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Abstract of the Thesis

Rat’s Orofacial Activity Recognition and Its Applications

by

Le Hou

Master of Science

in

Computer Science

Stony Brook University

2014

A major problem in neuroscience is determining the perceived value of
rewarding and aversive stimuli in animal subjects. Orofacial activity, such as
licking and gaping in response to tastes, has been shown to be well correlated
with the perceived palatability of tastes sampled by an animal. The current
standard for determining these orofacial reactions is frame-to-frame labeling
by trained scientists, a very time consuming process. Here we introduce a
supervised classifier that can automatically recognize nine distinct yet subtle
orofacial activities with an accuracy of 82.00% (chances are 21.16%). The
classifier implements data from both videos of rats receiving taste deliveries
and concurrent electromyographic recordings of the digastric muscle which
is involved in food consumption. We additionally applied our classifier and
features to a classical conditioning experiment to determine whether cues
predicting different tastes can initiate different orofacial movements prior to
an actual taste delivery. By using features extracted following the cue (tone)
but before the corresponding taste delivery, we can predict the identity of
the cue with an accuracy of 41.39% (chances are 20.11%), showing that the
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animals have learned the cue-taste associations. In addition, we can retro-
classify the identity of the cue with an accuracy of 65.64% using features
extracted after the taste delivery. Based on these results, we claim that our
model allows for fast and objective determination of orofacial reactions in
rats and for assessing the strength of taste-reinforcer associative learning.
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Chapter 1: Introduction

Rat’s Orofacial Activity

In the research of neuroscience, experiments including rewarding and un-
rewarding stimuli play a central role and have been widely studied. In these
experiments, liking and disgust of an infant or animal can be reflected in
orofacial activities that have a common lexicon (Grill and Norgren, 1978;
Berridge, 2000). Examples of orofacial activities are shown in Figure 1. Cer-
tain kinds of tongue movements, such as licking, can be interpreted as signs
of enjoyment, while gapes can expresses disgust. Therefore, these orofacial
activities can be considered as important feedback about the perceived value
of stimuli from rats in neurobiology experiments. One such applications, is
analyzing the cortical processing of taste (Samuelsen et al., 2012). However,
techniques for recognizing orofacial activities are not well developed. In pre-
vious neuroscience experiments, either extensive human efforts were applied
annotating orofacial activities or immature automatic recognition techniques
were applied. One of the previous methods is focused on measuring the
change of pixel intensities through video frames (Samuelsen et al., 2012) and
cannot distinguish different orofacial activities. Drawbacks of these works
are obvious. They suffer from excessive load of work, subjectiveness, lack
of quantitative evaluation, and coarse analytic result. In this paper, we in-
troduce a classifier that can automatically classify nine subtle activities and
evaluate its performance by cross-validation.

Related Work

A potential way to recognize orofacial activities is to apply recognition
especially expression recognition techniques to video frames of facial move-
ments. Human facial expression recognition is a well-studied topic and its
technics can be applied to our problem. Here we first discuss feature ex-
traction methods and then modeling algorithms. There are 3 main types of
fully automatic feature extraction methods. First, direct dimensionality re-
duction on facial images was shown to be effective. For example, Eigenfaces
and Fisherfaces are methods that can represent faces with much lower di-
mensionality and perform well in practice (Belhumeur et al., 1997). Second,
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Figure 1: Example of orofacial activities illustrated by Harvey J. Grill (Grill
and Norgren, 1978). A: mouth movement. B: tongue protrusion. C: lateral
tongue protrusion. D: gape.

statistical methods, including applying linear or nonlinear filters to facial im-
ages, capture information of texture, edges, and corners which were proven
to be helpful methods. An example of these linear filters is the Gabor filter
bank (Deng et al., 2005). Local Binary Patterns (LBP) extracted by nonlin-
ear filters, achieve better results compared to Gabor and are much faster to
compute (Shan et al., 2009). Finally, facial movement measurements, such
as optical-flow based methods, capture the changes of a face (Hsieh et al.,
2010; Zhang and Tjondronegoro, 2011). The advantage of these methods is
that they utilize a video segment instead of a single frame. In order to test
all 3 kinds of features, we implemented seven feature extraction methods:
Eigenfaces, Fisherfaces, and downsampled pixels (dimensionality reduction
based); LBP (nonlinear filter based); symmetric score, Digital Image Corre-
lation and tracking(DIC), and optical-flow (measures the facial movement).
We tested combinations of these features and found that LBP performs the
best. Furthermore, adding other features yielded no significant improvement.
Detailed results are listed in later Chapters.

The modeling algorithms’ success of facial expression recognition is re-
lated to its input, in other words, features. A semi-supervised Bayesian net-
work classifier models the connections between parts of a face and achieves
better performance, when applied on continuous video input (Cohen et al.,
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2003). Multilevel hidden Markov model was also tested for facial expression
recognition (Cohen et al., 2000). These models are based on an assumption
that there are multiple hidden states corresponding to a video. In our dataset
however, an orofacial activity usually lasts less than 3 frames and we are only
interested in the mouths of rats. Thus, the temporal information and corre-
lations between parts are not rich. On the other hand, simple classifiers like
Support Vector Machine (SVM) were applied on a single image and achieved
over 0.9 accuracy (Boser et al., 1992; Shan et al., 2009). Based on these
results, we focused on SVM with Radial Basis Function (RBF) kernels which
give better results compared to other kernels (Shan et al., 2009).

In addition to features extracted from video frames, electromyography
(EMG) measures the contraction of muscles and can also be utilized for
assessing mouth movements (Reaz et al., 2006). In our dataset, EMG was
collected from a single muscle and represented as a one dimensional temporal
signal. Various features in the time domain and frequency domain were tested
in gesture recognition (Ahsan et al., 2009; Phinyomark et al., 2012a, 2013).
Within these approaches, features are extracted using a sliding window with
fixed size and increment. In this paper, we have implemented and tested
eleven features proven to be the most robust in EMG signals (Phinyomark
et al., 2013).

Classical Conditioning

In order to test our features and models in practice, we have applied our
features and models in a classical conditioning experiment, specifically for-
ward conditioning (Pavlov and Anrep, 1927). A conditioned stimulus, a tone,
is given before the unconditioned stimulus, a taste delivery. The conditioned
response and unconditioned response are the behavioral responses to the con-
ditioned stimulus and unconditioned stimulus respectively. We have focused
on analyzing the conditioned response and unconditioned response in terms
of orofacial activities. In previous research related to this experiment, the
orofacial activities were measured by human labeling or non-discriminative
statistical approaches (Samuelsen et al., 2012). Utilizing the features and
models presented in this paper, we found significant differences of orofacial
activities in response to different cues and tastes. Our approach has the
advantage of relating specific orofacial activities to different cues, a problem
which has had no systematic and automatic solution before.
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Chapter 2: Dataset

Experiment Setup

We first introduce the setup of our neuroscience experiment and then
explain how the dataset is created from it.

The experiment is based on the classical conditioning methods described
above (Pavlov and Anrep, 1927). In the experiment, there are five different
cues (tones) and four tastes, with four cues each predicting a specific taste
delivery, and the fifth cue being predictive of no delivery. In each trial, a cue
is given to the rat first. After 3 seconds, the corresponding taste is delivered
directly into the mouth of the rat. Figure 2 illustrates the timeline of a trial.
In these experiments, the head of the rat is held fixed. There are around
70 trials per session and 33 sessions are used, with each session lasting more
than an hour. The mouth of the rats are recorded by a camera, and the
EMG of the digastric muscle are also recorded throughout the entire session.
The types of taste are: citric acid, NaCl, quinine, sucrose, and null (no taste
delivery). The numbers of trials with each taste are the same in each of the
33 sessions.

Figure 2: Timeline of a trial in our forward conditioning experiment. There
are five cues and four tastes. Each taste corresponds to a cue.

Data Collection

As a supervised learning algorithm, thousands of frames with orofacial
activities should be provided before the model can be trained. We recorded
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the video and EMG of 3 rats and defined the orofacial activities by observing
the videos. Figure 3 shows the GUI based tools used for labeling frames. Each
video is first, manually cropped to make sure all frames viewed and used
throughout the analysis share roughly the same scale and position of each
rat visualized. Next, frames of 9 classes of orofacial activities are labeled by
a domain expert using another tool. Finally an instance of orofacial activity
is represented by 3 video frames (the previous and next frame of the labeled
frame are also extracted) as well as 0.4 seconds of the EMG.

For the application of cue prediction, the labels have already been given
as the cue delivered on a particular trial. We trained each rat on the cue-
taste association paradigm for 10 days and then subsequently recorded the
33 sessions used in the analysis. An instance of cue reaction is represented
by the 75 video frames and 2.8 seconds of EMG following the cue.

Table 1 lists the numbers of instances for each labeled orofacial activity
and cues. Figure 4 illustrates examples of labeled frames that are randomly
selected. Figure 5 shows examples of the EMG.

Figure 3: GUI tools written in Matlab for viewing and labeling orofacial
activities. Left: the cropping tool. Right: the video player and orofacial
activity labeling & viewing tool. Predicted orofacial activities are also showed
in this tool.
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Figure 4: Examples of 9 orofacial activities in our dataset. The resolution of
the images is 200 by 200 in gray scale.

Figure 5: Examples of EMGs in Our Dataset. EMG recordings during two
orofacial activities.

Classes Other Lick Gape LTP TP MM MO Paw NM

Numbers 103 1114 265 966 8 1200 342 548 1124

Cues CAcid NaCl Sucrose Quinine Null

Numbers 451 453 451 455 452

Table 1: Distribution of classes in our dataset. Top: classes of orofacial
activities. The labeled frames are distributed in 12 sessions (each session
contains a video and EMG series) of 3 unique rats. The best guessing ac-
curacy is 21.16%. Bottom: classes (cues/taste) in cue prediction. There are
33 sessions each containing 54 to 70 trials. The best guessing accuracy is
20.11%.
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Chapter 3: Feature Extraction and Models

Video Features

Although orofacial activities are defined using a single frame, we extract
features from 3 adjacent frames centered at the labeled frame, because most
orofacial activities last less than 3 frames. The same feature extraction meth-
ods are applied to all adjacent frames. It is possible that two adjacent frames
might be labeled differently, which means its features are contained in more
than one instance. Also notice that although 3 frames are used for feature
extraction, the orofacial activity label only describes the center frame.

There are seven clusters of features that can be extracted from each frame:

1. Eigenfaces

This was introduced by (Turk and Pentland, 1991) as a method based
on PCA. An Eigenface is an eigenvector of the covariance matrix of
all raw pixels acquired by applying singular value decomposition on all
facial images. We use the top 15 Eigenfaces because the 15th eigenvalue
is considered as a knee point on all eigenvalues. Figure 6 shows some
Eigenfaces of our dataset.

2. Fisherfaces

This is a supervised dimensionality reduction method based on Fisher’s
LDA (Welling, unknown). A fisherface is one of the vectors that maxi-
mizes external variance between classes and minimizes internal variance
within classes. In order to apply Fisherfaces, we apply PCA first to
make sure the dimensionality of input instances is smaller than the
number of instances. For the dimensionality of the final output, we
simply follow the number of Eigenfaces stated above. Therefore the
dimensionality of an image is reduced to 15. Examples of Fisherfaces
of our dataset are shown in Figure 6. The implementation of LDA is
obtained from open source (Alzahrani, 2014).

3. Downsampled pixels (DSP)

Being the most direct way to reduce dimensionality, downsampling the
image proved to be robust for our dataset. A two dimensional Gaus-
sian filter is applied to the image before downsampling. Figure 7 il-
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Figure 6: Eigenfaces and Fisherfaces of our dataset shown as gray scale
images.

lustrates the process. The downsampling sampling rate is chosen by
cross-validation using this feature only. The 6 by 6 downsampled im-
ages yield the best classification accuracy.

Figure 7: A two dimensional Gaussian filter is applied to the image before
downsampling. Then the image is downsampled into a 6 by 6 feature vector.

4. Symmetric Score (SS)

Because images of the rats are symmetric when there is no movement,
asymmetry can be used to assess movement. Symmetric score measures
the intensity of mouth movements and provides only a one dimensional
output. To compute the symmetric score, an image is divided into two
parts (left and right). Then we simply compute the cosine distance
between the two halves.

5. DIC features (DIC)
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Digital image correlation and tracking is a method that measures the
deformation of an image based upon a reference image. We use the
Newton-Raphson method of partial differential correction (Bruck et al.,
1989). This classic method supports subpixel accuracy but is compu-
tationally expensive (Sutton et al., 2009; Pan and Li, 2011). To track a
point in the reference image, this method assumes that the brightness
of physical points are constant and the deformation of a small image
patch is linear:

x′ = x+ u+ ux∆x+ uy∆y

y′ = y + v + vx∆x+ uy∆y, (1)

as illustrated in Figure 8. The parameters θ = (u, v, ux, vx, uy, vy) of
the deformation are optimized such that the following energy function,
which is the difference between the deformed patch and the reference
patch, is minimized:

E(θ) =
∑
x,y

(
I(x, y)− Im

Iσ
− I′(x′, y′)− I′m

I′σ

)
, (2)

where I and I′ are the reference and deformed patches; Im and Iσ are
the mean and standard deviation of all pixels in the patch. With the
assumption that the energy function is small compared to the gradi-
ent of parameters, the method approximates the second order partial
derivative (Hessian matrix) using the gradient only. A bicubic interpo-
lation scheme is applied in order to obtain subpixel values. Also with
this interpolation, the energy function become differentiable:

I′(x′, y′) =
3∑

m=0

3∑
n=0

αm,nx
myn. (3)

A local area of p ≥ 16 points are used to solve the 16 coefficients
αm,n. There are several hyperparameters required to be selected for
this method. We use cross-validation using this feature only and output
the values of hyperparameters that yield the best accuracy. However,
in order to compromise the long running time, only four key points are
tracked. Figure 9 illustrates the tracking result.
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Figure 8: To track the deformation, the Newton-Raphson method of partial
differential correction assumes that a local image patch is deformed by a
linear transformation.

Figure 9: Tracking result by DIC. Every point in the reference image is
tracked in the deformed image.

6. Optical-Flow (Opt-Flow)

Optical-flow is another image registration method. It assumes each
pixel in a local patch has the same motion, the brightness of every
physical point is constant, and the points are moved within a range
in which the brightness of pixels are linear (Lucas and Kanade, 1981).
The motion vector is obtained by solving a linear equation. We also
include a weight regularizing term in the energy function (least square)
to make sure the linear equation is solvable. In order to make the
motion constrained in a local area with respect to the scale of objects
in the image, the image is convoluted with a Gaussian kernel before
the optical-flow is applied. Hyperparameters are selected by cross-
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validation. Figure 10 shows tracking results by optical-flow.

Figure 10: Tracking result by optical-flow. An arrow indicates the motion of
the point with respect to previous image.

7. Local Binary Patterns (LBP)

LBP was first invented as a texture descriptor (Ojala et al., 2002) and
later used in facial expression recognition (Shan et al., 2009). It is ba-
sically a histogram of binary patterns that describe the neighborhood
around a pixel. Figure 11 gives an example of a possible pattern. We
follow the hyperparameters of the LBP operator used in (Shan et al.,
2009) which generates 59 vectors for an input image window. Further-
more, we can divide the image into several non-overlapping subimages
and apply the LBP operator individually to each of them. We tested
different dividing methods and found that LBP on 2 subimages yields
a good result (0.02 lower than LBP from 9 images in terms of accu-
racy) with much fewer features. The official implementation of LBP is
adopted from Heikkila and Ahonen (Heikkila and Ahonen, 2013).

EMG Features

We have adopted the EMG-based method used in upper limb motion
classification (Phinyomark et al., 2012a, 2013). A sliding window of size
s seconds moves along the EMG with an increment of s/2. The features
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Figure 11: A local binary pattern that defines the type of the pixel or neigh-
borhood. In this case, it shows an intersection of a line with a corner.

are extracted in each window. The hyperparameter s is selected by cross-
validation from the set {0.05, 0.1, 0.2, 0.4}. The increment is fixed based
on the size of the window due to the observation that the accuracy is not
sensitive to the increment, according to previous results (Phinyomark et al.,
2013). The 11 features with best performance (Phinyomark et al., 2013) plus
2 other features are tested. A brief introduction to these features are listed
below:

1. Approximate Entropy (ApEn) (Zhao et al., 2006a) measures the un-
predictability of a signal. A small ApEn means the signal repeats
the same patterns over time. Denote the length n EMG series as xi;
i = 1, 2, 3, . . . , n. The ApEn with hyperparameters m, r is defined be-
low:

ApEnm,r(x) = −
n−m∑
i=1

(
exp(Ai)− exp(Bi)

n−m

)

Bi =
n−m∑
j=1

1

((
max

k=0,1,...,m−1
|xi+k − xj+k|

)
> r

)
(4)

Ai =
n−m∑
j=1

1

((
max

k=0,1,...,m
|xi+k − xj+k|

)
> r

)
,

where 1() is the indicator function. Following previous work (Phiny-
omark et al., 2013; Zhao et al., 2006a), we select m = 2 and r = 0.2σ,
where σ is the standard deviation of all samples of x.

2. Auto-Regressive coefficients (AR) (Tkach et al., 2010; Zardoshti-Kermani
et al., 1995) is obtained from fitting each value of the EMG by a linear
combination of previous values. The coefficients vector a of the p-th
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order regression model is used as a feature vector and can be computed
recursively (Zardoshti-Kermani et al., 1995):

ai = ai−1 + PiXi

(
xi −XT

i ai−1
)

Pi = Pi−1 −
Pi−1XiX

T
i Pi−1

1 + XT
i Pi−1Xi

,
(5)

where Xi = (xi−1,xi−2, . . . ,xi−p)
T. Pi is the i-th iteration of P which

is initially set as a p by p identity matrix. ai is the i-th iteration of the
coefficients vector and initialized as a zero vector of length p. The order
p = 4 was suggested by previous work (Phinyomark et al., 2012a).

3. Cepstral Coefficients (CC) (Phinyomark et al., 2012a; Zecca et al.,
2002) “is defined as the inverse Fourier transform of the logarithm of
power spectrum magnitude of the signal data”. It is similar with the
AR coefficients and can be derived from it (Phinyomark et al., 2012a):

c1 = −a1

cp = −ap −
p−1∑
l=1

(
1− l

p

)
apcp−1.

(6)

As the order of CC, p is also set to 4 in our experiments.

4. Detrended Fluctuation Analysis (DFA) (Phinyomark et al., 2012b; Peng
et al., 1995) “is a modified root mean square analysis of a random walk”.
It contains both information in the time-magnitude domain and time-
frequency domain. To compute the DFA of a EMG segment x, the
signal is integrated first:

yi =
i∑
t=1

(xt −mean(x)) . (7)

Then y is divided into sub-segments of size s. In each sub-segment ys,
a quadratic function (vector) y′s is fitted by minimizing the squared
error. The fluctuation with respect to s is defined by the squared
difference between ys and y′s in all segments:

f(s) =

√
1

n

∑
s

‖ys − y′s‖22, (8)
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where the operator ‖·‖2 gives the euclidean norm of a vector. Finally,
the DFA is the slop of function f(s) on log-log space, which can be
derived by applying linear regression to samples of {log10 s, log10 f(s)}.

5. Integral Absolute Value (IAV) (Kim et al., 2011) is simply the mean
absolute value of the EMG. It can be interpreted as a convolution
response between the signal and a boxcar (rectangle) kernel.

6. Modified Mean Absolute Value type 1 (MAV1) (Phinyomark et al.,
2012a) is a weighted mean absolute value of the EMG with less weight
away from the center of the window.

7. Modified mean Absolute Value type 2 (MAV2) (Phinyomark et al.,
2012a) is a weighted mean absolute value of the EMG with smoother
kernel compared to MAV1.

8. Maximum Fractal Length (MFL) (Phinyomark et al., 2012b) is basi-
cally the sum of squared differences between all adjacent EMG samples.
It somehow reflects the maximum fluctuation in the EMG.

9. Root Mean Square (RMS) (Phinyomark et al., 2012a) is the estimated
standard error of the EMG assuming the expectation is zero.

10. Sample Entropy (SampEn) (Zhang and Zhou, 2012; Zhao et al., 2006b;
Richman and Moorman, 2000) is similar to ApEn and it is an enhanced
version. Practically, it can be computed in the following way.

SampEnm,r = − exp


n−m∑
i=1

Ai

n−m∑
i=1

Bi

 , (9)

where Ai and Bi are defined by Equation 4. The adopted value of m
and r are the same as those in ApEn.

11. Waveform Length (WL) (Tkach et al., 2010; Hudgins et al., 1993) is
the sum of absolute differences between adjacent all adjacent EMG
samples.
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12. Gardner’s Measurement (GM) is proposed by Matthew P.H. Gardner,
a domain expert who provided the whole dataset discussed in this pa-
per. It counts the number, duration, and intensity of bouts (an EMG
segment that possibly indicates muscle contraction) using a set of pre-
defined thresholds.

13. DownSample (DSamp) is simply the downsampled EMG. Extracted
from a short EMG segment, the dimensionality of this feature is ac-
ceptable. The downsample rate in our experiment is 0.1.

Support Vector Machine

We use the official implementation of Support Vector Machine (SVM)
(Chang and Lin, 2011). A SVM model is usually sparse due to its hinge loss
function. The predicted class given the input x in a two-class problem is
defined below:

y = sign

(
s∑
i=1

αiyiK(x,xi) + b

)
, (10)

where K(x,xi) is the kernel function. xi and yi are support vectors that need
to be learned together with αi. Only Radial Basis Function (RBF) kernel is
tested because it has fewer hyperparameters and achieves better performance
compared to other kernels (Shan et al., 2009).

Multi-class SVM is also implemented in LIBSVM by the “one-against-
one” approach. Denote k as the number of classes. k(k− 1)/2 classifiers are
trained based on all combinations of two classes. Then a voting scheme is
applied and the label is assigned as the class which received the most votes.

Linear Discriminant Analysis

Suggested by Phinyomark, LDA performs better than SVM on EMG
features (Phinyomark et al., 2013). Thus we also test two-class LDA for
classification using the “one-against-all” approach (Bishop et al., 2006). This
linear classifier is considered robust because the linear projection of instances
minimize the within-class covariance while maximize the between-class co-
variance. Provided instances in two classes, the predicted class is defined
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below:
y = wTx

w ∝ S−1(m2 −m1) (11)

S =
∑
n∈C1

(xn −m1)(xn −m1)
T +

∑
n∈C2

(xn −m2)(xn −m2)
T,

where m1 and m2 are mean of instances in class C1 and C2. Notice that
the bias of the linear form is learned by putting a constant feature 1 to x.
Implementation of LDA is found online (Dwinnell, 2010).

Multi-class Logistic Regression

Although LDA has no hyperparameter, it would overfit the data when
the dimensionality of instances is considerably large. Multi-class Logistic
Regression provides a fast and relatively sparse solution. The probability of
class y is given by the following formula:

P(y|x) =
exp(wT

y x)
k∑
i=1

exp(wT
i x)

, (12)

where wi is the vector of parameters for class i. In the training stage a second-
norm regularization term is involved. All parameters and can be trained using
Newton’s method efficiently (Bishop et al., 2006). The regularizer is selected
by cross validation.
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Chapter 4: Orofacial Activity Recognition

Feature Selection

There are 13 EMG features and 7 video features implemented. Each in-
stance contains 3 frames and 0.4 seconds of EMG. We apply the following
feature selection method: First, EMG and video features are selected sepa-
rately. Combinations of video features or EMG features are tested using a
linear classifier. Then, the top 5 best performing combinations of EMG and
video features are combined and tested again using SVM with RBF kernel, as
illustrated in Figure 12. Linear classifiers are used to select features because
they have less hyperparameters to be tuned, which means the time spent on
cross-validation is much less compared to SVM with RBF kernel. For the
EMG features, combinations of 4 out of 13 features are tested with LDA
because there are no hyperparameters in this model and LDA is proven to
be a robust classifier for EMG datasets Phinyomark et al. (2013). For video
features, combinations of 3 out of 7 features are tested with multi-class lo-
gistic regression because the dimensionality of features in video features are
much higher and sparsity control is needed. In order to make an equivalent
comparison of the performance between the video and EMG features, the
best accuracies of the EMG using SVM RBF kernel are also reported.

Results

We apply 12-fold cross-validation on instances labeled in 12 sessions (each
session contains a video and EMG series). Table 2 shows the feature selection
results. Tables 3,4,5 show the prediction-groundtruth matrix of our model.
Notice that the EMG features do not contribute to the final accuracy signif-
icantly. Table 6 shows that the instances misclassified by video features are
also very likely to be misclassified by the EMG features.

Our OAR dataset consists of three rats: Rat#89 (3 sessions), Rat#90
(5 sessions), and Rat#91 (4 sessions). To apply cross-validation, instead of
splitting data according to different sessions, there are other data splitting
methods. Cross-validation with each data splitting method reflects different
levels of generalization ability. Three data splitting methods are discussed
below.
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Figure 12: The procedure of feature selection. Linear classifiers are used in
the early stage because they need less rounds of cross-validation due to less
hyperparameters.

1. Splitting rats. The result of this shows the generalization ability among
the animals. For cross-validation, the dataset is splitted by rats. There-
fore, the number of sessions in the training set is 7 to 9.

2. Splitting sessions. Because the cropping frame of videos is set man-
ually, the scale, rotation, and illumination condition of all videos are
not strictly the same. Thus, cross-validation on 12 sessions shows the
ability of learning these invariant video attributes. All sessions are split
into three group of sessions each consists of 4 sessions.

3. Splitting instances. The result with this data splitting method is pro-
vided for comparing purpose. All instances are randomly split into
three groups with the same size.

Table 7 shows the results with the three data splitting methods mentioned
above.

Learning Curve of Our Model

Because there are only 3 rats and 12 sessions (each session contains a
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Data Utilized Features Accuracy

Video+EMG

Eigenfaces, DSP, LBP
0.8200(0.0051)

DFA, MAV1, RMS, WL
Eigenfaces, DIC, LBP

0.8191(0.0051)
DFA, MAV1, RMS, WL
Fisherfaces, DIC, LBP

0.8189(0.0051)
DFA, MAV1, RMS, WL

Video
Eigenfaces, DSP, LBP 0.8041(0.0053)
Eigenfaces, Fisherfaces, LBP 0.8032(0.0053)
Eigenfaces, DIC, LBP 0.8032(0.0053)

EMG
IAV, MAV1, MFL, RMS 0.6078(0.0065)
IAV, MAV1, RMS 0.6078(0.0065)
ApEn, IAV, MAV1, RMS 0.6073(0.0065)

Table 2: The accuracy of our model with selected feature combinations. The
numbers in parentheses are the standard error of the accuracy. The SVM
(RBF) model is applied to all feature combinations in the table. Also notice
that a model with only LBP achieves an accuracy of 0.7963(0.0053). While
the best model without LBP achieves 0.7697(0.0056). LBP is a dominating
feature for OAR.

Predict Other Lick Gape LTP TP MM MO Paw NM

Other 0.72 0.02 0.07 0.04 0.00 0.04 0.11 0.04 0.00
Lick 0.02 15.96 0.02 0.60 0.04 2.49 0.92 0.00 0.21
Gape 0.72 0.00 3.69 0.02 0.00 0.05 1.02 0.04 0.00
LTP 0.02 0.79 0.00 15.69 0.00 0.78 0.04 0.00 1.06
TP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MM 0.19 2.43 0.12 0.48 0.04 16.05 0.71 0.02 1.22
MO 0.05 0.28 0.74 0.04 0.07 0.37 3.05 0.00 0.04
Paw 0.02 0.05 0.00 0.05 0.00 0.04 0.00 9.56 0.02
NM 0.07 0.11 0.04 0.12 0.00 1.36 0.19 0.02 17.28

Table 3: The prediction-groundtruth matrix of our model with the best
EMG and video feature combination. The i, j-th entry of the matrix is the
percentage of instances predicted as i-th class but labeled as j-th class.

video and EMG series) in total, we examine the learning curve of our model
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Predict Other Lick Gape LTP TP MM MO Paw NM

Other 0.67 0.05 0.07 0.04 0.00 0.07 0.00 0.07 0.00
Lick 0.11 13.88 0.32 1.97 0.07 3.97 2.38 1.97 0.53
Gape 0.18 0.02 3.02 0.51 0.00 0.18 0.62 0.00 0.00
LTP 0.23 1.66 0.48 10.26 0.05 2.17 0.55 1.78 0.12
TP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MM 0.39 3.17 0.16 3.51 0.02 13.52 0.74 4.74 1.38
MO 0.16 0.67 0.60 0.34 0.00 0.42 1.68 0.25 0.04
Paw 0.05 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00
NM 0.04 0.18 0.04 0.41 0.00 0.81 0.07 0.85 17.76

Table 4: The prediction-groundtruth matrix of our model with the best EMG
feature combination only. The i, j-th entry of the matrix is the percentage
of instances predicted as i-th class but labeled as j-th class.

Predict Other Lick Gape LTP TP MM MO Paw NM

Other 0.35 0.02 0.18 0.02 0.00 0.02 0.12 0.00 0.04
Lick 0.02 15.91 0.04 0.58 0.04 2.54 0.95 0.00 0.25
Gape 0.99 0.00 3.70 0.02 0.00 0.05 1.11 0.05 0.00
LTP 0.02 0.71 0.02 15.62 0.00 0.85 0.05 0.00 1.09
TP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MM 0.16 2.56 0.05 0.53 0.04 15.61 0.74 0.02 1.32
MO 0.09 0.25 0.65 0.05 0.07 0.39 2.80 0.00 0.26
Paw 0.02 0.05 0.00 0.04 0.00 0.04 0.00 9.58 0.02
NM 0.18 0.16 0.04 0.18 0.00 1.68 0.25 0.02 16.84

Table 5: The prediction-groundtruth matrix of our model with the best video
feature combination only. The i, j-th entry of the matrix is the percentage
of instances predicted as i-th class but labeled as j-th class.

classified by EMG misclassified by EMG

classified by video 52.21% 28.20%
misclassified by video 8.57% 11.02%

Table 6: Comparing video and EMG features in OAR. The instances misclas-
sified by video features are misclassified by EMG features with a probability
of 56.25%.

20



Generalization Level Rats Sessions Instances
Accuracy 78.38% 79.76% 89.36%

Table 7: The generalization ability of our model. We apply cross-validation
4 times and the averaged accuracy are shown. Notice that the generalization
accuracy between sessions (79.76%) is lower than the accuracy shown in
Table 2 (82.00%) because less sessions are used as training data. From this
table we conclude that when the training data contains at least two rats, our
model can generalize the orofacial activities to other rats well. However, the
differences between sessions, e.g. scale, rotation, illumination conditions of
the video and possible EMG differences reduced the accuracy of our model
significantly.

in terms of the number of rats and sessions. For the learning curve in terms
of the number of sessions, we select n sessions randomly as training data and
the remaining 12 − n sessions as test data. In terms of the number of rats,
the number of sessions remains the same while the number of rats changes
(some sessions may not be used in the training nor test set). The features
used for evaluation are the best feature combination selected before and the
hyperparameters of SVM are retuned. This procedure is repeated several
times then the curve between n and the averaged classification accuracy is
drawn and shown in Figure 13.

The probability of increasing accuracy in our figures is computed in the
following way: Assume the true distribution of data (accuracy) is at + b+ ε,
where ε ∼ N (0, σ). Then given the observation x over t and with no prior
knowledge of P(a, b), the following relation is derived:

P(x|a, b) ∝ P(a, b|x) (13)

Then the probability of the true distribution has a positive trend can be
computed below:

P(a > 0|x) =

∫ ∞
0

∫ ∞
−∞

P(x|a, b) db da∫ ∞
−∞

∫ ∞
−∞

P(x|a, b) db da

, (14)

where P(x|a, b) is the likelihood of data. Notice that this estimation is in-
variant to linear transformation to either x or t.
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Figure 13: The learning curve of OAR. The accuracy is rising with more
labeled sessions and possibly more rats (the number of unique rats of the
sessions). The accuracy in the left figure is the averaged accuracy of 24
random split validations. In the right figure, the accuracy is the averaged
accuracy of 3-fold cross-validation.
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Chapter 5: Cue Prediction

Feature Selection

We also have tested our model and features to retro-classify the cue using
the video and EMG of the rat during the time period following the cue.
Interesting results about the learning behavior of rats are obtained. Each
instance in this problem contains EMG and video frames in 3 seconds. Due
to the large amount of frames in each instance, video features cannot be
extracted in the previous way because the dimensionality of instances would
be unacceptable. Four different video features are tested for this problem:

1. Predicted Orofacial Activities (POA). Each frame in the video of the
instance is represented as a 9 dimensional vector and the dimensionality
of this feature is 9n where n is the number of frames. The entry of the
vector is defined as vi = P(y = i|x), where x is the input frame. The
probability P(y = i|x) is generated by the OAR with SVM (RBF)
kernel. To output an estimated probability, the LIBSVM basically use
SVR and normalize the output to a [0, 1] value (Chang and Lin, 2011).

2. Histogram of Orofacial Activities (HOA). Instead of representing each
frame as a 9 dimensional vector, we aggregate all the orofacial activities
to a 9-bin histogram.

3. PCA on LBP. Because LBP is a dominating feature for OAR, we simply
apply dimensionality reduction method on LBP of all frames. The
number of principal components adopted is 50 based on the observation
of the eigenvalues.

4. LDA on LBP. Similar to the previous feature, we also apply LDA to
LBP of all frames. Notice that the dimensionality of LBP are reduced
to 1000 by PCA first in order to run LDA correctly. 50 linear pro-
jections are derived such that the external variance between classes is
maximized and the internal variance within classes is minimized. We
use source codes online to perform multi-class LDA (Alzahrani, 2014).

After all features are computed, the same feature selection method discussed
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in the previous Chapter is then applied.

Results

We apply 33-fold cross-validation on instances from 33 sessions. Table 8
shows the feature selection results. Table 9 shows the prediction-groundtruth
matrix of our model. Notice that the video features do not significantly con-
tribute to the final accuracy. Table 10 shows that the instances misclassified
by EMG features are also very likely misclassified by video features.

Data Utilized Features Accuracy(StdErr)

Video+EMG
PCA on LBP, MAV1, RMS, GM 0.4139(0.0042)
PCA on LBP, MFL, RMS, WL, GM 0.4136(0.0042)
PCA on LBP, RMS, SampEn, WL, GM 0.4136(0.0042)

Video
PCA on LBP, HOA 0.3908(0.0103)
PCA on LBP 0.3868(0.0102)
PCA on LBP, LDA on LBP 0.3837(0.0102)

EMG
MAV1, RMS, WL, GM 0.4118(0.0033)
ApEn, RMS, WL, GM 0.4097(0.0033)
MFL, RMS, WL, GM 0.4097(0.0033)

Table 8: The accuracy of cue prediction with selected feature combinations.
The numbers in parentheses are the standard error of the accuracy. The
SVM (RBF) model is applied to all feature combinations in the table.

Using the Data After Taste Delivery

Since the rats’ reaction to the taste should be stronger than the reaction
to the cue, we can classify the cue more accurately utilizing the data (video
and EMG) after the taste delivery. In other words, we are retro-classifying
the taste instead of the cue. The classification accuracy of this problem
provides a lower bound of how accurate we can achieve on retro-classifying
the cue with the existing features, if the rats are 100 percent sensitive to the
cues. Results are shown in Table 11 and 12.
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Predicted CAcid NaCl Sucrose Quinine Null

CAcid 5.75 2.98 3.38 3.53 1.46
NaCl 3.57 7.35 4.26 4.73 1.54
Sucrose 4.22 3.35 6.91 3.89 0.89
Quinine 4.18 3.54 3.77 5.83 0.81
Null 2.22 2.80 1.66 2.13 15.23

Table 9: The prediction-groundtruth matrix of cue prediction with the model
and features of the highest accuracy. The i, j-th entry of the matrix is the
percentage of instances predicted as i-th class but labeled as j-th class. No-
tice that the null cue can be classified most accurately. The best accuracy
evaluated by cross-validation of classifying four cues (without the null cue)
is 36.00% (chances are 25.14%).

classified by EMG misclassified by EMG

classified by video 24.97% 14.04%
misclassified by video 16.23% 44.76%

Table 10: Comparison of the video and EMG features in Cue Prediction. The
instances misclassified by EMG features are misclassified by video features
with a probability of 76.12%.

Data Utilized Features Accuracy(StdErr)

Video+EMG PCA on LBP, MAV1, RMS, GM 0.6564(0.0100)

Table 11: The accuracy of taste prediction with the best feature combination
selected by cue prediction. The numbers in parentheses are the standard error
of the accuracy. SVM (RBF) model is applied and its hyperparameters are
retuned.

Orofacial Activities to Cues

One way to examine the reaction of rats to different cues, we add up the
predicted orofacial activities of the rat. Table 13 shows the result. Also,
Table 14 shows the reaction of the rat after the taste delivery.
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Predicted CAcid NaCl Sucrose Quinine Null

CAcid 18.04 0.57 1.24 1.41 0.09
NaCl 0.22 11.49 6.90 4.82 0.40
Sucrose 0.84 4.24 7.38 4.11 0.13
Quinine 0.57 3.49 4.24 9.59 0.18
Null 0.27 0.22 0.22 0.18 19.14

Table 12: The prediction-groundtruth matrix of taste prediction with the
best feature combination selected by cue prediction. The i, j-th entry of the
matrix is the percentage of instances predicted as i-th class but labeled as
j-th class.

OAR% CAcid NaCl Sucrose Quinine Null

Other 0.12(0.8) 0.07(0.6) 0.04(0.4) 0.05(0.5) 0.02(0.3)
Lick 11.8(10.5) 11.3(10.5) 12.1(10.1) 12.6(10.7) 3.2(6.4)
Gape 0.54(3.3) 0.03(0.3) 0.10(1.3) 0.25(2.2) 0.06(1.3)
LTP 0.69(1.8) 0.78(2.3) 0.93(2.8) 0.86(2.0) 0.64(2.1)
TP 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0)
MM 59.5(23.0) 60.8(23.5) 62.9(22.4) 62.8(20.8) 27.3(28.8)
MO 1.81(3.7) 1.73(3.6) 1.62(3.4) 1.82(3.6) 0.50(4.2)
Paw 0.44(6.7) 1.18(10.2) 1.05(10.0) 1.54(12.3) 0.48(6.7)
NM 25.1(25.5) 24.1(25.2) 21.3(22.7) 20.1(20.4) 67.8(34.0)

Table 13: Percentage of orofacial activities to cues. The numbers in paren-
theses are the standard error of the percentage. For example, after a cue of
CAcid, 11.8%± 10.5% of the orofacial activities are classified as Lick.

Learning Curve of Rats

The accuracy of cue prediction is lower than the accuracy of taste pre-
diction (using the data after taste delivery). One possible reason is that the
rats are still learning the correspondences between the cues and taste. In
this case, a rising prediction accuracy with respect to training time (days)
should be observed. We evaluate the accuracy of our model on sessions of
different dates in two ways:
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OAR% CAcid NaCl Sucrose Quinine Null

Other 0.05(0.3) 0.21(1.1) 0.12(0.6) 0.18(1.1) 0.04(0.6)
Lick 30.4(10.1) 20.6(11.1) 21.8(10.3) 20.9(11.0) 2.34(4.9)
Gape 0.21(0.8) 0.08(0.4) 0.05(0.3) 0.26(1.0) 0.04(0.7)
LTP 1.07(2.0) 1.31(2.8) 2.37(4.0) 3.34(4.4) 0.46(2.1)
TP 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0)
MM 63.7(10.4) 67.2(14.4) 66.6(12.8) 65.7(14.3) 23.3(25.4)
MO 2.13(3.9) 2.91(5.7) 2.63(5.1) 2.61(4.7) 0.48(3.2)
Paw 0.39(6.0) 0.77(8.3) 0.93(9.1) 1.34(11.2) 0.43(5.9)
NM 2.12(5.1) 6.86(12.3) 5.49(9.5) 5.70(11.4) 72.9(29.6)

Table 14: Percentage of orofacial activities in response to different taste de-
liveries. The numbers in parentheses are the standard error of the percentage.
For example, after a delivery of CAcid, 30.4%± 10.1% of the orofacial activ-
ities are classified as Lick.

1. Cross-validation. Only the session to be tested is isolated from the
training set.

2. Batch-validation. The training set consists of half of the sessions. To
illustrate, assume the dates of the sessions are {1, 2, 3, 4, 5, 6}. The
sessions in date {1, 3, 5} are merged to the training set and the sessions
left are the test set. The advantage of this method is that the training
set is consistent, therefore the comparison the more reasonable.

Figure 14 shows the learning curve of rats with above-stated approaches.
Notice that in order to show the learning curve of the rats, several training
sessions which were not included before are also evaluated. Unfortunately,
most training sessions do not have EMG recorded. Thus, we use only the
video features for cue prediction without a significant drop in accuracy (see
Table 8).
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Figure 14: Learning curve of rats evaluated by cross-validation and batch-
validation. Notice that in the figure of cross-validation, the first 10 days of
Rat#89 are training days. In the figure of batch-validation, the numbers of
training days are 5.
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Chapter 6: Conclusions

We propose a systematic, automatic, objective, and accurate tool for
orofacial activity recognition. This recognition tool is based on SVM and
novel features extracted from videos and EMG. The accuracy of our model
is 82.0% for recognizing orofacial activities of rats consuming palatable and
aversive tastes. We show that in an application of classical conditioning
(one of 5 different cues is given to the rat before the corresponding taste
delivery), our features can distinguish the reactions of rats to 5 different
taste with an accuracy of 65.6%. Furthermore, the reactions to 5 cues before
the corresponding taste delivery can also be classified with an accuracy of
41.4%. With this tool, the learning curve of a rat in the training of classical
conditioning can be clearly seen and the resulting reactions to all cues can
be quantified in terms of orofacial activities. In conclusion, our proposal
provides a powerful tool for analyzing orofacial activities and can be applied
across various neuroscience research.
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