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Abstract of the Dissertation
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by

Mohammad Tanvir Irfan

Doctor of Philosophy
in
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Stony Brook University
2013

Who are the most influential senators in Congress? Is there a
small coalition of senators who are influential enough to prevent
filibusters? In a different setting of microfinance markets, can we
predict the effects of interventions to help policy makers? In order
to pursue such diverse questions, we propose causal strategic in-
ference, a game-theoretic counterpart of causal probabilistic infer-
ence. Using this general framework, we study two different sets of
problems, broadly on social networks and networked microfinance
economies.

In the first study, we introduce a new approach to the study of influ-
ence that captures the strategic aspects of the complex interactions
in a network. We design influence games, a new class of graphical
games, as a model of the behavior of a large but finite networked
population. Influence games can deal with positive as well as neg-
ative influence without having to consider network dynamics. We
characterize the computational complexity of various problems on
influence games, propose effective solutions to the hard problems,

1l



and design approximation algorithms, with provable guarantees,
for identifying the most influential individuals in a network. Our
empirical study is based on the real-world data obtained from con-
gressional voting records and Supreme Court rulings.

Our second study is on microfinance economies. It is motivated by
the challenge of formulating economic policies without the privi-
lege of conducting trial-and-error experiments. First, we model a
microfinance market as a two-sided economy. We then learn the pa-
rameters of the model from real-world data and design algorithms
for various computational problems. We show the uniqueness of
equilibrium interest rates for a special case and give a constructive
proof of equilibrium existence in the general case. Using data from
Bangladesh and Bolivia, we show that our model captures various
real-world phenomena and can be used to assist policy makers in
the microfinance sector.

Despite contrasting application areas, these two studies bear a com-
mon signature that is prevalent in many other domains as well: the
actions of the entities in a network-structured complex system are
strategically inter-dependent. This dissertation presents a compu-
tational game-theoretic framework for studying causal questions in
such scenarios.
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Chapter 1

Introduction

December 31, 2012

The much dreaded “fiscal cliff” was only hours away. The tax increase and
spending cuts that would take effect from January 1, 2013 could potentially
lead the U.S. economy to another depression. Both the Republicans and the
Democrats in Congress agreed that it would be an absolutely undesirable situ-
ation. However, they were completely polarized on how to avoid this situation.
In order to deal with the situation, a bipartisan group of senators had already
been formed. It had four Democratic and four Republican senators and was
called the “gang-of-eight” senators. Apparently, the key idea behind forming
such a bipartisan group was to intervene the usual decision-making of the
senators in Congress and lead the two diverging groups toward a consensus.

As the Wall Street and markets all over the world anxiously waited, several
proposals seeking a middle ground came from different sources over the last few
weeks, but none got accepted by the opposing party. Some of these proposals
were labeled “joke” and some “magic beans and fairy dust.” As the clock
kept ticking, a remarkably concerted effort by Senate Majority Leader Harry
Reid (D-NV), Senate Minority Leader Mitch McConnell (R-KY), and Vice
President Joe Biden was visible. At the eleventh hour, a deal was reached by
Senator McConnell and Vice President Biden. It included a tax rate threshold
of $400,000 for individuals and did not include any significant spending cut.

Although a middle ground was reached, it did not please the members of
either party. Democrats were seeking a tax rate threshold of $250,000 and Re-
publicans were opposing tax increase of any kind while favoring the direction
of spending cuts. Nevertheless, Senator McConnell and Vice President Biden
met with their respective party colleagues to ease the tension. Many, with
reluctance, finally decided to side with the proposal.



January 1, 2013
In the small hours of the new year, the bill went to the Senate floor and
was passed with a vote of 89-8.

The above story of avoiding the fiscal cliff connotes some very important
scientific concepts. First, how collective outcomes like the above are reached
has been studied by sociologists for decades. Second, it gives an anecdotal
evidence of influence among the senators. It also suggests that although the
underlying system for this influence is large and complex, there is a network
structure in it, because clearly, not everyone directly influences everyone else.
Third, the above story is all about strategic interactions in the sense that one’s
action (whether to vote “yes” or “no”) depends on the actions of those that
are “close” to him or her. Finally, it gives an evidence of interventions in real
world—interventions by forming groups that would not naturally arise other-
wise. As we will see shortly, this component of interventions is a fundamental
element of cause and effect studies.

The goal of this dissertation is to study causal questions in strategic set-
tings where a large number of entities interact with each other in a network-
structured way. Marked by interventions, following are a few examples of
causal questions in the Senate setting. How influential is a group of senators?
Who are the most influential senators? Does there exist a small coalition of
senators who can prevent filibusters?

In this dissertation, we will also study strategic settings that arise in net-
worked economies, such as microfinance markets. In that setting, examples of
causal questions could be the followings. What would happen if a loss-making
bank is shut down? How can the government make loans more affordable by
providing subsidies to the banks? What should be a sensible cap on interest
rates? Note that many of these policy-level questions cannot be evaluated
in practice before being implemented. However, if we could mathematically
model the real world system, we could then evaluate such questions using this
model. Therefore, our goal would be to model real world settings as complex
systems and design algorithms for answering causal questions, but first, we
will talk a little about causality in general.

1.1 Causality: A Contested Ground

Causality is one of the most natural quests of the human mind. Not only that
it appears in abundance in our daily life, it also has a long history of scien-
tific expedition, often embroiled in debates among statisticians, philosophers,
economists, and computer scientists [56, 73, 97]. Such a level of contention



among researchers of diverse backgrounds—on one single topic—is rare and
at the same time indicative of its scientific import and wide applicability.
This dissertation presents a comprehensive framework for studying causality
in strategic settings that often appear in social and economic networks. We
call this framework causal strategic inference.

As mentioned above, causality has always been a highly contested ground.
One beautiful example of this is a book edited by Daniel Little [73]. The
chapters of the book pave the way for an enlightening back and forth debate
between philosophers and economists. For example, in Chapter 2, philosopher
James Woodward presents a causal interpretation of the structural equation
models frequently used by economists. Woodward promotes the manipula-
bility theory of causation as opposed to other alternatives, such as Granger’s
notion of causation [48]. The manipulability theory resonates with our in-
tuitive perception of causation. That is, if one variable causes another in a
relationship, then changing or intervening the first variable (or other related
variables) would provide a way of manipulating the latter. Now, an important
question is: does the relationship remain stable while these interventions are
being made? In the case of an autonomous relationship, the answer is yes. One
example of an autonomous relationship is a law of the physics, such as the law
of gravitation, which remains valid under a wide range of interventions. In
contrast, non-autonomous relationships would break down easily under slight
changes.

However, instead of thinking of relationships as simply autonomous versus
non-autonomous, Woodward suggests the notion of the degree of autonomy,
which corresponds to the range of interventions (perhaps limited) under which
a relationship would remain stable. Woodward argues that this notion is par-
ticularly well suited for interpreting structural equation models. One signifi-
cance of this is that it gives these models an explanatory power, as Woodward
says, “autonomous relationships are causal in character and can be used to
provide explanations.”

Later on, in Chapter 4, economist Kevin Hoover presents his view of causal-
ity in econometrics while contesting various points made by the authors of the
earlier two chapters, including Woodward [73]. To a large degree, Hoover’s
view concurs with that of Woodward. However, the two disagree on some of
the fundamental issues, such as the explanatory power of a causal relation-
ship. Hoover contends that “econometric models do not explain.” Hoover also
contests many of the finer constructs, such as the meanings of “law” and “the-
ory” implied by Woodward, in contrast to an econometrician’s interpretation
of these terms.

The reason we brought up the debate between philosophers and economists



is two-fold. First, it gives a snapshot of the ever-contested topic of causality,
which only highlights its importance across various disciplines. Second, it
exposes a key component of the causality study in general—interventions or
changes made to a system. We will illustrate how we incorporate interventions
in strategic settings, but first, we will take a detour to some recent happenings
in order to further signify the notion of interventions in causality studies.

1.2 Causal Probabilistic Inference

In recent times, one of the most celebrated success stories in the study of
causality is the development of causal probabilistic inference during the 1990s
[95-100]. Applications of causal probabilistic inference can now be seen in
very diverse disciplines, such as economics, public policy, sociology, computer
science, and various branches of life sciences, to name just a few. Given its
emergence in wide-ranging application domains, it may at first be surprising
to learn that the issue of causation has been swept under the rug for decades
in classical statistics until 1935 when Sir Ronald Fisher’s seminal work on
randomized experiments [38, 39] was published [97, p. 339-342]. Correlation,
rather than causation, had been the prescriptive concept in statistics all those
years. However, correlation alone does not directly answer questions such as:
Does smoking cause cancer? Or, will increasing taxes cause the national debt
to go down?

Judea Pearl, the recipient of the ACM Turing award in 2012 and one of the
forerunners in the pursuit of studying causality in probabilistic settings, notes
that the reason for this apparent neglect of causation in classical statistics is
deeply rooted in the inability of probability theory to express causal state-
ments [97, p. 342]. In particular, the language of probability theory is geared
toward expressing observational inferences, as opposed to causal ones. In an
observational inference, we may seek the probability of some events happening
given that some other events have happened. Probability theory lays out a
clear set of rules on how to express and manipulate such an inference ques-
tion in