytes using known

signatures. For instance, some Windows data structures are tagged with a four byte ASCII

identifier as well as size information and therefore can be easily found in memory using

17

signature-based scanning.

2.3.3.1 Volatility Framework

The runtime state information accessed using the RTKDSM system is memory as it

stores current OS states of the system in OS data structures. Our system utilizes the open-source

Python-based Volatility forensic memory analysis framework for extraction and analysis of such

data structures in the monitored VM memory [22]. Volatility supports the following operating

systems and versions:

• Windows

o 32-bit Windows XP Service Pack 2 and 3

o 32-bit Windows 2003 Server Service Pack 0, 1, 2

o 32-bit Windows Vista Service Pack 0, 1, 2

o 32-bit Windows 2008 Server Service Pack 1, 2

o 32-bit Windows 7 Service Pack 0, 1

o 64-bit Windows XP Service Pack 1 and 2

o 64-bit Windows 2003 Server Service Pack 1 and 2

o 64-bit Windows Vista Service Pack 0, 1, 2

o 64-bit Windows 2008 Server Service Pack 1 and 2

o 64-bit Windows 2008 R2 Server Service Pack 0 and 1

o 64-bit Windows 7 Service Pack 0 and 1

o Image Identification

o Processes and DLLs

o Process Memory

o Kernel Memory and Objects

18

o Networking

o Registry

o Malware/Rootkits

o Win32k / GUI Memory

o File Formats

o File System

o Miscellaneous

• Linux

o 32-bit Linux kernels 2.6.11 to 3.5

o 64-bit Linux kernels 2.6.11 to 3.5

o OpenSuSE, Ubuntu, Debian, CentOS, Fedora, Mandriva, etc.

• Mac OSX

o 32-bit 10.5.x Leopard

o 32-bit 10.6.x Snow Leopard

o 64-bit 10.6.x Snow Leopard

o 32-bit 10.7.x Lion

o 64-bit 10.7.x Lion

o 64-bit 10.8.x Mountain Lion

Volatility is a modular framework in which most of the functionality is implemented by

plugins performing a certain function, such as identifying a list of running processes. Plugins are

declared as Python classes by extending base Volatility classes. When using Volatility as a

library, it can be extended by new plugins from within one’s code without embedding them into

the library itself. Volatility currently includes over 100 known plug-ins divided info the

following major groups:

• Windows

19

o Image Identification

o Processes and DLLs

o Process Memory

o Kernel Memory and Objects

o Networking

o Registry

o Malware/Rootkits

o Win32k / GUI Memory

o File Formats

o File System

o Miscellaneous

• Linux / Mac OSX / Android

o Processes

o Process Memory

o Kernel Memory and Objects

o Networking

o Malware/Rootkits

o System Information

o Miscellaneous

Volatility provides support for a variety of processor architectures through the use of

address spaces (AS) intended to abstract the handling of different memory images and formats

and to facilitate random access to a memory image by a plugin. A valid AS for a given memory

image is derived by Volatility automatically. The derived AS is used to satisfy a read request by

a plugin. Exactly how the read request is satisfied is not important to the plugin code, so long as

the read request is satisfied. Volatility supports the following ASes:

• FileAddressSpace - direct file AS

20

• Legacy Intel x86 AS

o IA32PagedMemoryPae

o IA32PagedMemory

• Standard Intel x86 AS

o JKIA32PagedMemoryPae

o JKIA32PagedMemory

• AMD64PagedMemory - AMD 64-bit AS

• WindowsCrashDumpSpace32 - this AS supports windows Crash Dump format (x86)

• WindowsCrashDumpSpace64 - this AS supports windows Crash Dump format (x64)

• WindowsHiberFileSpace32 - this AS supports windows hibernation files (x86 and x64)

• EWFAddressSpace - this AS supports expert witness (EWF) files

• FirewireAddressSpace - this AS supports direct memory access over firewire

• LimeAddressSpace - this AS supports LiME (Linux Memory Extractor)

• MachOAddressSpace - this AS supports 32- and 64-bit Mac OSX memory dumps

• ArmAddressSpace - this AS supports memory dumps from 32-bit ARM

• VirtualBoxCoreDumpElf64 - this AS supports memory dumps from VirtualBox virtual
machines

• VMware Snapshot - this AS supports VMware saved state and VMware snapshot files

Once an AS is loaded, most plugins begin accessing data structures (objects) within the

AS. Objects are declared as Python classes by extending the base object classes. Any time that

data are needed from an AS, it will usually be accessed through an object. Examples of objects

include EPROCESS and ETHREAD objects corresponding to the process and thread in

Windows OS. Volatility’s object manager parses objects using profiles, which are collections of

data structure definitions (member fields and offsets) relating to a certain OS.

21

Concrete examples of an object, a profile, and a plugin are given in Table 2.3. The profile

defines the _MYOBJECT data structure, which is 0x4 bytes long and has only one field, Id, at

the offset 0x0 within the data structure. The corresponding object is declared as the

_MYOBJECT class. This class has one member function getID, which returns the value of the

field Id. The MyPlugin plugin defines the calculate function that carries out the main operation

against a memory image being analyzed. This function acquires a valid address space and yields

Ids for all _MYOBJECT objects carved from the address space. The plugin assumes there is

already a Volatility API imported as myobjects.list to produce all _MYOBJECT objects. These

results are processed by the plugin's render function rendering the output in a text form. The

render function accepts the object Ids (data) yielded by the calculate function.

Table 2.3 Examples of a Volatility profile, a Volatility object, and a Volatility plugin.

PROFILE OBJECT PLUGIN

'_MYOBJECT' : [0x4, {

 'Id' : [0x0, ['unsigned
long']],

}]

import volatility.obj as obj

class _MYOBJECT(obj.CType):

 def getID(self):

 return self.Id

import volatility.plugins.common as common

import volatility.utils as utils

import volatility.obj as obj

import volatility.win32.myobjects as myobjects

class MyPlugin(common.AbstractWindowsCommand):

def calculate(self):

 address_space = utils.load_as(self._config)

 for myobject in myobjects.list(address_space)

 yield myobject.getID()

def render_text(self, outfd, data):

 for id in data:

 outfd.write("Id: {0}\n".format(ID))

22

2.3.3.2 Data Structure Classification

We classify OS kernel data structures into two types:

1) Global data structures created at the system initialization time and located at fixed offsets.

Typically, there are small numbers of global data structures of particular types per an OS

instance. Examples include the System Service Descriptor Table (SSDT), Kernel

Debugger Block (KDBG) and Kernel Processor Control Region (KPCR) structures in

Windows OS. We further classify these data structures into static and dynamic. Static

global data structures do not change at run-time. Field values within dynamic global data

structures may be updated by the system during its run-time.

2) Dynamically created data structures generated by the system post-initialization at run-

time.

Numbers of such data structures per OS instance may widely very during the system run-

time. Examples include: EPROCESS (process), ETHREAD (thread), TOKEN (process

access token), ADDRESS_OBJECT (socket), TCPT_OBJECT (connection), and

FILE_OBJECT (file) in Windows OS. Dynamically created data structures may be

derived from the global data structures. For instance, the KDBG and KPCR data

structures contain the memory addresses of a large number of kernel variables. Examples

include PsLoadedModuleList (points to the list of currently loaded kernel modules) and

PsActiveProcessHead (pointer to the start of the kernel's list of EPROCESS structures).

For those data structures that can not be derived automatically from the global data

structures, Volatility scanners may be used to identify unlinked structures at run-time.

23

2.4 Design and Implementation

2.4.1 Assumptions and Requirements

The development of the RTKDSM system was driven by the following requirements:

1) The system did not require any modifications to the monitored OS and no additional

software needed to be installed in the monitored VM.

2) The system imposed minimal performance overhead and operated seamlessly in the

background with the monitored VM running at full speed.

The following assumptions were made when developing the system:

1) The Trusted Computing Base (TCB) for our system included the hypervisor and all of the

software in the monitoring VM.

2) Kernel data structures of the introspected OS conformed to known semantic and syntactic

data structure layouts even in a compromised state.

This assumption is common to most current VMI-based solutions. It is fairly difficult for

an attacker to modify the layout of these data structures as such modifications would

require updating all code in the system that uses them or, otherwise, the affected OS

would no longer function properly. These updates would also be challenging to perform

and to hide. Although Bahram et al. [27] demonstrated the feasibility of semantic and

syntactic data structure manipulation attacks to subvert introspection, this type of attacks

could be defeated using data structure invariant inference and enforcement tools [28] and

by generating robust signatures for kernel data structures [29].

24

3) Kernel data structures of interest were assumed to be memory-resident at the time of scan

and, once identified, were never moved (paged) between physical memory and the page

file. While the kernel might keep some data in the paged memory whose contents might

be swapped into a file, the most critical and frequently accessed kernel objects, such as

those used in this study, were known to be permanently kept in the non-paged memory.

So, the rest of this study referred to the non-paged memory and non-paged kernel data

structures only.

2.4.2 Design

The RTKDSM system is composed of two agents: the introspection agent and the

monitoring agent. The introspection agent gathers and analyzes kernel data structures in the

monitored VM. The monitoring agent is hosted in the hypervisor. Its purpose is to detect write

attempts to the monitored kernel data structures (Figure 2.1).

Figure 2.1 Logical layout and workflow of the system.

25

The RTKDSM system is designed to operate in two modes: (1) data structure

identification and analysis and (2) data structure monitoring. The identification and analysis

mode may be used by VMI monitors to request the RTKDSM system to identify locations of

data structures and to return values of specific fields within data structures. The VMI monitor is

responsible for deducing the semantic meaning of the returned values. The monitoring mode is

used by VMI monitors to request the RTKDSM system to monitor data structures for changes in

real-time. The VMI request has the following format: (mode, data_structure_type,

data_structure_offset, field_name1, field_name2, …, field_nameN). Examples of data structure

types (data_structure_type) include: EPROCESS (process), TOKEN (token), and ETHREAD

(thread) in Windows OS. Examples of field names (field_name) include: ImageFileName

(EPROCESS), UserAndGroupCount (TOKEN), and CreateTime (ETHREAD). The RTKDSM

system provides VMI application developers with pre-configured lists of supported data structure

types and field names for each data structure type. These lists are derived from the Volatility

profiles.

The overall algorithmic outline of the RTKDSM comprises the following high-level

steps:

1) Upon a request from a VMI monitor (Step 1 of Figure 2.1), the introspection agent

searches the physical memory of the monitored VM (Figure 2.1, Step 2) to locate data

structures specified in the request. If the identification mode is used, the introspection

agent extracts the memory offsets of the identified data structures or values of the

requested fields and returns the results to the VMI monitor (Step 8 of Figure 2.1).

Examples of VMI requests in the identification mode include:

26

• (identification, EPROCESS, 0x0, ‘’) request instructs the introspection agent to

identify all EPROCESS data structures and returns the memory locations of the

identified data structures to the VMI monitor.

• (identification, EPROCESS, 0x0, ‘ImageFileName’) request instructs the

introspection agent to identify all EPROCESS data structures and returns the

names of the corresponding processes.

• (identification, EPROCESS, 0x000fabcd, ‘ImageFileName’) instructs the

introspection agent to return the name of the process whose EPROCESS data

structure is located at the 0x000fabcd offset.

If the monitoring mode is requested, the introspection agent extracts the monitored VM’s

physical page frame numbers (PFN) of those memory pages where the monitored data

fields reside including their address ranges within the page (Step 3 of Figure 2.1).

Examples of VMI requests in the monitoring mode include:

• (monitoring, EPROCESS, 0x000fabcd, ‘ImageFileName’) instructs the RTKDSM

system to calculate the offset of the ImageFileName field within the EPROCESS

data structure located at the 0x000fabcd offset, calculate the corresponding PFN,

and to monitor the ImageFileName field for changes in real-time. When a change

in the field is detected, the new value is returned to the VMI monitor.

• (monitoring, EPROCESS, 0x000fabcd, ‘’) instructs the RTKDSM system to

calculate the PFN (or multiple PFNs if the data structure crosses page boundaries)

for the entire EPROCESS data structure located at the 0x000fabcd offset and to

27

monitor the entire data structure in real-time. When a change in the data structure

is detected, the VMI monitor is notified of the change.

2) The introspection agent stores the calculated PFNs and the address ranges in a list, called

the monitored list. The monitored list is delivered to the monitoring agent (Step 4 of

Figure 2.1). The monitoring agent continuously monitors data structures in real-time by

intercepting all memory writes to the pages in the monitored list (Step 5 of Figure 2.1).

3) On intercepting a write on a page, if the write is within one of the monitored address

ranges, the monitoring agent allows the write operation to proceed and notifies the

introspection agent of the corresponding PFN (Step 6 of Figure 2.1) for real-time analysis

of the updated page (Figure 2.1, Step 7). If the memory page hosts a data structure known

to cross page boundaries and to reside on multiple pages, the analysis involves the entire

set of PFNs comprising the data structure. Subsequently, the VMI monitor is notified of

the new state of the data structure (Figure 2.1, Steps 8) and is responsible for deducing

the semantic meaning of the returned values. If the write is not within any of the known

monitored memory ranges, the monitoring agent allows the write operation to proceed

without notifying the introspection agent.

2.4.3 Implementation

We implemented a prototype RTKDSM architecture using the Xen hypervisor and HVM

Windows-and Linux-based VMs. In our implementation, the introspection agent is deployed in

the Dom0 domain. The monitoring agent is implemented in the Xen hypervisor. The RTKDSM

system implementation involves the following steps:

1) Request from a VMI Monitor: A VMI monitor requests the RTKDSM system to either

28

identify data structures (in the identification mode) or to perform real-time monitoring of

a data structure (in the monitoring mode) (Step 1 of Figure 2.2).

Figure 2.2 System implementation.

2) Memory mapping: To analyze the memory of a running VM, we first have to access the

VM’s memory. As the Volatility framework does not have built-in mechanisms to map

the memory of a running VM, we configured the RTKDSM system to access the VM

memory using the XenAccess API [6] (Step 2 of Figure 2.2). XenAccess is a Dom0 user-

space library built upon the low-level APIs provided by Xen to facilitate VM state

introspection. The Xen distribution provides a Xen Control library (libxc) for a Dom0

29

process to act on the VMs, including pausing a VM, resuming a paused VM, reading a

VM’s physical memory page, modifying a VM’s physical memory page, etc.

Specifically, libxc provides a xc_map_foreign_range() function that is designed to map

the physical memory space of a target VM into a Dom0 process’s virtual address space so

that the latter can easily manipulate the target VM’s physical memory. XenAccess uses

this API function to map the physical memory pages of the VM. Specifically, we

leverage the PyXaFS file system, which is part of the XenAccess tool suite, to map

physical memory pages of a VM inside Dom0. PyXaFS exposes the memory of a VM as

a regular file and allows the introspection agent to read a live VM’s memory as if it were

a normal file. PyXaFS is designed for integration with the Volatility framework as an

address space.

3) Data Structure Search: To allow the RTKDSM system perform its data structure searches,

we extended the Volatility framework with two new plugins called rtkdsm.py (real time

kernel data structure monitoring plugin) for Windows OS and rtkdsm_linux.py for Linux

OS. The rtkdsm.py and rtkdsm_linux.py plugins utilize the existing Volatility list

traversal and signature-based scanning algorithms for extraction of data structures. In the

current implementation, the plugins’ functionality is limited to identification and

monitoring of only those data structures that are used in the vCardTrek, CLAW, and

ATOM studies but can be easily extended to support other data structures documented in

the Volatility profiles. The plugins are written in Python, and when used in the

monitoring mode, can directly access a memory page and a data structure within the

memory page by supplying the data structure type and offset. The rtkdsm plugins are also

used to calculate offsets and lengths of data fields that require monitoring. Data fields’

30

offsets and lengths within the data structure are determined using the Volatility profiles.

For instance, a VMI monitor may issue a request to monitor the ImageFileName field

storing the process name. This field is defined by a Volatility profile as 16 bytes long and

located at the 0x174 offset from the top of the EPROCESS data structure.

Given the VM’s physical memory mapped using PyXaFS, the introspection agent

searches the mapped pages for target data structures (Step 3a of Figure 2.2) or analyzes a

particular data structure at a known offset (Step 3b of Figure 2.2). This live system

analysis is unobtrusive to the target VM and does not change the system state during the

data acquisition process. In the monitoring mode, the data structure and fields offsets are

converted to PFNs (Step 4a of Figure 2.2), which are delivered to the monitoring agent

for real-time monitoring.

4) Monitoring: The monitored PFN list is mapped for shared access from the hypervisor

context between the introspection agent and the monitoring agent (Step 4b of Figure 2.2).

We added a new hypercall to the hypervisor to trigger this sharing. The list is stored

using a page-level bitmap. The bitmap maintains one bit for each page of physical

memory assigned to the monitored VM. The monitoring agent manages the bitmap by

setting the appropriate bits for the monitored PFNs.

All writes to the memory pages corresponding to those in the PFN list are intercepted by

the monitoring agent. This is achieved by marking the pages as read-only (Step 5 of

Figure 2.2) and configuring the hypervisor to recognize page faults caused by writes to

these read-only pages (Step 6 of Figure 2.2). To reduce the amount of code modifications

in the hypervisor for implementing this mechanism, we developed an extension to the

31

Xen’s log dirty mode to support continuous tracking of modifications to memory pages.

Specifically, we leveraged the shadow paging infrastructure to configure the hypervisor

to intercept writes to monitored memory pages. Unlike the log dirty mode where all

shadow entries are destroyed on its activation, we destroyed only those shadow page

table entries that corresponded to the PFNs of memory pages with the identified data

structures. When the monitored VM attempted to access a page without an existing

shadow entry, a shadow page fault occurred, and the shadow entry was re-constructed. In

Xen, the PTE propagation logic is implemented in the _sh_propagate function (defined in

xen/arch/x86/mm/shadow/multi.c) — the “heart” of the shadow paging code, which

constructs the shadow PTEs from the corresponding guest entries. In the_sh_propagate

function, we intercepted the propagation of entries between the guest page tables and

shadow page tables, and then write-protected designated frames of the guest OS’s

physical memory by setting the shadow PTEs with read-only bit if the physical memory

page referenced by the PTE was marked as containing a data structure in the PFN list.

The shadow PTE flags were otherwise identical to the original guest PTE flags. By doing

so, all the shadow entries corresponding to the monitored pages were effectively marked

as read-only.

When set on a page, the read-only bit caused the processor to trap into the hypervisor

whenever a write was detected on the page and transfer control to the _sh_page_fault

function, the Xen’s page fault handling routine. In the log dirty mode, such writes

resulted in the page marked dirty and write permissions being granted to the accessed

page, so as to avoid traps on subsequent writes. In our implementation, if the write was

within a monitored address range on the page, we allowed the write in a three-step

32

procedure:

i. Marked the page as writable and re-executed the faulting instruction as if no fault

occurred.

ii. Set the trap flag, commonly used by single-stepping debuggers for the guest OS,

to cause a debug exception after the writing instruction was executed. We trapped

this exception in the hypervisor and then re-set the page to read-only restoring the

protected state.

iii. If the write was within the monitored range, we notified the introspection agent of

the write (Step 7 of Figure 2.2) via an event channel established between the

introspection and the monitoring agents at the beginning of the monitoring.

Notifications were delivered via two types of memory pages created by the

hypervisor and shared with Dom0: a descriptor page of 4 KByte to notify

availability of data to the introspection agent and a data page of 4 KByte to share

the details of the updated page including the offset of the write and the PFN.

5) Repeat Analysis: Upon receiving a notification from the monitoring agent, only the page

(or a set of pages if the data structure was known to span multiple pages) where the

modification occurred was re-analyzed by the introspection agent (Step 8 of Figure 2.2).

The rtkdsm plugins extracted the new value of the field where the change had occurred

and returned it to the calling VMI monitor (Step 9 of Figure 2.2).

6) Modifications to the monitored list: The monitored PFN list was designed to be modified

at run-time by adding new or deleting existing entries. Each time an update was made to

the monitored list, the system forced propagation of new PTE mappings in the shadow

33

page cache.

2.4.4 Limitations

An inherent limitation of the RTKDSM system is its performance penalty in the

monitoring mode. While the OS inside the monitored VM accesses and manipulates data at the

granularity of machine words, the RTKDSM system intercepts writes only at the page level. This

is because the commodity x86 processors do not offer a mechanism for generating faults upon

access to specific byte-level memory addresses. Even though the RTKDSM system is able

distinguish between monitored and non-monitored addresses within a single page, page faults

will still occur and introduce performance cost for writes to all other addresses that do not

contain target data on the page.

Consequently, the RTKDSM implementation results in two types of page faults. First,

when the shadow entry does not exist, both read and write access generate a shadow page fault.

Second, when an attempt is made to modify a page through an existing shadow entry without a

write permission, a shadow page fault occurs. The second type is the predominant source of

overhead in the RTKDSM system and is likely to cause a significant performance impact on the

guest OS by VMI monitors relying on monitoring of a large number of dynamic data structures

that are constantly written to. In the worst case, every write to every kernel data structure may be

monitored resulting in the costs being extremely high. So it is important to provide a mechanism

to reduce the number of page faults of the second type.

We extended the RTKDSM design of the monitoring agent to operate in two modes: 1)

the “always-on” mode that continuously monitors the VM kernel data structures; 2) the “periodic

polling” mode that performs periodic checks after a pre-defined period of time T. In the

34

“periodic polling” approach, the monitoring agent intercepts a write to a monitored page and

enables the write flag on the page for a specified period of time T. Once T elapses, the

introspection agent re-analyzes the page, and the monitoring agent enables the read-only flag on

the page. As the next write is intercepted, another detection round comprising the above steps is

repeated.

Although the “periodic polling” mode prevents the hypervisor from accounting for

potentially unrelated and/or spurious modifications as relevant, reducing the frequency of checks

introduces the possibility of evasion when used in VMI security systems. A malicious data

structure modification can go undetected if it occurs between two consecutive checks. This is

especially possible when the polling interval is predictable. To prevent adversaries from

exploiting the periodic nature of the polling mode, we support randomization of the timing

parameter T using intervals pulled from a uniform distribution in the interval (T-∂t, T+∂t), with

∂t < T. As the security provided to a system is closely related to the frequency of checks, the

“always-on” mode vs. “periodic polling” mode should be considered in each individual instance

with the following consideration in mind: the “always-on” provides increased security, while the

“periodic polling” mode reduces performance overhead. The greater the period of time between

checks, the more time an attacker has to execute a sophisticated attack and to avoid detection by

removing the traces of the intrusion between subsequent checks.

Another limitation of the RTKDSM system is its inability to detect inconsistencies in OS

data structures undergoing updating, for instance, a multi-word field might be updated in parts

but the system would try to analyze each update before updating of the entire field is completed.

35

2.5 Evaluation

2.5.1 Experimental Setup

Our testbed consisted of a virtualized server that used Xen version 3.3 as the hypervisor

and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. The host system had Duo CPU

P8600 processor running two cores at 2.4GHz and 2GB of system memory. The RTKDSM

system was installed in the Dom0 domain. In addition, the virtualized server hosted 2 VMs

running a default installation of Windows XP OS with the IIS web server, MSSQL database

server, Internet Explorer, and MS Office installed on each of the machines and 2 VMs running a

default installation of Ubuntu Jaunty (Linux kernel 2.6.28) with the Apache web server, MySQL

database server, and Firefox installed on each of the machines (Figure 2.3). These VMs were

configured with 512Mb RAM.

Figure 2.3 Windows OS test environment

2.5.2 Spurious Page Fault Experiments

We conducted experiments to estimate the probability of spurious updates, i.e. updates

that might occur outside of monitored kernel data structures. Specifically, we recorded page

faults caused by real-time monitoring of the data structures listed in Table 2.4 over the period of

one minute in idle Windows and Linux VMs. In the Windows VM, the experiments included: (1)

36

monitoring of the PsActiveProcessHead structure, (2) monitoring of the TCBTable structure, (3)

monitoring of 50 EPROCESS structures, (4) monitoring of 50 ETHREAD structures, (5)

monitoring of 50 TOKEN structures, and (6) monitoring of 50 PEB_LDR_DATA structures. In

the Linux VM, the experiments included: (1) monitoring of the init_task structure, (2)

monitoring of 50 task_struct structures, and (3) monitoring of 50 files_struct structures. Prior to

each experiment, the test VMs were rebooted bringing the environment into a known and

reproducible state. The script shown in Figure 2.4 was then executed to invoke 50 processes

inside the test VM.

Figure 2.4 A sample Windows OS command script to invoke 10 processes.

In the Windows VM, the RTKDSM system located the PsActiveProcessHead structure,

the TCBTable structure, and enumerated all EPROCESS, ETHREAD, TOKEN, and

PEB_LDR_DATA data structures corresponding to the processes invoked by the script. The

PsActiveProcessHead, TCBTable, EPROCESS, ETHREAD, TOKEN, and PEB_LDR_DATA

data structures were then monitored for updates in real-time using the RTKDSM system. In the

Linux VM, the RTKDSM system located the init_task structure and enumerated all task_struct

and files_struct data structures corresponding to the processes invoked by the script. The

init_task, task_struct, and files_struct data structures were then monitored for updates in real-

time using the RTKDSM system. Table 2.5, Table 2.6, Table 2.7, Table 2.8, Table 2.9, Table

2.10, and Table 2.11 show the results of these experiments.

37

Table 2.4 Data structures used in the experiments.

OS Data Structure Description

Windows OS

PsActiveProcessHead Points to the first and the last EPROCESS (see below) data structure.

TCBTable Transmission Control Block Table lists network connections.

EPROCESS Represents a running process.

ETHREAD Represents a running thread.

TOKEN Represents authorization information for a running process.

PEB_LDR_DATA Represent a list of loaded modules.

Linux OS

init_task Points to the first and the last task_struct (see below) data structure.

task_struct

Represents a running task. This structure also stores the process

authorization information similar to TOKEN in Windows OS and thread

related information similar to ETHREAD in Windows OS.

files_struct Represents a list of files used by a process.

Table 2.5 Page faults on pages containing the PsActiveProcessHead, TCBTable, and init_task
structures in the idle Windows VM #1 and Linux VM # 1 recorded during 1 minute.

Data Structure Inside the structure Outside the structure

PsActiveProcessHead 0 11258

TCBTable 0 1812

init_task 0 5634

38

Table 2.6 Page faults on pages containing EPROCESS structures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded during 1 minute.

Process

number

Number of page faults

Inside the EPROCESS structure Outside the EPROCESS structure

6 0 26

7 0 18

14 0 54

15 0 1828

20 0 28

23 36 290

25 0 149

31 0 49

32 0 37

34 0 65

35 0 6

37 0 6

38 0 91

41 0 59

42 0 76

46 0 34

47 0 11

50 0 51

All other processes 0 0

39

Table 2.7 Page faults on pages containing ETHREAD structures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded during 1 minute.

Process

number

Number of page faults

Inside the ETHREAD structure Outside the ETHREAD structure

3 5,304 0

11 5,698 5

14 0 214

17 0 43

19 5,465 0

26 5,338 0

27 5,347 0

31 5,317 4

39 5,569 0

47 0 1028

All other processes 0 0

Table 2.8 Page faults on pages containing TOKEN structures for the 50 calc.exe test processes in
the idle Windows VM #1 recorded during 1 minute.

Process

number

Number of page faults

Inside the TOKEN structure Outside the TOKEN structure

4 0 16

11 0 34

49 0 28

All other processes 0 0

40

Table 2.9 Page faults on pages containing PEB_LDR_DATA structures for the 50 calc.exe test
processes in the idle Windows VM #1 recorded during 1 minute.

Process

number

Number of page faults

Inside the PEB_LDR_DATA structure Outside the PEB_LDR_DATA structure

All processes 0 0

Table 2.10 Page faults on pages containing task_struct structures for the 50 gcalctool test
processes in the idle Linux VM #1 recorded during 1 minute.

Process

number

Number of page faults

Inside the task_stuct structure Outside the task_struct structure

15 0 178

16 0 24

18 0 226

30 0 75

All other processes 0 0

41

Table 2.11 Page faults on pages containing files_struct structures for the 50 gcalctool test
processes in the idle Linux VM #1 recorded during 1 minute.

Process

number

Number of page faults

Inside the files_stuct structure Outside the files_struct structure

1 0 16

4 0 44

21 0 186

34 0 52

37 0 242

46 0 36

All other processes 0 0

Although updates to the PsActiveProcessHead, TCBTable, init_task, EPROCESS,

task_struct, and files_struct data structures were infrequent, the pages hosting these structures

contained varieties of other unrelated data structures, which experienced frequent updates.

Several ETHREAD data structures changed quite rapidly leading to a large number of page

faults on the corresponding pages. Updates outside of the ETHREAD data structures were

infrequent. Updates to the pages containing the TOKEN and PEB_LDR_DATA data structures

were rare.

2.5.3 Performance Experiments

We used a combination of micro/synthetic and application benchmarks to understand the

direct computational overhead introduced by the RTKDSM system on the test VMs. In Windows

OS, we used the PCMark05 benchmark [30] to measure the impact of the running RTKDSM

42

system on the VM’s CPU, memory, and hard drive. In Linux OS, we used the NBench

benchmark [31] to measure the impact of the running RTKDSM system on the VM’s CPU, FPU,

and system memory speed. We also ran the Apache HTTP performance benchmark as an

application benchmark for both the Windows OS and Linux OS [32]. This benchmark heavily

relied on both threading and I/O operations. Additionally, we ran the file compressing

application (gzip) in Linux OS to evaluate the performance incurred by extensive I/O operations

based on the time required to compress a 20 MB file.

2.5.3.1 “Always-On” Mode

We assessed the performance of the RTKDSM system in the “always-on” monitoring

mode. In Windows VMs, the experiments included: (1) monitoring of the PsActiveProcessHead

structure, (2) monitoring of the TCBTable structure, (3) monitoring of EPROCESS structures of

10, 25, and 50 processes, (4) monitoring of ETHREAD structures of 10, 25, and 50 threads, (5)

monitoring of TOKEN structures of 10, 25, and 50 processes, and (6) monitoring of

PEB_LDR_DATA structures of 10, 25, and 50 processes. In Linux VMs, the experiments

included: (1) monitoring of the init_task structure, (2) monitoring of task_struct structures of 10,

25, and 50 processes, and (3) monitoring of files_struct structures of 10, 25, and 50 processes.

Prior to each experiment, the test VMs were rebooted bringing the environment into a known and

reproducible state. The script shown in Figure 2.4 was then executed to invoke a required

number of processes inside a test VM.

The performance overhead was first measured with only 1 running VM and then with 2

VMs running concurrently for each OS. Each benchmark was run 3 times against one test VM

for each OS. Table 2.12 and Table 2.13 show the average results of running the PCMark05 and

43

Apache benchmarks in Windows OS. Table 2.14 and Table 2.15 show the average results of

running the NBench, gzip, and Apache benchmarks in Linux OS. In the Apache benchmark, the

average process time per request was used for comparison. The results shown have been

calculated with respect to the speed of the Xen system with the RTKDSM system enabled with

zero pages monitored.

The performance results demonstrated the performance overhead generally increased as

the number of monitored structures increased. Additionally, the performance overhead also

increased as the number of monitored VMs grew within the host. The performance was also

affected by the type of a benchmark used in the experiments. Particularly, the Apache benchmark

had a significant impact on the performance due to spurious page faults resulting from running

this benchmark. However, the outputs generated by the RTKDSM system would be sufficiently

fast for use in systems that either monitored data structures in memory regions, which did not

incur many page faults, such as those hosting TOKEN and PEB_LDR_DATA data structures or

systems that could tolerate reduced performance, for instance, in a VM replay for live forensic

analysis of running VMs [33].

44

Table 2.12 Performance in the “always-on” mode using the PCMark05 benchmark in Windows OS.

Benchmark
of

VMs
M

o
n

ito
ri

n
g

 o
f

P
sA

ct
iv

e
P

ro
ce

ss
H

e
a

d

M
o

n
ito

ri
n

g
 o

f
T

C
B

T
a

b
le

of EPROCESS

structures

monitored per VM

of TOKEN

structures

monitored per VM

of ETHREAD

 structures

monitored per VM

of PEB_LDR_DATA

 structures

monitored per VM

10 25 50 10 25 50 10 25 50 10 25 50

CPU 1 1.1% 0.9% 1.2% 1.1% 1.6% 0.7% 0.9% 1.0% 1.2% 1.3% 1.7% <0.2% <0.2% <0.2%

2 2.0% 1.7% 2.3% 2.7% 3.1% 1.3% 2.1% 2.5% 2.2% 2.6% 3.3% <0.2% <0.2% <0.2%

Memory 1 0.1% 0.1% 0.2% 0.2% 0.3% 0.2% 0.2% 0.3% 0.2% 0.3% 0.3% <0.2% <0.2% <0.2%

2 0.6% 0.5% 1.0% 1.2% 1.5% 0.8% 1.0% 1.3% 0.9% 1.0% 1.5% <0.2% <0.2% <0.2%

HDD 1 3.5% 2.8% 6.7% 6.8% 8.7% 3.6% 4.3% 4.9% 8.7% 9.1% 11.9% <0.2% <0.2% <0.2%

2 5.3% 4.5% 7.2% 13.1% 13.6% 5.7% 8.5% 9.2% 9.7% 14.7% 15.1% <0.2% <0.2% <0.2%

45

Table 2.13 Performance in the “always-on” mode using the Apache benchmark in Windows OS.

Number of

requests /

concurrency

of

VMs

M
o

n
ito

ri
n

g
 o

f

P
sA

ct
iv

e
P

ro
ce

ss
H

e
a

d

M
o

n
ito

ri
n

g
 o

f
T

C
B

T
a

b
le

of EPROCESS

structures

monitored per VM

of TOKEN

structures

monitored per VM

of ETHREAD

structures

monitored per VM

of PEB_LDR_DATA

structures

monitored per VM

10 25 50 10 25 50 10 25 50 10 25 50

1000/5 1 8.7% 3.3% <0.5% 45.1% 50.2% <0.5% 0.4% 0.6% 13.7% 46.2% 106.1% <0.5% <0.5% <0.5%

2 12.2% 5.9% <0.5% 56.9% 78.9% <0.5% 2.1% 2.4% 15.9% 56.3% 131.8% <0.5% <0.5% <0.5%

1000/10 1 8.0% 2.8% <0.5% 41.6% 48.3% <0.5% 0.3% 0.5% 12.3% 42.2% 99.8% <0.5% <0.5% <0.5%

2 11.5% 5.2% <0.5% 51.6% 66.7% <0.5% 1.7% 2.1% 15.3% 53.4% 124.6% <0.5% <0.5% <0.5%

5000/5 1 10.3% 4.4% <0.5% 62.5% 78.4% <0.5% 0.4% 0.6% 32.0% 63.1% 121.3% <0.5% <0.5% <0.5%

2 13.9% 6.9% <0.5% 64.8% 75.3% <0.5% 2.3% 2.6% 37.5% 76.7% 141.4% <0.5% <0.5% <0.5%

5000/10 1 10.1% 4.1% <0.5% 61.4% 71.6% <0.5% 0.4% 0.6% 28.1% 60.4% 116.8% <0.5% <0.5% <0.5%

2 13.6% 6.5% <0.5% 63.8% 75.1% <0.5% 2.1% 2.3% 33.9% 72.6% 132.7% <0.5% <0.5% <0.5%

46

Table 2.14 Performance in the “always-on” mode using the NBench & gzip benchmarks in
Linux OS.

Benchmark # of VMs

Monitoring of

init_task

of task_struct

structures monitored

per VM

#of files_struct

structures monitored

per VM

10 25 50 10 25 50

NBench Memory Index 1 0.2% 0.1% 0.2% 0.2% 0.1% 0.1% 0.2%

2 0.4% 0.3% 0.5% 0.5% 0.2% 0.3% 0.5%

NBench Integer Index 1 0.7% 0.5% 0.9% 1.1% 0.5% 0.6% 0.9%

2 1.2% 0.9% 1.3% 1.6% 1.0% 1.1% 1.4%

NBench Floating-Point 1 0.7% 0.4% 0.5% 0.5% 0.3% 0.5% 0.6%

2 1.1% 0.7% 0.7% 0.8% 0.5% 0.8% 0.8%

gzip 1 2.7% 1.9% 2.3% 2.6% 1.8% 2.4% 2.8%

2 3.8% 2.9% 3.7% 3.9% 3.1% 3.5% 3.5%

47

Table 2.15 Performance in the “always-on” mode using the Apache benchmark in Linux OS.

of requests / concurrency # of VMs

Monitoring of

init_task

of task_struct

structures monitored

per VM

of files_struct

structures monitored

per VM

10 25 50 10 25 50

1000/5 1 6.5% <0.5% 23.2% 25.4% <0.5% 14.4% 22.1%

2 8.3% <0.5% 28.3% 30.7% <0.5% 17.3% 26.7%

1000/10 1 5.9% <0.5% 21.7% 24.2% <0.5% 13.6.7% 20.7%

2 7.9% <0.5% 26.6% 29.8% <0.5% 17.1% 24.2%

5000/5 1 7.4% <0.5% 27.4% 30.6% <0.5% 21.5% 32.4%

2 8.9% <0.5% 34.1% 38.2% <0.5% 29.1% 39.2%

5000/10 1 7.0% <0.5% 27.2% 29.2% <0.5% 20.8% 31.3%

2 8.7% <0.5% 33.9% 36.2% <0.5% 28.9% 38.8%

2.5.3.2 “Periodic Polling” Mode

We assessed the performance of the RTKDSM system in the “periodic polling”

monitoring mode using the Apache HTTP benchmark only. As this benchmark was shown to

cause significant performance deteriorations in the “always-on” monitoring mode, switching to

the “periodic polling” monitoring mode was expected to improve the performance.

In the Windows VMs, the experiments included: (1) monitoring of the

PsActiveProcessHead structure, (2) monitoring of the TCBTable structure, (3) monitoring of

EPROCESS structures of 10, 25, and 50 processes, (4) monitoring of ETHREAD structures of

10, 25, and 50 threads, and (5) monitoring of TOKEN structures of 10, 25, and 50 processes. In

48

the Linux VMs, the experiments included: (1) monitoring of the init_task structure; (2)

monitoring of task_struct structures of 10, 25, and 50 processes, and (3) monitoring of

files_struct structures of 10, 25, and 50 processes. Prior to each experiment, the test VMs were

rebooted bringing the environment into a known and reproducible state. The script shown in

Figure 2.4 was then executed to invoke a required number of processes inside a test VM.

In each experiment, the benchmark was run 3 times against one test VM per each OS.

The average process time per request was used for comparison. Table 2.16, Table 2.17, Table

2.18, Table 2.19, Table 2.20, and Table 2.21 show the average results of running the Apache

benchmarks in Windows OS and Linux OS with the timing parameter T set to 50 msec, 10 msec,

and 5 msec. The results shown have been calculated with respect to the speed of the Xen system

with the RTKDSM system enabled with zero pages monitored.

The performance results demonstrated the “periodic polling” approach significantly

decreased the performance overhead observed in the “always-on” mode. The recorded write

bursts involving spurious updates caused by the Apache benchmark to the monitored pages

lasted in the 1 to 15 msec range. Hence, the improvement in the performance was due to a

significantly reduced number of page fault interceptions that excluded page faults caused by such

write bursts.

49

Table 2.16 Performance in the “periodic polling” mode for the PsActiveProcessHead, TCBTable, and init_task data structures.

Number of requests / concurrency

PsActiveProcessHead TCBTable init_task

T=50

msec

T=10

msec

T=5

msec

T=50

msec

T=10

msec

T=5

msec

T=50

msec

T=10

msec

T=5

msec

1000/5 <0.5% 1.3% 2.7% <0.5% <0.5% <1.0% <0.5% 1.1% 2.2%

1000/10 <0.5% 1.2% 2.5% <0.5% <0.5% <1.0% <0.5% 0.9% 2.1%

5000/5 <0.5% 1.8% 3.5% <0.5% <0.5% <1.0% <0.5% 1.5% 3.2%

5000/10 <0.5% 1.5% 3.3% <0.5% <0.5% <1.0% <0.5% 1.3% 3.0%

Table 2.17 Performance in the “periodic polling” mode for the EPROCESS data structure.

Number of requests / concurrency

of EPROCESS structures,

T=50 msec

of EPROCESS structures,

T=10 msec

of EPROCESS structures,

T=5 msec

10 25 50 10 25 50 10 25 50

1000/5 <0.5% 3.1% 3.8% <0.5% 4.1% 5.2% <0.5% 7.3% 9.7%

1000/10 <0.5% 2.5% 2.9% <0.5% 2.9% 3.4% <0.5% 6.4% 8.1%

5000/5 <0.5% 3.4% 4.2% <0.5% 4.4% 5.3% <0.5% 7.9% 10.1%

5000/10 <0.5% 2.8% 3.3% <0.5% 3.1% 3.8% <0.5% 6.5% 8.8%

50

Table 2.18 Performance in the “periodic polling” mode for the ETHREAD data structure.

Number of requests / concurrency

of ETHREAD structures, T=50 msec # of ETHREAD structures, T=10 msec # of ETHREAD structures, T=5 msec

10 25 50 10 25 50 10 25 50

1000/5 <0.5% 3.5% 5.1% 1.5% 5.2% 8.1% 2.8% 8.1% 15.6%

1000/10 <0.5% 3.2% 4.8% 1.5% 4.9% 7.7% 2.7% 7.9% 15.2%

5000/5 <0.5% 3.8% 5.7% 2.1% 5.9% 8.4% 3.9% 9.3% 17.3%

5000/10 <0.5% 3.4% 5.6% 1.9% 5.8% 8.1% 3.6% 8.8% 16.9%

Table 2.19 Performance in the “periodic polling” mode for the TOKEN data structure.

Number of requests / concurrency

of TOKEN structures, T=50 msec # of TOKEN structures, T=10 msec # of TOKEN structures, T=5 msec

10 25 50 10 25 50 10 25 50

1000/5 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%

1000/10 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%

5000/5 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%

5000/10 <0.5% <1% <1% <0.5% <1% <1% <0.5% <1% <1%

51

Table 2.20 Performance in the “periodic polling” mode for the task_struct data structure.

Number of requests / concurrency

of task_struct structures, T=50 msec # of task_struct structures, T=10 msec # of task_struct structures, T=5 msec

10 25 50 10 25 50 10 25 50

1000/5 <0.5% 1.3% 1.5% <0.5% 3.2% 3.9% <0.5% 5.8% 6.9%

1000/10 <0.5% 1.3% 1.3% <0.5% 3.1% 3.4% <0.5% 5.7% 6.7%

5000/5 <0.5% 1.5% 2.1% <0.5% 3.9% 4.4% <0.5% 6.3% 8.8%

5000/10 <0.5% 1.3% 1.9% <0.5% 3.5% 4.3% <0.5% 6.0% 8.5%

Table 2.21 Performance in the “periodic polling” mode for the files_struct data structure.

Number of requests / concurrency

of files_struct structures, T=50 msec # of files_struct structures, T=10 msec # of files_struct structures, T=5 msec

10 25 50 10 25 50 10 25 50

1000/5 <0.5% 1.1% 1.3% <0.5% 2.8% 3.4% <0.5% 4.7% 6.4%

1000/10 <0.5% 0.9% 1.2% <0.5% 2.7% 3.3% <0.5% 4.7% 6.3%

5000/5 <0.5% 1.1% 1.6% <0.5% 3.6% 4.2% <0.5% 5.2% 7.9%

5000/10 <0.5% 1.0% 1.4% <0.5% 3.5% 3.9% <0.5% 4.8% 7.5%

52

2.6 Summary

We presented the design and implementation of RTKDSM, a real-time kernel data

structure monitoring system, capable of automatically identifying OS data structures supported

by the open source Volatility forensic framework in memory of a running VM and tracking

updates to the identified data structures in real-time. To demonstrate the applicability of the

RTKDSM system under real-life conditions, we built three systems described in Chapters 3, 4,

and 5 correspondingly: (1) payment card data flow tracking tool (vCardTrek), (2) cloud-based

application whitelisting system (CLAW), and (3) access token manipulation attack detection tool

(ATOM). By demonstrating the applications of the RTKDSM system, we hoped to promote the

creation of new VMI tools through the techniques described in the following chapters.

53

3 Automated Discovery of Credit Card Data Flow for PCI DSS

Compliance

3.1 Introduction

Among organizations increasingly targeted by ongoing cyber security attacks are retail

businesses. These businesses make high-value targets for financially motivated cyber attackers

because of the valuable credit and debit card data used in payment transactions. In the recent

years, hackers have exploited weaknesses in payment card processing systems to steal sensitive

customer card data [34].

To reduce security vulnerabilities in payment card processing systems, the Payment Card

Industry Security Standards Council developed and released the Payment Card Industry Data

Security Standard (PCI-DSS) [35]. All merchants that store, process, or transmit card data are

required to comply with the PCI-DSS security requirements to ensure that not only the payment

processing infrastructure, but the data it carries are better protected from unauthorized exposure.

Noncompliant entities receive monthly fines and eventually may lose their ability to process card

payments.

The key pre-requisite for PCI DSS compliance is the construction of the card data flow

diagram for a payment processing network that accepts card charges and provides card

processing service. Merchants must determine precisely how card data flow through their

payment processing systems from their inception, what systems they traverse, and where they

reside. A card data flow could start from a card swipe at a store, or a card number input by a user

54

into an E-commerce web site, and consists of all intermediate stops in a merchant’s IT network

at which the card information is examined or processed. This discovery process and the resulting

card data flow diagram help merchants understand which IT equipments in the organization

interact with the card data so as to implement the security of these IT equipments according to

the PCI DSS compliance requirements.

In practice, this pre-requisite poses a challenge to merchants. As the payment card

processing infrastructure is implemented and later maintained, it often deviates from the

originally documented design. Without consistent tracking and auditing of changes, such

deviations in many cases remain undocumented. Today, no known tool exists that could

automatically discover the card data flow of a distributed payment card processing system in

heterogeneous computing environments. The only available solution to this problem today is

manual card data flow reconstruction based on outputs from data loss prevention (DLP) tools and

system design documents. DLP tools work by searching network packets and data stored on disk

for clear text card numbers. Although highly effective when dealing with unencrypted data, the

DLP tools are largely powerless when card data are encrypted in transit and on storage.

Likewise, manual review of system design documents is an extremely labor-intensive and time-

consuming effort. The required information is often difficult to extract because it is spread across

a variety of IT elements and applications. Therefore, building the card data flow for a given

payment card processing infrastructure is considered a daunting task that at this point requires

significant manual efforts.

We developed an automated tool called vCardTrek capable of building the card data flow

in a distributed payment card processing system hosted on virtualized physical servers. We focus

on virtualized servers because virtualization technology is quickly rising to predominate in

55

merchants’ data centers, and many payment card processing systems start to run inside virtual

machines [36-38]. A key design decision of the vCardTrek tool is to apply the RTKDSM system

to track card data flows.

To the best of our knowledge, vCardTrek is the first known tool to leverage VMI to

automatically discover the card data flow of distributed applications running in virtualized

environments. We have implemented a working prototype for the Xen hypervisors. Our

implementation does not require modifications to the hypervisor, VMs, guest OS, or payment

card processing system components themselves. We have demonstrated the effectiveness of

vCardTrek by applying it to 3 commercial payment card processing systems and successfully

building the card data flow path for each of them. We expect the availability of vCardTrek could

significantly decrease the efforts and costs in meeting the security regulations stipulated in the

PCI DSS standard.

3.2 Related Work

Previous research efforts approached the automated data flow tracking problem from

different angles, including a process-wide flow tracking, cross-process flow tracking, and cross-

host flow tracking using fine-grained dynamic taint analysis (DTA). In DTA, data of interest are

marked as tainted, and the taint propagation is monitored along with the data. The DTA data

flow tracking mechanisms lead to increased level of detail, but either require a priori knowledge

of the applications and hosts participating in information exchange so they can be properly

instrumented or incur significant performance overheads that make such approaches unsuitable

for interactive distributed network applications in production environments. Although our

approach is more coarse-grained than the DTA methods and thus leads to a reduced level of

56

detail in the produced data flow, it removes the need for application-specific instrumentations

and the associated performance penalties.

Several studies have explored the problem of data flow tracking in cross-host distributed

systems. These can be roughly divided into dynamic binary instrumentation (DBI) and emulator-

based implementations both using the DTA technique. Unlike these studies, we consider the

most generic black-box approach that can be easily integrated into production environments,

where no previous knowledge of the components participating in the data flow is provided, and

only passive non-intrusive (i.e. require no modification of the monitored system) monitoring

instruments with low performance impact are used.

3.2.1 Dynamic Binary Instrumentation Systems

The data flow tracking tool described in [39] is built upon a DBI framework and is

designed to track information flow between processes which may be located in different host

systems. In this implementation, hosts and processes participating in the information flow are

manually identified, and a DBI tool is then attached to each of the identified processes to track

information flow within the process boundary. Additionally, a flow manager is placed in each

participating host to relay taint information between interacting processes and to handle cross-

host communications and data flow concatenations.

In another related study [40], a single process DBI framework is extended to perform

cross-process and cross-host transfer of taint information by intercepting and instrumenting the

system calls used for cross-process as well as for cross-host communication. As these

implementations require prior knowledge of the hosts and the processes involved in the

information flow, these tools can not be utilized for data flow tracking where systems and

57

processes participating in the data flow are unknown a priori.

3.2.2 Emulator-Based Systems

Several DTA studies explored the use of emulators to perform fine-grained taint

propagation and tracking between processes and hosts in virtualized networks. In these

implementations, the typical approach is to instrument hardware emulators, such as QEMU [41],

with taint tracking instructions and monitor the taint propagation at the hardware level [42].

Taint tracking data structures are used to keep taint status flags of every byte in the system

including physical memory, CPU registers, and device state. The emulator propagates taint flags

whenever their corresponding values in hardware are involved in an operation.

In a related study, Data Flow Tomography [43] built on QEMU emulator implements

fine-grained data flow analysis system to track and visualize data flow on a networked set of

virtual machines each running on a separate physical host. The Data Flow Tomography method

uses full instruction emulation and is inherently heavy weight both in memory and time.

Hardware emulation is extremely slow and incurs significant performance overheads making this

approach unsuitable for interactive network applications in production environment. To be a

useful tool in the life cycle of a system, methods will be needed to speed up the analysis. While

data flow tracking within a single machine is rarely problematic, the scalability of the approach

as the number of nodes increases beyond two is certainly a question. This method also requires

QEMU installation on every machine involved in the data flow.

Some research has been done to explore more efficient means for dynamic taint analysis.

Zhang et. al. [44] implemented Neon, an extension of the [42] approach developed to prevent

data leaks. Neon focuses on taint propagation across applications, systems, and networks. Neon

58

implementation is based on the Xen hypervisor combined with demand emulation via QEMU, in

which a running system dynamically switches between virtualized and emulated execution, and

emulation is only used when tainted data is being processed by the CPU. This implementation

leads to increased performance compared to using a processor emulator alone [43]. However,

because propagating taint requires the invocation of QEMU, the Neon implementation incurs

significant execution time overhead due to tag processing from the emulator and thus does not

significantly improve performance.

3.3 Design and Implementation

3.3.1 Payment Card Processing System

vCardTrek is designed for a payment card processing system consisting of multiple

distributed application components all running on distinct VMs as separate processes and

communicating with one another using synchronous requests. A payment request using a credit

or debit card number is sent to the entry component in the system, e.g. a card swipe at a point-of-

sale terminal at a store. Each application component forwards the request to the next component

along the card processing path and blocks until the corresponding response is received. Once the

payment card processing system verifies that an input request’s card information is accurate and

sufficient funds are available in the account, the request is granted permission to proceed with

the purchase. Additional processing steps within the merchant’s network may be triggered after a

payment request is authorized, such as submission of payment data to storage, marketing data

collection, payment reconciliation and settlement etc.

59

3.3.2 Assumptions

Two assumptions were made when developing the tool:

1) Each card data handling component processes each request in a synchronous fashion, i.e.,

it reacts to an input request immediately and does not queue it for later processing.

2) When applying vCardTrek to a network to discover the card data flow, the network is in a

“quiescent” state in the sense that only one test payment transaction is running through

the payment system and a false positive caused by multiple concurrent requests is

unlikely.

3.3.3 Requirements

The vCardTrek development is driven by the following requirements, which are derived

from analyzing card data flows in real-world production environments:

1) The tool does not require any modifications to the guest OS or the application

components of the target payment card processing system, and no additional software

needs to be installed on the VMs on which the payment system runs.

2) The tool does not make any assumptions on the internal operations of the target payment

application system being tracked other than the following: (a) the target application runs

on a virtualized environment, and (b) credit and debit card numbers are transiently stored

in memory in a particular form.

3.3.4 System Overview

To identify the trajectory of the card data flow, a payment request is sent to the entry

60

point of a payment card processing system, and vCardTrek is employed to determine the set of

VMs and the corresponding processes exchanging network packets as a result of this request

(Step 1 of Figure 3.1).

Figure 3.1 (1) Inter-VM network communications are tracked by vCardTrek, and (2) the memory
of the interacting processes is inspected for card data.

Because network communications among payment system processes may be encrypted, it

is not always possible to detect card data from intercepted network packets. Therefore,

vCardTrek searches the memory spaces of the communicating processes for the card data as they

travel from the entry-point process to other card data handling processes along the way (Step 2 of

Figure 3.1). Even though card data may be encrypted during their IPC transmissions, they are

decrypted and operated on during their processing, and therefore the clear text version of card

data can be traced in the interacting processes’ memory. Once the processes whose memory

contains card data are found the machines involved in the card data flow are readily identified.

The card data flow trajectories from multiple VMs spread over several physical hosts can

61

be further concatenated to determine how card data flow among networked hosts within the

organization (Figure 3.2).

Figure 3.2 Card data flow concatenation from multiple physical hosts.

3.3.5 Main Components

We implemented the card data flow tracking tool for the Xen hypervisor and fully-

virtualized (HVM) Windows-based VMs (payment card processing systems predominantly run

Windows OS). In our implementation, we deploy vCardTrek in Dom0 and run the components

of the payment card processing system in DomUs (Figure 3.3). The vCardTrek algorithmic

outline comprises the following high-level steps:

(1) vCardTrek traces inter-VM TCP connections starting from the entry-point VM that

receives the test input request;

(2) vCardTrek searches the memory space of communicating processes bound to the

62

intercepted TCP connections for the card number used as a test input at the entry-

point VM;

(3) The card data flow path is reconstructed based on the results from (1) and (2).

Figure 3.3 (1-2-3) Network connections are intercepted, and the processes participating in the
network connections are determined; (4-5) the memory of the identified processes is searched for
card data, and the card data flow is reconstructed.

3.3.5.1 Tracing of Inter-VM Communications

vCardTrek makes use of the packet filtering tool ebtables to intercept all packets sent to

or from VMs. Ebtables is an open source utility that filters packets at an Ethernet bridge [45]. As

of the Linux kernel 2.6, the ability to perform bridge mode filtering using ebtables is natively

included in the kernel and supported by default. Through command line arguments, ebtables is

instructed to pass intercepted packets to vCardTrek using netlink sockets. Tracing of inter-VM

63

communications begins with the entry-point process and continues recursively on each

intercepted network connection.

When vCardTrek receives a packet from ebtables (Step 1 of Figure 3.3), it parses the

packet to extract its source and destination MAC addresses and port numbers (src MAC, src port,

dst MAC, dst port) from the packet header. The src and dst MACs are then resolved to the VM

IDs using XenStore. In Xen, XenStore stores information about each VM during its execution

including the VM IDs and the corresponding MAC addresses. vCardTrek initiates a VMI request

to the RTKDSM introspection agent (Step 2 of Figure 3.3) to extract all open sockets for the

source and destination VMs so it can identify the processes bound to the source and destination

sockets (Step 3 of Figure 3.3). vCardTrek invokes VMI requests in a multi-threaded fashion and

never blocks on these requests allowing the RTKDSM introspection agent to perform the VM

analysis in parallel using separate threads. The summary of the data structures accessed by

vCardTrek is provided in Table 3.1.

Table 3.1 The data structures accessed by vCardTrek.

Operating System Version Data Structures

Windows XP

Windows 2003

_ADDRESS_OBJECT' - socket

_TCPT_OBJECT – TCP connection

_EPROCESS - process

Windows Vista

Windows 2008

Windows 7

_TCP_LISTENER - socket

_TCP_ENDPOINT – TCP connection

_EPROCESS - process

64

vCardTrek maintains a table of all the (src MAC, src port, dst MAC, dst port)

connections being currently analyzed to avoid issuing redundant requests while a VMI request

processing is in progress. Upon completion of the VMI request, the corresponding connection

record is removed from this connection table.

3.3.5.2 Searching the Process Memory

vCardTrek identifies the portions of the VMs’ memory space that belong to the identified

processes, so that it can focus on those portions only, and searches these memory portions for the

test card number used in the test transaction (Step 5 of Figure 3.3). vCardTrek starts with the

entry-point process and continues recursively on each intercepted network connection.

The memory search is conducted using the following patterns. Payment card numbers are

sequences of 13 to 16 digits. The card issuer is identified by a few digits at the start of these

sequences. For instance, Visa card numbers have a length of 16 and a prefix value of 4.

MasterCard numbers have a length of 16 and a prefix value of 51-55. Discover card numbers

have a length of 16 and a prefix value of 6011. Finally, American Express numbers have a length

of 15 and a prefix value of 34 or 37. Therefore, finding these card numbers in memory can be

accomplished by searching for ASCII strings that match the following regular expression:

((4\d{3})|(5[1-5]\d{2})|(6011))-?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}. However, sequences of 13

to 16 digits with proper prefix values are not always card numbers. Each potential card number

obtained by the above search procedure has to be further verified using the Luhn algorithm [46],

which is a simple checksum formula that is commonly used to validate the integrity of a wide

variety of identification numbers.

When vCardTrek does not find the test card number in a process’s memory, there are

65

three possible explanations. First, the process does not receive the test card data at all. Second,

the process receives an encrypted version of the test card data, but does not decrypt it. Third, the

process receives the test card data either in clear text or in encrypted form, but vCardTrek scans

the process at an inopportune time, e.g. before the decryption of an encrypted card number or

after the clear text card number is overwritten.

To increase the probability of card detection, vCardTrek scans each communicating

process multiple times. The first scan examines every memory page in the process. If the card

number is not found in the first scan, vCardTrek re-scans the memory. Each subsequent scan

only inspects those memory pages that are modified since the last scan. We exploit the Xen’s

dirty page tracking capability to identify modified pages between consecutive scans. This

incremental scanning approach significantly decreases the card number search overhead in

subsequent scans. If no card number is found after a specified number of scans of a given

process, vCardTrek assumes the process is not in the card data flow.

Just because no card number is found in a process does not mean that the process cannot

be part of a card data flow. For example, the process can receive an encrypted card number and

pass it on to the next process without decrypting it. Therefore, vCardTrek has to scan all

communicating processes regardless of whether the sending process contains the test card

number.

3.3.5.3 Card Data Flow Reconstruction

To build the card data flow, the processes whose memory contains the test card data and

the communication connectivity among them are combined into a graph. When two processes of

a payment card processing system communicate, there are three possible state combinations after

66

searching their memory pages, as shown in Figure 3.4(A): (1) The test card data found in the

memory of both processes, (2-3) the test card data found in the memory of either process but not

both, and (4) the test card data is found in the memory of neither process.

Similarly, when vCardTrek scans a process’s memory in a VM that serves as a card

receiver and as a card sender, there are three possible state combinations, as shown in Figure

3.4(B).

Figure 3.4 (A) 4 possible states of two inter-VM communicating processes (grey rectangle - the
card number found in process memory, white rectangle - no card number found in process
memory. The arrow indicates the direction of connection initiation, not traffic flow); (B) 4
possible states of processes within a VM at packet receiving time and at packet sending (the
same process may serve as the receiving and sending process).

3.4 Evaluation

In this section, we describe experiments demonstrating distributed card data flow tracking

using vCardTrek. We tested the tool on three payment card processing systems: two e-commerce

67

shopping carts and a point-of-sale system (Table 3.2).

Table 3.2 Evaluation suites and testing results.

System Name

AbleCommerce

System

osCommerce

System

CreditLine

System

Software Description Commercial shopping cart

system used by > 10,000

stores worldwide [47]

E-commerce management

software program [48] used

by >12,000 online shops

Client-server application

designed as point-of-sale

system [49]

Language/Platform ASP.NET/MSSQL PHP/MySQL Windows executable

DomU Client Internet Explorer browser Internet Explorer browser Client application

DomU Server IIS 5.1 web server with

.NET framework v3.5

IIS 5.1 web server running

PHP v5.3.3

Server application

DomU DB MSSQL’05 Express Server MySQL 5.1.52 N/A

Encryption in Transit SSL SSL N/A

Results The test card number was

found in Client and Server

DomUs.

The test card number was

found in Client, Server, and

DB DomUs.

The test card number was

found Client and Server

DomUs.

Average Time to

Identify the Flow, sec
9 7 8

68

3.4.1 Card Data Flow Tracking Across Multiple VMs Hosted on the Same Physical Host

3.4.1.1 Experimental Setup

Our testbed consisted of a virtualized server that used Xen version 3.3 as the hypervisor

and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. vCardTrek was installed in the

Dom0. In addition, the virtualized server hosted three DomU domains (DomU Client, DomU

Server, DomU DB) running Windows XP. The payment card processing systems were installed

in these three domains as outlined in Table 3.2 and were running simultaneously to mimic the

real-world production environments with multiple services running on the communicating hosts.

3.4.1.2 Experiments

When conducting our experiment, we selected several items for purchase and submitted

credit card information at checkout. Following the payment card processing requests, vCardTrek

determined the set of machines exchanging packets, identified the processes involved in these

communications, and inspected the processes’ memory for the card number used in the

transaction, while allowing the applications to run throughout the analysis. The testing results are

presented in Figure 3.5.

Additionally, we also captured network packets exchanged between machines to

determine if an accurate card data flow could be built by only inspecting the contents of the

sniffed packets without applying vCardTrek. As expected, we could not detect the test card

number in the sniffed packets due to the SSL encryption configured on these communications

(Figure 3.6, Figure 3.7, and Figure 3.8).

69

Figure 3.5 Processes involved in card data flow (CreditLine flow at the top, osCommerce flow in
the middle, and AbleCommerce flow at the bottom).

Figure 3.6 AbleCommerce Card Data Flow (machines found to participate in the card data flow
are shown in grey) (left) using vCardTrek; (right) using a packet sniffer.

Figure 3.7 osCommerce Card Data Flow (machines found to participate in the card data flow are
shown in grey) (left) using vCardTrek; (right) using a packet sniffer.

70

Figure 3.8 CreditLine Card Data Flow (machines found to participate in the card data flow are
shown in grey) (left) using vCardTrek; (right) using a packet sniffer.

In some cases, vCardTrek was also able to identify other card related information

including the card expiration date, CVV number, and the cardholder’s name within the same

memory segment as the corresponding card number as shown in Figure 3.9.

Figure 3.9 Detailed information uncovered about a test card, including the card number
(4556156372833798), the card expiration date (0412), the CVV number (354), and the
cardholder’s name (Jon Jones) were identified within the process memory.

When running the tests, we observed the timings and the portions of memory from which

card data were extracted and classified the card data extraction instances into four categories:

1) Transient/Stack: The card data were uncovered from a stack region while the associated

transaction was being processed.

71

2) Persistent/Stack: The card data were uncovered from a stack region after the associated

transaction was completed.

3) Transient/Heap: The card data were uncovered from a heap region while the associated

transaction was being processed.

4) Persistent/Heap: The card data were uncovered from a heap region after the associated

transaction was completed.

The successful card data extractions vCardTrek was able to perform against the test

payment card processing systems fell into category (1), (3) and (4). Category (2) was rare

because memory words allocated on the stack were automatically freed and possibly overwritten

when they were no longer needed. In contrast, memory words allocated from the global heap had

a much longer life time, because application programs needed to explicitly free them when they

were no longer needed, but application programs rarely did so. As a result, card data stored on

the heap existed for at least the duration of the associated transaction, which typically took up a

few seconds to complete, and in many cases continued to exist even after the associated

transaction is completed.

3.4.2 Card Data Flow Tracking Across Multiple VMs Hosted on Multiple Physical Hosts

All communications in the first experiment occur between VMs running on top of the

same hypervisor, while in the real world the processes in a payment card processing system are

more likely to reside in multiple VMs spread over multiple physical hosts. In the following

experiment, we demonstrate the capability of vCardTrek to work equally effective in a multi-

physical-host setting.

72

3.4.2.1 Experimental Setup

Our testbed consisted of three virtualized servers that used Xen version 3.3 as the

hypervisor and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. vCardTrek was

installed in the Dom0 on each physical host. Each physical host was running one DomU domain.

The first virtualized server hosted DomU Client, the second virtualized server hosted DomU

Server, and the third virtualized server hosted DomU DB all running Windows XP. The payment

card processing systems were installed in these three domains as outlined in Table 3.2 and were

running simultaneously to mimic the real-world production environment with multiple services

running on the communicating hosts.

3.4.2.2 Experiments

When conducting our experiment, we selected several items for purchase and submitted

credit card information at checkout. Following the payment card processing requests, vCardTrek

determined the set of machines exchanging packets, identified the processes involved in these

communications, and inspected the processes’ memory for the card number used in the

transaction, while allowing the applications to run throughout the analysis. The card data flow

trajectories from the three VMs spread over three physical hosts were then concatenated to build

the card data flow. The testing results are presented in Figure 3.10.

73

Figure 3.10 Card data flow across multiple VMs hosted on multiple physical hosts.

3.5 Limitations

The test environments used to date have been useful in demonstrating the vCardTrek

effectiveness but they are rather simplistic and do not display many of the characteristics of

large-scale deployments. Although we tested three different settings, they all involved just four

processes distributed across three VMs interacting in almost identical fashion. Unlike the simple

test scenarios described in this work where the number of factors influencing the correctness of

the data flow reconstruction is minimal, the task of the card flow identification becomes

increasingly more complex in real-world production setups. For instance, if two VMs

communicate for reasons not related to payment data flow, such as periodic updates, heartbeats,

replications, backups, other services running on the communicating hosts, and so on, then these

connections may be mixed up with those for card data processing. These additional

communications could significantly increase the workload of the card data flow tracking tool.

Moreover, network delays may also critically affect the ability to track a card number within a

process.

74

More complex environments may introduce a race condition that may affect the

effectiveness of the system: the target process (which may be running on a different physical

machine) may have completed its processing (all of it, or just the part that involves the card data

in its unencrypted form) before vCardTrek on that physical machine manages to analyze the

process' memory. Additionally, we have also assumed that the system is in a “quiescent” state

where only one simulated transaction takes place at a time. This assumption is quite restricting

from a practical point of view, given that in a production setting it would be quite difficult to

ensure that there are no other ongoing transactions.

Finally, it is possible that a card number can be handled by processes in an encrypted

form and is never decrypted during its processing, as revealed by some of our experiments. This

issue will affect the accuracy of the derived data flow diagram vCardTrek produces.

3.6 Summary

This study presented the vCardTrek tool that automatically tracked card data flow of

payment card processing applications running in a virtualized environment and identified the

system components involved in card data processing. The primary use of this tool is to ensure

compliance with Payment Card Industry Data Security Standard (PCI DSS) that has been widely

adopted by commercial and financial institutions. The key features of vCardTrek include: 1) the

ability to discover the card data flow of a distributed payment card processing system; 2)

independence of applications and platforms; and 3) the ability to deal with communication

protocols that encrypt messages. We have demonstrated the vCardTrek effectiveness by testing it

with three different commercial applications, and vCardTrek successfully identified the correct

card data flow for each tested application.

75

4 Cloud-Based Application Whitelisting

4.1 Introduction

A cloud service that has proven commercially significant, especially in the private cloud

space, is virtual desktop infrastructure (VDI), which gives each end user a dedicated virtual

machine (VM) as her desktop computer and manages these VMs in a centralized manner. By

virtue of the centralized management architecture, VDI makes more efficient use of the

underlying computing resources and enforces high-level security policies on these desktop VMs

consistently and persistently.

As desktop computing is being virtualized, protection of desktop VMs also evolves from

an agent-based approach, which installs the security agent inside every VM to be protected, to an

agentless approach, which deploys the security agent on every physical machine on which the

VMs to be protected run. The agentless approach not only greatly simplifies security agent

maintenance and upgrade, but also effectively shields the agents from being attacked if the VMs

are compromised [4].

A standard way for an attacker to take control of a victim user machine is to (1) hijack an

existing application running on the machine, and (2) then download and execute additional

malicious helper programs to actually perform damaging acts, such as stealing information or

mounting attacks against other machines. Attackers perform the hijacking step by taking

advantage of vulnerabilities in applications, e.g., buffer or integer overflow. Many solutions [50-

52] have been proposed to deter such vulnerability-exploiting hijack attacks, but see limited

commercial adoption. In contrast, mainstream anti-virus (AV) products are designed to stop the

76

“download and execute” step by creating a blacklist of known malicious programs and

preventing an unknown program module from being loaded into an active address space if it

matches any entry in the blacklist. This blacklisting approach is losing steam because new

malware samples are programmatically generated from existing ones and as a result it is difficult

if not impossible for AV companies to keep their blacklists up to date. Blacklisting is effective

when there are fewer malicious programs than benign programs. Today, because the number of

malicious programs is much larger than the number of benign programs, and the gap is widening,

whitelisting, which prevents an unknown program module from being loaded into an active

address space if it is not in a whitelist of known good programs, seems to be a more promising

approach to keeping malicious helper programs out. In addition to defending against malware, an

application whitelisting system could also be used to prevent illegal, pirate or personal software

from running on corporate VMs assigned to employees.

This study describes the design and implementation of a cloud-based application

whitelisting system called CLAW, which checks an executable file or a library module against a

whitelist before it is loaded into the address space of a user process, and aborts the program load

operation if the executable file or library module is not in the whitelist. Moreover, CLAW runs

outside the VM on which the user process runs, and performs this check without installing any

agent inside the VM. We have successfully implemented a CLAW prototype on the Xen

hypervisor and targeted it at Windows and Linux VMs. The run-time performance overhead of

out-of-VM application whitelisting is shown to be under 10% in this prototype.

4.2 Background

The design goal of CLAW is to detect when an executable file or library module is to be

77

loaded into a user process in a VM and check if the executable file or library module is in a white

list. To motivate the design of CLAW, we start with a description of how the Windows OS and

Linux OS load code into a user process’s address space. We also describe Windows and Linux

data structures that are relevant to the design and implementation of CLAW. It is mandatory to

reconstruct these data structures in order to extract and analyze code regions in the process

address space without having access to the APIs inside the VM.

4.2.1 Code Regions

Code regions in the address space of running processes are classified into the following

three categories, summarized in Table 4.1, according to the type of sources used to populate

them:

Table 4.1 Code source types in memory.

Source Code Introduced Using

Binary File
1) a benign on-disk binary

2) a malicious on-disk binary

Private

Allocation

1) native system calls

2) system call hooking techniques to prevent binary registration

3) remote thread injection

Other

1) hot-patching of the existing code

2) function-pointer hooking

3) modifying the return address on the stack

We discuss the three code source types for both Windows and Linux OS in more details

below.

78

4.2.1.1 Code in File-Backed Address Space Regions

4.2.1.1.1 Windows OS

The application is typically made up of a base executable that loads library components

containing additional functionality. The executable and the library components are represented

by on-disk files that are mapped into a process’s address space when the application is launched

or during run-time. File-backed address space regions contain data from on-disk files. Windows

OS differentiates between files that are mapped as data, and files that are mapped as executable

images. The code that loads a file into memory has to specify whether the file is loaded as a data

file or an image file. Data files have arbitrary content and structure and are simply mapped one to

one to their address space regions. Image files, on the other hand, must be stored in the portable

executable (PE) format and may contain data as well as executable code. A PE file contains

several sections each with its own read/write permission characteristics. Data sections may be

read-only or writable. Code sections in general are executable and read-only. Image files can be

mapped as data files. However, if a data file is not stored in the PE format, the system loader will

refuse to load it as an image. When a new process is started or a library component is loaded, the

NtMapViewOfSection native system call is used to map a code section into a process’s address

space in memory. The description of the NtMapViewOfSection system call and its parameters is

given in Table 4.2.

4.2.1.1.2 Linux OS

The binary loader maps the executable file along with the loadable segments of any

required libraries into memory using the mmap system call. The mmap system call exposes an

interface that allows for associating a memory range with a file descriptor. The description of the

mmap system call and its parameters is given in Table 4.3.

79

Table 4.2 Windows system calls.

System Call Parameters and their description

NtMapViewOfSection

(IN SectionHandle, IN ProcessHandle, IN OUT BaseAddress, IN ZeroBits,
CommitSize, IN OUT SectionOffset, IN OUT PULONG ViewSize, IN
InheritDeposition, IN AllocationType, IN Protect)

SectionHandle – a handle to Section object, successfully created by a call to
NtCreateSection or NtOpenSection

ProcessHandle – a handle to the process that the view should be mapped into

BaseAddress – a pointer to the variable receiving virtual address of mapped
memory

Protect – specifies the type of protection for the region, such as
PAGE_EXECUTE_READWRITE

NtProtectVirtualMemory

(IN ProcessHandle, IN BaseAddress, IN NumberOfBytesToProtect, IN
NewAccessProtection, OUT OldAccessProtection)

ProcessHandle – a handle to the process that the protection should be set for

BaseAddress – a pointer to base address to protect

NumberOfBytesToProtect – a pointer to size of region to protect

NewAccessProtection – specifies the type of protection for the region, such
as PAGE_EXECUTE_READWRITE

NtAllocateVirtualMemory

(IN ProcessHandle, IN OUT BaseAddress, IN ZeroBits, IN OUT
RegionSize, IN AllocationType, IN Protect)

ProcessHandle – a handle to the process to allocate memory in

BaseAddress – a pointer to a variable that will receive the base address of
the allocated region of pages.

RegionSize – a pointer to a variable that will receive the actual size of the
allocated region of pages

Protect - specifies the type of protection for the region, such as
PAGE_EXECUTE_READWRITEs

80

Table 4.3 Linux system calls.

System Call Parameters and their description

mmap (void *start, size_t length, int prot, int flags, int fd , off_t offset)

mmap function asks the system to map length bytes starting at offset from the file
specified by the file descriptor fd into memory, preferably at address start. If start
is 0, mmap returns the actual place where the object is mapped. prot describes the
desired memory protection and can be a bitwise-or of the values PROT_NONE /
PROT_READ / PROT_WRITE / PROT_EXEC

mprotect (const void *addr , size_t len, int prot)

mprotect changes protection for the calling process's memory page(s) containing
any part of the address range in the interval [addr, addr+len-1]. prot describes the
desired memory protection and can be a bitwise-or of the values PROT_NONE /
PROT_READ / PROT_WRITE / PROT_EXEC

4.2.1.2 Code in Private Address Space Regions

4.2.1.2.1 Windows OS

Private address space regions are created through dynamic memory allocation calls and

contain volatile data, which only exist when the hosting process is alive. Two types of code exist

in private address space regions: dynamically generated code and injected code. Dynamically

generated code is created by the process itself at run time while injected code is forcibly loaded

into a process’ address space by another process. Examples of applications that may generate

dynamic code include just-in-time (JIT) compilers, interpreters, and executable unpackers.

To create code in private address space regions, Windows applications first allocate new

address space regions by calling the NtAllocateVirtualMemory system call with proper

read/write/execute permission setting, and later follow by writing code into the allocated regions.

Setting these regions to be writable is necessary because the code may modify itself as it is being

executed. In addition, applications could use the NtProtectVirtualMemory system call to modify

81

the permissions of private address space regions later on. The usage of these two system calls is

given in Table 4.2.

While dynamic code generation sees a great deal of legitimate usage, code injection is

almost exclusively used by malicious programs. A common code injection attack is to inject a

user space rootkit code into the address space of a system daemon process. There are three

common code injection attacks:

1) Hooking the Native Loader: Assume a user space shell code is placed on a victim

host via an initial exploitation. The shell code then hooks the file loading system call

to trick the dynamic loader into loading a malicious binary in memory rather than

from an intended file on disk [53]. Because the malicious binary is registered with the

victim process, a query for modules loaded into the victim process allows for

detection of the injected code.

2) Reflective Library Injection: The code loaded through a remote exploitation contains

a minimal PE loader that can load additional code without relying on the native loader

[54]. Because the native loader is not involved, the loaded code is largely

undetectable to the operating system and the hosting process. The only indicator that

the loaded code exists is a chunk of private address space region is allocated with

read/write/execute permissions.

3) Remote Thread Creation: The Windows API CreateRemoteThread allows a process

to start a thread in another process. Common use cases of this system call include

injecting a thread into a remote process being debugged to issue a breakpoint or

injecting a thread into a process to query heap or other process information. Using

82

this API, a malicious process starts a new thread in a victim process by passing it the

address of a piece of code already injected into the victim process.

4.2.1.2.2 Linux OS

To create code in private address space regions, Linux applications first allocate new

address space regions by calling the mmap system call with read, write, and execute memory

protection flags and the anonymous flag not tired to a file descriptor, and later follow by writing

code into the allocated regions. In addition, applications could use the mprotect system call to

modify the permissions of private address space regions later on. The usage of these two system

calls is given in Table 4.3.

4.2.1.3 Other

Code may also be introduced via run-time overflow attacks that alter the execution path

through hot-patching of existing code or control-sensitive data structures, e.g., changing a return

address or a function pointer by overflowing a buffer. CLAW does not provide protection against

attacks using these types of code.

4.2.2 Relevant Kernel Data Structures

4.2.2.1 Windows OS

EPROCESS: The kernel creates an EPROCESS data structure for each running process

to hold a variety of information about the process. EPROCESS structures for all active processes

are linked in a doubly linked list (Figure 4.1). The PsActiveProcessHead kernel symbol points to

the doubly-linked list of EPROCESS structures. The PsActiveProcessHead pointer includes two

pointers, a forward (Flink) pointer and a backward (Blink) pointer. The Flink pointer points to

83

the active process links of the first EPROCESS. The Blink pointer points to the active process

links of the last EPROCESS structure in the active process list.

Figure 4.1 Windows code and memory management data structures.

PEB: The process environment block (PEB) component in a process’s EPROCESS data

structure contains a pointer to the virtual address of the memory-mapped PE image of the

program loaded into the process, and a pointer to the virtual address location of the

PEB_LDR_DATA object that maintains information about all DLLs loaded into the process

(Figure 4.2) [55]. PEB is actually stored in a process’s user address space rather than in the

kernel because it needs to be modified in user space. PEB_LDR_DATA contains pointers to

doubly-linked lists of loaded modules that are sorted in load order (InLoadOrderLinks), in

84

memory order (InMemoryOrderLinks), and in initialization order (InInitializationOrderLinks).

PEB_LDR_DATA is modified as modules are loaded or unloaded. Each loaded module is

represented as a LDR_DATA_TABLE_ENTRY structure, which is an element of a doubly-

linked list of loaded modules, and contains details about the module name, base address and size.

Figure 4.2 The PEB data structure.

VAD: For each block of consecutive memory addresses that share the same memory-

related settings, Windows maintains a virtual address descriptor (VAD) entry storing the

following information: start and end addresses, protection settings (read-only, writable,

executable), data source type (file-backed memory or private address space), information about

the associated file (if file-backed memory). All entries for a process are aggregated in a VAD

tree (VadRoot) (Figure 4.1).

85

CONTROL_AREA : A VAD object points to a CONTROL_AREA object that stores

detailed information about different subsections of a file.

SUBSECTION: For each mapped file, there are one or more SUBSECTION objects

which store important mapping data. For data files, there is normally only one subsection, since

the complete address range has the same characteristics, but for image files, multiple subsections

may exist: one for each PE section plus one for the PE header. This is due to different

characteristics of PE sections, e.g. some may be read-only while others are writable or

executable. Each subsection contains a pointer to the next subsection.

FILE : FILE object is used by Windows to track a single open instance of a file. The file

object contains a pointer to the Unicode name of the file. Another most important pointer is the

SECTION_OBJECT_POINTERS field described next.

SECTION_OBJECT_POINTERS: Due to the different mapping and usage

characteristics of data files and image files, different control areas are used. If, for example, a file

is first mapped as a data file, a corresponding data section control area is created. If then the

same file is mapped as an image, an image section control area is created as well. Both objects

are of the same type except that for data files normally only one subsection is created, while for

image files the number of subsections equals the number of PE sections in the related file plus

one for the PE header. In fact, Windows internally maps each executable, which is about to be

loaded first as a data file and then in a second step as an image. This results in the creation of two

different control areas, from which either is used depending on the type of the created view. To

maintain these different control areas per file, in the file object Windows stores one unique array

for each opened file that contains pointers to the related data and image control areas. Either of

86

these two pointers may be zero, but not both of them. This array is called

SECTION_OBJECT_POINTERS and is pointed to by each file object. The

SECTION_OBJECT_POINTERS structure contains three pointers as seen in Figure 4.2. The

first is called the DataSectionObject, the next is called the SharedCacheMap, and the final

pointer is called the ImageSectionObject. DataSectionObject and ImageSectionObject are related

and are actually pointers to the data and image control areas correspondingly. The

SharedCacheMap is a pointer to the SHARED_CACHE_MAP structure, which is used by the

operating system to maintain the cache.

4.2.2.2 Linux OS

TASK_STRUCT: The kernel creates a task_struct for every process running on a Linux

system. The task_struct structure holds information about the current state of the process (Figure

4.3). task_struct structures for all active processes are linked in a doubly linked circular list. The

global variable init_task is of type task_struct and represents the head to the doubly-linked list of

task_struct structures. The init_task includes forward and backward pointers. The forward

pointer points to the active process links of the first task_struct. The backward pointer points to

the active process links of the last task_struct structure in the active process list.

VM_AREA_STRUCT : The vm_area_struct descriptor (similar to VAD in Windows

OS) represents a memory region owned by the process and contains the start and the end

addresses of the region. All vm_area_struct structures are linked together in an address-ordered

singly linked list. Each vm_area_struct points to the associated mm_struct structure (similar to

VadRoot in Windows OS) that describes a process’ address space. There is only one mm_struct

per process shared by all user-space threads. The vm_file field of each memory region descriptor

87

contains the address of a file object for the mapped file; if that field is null, the memory region is

not associated with a file.

Figure 4.3 Linux code and memory management data structures.

FILE : The file object contains fields that allow the kernel to identify both the process

that owns the memory mapping and the file being mapped. The file structure includes a pointer

to the dentry data structure.

DENTRY : Dentry structures are created by the virtual file system to represent a directory

88

entry (directory or file). The dentry structure contains the name of the directory entry and a

pointer to the inode structure.

INODE : The mapped file is identified by the inode data structure, which is an in-memory

representation of a disk inode. The i_mapping field of each inode object points to the

address_space object of the file.

ADDRESS_SPACE: The address_space structure represents the virtual memory image

of the file and holds the search tree of pages for a file. The address_space structure allows for

ordered enumeration of all physical pages pertaining to an inode. In turn, the i_mmap field of

each address_space object point to a vm_area_struct data structure. While a single file may be

represented by multiple vm_area_struct structures corresponding to the file portions mapped by

multiple processes into their address space, there is only one address_space structure for the file

no matter how many processes have mapped a particular file.

4.2.2.3 System Call Table Structures

The function pointers (addresses) of individual system calls exported by the kernel are

stored in the system call table (Figure 4.4). In Windows OS, the system call table is represented

by the system service dispatch table (SSDT) data structure. In Linux OS, the system call table is

represented by the sys_call_table data structure. When an application makes a system call, it

places the associated system call number in the EAX register, which is used as an index into the

system call table. Each system call pointer in the table is four byte long. Thus, to get a system

call offset into the system call table, the system call number in the EAX register is multiplied by

4. The address stored at the calculated offset points to the actual system call function in the

kernel address space in memory.

89

Figure 4.4 System call dispatching.

4.2.3 System Call Interception in Xen Hypervisor

User applications invoke system call requests by either executing software interrupts (INT

0x2E in Windows OS and INT 0x80 in Linux OS) or by the fast system call entry mechanism

using the Intel SYSENTER/SYSEXIT or AMD SYSCALL/SYSRET instruction pairs. The fast

system call entry mechanism was introduced due to performance issues on Pentium processors

with the software interrupt method. All Windows versions starting with XP and Linux kernels

starting with 2.6 use the fast system call entry method.

On a Xen para-virtualized platform, capturing system calls and their arguments is

straightforward. Each trap from a DomU transfers control to the hypervisor, which forwards the

trap to the Dom0 domain. However, the situation is more complex on an HVM platform. On

such a platform, traps are directly forwarded to the kernel of the HVM by the hardware without

90

the involvement of the hypervisor. Fortunately, it is still possible to capture system calls on the

HVM platform, although differently on AMD and Intel hardware. When an application needs to

execute a system call, it normally specifies the requested system call number in the EAX register

and a pointer to the user stack in the EDX register and then issues the SYSENTER instruction.

The SYSENTER instruction passes control to the address specified in the model specific register

(MSR) containing the entry point of the system call handler. Execution of this instruction results

in transition into kernel mode. Once in kernel mode, the system call number is read from the

EAX register and is looked up in the system call table. On the Intel platform, interception of

system calls can be achieved by guaranteeing that the MSR points to an unmapped memory

address, causing a trap to the hypervisor by a page fault. Conversely, AMD supports control

flags that can be set to trigger transfers to the hypervisor on system calls. The hypervisor then

forwards the relevant information, such as the values of the registers containing the system call

number and parameters, to the Dom0 domain for system call processing. While these methods of

interception are certainly effective, they introduce performance overhead because they require

that every system call trigger an exit to the hypervisor.

4.3 Related Work

4.3.1 Code Verification Systems

Several studies have explored the problem of code verification in memory of running

processes using the out-of-VM approach (Table 4.4). These can be roughly divided into (1)

periodic code verification methods that periodically check the static code portions of the running

program to detect if the program has been tampered with; (2) continuous run-time code integrity

verification methods to detect code tampering attempts; (3) on-demand code verification

91

methods to ensure only approved code is allowed to be loaded by a program into the process’

address space at load-time. All these methods work by calculating hashes of sections of memory,

such as kernel text or user program memory during a known good state that are then used as a

comparison baseline at the time of code verification.

Table 4.4 Code verification systems.

System
Name

User Space (U) / Kernel Space
(K) Monitoring

Code Verification Type Virtualization Type

CLAW U On-demand Full virtualization

Livewire U Periodic Software-based (Type 2)

Copilot K Periodic Coprocessor-based

SBCF K Periodic Full virtualization

NICKLE K Continuous run-time Emulator, Software-based
(Type 2)

Secvisor K Continuous run-time Custom-made hypervisor

Manitou U/K Continuous run-time Full virtualization

Patagonix U/K Continuous run-time Full virtualization

HIMA U On-demand Para-virtualization

X-Spy K On-demand Para-virtualization

4.3.1.1 Periodic Code Verification

The Livewire intrusion detection system used an integrity checker to detect if a running

user-level program had been tampered with by periodically computing a hash of the immutable

sections (.text) of a running program, and comparing it to a known good hash [4].

The Copilot integrity monitor implemented a detection strategy based on MD5 hashes of

the host kernel’s text, the text of any loaded kernel modules, and the contents of some of the host

92

kernel’s critical data structures [16]. Copilot calculated “known good” hashes for these items

when they were believed to be in a correct, non compromised state. The Copilot monitor then

periodically recalculated these hashes throughout host kernel run-time and watched for results

that differed from the known good values to detect cases where a rootkit had modified some of

the kernel’s existing executable instructions.

Similarly to the Copilot approach, state-based control flow integrity (SBCFI) monitor

kept a copy of the kernel code’s hash, and at each control flow integrity check, it made sure the

kernel’s code had not been modified by comparing it against the “known good” hashes [56].

The periodic nature of this group of methods introduces the possibility of evasion. An

attacker can modify the code and revert back to the original code between two consecutive

checks without the security monitor detecting the code tampering.

4.3.1.2 Continuous Run-Time Code Verification

A hypervisor-based NICKLE was developed to transparently prevent unauthorized kernel

code execution [57]. NICKLE computed a priori off-line cryptographic hash of the kernel’s code

and on each VM startup performed the authentication of the loaded kernel code by comparing it

with the known correct value. The authenticated kernel code was copied into a shadow physical

memory of the target VM that was not accessible from within the VM. If the hash values did not

match, the kernel module’s code was not copied into the shadow memory. At run-time each

kernel instruction fetch was verified by comparing the shadow memory maintained by the

hypervisor with the actual physical memory at that location. Any differences indicated the

presence of a rootkit, and thus the code was prevented from executing on the guest system. Linux

kernel modules (LKMs) also required authentication before their insertion since NICKLE could

93

not distinguish between a valid and a malicious kernel module. A disadvantage of this kind of

authentication scheme was that it needed to be manually performed every time a module was

inserted into the kernel, and in-depth analysis was necessary to ensure that the LKM did not

invalidate the kernel.

A small hypervisor system SecVisor was proposed to enforce the write+execute property

of memory pages of the VM with the goal of preventing unauthorized code from running with

kernel-level privileges [58]. The write+execute property stated that the pages of kernel memory

could be either writable or executable, but never both. SecVisor used a white-list based approval

policy containing “known good” SHA-1 hashes of all kernel runtime code to allow loading of

kernel code at runtime. All code that was attempted to be loaded into kernel memory from the

time the kernel was started was checked against the whitelist approval policy. SecVisor required

modifications of the kernel code and thus did not support closed-source OSes. Moreover,

SecVisor was not able to function if the OS kernel had mixed pages that contained both code and

data.

Litty and Lie proposed a hypervisor-based system, called Manitou, for validating the

executing code of both user applications and the kernel within a guest VM [7]. The hypervisor

maintained a list of cryptographic hashes of the in-memory representations of application and

kernel-level code pages that might be run within the VM. Manitou authenticated executing code

by taking a cryptographic hash of the content of a page right before executing code contained on

that page. Only pages that matched those in the trusted list were allowed to execute.

A hypervisor-based Patagonix system based on Manitou was designed to detect rootkits

that avoided tampering with files on disk by injecting malicious code into binaries as they ran.

94

Patagonix identified covertly executing binaries by inspecting the code as it executed in memory

and verifying the integrity of the executing binaries [10]. The executing code was identified

using a trusted external database that contained cryptographic hashes of binaries. Patagonix

compared the executing binaries reported by the OS with the good known binaries it identified

and reported any discrepancies to the administrator. Patagonix did not handle the on-demand

loading of running programs to measure them in their entirety.

As the continuous run-time code verification methods employ the VM executable

memory protection, this approach may lead to spurious page faults impacting the performance of

the system.

4.3.1.3 On-Demand Code Verification

The goal of CLAW is to track on-demand code loading events and to perform verification

of the loaded code prior to its first execution. This objective is related to the group of methods

that focus on providing code integrity measurements by actively monitoring system events.

A hypervisor-based HIMA was developed to measure the integrity of VMs running on

top of the hypervisor by measuring user-level programs to be loaded into the guest VM and

validating the integrity of the measured programs throughout the program execution [59]. HIMA

monitored all the system calls that changed the VM’s program memory layout, including loading

and removing kernel modules, creation and termination of user processes, and loading and

unloading of libraries. On intercepting the appropriate event, HIMA computed the SHA1 hash of

the program code and initial data segment as they got loaded into the memory. HIMA completed

all its measurements before the control jumped to the loaded program to guarantee that no

instruction ran inside the system before being measured. After measuring the program, HIMA

95

added a new entry to the measurement list, and ensured consistency of the integrity measurement

of user programs by capturing any attempt to modify measured programs throughout their

execution. HIMA measured para-virtualized Linux systems only.

A hypervisor-based X-Spy system was implemented as an intrusion detection and

protection framework [60]. One of the X-Spy’s functions was to monitor system calls within a

Linux OS for the purpose of protecting the integrity of the kernel. System calls were traced using

the INT 0x80 instruction interception. X-Spy used a whitelisting technique by which all kernel

modules allowed to be loaded were explicitly specified along with their respective SHA-1 hash

values. If the module or binary to be loaded at run-time was not specified in the whitelist or if it

had an incorrect hash value, X-Spy prevented it from being loaded by preventing the system call

from reaching the VM kernel space. The memory scanning technique was used to computer the

hash of the binary that involved loading the complete .text and .data sections of a binary into

memory by setting the program counter to the next page and asking the VM kernel to load the

page, and then hashing it while handling the page fault. If the hash could not be verified, the

hypervisor invalidated all of the memory and returned the control back to the guest domain.

Because of the invalid .text section to which the VM pointed, the process crashed.

The scope of the above tools was limited to para-virtualized VMs only whereas the

CLAW was specifically designed for fully-virtualized VMs.

4.3.2 System Call Interception Systems

A number of systems have been developed for detection of malicious processes by

analyzing system calls (Table 4.5). We cover the related work including hardware emulators,

para-virtualized systems, and fully virtualized systems.

96

Table 4.5 Comparison of system call monitoring systems.

System Name Virtualization Type System Call Interception Mechanism

CLAW full virtualization System call table + MSR invalidation

Ether full virtualization MSR invalidation

VMScope emulator Instruction tracking

TTAnalyze emulator Instruction tracking

XView emulator Instruction tracking

Onoue et al. [61] para-virtualization Guest OS binary code patching & Native
system call trapping chain

Xenini para-virtualization Native system call trapping chain

HIMA para-virtualization Native system call trapping chain

X-Spy para-virtualization Native system call trapping chain

4.3.2.1 Hardware Emulators

Out-of-VM system call tracing has been employed in emulator-based environments for

malware analysis to identify malware startup mechanisms, command and control channels, and

access to sensitive information. Examples of such systems include VMScope [62], TTAnalyze

[63], and XView [64], which are based on dynamic binary translation technique of QEMU [41].

TTAnalyze automated the process of analyzing a malware process where the malware

under analysis was executed inside an emulator environment, and relevant Windows API and

native system calls were tracked and logged. The instruction pointer value of the virtual

processor was compared to the start addresses of all operating system functions to determine the

exact system function invoked by the malware process. TTAnalyze monitored the CR3 register

value to determine whether or not the system call invoked by current instruction belonged to the

malware process.

97

An emulator based system VMScope allowed viewing of the system call events of a VM-

based honeypot by intercepting and interpreting the parameters and return values of various

internal system calls invoked inside the VM.

XView used a dynamic cross-view based approach to detect processes hidden by rootkits.

In order to identify a rootkit process, XView dynamically maintained a list of active processes

built outside the monitored VM and comparing it with the list reported by the guest system. The

outside view containing active processes was constructed by intercepting low-level system calls

used to create and terminate processes and interpreting system call arguments and the return

values of these system calls.

4.3.2.2 Para-Virtualized Systems

The code verification systems, HIMA and X-Spy, described earlier also made use of

system call monitoring to detect code loading events.

Onoue et al. [61] proposed a security system that controlled the system call execution of

processes using the para-virtualization version of Xen to intercept events related to system calls.

The hypervisor intercepted system calls invoked by processes in the monitored VM and

restricted their execution based on the security policy defined by a user. When a system call

invoked by a process matched with an allow-rule in the security policy, it was allowed to

execute. Otherwise, a system call violating the security policy was forced to fail.

Xenini was developed as a system for detecting intrusions in the para-virtualized XEN

hypervisor by intercepting and analyzing system call traces [65]. Xenini disabled the fast system

calls facility and used the 0x80 software interrupt to intercept system calls.

98

4.3.2.3 Fully Virtualized Systems

The Ether analyzer was developed for malware analysis on fully virtualized hardware

platforms utilizing hardware virtualization extensions [66]. Ether was able to trace all system call

executed by the target OS by exploiting the x86 fast system call entry mechanism. The

performance evaluation of the system showed that tracing added extra latency to system calls,

however, the majority of this latency was due to notifications of the Ether user space component

and a full in-hypervisor implementation would have had much lower latencies.

4.4 System Architecture

4.4.1 Overview

CLAW assumes that the administrator has determined a set of approved permitted

executable files and library modules and then prepared a whitelist that consists of the SHA-1

cryptographic hash values of these executable files and library modules (Step 1 of Figure 4.5). At

run time, CLAW intercepts every program load operation in the VMs that it protects, applies the

SHA-1 function to the executable file or library module being loaded, and uses the resulting

SHA-1 value to look up the whitelist. Creation and maintenance of a whitelist according to its

list of allowed programs is actually non-trivial, especially in the face of constant software

patches and upgrades, and growing sophistication of software installation. But this issue is

outside the scope of this study.

The design of CLAW should attain the following functionalities outside the monitored

VMs:

1) Detecting new loaded programs in monitored VMs before they are executed in

99

monitored VMs,

2) Checking the hash values of loaded programs against the whitelist, and

3) Aborting the processes holding loaded programs if the whitelisting checks do not

go through.

The Issue 1 could be addressed by intercepting system calls associated with specific

program loading operations. However, because the performance overhead of system call

interception may be substantial, monitoring kernel or processor data structures as a result of

program loading operations may be more efficient.

Figure 4.5 The CLAW architecture.

100

For Issue 2, CLAW computes a loaded program’s hash value by applying the SHA-1

hash function to the in-memory PE/ELF image rather than the on-disk PE/ELF file of the loaded

program. It would have been very difficult to access the on-disk files of loaded programs without

installing any agent in the monitored VMs.

For Issue 3, to simplify the interaction between CLAW and the monitored VMs, CLAW

aborts a process holding an illegitimate loaded program by zeroing out the address space region

holding the loaded program. This approach is simple and effective, and does not require any

cooperation from monitored VMs.

As shown in Figure 4.5, CLAW is composed of a front-end component running in a

monitoring VM and a back-end component running inside the hypervisor. The back-end

component of CLAW suspends a monitored VM when detecting a new loaded program in a user

process running in the VM. After suspending a VM, the back-end component notifies the front-

end component to extract the detected loaded program and verify if the associated hash value is

in the whitelist. CLAW’s front-end component is able to access the address space of each

monitored VM and make sense of the kernel data structures of monitored VMs using the real-

time kernel data structure monitoring system. This architecture enables active monitoring of the

protected VMs without requiring installation of any agents inside them.

The current CLAW implementation is built on the Intel VT hardware and the Xen

hypervisor and is designed to support guest VMs running both Linux Ubuntu Jaunty and

Windows XP.

101

4.4.2 Design and Implementation

4.4.2.1 Verification of Code in File-Backed Space

4.4.2.1.1 Creation of a New Process

CLAW continuously watches for newly created processes in each monitored VM so that

it can verify the executable files being loaded before they are executed. To intercept process

creation operations in Windows OS, CLAW keeps track of the Flink and Blink pointers in the

structure pointed to by PsActiveProcessHead. If CLAW observes a write to either Blink or Flink

on the page containing this structure (Step 2a of Figure 4.5), it traverse the processes lists to

determine if a new EPROCESS structure has been created or if an existing process has been

terminated. The process creation steps in Windows OS, as shown in Figure 4.6, up to the image

mapping into the process’ address space have already been done. As soon as the back-end

component of CLAW detects a new process in a VM, it suspends the VM, and notifies CLAW’s

front-end component to take over. The front-end component uses the process’s EPROCESS data

structure to track down the new process’s PEB data structure, and eventually the address space

region mapping of the PE file used in the newly created process (Step 3 of Figure 4.5).

Figure 4.6 Windows OS process creation flow.

102

To intercept process creation operations in Linux OS, CLAW keeps track of the forward

and backward pointers in the init_task structure. If CLAW observes a write to the forward or the

backward pointer on the page containing the init_task structure, it traverse the processes list to

determine if a new task_struct structure has been created or if an existing process has been

terminated. As soon as the back-end component of CLAW detects a new process in a VM, it

suspends the VM, and notifies CLAW’s front-end component to take over. The front-end

component uses the process’s task_struct to track down the start and end addresses of the .text

section of the ELF file used in the newly created process.

The front-end component verifies the legitimacy of the binary file by applying the SHA-1

hash function to the file’s .text immutable code section and comparing the resulting hash value

against all cryptographic hash values in the whitelist (Step 4 of Figure 4.5). If there is a match,

CLAW allows the new process to run as usual by returning control to the monitored VM. If no

match is found, the front-end component of CLAW zeros out the address space region holding

the executable file and effectively prevents the process from continuing.

4.4.2.1.2 Loading of a Library Into an Existing Process

To detect new library modules loaded into an existing process in a Windows VM, the

back-end component of CLAW monitors writes to the pages that contain the backward (Blink)

pointer to the InLoadOrderLinks module list of all user processes in that VM. When CLAW’s

front-end component detects a write to the Blink (Step 2b of Figure 4.5) field on any of these

pages, CLAW’s back-end component analyzes the last LDR_DATA_TABLE_ENTRY member

appended to the corresponding list to verify the newly loaded module (Step 3 of Figure 4.5).

More concretely, using the DllBase field, CLAW locates the in-memory PE image of the library

module, computes a SHA-1 hash value for the PE image’s .text section, and checks the resulting

103

hash value against the whitelist (Step 4 of Figure 4.5). If no match is found, CLAW’s front-end

component zeros out the address space region for the library module and returns control to the

VM. This design works for program loading operations for library modules that are either on-

disk or in-memory, and therefore covers the type of code injection attacks that eventually use the

native loader.

To detect new library modules loaded into an existing process in a Linux VM, the back-

end component of CLAW intercepts the mmap system call. This call is used (1) in creating and

associating a memory range with contents of a library component and (2) for creating memory

ranges not tired to file descriptors such as those used in code injection attacks. We apply the

system call interception mechanism described in the next section to verify both file-backed

address space mappings and private address space regions.

4.4.2.2 Verification of Code in Private Space

In Windows OS, code in private address space regions is created by a

NtAllocateVirtualMemory system call possibly followed by a NtProtectVirtualMemory system

call. In Linux OS, code in private space regions is created by a mmap system call possibly

followed by a mprotect system call. CLAW’s back-end component supports a system call

interception mechanism that captures these two system calls, and notifies the front-end

component to analyze the captured system call’s target address space. If the write and execute

permissions of the target address space region are turned on, CLAW’s front-end component sets

the target address space region as non-executable, so that when the target address space region is

first executed later on, a page fault occurs. At that instant, CLAW’s front-end component

computes a SHA-1 hash value of the target address space region and looks up the whitelist with

104

the resulting hash value. The above design works effectively against all code injection attacks

described in the Background section. Unfortunately, it also tends to fail dynamically generated

code, i.e., those produced by JIT compilers, interpreters and executable unpackers, because it is

unlikely for the whitelist to include dynamically generated code. To address this false positive

problem, CLAW offers the option to disable whitelisting checks for processes that run JIT

compilers, interpreters and executable unpackers.

CLAW’s system call interception mechanism works as follows:

1) System Call Table Extraction: In Windows OS, every executing thread stores a pointer to

the SSDT at a known offset inside its ETHREAD data structure. CLAW locates the

SSDT data structure in memory through the ETHREAD of the executing threads. In

Linux OS kernel versions 2.6 and above, the System.map file holds the kernel address for

the system_call_table array. The CLAW system uses this file to locate the sys_call_table

data structure in memory.

2) System Call Capturing: CLAW turns off the present (P) bit on the memory pages pointed

to by the system call table entries associated with the system calls that are to be

intercepted, for example, NtAllocateVirtualMemory / NtProtectVirtualMemory and

mmap/mprotect (Figure 4.7). Turning off the present bit of a page containing system call

routines causes a page fault whenever the monitored VM invokes a systems call in that

page and transfers control to the hypervisor (Step 2c of Figure 4.5). CLAW’s back-end

component then turns on the present bit of the page causing the page fault, and turns off

the present bit of the page containing the return address of the invoked system call, and

resumes the system call. When the invoked system call returns, another page fault occurs

105

because the present bit on the return address-containing page is off. At this point,

CLAW’s front-end component is notified to analyze the system call’s input and output

arguments (Step 3 of Figure 4.5).

After the analysis of the arguments is complete, CLAW’s back-end component turns on

the present bit of the page causing the page fault, and continues the system call’s return to

user mode.

Figure 4.7 The CLAW system call interception steps – we enable/disable the present bit on
system call entry/return.

3) Handling of Concurrent Identical System Calls: Modifying the permission of a kernel

space page affects all user processes running on top of the kernel because the kernel

address space is shared by all processes. Therefore, when the present bit of a page

containing system call routines is turned on because one of the system calls in it is

invoked, it is not possible to intercept other system calls in the same page. To solve this

problem, we modify the SYSENTER_EIP_MSR register to point to an invalid page

whenever there is at least one system call in execution (Figure 4.8). With this mechanism,

system call interception works correctly even when some system calls are being

executed, because every SYSENTER system call will trigger a page fault due to the

setting of the SYSENTER_EIP_MSR register.

106

Figure 4.8 Combination of the CLAW and the MSR-register based system call interception.

In summary, CLAW features two system call interception mechanisms. When no system

call is in execution, it uses a fine-grained interception mechanism that traps only for pages

containing system calls that are to be intercepted. However, as soon as one or more system calls

are invoked and being executed, it switches to a coarse-grained interception mechanism that

stops all system calls. Note that as soon as the coarse-grained interception mechanism is enabled,

the fine-grained one is disabled.

Because a page could contain multiple system call routines, when system calls that co-

reside with a system call to be intercepted are called, they also trigger a page fault. When such

page faults arise, CLAW simply ignores them and moves on.

4.4.3 Key Data Structures Monitored by CLAW

Table 4.6 provides the summary of the key data structures actively monitored by CLAW.

107

Table 4.6 Summary of the data structures monitored by CLAW.

OS Data Structures (Fields) Actions Taken

Windows

PsActiveProcessHead (Flink,Blink) On write, traverse the processes lists to
determine if a new EPROCESS
structure has been created or if an
existing process has been terminated.

_PEB_LDR_DATA
(InLoadOrderModuleList)

On write, analyze the last
_LDR_DATA_TABLE_ENTRY
member appended to the list to verify
the newly loaded module.

Linux

init_task (next, prev) On write, traverse the processes lists to
determine if a new task_struct structure
has been created or if an existing
process has been terminated.

4.5 Evaluation

In this section, we describe the experiments conducted to evaluate the effectiveness and

performance impact of the CLAW system.

4.5.1 Experimental Setup

The test machine consisted of a virtualized server that used Xen version 3.3 as the

hypervisor and Ubuntu 9.04 (Linux kernel 2.6.26) as the Dom0 kernel. The host system used a

Duo CPU P8600 processor containing two CPU cores at 2.4GHz and 2GB of system memory.

The CLAW prototype was installed in the Dom0 domain. In addition, the virtualized server

hosted a DomU domain running a default installation of Windows XP and configured with

512MB RAM.

108

4.5.2 Experiments

4.5.2.1 Effectiveness

After initializing the CLAW prototype, we ran the Internet Explorer application as the

benign sample. CLAW was successful in identifying Internet Explorer as a trusted application,

which was allowed to execute.

In the next test, we used the Metasploit Framework to exploit a buffer overflow in the

Microsoft Server Service (MS08-067) [67, 68]. We then ran a payload introduced via the buffer

overflow vulnerability that injected malicious code into the running Internet Explorer process via

a remote thread injection attack. Execution of the injected code was prevented. Next, we

configured the Metasploit framework to use a reflective library injection payload that allowed

the library to load itself into the target address space without using the native loader (e.g., the

library did not appear in the list of loaded modules in the PEB). When we executed the exploit,

CLAW detected a call to allocate a private virtual memory in the process with the write/execute

permissions and blocked execution of the injected code because it was not in the whitelist.

4.5.2.2 Performance

VM performance is impacted by the following CLAW monitoring components: (1) data

structure monitoring (the PsActiveProcessHead + _PEB_LDR_DATA monitoring); (2) system

call interception (present bit-based system call interception + MSR-based system call

interception).

To measure the run-time CLAW overhead, we selected the PCMark industry standard

benchmarking application [30] to run several benchmarks for the data structure monitoring and

109

the system call interception components. The results of testing appear in Table 4.7. Each of the

benchmarks was first run without CLAW to obtain the baseline performance and then re-run

with (1) the PsActiveProcessHead monitoring enabled and the _PEB_LDR_DATA and CLAW

system call interception disabled; (2) the PsActiveProcessHead and _PEB_LDR_DATA

monitoring enabled and the CLAW system call interception disabled; (3) the

PsActiveProcessHead and _PEB_LDR_DATA monitoring disabled and the CLAW system call

interception enabled; (4) all system call interception using the MSR-based system call

interception based approach (continuous interception of all system calls) enabled.

Table 4.7 Run-time performance of CLAW.

Benchmark PsActiveProcessHead

Monitoring

PsActiveProcessHead

+

_PEB_LDR_DATA

Monitoring

CLAW’s

System

Call

Interception

MSR

System

Call

Interception of all
system calls

CPU 2.4% 2.6% 0.8% 7.9%

Memory 1.3% 1.3% 4.6% 64.3%

HDD 3.7% 3.8% 1.1% 29.5%

Among the three schemes used in CLAW to detect program loading, the CLAW system

call interception incurs the least overhead because it is targeted at specific pages containing

system call routines of interest. The MSR-based system call interception incurs the most

overhead. The overhead incurred by monitoring of the PsActiveProcessHead structure is

somewhat higher than expected, because there are modifications to the same page holding the

process list that trigger spurious write protection faults. The overhead incurred by

110

_PEB_LDR_DATA monitoring is negligible as components of this structure are located in user

address space pages and are rarely modified.

Because it is difficult to measure the run-time performance degradation of interaction

with applications, we focus on their startup time instead. We measured the startup time of three

interactive applications: MS Office Word, Mozilla Firefox, and Adobe Acrobat. We ran these

applications and used the PassMark AppTimer [69] tool to measure the time between when an

application was started and when its main window for use input appeared, with and without the

CLAW. These measurements also included the code verification times while the VM was

suspended, and appear in Table 4.8. Even though the percentage overheads are more substantial

than batched programs, the start-up overhead time of all three interactive applications are less

than one second, which are reasonable and acceptable user experiences.

Table 4.8 Startup performance of CLAW.

Applications Total Startup Time, msec Overhead

MS Office Word 1,764 37%

Mozilla Firefox 366 43%

Adobe Acrobat 1,487 17%

To evaluate the performance advantage of the PsActiveProcessHead and

_PEB_LDR_DATA data structure monitoring over interception of system calls involved in new

process creation and code mapping using libraries, we extended the CLAW system call

interception mechanism to include monitoring of the NtCreateSection and NtMapViewOfSection

system calls. NtCreateSection is always invoked when a new process is started to create a section

object. NtMapViewOfSection is used to map views of section objects created using

111

NtCreateSection into a process address space. Invocation of NtMapViewOfSection with the

request of mapping a view of a section combined with the page protection flag argument set to

allow executions indicates that the process is mapping a new executable region. To extract the

code region used in mapping a view, we look up the NtMapViewOfSection’s section handle

argument among the handles owned by the requesting process to locate the address of the

corresponding section object. The list of handles owned by the process can be found using the

corresponding process EPROCESS structure. We use the identifies section object to traverse the

related memory structures in the kernel memory of the VM to extract the subsection

corresponding to the .text section of the file and verify the identity of the region using SHA-1

hashing. The performance benchmark results of the NtCreateSection and NtMapViewOfSection

system call interception are provided in Table 4.9. Startup performance results are provided in

Table 4.10.

Table 4.9 Run-time performance of NtCreateSection and NtMapViewOfSection system call
interception.

Benchmark PsActiveProcessHead

+

_PEB_LDR_DATA

Monitoring

CLAW’s

System

Call

Interception of

NtCreateSection &

NtMapViewOfSection

CPU 2.6% 1.1%

Memory Latency 1.3% 3.2%

HDD 3.8% 1.3%

112

Table 4.10 Startup performance of CLAW using NtCreateSection and NtMapViewOfSection
system call interception.

Applications Total Startup Time, msec Overhead

MS Office Word 1,996 52%

Mozilla Firefox 538 110%

Adobe Acrobat 1,623 28%

Interception of the NtCreateSection and NtMapViewOfSection system calls has a minor

run-time performance advantage while the start-up overhead time using these system calls has

significantly increased. The increase in the start-up time is due to parsing of the system call

arguments that requires traversing and parsing of series of data structures in the kernel address

space. Although our experiments show that direct interception of the NtCreateSection and

NtMapViewOfSection system calls has a better run-time performance, the PsActiveProcessHead

and _PEB_LDR_DATA data structure monitoring may be beneficial in addressing scenarios

where the NtCreateSection and NtMapViewOfSection system calls are hooked by malicious

user-space code to bypass invocations of the actual NtCreateSection and NtMapViewOfSection.

4.6 Limitations

Code verifications performed by the CLAW at load-time include the binary code of the

executable file and libraries in its initially loaded state. However, a process may be exploited

over the course of its execution through an application vulnerability, such as a buffer overflow,

and new unverified code may be introduced by manipulating the existing code and thus,

bypassing the CLAW load-time defense mechanisms. Our current system does not specifically

defend against these attacks.

113

The CLAW does not detect malicious activity that does not introduce any unapproved

code into the system but rather uses the approved code. For instance, a malicious process could

attempt to tamper with the non-control data of a process that may be used by the application

while carrying out its computations and interactions and indirectly modify its operations without

injecting additional code. Examples of such attacks and a proposed defense mechanism are

described in Chapter 5.

Finally, false positives may also arise from processing code dynamically generated by

JIT compilers, interpreters, and packed executables. In our future work, we will investigate how

these special cases can be addressed by CLAW.

4.7 Summary

We presented the CLAW, a system that verified the code identity in the VM execution

environment. The CLAW verified binary code in user processes by computing a cryptographic

hash over the executable file and its dependencies (library components) at their load-time

mapping. These verifications were taken when a process and libraries were loaded in memory

but before their first execution. The CLAW also tracked and analyzed code in executable

memory regions allocated at run-time. We developed a prototype of our approach for the

Windows and Linux operating systems. The results showed that the system was able to reliably

identify whitelisted codes in applications while blocking unapproved codes. Successful

identification of the malicious code introduced through code injection attacks further

demonstrated CLAW’s effectiveness in dealing with sophisticated attacks designed to hide the

code’s presence. The concepts and techniques discussed in this study could be applied to other

operating systems and hypervisors.

114

5 Access Token Manipulation Attack Detection Tool

5.1 Introduction

Many real-world software applications are susceptible to attacks that alter the target

program’s control data (e.g., return addresses and function pointers) in order to execute injected

malicious code. Because control-data attacks have been pre-dominant, many defensive

techniques have been developed to protect program control flow integrity to prevent such

attacks. With the advancement of control flow protection techniques, attackers have devised a

new group of attacks to bypass the defenses. These attacks target non-control data and are less

straightforward to construct than control data attacks because they require in-depth semantic

knowledge of the target data. The current range of defensive techniques against non-control data

attacks is limited. This is because data structures frequently targeted by non-control attacks

change rapidly making it difficult to differentiate between normal and abnormal states.

The stealthiest of non-control data attacks is the direct kernel object manipulation

(DKOM) attack, which directly accesses and writes to kernel data structures stored in memory

without using any APIs. A unique example using the DKOM technique is the hidden process

attack in which the attacker manipulates the doubly linked list of running processes to unlink a

malicious process and hide it from the OS view [70]. Other examples of hidden object attacks

include driver and network data hiding to create false views of loaded drivers and network usage.

In this study, we focus on DKOM-based access token manipulation attacks that target

authorization and authentication data assigned to a running process. The access token

manipulation is a post-exploitation technique allowing the attacker to escalate privileges on an

115

already compromised Windows host. The access token data structure determines the access

privileges associated with a running Windows process and is derived from the user’s log-on

session. When a process attempts to perform various actions, the privileges in the access token

are compared to the required privileges to determine if access should be granted or denied.

Privilege escalation is achieved either by altering (token patching) or copying (token stealing)

the access token of a target process.

In the token patching attack, the attacker alters the access token of a target process to

raise the process’s privileges to the maximum level on the local system. Rootkits are known to

make use of the token patching attack by directly overwriting portions of the kernel memory

storing the process’s access token with new privileges. In the token stealing attack, the attacker

copies an already existing token of a user who has previously logged into the compromised

machine and swaps the target process’s access token with the copied token to assume the user’s

privileges. Because tokens of logged-in users may have domain-wide privileges, the token

stealing attack magnifies the dangers of the token patching attack by allowing the attacker to

compromise additional machines on the network domain.

We describe the design and implementation of a novel defensive tool called ATOM that

watches access tokens of running processes to detect access token manipulation attacks. ATOM

has an agentless architecture built on top of the RTKDSM system. We have successfully

implemented an ATOM prototype on the Xen hypervisor and targeted it at Windows and Linux

VMs.

116

5.2 Background

5.2.1 Access Token Data Structure

Every Windows process has an associated EPROCESS data structure (Figure 5.1). The

EPROCESS keeps track of various process-specific data including a pointer to its own access

token in the Token member of the _EX_FAST_REF type (Figure 5.2). The pointer points to the

TOKEN data structure (Figure 5.3). The exact memory address of the TOKEN structure is

calculated from the Token member by XORing the Token value with 0xFFFFFFF8. The XOR

operation is required because the last 3 bits of the Token value are used to keep a reference count

for optimization purposes. Thus, token addresses always end with the last three bits equal to

zero.

Figure 5.1 _EPROCESS data structure.

117

.

Figure 5.2 EX_FAST_REF data structure.

Figure 5.3 TOKEN data structure in Windows XP.

118

The TOKEN data structure is composed of static and dynamic parts (Figure 5.4). The

static part has a well-defined structure and does not change in size. It stores the count of

privileges in the PrivilegeCount field and the count of the security identifiers (SIDs) in the

UserAndGroupCount field. The dynamic part contains all the user privileges and SIDs. The

exact number of these varies depending on the credentials of the user who created the process.

Figure 5.4 Static and variable parts of the token in Windows XP [70].

The UserandGroups field stores a pointer to a dynamically allocated array of

PSID_AND_ATTRIBUTES structures storing security identifiers (SIDs) including a SID for the

user and all of the SIDs for the groups to which the user belongs (Figure 5.5).

119

Figure 5.5 SID_AND_ATTRIBUTES and SID data structures.

Each PSID_AND_ATTRIBUTES structure is composed of two fields: Sid, which is a

pointer to the SID structure holding SID information, and Attributes, which stores a series of

binary flags that hold the SID attributes. When a SID is added to the token, the

UserAndGroupCount value is incremented. The Security Descriptor Definition Language form

of a SID can be illustrated using the following example: “S-1-5-21-2833009033-2652595096-

1975694352-1012”, where “1” is the revision, “5” is the identifier authority that created the SID,

“21-2833009033-2652595096-1975694352” is the computer identifier, and “1012” is the

account or group identifier.

The Privileges field of the TOKEN data structure stores a pointer to a dynamically

allocated array of LUID_AND_ATTRIBUTES structures (Figure 5.6). Each

LUID_AND_ATTRIBUTES structure is composed of two fields: Luid storing the privilege ID

and Attributes storing a series of binary flags that define whether a privilege associated with a

given LUID is enabled or disabled. In the Privileges list, some of the privileges are disabled by

default (Figure 5.7).

120

Figure 5.6 LUID_AND_ATTRIBUTES data structure.

Figure 5.7 SIDs and Privileges contained in the process’s access token using Sysinternals’
Process Explorer tool [71].

121

5.2.2 Token Manipulation Attacks

This section describes the post-exploitation process using token manipulation attacks.

5.2.2.1 Access Token Patching

Access token patching attacks are commonly launched by kernel level rootkits. There are

two main rootkit families: control-data manipulating rootkits and non-control data manipulating

rootkits.

Control data manipulating rootkits, known as hooking rootkits, change the kernel control

flow path in such a way that control first flows to the attack code. The original code is either

never invoked or executed after the attack code is executed. Hooking may come in several

variations including import/export table hooking, system service dispatch table hooking,

interrupt descriptor table hooking, and inline function hooking. These methods allow an attacker

to gain control of the execution path by patching function pointers in a table through which a set

of calls or events are routed or by modifying the binary code of a target function.

Non-control data manipulating rootkits do not change the control flow directly but

manipulate values of critical variables, which in turn directly or indirectly influence the

algorithms used by the kernel. Such rootkits often target kernel data with dynamic characteristics

without injecting any code into the kernel memory space. These rootkits use DKOM techniques

to dynamically change certain kernel data structure, such as the access token data structure.

Non-control data manipulating rootkits launch access token manipulation attacks to raise

privileges of a malicious process without making a single call to any of the process or token

related APIs. This can be accomplished by modifying data contained in the TOKEN data

122

structure directly in memory. When modifying the TOKEN data structure, rootkits patch the SID

list and the Privileges values. The FU rootkit is one example of an access token patching rootkit

[70]. The FU rootkit operates using the following steps:

1) Finds the EPROCESS data structure for the target process using the process PID;

2) Finds the TOKEN data structure associated with the EPROCESS data structure;

3) Finds the privileges in the token and adds new privileges;

The fact that many privileges are disabled by default when a token is created proves to be

useful for an attacker in order to add privileges and groups to a process token. If a desired

123

privilege already exists in the token but is disabled, the rootkit enables the privilege. If a

desired privilege does not exist in the token, the rootkit finds a disabled privilege and re-

uses its space by overwriting it with the new privilege. By enabling or overwriting

disabled privileges already contained in the token, the attacker can avoid increasing the

token's size and overwriting memory regions adjacent to the process's token some of

which may be invalid.

4) Finds the SIDs in the token and adds new SIDs;

Disabled privileges may also be overwritten to make room for new SIDs.

5) Finally, modifies the PrivilegeCount and UserAndGroupCount counts.

In Windows versions prior to Windows Vista, there were no integrity checks on the

UserAndGroup list of SIDs and therefore, it was possible to add SIDs by finding dead space in

the token structure to overwrite it with. In the recent versions of Windows starting with Vista,

new fields SidHash and RestrictedSidHash have been added in the access token structure (Figure

5.8 and Figure 5.9). These two fields contain the hashes of the SIDs stored in the dynamic part of

the token in order to prevent accidental or intended modification of this part of the access token.

The hashes are checked every time the token is used. Despite the added integrity checks, access

token manipulation attacks are still possible with three main alternatives to bypass these defense

measures:

1) Applying the hash algorithm after modifying the SID lists;

2) Avoiding SID list patching and acting only on the Privileges;

3) Directly swapping the TOKEN value of the attacker’s process with the value in the

124

EPROCESS structure of a victim process using the token stealing attack as described in

the next section.

Figure 5.8 TOKEN data structure in Windows Vista.

Figure 5.9 _SID_AND_ATTRIBUTES_HASH data structure.

125

5.2.2.2 Access Token Stealing

During normal operations of a system, there are tokens of some variety present depending

on the system’s function and its usage environment. If the system is compromised, these tokens

can be used by the attacker in token stealing attacks to achieve privilege escalation. The token

stealing attack involves the exchange of a malicious process’s token with an access token of

another process running on the same system.

There are two main types of access tokens useful for this attack: primary tokens and

impersonation tokens. Every process has a primary token that describes the security context of

the user account associated with the process. Impersonation is the ability of a process to

temporarily impersonate a security context different from the context of the process by starting a

thread using a different access token. The main reason for impersonation is to enable a service

running under a certain security context act on behalf of connecting clients by executing threads

under the clients’ own security context. There are four impersonation levels: Anonymous,

Identification, Impersonation, and Delegation, of which the Impersonation level and the

Delegation level have the most significant security implications (Figure 5.10).

Figure 5.10 Impersonation levels.

The Impersonation level tokens, which are normally created as a result of a non-

126

interactive login, allow a thread to impersonate the security context on the local system but do

not allow access to external systems. A common example would be an FTP server impersonating

client requests. The Delegation level tokens, which are normally created as a result of an

interactive login, allow a thread to impersonate the security context on any system. Examples

include logging in using remote access services and solutions.

By hijacking Delegation level tokens, an attacker can gain domain level privileges to

access systems that are otherwise secure from direct remote exploits. This is possible because

Delegation tokens contain authentication credentials and so can be used to access external

systems for which those credentials are valid.

A token stealing attack normally involves the following steps:

1) Enumeration of tokens present on the compromised system;

2) Selection of a Delegation or Impersonation token;

3) Starting a new process and swapping the process’s token with the token selected in the

previous step.

The swapping in the last step can be accomplished by calling an existing API, such as

ImpersonateLoggedOnUser in Windows OS. In this study, however, we only consider DKOM-

based token stealing attacks that directly overwrite the value of the Token member of the

EPROCESS structure in memory to point to a different access token [72].

127

5.3 Related Work

5.3.1 Control Data Manipulating Rootkits

Methods for detection of control data manipulating rootkits can be roughly divided into

static control data monitoring methods and execution path monitoring methods. Static control

data monitoring methods detect signs of a rootkit intrusion by checking known invariant data

regions in memory for suspicious entries. Violations of such invariants suggest the kernel has

been compromised. Execution path monitoring methods identify known program execution paths

in advance and monitor run-time execution paths to ensure they conform to the known paths.

Deviations from know execution paths are suggestive of rootkit presence.

5.3.1.1 Static Control Data Monitoring

5.3.1.1.1 Periodic Checks

Co-processor based Copilot was designed to detect kernel rootkits overwriting the

addresses of the kernel’s system call handling functions in the system call table with the

addresses of their own doctored system call handling functions as well as modifying the host

kernel’s text or the text or any loaded LKMs [16]. Copilot extracted the memory addresses of the

system call table and the kernel text from the host kernel and its System.map file at configuration

time, calculated known “good hashes” for these items, and monitored the related memory

regions throughout the host kernel run-time using periodic checks to detect changes to these

kernel memory regions. The fundamental limitation of Copilot was its inherent inability to detect

modifications as they occurred. A clever rootkit might conceivably modify and rapidly repair the

host kernel between checks as a means of avoiding detection.

128

5.3.1.1.2 Continuous Monitoring

The hypervisor-based intrusion detection system Livewire employed similar methods to

detect signs of malicious rootkit activity [4]. To detect modifications to sensitive portions of the

kernel memory continuously in real-time, Livewire marked the code sections and system call

table derived from the debugging information of the kernel binary as read-only. If a program

tried to modify these sections of memory, the monitor was notified about the malicious attempt,

and the VM was halted.

In another related study, Paladin leveraged the virtual machine technology to propose a

solution for real-time detection and containment of rootkit attacks. Paladin relied on specification

of access control policies tailored to protect memory areas and system files that could be a target

of rootkit attacks [73]. The memory access control policies included policies to protect the kernel

system call table, the interrupt table, and the kernel code from being overwritten in memory by

defining legitimate applications that could write into kernel memory. To obtain the knowledge

about the guest OS semantics, Paladin ran a driver inside the host OS to facilitate symbol

lookups in the System.map file for kernel text segment, system call table, and interrupt descriptor

table. Given the specifications of the access control policies and the physical addresses of the

protected memory regions, Paladin used the hypervisor to monitor write accesses across the

system for validity. Any time an illegal access was detected, the process attempting

modifications was killed.

Static control data monitoring systems make themselves vulnerable to rootkits that take

this type of discovery method into account and evade the security monitors, for instance, by

manipulating the system call table dispatch handler and redirecting the system call to a

completely fabricated table filled with pointers to malicious system call handlers. A static control

129

data monitor would continue to monitor the original, unchanged system call table, which would

no longer used by the kernel. Furthermore, monitoring for writes in known static data locations

would not prevent rootkits from hijacking function hooks within data structures that were meant

to be overwritten.

5.3.1.2 Execution Path Monitoring

5.3.1.2.1 Periodic Checks

State-based control flow integrity (SBCFI) performed a static analysis of the kernel’s

source code and compiled binary for global variables and function pointers reachable from the

global variables and built an approximation of kernel control-flow graph that would be followed

at run-time by a legitimate kernel [56]. Function pointers were tracked and validated periodically

at run-time to determine consistency with the control-flow graph using a monitor placed in a

separate security VM. The monitor process traversed the target kernel’s memory in parallel with

the target VM’s execution. Because the monitoring was done periodically, the SBCFI monitor

could only be used to reliably discover persistent changes: if an attacker modified the kernel for a

short period, but undid the modifications in time less then the next check period, then monitor

might fail to discover the change. Additionally, due to the lack of dynamic run-time information,

SBCFI was only able to achieve an approximation of kernel control-flow graph. The static nature

of the SBCFI system and learning inextensibility (due to the rapidly changing nature of the

Linux kernel) were some shortcomings of this approach. The performance of SBCFI was also

shown to incur close to 40% overhead on a typical machine running on Xen.

5.3.1.2.2 Continuous Monitoring

HookSafe, a hypervisor-based system, was designed to detect control flow modifying

rootkits [74]. On initialization, HookSafe used an in-guest kernel module to allocate memory

130

pages from the non-paged pool and copy protected kernel hooks from their original locations to

the newly allocated memory pages. It then loaded the indirection layer code in the guest OS to

regulate accesses to these memory pages. The hypervisor was notified through a hypercall about

the allocated memory pages to detour all accesses to protected hooks to the hook indirection

layer. For read accesses, the indirection layer simply read from the shadow hooks and returned

to the hook site. For write accesses, the indirection layer issued a hypercall and transferred the

control to the hypervisor to validate the write request according to values seen in the offline

normal operation profiling phase. By re-locating hooks to dedicated memory pages, HookSafe

avoided the unnecessary page faults caused by trapping writes to irrelevant data that might be co-

located with hooks on the same page. Hooks allocated at run-time were identified by

instrumenting the guest OS memory allocation functions and utilizing the run-time context

information to infer whether a particular kernel object of interest containing an embedded hook

was being allocated. If one such kernel object containing a kernel hook was being allocated, a

hypercall was issued to HookSafe to create a shadow copy of the hook. The HookSafe

implementation required modifications to the monitored OS and therefore could not be extended

to support closed source OSes.

5.3.1.2.3 Offline Analysis

From another perspective, HookFinder [75] based on a whole system emulator was

developed to automatically analyze an unknown potentially malicious binary and identify if this

code installed any hooks into the system. HookFinder was designed for malware analysis rather

than on-line detection. By instrumenting CPU instructions with taint propagation capabilities,

HookFinder considered any changes made by the malware as tainted and tracked taint

propagation throughout the system. HookFinder recognized a specific change as a hooking point

131

if the control flow was affected by some tainted value. Though effective in identifying specific

hooks registered in the malware code, HookFinder could not discover other hooks that did not lie

in the execution paths of any of these programs, and therefore would go undetected.

The HookMap implementation collected a list of sequentially executing kernel

instructions when handling a system call and identified the control-flow transfer instructions that

could potentially be exploited by rootkit for hiding purposes [76].

5.3.2 Non-Control Dynamic Data Manipulating Rootkits

The control data manipulating rootkit detection methods that detect violations based on

changes to static kernel content, control flow, or the executing binaries can not be applied to

detection of rootkit attacks on non-control data structures as they often include data and

functions pointers that are meant to be overwritten. Additionally, attacks against such data may

be performed by using already approved kernel code which satisfies kernel code integrity.

Therefore, a number of specialized methods have been developed to combat such attacks.

5.3.2.1 Periodic Checks

Petroni et al. [77] extended the capability of Copilot [16] for detection of attacks against

dynamically allocated constantly-changing kernel objects using a co-processor. The monitor

relied on an expert to describe the correct operation of the system via specifications of security-

relevant data structures and constraints on how these data structures interoperated. The monitor

periodically compared actual observed dynamic kernel data values in the snapshots of kernel

memory with the specifications of constraints on kernel dynamic data values and reported any

semantic integrity violations.

132

The cross view detection method in a hypervisor-based VMwatcher implementation

leveraged the self-hiding nature of rootkits to infer rootkit presence by detecting discrepancies

between process lists from different points of detection [3]. VMwatcher approach used an

introspection-based method to obtain a view of the processes running in the system and invoked

a standard API function from within the OS to get the API view of the processes running in the

system. The two results were compared, and the difference in the results revealed hidden rootkit

processes.

The above systems use a periodic sampling approach that may be exploited by the

malware to remain undetected in between two consecutive snapshot periods making this

approach far less attractive due to its lack of immediacy. Conversely, ATOM is able to extract

and analyze the data structures continuously, overcoming the limitations of the periodic checks

approach.

5.3.2.2 Continuous Monitoring

Srivastava et al. [18] developed Sentry, a VM-based system that prevented illegitimate

changes to dynamically allocated kernel data objects from occurring by mediating access to these

objects. Sentry introduced modifications to the monitored OS kernel to identify locations of

newly constructed dynamically-allocated kernel data object. The need for mediated access to a

newly constructed data object was communicated by the kernel to the hypervisor at the time that

it constructed the object. Similar to page protections manipulation approach used in the

RTKDSM system, the OS passed the physical page frame number (PFN) of the newly allocated

memory page holding kernel data object requiring protection to the hypervisor. When the

memory protection module in the hypervisor received a request to add protection for the

133

monitored VM’s page, it added the PFN to a list of protected pages and removed the page’s write

permission causing page faults on all attempted kernel object alterations. Sentry only allowed

alterations invoked by legitimate kernel functionality. Sentry implementation also made

alterations to the memory layout of kernel data structures to separate security critical and non-

critical fields for increased performance and therefore required access the OS source code.

Rhee et al. [17] proposed the KG system that prevented rootkit attacks targeting dynamic

data by detecting changes to monitored kernel data structures. KG monitored the execution of the

OS at the instruction level using QEMU emulator as an external monitor. For each kernel data

structure requiring protection, a policy was written describing how the data structure should be

identified in a raw view of memory as well as the characteristics of an attack against that data

structure. The policies were derived using the kernel source code and the analysis of functions

used to access given kernel data structures. At runtime, the system identified data structures of

interest in memory and intercepted all writes to their address ranges. The methodology described

in the study was only portable to VM monitors that supported memory interposition to translate

guest instructions into host instructions and therefore, it could not be extended to support

commercial hypervisors that did not provide memory interposition, such as Xen and VMWare

ESX, unlike in ATOM developed in this study.

A hypervisor-based VMhuko was designed to provide real-time protection for static and

dynamic kernel data by mediating access to these data using access control policies [78].

VMhuko relied on the static analysis of the OS source code to extract information about data

structures as well as their related normal kernel object access patterns and to build access control

policies for the extracted kernel objects. Locations of all static kernel objects were identified at

run-time using the kernel debug symbols and system map information in Linux. Dynamic kernel

134

objects were located at run-time using the assumption that all dynamic data were accessible from

global kernel data structures residing at well-known locations. For instance, the init_task global

data structure was assumed to be first accessed by rootkits to locate and traverse the task linked

list and then manipulate the dynamically allocated task_struct structures. Therefore, init_task

was monitored for read accesses. Memory pages containing static objects and pointer-valued

fields of global kernel data structures were marked as protected using not-writeable or not-

present fields and monitored for abnormal read and write kernel access patterns by comparing

function call traces to known good ones obtained from the static analysis of the sources code. All

rootkits used in the evaluation were system call table modifying rootkits running as self-hiding

processes. Although the average VMhuko performance overhead was reported as 17%, no details

were provided regarding the number of static and dynamic objects monitored in their

experiments. The VMhuko protection would be difficult to design for a closed source OS such as

Windows where the source code could be unavailable. Furthermore, a disadvantage of this kind

of implementation was that the source code analysis needed to be manually performed every

time a module was inserted into the kernel to ensure that valid accesses by the module were not

invalidate by VMhuko. Additionally, due to the lack of dynamic run-time information, VMhuko

was only able to achieve an approximation of normal kernel access activity.

5.3.3 Summary of Methods

Static control data monitoring methods including Copilot, Paladin, and Livewire, are

intended for protection of a small number of invariant data structures positioned at fixed

locations and known at compile time. These methods are not suited well for advanced attacks

targeting dynamic non-control kernel data where locations of data and the number of instances

are not known in advance. While the Copilot architecture was later extended to support detection

135

of such attacks [77], the new extension was based on an asynchronous approach and suffered

from inherent inability to detect attacks launched and withdrawn between two subsequent

periodic snapshots as a means of avoiding detection. Paladin served as a good detection and

prevention mechanism but the specifications of memory access control policies for protected

memory regions were static and a comprehensive survey of them was infeasible especially when

dealing with dynamically allocated objects. The Sentry, KG, and VMhuko architectures might be

considered extensions of the Paladin approach for protection of dynamically allocated objects.

However, these extensions either required OS modifications to detect object allocations or the

availability of the kernel source code to construct access control policies that might be difficult

to obtain for a closed source OS such as Windows. In our implementation, we extended the static

control data monitoring approach to protecting against attacks on dynamic non-control data.

Execution path monitoring methods are a subset of the general concept of protecting

invariant data known at compile time or enumerable data derivable from the invariant data.

Although these methods may be extended to support dynamically allocated control data, such

extensions may not be applicable to guard data structures unreachable from the global variables

and lacking semantic relationships with others [65].

136

Table 5.1 Non-control data manipulating rootkit detection systems.

Name Monitor
OS Semantics

Acquisition

Detection/
Prevention

(D/P)

Continuous/
Periodic

(C/P)

Requires OS
Modifications

(Y/N)

Requires
the OS
source
code
(Y/N)

ATOM hypervisor VMI D C N N

VMwatcher hypervisor VMI D P N N

Copilot
extension

co-
processor

Manual
specifications

D P N N

Sentry hypervisor OS
instrumentation

P C Y Y

KG
hardware

emulator

OS source
code, kernel

debug symbols
P C N Y

VMhuko hypervisor
OS source

code, kernel
debug symbols

P C N Y

5.4 System Architecture

5.4.1 Overview

As shown in Figure 5.11, ATOM is composed of a front-end component running in the

monitoring VM and a back-end component running inside the hypervisor. The back-end

component suspends the monitored VM on detecting a new process. After suspending the VM,

the back-end component notifies the front-end component to extract the new process’s access

token and analyze the privileges and the SIDs in the token using the real-time kernel data

structure monitoring system. Following the token analysis, the front-end component asks the

back-end component to resume the VM execution and to initiate the monitoring of the memory

portion containing the extracted access token. The back-end component tracks all attempts to

137

overwrite the privileges and the SIDs in the access token. When a write is detected, the back-end

component notifies the front-end component to analyze the altered access token and to alert the

administrator if an access token manipulation attack is detected.

5.4.2 System Design and Implementation

The ATOM architecture is built on the Intel VT hardware and the Xen hypervisor, and is

designed to support VMs running both Linux Ubuntu Jaunty and Windows XP.

5.4.2.1 Creation of a New Process

We assume the hypervisor component is started before any malicious process is running.

ATOM continuously watches for newly created processes in each monitored VM so that it can

extract its access token. To intercept process creation operations, ATOM keeps track of the Flink

and Blink pointers in the structure pointed to by PsActiveProcessHead. If ATOM observes a

write to either Blink or Flink on the page containing this structure (Step 1 of Figure 5.11), it

traverse the processes lists to determine if a new EPROCESS structure has been created or if an

existing process has been terminated. The process creation steps in Windows OS, as shown in

Figure 5.12, up to the access token set up have already been done. As soon as the back-end

component of ATOM detects a new process in a VM, it suspends the VM, and notifies ATOM’s

front-end component to take over. The front-end component uses the process’s EPROCESS data

structure to track down the new process’s TOKEN data structure so it can analyze the privileges

and SIDs.

138

Figure 5.11 The ATOM architecture.

Figure 5.12 Windows OS process creation flow.

5.4.2.2 Access Token Analysis

The process’s TOKEN data structure is identified in the physical memory using the value

139

of the Token field in the corresponding EPROCESS data structure. The rtkdsm.py plugin

implemented in the RTKDSM system links up a process to a particular user account by

extracting all the SIDs contained in the process’s access token and mapping the SIDs’ values to

their corresponding usernames and user groups. While some of the SIDs have well-known values

and can be easily mapped to their associated user or group name, other SIDs require additional

processing to determine the username associated with each SID. This additional processing

involves extraction of information from the machine’s registry. Specifically, we process the

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList

registry key hive shown in Figure 5.13 to extract the list of all local user account SIDs on the

machine.

Figure 5.13 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProfileList key hive

The username for each SID can be inferred by looking at the ProfileImagePath string

value inside the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\ProfileList\<SID> key. Using the Volatility’s registry-related APIs, we

extract all the local user account SIDs on the machine contained as subkeys in the

“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList”

140

registry key hive. The ProfileImagePath string value is usually of the

%SystemDrive%\Documents and Settings\<username> form, where the value of the <username>

string is the actual username. We use the Volatility’s registry-related APIs to extract the SIDs in

the ProfileList key hive and map them to their usernames. Apart from the individual account

SIDs, we also extract well-known group SIDs. These SIDs have been set aside for specific

purposes and are the same on any Windows machine.

5.4.2.3 Access Token Monitoring

ATOM performs real-time monitoring of the extracted token using the following steps:

1) Using the rtkdsm.py plugin, ATOM accesses and saves the current values of the SIDs,

privileges, and the counts of the privileges and SIDs;

2) The front-end component requests the RTKDSM system to calculate memory ranges

containing the Token member of the EPROCESS, the SIDs, privileges, and their counts.

The back-end component is notified to monitor the calculated ranges for writes.

For Windows XP and older Windows version, the following formula is used to calculate

the variable memory region size containing the SIDs and the privileges: (Size of

_LUID_AND_ATTRIBUTES structure) * PrivilegeCount + (Size of

_SID_AND_ATTRIBUTES structure) * UserAndGroupCount + (Size of _SID structure)

* UserAndGroupCount. For Windows Vista and later Windows versions, the following

formula is used to calculate the variable memory region size: (Size of

_SEP_TOKEN_PRIVILEGES structure) + (Size of _SID_AND_ATTRIBUTES

structure) * UserAndGroupCount + (Size of _SID structure) * UserAndGroupCount.

141

The two formulas differ because in Windows Vista and later, the privileges are stored in a

bitmap form inside an SEP_TOKEN_PRIVILEGES structure as shown in Figure 5.14.

Each field (Present, Enabled, and EnabledByDefault), being of type UINT64, has the

potential of holding up to 64 distinct privileges, each identified by an index within the

bitmap; the Present field holds the active privileges bitmap, while the Enabled and

EnabledByDefault fields keep track of the status of the privileges similar to the Attributes

field in older Windows implementations.

Figure 5.14 _SEP_TOKEN_PRIVILEGES structure in Windows Vista and later Windows
versions

3) If a write is detected at a monitored memory region (Step 2 of Figure 5.11), the front-end

component is notified by the back-end component so it can repeat the token analysis.

Depending on the memory region where the write is detected, we classify write instances

into the 4 categories:

i. False token stealing attack - a write is detected to the Token field of the

EPROCESS data structure. The new address is different from the previous

address, and it points to an invalid token. For instance, following the process

termination, the Token field of the EPROCESS structure is overwritten as a result

of the EPROCESS data structure de-allocation.

142

ii. True token stealing attack - a write is detected to the Token field of the

EPROCESS data structure. The new value points to a valid token. ATOM extracts

the new values of the privileges/SIDs, their counts and compares them to the

previously saved values, and alerts the administrator about the changes (Step 4 of

Figure 5.11).

iii. False token patching attack – a write is detected to the privileges/SIDs following

a system call. To modify a process token, Windows provides the

NtAdjustPrivilegesToken and NtAdjustGroupsToken system calls. We intercept

the NtAdjustPrivilegesToken and NtAdjustGroupsToken system calls using the

CLAW system call interception technique (Step 3 of Figure 5.11). If the write to

the token is caused by a system call, we consider it a false token patching attack

and thus, do not notify the administrator. In our implementation, we do not

consider adversarial attempts to evade detection by invoking a token-modifying

system call concurrently with a DKOM attack.

iv. True token patching attack – a write is detected to the privileges/SIDs and their

counts, and it is not a result of the NtAdjustPrivilegesToken and

NtAdjustGroupsToken system calls. Using the rtkdsm.py plugin, ATOM extracts

the new values of the privileges/SIDs/their counts, compares them to the

previously saved values, and alerts the administrator about the changes (Step 4 of

Figure 5.11).

5.4.3 “Always-on” and “Periodic Polling” Monitoring Modes

The ATOM implementation supports both the “always-on” and “periodic polling”

143

monitoring modes. The system operations and the related security implications were described in

the RTKDSM system.

5.4.4 ATOM Implementation for Linux OS

5.4.4.1 Background

5.4.4.1.1 Process Credentials

In the kernel versions < 2.6.29, user privileges are stored in the uid, euid, gid, and egid

fields of the task_struct data structure (Figure 5.15). In the kernel versions >= 2.6.29, the

task_struct was changed along with the logic of how access to the process credentials (Figure

5.16). The cred data structure was introduced and contains the uid, euid, gid, and egid fields.

Figure 5.15 The task_struct data structure.

144

Figure 5.16 The task_struct and cred data structures in Linux kernel versions >= 2.6.29.

5.4.4.1.2 Rootkit Attacks on Process Credentials

To alter the process's credentials in the kernel versions < 2.6.29, Linux rootkits overwrite

the credentials fields with 0 as shown in Figure 5.17. Later 2.6 Linux versions adopted a cred

structure to hold all information related to the privileges of a process. To alter the process's

credentials in the kernel versions >= 2.6.29, rootkits overwrite the credentials as shown in Figure

5.17. The prepare_creds function first prepares a new set of credentials by allocating and

constructing a duplicate of the process's credentials. The commit_creds function commits the

new credentials to the current process. To simplify the privilege escalation path, a number of

rootkits simply find another process that has the privileges of root and that never exits, usually

PID 1, and set the cred pointer of the target process to that of PID 1’s. This effectively gives the

attacker’s process full control, and the rootkit does not have to attempt the non-trivial task of

allocating its own cred structure.

145

Figure 5.17 Rootkit attacks on process credentials in Linux OS.

5.4.4.2 Implementation

5.4.4.2.1 New Process Detection

To intercept process creation operations, ATOM keeps track of the forward and

backward pointers in the init_task structure. If ATOM observes a write to the forward or the

backward pointer on the page containing the init_task structure, it traverse the processes list to

determine if a new task_struct structure has been created or if an existing process has been

terminated. As soon as the back-end component of ATOM detects a new process in a VM, it

suspends the VM, and notifies ATOM’s front-end component to take over.

The rtkdsm_linux.py plugin implemented in the RTKDSM system operates similarly to

the rtkdsm.py plugin in Windows OS. The process’s credentials are found in the physical

memory using the corresponding task_struct data structure. The rtkdsm_linux.py plugin reads the

values of the uid, euid, gid, and egid contained within this data structure.

146

5.4.4.2.2 Credentials Monitoring

ATOM performs continuous monitoring of the process’s credentials. The monitoring

involves the following steps:

1) Using the rtkdsm_linux.py plugin, ATOM accesses and saves the values of the uid, euid,

gid, and egid;

2) The front-end component requests the RTKDSM system to calculate memory ranges

containing the uid, euid, gid, and egid fields. The back-end component is notified to

monitor the calculated ranges for writes.

3) If a write is detected at a monitored memory region, the front-end component is notified

by the back-end component to repeat the analysis of the credentials. Depending on the

memory region for which the write has been detected, we classify write instances into the

4 categories:

i. True credentials stealing attack - a write is detected at the cred field of the

task_struct data structure. The new value points to a valid cred data structure.

ATOM extracts the new values of the credentials, compares them to the

previously saved values, and alerts the administrator about the changes. This

credentials stealing attack is specific to the Linux versions >= 2.6.29 only.

ii. False credentials stealing attack - a write is detected at the cred field of the

task_struct data structure. The new address is different from the previous address,

and it points to an invalid cred. For instance, following the process termination,

the cred field of the task_struct structure is overwritten as a result of the

task_struct data structure de-allocation.

147

iii. False credentials patching attack – a write is detected to the uid, euid, gid, and

egid following a system call. We intercept the setuid and setgid system calls using

the CLAW system call interception technique. If the write is caused by a system

call, we consider it a false credentials patching attack and thus, do not notify the

administrator.

iv. True credentials patching attack – a write is detected to the uid, euid, gid, and

egid, and it is not caused by a system call. Using the rtkdsm_linux.py plugin,

ATOM extracts the new values of the uid, euid, gid, and egid, compares them to

the previously saved values, and alerts the administrator about the changes. The

credentials patching attack may occur in all Linux 2.6 versions.

5.4.5 Summary of Data Structures Monitored by ATOM

Table 5.2 provides a summary of the key data structures actively monitored by ATOM.

5.5 Evaluations

5.5.1 Experimental Setup

Our testbed consisted of a virtualized server that used Xen version 3.3 as the hypervisor

and Ubuntu 9.04 (Linux kernel 2.6.26) as the kernel for Dom0. The host system had Duo CPU

P8600 processor running two cores at 2.4GHz and 2GB of system memory. The ATOM system

was installed in the Dom0 domain. In addition, the virtualized server hosted a DomU domain

running a default installation of Windows XP OS with the IIS web server. This domain was

configured with 512Mb RAM.

148

Table 5.2 Summary of the data structures monitored by ATOM.

OS Data Structures (Fields) Actions Taken

Windows

PsActiveProcessHead (Flink,Blink) On write, traverse the processes lists to
determine if a new EPROCESS structure
has been created or if an existing process
has been terminated.

_EPROCESS (Token) On write, the front-end component is
notified by the back-end component to
repeat the analysis of the token.

_TOKEN (UserAndGroupCount,
UserAndGroups, Privileges)

On write, the front-end component is
notified by the back-end component to
repeat the analysis of the token.

Linux

init_task (next, prev) On write, traverse the processes lists to
determine if a new task_struct structure
has been created or if an existing process
has been terminated.

task_struct (uid, euid, gid, egid) On write, the front-end component is
notified by the back-end component to
repeat the analysis of the credentials.

5.5.2 Experiments

5.5.2.1 Effectiveness

5.5.2.1.1 Token Patching Attack

To demonstrate the effectiveness of the ATOM in detecting token patching attacks, we

performed an attack using the Fu rootkit [70, 79]. Fu allows the intruder to hide information from

user-mode applications and kernel-mode modules by directly modifying kernel data structures

used by the operating system, such as, removing entries from the process and loaded modules

149

linked lists. In addition, Fu is capable of modifying a process's token to change the process’s

privileges and replacing the process’s owner SID.

Prior to the attack, the Fu rootkit was loaded in the test VM. The malicious process was

then started in the VM. The ATOM system running in the “always-on” mode detected the new

process and began monitoring its token. The Fu rootkit was directed to modify the malicious

process’s privileges and SIDs contained in the token. The ATOM system detected the writes to

the token and alerted the administrator about the attack.

We further performed a token patching attach with the system running in the “periodic

polling” mode with the timing parameter T set to 50 msec. We modified privileges in the

malicious process’s token and immediately restored them to their original values to avoid

detection. Although the first write was detected by ATOM, the overall attack involving

overwriting of multiple privileges was not. Despite an improved performance in the “periodic

polling” approach as was shown in Chapter 2, the “periodic polling” mode reduced the ATOM

effectiveness and provided a lesser degree of assurance. The experiment illustrated that system

execution in the “periodic polling” mode introduced a window of vulnerability between two

consecutive checks on the monitored data structures. However, by setting the timing parameter T

to 5 msec, the ATOM system was routinely able to detect the token patching attempts.

5.5.2.1.2 Token Stealing Attack

To demonstrate the effectiveness of the ATOM system in detecting token stealing

attacks, we performed a token stealing attack using the attack code presented in [72]. We started

two processes in the test VM – a victim process running with the privileges of the

“Administrators” user group and a malicious process running with the privileges of the “Users”

150

user group. The ATOM system running in the “always-on” mode detected the new processes and

began monitoring their tokens. The token stealing code copied the desired access token from the

victim process and exchanged the original value of the Token field in the malicious process with

the address of the copied token. Following this operation, the malicious process had the same

access rights as the victim process. The ATOM system detected the write to the Token field of

the malicious process and alerted the administrator about the attack.

5.5.2.2 Performance Assessment

The VM performance is impacted by the following ATOM monitoring components: (1)

monitoring of the PsActiveProcessHead structure; (2) monitoring of the EPROCESS data

structures; (3) monitoring of the TOKEN data structures; (4) CLAW system call interception.

The performance impact of the PsActiveProcessHead, EPROCESS, and TOKEN data structure

monitoring using the RTKDSM system in “always-on” and “periodic polling” mode was shown

in Chapter 2. The performance impact of the CLAW system call interception was shown in

Chapter 4.

5.6 Summary

We presented a detection system called ATOM that used the RTKDSM system to

intercept DKOM-based access token manipulation attacks targeting non-control data. This class

of attacks is difficult to detect using the existing defensive methods for control-data manipulating

attacks. The ATOM defensive approach consisted of monitoring all write accesses to memory

pages containing access tokens of running processes and real-time analysis of tokens when

updates targeting privileges in a token were detected. To avoid false positives caused by the OS

151

supported token-modifying system calls, we installed a system call interception mechanism

enabling ATOM to differentiate between writes caused by system calls vs. DKOM writes. Our

evaluation of ATOM showed that the system was able to successfully detect DKOM-based token

manipulation attacks using the presented techniques.

The semantic knowledge and memory locations of data structures targeted by DKOM

attacks were the key data required by our implementation. Both of these data could be obtained

through the Volatility framework for any of its supported data structures and provided as an

input into the ATOM system making the ATOM approach directly applicable for protection of

other critical data structures that might be targeted by DKOM attacks.

152

6 Conclusions and Future Work

6.1 Conclusions

Over the last few years, VMI technology has evolved to monitor VM behavior in an

agentless fashion. VMI provides a constellation of information about the states of all running

VMs making the agentless approach superior to the traditional in-host agent-based monitoring.

The contribution of VMI is especially prominent in security tools, such as virus scanners and

intrusion detection systems. By de-coupling security tools from the internal OS execution

environment, VMI makes them resilient to malicious attacks.

However, the VMI approach comes at a cost - VMI applications must deal with the

semantic gap issues requiring extensive knowledge and reconstruction of the guest OS data

structures. Reconstruction is commonly done from scratch leading to correctness challenges,

increasing the likelihood of buggy introspection, and limiting flexibility and extensibility of VMI

tools. As a result, generality of manual reconstructions is poor since the VMI tool is tied to the

guest OS. This problem is exacerbated if the guest OS is closed-source.

As forensic analysis tools aim to tackle many of the same issues that plague VMI tools,

the forensic community has already done much of the work bridging the semantic gap to support

multiple operating systems and a large number of kernel data structures. Several VMI studies

have previously proposed the use of forensic methods and tools for rapid data structure

reconstruction. However, existing forensic analysis tools are designed for an offline analysis and

thus, lack capabilities required by VMI tools to implement active monitoring techniques capable

of analyzing and detecting events as they occur.

153

6.1.1 RTKDSM

This research focuses on describing the RTKDSM framework designed to automatically

reconstruct kernel data structures of interest and to continuously monitor states of the

reconstructed data structures in real-time to support active monitoring. The RTKDSM system is

the first VMI framework leveraging a forensic framework to track changes in the reconstructed

data structures in real-time. By building on top of the forensic tool acumen, the RTKDSM

system reduces the complexity of developing VMI applications associated with data structure

reconstruction and by extension the likelihood of buggy introspection. Leveraging the Volatility

framework, the RTKDSM system eliminates effort duplications supporting the common modular

motif in computer science. These ideas have been previously proposed but not developed to be

practically usable. This objective has been achieved in this study. The RTKDSM system is

capable of supporting a wide range of VMI applications due to the RTKDSM framework’s

flexibility and extensibility, which has been lacking until now. This research has demonstrated

effectiveness and practicality of the RTKDSM framework by building three novel system

prototypes, vCardTrek, CLAW, and ATOM, which can be easily adapted for data flow tracking

and security monitoring in industrial settings.

6.1.2 vCardTrek

vCardTrek is the first published example of a VMI system used for the development of a

VMI tool for data flow tracking, thus moving the concept of VMI-based monitoring beyond the

usual virus and intrusion detection applications. Moreover, the main difference between

vCardTrek and other tools with a similar goal is that by applying VMI, it does not rely on

machine or application instrumentation when dealing with multiple machines. The conceptual

154

framework devised in this work could be applied to designing similar tools for real-world

payment card processing applications running on real-world computing environments.

Table 6.1 Summary of the data structures used by vCardTrek, CLAW, and ATOM.

System Data Structures

vCardTrek

ADDRESS_OBJECT

TCPT_OBJECT

EPROCESS

CLAW

PsActiveProcessHead

PEB_LDR_DATA

init_task

ATOM

PsActiveProcessHead

EPROCESS

TOKEN

init_task

task_struct

6.1.3 CLAW and ATOM

The problems addressed by CLAW and ATOM systems are challenging because of the

four restrictive requirements: (1) acting in a preventive mode, that is, the ability to detect events

as they occur, (2) OS-independence, that is, no modifications to the monitored OS or installation

of agents inside the OS, (3) direct applicability of the approach to HVM machines, which are the

main stream in virtualization, and (4) finally, the ability to intercept system calls selectively. The

main difference between these tools and other previously published tools with similar goals is the

ability to address the four requirements in one system made possible due to the novelty of the

155

RTKDSM and CLAW system call interception techniques developed in this dissertation.

6.2 Future Work

6.2.1 RTKDSM

The RTKDSM system currently provides a solid foundation for active monitoring in a

virtualized environment. Yet, our experience working with the RTKDSM system highlighted

some areas that would benefit from additional research. An important problem that needs to be

addressed by the future research is how to enable the RTKDSM system to automatically and

dynamically choose between the “always-on” and the “periodic polling” mode without affecting

VMI applications’ performance and the timeliness of detection. Our research has shown that

some data structures are consistently allocated on memory pages that experience frequent

spurious updates unrelated to the data structure itself making the “periodic polling” mode more

suitable for monitoring of such data structures. For this group of data structures, the next step is

to quantify the number of kernel data structures changes that may be missed as a result of

different polling frequencies in the “periodic polling” mode to help determine the optimal polling

interval to ensure timeliness of detection. Our research has also shown that some data structures

are allocated in memory pages that are rarely updated, thereby monitoring of such data structures

can be done in the “always on” mode without impacting the performance. Hence, the next stage

of our work is to investigate memory locations common to various data structure types and to

add capabilities to the RTKDSM system to dynamically choose the appropriate monitoring mode

depending on the data structure type. Furthermore, machine learning techniques may be applied

to efficiently train the RTKDSM system to choose between the “always-on” and “periodic

polling” mode.

156

6.2.2 ATOM and CLAW

From our experience developing the ATOM system, the next stage of this work is to

generalize the ATOM approach by applying it to any Volatility-supported data structure type.

This step will require updating the CLAW system call interception mechanism with system calls

lists relevant to various data structure types enabling the extensibility of the ATOM approach to

detection of DKOM attacks on any kernel data structure. Because the RTKDSM approach is able

to detect changes in general, rather than focusing on specific symptoms of known DKOM

attacks, the future ATOM system will be able to detect both known as well as unseen previously

DKOM attacks.

6.2.3 vCardTrek

The next stage of our vCardTrek work is to develop support for persistent TCP

connections and intra-host cross-process communications. Specifically, in our implementation,

we monitor TCP connections to track card data flow across multiple VMs. vCardTrek initiates a

search of the memory of a VM only when it is involved in a newly established TCP connection.

In the future, we plan to support persistent TCP connections, which may stay open for a long

time and service multiple transactions. Also, our coarse-grained data flow tracking mechanism

does not currently handle data flow tracking of cross-process communications within the same

VM. More research is required to determine the extent to which data flow tracking can be

implemented via cross-process intra-host TCP connections, pipes, and shared memory. This is

an important direction of future research. Finally, we would like to conduct additional

evaluations of vCardTrek on testbeds that mimic production environments to identify actual

limitations of the tool’s current design or implementation.

157

Bibliography

[1] A. Srivastava and J. Giffin. Tamper-resistant, application-aware blocking of malicious

network connections. In Proceedings of the 11th International Symposium on Recent

Advances in Intrusion Detection (RAID 2008), pages 39-58, September 2008. ISBN:978-

3-540-87402-7.doi:10.1007/978-3-540-87403-4_3.

http://dl.acm.org/citation.cfm?id=1433011.

[2] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure

active monitoring using virtualization. In Proceedings of the IEEE Symposium on

Security and Privacy (IEEE SP 2008), pages 233-247, May 2008. ISBN:978-0-7695-

3168-7.doi:10.1109/SP.2008.24. http://dl.acm.org/citation.cfm?id=1398072.

[3] X. Jiang, A. Wang, and D. Xu. Stealthy malware detection through VMM-based “out-of-

the-box” semantic view reconstruction. In Proceedings of the 14th ACM Conference on

Computer and Communications Security (CCS 2007), pages 128-138, October 2007.

ISBN:978-1-59593-703-2.doi:10.1145/1315245.1315262.

http://dl.acm.org/citation.cfm?id=1315262.

[4] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for

intrusion detection. In Proceedings of the Network and Distributed Systems Security

Symposium (NDSS 2003), pages 191-206, February 2003.

[5] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible monitoring of virtual

machines. In Proceedings of the 23rd Annual Computer Security Applications

Conference (ACSAC 2007), pages 385-397, December 2007. ISBN:978-0-7695-3060-4.

doi:10.1109/ACSAC.2007.10.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4413005.

[6] B. D. Payne. XenAccess Library. http://code.google.com/p/xenaccess/.

[7] L. Litty and D. Lie. Manitou: A layer-below approach to fighting malware. In

Proceedings of the 1st Workshop on Architectural and System Support for Improving

Software Dependability (ASID 2006), pages 6-11, October 2006. ISBN:1-59593-576-2.

158

doi:10.1145/1181309.1181311. http://dl.acm.org/citation.cfm?id=1181311.

[8] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. VMM-based hidden

process detection and identification using Lycosid. In Proceedings of the 4th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE

2008), pages 91-100, March 2008. ISBN:978-1-59593-796-4.

doi:10.1145/1346256.1346269. http://dl.acm.org/citation.cfm?id=1346269.

[9] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Antfarm: Tracking

processes in a virtual machine environment. In Proceedings of the 2006 USENIX Annual

Technical Conference (USENIX ATEC 2006), pages 1-14, June 2006.

http://dl.acm.org/citation.cfm?id=1267360.

[10] L. Litty, H.A. Lagar-Cavilla, and D. Lie. Hypervisor support for identifying covertly

executing binaries. In Proceedings of the 17th USENIX Security Symposium (USENIX SS

2008), pages 243-258, July 2008.doi:10.1.1.145.2378.

http://dl.acm.org/citation.cfm?id=1496728.

[11] B. D. Payne. Simplifying virtual machine introspection using LibVMI.

http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf.

[12] B. Hay and K. Nance. Forensics examination of volatile system data using virtual

introspection. ACM SIGOPS Operating Systems Review, vol. 42, issue 3, pages 75-83,

April 2008. doi:10.1145/1368506.1368517. http://dl.acm.org/citation.cfm?id=1368517.

[13] K. Nance, M. Bishop, and B. Hay. Investigating the implications of virtual machine

introspection for digital forensics. In Proceedings of the International Conference on

Availability, Reliability and Security (ARES 2009), pages 1024-1029, March 2009.

ISBN:978-1-4244-3572-2.doi:10.1109/ARES.2009.173.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5066605.

[14] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing the

semantic gap in virtual machine introspection. In Proceedings of the 32nd IEEE

Symposium on Security and Privacy (IEEE SP 2011), pages 297-312, May 2011.

ISBN:978-1-4577-0147-4.

[15] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process implanting: A new active introspection

159

framework for virtualization. In Proceedings of the 30th IEEE Symposium on Reliable

Distributed Systems (SRDS 2011), pages 147-156, July 2011. ISBN:978-0-7695-4450-2.

doi:10.1109/SRDS.2011.26. http://dl.acm.org/citation.cfm?id=2085362.

[16] N. Petroni, T. Fraser, J. Molina, and W. Arbaugh. Copilot—a coprocessor-based kernel

runtime integrity monitor. In Proceedings of the 13th USENIX Security Symposium

(USENIX SS 2004), pages 179-194, August 2004. doi:10.1.1.93.5047.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.5047.

[17] J. Rhee, R. Riley, D. Xu, and X. Jiang. Defeating dynamic data kernel rootkit attacks via

VMM-based guest-transparent monitoring. In Proceedings of the International

Conference on Availability, Reliability and Security (ARES 2009), pages 74-81, March

2009.ISBN:978-1-4244-3572-2.doi:10.1109/ARES.2009.116.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5066457.

[18] A. Srivastava, I. Erete, and J. Giffin. Kernel data integrity protection via memory access

control. Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/30785.

[19] Xen Project. http://www.xenproject.org/.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles (SOSP 2003), pages 164–177, December

2003.ISBN:1-58113-757-5.doi:10.1145/945445.945462.

http://dl.acm.org/citation.cfm?id=945462.

[21] C. Betz. DFRWS 2005 Forensics Challenge: Memparser Analysis Tool.

http://www.dfrws.org/2005/challenge/memparser.shtml.

[22] Volatile Systems, LLC. The Volatility framework: Volatile memory artifacts extraction

utility framework. https://www.volatilesystems.com/default/volatility.

[23] A. Schuster. Pool allocations as an information source in Windows memory forensics. In

Proceedings of the International Conference on IT-Incidents Management & IT-

Forensics (IMF 2006), pages 104-115, October 2006.

[24] A. Schuster. Searching for processes and threads in Microsoft Windows memory dumps.

160

The International Journal of Digital Forensics and Incident Response, vol. 3, pages 10-

16, September 2006. doi:10.1016/j.diin.2006.06.010.

http://dl.acm.org/citation.cfm?id=2296386.

[25] Bugcheck. Grepexec: Grepping executive objects from pool memory. Uninformed

Journal, vol. 4, June 2006. http://www.uninformed.org/?v=4&a=2.

[26] A. Schuster. Ptfinder. http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html.

[27] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, and D. Xu. DKSM: Subverting virtual

machine introspection for fun and profit. In Proceedings of the 29th IEEE Symposium on

Reliable Distributed Systems (SRDS 2010), pages 82-91, November 2010. ISBN:978-0-

7695-4250-8.doi:10.1109/SRDS.2010.39.

http://doi.ieeecomputersociety.org/10.1109/SRDS.2010.39.

[28] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference and enforcement of kernel

data structure invariants. In Proceedings of the 24th Annual Computer Security

Applications Conference (ACSAC 2008), pages 77-86, December 2008. ISBN:978-0-

7695-3447-3. doi:10.1109/ACSAC.2008.29. http://dl.acm.org/citation.cfm?id=1468197.

[29] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust signatures for kernel

data structures. In Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS 2009), pages 566-577, November 2009. ISBN:978-1-

60558-894-0. doi:10.1145/1653662.1653730. http://dl.acm.org/citation.cfm?id=1653730.

[30] Futuremark. PCMark05. http://www.futuremark.com/benchmarks/pcmark05/.

[31] Linux/Unix nbench. http://www.tux.org/~mayer/linux/bmark.html.

[32] ab - Apache HTTP server benchmarking tool.

http://httpd.apache.org/docs/2.2/programs/ab.html.

[33] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Revirt: Enabling intrusion analysis

through virtual-machine logging and replay. In Proceedings of the 5th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 2002), pages 211-

224, 2002. doi:10.1145/844128.844148. http://dl.acm.org/citation.cfm?id=844148.

[34] Privacy Rights Clearinghouse. Chronology of Data Breaches.

161

https://www.privacyrights.org/data-breach-header-top.

[35] PCI Security Standards Council. https://www.pcisecuritystandards.org/.

[36] Pippard, Inc. Bringing virtualization and thin computing technology to POS.

http://www.retailsolutionsonline.com/doc/Brining-Virtualization-And-Thin-Computing-

0001.

[37] Microsoft Corporation. Restaurant chain upgrades systems and cuts 2,000 servers using

virtual machines.

http://download.microsoft.com/documents/customerevidence/7146_jack__in_the_box_cs

.doc.

[38] Micros Systems, Inc. Micros Systems announces deployment of micros 9700 HMS at M

Resort Spa Casino in Las Vegas. http://www.micros.com/NR/rdonlyres/3E357BE8-

70DB-468D-B9AB-68F0E784527F/2296/MResort.pdf.

[39] H.C. Kim, A.D. Keromytis, M. Covington, and R. Sahita. Capturing information flow

with concatenated dynamic taint analysis. In Proceedings of the 4th International

Conference on Availability, Reliability and Security (ARES 2009), pages 355-362, March

2009. ISBN:978-1-4244-3572-2.

[40] A. Zavou, G. Portokalidis, and A.D. Keromytis. Taint-Exchange: A generic system for

cross-process and cross-host taint tracking. In Proceedings of the 6th International

Workshop on Security (IWSEC 2011), pages 113-128, November 2011. ISBN:978-3-642-

25140-5. http://dl.acm.org/citation.cfm?id=2075670.

[41] F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual

Conference on USENIX Annual Technical Conference (ATEC 2005), pages 41-46, June

2005. http://dl.acm.org/citation.cfm?id=1247401.

[42] A. Ho, M. Fetterman, C. Clark, A Warfield, and S. Hand. Practical taint-based protection

using demand emulation. In Proceedings of the 1st ACM SIGOPS/EuroSys European

Conference on Computer Systems (EuroSys 2006), pages 29-41, October 2006. ISBN:1-

59593-322-0. doi:10.1145/1217935.1217939. http://dl.acm.org/citation.cfm?id=1217939.

[43] B. Mazloom, S. Mysore, B. Agrawal, and T. Sherwood. Understanding and visualizing

162

full systems with data flow tomography. In Proceedings of the 13 International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS 2008), pages 211-221, March 2008. ISBN:978-1-59593-958-6.

doi:10.1145/1346281.1346308. http://dl.acm.org/citation.cfm?doid=1346281.1346308.

[44] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat, A. C. Snoeren,

G. M. Voelker, and S. Savage. Neon: System support for derived data management. In

Proceedings of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments (VEE 2010), pages 63-74, July 2010. ISBN:978-1-60558-910-7.

doi:10.1145/1735997.1736008. http://dl.acm.org/citation.cfm?id=1736008.

[45] Ebtables. http://ebtables.sourceforge.net/.

[46] H.P. Luhn. Computer for verifying numbers, U. S. P. Office, 1954.

[47] Able Solutions Corporation. AbleCommerce: Featured clients.

http://www.ablecommerce.com/Featured-Clients-C49.aspx.

[48] osCommerce Corporation. osCcommerce: Open source e-commerce solutions.

http://www.oscommerce.com/.

[49] 911 Software Corporation. Payment processing software. http://www.911software.com/.

[50] T. Chiueh. Program semantics-aware intrusion detection.

http://www.ecsl.cs.sunysb.edu/PAID/index.html.

[51] L. Lam and T. Chiueh. Checking array bound violation using segmentation hardware. In

Proceedings of the 2005 International Conference on Dependable Systems and Networks

(DSN 2005), pages 388-397, June 2005. ISBN:0-7695-2282-3.

doi:10.1109/DSN.2005.25. http://dl.acm.org/citation.cfm?id=1078297.

[52] Wikipedia. Address space layout randomization.

http://en.wikipedia.org/wiki/Address_Layout_Randomization.

[53] Nologin.org. Remote library injection.

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf.

[54] S. Fewer. Reflective dll injection, October 2008.

http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf.

163

[55] A. Walters. Fatkit: Detecting malicious library injection and upping the "anti”.

http://www.4tphi.net/fatkit/papers/fatkit_dll_rc3.pdf.

[56] N. L. Petroni and M. Hicks. Automated detection of persistent kernel control-flow

attacks. In Proceedings of the 14th ACM Conference on Computer and Communications

Security (CCS 2007), pages 103-115, November 2007. ISBN:978-1-59593-703-2.

doi:10.1145/1315245.1315260. http://dl.acm.org/citation.cfm?id=1315260.

[57] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of kernel rootkits with

VMM-based memory shadowing. In Proceedings of the 11th International Symposium on

Recent Advances in Intrusion Detection (RAID 2008), pages 1-20, September 2008.

ISBN:978-3-540-87402-7.doi:10.1007/978-3-540-87403-4_1.

http://dl.acm.org/citation.cfm?id=1433008.

[58] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny hypervisor to provide lifetime

kernel code integrity for commodity OSes. In Proceedings of the 21st ACM SIGOPS

Symposium on Operating Systems Principles (SOSP 2007), pages 335-350, December

2007.ISBN:978-1-59593-591-5.doi:10.1145/1294261.1294294.

http://dl.acm.org/citation.cfm?id=1294294.

[59] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang. HIMA: A hypervisor-based integrity

measurement agent. In Proceedings of the 25th Annual Computer Security Applications

Conference (ACSAC 2008), pages 461-470, December 2009. ISBN:978-0-7695-3919-

5.doi:10.1109/ACSAC.2009.50. http://dl.acm.org/citation.cfm?id=1723256.

[60] B. Jansen, H.V. Ramasamy, M. Schunter, and A. Tanner. Architecting dependable and

secure systems using virtualization. In Architecting Dependable Systems. Lecture Notes

in Computer Science, vol. 5135, pages 124-149, Springer-Verlag, Berlin, Heidelberg

(2008).ISBN:978-3-540-85570-5.doi:10.1007/978-3-540-85571-2_6.

http://dl.acm.org/citation.cfm?id=1428281.

[61] K. Onoue, Y. Oyama, and A. Yonezawa. Control of system calls from outside of virtual

machines. In Proceedings of the 2008 ACM Symposium on Applied computing (SAC

2008), pages 2116-2121, March 2008. ISBN:978-1-59593-753-7.

doi:10.1145/1363686.1364196. http://dl.acm.org/citation.cfm?id=1364196.

164

[62] X. Jiang and X. Wang. "Out-of-the-box” monitoring of VM-based high-interaction

honeypots. In Proceedings of the 10th International Conference on Recent Advances in

Intrusion Detection (RAID 2007), pages 198-218, September 2007. ISBN:3-540-74319-7.

http://dl.acm.org/citation.cfm?id=1776450.

[63] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for analyzing malware. In

Proceedings of the 15th European Institute for Computer Antivirus Research Annual

Conference (EICAR 2006), pages 180-192, April 2006.

[64] L. Xu and Z. Su. Dynamic detection of process-hiding kernel rootkits. Technical Report

CSE-2009-24, University of California at Davis, 2009.

http://leo.cs.ucdavis.edu/techrep/CSE-2009-24.pdf.

[65] C. Maiero and M. Miculan. Unobservable intrusion detection based on call traces in

paravirtualized systems. In Proceedings of International Conference on Security and

Cryptography (SECRYPT 2011), SciTePress, July 2011.

[66] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hardware

virtualization extensions. In Proceedings of the 15th ACM Conference on Computer and

Communications Security (CCS 2008), pages 51-62, October 2008. ISBN:978-1-59593-

810-7.doi:10.1145/1455770.1455779.

http://dl.acm.org/citation.cfm?id=1455770.1455779.

[67] Rapid7. Metasploit penetration testing software. http://www.metasploit.com.

[68] Microsoft. MS08-067: Vulnerability in server service could allow remote code execution.

http://support.microsoft.com/kb/958644.

[69] Passmark Software. AppTimer. http://www.passmark.com/products/apptimer.htm.

[70] G. Hoglund and J. Butler. Rootkits: Subverting the Windows kernel. Addison-Wesley

Professional, 2005. ISBN:0321294319. http://dl.acm.org/citation.cfm?id=1076346.

[71] Microsoft. Sysinternals Process Utilities. http://technet.microsoft.com/en-

us/sysinternals/bb795533.aspx.

[72] C. Barta. Token Stealing. http://www.ntdsxtract.com/downloads/Token_stealing.pdf.

[73] A. Baliga, X. Chen, and L. Iftode. Paladin: Automated detection and containment of

165

rootkit attacks. Rutgers University Department of Computer Science, 2006.

[74] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits with lightweight

hook protection. In Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS 2009), pages 545-554, November 2009. ISBN:978-1-

60558-894-0. doi:10.1145/1653662.1653728. http://dl.acm.org/citation.cfm?id=1653728.

[75] H. Yin, Z. Liang, and D. Song. Hookfinder: Identifying and understanding malware

hooking behaviors. In Proceedings of the 15th Annual Network and Distributed System

Security Symposium (NDSS 2008), February 2008.

[76] Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering persistent kernel rootkits through

systematic hook discovery. In Proceedings of the 11th International Symposium on

Recent Advances in Intrusion Detection (RAID 2008), pages 21-38, September 2008.

ISBN:978-3-540-87402-7.doi:10.1007/978-3-540-87403-4_2.

http://dl.acm.org/citation.cfm?id=1433009.

[77] N. L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh. An architecture for

specification-based detection of semantic integrity violations in kernel dynamic data. In

Proceedings of the 15th USENIX Security Symposium (USENIX SS 2006), pages 289-

304, August 2006. http://dl.acm.org/citation.cfm?id=1267356.

[78] D. Tian, D. Kong, H. Changzhen, and P. Liu. Protecting kernel data through

virtualization technology. In Proceedings of the 4th International Conference on

Emerging Security Information Systems and Technologies (SECURWARE 2010), pages

5-10, July 2010. ISBN:978-0-7695-4095-5.doi:10.1109/SECURWARE.2010.9.

http://dl.acm.org/citation.cfm?id=1916038.

[79] J. Butler, J. Undercoffer, and J. Pinkston. Hidden processes: the implication for intrusion

detection. In Proceedings of the 2003 IEEE Workshop on Information Assurance, pages

116-121, June 2003.

