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Abstract of the Dissertation

Turbulent Mixing in Richtmyer-Meshkov

Instability Using Front-Tracking

by

Pooja Rao

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

Turbulent mixing from hydrodynamical instabilities, such as Richtmyer-

Meshkov (RMI) and Rayleigh-Taylor (RTI) instabilities, plays a critical role

in numerous applications ranging from performance degradation in inertial

confinement capsules to supernova explosions. At high Reynolds numbers

(Re), for which experimental data is not available, numerical simulations are

paramount in studying these instabilities. However, the algorithmic differences

due to differences in numerical modeling often give solutions that are converged

but not unique, that is, different codes converge to different solutions. Thus,

to establish the credibility of the simulation in an objective manner, it is

necessary to fulfill three main requirements: (1) verification (2) validation and

(3) uncertainty quantification.

In this dissertation, we present a “validation by extrapolation” strategy

accompanied with appropriate interface and subgrid modeling. Instead of us-
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ing the traditional pointwise convergence, we use Youngs’ measure, which is

stochastic in nature and is more appropriate for studying turbulent proper-

ties. We also analyze the stochastic properties of turbulence using exponential

distribution across Re and mesh.

The highlight of our numerical algorithm is use of front-tracking in conjunc-

tion with dynamic subgrid scale models. This unique combination has been

successfully verified for RMI and validated for RTI. The use of front-tracking

and a calibration-free SGS model facilitates the smooth extrapolation of LES

simulations from experimentally validated regime to higher Re. This seamless

extrapolation is important in designing simulations that are truly predictive

in nature.

Motivated by the Richtmyer-Meshkov instability in inertial confinement fu-

sion, we carry out a parameter study on a simplified hydrodynamical version

of the ICF problem in 2D. In this parameter study, we vary the Reynolds num-

ber starting from the experimentally achieved highest Re for RTI (35, 000) to

Re =∞ (Euler’s equation/no physical viscosity). At such high Re, turbulent

transport is the dominant mode of transport. We analyze the sensitivity of

the turbulent transport coefficients (calculated via the dynamic SGS) to the

Reynolds number. These coefficients vary little in the high Re range. How-

ever, they are observed to be very sensitive to the changes in subgrid model,

thus emphasizing the importance of using the parameter-free subgrid models

for turbulent mixing problems.

We find that in high Re limit, the turbulent transport coefficients are con-

verged under mesh refinement and have a Kolmogorov-type scaling. We also
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draw quantitative comparisons between the single-shocked incipiently turbu-

lent regime and the reshocked regime with fully developed turbulence.
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Chapter 1

Introduction

1.1 Overview

Turbulent mixing [43, 9] from hydrodynamical instabilities, such as Rayleigh-

Taylor instability (RTI) [37, 51, 15] and Richtmyer-Meshkov instability (RMI)

[42, 4, 5], plays a critical role in numerous engineering as well as natural

applications. The experimental data at such extreme conditions is either not

available or is very limited, i.e., only few quantities can be measured directly

and those measurements may have large errors. In such a scenario, one of the

most important tools to study mixing is numerical simulations. However, they

come with their own set of challenges [46]. As the Re increases, the number of

physical scales also increases and it becomes more computationally expensive

to simulate the problem.

Additionally, the solutions obtained from these simulations may not con-

verge or may not converge to the right solution. On top of that code com-
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parison is hard as algorithmic differences among codes make them converge

to different solutions and thus, different quantities of mix is obtained using

different codes [8]. Numerical diffusion plays an important part in it as it

alters the dynamics of the problem and leads to unphysical mixing. Thus, to

establish the credibility of the simulation in an objective manner, it is neces-

sary to fulfill three main requirements: (1) verification (2) validation and (3)

uncertainty quantification [45, 31].

In this dissertation, we mitigate numerical diffusion by utilizing Front-

tracking (FT) to evolve the contact discontinuity. At high Reynolds number

(Re), the dissipation from small scales is important and is modeled using

the dynamic subgrid scale model (SGS) from Germano [13]. Based on this

unique combination that has been validated extensively for a similar class of

problems at lower Re, we suggest a “validation by extrapolation” strategy to

design simulations that are predictive in the extended Re regime.

The use of Front-tracking and a calibration-free SGS model facilitates the

smooth extrapolation of large eddy simulations (LES) from the experimentally

validated regime to higher Re. This seamless extrapolation is important in

designing simulations that are truly predictive in nature.

One of the important charateristic of turbulence is its irregular and random

nature, requiring statistical methods to study it. Instead of using pointwise

convergence, we use the idea of stochastic convergence which is more suit-

able for such flows. Together, they form a verification and validation (V&V)

strategy for designing robust LES simulations. We also analyze the stochas-

tic properties of turbulence by fitting an exponential distribution to the front
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crossings.

1.2 Turbulence and Large Eddy Simulations

The Navier-Stokes equations are considered an accurate representation of the

turbulent fluid flow. The dimensionless parameter that is used to characterize

the intensity of turbulence is the Reynolds number given by:

Re =
UL

ν
(1.1)

where U, L are the characteristic velocity and length and ν is the kinematic

viscosity.

Among the many scales of turbulence, the largest scales are more dependant

on the geometry of the specific problem and contain most of the energy of the

system, while the small scales are thought to be more universal and dissipative

in nature. For computational purposes, it is not always possible to compute

all the scales numerically. Often, a filter operation is applied on the governing

equations to separate the small scales from the large ones. Direct Numerical

Simulation (DNS) attempts to simulate all the scales of turbulence up to the

Kolmogorov scale. It is very accurate, but is really expensive and only feasible

for low to moderate Re (∼ O(10, 000)). LES computes the big scales and

models the small scales (known as the subgrid scales).

For most scientific or engineering applications, DNS is not feasible. For

example, Reynolds number characterizing mixing in supernova explosions is

estimated to be of order 1010 [50]. At such high Re, LES is paramount in
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studying the turbulent mixing.

The subgrid scales (SGS) in LES are a source of dissipation. If the subgrid

dissipation is treated explicitly using some appropriate theoretical/physical

model, we refer to those simulations simply as LES. In the implicit LES (ILES),

numerical diffusion is used as a proxy for subgrid dissipation [53]. It may be a

little risky as unlike subgrid models, it is hard to quantify how much numerical

diffusion there is in the problem compared to actual subgrid diffusion.

However, on Eulerian grids that are not finely resolved, using explicit SGS

without any appropriate interface modeling can add excess diffusion to the

problem and thus, affect the amount of mix. For the class of problems that

we are interested in studying, the presence of a contact discontinuity places

a refinement requirement that may be very restrictive/infeasible for high Re.

For such problems, Front-tracking (FT) provides a very accurate and compu-

tationally reasonable tool.

The highlight of our numerical algorithm (FT/LES/SGS) is the use of

Front-tracking in conjunction with dynamic subgrid scale models. This unique

combination has been sucessfully verified for RMI and validated for RTI. Front-

tracking propagates the contact discontinuity in a Lagrangian fashion by solv-

ing a Riemann problem across it. As a result, the interface is sharp, even

for coarser grids, and it mitigates the problem of numerical diffusion across

the jump discontinuity. The dynamic subgrid model developed by Germano

captures the effect of the unresolved scales using the local flow conditions,

thus eliminating the need for tunable parameters in the LES simulations. The

use of calibration-free dynamic subgrid model along with appropriate interface
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tracking is the key to designing predictive simulations at high Re.

1.2.1 Hydrodynamical Instabilities

Rayleigh-Taylor instability (RTI) is a hydrodynamical instability that oc-

curs when the light fluid accelerates the heavy fluid in presence of a con-

tinuous acceleration [48, 37]. The initial perturbations follow an exponential

growth. Richtmyer-Meshkov instability (RMI) is another hydro instability

that is closely related with RTI. It is a limiting case of RTI in the sense that it

is driven by impulsive acceleration instead of continuous acceleration. It was

first studied theoretically by Richtmyer [49] and its existence was confirmed

experimentally via the shock tube experiments of Meshkov [42]. It occurs

when a shock wave (impulsive acceleration) passes through the density dis-

continuity at the perturbed interface betwen the two fluids. The shock wave

can be generated by an instantaneous pressure gradient and the fluid interface

provides the density gradient. The misalignment between the pressure and

density gradients (∇p ·∇ρ) deposits the voricity at the interface, which drives

the instability and amplifies the initial perturbations.

RTI occurs only when the light fluid is accelerating the heavy fluid. Unlike

RTI, there are two possible configurations for planar RMI:

• light fluid accelerating the heavy

• heavy fluid accelerating the light

A lot of applications in RMI (to be discussed in the next section) occur in

circular geometry. With circular geometry, the shock wave can travel inwards
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Figure 1.1: Richtmyer-Meshkov instability in circular geometry taken from our
2D simulations. Left: Initial time Center: After shock Right: After reshock

or outwards, which adds to the number of possible configurations:

• light fluid imploding the heavy

• light fluid exploding the heavy

• heavy fluid imploding the light

• heavy fluid exploding the light

The growth of the fluid interface (Fig. 1.1) can be thought of as a four

stage process:

1. Initial linear growth

2. Non-linear growth that results in formation of spikes (heavy fluid enter-

ing the light fluid) and bubbles (light fluid penetrating the heavy fluid)
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3. Development of secondary instabilities like Kelvin-Helmholtz and forma-

tion of mushroom like structures

4. Transformation into a fully developed turbulent mixing zone via breaking

of large scale coherent structures into small scale structures. This stage

is reached at sufficiently late time/in presence of reshock.

The growth in the RMI is inherently asymmetrical as the spikes grow faster

than the bubbles. This difference in growth is attributed to At (Atwood num-

ber),

At =
ρh − ρl
ρh + ρl

(1.2)

which characterizes the density difference between the two fluids. The higher

the At number, the bigger the density difference and thus, a larger discrepancy

in the bubble and spike growth.

In this disseration, we are going to study the case (heavy fluid imploding

the light) that corresponds to the setup in the inertial confinement fusion

(ICF) capsule, which will be discussed later in the section. For planar and

circular geometries, the basic physics of the instability is the same. However,

the imploding circular geometry allows the shock to bounce off the reflecting

boundaries and reshock the interface. This gives rise to stronger mixing.

1.3 Applications

Turbulent mixing from hydrodynamical instabilities, such as RMI and RTI,

plays a critical role in numerous engineering as well as natural applications
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[26, 41, 24]. In scramjet engine, a rapid mixing of the fuel and the oxidizer is

required due to limited time and space available in the chemical combustor [21].

The turbulent mixing induced by RMI enhances the overall mixing process and

is benefical to the performace of the engine.

In supernova explosions, the heavy elements like iron that are produced in

the core of the star are found in the outer regions of the core. The outward

propagating shock wave generated by the collapsing star and the density dif-

ference among different stellar layers cause the RMI to occur, which results in

turbulent mixing and transport of the material between layers [28, 10].

Inertial confinement fusion is an approach to fusion that relies on the inertia

of fuel mass to provide confinement [35, 22, 36, 39]. In ICF, laser beams or

laser produced x-rays heat the surface of the fusion target, a spherical pellet

containing Deuterium-Tritium (DT)-gas surrounded by denser but colder DT-

ice. The energy from the driver causes the surface of the pellet to ablate

and to counter this motion, the rest of the target is driven inwards. This

compresses the core giving rise to very high temperature and pressure, and

results in thermonuclear burn. The burn propagates outwards at a speed

faster than at which the fluids expand outwards and thus contains the fluid.

The biggest challenge to achieve thermonuclear fusion is confining plasma at

the temperature and density conditions required by a particular species to

overcome the Coulomb repulsion force.

The RM instability in ICF causes the pre-mature mixing of the capsule

material with the fuel, limiting the compression of the fuel and affects the

energy production. Therefore, assessing the mixing caused by this instability
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Figure 1.2: A cartoon of the ICF capsule depicting the various stages of
the compression of the capsule that ultimately results in nuclear fusion
(en.wikipedia.org/wiki/Inertial confinement fusion).

is critical for the performance of the experiment.

Motivated by the Richtmyer-Meshkov instability in ICF, we carry out a

parameter study on a simplified hydrodynamical version of the ICF problem

in 2D. In this parameter study, we vary the Reynolds number starting from

the experimentally achieved highest Re for RTI (35000) to Re = ∞ (Eu-

ler’s equation/no physical viscosity). At such high Re, turbulent trasnport is

the dominant mode of transport. We analyze the sensitivity of the turbulent

trasnport coefficients (calculated via the dynamic SGS) to the Reynolds num-

ber. These coefficients vary little in the high Re range. However, they are

observed to be very sensitive to the changes in subgrid model, thus empha-

sizing the importance of using the appropriate subgrid models for turbulent

mixing problems.

We find that in the high Re limit, the turbulent transport coefficients

are converged under mesh refinement and have a Kolmogorov-type scaling.

We also draw quantitative comparisons between the single-shocked incipiently

turbulent regime and the reshocked regime with fully developed turbulence.
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1.4 Outline

In Chapter 2, we talk about the governing equations and the details of our

numerical method (FT/LES/SGS). We also talk about the tool W-star that

uses the concept of a Youngs’ measure to study the convergence.

Chapter 3 and 4 contain the results from our study on a hydrodynamical

toy problem in 2D mimicing an inertial confinement capsule. In section 1 of

Chapter 3, we give the values of the parameters used in the simulation. We

discuss mixing in terms of concentration and temperature and document their

sensitivity to change in subgrid parameters. We analyze the concentration

data by fitting it to beta distribution.

In Chapter 4, we look at the subgrid coefficients more closely. We study

them under mesh refinement and under increase of Re. We report Kolmogorov-

type scaling for these coefficients.

In chapter 5, we present results from our investigation of the spatial distri-

bution of mixing by fitting an exponential distrbution to the front crossings.

In Chapter 6, we present conclusions from our study.
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Chapter 2

Methods and Tools

The main feature of our numerical algorithm is the use of Front-tracking and

a dynamic subgrid scale model for the LES simulations (FT/LES/SGS). This

unique algorithm is calibration-free and thus, easier to extend from validation

range (Re = 35 × 103). In this chapter, we will give an overview of each of

these methods.

Front-tracking is used only for the interface points and the rest of the grid

points are solved using a regular Eulerian numerical solver. For the simulations

under study here, we have used the in-house Front-tracking code FronTier

enhanced with SGS. FronTier uses finite volume scheme MUSCL (Monotonic

Upstream centered Scheme for Conservation Laws) to compute solution on the

rest of the grid points away from the front points.
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2.1 Governing Equations

As discussed in the previous chapter, Navier-Stokes are widely regarded as an

accurate mathematical representation of the turbulent flows. We use these

equations as our governing system of equations.

In light of our high Re parameter study, we use LES approach [33] to

numerically simulate the flow. It has good accuracy without being computa-

tionally too expensive. As the name suggests, it seeks to predict the motion

of the largest and most important eddies, which are supposed to be uncoupled

from the small eddies. This is based on the fact that the largest eddies carry

most of the energy and should be resolved, while the mostly dissipative small

scales are more universal in character and thus, easier to model.

The application of LES can be broken down into three steps:

1. The first step is to apply a low pass filter on the Navier-Stokes equations

to remove the small spatial scales or fluctuations, but retain the bigger

more important scales.

The grid filter used in our code is simply the average over the cell values.

This type of filtering is called implicit filtering and is commonly used for

finite volume codes.

The resulting equations that describe the space-time evolution of large

eddies contain subgrid terms that describe the effect of unresolved small

scales on the resolved scales. With the addition of these subgrid terms,

there are more unknowns than equations.

2. The second step is the calculation of the unresolved or “subgrid” terms

12



by a model that uses the information contained in the resolved scales

effectively to calculate these terms.

3. The last step is the numerical simulation of the resulting closed equations

for the large scale fields.

2.2 Dynamic Subgrid Scale Model

The turbulent transport is the dominant transport mechanism in the high Re

range that we are interested in studying. It is defined in terms of the transport

coefficients:

• turbulent anisotropic viscosity

• turbulent isotropic viscosity

• turbulent species mass diffusion

• turbulent thermal diffusion

These terms are calculated using SGS. The subgrid model used for run-

ning our simulations is a dynamic subgrid scale model. It was developed by

Germano for incompressible flows and extended to compressible flows by Moin

[13, 44]. It is based on Smagorinsky’s eddy viscosity model [52] and has been

highly successful.

The original model proposed by Smagorinsky used the idea of eddy viscos-

ity:

νt = CS∆2 | S̃ | (2.1)
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where νt is the eddy viscosity, ∆ represents the grid spacing, Cs is the model

coefficient and S is the strain rate tensor defined by

Sij =
1

2

(
∂vi
∂xj

+
∂vj
∂x

)
where v is the velocity.

He obtained the eddy viscosity νt, by assuming that at very small scales,

the rate of energy production and dissipation are the same. In other words,

the small scales are in equilibrium. The small scale were also assumed to be

isotropic. Using some of the experiments, he approximated his Cs value to be

around 0.23 and it was used as a constant for all the flows. As a result of these

assumptions, the model suffered from some limitations like not representing

the transient flows and flows near the boundary properly and not accounting

for back scatter.

By calculating the coefficients (Cs) dynamically using the local flow con-

ditions, Germano overcame some of the shortcomings. This model is referred

to as the dynamic subgrid scale model.

Germano used the Smagorinsky model and applied it at two different levels

(grid filter level and test filter level) to calculate the model coefficient CS

dynamically. He assumed that the coefficients values did not depend on the

grid level.

Germano found the computed turbulence statistics to be insensitive to the

ratio of test filter to the grid filter[13]. For our simulations, we tested a variety

of filter sizes and did not find much difference between different filters. We

decided to use the test filter that is two times coarser than the grid filter to
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be as local as possible.

We demonstrate how SGS is applied on the momentum equation following

the filtering operation to obtain the first two turbulent coefficients mentioned

above [38, 34]. The rest of the coefficients follow suit.

The momentum equation is expressed as

∂ρvj
∂t

+
∂ρvivj
∂xi

= −∂pδij
∂xi

+
∂dij
∂xi

(2.2)

where ρ, v, p, d and δij represent the density, velocity, pressure, viscous stress

tensor and the Kronecker delta function.

The viscous stress tensor dij from the momentum equation is proportional

to the strain rate tensor and the viscosity and is expressed as

dij = vd

((
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3

∂vk
∂xk

δij

)
(2.3)

where vd = ρvk is the dynamic viscosity. This equation comes from the fact

that the momentum transfer caused by the molecular motion in a gas can be

described by a molecular viscosity.

On applying the grid filter to the momentum equation, we get

∂ρvj
∂t

+
∂ρvivj
∂xi

= −∂pδij
∂xi

+
∂dij
∂xi

(2.4)

⇒ ∂ρvj
∂t

+
∂ρvivj
∂xi

= −∂pδij
∂xi

+
∂dij
∂xi

(2.5)
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using the commutativity of the averaging operator with differential and addi-

tion operator, on regular grids. The Favre averaging for a variable x is defined

as :

x̃ =
ρx

ρ

Adding and subtracting the term ρṽiṽj, rearranging the terms and using Favre

averaging to simplify the equation (5), we get :

⇒ ∂ρ̄ṽj
∂t

+
∂(ρ̄ṽiṽj)

∂xi
=
∂dij
∂xi
− ∂ρ̄(ṽivj − ṽiṽj)

∂xi
(2.6)

⇒ ∂ρ̄ṽj
∂t

+
∂(ρ̄ṽiṽj + p̄δij)

∂xi
=
∂dij
∂xi
− ∂τij
∂xi

(2.7)

τij in (7) is the subgrid stress which is defined as

τij = ρ̄(ṽivj − ṽiṽj) (2.8)

It can be rewritten as

τij =

(
τij − τkk

δij
3

)
︸ ︷︷ ︸+ τkk

δij
3︸ ︷︷ ︸ (2.9)

Let τMij denote the model for τij, the anisotropic (a) and isotropic parts (i)

are modeled separately.

τMij = τaij + τ iij
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Applying the same idea as in (3) to turbulent flow, the momentum transfer

caused by the turbulent eddies can be modeled with an eddy viscosity. This

is known as the eddy viscosity assumption. Using this assumption, the model

is given by

τMij = −2CS∆2ρ̄ | S̃ | S̃aij +
δij
3

2CI∆
2ρ̄ | S̃ |2 (2.10)

where S̃aij = S̃ij − δij
3
S̃kk and | S |2=

∑
2S2

ij. The CS and CI are model

coefficients to be computed dynamically.

Using the assumption that the model coefficients are grid independent, we

apply the test filter (denoted by hat symbol) on the grid filtered momentum

equation. Following the same line of reasoning as used in derivation of sub

grid stress at grid filter, the subgrid stress at the test filter level is

Tij = ρ̂vivj −
ρ̂viρ̂vj

ρ̂
(2.11)

Writing the anisotropic and isotropic parts separately and modeling, we get

TMij = T aij + T iij (2.12)

TMij = −2CS∆̂2ρ̂ | ̂̃S | ̂̃Saij +
2δij
3
CI∆̂

2ρ̂ | ̂̃S |2 (2.13)

Germano observed that though the subgrid stress at grid filter and test filter

levels can’t be resolved individually, the difference between these two stresses

(filtering the subgrid stress at grid filter using the test filter and subtracting

from the subgrid stress at test filter level) is resolvable. This quantity is called

the Leonard stress, Lij.
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Using Germano’s identity, the Leonard stress is

Lij = Tij − τ̂ij = ρ̂ṽiṽj −
ρ̂ṽiρṽj

ρ̂
(2.14)

which is computable. Using the models for Tijand τij, we get the modeled

anisotropic part of Lij as

Laij = 2CS∆2 ¯̂ρ|S̃|S̃aij − 2CS∆̂2ρ̂ | ̂̃S | ̂̃Saij = CSM
a
ij (2.15)

where Ma
ij = 2∆2 ̂

ρ | S̃ | S̃aij − 2∆̂2ρ̂ | ̂̃S | ̂̃Sija . The overdetermined system so

obtained is solved using the method of least squares.

CS =
< (
∑
LaijM

a
ij)

+ >

< (
∑
Ma

ijM
a
ij)

+ >

The expression (...)+ means only the positive part of the quantity is con-

sidered.

In a similar manner, the model coefficient CI is obtained as

Likk = T ikk − τ̂kk
i = −2CI∆

2ρ̂ | S̃ |2 + 2CI∆̂
2ρ̂ | ̂̃S |2= CIM

i
kk

where M i
kk = −2∆2ρ̂ | S̃ |2 + 2CI∆̂

2ρ̂ | ̂̃S |2
This yields only one equation for CI :

CI =
< Likk >

< M i
kk >
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Figure 2.1: 2D Front-tracking on an Eulerian grid (source: Dr. J. Grove)

which can be solved to yield a unique value of CI .

In a similar manner, the subgrid terms associated with the species mass

(turbulent Schmidt number) and energy equation (turbulent Prandtl number)

can be modeled.

2.2.1 Front-tracking

In fluid flows, one often encounters situations where there is a sharp disconti-

nuity of some fluid property (density, pressure, etc.). For example, in our study

of RMI, there is a large density difference between the two fluids and hence

the interface between them represents a density discontinuity. Eulerian nu-

merical schemes without any interface-tracking are very diffusive (lower order

schemes) and fail to represent the dynamics at the front correctly [23].

Front-tracking (Fig 2.1) is an adaptive computational method that pro-
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vides sharp resolution to a wave front by tracking the interface [6, 18, 14, 11,

16]. The interface being tracked is referred to as the front. A lower dimen-

sional grid is fitted to this front and moves with it. In 2D, the points on the

front are connected by piecewise linear segments called bonds.

Two types of updates are needed for the points on the front, the location

update to propagate the front and the state update. Every point on the front

is assigned two states. These two discontinuous states are the left and the right

states. This information is used as the initial condition to solve the Riemann

problem at each of these points and update the front.

For the state updates of the interior points (in smooth region), a second

order MUSCL is used. For the points close to the front, ghosts cells are used

to avoid taking points across the discontinuity [17].

Some of the advantages of using Front-tracking are [14]:

1. It eliminates numerical diffusion that corrupts solution in Eulerian codes
without interface-tracking.

2. It gives improved solutions at coarser grids.

3. Shock-contact interactions can be resolved below the grid resolution.

4. There is little effect of grid orientation when using a cartesian grid to
compute solutions in curved geomtery.

5. Applicability to complex physics.

Wstar

Wstar is a Python based open-source software to study the stochastic conver-

gence of the solution variables [20]. It is developed by Ryan Kaufman [27] and
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is available at http://www.ams.sunysb.edu/~rkaufman/wstar. An analo-

gous tool has also been developed in Matlab for circular geometry using the

idea of Wstar. This is the software that has been used in our analysis and

henceforth, it will simply be referred to as Wstar. The rθ−plane is a natural

choice for the supercell given the shape of our domain and placement of the

two fluids. It is a post-processing tool that is used to study the convergence

properties in a stochastic manner instead of following the traditional pointwise

convergence approach. It is based on the idea of a Young measure, which is a

space-time dependent probability measure.

The analysis in Wstar is a post-processing step and does not affect the

solution in any way. Wstar divides the domain into coarse grid cells (coarser

than the mesh size) called supercells. Each supercell contains a number of

points in it and values of the solutions associated with these points. The

values are binned and from this binned data, a finite approximation to a prob-

ability density function (PDF) or a cumulative distribution function (CDF)

is formed. Instead of averaging the values, using PDFs/CDFs means that we

retain stochastic information, which is a very important aspect of turbulence.

Thus, in many ways this is a more appropriate way to analyze convergence for

turbulent flows than the pointwise convergence.

The supercell provides a spatial or space-time localization and in this sense,

the PDF formed from the supercell is a discrete approximation to a Young

measure. The size of the supercell decides how many data points are used to

form the PDF/CDF and is very important. As the supercell size is increased, it

captures stochastic information better but loses some of its spatial resolution.
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The CDFs can be compared, across the grid or across Re numbers, to get

the average L1 norm error of the solutions over the entire mixing zone. This

value is normalized by dividing it by the total number of cells and difference

between the minimum and the maximum values in the range to get a mean

error.

In this paper, the joint concentration-temperature CDFs are analyzed

across the grid (or Re) to study the associated L1 norm error and mesh conver-

gence. As expected, the error is bigger for the smaller supercell but improves

as one increases the supercell size. This reduction in error can be attributed

to the bigger sample size of the data.

The two important parameters that affect the error in this analysis are:

• supercell size

• number of bins

Rather than choosing them randomly, we make an informed decision based

on the nature of the data. We use beta distribution on concentration data

to make these decisions. The results from this analysis are discussed in the

upcoming chapters.
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Chapter 3

Mix in High Re Limit and

Stochastic Convergence

Reprinted from High Energy Density Physics, Vol number 9, J. Melvin, P.

Rao, R. Kaufman, H. Lim, Y. Yu, J. Glimm and D.H. Sharp, Atomic scale

mixing for inertial confinement fusion associated hydro instabilities, 288-296,

2013, with permission from Elsevier.

3.1 Simulation Setup

We study RMI in 2D imploding circular geometry ( 3.1) inspired from the ICF

design. The governing equations are compressible Navier-Stokes with reflection

boundary. The grid information as well as some of the initial parameters are:

• Sc = 1, where Sc = ν
D

• Pr = 10−4, where Pr = ν
α
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Figure 3.1: RMI from our simulations. Left: Initial time Center: After shock
Right: After reshock

• A = 0.6, where A = ρH−ρL
ρH+ρL

• Mach = 2

• Grid Size

– 200× 400 (1250 µ)- I (double coarse, DC)

– 400× 800 (625 µ)- II (coarse, C)

– 80× 1600 (312.5 µ)- III (medium, M)

– 1600× 3200 (156.25 µ)- IV (fine, F)

• Re = 3.5× 104, 6× 105, 6× 106, 6× 107, ”∞”

In a high Re shock driven flow, molecules ionize and exhibit strong thermal

coupling to the electron and radiation fields. For this reason, we consider a
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fluid with a plasma-like highly heat conductive Prandtl number Pr = 10−4 and

a Schmidt number Sc = 1. These are laminar transport values. The primary

purpose of this paper is to examine the corresponding turbulent transport co-

efficients. We define the high Re limit as molecular viscosity ν → 0 with fixed

values for Sc and Pr. This theoretical definition yields a uniquely specified

theoretical limit.

To complete the specification of fluid transport input parameters, we set

the (molecular level) isotropic viscosity to zero and introduce a Re dependent

shear (anisotropic) kinematic viscosity ν = 5.13×10−4 m2/sec for Re = 6×105.

We use inverse scaling of ν with Re for other Reynolds numbers. The levels of

mixing and the value of Re achieved in ICF processes is a subject of ongoing

research, outside of the scope of this study.

We study a series of mesh levels (∆x from 6.25× 10−4m to 1.56× 10−4m)

and Re values from Re = 3.5 × 104 to a finite mesh approximation of Re ≈

∞ (obtained by setting the molecular viscosity to 0). We mention previous

studies of the same problem [34, 40]. The numerical study is based on the

front tracking code FronTier [12, 2] enhanced with an LES turbulence model

(Germano and Moin’s dynamic subgrid model [13, 44]) and dynamic subgrid

scale (SGS) terms. The tracking reduces excess numerical species diffusion.
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3.2 Stochastic Convergence of Turbulent So-

lutions

3.2.1 Convergence Analysis Method

Our convergence strategy is stochastic in nature and it is algorithmically a

post processing method. Therefore, it does not modify the simulation itself.

The authors are not aware of a similar construction employed by others for

analysis of numerical solutions of partial differential equations.

We retain solution stochastic information (fluctuations and their PDFs)

through a coarse graining strategy where we organize the mesh cells into a

coarse grained mesh of supercells. Please see Fig. 3.2 to see what a super-

cell looks like. All solution values in a single supercell are combined to form

a finite approximation to a probability density function (PDF) or its indefi-

nite integral, the cumulative distribution function (CDF). In this construction,

the coarse grained supercell provides the (reduced) spatial or space-time lo-

calization. Such a construction is a discrete approximation to a space-time

dependent probability measure, also known as a Young Measure.

Whether assessing convergence or the effects of variation of physical pa-

rameters, we are comparing solutions. The difference between solutions is

expressed, in each supercell, as the difference between two coarse grain local-

ized CDFs. In each supercell, the solution data is discretized into bins based

on the solution variables under study. From this binned data, we create an

empirical PDF or CDF. The norm of the difference is defined first through an

L1 norm over the solution state variables, i.e., of the L1 norm difference of the
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Figure 3.2: The colored blocks represent the supercell.

CDFs over the space of bins, and normalized by division by the number of

bins, and by division by the difference between the maximum and minimum

solution values over the domain. Such a norm difference is defined as a func-

tion defined on each supercell. A spatial mean (an L1 norm over all supercells

in the domain, divided by the total supercell area in the domain) completes

the definition of the norm of the difference of the CDFs. This strategy for

convergence has been developed in previous papers [25, 26, 27].

3.2.2 Supercell and Bin Sizing

We now examine choices for bin and supercell size. The main focus of this

paper is on the distribution of temperature and concentration values. In this

section, we focus on the concentration marginal PDF, as its convergence is

more sensitive. A common model for concentration PDFs is the beta distri-

bution, which we use as a surrogate to analyze supercell and bin selections.
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For a mass fraction x, the beta distribution has a PDF

xα−1(1− x)β−1/B(α, β) (3.1)

with the normalizing constant

B(α, β) =

∫ 1

0

u(α−1)(1− u)(β−1)du (3.2)

This distribution is completely characterized by its mean µ and variance σ,

related to α and β by the formulas

α = (µ2 − µ3 − µσ2)/σ2 (3.3)

and

β = (µ− 2µ2 + µ3 − σ2 + µσ2)/σ2 (3.4)

In Fig. 3.3 left, we plot the histogram of all concentration values taken from the

middle 80% of the mixing zone at t = 90, shortly after reshock, forRe = 6×107.

In this paper, we focus our analysis on the middle 80% of the mixing zone, in

order to reduce the edge effects of the mixing zone. We determine the param-

eters α = 0.360 and β = 0.286 from this data and plot the corresponding beta

distribution PDF. In Fig. 3.3 right, we compare the empirical (solid curve) and

theoretical (dotted curve) CDFs of these two distributions. The L1 difference,

an assessment of the model error, is 0.074.

The supercell size regulates the amount of stochastic information captured

in this description and the level of spatial resolution lost in the process. In
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Figure 3.3: Left. Histogram for concentration data and beta distribution with
the parameters α = 0.360, β = 0.286 (dotted curve). Data from Re = 6× 107

coarse grid (II) simulation, t = 90. Right. Empirical CDF of the data (solid
curve) in middle 80% of the mixing zone from the same simulation as left and
beta distribution CDF (dotted curve) with the same parameters α, β.

order to assess mesh convergence issues, we choose supercells large enough that

the statistical errors are small relative to the mesh errors. Statistical sampling

errors are typically O(n−1/2), where n is the number of cells in a supercell.

We begin with the model beta distribution, determined by the parameters

specified above, and take repeated random samples of a fixed size. We analyze

each individual sample, by binning the data and forming a sample CDF from

the sample data and then taking an L1 norm between the sample CDF and

the beta distribution itself. The L1 norms are then averaged over the repeated

samples to determine an expected mean statistical error that results from

the supercell process. In Table 3.1, we display the means and the standard

deviations (STDs) of the statistical errors that arise for different sizing of

supercells. We can see that upwards of 400 points per supercell are necessary

to reduce the statistical error to a value less than 2%. This classifies the trade-
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off between supercell sizing (spatial resolution) and accuracy (statistical error)

of the method.

Table 3.1: Statistical convergence rates for repeated finite samples of fixed
size drawn from the beta distribution, parameters as above. 10 bins used to
construct the CDFs.

Sample size 25 100 400 1600
Mean of L1 norm error for CDFs 0.067 0.033 0.017 0.009
STD of L1 norm error for CDFs 0.035 0.018 0.009 0.005

To verify the beta distribution as a model for the concentration data, we

also repeat the sampling process using the empirical data from the coarse grid

(II: 400x800) Re = 6× 107 simulation (used to calculate the beta distribution

parameters). In the left frame of Fig. 3.4, we plot the average statistical errors

found when comparing the beta distribution to finite samples drawn from it.

In the right frame, we plot the average statistical errors found when comparing

empirical CDFs of the raw data from the middle 80% of the mixing zone and

random samples drawn from this data. Comparing the differences between the

theoretical formulation and our specific application, we see roughly unchanged

errors between the beta distribution and the empirical distribution, thus jus-

tifying the choice of the beta distribution as a surrogate for the concentration

PDFs. We also show in Fig. 3.4 insensitivity of the statistical errors to bin

size.

From the above analysis, we draw the following conclusions:

1. As a result of the insensitivity of the bin size parameter, we use a bin

sizing of 10, per variable, in all analysis performed in this paper.
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Figure 3.4: L1 norm of the differences of the concentration CDFs. Left: Re-
peated finite samples of fixed size, drawn from the beta distribution. Right:
The empirical CDF from raw data in the middle 80% of the mixing zone and
repeated random samples from this data. The four sample sizes plotted are:
25, 100, 400 and 1600.

2. To obtain statistical errors significantly smaller than mesh errors, we

choose to use a supercell size close to 400 datapoints in each supercell

on the coarse grid (II: 400x800).

3.3 High Reynolds Number Asymptotics

Here we show, in a purely hydro context, the mildness of the variation intro-

duced in passing from an experimental regime of Re ≈ 3.5× 104, well studied

experimentally for related Rayleigh-Taylor instabilities, to the ICF regime of

Re ≈ 6×105 and larger. This fact supports our V&V proposal of experimental

validation at Re ≈ 3.5× 104 with verification extrapolation to Re ≈ 6× 105.

31



3.3.1 Convergence of Joint Temperature-Concentration

PDFs

We begin by analyzing the convergence properties of the joint temperature-

concentration CDFs within the middle 80% of the mixing zone for the Re = 6×

107 simulation. L1 norm convergence of the joint temperature-concentration

CDFs was established in [34] for lower Re values, so this value for Re represents

an extension of the convergence regime as well as an extension to the case

Pr = 10−4.

For the supercell gridding, since our mixing zone is radial, we use supercells

in r, θ space. Since the data is homogeneous in the θ direction and sensitive to

the r direction, discussed in further detail in Sec. 3.3.2, we use 10 supercells in

the radial direction and 2 supercells in the angular direction, with a domain

consisting only of the datapoints contained in the common mixing zone. With

the data structured in x, y space, the r, θ bins have an unequal numbers of

points, with an average of 642 points within each supercell of the coarse grid (II:

400x800). The results of this analysis are presented in Table 3.2, from which

we see evidence of norm convergence for the CDFs under mesh refinement.

The slow convergence rate observed here is consistent with the results of [34],

which used an alternate convergence analysis method.

We investigate the dependence of the convergence analysis on the supercell

griddings in Table 3.3. We compare a 8x1 (8 in r, 1 in θ), 16x2, 32x4 and

64x8 supercell grid structure. As the supercell size increases (the number of

points within a supercell increases), the average norm error decreases. The

average number of points in a supercell on the coarse grid is approximately
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Table 3.2: L1 norm convergence of joint CDFs for temperature and concen-
tration (central column) and concentration only (right column) for an RM in-
stability with Re = 6× 107. Meshes: I 200× 400, II 400× 800, III 800× 1600,
IV 1600× 3200.

Mesh Temp and Conc Conc
I-IV 0.092 0.124

II-IV 0.064 0.079
III-IV 0.045 0.058

1600, 400, 100 or 25. We attribute the increase in the norm error to the

statistical errors found in Sec. 3.2.2. Consistent with this interpretation is the

fact that the increase of error with supercell size is nearly independent of the

computational rows. We also note that the slight difference between the 1x1

and 1x8 supercell gridding is due to the convergence of the statistical errors,

within a fraction of a percentage point. The supercell size (10x2) selected is a

trade-off between statistical accuracy and spatial resolution.

Table 3.3: Variation in the L1 norm comparison of joint CDFs across mesh
levels for different choices of supercells. A coarser supercell mesh corresponds
to larger supercells, and improved statistical convergence. All supercell choices
are given in radial x angular direction. Meshes as above.

Supercell Grid 1× 1 8× 1 16× 2 32× 4 64× 8
I-IV 0.079 0.085 0.094 0.102 0.138

II-IV 0.057 0.059 0.065 0.080 0.103
III-IV 0.039 0.041 0.047 0.059 0.076
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3.3.2 Spatial Variation of Mix

In Fig. 3.5, we plot the the density over the mixing zone after reshock, for

Re = 6× 107.

Figure 3.5: Density Plot for Re = 6× 107 after reshock.

The statistics of the PDFs, as they depend on x, y or r, θ, appear uniform

in θ but the edge regions for r differ from the central region. The unmixed

light fluid (in the mixing zone) is preferentially located near the inner edge

and the unmixed heavy fluid is similarly noticeable near the outer edge of the

mixing zone.

For Re =∞, we plot the PDFs in four separate zones for the r values, with

two central zones and two edge zones, see Fig. 3.6. We observe radial depen-

dence in the mixing properties, with edge zone PDFs containing substantial

amounts of unmixed fluids. The outer region has significant unmixed heavy

fluid and the inner region significant unmixed light fluid. The central zones,

especially the outer central zone, are nearly equi-probable in their distribution,

meaning that any mixture fraction is approximately as probable as any other.

The inner central zone and the inner edge zone also have significant unmixed

light fluid concentrations.
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Figure 3.6: PDFs for concentration and temperature for Reynolds number
Re = ∞ with the variation of PDFs with the radius. Top row, left to right,
outer edge r values, and outer central region. Bottom row, left to right, inner
central region for r and inner edge region.

We conclude that the temperature and concentration fluctuations are es-

sentially stationary statistically in θ and nearly so in r except near the mixing

zone edges. We choose supercells aligned with r, θ coordinate boundaries, large

(a) in view of the near stationarity of the statistics and (b) in view of the desire

to observe convergence under mesh refinement, and thus to reduce the statisti-

cal sampling errors relative to the mesh errors. As with any convergence issue,

the resolution will improve as the mesh is refined.
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Figure 3.7: Mesh convergence of the concentration CDFs is demonstrated
visually, with data from [40]. The left frame compares the coarse to fine mesh;
the right frame compares the medium to fine mesh. Colors indicate the level
of CDF mesh error in each supercell. Expressing this convergence as an L1

norm, the order of convergence is 1/2.

3.3.3 Re Dependence of Mix

As a main result of this section, we display in Fig. 3.8, the joint PDFs of

temperature and concentration for the medium grid (III: 800x1600) Re =

3.5 × 104 and for Re = 6× 107. Visually there is minimal difference between

the left frame, the experimental regime with Reynolds numbers of 3.5 × 104

and the right frame, beyond the experimentally validated regime at Reynolds

number of 6× 105. We use a supercell grid of 10× 2 as above, (approximately

642 points within coarse grid supercell), and consider only the concentration

marginals. The Re related CDF norm difference of 0.077 is 1.3 times the mesh

error of 0.058 (grids III-IV) and thus only marginally observable. See Fig. 3.9.
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Figure 3.8: Change of Re, Re = 3.5 × 104 compared to Re = 6 × 107. Left:
Joint PDF of temperature and concentration at Re = 3.5× 104. Right: Joint
PDF of temperature and concentration at Re = 6× 107.

Figure 3.9: L1 norm CDF differences between Fig. 3.8, Left, and Right. The L1

norms result from binning onto supercells, to achieve numerical approximation
of the associated CDFs.

3.4 PDF Sensitivity: An n+1-parameter fam-

ily of high Re limits

The n-species compressible Navier-Stokes equations, in the high Re limit, elim-

inates Re as a parameter. There remain n + 1 dimensionless fluid transport

parameters. The n − 1 independent Schmidt numbers, the Prandtl number,
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and the ratio of two independent viscosities remain to characterize solutions

of the Euler equations achieved in the high Re limit process. For LES it is

expected that the limit Re→∞ is independent of the choice of physical trans-

port parameters, if these are fixed and independent of Re in the infinite Re

limit process. In this sense the limit is universal relative to molecular fluid

transport.

The high Re limit, however, is sensitive to the path taken in the space of

dimensionless total (turbulent and molecular) transport coefficients, if these

coefficients are given Re dependent values. We demonstrate here sensitivity of

the high Re limit to the dimensionless turbulent transport (SGS) terms and

their coefficients. For high Re flows, all turbulent Schmidt numbers and the

Prandtl number should coincide. There is one parameter to set this common

value, which is constrained by validation, i.e., comparison to experiment. A

second parameter is the ratio of bulk to shear turbulent viscosities. This im-

portant point of solution sensitivity arises in practice as dependence of the

solutions upon the algorithms in the high Re limit. The algorithmic depen-

dence of the solution underscores the importance of validation and the rel-

evance within the experimental range of Re, and a mild Re dependent and

theoretically based extrapolation, as far as pure hydro issues are concerned,

for Re values beyond this range.

From this discussion, we see the importance of turbulence models. If ex-

plicit SGS terms are not used, then the fixed point is sensitive to algorithmic

details. If a numerical algorithm has significant numerical diffusion (e.g., if

tracking is not used), then algorithmic issues will affect the fixed point even
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if SGS terms are included. Diffusion, once added numerically, cannot be re-

moved through addition of SGS terms. Thus, we anticipate that numerical

algorithms with significant species concentration diffusion will reach only a

fraction of the full n+ 1 dimensional parameter space of high Re limits. Mesh

refinement short of a DNS simulation will not change this statement.

We justify the assertion of solution nonuniqueness by showing that modifi-

cations to the dimensionless turbulent mass diffusion up or down by factors of

10 change the PDFs of the solution variables. We plot in Fig. 3.10, the joint

PDFs for concentration and temperature, after an increase and a decrease of

turbulent concentration diffusion by factors of 10. We see that the high Re

solution is sensitive to the choice of turbulence model. Comparing spatially

dependent CDFs obtained by binning solution values into supercells, we find

an L1 norm difference of 0.187 between these two simulations, when using a

10x2 supercell grid and analyzing only the concentration marginal. This L1

norm difference value is more than three times as large as the mesh error dif-

ference for this grid resolution and more than double the normed difference

between the simulations with Re = 3.5× 104 compared to Re = 6× 107, pre-

sented in Sec. 3.3.3. Thus we conclude that the differences in turbulent mass

diffusion are significant and observable, in that they yield CDF differences 3.2

times larger than the statistical and mesh errors.
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Figure 3.10: PDFs for the joint concentration-temperature distribution for
two values of the turbulent transport coefficient for concentration diffusion.
Above: 10 times nominal and below: 0.1 times nominal. Re = 6× 107.
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Chapter 4

Turbulent Transport

Coefficients

Reproduced with permission from ASME paper Turbulent Transport at High

Reynolds Numbers in an Inertial Confinement Fusion Context, by J. Melvin,

P. Rao, R. Kaufman, H. Lim, Y. Yu, J. Glimm and D. H. Sharp, J. Fluids

Eng 136(9), 2014

Mix contributes to numerical solution uncertainty through its dependence

on turbulent transport coefficients. These coefficients are a central object

of study here, carried out in an Richtmyer-Meshkov unstable circular (2D)

geometry suggested by an ICF design. We study a pre-turbulent regime and

a fully developed regime.

The former, at times between the first shock passage and reshock, is char-

acterized by mixing in the form of inter-penetrating but coherent fingers and

the latter, at times after reshock, has fully developed turbulent structures.
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This chapter focuses on the scaling of spatial averages of turbulence coeffi-

cients under mesh refinement and under variation of molecular viscosity (i.e.,

Reynolds number (Re)) [47] . We find that the coefficients scale under mesh

refinement with a power of spatial grid spacing derived from the Kolmogorov

2/3 law [29, 30], especially after reshock. We document the dominance of tur-

bulent over molecular transport and convergence of the turbulent transport

coefficients in the infinite Re limit. The transport coefficients do not coincide

for the pre- and post-reshock flow regimes, with significantly stronger trans-

port coefficients after reshock.

4.1 Scaling Laws for Primitive Equation Quan-

tities

In contrast to 3D turbulence, 2D turbulence has two conserved quantities

(energy and enstrophy). The turbulent energy spectrum has two asymptotic

scaling ranges, a classical Kolmogorov scaling, k−5/3 for intermediate wave

numbers k and a specifically 2D scaling law, k−3, driven by enstrophy for

large k up to the dissipation range. This theory was presented in the classical

arguments of Kraichnan [32] and observed in direct numerical simulations

(DNS) of Boffetta [3]. The energy flows in opposite directions under these

two cascades, with their associated flow length scales, while the wave number

for energy injection marks the division between them.

To examine the scaling properties of the turbulent spectral energy, we plot
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in Fig. 4.1 log-log graphs of the turbulent energy spectrum E(k) vs. wave

number k for the Re ≈ ∞ data taken from the finest simulation performed.

The spectral analysis depends on a Fourier expansion. In view of the annulus

shape of the mixing zone, we analyze with the approximate bounding box

for the mixing zone. This results in a wave number normalized by size of the

bounding box around the mixing zone (approximately 3/8 of the domain size).
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Figure 4.1: Log-Log Energy spectrum plots vs. wavenumber. The reference
lines have slopes k−5/3 (dashed) and k−3 (dash-dot). Left: Pre-reshock. Right:
Post-reshock.

The left frame shows data from before reshock and the right frame after

reshock. In the left frame, we see a small wave number spectral range for

k−5/3 and beyond this, a steeper decay less than the theoretical value of −3

but possibly influenced by this effect. The turbulence in the left frame is not

yet fully developed at this time and thus the flow features are outside of the

scope of Kraichnan’s theory. This imperfect scaling can also be observed in

Table 4.1. In the right frame (after reshock), Fig. 1 suggests two scaling

regimes, an approximate k−5/3 and an approximate k−3, which is consistent

with Kraichnan’s theory. This change in scaling law can also be observed in

Table 4.2 with grid levels I-II showing better agreement with each other than
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with grid level III.

The Kolmogorov scale for the flows we compute varies from microns or less

to 10’s of microns at the time of reshock, while the finest mesh considered is

∆x = 1.56× 10−4m. The possible k−3 scaling regime is visible for only 1/2 an

order of magnitude in wave numbers and thus is not definitive, which is in line

with comments from [3]. Beyond the differences in physical modeling between

[3] and the present work, we do not come close to resolving the Kolmogorov

scale. For a compressible calculation, we are not remotely near to DNS. Our

finest mesh spacing ∆x = 1.56 × 10−4m is about a factor of 100 larger than

our estimated Kolmogorov scale η ∼ L · Re−3/4 ∼ 2.5 × 10−6m, based on

the length L = 5.5 × 10−2m (width of the mixing zone) and Re = 600, 000.

This simple analysis suggests many unexplored length scales between the mesh

resolution and the Kolmogorov scale, a statement which remains true even for

the smallest Re (Re = 35, 000) considered here.

4.2 Convergence and Variation of Mean Tur-

bulent Transport Coefficients

Assuming that c is mesh convergent, the turbulent transport coefficient χturb

cannot be asymptotically independent of ∆x. The strain rate matrix S is as-

sumed to satisfy the Kolmogorov 2/3 law for the local behavior of the two-point

correlations, leading to a bound proportional to ∆x−2/3 for each derivative and

for each turbulent transport term, and ∆x−4/3 for S factors combined with the

gradient, part of M in the flux term. We rewrite the expression for χturb to
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obtain

χturb = c∆x4/3
(
S∆x2/3

)
= c∆x4/3S ′ , (4.1)

where (4.1) defines S ′. Since c is assumed to converge to a finite limit as

∆x → 0 and S ′ is assumed to be bounded due to a Kolmogorov type scaling

law, we see that χturb vanishes with ∆x at a predicted rate. Remarkably, we

observe the same decay rate for all of the turbulent coefficients, even though

the decay law is derived from an incompressible, velocity correlation decay

(the Kolmogorov 2/3 law for the decay of the velocity correlations). This

scaling law is supported for the fully developed turbulence of Table 4.2 and is

marginal at best for Table 4.1.

It is clear that these two flow regimes, even in the infinite Re limit, define

qualitatively different turbulent flows. Additionally, the post-reshock coeffi-

cient mean values show only mild finite Re effects for Re ≥ 3.5×104, while the

pre-reshock coefficients transition to (different) nearly Re independent values

at higher values of Re. The turbulent thermal and species coefficients are

nearly identical to each other.

In Fig. 4.2, we plot fractional mesh errors vs. Re, comparing coarse to

fine and medium to fine, for the three dimensionless mean turbulent transport

coefficients. The formula used for calculation of this error is |f − l|/|f | where

f stands for mean turbulent dimensionless coefficient computed at the finest

grid and l stands for the corresponding parameter at medium/coarse grid level.

We see that the mesh errors are either small in relative terms or convergent

under mesh refinement or both for all values of Re. There is an exception

for the turbulent Prandtl number and high Re turbulent Schmidt number,
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Table 4.1: Scaled mean turbulent transport coefficients. Mesh I: 400 × 800,
with mesh II doubled and mesh III doubled again. Units are m2/sec before
scaling. Time t = 5.8 × 10−5sec, midway between the first and second shock
passage. In the column Re ≈ ∞, the value is obtained by setting the moleculer
viscosity to 0.

Mesh Re = 3.5× 104 Re = 6× 105 Re = 6× 106 Re = 6× 107 Re ≈ ∞
cS ′ = νaturb/∆x

4/3 = scaled anisotropic turbulent viscosity (m2/3/sec)
I 23 24 24 24 24
II 19 20 20 20 21
III 14 14 14 16 15

cS ′ = νiturb/∆x
4/3 = scaled isotropic turbulent viscosity (m2/3/sec)

I 86 102 95 77 87
II 65 81 75 65 64
III 51 62 60 54 50

cS ′ = µturb/∆x
4/3 scaled species turbulent diffusion (m2/3/sec)

I 37 52 49 38 42
II 29 39 37 29 28
III 21 26 28 23 20

cS ′ = αturb/∆x
4/3 = scaled turbulent thermal diffusion (m2/3/sec)

I 103 71 44 40 47
II 65 66 42 33 34
III 30 56 41 33 28

especially before reshock, for which further mesh refinement studies would be

helpful. Further levels of mesh refinement would allow a deeper examination

of 2D turbulence scaling properties for the present problem.

To better understand the high Re asymptotics, we plot in Fig. 4.3 the

fractional change χturb(Re)/χturb(Re ≈ ∞) in the mean dimensional transport

coefficients vs. Re at the finest grid. The differences between the pre- and post-

reshock turbulent flow can be seen by comparing the left frame to the right.

We observe a rather mild Re dependence, especially for the fully developed
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Table 4.2: Scaled mean turbulent transport coefficients. Meshes and units as
in Table 4.1. Time t = 9.0× 10−5 sec, shortly after the passage of reshock. In
the column Re ≈ ∞, the value is obtained by setting the moleculer viscosity
to 0.

Mesh Re = 3.5× 104 Re = 6× 105 Re = 6× 106 Re = 6× 107 Re ≈ ∞
cS ′ = νaturb/∆x

4/3 = scaled anisotropic turbulent viscosity (m2/3/sec)
I 44 51 53 47 54
II 48 48 56 58 53
III 57 49 64 64 62

cS ′ = νiturb/∆x
4/3 = scaled isotropic turbulent viscosity (m2/3/sec)

I 214 248 238 214 234
II 222 236 234 232 235
III 253 233 276 277 260

cS ′ = µturb/∆x
4/3 scaled species turbulent diffusion (m2/3/sec)

I 112 136 127 127 124
II 115 133 128 122 124
III 133 122 149 148 133

cS ′ = αturb/∆x
4/3 = scaled turbulent thermal diffusion (m2/3/sec)

I 126 163 143 122 132
II 106 181 158 135 145
III 103 174 191 174 149

turbulent flow (right).

To see the dominance of the turbulent transport as a fraction of the total

transport, we plot χturb/χtotal vs. Re in Fig. 4.4. Aside from the Prandtl

number, the Re ≈ ∞ values are nearly reached by Re = 6 × 106 for the

pre-turbulent flow (left) and by Re = 6 × 105 for fully turbulent flow (right).

Note the striking qualitative difference between the Prandtl number and the

other transport coefficients. Due to the very large level of laminar (molecular)

heat conductivity assumed, even the high but finite Re = 6× 107 simulations
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Figure 4.2: Fractional mesh error for dimensionless turbulent transport co-
efficients, comparing coarse to fine (I-III) and medium to fine (II-III) grids,
plotted vs. Re. Left: Before reshock. Right: After reshock. Curves labeled
1, 2, 3 denote inverse isotropic viscosity, Schmidt number and Prandtl number
respectively. The dash-dot line denotes the error in the comparison I-III and
the soild line denotes the error in the comparison II-III.
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Figure 4.3: Re dependence of mean turbulent transport coefficients for RMI.
Fractional variation for each of the four dimensional transport coefficients,
plotted as χturb(Re)/χturb(Re ≈ ∞) vs. Re, using the finest grid level. Left:
Before reshock. Right: After reshock. Curves labeled 0, 1, 2, 3 denote
anisotropic viscosity, isotropic viscosity, species diffusivity and thermal dif-
fusivity shown as a fraction of the values of these parameters at Re ≈ ∞ and
plotted vs. the Reynolds number.

display strong finite Reynolds number effects for Prtotal. It is for this reason

that the Prandtl number curves do not follow the pattern set by the other

transport coefficients. The convergence of the total transport to its Re ≈ ∞
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Figure 4.4: Turbulent transport as a fraction of total transport plotted vs. Re
for each of four mean transport coefficients, with data taken at the fine grid
level. Left: Before reshock. Right: After reshock. Curves labeled 0, 1, 2, 3
denote anisotropic viscosity, isotropic viscosity, species diffusivity and thermal
diffusivity respectively, as a fraction of total transport.

asymptotic values is slower for the pre-turbulent (singly shocked) flow than

it is for the fully developed turbulent (doubly shocked) flow, a consequence

of the smaller values of turbulent transport for the pre-turbulent flow (singly

shocked).
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Chapter 5

Stochastic Analysis of Mix

The dynamically tracked front serves as the separation between the fluids.

Thus, we use it to indicate the level and type of mix. On crossing the front,

one switches from one fluid to the other. In this chapter, our goal is to explore

the spatial distribution of the mix via analysis of the front.

We begin by selecting a random point on the front and tracing along the

ray moving in the normal direction to this point. We stop when we first

intersect the front surface along this ray. This new point on the front is called

a “front-crossing” or simply a “crossing” and denotes the change of fluid. We

will call the length associated with the distance between our original point

and this crossing as the “first crossing”. Using this new point, we repeat the

search along the normal direction and identify the next front point along this

new ray. This distance will be referred to as the “second crossing”.

We will statistically analyze the lengths of the crossings and determine the

relationship between the first and the second crossings. In other words, we

50



will look at the independence between the two crossings and determine if the

overall process is memoryless or not, i.e., if the governing process is Poisson

or not. To minimize the sampling errors, we repeat the above procedure for

several thousand randomly chosen points on the front.

We analyze the mixing [15] by looking at the distribution of the distances

between each crossing.

Following the overall theme of our analysis in earlier chapters, we are

mainly going to study two things:

1. mesh comparison of crossings

2. Re comparison of crossings

Figure 5.1: Left to right: The front depicting the mixing zone at coarse,
medium and fine grids for Re = 6 × 107. In the far left frame for the coarse
grid, the first and the second crossings are encircled and shown by the blue
lines.

51



Figure 5.2: Radial dependence (top) and angular dependence (bottom) for
Re = 6× 107 at coarse grid.

The individual random variables in a homogeneous Poisson process are

independent and follow an exponential distribution with the same rate. Our

two random events are:
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Figure 5.3: Radial dependence removed by scaling the crossings distance for
Re = 6× 107 at coarse grid.

1. the distance to the first front crossing from a random point on the front

in the normal direction

2. the distance to the second crossing from the first crossing point in the

normal direction

We will study if these two random events are independent and exponentially

distributed for our data.

5.1 Data Cleaning

To remove the edge effects, we clip the edges of the mixing zone from our

analysis and proceed using only the middle two-thirds of the mixing zone. As

the mixing zone edges can be slightly different over the three mesh levels, we
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study the sub-region of the middle two-thirds region that is common to all

three mesh levels. This analysis is carried out on the fully-turbulent late time

data, see Fig. 5.1.

The mixing for our problem is anisotropic, which means that it has direc-

tional biases. We divide the domain into radial and angular blocks (10 for

each) and plot the mean first crossings in Fig. 5.2. In this plot, we docu-

ment the radial and angular dependence of the crossings using a scatter plot

and fitting a regression line to the data. The left frame shows strong radial

dependence, while the right frame shows almost no angular dependence.

In order to remove this radial dependence, we fit a line (slope m) to the

mean first crossings in the various radial bins and then scale the distance

metric using this line (l = mr+c with c=1). After applying this, the radial

dependence of the scaled first crossings has become very weak as shown in

Fig. 5.3. We will be using this scaled version for our analysis from here on.

5.1.1 Exponential Distribution

The exponential distribution represents a process in which the events occur

continuously and independently at a constant average rate.

P (x;λ) = λe−λx, x ∈ [0,∞) (5.1)

E(X) =
1

λ
, V ar(X) =

1

λ2
(5.2)

This distribution can be fully described with just one parameter, namely

λ, that is the rate parameter.
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Figure 5.4: Top to bottom: PDFs (empirical and exponential) of the first
crossings at Re = 6 × 107 at coarse (top), medium (center) and fine grids
(bottom).
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For all three mesh levels, in Fig. 5.4, we take the repeated random samples

from the data and compare the empirical probability density function (PDF)

generated by binning the data into 100 equally spaced bins with the corre-

sponding theoretical PDF from exponential distribution. The rate parameter

λ for the theoretical distribution is obtained by fitting the data to the expo-

nential distribution. The distribution does not seem to be a good fit for the

first crossing distances due to the crossings below the size of the grid spacing.

We clip the subgrid values from our data because the front has an inherent

bias for distances equal to the grid spacing due to the relaxation procedures

which use this length scale. For our further analysis, these subgrid values have

been truncated from the data.

We plot the empirical vs. theoretical exponential PDFs of the three grid

levels with the truncated data and observe a much better agreement (see

Fig. 5.5). We also plot the quantile-quantile, or QQ-plots, for our data com-

pared with the true exponential distribution in Fig. 5.6.

5.2 Dependence of the Second Crossing

The first and the second crossings follow exponential distributions individu-

ally (see Fig. 5.7), with their rate parameters almost equal, but they are not

independent of each other. The second crossing is strongly dependent on the

first crossing as shown by the least squares fit to the scatter plot in Fig. 5.8.

The correlation coefficient between the first and the second crossings is 0.56.

The dependence of the second crossing on the first crossing shows that even
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Figure 5.5: Top: Coarse. Center: Medium. Bottom: Fine. This plot
shows the empirical PDF and the corresponding theoretical PDF of exponen-
tial distribution of the truncated data at the three grid levels for Re = 6×107.
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Figure 5.6: QQ-plots of the first crossings at Re = 6× 107 at coarse, medium
and fine grids. Top: Coarse. Center Medium. Bottom: Fine.
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though the two crossings are exponentially distributed, the underlying process

is not Poisson.

Figure 5.7: Empirical PDF and the theoretical PDF of the second crossings
at Re = 6× 107 at coarse.

5.3 Conclusion

We set out to study how the mesh and the Re affect the rate parameters for

the exponential distribution. We removed the radial dependence of crossing

distance by fitting a line to the mean values from the radial bins and using it

to scale the crossings.

Some of the main conclusions from our study are:

1. From table 5.1, we observe that as the mesh is refined, the rate of first

crossings increases at a sub-linear rate.
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Figure 5.8: Scatter plot of first crossing vs. second crossing and the linear
regression line. The second crossing is not independent of the first crossing as
demonstrated by the correlation coefficient value of 0.56.

2. In table 5.2, we notice that the rate of the first crossings is almost un-

changed between the two Re at the same mesh level.

3. The first and the second crossings have exponential distribution with

almost equal rate parameters, λ.

4. The second crossing depends on the first crossing as shown in the scatter

plot.

5. Since the first and the second crossings are dependent, the underlying

process is not Poisson.
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Table 5.1: Mesh dependence (scaled)
Re = 6× 107 Mean Std. Dev. λ
Coarse 0.13 0.07 7.99
Medium 0.07 0.04 14.42
Fine 0.04 0.03 23.44

Table 5.2: Re dependence (scaled) at coarse grid
Re Mean Std. Dev. λ
6× 107 0.13 0.07 7.99
35× 103 0.14 0.08 7.23

61



Chapter 6

Summary

The results presented show that in the high Re limit of 2D turbulent mix-

ing, atomic mixing properties are sensitive to models for turbulent transport,

and specifically to the numerical algorithm. The limit is demonstrated to be

non-unique, supporting the idea that there is an n + 1-parameter family of

fixed points for n-species mixing, with the fixed points labeled by the turbu-

lence model or by the numerical algorithm. Among these non-unique choices,

the FT/LES/SGS algorithm selects a unique limit, which agrees well with

experiment within the experimental range of Re, in contrast to most ILES

simulations, which do not [8].

The turbulent transport coefficients, within this dynamic SGS method,

are uniquely specified by theory; the simulations have no tunable parameters.

Since zero-parameter numerical models of complex physical phenomena (i.e.

fluid turbulence and mixing in the present context) are not so common, we

emphasize this aspect of the FT/LES/SGS algorithm. The algorithm is, in
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the opinion of the authors, unique among compressible LES simulations in its

level of validation (experimental confirmation) for RT experiments. Because of

the sensitivity of the atomic level mixture to turbulence models and numerical

algorithms, experimental validation is important.

An important conclusion of the present paper is that high Re is only a mild

perturbation (in terms of strictly hydro issues) of an experimental regime of

Re ≈ 3.5× 104, for which there are numerous hydro instability experiments.

The main purpose of this paper is to establish scientific results which sup-

port a two step route with experiment and theory supported extrapolation to

V&V for high Re simulations.

We explain the main difficulty (non-uniqueness of solutions) and its reso-

lution (dynamic SGS models for LES and front tracking). We review previous

work on the experimental comparison step and we present new material relat-

ing to the extrapolation step.

In essence, our proposal is that hydro codes should be tested (validated) in

the experimental regime and tested numerically (verified) for a parameter free

extrapolation from there to the application regime at high Re. Initial condi-

tions for the experimental regime are generally not known, but we have shown

that these can be reconstructed from the early time data, with reconstruction

uncertainty quantified and an overall effect of ±5% on the value of the RT

growth rate α [19].

This is not the first time in which non-uniqueness has been an essential

feature of the solutions of time dependent equations, modeled at the inviscid

(Euler equation) level. Shock refraction problems, which describe self similar
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time dependent solutions, sometimes have multiple solutions. Flame speed is

ambiguous when analyzed at the level of the Euler equations, with the ambigu-

ity removed by consideration of the Prandtl number. Detonation waves allow

multiple solutions, as weak or strong detonations [7], while some dissipative

mechanism often selects the weak detonation. Equations suggested by three

phase flow for petroleum reservoirs show non-uniqueness for wave interaction

(Riemann) problems [1].

Within the study of turbulence, the sensitivity of solutions to turbulence

models is widely understood. However, for turbulence modeling, the analo-

gous resolution of ambiguity (specification of transport coefficients) requires

specifying the turbulent transport, exactly the quantity which introduces the

ambiguity.

Non-uniqueness of solutions is removed by specification of turbulent (not

laminar) transport coefficients, quantities not accessible to direct measurement

in a nearly infinite Reynolds number regime, and regarding which there is sub-

stantial disagreement. The dynamic subgrid models provide a zero parameter

solution. In other words they do select all needed coefficients, and remove all

ambiguity. The dynamic subgrid models, combined with front tracking pro-

vide excellent agreement with experimental RT data (validation). Here, we

claim that validation followed by a mild perturbative verification step reaches

the high Re regime. This is an important step towards designing predictive

hydro simulations.

We have shown the mesh dependence for the spatially averaged turbulent

transport coefficients to be either relatively small or convergent or both, for

64



all values of Re considered and for the range of length scales (∆x) considered.

The notion of pdf convergence depends on an observational length scale for

coarse graining simulation values to define a local PDF. Convergence is limited

to a range of length scales for which constant scaling behavior is valid. The

post-reshock coefficients have a mild Re dependence, while finite Re effects

in these coefficients persist to higher Re values for the pre-turbulent, single

shocked case. The common post-reshock Kolmogorov 2/3 law scaling among

these coefficients is unexplained. The high level of thermal conductivity leads

to finite Re effects in the thermal transport even for quite elevated values of

Re.

We also analyzed the front crossings using the exponential distribution

over a series of mesh and Re. We observed a sub-linear increase in the rate

parameter λ as the mesh was refined and almost no change for Re at the same

mesh level.
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