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Abstract of the Dissertation

Causal Strategic Inference in Social and
Economic Networks

by

Mohammad Tanvir Irfan

Doctor of Philosophy

in

Computer Science

Stony Brook University

2013

Who are the most influential senators in Congress? Is there a
small coalition of senators who are influential enough to prevent
filibusters? In a different setting of microfinance markets, can we
predict the effects of interventions to help policy makers? In order
to pursue such diverse questions, we propose causal strategic in-
ference, a game-theoretic counterpart of causal probabilistic infer-
ence. Using this general framework, we study two different sets of
problems, broadly on social networks and networked microfinance
economies.

In the first study, we introduce a new approach to the study of influ-
ence that captures the strategic aspects of the complex interactions
in a network. We design influence games, a new class of graphical
games, as a model of the behavior of a large but finite networked
population. Influence games can deal with positive as well as neg-
ative influence without having to consider network dynamics. We
characterize the computational complexity of various problems on
influence games, propose effective solutions to the hard problems,
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and design approximation algorithms, with provable guarantees,
for identifying the most influential individuals in a network. Our
empirical study is based on the real-world data obtained from con-
gressional voting records and Supreme Court rulings.

Our second study is on microfinance economies. It is motivated by
the challenge of formulating economic policies without the privi-
lege of conducting trial-and-error experiments. First, we model a
microfinance market as a two-sided economy. We then learn the pa-
rameters of the model from real-world data and design algorithms
for various computational problems. We show the uniqueness of
equilibrium interest rates for a special case and give a constructive
proof of equilibrium existence in the general case. Using data from
Bangladesh and Bolivia, we show that our model captures various
real-world phenomena and can be used to assist policy makers in
the microfinance sector.

Despite contrasting application areas, these two studies bear a com-
mon signature that is prevalent in many other domains as well: the
actions of the entities in a network-structured complex system are
strategically inter-dependent. This dissertation presents a compu-
tational game-theoretic framework for studying causal questions in
such scenarios.
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Chapter 1

Introduction

December 31, 2012
The much dreaded “fiscal cliff” was only hours away. The tax increase and

spending cuts that would take effect from January 1, 2013 could potentially
lead the U.S. economy to another depression. Both the Republicans and the
Democrats in Congress agreed that it would be an absolutely undesirable situ-
ation. However, they were completely polarized on how to avoid this situation.
In order to deal with the situation, a bipartisan group of senators had already
been formed. It had four Democratic and four Republican senators and was
called the “gang-of-eight” senators. Apparently, the key idea behind forming
such a bipartisan group was to intervene the usual decision-making of the
senators in Congress and lead the two diverging groups toward a consensus.

As the Wall Street and markets all over the world anxiously waited, several
proposals seeking a middle ground came from different sources over the last few
weeks, but none got accepted by the opposing party. Some of these proposals
were labeled “joke” and some “magic beans and fairy dust.” As the clock
kept ticking, a remarkably concerted effort by Senate Majority Leader Harry
Reid (D-NV), Senate Minority Leader Mitch McConnell (R-KY), and Vice
President Joe Biden was visible. At the eleventh hour, a deal was reached by
Senator McConnell and Vice President Biden. It included a tax rate threshold
of $400,000 for individuals and did not include any significant spending cut.

Although a middle ground was reached, it did not please the members of
either party. Democrats were seeking a tax rate threshold of $250,000 and Re-
publicans were opposing tax increase of any kind while favoring the direction
of spending cuts. Nevertheless, Senator McConnell and Vice President Biden
met with their respective party colleagues to ease the tension. Many, with
reluctance, finally decided to side with the proposal.
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January 1, 2013
In the small hours of the new year, the bill went to the Senate floor and

was passed with a vote of 89–8.

The above story of avoiding the fiscal cliff connotes some very important
scientific concepts. First, how collective outcomes like the above are reached
has been studied by sociologists for decades. Second, it gives an anecdotal
evidence of influence among the senators. It also suggests that although the
underlying system for this influence is large and complex, there is a network
structure in it, because clearly, not everyone directly influences everyone else.
Third, the above story is all about strategic interactions in the sense that one’s
action (whether to vote “yes” or “no”) depends on the actions of those that
are “close” to him or her. Finally, it gives an evidence of interventions in real
world—interventions by forming groups that would not naturally arise other-
wise. As we will see shortly, this component of interventions is a fundamental
element of cause and effect studies.

The goal of this dissertation is to study causal questions in strategic set-
tings where a large number of entities interact with each other in a network-
structured way. Marked by interventions, following are a few examples of
causal questions in the Senate setting. How influential is a group of senators?
Who are the most influential senators? Does there exist a small coalition of
senators who can prevent filibusters?

In this dissertation, we will also study strategic settings that arise in net-
worked economies, such as microfinance markets. In that setting, examples of
causal questions could be the followings. What would happen if a loss-making
bank is shut down? How can the government make loans more affordable by
providing subsidies to the banks? What should be a sensible cap on interest
rates? Note that many of these policy-level questions cannot be evaluated
in practice before being implemented. However, if we could mathematically
model the real world system, we could then evaluate such questions using this
model. Therefore, our goal would be to model real world settings as complex
systems and design algorithms for answering causal questions, but first, we
will talk a little about causality in general.

1.1 Causality: A Contested Ground

Causality is one of the most natural quests of the human mind. Not only that
it appears in abundance in our daily life, it also has a long history of scien-
tific expedition, often embroiled in debates among statisticians, philosophers,
economists, and computer scientists [56, 73, 97]. Such a level of contention
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among researchers of diverse backgrounds—on one single topic—is rare and
at the same time indicative of its scientific import and wide applicability.
This dissertation presents a comprehensive framework for studying causality
in strategic settings that often appear in social and economic networks. We
call this framework causal strategic inference.

As mentioned above, causality has always been a highly contested ground.
One beautiful example of this is a book edited by Daniel Little [73]. The
chapters of the book pave the way for an enlightening back and forth debate
between philosophers and economists. For example, in Chapter 2, philosopher
James Woodward presents a causal interpretation of the structural equation
models frequently used by economists. Woodward promotes the manipula-
bility theory of causation as opposed to other alternatives, such as Granger’s
notion of causation [48]. The manipulability theory resonates with our in-
tuitive perception of causation. That is, if one variable causes another in a
relationship, then changing or intervening the first variable (or other related
variables) would provide a way of manipulating the latter. Now, an important
question is: does the relationship remain stable while these interventions are
being made? In the case of an autonomous relationship, the answer is yes. One
example of an autonomous relationship is a law of the physics, such as the law
of gravitation, which remains valid under a wide range of interventions. In
contrast, non-autonomous relationships would break down easily under slight
changes.

However, instead of thinking of relationships as simply autonomous versus
non-autonomous, Woodward suggests the notion of the degree of autonomy,
which corresponds to the range of interventions (perhaps limited) under which
a relationship would remain stable. Woodward argues that this notion is par-
ticularly well suited for interpreting structural equation models. One signifi-
cance of this is that it gives these models an explanatory power, as Woodward
says, “autonomous relationships are causal in character and can be used to
provide explanations.”

Later on, in Chapter 4, economist Kevin Hoover presents his view of causal-
ity in econometrics while contesting various points made by the authors of the
earlier two chapters, including Woodward [73]. To a large degree, Hoover’s
view concurs with that of Woodward. However, the two disagree on some of
the fundamental issues, such as the explanatory power of a causal relation-
ship. Hoover contends that “econometric models do not explain.” Hoover also
contests many of the finer constructs, such as the meanings of “law” and “the-
ory” implied by Woodward, in contrast to an econometrician’s interpretation
of these terms.

The reason we brought up the debate between philosophers and economists
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is two-fold. First, it gives a snapshot of the ever-contested topic of causality,
which only highlights its importance across various disciplines. Second, it
exposes a key component of the causality study in general—interventions or
changes made to a system. We will illustrate how we incorporate interventions
in strategic settings, but first, we will take a detour to some recent happenings
in order to further signify the notion of interventions in causality studies.

1.2 Causal Probabilistic Inference

In recent times, one of the most celebrated success stories in the study of
causality is the development of causal probabilistic inference during the 1990s
[95–100]. Applications of causal probabilistic inference can now be seen in
very diverse disciplines, such as economics, public policy, sociology, computer
science, and various branches of life sciences, to name just a few. Given its
emergence in wide-ranging application domains, it may at first be surprising
to learn that the issue of causation has been swept under the rug for decades
in classical statistics until 1935 when Sir Ronald Fisher’s seminal work on
randomized experiments [38, 39] was published [97, p. 339–342]. Correlation,
rather than causation, had been the prescriptive concept in statistics all those
years. However, correlation alone does not directly answer questions such as:
Does smoking cause cancer? Or, will increasing taxes cause the national debt
to go down?

Judea Pearl, the recipient of the ACM Turing award in 2012 and one of the
forerunners in the pursuit of studying causality in probabilistic settings, notes
that the reason for this apparent neglect of causation in classical statistics is
deeply rooted in the inability of probability theory to express causal state-
ments [97, p. 342]. In particular, the language of probability theory is geared
toward expressing observational inferences, as opposed to causal ones. In an
observational inference, we may seek the probability of some events happening
given that some other events have happened. Probability theory lays out a
clear set of rules on how to express and manipulate such an inference ques-
tion in order to give an answer to this question. In contrast to observational
inferences where some events are observed (or given), causal inferences are ac-
companied by the mechanism of intervention. An example of an intervention
is to set a random variable X (over which we have control) to a specific value
x, which Pearl denotes by do(X = x) [97, p. 23]. An inference question in
connection with this intervention would be to ask what would the probability
of some events happening be once we perform this do operation.

On the surface, the causal inference question having a do(X = x) opera-
tion may seem to be very similar to an observational inference question where
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X = x is given. However, there are two notable differences. First, the do op-
eration has the power to change the dependency structure among the random
variables. Therefore, it can potentially change the joint probability distri-
bution of the random variables. Second and as alluded above, probability
theory, in its originality, cannot express this do operation mathematically.
The study of causality in probabilistic settings has provided us with a math-
ematical framework that extends probability theory to express and process
interventions.

In fact, Judea Pearl takes a broader view of causality than just the do
operation. According to him, the study of causality can be hierarchically
organized in three natural types of queries with increasing levels of difficulty:
predictions, interventions, and counterfactuals [97, p. 38]. First, prediction is
the type of query where we observe something about the “system,” and taking
that observational knowledge into account, we are asked to infer something
else that we did not observe. The important aspect in prediction is that we
are not allowed to change anything in the system. Changing something in the
system, which Judea Pearl often refers to as surgery, is permitted in the second
type of causal query—interventions. An example is the the do operation in
probabilistic settings, as outlined above. Counterfactuals, the third type of
causal queries, are the most challenging ones in the sense that we are given
some observation about the system and asked to infer the outcome of the
system if the opposite of that observation, in some sense, were to take place.

The goal of this dissertation is to study causal inferences in game-theoretic
settings at the second level of queries, interventions. Since game theory reliably
encodes strategic interactions among a set of players, we will call this type of
inference causal strategic inference.

1.3 Causal Strategic Inference

A game in non-cooperative game theory can be described by a set of players, a
set of actions for each player, and a payoff function for each player that maps
each joint-action to a real number. Here, a joint-action is specified by an action
for each player. A central solution concept in non-cooperative game theory is
Nash equilibrium. A pure-strategy Nash equilibrium (PSNE) can be defined
as a joint-action of the players such that every player plays its best response to
the other players’ actions simultaneously.1 Here, a best-response of a player to
the the other players’ actions is defined by an action that maximizes its payoff

1There is a more general solution concept known as mixed-strategy Nash equilibrium
(MSNE) where each player independently chooses a probability distribution for playing one
of its actions so that every player maximizes its expected payoff simultaneously.
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with respect to the corresponding joint-action. Of course, a best-response of
a player may not be unique. Yet, the definition of Nash equilibrium signifies
stability in the sense that no player has any incentive to unilaterally deviate to
a different action. (Consider any pure-strategy Nash equilibrium, specified by a
joint-action. If a player could indeed increase its payoff by playing a different
action, then the player is not playing its best response in this joint-action.
Therefore, this joint-action cannot be a pure-strategy Nash equilibrium.)

As mentioned earlier, our goal is to study interventions, the second type
of causal queries, in game-theoretic settings. Interventions are carried out by
surgeries. Therefore, one rudimentary question is what types of surgeries we
would allow in the context of a game-theoretic setting. Put differently, what
is the analog of the do operation described above in a game-theoretic setting?

Although game theory explicitly represents the actions of the players, it is
different from actions (e.g., the do operation) or interventions in the context of
causal probabilistic inference. In game theory, actions are adopted or played
by the players of the game, who are integral parts of the system. However, in
causal probabilistic inference, interventions are performed by someone outside
the system, such as an experiment designer. Notably, an intervention involving
a set of random variables can be performed if one has control over them. One
implication of such an intervention is that it makes changes to the original
system (and hence the name surgery). Therefore, causal probabilistic inference
is a query concerning the changed system, although the given input is with
respect to the system before the changes were made. We will formulate causal
strategic inference in an analogous way, but first, we will answer the question
regarding the types of surgeries we perform. We will consider the following
two possibilities.

Surgery 1: Setting the Actions of Some of the Players

One way of doing a surgery on a game is to restrict the actions of some of
the players. For example, we can set the actions of some of the players to
particular ones. Now, the question is: how should we interpret this surgery?
For example, suppose that player i’s action has been set to ai. Should we
modify the game in a way that player i’s best response is always ai, no matter
what the other players play? Or, should we keep the game unchanged and
rather focus only on those equilibria (if any) where player i plays ai as its best
response? Let us consider these two different interpretations.

First, once we set the actions of some of the players, we can modify the
original game in the following way. Consider any player i whose action has
been fixed to ai. The payoff function of player i is changed so that i’s payoff
is 1 for any joint-action in which i plays ai and 0 for all other joint-actions.
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This change makes sure that the preset actions are indeed best responses of
the corresponding players in the modified game (with respect to any action
that the other players play). Note that a Nash equilibrium of the modified
game may not be a Nash equilibrium of the original game. In particular, the
players whose actions have been set may not be playing their best response
with respect to the original game. Therefore, the outcome of the modified
game is not guaranteed to be stable with respect to the original game. Such
an approach has been used in a line of work on finding the most influential
nodes in a social network [67], where the goal is to maximize the spread of a
“new” behavior (e.g., buying a new product) by selecting a small “seed” set
of initial adopters. The underlying mechanism is to set the actions of the seed
players to the one denoting the adoption of the new behavior and then let
the diffusion process set off. At the end of the diffusion process, however, the
seed players may not be playing their best response with respect to the original
game.

Controlling the actions of some of the players has also been used in other
settings. For example, in the setting of network routing games, Sharma and
Williamson study the minimum number of users that need to be controlled by
a central authority to improve the social welfare of a Nash equilibrium [111].
This is motivated by the case where there are two types of users of a network
application: premium users with the privilege of choosing their own route of
traffic and ordinary users, who must go by whatever the network administrator
has chosen for them [104]. The general problem is to find the minimum fraction
of users to be controlled by the network administrator to achieve a desirable
objective. Here, being controlled by the network administrator, the ordinary
users might be forced to adopt an action that they would not have adopted
otherwise.

Second and in contrast to the above point, we can also do interventions by
“controlling” the actions of some of the players without changing the game. For
example, after setting the actions of some of the players, we can ask questions
regarding the stable outcomes (e.g., Nash equilibria) where these players play
according to the preset actions. An example of an inference question in this
approach is to ask how many stable outcomes could possibly result from setting
the actions of a subset of the players. We will adopt this notion of intervention
in studying causal strategic inference questions in a social network setting in
Chapter 2.

Surgery 2: Changing the Structure of the Game

In this type of surgery, we change the game without setting the action of any
of the players. Note that the notion of “changing the game” is very much
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open ended. It can potentially mean changing the payoff function of a player,
removing a player from the game, adding a new player to the game, changing
the set of actions of a player, as well as any combination of these. Here, we
narrow our focus to the structure of a special type of games, namely graphical
games in parametric forms (as opposed to normal forms). We use the term
structure in this context to refer to the underlying topology of the game. One
example of an intervention by changing the structure of a game is to remove
a player from the game. A causal strategic inference question under this type
of intervention is to infer how the outcome of the game would change due to
the intervention.

We study such interventions in Chapter 3, where we model a microfinance
market in a game-theoretic way in order to ask causal strategic inference ques-
tions, such as what would happen if some of the loss-making government-owned
banks are shut down? To answer such a question, we first learn the parameters
of the model from real-world data and compute an equilibrium point, which
reflects the outcome before the removal of any bank. We then do an inter-
vention by changing the structure of the game (i.e., removing the loss-making
government-owned banks). After that, we compute an equilibrium point of
the resulting game (note that after removing the banks, we do not go back
and learn the parameters of the model again). The difference in equilibrium
outcomes before and after the removal of the banks gives us the desired answer.

1.4 Causal Strategic Inference: A Compara-

tive Study

We should first clarify that the idea of interventions in strategic settings is not
new. Some of the surgeries we have mentioned above have been studied before
in the context of various application scenarios. However, our main objective
here is to build a comprehensive framework that wraps around this idea of
interventions in strategic settings.

Our particular focus will be on those systems where individuals or en-
tities exhibit strategic interactions and affect each other in a complex but
network-structured way. The proposed framework of causal strategic inference
is composed of the following components: mathematically modeling a complex
system, learning the parameters of the model from real-world data, and de-
signing algorithms to predict the effects of interventions. We will now review
earlier research relevant to these components, especially from economics liter-
ature (related computer science literature will be reviewed in Chapters 2 and
3). As we will see, one of the distinctive features of our approach is our focus
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on computation (e.g., designing algorithms for equilibrium computation).

1.4.1 Causal Strategic Inference in Econometrics

Modeling strategic scenarios and estimating the parameters of the model are
active research topics in econometrics. Here, we will conduct a brief review of
the literature with the goal of illustrating the difference between our approach
and the general approach in econometrics. Since we will not give any detailed
specification of our model, the discussion will be at a high level.

In econometrics literature, the flagship application scenario for studying
strategic decision-making is the setting where two or more firms simultaneously
decide whether to enter a market or not. This decision is strategic, because
a firm’s decision and hence its expected profit depend on the decisions of
the other firms. As a result, game theory has been the prescriptive tool for
modeling entry decisions in econometrics.

Within the general game-theoretic framework, there is a variety of entry-
decision models in econometrics capturing homogeneous versus heterogeneous
firms, complete information versus private information settings, and static
versus dynamic games. The literature also shows different ways of addressing
some of the inherent issues like the multiplicity of equilibria and equilibrium
selection. There is, however, one unifying theme in the literature: almost all of
the models are based on the discrete choice model [77, 78]. The discrete choice
model in its originality does not allow the utility of an entity to depend on the
actions of the other entities. However, the main ingredient of a game-theoretic
model is this interdependence of actions. To account for this, the econometrics
models that we will review indeed extend the original discrete choice model to
what the literature commonly refers to as the discrete game model.

Bjorn and Vuong’s Model of Labor Force Participation

The first discrete game model is attributed to Bjorn and Vuong, who studied
the case of simultaneous decision-making by a husband and a wife on whether
to enter the labor force or not [17]. This is a two-player game, where each
player has two actions. Denoting the action of player i ∈ {1, 2} by xi ∈ {0, 1}
(0 denotes not entering and 1 entering the labor force) and that of the other
player by x−i, the payoff of i is defined using McFadden’s random utility model
[77] as follows.

ũi(xi, x−i) = ui(xi, x−i) + ηi(xi, x−i). (1.1)
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The above payoff function consists of an observed, deterministic part ui
and an unobserved (to the researcher), random part ηi. The first accounts for
observed attributes of the players, such as age, education level, assets, number
of kids, etc. The latter part accounts for factors that the researcher could not
observe or did not model, and as a result, it appears as a random shock. Every
player i observes its own random part ηi, but depending on whether it also
observes the other player’s random part, the game becomes either a complete
information or an incomplete information game, respectively. The model of
Bjorn and Vuong is a complete information one. Here, the best response x∗i of
player i can be written as follows.

x∗i = 1 ⇐⇒ ũi(1, x−i)− ũi(0, x−i) > 0. (1.2)

In other words, player i’s best response is to choose the action that max-
imizes its payoff with respect to the other player’s action. A pure-strategy
Nash equilibrium (PSNE) is given by (x∗1, x

∗
2) such that both of players are

best responding to each other simultaneously.2 Obviously, there could be three
possible types of outcomes in this game: a unique PSNE, multiple PSNE, and
no PSNE at all. Bjorn and Vuong view the data as a unique equilibrium.
However, if the latter two possibilities of multiplicity and non-existence are
ruled out, then they show that the model no longer remains strategic (that
is, the best response of one of the two players does not depend on the other
player’s action). It rather becomes equivalent to a previously studied simulta-
neous equations model with structural shift where a certain “logical consistency
condition” must hold [54, 110]. Now, if the option of the multiplicity of PSNE
is kept on table and if the data is viewed as a unique PSNE, an important
question is: which one of the multiple possible PSNE is “played” in the data?
This is typically known as the equilibrium selection problem.

Bjorn and Vuong take a randomized approach to this problem of equilib-
rium selection. They assign probabilities to all possible pairs of the reaction
functions3 of the two players and express the probability of each PSNE in
terms of these probabilities. They then use the maximum likelihood technique
to estimate the probability of observing any particular PSNE, along with the

2Equation (1.2) shows that the best response of a player depends on the difference
between payoff functions and hence on the difference between the corresponding random
parts of Equation (1.1). Along with other simplifying assumptions, Bjorn and Vuong’s
main assumption is that this difference between the random parts is a standard normal
distribution with a correlation between the two players.

3For example, the husband’s reaction function could be one of the followings: choosing
action 1 all the time (no matter what the wife has chosen), choosing 0 all the time, choosing
whatever the wife has chosen, and choosing the opposite of what the wife has chosen.
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other parameters of the model that are not detailed here. They also give a
necessary and sufficient condition for these parameters to be identifiable, which
means that if that condition holds, then for any outcome of the model, the
estimated parameters are unique. In other words, different instantiations of
the parameters cannot generate the same outcome. In general, identifiability
of the parameters is a major focus in econometrics literature.

Being the first of its kind, Bjorn and Vuong’s model is simplistic and does
not scale well if the number of players is increased. For instance, if there is
a large number of players, then assigning a probability to each possible com-
bination of the reaction functions of all the players would be computationally
expensive. As we will see, much of the later literature actually avoids combin-
ing the reaction functions of the players.

Entry Models of Bresnahan and Reiss

Bresnahan and Reiss investigate entry in monopoly markets using two types of
models: a simultaneous, game-theoretic model and a sequential decision mak-
ing model [21]. Their empirical study is based on the markets of automobile
dealers with a focus on how market sizes influence entry decisions and whether
the second entrant faces entry barrier (i.e., whether the fixed cost and market
opportunities for the second entrant are less favorable compared to the first
entrant).

This is again a two-player, two-action setting. We will first give a brief
overview of the simultaneous-move model of Bresnahan and Reiss. Suppose
that ũMi and ũDi are the payoffs of firm i in a monopoly and a duopoly market,
respectively. We will not go into the details of these payoff functions, but
as in the Bjorn-Vuong model, they also comprise of two parts: an observable
part and an unobserved, random part. The random part is observed by both
the players, although not by the researcher. The entry decision (x∗1, x

∗
2) would

be a pure-strategy Nash equilibrium (PSNE) if and only if the following best
response condition holds for all firms i = 1, 2.

x∗i = 1 ⇐⇒ (1− x∗−i)ũMi + x∗−iũ
D
i > 0.

Given a particular model, a PSNE outcome could be one of the following
five types: monopoly by firm 1, monopoly by firm 2, duopoly, no entrant, and
finally, monopoly by either firm 1 or firm 2 (but not duopoly). Once again, the
multiplicity of PSNE is deemed challenging, as the authors say, “The presence
of non-unique equilibria in game-theoretic models makes it impossible to use
standard qualitative choice models to model entrants’ profits.” This is so,
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because the data is viewed as a unique PSNE. As Bjorn and Vuong showed
earlier, restricting the model to rule out the multiplicity of PSNE results in
a model that is not strategic any more. Therefore, the equilibrium selection
problem arises inevitably.

Regarding the problem of equilibrium selection, Bresnahan and Reiss ob-
serve that if the model is reinterpreted to predict the number of entrants
instead of the identity of the entrants, then the PSNE outcome is always
unique. Another approach to avoid the multiplicity of PSNE is to consider
a sequential-move version of the model. It is easy to show that if the firms
do not make their decisions simultaneously, then the outcome is unique. The
estimation of the model parameters using spatially isolated rural automobile
dealership markets shows that the second entrant is not subjected to entry
barrier and that its entry does not cause the first entrant’s profits by much.
In many cases, this is due to the market size being already very big when the
second firm enters the market.

In a related paper, Bresnahan and Reiss discuss the issues of the existence
and the uniqueness of PSNE in discrete game models [22]. They also discuss
how one could deal with mixed-strategy Nash equilibria (MSNE) in discrete
game models and how these models can be extended to the cooperative games
setting. Although they motivated the issues of MSNE and cooperative games
using real world examples, they did not actually apply their ideas to any
empirical setting. For instance, they say that “the researcher must exercise
care when selecting [certain probability] distributions,” which needs to be done
on a case by case basis if we would like to consider MSNE.

Berry’s Model of Entry in Airline Markets

Airline markets, each consisting of a source-destination pair of cities, have
been studied by economists from different points of view. A common example
is various explanations of an airline’s profit due to its hub and spoke network
[72]. Berry took a different approach to studying an airline market, by inves-
tigating the effects of strategic entry decisions of an airline on the profitability
of the flights in a market [16]. To model the entry decision of an airline in a
market, Berry presents a discrete game model that allows for a large number
of heterogeneous airlines. Apart from the specifics of the model, this is one of
the key differences with the previous entry models, such as the ones by Bres-
nahan and Reiss. Heterogeneity among the airlines can be observed in terms
of their flight networks, fleets of aircrafts, etc. Heterogeneity can also be due
to unobserved factors. In Berry’s model, the payoff of an airline i in a market
k is defined as follows.
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uik(xk) = vk(f(xk)) + φik.

Here, xk is the vector of the entry decisions of each airline i in a market
k, xik ∈ 0, 1 denotes an airlines entry decision. The first term in the payoff
function is market specific and captures the competitive effect due to the entry
decisions of the airlines, and the second term is specific to the airline-market
pair and is treated as a single index of profitability. In order to guarantee the
existence of a PSNE and the uniqueness of the number of PSNE (to deal with
the equilibrium selection problem as mentioned above), Berry imposes several
assumptions. First, the airlines in a market k can be sorted according to the
profitability index φik, and this ordering is independent of the entry decisions.
Second, the function f(xk) in the first term is defined as the count of entrants,
i.e., f(xk) =

∑
i xik. Third, the market-specific function vk is decreasing in

the number of entrants.
As before, each of the two terms in the above payoff function is further

decomposed into two parts: one observable part and one unobserved, random
part. Again, the setting here is a complete information game. The main
challenge in analytically characterizing the probability of a certain number
of entrants is due to the large number of airlines, which contributes to an
exponential number of integrations over the random parts. Berry proposes two
directions to address this. The first one is to impose additional restrictions on
the model, such as removing the part of strategic interaction from the payoff
function (i.e., an airline’s profit is not affected by the number of entrants). The
other direction is to apply simulation estimators [79]. The estimated model
shows a strong negative influence of competition on an airline’s profit, which
can limit the effectiveness of a policy encouraging the potential entrants.

As Berry points out, his entry model is guided by a “partial equilibrium ap-
proach,” where instead of considering an airline’s network of flight routes, the
analysis focuses on a pair of source-destination cities. However, we know that
the network structure of an airline’s flight routes is one of the most important
ingredients of its operation and profitability. In our view, the major challenge
in accounting for this network structure is due to the analytical approach to the
problem. An alternative to deal with this would be an algorithmic approach,
which we pursue in this dissertation (although not on the same problem).

Berry’s model has been subsequently extended by others. Ciliberto and
Tamer allow a general form of heterogeneity among the airlines that no longer
guarantees a unique number of entrants in all the PSNE of the (complete infor-
mation) game [27]. Without assuming a particular equilibrium selection rule,
they bound the choice probabilities between an upper and a lower limit. They
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estimate the parameters of the model by minimizing the distance between
the set of choice probabilities between these two bounds and the probabil-
ities estimated from the data. Apart from modeling the airline industry, a
different work by Berry et al. presents techniques to estimate the parameters
of an oligopolistic market with a wide range of product differentiation with
applications to the U.S. automobile market [15].

Other Models

The three early models that we reviewed above exhibit some of the key aspects
of the general econometrics approach to modeling strategic scenarios, such as
the adoption of a random utility model [77, 78], analytical characterizations
of some of the quantities of interest, a way of dealing with the multiplicity
of PSNE (for example, a randomized equilibrium selection mechanism) or a
way of avoiding the multiplicity issue altogether (for example, by imposing
additional assumptions that would lead to a unique equilibrium or by rein-
terpreting the model to predict a common property of all PSNE, such as the
number of players playing a particular action), and the identifiability of the
parameters of the model. The literature has since been enriched with a num-
ber of interesting pieces of work extending the previous research as well as
injecting new ideas to deal with these challenging tasks. Here, we will briefly
review a sample of some of the widely cited research along this line.

Seim’s Model of Product Differentiation

The early game-theoretic entry models, such as the one by Berry [16], focus
mostly on firm-specific profits and the competitive effects of multiple entrants,
but do not model product differentiation by the firms. Seim proposes a discrete
game model of entry decisions that allows the firms to spatially differentiate
their products by choosing, for example, a location of operation. Her empir-
ical study is based on the location choice of video retailers. In contrast to
much of the earlier work, she models entry decisions as a game of incomplete
information, which accounts for a firm’s lack of information about many of
the characteristics of another firm, such as that firm’s managerial talent. In-
terestingly, the reason why many of the earlier models were games of complete
information is that the incomplete information version was thought to be more
challenging. For example, Bresnahan and Reiss say, “Games of private infor-
mation pose much more complicated estimation issues” [22, p. 60]. However,
it later turned out that an equilibrium in an incomplete information game (also
known as the Bayes-Nash equilibrium) can be characterized more easily [106]
and that the estimation can also be done in a straightforward two-step method
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[7]. As a result, modeling a scenario as an incomplete information game often
serves the dual purpose of modeling various unobserved idiosyncrasies as well
as dealing with that model in a tractable fashion.

Going back to the model of Seim, a market consists of multiple locations,
and each firm chooses an entry location if it decides to enter the market. The
choices of the firms are made simultaneously. The payoff function of a firm
consists of the following terms: an observable location-specific characteristics
(such as the population and the income level of the potential customers),
an unobserved market-specific random term, a competitive effect term that
accounts for the decisions of all the firms, and an unobserved firm and location-
specific term that captures the firm’s private information about its profitability
in that location. The last term is assumed to be independently and identically
distributed (iid) draws from a type-1 extreme value distribution, which leads to
closed form expressions for a firm’s choice probabilities. The goal of the model
is to predict the unique number of entrants in a PSNE, although Seim also
shows that the PSNE itself is unique under certain additional assumptions.
The estimated model shows that video retailers use location choice to their
competitive advantage. Also, as the market size increases, the local demand
decreases due to the spreading out of the population density. As a result, the
number of entrants does not increase by much.

Augereau et al.’s Model of Technology Adoption

Beyond entry decisions, discrete game models have been designed for many
other interesting phenomena, such as adoption of a particular technology.
Augereau et al. study the adoption of the 56K modem technology by the
ISPs in a market during the late 1990s [4]. At that time, there were two
competing and incompatible implementations of the 56K standard, one by the
U.S. Robotics and the other by Rockwell. If an ISP adopts the U.S. Robotics
technology, for example, then its customers must also buy the U.S. Robotics
modems to enjoy a high-speed connection. Augereau et al. model the choice of
the ISPs as a discrete game of incomplete information, which accounts for the
characteristics of the market as well as the ISPs and the simultaneous decision
of the ISPs. They show that the ISPs in a market want their choice to be
different from their competitors (so that they do not lose their customers to
their competitors).

Sweeting’s Model of the Timing of Radio Commercials

Whereas Augereau et al.’s result on technology adoption among ISPs can be
interpreted as a coordination failure, Sweeting’s model of radio stations’ choice
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of timings for playing commercials tells us the opposite story of coordination
and synchronization. In Sweeting’s model, the radio stations in a market
choose timings for advertisement strategically with their payoff function cap-
turing market and station specific factors, a competitive factor that takes the
form of the proportion of the other stations that choose the same time, and a
private information term modeled as a random shock. Sweeting shows how the
multiplicity of equilibria can help the identification of the parameters of the
model. Estimation is done by the two-step method of Bajari et al. mentioned
above [7]. The finding of coordination among the radio stations signifies that
the interests of the radio stations are somewhat aligned with the interests of
the advertisers. During drivetime hours, the coordination incentive is very
strong. Multiplicity of equilibria is also more common during that time.

Discrete Game Models of the Banking Sector: ATM Networks

Game-theoretic models have also been developed to capture decision making
in the banking sector. Consider the case of ATM networks for example. From
our daily experience, the ATM networks of different banks are incompatible
unless we pay a surcharge. This surcharge never covers the cost of the ATM
service of a bank. It is rather intended to attract customers to open deposit
accounts at the bank. As a result, larger banks often charge more surcharge
than smaller banks and credit unions.

Ishii models banks and customers as strategic decision makers in a two-
sided market to understand the effects of this surcharge [57]. In brief, the pay-
off function of a customer for choosing a bank (i.e., having a deposit account
in that bank) in a market accounts for the customer’s observable character-
istics, the bank’s observable characteristics (e.g., its number of ATMs), the
bank’s interest rate (which is determined by the bank strategically), and the
unobservables corresponding to the customer and the bank. The banks, on
the other hand, maximize their profits in two stages. In the first stage, each
bank strategically chooses the number of ATMs to be deployed. In the second
stage, it chooses an interest rate to maximize its profit given a PSNE from
the previous stage. We will not go into the details of these two stages. The
estimation is done by the generalized method of moments (GMM) method.
The estimated model captures the phenomenon that when choosing a bank,
customers are influenced by the bank’s ATM network size and its surcharge.
It also shows that the revenue from the ATM service does not cover its cost.
Rather, the incentive for a bank to invest in an ATM network lies in securing
a share of the deposit market.

An interesting feature of Ishii’s work is her study of various counterfactuals.
For example, what would happen if the surcharges are eliminated by law? In
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that case, the model predicts that the market becomes less concentrated. That
is, the market share of customer deposits is reallocated from the larger banks
to the smaller ones. In response, the larger banks raise the interest rates on
deposit, which decreases their profit. In fact, the overall profit of the industry
decreases due to the elimination of surcharges. To the contrary, the presence of
surcharges encourages banks to expand their ATM networks, although it makes
the market share of customer deposits concentrated at the larger banks.

Discrete Game Models of the Banking Sector: Adoption of ACH

Game-theoretic models of decision making have also been developed to study
other phenomena in the banking industry, such as the adoption of automated
clearinghouse (ACH) technology, which provides an electronic equivalent of
paper checks and is commonly used in direct deposits and automated bill
payments. Ackerberg and Gowrisankaran estimate the magnitude of network
effects in ACH adoption [1]. The model has two sides: banks and customers
(e.g., small businesses), where the customers are treated as homogeneous. Two
banks can do an ACH transaction if both have already adopted this technology.
On the other hand, there are two alternatives for a customer. In a one-way
transaction, a customer may receive ACH payment without adopting the tech-
nology, provided that her bank has adopted it. In a two-way transaction, a
customer must also adopt the ACH technology in addition to her bank.

Ackerberg and Gowrisankaran define a two-stage game. In the first stage,
the banks simultaneously decide whether to adopt ACH or not, and in the sec-
ond stage, the customers decide on the adoption of ACH, given the decision
of the banks. This model does not rule out the multiplicity of equilibria. The
way the authors approach equilibrium selection is by estimating the probabil-
ity of seeing one of the two extreme equilibria (Pareto-best and Pareto-worst),
which is obviously a simplification compared to considering all possible equi-
libria. The estimation of the parameters is done by a simulation method. The
estimated model is used for counterfactual policy experiments. The model sug-
gests that government subsidy directed toward the customers is more effective
for ACH adoption than that directed toward the banks.

Recent Developments

The subject of discrete game models is an active area of research in economet-
rics. Recently, Bajari, Hong, and Ryan presented methods for identification
and estimation of discrete game models of complete information, which are
also applicable to general normal-form games [9]. A key feature of their work
is that they estimate both the parameters of the model and the equilibrium
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selection mechanism. For the latter, they compute all the equilibria of a game
using the algorithm of McKelvey and McLennan [81]. This is certainly a com-
putationally expensive step for large games. In a separate work, Bajari et
al. address estimation of discrete game models of incomplete information [8].
Finally, an excellent survey of some of the recent results on the variants of
discrete game models (e.g., complete vs. incomplete information, static vs.
dynamic games) and their identification, estimation, and equilibrium selection
has been presented by Bajar, Hong, and Nekipelov [7].

1.4.2 Causal Strategic Inference: Our Approach

Even though we study a completely different set of problems than the ones
reviewed above, we share the most important ingredient of strategic deci-
sion making with all these problem. However, there are some fundamental
differences between our approach to studying strategic settings and that of
econometricians in general. Once again, since we have not formally defined
any of our models, this discussion will not focus on any detail. It will rather
highlight these key differences in the context of causal strategic inference.

Analytic vs. Algorithmic Approaches

First, an econometrics approach to dealing with strategic settings is in large
part analytic. True, econometricians do provide algorithms (e.g., algorithms
for estimating parameters), but for the most part, those algorithms are pri-
marily driven by analytic techniques. See, for example, the two-step estimator
for discrete games of incomplete information [7]. In contrast, the main focus
of this dissertation is an algorithmic approach to problems. For example, one
of the main objectives of Chapter 2 of this dissertation is to design efficient
algorithms for equilibrium computation that exploits the special structure of
the problem.

Note that we do not claim that an algorithmic approach is better than an
analytic approach. However, in certain situations, an algorithmic approach
might provide a good alternative to an analytic approach. This is particularly
the case when we have large, complex systems with an underlying structure.
For example, the network structures of an airline’s flight routes are not often
exploited in the econometrics models of airline markets [16]. This could be
due to the challenge posed by dealing with a large, heterogeneous system in
an analytic manner. As mentioned above, such complex systems are exactly
the focus of this dissertation. In Chapters 2 and 3, we will show that looking
through an algorithmic lens helps us solve problems that would otherwise be
impossible to manage analytically.
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Modeling

A common modeling approach in the econometrics literature that we reviewed
is to adopt of the random utility model [77, 78]. Besides giving a reasonable
way of modeling unobservables, this approach sometimes also leads to simple
closed form expressions that are easy to deal with. For example, the choice
probabilities in a discrete game model can be expressed that way when the
random parts of the payoff functions are iid type-1 extreme value distributed.

In contrast, the modeling approach in this dissertation is completely dif-
ferent. In Chapter 2, we model influence among the heterogeneous individuals
in a social network using a graphical polymatrix game [60, 66], where the in-
terpretation of the payoff functions, which do not contain any random term,
is rooted in a well-studied and widely adopted sociology model [49]. Fur-
thermore, in Chapter 3, we model two-sided microfinance markets using the
well-studied concept of abstract economies in classical economics [3, 30]. Our
model of microfinance markets is network-structured, and a very special case
of it can be shown to be one type of Fisher market [37], which has been a
subject of intense algorithmic study by computer scientists in recent years.

Again, we do not claim that our models are “superior” to the random utility
model in any sense. Rather, with the specific applications that we would like
to address here, our modeling approach serves the purpose best while having
its root in the relevant social science literature. The key aspects of our models
are heterogeneity, network-structure, compact representation, and the ability
to capture the strategic interactions among a large number of entities.

Estimation

Econometrics and computer science (machine learning, in particular) have di-
verging views on the issue of the estimation of parameters. As we saw in the
literature review above, the identification of the parameters of a model (or
some function of the parameters) is a major concern in econometrics liter-
ature. The reason is that if the parameters are not identified (i.e., different
instantiations of the parameters lead to the same outcome), then the estimated
model may be very different from the actual system that generates the data,
even though the estimated model produces almost the same outcome as the
actual system. To ensure identification, additional restrictions are sometimes
imposed on the model. Identification with infinite sample is also very common
[8, 9].

In contrast, one of the most primitive principles of machine learning is Oc-
cam’s razor, which says that if multiple models explain the same observation
reasonably well, then we should choose the “simplest” model. Compared to a
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complex model, a simpler model usually also shows more generalization power
in terms of predicting something that has not been observed before. However,
too much simplicity might not capture the observed data well. Therefore,
researchers often strike a balance between simplicity and complexity, which
is usually guided by the well-known bias-variance tradeoff (a high bias corre-
sponds to too much simplicity and a high variance corresponds to complexity).
One technique often employed for this is to estimate the parameters of a model
using a portion of the data, not the whole, and then to test its predictive power
using the rest of the data. At the end, the best predictive model is chosen.

Estimation in econometrics, on the other hand, is very different from that
in machine learning. In econometrics, all the available data is used for the
purpose of estimation, and a high variance is a desirable objective. The anx-
iety about whether the estimated model would perform well in an unforeseen
environment is eased with the assurance that the parameters have been identi-
fied. However, as we mentioned above, identification often necessitates making
strong assumptions.

There are many other contested issues between these two disciplines, which
are out of scope for this dissertation. It is not that one of the approaches is
good and the other is bad. It is just that they are different. In this dissertation,
we have taken a machine learning approach to estimation. In Chapter 2, the
graphical structure of influence among the U.S. senators and various related
parameters are estimated using the method of Honorio and Ortiz [55]. In
Chapter 3, the estimation is done using a bi-level optimization program. In
each case, the predictive power of a model with respect to unforeseen events
has been the prime focus.

The objective of our estimation is also different from that of the fast grow-
ing literature on causal estimation in computer science and statistics. For
example, a common technique for understanding the effects of new product
features on consumers is known as bucket testing, which basically exposes the
feature to a random sample of the population and measures its effect on them.
With the advent of online social networks like Facebook, bucket testing can no
longer focus on a disconnected random sample of users. It also needs to con-
sider the network structure, because in the context of online social networks,
the effect of a new feature is more meaningful when a user as well as some
of her friends are exposed to it, compared to only the user being exposed in
isolation.

To extend bucket testing to networked settings, Backstrom and Kleinberg
propose a graph-theoretic sampling technique that addresses these two com-
peting requirements: samples need to be uniformly random and they also need
to be well-connected [6]. Along the same line, Ugander et al. propose graph
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cluster randomization techniques to give an efficient algorithm to compute the
probability of the exposure of a user [117]. They also show that their tech-
niques can lower the estimator variance. In another notable work, Toulis and
Kao propose two techniques for estimating causal peer influence effects—a fre-
quentist approach that can deal with more complex response functions and a
Baysian approach that provides more accurate estimates under network uncer-
tainties [114]. In contrast to this line of work, our goal is not causal estimation.
We rather want to estimate models that capture strategic interactions.

Equilibrium Selection

Almost all of the models we reviewed above exhibit multiplicity of equilibria.
Therefore, the question of equilibrium selection naturally arises as the data is
often viewed as a single equilibrium. Econometrics literature suggests three
main ways of dealing with the equilibrium selection problem [7, 9]. First, the
probability that an equilibrium, which is generated by the model, is observed
in the data is estimated [9, 17]. Sometimes, instead of considering all possible
equilibria, only a few equilibria are considered in this probabilistic approach [1].
Second, the model can sometimes be reinterpreted to give a unique outcome,
even if there are multiple equilibria. A typical example is considering the
number of entrants instead of the identity of entrants in an equilibrium of
an entry market [16, 21]. Third, the choice probabilities can sometimes be
bounded between two limits, which guides the selection of an equilibrium [27].

When we study influence among the U.S. senators in Chapter 2, it would
naturally appear that the multiplicity of equilibria is a desirable objective.
This is because if we model the voting outcomes from Senate as equilibria of
a game, then even though these are generated by the same 100 senators, these
are not the same. Therefore, the estimation algorithm of Honorio and Ortiz
tries to capture a set of equilibria rather than one particular equilibrium [55].
They choose a model that maximizes the number of observed voting outcomes
that are captured as the equilibria of the model and minimizes the number of
unobserved outcome captured as equilibria.

In our study of microfinance markets in Chapter 3, our model can poten-
tially generate multiple equilibria. We select one of these equilibria that is
geometrically closest to the observed data. This equilibrium selection mech-
anism is embedded in the parameter estimation procedure. We also test for
the robustness of this mechanism. We find that even if we introduce consid-
erably large magnitudes of noise in the data, this mechanism selects the same
equilibrium.
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Interventions

A key component of causal strategic inference as well as causality in general
is interventions. All of the econometrics studies reviewed above concern two
of the components of causal strategic inference that we mentioned earlier:
modeling a strategic scenario and estimating the parameters of the model.
However, many of these studies do not perform interventions. There are, of
course, exceptions. For example, Isii studies the effect of removing the ATM
surcharges [57]. Ackerberg and Gowrisankaran show the comparative effects
of subsides to customers and banks on ACH adoption [1].

The main focus of this work is a wide range of interventions. In Chapter 2,
we identify a most influential set of individuals in a social network by perform-
ing interventions. We also study the “powers” of groups of individuals using
interventions. In Chapter 3, we perform various interventions in a microfi-
nance market, such as setting an interest rate cap, removing a bank from the
system, providing subsidies to certain banks to make loans more affordable,
etc. It should be mentioned here that interventions by removing players is
not a new concept. Ballester et al., for example, performed interventions in a
criminal network by removing players from it [12].

1.5 Organization

This dissertation is divided into two main parts. In the first part (Chap-
ter 2), we model influence in a networked population with the ultimate goal
of performing various types of causal strategic inference. Our model is rooted
in the widely used threshold models from the mathematical sociology liter-
ature [49]. However, instead of the traditional contagion approach, we take
a non-cooperative game-theoretic approach that captures strategic aspects of
the network. In the second part (Chapter 3), we model microfinance markets
in order to study causal questions without the privilege of performing trial-
and-error experiments. Again, our model is game-theoretic as we view stable
outcomes of the market as equilibrium points. Following is a brief outline of
these two main chapters.

Outline of Chapter 2: Causal Strategic Inference in Social Networks

In Chapter 2, our approach to influence in social networks is essentially a
causal one (in a game-theoretic setting). This will become particularly clear if
we consider our definition of the most influential individuals in a social network
in Sections 2.2.3 and 2.2.2. One instance of the general definition of the most
influential nodes is the following. A set of nodes is the most influential with

22



respect to a desirable outcome (e.g., passing a bill in Senate by 100–0 vote) if
their adoption of the desirable behavior (e.g., voting “yes”) causes everyone
to also adopt that desirable behavior as the mutual best response. That is,
a set of the most influential nodes leads a complex system to a unique stable
outcome that is the same as the desirable outcome.

Another example of causal strategic inference within our study of influence
among senators is the following. Does there exist a “small” set of senators who
can prevent a filibuster? Again, we interpret this question in a causal way: we
are interested in finding a small set of senators whose coalition would cause
at least 60 senators to vote “yes” in any stable outcome, thereby avoiding a
filibuster situation.

Chapter 2 is organized as follows. It begins by relating causal strategic
inference to our study of influence in social networks. Section 2.1 gives a very
high-level outline of our model and puts it in the context of the existing body
of literature in sociology as well as computer science. Section 2.2 defines our
model of influence games and formulates the most influential nodes problem.
The next two sections explore various computational problems in influence
games, including the related computational complexity questions. Section 2.5
presents empirical results using both synthetic experimental data as well as
the real-world data obtained from congressional voting records and Supreme
Court rulings. Appendix 2.A gives a brief exposition of the collective actions
and collective behavior literature in sociology, which would provide a broader
view of the topics we study in Chapter 2.

Outline of Chapter 3: Causal Strategic Inference in Economic Net-
works

In this chapter, we develop a model of microfinance markets as a two-sided net-
worked economy. In this model, the branch-banking microfinance institutions
(MFIs) want to clear their loan and villagers want to maximize the amount
of “diversified” loans that they can borrow, under some constraints. A stable
outcome corresponds to both the MFI-side and the village-side achieving their
goals.

Once again, our objective in this networked economy model is to perform
causal strategic inference that can assist policy makers in making critical deci-
sions. One example of such inference is: What would happen to the market if
some of the government-owned MFIs stop operating? We ascribe the following
causal interpretation to this question. We are interested in finding a stable
outcome that would result from an intervention of removing the government-
owned MFIs. A causal strategic inference approach to answering this question
would be to first learn the parameters of the model having the government-
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owned MFIs in it and then to remove those banks from the model and compute
an equilibrium point in the resulting market.

Another example is: What would be the effect of giving additional subsidies
to some MFI in the market? A similar causal interpretation can be given to
this question as well. We basically perform an intervention in the system by
injecting subsidies to an MFI and would like to know what equilibrium point
could be obtained as a result of this intervention.

Chapter 3 is organized in the following way. Section 3.1 gives a brief
overview of a microfinance system and the central mechanisms in it. Section 3.2
presents our model of a microfinance market and various equilibrium properties
of this model. Section 3.3 exploits these properties to give an algorithm for
equilibrium computation as well as a method for learning the parameters of
the model. The next section presents the results of applying these algorithms
to the real-world data obtained from microfinance markets in Bangladesh and
Bolivia. Section 3.5 answers various causal questions using our model.
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Chapter 2

Causal Strategic Inference in
Social Networks

The influence of an entity on its peers is a commonly noted phenomenon in
both online and real-life social networks. In fact, there is growing scientific
evidence that suggests that influence can induce behavioral changes among
the agents in a network. For example, recent work in medical social sciences
posits the intriguing hypothesis that smoking [25], obesity [24], and even hap-
piness [41] is contagious within a social network. These studies have been
based on a real-world social network constructed from the data collected dur-
ing the Framingham Heart Study, a decades old effort to look into the risk
factors of cardiovascular diseases [28]. Regardless of the specific problem ad-
dressed, the underlying system under study in that research exhibits several
core features. First, it is often very large and complex, with many individual
entities exhibiting different behaviors and interactions. Second, the network
structure of complex interactions is central. Third, the directions and strengths
of local influences are highlighted as very relevant to the global behavior of
the system as a whole.

The prevalence of systems and problems like the ones just described in
the context of social medical science, combined with the obvious issue of of-
ten limited control over individuals, raises immediate, broad, difficult, and
longstanding policy questions: e.g., Can we achieve a desired objective, such
as reducing the level of smoking, or controlling obesity via targeted, minimal
interventions in a system? How do we optimally allocate our often limited re-
sources to achieve the largest impact in such systems? Clearly, these issues are
not exclusive to obesity, smoking, or happiness; similar issues arise in a large
variety of settings: drug use, vaccination, crime networks, security, marketing,
markets, the economy, and public policy-making and regulations, to name a
few.
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The work reported in this dissertation is in large part motivated by such
questions and their broader implication. Our approach to modeling influence
in networks and formulating the problem of identifying the most influential
individuals in a network is causal. This causal connotation will be further
explained in the next section once we give a high-level overview of our modeling
aspects.

Our major contributions here are: (1) a new approach to influence in net-
works grounded in non-cooperative game theory; (2) influence games as a new
class of graphical games to model the behavior of individuals in networks; and
(3) a theoretical and empirical study of computational aspects of influence
games, including an algorithm for the identification of the most influential
individuals.

2.1 Influence in Networks

A very important problem in social network analysis is the identification of the
most “influential” individuals (see, e.g., [67, 119] and the references therein).
We now provide a brief and informal description of our approach to influence
in networks with the goal of putting it in the context of the existing literature.

Overview of Our Model of Influence

Consider a social network where each individual has a binary choice of actions,
denoted by −1 and 1. Let us represent this network as a directed graph. Each
node of this graph has a threshold level, which can be positive, negative, or
zero, and the threshold levels of all the nodes are not required to be the same.
Each arc of this graph is weighted by an influence factor, which signifies the
level of influence the tail node of that arc has on the head node. Again, the
influence factors can be positive, negative, or zero and are not required to be
the same (i.e., symmetric) between two nodes.

Given the above network, our model specifies the best response of a node
(i.e., what action it should choose) with respect to the actions chosen by the
other nodes. The best response of a node is to adopt the action 1 if the total
influence on it exceeds its threshold and −1 if the opposite happens. (In the
case of a tie, the node is indifferent between choosing 1 and −1, i.e., either
would be its best response.) Here, the total influence on a node is calculated
as follows. First, sum up the incoming influence factors on the node from the
ones who have adopted the action 1. Second, sum up those influence factors
that are coming in from the ones who have adopted −1. Finally, subtract the
second sum from the first to get the total influence on that node.
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Clearly, in a network with n nodes, there are 2n possible joint actions,
where each joint action is specified by one action for each node. Among all
these joint actions, the ones where every node has chosen its best response to
everyone else will be called pure-strategy Nash equilibria (PSNE). We math-
ematically model the stable outcomes that can be generated from such a net-
worked system as PSNE.

Overview of the Most Influential Nodes Problem

Roughly speaking, in our approach, we consider a set of individuals S in a
network to be most influential, with respect to some objective of interest, if S is
the most preferred subset among all those that satisfy the following condition:
were the individuals in S to choose the behavior xS prescribed to them by
some stable outcome of the system x ≡ (xS,x−S) (which achieves the desirable
objective of interest), then the only stable outcome of the system that remains
consistent with their choices xS is x itself. Now, there could be many different
sets S that satisfy this condition. For example, S could comprise of all the
individuals, which would not be a desirable. To account for this, we also
specify a preference over all subsets of individuals. A typical example of this
preference is selecting a set S with the minimum cardinality.

Said differently, once the nodes in the most influential set S follow the
behavior xS prescribed to them by a stable outcome x achieving the objective
of interest, they become collectively so influential that their behavior forces
every other individual to a unique choice of behavior! Our proposed concept of
the most influential individuals is illustrated in Figure 2.1 with a very simple
example.

Causal Strategic Inference

A causal interpretation is inherent in the way we have formulated the most in-
fluential nodes problem. Informally speaking, a set of nodes is most influential
with respect to some prescribed behavior if these nodes can cause everyone else
to follow that prescribed behavior. A central aspect of this causal interpreta-
tion is stable outcomes, which we model here as PSNE. In a PSNE, everyone
adopts his best response to others’ actions. In other words, each node’s choice
of action depends on what others have chosen. Therefore, a set of nodes can
lead the whole system to a particular PSNE by their choice of actions.

We view the question of identifying the most influential set of nodes, which
constitutes a major part of this chapter, as a causal strategic inference ques-
tion. Other related questions, such as identifying a set of senators who can
prevent filibusters, as explored in Section 2.5.6, can also be viewed similarly.
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Another causal strategic inference question that we will address in Section 2.5.7
is how powerful a “gang” of senators is. Here, the causal interpretation is that
a powerful gang of senators would be able to lead a majority of the senators
into reaching a consensus with them.
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Figure 2.1: Illustration of our approach to influence in networks.
Each node has a binary choice of behavior, {−1,+1}, and wants to behave like
the majority of its neighbors (and is indifferent if there is a tie). We adopt
pure-strategy Nash equilibrium (to be defined later), abbreviated as PSNE, as
the notion of stable outcome. The network is shown in (a) and the enumer-
ation of PSNE (a row for each PSNE, where black denotes node’s behavior
1, gray −1) in (b). We want to achieve the objective of every node choos-
ing 1 (desirable outcome). Selecting the set of nodes {1, 2, 3} and assigning
these nodes behavior prescribed by the desirable outcome (i.e., 1 for each) lead
to two consistent stable outcomes of the system, shown in (c) and (d). Thus,
{1, 2, 3} cannot be a most influential set of nodes. On the other hand, selecting
{1, 6} and assigning these nodes behavior 1 lead to the desirable outcome as the
unique stable outcome remaining. Therefore, {1, 6} is a most influential set,
even though these two nodes are at the fringes of the network. Furthermore,
note that {1, 6} is not most influential in the diffusion setting, since it does
not maximize the spread of behavior 1. (It should be mentioned that we study
a much richer class of games here than the one shown in this example.)

2.1.1 Connection to Rational Calculus Models of Col-
lective Action

The formal study of individual behavior in a collective setting originally began
under the umbrella of “collective behavior” in sociology and social psychology.
The classical treatment of collective behavior views individuals in a “crowd”
as irrational beings with a lowered intellectual and reasoning ability. The
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proposition is that an increased level of suggestibility among the individuals
facilitates the rapid spread of the homogeneous “mind of the crowd” [19, 71,
94]. Herbert Blumer’s work, in particular, popularized the classical theory
of collective behavior well beyond academia and into such domains as police
and the armed forces [82, p. 9]. However, this theory was subjected to much
criticism primarily because it did not study empirical accounts systematically.
Later on, Blumer himself referred to this as a “miserable job” by sociologists
[20].

In response to that, Clark McPhail undertook a massive effort, spanning
three decades, to record the behavior of individuals in collective settings that
he calls “gatherings” in order to distinguish it from (homogeneous) “crowds”
in collective behavior (see McPhail [82, ch. 5, 6] for a summary of his two-
decade study). His empirical accounts, stored in a range of media formats
as technology improved, reveal one common thing—that a gathering consists
of individuals with diverse objectives, who nevertheless behave rationally and
purposefully. To distinguish this purposive nature of individuals from irra-
tionality in the classical treatment, he calls his study “collective action” and
broadly defines it as “any activity that two or more individuals take with or in
relation to one another” [83, p. 881]. In short, collective action can be seen as
the modern approach, as opposed to the “old” (but not unimportant) approach
of collective behavior [85, p. 14–15]. A brief review of collective behavior and
collective action literature is included in the Appendix for interested readers.

Many of the rational calculus or economic choice models that were origi-
nally proposed for collective behavior, are now discussed under collective ac-
tion due to the purposive nature of the individuals. Here, we will conduct a
very narrow and focused review of the relevant literature in order to place our
model in its proper context. Our review will be concentrated around Mark
Granovetter’s threshold models [49], which is one of the most influential models
of collective action to date.

Schelling’s Models of Segregation

A notable precursor to Granovetter’s threshold models is Nobel-laureate economist
Thomas Schelling’s models of segregation [108, 109]. Schelling’s models ac-
count for segregations that take place as a result of discriminatory individual
behavior as opposed to organized processes (e.g., separation of on-campus res-
idence between graduate and undergraduate students due to a university’s
housing policy) or economic reasons (e.g., segregation between the poor and
the rich in many contexts). An example of a segregation due to individual
choice, or “individually motivated segregation” as Schelling puts it [109, p.
145], is the residential segregation by color in the U.S. Although Schelling’s
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models and their analyses expressly focus on this case, these can be applied
to many other scenarios as well.

In Schelling’s spatial proximity model, if an individual’s level of tolerance
for population of the opposing type is exceeded in his neighborhood, he moves
to another spatial location where he can be “happy.” The dynamics of segre-
gation is studied in this model using a rule of movement for the “unhappy”
individuals. The bounded-neighborhood model is concerned with one global
neighborhood. An individual enters it if it satisfies its level of tolerance con-
straint and leaves it otherwise. Schelling studies the stability of equilibria and
the tipping phenomenon in this model when the distribution of tolerances and
the population ratio of the two types are varied. An important finding is that
in the cases studied, the modal level of tolerance does not correspond to a
tipping point. More on Schelling’s models can be found in the Appendix.

Berk’s “Gaming” Approach

Another notable precursor to Granovetter’s models is Berk’s rational calculus
approach [14]. Berk strongly criticizes the assumption of individual irrational-
ity which became prevalent in collective behavior literature. He formulates his
approach by first giving a detailed empirical account of an anti-war protest
at Northwestern University that originated in a town-hall meeting address-
ing dormitory rent hike. Berk’s description gives accounts of both mundane
and exciting happenings during the course of the protest and is recognized
as “among the best in the literature” [82, p. 126]. He explains individual
decision making through Raiffa’s decision theory principles. To motivate his
approach, he first notes that participating individuals were diverse in their
disposition and that they exercised their reasoning power. He then broadly
classifies the participants into two types—militants (with the desirable action
of trashing properties) and moderates (with the desirable action of an anti-war
activity, but not trashing). Each participant, militant or moderate, estimates
the support in favor of his disposition, and with enough support, he will “act”
(e.g., trash properties if he is militant). Clearly, an individual’s estimate of
support directly affects his “payoff.” If an individual estimates that there is
not enough support to act in favor of his disposition, he can try to persuade
others to support his disposition so that he can receive a higher payoff by be-
ing able to act. This can be translated as an attempt to change others’ payoff
matrices, which is facilitated by the milling phase when they communicate
and negotiate with each other. The milling phase ends when a consensus or a
compromise is reached and becomes common knowledge. A concerted action
takes place at that time.
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Granovetter’s Threshold Models

Granovetter’s threshold models [49] are presented in the setting of a crowd,
where each individual is deciding whether to riot or not. In the simplest
setting, each individual has a threshold and his decision is influenced by the
decisions of others—if the number (or the proportion) of individuals already
rioting is below his threshold, then he remains inactive, otherwise he engages
in rioting. The emphasis is on investigating equilibrium outcomes due to the
process of forward recursion [49, p. 1426], given a distribution of the thresholds
of the population. It may be mentioned here that forward recursion starts only
if there is an individual with a threshold of 0.

Granovetter’s models are inspired by Schelling’s models of segregation. In
fact, one can draw a parallel between Schelling’s level of tolerance and Gra-
novetter’s threshold in the following way. In Schelling’s models, an individual
leaves a neighborhood if his level of tolerance is exceeded, whereas in Gra-
novetter’s models, an individual becomes active in rioting if his threshold is
exceeded. Furthermore, in both models, dynamics is of utmost importance
and serves the purpose of explaining how an equilibrium collective outcome
emerges from individual behavior. However, apart from these similarities,
these two models are semantically different and also focus on completely dif-
ferent outlooks. First, Granovetter ascribes a deeper meaning to the concept
of threshold. Threshold of an individual is not just “a number that he carries
with him” from one situation to another [49, p. 1436]. It rather depends on
the situation in question and can even vary within the same situation due
to changes occurring in it. Second, in Granovetter’s models, a very small
perturbation in the distribution of population threshold may lead to sharply
different equilibrium outcomes. Granovetter highlights this property of his
models as an explanation of seemingly paradoxical outcomes that goes against
the predispositions of the individuals.

Two features of Granovetter’s models make it stand out among the rational
calculus models. First, the models are capable of capturing scenarios beyond
the classical realm of collective behavior. Granovetter begins by setting up his
model to complement the emergent norm theory (see Appendix) by providing
an explicit model of how “individual preferences interact and aggregate” to
form a new norm [49, p. 1421]. Not only that such an explicit model elim-
inates the need for implicit assumptions (such as a new norm emerges when
the majority of the population align themselves with that norm), it can also
capture paradoxical outcomes alluded above that cannot be captured by the
implicit assumption on the majority. Beyond the emergent norm theory, Gra-
novetter’s models can capture a wide range of phenomena that do not fall
within the classical realm of collective behavior, such as diffusion of innova-
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tion, voting, public opinion, and residential segregation, to name a few. The
second prominent feature of Granovetter’s models is its ease of adaptation
when dealing with a networked population. The same mechanism of forward
recursion is applicable when the underlying influence structure is specified by a
“sociomatrix,” which accounts for how much an individual influences another
[49, p.1429]. This is particularly useful for studying collective action in the
setting of a social network.

Criticism of Rational Calculus Models

An implicit assumption regarding Granovetter’s sociomatrix is that the el-
ements of the matrix are non-negative. Otherwise, the process of forward
recursion may never terminate, even on the simplest of examples. However,
many real world scenarios do exhibit co-existence of both positive and negative
influences. For the most part, democrat senators in the U.S. Congress influence
their republicans colleagues negatively, while they influence colleagues of their
own party positively. In residential segregation involving more than two types
of individuals, an individual is negatively influenced, in different magnitudes,
by individuals belonging to other types. Clearly, such a situation cannot be
modeled using a non-negative sociomatrix. Furthermore, if we take a second
look at Berk’s account, militant individuals positively reinforce each other in
their decision to engage in trashing properties, whereas their decision is nega-
tively affected by the moderates (that is, the presence of too many moderates
makes it risky for militants to engage in violent action).

Critiques of rational calculus models point out the lack of behavioral adjust-
ment in a “negative feedback” fashion [83, p. 883]. Here, negative feedback is
defined in the context of the perceptual control theory that lays the foundation
of McPhail’s sociocybernetics theory of collective action (see the Appendix). In
a negative feedback system, an individual can adjust his behavior depending
on the discrepancy between the input signal and the desired signal (the sign
of this discrepancy has no correlation to negative feedback). In contrast, in
a positive feedback system, such control of behavior is not possible. A typ-
ical example of a positive feedback system is a chemical chain reaction. An
analogue to this is the “domino effect” cited often in rational calculus models
[49, p. 1424]. It is true that rational calculus models neither accounts for
“errors” as desired by the proponents of the sociocybernetics theory, nor is
it well-defined in the context of rational calculus. But it is not the case that
“reversal” of behavior, which can be thought of as a crude form of behavioral
adjustment, is precluded in rational calculus models. Such a form of behavioral
adjustment can certainly be incorporated by allowing negative elements in the
sociomatrix, but the challenge lies in the forward recursion process which may

32



oscillate indefinitely because of those negative elements.

Our Approach

Although our approach may seem close to the rational calculus models of col-
lective action, particularly to Granovetter’s threshold models, our objective is
very much different from that of collective action theory. The focus of col-
lective action theory in sociology is to explain how individual behavior in a
group leads to collective outcomes. For example, Schelling’s models explain
how different distributions of the level of tolerances of individuals lead to res-
idential segregations of different properties. Berk explains how a compromise
(such as placing a barricade) evolves within a mixture of rational individuals
of different predispositions (militants vs. moderates). Granovetter shows how
a little perturbation in the distribution of thresholds can possibly lead to a
completely different collective outcome. In short, explaining collective social
phenomena is at the heart of all these studies. While this is a scientific pur-
suit of utmost importance, our focus is rather on an engineering approach to
predicting stable behavior in a networked population setting. Our approach is
not to go through fine-grained details of a process, such as forward recursion,
which is often plagued with problems when the sociomatrix contains negative
elements. Instead, we adopt the concept of Nash equilibrium to define sta-
ble outcomes in a non-cooperative game setting.1 Said differently, the path
to an equilibrium is not what we focus on; rather, it is the prediction of the
equilibrium itself that we focus on. Next, we justify this approach.

Sociologists have recorded minute details of various collective action sce-
narios in order to substantiate their theories with empirical accounts. One
example is Clark McPhail’s three-decade-old effort in recording a great many
gatherings in various media formats. However, in the application scenarios
that we are interested in, such as strategic interaction in the U.S. Congress
and the U.S. Supreme Court, very little details can be obtained about how a
collective outcome emerges. For example, the Budget Control Act of 2011 was
passed by 74–26 votes in the Senate on August 2, 2011, ending a much de-
bated debt-ceiling crisis. Despite intense media coverage, it would be difficult,
if not impossible, to give an accurate account of how this agreement on debt-
ceiling was reached. Even if there were an exact account of every conversation
and every negotiation that had taken place, it would be extremely challenging
to translate such a subjective account into a mathematically defined process,
let alone learning the parameters and computing stable outcomes of such a
complex model.

1Other researchers in the social sciences have also taken this approach of using Nash
equilibrium in one-shot non-cooperative games as models of behavior [11, 12, 51–53, 69, 70].
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In addition, simplistic models of dynamics used in the literature require
some restrictions on the underlying model. For example, as mentioned above,
the forward recursion process implicitly assumes that the sociomatrix does not
have negative elements. However, if we abstract the process, by the concept
of Nash equilibrium in our case, we can deal with rich models without such a
restriction and at the same time, capture equilibria beyond the ones captured
by a simple model of dynamics. In particular, any equilibrium that the pro-
cess of forward recursion converges to (with any initial configuration) is also
captured by our model; but in addition, our model can capture equilibria that
the forward recursion process cannot.

The basic intuition behind our approach is deeply rooted in the philoso-
phy of AI and machine learning. For example, without fully understanding or
modeling how human beings perform speech recognition, we have been able to
device successful speech recognition systems. Not that the scientific question
of how we perform speech recognition is not important, but the focus of AI, in
general, is to engineer solutions that serve our purpose, not to explain physical
phenomena. Interestingly enough, AI can sometimes help us understand phys-
ical phenomena, although not purposefully. Just as building aircrafts helped
us understand the aerodynamics of a bird’s flight, recent research by psychol-
ogist Alison Gopnik suggests that young children, even 2-year-olds, perform
Bayesian inference while learning from the environment [46].

In short, we propose an AI-based approach to predicting the behavior of
a large, networked population. Our approach does not model the complex
behavioral dynamics that takes place in the network, but abstracts it with the
solution concept of Nash equilibrium. By doing this, we are able to deal with
a rich set of models and focus more on the prediction of stable outcomes.

2.1.2 Connection to Literature on the Most Influential
Nodes

To date, the study of influence in a network, by both economists [26, 90] and
computer scientists [34, 67], has been rooted in rational calculus models of
behavior. Their approach to connecting individual behavior to collective out-
come is mostly by adopting the process of forward recursion [49, p. 1426],
which is often employed in studying diffusion of innovations [50, p. 168]. As
a result, the term “contagion” in these settings has a rational connotation
contrary to the early sociology literature on collective behavior, where “con-
tagion” or “social contagion” alludes to irrational and often hysteric nature of
the individuals in a crowd [19, 94]. The computational question of identifying
the most influential nodes in a network [67], which was originally posed by
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Domingos and Richardson [31], has also been studied using forward recursion
within the context of rational calculus models. In the setting of Kleinberg and
coauthors’ “cascade” or “diffusion models,” each node behaves in one of these
two ways—it either adopts a new behavior or does not, and initially, none
of the nodes adopts the new behavior. Given a number k, their formulation
of the most influential nodes problem asks us to select a set of k nodes such
that the spread of the new behavior is maximized by the selected nodes being
the initial adopters of the new behavior. (Note that in their setting, the set
of initial adopters, some of whom may have thresholds greater than 0, are
externally selected in order to set off the forward recursion process, whereas
in Granovetter’s setting, the initial adopters must have a threshold of 0.) It
should be noted here that the most influential nodes question in the cascade
or diffusion settings sometimes concerns infinite graphs [67, p. 615], such as
Morris’ local interaction games [90, p. 59], whereas we concern ourselves with
large but finite graphs here.

The notion of “most influential nodes” considered in this dissertation is
different, and is aimed at supplementing the traditional line of work with a
new game-theoretic perspective. In addition to the overview of our approach
mentioned in the last subsection, let us briefly mention a few contrasting points
between Kleinberg and coauthors’ approach to identifying the most influential
nodes and that of ours.

A subtle aspect of diffusion models is that each node in the network behaves
as an independent agent. Any observed influence that a node’s neighbors
impose on the node is the result of the same node’s “rational” or “natural”
response to the neighbors’ behavior. Thus, in many cases, it would be desirable
that the solution to the most influential nodes problem lead us to a stable
outcome of the system, in which each node’s behavior is a best response to
the neighbors’ behavior. However, if we select a set of nodes with the goal
of maximizing the spread of the new behavior then it might very well happen
that some of the selected nodes are “unhappy” being the initial adopters of the
new behavior relative to their neighbors’ final behavior at the end of forward
recursion. For example, a selected node’s best behavioral response could be
not adopting the new behavior after all. Thus, is not it more natural to require
that the desired final state of the system, such as the maximum spread of the
new behavior, be stable, in which everyone is “happy” with their behavioral
response?

In order to address the question of finding the most influential nodes, the
forward recursion process has been modeled as a “monotonic” process in gen-
eral. Here, a monotonic process refers to the setting where once an agent
adopts the new behavior, it cannot go back. It should be noted here that al-
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though two versions of the forward recursion processes—progressive and non-
progressive—have been discussed in the literature, previous work on finding
the most influential nodes uses the progressive or monotonic version [67]. If
we think of an application such as reducing the incidence of smoking or obe-
sity, then a model that allows a “change of mind” based on the response of
the immediate neighborhood may make more sense. Thus, a notable contrast
between the traditional treatment of the most influential nodes problem and
that of ours is that we do not restrict the influence among the nodes of the
network to non-negative numbers.

In fact, in many applications, both positive and negative influence factors
may exist in the same problem instance. Take the U.S. Congress as an example:
senators belonging to the same party may have non-negative influence factors
on each other (as usually perceived from voting instances on legislation issues),
but one senator may (and often does) have a negative influence on another
belonging to a different party. While generalized versions of threshold models
that allow “reversals” have been derived in the social science literature, to the
best of our knowledge, there is no substantive work on the most influential
nodes problem in that context.

Finally, the traditional approach to the most influential nodes problem
emphasizes modeling the complex dynamics of interactions among the nodes
in order to give the final answer, that is, a set of the most influential nodes. In
fact, our model is inspired by the same threshold models that are used by them.
However, as we have mentioned earlier, our emphasis is not on the dynamics
of interactions, but on the stable outcomes in a game-theoretic setting. By
doing this, we are able to capture significant, basic, and core strategic aspects
of complex interaction in networks that naturally appear in many real-world
problems (e.g., identifying the most influential senators in the U.S. Congress).
Of course, we recognize the importance of the dynamics of interactions on
capturing and studying problems of influence at a finer level of detail. Yet, we
believe that our approach can still capture significant aspects of the problem
even at the coarser level of “steady-state” or stable outcome.

2.1.3 A Brief Note on Mechanism Design

On the surface, our approach may seem related to mechanism design in ob-
jective, because mechanism design is often motivated by achieving a desirable
objective. For example Balcan et al. study how the Nash equilibrium outcome
of a game could be “nudged” toward the one with the best welfare (which gives
the price of stability) by making some additional information globally available
[10]. Although we share the underlying goal of achieving a desirable outcome,
our approach is conceptually very different. Here, in contrast to a mechanism-
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design approach to achieving desirable stable outcomes, we are not interested
in changing, defining, or engineering a new system—the system is what it is.

We are rather interested in altering the behavior within the same system so
as to lead or “tip” it to a desirable stable outcome [51–53, 69, 70]. To this end,
we cannot or need not change the system. Instead, we just need to “convince”
the right individuals to adopt the behaviors prescribed by the desirable stable
outcome: the others would follow “voluntarily” the behavior prescribed by
that outcome because no other stable outcome is possible. Note that making
the selected individuals follow the prescribed behavior is facilitated by the fact
that they will end up “happy:” none will have an incentive to behave any other
way after all!

2.2 Influence Games

Inspired by the well-studied threshold models [49], we introduce influence
games as a model of influence in large networked populations. The payoffs
of the players in an influence games are defined in a parametric fashion, lead-
ing to a compact representation of the game. Various commonly known games
on networks, such as the threshold games of complement [59, Ch. 9] as well
as the game illustrated in Figure 2.1, can be shown to be special instances of
influence games. On the other hand, one broad subclass of influence games
which we will call linear influence games falls within the general class of graph-
ical games [66]. Moreover, we will show in Section 2.2.4 that linear influence
games are nothing but polymatrix games [60].

The motivation for defining influence games as a model of behavior is to
be able to compute the stable outcomes of a system as well as to identify the
most influential entities in a network relative to a particular objective. We will
first define a general game-theoretic framework to accomplish these tasks. We
will then define and use linear influence games as a special type of influence
games.

2.2.1 General Game-Theoretic Model

Let us first formalize influence games as a general model of behavior. Let n
be the number of individuals in the population. For simplicity, we restrict
our attention to binary behavior, a common assumption in most of the work
in this area. Thus, xi ∈ {−1, 1} denotes the behavior of individual i, where
xi = 1 indicates that i “adopts” a particular behavior and xi = −1 indicates
i “does not adopt” the behavior. Some examples of behavior of this kind are
supporting a particular political measure, candidate or party; holding a par-
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ticular view or belief; vaccinating against a particular disease; installing virus
protection software (and keeping it up-to-date); acquiring fire/home insurance;
becoming overweight; taking up smoking; becoming a criminal or participating
in criminal activity; among many others.

Definition 2.2.1. Denote by fi : {−1, 1}n−1 → R the function that quantifies
the “influence” of other individuals on i. In influence games, we define the
payoff function ui : {−1, 1}n → R quantifying the preferences of each player
i as ui(xi,x−i) ≡ xifi(x−i), where x−i denotes the vector of all joint-actions
excluding that of i.

Given x−i ∈ {−1, 1}n−1, the best-response correspondence BRGi : {−1, 1}n−1 →
2{−1,1} of a player i of an influence game G is defined as follows.

BRGi (x−i) ≡ arg maxxi∈{−1,1}ui(xi,x−i).

Therefore, for all individuals i and any possible behavior x−i ∈ {−1, 1}n−1
of the other individuals in the population, the best-response behavior x∗i of
individual i to the behavior x∗−i of others satisfies

fi(x
∗
−i) > 0 =⇒ x∗i = 1,

fi(x
∗
−i) < 0 =⇒ x∗i = −1, and

fi(x
∗
−i) = 0 =⇒ x∗i ∈ {−1, 1}.

Informally, “positive influences” lead an individual to adopt the behavior,
while “negative influences” lead the individual to “reject” the behavior; the
individual is indifferent if there is “no influence.” A stable outcome of the
system, by which we formally mean a pure-strategy Nash equilibrium (PSNE)
of the corresponding influence game G, is a behavior assignment x∗ ∈ {−1, 1}n
that satisfies all those conditions: Each player i’s behavior x∗i is a (simultane-
ous) best-response to the behavior x∗−i of the rest. Denote the set of PSNE of
game G by

NE(G) ≡ {x∗ ∈ {−1, 1}n | x∗i ∈ BRGi (x∗−i) for all i}.

2.2.2 Most Influential Nodes: Problem Formulation

In formulating the most influential nodes problem in a network, we depart from
the traditional model of diffusion and adopt influence games as the model of
strategic behavior among the nodes in the network.

Definition 2.2.2. Let G be an influence game, g : {−1, 1}n × 2[n] → R be the
goal or objective function mapping a joint-action and a subset of the players
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in G to a real number quantifying the general preferences over the space of
joint-actions and players’ subsets, and h : 2[n] → R be the set-preference
function mapping a subset of the players to a real number quantifying the
a priori preference over the space of players’ subsets. Denote by X ∗g (S) ≡
arg maxx∈NE(G)g(x, S) the optimal set of PSNE of G, with respect to g and a
fixed subset of players S ⊂ [n]. We say that a set of nodes/players S∗ ⊂ [n] in
G is most influential with respect to g and h, if

S∗ ∈ arg maxS⊂[n]h(S), s.t., |{x ∈ NE(G) | xS = x∗S,x
∗ ∈ X ∗g (S)}| = 1.

As mentioned earlier, we can interpret the players in S∗ to be collectively
so influential that they are able to restrict every other player’s choice of action
to a unique one: the action prescribed by some desirable stable outcome x∗.

An example of a goal function g that captures the objective of achieving a
specific stable outcome x∗ ∈ NE(G) is g(x, S) ≡ 1[x = x∗]. Another example
that captures the objective of achieving a stable outcome with the largest
number of individuals adopting the behavior is g(x, S) ≡

∑n
i=1

xi+1
2

.
A common example of the set-preference function h that captures the pref-

erence for sets of small cardinality is to simply define h such that h(S) > h(S ′)
iff |S| < |S ′|.

2.2.3 Linear Influence Games

A simple instantiation of the general influence game model just described is
the case of linear influences.

Definition 2.2.3. In a linear influence game (LIG), the influence function of
each individual i is defined as fi(x−i) ≡

∑
j 6=iwjixj − bi where for any other

individual j, wji ∈ R is a weight parameter quantifying the “influence factor”
that j has on i, and bi ∈ R is a threshold parameter for i’s level of “tolerance”
for negative effects.

It follows from Definition 2.2.1 that although the influence function of an
LIG is linear, its payoff function is quadratic. Furthermore, the following
argument shows that an LIG is a special type of graphical game in parametric
form. In general, the influence factors wji induce a directed graph, where nodes
represent individuals, and therefore, we obtain a graphical game having a linear
(in the number of edges) representation size, as opposed to the exponential (in
the maximum degree of a node) representation size of general graphical games
in normal form [66]. In particular, there is a directed edge (or arc) from
individual j to i iff wji 6= 0.
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2.2.4 Connection to Polymatrix Games

Polymatrix games [60] are defined to be n-player noncooperative games where
a player’s total payoff is the sum of the partial payoffs received from the other
players. For any joint action x, player i’s payoff is given by Mi(xi,x−i) ≡∑

j 6=i αji(xj, xi), where αji(xj, xi) is the partial payoff that i receives from j
when i plays xi and j plays xj. Note that this partial payoff is local in nature
and is not affected by the choice of actions of the other nodes. We will consider
polymatrix games with only binary actions {1,−1} here.

The following property shows an equivalence between LIGs and 2-action
polymatrix games. Thus, our computational study of LIGs directly carries
over to 2-action polymatrix games.

Proposition 2.2.4. LIGs are equivalent to 2-action polymatrix games with
respect to the set of PSNE.

Proof. Assume that the number of players n > 1; otherwise, the statement
holds trivially. We first show that given any instance of an LIG, we can design
a polymatrix game that has the same set of PSNE. In an LIG instance, player
i’s payoff is given by

ui(xi,x−i) = xi

(∑
j 6=i

wjixj − bi

)

= xi
∑
j 6=i

(
wjixj −

bi
n− 1

)
=
∑
j 6=i

(
xiwjixj −

xibi
n− 1

)
.

Thus, constructing a polymatrix game instance by defining αji(xj, xi) ≡
xiwjixj − xibi

n−1 , we have the same set of PSNE in both instances.
Next, we show the reverse direction. Player i’s payoff in a 2-action poly-

matrix game is given by
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Mi(xi,x−i) =
∑
j 6=i

αji(xj, xi)

=
∑
j 6=i

(1[xi = 1]αji(xj, 1) + 1[xi = −1]αji(xj,−1))

=
∑
j 6=i

(
1 + xi

2
αji(xj, 1) +

1− xi
2

αji(xj,−1)

)
=
xi
2

∑
j 6=i

(αji(xj, 1)− αji(xj,−1)) +
1

2

∑
j 6=i

(αji(xj, 1)+

αji(xj,−1)) .

Note that the second term above does not have any effect on i’s choice
of action. Thus, we can re-define the payoff of player i, without making any
change to the set of PSNE of the original polymatrix game, as follows.

M ′
i(xi,x−i) =

xi
2

∑
j 6=i

(αji(xj, 1)− αji(xj,−1))

=
xi
2

(∑
j 6=i

(1[xj = 1]αji(1, 1) + 1[xj = −1]αji(−1, 1))−

∑
j 6=i

(1[xj = 1]αji(1,−1) + 1[xj = −1]αji(−1,−1))

)

=
xi
2

(∑
j 6=i

(
1 + xj

2
αji(1, 1) +

1− xj
2

αji(−1, 1)

)
−

∑
j 6=i

(
1 + xj

2
αji(1,−1) +

1− xj
2

αji(−1,−1)

))

=
xi
4

(∑
j 6=i

xj (αji(1, 1)− αji(−1, 1)− αji(1,−1) + αji(−1,−1))

+
∑
j 6=i

(αji(1, 1) + αji(−1, 1)− αji(1,−1)− αji(−1,−1))

)
.

Therefore, we can construct an LIG that has exactly the same set of PSNE
as the polymatrix game, in the following way. For any player i, define bi ≡
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−
∑

j 6=i
1
4
(αji(1, 1)+αji(−1, 1)−αji(1,−1)−αji(−1,−1)), and for any player i

and any other player j, define wji ≡
∑

j 6=i
1
4
(αji(1, 1)−αji(−1, 1)−αji(1,−1)+

αji(−1,−1)).

2.2.5 Learning Influence Games

One of the core components of causal strategic inferences is learning the param-
eters of the model from real-world data. As we showed earlier in Section 1.4,
the econometrics literature is rich with techniques for estimating the param-
eters of game-theoretic models, but it mostly relates to the games based on
random utility models [77, 78]. Our model, in contrast, is rooted in sociology
literature on threshold models. Also, considering the scale and the complex-
ity of our model, an analytic approach typically taken in econometrics would
be unmanageable in our case (without imposing additional restrictions). For
these practical reasons, we have adopted a computational approach to learn-
ing the parameters of our model. In particular, we have adopted the machine
learning scheme given by Honorio and Ortiz [55].

In contrast to many other game-theoretic model, LIG has the special prop-
erty that it focuses on a set of PSNE rather than a single PSNE. For example,
when we consider congressional voting and Supreme Court rulings in Sec-
tions 2.5.4 and 2.5.3, we will see that we want our model to capture each
of a set of voting outcomes as a PSNE of the game. The machine learning
scheme of Honorio and Ortiz addresses this issue by estimating the parame-
ters of the model in a way that maximizes the number of observed outcomes
captured as PSNE of the model and minimizes the number of unobserved out-
comes also captured as PSNE [55]. They formulate a simultaneous logistic
regression technique to achieve this. Among multiple models that fulfills this
objective reasonably well, they select the one that is the simplest (that is, in
graph-theoretic terms, they prefer a sparse graph to a dense graph). For more
details, the reader is referred to [55].

2.3 Equilibria Computation in Influence Games

We first study the problem of computing and counting PSNE in LIGs. We show
that several special cases of LIGs present us with attractive computational
advantages, while the general problem is intractable unless P = NP. We present
heuristics to compute PSNE in general LIGs.
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2.3.1 Nonnegative Influence Factors

When all the influence factors are non-negative, an LIG is supermodular [84,
113]. In particular, the game exhibits what is called strategic complementar-
ity [23]. Hence, the best-response dynamics converges in at most n rounds.
From this, we obtain the following result.

Proposition 2.3.1. The problem of computing a PSNE is in P for LIGs on
general graphs with only non-negative influence factors.

This property implies certain monotonicity of the best-response correspon-
dences. More specifically, for each player i, if any subset of the other players
“increases his/her strategy” by adopting the new behavior, then player i’s
best-response cannot be to abandon adoption (i.e., move from 1 to −1). In
other words, once a player adopts the new behavior, it has no incentive to
go back. This monotonicity property also follows directly from the linear
threshold model. Strategic complementarity implies other interesting charac-
terizations of the structure of PSNE in LIGs and the behavior of best-response
dynamics. For example, it is not hard to see that such games always have a
PSNE: If we start with the complete assignment in which either everyone is
playing 1, or everyone is playing −1, parallel/synchronous best-response dy-
namics converges after at most n rounds [84]. If both best-response processes
starting with all −1’s and all 1’s converge to the same PSNE, then the PSNE
is unique. Otherwise, any other PSNE of the game must be “contained” be-
tween the two different PSNE. We can also view this from the perspective of
constraint propagation with monotonic constraints [105].

2.3.2 Special Influence Structures and Potential Games

Several special subclasses of LIGs are potential games [87]. This connection
guarantees the existence of PSNE in such games.

Proposition 2.3.2. If the influence factors of an LIG G are symmetric (i.e.,
wji = wij, for all i, j), then G is a potential game.

Proof. We show that the game has a cardinal potential function,

Φ(x) =
n∑
t=1

xt

(∑
i 6=t

xiwit
2
− bt

)
. (2.1)

Consider any player j. The difference in j’s payoff for xj = 1 and xj = −1
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(assuming all other players play x−j in both cases) is

uj(1,x−j)− uj(−1,x−j)

= 1×

(∑
i 6=j

xiwij − bj

)
− (−1)×

(∑
i 6=j

xiwij − bj

)

= 2×

(∑
i 6=j

xiwij − bj

)
.

(2.2)

Next, the difference in the potential function when j plays 1 and −1 is

Φ(1,x−j)− Φ(−1,x−j)

= 1×

(∑
i 6=j

xiwij
2
− bj

)
+
∑
t6=j

xt

(∑
i 6=t

1[i 6= j]
xiwit

2
− bt

)

+
∑
t6=j

xt

(∑
i 6=t

1[i = j]
1× wit

2
− bt

)
−

(−1)×

(∑
i 6=j

xiwij
2
− bj

)
−
∑
t6=j

xt

(∑
i 6=t

1[i 6= j]
xiwit

2
− bt

)

−
∑
t6=j

xt

(∑
i 6=t

1[i = j]
(−1)× wit

2
− bt

)

= 2×

(∑
i 6=j

xiwij
2
− bj

)
+ 2×

(∑
t6=j

xtwjt
2

)

= 2×

(∑
i 6=j

xiwij − bj

)
.

(2.3)

The last line follows due to the symmetric weights (i.e., wij = wji).

If, in addition, the threshold bi = 0 for all i, the game is a party-affiliation
game, and computing a PSNE in such games is PLS-complete [36].

The following result is on a large class of games that we call indiscriminate
LIGs, where for every player i, the influence weight, wij ≡ δi 6= 0, that i
imposes on every other player j is the same. The interesting aspect of this
result is that these LIGs are potential games despite being possibly asymmetric
and exhibiting strategic substitutability (due to negative influence factors).

Proposition 2.3.3. Let G be an indiscriminate LIG in which all δi for all i,
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have the same sign, denoted by ρ ∈ {−1,+1}. Then G is a potential game with

the following potential function Φ(x) = ρ
[
(
∑n

i=1 δixi)
2 − 2

∑n
i=1 biδixi

]
.

Proof. It is sufficient to show that the sign of the difference in the individual
utilities of any player due to changing her action unilaterally, is the same as
the sign of the difference in the corresponding potential functions. For any
player j, the first difference is

1×

(∑
i 6=j

δixi − bj

)
− (−1)×

(∑
i 6=j

δixi − bj

)

= 2

(∑
i 6=j

δixi − bj

)
.

(2.4)

The potential function when j plays 1,

Φ(xj = 1,x−j)

= ρ

(∑
i 6=j

δixi + δj × 1

)2

− 2
∑
i 6=j

biδixi − 2bjδj × 1


= ρ

(∑
i 6=j

δixi

)2

+ δj
2 + 2

(∑
i 6=j

δixi

)
δj − 2

∑
i 6=j

biδixi − 2bjδj

 .
The potential function when j plays −1,

Φ(xj = −1,x−j)

= ρ

(∑
i 6=j

δixi + δj × (−1)

)2

− 2
∑
i 6=j

biδixi − 2bjδj × (−1)


= ρ

(∑
i 6=j

δixi

)2

+ δj
2 − 2

(∑
i 6=j

δixi

)
δj − 2

∑
i 6=j

biδixi + 2bjδj

 .
Thus, the difference in the potential functions,

Φ(xj = 1,x−j)− Φ(xj = −1,x−j) = 4ρδj

(∑
i 6=j

δixi − bj

)
. (2.5)

Since ρδj > 0, the quantities given in (2.4) and (2.5) have the same sign.
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2.3.3 Tree-Structured Influence Games

The following result follows from a careful, non-trivial modification of the
TreeNash algorithm [66]. Note that the running time of the TreeNash
algorithm is exponential in the degree of a node and thus also exponential in
the representation size of an LIG! In contrast, our algorithm is linear in the
maximum degree and thereby linear in the representation size of an LIG. The
complete proof follows a proof sketch.

Theorem 2.3.4. There exists an O(nd) time algorithm to find a PSNE, or
to decide that there exists none, in LIGs with tree structures, where d is the
maximum degree of a node.

Proof Sketch. We use similar notations as in [66]. The modification of the
TreeNash involves efficiently (in O(d) time, not O(2d)) determining the exis-
tence of a witness vector and constructing one, if it exists, at each node during
the downstream pass, in the following way.

Suppose that an internal node i receives tables Tki(xk, xi) from its parents
k, and that i wants to send a table Tij(xi, xj) to its unique child j. If for some
parent k of i, Tki(−1, xi) = 0 and Tki(1, xi) = 0, then i sends the following table
entries to j: Tij(xi,−1) = 0 and Tij(xi, 1) = 0. Otherwise, we first partition i’s
set of parents into two sets in O(d) time: Pa1(i, xi) consisting of the parents
k of i that have a unique best response x̂k to i’s playing xi and Pa2(i, xi)
consisting of the remaining parents of i. We show that Tij(xi, xj) = 1 iff

xi(xjwji +
∑

k∈Pa1(i,xi)

x̂kwki+∑
t∈Pa2(i,xi)

(2× 1[xiwti > 0]− 1)︸ ︷︷ ︸
t’s action in witness vector

wti) ≥ 0,

from which we get a witness vector, if it exists.

Following is the complete proof of Theorem 2.3.4.

Proof. We denote any node i’s action by xi ∈ {−1, 1}, its threshold by bi, and
the influence of any node i on another node j by wij. Furthermore, the set
of parents of a node i is denoted by Pa(i). The two phases of the modified
TreeNash algorithm are described below.

1. Downstream phase. In this phase each node sends a table to its
unique child. We denote the table that node i sends to its child j as
Tij(xi, xj), which is indexed by the actions of i and j, and define the set
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of conditional best-responses of a node i to a neighboring node j’s action
xj as BRi(j, xj) ≡ {xi | Tij(xi, xj) = 1}. If |BRi(j, xj)| = 1 then we will
abuse this notation by letting BRi(j, xj) be the unique best-response of
i to j’s action xj.

The downstream phase starts at the leaf nodes. Each leaf node l sends
a table Tlk(xl, xk) to its child k, where Tlk(xl, xk) = 1 if and only if xl is
a conditional best-response of l to k’s choice of action xk. Suppose that
an internal node i obtains tables Tki(xk, xi) from its parents k ∈ Pa(i),
and that i needs to send a table to its child j. Once i receives the tables
from its parents, it first computes (in O(d) time) the following three
sets that partition the parents of i based on the size of their conditional
best-response sets when i plays xi.

Par(i, xi) ≡ {k s.t. k ∈ Pa(i) and |BRk(i, xi)| = r}, for r = 0, 1, 2.

This is how i computes the table Tij(xi, xj) to be sent to j: Tij(xi, xj) = 1
if and only if there exists a witness vector (xk)k∈Pa(i) that satisfies the
following two conditions:

Condition 1. Tki(xk, xi) = 1 for all k ∈ Pa(i).

Condition 2. The action xi is a best-response of node i when every node
k ∈ Pa(i) plays xk and j plays xj.

There are two cases.

Case I: Pa0(i, xi) 6= ∅. In this case, there exists some parent k of i for
which both Tki(−1, xi) = 0 and Tki(1, xi) = 0. Therefore, there exists no
witness vector that satisfies Condition 1, and i sends the following table
entries to j: Tij(xi, xj) = 0, for xj = −1, 1.

Case II: Pa0(i, xi) = ∅. In this case, we will show that there exists
a witness vector for Tij(xi, xj) = 1 satisfying Conditions 1 and 2 if and
only if the following inequality holds (which can be verified in O(d) time).
Below, we will use the sign function σ: σ(x) = 1 if x > 0, and σ(x) = −1
otherwise.

xi

wjixj +
∑

k∈Pa1(i,xi)

wkiBRk(i, xi) +
∑

k∈Pa2(i,xi)

wkiσ(xiwki)− bi

 ≥ 0.

(2.6)
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In fact, if Inequality (2.6) holds then we can construct a witness vector in
the following way: If k ∈ Pa1(i, xi), then let xk = BRk(i, xi), otherwise,
let xk = σ(xiwki). Since each parent k of i is playing its conditional
best-response xk to i’s choice of action xi, we obtain, Tki(xk, xi) = 1 for
all k ∈ Pa(i). Furthermore, Inequality (2.6) says that i is playing its
best-response xi to each of its parent k playing xk and its child j playing
xj.

To prove the reverse direction, we start with a witness vector (xk)k∈Pa(i)
such that Conditions 1 and 2 specified above hold. In particular, Con-
dition 2 can be written as:

xi

wjixj +
∑

k∈Pa(i)

wkixk − bi

 ≥ 0. (2.7)

The following line of arguments shows that Inequality (2.6) holds.

xiwkiσ(xiwki) ≥ xiwkixk, for any k ∈ Pa2(i, xi)

⇒ xi
∑

k∈Pa2(i,xi)

wkiσ(xiwki) ≥ xi
∑

k∈Pa2(i,xi)

wkixk

⇒ xi

wjixj +
∑

k∈Pa1(i,xi)

wkiBRk(i, xi) +
∑

k∈Pa2(i,xi)

wkiσ(xiwki)− bi


≥ xi

wjixj +
∑

k∈Pa(i)

wkixk − bi


⇒ xi

wjixj +
∑

k∈Pa1(i,xi)

wkiBRk(i, xi) +
∑

k∈Pa2(i,xi)

wkiσ(xiwki)− bi


≥ 0, using Inequality (2.7).

In addition to computing the table Tij, node i stores the following wit-
ness vector (xk)k∈Pa(i) for each table entry Tij(xi, xj) that is 1: if k ∈
Pa1(i, xi), then xk = BRk(i, xi), otherwise, xk = σ(xiwki). The down-
stream phase ends at the root node z, and z computes a unary table
Tz(xz) such that Tz(xz) = 1 if and only if there exists a witness vec-
tor (xk)k∈Pa(z) such that Tkz(xk, xz) = 1 for all k ∈ Pa(z) and xz is a
best-response of z to (xk)k∈Pa(z).

The time complexity of the downstream phase is dominated by the com-
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putation of the table at each node, which is O(d). We visit every node
exactly once. So, the downstream phase is completed in O(nd). Note
that if there does not exist any PSNE in the game then all the table
entries computed by some node will be 0.

2. Upstream phase. In the upstream phase, each node sends instructions
to its parents about which actions to play, along with the action that the
node itself is playing. The upstream phase begins at the root node z.
For any table entry Tz(xz) = 1, z decides to play xz itself and instructs
each of its parents to play the action in the witness vector associated
with Tz(xz) = 1. At an intermediate node i, suppose that it has been
instructed to play xi by its child j which itself is playing xj. The node
i looks up the witness vector (xk)k∈Pa(i) associated with Tij(xi, xj) = 1
and instructs its parents to play according to that witness vector. This
process propagates upward, and when we reach all the leaf nodes, we
obtain a PSNE for the game. Note that we can find a PSNE in this
phase if and only if there exists one.

In the upstream phase, each node sends O(d) instructions to its parents.
Thus, the upstream phase takes O(nd) time, and the whole algorithm takes
O(nd) time.

2.3.4 Hardness Results

Computing PSNE in a general graphical game is known to be computationally
hard [47]. However, that result does not imply intractability in our problem,
nor do the proofs seem easily adaptable to our case. LIGs are a special type of
graphical game with quadratic payoffs, or in other words a graphical, paramet-
ric poly-matrix game [60], and thus have a more succinct representation than
general graphical games (O(nd) in contrast to O(n2d), where d is the maxi-
mum degree of a node). Next, we show that various interesting computational
questions on LIGs are intractable, unless P = NP.

The central hardness question on LIGs (and also on 2-action polymatrix
games) is settled by 1(a) below. Related to the most influential nodes problem
formulation, 1(b) states that given a subset of players, it is NP-complete to
decide whether there exists a PSNE in which this subset of players adopts the
new behavior. A similar statement is given in 1(c).

A prime feature of our formulation of the most influential nodes is the
uniqueness of the desirable stable outcome when the set of the most influential
nodes adopt their behavior according to the desirable stable outcome. Deciding
whether a given set of players fulfills this criterion (in the special case of a
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desirable outcome where this set of players adopts the new behavior) is shown
to be co-NP-complete in 2.

As we will see later, in order to compute a set of the most influential nodes,
it suffices to be able to count the number of PSNE of an LIG (to be more
specific, it suffices to count the number of PSNE extensions for a given partial
assignment to the players’ actions). This problem is shown to be #P-complete
in 3. Note that the #P-completeness result for LIGs even with star structure
is in contrast to the polynomial-time counterpart for general graphical games
with tree graphs, for which not only deciding the existence of a PSNE is in P,
but also counting PSNE on general graphical games with tree graphs is in P.
This result can be better appreciated by considering the representation sizes
of LIGs and tree-structured graphical games, which are linear and exponential
in the maximum degree, respectively.

Below, we first summarize the hardness results with an outline of proof,
followed by complete proofs of individual statements.

Theorem 2.3.5. 1. It is NP-complete to decide the following questions in
LIGs.

(a) Does there exist a PSNE?

(b) Given a designated non-empty set of players, does there exist a
PSNE consistent with those players playing 1?

(c) Given a number k ≥ 1, does there exist a PSNE with at least k
players playing 1?

2. Given an LIG and a designated non-empty set of players, it is co-NP-
complete to decide if there exists a unique PSNE with those players play-
ing 1.

3. It is #P-complete to count the number of PSNE, even for special classes
of the underlying graph, such as a bipartite or a star graph.

Proof Sketch. The complete proofs can be found in the Appendix. The proof
of 1(a) reduces the 3-SAT problem to an LIG that consists of a player for each
clause and each variable of the 3-SAT instance. The influence factors among
these players are designed such that the LIG instance possesses a PSNE if and
only if the 3-SAT instance has a satisfying assignment. Since the underlying
graph of the LIG instance is always bipartite, we obtain as a corollary that the
NP-completeness of that existence problem holds even for LIGs on bipartite
graphs.

The proofs of 1(b), 1(c), and 2 use reductions from the monotone one-in-
three SAT problem. For 1(b), given a monotone one-in-three SAT instance
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I, we construct an LIG instance J having a player for each clause and each
variable of I. Again, we design the influence factors in such a way that I is
satisfiable if and only if J has a PSNE. The reduction for 1(c) builds upon that
of 1(b) with specifically designed extra players and additional connectivity in
the LIG instance. Again, the gadgets used in the proof of 1(c) are extended
for the proof of 2.

The proof of 3 uses reductions from the 3-SAT and the #KNAPSACK
problem. The reduction from the 3-SAT problem is the same as that used in
1(a), and proof of the #P-hardness of the bipartite case is by showing that the
number of solutions to the 3-SAT instance is the same as the number of PSNE
of the LIG instance. On the other hand, to prove the claim of #P-completeness
of counting PSNEs of LIGs having star graphs, we give a reduction from the
#KNAPSACK problem. Given a #KNAPSACK instance, we create an LIG
instance with a star structure among the players and with specifically designed
influence factors such that the number of PSNE of the LIG instance is the same
as the number of solutions to the #KNAPSACK instance.

2.3.5 Complete Proofs of Hardness Results

To enhance the clarity of the proofs we have reduced existing NP-complete
problems to LIGs with binary actions {0, 1}, instead of {−1, 1}. We next
show, via a linear transformation, that any LIG with actions {0, 1} can be
reduced to an LIG with the same underlying graph, but with actions {−1, 1}.

Reduction from {0, 1}-action LIG to {−1, 1}-action LIG. Consider any
{0, 1}-action LIG instance I, where the influence factors and the thresholds
are denoted by the symbols w and b, respectively (see Definition 2.2.3). We
next construct a {−1, 1}-action LIG instance J with the same players that are
in I and with influence factors w′ji ≡

wji

2
(for any i and any j 6= i), thresholds

b′i ≡ bi−
∑

j 6=i
wji

2
(for any i). We show that x is a PSNE of I if and only if x′

is a PSNE of J , where x′i = 2xi − 1 for any i.
By definition, x is a PSNE of I if and only if for any player i,
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xi

(∑
j 6=i

xjwji − bi

)
≥ (1− xi)

(∑
j 6=i

xjwji − bi

)

⇔ (2xi − 1)

(∑
j 6=i

xjwji − bi

)
≥ 0

⇔ x′i

(∑
j 6=i

x′j + 1

2
wji − bi

)
≥ 0

⇔ x′i

(∑
j 6=i

x′j
wji
2
−

(
bi −

∑
j 6=i

wji
2

))
≥ 0

⇔ x′i

(∑
j 6=i

x′jw
′
ji − b′i

)
≥ 0,

which is the equivalent statement of x′ being a PSNE of J .

Theorem 2.3.6. It is NP-complete to decide if there exists a PSNE in an
LIG.

Proof. Since we can verify whether a joint action is a PSNE or not in polyno-
mial time, the problem is in NP. We use a reduction from the 3-SAT problem
to show that the problem is NP-hard.

Let I be an instance of the 3-SAT problem. Suppose that I has m clauses
and n variables. For any variable i we define Ci to be the set of clauses in
which i appears, and for any clause k we define Vk to be the set of variables
appearing in clause k. For any clause k and any variable i ∈ Vk, let lk,i be
1 if i appears in k in non-negated form and 0 otherwise. We now build an
LIG instance J from I. In this game every clause as well as every variable is a
player. Each clause k has arcs to variables in Vk, and each variable i has arcs to
clauses in Ci. The structure of the graph is illustrated in Figure 2.2. We next
define the thresholds of the players and the influence factors on the arcs. For
any clause k, let its threshold be 1− ε−

∑
i∈Vk(1− lk,i). Here, ε is a constant,

and 0 < ε < 1. For any variable i let its threshold be
∑

k∈Ci
(1 − 2lk,i). The

weight on the arc from any clause k to any variable i ∈ Vk is defined to be
1 − 2lk,i, and that from any variable i to any clause k ∈ Ci is 2lk,i − 1. We
denote the action of any clause k by zk ∈ {0, 1} and that of any variable i by
xi ∈ {0, 1}.

First, we prove that if there exists a satisfying truth assignment in I then
there exists a PSNE in J . Consider any satisfying truth assignment S in I.
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Figure 2.2: Illustration of the structure of an LIG instance from a 3-
SAT instance (each undirected edge represents two arcs of opposite direc-
tions between the same two nodes). In this example, the 3-SAT instance is
(i1 ∨ i2 ∨ i3) ∧ (¬i2 ∨ i3 ∨ i4) ∧ (¬i3 ∨ i4 ∨ ¬i5).

Let the players in J choose their actions according to their truth values in S,
that is, 1 for true and 0 for false. Clearly, every clause player is playing 1.
Next, we show that every player in J is playing its best response under this
choice of actions.

We now show that no clause has incentive to play 0, given that the other
players do not change their actions. In the solution S to I, every clause has
a literal that is true. Therefore, in J every clause k has some variable i ∈ Vk
such that xi = lk,i. We have to show that the total influence on k is at least
the threshold of k: ∑

i∈Vk

xi (2lk,i − 1) ≥ 1− ε−
∑
i∈Vk

(1− lk,i)

⇔
∑
i∈Vk

(xi (2lk,i − 1) + (1− lk,i)) ≥ 1− ε

⇔
∑
i∈Vk

(xilk,i + (1− xi) (1− lk,i)) ≥ 1− ε.

Since for some i ∈ Vk, xi = lk,i, the above inequality holds strictly, that is,∑
i∈Vk

(xilk,i + (1− xi) (1− lk,i)) > 1− ε.

Therefore, every clause k must play 1.
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We need to show that no variable player has incentive to deviate, given
that the other players do not change their actions. The total influence on any
variable player i is

∑
k∈Ci

zk(1 − 2lk,i) =
∑

k∈Ci
(1 − 2lk,i) (since zr = 1 for

every clause r). The threshold of i is
∑

k∈Ci
(1 − 2lk,i). Thus, every variable

player i is indifferent between choosing actions 1 and 0 and has no incentive
to deviate.

We now consider the reverse direction, that is, given a PSNE in J we show
that there exists a satisfying assignment in I. We first show that at any PSNE,
every clause must play 1. If this is not the case, suppose, for a contradiction,
that for some clause r, zr = 0. Since r’s best response is 0 (this is a PSNE),
we obtain ∑

i∈Vr

xi(2lr,i − 1) ≤ 1− ε−
∑
i∈Vr

(1− lr,i)

⇔
∑
i∈Vr

(xilr,i + (1− xi)(1− lr,i)) ≤ 1− ε.

Therefore, for every variable player j ∈ Vr, xj 6= lr,j. Furthermore, for any
j ∈ Vr, j does not have any incentive to deviate. Using these properties of a
PSNE we will arrive at a contradiction, and thereby prove that zr must be 1.

Consider any variable player j ∈ Vr, and let the difference between j’s total
incoming influence and its threshold be Uj. We get

Uj =
∑
k∈Cj

zk(1− 2lk,j)−
∑
k∈Cj

(1− 2lk,j) =
∑
k∈Cj

((1− zk)(2lk,j − 1))

⇔ Uj =
∑
k∈Cj

((1− zk)(2lk,j − 1)1[lk,j = 1]) +
∑
k∈Cj

((1− zk)(2lk,j − 1)1[lk,j = 0])

⇔ Uj =
∑
k∈Cj

((1− zk)1[lk,j = 1])−
∑
k∈Cj

((1− zk)1[lk,j = 0]).

At any PSNE, if xj = 1 then Uj ≥ 0; otherwise, Uj ≤ 0. Thus, the best
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response condition for variable j gives us∑
k∈Cj

((1− zk)1[lk,j = xj]) ≥
∑
k∈Cj

((1− zk)1[lk,j 6= xj])

⇔
∑

k∈Cj−{r}

((1− zk)1[lk,j = xj]) + (1− zr)1[lr,j = xj] ≥∑
k∈Cj−{r}

((1− zk)1[lk,j 6= xj]) + (1− zr)1[lr,j 6= xj]

⇔
∑

k∈Cj−{r}

((1− zk)1[lk,j = xj]) ≥∑
k∈Cj−{r}

((1− zk)1[lk,j 6= xj]) + 1, since lr,j 6= xj.

The above inequality cannot be true, because the left hand side is always
0 (if lk,j = xj then zk must be 1 at any PSNE), and the right hand side is ≥ 1.
Thus, we have obtained a contradiction, and zr cannot be 0.

So far, we have shown that at any PSNE zk = 1 for any clause player k. To
complete the proof, we now show that for every clause player k, there exists
a variable player i ∈ Vk such that xi = lk,i. If we can show this then we can
translate the semantics of the actions in J to the truth values in I and thereby
obtain a satisfying truth assignment for I.

Suppose, for the sake of a contradiction, that for some clause k and for all
variable i ∈ Vk, xi 6= lk,i. Since zk = 1, we find that∑

i∈Vk

xi(2lk,i − 1) ≥ 1− ε−
∑
i∈Vk

(1− lk,i)

⇔
∑
i∈Vk

(xilk,i + (1− xi)(1− lk,i)) ≥ 1− ε

⇔ 0 ≥ 1− ε, which gives us the desired contradiction.

The proof of Theorem 2.3.6 reduces the 3-SAT problem to an LIG where
the underlying graph is bipartite. Thus, we obtain the following corollary.

Corollary 2.3.7. It is NP-complete to decide if there exists a PSNE in an
LIG on a bipartite graph.

The proof of Theorem 2.3.6 directly leads us to the following result that
the counting version of the problem is #P-complete.
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Corollary 2.3.8. It is #P-complete to count the number of PSNE of an LIG.

Proof. The proof follows from the proof of Theorem 2.3.6. Membership of this
counting problem in #P is easy to see. Using the same reduction as in the
proof of Theorem 2.3.6, we find that each satisfying truth assignment (among
the 2n possibilities) to the variables of the 3-SAT instance I can be mapped
to a distinct PSNE of the LIG instance J . Furthermore, we have seen that
at each PSNE in J , every clause player must play 1. Thus, for each of the
2n joint strategies of the variable players (while having the clause players play
1), if the joint strategy is a PSNE then we can map it to a distinct satisfying
assignment in I. Moreover, each of these two mappings are the inverse of the
other. Therefore, the number of satisfying assignments of I is the same as the
number of PSNE in J . Since counting the number of satisfying assignments of
a 3-SAT instance is #P-complete, counting the number of PSNE of an LIG,
even on a bipartite graph, is also #P-complete.

While Corollary 2.3.8 shows the hardness of counting the number of PSNE
of an LIG on a general graph, we can show the same hardness result even on
special classes of graphs, such as star graphs:

Theorem 2.3.9. Counting the number of PSNE of an LIG on a star graph is
#P-complete.

Proof. Since we can verify whether a joint strategy is a PSNE in polynomial
time, the problem is in #P. We will show #P-hardness using a reduction
from #KNAPSACK, which is the problem of counting the number of feasible
solutions in a 0-1 Knapsack problem: Given n items, the weight ai ∈ Z+ of
each item i, and the maximum capacity of the sack W ∈ Z+, #KNAPSACK
asks how many ways we can pick the items to satisfy

∑n
i=1 aixi ≤ W , where

xi = 1 if the i-th item has been picked, and xi = 0 otherwise. Given an
instance I of the #KNAPSACK problem with n items, we construct an LIG
instance J on a star graph with n+ 1 nodes. Let us label the nodes v0, ..., vn,
where v0 is connected to all other nodes. We define the influence factors among
the nodes as follows: the influence of v0 to any other node vi, wv0vi = 1, and
the influence in the reverse direction, wviv0 = −ai. The threshold of v0 is
defined as bv0 = −W , and the threshold of every other node vi, bvi = 1. We
denote the action of any node vi by xi ∈ {0, 1}. Note that at any PSNE of J ,
v0 must play 1. Otherwise, if v0 plays 0 then all other nodes must also play 0,
and this implies that v0 must play 1, giving us a contradiction.

We prove that the number of feasible solutions in I is the same as the
number of PSNE in J . For any (x1, ..., xn) ∈ {0, 1}n in I, we map each xi to
the action selected by vi in J , for 1 ≤ i ≤ n. As proved earlier, the action
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of v0 must be 1 at any PSNE. Furthermore, when v0 plays 1, all other nodes
become indifferent between playing 0 and 1. Thus, the number of PSNE in J
is the number of ways of satisfying the inequality

∑n
i=1wviv0xi ≥ bv0 , which is

equivalent to
∑n

i=1 aixi ≤ W . Thus the number of PSNE in J is equal to the
number of feasible solutions in I.

The following three theorems show the hardness of several other variants
of the problem of computing a PSNE of an LIG.

Theorem 2.3.10. Given an LIG, along with a designated subset of k players
in it, it is NP-complete to decide if there exists a PSNE consistent with those
k players playing the action 1.

Proof. It is easy to see that the problem is in NP, since a succinct yes certificate
can be specified by a joint action of the players, where the designated players
play 1, and it can be verified in polynomial time whether this is a PSNE or
not.

We show a reduction from the monotone one-in-three SAT problem, a
known NP-complete problem, to prove that the problem is NP-hard. An
instance of the monotone one-in-three SAT problem consists of a set of m
clauses and a set of n variables, where each clause has exactly three variables.
The problem asks whether there exists a truth assignment to the variables
such that each clause has exactly one variable with the truth value of true.
Given an instance of the monotone one-in-three SAT problem, we construct an
instance of LIG as follows (please refer to Figure 2.3 for an illustration). For
each variable we have a variable player in the game, and for each clause we
have a clause player. Each variable player has a threshold of 0, and each clause
player has a threshold of ε, where 0 < ε < 1. We now define the connectivity
among the players of the game. There is an arc with weight (or influence)
−1 from a variable player u to another variable player v if and only if, in
the monotone one-in-three SAT instance, both of the corresponding variables
appear together in at least one clause. Also, for each clause t and each variable
w appearing in t, there is an arc from the variable player (corresponding to
w) to the clause player (corresponding to t) with weight 1. Furthermore, we
assign k = m, and assume that the designated set of players is the set of clause
players. We also assume that the action 1 in the LIG corresponds to the truth
value of true in the monotone one-in-three SAT problem and 0 to false.

Note that the way we have constructed the LIG, at most one variable
player per clause can play the action 1 at any PSNE. To see this, assume, for
contradiction, that at some PSNE two variable players u and v, both connected
to the same clause t, are playing the action 1. Then the influence on either of
these two variable players is ≤ −1, which is less than its threshold 0, and this
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Figure 2.3: Illustration of the NP-hardness reduction of Theorem 2.3.10. The
monotone one-in-three SAT instance is (i1∨ i2∨ i3)∧(i2∨ i3∨ i4)∧(i3∨ i4∨ i5).
The threshold of each variable player is 0, and that of each clause player is ε.

contradicts the PSNE assumption. Also, note that at any PSNE, each clause
player will play the action 1 if and only if at least one of the variable players
connected to it plays 1.

First, we show that if there exists a solution to the monotone one-in-three
SAT instance then there exists a PSNE in the LIG where the set of clause
players play 1. A solution to the monotone one-in-three SAT problem implies
that each clause has the truth value of true with exactly one of its variables
having the truth value of true. We claim that in the LIG, every player playing
according to its truth assignment, is a PSNE. First, observe that the variable
players do not have any incentive to change their actions, since the ones playing
1 are indifferent between playing 0 and 1 (because the total influence = 0
= threshold) and the remaining must play 0 (because the total influence is
≤ −1 < threshold). Since each clause has one of its variables playing 1, each
clause player must play 1 (because 1 > ε). This concludes the first part of the
proof.

We next show that if there exists a PSNE with the clause players playing
1 then there exists a solution to the monotone one-in-three SAT instance.
Consider any PSNE where the clause players are playing 1. Since each clause
player is playing 1, at least one of the three variable players connected to the
clause player is playing 1. Furthermore, as we have shown earlier, no two
variables belonging to the same clause can play 1 at any PSNE. Thus, for
each clause player, at most one variable player connected to it is playing 1.
Therefore, for every clause player, exactly one variable player connected to it
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is playing 1. Translating the semantics of the actions to the truth values of the
variables and the clauses, we obtain a solution to the monotone one-in-three
SAT instance.

Theorem 2.3.11. Given an LIG and a number k ≥ 1, it is NP-complete to
decide if there exists a PSNE with at least k players playing the action 1.

Proof. Clearly, the problem is in NP, since we can verify a whether a joint
action is a PSNE or not in polynomial time.

For the proof of NP-hardness, once again we show a reduction from the
monotone one-in-three SAT problem. Please see Figure 2.4 for an illustration.
Given an instance I of the monotone one-in-three SAT problem, we first build
an LIG as shown in the proof of Theorem 2.3.10. We then add m(m − 1)
additional players, named extra players, to the game, where m is the number
of clauses in I. Each of these extra players is assigned a threshold of ε, where
0 < ε < 1. The way we connect the extra players to the other players is as
follows: From each clause player we introduce m− 1 arcs, each weighted by 1,
to m−1 distinct extra players. That is, no two clause players have arcs to the
same extra player. Finally, we set k = m2. We denote this instance of LIG by
J .

! ! !

! ! ! ! ! !
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Figure 2.4: Illustration of the NP-hardness reduction of Theorem 2.3.11.

We prove that for any solution to I there exists a PSNE with k players
playing 1 in J . Suppose that each of the variable and clause players is playing
according to their corresponding truth value in the solution to I. None of the
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variable players has any incentive to change its action, because exactly one
variable player connected to each clause player is playing 1. For the same
reason, the clause players, each playing 1, also do not have any incentive to
deviate. Considering the extra players, each of these players must play 1,
because each of the clause players is playing 1. The total number of clause
and extra players is k. Therefore, we have a Nash equilibrium where at least
k players are playing 1.

On the other direction, consider any PSNE in J with at least k players
playing 1. We claim that all the clause and extra players are playing 1 at this
PSNE. If this is not true then at least one of these players is playing 0. This
implies that at least one clause player is playing 0, because conditioned on a
PSNE, whenever a clause player plays 1, all the extra players connected to
it also plays 1. Furthermore, by our construction at most one of the variable
players connected to each clause player can play 1. So, the total number of
players playing 1 is ≤ (m − 1)(m + 1) < m2 (at most m − 1 clause players
are playing 1, and for each of these clause players, m − 1 extra players, 1
variable player, and the clause player itself are playing 1), which contradicts
our assumption that m2 players are playing 1. Thus, at any PSNE with k
players playing 1, it must be the case that every clause player is playing 1.
This leads us to a solution for I.

Theorem 2.3.12. Given an LIG and a designated set of k ≥ 1 players, it
is co-NP-complete to decide if there exists a unique PSNE with those players
playing the action 1.

Proof. Two distinct joint actions (PSNE), each having the same k players
playing 1, can serve as a succinct no certificate, and we can check in polynomial
time if these two joint actions are indeed PSNE or not.

Suppose that I is an instance of the monotone one-in-three SAT problem.
We reduce I to an instance J of our problem in polynomial time and show
that J has a “no” answer if and only if I has a “yes” answer.

Given I, we start constructing an LIG in the same way as in Theorem 2.3.10
(see Figures 2.5 and 2.3). Assign k = m2. Now, add two new players,
named the all-satisfied-verification player and the none-satisfied-verification
player, which have threshold values of m − ε and −ε, respectively. We add
arcs from every clause player to these two new players, and the arcs to the
all-satisfied-verification player are weighted by 1, and the ones to the none-
satisfied-verification player are weighted by −1.

In addition, add k = m2 new players, named extra players, and let these
players constitute the set of designated players. Assign a threshold value of ε
to each of these extra players, and introduce new arcs, each with weight 1, from
the all-satisfied-verification player and the none-satisfied-verification player to
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Figure 2.5: Illustration of the NP-hardness reduction (Theorem 2.3.12). For
the monotone one-in-three SAT instance of Figure 2.3, we first obtain the same
construction as in Theorem 2.3.10. We add two extra players, the all-satisfied-
verification player and the none-satisfied-verification player, whose tasks are
to verify if all clauses are satisfied and if no clause is satisfied, respectively.
These two players are connected to m2 extra players.

every extra player. The resulting LIG is the instance J of the problem in
question.

Note that at any PSNE the all-satisfied-verification player plays 1 if and
only if every clause player plays 1, and the none-satisfied-verification player
plays 1 if and only if no clause player plays 1. Furthermore, at any PSNE,
each extra player plays 1 if and only if either every clause player plays 1 or no
clause player plays 1. Therefore, we find that every extra player playing 1, the
none-satisfied-verification player playing 1, and every other player playing 0 is
a PSNE, and we denote this equilibrium by E0. We claim that there exists a
different PSNE where every extra player plays 1 if and only if I has a solution.

Suppose that there exists a solution SI to I. It can be verified that making
the all-satisfied-verification player play 1, none-satisfied-verification player play
0, every extra player play 1, and choosing the actions of the clause and the
variable players according to the corresponding truth values in SI gives us a
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PSNE that we call E1. Thus J has two PSNE E0 and E1, where the k extra
players play 1 in both cases.

Considering the reverse direction, suppose that there exists no solution to
I. This implies that at any PSNE in J all clause players can never play 1,
otherwise we could have translated the PSNE to a satisfying truth assignment
for I. This further implies that the all-satisfied-verification player always plays
0. The none-satisfied-verification player plays 1 if and only if none of the clause
players plays 1. Thus, every extra player plays 1 if and only if no clause player
plays 1, if and only if no variable player plays 1. Therefore, E0 is the only
PSNE in J with the k extra players playing 1.

2.3.6 Heuristics for Computing and Counting Equilib-
ria

The fundamental computational problem at hand is that of computing PSNE
in LIGs. We have just seen that various computational questions pertaining
to LIGs on general graphs, sometimes even on bipartite graphs, are NP-hard.
We now present a heuristic to compute PSNE of an LIG on a general graph.

A natural approach to finding all the PSNE in an LIG would be to perform
a backtracking search. However, a naive backtracking method that does not
consider the structure of the graph would be destined to failure in practice.
Thus, we need to order the node selections in a way that would facilitate
pruning the search space.

The following is an outline of a backtracking search procedure that we have
used in practice. The first node selected by the procedure is a node with the
maximum outdegree. Intuitively, this node is the “most constraining” (see,
e.g., Chapter 5 of [105]) in terms of the number of nodes that a node directly
influences. Subsequently, we select a node i that will most likely show that the
current partial joint action cannot lead to a PSNE and explore the two actions
of i, xi ∈ {−1, 1} in a suitable order. A good node selection heuristic that
has worked well in our experiments is to select the one that has the maximum
influence on any of the already selected nodes.

Suppose that the nodes are selected in the order 1, 2, ..., n (wlog). After
selecting node i+ 1 and assigning it an action xi+1, we determine if the partial
joint action x1:(i+1) ≡ (x1, . . . , xi+1) can possibly lead to a PSNE and prune
the corresponding search space if not. Note that a “no” answer to this requires
a proof that one of the players j, 1 ≤ j ≤ i + 1, can never play xj according
to the partial joint action x1:(i+1). A straightforward way of doing this is to
consider each player j, 1 ≤ j ≤ i + 1, and compute the quantities γ+j ≡∑i+1

k=1,k 6=j xkwkj +
∑n

k=i+2 |xkwkj| and γ−j ≡
∑i+1

k=1,k 6=j xkwkj −
∑n

k=i+2 |xkwkj|,
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and then test if the logical expression ((γ−j > bj)∧xj = −1)∨((γ+j < bj)∧xj =
1) holds, in which case we can discard the partial joint action x1:(i+1) and
prune the corresponding search space. Furthermore, it may happen that due
to x1:(i+1), the choices of actions of some not-yet-selected players have become
restricted. To this end, we apply NashProp [93] with x1:(i+1) as the starting
configuration, and see if the choices of the other players have become restricted
because of x1:(i+1). Although each round of updating the table messages in
NashProp takes exponential time in the maximum degree in general graphical
games, we can show in a way similar to Theorem 2.3.4 that we can adapt the
table updates to the case of LIGs so that it takes polynomial time.

A Divide-and-Conquer Approach

To further exploit the structure of the graph in computing the PSNE, we
propose a divide-and-conquer approach that relies on the following separation
property of LIGs.

Property 2.3.13. Let G = (V,E) be the underlying graph of an LIG and
S be a vertex separator of G such that removing S from G results in k ≥ 2
disconnected components: G1 = (V1, E1), ..., Gk = (Vk, Ek). Let G′i be the
subgraph of G induced by Vi ∪ S, for 1 ≤ i ≤ k. Consider the LIGs on these
(smaller) graphs G′i’s, where we retain all the weights of the original graph,
except that we treat the nodes in S to be indifferent (that is, we remove all the
incoming arcs to these nodes and set their thresholds to 0). Computing the set
of PSNE on G′i’s and then merging the PSNE (by performing outer-joins of
joint actions and testing for PSNE in the original LIG), we obtain the set of
all PSNE of the original game.

Proof Sketch. First, since the joint actions are tested for PSNE in the original
LIG, the output will never contain a joint action that is not a PSNE. Second,
since the nodes in S are made indifferent in the LIGs on G′i, 1 ≤ i ≤ k, no
PSNE of the original LIG can get omitted from the result of the outer-join
operation.

To obtain a vertex separator, we first find an edge separator (using well-
known tools such as METIS [65]), and then convert the edge separator to a
vertex separator (by computing a maximum matching on the bipartite graph
spanned by the edge separator). We then use this vertex separator to compute
PSNE of the game in the way outlined in Property 2.3.13. The benefits of this
approach are two-fold: (1) for graphs that have good separation properties
(such as preferential-attachment graphs), we have found this approach to be
computationally effective in practice; and (2) this approach leads to an anytime
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algorithm for enumerating or counting PSNE: Observe that ignoring some
edges from the edge separator may result in a smaller vertex separator, which
greatly reduces the computation time of the divide-and-conquer algorithm at
the expense of producing only a subset of all PSNE. (The reason we obtain a
subset of all PSNE is that the edges that are ignored from the edge separator
are not permanently removed from the original graph, and that after merging,
every resulting joint action is tested for PSNE in the original game, not in the
game where some of the edges were temporarily removed. As a result, some
the original PSNE may not be included in the final output. At the same time,
we can never have a joint action in the final output that is not a PSNE.) We
can obtain progressively better result as we ignore less number of edges from
the edge separator.

2.4 Computing the Most Influential Nodes

We now focus on the problem of computing the most influential set of nodes
with respect to a specified desirable PSNE and a preference for sets of minimal
size. In the discussion below, we also assume, only for the purpose of estab-
lishing and describing the equivalence to the minimum hitting set problem [64],
that we are given the set of all PSNE. (As we will see, a counting routine is all
that our algorithm requires, not a complete list of PSNE.) We give a hyper-
graph representation of this problem that would lead us to a logarithmic-factor
approximation by a natural greedy algorithm.

Let us start by building a hypergraph that can represent the PSNE of a
binary-action game. The nodes of this hypergraph are the player-action tuples
of the game. Thus, for an n-player, binary-action game, we have 2n nodes in
the hypergraph. That is, for each player i of the game, there are two nodes
in the hypergraph: one in which i plays −1 (tuple (i,−1), colored red in
Figure 2.6) and the other in which i plays 1 (tuple (i, 1), colored black). For
every PSNE x we construct a hyperedge {(i, xi) | 1 ≤ i ≤ n}. Let us call this
hypergraph the game hypergraph. By construction, a set of players S play the
same joint-action aS ∈ {−1, 1}|S| in two distinct PSNE x and y of the LIG
if and only if both of the corresponding hyperedges ex and ey (resp.) of the
game hypergraph contains T = {(i, ai) | i ∈ S}.

We can use the above property to translate the most influential nodes
selection problem, given all PSNE, to an equivalent combinatorial problem
on the corresponding game hypergraph H. Let ex∗ be the hyperedge in H
corresponding to the desirable PSNE x∗. Let us call ex∗ the goal hyperedge.
Then the most influential nodes selection problem is the problem of selecting
a minimum-cardinality set of nodes T ⊆ ex∗ such that T is contained in no
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(9, −1)(8, −1)(7, −1)

(6, −1)

(3, −1)

(5, −1)(4, −1)

(2, −1)(1, −1)

(9, 1)(8, 1)(7, 1)
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(3, 1)(2, 1)(1, 1)

Figure 2.6: A hypergraph representation of three PSNE in a 9-player game
with binary actions. The PSNE shown here are the followings: (1, -1, -1, 1,
-1, -1, 1, -1, -1) (triangle), (-1, -1, -1, -1, -1, -1, 1, 1, 1) (rectangle), and (-1,
-1, -1, -1, -1, 1, -1, 1, 1) (6-gon).

other hyperedge of H (recall that we are dealing with a set-preference function
that captures the preference for sets of minimal cardinality). Let us call the
latter problem the unique hyperedge problem. Using the notation above, the
equivalence relationship between the influential nodes selection problem (given
the set of all PSNE) and the unique hyperedge problem can be stated as
follows. The set S ⊆ {1, ..., n} is a (feasible) solution to the most influential
nodes selection problem if and only if T = {(i, xi∗) | i ∈ S} is a (feasible)
solution to the unique hyperedge problem.

We now show that the unique hyperedge problem is equivalent to the min-
imum hitting set problem. Immediate consequences of this result are that
the unique hyperedge problem is not approximable within a factor of c log h
for some constant c > 0, and that it admits a (1 + log h)-factor approxima-
tion [61, 103], where h is the total number of PSNE.

Theorem 2.4.1. The unique hyperedge problem having 2n players and h hy-
peredges is equivalent to the minimum hitting set problem having n nodes and
h hyperedges.

Proof. Let us consider an instance I of the unique hyperedge problem, given
by a game hypergraph G = (V,E), where V is the set of 2n nodes and E is
the set of h hyperedges, along with a specification of the goal hyperedge ex∗ .
Given I, we now construct an instance J of the minimum hitting set problem,
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specified by the hypergraph G′ = (ex∗ , {ex∗} ∪ {ē ∩ ex∗ | e ∈ E and e 6= ex∗}),
where ē indicates the complement set of the hyperedge e. Thus, the nodes
of G′ are exactly the n nodes of ex∗ and the hyperedges of it are constructed
from the complement hyperedges of G except ex∗ , which is present in both G
and G′. We show that a set S of nodes is a feasible solution to I if and only
if it is a feasible solution to J .

If S is a feasible solution to I then S ⊆ ex∗ (because in the unique hyperedge
problem, we are only allowed to select nodes from the goal hyperedge) and
S * e for any hyperedge e 6= ex∗ of G (otherwise, the uniqueness property is
violated). This implies that for any hyperedge e 6= ex∗ of G, there exists a
node v ∈ S such that v /∈ e, which further implies that v ∈ ē ∩ ex∗ . Thus,
every hyperedge of G′, including ex∗ , of course, has at least one of its nodes
selected in S, and therefore, S is a feasible solution to J . On the other hand,
if S is a feasible solution to J then for any hyperedge of G′, at least one of its
nodes has been selected in S. That is, for any hyperedge e 6= ex∗ of G, we have
e′ ≡ ē ∩ ex∗ as the corresponding complementary hyperedge in G′, and there
exists a node v ∈ S such that v ∈ e′, which implies that v /∈ e. Thus, S * e
for any hyperedge e 6= ex∗ of G. Furthermore, all the nodes of S have been
selected from ex∗ of G. Thus, ex∗ is the unique hyperedge of G containing the
nodes of S.

To prove the reverse direction, we start with an instance J of the minimum
hitting set problem, specified by a hypergraph G′ = (V,E), where V is a set
of n nodes and E is a set of h hyperedges. Without the loss of generality,
we assume that E contains the hyperedge e∗ consisting of all the nodes of V .
We now construct an instance I of the unique hyperedge problem that has a
hypergraph G with 2n nodes and h hyperedges. The node set of G literally
consists of two copies of the nodes of V , denoted by V × {1,−1}. We now
construct the hyperedges of G. For each hyperedge e 6= e∗ of the minimum
hitting set instance, we include a hyperedge e′ ≡ ē×{1}∪ e×{−1} in G, and
for the hyperedge e∗ of J , we include the hyperedge e∗ × {1} in G. Thus, the
game hypergraph can be defined as G = (V ×{1,−1}, {e∗×{1}}∪ {ē×{1}∪
e × {−1} | e ∈ E and e 6= e∗}). Finally, we designate e∗ × {1} as the goal
hyperedge of I. We will show that S ⊆ V is a feasible solution to J if and
only if S×{1} is a feasible solution to the unique hyperedge problem instance
I. The set S is a feasible solution to J if and only if for every hyperedge
e 6= e∗ of G′, there exists a node v ∈ S such that v ∈ e (note that S ⊆ e∗).
This is equivalent to saying that for every hyperedge e×{1} 6= e∗×{1} of G,
there exists a node v ∈ S × {1} such that v /∈ e × {1}. Using the fact that
S × {1} ⊆ e∗ × {1}, S × {1} is a feasible solution to I.

The adaptation of the well-known hitting set approximation algorithm for
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our problem can be outlined as follows: At each step, select the least-degree
node v of the goal hyperedge, remove the hyperedges that do not contain v,
remove v from the game hypergraph, and include v in the solution set, until
the goal hyperedge becomes the last remaining hyperedge in the hypergraph.
In the context of the original LIG, at every round, this algorithm is essentially
picking the node whose assignment would reduce the set of PSNE consistent
with the current partial assignment the most. Hence, the algorithm only
requires a subroutine to count the PSNE extensions for some given partial
assignment to the players’ actions, not an a priori full list or enumeration of
all the PSNE. Of course, it may require a complete list of PSNE in the worst
case.

2.5 Experimental Results

We have performed empirical studies on several types of LIGs, namely, random
LIGs, preferential-attachment LIGs, LIGs created to model potential interac-
tions in two different real-world scenarios: those among the U.S. Supreme
Court Justices, and those among the U.S. senators. While the first two types
of LIGs have been constructed artificially, the latter two have been learned
from real-world data using machine learning techniques [55].

2.5.1 Random Influence Games

As a first attempt, we have created instances of random graphs using the
Erdös-Rényi model. The number of nodes have been varied from 10 to 30,
and the probability of including an edge has also been varied. Assuming
binary actions: 1 and −1, the threshold bi and the influence factors wji of the
incoming arcs of each node i have been chosen uniformly at random from a
unit hyperball. That is, for each node i, b2i +

∑
j∈N(i)w

2
ji = 1, where N(i) is

the set of nodes having arcs toward i. Then, the sign of each threshold, as
well as each weight, has been chosen to be either + or − with a probability
of 0.5. We have applied the heuristic given earlier to find the set of all PSNE
in these random graphs. Our experiments show that in all of these random
LIGs, the number of PSNE, almost always, is very small—usually one or two,
and sometimes none.

We have also studied LIGs on uniform random directed graphs. While
constructing the random graphs, we have independently chosen each arc with
a probability of 0.50, and assigned it a weight of −1 with a probability p
(named flip probability) and 1 with probability 1 − p. Several interesting
findings have emerged from our study of this parameterized family of LIGs on
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uniform random graphs. The results are summarized in tabular forms in the
Appendix. For various flip probabilities, we have independently generated 100
uniform random graphs of 25 nodes each, and for each of these random graphs,
we have first computed all PSNE using our heuristic. We have then applied
the greedy approximation algorithm to obtain a set of the most influential
nodes in each graph and compared the approximation results to the optimal
ones.

Unless p is either 0 or 1, the existence of a PSNE cannot be guaranteed.
In our experiments, we have found that, in fact, for p = 0.50, the probability
of not having a PSNE is highest (around 5%), and as we go toward the two
extremes of p, the probability of not having a PSNE decreases. We have
reported the games with at least one equilibrium in this experimental study,
since these are the games that we are interested in for computing the most
influential nodes. Another interesting finding with respect to the number of
PSNE is that this number is very small when p = 0, that is when all the
arcs have weight 1, and it is large when p = 1, although quite small (on
average, a fraction 5.81 × 10−6 ≈ 2−17.29) relative to the total number of 225

possible joint actions. Also, the average number of nodes of the search tree
that the backtracking method visits per equilibrium computation is relatively
small on the two extremes of p, compared with p around 0.5. Note that the
backtracking method does a very good job with respect to the number of
search-tree nodes visited in searching the 225 space. In fact, our experiments
have shown that the addition of the NashProp heuristic on top of the node
selection heuristic considerably speeds up the search. Finally, we have found
that although the approximation algorithm has a logarithmic factor worst-case
bound, most often the results of the approximation algorithm are very close
to the optimal solution.

As shown in Figure 2.7, the number of PSNE usually increases if we have
more negative-weighted arcs than positive ones, although the number of PSNE
is still very small relative to the maximum potential number as remarked ear-
lier. We have further found that although the approximation algorithm for
influential nodes selection problem has a logarithmic factor worst-case bound,
most often the result of the approximation algorithm is very close to the opti-
mal solution. For example, for the random games having all negative influence
factors, in 87% of the trials the approximate solution size ≤ optimal size +1,
and in 99% of the trials the approximate solution size ≤ optimal size +2 (see
the Appendix for more details in a tabular form).
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Figure 2.7: PSNE computation on random LIGs. The vertical bars denote
95% confidence intervals.

2.5.2 Preferential-Attachment LIGs

We have also experimented with LIGs based on preferential-attachment graphs
primarily because of its power to explain the structure of many real-world so-
cial networks in a generative fashion [2]. In order to construct these graphs, we
have started with three nodes in a triangle and then progressively added each
node to the graph, connecting it with three existing nodes with probabilities
proportionate to the degrees. We have made each connection bidirectional
and imposed the same weighting scheme as above: with the flip probability p,
the weight of an arc is −1 and with probability 1 − p it is 1. The threshold
of each node has been set to 0. We have observed that for 0 < p < 1, these
games have very few PSNE, while for p = 0 and p = 1 the number of PSNE
is considerably larger than that. Furthermore, these games show very good
separation properties, making the computation amenable to the divide-and-
conquer approach. We show the average number of PSNE and the average
computation time for graphs of sizes 20 to 50 nodes in Figure 2.8 for p = 1
(each average is over 20 trials). Note that in contrast to the random LIGs,
preferential-attachment graphs show an exponential increase in the number of
PSNE as the number of nodes increase, although the number of PSNE is still
a very small fraction of the maximum potential number.

2.5.3 Illustration: Supreme Court Rulings

We have used our model to analyze the influence among the Justices of the
U.S. Supreme Court. This is one of the application scenarios where the strate-
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Figure 2.8: PSNE computation on preferential-attachment LIGs (y-axis is in
log scale). The vertical bars denote 95% confidence intervals.

gic aspects of influence is of prime importance. Two distinctive features of
such a scenario are: first, the individual outcomes (in this case, the deci-
sions of the Justices on each case) can be modeled as outcomes of a one-shot
non-cooperative game (which in our case is LIG), and second, the physical
interpretation of the diffusion process is not so much clear in such a scenario
as it is in applications like viral marketing.

Data

We have obtained data from the Supreme Court Database.2 Although the
database captures fine-grained details of the cases, for our purpose we have
only focused on the variable varVote. Again, the votes of the Justices are not
simple yes/no instances. Instead, each vote can have eight distinct values.
However, for practical purposes, we can attach a simple yes/no interpretation
to the values of the votes, as shown in Table 2.1. For example, some of the
votes are interpreted as the majority vote, but in principle, if all the votes are
yes/no, then such an interpretation is never required.

In Table 2.1, “majority” in the third column signifies that we have inter-
preted the corresponding Justice’s vote as yes or no, whichever occurs most
among the other Justices. Also, among the natural courts we studied, we did
not encounter voting instances where varVote has a value of 8.

We next present our study of the natural court (with timeline 1994–2004)
comprising of Justices WH Rehnquist, JP Stevens, SD O’Connor, A Scalia,
AM Kennedy, DH Souter, C Thomas, RB Ginsburg, and SG Breyer.

2http://scdb.wustl.edu/
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varVote Original Meaning Our Interpretation

1 Voted with majority Yes
2 Dissent No
3 Regular concurrence Yes
4 Special concurrence Yes
5 Judgment of the Court Yes
6 Dissent from a denial or dismissal of

certiorari, or dissent from summary af-
firmation of an appeal (Interpreted as
absent from voting in final outcome)

Majority

7 Jurisdictional dissent (Interpreted as
absent from voting in final outcome)

Majority

8 Justice participated in an equally di-
vided vote

—

Table 2.1: Interpretation of Votes

Learning LIG

The data for the above natural court consists of 971 voting instances (each
voting instance consists of the votes of all nine Justices). Many of these in-
stances are repeated. For example, the most repeated instance is where all
the Justices voted yes, which occured 438 times. The second most repeated
instance, which occured 85 times, is where five of the Justices, namely, Jus-
tices Scalia, Thomas, Rehnquist, O’Connor, and Kennedy voted yes, while the
others voted no.

We have used L2-regularized logistic regression (simultaneous classifica-
tion) to learn an LIG for this data. In this learning procedure, the data is
viewed as a noisy version of PSNE. The objective of learning here is to cap-
ture as much of the observations as PSNE of the model while minimizing the
number of PSNE that were not observed in data. The regularization parameter
prefers a sparser graph compared to a dense one. A more detailed exposition
of this learning technique, along with theoretical justifications, can be found
in [55]. The influence factors and the biases of the LIG learned in this way are
shown in a tabular form in the Appendix. A pictorial representation of the
same LIG is shown in Figure 2.9.

The learned LIG represents 589 of the 971 voting instances as PSNE. As
expected, it represents the frequently repeated voting instances (such as the
ones mentioned above). A graphical representation of the LIG is shown in Fig-
ure 2.10. We have clustered the nodes on the traditional perception that Jus-
tices Scalia, Thomas, Rehnquist, and O’Connor are “conservative;” Justices
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Figure 2.9: Pictorial representation of LIG learned from data—the non-
diagonal elements represent influence factors and the diagonal elements bi-
ases. The numbering of the players (from 1 to 9) corresponds to the Justices
in this order: Justices A Scalia, C Thomas, WH Rehnquist, SD O’Connor,
AM Kennedy, SG Breyer, DH Souter, RB Ginsburg, and JP Stevens. The
darker the color of a cell, the more negative is the corresponding number. For
example, the most negative number (−0.2634) occurs in cell (5, 5) (i.e., the
bias of Justice Kennedy). The most positive number (0.4282) occurs in cell
(1, 2) (i.e., the influence factor from Justice Scalia to Justice Thomas) and the
number closest to zero is 0.001 in cell (2, 4).

Breyer, Souter, Ginsburg, and Stevens are “liberal;” and Justice Kennedy is
a “moderate.” As illustrated in Figure 2.10, negative influence factors occur
only between players of two different clusters.

Most Influential Nodes

Analysis of the PSNE of this LIG shows that there is a set of two nodes that
is most influential with respect to achieving the objective of every Justice
voting yes. This most influential set consists of one node from the set {Scalia,
Thomas} and another one from the set {Breyer, Souter, Ginsburg, Stevens}.
Furthermore, any one node from the set {Breyer, Souter, Ginsburg, Stevens}
is alone most influential with respect to achieving the objective of a 5-4 vote
mentioned above (i.e., the second most repeated instance in the data).
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Figure 2.10: Graphical representation of LIG learned from data. Larger node
sizes indicate higher thresholds (more stubborn). Positive influence factors are
drawn as black arcs and negative as red. Thicker arcs represent higher value
of influence factors. While the learned LIG is a complete graph, we have only
drawn approximately half of the arcs (i.e., we are not showing the “weakest”
arcs in this graph).

2.5.4 Illustration: Congressional Voting

We further illustrate our computational scheme in another real-world scenario
where the strategic aspects of the agents’ behavior are of prime importance.
We first learned the LIGs among the senators of the 101st and the 110th U.S.
Congress [55]. The 101st Congress LIG consists of 100 nodes, each representing
a senator, and 936 weighted arcs among these nodes. On the other hand, the
110th Congress LIG has the same number of nodes, but it is a little sparser
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than the 101st one, having 762 arcs. In these LIGs, each node can play one of
the two actions: 1 (yes vote) and −1 (no vote). A bird’s eye view of the 110th
Congress LIG is shown in Figure 2.11 and a part of it is magnified and shown
in Figure 2.12.

Figure 2.11: LIG for the 110th U.S. Congress: darker color of nodes repre-
sent higher threshold (more stubborn); thicker arcs denote influence factors of
higher magnitude (only half of the original arcs with the highest magnitude
of influence factors are shown here); circles denote most influential senators;
rectangles denote cut nodes used in the divide-and-conquer algorithm. The
shaded part of it has been magnified for better visualization in Figure 2.12.

First, we have applied the divide-and-conquer algorithm that exploits the
nice separation properties of these LIGs, to find the set of all PSNE (this has
been done for convenience; as discussed earlier, counting alone would have
been sufficient). We have obtained a total of 143,601 PSNE for the 101st
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Figure 2.12: A part of the LIG for the 110th U.S. Congress: blue nodes repre-
sent Democrat senators, red Republican, and white independent; darker color
of nodes represent higher threshold (more stubborn); thicker arcs denote influ-
ence factors of higher magnitude; circled node (Senator Rockefeller) denotes
one of the most influential senators; rectangles at the bottom denote cut nodes
used in the divide-and-conquer algorithm.

Congress graph and 310,608 PSNE for the 110th one. Note that the number
of PSNE in these games is extremely small (e.g., a fraction 2.45 × 10−25 ≈
2−81.76 for the 110th Congress) relative to the maximum possible 2100 joint
actions. Regarding the computation time, solving the 110th Congress using
the divide-and-conquer approach takes about seven hours, whereas solving the
same without this approach, simply relying on the backtracking search, takes
about 15 hours on a modern quad-core desktop computer.

Next, we have computed the most influential senators using the approxima-
tion algorithm outlined earlier. We have obtained a solution of size five for the
101st Congress graph, which we have verified to be an optimal solution. This
solution consists of Senators Rockefeller (Democrat, WV), Sarbanes (Demo-
crat, MD), Thurmond (Republican, SC), Symms (Republican, ID), and Dole
(Republican, KS). Interestingly, none of the maximum-degree nodes has been
selected. Similarly, the six most influential senators of the more recent 110th
Congress (January 2007–January 2009) are Kerry (Democrat, MA), Bennett
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(Republican, UT), Sessions (Republican, AL), Enzi (Republican, WY), Rock-
efeller (Democrat, WV), and Lautenberg (Democrat, NJ).

2.5.5 Contrasting with Diffusion Model

Our one-shot noncooperative game-theoretic model is fundamentally different
from the diffusion model. However, comparing the most influential Senators
(110th Congress) obtained using our setting to that obtained using diffusion
revealed some striking similarity that we cannot yet explain fully. It should
first be noted that both of these analyses have been done using the same
influence factors and thresholds that we obtained from learning LIGs. In
particular, for the diffusion setting, at each iteration we select a node u that
achieves the maximum spread of action 1, force u to adopt action 1, let all
but the previously selected nodes modify their actions as best responses to u’s
adoption of action 1. We repeat this until every node adopts action 1.3 Note
that because of negative influence factors, cycling may occur and this procedure
may never come to a stop. However, in our case, even in the presence of
negative influence factors, we did not encounter such cycling. Furthermore,
it is well known that the above recipe produces a provable approximation
algorithm for the cascade model with submodular spread function [67], but
this claim of approximation guarantee vanishes as soon as we have negative
influence factors.

We can visualize all possible choices of the most influential nodes that
an algorithm can make as a directed acyclic graph, as shown in Figures 2.13
and 2.14.

Although Figure 2.13 looks more complicated than Figure 2.14 (due to
the appearance of the same node in different source-sink paths of the dag at
different levels), comparing these we find that not only a set of six nodes are
most influential in both cases but also most of the nodes are common between
these two distinct frameworks. More remarkably, some of these common nodes
are selected at the same iteration in both frameworks. One question that
we can ask is does a set of most influential nodes in the LIG setting also
remain most influential in the diffusion setting? We have exhaustively tested
all possible sets of the most influential nodes (Figure 2.13) and settled the
answer in the negative for each set. Interestingly, if we add the “Alexander R
TN” node to any of the most influential sets in the LIG setting, the resulting
set becomes most influential in the diffusion setting. The apparent similarity in
results between the two models gives rise to an intriguing question asking us to

3At the end, we also perform a post-processing step, where we try to remove one of the
selected nodes to test if the remaining nodes are still most influential.
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Brown D OH

Bennett R UT

Sessions R AL

Barrasso R WY Enzi R WY

Carper D DE Inouye D HI Lautenberg D NJ Menendez D NJRockefeller D WV

Lautenberg D NJ Carper D DE 

Kerry D MA

Figure 2.13: Most influential nodes in our setting. This directed acyclic graph
(dag) illustrates all possible options for node selection that our approximation
algorithm considers. A source node represents a node selected in the first
iteration and a sink node represents a node selected in the last step. Any
directed path from a source to a sink represents a sequence of nodes selected in
successive iterations by our algorithm. All nodes in the same level and having
the same parent, are tied in an iteration of the algorithm. Also note that the
same node can appear in different paths of the dag at different levels.

connect these two mathematically and algorithmically different formulations,
which is out of scope for this dissertation.

2.5.6 Filibuster

Beyond predicting stable behavior and identifying the most influential nodes
in a network, our model can be used to study other interesting aspects of a
networked population. One example is the filibuster phenomenon in the U.S.
Congress, where a senator uses his or her right to hold floor for an indefinite
time in an effort to delay the passing of a bill. It can be broken by the
procedure of “cloture” which refers to gathering a majority of at least 60 votes
among the current 100 senators. However, not every possible cloture scenario
of 60 or more “yes” votes may be a stable outcome due to influence among the
senators. The set of the ones that are indeed stable in the sense of PSNE will
be called the stable cloture set.

An interesting general question that we can ask is whether there exists a

77



Brown D OH

Carper D DE Inouye D HI Rockefeller D WV
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Kerry D MA

Figure 2.14: Most influential nodes in the diffusion setting. Each directed path
from a source to a sink represents a sequence of nodes that

small coalition of senators that can break filibusters. We can also think of
preventing a filibuster from the democratic or the republican perspective (i.e.,
favoring the respective party). Let us formally define the problem.

Problem Formulation

Given the set S of all stable outcomes (i.e., PSNE) and a subset C of these
stable outcomes, find a minimal set T of players such that

T ∈ arg maxV⊂{1,...,n}{|PS(V )| s.t. PS(V ) ⊆ C},

where PS(V ) is the set of PSNE-extensions of the nodes in V playing action
1, i.e.,

PS(V ) = {x s.t. x ∈ S, xi = 1 ∀i ∈ V }.

In this setting, we can use C to denote the stable cloture set, consisting of
stable outcomes that can prevent a filibuster (i.e., every PSNE in C contains
at least 60 “yes” votes and thus, can induce a cloture). When we consider
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the notion of preventing filibuster that favors a specific party, C is defined as
consisting of exactly those PSNE that contain 60 or more “yes” votes (thereby
representing cloture scenarios) and in addition, are supported (through “yes”
votes) by the majority of the senators affiliated with that party. Other defini-
tions are also possible as long as the stable cloture set C is well-defined.

Now, we would like to select a minimal set of senators such that the set
PS(V ) of the PSNE-extensions of these senators’ voting “yes” is contained in
C (i.e., their voting “yes” can only lead to a stable cloture scenario, thereby
preventing filibuster). In addition, we would also like to achieve a maximum
stable-cloture cover, that is, we wish to achieve the maximum possible set
PS(V ) so that we are able to capture as many of the stable cloture scenarios
as possible. In this formulation, we set up the objective to select a minimal, not
minimum, set of senators in order to keep the formulation simple by avoiding
bicriteria optimization (minimum set of senators vs. maximum stable-cloture
cover). Further note that adding an extra senator to the set of selected senators
can only reduce the stable-cloture cover due to additional constraints.

The above problem formulation guarantees a nonempty solution T if there
exists some PSNE in C that is not “dominated” by any PSNE in S \ C. Here,
a PSNE x dominates another PSNE y if for every i, yi = 1 =⇒ xi = 1.

A Heuristic

We can modify the approximation algorithm for identifying the most influential
nodes to design a heuristic for this problem in the following way. At each
iteration, we select a node such that adding it to the set of already selected
nodes minimizes the number of PSNE-extensions of the selected nodes playing
1 that are in S \ C. If there is a tie among several nodes in this step, then we
can store these nodes in order to explore all solutions that this heuristic can
produce. We stop when the above number of PSNE-extensions within S \ C
goes to 0. We then perform a minimality test by excluding nodes from the
selected set of nodes and testing whether the resulting set can be a solution.
Note that although we can select the “best” solution (in terms of the coverage
of C) among the ones found due to ties, this heuristic does not guarantee an
approximation of the maximum coverage of C.

Experimental Results on the 110th Congress

For the 110th Congress, C consists of 15,288 and 10,029 stable cloture scenar-
ios (i.e., PSNE) with respect to the democratic and the republican parties,
respectively. Overall, the total number of stable cloture scenarios is 15,595,
and most of these are common in both democratic and republican cases. With
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respect to the democratic party, the best solutions found by the above heuris-
tic are Senators {Brown (D, OH), Roberts (R, KS), and Graham (R, SC)}
and {Kerry (D, MA), Roberts (R, KS), and Graham (R, SC)}, both of which
cover 1,500 of the 15,288 stable cloture scenarios. The optimal solutions found
by a brute-force procedure are Senators {Brown (D, OH), Craig (R, ID), and
Dole (R, NC)} and {Kerry (D, MA), Craig (R, ID), and Dole (R, NC)}, both
covering 1,728 stable cloture scenarios. With respect to republican party, the
heuristic gives these two solutions as the best, each covering 40 of 10,029 stable
cloture scenarios: Seantors {Brown (D, OH), Bennett (R, UT), and Gregg (R,
NH)} and Senators {Kerry (D, MA), Bennett (R, UT), and Gregg (R, NH)}.
The optimal solution for this case is Senators {Bennett (R, UT), Conrad (D,
ND), and Sessions (R, AL)}, which covers 138 stable cloture scenarios.

Application of Diffusion Models to this Problem

We can once again contrast our approach with that of diffusion to highlight
two notable shortcomings of the latter. First, the notion of stable-cloture cover
is not well-defined in the diffusion setting. The forward recursion mechanism
central to diffusion models begins with a set of initial adopters (those senators
selected to vote “yes” in our case) and propagates the effects of behavioral
changes throughout the network until it reaches a steady state (i.e., no change
occurs). However, this mechanism focuses on how the dynamics of behavioral
changes evolves, not on the count of steady states that are consistent with a
given set of players being among the adopters (not necessary early adopters),
which is required for stable-cloture covers. In contrast, stable-cloture cover is
well-defined in our approach.

Second and most important, even if we allow reversals of actions due to
negative influence factors, forward recursion may produce an unstable outcome
(i.e., not a PSNE). Although Granovetter’s original model precludes this by
requiring the initial adopters to have a threshold of 0 [49], subsequent devel-
opment allows forward recursion to start with a set of initial adopters whose
thresholds are not necessarily 0 [67]. Next, we illustrate this point using our
experimental results.

As justified above, in our experimental setting regarding diffusion models,
we omit the notion of maximum stable-cloture cover and thereby forgo the
measure of goodness of a solution. We only concentrate on finding a set of
initial adopters that can drive the forward recursion process to some stable
cloture scenario (i.e., a PSNE in C). Our experimental procedure is outlined
below.

For k = 1, 2, ..., do the following. For all possible sets of k senators, start
forward recursion with these k senators forced to play 1 all the time and other
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senators initially playing −1 (but are permitted to switch between 1 and −1
later on). When a steady state is reached, verify if there are at least 60 senators
who are playing 1 in this state. If this is the case, then further verify if the k
senators who are forced to play 1 are indeed playing their best response with
respect to others’ actions, which is the condition for the cloture scenario being
stable. Stop iterating over k once stable cloture scenarios are found.

In our problem instances, which contain both positive and negative influ-
ence factors, it is very much possible that forward recursion oscillates indefi-
nitely. However, it did not happen in our experiments. We tried all possible
sets of k ≤ 3 initial adopters, but failed to reach any cloture scenario (stable
or unstable). We then tried all possible quadruplets of initial adopters. With
respect to democratic party, 1,189 different quadruplets led the forward recur-
sion process to a cloture scenario, but nearly half of these quadruplets (536 to
be exact) led to unstable outcomes. Essentially, those unstable outcomes were
due to some of the initial adopters not playing their best response in voting
“yes”—all other nodes were indeed playing their best response (otherwise, the
process would not terminate).

Therefore, beyond just emphasizing the stability of an outcome, our ap-
proach also captures certain phenomena that cannot be captured using the
traditional approach.

2.5.7 Influence of the “Gangs” of Senators

We can use our model to study the influence of the gangs of senators that are
often assigned the task of formulating critical policies on contentious issues.
We can ask questions like what outcomes could potentially be generated if a
certain gang of senators vote “yes” on a bill. Although we do not have a way
of systematically validate our model, answering questions like these can give
anecdotal validation that our model is capturing certain strategic aspects of
the system.

One such gang of senators, known as the gang-of-six senators received much
media spotlight in 2011 while trying to reach a deal on debt-ceiling between the
Democrats and the Republicans. It is a bipartisan group consisting of Senators
Chambliss (R, GA), Coburn (R, OK), Crapo (R, ID), Conrad (D, ND), Durbin
(D, IL), Warner (D, VA). Despite their best efforts, they were unable to succeed
in reaching a deal, which led to the so-called debt-ceiling crisis toward the end
of July 2011. Using our model to infer the set of stable outcomes consistent
with the gang-of-six senators voting “yes,” we find that there are 11,106 stable
outcomes in this set. Among these, 3,007 stable outcomes consist of less than
50 “yes” votes in each outcome and 10,000 stable outcomes less than 60 “yes”
votes. So, according to our model, the gang-of-six senators are not collectively
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“powerful enough” to “force” a majority outcome or to prevent a filibuster
scenario. This empirical result is consistent with what happened in reality.

Another interesting happening is the formation of the gang-of-eight sena-
tors in 2012. This new gang of senators consisted of the old gang-of-six senators
and two new members: Senators Michael Bennet (D, CO) and Mike Johanns
(R, NE). They were given the task of reaching a deal to avoid the much-
dreaded “fiscal cliff” situation by December 2012. Essentially, the gang-of-six
was strengthened by the addition of the two new senators, which supports the
above empirical observation.

2.6 Conclusion

In this chapter, we have studied influence and stable behavior from a new
game-theoretic perspective. To that end, we introduced a rich class of games,
named influence games, to capture the core strategic component of complex
interactions in a network. We characterized the computational complexity
of computing and counting PSNE in LIGs. We proposed practical, effective
heuristics to compute PSNE in such games and demonstrated their effective-
ness empirically. Besides predicting stable behavior, we gave a framework for
computing the most influential nodes and its variants. We also gave a provable
approximation algorithm for the most influential nodes problem.

Although our models are inspired by earlier works by sociologists, at the
heart of our whole approach is abstracting the complex dynamics of interac-
tions by the solution concept of PSNE, which allowed us to deal with richer
problem instances (e.g., the ones with negative influence factors) as well as to
tread into new problem settings beyond identifying the most influential nodes.
We conclude this chapter by outlining several interesting lines of future work.

First, we leave several computational problems open. We have shown that
counting the number of PSNE even in a star-type LIG is #P-complete, but
does there exist an FPRAS for the counting problem? The computational
complexity of indiscriminant LIGs, which we conjecture to be PLS-complete,
is unresolved. Also, computing mixed-strategy Nash equilibria of LIGs, even
for special types such as trees, remains an open question.

Second, we can apply our models to a general setting of interventions where
we study the effects of changes in node thresholds, connectivity, or influence
factors, usually without the possibility of having the corresponding behavioral
data. The following is an illustrative example of it in the context of the 111th
U.S. Congress. After the death of Senator Ted Kennedy, who was a democratic
senator from the state of Massachusetts, a republican senator named Scott
Brown was elected in his place. Not only that it was Senator Brown’s first

82



appointment in Senate, he was also the first republican from Massachusetts to
be elected to Senate for a long time. Without any behavioral data at that time,
we could perform interventions in our model under various assumptions of
thresholds, connectivity, and influence factors regarding Senator Brown, with
the general goal of predicting stable outcomes and investigating the effects
of this intervention in various settings, such as the filibuster scenario or the
setting of the most influential senators.

Another example of intervention, in the context of the Framingham heart
study alluded at the beginning of this chapter, is the following. Suppose that
we would like to implement a policy of targeted interventions in order to reduce
smoking by some margin. Using our model, we can modify the thresholds of
the selected targets and predict how it could affect the overall level of smoking.

Besides interventions, we can also use our model to analyze past happen-
ings, such as the role of the bipartisan gang-of-six senators in reaching an
agreement during the U.S. debt ceiling crisis.4 We know that this bipartisan
coalition could not prevent the crisis, but can we shed more light on it using
the stable outcomes predicted by our model? Questions like these and many
others shape the long-term goal of this research.

2.A Brief Review of Collective Behavior and

Collective Action in Sociology

In sociology, the umbrella of collective behavior is very broad and encom-
passes an incredibly rich set of models explaining various aspects of a wide
range of social phenomena such as revolutions, movements, riots, strikes, dis-
aster, panic, diffusion of innovations (e.g., fashion, adopting contraceptives,
electronic gadgets, or even religion) just to name a few. In fact, the richness
of just one subfield of collective behavior, termed micro-level theories of col-
lective behavior, led Montgomery to comment in his book [88, p. 67], “The
variety of theories focusing on the micro level is confusing, but is an indication
of the complexity and variations in the process by which movements emerge
or perhaps fail to emerge...” Sociologists Marx and McAdam, in their con-
cise introductory book on collective behavior [76], contend that unlike many
other fields of sociology, the field of collective behavior is not easy to define,
partly because of the varied opinion of scholars, beginning from a very narrow
perspective and ranging up to such a wide and all-encompassing perspective
(e.g., Robert Park and Herbert Blumer’s) that there is virtually no need to
have this as an individual field in sociology. Quoting from their book, “The

4http://en.wikipedia.org/wiki/United_States_debt-ceiling_crisis
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field of collective behavior is like the elephant in Kipling’s fable of the blind
persons and the elephant. Each person correctly identifies a separate part, but
all fail to see the whole animal.”

Despite this, Marx and McAdam point out the traditional disposition to
categorize collective behavior as a “residual field” in sociology. That is, the
study of collective behavior consists of those elements of behavior (e.g., fads,
fashion, crazes), organization (e.g., social movement), group (e.g., crowd),
individual (e.g., psychological states such as panic), etc. that do not readily
fit into well-established and commonly observed social structures. Similarly,
collective behavior is defined in Goode’s textbook [45, p. 17] as the “relatively
spontaneous, unstructured, extrainstitutional behavior of a fairly large number
of individuals.”

2.A.1 Classical Treatment of Collective Behavior: Mass
Hysteria

The classical treatment of collective behavior views individuals in a crowd as
non-rational and transformed into being hysteric by the collective environment.
The central tenet of the early work by Gustave Le Bon’s is that individuals in a
crowd share a “mind of the crowd” and their psychological state and behavior
in the collective setting is guided by the “psychological law of the mental unity
of crowds” [71, p. 5]. In Le Bon’s account, an individual in a crowd may retain
some of the ordinary characteristics he shows in isolation, but the emphasis
is on the extraordinary characteristics that emerge only in a crowd due to “a
sentiment of invincible power,” contagion, and most importantly, due to the
individuals being prone to taking suggestions as if they were hypnotic subjects.
Examples of such extraordinary characteristics of a crowd are “impulsiveness,”
“incapacity to reason,” and “the absence of judgment,” to name a few [71, p.
16]. In sum, individuals in a crowd are depleted of their intellectual capacity
and become uniform in their psychological state. This leads the crowd to
an identical direction of collective behavior that may be heroic or criminal,
depending on the type of “hypnotic suggestion” alluded above (although Le
Bon gives examples of heroic crowds [71, p. 14], for the most part, he rather
portrays crowds with a negative connotation).

Le Bon’s work influenced subsequent developments for around half a cen-
tury. His proposition of transformation of individuals in a crowd was upheld by
Park and Burgess, who put forward the concept of circular reaction [94], which
was later refined by Herbert Blumer [19]. Circular reaction refers to a recip-
rocal process of social interaction that explains how crowd members become
uniform in their behavior, something that Le Bon could not really explain. In
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this process, an individual’s behavior stimulates another individual to behave
alike, and when the latter individual does so, it reinforces the stimulation that
the former individual acted upon. In circular reaction, individuals do not act
rationally or intellectually. That is, they do not reason about the action of
others; they only align themselves with the behavior of others. This is differ-
ent from interpretative interaction, another mechanism that Blumer defined
to explain routine group behavior (e.g., a group of individuals shopping in a
mall) as opposed to collective behavior (e.g., social movement). In interpreta-
tive interaction, individuals react (perhaps differently) to their interpretation
of others’ action, not the action itself. Therefore, individuals can be treated
as rational beings in interpretative interaction. (For clarity of presentation,
we differentiate between routine group behavior and collective behavior. To
the contrary, Blumer, as well as Park in his earlier work, viewed collective
behavior as encompassing a wide range of social phenomena, including rou-
tine group behavior. Within the continuum of collective behavior in Blumer’s
view, the presence or the absence of rationality of individuals earmarks two
distinct mechanisms named interpretative interaction and circular reaction,
respectively.)

In Blumer’s account, a crowd goes through several well-defined stages be-
fore a collective behavior finally emerges. The three underlying mechanisms
that facilitate transitions among these stages are circular reaction, collective
excitement, and social contagion, where one can roughly think collective ex-
citement as a more intense form of circular reaction and social contagion as
even more intense [82, p. 11].5

2.A.2 Emergent Norm Thoery

Although Blumer’s account of collective behavior received wide-spread accep-
tance even beyond academia [82, p. 9], many of the underlying assumptions
in it, as well as in the general mass hysteria theory, were deemed unrealistic
by others. Arguably, a collective behavior is participated by individuals with
different objectives in mind, and changes in their individual behavior can be
observed throughout the process of a collective behavior. The reader is referred
to [85, p. 26–27] for a beautiful example in the context of the 1967 anti-war
demonstration in Washington, DC, which was participated by nearly 250,000

5The mechanism of “social contagion” as defined by Blumer or the “social contagion
theory” [74, p. 11] in general is not to be confused with the term “social contagion” that
computer scientists use [116]. Although both have their roots in epidemics, in the former
case, individuals are transformed into being more suggestible that facilitates “rapid, unwit-
ting, and non-rational dissemination” of behavior [19], whereas in the latter case, individuals
act rationally.
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people. While many of the participants might have been there to genuinely
voice their opinion against the war, some might have been looking for “ex-
citement, drug, or sex.” Yet again, individuals playing different roles, such as
protest leaders, street vendors, and the police, behaved differently. Therefore,
the assumption of complete uniformity behavior in the classical mass hysteria
treatment is very much a stretch. Furthermore, the assumption of hysteric
crowd in the classical approach has also been called into question. One no-
table critique of the mass hysteria theory comes from Ralph Turner and Lewis
Killian [115]. They view individuals in a crowd as behaving under normative
constraints and showing “differential expression.” However, when the crowd
is faced with an extraordinary situation that is not adequately guided by the
established norms of the society, a new norm emerges. They call this the emer-
gent norm and contend that it is the emergent norm that gives the “illusion
of unanimity.”

2.A.3 Collective Action

The goal-oriented nature of collective behavior was further highlighted by so-
ciologists studying social movements during the 1970s and 80s. In order to
distinguish their approach from the traditional approach to collective behavior
dominated by the assumption of irrational and aimless nature of crowds, they
used the term collective action signifying “people acting together in pursuit
of common interests” [112]. Strikingly, based on a series of systematic ob-
servations, Clark McPhail’s contends that the goal-oriented nature of crowds
is not limited to social movements and revolutions alone, but is a feature of
various other types of crowds. In his book the Myth of the Madding Crowd, he
uses two decades of empirical observations pertaining to a multitude of crowd
settings to formulate a theory of collective behavior that is recognized as a
significant paradigm shift [82, ch. 5, 6]. To distance himself from the term
“crowds,” which has already gained several meanings depending on whose the-
ory is being considered, he gives his formulation in the setting of “gatherings.”
But first, he places a justifiably strong emphasis on the definition of collective
behavior. His “working definition of collective behavior” can be stated briefly
as the study of “two or more persons engaged in one or more behaviors (e.g.,
locomotion, ...) judged common or concerted on one or more dimensions (e.g.,
direction, velocity, ...)”6 [82, p. 159].

The broad nature of McPhail’s definition, although based on extensive em-

6Note that it is the “behavior,” not a specific action, that needs to be common or
concerted. For example, when a group of people are chatting together, their behavior is
concerted, even though they are not speaking identical words.
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pirical evidence, was not readily accepted as a definition of collective behavior.
Even modern textbooks on collective behavior try to conserve the classical ap-
peal of collective behavior. For example, in reference to McPhail’s definition,
Goode writes in his textbook, “In the view of most observers, myself included,
many gatherings are not sites of collective behavior (most casual and conven-
tional crowds, for example), and much collective behavior does not take place
in gatherings of any size (the behavior of most masses and publics, for exam-
ple)” [45, p. 17]. Ironically, this is the very viewpoint that McPhail seeks to
portray as a myth. Perhaps to further distance himself from the traditional
viewpoint, McPhail later began to use the term collective action instead of col-
lective behavior (for example, in a recent encyclopedia article, McPhail refers
to the above mentioned definition as that of collective action [83]). According
to David Miller, the modern view on the distinction between collective action
and collective behavior is beyond simply terminological. Collective action is
given the status of a “new” theory in sociology, while collective behavior is
marked as “old,” but not unimportant. [85, p. 14–15]. Miller also points
out that sociology textbooks are likely to talk about collective behavior only
whereas recent journal articles on collective action.

McPhail’s approach to collective action is known as social behavioral in-
teractionist (SBI) approach. As much as it agrees with the emergent norm
theory in terms of the diversity of individual objectives in a collective setting,
it does not agree with the concept of an emergent norm suppressing this diver-
sity. The SBI approach studies gatherings in three phases of its life cycle: the
assembling process, collective action within the assembled gathering, and the
dispersal process [82, p. 153]. Although each of these three phases is rich and
interdependent, the goal is to manage the complexity of collective action as a
whole by focusing on the recognizable parts of it. Interestingly, the underlying
mechanism to explain collective action is drawn from the perceptual control
theory [82, Ch. 6]. McPhail adapts this theory to formulate his sociocybernet-
ics theory of collective action. In brief, an individual receives sensory inputs,
compares the input signal to its desired signal,7 and adjusts its behavior in re-
sponse to the discrepancy. Behavior of individuals affects the “environment,”
which in turn affects the input signal, thereby completing a loop. An impor-
tant aspect of this theory is that various external factors (or “disturbances”)
may drive an individual to make different behavioral adjustments at different
points in time even if the discrepancy between the input signal and the desired
signal remains the same.

7In contrast to engineering control systems theory, the desired signal is not external,
but set by individuals themselves (which is also highlighted by the term cybernetics).
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Additional Notes on Schelling’s Models

Schelling’s models assume that individuals behave in a discriminatory way.
For example, individuals are aware, consciously or unconsciously, about the
types of other individuals in their neighborhood and behave (i.e., stay in the
neighborhood or leave) according to their preference. This is different from
organized processes (e.g., separation of on-campus residence between graduate
and undergraduate students due to a university’s housing policy) or economic
reasons (e.g., segregation between the poor and the rich in many contexts) [108,
109]. An example of a segregation due to individual choice, or “individually
motivated segregation” as Schelling puts it [109, p. 145], is the residential
segregation by color in the U.S. In fact, Schelling’s models and their analyses
expressly focus on this case. Yet, Schelling’s theory can be applied to many
other scenarios as well, since it explains, at an abstract level, how collective
outcomes are shaped from individual choice. It should be mentioned here that
connecting individual actions to collective outcomes is a mainstream theme of
research in collective action.

Schelling introduces two basic models to study the dynamics of segrega-
tion among individuals of two types [109]. The first model is named the spatial
proximity model where individuals are initially positioned in a spatial config-
uration (such as a line or a stylized two-dimensional area) and individuals of
the same type share a common “level of tolerance,” which quantifies the upper
limit on the percentage of an individual’s opposite type in his local neighbor-
hood that he can put up with. Here, an individual’s local neighborhood is
defined with reference to the individual’s position in the specified spatial con-
figuration. The dynamics of segregation is studied in this model using a rule of
movement for the “unhappy” individuals. For example, an individual whose
level of tolerance has been exceeded, moves to the closest location where the
tolerance constraint can be satisfied. For equal number of individuals of each
type and a fixed local neighborhood size, Schelling first studies how clusters
evolve from the initial configuration of a random placement of individuals on
a straight line. He then generalizes the experimentation by varying various
model parameters such as neighborhood size, level of tolerance, ratio of indi-
viduals of the two types, etc. Notable findings are that decreasing the local
neighborhood size leads to a decrease in the average cluster size and that for
unequal number of individuals of the two types, decreasing the relative size of
the minority leads to an increase in the average minority cluster size.

Schelling extends this experimentation to a different setting of a two-
dimensional checkerboard. The individuals are randomly distributed on the
squares of the checkerboard, leaving some of the squares unoccupied. An indi-
viduals local neighborhood is defined by the squares around it and an unhappy
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individual moves to the “closest” unoccupied square (leaving its original square
unoccupied) that can satisfy its tolerance constraint. In addition to studying
clustering properties by varying various model parameters, two new classes
of individual preferences have been studied—congregationist preferences and
integrationist preferences. In a congregationist preference, an individual only
wants to have at least a certain percentage of neighbors of its own type and does
not care about the presence of individuals of the opposite type in its neighbor-
hood. Experimentation shows that even when each individual is happy being
a minority in its neighborhood (e.g., having three neighbors of its own type
out of eight), the dynamics of segregation leads to a configuration as if the
individuals wished to be majority in their neighborhoods. In an integrationist
preference, individuals have both an upper and a lower limit on the level of
tolerance. Dynamics is much more complex in this case and leads to clusters
of unoccupied squares.

Schelling’s second model, named the bounded-neighborhood model, is con-
cerned with one global neighborhood. An individual enters it if it satisfies its
level of tolerance constraint and leaves it otherwise. The level of tolerance is
no longer fixed for each type and the distribution of tolerances among indi-
viduals of each type is given. The emphasis on the stability of equilibria when
the distribution of tolerances and the population ratio of the two types are
varied. For example, under a certain linear distribution of tolerances and a
population ratio of 2 : 1, there exist only two stable equilibria, each consist-
ing of individuals of one type only, whereas a mixture of individuals of both
types can arise as a stable equilibrium under a different setting. This model
has been adapted for the study of the tipping phenomenon with one notable
constraint, that is, the capacity of the neighborhood is fixed. An example of
a tipping phenomenon is when a neighborhood consisting of only one type of
individuals is later inhabited by some individuals of the opposite type and as a
result, the entire population of the original type evacuates the neighborhood.
An important finding is that in the cases studied, the modal level of tolerance
does not correspond to a tipping point.

2.B Experimental Results in Tabular Form

Table 2.2 shows experimental data of PSNE computation on uniform random
directed graphs. Of particular interest is the result that the number of PSNE
usually increases when the flip probability p is increased, i.e., when the number
of arcs with negative influence factors is increased.

Table 2.3 illustrates the experimental result that the logarithmic-factor ap-
proximation algorithm for identifying the most influential individuals performs
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Table 2.2: PSNE computation on uniform random directed graphs. Offsets of
95% confidence intervals are shown in parenthesis.

p # of equilibria # of node visits/equilibrium Avg CPU time (sec) for
Avg (95% CI) Avg (95% CI) computing all equilibria

0.00 2.18 (0.16) 35379.73 (3349.77) 1.81
0.125 3.72 (0.50) 22756.15 (2673.56) 1.57
0.25 13.00 (1.92) 9796.30 (1748.76) 1.9
0.375 19.42 (2.88) 7380.97 (1870.11) 1.95
0.50 14.40 (2.17) 9826.61 (1696.52) 2.04
0.625 19.78 (3.40) 8167.60 (1450.48) 2.07
0.75 28.76 (4.34) 6335.18 (1963.11) 2.21
0.875 67.14 (9.52) 4064.06 (1539.33) 3.27
1.00 194.96 (28.47) 1879.45 (235.90) 5.23

very well in practice.
Finally, Table 2.4 shows the influence factors and thresholds of the LIG

among the U.S. Supreme Court Justices, which are learned using the U.S.
Supreme Court dataset.
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Chapter 3

Causal Strategic Inference in
Economic Networks

In the previous chapter, we applied causal strategic inference to a social net-
work setting in order to answer various interesting questions, such as identi-
fying the most influential nodes. The key idea was to model influence among
the nodes in a game-theoretic way and then to use the solution concept of
Nash equilibrium, which we used to model stable outcomes, to answer those
questions.

In this chapter, we apply the same framework of causal strategic inference
to a different setting, namely networked microfinance economies. We model
a networked microfinance economy as a two-sided abstract economy, which
is classically known as an extension of games. As in the previous chapter,
we characterize stable outcomes from this economy as equilibrium points and
answer various interesting questions with respect to the equilibrium points.
The motivation for applying causal strategic inference to such an economic
network lies in the inability of performing trial-and-error experiments to find
the answers to many policy-level questions.

3.1 Microfinance Systems

Although the history of microfinance systems takes us back to as early as
the 18th century, the foundation of the modern microfinance movement was
laid in the 1970s by Muhammad Yunus, a then-young Economics professor in
Bangladesh. It was a time when the newborn nation was struggling to recover
from a devastating war and an ensuing famine. A blessing in disguise may it be
called, it led Yunus to design a small-scale experimentation on micro-lending
as a tool for poverty alleviation. The feedback from that experimentation gave
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Yunus and his students the insight that micro-lending mechanism, with its so-
cial and humanitarian goals, could successfully intervene in the informal credit
market that was predominated by opportunistic moneylenders. Although far
from experiencing a smooth ride, the microfinance movement has nevertheless
been a great success story ever since, especially considering the fact that it
began with just a small, out-of-pocket investment on 42 clients and boasts
a staggering 100 million poor clients worldwide at present [121]. Yunus and
his organization Grameen Bank have recently been honored with the Nobel
peace prize “for their efforts to create economic and social development from
below.”1

A puzzling element in the success of microfinance programs is that while
commercial banks dealing with well-off customers struggle to recover loans,
microfinance institutions (MFI) operate without taking any collateral and yet
experience very low default rates! The central mechanism that MFIs use
to mitigate risks is known as the group lending with joint-liability contract.
Roughly speaking, loans are given to groups of clients, and if a person fails to
repay her loan, then either her partners repay it on her behalf or the whole
group gets excluded from the program. Besides risk-mitigation, this mech-
anism also helps lower MFI’s cost of monitoring clients’ projects. This and
other interesting aspects of microfinance systems, such as efficiency and distri-
bution of intervening informal credit markets, failure of pro-poor commercial
banks, gender issues, subsidies, etc., have been beautifully delineated by de
Aghion and Morduch in their book [29].

Individual components of microfinance systems have been subjected to var-
ious theoretical and empirical studies. Although these studies do not directly
relate to our study of microfinance markets, these, nevertheless, help us grasp
the essence of the operating principles of the overall system. For example, the
adverse selection problem has been analyzed by Ghatak and Guinnane [44].
This problem arises when loans that are targeted toward safe clients, end up
in risky clients instead. The failure of many loan programs by state-owned
banks in developing countries has been attributed to this problem [29]. It has
been shown that in the absence of collateral, if the clients are allowed to choose
their own partners, then an assortative matching takes place that mitigates
the adverse selection problem [44]. An empirical validation of this result can
be found in a World Bank study conducted in Peru [121], where the authors
designed 11 different games of two basic types—repeated one-shot games and
dynamic games—which were played for seven months by actual human sub-
jects. Experimental results show that if the players are allowed to choose their
own partners (similar to the real-world scenario), then like-minded players are

1http://www.nobelprize.org/nobel_prizes/peace/laureates/2006/
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paired together. This assortative matching induces risk aversion.
Another potential problem for a microfinance program is moral hazard,

which is the problem of enforcing sincere efforts from the borrowers in utilizing
the loan in their projects, as well as eliciting truthfulness about the outcome of
the projects (in case of a failed project, borrowers do not have any obligation
to repay their loans). The theoretical model of Ghatak and Guinnane shows
that if a non-monetary social sanction is effective, then group lending with a
joint-liability contract improves repayment rates [44]. The authors also show
that group lending mechanism can reduce the bank’s cost of auditing by letting
peers in a group audit each other’s case and by limiting the bank’s auditing
to only the case where the whole group claims to be unable to pay.

In our model, we will assume that assortative matching and joint-liability
contracts would mitigate the risks of adverse selection and moral hazard. We
will further assume that due to these mechanisms, there would be no default
on loans. This assumption of complete repayment of loans may seem to be very
much idealistic. However, besides the theoretical results cited above, practical
evidence also suggests very high repayment rates. For example, Grameen
Bank’s loan recovery rate is 99.46% [92].

Tangentially related to our study of microfinance markets is the empirical
study of whether competition among the MFIs has a substantial effect on the
interest rates. As reported by Porteous, competition among the MFIs has
had little effect on the interest rates in countries like Bangladesh and Uganda,
whereas it has driven the interest rates down in Bolivia [101]. Furthermore,
it has been reported that many MFIs do not use interest rates as a “weapon
for competition,” as much as they use other features such as larger loan size,
shorter waiting period, and flexibility in loan repayment [120]. We will draw on
these research results to formulate the diversification term in the village-side
objective function.

The goal of our work is different from several other studies on microfi-
nance economies. For example, Banerjee et al. study the how microfinance
participation spreads through social networks [13]. They show that the level
of microfinance participation goes higher if the initial adopters have higher
eigenvector centrality. They also study the roles of microfinance participants
and non-participants in information dissemination. In contrast, our goal is
to model a microfinance market and use microfinance participation data to
estimate the model in order to facilitate policy experiments. Our work is also
different from the World Bank study mentioned above [121]. In that study,
the goal is to understand the effects of communication on group formation in
various types of games. In contrast, we model customers at a more aggregate
level of villages. Our goal is also very much different from theirs.
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Brief Overview of Our Model

We will now give a high-level overview of our model, postponing the formal
definition and justification for the next section. Ours is a model of a two-
sided networked economy, consisting of microfinance institutions (MFIs) and
villages. Each MFI has branches in a subset of villages and has the same
interest rate in all of its branches (which is the case in practice). Each village
can only interact with the MFIs having branches there. The MFIs are driven
by the humanitarian goal of clearing their supply of loans, i.e., they want
the interest rates to be such that supply equals demand. The objective of
each village is to borrow the maximum amount of diversified loans (to be
formally defined in Section 3.2) such that they would be able to repay the
loans with interest. The villages invest their loans in productive projects and
they apply the revenues from those projects toward repayment of their loans.
An equilibrium point is specified by interest rates and loan allocations such
that the objectives of the MFIs and the villages are achieved.

Connection to Existing Models of Networked Economies

The model we are going to introduce is essentially one of networked econ-
omy. In recent times, there has been an intense, inter-disciplinary research
effort in the area of networked economies, primarily undertaken by the eco-
nomics and the computer science communities and in many instances jointly
by researchers from these two communities. Subjects of investigation have
ranged from generalizing abstract economies in a graphical setting [62], mod-
eling networked markets, such as labor markets and trades (see, for example,
Chapter 10 of [58]), designing mechanisms with desirable properties for such
markets [5], analyzing how properties such as competition [18] and price vari-
ation [63] are influenced by the underlying network structure, to the most
fundamental algorithmic question of computing an equilibrium point in such
settings [62, 107]. Although we postpone a formal description of our model,
we will now place our model in the context of the existing ones at a very high
level.

Let us begin with the Fisher model [37], which consists of a set of buyers
and a set of divisible goods sold by one central seller (i.e., a fully connected
network). The buyers come to the market with some initial endowments of
money, and each has a utility function over bundles of goods. Given the prices
of the goods, their objective is to use their endowment to purchase a bun-
dle of goods that maximizes their utility. An equilibrium point consists of
the unit prices and the allocations of goods such that each buyer fulfills his
objective and in addition, there is no excess demand or excess supply (i.e.,
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the market clears). A graphical Fisher model with one good [63] consists of a
set of buyers and a set of sellers. All the sellers sell the same good, but the
important aspect of this model is that each buyer has access to a subset of the
sellers, not necessarily all the sellers. An equilibrium point in this graphical
setting is defined similar to the original one. An important distinction between
our model and graphical Fisher model is that our model allows buyers (i.e.,
villages) to invest the goods (i.e., loans) in productive projects, thereby gen-
erating revenue that can be used to pay for the goods (i.e., repay the loans).
In other words, the crucial modeling parameter of “endowment” is no longer
a constant in our case. Furthermore, in our model, the villages have a very
different objective function than the one in a Fisher model [63, 118]. There
is, however, an interesting connection between our model and that of Fisher
through an Eisenberg-Gale convex program formulation, which we will show
in Section 3.2.

Arrow and Debreu gave a very generalized model of economy in their sem-
inal work on competitive economies [3]. In fact, a Fisher economy is a special
case of an Arrow-Debreu economy (see, for example, [118]). Arrow and De-
breu’s proof of the existence of an equilibrium point uses Debreu’s concept of
abstract economy [30], which interestingly generalizes Nash’s non-cooperative
games [91] in the following way. In an abstract economy, not only a player’s
payoff but also her domain of actions are affected by another player’s choice of
action. Putting our model in the context of an abstract economy, a village’s
set of possible demands for loan from an MFI depends on the MFI’s interest
rate. For example, in the simplest setting of one MFI operating in one village,
the village cannot ask for unlimited amount of loan from the MFI if the MFI’s
interest rate is above a certain bound. However, for the same reasons cited in
the previous paragraph (i.e., variable endowment), the classical Arrow-Debreu
model or more specifically, a recently developed graphical extension to the
Arrow-Debreu model [62], does not capture our setting.

Our work is different from various other works on networked economies [5,
18, 35, 42, 68, 107] from the perspectives of modeling, problem specification,
and application. For example, Kranton and Minehart model buyer-seller ex-
change economies as networks with an emphasis on the emergence of links
in such networks [68]. They show that although buyers and sellers are mod-
eled as self-interested non-cooperative agents, “efficient” network structures
are necessarily equilibrium outcomes and that for a restricted case, equilib-
rium outcomes are necessarily efficient. In a related work of significant im-
plications, Even-Dar et al. completely characterize the set of all buyer-seller
network structures that are equilibrium outcomes in their model of exchange
economies [35]. In contrast to these works, we do not study network forma-
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tion here, i.e., we treat the spatial structure of the branch-banking MFIs as
exogenous.

Our Contribution

The significance of our work lies in mathematically modeling real-world micro-
finance markets and then complementing it with an AI approach to learning
the parameters of the model and designing algorithms for it. We are unaware
of any work in the literature that formally models microfinance markets as a
networked economy, let alone studying how it can be used in conjunction with
historical data to make interventions and policy decisions. Following are our
main results. (1) We show that a special case of our problem is equivalent to
an Eisenberg-Gale convex program, which leads us to the proof of the exis-
tence an equilibrium point as well as the uniqueness of the equilibrium interest
rates. (2) We give a primal-dual based constructive proof of the existence of an
equilibrium point in the general setting. A cornerstone of our proof is showing
that the strategic complementarity property [23] is inherent in our model. (3)
We use real-world microfinance data from Bangladesh and Bolivia to learn
respective models. Our parameter estimation procedure takes into account
the important practical problem of equilibrium selection. (4) We demonstrate
how our model can be applied to formulating a variety of important policy
decisions. For example, what are the effects of an interest rate ceiling? How
does an intervention by introducing new MFIs affect the market? What would
happen if some of the government-owned MFIs, which are known for their in-
efficient operation, are removed from the market? Or, what would happen if
some MFI decides to close several of its branches?

3.2 A Model of Microfinance Markets

We model microfinance markets as a two-sided market consisting of MFIs
and villages. Each MFI has a certain number of branches, each branch being
located in a distinct village and dealing with borrowers within that village
only. Similarly, each village can only interact with the MFIs present there.
Each MFI has a fixed amount of loan and wants to disburse all of it. On the
other hand, the villages want to maximize an objective function that involves
the total amount of loan it receives and how diversified that loan portfolio
is, subject to the constraint that after investing the loan, it would be able to
repay it with its accrued interest.
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Notation

There are n MFIs and m villages. Vi is the set of villages where MFI i operates
and Bj is the set of MFIs that operate in village j. Ti is the finite total amount
of loan available to MFI i to be disbursed. gj(l) := dj + ejl is the revenue
generation function of village j (parameterized by the loan amount l), where
the initial endowment dj > 0 (i.e., each village has other sources of income
[29, Ch. 1.3]) and the rate of revenue generation ej ≥ 1 are constants. ri is
the flat interest rate at which MFI i gives loan and xj,i is the amount of loan
borrowed by village j from MFI i. Finally, the villages have a diversification
parameter λ ≥ 0 that quantifies how much they want their loan portfolios to
be diversified.2 The problem statement is given below.

3.2.1 Problem Formulation

Following are the inputs to the problem. First, for each MFI i, 1 ≤ i ≤ n, we
are given the total amount of money Ti that the MFI has and the set Vi of
villages that the MFI has branches. Second, for each village j, 1 ≤ j ≤ m, we
are given the parameters dj > 0 and ej > 1 of the village’s revenue generation
function3 and the set Bj of the MFIs that operate in that village.

Each MFI i wishes to set its interest rate ri in a way that it is able to lend all
of its available money Ti, subject to the constraints that the MFI cannot lend
more money than what it has and that the interest rates must be non-negative.
When all the MFIs are able to do so, it corresponds to the well-known notion of
market clearing in economics. Following is the optimization problem for MFI
i, which we will refer to as the MFI-side optimization problem. (Note that
this problem is basically a constraint satisfaction problem due to the constant
objective function.)

2For simplicity, we assume that all the villages have the same diversification parameters.
3When we apply our model to real-world settings, we will see that in contrast to the other

inputs, dj and ej are not explicitly mentioned in the data and therefore, need to be learned
from the data. The machine learning scheme for that will be presented in Section 3.3.2.
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max
ri

1

subject to ri

(
Ti −

∑
j∈Vi

xj,i

)
= 0∑

j∈Vi

xj,i ≤ Ti (PM)

ri ≥ 0

On the other hand, each village j wishes to maximize the amount of di-
versified loans it can obtain, subject to the constraint that it is able to repay
that loan. We will call the following the village-side optimization problem.

max
xj=(xj,i)i∈Bj

∑
i∈Bj

xj,i + λ
∑
i∈Bj

xj,i log
1

xj,i

subject to
∑
i∈Bj

xj,i(1 + ri − ej) ≤ dj (PV )

xj ≥ 0

We will call the second term in the above objective function the diversifica-
tion term. Note that although this term bears a similarity with the well-known
entropic term, it can be mathematically different, since xj,i’s can be larger than
1. Although the diversification parameter λ can be thought of as exogenous,
we will assume that λ is small enough so that the first term in the objec-
tive function dominates the second (details will be given in Section 3.2.4).
We will call the first constraint of (PV ) the budget constraint. It simply ex-
presses that each village j is able to repay the loan with accrued interest, i.e.,∑

i∈Bj
xj,i(1 + ri) ≤ gj

(∑
i∈Bj

xj,i

)
. Here, the assumption is that the revenue

generation function is linear.
For the above two-sided market, we will apply the solution concept of

an equilibrium point, which is defined by an interest rate r∗i for each MFI i
and a vector x∗j = (x∗j,i)i∈Bj

of loan allocations for each village j such that
the following two conditions hold. First, given the allocations x, each MFI i is
optimizing (PM). Second, given the interest rates r, each village j is optimizing
(PV ).

The parameter Ti for all MFI i and the diversification parameter λ are
assumed to be exogenous inputs to this model. The revenue generation func-
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tions gj of the villages j are to be estimated from the data. The interest rates
ri of MFIs i and the allocations xj,i for any village j and MFI i ∈ Bj are to
be defined by an equilibrium point.

An important observation here is that the MFI-side optimization problem
(PM) does not have any direct control over the allocations x (in the sense that
(PM) treats x as exogenous). Similarly, the village-side optimization problem
(PV ) does not have any direct control over the interest rates r. Of course, the
interest rates r and the allocations x influence each other indirectly. In this
setting, an equilibrium point is specified by (r∗,x∗) such that both (PM) and
(PV ) are optimized simultaneously with respect to (r∗,x∗). This notion of an
equilibrium point is rooted in classical economics literature on markets [3, 30].

Justification of Modeling Aspects

Various aspects of our modeling choice have been inspired by the book of
de Aghion and Morduch [29] and several empirical studies on microfinance
systems [89, 101, 120]. We list some of these modeling aspects below.

Objective of MFIs. At first, it may seem unusual that although MFIs are
banks, we are not modeling them as profit-maximizing agents. The perception
that MFIs are making profits while serving the poor has been described as a
“myth” in Chapter 1 of de Aghion and Morduch’s book [29]. In fact, the
book devotes a whole chapter to bust this myth and establish that MFIs very
much depend on subsidies for sustainability (see Chapter 9 of [29] and [89]).
Therefore, our modeling of MFIs as not-for-profit organizations is aligned with
their humanitarian goals as well as empirical evidence.

Objective of Villages. Typical customers of MFIs are low-income people
engaged in small projects such as rice husking, weaving, crafting, livestock
raising, agricultural cultivation, etc. and a large majority of these customers
are women working at home (e.g., Grameen Bank, a leading MFI, has a 95%
female customer base) [29]. Clearly, there is a distinction between customers
borrowing from an MFI and those borrowing from commercial banks, since
many of the latter are profit-oriented corporations. Therefore, in line with
the empirical evidence [29], we have modeled the village side as non-corporate
agents wishing to obtain loans to invest in small household projects, not as
revenue-maximizing or profit-maximizing agents.

Diversification of Loan Portfolios. A valid question is why the village
side does not simply want to maximize the total amount of loan. Clearly,
a village can do so by simply seeking loan only from the MFIs offering the
lowest interest rate. However, empirical studies suggest that interest rates
are not the only determinant for the demands of the villages [101, 120]. In
fact, many of the NGO MFIs in Bangladesh, which operate at relatively high
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interest rates, attract customers by offering various facilities, such as large
loan sizes, shorter waiting periods, and flexible repayment schemes [120]. We
have added the diversification term in the village objective function to reflect
this. Furthermore, this formulation being in line with the quantal response
approach [80], a similar interpretation can be ascribed to it. For example,
mathematical psychology literature suggests that human subjects are more
likely to respond according to such an approach [75].

Complete repayment of loans. A hallmark of microfinance systems
worldwide is very high repayment rates. For example, loan recovery rates of
Grameen Bank is 99.46% and that of PKSF is 99.51% [92]. As explained
earlier, this striking phenomenon is typically attributed to joint liability con-
tracts. In line with such empirical evidence, we assume that the village side
completely repays its loan.

3.2.2 Special Case: No Diversification of Loan Portfo-
lios

It will be useful to first study the case of non-diversified loan portfolios, i.e.,
λ = 0. In this case, the villages simply wish to maximize the amount of
loan that they can borrow. Several properties of an equilibrium point can be
derived for this special case. We will later exploit these to establish one of our
theoretical results. The proofs in this section are by contradiction.

Property 3.2.1. At any equilibrium point (x∗, r∗), every MFI i’s supply must
match the demand for its loan, i.e.,

∑
j∈Vi x

∗
j,i = Ti. Furthermore, every village

j borrows only from those MFIs i ∈ Bj that offer the lowest interest rate. That
is,
∑

i∈Bj ,r∗i =r
∗
mj
x∗j,i(1 + r∗i − ej) = dj for mj ∈ argmini∈Bj

r∗i , and x∗j,k = 0 for

any MFI k /∈ mj.

Proof. Suppose that there is an MFI i such that at an equilibrium point
we have

∑
j∈Vi x

∗
j,i < Ti. Clearly, in this situation, MFI i’s constraint of

r∗i

(
Ti −

∑
j∈Vi x

∗
j,i

)
= 0 can only be satisfied if r∗i = 0. However, if r∗i = 0

then for any village j ∈ Vi, the optimal demand x∗j,i will be unbounded. This
happens because each village j wants to maximize

∑
i∈Bj

xj,i, and with r∗i = 0

and ej ≥ 1, the term (1 + r∗i − ej) in the first constraint of (PV ) becomes
≤ 0. Since dj > 0, that constraint is satisfied for x∗j,i = +∞. But x∗j,i = +∞
contradicts the constraint

∑
j∈Vi x

∗
j,i ≤ Ti in the MFI side (PM). Therefore,

for every MFI i,
∑

j∈Vi x
∗
j,i = Ti must hold at any equilibrium point.4

4It is important to note that in the above argument, the village side has been allowed
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For the second claim, in order to maximize its objective function
∑

i∈Bj
x∗j,i,

every village j will be interested to borrow only from those MFIs that have the
minimum interest rate r∗mj

, where mj ∈ argmini∈Bj
r∗i . Furthermore, at any

equilibrium point, each village’s budget constraint, i.e., the first constraint in
(PV ), must hold with equality. Otherwise, suppose that the following strict
inequality holds for some village j at an equilibrium point:

∑
i∈Bj ,r∗i =r

∗
mj
x∗j,i(1+

r∗i − ej) < dj. Since this is a strict inequality, village j can still increase
its objective function

∑
i∈Bj

x∗j,i. Therefore, village j is not maximizing its
objective function, contradicting our assumption that this is an equilibrium
point.

We next present a lower bound on interest rates at an equilibrium point,
which will be used in proving the main result of this section.

Property 3.2.2. At any equilibrium point (x∗, r∗), for every MFI i, r∗i >
maxj∈Vi ej − 1.

Proof. Consider any MFI i. Let k ∈ arg maxj∈Viej. Suppose that r∗i ≤ ek − 1.
Then we get (1 + r∗i − ek) ≤ 0. This allows x∗j,i to go to +∞, and that violates
the constraint

∑
j∈Vi x

∗
j,i ≤ Ti, contradicting the assumption that this is an

equilibrium point.5

Following are two related results that preclude certain trivial allocations
at an equilibrium point.

Property 3.2.3. At any equilibrium point (x∗, r∗), for any village j, there
exists an MFI i ∈ Bj such that x∗j,i > 0.

Proof. Suppose that for some village j, and for all i ∈ Bj we have x∗j,i = 0.
Since dj > 0, the constraint

∑
i∈Bj

x∗j,i(1 + r∗i − ej) ≤ dj of (PV ) is satisfied,

but village j is not maximizing
∑

i∈Bj
x∗j,i. This contradicts that (x∗, r∗) is an

equilibrium point.

to demand x∗j,i = +∞ even though Ti is finite for MFI i. As mentioned earlier, the reason
is that the MFI-side optimization problem (PM ) treats x∗j,i as exogenous and does not
have a direct control over it inside (PM ). Moreover, the village-side optimization problem
(PV ) for village j selects (x∗j,i)i∈Bj

in order to maximize its objective function
∑

i∈Bj
x∗j,i,

without considering the MFI-side constraint
∑

j∈Vi
x∗j,i ≤ Ti. The contradiction is due to

the necessary condition that at any equilibrium point (x∗, r∗), all the constraints of both
(PM ) and (PV ) must be satisfied.

5Once again, village j’s demand x∗j,i is determined in (PV ) without trying to satisfy the
constraints of (PM ). However, at an equilibrium point (x∗, r∗), both the village-side and
the MFI-side problems must be optimized simultaneously.
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Property 3.2.4. At any equilibrium point (x∗, r∗), for any MFI i, there exists
a village j ∈ Vi such that x∗j,i > 0.

Proof. If there exists an MFI i such that for all villages j ∈ Vi, x
∗
j,i = 0,

then this violates the first constraint of (PM) in the following way. By Prop-
erty 3.2.2, r∗i > 0, and by our modeling assumption, Ti > 0. Therefore,

r∗i

(
Ti −

∑
j∈Vi x

∗
j,i

)
> 0.

3.2.3 Eisenberg-Gale Formulation

We now present an Eisenberg-Gale convex program formulation of a restricted
case of our model where the diversification parameter λ = 0 and all the villages
j, 1 ≤ j ≤ m, have the same revenue generation function gj(l) := d+el, where
d > 0 and e ≥ 1 are constants. We will first prove that this case is equivalent
to the following Eisenberg-Gale convex program [33, 118], which will give us
the existence of an equilibrium point and the uniqueness of the equilibrium
interest rates as a corollary.

Let us explain our overall plan here. We will first write down the Eisenberg-
Gale convex program (PE) below. We will then make a connection between
an equilibrium point (x∗, r∗) of a microfinance market and the variables of
program (PE). In particular, we will define x∗j,i ≡ z∗j,i and express r∗i in terms
of certain dual variables of (PE). Once we do that, we will show that the
equilibrium conditions of (PM) and (PV ) for the above mentioned special case
are equivalent to the Karush-Kuhn-Tucker (KKT) conditions of (PE). Let us
begin by writing down the Eisenberg-Gale program (PE).6

min
z

m∑
j=1

− log
∑
i∈Bj

zj,i

subject to
∑
j∈Vi

zj,i − Ti ≤ 0, 1 ≤ i ≤ n (PE)

zj,i ≥ 0, 1 ≤ i ≤ n, j ∈ Vi

Following are the Karush-Kuhn-Tucker (KKT) conditions for (PE).

6This is not exactly the convex program that Eisenberg and Gale defined [33, p. 166],
but rather a simple variant of that.
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Stationary condition:

∇z

 m∑
j=1

− log
∑
i∈Bj

zj,i

+
n∑
i=1

γi∇z

(∑
j∈Vi

zj,i − Ti

)
+

n∑
i=1

∑
j∈Vi

µj,i∇z (−zj,i) = 0

Evaluating this at z∗j,i for any i ∈ {1, ..., n} and any j ∈ Vi, we obtain the
following.7

− 1∑
k∈Bj

z∗j,k
+ γ∗i − µ∗j,i = 0 (3.1)

Primal feasibility:∑
j∈Vi

z∗j,i − Ti ≤ 0, 1 ≤ i ≤ n

z∗j,i ≥ 0, 1 ≤ i ≤ n j ∈ Vi

Dual feasibility:

γ∗i ≥ 0, 1 ≤ i ≤ n

µ∗j,i ≥ 0, 1 ≤ i ≤ n, j ∈ Vi

Complementary slackness:

γ∗i

(∑
j∈Vi

z∗j,i − Ti

)
= 0, 1 ≤ i ≤ n (3.2)

µ∗j,i
(
−z∗j,i

)
= 0, 1 ≤ i ≤ n, j ∈ Vi (3.3)

Note that if γ∗i > 0, then (3.2) gives us the following.∑
j∈Vi

z∗j,i − Ti = 0, 1 ≤ i ≤ n (3.4)

2
Furthermore, if z∗j,i > 0 then (3.3) implies µ∗j,i = 0. In that case, we obtain

the following from the stationary condition (3.1).

γ∗i =
1∑

k∈Bj
z∗j,k

(3.5)

7The quantities at an optimal solution are denoted by ∗.
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The following properties are obtained from the optimality condition of the
above Eisenberg-Gale convex program (PE).

Lemma 3.2.5. For any i, there exists a j ∈ Vi such that z∗j,i > 0.

Proof. Suppose that for some i, and for all j ∈ Vi, z∗j,i = 0. This contradicts
the optimality condition, because Ti > 0, and

∑
j∈Vi z

∗
j,i = 0. Thus,

∑
j∈Vi z

∗
j,i−

Ti < 0, and
∑m

j=1− log
∑

i∈Bj
z∗j,i can be further decreased by increasing the

value of z∗j,i for some j.

Let us define I∗(j) ≡ {i | z∗j,i > 0}. We will later see that this represents
the set of MFIs from which a village j borrows at an equilibrium point.

Lemma 3.2.6. For any j, |I∗(j)| > 0.

Proof. Suppose that z∗j,i = 0 for some j and for all i ∈ Bj. Rearranging the
terms of (3.1), we have for any i ∈ Bj:

γ∗i =
1∑

k∈Bj
z∗j,k

+ µ∗j,i.

Since µ∗j,i ≥ 0 by the dual feasibility condition, we have γ∗i = +∞ from the
above expression. This contradicts the complementary slackness condition
(3.2), because Ti > 0 by our modeling assumption. Therefore, for any j and
some i ∈ Bj, z

∗
j,i > 0, which completes the proof.

Another way of proving Lemma 3.2.6 is to note that if z∗j,i = 0 for some
j and for all i ∈ Bj, then the objective function of the Eisenberg-Gale pro-
gram (PE) goes to +∞. This cannot happen, because (PE) is minimizing the
objective function, and the program is guaranteed to have a bounded optimal
solution (for example, one bounded feasible solution is achieved by zj,i = Ti

|Vi|
for all i ∈ {1, ..., n} and all j ∈ Vi).

We can use Lemma 3.2.6 to rewrite (3.5) in terms of I∗(j). For any j and
any i∗(j) ∈ I∗(j), the following holds.

γ∗i∗(j) =
1∑

k∈Bj
z∗j,k

(3.6)

To present an Eisenberg-Gale formulation of our market model given by
(PM) and (PV ), we define the following terms.

x∗j,i ≡ z∗j,i, for all i ∈ {1, ..., n} and all j ∈ Vi (3.7)

r∗i∗(j) ≡ γ∗i∗(j)d+ e− 1, for all j ∈ {1, ...,m} and all i∗(j) ∈ I∗(j) (3.8)
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Note that in (3.8) above, r∗i has not been explicitly defined for all i ∈
1, ..., n. We first prove that ∪j∈{1,...,m}I∗(j) = {1, ..., n} (that is, for all i we
have defined r∗i above). We then prove that if i∗(j) = i∗(j′), where i∗(j) ∈ I∗(j)
and i∗(j′) ∈ I∗(j′) for j 6= j′, then r∗i∗(j) = r∗i∗(j′) (that is, if the same i appears

in two different I∗(.), then the definition of r∗i is consistent with respect to
these two cases).

For the first claim, suppose that for some i, r∗i has not been defined. This
implies that for all j, i /∈ I∗(j). That is, for all j, z∗j,i = 0, which violates
Lemma 3.2.5.

For the second claim, consider the definition of r∗i∗(j).

r∗i∗(j) = γ∗i∗(j)d+ e− 1

= γ∗i∗(j′)d+ e− 1 [Since i∗(j) = i∗(j′)]

= r∗i∗(j′) [By definition]

Next, we use the definitions (3.7) and (3.8) above to show that none of the
villages has any left-over money.

d =
1 + r∗i∗(j) − e

γ∗i∗
(
j)

[Rearranging (3.8)]

= (1 + r∗i∗(j) − e)
∑
k∈Bj

z∗j,k [Using (3.6)] (3.9)

Next, we show that for any i∗(j) ∈ I∗(j),

γ∗i∗(j) = min
k∈Bj

γ∗k.

By Equation (3.6), for any i∗(j) ∈ I∗(j),

γ∗i∗(j) =
1∑

k∈Bj
z∗j,k

.

For any l ∈ Bj , we obtain from the stationary condition,

γ∗l ≥
1∑

k∈Bj
z∗j,k

, since µ∗j,l ≥ 0.
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Therefore, for any i∗(j) ∈ I∗(j),

γ∗i∗(j) = min
k∈Bj

γ∗k.

Thus, using the definition of r, r∗i∗(j) = mink∈Bj
r∗k. Furthermore, for any

l ∈ Bj − I∗(j), z∗j,l = 0. We obtain from (3.9),

d = (1 + min
l∈Bj

r∗l − e)
∑
k∈Bj

z∗j,k

=
∑
k∈Bj

z∗j,k(1 + r∗k − e).

Using the definition of x∗j,k from (3.7),

d =
∑
k∈Bj

x∗j,k(1 + r∗k − e).

Furthermore, by Lemma 3.2.5, for any MFI i, there exists a village j ∈ Vi
such that z∗j,i > 0. Thus, we get µ∗j,i = 0. The stationary condition gives us

γ∗i =
1∑

k∈Bj
z∗j,k

> 0.

That is, for each MFI i, γ∗i > 0. Therefore, r∗i > 0 by (3.8). Also, (3.4)
holds for γ∗i > 0. Again, using the definition of x∗j,i from (3.7), the other
equilibrium condition for our model can be obtained from (3.4):

Ti −
∑
j∈Vi

x∗j,i = 0.

Thus, we have the following theorem and corollary.

Theorem 3.2.7. The special case of microfinance markets with identical vil-
lages and no loan portfolio diversification, has an equivalent Eisenberg-Gale
formulation.

Corollary 3.2.8. For the above special case, there exists an equilibrium point
with unique interest rates [33] and a combinatorial polynomial-time algorithm
to compute it [118].

Theorem 3.2.7 allows us to make a connection between a more restricted
case of our model and the linear Fisher model. When λ = 0, and all the
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villages have an identical revenue generation function and all the MFIs have
the same total amount of money, our model is indeed a graphical linear Fisher
model where all the utility coefficients are set to 1. The reader is referred to
the convex program 5.1 [118] and the Eisenberg-Gale formulation (PE) above
to verify this.

3.2.4 Equilibrium Properties of General Case

We are now back to the general case of the problem, formally specified by
mathematical programs (PM) and (PV ) in Section 3.2.1. We begin with an
expository discussion on the village objective function, which can be rewritten
as
∑

i∈Bj
xj,i−λ

∑
i∈Bj

xj,i log xj,i. While the first term wants to maximize the
total amount of loan, the second term wants, in colloquial terms, “not to put all
the eggs in one basket.” For this reason, we name it the diversification term.
The extent of this diversification is controlled by the exogenous parameter
λ ≥ 0. However, if λ is sufficiently small, then the first term dominates the
second term, i.e.,

∑
i∈Bj

xj,i ≥ λ
∑

i∈Bj
xj,i log xj,i. This roughly says that it

is more important to the villages to obtain as much loan as possible than to
diversify its loan portfolio. We deem this as a desirable property of the model.
For theoretical purposes, it would suffice to assume the following.

Assumption 3.2.1.

0 ≤ λ ≤ 1

2 + log Tmax

where Tmax ≡ maxi Ti and w.l.o.g., Ti > 1 for all i.

The following equilibrium properties will be used in the next section.

Property 3.2.9. The first constraint of the village-side optimization program
(PV ) must be tight at any equilibrium point.

Proof. Suppose that this is not the case, i.e., at an optimal solution x∗j for
some village j,

∑
i∈Bj

x∗j,i(1 + ri − ej) < dj. We will show that village j
can improve its objective function by slightly increasing x∗j,i for any i ∈ Bj

while maintaining the constraint. The derivative of the village-side objective
function w.r.t. xj,i is

1− λ log x∗j,i − λ

which is positive (by Assumption 3.2.1 and equilibrium condition x∗j,i ≤ Ti).
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We define eimax ≡ maxj∈Vi ej and dimax ≡ maxj∈Vi dj and obtain the follow-
ing bounds on interest rates.

Property 3.2.10. At any equilibrium point, for each MFI i, eimax− 1 < r∗i ≤
|Vi|dimax

Ti
+ eimax − 1.

Proof. Proof of eimax−1 < r∗i is similar to the proof of Property 3.2.2. Although
compared to Property 3.2.2, we have a different objective function here, the
proof of Property 3.2.9 shows that increasing xj,i also increases the village
objective function.

For the proof of the upper bound, the total amount of loan that villages
in Vi can seek from MFI i is at most

∑
j∈Vi

dj
1+ri−ej (this bound is obtained

using the first constraint in the village-side optimization program (PV ), when
each village in Vi seeks loan only from MFI i). We have the following at an
equilibrium point.

Ti ≤
∑
j∈Vi

dj
1 + r∗i − ej

≤ dimax
∑
j∈Vi

1

1 + r∗i − ej

≤ dimax
|Vi|

1 + r∗i − eimax

Rewriting this, we obtain r∗i ≤
|Vi|dimax

Ti
+ eimax − 1.

3.3 Computational Scheme

In this section, we will primarily focus on two computational problems—
learning the parameters of the model from data and designing an algorithm to
compute an equilibrium point. Although in practice, we first solve the learn-
ing problem before going on to computing an equilibrium point, for clarity of
presentation, we will reverse the order here.

3.3.1 Computing an Equilibrium Point

We will now give a constructive proof of the existence of an equilibrium point
in the microfinance market defined by (PM) and (PV ) in Section 3.2.1. The

110



input to the problem is specified by the diversification parameter λ > 0 (the
case of λ = 0 has been discussed earlier), the revenue generation parameters
ej and dj of each village j, and the total disbursement amount Ti of each MFI
i. The goal is to compute an equilibrium point consisting of an interest rate
r∗i for each MFI i and a vector of loan allocations x∗j for each village j. We
will also prove that an equilibrium point always exists. But first, let us give
a brief outline of the equilibrium computation scheme in Algorithm 1. The
ensuing technical results will be presented in the context of this outline.

Algorithm 1 Outline of Equilibrium Computation

1: For each MFI i, initialize ri to eimax − 1.
2: For each village j, compute its best response xj.
3: repeat
4: for all MFI i do
5: while Ti 6=

∑
j∈Vi xj,i do

6: Change ri as described later.
7: For each village j ∈ Vi, update its best response xj reflecting

the change in ri.
8: end while
9: end for

10: until no change in ri occurs for any i

Before going on to the details of how to change ri in Line 6 of Algorithm 1,
we will characterize the best response of the villages used in Line 7.

Lemma 3.3.1. (Village’s Best Response) Given the interest rates of all
the MFIs, the following is the unique best response of any village j to any MFI
i ∈ Bj:

x∗j,i = exp

(
1− λ− α∗j (1 + ri − ej)

λ

)
(3.10)

where α∗j ≥ 0 is the unique solution to

∑
i∈Bj

exp

(
1− λ− α∗j (1 + ri − ej)

λ

)
(1 + ri − ej) = dj. (3.11)

Proof. Following is the Lagrangian of the village-side optimization program
(PV ) for village j:
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L(xj, αj) =−
∑
i∈Bj

xj,i − λ
∑
i∈Bj

xj,i log
1

xj,i

+ αj

∑
i∈Bj

xj,i(1 + ri − ej)− dj

 .

At an optimal solution, we have δL
δxj,i

= 0 for any i ∈ Bj. This is expanded

below:

−1− λ log
1

x∗j,i
+ λx∗j,i

1

x∗j,i
+ αj(1 + ri − ej) = 0

⇔ x∗j,i = exp

(
1− λ− αj(1 + ri − ej)

λ

)
.

By Property 3.2.9,
∑

i∈Bj
x∗j,i(1 + ri − ej) = dj. Substituting the expression

for x∗j,i we obtain the second equation claimed in the statement. Moreover,
α∗j must be unique; otherwise, by the above expression for x∗j,i, we would have
multiplicity in the best response of village j, which is precluded by the convex
optimization (PV ).

In the above characterization of the village best response, as soon as the
interest rate ri of some MFI i changes in Line 6 of Algorithm 1, both the best
response allocation x∗j,i and the Lagrange multiplier α∗j change in Line 7, for
any village j ∈ Vi. Next, we show the direction of these changes.

Lemma 3.3.2. Whenever ri increases (decreases) in Line 6, xj,i must decrease
(increase) for every village j ∈ Vi in Line 7 of Algorithm 1.

Proof. We prove the case of ri increasing. The other case can be proved in
the same way. First, observe that we cannot simply invoke Equation (3.10) to
prove the statement, because α∗j has also changed once ri has changed and the
direction of change of α∗j is not immediately clear from Equation (3.11).

Here, we treat the terms ri, x
∗
j,i, and α∗j as names of variables instantiated

with specific values at each iteration of Lines 6 and 7 of Algorithm 1. Suppose
that the value of ri has been increased in Line 6. Suppose, for a contradiction,
that in response to this increase, some village j ∈ Vi has either increased
its value of x∗j,i or kept it unchanged in Line 7. By Property 3.2.9, the first
constraint of the village-side program (PV ) is tight at any optimal solution,
including village j’s previous best response in Line 7 (i.e., the old values of
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xj just before the current update in Line 7). Therefore, in the current best
response, village j must decrease the value of x∗j,k for some k ∈ Bj (otherwise
that constraint cannot be satisfied, because ri has increased). Rewriting the
expression of x∗j,i given in Lemma 3.3.1 in terms of α∗j , we obtain the first
equation below. The second equation follows similarly.

α∗j =
1− λ− λ log x∗j,i

1 + ri − ej
(3.12)

α∗j =
1− λ− λ log x∗j,k

1 + rk − ej
(3.13)

By Equation (3.12), our assumption that x∗j,i has increased in response to
the increase of ri implies that the value of α∗j has decreased from its previous
one. Therefore, by Equation (3.13), the value of x∗j,k must increase, which gives
us a contradiction (note that rk has not been changed, i.e., its value remains
the same as the one during village j’s previous best response). Therefore,
whenever ri increases in Line 6, x∗j,i must decrease, for all j ∈ Vi.

The next lemma is a cornerstone of our theoretical results. Here, we use
the term turn of an MFI to refer to the iterative execution of Line 6, wherein
an MFI tries to set its interest rate to make supply equal demand. At the
end of its turn, an MFI has successfully set its interest rate to achieve this
objective.

Lemma 3.3.3. (Strategic Complementarity) Suppose that an MFI i has
increased its interest rate at the end of its turn. Thereafter, it cannot be the
best response of any other MFI k to lower its interest rate when its turn comes
in the algorithm.

Proof. Consider a village j ∈ Vi. By Lemma 3.3.2, when an MFI i increases
its interest rate in Line 6, village j must decrease x∗j,i in Line 7. Considering
Equation (3.12), it may at first seem possible that the value of α∗j can increase,
decrease, or even remain the same, depending on how much x∗j,i has decreased.
However, we will next show that α∗j cannot increase. For this, we define

β∗j ≡
α∗j
λ

and ρj,i ≡ 1 + ri − ej and rewrite Equation (3.11) as follows.
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∑
i∈Bj

exp

(
1− λ
λ

)
exp

(
−β∗j ρj,i

)
ρj,i = dj

⇔
∑
i∈Bj

ρj,i

exp
(
β∗j ρj,i

) = dj exp

(
−1 + λ

λ

)
Here, the right hand side is constant, since λ and dj are both constants.

Consider the left hand side. It suffices to show that if we increase ρj,i (i.e.,
increase ri) by any amount, but keep β∗j unchanged, then the left hand side
must decrease.8 In this case, only one term of the sum on the left hand side
changes:

ρj,i

exp(β∗j ρj,i)
. We show that the derivative of this term w.r.t. ρj,i is

non-positive.

1

exp(β∗j ρj,i)
−

β∗j ρj,i

exp(β∗j ρj,i)
≤ 0

⇔ ρj,iβ
∗
j ≥ 1

⇔ (1 + ri − ej)
α∗j
λ
≥ 1

⇔ 1− λ− λ log x∗j,i ≥ λ, by Equation (3.12)

⇔ λ ≤ 1

2 + log x∗j,i

which holds by Assumption 3.2.1. Therefore, αj cannot increase when ri in-
creases.

Since αj can only decrease when ri increases, using Equation (3.13) we
obtain that in Line 7 of the algorithm, village j cannot decrease x∗j,k for any
k 6= i ∈ Bj. Thus, when its next turn comes, MFI k can only find a rise in
demand for its loans, which can only exceed Tk, since at the end of every turn,
an MFI successfully sets its interest rate so that the demand for its loan equals
its supply. Therefore, by Lemma 3.3.2, decreasing its interest rate cannot be
MFI k’s best response.

In essence, Lemma 3.3.2 is a result of strategic substitutability [32] between
the MFI and the village sides, while Lemma 3.3.3 is a result of strategic com-
plementarity [23] among the MFIs. We will see that our algorithm exploits
these two properties as we fill in the details of Lines 6 and 7 next.

8Note that increasing β∗j will only further decrease the left hand side.
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Line 6: MFI’s Best Response

By Lemma 3.3.2, the total demand for MFI i’s loan monotonically decreases
with the increase of ri. Therefore, a simple search, such as a binary search,
between the upper and the lower bounds of ri as stated in Property 3.2.10,
can efficiently find the “right” value of ri that makes supply equal demand for
i. For example, in the first iteration of the while loop, in Line 6, ri is set to

the midpoint rmi =
rli+r

h
i

2
between its lower bound rli and upper bounds rhi .

Then the best response of the villages are computed in the next line. If still

Ti 6=
∑

j∈Vi xj,i then in the next iteration, in Line 6, ri is set to either
rli+r

m
i

2

or
rmi +rhi

2
depending on whether Ti >

∑
j∈Vi xj,i or the opposite, respectively.

The search progresses in this way until Ti =
∑

j∈Vi xj,i. As an implementation
note, to circumvent issues of numerical precision, we can adopt the notion of
ε-equilibrium point, where the market ε-clears (i.e., the absolute value of the
difference between supply and demand for each MFI i is below ε) and each
village plays its ε-best response (i.e., it cannot improve its objective function
more than ε by changing its current response). Having said that, all of our
results hold for ε = 0.

Line 7: Village’s Best Response

We use Lemma 3.3.1 to compute each village j’s best response x∗j,i to MFIs
i ∈ Bj. However, Equation (3.10) requires computation of α∗j , the solution to
Equation (3.11). We can exploit the convexity of the left hand side of Equation
(3.11) to design a simple search algorithm to find α∗j up to a desired numerical
accuracy.

Next, we make the following statement about our constructive proof of the
existence of an equilibrium point.

Theorem 3.3.4. There always exists an equilibrium point in a microfinance
market specified by programs (PM) and (PV ).

Proof. Algorithm 1 begins with initial values of interest rates arbitrarily close
to their lower bound established in Property 3.2.10. Thereafter, by Lemma 3.3.3,
these interest rates can only increase, and by Lemma 3.3.1, every village has a
unique best response to these interest rates. Now, the interest rates are upper
bounded by Property 3.2.10. Therefore, by the well-known monotone conver-
gence theorem, the process of incrementing the interest rates must come to an
end. And that point of termination must be an equilibrium point.
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3.3.2 Learning the Parameters of the Model

We take an optimization approach to learning the parameters of the model.
The inputs to the parameter learning problem are the spatial structure of the
market (specified by Bj for all village j, or equivalently, by Vi for all MFI
i), the observed loan allocations x̃j,i for all village j and all MFI i ∈ Bj, the
observed interest rates r̃i and total supply Ti for all MFI i. The objective
of the learning scheme is to instantiate parameters ej and dj of the revenue
generation function of each village j, as well as to compute allocations x∗

and interest rates r∗ that satisfy equilibrium conditions. In essence, the goal
is to learn the parameters of the model so that an equilibrium point closely
approximates the observed data.9 Using index i for MFIs and j for villages,
the optimization program is formally defined below.

min
e,d,r

∑
i

∑
j∈Vi

(x∗j,i − x̃j,i)2 + C
∑
i

(r∗i − r̃i)2

such that

for all j,

x∗j ∈ arg maxxj

∑
i∈Bj

xj,i + λ
∑
i∈Bj

xj,i log
1

xj,i

s. t.
∑
i∈Bj

xj,i(1 + r∗i − ej) ≤ dj

xj ≥ 0 (3.14)

ej ≥ 1, dj ≥ 0∑
j∈Vi

x∗j,i = Ti, for all i

ri ≥ ej − 1, for all i and all j ∈ Vi

Above is a nested (bi-level) optimization program. The term C in the
objective function is a constant. In the interior optimization program, we
always make sure that x∗ are best responses of the villages, with respect to
the model parameters and interest rates r∗. In fact, we exploit the results
of Lemma 3.3.1 to compute x∗ more efficiently. That is, instead of search-
ing for xj,i’s that optimize the interior objective function, it suffices to search
for Lagrange multipliers αj in a much smaller search space and then apply

9Note that we do not assume the observed data to correspond to an equilibrium point,
but rather want to instantiate our model such that it would lead to an equilibrium point
that is “close” to the observed data.
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Equation (3.10) to compute x∗. We used the interior-point algorithm of Mat-
lab’s large-scale optimization package to solve the above program (the interior
optimization program has been solved using the results of Lemma 3.3.1).

Initialization plays a big role in solving this problem fast, especially in large
instances (e.g., the instance with data from Bangladesh that has thousands
of constraints and variables). If we initialize the parameters arbitrarily, then
the interior point algorithm spends an enormous amount of time searching
for a feasible solution. Fortunately, we can avoid this issue by computing a
feasible solution first. For this, with arbitrary values of e and d as inputs,
we run Algorithm 1 and compute an initial equilibrium point with respect to
the inputs of e and d. Subsequently, the learning procedure updates e and
d compute an optimal solution. Using such an initial feasible solution to the
above optimization problem, we observed a much faster convergence.

In the next section, we will show that the above learning procedure does
not overfit the real-world data. We will also highlight the issue of equilibrium
selection for parameter estimation.

3.4 Empirical Study

Our empirical study is based on microfinance data of Bangladesh and Bolivia.
The reason we have chosen these two countries is that over time, microfinance
programs in these two countries have behaved very much differently with re-
spect to competition and interest rates [101].

3.4.1 Case Study: Bolivia

Data

We have obtained microfinance data of Bolivia from several sources, such as
ASOFIN,10 the apex body of MFIs in Bolivia, and the Central Bank of Bo-
livia.11 We were only able to collect somewhat coarse, region-level data. The
data, dated June 2011, consists of eight MFIs operating in 10 regions. These
MFIs (and their interest rates) are: Bancosol (21.54%), Banco Los Andes
(19.39%), Banco FIE (20.49%), Prodem (23.55%), Eco Futuro (29.25%), Fort-
aleza (21.22%), Fassil (22.38%), and Agro Capital (21%).The number of edges
in the bipartite network is 65, out of a maximum possible 80.

10http://www.asofinbolivia.com
11http://www.bcb.gob.bo/
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Learning the Parameters of the Model

Given the exogenous parameter λ, the learning scheme above estimates the
parameters ej and dj such that an equilibrium point of the game is a close
approximation of the observed data. Let us first explain how we choose the
exogenous diversification parameter λ.

Figure 3.1 shows how the objective function of the optimization program
varies as a function of λ. It shows that for a range of smaller values of λ, the
objective function value of the learning program is consistently small (note
that the optimization routine wants to minimize the objective function). As λ
grows, the objective function value oscillates a lot and is sometimes very high.

Also shown in Figure 3.1 is how the interest rates become dissimilar as λ is
varied. For that, we first define a negative entropy term, C

∑
i
ri
Z

log Z
ri

, where
Z =

∑
i ri, where C is a constant set to 100. Here, the negative entropy quan-

tifies the similarity among the interest rates. That is, high negative entropy
means the interest rates among the MFIs are more similar. As we can see, at
relatively low values of λ, the interest rates are similar to each other and as λ
becomes high, they become very much dissimilar at some points.
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Figure 3.1: Optimal objective function values and “negative entropy” of in-
terest rates as λ varies. This shows that the objective function value becomes
large (which is undesirable) as λ grows.

We choose λ = 0.05, because at this level of λ, the objective function value
of the learning optimization is low as well as stable and the interest rates are
also allowed to be relatively dissimilar. As we will show later, dissimilarities
among the interest rates of the MFIs are very often observed in the real-world
data.

The learned values of the parameters ej and dj for villages j in the Bolivia
market capture the variation among the villages with respect to the revenue
generation function. Although the rate ej of revenue generation varies only
from 1.001 to 1.234 among the villages, the variation in dj is much greater.
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The individual loan allocations learned from data closely approximate the
observed allocations. In fact, the average relative deviation between these
two allocations is only 4.41% (relative deviation is calculated by

abs(xj,i−x̃j,i)∑
i x̃j,i

).

Figure 3.2 shows this. The 45o line is the locus of equality between these two
allcoations.

Figure 3.2: Learned allocations vs. observed allocations. This shows that the
learned allocations closely approximate the allocations in the observed data.

The learned model matches the total loan allocations of the MFIs due to
the constraint of the program. As shown in Figure 3.9, the learned interest
rates are, however, slightly different from the observed rates.

Issues of Bias and Variance.
Our dataset consists of a single sample. As a result, the traditional ap-

proach of performing cross validation using hold-out sets or plotting learning
curves by varying the number of samples would not work in our setting. To
investigate whether our model overfits the data, we have applied the following
procedure of systematically introducing noise to the observed data sample. In
the case of overfitting, increasing the level of noise would lead the equilibrium
outcome to be significantly different from the observed data.

We use a parameter ν to control the level of noise. For any fixed ν, we
derive noisy samples by modifying each non-zero observed allocation x̃j,i by
adding to it a random noise (under certain noise models to be described later).
We denote the resulting noisy allocation by xνj,i and treat the newly constructed
noisy dataset as a training set and the observed dataset as test. We learn the
parameters of the model using the training set. We then find an equilibrium
allocation x∗ using Algorithm 1.12 We compute the following mean relative

12Note that this equilibrium allocation would have remained the same all the time had
we treated the the observed dataset as the training set.
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deviation as the test error: 1
n

∑
i

1
|Vi|
∑

j

abs(x∗j,i−x̃j,i)
Ti

. The training error is com-

puted similarly (by replacing x̃j,i by xνj,i). For each noise level ν, we perform
the whole procedure a number of times and calculate the average error.

Gaussian Noise Model. In this model, we obtain xνj,i by adding to
each non-zero observed allocation x̃j,i a Gaussian random noise of mean 0
and standard deviation νσ(i), where σ(i) is the standard deviation of the
allocations of MFI i across all villages in which it operates. For the Bolivia
dataset, we find that varying the noise level ν between 0 and 1 and taking the
average over 25 trials, both the training and test errors are below 5.83% and
are close to each other (i.e., within the 95% confidence interval of each other).
The learning curve, shown in Figure 3.3, does not suggest overfitting.

Figure 3.3: Learning curve for the Bolivia dataset under Gaussian random
noise (vertical bars denote 95% CI). The learning curve does not suggest over-
fitting.

Dirichlet Noise Model. In this noise model, we derive noisy allocations
while keeping the total amount of loan disbursed by each MFI the same as its
observed total amount. We follow the commonly used procedure of deriving
a Dirichlet distribution from a gamma distribution [43, Ch. 18]. We control
the noise (i.e., variance) of the Dirichlet distribution using the parameter ν
in the following way. For each MFI i, xνi = T (i) × Dir(νx̃i).

13 As the ν > 0
increases, the variance of the distribution Dir(νx̃i) decreases. Varying ν from
2−5 (high variance) to 215 (low variance) and taking the average over 50 trials at
each ν, we found that the training and the test errors are within the confidence
intervals of each other across the whole spectrum of noise levels. The maximum
test error of 8.83% occurs at ν = 2−5 where we also get the maximum offset of
the 95% confidence interval, which is 0.66%. Once again, the learning curve,
shown in Figure 3.4, does not suggest overfitting.

13Slightly abusing the notation, the vector x̃i corresponds to non-zero observed alloca-
tions only.
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Figure 3.4: Learning curve for the Bolivia dataset under the Dirichlet noise
model. Logarithm of the noise parameter ν is shown on the x-axis (vertical
bars denote 95% CI). The learning curve in this noise model does not indicate
overfitting as well.

Equilibrium Selection.
In practice, equilibrium selection is an important issue. In general, we

cannot rule out the possibility of multiplicity of equilibria. In such cases, our
learning scheme biases its search for an equilibrium point that most closely
explains the data. One important question is: does the equilibrium point
that we compute change drastically when noise is added to our data? In
other words, how robust is our scheme? To answer this, we extend the above
experimental procedure using the following bootstrapping scheme.14

Suppose that for each noise level ν, we have t trials (i.e., t noisy training
sets, each derived from the observed dataset using a particular noise model
with the given parameter ν). For each noise level ν, we iterate the follow-
ing procedure M times. At each iteration k, we uniformly sample t times
(with replacement, of course) from the t noisy training sets and then com-

pute the following relative mean equilibrium allocations: µ̂j,i = 1
t

∑t
l=1

x
∗(l)
j,i

Ti

(here, x
∗(l)
j,i denotes equilibrium allocation for the l-th training set). Within

the same k-th iteration, we compute the following average deviation from
mean: δ̂(k) = 1

n

∑
i

1
|Vi|
∑

j
1
t

∑
l abs(x

∗(l)
j,i /Ti− µ̂j,i). This quantity signifies the

average distance of the equilibria of the sampled examples from the mean equi-
librium. Now, for each value of ν, we average this distance measure over these
M iterations. We perform this bootstrapping procedure for various values of
ν.

14In the previous experiment on the issue of overfitting, the focus was on the distance
between an equilibrium point and the data. Now, our focus is on the distance between
different equilibrium points when noise is added to the data.
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Figure 3.5: Average deviation of the equilibrium points from the mean for the
Bolivia dataset under the Gaussian noise model (vertical bars denote 95% CI).
It shows that the equilibrium point computed is robust with respect to noise.

Figure 3.6: Average deviation of the equilibrium points from the mean for
the Bolivia dataset under the Dirichlet noise model. Logarithm of the noise
parameter ν is shown on the x-axis. Vertical bars denote 95% CI. It also shows
the robustness of the computed equilibrium point although the noise model is
different—Dirichlet.

For the Bolivia dataset, under the Gaussian noise model (described above)
and using t = 25 and M = 100, we found that this average distance varies
from 0.79% to 0.96%, with the offset of the 95% CI ranging from 0.015% to
0.026% for varied noise levels 0 < ν ≤ 1. On the other hand, for the Dirichlet
noise model and using t = 50 and M = 100, the maximum average distance is
6.35%, which happens at a very high variance parameterized by ν = 2−5. The
minimum average distance of 0.10% happens at low variance with ν = 214.
The offset of the 95% CI ranges from 0.001% to 0.05% across all the noise
levels considered. The plots for these two noise models are shown in Figures
3.5 and 3.6. Moreover, under both noise models, the equilibrium interest rates
do not deviate much from the mean either. These suggest that an equilibrium
point does not change much when noise is introduced to the data and that our
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scheme is robust with respect to noise in the real world data.

Equilibrium Computation

We discuss equilibrium computation on the model learned with λ = 0.05.
First, we would like to remind the reader about the point we made regard-
ing equilbrium selection. In practice, we have observed that the equilibrium
computed by Algorithm 1 converges to the learned values of x and r, even if
we start with different initial values. For example, Figure 3.7 shows the case
of MFI Bancosol’s convergence to the same equilibrium interest rate despite
different initialization (other interest rates were also differently initialized).
This equilibrium interest rate is the same as the learned one. Not only that,
as Figure 3.8 shows individual loan allocations were also almost the same.

Figure 3.7: Two best response dynamics of MFI Bancosol with different ini-
tialization. Both of these converged to the same solution.

Finally, Figure 3.9 shows a comparison among the observed, learned, and
equilibrium interest rates.

3.4.2 Case Study: Bangladesh

Data

We have obtained microfinance data, dated December 2005, from Palli Karma
Sahayak Foundation (PKSF), which is the apex body of NGO MFIs in Bangladesh.
There are seven major MFIs (or collection of MFIs) operating in 464 upazillas
or collection of villages. The data can be simplified as a 464-by-7 matrix where
an element in location (j, i) denotes the number of borrowers that MFI i has in
village j. The bipartite network-structure induced by this data is very dense,
consisting of 3096 edges out of a maximum possible 3248.
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Figure 3.8: Learned allocations vs. equilibrium allocations. The two allo-
cations being almost identical, shows that the learning algorithm was able to
capture an equilibrium point using the inner part of the nested optimization
program.

The seven major MFIs or bodies of MFIs (and their flat interest rates) are
BRAC (15%), ASA (15%), PKSF partner organizations (12.5%), Grameen
Bank(10%), BRDB (8%), Other government organizations (8%), and Other
MFIs (12.5%) [101, 120].

Learning the Parameters of the Model

Due to the size of Bangladesh data, we are posed with the problem of solving
a nonlinear optimization problem of the order of thousands of variables and
constraints. As discussed above, the interior point algorithm is initialized with
a feasible solution, which makes computation much faster. Still, solving the
problem takes time in the order of hours, compared to minutes for the Bolivia
case.

Similar to the Bolivia case, the learned parameters ej (rate of revenue
generation) and dj (revenue from other sources) show variation among the
villages j. This is particularly the case with the estimated parameter dj, while
the estimation of ej varies around 1.07 for all the villages. A more detailed
analysis of the estimated parameters (for example, their correlation with access
to resources such as rivers) is left for future work.

We also obtain a close approximation of observed individual allocations in
the learned model (see Figure 3.10. For example, the average deviation is only
5.54% when λ = 0.05. The market clears in the learned model, and as shown
in Figure 3.11, the learned interest rates are close to the actual ones, except
for the government MFIs numbered 5 and 6, which are known to be operating
inefficiently, i.e., with much lower interest rates (8%) than that required for
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Figure 3.9: Comparison among observed, learned, and equilibrium interest
rates. The equilibrium interest rates and the observed interest rates do not
completely match, which is fine as we do not assume the data to be an equilib-
rium point.

sustainability without subsidies [29, 120].

Figure 3.10: Learned allocations vs. observed allocations. Although they are
not exactly the same, the learned allocations do approximate the observed ones.

Equilibrium Computation

Similar to the Bolivia case, we have observed that the best response dynam-
ics of Algorithm 1 quickly converges to the allocations and interest rates of
the learned model. Figures 3.12 shows the similarity between learned and
equilibrium allocations.
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Figure 3.11: Comparison among observed, learned, and equilibrium interest
rates. Again, we do not assume the data to be an equilibrium point. Therefore,
the difference between observed interest rates and equilibrium interest rates
suggests an interesting aspect. That is, some banks are charging less than they
should and some are charging more than they should. The first aspect is well-
established in the literature with respect to government-owned banks. There is
also practical evidence for the second aspect, which will be elaborated when we
study interest rate caps.

3.5 Policy Experiments

The end goal of modeling microfinance economy is to be able to help policy
makers in microfinance sector make decisions, as well as to evaluate possible
interventions in the market. We take the following approach to studying the
effects of interventions and policy decisions. For a specific intervention policy,
e.g., removal of government-owned MFIs, we first learn the parameters of
the model and then compute an equilibrium point, both in the original setting
(before removal of any MFI). Using the parameters learned, we compute a new
equilibrium point after the removal of the government-owned MFIs. Finally,
we study changes in these two equilibria (before and after removal) in order
to predict the effect of such an intervention. As we demonstrate below, our
model can be used in a variety of settings regarding interventions and policy
decisions.

Role of subsidies. It has been well documented that the sustainability of
MFIs very much depend on subsidies [29, 89]. We can ask a related question:
how does giving subsidies to an MFI affect the market? More concretely, how
do equilibrium interest rates change due to subsidies? To answer this, we first
learn the parameters of the model and compute an equilibrium point before the
injection of new subsidies into an MFI. We then add the subsidies to the MFI’s
total amount of loans to be disbursed and compute a new equilibrium point.
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Figure 3.12: Learned allocations vs. equilibrium allocations. The two alloca-
tions are very similar.

90.16

90.18

90.2

90.22

90.24

90.26

90.28

90.3

90.32

0.12

E
nt

ro
py

 

0

5

10

15

20

25

30

35

1 2

In
te

re
st

 R
at

es
 

21

22

23

24

25

26

1 2 3 4 5 6 7 8

In
te

re
st

 R
at

es
 

M F Is 

Before giving subsidies

A fter giving subsidies

Figure 3.13: Equilibrium interest rates before and after adding subsidies to
Eco Futuro (MFI 5). Subsidies help bring down the interest rate of not only
Eco Futuro but also the other MFIs.

For instance, in the Bolivia case, one of the MFIs named Eco Futuro exhibits
very high interest rates both in observed data and at an equilbrium point. A
quick investigation of the data reveals that Eco Futuro is connected to all the
villages, but has very little total loan to be disbursed compared to the leading
MFI Bancosol (which is approximately one-fourth of that of Bancosol). As
shown in Figure 3.13, if we inject further subsidies into Eco Futuro (MFI 5)
to make its total loan amount equal to Bancosol’s (MFI 1), not only do these
two MFIs have the same (but lower than before) equilibrium interest rates, it
also drives down the interest rates of the other MFIs.

Changes in interest rates. Our model computes lower equilibrium interest
rate (around 12%) for ASA than its observed interest rate (15%). It is inter-
esting to note that in late 2005, ASA lowered its interest rate from 15% to
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12.5%, which is close to what our model predicts at an equilbrium point.15

Interest rates ceiling. PKSF recently capped the interest rates of its partner
organization to 12.5% [101], and more recently, the country’s Microfinance
Regulatory Authority has also imposed a ceiling on interest rate at around
13.5% flat.16 Such evidence on interest rate ceiling is consistent with the
outcome of our model, since in our model, 13.4975% is the highest interest
rate at an equilibrium point.

Governement-owned MFIs. It is well-documented in literature that many
of the government-owned MFIs do not have the goal of meeting their operating
costs [120]. Our model shows that an intervention by removing government-
owned MFIs from the market would result in an increase of equilibrium interest
rates by approximately 0.5% for every other MFI. This increase is not that
large partly because the government-owned MFIs supply very little amount of
loan to the market compared to the other MFIs. Yet, it does suggest that less
competition leads to higher interest rates, which is consistent with empirical
findings [101].

Adding new branches. Our model can be used to predict how the market
would be affected if the underlying network structure is changed due to an
MFI’s opening of new branches. For instance, suppose that MFI Fassil in
Bolivia expands its business to all villages (by adding six new branches). It
may at first seem that due to the increase in competition, equilibrium interest
rates would go down. However, since Fassil’s total amount of loans does not
change, the new connections and the ensuing increase in demand actually in-
creases equilibrium interest rates of all MFIs. In other words, supply remained
the same while demand increased. Similar studies can be done for removing
existing branches.

Other types of intervention. Through our model, we can ask more inter-
esting questions such as would an interest rate ceiling be still respected after
the removal of certain MFIs from the market? Surprisingly, according to our
discussion above, the answer is yes if we were to remove government-owned
MFIs. Similarly, we can ask what would happen if a major MFI gets entirely
shut down? We can also evaluate effects of subsidies from the donor’s per-
spective (e.g., which MFIs should a donor select and how should the donor
distribute its grants among these MFIs in order to achieve some goal).

15http://www.adb.org/documents/policies/ microfinance/microfinance0303.asp?p=microfnc.
16http://www.microfinancegateway.org/ p/site/m/template.rc/1.1.10946/
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3.6 Conclusion

In this chapter, we studied causal strategic inference in the setting of network-
structured microfinance markets. The ultimate objective for modeling micro-
finance markets, learning the parameters of the model from real world data,
and designing algorithms for computing equilibrium points was to study policy-
level questions. In fact, one of the major challenges in economic systems is to
understand and predict the effects of policy-making without the possibility or
capability of evaluating the policy in practice.

Our study of microfinance markets can be extended in several ways. First,
the parameters that we learned can be analyzed further using real world evi-
dence. For example, the learned revenue generation function of a village can
be analyzed in correlation with its access to resources, such as nearby rivers.
Also, the temporal aspects of such a model have been left open here.

Our general approach can be extended to many other systems. These
include smart grid systems, which we will discuss a little in the next chapter.
We should mention here that a game-theoretic approach to modeling markets
and estimating the parameters of the model has been taken before and is being
actively pursued now in econometrics. However, one difference between our
approach and the econometrics approach is that ours is more of an algorithmic
approach than an analytic approach, which allows us to use the classical models
of abstract economies that offer little or no analytic insight. On the other hand,
most of the game-theoretic models in econometrics are rooted in the discrete
choice model [77, 78], which makes an analytic approach more amenable.
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Chapter 4

Conclusion

In this dissertation, we have studied causal strategic inference in two contrast-
ing application domains. Our first study focused on social networks, where
we posed several interesting questions, such as identifying the most influential
nodes in a network, as causal strategic inference questions. Our second study
was on microfinance markets, where we studied cause and effect questions
without the privilege of conducting trial-and-error experiments.

Despite their contrasting application areas, these two studies bear a com-
mon signature that can be seen in other domains as well. In a variety of
complex systems, this common property is manifested in the strategic inter-
dependence among the entities of the system. That is, the choice of an action
by an entity depends on the choice of actions by the other entities. The gen-
eral framework presented in this dissertation can be applied to many such
scenarios. Several future directions in this theme are outlined below.

Minimal Targeted Interventions to Reduce Smoking or Obesity

It is a common perception that many of our behavioral aspects, such as smok-
ing, have an inherent element of social influence in them. In fact, one of the
instructions in American Cancer Society’s guide to quitting smoking is: “Ask
family and friends who still smoke not to smoke around you.”1

Medical sociologists have long been interested in investigating a scientific
connection between social influence and such behavioral aspects. In recent
times, some remarkable progress has been made on this issue. Using the Fram-
ingham Heart Study2 data ranging over several decades, Christakis and Fowler
showed that there is indeed scientific evidence of social influence stretching be-

1http://www.cancer.org/healthy/stayawayfromtobacco/guidetoquittingsmoking/guide-
to-quitting-smoking-how-to-quit

2http://www.framinghamheartstudy.org
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yond smoking and touching many other phenomena, such as obesity and even
happiness [24, 25, 40].

One interesting question in these settings is minimal targeted intervention:
Can we reduce the level of smoking or obesity in a community by selecting
a small number of individuals and persuading them to quit smoking or eat
healthy? Identifying such a small set of individuals who can influence others
and thereby make a positive impact on the whole network is a natural appli-
cation of the most influential individuals problem we studied in Chapter 2.
The main challenge in this new setting would be computing or counting Nash
equilibria in very large-scale games.

Causal Strategic Inference in House of Representatives

In our study of influence among the senators in the U.S. Congress, we treated
all the legislation issues the same way. However, the type of legislation issue is
often an important factor for decision-making, as suggested in political science
literature in the context of the U.S. House of Representatives [86]. Developing
computational models to complement the political science literature on it is an
interesting avenue. Causal strategic inference in this setting would, of course,
involve larger games than the ones we considered in Chapter 2.

One possible way of incorporating legislation issues within the influence
games framework would be to consider the Baysian games setting, where leg-
islation issues could be incorporated into the type information of the game.
Two interesting avenues in this setting would be to learn such a game model
from voting data and to perform causal strategic inference on this model,
which can now be conditioned on the type of legislation issue. It would also
be interesting to investigate the interplay between scalability (in terms of the
number of players) and the types of legislation issues. For instance, would the
information about legislation issues help us deal with large games?

Using Game Theory in Smart Grids

With the advent of smart electricity grids, a variety of exciting, new prob-
lems have surfaced in AI, many of which have been nicely reported in a recent
article by Ramchurn et al. [102]. One of the key problems is demand-side man-
agement, where the goal is to achieve a balance between the supply and the
demand. A major challenge in achieving this goal is posed by the bidirectional
nature of the links in a smart grid. That is, any household buyer may also act
as a seller. In this scenario, “developing simulation and prediction tools to al-
low the systemwide consequences of deploying pricing mechanisms and energy
management agents to be assessed by grid operators and suppliers” [102] is a
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grand challenge.
Similar to our study of causal strategic inference in microfinance markets in

Chapter 3, modeling smart grid markets to predict the outcome of the system
with respect to a pricing scheme would be an interesting future direction.
Using such a model of smart grid markets, we can answer various policy-level
intervention questions.

Another interesting direction would be to investigate how the selfish op-
timization of each individual’s own electricity usage affects the “social” or
collective outcomes, such as load-balancing. Formally known as the price of
anarchy, it would indicate how inefficient a system could be in the worst case.
Therefore, it would allow a quantitative comparison of different smart grid
systems. Such a study also has the potential to impact future designs of smart
grid systems.

Causal strategic inference questions like the above and many others shape
the outlook of this dissertation.
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