

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Inference and Learning in

Probabilistic Logic Programs with

Continuous Random Variables

A Dissertation Presented

by

Muhammad Asiful Islam

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

August 2012

Stony Brook University

The Graduate School

Muhammad Asiful Islam

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

C.R. Ramakrishnan – Dissertation co-Advisor
Associate Professor, Department of Computer Science

I.V. Ramakrishnan – Dissertation co-Advisor
Professor, Department of Computer Science

David Warren – Chairperson of Defense
Professor, Department of Computer Science

Vı́tor Santos Costa
Associate Professor
University of Porto

This dissertation is accepted by the Graduate School.

Charles Taber
Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Inference and Learning in Probabilistic Logic
Programs with Continuous Random Variables

by

Muhammad Asiful Islam

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

Statistical Relational Learning (SRL), an emerging area
of Machine Learning, aims at modeling problems which
exhibit complex relational structure as well as uncer-
tainty. It uses a subset of first-order logic to represent
relational properties, and graphical models to represent
uncertainty. Probabilistic Logic Programming (PLP)
is an interesting subfield of SRL. A key characteristic
of PLP frameworks is that they are conservative ex-
tensions to non-probabilistic logic programs which have
been widely used for knowledge representation. PLP
frameworks extend traditional logic programming seman-
tics to a distribution semantics, where the semantics of
a probabilistic logic program is given in terms of a dis-
tribution over possible models of the program. How-
ever, the inference techniques used in these works rely
on enumerating sets of explanations for a query answer.
Consequently, these languages permit very limited use of

iii

random variables with continuous distributions.

In this thesis, we extend PRISM, a well-known PLP lan-
guage, with Gaussian random variables and linear equal-
ity constraints over reals. We provide a well-defined
distribution semantics for the extended language. We
present a symbolic inference and parameter-learning al-
gorithms for the extended language that represents sets
of explanations without enumeration. This permits us to
reason over complex probabilistic models such as Kalman
filters and a large subclass of Hybrid Bayesian networks
that were hitherto not possible in PLP frameworks. The
inference algorithm can be extended to handle programs
with Gamma-distributed random variables as well. An
interesting aspect of our inference and learning algo-
rithms is that they specialize to those of PRISM in the
absence of continuous variables. By using PRISM as the
basis, our inference and learning algorithms match the
complexity of known specialized algorithms when applied
to Hidden Markov Models, Finite Mixture Models and
Kalman Filters.

iv

Contents

List of Figures viii

Acknowledgements ix

1 Introduction 1

2 Background on Statistical ML 5
2.1 Gaussian Distribution . 5

2.1.1 Properties of Gaussian Distributions 6
2.1.2 Estimation of Parameters 7
2.1.3 Mixture of Gaussians 8
2.1.4 Multivariate Gaussian distribution 9

2.2 Gamma Distribution . 9
2.2.1 Properties of Gamma Distributions 9

2.3 Hybrid Bayesian Networks . 10
2.3.1 Discrete child and discrete parent HBN 11
2.3.2 Continuous child and discrete parent HBN 11
2.3.3 Continuous child and continuous parent HBN 13
2.3.4 Discrete child and continuous parent HBN 13
2.3.5 Inference in Bayesian networks 14
2.3.6 Parameter Learning in Bayesian networks 15
2.3.7 Application of Bayesian networks 16
2.3.8 Hybrid Models . 16

2.4 Expectation-Maximization Algorithm 17
2.4.1 Alternative view of the EM algorithm 18
2.4.2 Derivation of the EM algorithm 19
2.4.3 Convergence of the EM algorithm 22
2.4.4 The Generalized EM algorithm 22

v

3 Related Work 23
3.1 SRL frameworks . 23

3.1.1 Bayesian Logic Programs 23
3.1.2 Probabilistic Relational Models 25
3.1.3 Markov Logic Networks 25
3.1.4 Relational Gaussian Models 27
3.1.5 Stochastic Logic Programs 27
3.1.6 Independent Choice Logic 28
3.1.7 PRISM . 29
3.1.8 CP-Logic and LPAD 30
3.1.9 ProbLog . 31

4 PRISM 34
4.1 Distribution Semantics . 36
4.2 Parameter Learning in PRISM 36

4.2.1 Specialization of E and M Steps for Discrete Distribution 38
4.2.2 Graphical EM algorithm 39

5 Extended PRISM 41
5.1 Encoding Hybrid Bayesian Networks in Extended PRISM . . . 42
5.2 Distribution Semantics . 43

5.2.1 Preliminaries . 44
5.2.2 Distribution Semantics of Extended PRISM Programs 45

6 Inference 52
6.1 Inference Algorithm . 52
6.2 Correctness of the Inference Algorithm 62
6.3 Complexity Analysis . 63
6.4 Illustrative Example: Kalman Filter 65
6.5 Extensions . 69

6.5.1 Gamma Distribution 69
6.5.2 Multivariate Gaussian 69
6.5.3 Call Functions and Smoothed Distributions 69
6.5.4 Hybrid Models . 69
6.5.5 Lifting PRISM’s restrictions 70

6.6 Implementation . 73
6.7 Closure of Success Functions: Proof of

Propositions 6 and 7 . 74

vi

7 Learning 82
7.1 Learning Algorithm . 82
7.2 Correctness of the Learning Algorithm 89
7.3 Complexity Analysis . 91
7.4 Implementation . 92
7.5 Closure of ESS functions: Proof of Proposition 14 93

8 Conclusion 101
8.1 Contributions . 101
8.2 Future Work . 103

Bibliography 105

vii

List of Figures

2.1 Gaussian distribution with mean µ and variance σ2 6
2.2 Mixture of Gaussians . 8
2.3 Discrete child and discrete parent HBN 11
2.4 Hidden Markov Model . 12
2.5 Continuous child and discrete parent HBN 12
2.6 Inference in DBN . 15
2.7 Illustration of one iteration of the EM algorithm 21

3.1 A PRM for paper citations with CPD for the Exists attribute 25
3.2 Markov Random Field . 26

4.1 PRISM program for an HMM 34
4.2 Support graph. A double circled node denotes a tabled atom. 40

5.1 Rectangle with corner points (0, 1.0) and (0.7, 1.7) 48

6.1 Derivation for goal hbn(X, Y) 52
6.2 Symbolic derivation for goal hbn(X, Y) 53
6.3 Symbolic derivation for goal widget(X) 54
6.4 Symbolic derivation for goal q(Y) 55
6.5 Derivation for goal widget(X) 65
6.6 Logic program for Kalman Filter. 66
6.7 Symbolic Derivation of Kalman filter 67
6.8 Derivation for goal e(X) . 71
6.9 BDD representation for goal e(X) 72

7.1 Symbolic derivation for goal fmix(X) 87

viii

Acknowledgements

I am very grateful to my advisors Prof. I.V. Ramakrishnan and Prof. C.R.
Ramakrishnan. Prof. I.V. Ramakrishnan ignited my passion for research and
made me fall in love with the exciting world of research. I am indebted to
Prof. C.R. Ramakrishnan for his valuable and thoughtful inputs throughout
this research. He taught me how to be meticulous in solving research problems.

I would like to extend my gratitude to Prof. David Warren and Prof. Vitor
Santos Costa for their valuable comments and suggestions. I would also like
to thank the reviewers for their valuable comments to improve our papers.

I am grateful to my parents, friends and colleagues for their support and
encouragement.

Finally, I would like to thank the National Science Foundation (Grants
CCF-1018459, CCF-0831298) and ONR (Grant N00014-07-1-0928) for sup-
porting this research.

ix

Chapter 1

Introduction

Statistical Relational Learning (SRL) [22] research aims at performing infer-
ence and learning in domains with complex relational and probabilistic struc-
ture. Traditional Machine Learning models (e.g., neural networks, decision
trees, support vector machines, etc) use point based semantics, and ignore
relational aspects of the data. SRL frameworks attempt to overcome this limi-
tation of statistical models by capturing the relational structure of the domain
as well as expressing the probabilistic model in a compact and natural way.

The SRL frameworks are based on combinations of graphical models and
logical formulae (e.g., first-order). Thus the frameworks can be broadly clas-
sified as statistical-model-based or logic-based, depending on how their se-
mantics is defined. The semantics of the statistical-model-based frameworks,
e.g., Bayesian Logic Programs (BLPs) [31], Probabilistic Relational Models
(PRMs) [20], and Markov Logic Networks (MLNs) [51], is given in terms of
the ground graphical model. For example, MLN [51] gives a template for con-
structing Markov Random Field (MRF) [43], and uses first-order logical rules
to specify a model compactly. Thus inference in MLNs follow the inference
technique of the underlying MRFs.

In the second category are frameworks such as PRISM [54], Stochastic
Logic Programs (SLP) [39], Independent Choice Logic (ICL) [45], and ProbLog
[50]. These Probabilistic Logic Programming (PLP) frameworks are designed
for combining statistical and logical knowledge representation and inference.
PLP languages permit incorporation of statistical knowledge via the use of
implicit or explicit random variables in a logic program. PLP languages such
as SLP [39] and ProbLog [50] attach implicit random variables with certain
clauses in a logic program; a clause’s applicability is determined by the value
of the associated random variable. Other languages such as PRISM [54] use
explicit random variables whose valuations are specified analogous to relations
in an extensional database.

1

The semantics of PLP languages is defined based on the semantics of the
underlying non-probabilistic logic programs [5, 36]. A large class of PLP lan-
guages, including ICL [45], PRISM [54], ProbLog [50] and LPAD [62], have
a declarative distribution semantics, which defines a probability distribution
over possible models of the program. Operationally, the combined statisti-
cal/logical inference is performed based on the proof structures analogous to
those created by purely logical inference. In particular, inference proceeds as
in traditional LPs except when a random variable’s valuation is used. Use
of a random variable creates a branch in the proof structure, one branch for
each valuation of the variable. Each proof for an answer is associated with a
probability based on the random variables used in the proof and their distri-
butions; an answer’s probability is determined by the probability that at least
one proof holds.

PLP languages have interesting algorithmic properties because of the log-
ical proof structure. For example, PRISM’s inference technique for Hidden
Markov Models naturally reduces to Viterbi algorithm [19]. These languages
has been applied in a number of applications, e.g., biological sequence analy-
sis [9, 10, 50], analysis of chemical database [14], discovery of structural alerts
for carcinogenicity [58], 3D pharmacophore discovery for drug design [18], pro-
tein structure prediction [17], knowledge synthesization in sensor networks [56],
probabilistic planning [16], and so on. An overview of such applications ap-
pears in [16, 17].

Since the inference is based on enumerating the proofs/explanations for
answers, the PLP languages have limited support for continuous random vari-
ables. There has been a very recent attempt at addressing this problem in [24].
While a more detailed comparison appears in Section 3.1 on Related Work, it
is sufficient to say here that this work can not handle interesting problems such
as Kalman Filters [53] and Hybrid Bayesian Networks where the parent/child
conditional dependencies are captured using arbitrary discrete/continuous ran-
dom variable combinations [40]. Thus a rigorous and extensive treatment of
probabilistic LP along the lines of PRISM semantics, that includes both dis-
crete and continuous random variables remains open and is the topic addressed
in this thesis.

We provide an inference procedure to reason over PLPs with Gaussian
or Gamma-distributed random variables (in addition to discrete-valued ones),
and linear equality constraints over values of these continuous random vari-
ables. We describe the inference procedure based on extending PRISM with
continuous random variables. This choice is based on the following reasons.
First of all, the use of explicit random variables in PRISM simplifies the
technical development. Secondly, standard statistical models such as Hidden

2

Markov Models (HMMs) [47], Bayesian Networks and Probabilistic Context-
Free Grammars (PCFGs) can be naturally encoded in PRISM. Along the
same lines, our extension permits natural encodings of Finite Mixture Models
(FMMs) [38] and Kalman Filters. Thirdly, PRISM’s inference, which is based
on OLDT resolution [60], naturally reduces to the Viterbi algorithm [19] over
HMMs, and the Inside-Outside algorithm [34] over PCFGs. This enables us
to derive an inference procedure that naturally reduces to the ones used for
evaluating Finite Mixture Models and Kalman Filters. The combination of
well-defined model theory and efficient inference has enabled the use of PRISM
for synthesizing knowledge in sensor networks [56].

It should be noted that, while the technical development in this thesis is
limited to PRISM, the basic technique itself is applicable to other similar PLP
languages such as ProbLog and LPAD (see Section 6.5).

We also address the important topic of learning the probability distribu-
tions of the random variables in extended PRISM programs in this thesis.
Parameter learning in the PLP languages is typically done by variants of the
EM algorithm [15]. The key aspect of our inference as well as learning al-
gorithms is the construction of symbolic derivations that succinctly represent
large (sometimes infinite) sets of traditional logical derivations. Our learning
algorithm represents and computes Expected Sufficient Statistics (ESS) sym-
bolically as well, for Gaussian as well as discrete random variables. It should
be noted that our learning algorithm reduces to PRISM’s graphical EM [55]
in the absence of continuous random variables.

Our Contribution: We extend PRISM at the language level to seamlessly
include discrete as well as continuous random variables. We develop infer-
ence and learning procedures to evaluate queries over such extended PRISM
programs.

• For extending the PRISM language we introduce two ideas: distribu-
tion and constraints over continuous random variables. These two ideas
enable the encoding of rich statistical models such as Kalman Filters
and a large class of Hybrid Bayesian Networks which were hitherto not
expressible in LP and its probabilistic extensions.

• To evaluate queries on extended PRISM programs we develop a symbolic
inference technique to reason with constraints on the random variables.
PRISM’s inference technique becomes a special case of our technique
when restricted to logic programs with discrete random variables.

• We develop an algorithm for parameter learning in PRISM extended with
Gaussian random variables. It computes Expected Sufficient Statistics
(ESS) symbolically for Gaussian as well as discrete random variables.

3

Note that the technique of using PRISM for in-network evaluation of
queries in a sensor network [56] can now be applied directly when sensor data
and noise are continuously distributed. Tracking and navigation problems in
sensor networks are special cases of the Kalman Filter problem [11]. There
are a number of other network inference problems, such as the indoor localiza-
tion problem, that have been modeled as FMMs [23]. Moreover, our extension
permits reasoning over models with finite mixture of Gaussians and discrete
distributions. Our extension of PRISM brings us closer to the ideal of finding
a declarative basis for programming in the presence of noisy data.

The rest of this thesis is organized as follows. We begin with a brief
overview of statistical Machine Learning techniques in Chapter 2. We give
a review of related work in Chapter 3 and describe the PRISM framework in
detail in Chapter 4. Chapter 5 introduces the extended PRISM language. The
symbolic inference technique for the extended language is presented in Chap-
ter 6. Finally, we present the learning algorithm in Chapter 7 and conclude in
Chapter 8.

4

Chapter 2

Background on Statistical ML

This chapter gives a brief overview of statistical Machine Learning techniques
and the notations used in this thesis. Upper case letters (e.g., V) are used
to denote variables. We use X to denote a vector of variables (e.g., X =
〈X1, X2〉), explicitly specifying the size only when it is not clear from the
context. Note that the vector notation can be used to compactly represent
linear combination of variables. For example A·X denotes a linear combination
of variables.

Example 1. If A = 〈2, 3, −1〉 and X = 〈X, Y, Z〉, then A·X = 2X+3Y −Z.

2.1 Gaussian Distribution
The Gaussian or normal distribution is one of the most prominent or widely
used models for the distribution of continuous variables. We use NV (µ, σ2)
to denote the Gaussian/normal probability density function (PDF) of random
variable V .

NV (µ, σ2) =
1√

2πσ2
exp−

(V−µ)2

2σ2 (2.1)

The distribution with µ = 0 and σ2 = 1 is called the standard normal distri-
bution.

Note that integration of Equation 2.1 over its entire range is one.∫ ∞
−∞
NV (µ, σ2)dv = 1

N(A·X)(µ, σ
2) denotes a Gaussian density function (with mean µ and vari-

ance σ2) of a linear combination A ·X.

5

Figure 2.1: Gaussian distribution with mean µ and variance σ2

Example 2. Let A = 〈2, 3, −1〉 and X = 〈X, Y, Z〉. Then the Gaussian
density of the linear combination of variables A ·X = 2X + 3Y − Z is

N(2X+3Y−Z)(µ, σ
2) =

1√
2πσ2

exp−
(2X+3Y−Z−µ)2

2σ2 .

2.1.1 Properties of Gaussian Distributions

The following properties of Gaussian distributions are used in this thesis [1, 4].

Property 1. Standardizing normal random variables. If X is normal dis-
tributed with mean µ and variance σ2, then

Z =
X − µ
σ

has mean zero and unit variance. Thus Z has the standard normal distribution.

Property 2. Product of two Gaussian PDFs is another Gaussian PDF.

NX(µ1, σ
2
1).NX(µ2, σ

2
2) = NX(µ, σ2)

where

µ =
µ1 ∗ σ2

2 + µ2 ∗ σ2
1

σ2
1 + σ2

2

σ2 =
σ2

1 ∗ σ2
2

σ2
1 + σ2

2

Property 3. Normal distribution is closed under linear transformations. If
X is normal distributed with mean µ and variance σ2 (i.e., X ∼ N (µ, σ2)),

6

then a linear transformation aX + b is also normally distributed:

aX + b ∼ N (aµ+ b, a2σ2).

If X1, X2 are two independent Gaussian random variables (with means µ1, µ2

and standard deviations σ2
1, σ

2
2), then their linear combination aX1 + bX2 is

also normally distributed:

aX1 + bX2 ∼ N (aµ1 + bµ2, a
2σ2

1 + b2σ2
2).

Note that the converse of the above property is also true, i.e., if X1 and X2

are independent and their sum X1 +X2 is normally distributed, then both X1

and X2 must also be normally distributed.

Although Gaussian distribution has many other important properties, we
summarize only the above mentioned properties as they are sufficient to un-
derstand the technical part of this thesis.

2.1.2 Estimation of Parameters

Suppose that we have a collection of observations x1, x2, ..., xn from a normal
(NX(µ, σ2)) population and we would like to learn the approximate values of
the parameters µ and σ2. The standard approach to solve this problem is
the maximum likelihood method which requires maximization of the following
log-likelihood function:

LL(µ, σ2) =
n∑
i=1

lnNX(xi|µ, σ2) (2.2)

Note that in practice, it is more convenient to maximize the log of the
likelihood function as it simplifies the computation. Since the logarithm is a
monotonically increasing function of its argument, maximization of the log of
a function is equivalent to maximization of the function itself.

Now maximizing 2.2 (i.e., taking derivatives and equating to zero) with
respect to µ and σ2, we obtain the following maximum likelihood estimates

µMLE =
1

n

n∑
i=1

xi (2.3)

and

σ2
MLE =

1

n

n∑
i=1

(xi − µMLE)2. (2.4)

7

Figure 2.2: Mixture of Gaussians

2.1.3 Mixture of Gaussians

Although Gaussian distribution has many important analytical properties, it
can not model multimodal distribution. Thus it suffers from significant lim-
itations while modeling real data sets which do not follow a single Gaussian
distribution. However a linear superposition of two or more Gaussians gives
a better characterization of the data. The resultant distribution is called a
mixture distribution. Figure 2.2 shows an example of Gaussian mixture distri-
bution (component distributions in blue and their sum in red).

The density of a mixture of Gaussian, formed from K Gaussian distribu-
tions, has the following general form

p(X) =
K∑
k=1

pkNX(µk, σ
2
k). (2.5)

where NX(µk, σ
2
k) denotes a Gaussian component of the mixture with mean

µk and variance σ2
k. pk’s are called mixing coefficient that sum up to 1.

K∑
k=1

pk = 1

In equation 2.5, pk can be viewed as the prior probability of picking the
kth component, and the density NX(µk, σ

2
k) can be viewed as the probability

of X conditioned on k.
Note that any continuous density can be approximated by using a sufficient

number of Gaussians, and by adjusting their means and covariances as well as
the mixing coefficient.

8

2.1.4 Multivariate Gaussian distribution

The multivariate Gaussian distribution has the following form for a d dimen-
sional vector X.

NX(µ,Σ) =
1√

(2π)d|Σ|
exp−1

2
(X− µ)TΣ−1(X− µ) (2.6)

where µ is a d-dimensional mean vector, Σ is a d ∗ d covariance matrix and
|Σ| denotes the determinant of Σ.

Notice that Equation 2.1 is a special case (when d = 1) of Equation 2.6.
Multivariate Gaussian also follows the properties (e.g., linear transformation,
product and standardization) of univariate Gaussian. In this thesis, we’ll
discuss the technical sections using only univariate Gaussians.

2.2 Gamma Distribution
Gamma distribution is also an important continuous distribution in statistics.
It is frequently used to model waiting time (e.g., life time of a light bulb
until death is a Gamma random variable). Gamma distribution specializes
to many other continuous distributions (e.g., Erlang distribution, Exponential
distribution, etc). The probability density function of a Gamma distributed
random variable X is

Gamma(k, θ) =
1

θk
1

Γ(k)
Xk−1e−

X
θ (2.7)

where k and θ are shape and scale parameters respectively and Γ(k) = (k−1)!
when k is a positive integer.

Note that when k = 1, X has an exponential distribution with rate param-
eter 1/θ.

2.2.1 Properties of Gamma Distributions

The following properties of Gamma distributions are used in this thesis [4].

Property 4. Scaling. If X is Gamma distributed with shape and scale param-
eters k and θ respectively, then aX is also Gamma distributed:

aX ∼ Gamma(k, aθ).

Property 5. Summation. If X1, X2 are two independent Gamma random
variables (with shapes k1, k2 and scale parameter θ), then their summation

9

X1 +X2 is also Gamma distributed:

X1 +X2 ∼ Gamma(k1 + k2, θ).

2.3 Hybrid Bayesian Networks
Bayesian Networks: Bayesian networks are graphs where each node rep-
resents a random variable and the arcs represent direct/causal relationship
among the random variables (absence of arcs represent conditional indepen-
dence assumption). Thus Bayesian network provides a compact way to repre-
sent the joint probability distribution of random variables. Let X1, X2, ..., Xn

be a set of random variables. We use P (X1 = x1, X2 = x2, ..., Xn = xn) or
simply P (x1, x2, ..., xn) to denote the joint probability distribution of the ran-
dom variables. Let Pa(Xi) denote the parents of node Xi. We can use the
chain rule of probability to compute the joint distribution P (x1, x2, ..., xn) as
follows

P (x1, x2, ..., xn) = P (xn|xn−1, ..., x1)P (xn−1|xn−2, ..., x1)...P (x2|x1)P (x1)

=
n∏
i=1

P (xi|xi−1, ..., x1)

Bayesian network simplifies this computation by introducing the conditional
independence assumption which states that the conditional probability of a
node is independent of the other nodes given its parents. Thus we can write
the above equation as follows

P (x1, x2, ..., xn) =
n∏
i=1

P (xi|Pa(xi))

Hybrid Bayesian Networks: A Hybrid Bayesian Network (HBN) repre-
sents a probability distribution over a set of random variables where some are
discrete and some are continuous. Hybrid Bayesian Networks can be divided
into the following four categories based on the parent-child relationship.

1. Discrete child and discrete parent. (e.g., Hidden Markov Model).

2. Continuous child and discrete parent. (e.g., Finite Mixture Model).

3. Continuous child and continuous parent. (e.g, Kalman Filters).

4. Discrete child and continuous parent.

In the following subsections, we describe each of them in more detail.

10

2.3.1 Discrete child and discrete parent HBN

In discrete child-discrete parent Bayesian network, the conditional distribution
of a discrete node given its parent is specified by means of a table called
conditional probability table or CPT.

Figure 2.3: Discrete child and discrete parent HBN

Example 3. Figure 2.3 presents a Bayesian network with three random vari-
ables namely Rain, Sprinkler and Grass-Wet. Each node represents a binary
valued (i.e., True/False) random variable. Here the table associated with each
node represents the CPT. Here the random variable GrassWet depends on
other two random variable Rain and Sprinkler.

Bayesian networks that model sequences of variables (e.g., speech signals,
trajectory) are called dynamic Bayesian networks. Hidden Markov Model
(HMM) is a classic example of dynamic Bayesian network where states and
observation variables are discrete. In Figure 2.4, node Si denotes a state and
node Vj denotes an observation. In HMM, the CPTs define the transition and
observation probabilities.

2.3.2 Continuous child and discrete parent HBN

The conditional distribution of a continuous node Xi given its parents Pa(Xi)
is specified using a Gaussian function, i.e., for each value of the discrete parent
node, the child node has a Gaussian distribution. The conditional distribution
of the child node is called a conditional probability density or CPD, and it is
represented as follows

P (Xi|Pa(Xi)) = NXi(µpa(xi), σ
2
pa(xi)

)

11

Figure 2.4: Hidden Markov Model

where pa(xi) denotes the valuation of the discrete parent nodes of Xi. Thus
P (Xi|Pa(Xi)) represents a Gaussian distribution where mean and variances
are conditioned on the values of discrete parents.

Example 4. Finite Mixture Model is a classic example of Continuous child-
discrete parent Bayesian network. Figure 2.5 presents a Bayesian network with
two random variables Machine and Widget. Machine is a discrete random
variable, taking values a and b. Each machine produces Widget whose weights
are continuous valued.

Figure 2.5: Continuous child and discrete parent HBN

12

2.3.3 Continuous child and continuous parent HBN

The conditional distribution of a continuous node Xi given its continuous
parents Pa(Xi) is represented as

P (Xi|Pa(Xi)) = NXi(ui, σ2
i)

where ui = µi+
∑

k∈Pa(Xi)
bki(xk−µk), and the bki are the weights coming into

node i from its parents k. Thus the random variable Xi can be represented
using the following form

Xi = µi +
∑

k∈Pa(Xi)

bki(Xk − µk)

In general, continuous child-continuous parent Bayesian networks are repre-
sented as

Xi =
∑

k∈Pa(Xi)

bkiXk + Yi

where Yi ∼ N (µi, σ
2
i) is a Gaussian noise term.

Thus a continuous child node can be specified as a linear function of its con-
tinuous parent nodes. These type of Bayesian networks are called Conditional
Linear Gaussians or CLG models.

Example 5. Kalman Filters (KF) is a classic example of dynamic Bayesian
network where state and observation variables are continuous. Let Si denote a
state variable and Vi denote an observation variable. Then the state transition
is a CLG model where next state is a linear combination of current state and
a Gaussian noise, i.e,

Si+1 = Si + E.

Similarly, observation also follows CLG model where observation at state Si
depend on the state Si and a Gaussian noise, i.e.,

Vi = Si +X.

2.3.4 Discrete child and continuous parent HBN

The conditional distribution of a discrete child given its continuous parent is
represented by a softmax or logistic function. Let V be a discrete node with
the possible values v1, v2, ..., vm, and X1, X2, ..., Xn be its parents. Then the

13

conditional distribution is represented as follows

P (V = vi|x1, x2, ..., xn) =
exp(bi+

∑n
l=1 w

i
lxl)∑m

j=1 exp(bj+
∑n
l=1 w

j
l xl)

where wl’s are weights coming into node V from its parents Xl. For binary
valued variable, the softmax function simplifies to standard sigmoid function,

P (V = v1|x1, x2, ..., xn) =
1

1 + exp(b+
∑n
l=1 wlxl)

2.3.5 Inference in Bayesian networks

Inference in Bayesian networks involves computing the posterior distribution
of some random variable given some observations or evidences. Let X denote
a query variable and E denote an evidence variable. Then a query P (X|E)
can be answered using the following equation

P (X|E) = αP (X,E) = α
∑
Y

P (X,E, Y)

where Y denotes hidden or latent variables. Thus a query can be answered by
computing sums of products of the conditional probabilities of the Bayesian
network.

The above mentioned inference technique sums over the joint probabil-
ity distribution and is computationally expensive (exponential on the number
of variables). The variable elimination algorithm substantially improves the
performance by eliminating repeated calculation with the help of dynamic
programming. The key idea of variable elimination is to push sums in as
far as possible while summing out hidden variables. Other exact inference
algorithms in Bayesian network include clique tree propagation, recursive con-
ditioning and AND/OR search. Common approximate inference algorithms
include sampling, Markov Chain Monte Carlo (MCMC), belief propagation,
and variational methods [4, 53].

Inference in Dynamic Bayesian Networks. The general inference prob-
lem for dynamic Bayesian networks is to compute P (Xt|Y(t1,t2)), where Xt

represents the hidden/state variable at time t, and Y(t1,t2) represents all the
observations between times t1 and t2.

Depending on the time steps and observations, we can divide the inference
task into the following categories:

1. Filtering: is the task of computing the posterior distribution of current

14

state given all the evidence to date, i.e., P (Xt|Y(1,t)).

2. Prediction: is the task of computing the posterior distribution of a future
state given all the evidence to date, i.e., P (Xt+δ|Y(1,t)).

3. Smoothing: is the task of computing the posterior distribution of a past
state given all the evidence to date, i.e., P (Xk|Y(1,t)), for some k such
that 0 ≤ k < t.

Figure 2.6 shows a graphical representation of these inference tasks.

Figure 2.6: Inference in DBN

2.3.6 Parameter Learning in Bayesian networks

The parameter learning task is to estimate the distribution parameters (entries
of CPT and/or Gaussian mean, variance) given a set of N training examples.
We discuss how to find the Maximum Likelihood Estimates (MLEs) of the
parameters in fully observable case here. For partially observable data, Ex-
pectation Maximization algorithm (discussed in Section 2.4) is used to learn
the distribution parameters.

1. Discrete case. If Xi is a discrete random variable, then the parameter
value θijk = P (Xi = k|Pa(Xi) = j) is computed as follows

θijk = P (Xi = k|Pa(Xi) = j) =
P (Xi = k, Pa(Xi) = j)

Pa(Xi) = j)
=
Nijk

Nij

15

where Nijk denotes the number of times the event (Xi = k, Pa(Xi) = j)
occurs in the training set and Nij =

∑
kNijk. So the sufficient statistics

to estimate the distribution parameters are Nijk.

2. Continuous case. If Xi is a continuous random variable, then the suffi-
cient statistics to compute the mean and variance are SN =

∑N
l=1 xl and

QN =
∑N

l=1 x
2
l , since

µ =
1

N
SN =

1

N

N∑
l=1

xl

and

σ2 =
1

N

N∑
l=1

(xl − µ)2

=
1

N
QN − µ2

Structure Learning. The goal of the structure learning is to learn the di-
rected graph of the Bayesian network that best explains the data. Structure
learning algorithms uses optimization based search which requires a scoring
function and a search strategy. In Probabilistic Logic Programming languages,
we are interested in learning the distribution parameters. Thus structure learn-
ing is not a relevant problem for us.

2.3.7 Application of Bayesian networks

Bayesian networks are primarily used in Statistics and Machine Learning prob-
lems to model joint distribution of random variables. Recently, it has been
extensively used for modeling knowledge in bioinformatics, computational bi-
ology, bio-surveillance, image processing, document classification, information
retrieval, decision support systems and engineering [46].

2.3.8 Hybrid Models

Delta function. A Dirac-delta function, denoted by δc(X), represents a
function which is zero everywhere except at point c and the integral is one over
its entire range. The delta function is used in probability theory to represent
discrete distribution. For example, the probability mass function (P (V)) of a
discrete random variable V , taking values head and tail with probability 0.6

16

and 0.4 respectively, can be represented using the delta function as follows:

P (V) = 0.60δhead(V) + 0.40δtail(V)

Hybrid Models. In probability theory, a hybrid probability distribution is
a distribution which is partly discrete and partly continuous. Hybrid models
can be thought as a mixture distribution where some component distributions
are discrete (unlike Gaussian mixtures where all the component distributions
are Gaussian). For example, consider a distribution which 0.7 of the time
returns a value drawn from standard normal distribution and 0.3 of the time
returns exactly the value 3.0. The density of this distribution can be written
as

f(X) = 0.7NX(0.0, 1.0) + 0.3δ3.0(X)

where δ3.0(X) denotes a Dirac-delta function.
Hybrid models is used to express complex densities in terms of simpler

densities (discrete and continuous), and provide a good model for some data
sets where different subsets of the data exhibit different characteristics [38].

2.4 Expectation-Maximization Algorithm
When data is incomplete, i.e., in the presence of hidden or missing information,
we cannot use the direct computation for MLE as described in Section 2.1.2.
Expectation-maximization (EM) is an iterative algorithm in statistics for find-
ing maximum likelihood estimates of parameters in probabilistic models, where
the model depends on unobserved latent variables. More specifically, the EM
algorithm alternates between performing an expectation (E) step, which com-
putes an expectation of the log likelihood with respect to the current estimate
of the distribution for the latent variables, and a maximization (M) step, which
computes the parameters that maximize the expected log likelihood found on
the E step.

Given a likelihood function P (X,Z|θ), where θ is the model parameter, X
is the observed data and Z represents the unobserved latent data or missing
values; the EM algorithm seeks to find the MLE by iteratively applying the
following two steps:

1. Expectation step: Calculate the expected value of the log likelihood func-
tion, with respect to the conditional distribution of Z given X under the
current estimate of the parameters θn:

Q(θ, θn) = EZ|X,θn [lnP (X,Z|θ)]

17

2. Maximization step: Find the parameter which maximizes the likelihood:

θn = argmaxθQ(θ, θn)

Applications. The EM algorithm is frequently used for data clustering in
machine learning, data mining and computer vision. Two prominent instances
of the algorithm are the Baum-Welch algorithm [15] (also known as forward-
backward) and the inside-outside algorithm for probabilistic context-free gram-
mars [34]. PLP languages such as PRISM and ProbLog use EM-based learning
algorithms [26, 29, 55] for estimating distribution parameters.

2.4.1 Alternative view of the EM algorithm

In this section, we present an alternative view of the EM algorithm in terms
of expected sufficient statistics [40] of the random variables. The main idea of
this approach is the computation of expected value when the actual value is
unknown.

Sufficient Statistics. Recall that Equations 2.3 and 2.4 compute the MLE
of the Gaussian distribution parameters µ and σ2. To compute the MLE
using those equations, we need to know three quantities n,

∑
xi and

∑
x2
i .

These quantities are called the sufficient statistics (SS) of Gaussian random
variables [40].

For a discrete random variable, its sufficient statistics is the total count of
each valuation. For example, if a discrete random variable V takes values a
and b, then its sufficient statistics are Na and Nb where Na (Nb) is the total
number of times V takes value a (b). These quantities are called sufficient
statistics because one can compute the distribution of V (i.e., probability of
V = a and V = b) by knowing only Na and Nb.

Expected Sufficient Statistics. When we do not know the exact value of
some quantity, we can not compute the sufficient statistics. In this case, we
compute its expected value or expected sufficient statistics (ESS) [28, 40]. For
example, if we do not know all the values in Equations 2.3 and 2.4, then we
compute the expected values of n,

∑
xi and

∑
x2
i to estimate µ, σ2. Similarly

for discrete random variables we compute the expected total count.
The main idea of the EM-algorithm is to fill in the missing values with

their expected values (expectation w.r.t. the current set of parameters) and
use these expected sufficient statistics (ESS) while computing the MLE. Thus
the EM-algorithm can be simplified in the following two steps.

• Expectation step: Compute the expected sufficient statistics (ESS) of the
random variables with respect to the current estimate of the parameters
θn.

18

• Maximization step: Use the ESS to compute the MLE of the distribution
parameters (θ).

We’ll discuss more about ESS while developing our learning algorithm.

2.4.2 Derivation of the EM algorithm

In this section, we present the derivation of the EM algorithm (i.e., E and
M-steps). The derivation is useful to understand the meaning of the expecta-
tion function (Q(θ, θn)), properties of the algorithm, and PRISM’s parameter
learning algorithm.

Let X denote a random variable representing observed data and θ denote
the model parameters. Let Z denote the hidden variable and z be an instance
of Z. The total probability P (X|θ) can be written as,

P (X|θ) =
∑
z

P (X|z, θ)P (z|θ).

We wish to find θ such that P (X|θ) is maximum. In order to estimate θ, we
maximize the following log likelihood function

L(θ) = lnP (X|θ).

Let the current estimate for θ after nth iteration is given by θn. Since the
objective is to maximize L(θ), we would like to compute an updated estimate
θ such that

L(θ) > L(θn).

which is equivalent to maximizing the difference of log likelihoods,

L(θ)− L(θn) = lnP (X|θ)− lnP (X|θn)

= ln

(∑
z

P (X|z, θ)P (z|θ)

)
− lnP (X|θn) (2.8)

Notice that the above expression involves the logarithm of sum. We can
use Jensen’s inequality for log function which states that,

ln
n∑
i=1

αixi ≥
n∑
i=1

αiln(xi)

for constants αi ≥ 0 and
∑n

i=1 αi = 1. We can apply this to Equation 2.8 with
αi = P (z|X, θn).

19

L(θ)− L(θn) = ln

(∑
z

P (X|z, θ)P (z|θ)

)
− lnP (X|θn)

= ln

(∑
z

P (X|z, θ)P (z|θ).P (z|X, θn)

P (z|X, θn)

)
− lnP (X|θn)

= ln

(∑
z

P (z|X, θn)
P (X|z, θ)P (z|θ)
P (z|X, θn)

)
− lnP (X|θn)

≥
∑
z

P (z|X, θn)ln

(
P (X|z, θ)P (z|θ)
P (z|X, θn)

)
− lnP (X|θn)

(2.9)

Since
∑

z P (z|X, θn) = 1,
lnP (X|θn) can be written as

∑
z P (z|X, θn)lnP (X|θn).

L(θ)− L(θn) =
∑
z

P (z|X, θn)ln

(
P (X|z, θ)P (z|θ)
P (z|X, θn)

)
(2.10)

−
∑
z

P (z|X, θn)lnP (X|θn)

=
∑
z

P (z|X, θn)ln

(
P (X|z, θ)P (z|θ)
P (z|X, θn)P (X|θn)

)
= δ(θ|θn)

L(θ) ≥ L(θn) + δ(θ|θn) (2.11)

For simplicity let’s define,

l(θ|θn) = L(θn) + δ(θ|θn)

Thus Equation 2.9 can be expressed as

L(θ) ≥ l(θ|θn)

where l(θ|θn) is bounded above by the likelihood function L(θ).

20

Figure 2.7: Illustration of one iteration of the EM algorithm

Notice that,

l(θn|θn) = L(θn) + δ(θn|θn)

= L(θn) +
∑
z

P (z|X, θn)ln

(
P (X|z, θn)P (z|θn)

P (z|X, θn)P (X|θn)

)
= L(θn) +

∑
z

P (z|X, θn)ln

(
P (X, z|θn)

P (X, z|θn)

)
= L(θn) +

∑
z

P (z|X, θn)ln1

= L(θn)

Thus l(θ|θn) and L(θ) are equal when θ = θn.
Since any θ which increases l(θ|θn) also increases L(θ), the EM-algorithm

chooses θn+1 as the value of θ for which l(θ|θn) is a maximum. Figure 2.7
illustrates this process.

Thus

θn+1 = argmaxθ{l(θ|θn)}

= argmaxθ

{
L(θn) +

∑
z

P (z|X, θn)ln

(
P (X|z, θ)P (z|θ)
P (z|X, θn)P (X|θn)

)}

21

Now we can drop the terms which are constant w.r.t. θ

θn+1 = argmaxθ

{∑
z

P (z|X, θn)lnP (X|z, θ)P (z|θ)

}

= argmaxθ

{∑
z

P (z|X, θn)lnP (X, z|θ)

}
= argmaxθ{EZ|X,θn [lnP (X, z|θ)]}

From the above equation, the expectation and maximization steps are appar-
ent:

1. E-step: Compute the conditional expectation EZ|X,θn [lnP (X, z|θ)].

2. M-step: Maximize the expectation w.r.t. θ.

2.4.3 Convergence of the EM algorithm

Notice that θn+1 is the estimate for θ which maximizes the log likelihood or the
difference (δ(θ|θn)) of log likelihoods. For θ = θn, we have δ(θn|θn) = 0. Since
θn+1 maximizes δ(θ|θn), we have δ(θ|θn) ≥ δ(θn|θn) = 0. Thus the likelihood
L(θ) is non-decreasing during each iteration.

Although an EM iteration increases likelihood of the the observed data,
there is no guarantee that the sequence of iterations converges to a maximum
likelihood estimator. Depending on initial value of model parameter, the EM
algorithm may converge to a local maximum. There are some heuristic meth-
ods for escaping a local maximum, e.g., random restart (starting with several
different random initial values), or simulated annealing [4, 38].

2.4.4 The Generalized EM algorithm

In the above formulation of the EM algorithm, θn+1 was selected such that
it maximizes the likelihood. It may be possible that the maximization step
is intractable, i.e., there may be no closed form solution. In this case it’s
possible to relax the requirement of maximization to simply increasing the
likelihood so that l(θn+1|θn) ≥ l(θn|θn). This approach of simply increasing
the likelihood instead of maximizing l(θn+1|θn) is known as the Generalized
EM algorithm [4].

22

Chapter 3

Related Work

Over the past decade, a number of Statistical Relational Learning (SRL)
frameworks have been developed, which support modeling, inference and/or
learning using a combination of logical and statistical methods. These frame-
works can be broadly classified as statistical-model-based or logic-based, de-
pending on how their semantics is defined. In the first category are frameworks
such as Bayesian Logic Programs (BLPs) [31], Probabilistic Relational Models
(PRMs) [20], and Markov Logic Networks (MLNs) [51], where logical relations
are used to specify a model compactly. Logic-based SRL frameworks include
PRISM [54], Stochastic Logic Programs (SLP) [39], Independent Choice Logic
(ICL) [45], and ProbLog [50]. Inference in statistical model based SRL frame-
works follows the inference technique of the underlying statistical model. In-
ference in SRL frameworks such as PRISM [54], Stochastic Logic Programs
(SLP) [39], Independent Choice Logic (ICL) [45], and ProbLog [50] is pri-
marily driven by query evaluation over logic programs. We review the SRL
frameworks in the following subsections.

3.1 SRL frameworks

3.1.1 Bayesian Logic Programs

A Bayesian Logic Program [31] consists of a set of Bayesian clauses (con-
structed from Bayesian network structure), and a set of conditional proba-
bilities (constructed from conditional probability tables of Bayesian network).
More specifically, a Bayesian clause c has the following form

A|A1, ..., An.

where n ≥ 0 and A,A1, ..., An are Bayesian atoms (universally quantified). The
differences between a Bayesian clause and a logical clause are: (i) the atoms

23

p(t1, ..., tm) and predicates have an associated set of states or domain D(p),
(ii) clauses use “|” instead of “:-” to denote conditional densities. To represent
probabilistic model, each Bayesian clause c is associated with a probability
mass function cpt(c) encoding p(head(c)|body(c)) (where head(c) = A and
body(c) = A1, ..., An). In general, it represents the conditional probabilities of
all ground instances cθ of c.

Inference and learning in BLPs follow the inference and learning techniques
of the underlying statistical model, i.e., Bayesian network. BLP was originally
defined over discrete-valued random variable. Continuous BLP [32] extend the
base model by using Hybrid Bayesian Networks [40]. To encode continuous
variables, continuous BLP associates a probability density function cpd(c) with
each clause c. In general, cpd(c) represents the conditional probability density
or p(head(c)|body(c)). Thus the extension readily encodes Hybrid Bayesian
Networks and uses the inference technique of the underlying HBNs.

Example 6. Let c denote the following Bayesian clause which defines the
height of an individual X in terms of the heights of his/her father Y and
mother Z.

height(X)|father(Y,X),mother(Z,X), height(Y), height(Z).

The domains of the Bayesian predicates father, mother and height are
D(father) = D(mother) = {true, false} and D(height) = R.

The conditional probability density cpd(c) associated to the Bayesian clause
c is given in the following table, where v3, v4 denote the heights of X’s parents.

father(Y,X) = v1 mother(Z,X) = v2 cpd(c)(h|v1, v2, v3, v4)
true true N (h, 1

2
(v3 + v4), 10)

true false N (h, v3, 10)
false true N (h, v3, 10)
false false N (h, 60, 10)

N (V, µ, σ2) denotes a Gaussian density function of variable V with mean µ
and variance σ2.

Let θ = {X : eric, Y : brian, Z : ann} be a substitution. Then the ground
instance cθ specifies the following conditional probability density.

P (height(eric)|father(brian, eric),mother(ann, eric),
height(brian), height(ann)).

ut

24

3.1.2 Probabilistic Relational Models

PRMs [20] encode discrete Bayesian Networks with Relational Models or Schemas.
The probabilistic model consists of a dependency structure which is defined by
associating with each attribute A a set of parents Pa(A) (similar to Bayesian
Networks). Then given a set of parents Pa(A) for attribute A, PRM as-
sociates A with a conditional probability distribution (CPD) that specifies
P (A|Pa(A)).

Example 7. Figure 3.1 shows a PRM where Paper and Cites represents the
classes in the relational schema. Ellipses represent attributes and arrows rep-
resent dependency among attributes. For example, attribute ‘Exists’ depend
on the ‘Topic’ of Citer and Cited papers. The CPD associated with attribute
‘Exists’ denote the probability P (Exists|Citer.Topic, Cited.Topic). ut

Figure 3.1: A PRM for paper citations with CPD for the Exists attribute

Similar to BLP, Hybrid PRM [42] also uses the idea of conditional prob-
ability density functions (in Hybrid Bayesian Networks [40]) to extend the
regular PRM with continuous variables.

Inference and learning in PRMs also follow the inference and learning tech-
niques of the underlying Bayesian network. Exact inference is possible when
the ground network is small. However when the ground network is complex,
PRM uses approximate inference algorithms, e.g., belief propagation [43].

3.1.3 Markov Logic Networks

An MLN [51] is a set of formulas in first order logic associated with weights.
These weights signify how strict the constraints are (e.g., a weight of infinite
means first order logic). The semantics of a model in MLN is given in terms
of an underlying statistical model obtained by expanding the relations. For
instance, a Markov Random Field (MRF) [43] is constructed from an MLN
with nodes drawn from the set of all ground instances of predicates in the

25

first order formulas. The set of (ground) predicates in a ground instance of a
formula forms a factor, and the factor potential is obtained from the formula’s
weight and its truth value. Inference in an MLN is thus reduced to inference
over the underlying MRF. Markov Chain Monte Carlo (MCMC) [65] and Gibbs
sampling [21] are the most widely used techniques for approximate inference
in MRFs.

Example 8. Consider the following two first-order logic formulas where each
formula is associated with a weight.

∀xSmokes(x)⇒ Cancer(x) 1.5

∀x∀yFriends(x, y)⇒ (Smokes(x)⇔ Smokes(y)) 1.1

The first formula states that smoking causes cancer and the second formula
states that if two person are friends, then either both of them smoke or neither
does. Figure 3.2 shows the ground Markov Random Field or Markov network

Figure 3.2: Markov Random Field

obtained by applying the above formulas to constants A and B. ut

Hybrid MLN [63] allows description of continuous properties and attributes
(e.g., the formula length(x) = 5 with weight w) deriving MRFs with continuous-
valued nodes (e.g., length(a) for a grounding of x, with mean 5 and standard
deviation 1/

√
2w). For doing inference with continuous random variables, [63]

describes an approximate inference algorithm based on sampling, search and
local optimization.

Learning. Discriminative learning techniques are used for parameter learn-
ing in MLNs [37, 57]. Singla et al. [57] described an algorithm for discrimi-
native learning of MLN parameters by combining the voted perceptron with a
weighted satisfiability solver. Their experiments showed the advantages of the
algorithm compared to generative MLN learning. The discriminative learning

26

of MLN weights is essentially a gradient descent algorithm. As the weight
learning problem can be ill-conditioned, the gradient descent algorithm may
be slow to converge. In [37], the authors explored a number of alternatives
and report that the best performing is the preconditioned scaled conjugate
gradient descent algorithm.

3.1.4 Relational Gaussian Models

Relational Gaussian Models (RGMs) efficiently represent and model dynamic
systems in a relational (first-order) fashion [7, 8]. RGMs are composed of three
types of parfactor (defined below) models: (i) Relational Transition Models
(RTMs), (ii) Relational Observation Models (ROMs), and (iii) Relational Pair-
wise Models (RPMs). Each parfactor consists of a set of logical variables L,
constraints on L, a list of relational atoms X, and a potential function (e.g.,
Gaussian) on X. Note that relational atoms represent a set a random vari-
ables corresponding to the ground substitutions of the logical variables. RTMs
model the dependence between relational atoms of the current and next time
steps. Similarly, ROMs model the relationship between the observation and
state variables. Finally, RPMs capture the dependences between pairs of re-
lational atoms within the same time step.

Note that most probabilistic inference algorithms work on propositional
representation level. Lifted inference algorithms [13] carry much of the com-
putations without propositionalizing the first-order model. [8] describes an
exact lifted inference algorithm for Kalman Filters which is represented using
RGMs. Lifted relational Kalman filter (LRKF) works just like the traditional
Kalman filter, i.e., uses two recursive computations: prediction and correction
steps. However, LRKFs do not ground the relational atoms when different
observations are made.

The idea of relational KF is similar to logical HMMs (LOHMM) [33], which
combines ideas from dynamic models (e.g., HMM, KF) and SRLs. However,
LOHMM handles only discrete distributions.

Note that RGMs are statistical model based SRL framework, which nat-
urally support Gaussian distributions and can model Kalman filters. In con-
trast, we propose a general framework which can encode not only Gaussian
distribution, but also discrete and Gamma distributions. Thus it permits us
to model a large sub-class of Hybrid Bayesian networks and Hybrid models.

3.1.5 Stochastic Logic Programs

Stochastic Logic Programs (SLP) [39] can be thought as the generalization of
stochastic context-free grammars. An SLP consist of a set of labelled clauses
p : C where p denotes probability and C denote a range-restricted clause. A
clause C is range-restricted if and only if every variable occurring in the head

27

of C also appears in the body of C.

Example 9. A simple SLP program which encodes a fair coin where the prob-
ability of the coin coming up either head or tail is 0.5 is as follows:

0.5 : coin(h)

0.5 : coin(t)

ut

Thus clauses of a logic program are annotated with probabilities, which
are then used to associate probabilities with the atoms in the Herbrand base
(computed according to the SLD-refutation strategy in logic programs). Pa-
rameter learning in the PLP languages [48, 49] is typically done by variants
of the EM algorithm [15]. SLPs use failure-adjusted maximization (FAM) [12]
algorithm to learn parameters. FAM is an instance of the EM algorithm which
provides closed-form solution for computing parameter updates in an iterative
maximization approach.

3.1.6 Independent Choice Logic

ICL [44] consists of definite clauses and disjoint declarations of the form
disjoint([h1 : p1, ..., hn : pn]) that specifies a probability distribution over
the hypotheses (i.e., {h1, .., hn}). Any probabilistic knowledge representable
in a discrete Bayesian network can be represented in this framework. While
the language model itself is restricted (e.g., ICL permits only acyclic clauses),
it had declarative distribution semantics. This semantic foundation was later
used in other frameworks such as PRISM and ProbLog.

Example 10. Consider a Bayesian network consisting of two nodes: ‘Fire’
and ‘Smoke’, where ‘Fire’ is the parent node of ‘Smoke’. ‘Fire’ can be repre-
sented using the following hypothesis:

{fire, nofire}

and the probability distribution over these hypothesis is P (fire) = 0.05 and
P (nofire) = 0.95. Now the dependence of ‘Smoke’ on ‘Fire’ can be expressed
using the following sets of hypothesis and distributions.

{smokeFromFire : 0.98, nosmokeFromFire : 0.02}
{smokeFromNoFire : 0.01, nosmokeFromNoFire : 0.99}

28

Now the following two rules can be used to specify when there is smoke

smoke← fire ∧ smokeFromFire.
smoke← ¬fire ∧ smokeFromNoFire.

ut

Inference in ICL includes variable elimination, explanation generation and
stochastic simulation techniques. ICL uses the belief networks and Bayesian
learning approaches to learn the distribution of the hypotheses.

3.1.7 PRISM

In this section, we give a brief overview of PRISM (detailed discussion appears
in Chapter 4). PRISM uses explicit random variables (defined using msw
relation) and a simple inference but restricted procedure. A PRISM program
DB = F ∪R consists of a set of definite clauses where F is a set of facts and R
is a set of rules. The distribution semantics of PRISM programs is specified by
first defining a probability distribution PF over the facts, and then extending
PF into a distribution over least Herbrand models of the PRISM program DB.

Example 11. In the following program, direction(D) determines the direc-
tion to go by tossing a fair coin. msw(coin, C) defines a random process
‘coin′ and variable C contains the outcome (head/tail) of the random process.

direction(D) :-

msw(coin, C),

(C==head -> D = left; D = right).

% Sample space of random variables.

values(coin, [head, tail]).

% Probability distribution.

:- set_sw(coin, [0.5, 0.5]).

ut

PRISM demands that the set of proofs for an answer are pairwise mutually
exclusive, and that the set of random variables used in a single proof are
pairwise independent. The inference procedures of LPAD and ProbLog lift
these restrictions.

Learning. Sato and Kameya proposed a statistical learning scheme based on
the EM algorithm which enables PRISM to learn from examples. The learning
algorithm called graphical EM algorithm [55] runs a data structure called
support graph which describes the logical relationship between observations
and their explanations. The algorithm learns parameters by computing inside

29

and outside probabilities, and it generalizes to existing EM algorithms (e.g.,
the Baum-Welch algorithm for HMMs).

BO-EM [29] is a BDD-based parameter learning algorithm for PRISM.
One advantage of BDD based learning scheme is that it can relax the exclu-
siveness restriction. Compared to other BDD-based EM learning algorithms,
BO-EM uses shared-BDDs (SBDDs) to efficiently compute probabilities and
expectations.

3.1.8 CP-Logic and LPAD

CP-logic. CP-Logic [61] is a logical language to represent probabilistic causal
laws. Let φ denote a property which causes an event, and the effect of the
event makes at most one of the properties ωi true with probability pi. Then a
CP-event is a statement of the following form

(ω1 : p1) ∨ · · · ∨ (ωn : pn)← φ.

A CP-logic is defined as a CP-theory which is a multiset of CP-events.

Example 12. The following statement is an example of CP-event which states
that bacterial infection can cause either pneumonia (with probability 0.6) or
angina (with probability 0.4).

(Pneumonia : 0.6) ∨ (Angina : 0.4)← Infection.

ut

The semantics of CP-logic is equivalent to probability distribution over
well-founded models of certain logic programs. In fact, [61] shows that it is
equivalent to a probabilistic extension of logic programs, called Logic Programs
with Annotated Disjunctions (LPAD).

LPAD. A LPAD consists of a set of rules of the following form

(h1 : p1) ∨ · · · ∨ (hn : pn)← b1, . . . , bm.

where hi and bj are atoms and literals respectively, and pi are probabilities
such that

∑n
i=1 pi = 1.

Thus specifications in LPAD [62] resemble those in CP-Logic: probabilistic
predicates are specified with disjunctive clauses, i.e., clauses with multiple dis-
junctive consequents, with a distribution defined over the consequents. LPAD
has a distribution semantics, and a proof-based operational semantics similar
to that of PRISM.

30

Example 13. A Hidden Markov Model with states s0, s1 and observations a, b
can be modeled by the following LPAD.

(state(s0, s(T)) : 0.6) ∨ (state(s1, s(T)) : 0.4)← state(s0, T).

(state(s0, s(T)) : 0.3) ∨ (state(s1, s(T)) : 0.7)← state(s1, T).

(obs(a, T) : 0.6) ∨ (obs(b, T) : 0.4)← state(s0, T).

(obs(a, T) : 0.2) ∨ (obs(b, T) : 0.8)← state(s1, T).

state(s0, 0).

Here the 1st clause states that if the HMM is in state s0, then it can either go
to state s1 (with probability 0.4) or stay in state s0 (with probability 0.6). ut

LPAD and ICL are equally expressive and each acyclic LPAD can be trans-
formed into an ICL program. Since LPAD does not have an implemented in-
ference algorithm of its own, queries to acyclic LPAD programs can be solved
using the inference techniques of ICL.

3.1.9 ProbLog

ProbLog specifications follow SLP’s style, annotating facts in a logic program
with probabilities. In contrast to SLP, ProbLog has a distribution semantics
and a proof-based operational semantics. More specifically, a ProbLog theory
T = F ∪BK consists of a set of labeled facts F = {p1 :: f1, . . . , pn :: fn} and a
set of definite clauses BK. Each fact fi in F is annotated with a probability
pi.

In contrast to BLP, PRM and MLN, SRL frameworks that are primarily
based on logical inference offer limited support for continuous variables. In
fact, among such frameworks, only ProbLog has been recently extended with
continuous variables. Hybrid ProbLog [24] extends ProbLog by adding a set
of continuous probabilistic facts (e.g., (Xi, φi) :: fi, where Xi is a variable
appearing in atom fi, and φi denotes its Gaussian density function). It adds
three predicates namely below, above, ininterval to the background Prolog
knowledge to process values of continuous facts.

A ProbLog program may use a continuous random variable, but further
processing can be based only on testing whether or not the variable’s value
lies in a given interval. As a consequence, statistical models such as Finite
Mixture Models can be encoded in Hybrid ProbLog, but others such as certain
classes of Hybrid Bayesian Networks (with continuous child with continuous
parents) and Kalman Filters cannot be encoded. The extension to PRISM
described in this thesis makes the framework general enough to encode such
statistical models.

31

Example 14. The following ProbLog program encodes a Gaussian mixture
model.

0.6 :: head.

(X, gaussian(2, 1)) :: p1(X).

(X, gaussian(10, 5)) :: p2(X).

tail : −problog not(head).

gmix(X) : −head, p1(X).

gmix(X) : −tail, p2(X).

ut

ProbLog’s inference mechanism employs SLD-resolution to compute the
proofs of a query. The proofs are represented using a monotone DNF formula.
Then the probability of this formula is computed based on the Binary Decision
Diagram (BDD) [6] of the formula. Note that BDD is an efficient graphical
representation of a boolean formula.

More recently, [27] introduced a sampling based approach for (approxi-
mate) probabilistic inference in a ProbLog-like language. It combines sampling-
based inference techniques with forward reasoning. The inference procedure
can be used with arbitrary query and evidence variables and can sample from
continuous distributions. In contrast, we propose an exact inference mecha-
nism for logic programs with continuous random variables that matches the
complexity of specialized inference algorithms for important classes of statis-
tical models (e.g., Kalman filters).

Learning. [25] introduced a least squares optimization approach to learn
the parameters of ProbLog. The algorithm, called LeProbLog, computes the
probabilities attached to facts by minimizing the error on the training examples
as well as on unseen examples. Recently, in [26] the authors introduced an
EM-based learning algorithm called CoPrEM for estimating parameters from
interpretations (i.e., possible worlds). The algorithm computes binary decision
diagrams for each interpretation and uses a dynamic programming approach
to estimate parameters.

These techniques enumerate derivations (even when represented as BDDs),
and do not readily generalize when continuous random variables are intro-
duced. In this thesis we present a parameter learning algorithm for probabilis-
tic logic programs involving discrete and continuous random variables. One
interesting aspect of our algorithm is that in the absence of continuous random
variables it specializes to PRISM’s learning algorithm.

32

Discussion. It is not sufficient just to define continuous distributions in SRL
frameworks, and use them to denote continuous properties of real world ob-
jects. These properties may interact with each other and create an entirely
new property. For example, consider an HMLN program where height(x) de-
notes height of individuals. Now height of individuals in a family are highly
correlated, and one may want to create a new random variable which de-
notes the difference between two heights. But it’s not possible in HMLN or
ProbLog to define another random variable which is a linear function (e.g.,
height(a) − height(b)) of other random variables, and have Gaussian prop-
erties. In addition, inference in temporal models (e.g., HMM, Kalman fil-
ters) [53] involve computation of filter (the posterior distribution of current
state given all the evidence up to the present) and smoothed (posterior distri-
bution of a past state given all the evidence to date) distributions of random
variables. So, the distributions of continuous variables need to be updated as
we gather more evidence. HMLN or ProbLog only define a prior distribution
of continuous variables, and do not provide any mechanism for updating these
distributions or creating an entirely new random variable which is a linear
combination of other random variables (e.g., Y = A.X + b). In contrast, we
present a framework which permits us to perform the above mentioned tasks.

33

Chapter 4

PRISM

PRISM programs have Prolog-like syntax (see Figure 4.1). In a PRISM pro-
gram the msw relation (“multi-valued switch”) has a special meaning: msw(X,I,V)
says that V is a random variable. More precisely, V is the outcome of the
I-th instance from a family X of random processes1. The set of variables
{Vi | msw(p, i, Vi)} are i.i.d. for a given random process p, and their distribu-
tion is given by p. The msw relation provides the mechanism for using random
variables, thereby allowing us to weave together statistical and logical aspects
of a model into a single program. The distribution parameters of the random
variables are specified separately.

The program in Figure 4.1 encodes a Hidden Markov Model (HMM) in
PRISM. In the figure, the clause defining hmm says that T is the N-th state
if we traverse the HMM starting at an initial state S (itself the outcome of

hmm(N, T) :-

msw(init, S),

hmm_part(0, N, S, T).

hmm_part(I, N, S, T) :-

I < N, NextI is I+1,

msw(trans(S), I, NextS),

obs(NextI, A),

msw(emit(NextS), NextI, A),

hmm_part(NextI, N, NextS, T).

hmm_part(I, N, S, T) :- I=N, S=T.

Figure 4.1: PRISM program for an HMM

1Following PRISM, we often omit the instance number in an msw when a program uses
only one instance from a family of random processes.

34

the random process init). In hmm part(I, N, S, T), we may view S as the
current state with I as its index, and T as the final state (with N as its index).
The first clause of hmm part defines the conditions under which we can go from
state S at position I to state NextS at position NextI, where NextI is I+1.

1. msw(trans(S), I, NextS) means that NextS is a random variable whose
distribution depends on the value of S;

2. obs(NextI,A) means that symbol A is at the I+1-th position in the
observation sequence; and

3. msw(emit(NextS), NextI, A) means that the observed symbol A is a
random variable whose distribution depends on NextS.

The family of random processes trans(·) and emit(·) are such that trans(S)
and emit(S) give the distributions of transitions and emissions, respectively,
from state S.

Query evaluation in PRISM closely follows that for traditional logic pro-
gramming, with one modification. When the goal selected at a step is of the
form msw(X,I,Y), then Y is bound to a possible outcome of a random process
X. The derivation step is associated with the probability of this outcome. If
all random processes encountered in a derivation are independent, then the
probability of the derivation is the product of probabilities of each step in the
derivation. If a set of derivations are pairwise mutually exclusive, the probabil-
ity of the set is the sum of probabilities of each derivation in the set2. Finally,
the probability of an answer to a query is computed as the probability of the
set of derivations corresponding to that answer. The total probability of all
answers to a subgoal is called the inside probability of the subgoal.

As an illustration, consider the query hmm(n,T) where n is a fixed integer,
evaluated over program in Figure 4.1. One step of resolution derives goal
of the form msw(init,S), hmm part(0,n,S,T). Now note that there are a
number of possible next steps: one for each value in the range of init. For
instance, if the range of init is {s0, s1}, there are two possible next steps:
hmm part(0,n,s0,T) and hmm part(0,n,s1,T). Thus in PRISM, derivations
are constructed by enumerating the possible outcomes of each random variable.

Note that evaluation of hmm(n,T) over the program in Figure 4.1 obeys the
independence and exclusiveness assumptions of PRISM. For instance, process
trans(S) at the I-th step is independent of process emit(NextS) at the I+1-
th step. The only branches in the proofs are due to different outcomes of same
random process (e.g., init described in the previous paragraph).

2The evaluation procedure is defined only when the independence and exclusiveness
assumptions hold.

35

Answers to hmm(n,T) and their probabilities give the filter distribution
of the n-th state. In addition to answer probabilities, PRISM can compute
the probability that a subgoal G′ is encountered in some derivation starting
from query G; this is called the outside probability of G′ w.r.t. G. In the
program in Figure 4.1, the outside probability of hmm part(i,n,S,T) for dif-
ferent values of S w.r.t. initial query hmm(n,T) gives the filter distribution
of the i-th state. This distribution, multiplied with the inside probability for
query hmm part(i,n,S,T) gives the smoothed distribution of the i-th state.

4.1 Distribution Semantics
The meaning of a PRISM program is given in terms of a distribution seman-
tics [54, 55] defined as follows. A PRISM program can be treated as a logic
program defined over a set of facts that define the msw relation. An instance
of the msw relation defines one choice of values of all random variables. A
PRISM program, given an instance of the msw relation, is a non-probabilistic
logic program, and its semantics is its least Herbrand model. Thus a PRISM
program is associated with a set of least models, one for each msw relation
instance. A probability distribution is defined over this set of models, based
on the probability distribution of the msw relation instances. The distribution
over models thus obtained is the semantics of a PRISM program. Note that
the distribution semantics is defined without regard to any specific computa-
tion procedure. For PRISM programs, [55] defines an efficient procedure for
computing this semantics based on OLDT resolution, a proof technique with
memoization for definite logic programs.

Theoretically, a probability distribution PF is given to a set of facts F in
a PRISM program DB = F ∪ R where R is a set of rules. The sample space
of F is the set of all Herbrand interpretations i.e., the truth assignments to
the ground atoms in F . A sampling of PF gives a set of true atoms which
in turn determines the least Herbrand model of DB. Then PF is extended it
to a probability distribution PDB over the set of possible least models of DB.
Thus the semantics of DB with the associated distribution PDB is called the
distribution semantics. The distribution semantics is a straightforward gener-
alization of the traditional least model semantics, and can capture semantics
of many probabilistic models e.g., Bayesian Networks and HMMs.

4.2 Parameter Learning in PRISM
Given a list of observable atoms f1, f2, ..., fN , PRISM finds the explanations
of the observations/facts, and then uses those explanations to learn the pa-
rameters of the distributions. Let F be the random variable representing the
observations, and E be the random variable representing the explanations.

36

The probability of a goal is the summation of the probabilities of its explana-
tions.

P (F = f) =

|Ef |∑
k=1

P (E = ek)

where Ef denotes the set of explanations of f .
The probability of an explanation is the product of the probabilities of all

the random variables in that explanation.

P (E = e) =
∏
r

P (Xr = v)

In this parameter learning setting, the facts or goals are viewed as observed
data, and explanations are viewed as hidden data. EM algorithm gives a nice
framework for learning the parameters of the distributions. At each itera-
tion, it first calculates the value of Q function introduced below using current
parameter value Θold (E-step):

Q(Θ,Θold) =
N∑
i=1

|Efi |∑
k=1

P (E = ek|F = fi,Θ
old)lnP (E = ek, F = fi|Θ)

=
N∑
i=1

|Efi |∑
k=1

P (E = ek, F = fi|Θold)

P (F = fi|Θold)
lnP (E = ek, F = fi|Θ)

Now

P (E = ek, F = fi|Θ) =

{
0 if ek /∈ Efi
P (E = ek|Θ) if ek ∈ Efi

So,

Q(Θ,Θold) =
N∑
i=1

|Efi |∑
k=1

P (E = ek|Θold)

P (F = fi|Θold)
lnP (E = ek|Θ)

=
N∑
i=1

1

P (F = fi|Θold)

|Efi |∑
k=1

P (E = ek|Θold)ln(αP (Xr = v|Θ))

Here, P (E = ek|Θ) = αP (Xr = v|Θ) where α contains the probabilities of all
the random variables in ek except Xr.

Next it maximizesQ(Θ,Θold) as a function of Θ, and updates the parameter

37

values (M-step):

Θnew = argmaxΘQ(Θ,Θold)

4.2.1 Specialization of E and M Steps for Discrete Dis-
tribution

Let Xr denote the discrete random variable and θr,v denote the probability
of Xr taking a specific discrete value v. We use Cr,v,k to denote the count of
random variable Xr taking value v in explanation ek. Thus the probability of
an explanation can be written as

P (E = ek|Θ) = αP (Xr = v|Θ)

= αθ
Cr,v,k
r,v

The E and M-steps of the learning algorithm are as follows:

E-step:

Q(Θ,Θold) =
N∑
i=1

1

P (F = fi|θold)

|Efi |∑
k=1

P (E = ek|Θold)ln(αP (Xr = v|Θ))

=
N∑
i=1

1

P (F = fi|Θold)

|Efi |∑
k=1

P (E = ek|Θold)ln(αθ
Cr,v,k
r,v)

=
N∑
i=1

1

P (F = fi|Θold)

|Efi |∑
k=1

P (E = ek|Θold)ln(α)

+
N∑
i=1

1

P (F = fi|Θold)

|Efi |∑
k=1

P (E = ek|Θold)Cr,v,kln(θr,v)

= β + EC[r, v]ln(θr,v)

where β is a constant which does not involve the random variable Xr, and
EC[r, v] is the expected count of value v of the random variable Xr,

EC[r, v] =
N∑
i=1

1

P (F = fi|θold)

|Efi |∑
k=1

P (E = ek|θold)Cr,v,k (4.1)

38

M-step:
At the M-step, we compute θr,v which maximizes Q(θ, θold),

θr,v =
EC[r, v]∑

v′∈valuesEC[r, v′]
(4.2)

The algorithm starts with an initial set of parameters Θ. After each iter-
ation it computes the log-likelihood of the observed data (

∑N
i=1 lnP (fi)) and

repeats the above steps until the convergence of the log-likelihood.

4.2.2 Graphical EM algorithm

Although the EM algorithm presented above is simple and correctly calculates
the MLE of Θ, the computation of EC[r, v] and P (F = fi|θ) may suffer from
combinatorial explosion of explanations, i.e., the size of explanations set grows
exponentially in the complexity of the model. Note that explanations share
common goals, i.e., they share common partial paths in the derivation tree for
a given top goal. Thus it is possible to eliminate redundant computation by
saving results of common goals. Motived by this observation, Sato and Kameya
proposed an efficient framework for EM learning of PRISM programs called
the graphical EM (g-EM) algorithm [55], which combines tabled search (mem-
oization) technique for logic programs and a dynamic programming-based EM
algorithm [60, 64, 66].

The efficiency of the g-EM algorithm is achieved through the introduction
of a data-structure called support graph which describes the logical relationship
between observations and their explanations. The support graph for a goal fi
is a graphical representation of the hierarchical system of tabled explanations
(Figure 4.2). It consists of disconnected subgraphs, each of them is labeled
with a corresponding tabled atom (e.g., αj in Figure 4.2). Thus data sharing
is achieved through the use of tabling and support graph.

Complexity of the g-EM algorithm: Let ξnum denote the maximum num-
ber of tabled explanations in a support graph for a goal fi and ξmaxsize denote
the maximum size of a tabled explanations for the goal fi.

The time complexity of the graphical EM algorithm per iteration is linear
in the total size of support graphs, O(ξnumξmaxsizeN), which also coincides
with the space complexity as g-EM algorithm runs on support graphs.

In general, the total time complexity of the learning algorithm also includes
the time to construct the support graph. Thus the actual total learning time
is

OLDT time + (the number of iterations) ∗O(ξnumξmaxsizeN)

39

Figure 4.2: Support graph. A double circled node denotes a tabled atom.

where OLDT time denotes time to construct all support graphs.
The complexity of g-EM algorithm specializes to the complexity of several

popular EM algorithms, e.g., the Baum-Welch algorithm for HMMs and the
Inside-Outside algorithm for PCFGs.

40

Chapter 5

Extended PRISM

Support for continuous variables is added by modifying PRISM’s language in
two ways. We use the msw relation to sample from discrete as well as continu-
ous distributions. In PRISM, a special relation called values is used to specify
the ranges of values of random variables; the probability mass functions are
specified using set sw directives. In our extension, we extend the set sw direc-
tives to specify probability density functions as well. For instance, set sw(r,

norm(Mu,Var)) specifies that outcomes of random processes r have Gaussian
distribution with mean Mu and variance Var1. Parameterized families of ran-
dom processes may be specified, as long as the parameters are discrete-valued.
For instance, set sw(w(M), norm(Mu,Var)) specifies a family of random pro-
cesses, with one for each value of M. As in PRISM, set sw directives may
be specified programmatically; for instance, in the specification of w(M), the
distribution parameters may be computed as functions of M.

Additionally, we extend PRISM programs with linear equality constraints
over reals. Without loss of generality, we assume that constraints are written
as linear equalities of the form Y = a1 ∗X1 + . . .+ an ∗Xn + b where ai and b
are all floating-point constants. The use of constraints enables us to encode
Hybrid Bayesian Networks and Kalman Filters as extended PRISM programs.
In the following, we use Constr to denote a set (conjunction) of linear equality
constraints. We also denote by X a vector of variables and/or values, explicitly
specifying the size only when it is not clear from the context. This permits us
to write linear equality constraints compactly (e.g., Y = a ·X + b).

Encoding of Kalman Filter specifications in the extended PRISM uses lin-
ear constraints and closely follows the structure of the HMM specification, and
is shown in Section 6.4.

1The technical development in this thesis considers only univariate Gaussian variables;
see Section 6.5 on a discussion on how multivariate Gaussian as well as other continuous
distributions are handled.

41

Example 15 (Finite Mixture Model). In the following PRISM program, which
encodes a finite mixture model [38], msw(m, M) chooses one distribution from a
finite set of continuous distributions, msw(w(M), X) samples X from the chosen
distribution.

fmix(X) :- msw(m, M),

msw(w(M), X).

% Ranges of RVs

values(m, [a,b]).

values(w(M), real).

% PDFs and PMFs

:- set_sw(m, [0.3, 0.7]),

set_sw(w(a), norm(1.0, 0.2)),

set_sw(w(b), norm(1.05, 0.1)).

ut

5.1 Encoding Hybrid Bayesian Networks in Ex-

tended PRISM
In this section, we present encoding of different types of hybrid Bayesian net-
works (discussed in Section 2.3) in our language.

Consider a hybrid Bayesian network with two nodes (X and Y), where
X, Y denote parent and child nodes respectively. In the following examples,
we encode different types of hybrid Bayesian networks depending on the type
(discrete/continuous) of X and Y .

Example 16 (Discrete child-discrete parent hybrid Bayesian network). In the
following program, msw(x,X) defines the distribution of X and msw(y(X), Y)
defines the conditional probability of Y given its parent X. Here, both X and
Y takes discrete values (0, 1).

hbn(X, Y) :- msw(x, X),

msw(y(X), Y).

% Ranges of RVs

values(x, [0, 1]).

values(y(0), [0, 1]).

values(y(1), [0, 1]).

% PMFs:

:- set_sw(x, [0.4, 0.6]),

set_sw(y(0), [0.5, 0.5]),

set_sw(y(1), [0.8, 0.2]).

ut

42

Note that multiple parent nodes can be encoded by defining the distribu-
tion of the child node depending on the valuations of its parent nodes. In
the following example, we encode a continuous child-discrete parent hybrid
Bayesian network.

Example 17 (Continuous child-discrete parent hybrid Bayesian network).
The main difference between this example and the previous example is that
here Y is a continuous random variable, and it takes values from two Gaussian
distributions depending on the value of its discrete parent X.

hbn(X, Y) :- msw(x, X),

msw(y(X), Y).

% Ranges of RVs

values(x, [0, 1]).

values(y(X), real).

% PDFs and PMFs:

:- set_sw(x, [0.4, 0.6]),

set_sw(y(0), norm(1.0, 0.5)),

set_sw(y(1), norm(2.0, 0.5)).

ut

Example 18 (Continuous child-continuous parent hybrid Bayesian network).
In this example, we encode a continuous child-continuous parent hybrid Bayesian
network. Here both X and Y are Gaussian random variables. The parent-child
relationship is encoded using a linear equality constraint where Y is a linear
combination of its parent X and a Gaussian noise E.

hbn(X, Y) :- msw(x, X),

msw(e, E),

Y = X + E.

% Ranges of RVs

values(x, real).

values(e, real).

% PDFs:

:- set_sw(x, norm(1.0, 0.5)),

set_sw(e, norm(0.0, 0.1)).

ut

5.2 Distribution Semantics
In this section, we present the distribution semantics of the extended PRISM
programs. Recall that the core of Sato’s distribution semantics lies in defining
a probability distribution PF over the facts, and then extending PF into a

43

distribution over least Herbrand models of the logic program. Sato shows
that, given a fixed enumeration f1, f2, ... of facts in F , PF can be constructed
from a series of finite distribution P n

F (f1 = x1, ..., fn = xn) (where xi = 0/1)
provided that it satisfies the compatibility condition, which is

P n
F (f1 = x1, ..., fn = xn) =

∑
xn+1

P n+1
F (f1 = x1, ..., fn+1 = xn+1).

[27] introduced a sampling based approach for (approximate) probabilis-
tic inference in a ProbLog-like language, where they define a distribution se-
mantics for programs with continuous variables. The authors claim that the
set of probabilistic facts is enumerable, and then construct (closely following
PRISM’s mechanism) the distribution semantics. But the set of probabilis-
tic facts is infinite with continuous random variable (Gaussian/Gamma). So
PRISM’s approach (e.g., enumerable set of facts, compatibility condition) does
not generalize naturally for continuous random variables as the Herbrand uni-
verse is infinite. Thus the formulation of the distribution semantics of the
extended PRISM programs is an important problem. In the next subsections,
we first describe some preliminaries on probability space and then define the
distribution semantics of the extended PRISM programs.

5.2.1 Preliminaries

Probability space: A probability space consists of three components
(Ω,F , P) where Ω denotes the sample space, F denotes the event space which
is a σ-algebra over Ω, and P is a probability measure on F .

A σ-algebra over a set Ω is a nonempty collection F of subsets of Ω that
is closed under complementation and countable unions of its members.

Example 19. Let the sample space is Ω = {a1, a2}. Then the power set of Ω
is a σ-algebra, F = {{}, {a1}, {a2}, {a1, a2}}. Notice that F is closed under
complementation and countable unions of its members. ut

P is a probability measure with total measure one (P (Ω) = 1). A function
P from F to the real numbers is called a measure if it satisfies the following
properties.

• Probabilities are non-negative: P (E) ≥ 0 for all events E ∈ F .

• Countable additivity: For all countable collections {Ei} of pairwise dis-
joint sets in F .
P (∪Ei) =

∑
i P (Ei)

• Probability of empty set is zero: P (∅) = 0

44

Example 20. Let’s consider the sample space and σ-algbera of the previous
example, and let P is a probability measure over F which is defined as follows:
P ({}) = 0.0, P ({a1}) = 0.7, P ({a2}) = 0.3 and P ({a1, a2}) = 1.0. Notice
that P satisfies the above mentioned properties of probability measure. ut

Probability space of continuous random variables: The sample space
Ω of a continuous random variable is the set of real numbers R. The event
space F is a Borel algebra which is the smallest σ-algebra on R containing all
the intervals, and P is a Lebesgue measure on F . A Lebesgue measure assigns
measure (e.g., length, area, volume) to subsets of n-dimensional Euclidean
space. We will use B(R) to denote the Borel set of R.

Example 21. An element of the Borel algebra is called a Borel set. Any
interval on the real line R is a Borel set, e.g., the line segment [0,0.7] is
a Borel set and one of its Lebesgue measure is the length (0.7) of the line
segment. ut

5.2.2 Distribution Semantics of Extended PRISM Pro-
grams

Let PL = B ∪ R be a probabilistic logic program where B is a set of proba-
bilistic facts and R is a set of rules and constraints. We construct a probability
space for PL in the following two steps. First we introduce a probability space
for B. Next we extend it to a probability space for PL using the least model
semantics.

Basic Distribution PB: We construct a probability space (ΩB,FB, PB) for
B, where ΩB is the sample space, FB is a σ-algebra over ΩB, and PB is a
probability measure on FB.

Definition 1 (Sample space of base distribution). Let r1, r2, ..., rn be a set of
random processes in B, and Vr = {msw(r, v)|v ∈ values(r)} where values(r)
denotes the set of values the random process r takes. The sample space ΩB of
B is defined as the enumeration of all the random variable valuations, i.e.,

ΩB = {〈a1, a2, ..., an〉|ai ∈ Vri}.

Note that values(r) is a finite set for discrete random variables, and for
continuous random variables it is the set of real numbers R. In the above equa-
tion, msw atom ai represents the ith random process and its value. Since the
random variables are ordered in a sequence, the elements in the sample space
are represented using vectors. For simplicity, we omit the instance numbers
(i) in msw(r, i, v) in this section.

45

Definition 2 (Event space of base distribution). The event space FB is defined
as a σ-algebra over ΩB. An event in FB is represented as

{〈a1, a2, ..., an〉|aj = Vrj when rj is discrete;

and aj = msw(rj, ij) when rj is continuous.}

Here ij represents an element of Borel-algebra.

Finally, PB is a probability measure on FB. The choice of PB is free as
long as it satisfies the properties of probability measure and maintains the
independence assumption, i.e., random processes (ri) are independent of each
other. Note that the probability distributions of the random processes are
specified using the set sw predicate.

Following examples illustrate the basic probability space (ΩB,FB, PB).

Example 22. Consider the following extended PRISM program which has a
single discrete random variable.

q(V) :- msw(a, V).

values(a, [0,1]).

:- set_sw(a, [0.3, 0.7]).

The sample space ΩB is the enumeration of all the random variable valua-
tions, i.e.,

ΩB = {〈msw(a, 0)〉, 〈msw(a, 1)〉}.

The event space FB is a σ-algebra over ΩB, and PB is a probability measure
on FB. Probabilities of some elements of the event space:
PB({〈msw(a, 0)〉}) = 0.3, PB({〈msw(a, 1)〉}) = 0.7. ut

Example 23. Consider the following extended PRISM program which uses
continuous random variables.

r(X, Y) :- msw(b, X),

Y = X + 1.

values(b, real).

:- set_sw(b, norm(0,1)).

The sample space ΩB of B is

ΩB = {〈msw(b, v)〉|v ∈ R}.

46

The event space FB is a Borel-algebra over ΩB. Each event in FB contains
elements of the following form

{〈msw(b, iv)〉|iv ∈ B(R)}.

Here iv represents an element of B(R).
Let e1 = {〈msw(b, [0, 0.3])〉} be an element of FB. The probability measure

of e1 is

PB(e1) =

∫ 0.3

0

N (0, 1)dx

where N (0, 1) denotes the distribution of random process b (defined using the
set sw predicate).

Let e2 = {〈msw(b, [0, 0.3])〉, 〈msw(b, [0.7, 0.9])〉} be another element of FB.
The probability measure of e2 is

PB(e2) =

∫ 0.3

0

N (0, 1)dx+

∫ 0.9

0.7

N (0, 1)dx

Note that the event space may contain elements of the form {〈msw(b, [0, 0.3],
[0.7, 0.9])〉}, and the probability of this event is same as that of e2. ut

Next we construct a probability space for PL.

Extending PB to PPL: We construct a probability space (ΩPL,FPL, PPL)
for PL where ΩPL is the sample space, FPL is a σ-algebra over ΩPL, and PPL
is a probability measure on FPL.

As PL defines a set of rules R, in addition to the random variable valua-
tions, ΩPL also contains the atoms entailed by the rules of the program. For
example, q(0), q(1) in Example 22, and r(x, y)|x, y ∈ R in Example 23.

Since the predicates define relations, sample space of PL contains msw
atoms as well as all possible relations. For example, the sample space ΩPL of
the program in Example 22 is

ΩPL = {〈msw(a, 0), {}〉, 〈msw(a, 0), {q(0)}〉, 〈msw(a, 0), {q(1)}〉,
〈msw(a, 0), {q(0), q(1)}〉, 〈msw(a, 1), {}〉, 〈msw(a, 1), {q(0)}〉,

〈msw(a, 1), {q(1)}〉, 〈msw(a, 1), {q(0), q(1)}〉}.

Similarly, for the program in Example 23, r(x, y) defines relations over reals
(i.e., elements of Borel algebra). Thus the sample space ΩPL is

ΩPL = {〈msw(b, v), r(x, y)〉|v ∈ R;x, y ∈ B(R)}.

47

- x

6

y

(0, 1.0)

(0.7, 1.7)

r
r

Figure 5.1: Rectangle with corner points (0, 1.0) and (0.7, 1.7)

As illustrated in the above discussion, the sample space of the extended
program can be defined as follows.

Definition 3 (Sample space of extended distribution). Let Sb denote the set
of all random variable valuations, i.e.,

Sb = {〈a1, a2, ..., am〉|ai ∈ Vri}

and Sp denote the following set for an n-ary predicate p(X1, X2, ..., Xn)

Sp = {〈p(x1, x2, ..., xn)〉|xj ∈ values(Xj) when Xj is discrete;

and xj ∈ B(R) when Xj is continuous}.

Then the sample space ΩPL of PL is defined as

ΩPL = {〈sb, sp1 , sp2 , ...〉|sb ∈ Sb and spi ∈ Spi}

where p1, p2, ... are predicates in PL.

Now we construct the event space of PL as follows. For programs with
only discrete random variables, each event is simply a subset of ΩPL. Con-
sider an event containing continuous values. An event containing the relation
r([0, 0.7], [1.0, 1.7]) specifies a rectangular region (bottom-left and top-right
corner points (0, 1.0) and (0.7, 1.7) respectively) in a 2-dimensional space (Fig-
ure 5.1). Thus each event in Example 23 has the following form

{〈msw(b, iv),∪j≥0,j∈N{r(x, y)|x ∈ [u4j, u4j+1], y ∈ [u4j+2, u4j+3]}〉
|iv ∈ B(R) and ∀l≥0ul ∈ zl and z0, z1, ... ∈ B(Rω)}.

In general, let p(x) contain a set of intervals of the form [p1b, p1e], [p2b, p2e], ...,
where pib and pie denote the start and end point of the ith interval respectively.

48

Next we order the interval points as follows: p1b, p2b, ..., pnb, p1e, p2e..., and so
on. This set of points represents an element of Rω. Now each element of FPL
is constructed from B(Rω) in conjunction with the σ-algebra of the discrete
valued predicates and msw.

We formally define the event space of the extended program as follows.

Definition 4 (Event space of extended distribution). Let Eb denote the fol-
lowing set

Eb = {〈a1, a2, ..., ak〉|aj = Vrj when rj is discrete;

and aj = msw(rj, ij) when rj is continuous.}

and Ep denote the following set for an n-ary predicate p(X1, X2, ..., Xn)

Ep = ∪j≥0{p(x1, x2, ..., xn)|xi ∈ values(Xi) when Xi is discrete;

xi ∈ [uj, uj+1]|∀l≥0ul ∈ zl and z0, z1, ... ∈ B(Rω) when Xi is continuous}.

Then an event e ∈ FPL is defined as

e = {〈eb, ep1 , ep2 , ..., 〉|eb ∈ Eb and epi ∈ Epi}

where p1, p2, ... are predicates in PL.

Finally, we define a probability measure PPL for events ei ∈ FPL. Note
that each event ei is a set of vectors. Now if ei contains the models entailed by
the probabilistic atoms of ei, then probability of the event is computed based
on the probabilistic atoms.

For example, the probability of an event {〈msw(a, 0), {q(0)}〉} of the pro-
gram in Example 22, is simply the probability of {〈msw(a, 0)〉} as the least
model entailed by the base fact msw(a, 0) is a subset of {msw(a, 0), q(0)}.
Thus

PPL({〈msw(a, 0), q(0)〉}) = PB({〈msw(a, 0)〉}) = 0.3

Similarly, the probability of {〈msw(a, 0), {q(0), q(1)}〉} is 0.3, as the least
model entailed by the base fact msw(a, 0) is a subset of this event.

On the other hand, the probability of {〈msw(a, 0), {q(1)}〉} is 0 asmsw(a, 0)
does not entail q(1).

Similarly, the probability of an event {〈msw(b, [0, 0.3]), r([0, 0.3], [1.0, 1.3])〉}
of the program in Example 23, is the probability of {〈msw(b, [0, 0.3])〉} as

49

r([0, 0.3], [1.0, 1.3]) is entailed by the base fact msw(b, [0, 0.3]).

PPL({〈msw(b, [0, 0.3]), r([0, 0.3], [1.0, 1.3])〉}) = PB({〈msw(b, [0, 0.3])〉})

=

∫ 0.3

0

N (0, 1)dx.

Similarly, the probability of {〈msw(b, [0, 0.3]), r([0, 0.4], [1.0, 1.3])〉} is same as
the above probability.

Let κ be an event in FPL, and p(κ) denote the set of non-probabilistic
or predicate atoms of κ. Now we can construct an event ν ∈ FB such that
it contains only the probabilistic atoms of κ. Let MPL(ν) denote the least
Herbrand model starting with ν. We use the notion of least model or fixpoint
semantics of constraint logic programs [30]. The fixpoint semantics is based
on the “immediate consequence operator” or Tp [2] (defined below)

Tp(I) = {A|∃A← B1, ..., Bk ∈ PL(0 ≤ k) such that {B1, ..., Bk} ⊆ I}

where I is a set of ground atoms.
Now we define the probability measure PPL of an event κ as follows.

Definition 5 (Probability measure of extended distribution). Let κ ∈ FPL
and ν ∈ FB contains only the probabilistic atoms of κ. Then PPL(κ) is defined
as

PPL(κ) =

{
PB(ν) if MPL(ν) ⊆ p(κ)
0 otherwise.

Thus there exists a probability measure PPL over FPL which is an extension
of PB.

Example 24. For the Finite Mixture Model program in Example 34, the sam-
ple space ΩB of the base distribution is

ΩB = {〈msw(m, v),msw(w(v), x)〉|v ∈ {a, b}, x ∈ R}

and the sample space ΩPL of PL is

ΩPL = {〈msw(m, v),msw(w(v), x), fmix(z)〉
|v ∈ {a, b}, x ∈ R, z ∈ B(R)}.

Next the event space FB is a σ-algebra over ΩB. Each event in FB contains
elements of the following form

{〈msw(m, v),msw(w(v), ix)〉|v ∈ {a, b}, ix ∈ B(R)}

50

and each event in FPL contains elements of the following form

{〈msw(m, v),msw(w(v), ix),∪j≥0{fmix(z)|z ∈ [u2j, u2j+1]}〉
|v ∈ {a, b}, ix ∈ B(R) and ∀l≥0ul ∈ zl; z0, z1, ... ∈ B(Rω)}.

The probability of {〈msw(m, a),msw(w(a), [1.0, 1.1]), fmix([1.0, 1.1])〉} is
the probability of {〈msw(m, a),msw(w(a), [1.0, 1.1])〉}

PPL({〈msw(m, a),msw(w(a), [1.0, 1.1]), fmix([1.0, 1.1])〉})
= PB({〈msw(m, a),msw(w(a), [1.0, 1.1])〉})

= 0.3

∫ 1.1

1.0

N (1.0, 0.2)dw

ut

51

Chapter 6

Inference

We present an inference algorithm to reason over extended PRISM programs
with Gaussian random variables (in addition to discrete-valued ones), and
linear equality constraints over values of these continuous random variables.
Instead of relying on enumerating sets of explanations for a query answer, we
present a symbolic derivation procedure that uses constraints and represents
sets of explanations without enumeration. In this chapter, we present our
inference algorithm in detail along with correctness and complexity analysis.
We also provide an illustrative example on Kalman filter.

6.1 Inference Algorithm
Recall that PRISM’s inference explicitly enumerates outcomes of random vari-
ables in derivations. For example, Figure 6.1 shows the derivation for goal
hbn(X, Y) in Example 16. The derivation takes different paths for different
outcomes of the random variables X and Y .

hbn(X,Y)

��
msw(x,X),msw(y(X), Y).

X=0

��
X=1

��
msw(y(0), Y).

Y=0
��

Y=1
��

msw(y(1), Y).

Y=0
��

Y=1
��

� � � �

Figure 6.1: Derivation for goal hbn(X, Y)

The key to inference in the presence of continuous random variables is
avoiding enumeration by representing the derivations and their attributes sym-
bolically. For example, Figure 6.2 shows the symbolic derivation for goal
hbn(X, Y) in Example 16. Notice that X and Y are represented symbolically

52

and are not bounded to any outcome.

hbn(X,Y)

��
msw(x,X),msw(y(X), Y).

��
msw(y(X), Y).

��
�

Figure 6.2: Symbolic derivation for goal hbn(X, Y)

A single step in the construction of a symbolic derivation is defined below.

Definition 6 (Symbolic Derivation). A goal G directly derives goal G′, de-
noted G→ G′, if:

PCR: G = q1(X1), G1, and there exists a clause in the program, q1(Y) :
−r1(Y1), r2(Y2), . . . , rm(Ym), such that θ = mgu(q1(X1), q1(Y)); then,
G′ = (r1(Y1), r2(Y2), . . . , rm(Ym), G1)θ;

MSW: G = msw(rv(X), Y), G1: then G′ = G1;

CONS: G = Constr , G1 and Constr is satisfiable: then G′ = G1.

A symbolic derivation of G is a sequence of goals G0, G1, . . . such that G = G0

and, for all i ≥ 0, Gi → Gi+1.

We only consider successful derivations, i.e., the last step of a derivation
resolves to an empty clause.

Note that the traditional notion of derivation in a logic program coincides
with that of symbolic derivation when the selected subgoal (literal) is not an
msw or a constraint. When the selected subgoal is an msw, PRISM’s inference
will construct the next step by enumerating the values of the random variable.
In contrast, symbolic derivation skips msw’s and constraints and continues with
the remaining subgoals in a goal. The effect of these constructs is computed by
associating (a) variable type information and (b) a success function (defined
below) with each goal in the derivation. Note that the derivation still takes
different paths for different values of logic variables and the only difference
is the msws and constraints. The symbolic derivation for the goal widget(X)
over the program in Example 25 is shown in Figure 6.3.

Example 25. Consider a factory with two machines a and b. Each machine
produces a widget structure and then the structure is painted with a color. In

53

G1 : widget(X)

��
G2 : msw(m,M),msw(st(M), Z),msw(pt, Y), X = Y + Z.

��
G3 : msw(st(M), Z),msw(pt, Y), X = Y + Z.

��
G4 : msw(pt, Y), X = Y + Z.

��
G5 : X = Y + Z.

��
�

Figure 6.3: Symbolic derivation for goal widget(X)

the following program, msw(m, M) chooses either machine a or b, msw(st(M),
Z) gives the cost Z of a product structure, msw(pt, Y) gives the cost Y of paint-
ing, and finally X = Y + Z returns the price of a painted widget X.

widget(X) :- msw(m, M),

msw(st(M), Z),

msw(pt, Y),

X = Y + Z.

% Ranges of RVs

values(m, [a,b]).

values(st(M), real).

values(pt, real).

% PDFs and PMFs:

:- set_sw(m, [0.3, 0.7]),

set_sw(st(a), norm(2.0, 1.0)),

set_sw(st(b), norm(3.0, 1.0)),

set_sw(pt, norm(0.5, 0.1)).

ut

Example 26. This example illustrates how symbolic derivation differs from
traditional logic programming derivation. Consider the following program,
where predicate q is defined in terms of msw(rv, X) and predicate p. Predicate
p has two definitions, in terms of predicates r and s. Figure 6.4 shows the
symbolic derivation for goal q(Y).

54

q(Y)

��
msw(rv,X), p(X,Y)

��
p(X,Y)

X=aww X=b ''
r(Y)

Y=1
��

Y=2
��

s(Y)

Y=2
��

Y=3
��

� � � �

Figure 6.4: Symbolic derivation for goal q(Y)

q(Y) :- msw(rv, X),

p(X, Y).

p(a, Y) :- r(Y).

p(b, Y) :- s(Y).

r(1).

r(2).

s(2).

s(3).

% Ranges of RVs

values(rv, [a,b]).

% PDFs and PMFs:

:- set_sw(rv, [0.3, 0.7]).

Notice that the symbolic derivation still makes branches in the derivation
tree for various logic definitions and outcomes. But the main difference with
traditional logic derivation is that it skips msw and Constr definitions, and
continues with the remaining subgoals in a goal. ut

Success Functions: Goals in a symbolic derivation may contain variables
whose values are determined by msw’s appearing subsequently in the derivation.
With each goal Gi in a symbolic derivation, we associate a set of variables,
V (Gi), that is a subset of variables in Gi. The set V (Gi) is such that the
variables in V (Gi) subsequently appear as parameters or outcomes of msw’s in
some subsequent goal Gj, j ≥ i. We can further partition V into two disjoint
sets, Vc and Vd, representing continuous and discrete variables, respectively.
The sets Vc and Vd are called the derivation variables of Gi, defined below.

Definition 7 (Derivation Variables). Let G→ G′ such that G′ is derived from
G using:

55

PCR: Let θ be the mgu in this step. Then Vc(G) and Vd(G) are the largest
sets of variables in G such that Vc(G)θ ⊆ Vc(G

′) and Vd(G)θ ⊆ Vd(G
′).

MSW: Let G = msw(rv(X), Y), G1. Then Vc(G) and Vd(G) are the largest
sets of variables in G such that Vc(G) ⊆ Vc(G

′) ∪ {Y }, and Vd(G) ⊆
Vd(G

′) ∪X if Y is continuous, otherwise Vc(G) ⊆ Vc(G
′), and Vd(G) ⊆

Vd(G
′) ∪X ∪ {Y }.

CONS: Let G = Constr , G1. Then Vc(G) and Vd(G) are the largest sets of
variables in G such that Vc(G) ⊆ Vc(G

′) ∪ vars(Constr), and Vd(G) ⊆
Vd(G

′).

Given a goal Gi in a symbolic derivation, we can associate with it a success
function, which is a function from the set of all valuations of V (Gi) to [0, 1].
Intuitively, the success function represents the probability that the symbolic
derivation represents a successful derivation for each valuation of V (Gi). Note
that the success function computation uses a set of distribution parameters Θ.
For simplicity, we often omit it in the equations and use it when it’s not clear
from the context.

Representation of success functions: Given a set of variables V, let C
denote the set of all linear equality constraints over reals using V. Let L be
the set of all linear functions over V with real coefficients. Let NX(µ, σ2) be
the PDF of a univariate Gaussian distribution with mean µ and variance σ2,
and δx(X) be the Dirac delta function which is zero everywhere except at x
and integration of the delta function over its entire range is 1. Expressions
of the form k ∗

∏
l δv(Vl)

∏
iNfi , where k is a non-negative real number and

fi ∈ L, are called product PDF (PPDF) functions over V. We use φ (possibly
subscripted) to denote such functions. A pair 〈φ,C〉 where C ⊆ C is called a
constrained PPDF function. A sum of a finite number of constrained PPDF
functions is called a success function, represented as

∑
i〈φi, Ci〉.

We use Ci(ψ) to denote the constraints (i.e., Ci) in the ith constrained
PPDF function of success function ψ; and Di(ψ) to denote the ith PPDF
function of ψ.

Success functions of base predicates: The success function of a con-
straint C is 〈1, C〉. The success function of true is 〈1, true〉. The PPDF
component of msw(rv(X), Y)’s success function is the probability density func-
tion of rv’s distribution if rv is continuous, and its probability mass function
if rv is discrete; its constraint component is true.

Example 27. The success function ψ1 of msw(m,M) for the program in Ex-
ample 25 is such that ψ1 = 0.3δa(M) + 0.7δb(M). Note that we can represent

56

the success function using tables, where each table row denotes discrete random
variable valuations. For example, the above success function can be represented
as

M ψ1

a 0.3
b 0.7

Thus instead of using delta functions, we often omit it in examples and repre-
sent success functions using tables.

The success function ψ2 of msw(st(M), Z) for the program in Example 25
is such that

M ψ2

a NZ(2.0, 1.0)
b NZ(3.0, 1.0)

Similarly, the success function ψ3 of msw(pt, Y) for the program in Exam-
ple 25 is ψ3 = NY (0.5, 0.1).

Finally, the success function ψ4 of X = Y + Z for the program in Exam-
ple 25 is ψ4 = 〈1, X = Y + Z〉.

ut

Success functions of user-defined predicates: If G → G′ is a step in a
derivation, then the success function of G is computed bottom-up based on the
success function of G′. This computation is done using join and marginalize
operations on success functions.

Definition 8 (Join). Let ψ1 =
∑

i〈Di, Ci〉 and ψ2 =
∑

j〈Dj, Cj〉 be two success
functions, then join of ψ1 and ψ2 represented as ψ1 ∗ψ2 is the success function∑

i,j〈DiDj, Ci ∧ Cj〉.

Example 28. Let ψmsw(m,M)(M) and ψG(X, Y, Z,M) be defined as follows:

M ψmsw(m,M)(M)
a 0.3
b 0.7

M ψG(X, Y, Z,M)
a 〈NZ(2.0, 1.0).NY (0.5, 0.1), X = Y + Z〉
b 〈NZ(3.0, 1.0).NY (0.5, 0.1), X = Y + Z〉

Then join of ψmsw(m,M)(M) and ψG(X, Y, Z,M) yields:

57

M ψmsw(m,M)(M) ∗ ψG(X, Y, Z,M)
a 〈0.3NZ(2.0, 1.0).NY (0.5, 0.1), X = Y + Z〉
b 〈0.7NZ(3.0, 1.0).NY (0.5, 0.1), X = Y + Z〉

ut

Note that we perform a simplification of success functions after the join
operation. We eliminate any PPDF term in ψ which is inconsistent w.r.t.
delta functions. For example, δa(M)δb(M) = 0 as M can not be both a and b
at the same time.

Given a success function ψ for a goal G, the success function for ∃X. G is
computed by the marginalization operation. Marginalization w.r.t. a discrete
variable is straightforward and omitted. Below we define marginalization w.r.t.
continuous variables in two steps: first rewriting the success function in a
projected form and then doing the required integration.

The goal of projection is to eliminate any linear constraint on V , where
V is the continuous variable to marginalize over. The projection operation
involves finding a linear constraint (i.e., V = a ·X + b) on V and replacing all
occurrences of V in the success function by a ·X + b.

Definition 9 (Projection). Projection of a success function ψ w.r.t. a con-
tinuous variable V , denoted by ψ ↓V , is a success function ψ′ such that
∀i. Di(ψ

′) = Di(ψ)[a ·X + b/V]; and
Ci(ψ

′) = (Ci(ψ)− Cip)[a ·X + b/V],
where Cip is a linear constraint (V = a · X + b) on V in Ci(ψ) and t[s/x]
denotes replacement of all occurrences of x in t by s.

Note that the replacement of V by a ·X+ b in PDFs and linear constraints
does not alter the general form of a success function. Thus projection returns
a success function. Notice that if ψ does not contain any linear constraint on
V , then the projected form remains the same.

Example 29. Let ψ1 represent the following success function

ψ1 = 〈0.3NZ(2.0, 1.0).NY (0.5, 0.1), X = Y + Z〉.

Then projection of ψ1 w.r.t. Y yields

ψ1 ↓Y = 0.3NZ(2.0, 1.0).NX−Z(0.5, 0.1). (6.1)

Notice that Y is replaced by X − Z. ut

58

Proposition 6. Integration of a PPDF function with respect to a variable V
is a PPDF function, i.e.,

α

∫ ∞
−∞

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV = α′

m′∏
l=1

N(a′l·X
′
l)+b

′
l
(µ′l, σ

′2
l)

where V ∈ Xk and V 6∈ X ′l .

For example, the integration ofNa1V−X1(µ1, σ
2
1).Na2V−X2(µ2, σ

2
2) w.r.t. vari-

able V is ∫ ∞
−∞
Na1V−X1(µ1, σ

2
1).Na2V−X2(µ2, σ

2
2)dV

= Na2X1−a1X2(a1µ2 − a2µ1, a
2
2σ

2
1 + a2

1σ
2
2). (6.2)

Here X1, X2 are linear combinations of variables (except V). A proof of the
proposition is given in 6.7.

Definition 10 (Integration). Let ψ be a success function that does not contain
any linear constraints on V . Then integration of ψ with respect to V , denoted
by
∮
V
ψ is a success function ψ′ such that ∀i.Di(ψ

′) =
∫
Di(ψ)dV .

It is easy to see (using Proposition 6) that the integral of success functions
are also success functions. Note that if ψ does not contain any PDF on V ,
then the integrated form remains the same.

Example 30. Let ψ2 represent the following success function

ψ2 = 0.3NZ(2.0, 1.0).NX−Z(0.5, 0.1).

Then integration of ψ2 w.r.t. Z yields∮
Z

ψ2 =

∫
0.3NZ(2.0, 1.0).NX−Z(0.5, 0.1)dZ

= 0.3NX(2.5, 1.1). (6.3)

(using Equation 6.2)

ut
Definition 11 (Marginalize). Marginalization of a success function ψ with
respect to a variable V , denoted by M(ψ, V), is a success function ψ′ such that

ψ′ =

∮
V

ψ ↓V

59

We overload M to denote marginalization over a set of variables, defined
such that M(ψ, {V } ∪X) = M(M(ψ, V), X) and M(ψ, {}) = ψ.

Proposition 7. The set of all success functions is closed under join and
marginalize operations.

The success function for a derivation is defined as follows.

Definition 12 (Success function of a goal). The success function of a goal G,
denoted by ψG, is computed based on the derivation G→ G′:

ψG =


∑

G′M(ψG′ , V (G′)− V (G)) for all program clause resolution G→G′

ψmsw(rv(X),Y) ∗ ψG′ if G = msw(rv(X), Y), G1

ψConstr ∗ ψG′ if G = Constr,G1

Note that the above definition carries PRISM’s assumption that an instance
of a random variable occurs at most once in any derivation. In particular, the
PCR step marginalizes success functions w.r.t. a set of variables; the valuations
of the set of variables must be mutually exclusive for correctness of this step.
The MSW step joins success functions; the goals joined must use independent
random variables for the join operation to correctly compute success functions
in this step.

Example 31. Figure 6.3 shows the symbolic derivation for the goal widget(X)
over the mixture model program in Example 25. The success function of goal
G5 is ψG5(X, Y, Z) = 〈1, X = Y + Z〉.
[Join]

ψG4(X, Y, Z) = ψmsw(pt,Y)(Y) ∗ ψG5(X, Y, Z)

= 〈NY (0.5, 0.1), X = Y + Z〉.

The success function of goal G3 is ψmsw(st(M),Z)(Z) ∗ ψG4(X, Y, Z), which
yields:

M ψG3(X, Y, Z,M)
a 〈NZ(2.0, 1.0).NY (0.5, 0.1), X = Y + Z〉
b 〈NZ(3.0, 1.0).NY (0.5, 0.1), X = Y + Z〉

Then join of ψmsw(m,M)(M) and ψG3(X, Y, Z,M) yields (see Example 28):

M ψG2(X, Y, Z,M)
a 〈0.3NZ(2.0, 1.0).NY (0.5, 0.1), X = Y + Z〉
b 〈0.7NZ(3.0, 1.0).NY (0.5, 0.1), X = Y + Z〉

60

[Marginalize]
Finally, ψG1(X) = M(ψG2(X, Y, Z,M), {M,Y, Z}).

First we marginalize ψG2(X, Y, Z,M) w.r.t. M :

M(ψG2 ,M) =

∮
M

ψG2 ↓M

= 〈0.3NZ(2.0, 1.0).NY (0.5, 0.1), X = Y + Z〉
+ 〈0.7NZ(3.0, 1.0).NY (0.5, 0.1), X = Y + Z〉.

Next we marginalize ψG2(X, Y, Z) w.r.t. Y :

M(ψG2 , Y) =

∮
Y

ψG2 ↓Y

= 0.3NZ(2.0, 1.0).NX−Z(0.5, 0.1) + 0.7NZ(3.0, 1.0).NX−Z(0.5, 0.1).

Finally, we marginalize ψG2(X,Z) over variable Z to get ψG1(X):

ψG1(X) = M(ψG2 , Z)

=

∮
Z

ψG2 ↓Z

= 0.3NX(2.5, 1.1) + 0.7NX(3.5, 1.1).

(using Equation 6.3)

ut

Example 32. In this example, we compute success function of goal q(Y) in
Example 26. Figure 6.4 shows the symbolic derivation for goal q(Y). Success
function of r(Y) is δ1(Y)+δ2(Y), and success function of s(Y) is δ2(Y)+δ3(Y).
Similarly, success function of p(X, Y) is δa(X)(δ1(Y)+δ2(Y))+δb(X)(δ2(Y)+
δ3(Y)). Now

ψq(Y) = M(ψmsw(rv,X) ∗ ψp(X,Y), X)

Success function of msw(rv,X) is 0.3δa(X) + 0.7δb(X). Join of ψmsw(rv,X)

and ψp(X,Y) yields 0.3δa(X)(δ1(Y)+δ2(Y))+0.7δb(X)(δ2(Y)+δ3(Y)). Finally,
ψq(Y) = 0.3(δ1(Y) + δ2(Y)) + 0.7(δ2(Y) + δ3(Y)).

When Y = 1, only p(a, 1) is true. Thus ψq(1) = 0.3. On the other hand,
ψq(2) = 1.0 as both p(a, 2) and p(b, 2) are true when Y=2. Similarly, ψq(3) =
0.7. ut

Note that the definition of success function applies to a symbolic derivation.
We can define success function for a goal in terms of the success functions of all

61

symbolic derivations for that goal; if the symbolic derivations are all mutually
exclusive, this is simply the sum of success functions of all derivations. Thus
the success function of a goal represents the likelihood of a successful derivation
for each instance of a goal. Hence the probability measure computed by the
success function is what PRISM calls inside probability.

Since the derivation can take different paths based on the valuation of
logic variables (non-random variables), the same goal can be encountered in
different paths of a derivation (i.e., common goal in the derivation tree for a
given top goal). Thus it is possible to eliminate redundant computation by
saving results of common goals. We save the success function of a goal in a
table (indexed by that goal). We call it tabled success function. Whenever we
encounter a goal, we first check whether there exists a success function in the
table for that goal. If the success function exists then we return it; otherwise
we compute a success function using Definition 12.

6.2 Correctness of the Inference Algorithm
The technically complex aspect of correctness is the closure of the set of success
functions w.r.t. join and marginalize operations. Proposition 6 and 7 state
these closure properties and the proofs of these propositions are presented in
Section 6.7.

Definition 12 represents the inference algorithm for computing the success
function of a goal. The distribution of a goal is formally defined in terms of the
distribution semantics (i.e., PPL in Section 5.2) of extended PRISM programs
and is computed using the inference algorithm. We show that the success
function computed by our inference algorithm represents the distribution of a
goal. For example, the success function of goal G1 in Example 31 represents
the distribution of variable X. More specifically, success functions represent
the distribution of an answer to a goal, e.g., distribution of Gθ for a goal G
with variable substitution θ.

Theorem 8. The success function of a goal computed by the inference algo-
rithm represents the distribution of the answer to that goal.

Proof. Correctness w.r.t. distribution semantics follows from the definition of
join and marginalize operations, and PRISMs independence and exclusiveness
assumptions. We prove this by induction on derivation length n. For n = 1, the
definition of success function for base predicates gives a correct distribution.

Now let’s assume that for a derivation of length n, our inference algorithm
computes valid distribution. Let’s assume that G′ has a derivation of length
n and G → G′. Thus G has a derivation of length n + 1. We show that the
success function of G represents a valid distribution.

62

We compute ψG using Definition 12 and it carries PRISM’s assumption
that an instance of a random variable occurs at most once in any derivation.
More specifically, the PCR step marginalizes ψG′ w.r.t. a set of variables
V (G′) − V (G). Since according to PRISM’s exclusiveness assumption the
valuations of the set of variables are mutually exclusive, the marginalization
operation returns a valid distribution. Analogously, the MSW/CONS step
joins success functions, and the goals joined use independent random variables
(following PRISM’s assumption) for the join operation to correctly compute
ψG in this step. Thus ψG represents a valid distribution. ut

6.3 Complexity Analysis
Complexity: Let Si denote the number of constrained PPDF terms in ψi;
Pi denote the maximum number of product terms in any PPDF function in
ψi; and Qi denote the maximum size of a constraint set (Ci) in ψi. The
time complexity of the two basic operations used in constructing a symbolic
derivation is as follows.

Proposition 9 (Time Complexity). The worst-case time complexity of
Join(ψi, ψj) is O(Si ∗ Sj ∗ (Pi ∗ Pj +Qi ∗Qj)).

The worst-case time complexity of M(ψg, V) is O(Sg∗Pg) when V is discrete
and O(Sg ∗ (Pg +Qg)) when V is continuous.

Note that when computing the success function of a goal in a derivation,
the join operation is limited to joining the success function of a single msw

or a single constraint set to the success function of a goal, and hence the
parameters Si, Pi, and Qi are typically small. The complexity of the size of
success functions is as follows.

Proposition 10 (Success Function Size). For a goal G and its symbolic deriva-
tion, the following hold:

1. The maximum number of product terms in any PPDF function in ψG is
linear in |Vc(G)|, the number of continuous variables in G.

2. The maximum size of a constraint set in a constrained PPDF function
in ψG is linear in |Vc(G)|.

3. The maximum number of constrained PPDF functions in ψG is poten-
tially exponential in the number of discrete random variables in the sym-
bolic derivation.

63

Proof. We prove (1) by contradiction. Let there are n continuous variables in
goal G, then any PPDF function in G will contain at most n Gaussians. If
it contains more than n Gaussians, then there exists a continuous variable V
which has more than one Gaussian functions. Thus multiplying these Gaus-
sians will yield a single Gaussian according to Gaussian functions properties
(Property 2). Similarly, it can be proved that the maximum size of a constraint
set is linear in |Vc(G)|.

The success functions can be alternatively represented using tabular form
where each row denotes discrete random variables valuation and corresponding
constrained PPDF function. Since the total number of rows is exponential in
the number of discrete random variables, the maximum number of constrained
PPDF functions in ψG is also exponential in the number of discrete random
variables. ut

The number of product terms and the size of constraint sets are hence in-
dependent of the length of the symbolic derivation. Note that for a program
with only discrete random variables, there may be exponentially fewer sym-
bolic derivations than concrete derivations. The compactness is only in terms
of number of derivations and not the total size of the representations. In
fact, for programs with only discrete random variables, there is a one-to-one
correspondence between the entries in the tabular representation of success
functions and PRISM’s answer tables. For such programs, it is easy to show
that the time complexity of the inference algorithm presented in this paper is
same as that of PRISM.

Example 33. In this example, we show that for programs with only discrete
random variables, there is a one-to-one correspondence between the entries in
the tabular representation of success functions and PRISM’s derivations paths.

Figure 6.1 shows PRISM’s derivation for the goal hbn(X,Y) over the Bayesian
network program in Example 16. The derivation has four paths, e.g., for (i)
X=0, Y=0; (ii) X= 0, Y=1; (iii) X=1, Y=0; and (iv) X =1, Y=1.

The success function of the goal hbn(X, Y) can be represented using the
following table. It is computed by joining the success functions of msw(x,X)
and msw(y(X), Y).

X Y ψhbn(X,Y)(X, Y)
0 0 0.20
0 1 0.20
1 0 0.48
1 1 0.12

64

Notice that there is a one-to-one correspondence between the entries in the
table and derivation paths in Figure 6.1. In addition, PRISM also gives the
four answers with the above mentioned probabilities. ut

widget(X)

��
msw(m,M),msw(st(M), Z),msw(pt, Y), X = Y + Z.

M=a

��
M=b

��
msw(st(a), Z),msw(pt, Y), X = Y + Z.

��

msw(st(a), Z),msw(pt, Y), X = Y + Z.

��
msw(pt, Y), X = Y + Z.

��

msw(pt, Y), X = Y + Z.

��
X = Y + Z. X = Y + Z.

Figure 6.5: Derivation for goal widget(X)

Like PRISM, it’s possible to construct the next step of a derivation by
enumerating the values of discrete variables, i.e., creating different paths in a
derivation based on discrete variable values and constructing symbolic deriva-
tion only for continuous variables. For example, the symbolic derivation for
widget(X) in Figure 6.3 can be represented as in Figure 6.5 where the deriva-
tion takes two paths based on the valuation of the random process m. Each
path (along with the discrete variable valuation) represents a table entry in
the tabular representation of success function (Example 31). For programs
with only discrete random variables, each path corresponds to an explanation
in PRISM, i.e., there is a one-to-one correspondence between an explanation
(in PRISM) and entries in the table. Thus the complexity of the inference
algorithm is same as that of PRISM’s for programs with only discrete random
variables.

Instead of enumerating the values of discrete random variables, we follow
the symbolic computation for discrete as well as continuous random variables.
The reason is as follows. First, it gives a uniform approach to handle all types
of random variables. Second and more importantly, it makes the language
more powerful and gives flexibility to model complex problems (e.g., Hybrid
models in Section 2.3.8).

6.4 Illustrative Example: Kalman Filter

In this section, we model Kalman filters [53] using probabilistic logic programs.
The model describes a random walk of a single continuous state variable St
with noisy observation Vt. The initial state distribution is assumed to be
Gaussian with mean µ0, and variance σ2

0. The transition and sensor models
are Gaussian noises with zero means and constant variances σ2

s , σ
2
v respectively.

65

kf(N, T) :-

msw(init, S),

kf_part(0, N, S, T).

kf_part(I, N, S, T) :-

I < N, NextI is I+1,

trans(S, NextS),

emit(NextS, V),

obs(NextI, V),

kf_part(NextI, N, NextS, T).

kf_part(I, N, S, T) :- I=N, T=S.

trans(S, NextS) :-

msw(trans_err, E),

NextS = S + E.

emit(NextS, V) :-

msw(obs_err, X),

V = NextS + X.

Figure 6.6: Logic program for Kalman Filter.

Figure 6.6 shows a logic program for Kalman filter, and Figure 6.7 shows
the derivation for a query kf(1, T). Note the similarity between this and
hmm program (Figure 4.1): only trans/emit definitions are different. We label
the ith derivation step by Gi which is used in the next subsection to refer to
appropriate derivation step. Here, our goal is to compute filtered distribution
of state T .

Success Function Computation: Using our definition of success func-
tions, the success function of the leaf goal in Figure 6.7 (G15) is
ψG15 = 〈1, T = NextS〉.

ψG13 and ψG14 are same as ψG15 .
ψG12 is same as ψG13 except that obs(1, V) binds V to an observation v1.

Thus, ψG11 is Join(ψv1=NextS+X , ψG12) which yields

ψG11 = 〈1, T = NextS ∧ v1 = NextS +X〉.

Now ψG10 is Join(ψmsw(obs err), ψG11) which gives

ψG10 = 〈NX(0, σ2
v), T = NextS ∧ v1 = NextS +X〉.

66

G1 : kf(1, T)

��
G2 : msw(init, S), kf part(0, 1, S, T)

��
G3 : kf part(0, 1, S, T)

��

G4 : 0 < 1, NextI is 0+1, trans(S, NextS), emit(NextS, V),
obs(NextI, V), kf part(NextI, 1, NextS, T)

��

G5 : NextI is 0+1, trans(S, NextS), emit(NextS, V), obs(NextI, V),
kf part(NextI, 1, NextS, T)

��
G6 : trans(S, NextS), emit(NextS, V), obs(1, V), kf part(1, 1, NextS, T)

��

G7 : msw(trans err, E), NextS = S + E, emit(NextS, V), obs(1, V),
kf part(1, 1, NextS, T)

��
G8 : NextS = S + E, emit(NextS, V), obs(1, V), kf part(1, 1, NextS, T)

��
G9 : emit(NextS, V), obs(1, V), kf part(1, 1, NextS, T)

��

G10 : msw(obs err, X), V = NextS + X, obs(1, V),
kf part(1, 1, NextS, T)

��
G11 : V = NextS + X, obs(1, V), kf part(1, 1, NextS, T)

��
G12 : obs(1, V), kf part(1, 1, NextS, T)

��
G13 : kf part(1, 1, NextS, T)

��
G14 : 1 = 1, T = NextS

��
G15 : T = NextS

��
�

Figure 6.7: Symbolic Derivation of Kalman filter

Marginalizing ψG10 over X yields ψG9 . Thus,

ψG9 = M(ψG10 , X)

= 〈Nv1−NextS(0, σ2
v), T = NextS〉.

67

Similarly,

ψG8 = Join(ψNextS=S+E, ψG9)

= 〈Nv1−NextS(0, σ2
v), T = NextS ∧NextS = S + E〉.

ψG7 = Join(ψmsw(trans err), ψG8)

= 〈Nv1−NextS(0, σ2
v).NE(0, σ2

s),

T = NextS ∧NextS = S + E〉.

ψG6 = M(ψG7 , E)

= 〈Nv1−NextS(0, σ2
v).NNextS−S(0, σ2

s), T = NextS〉.

ψG4 and ψG5 are same as ψG6 . Next,

ψG3 = M(ψG4 , NextS)

= Nv1−T (0, σ2
v).NT−S(0, σ2

s).

ψG2 = Join(ψmsw(init), ψG3)

= Nv1−T (0, σ2
v).NT−S(0, σ2

s).NS(µ0, σ
2
0).

Finally,

ψG1 = M(ψG2 , S)

= Nv1−T (0, σ2
v).NT (µ0, σ

2
0 + σ2

s).

(using Equation 6.2)

= NT (v1, σ
2
v).NT (µ0, σ

2
0 + σ2

s).

(constant shifting, Property 3)

= NT
(

(σ2
0 + σ2

s) ∗ v1 + σ2
v ∗ µ0

σ2
0 + σ2

s + σ2
v

,
(σ2

0 + σ2
s) ∗ σ2

v

σ2
0 + σ2

s + σ2
v

)
.

(product of two Gaussian PDFs is another PDF, Property 2)

which is the filtered distribution of state T after seeing one observation, which
is equal to the filtered distribution presented in [53].

68

6.5 Extensions

6.5.1 Gamma Distribution

We can also readily extend our inference techniques to support Gamma dis-
tributions. More generally, the PDF functions can be generalized to contain
Gaussian or Gamma density functions, such that variables are not shared be-
tween Gaussian and Gamma density functions.

The probability density function of a Gamma distributed random variable
x is

f(x; k, θ) =
1

θk
1

Γ(k)
xk−1e−

x
θ

where k and θ are shape and scale parameters respectively. The definition
of join operation for Gamma distribution remains the same. For marginalize
operation the only change is to extend the integration function to handle PDFs
of Gamma distribution.

6.5.2 Multivariate Gaussian

For simplicity, in this thesis we focused only on univariate Gaussians. However,
the techniques can be easily extended to support multivariate Gaussian dis-
tributions, by extending the integration function (Definition 10), and set sw

directives. We presented the closed form solution of the integration for uni-
variate Gaussian in Proposition 6. For multivariate Gaussian, the closed form
solution of the integration can be computed similarly.

6.5.3 Call Functions and Smoothed Distributions

We can define a function that represents the likelihood that a goal G′ will be
encountered in a symbolic derivation starting at goal G. This “call” function
will represent the outside probability of PRISM. Alternatively, we can use
the Magic Sets transformation originally proposed for deductive databases [3]
to compute call functions of a program in terms of success functions of a
transformed program. As mentioned in the background section, the ability
to compute inside and outside probabilities can be used to infer smoothed
distributions for temporal models.

6.5.4 Hybrid Models

The symbolic inference procedure enables us to reason over a large class of sta-
tistical models such as Hybrid Bayesian Networks with discrete child-discrete
parent, continuous child-discrete parent (finite mixture model), and continu-
ous child-continuous parent (Kalman filter), which was hitherto not possible in

69

PLP frameworks. It can also be used for hybrid models, e.g., models that mix
discrete and Gaussian distributions. For instance, consider the finite mixture
model example (Example 34) where w(a) is Gaussian but w(b) is a discrete
distribution with values 1 and 2 with 0.5 probability each. The density of the
mixture distribution can be written as

f(X) = 0.3NX(1.0, 0.2) + 0.35δ1.0(X) + 0.35δ2.0(X)

Example 34 (Hybrid Model). In this example, we encode the above density
in extended PRISM.

fmix(X) :- msw(m, M),

msw(w(M), X).

% Ranges of RVs

values(m, [a,b]).

values(w(a), real).

values(w(b), [1, 2]).

% PDFs and PMFs

:- set_sw(m, [0.3, 0.7]),

set_sw(w(a), norm(1.0, 0.2)),

set_sw(w(b), [0.5, 0.5]).

ut

Thus the language can be used to model problems that lie outside tradi-
tional Hybrid Bayesian Networks.

6.5.5 Lifting PRISM’s restrictions

ProbLog and PITA [52], an implementation of LPAD, lift PRISM’s mutual
exclusion and independence restrictions. Their inference technique first ma-
terializes the set of explanations for each query, and represents this set as a
BDD, where each node in the BDD is a (discrete) random variable. Distinct
paths in the BDD are mutually exclusive and variables in a single path are
all independent. Probabilities of query answers are computed with a simple
dynamic programming algorithm using this BDD representation.

The technical development in this thesis is based on PRISM and imposes
its restrictions. However, by materializing the set of symbolic derivations first
(analogous to the inference procedure of ProbLog and PITA), representing
them in a factored form (such as a BDD), and then computing success functions
on this representation, the mutual exclusion and independence restrictions can
be lifted for models with continuous variables as well.

70

e(X)

�� ��
msw(c1, X)

��

msw(c2, X)

��
� �

Figure 6.8: Derivation for goal e(X)

Example 35. We will illustrate the idea of BDD-based success function com-
putation using the following program, where c1 and c2 denote fair and biased
coins respectively, and predicate e(X) denotes the outcome of the coin tossing
experiment.

e(X) :- msw(c1, X).

e(X) :- msw(c2, X).

% Ranges of RVs

values(c1, [h,t]).

values(c2, [h,t]).

% PDFs and PMFs:

:- set_sw(c1, [0.5, 0.5]),

set_sw(c2, [0.3, 0.7]).

ut

Note that for the above program, PRISM will not be able to compute prob-
abilities correctly as the derivations are not mutually exclusive (Figure 6.8).

Let us explain the BDD representation for goal e(h) in ProbLog/PITA.
The encoding requires ordering of the variables. Let c1 appears before c2.
Then the first branch of the BDD checks whether the outcome of c1 is h. The
second branch checks whether the outcome of c2 is h. The BDD construction
for goal e(t) follows the same approach.

We can follow the above mentioned approach to construct a symbolic BDD
representation for goal e(X). We represent the outcomes of the coin tosses
c1, c2 using variables Y and Z respectively. In the BDD representation (Fig-
ure 6.9), we first toss coin c1 and check whether Y equals to X in the first
branch. The second branch first checks X 6= Y , and then decides whether the
outcome Z equals to X.

In order to compute success function on Figure 6.9, we need to define
success function of dis-equality constraints. Success function of a dis-equality
constraint X 6= Y is defined as

ψX 6=Y = 〈1, true〉 − 〈1, X = Y 〉.

71

G1 : e(X)

��
G2 : msw(c1, Y)

�� ��
G3.1 : X = Y

��

X 6= Y

��

: G3.2

� msw(c2, Z)

��

: G4

X = Z

��

: G5

�

Figure 6.9: BDD representation for goal e(X)

Note that we do not pose any restriction over the constants in success
function, i.e., constants can be positive/negative real values. Thus the negative
constant in the above equation does not pose any additional restriction. Since
dis-equality constraints are not used in success functions, the general form of
constraints that we permit in our language remains the same. Thus the above
function maintains the general form of success function, and the set of success
functions are still closed under join and marginalize operations.

Example 36. In this example, we show the success function computation of
goal e(X) in Figure 6.9. Success function of goal G3.1 is 〈1, X = Y 〉. Similarly,

ψG5(X,Z) = 〈1, X = Z〉
ψG4(X,Z) = ψmsw(c2)(Z) ∗ ψG5(X,Z)

= (0.3δh(Z) + 0.7δt(Z)) ∗ 〈1, X = Z〉
= 〈0.3δh(Z), X = Z〉+ 〈0.7δt(Z), X = Z〉

Now success function of goal G3.2 is

ψG3.2(X, Y) = M(ψX 6=Y ∗ ψG4(X,Z), Z)

Note that ψX 6=Y = 〈1, true〉 − 〈1, X = Y 〉.
Thus

ψX 6=Y ∗ ψG4(X,Z) = 〈0.3δh(Z), X = Z〉+ 〈0.7δt(Z), X = Z〉
− 〈0.3δh(Z), X = Z,X = Y 〉 − 〈0.7δt(Z), X = Z,X = Y 〉.

72

Marginalizing the above success function w.r.t Z yields

ψG3.2(X, Y) = M(ψX 6=Y ∗ ψG4(X,Z), Z)

= 0.3δh(X) + 0.7δt(X)− 〈0.3δh(X), X = Y 〉 − 〈0.7δt(X), X = Y 〉

Then success function of goal G2 is

ψG2(X, Y) = ψmsw(c1) ∗ (ψG3.1 + ψG3.2)

= (0.5δh(Y) + 0.5δt(Y)) ∗ (〈1, X = Y 〉
+ 0.3δh(X) + 0.7δt(X)− 〈0.3δh(X), X = Y 〉 − 〈0.7δt(X), X = Y 〉)
= 〈0.5δh(Y), X = Y 〉+ 〈0.5δt(Y), X = Y 〉+ 0.15δh(Y)δh(X)

+ 0.35δh(Y)δt(X) + 0.15δt(Y)δh(X) + 0.35δt(Y)δt(X)

− 〈0.15δh(Y)δh(X), X = Y 〉 − 〈0.35δh(Y)δt(X), X = Y 〉
− 〈0.15δt(Y)δh(X), X = Y 〉 − 〈0.35δt(Y)δt(X), X = Y 〉

Finally, marginalizing ψG2(X, Y) w.r.t. Y yields ψG1(X).

ψG1(X) = 0.5δh(X) + 0.5δt(X) + 0.15δh(X) + 0.35δt(X)

+ 0.15δh(X) + 0.35δt(X)− 0.15δh(X)δh(X)

− 0.35δh(X)δt(X)− 0.15δt(X)δh(X)− 0.35δt(X)δt(X)

= 0.65δh(X) + 0.85δt(X)

Note that this function gives the correct probability of e(h) and e(t). ut

Thus the success function computation remains the same. However, the
main difficulty here is to construct a factored-form or BDD-based representa-
tion of symbolic derivation, which is a topic of future work. For simplicity, we
used discrete variables in the above example. Continuous variables follow the
same approach where the only difference is that delta functions and discrete
probabilities are replaced by Gaussian functions.

6.6 Implementation
We implemented the extended inference algorithm presented in this thesis in
the XSB logic programming system [59]. The system is available at http:

//www.cs.sunysb.edu/~cram/contdist. This proof-of-concept prototype is
implemented as a meta-interpreter and currently supports discrete and Gaus-
sian distributions. The meaning of various probabilistic predicates (e.g., msw,
values, set sw) in the system are similar to that of PRISM system. This
implementation illustrates how the inference algorithm specializes to the spe-
cialized techniques that have been developed for several popular statistical

73

http://www.cs.sunysb.edu/~cram/contdist
http://www.cs.sunysb.edu/~cram/contdist

models such as HMM, FMM, Hybrid Bayesian Networks and Kalman Filters.

6.7 Closure of Success Functions: Proof of

Propositions 6 and 7
This section presents proof of Propositions 6 and 7.

Proposition 6. Integrated form of a PPDF function with respect to a variable
V is a PPDF function, i.e.,∫ ∞

−∞

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV = α

m′∏
l=1

N(a′l·X
′
l)+b

′
l
(µ′l, σ

′2
l)

where V ∈ Xk and V /∈ X ′l .

(Proof)

The above proposition states that integrated form of a product of Gaus-
sian PDF functions with respect to a variable is a product of Gaussian PDF
functions. We first prove it for a simple case involving two standard Gaussian
PDF functions, and then generalize it for arbitrary number of Gaussians.

For simplicity, let us first compute the integrated-form ofNV−X1(0, 1).NV−X2(0, 1)
w.r.t. variable V where X1, X2 are linear combination of variables (except V).
We make the following two assumptions:

1. The coefficient of V is 1 in both PDFs.

2. Both PDFs are standard normal distributions (i.e., µ = 0 and σ2 = 1).

Let φ denote the integrated form, i.e.,

φ =

∫ ∞
−∞
NV−X1(0, 1).NV−X2(0, 1)dV

=

∫ ∞
−∞

1√
2π

exp−
(V−X1)

2

2 .
1√
2π

exp−
(V−X2)

2

2 dV

=

∫ ∞
−∞

1

2π
exp−

1
2

[(V−X1)2+(V−X2)2] dV

=

∫ ∞
−∞

1

2π
exp−

1
2
η dV

74

Now

η = (V −X1)2 + (V −X2)2

= 2.V 2 − 2.V.(X1 +X2) + (X2
1 +X2

2)

= 2[(V − X1 +X2

2
)2 + (

X2
1 +X2

2

2
)− (

X1 +X2

2
)2]

= 2[(V − X1 +X2

2
)2 + g]

where

g = (
X2

1 +X2
2

2
)− (

X1 +X2

2
)2

=
1

4
(X1 −X2)2

Thus the integrated form can be expressed as

φ =

∫ ∞
−∞

1

2π
exp−

1
2
.2[(V−X1+X2

2
)2+g] dV

=

∫ ∞
−∞

1

2π
exp−

1
2
.2.(V−X1+X2

2
)2 . exp−

1
2
.2.g dV

=
1

2
√
π
exp−g

∫ ∞
−∞

1√
2.π.1

2

exp
− (V−X1+X2

2)2

2. 12 dV

=
1

2
√
π
exp−g

(as integration over the whole area is 1)

=
1√
2π.2

exp−
1
4

(X1−X2)2

= NX1−X2(0, 2)

Thus integrated form of a PPDF function is another PPDF function. Notice
that the integrated form is a constant when X1 = X2.

Generalization for arbitrary number of PDFs. Note that for any arbi-
trary number of PDFs in a PPDF function, η =

∑
(V − Xi)

2 can be always
written as k[(V − β)2 + gn], where

gn =
1

n

n∑
i=1

X2
i −

1

n2
(
n∑
i=1

Xi)
2

75

For any arbitrary number of PDFs, we will prove the property on gn. In other
words, we will show that gn can be expressed as

gn =
1

n

n∑
i=1

X2
i −

1

n2
(
n∑
i=1

Xi)
2 =

1

n2

∑
i 6=j,i<j

(Xi −Xj)
2 (6.4)

which means integrated form of n PDFs,

φn =

∫ ∞
−∞

n∏
i=1

NV−Xi(0, 1)dV

can be expressed as

φn = α exp−gn = α
∏

i 6=j,i<j

NXi−Xj

Proposition 11. Let fn =
∑n

i=1 Xi. Then,

f 2
n =

n∑
i=1

X2
i +

∑
i 6=j

XiXj.

Proof. We prove the proposition using induction. Let us assume that the
above equation holds for n variables. Now for (n+ 1)th variable Xn+1,

f 2
n+1 = (

n+1∑
i=1

Xi)
2

= ((
n∑
i=1

Xi) +Xn+1)2

= (
n∑
i=1

Xi)
2 +X2

n+1 + 2(X1 + ...+Xn)Xn+1

=
n∑
i=1

X2
i +

n∑
i 6=j,i=1

XiXj +X2
n+1 + 2(X1 + ...+Xn)Xn+1

(using induction hypothesis)

=
n+1∑
i=1

X2
i +

∑
i 6=j

XiXj

ut

76

Now going back to proving equation 6.4, we first show that gn can be
written in the following form

gn =
1

n

n∑
i=1

X2
i −

1

n2
(
n∑
i=1

Xi)
2

=
1

n2
[(n− 1)

n∑
i=1

X2
i −

∑
i 6=j

XiXj]

The above equation can be proved by induction. It is easy to see that for
n = 2 the equation holds, as g2 = 1

2

∑2
i=1X

2
i − 1

4
(
∑2

i=1Xi)
2 = 1

4
[X2

1 + X2
2 −

X1X2 −X2X1]. Now

gn+1 =
1

(n+ 1)

n+1∑
i=1

X2
i −

1

(n+ 1)2
f 2
n+1

=
1

(n+ 1)2
[(n+ 1)

n+1∑
i=1

X2
i − f 2

n+1]

=
1

(n+ 1)2
[(n+ 1)

n+1∑
i=1

X2
i −

n+1∑
i=1

X2
i −

∑
i 6=j

XiXj]

(using Proposition 11)

=
1

(n+ 1)2
[n

n+1∑
i=1

X2
i −

∑
i 6=j

XiXj]

Thus gn = 1
n2 [(n− 1)

∑n
i=1X

2
i −

∑
i 6=j XiXj].

Finally, we will prove that

gn =
1

n2
[(n− 1)

n∑
i=1

X2
i −

∑
i 6=j

XiXj]

=
1

n2

∑
i 6=j,i<j

(Xi −Xj)
2

Proposition 12. Let hn =
∑

i 6=j,i<j(Xi −Xj)
2. Then

hn = (n− 1)
n∑
i=1

X2
i −

∑
i 6=j

XiXj

Proof. We use induction to prove the above proposition. Let hn holds for n

77

variables. Then for (n+ 1)th variable,

hn+1 =
∑

i 6=j,i<j

(Xi −Xj)
2

= hn +
n∑
i=1

(Xi −Xn+1)2

= (n− 1)
n∑
i=1

X2
i −

n∑
i 6=j,i=1

XiXj +
n∑
i=1

X2
i + nX2

n+1 − 2
n∑
i=1

XiXn+1

= n

n+1∑
i=1

X2
i −

n+1∑
i 6=j,i=1

XiXj

ut

Since gn = 1
n2hn

gn =
1

n2

∑
i 6=j,i<j

(Xi −Xj)
2

Thus φn can be expressed as

φn = α exp−gn = α
∏

i 6=j,i<j

NXi−Xj

Integrated-form with arbitrary constants: For any arbitrary mean, vari-
ance and coefficients of V ,

φ2 =

∫ ∞
−∞
Na1V−X1(µ1, σ

2
1).Na2V−X2(µ2, σ

2
2)dV

= Na2X1−a1X2(a1µ2 − a2µ1, a
2
2σ

2
1 + a2

1σ
2
2)

Proposition 13 gives a proof of the above equation.
And

φn = α
∏

i 6=j,i<j

NajXi−aiXj(aiµj − ajµi, σ2
ij)

where

σ2
ij =

∑n
k=1 a

2
k

∏n
l 6=k,l=1 σ

2
l∏n

k=1,k 6=i,j σ
2
k

78

Note that the normalization constant is also adjusted appropriately in the
integrated form. The number of PDFs in the resultant PPDF function is
quadratic in the number of PDFs in the original PPDF function. If there
are n PDFs in the original PPDF function, then there are

(
n
2

)
PDFs in the

resultant PPDF function.

Proposition 13.

φ2 =

∫ ∞
−∞
Na1V−X1(µ1, σ

2
1).Na2V−X2(µ2, σ

2
2)dV

= Na2X1−a1X2(a1µ2 − a2µ1, a
2
2σ

2
1 + a2

1σ
2
2)

Proof.

φ2 =

∫ ∞
−∞
Na1V−X1(µ1, σ

2
1).Na2V−X2(µ2, σ

2
2)dV

=

∫ ∞
−∞

1√
2πσ2

1

exp
− (a1V−X1−µ1)

2

2σ21 .
1√

2πσ2
2

exp
− (a2V−X2−µ2)

2

2σ22 dV

=

∫ ∞
−∞

1

2πσ1σ2

exp
− [σ22(a1V−X1−µ1)

2+σ21(a2V−X2−µ2)
2]

2σ21σ
2
2 dV

=

∫ ∞
−∞

1

2πσ1σ2

exp−
1
2
η dV

where

η =
σ2

2(a1V −X1 − µ1)2 + σ2
1(a2V −X2 − µ2)2

σ2
1σ

2
2

= 1

σ21σ
2
2

[σ2
2(a21V

2−2a1V (X1+µ1)+(X1+µ1)2)+σ2
1(a22V

2−2a2V (X2+µ2)+(X2+µ2)2)]

= 1

σ21σ
2
2

[(σ2
2a

2
1+σ2

1a
2
2)V 2−2V {a1σ2

2(X1+µ1)+a2σ2
1(X2+µ2)}+σ2

2(X1+µ1)2+σ2
1(X2+µ2)2]

=
(σ2

2a
2
1 + σ2

1a
2
2)

σ2
1σ

2
2

[V − {a1σ
2
2(X1 + µ1) + a2σ

2
1(X2 + µ2)}

(σ2
2a

2
1 + σ2

1a
2
2)

]2 + g

where

g =
σ2

2(X1 + µ1)2 + σ2
1(X2 + µ2)2

σ2
1σ

2
2

− [a1σ
2
2(X1 + µ1) + a2σ

2
1(X2 + µ2)]2

σ2
1σ

2
2(σ2

2a
2
1 + σ2

1a
2
2)

=
1

(σ2
2a

2
1 + σ2

1a
2
2)

[a2
2(X1 + µ1)2 + a2

1(X2 + µ2)2 − 2a1a2(X1 + µ1)(X2 + µ2)]

79

g =
1

(σ2
2a

2
1 + σ2

1a
2
2)

[a2(X1 + µ1)− a1(X2 + µ2)]2

=
1

(σ2
2a

2
1 + σ2

1a
2
2)

[(a2X1 − a1X2)− (a1µ2 − a2µ1)]2

Thus

φ2 =

∫ ∞
−∞

1

2πσ1σ2

exp
− 1

2
.
(σ22a

2
1+σ

2
1a

2
2)

σ21σ
2
2

[V− {a1σ
2
2(X1+µ1)+a2σ

2
1(X2+µ2)}

(σ22a
2
1+σ

2
1a

2
2)

]2+g
dV

=
1√

2π(σ2
2a

2
1 + σ2

1a
2
2)
exp−

1
2
g

∫ ∞
−∞

1√
2.π.

σ2
1σ

2
2

(σ2
2a

2
1+σ2

1a
2
2)

exp
− 1

2
.
(σ22a

2
1+σ

2
1a

2
2)

σ21σ
2
2

[V− {a1σ
2
2(X1+µ1)+a2σ

2
1(X2+µ2)}

(σ22a
2
1+σ

2
1a

2
2)

]2

dV

=
1√

2π(σ2
2a

2
1 + σ2

1a
2
2)
exp−

1
2
g

(as integration over the whole area is 1)

=
1√

2π(σ2
2a

2
1 + σ2

1a
2
2)
exp

− 1
2

1

(σ22a
2
1+σ

2
1a

2
2)

[(a2X1−a1X2)−(a1µ2−a2µ1)]2

= Na2X1−a1X2(a1µ2 − a2µ1, a
2
2σ

2
1 + a2

1σ
2
2)

ut

Proposition 7. The set of all success functions is closed under join and
marginalize operations.

Proof. We first show that success functions are closed under join operation.
Definition of success function for base predicates follows the general form

of success functions. Now according to the definition of join operation, join
of two success functions ψ1 =

∑
i〈Di, Ci〉 and ψ2 =

∑
j〈Dj, Cj〉 is the success

function
∑

i,j〈DiDj, Ci ∧ Cj〉. Product of two sum of terms can be written as
another summation of terms (e.g., product of D1 +D2 and D3 +D4 is D1D3 +
D2D3 + D1D4 + D2D4). Each PPDF function in the new success function is
a product of two PPDFs from ψ1 and ψ2, which preserves the general form
of PPDF functions. Similarly, the constraint in the new constrained PPDF
function is simply a conjunction of the two constraint sets from ψ1 and ψ2.
Thus the join operation returns a function which follows the general form of
success functions.

Next we prove that success functions are closed under marginalize oper-
ations. Marginalization w.r.t. a discrete variable is done by integrating the
delta functions involving that discrete variable.

80

Marginalization operation w.r.t. a continuous variable involves first doing
a projection and then doing an integration. According to the definition of
projection operation, it does not alter the general form of success functions.
Proposition 6 shows that PPDF functions are closed under integration op-
eration. Thus the set of all success functions are closed under marginalize
operation. ut

81

Chapter 7

Learning

We present an EM-based learning algorithm which permits us to learn the
distribution parameters of extended PRISM programs with discrete as well
as Gaussian random variables. Similar to inference, our learning algorithm
uses the symbolic derivation procedure to succinctly represent a large set of
logical derivations; it also represents and computes Expected Sufficient Statis-
tics (ESS) symbolically. In this chapter, we present our learning algorithm in
detail along with illustrative examples on finite mixture models.

7.1 Learning Algorithm

We use the expectation-maximization algorithm [15] to learn the distribution
parameters from data. First we show how to compute the expected sufficient
statistics (ESS) of the random variables and then describe our algorithm.

The ESS of a discrete random variable is a n-tuple where n is the number of
values that the discrete variable takes. Suppose that a discrete random variable
V takes v1, v2, ..., vn as values. Then the ESS of V is (ESSV=v1 , ESSV=v2 ,
..., ESSV=vn) where ESSV=vi is the expected number of times variable V had
valuation vi in all possible proofs for a goal. The ESS of a Gaussian random
variable X is a triple (ESSX,µ, ESSX,σ

2
, ESSX,count) where the components

denote the expected sum, expected sum of squares and the expected number
of uses of random variable X, respectively. When derivations are enumerated,
the ESS for each random variable can be represented by a tuple of reals.
To accommodate symbolic derivations, we lift each component of ESS to a
function, represented as described below.

Representation of ESS functions: For each component ν (discrete vari-
able valuation, mean, variance, total counts) of a random variable, its ESS

82

function in a goal G is represented as follows:

ξνG =
∑
i

〈χνi φi, Ci〉.

where 〈φi, Ci〉 is a constrained PPDF function and

χνi =


ai ·X i + bi if ν = X,µ

ai ·X
2

i + bi if ν =X, σ2

bi otherwise

Here ai, bi are constants, and X i = Vc(G).
Expressions of the form χiφi are called EPDF functions and a pair 〈χiφi, C〉

is called a constrained EPDF function. A sum of a finite number of constrained
EPDF functions is called an ESS function. We use Ci(ξ) to denote the con-
straints (i.e., Ci) in the ith constrained EPDF function of ESS function ξ; and
Ei(ξ) to denote the ith EPDF function of ξ. Note that the representation of
ESS functions is same as that of success functions for discrete random variable
valuations and total counts.

ESS functions of base predicates: The ESS function of the ith parameter
of a discrete random variable V is P (V = vi)δvi(V). The ESS function of the
mean of a continuous random variable X is XNX(µ, σ2), and the ESS function
of the variance of a continuous random variable X is X2NX(µ, σ2). Finally,
the ESS function of the total count of a continuous random variable X is
NX(µ, σ2).

Example 37. In this example, we compute the ESS functions of the random
variables (m, w(a), and w(b)) in Example 34. According to the definition of
ESS function of base predicates, the ESS functions of these random variables
for goals msw(m,M) and msw(w(M), X) are

ESS for msw(m,M) for msw(w(M), X)
ξM=a paδa(M) 0
ξM=b pbδb(M) 0
ξX,µa 0 Xδa(M)NX(µa, σ

2
a)

ξX,µb 0 Xδb(M)NX(µb, σ
2
b)

ξX,σ
2
a 0 X2δa(M)NX(µa, σ

2
a)

ξX,σ
2
b 0 X2δb(M)NX(µb, σ

2
b)

ξX,counta 0 δa(M)NX(µa, σ
2
a)

ξX,countb 0 δb(M)NX(µb, σ
2
b)

ut

83

ESS functions of user-defined predicates: If G → G′ is a step in a
derivation, then the ESS function of a random variable for G is computed
bottom-up based on the its ESS function for G′. This computation is described
below.

Join and Marginalize operations, defined earlier for success functions, can
be readily extended for ESS functions as well. The computation of ESS func-
tions for a goal, based on the symbolic derivation, uses the extended join and
marginalize operations defined below.

Unlike the join operation over pairs of success functions, the join operation
used in ESS computation is defined over pairs of ESS and success functions.
The join operation returns an ESS function.

Definition 13 (Join). Let ψ1 =
∑

i〈Di, Ci〉 be a success function and ξ2 =∑
j〈Ej, C ′j〉 be an ESS function, then join of ψ1 and ξ2 represented as ψ1 ∗ ξ2

is the ESS function
∑

i,j〈DiEj, Ci ∧ C ′j〉.

Marginalization w.r.t. a continuous variables involves two steps: first
rewriting the ESS function in a projected form and then doing the required
integration.

Definition 14 (Projection). Projection of an ESS function ξ w.r.t. a contin-
uous variable V , denoted by ξ ↓V , is an ESS function ξ′ such that
∀i. Ei(ξ′) = Ei(ξ)[a ·X + b/V]; and
Ci(ξ

′) = (Ci(ξ)− Cip)[a ·X + b/V],
where Cip is a linear constraint (V = a · X + b) on V in Ci(ξ) and t[s/x]
denotes replacement of all occurrences of x in t by s.

Note that the replacement of V by a ·X+ b in PDFs and linear constraints
does not alter the general form of ESS functions. Thus projection returns an
ESS function. Notice that if ξ does not contain any linear constraint on V ,
then the projected form remains the same.

Proposition 14. Integration of an EPDF function with respect to a variable
V is an EPDF function, i.e.,

α

∫ ∞
−∞

χ

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV = α′χ′

m′∏
l=1

N(a′l·X
′
l)+b

′
l
(µ′l, σ

′2
l)

where V ∈ Xk, V ∈ χ and V 6∈ X ′l , V 6∈ χ′.

Proof of this proposition is presented in Section 7.5.

84

For example, the integration of VNa1V−X1(µ1, σ
2
1).Na2V−X2(µ2, σ

2
2) w.r.t.

variable V is ∫ ∞
−∞

VNa1V−X1(µ1, σ
2
1).Na2V−X2(µ2, σ

2
2)dV

=
{a1σ

2
2(X1 + µ1) + a2σ

2
1(X2 + µ2)}

(σ2
2a

2
1 + σ2

1a
2
2)

Na2X1−a1X2(a1µ2 − a2µ1, a
2
2σ

2
1 + a2

1σ
2
2).

(7.1)

Here X1, X2 are linear combinations of variables (except V). Equation 7.1 is
an instance of Proposition 14.

Definition 15 (Integration). Let ξ be an ESS function that does not contain
any linear constraints on V . Then integration of ξ with respect to V , denoted
by
∮
V
ξ is an ESS function ψ′ such that ∀i.Ei(ψ′) =

∫
Ei(ψ)dV .

Note that if ξ does not contain any PDF on V , then the integrated form
remains the same.

Example 38. Let ξ1 represent the following ESS function

ξ1 = 0.3ZNZ(2.0, 1.0).NX−Z(0.5, 0.1).

Then integration of ξ2 w.r.t. Z yields∮
Z

ξ1 =

∫
0.3ZNZ(2.0, 1.0).NX−Z(0.5, 0.1)dZ

= 0.15(X + 2.5)NX(2.5, 1.1). (7.2)

(using Equation 7.1)

ut

Definition 16 (Marginalize). Marginalization of an ESS function ξ with re-
spect to a variable V , denoted by M(ξ, V), is an ESS function ξ′ such that

ξ′ =

∮
V

ξ ↓V

We overload M to denote marginalization over a set of variables, defined
such that M(ξ, {V } ∪X) = M(M(ξ, V), X) and M(ξ, {}) = ξ.

Proposition 15. The set of all ESS functions is closed under the extended
Join and Marginalize operations.

85

Proof. The proof of this proposition depends on Proposition 14 and closely
follows the proof of the closure of success functions (Proposition 7). ut

The ESS function of a random variable component (discrete variable valu-
ation, mean, variance, total counts) in a derivation is defined as follows.

Definition 17 (ESS functions in a derivation). Let G → G′. Then the ESS
function of a random variable component ν in the goal G, denoted by ξνG, is
computed from that of G′, based on the way G′ was derived:

PCR: ξνG =
∑

G′M(ξνG′ , V (G′)− V (G)).

MSW: Let G = msw(rv(X), Y), G1. Then ξνG = ψmsw(rv(X),Y)∗ξνG′+ψG′ ∗ξνmsw.

CONS: Let G = Constr,G1. Then ξνG = ψConstr ∗ ξνG′ .

Example 39. Using the definition of ESS function of a derivation involving
MSW, we compute the ESS function of the random variables in goal G2 of
Figure 7.1.

ESS functions for goal G2

ξM=a paδa(M)NX(µa, σ
2
a)

ξM=b pbδb(M)NX(µb, σ
2
b)

ξX,µa Xpaδa(M)NX(µa, σ
2
a)

ξX,µb Xpbδb(M)NX(µb, σ
2
b)

ξX,σ
2
a X2paδa(M)NX(µa, σ

2
a)

ξX,σ
2
b X2pbδb(M)NX(µb, σ

2
b)

ξX,counta paδa(M)NX(µa, σ
2
a)

ξX,countb pbδb(M)NX(µb, σ
2
b)

Notice the way ξM=a
G2

is computed.

ξM=a
G2

= ψmsw(m,M)ξ
M=a
G3

+ ψG3ξ
M=a
msw(m,M)

= [paδa(M) + pbδb(M)].0

+ [δa(M)NX(µa, σ
2
a) + δb(M)NX(µb, σ

2
b)].paδa(M)

= paδa(M)NX(µa, σ
2
a)

Finally, for goal G1 we marginalize the ESS functions w.r.t. M .

86

G1 : fmix(X)

��
G2 : msw(m,M),msw(w(M), X).

��
G3 : msw(w(M), X).

Figure 7.1: Symbolic derivation for goal fmix(X)

ESS functions for goal G1

ξM=a paNX(µa, σ
2
a)

ξM=b pbNX(µb, σ
2
b)

ξX,µa XpaNX(µa, σ
2
a)

ξX,µb XpbNX(µb, σ
2
b)

ξX,σ
2
a X2paNX(µa, σ

2
a)

ξX,σ
2
b X2pbNX(µb, σ

2
b)

ξX,counta paNX(µa, σ
2
a)

ξX,countb pbNX(µb, σ
2
b)

ut

Example 40. Figure 7.1 shows the symbolic derivation for goal fmix(X) over
the finite mixture model program in Example 34. Success function of goal G3

is ψmsw(w(M),X)(M,X), hence ψG3 = δa(M)NX(µa, σ
2
a) + δb(M)NX(µb, σ

2
b).

ψG2 is ψmsw(m,M)(M)∗ψG3(M,X) which yields ψG2 = paδa(M)NX(µa, σ
2
a)+

pbδb(M)NX(µb, σ
2
b). Note that δb(M)δa(M) = 0 as M can not be both a and b

at the same time. Also δa(M)δa(M) = δa(M).
Finally, ψG1 = M(ψG2 ,M) which is paNX(µa, σ

2
a) + pbNX(µb, σ

2
b). Note

that ψG1 represents the mixture distribution [38] of mixture of two Gaussian
distributions.

Here pa = 0.3, pb = 0.7, µa = 2.0, µb = 3.0, and σ2
a = σ2

b = 1.0. ut

The algorithm for learning distribution parameters (Θ) uses a fixed set
of training examples (t1, t2, ..., tN). Note that the success and ESS functions
for ti’s are constants as the training examples are variable free (i.e., all the
variables get marginalized over).

Algorithm 1 (Expectation-Maximization). Initialize the distribution param-
eters Θ.

1. Evaluate the log likelihood, λ = lnP (t1, .., tN |Θ) =
∑

i lnψti.

2. For each training example ti (1 ≤ i ≤ N), construct the symbolic deriva-
tions using current Θ.

87

3. E-step: Compute the ESS (ξti) of the random variables, and success
probabilities ψti w.r.t. Θ.
M-step: Compute the MLE of the distribution parameters given the
ESS and success probabilities (i.e., evaluate Θ′). Θ′ contains updated
distribution parameters. More specifically, for a discrete random variable
V , its parameters are updated as follows:

p′V=v =
ηV=v∑

u∈values(V) ηV=u

where

ηV=v =
N∑
i=1

ξV=v
ti

ψti
.

For each continuous random variable X, its mean and variances are
updated as follows:

µ′X =

∑N
i=1

ξX,µti

ψti

NX

σ
′2
X =

∑N
i=1

ξX,σ
2

ti

ψti

NX

− µ′2X

where NX is the expected total count of X.

NX =
N∑
i=1

ξX,countti

ψti

4. Evaluate the log likelihood (lnP (t1, .., tN |Θ′) =
∑

i lnψti) and check for
convergence. Otherwise let Θ← Θ′ and go to step 2.

Example 41. Let x1, x2, ..., xN be the observations. For a given training ex-
ample ti = fmix(xi), the ESS functions are (using Example 39)

ESS functions for goal fmix(xi)
ξM=k pkNX(xi|µk, σ2

k)
ξX,µk xipkNX(xi|µk, σ2

k)

ξX,σ
2
k x2

i pkNX(xi|µk, σ2
k)

ξX,countk pkNX(xi|µk, σ2
k)

88

where k ∈ {a, b}.
The E-step of the EM algorithm involves computation of the above ESS

functions.
In the M-step, we update the model parameters from the computed ESS

functions.

p′k =

∑N
i=1

ξkti
ψti∑N

i=1

ξati
ψti

+
ξbti
ψti

=

∑N
i=1

ξkti
ψti

N
(7.3)

Similarly,

µ′k =

∑N
i=1

ξ
µk
ti

ψti

Nk

(7.4)

σ
′2
k =

∑N
i=1

ξ
σ2k
ti

ψti

Nk

− µ′2k (7.5)

where k ∈ {a, b} and

Nk =
N∑
i=1

ξcountkti

ψti
(7.6)

ut

7.2 Correctness of the Learning Algorithm
Theorem 16. Algorithm 1 correctly computes the MLE of the distribution
parameters which are used to maximize the likelihood of the data.

Proof. The main routine of Algorithm 1 for discrete case is same as the learn-
naive algorithm of [55], except the computation of ηV=v (Equation 4.1).

ηV=v =
∑

for each goal g

1

ψg

∑
S

P (S)N v
S .

where S is an explanation for goal g and N v
S is the total number of times V = v

in S.
We show that ξV=v

g =
∑

S P (S)N v
S .

Let the goal g has a single explanation S where S is a conjunction of sub-
goals (i.e., S1:n = g1, g2, ..., gn). Thus we need to show that ξV=v

g = P (S)N v
S .

89

We prove this by induction on the length of S. The definition of ξ for base
predicates gives the desired result for n = 1. Let the above equation holds for
length n i.e., ξV=v

g1:n
= P (S1:n)N1:n. For S1:n+1 = g1, g2, ..., gn, gn+1,

P (S1:n+1)N1:n+1 = P (g1, g2, ..., gn, gn+1)N1:n+1

=P (g1,g2,...,gn)P (gn+1)(N1:n+Nn+1)

=P (S1:n)P (gn+1)N1:n+P (S1:n)P (gn+1)Nn+1

=P (gn+1)[P (S1:n)N1:n]+P (S1:n)[P (gn+1)Nn+1]

= P (gn+1)ξV=v
g1:n

+ P (S1:n)ξV=v
gn+1

= ξV=v
g1:n+1

The last step follows from the definition of ξ in a derivation.
Now based on the exclusiveness assumption, for disjunction (or multiple

explanations) like g = g1 ∨ g2 it trivially follows that ξV=v
g = ξV=v

g1
+ ξV=v

g2
. ut

EM for mixture model: The EM algorithm for standard mixture model
is the following [4].

Algorithm 2 (EM for mixture model). Initialize the model parameters (mean
µk, variance σ2

k, mixing coefficient pk).
E-step: Compute the posterior probabilities of each component.

γik =
pkNk(xi|µk, σ2

k)∑
l plNl(xi|µl, σ2

l)

M-step: Re-estimate the model parameters using the posterior probabilities.

µk =

∑N
i=1 xiγ

i
k∑N

i=1 γ
i
k

(7.7)

σ2
k =

∑N
i=1(xi − µk)2γik∑N

i=1 γ
i
k

(7.8)

pk =

∑N
i=1 γ

i
k

N
(7.9)

Update the log likelihood and repeat the above steps until convergence.

Example 42. This example illustrates that for the mixture model example,
our ESS computation does the same computation as standard EM learning

90

algorithm for mixture models [4].

Notice that for Equation 7.3,
ξkti
ψti

=
pkNk(xi|µk,σ2

k)∑
l plNl(xi|µl,σ2

l)
which is nothing but the

posterior responsibilities γik (here k is either a or b).

p′k =

∑N
i=1

ξkti
ψti

N

=

∑N
i=1

pkNX(xi|µk,σ2
k)∑

l plNl(xi|µl,σ2
l)

N

=

∑N
i=1 γ

i
k

N

Thus Equation 7.3 computes the same quantity as Equations 7.9.

Similarly for Equation 7.4,
ξ
µk
ti

ψti
=

xipkNk(xi|µk,σ2
k)∑

l plNl(xi|µl,σ2
l)

which equals xiγ
i
k of Equa-

tion 7.7.

µ′k =

∑N
i=1

ξ
µk
ti

ψti

Nk

=

∑N
i=1

xipkNX(xi|µk,σ2
k)∑

l plNl(xi|µl,σ2
l)∑N

i=1

pkNX(xi|µk,σ2
k)∑

l plNl(xi|µl,σ2
l)

=

∑N
i=1 xiγ

i
k∑N

i=1 γ
i
k

.

Variances are updated similarly. ut

7.3 Complexity Analysis
Complexity: Let Si denote the number of constrained EPDF terms in ξi;
Pi denote the maximum number of product terms in any EPDF function in ξi;
Qi denote the maximum size of a constraint set (Ci) in ξi; and Li denote the
maximum number of terms in any χi in ξi. The time complexity of the two
basic operations used in constructing a symbolic derivation is as follows.

Proposition 17 (Time Complexity). The worst-case time complexity of
Join(ξi, ψj) is O(Si ∗ Sj ∗ (Pi ∗ Pj +Qi ∗Qj)).

The worst-case time complexity of M(ξg, V) is O(Sg∗Pg) when V is discrete
and O(Sg ∗ (Pg ∗ Lg +Qg)) when V is continuous.

Note that when computing the ESS function of a goal in a derivation,
the join operation is limited to joining the success function of a single msw to

91

the ESS function of a goal and joining the ESS function of a single msw to
the success function of a goal, and hence the parameters Si, Pi, and Qi are
typically small. The complexity of the size of ESS functions is as follows.

Proposition 18 (ESS Function Size). For a random variable component ν in
the goal G and its symbolic derivation, the following hold:

1. The maximum number of product terms in any EPDF function in ξνG is
linear in |Vc(G)|, the number of continuous variables in G.

2. The maximum size of a constraint set in a constrained EPDF function
in ξνG is linear in |Vc(G)|.

3. The maximum number of constrained EPDF functions in any entry of
ξνG is potentially exponential in the number of discrete random variables
in the symbolic derivation.

Proof. The proof closely follows the proof of Proposition 10. ut

Relation with PRISM’s g-EM algorithm: Recall that (in Section 6.3)
for programs with only discrete random variables, there is a one-to-one corre-
spondence between the entries in the tabular representation of success func-
tions and PRISM’s answer tables. Instead of constructing a symbolic deriva-
tion for discrete variables, it is possible to construct the next step of a deriva-
tion by enumerating the values of discrete variables (similar to PRISM), i.e.,
creating different paths in a derivation based on discrete variable values and
constructing symbolic derivation only for continuous variables (Figure 6.5).
Similar to g-EM, we can use the idea of tabling to eliminate redundant com-
putation. With this simplification, the complexity of the learning algorithm
reduces to PRISM’s graphical-EM algorithm for program with only discrete
random variables.

7.4 Implementation
We implemented the learning algorithm presented in this thesis using the XSB
logic programming system [59]. This proof-of-concept prototype is imple-
mented as a meta-interpreter and currently supports discrete and Gaussian
distributions. This implementation illustrates how the learning algorithm spe-
cializes to the specialized learning algorithms for several popular statistical
models such as Hidden Markov Models and Finite Mixture Models.

92

7.5 Closure of ESS functions: Proof of Propo-

sition 14

Property 19. Integrated form of an ESS(mean) function with respect to a
variable V is an ESS(mean) function, i.e.,∫ ∞

−∞
(αV + β)

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

= α′
m′∏
l=1

N(a′l·X
′
l)+b

′
l
(µ′l, σ

′2
l) + β′

m′′∏
l=1

N(a′′l ·X
′′
l)+b′′l

(µ′′l , σ
′′2
l)

where V ∈ Xk, α is a constant and β is a linear combination of variables or
constants except V .

(Proof)

The above integral can be written in the following form

I =

∫ ∞
−∞

(αV + β)
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

=

∫ ∞
−∞

αV
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV +

∫ ∞
−∞

β
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

= I1 + I2

where

I1 =

∫ ∞
−∞

αV
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

and

I2 =

∫ ∞
−∞

β

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

93

Using Property 6.7, it can be proved that

I2 =

∫ ∞
−∞

β

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

= β′
m′′∏
l=1

N(a′′l ·X
′′
l)+b′′l

(µ′′l , σ
′′2
l)

Therefore it is sufficient to prove the following equation

I1 =

∫ ∞
−∞

αV
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

= α′
m′∏
l=1

N(a′l·X
′
l)+b

′
l
(µ′l, σ

′2
l)

For simplicity, let us first compute the integrated-form of
VNV−X1(0, 1).NV−X2(0, 1) w.r.t. variable V where X1, X2 are linear combina-
tion of variables (except V). We make the following two assumptions:

1. The coefficient of V is 1 in both PDFs.

2. Both PDFs are standard normal distributions (i.e., µ = 0 and σ2 = 1).

φ =

∫ ∞
−∞

V.NV−X1(0, 1).NV−X2(0, 1)dV

=

∫ ∞
−∞

V.
1√
2π

exp−
(V−X1)

2

2 .
1√
2π

exp−
(V−X2)

2

2 dV

=

∫ ∞
−∞

V.
1

2π
exp−

1
2

[(V−X1)2+(V−X2)2] dV

=

∫ ∞
−∞

V.
1

2π
exp−

1
2
η dV

Now

η = (V −X1)2 + (V −X2)2

= 2.V 2 − 2.V.(X1 +X2) + (X2
1 +X2

2)

= 2[(V − X1 +X2

2
)2 + (

X2
1 +X2

2

2
)− (

X1 +X2

2
)2]

= 2[(V − X1 +X2

2
)2 + g]

94

where

g = (
X2

1 +X2
2

2
)− (

X1 +X2

2
)2

=
1

4
(X1 −X2)2

Thus

φ =

∫ ∞
−∞

V.
1

2π
exp−

1
2
.2[(V−X1+X2

2
)2+g] dV

=

∫ ∞
−∞

V.
1

2π
exp−

1
2
.2.(V−X1+X2

2
)2 . exp−

1
2
.2.g dV

=
1

2
√
π
exp−g

∫ ∞
−∞

V.
1√

2.π.1
2

exp
− (V−X1+X2

2)2

2. 12 dV

Now
∫∞
−∞ V.

1√
2.π. 1

2

exp
− (V−X1+X2

2)2

2. 12 dV is nothing but the expectation of normal

random variable V whose distribution is NV (X1+X2

2
, 1

2
). Since the expectation

of a normal random variable is its mean,
∫∞
−∞ V.

1√
2.π. 1

2

exp
− (V−X1+X2

2)2

2. 12 dV =

X1+X2

2
. Thus

φ =
X1 +X2

2

1

2
√
π
exp−g

=
X1 +X2

2

1√
2π.2

exp−
1
4

(X1−X2)2

=
X1 +X2

2
NX1−X2(0, 2)

Thus integrated form of an ESS(mean) function is another ESS(mean) func-
tion.

Now for any arbitrary number of PDFs, the mean is 1
n

∑n
i=1Xi. Similar to

Property 6.7, it can be proved that the integrated form can be expressed as

φn = α
1

n

n∑
i=1

Xi

∏
i 6=j,i<j

NXi−Xj

We can lift our assumptions as any arbitrary normal pdf can be expressed
as standard normal distribution with a linear transformation on parameters

95

(Property 1).
For any arbitrary mean, variance and coefficients of V , the following propo-

sition holds.

Proposition 20. This Proposition is an instance of Proposition 14 which
states that the integrated form of an ESS(mean) function with respect to a
variable V is another ESS(mean) function.∫ ∞

−∞
VNa1V−X1(µ1, σ

2
1).Na2V−X2(µ2, σ

2
2)dV

=
{a1σ

2
2(X1 + µ1) + a2σ

2
1(X2 + µ2)}

(σ2
2a

2
1 + σ2

1a
2
2)

Na2X1−a1X2(a1µ2 − a2µ1, a
2
2σ

2
1 + a2

1σ
2
2).

Proof. It can be proved along the same lines on the proof of Hypothesis 13.
Using similar approach, we get

φ2 =

∫ ∞
−∞

V
1

2πσ1σ2

exp
− 1

2
.
(σ22a

2
1+σ

2
1a

2
2)

σ21σ
2
2

[V− {a1σ
2
2(X1+µ1)+a2σ

2
1(X2+µ2)}

(σ22a
2
1+σ

2
1a

2
2)

]2+g
dV

=
1√

2π(σ2
2a

2
1 + σ2

1a
2
2)
exp−

1
2
g

∫ ∞
−∞

V
1√

2.π.
σ2
1σ

2
2

(σ2
2a

2
1+σ2

1a
2
2)

exp
− 1

2
.
(σ22a

2
1+σ

2
1a

2
2)

σ21σ
2
2

[V− {a1σ
2
2(X1+µ1)+a2σ

2
1(X2+µ2)}

(σ22a
2
1+σ

2
1a

2
2)

]2

dV

Now the integral is nothing but the expectation of the normal random
variable V . Since the expectation of a normal random variable is its mean,

the above integral simplifies to
{a1σ2

2(X1+µ1)+a2σ2
1(X2+µ2)}

(σ2
2a

2
1+σ2

1a
2
2)

.

φ2 =
{a1σ

2
2(X1 + µ1) + a2σ

2
1(X2 + µ2)}

(σ2
2a

2
1 + σ2

1a
2
2)

1√
2π(σ2

2a
2
1 + σ2

1a
2
2)
exp−

1
2
g

=
{a1σ

2
2(X1 + µ1) + a2σ

2
1(X2 + µ2)}

(σ2
2a

2
1 + σ2

1a
2
2)

1√
2π(σ2

2a
2
1 + σ2

1a
2
2)
exp

− 1
2

1

(σ22a
2
1+σ

2
1a

2
2)

[(a2X1−a1X2)−(a1µ2−a2µ1)]2

=
{a1σ

2
2(X1 + µ1) + a2σ

2
1(X2 + µ2)}

(σ2
2a

2
1 + σ2

1a
2
2)

Na2X1−a1X2(a1µ2 − a2µ1, a
2
2σ

2
1 + a2

1σ
2
2)

ut

96

Property 21. Integrated form of an ESS(variance) function with respect to a
variable V is an ESS(variance) function, i.e.,∫ ∞

−∞
(αV 2 + β)

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

= α′
m′∏
l=1

N(a′l·X
′
l)+b

′
l
(µ′l, σ

′2
l) +

∑
β′

m′′∏
l=1

N(a′′l ·X
′′
l)+b′′l

(µ′′l , σ
′′2
l)

where V ∈ Xk, α is a constant and β is a linear/quadratic combination of
variables/constants.

(Proof)

The above integral can be written in the following form

I =

∫ ∞
−∞

(αV 2 + β)
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

=

∫ ∞
−∞

αV 2

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV +

∫ ∞
−∞

β
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

= I1 + I2

where

I1 =

∫ ∞
−∞

αV 2

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

and

I2 =

∫ ∞
−∞

β
m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

Note that β is in the form of aV + b. Thus using Property 19, it can be
proved that

I2 =

∫ ∞
−∞

β

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV =

∑
β′

m′′∏
l=1

N(a′′l ·X
′′
l)+b′′l

(µ′′l , σ
′′2
l)

97

Therefore it is sufficient to prove the following equation

I1 =

∫ ∞
−∞

αV 2

m∏
k=1

N(ak·Xk+bk)(µk, σ
2
k)dV

= α′
m′∏
l=1

N(a′l·X
′
l)+b

′
l
(µ′l, σ

′2
l)

For simplicity, let us first compute the integrated-form of
V 2NV−X1(0, 1).NV−X2(0, 1) w.r.t. variable V where X1, X2 are linear combi-
nation of variables (except V). We make the following two assumptions:

1. The coefficient of V is 1 in both PDFs.

2. Both PDFs are standard normal distributions (i.e., µ = 0 and σ2 = 1).

φ =

∫ ∞
−∞

V 2.NV−X1(0, 1).NV−X2(0, 1)dV

=

∫ ∞
−∞

V 2.
1√
2π

exp−
(V−X1)

2

2 .
1√
2π

exp−
(V−X2)

2

2 dV

=

∫ ∞
−∞

V 2.
1

2π
exp−

1
2

[(V−X1)2+(V−X2)2] dV

=

∫ ∞
−∞

V 2.
1

2π
exp−

1
2
η dV

Now

η = (V −X1)2 + (V −X2)2

= 2.V 2 − 2.V.(X1 +X2) + (X2
1 +X2

2)

= 2[(V − X1 +X2

2
)2 + (

X2
1 +X2

2

2
)− (

X1 +X2

2
)2]

= 2[(V − X1 +X2

2
)2 + g]

where

g = (
X2

1 +X2
2

2
)− (

X1 +X2

2
)2

=
1

4
(X1 −X2)2

98

Thus

φ =

∫ ∞
−∞

V 2.
1

2π
exp−

1
2
.2[(V−X1+X2

2
)2+g] dV

=

∫ ∞
−∞

V 2.
1

2π
exp−

1
2
.2.(V−X1+X2

2
)2 . exp−

1
2
.2.g dV

=
1

2
√
π
exp−g

∫ ∞
−∞

V 2.
1√

2.π.1
2

exp
− (V−X1+X2

2)2

2. 12 dV

Let

I =

∫ ∞
−∞

V 2.
1√

2.π.1
2

exp
− (V−X1+X2

2)2

2. 12 dV

=

∫ ∞
−∞

V 2.
1√

2.π.σ2
exp−

(V−µ)2

2σ2 dV.

where µ = X1+X2

2
and σ2 = 1/2. We can do some variable transformation to

simplify the above computation. Let U = V−µ
σ

. Thus the distribution of U is
standard normal.

I =

∫ ∞
−∞

(σU + µ)2.
1√

2.π.σ2
exp−

U2

2 dU

=

∫ ∞
−∞

(σ2U2 + 2σµU + µ2).
1√

2.π.σ2
exp−

U2

2 dU

= I1 + I2 + I3

where

I1 =

∫ ∞
−∞

σ2U2.
1√

2.π.σ2
exp−

U2

2 dU

I2 =

∫ ∞
−∞

2σµU.
1√

2.π.σ2
exp−

U2

2 dU

and

I3 =

∫ ∞
−∞

µ2.
1√

2.π.σ2
exp−

U2

2 dU.

Now I1 and I2 are nothing but the variance and mean of standard normal

99

distribution. Thus

I1 =

∫ ∞
−∞

σ2U2.
1√

2.π.σ2
exp−

U2

2 dU

= σ2

∫ ∞
−∞

U2.
1√

2.π.σ2
exp−

U2

2 dU

= σ2.1 = σ2.

I2 =

∫ ∞
−∞

2σµU.
1√

2.π.σ2
exp−

U2

2 dU

= 2σµ

∫ ∞
−∞

U.
1√

2.π.σ2
exp−

U2

2 dU

= 2σµ.0 = 0.

and

I3 =

∫ ∞
−∞

µ2.
1√

2.π.σ2
exp−

U2

2 dU.

= µ2.

Thus φ becomes

φ = (σ2 + µ2)
1

2
√
π
exp−g

= (σ2 + µ2)
1√
2π.2

exp−
1
4

(X1−X2)2

= (σ2 + µ2)NX1−X2(0, 2)

Thus integrated form of an ESS(variance) function is another ESS(variance)
function.

Now for any arbitrary number of PDFs, the mean is µ = 1
n

∑n
i=1 Xi and

variance is σ2 = 1/n. Similar to Property 6.7, it can be proved that the
integrated form can be expressed as

φn = α(σ2 + µ2)
∏

i 6=j,i<j

NXi−Xj

We can lift our assumptions as any arbitrary normal pdf can be expressed
as standard normal distribution with a linear transformation on parameters
(Property 1).

100

Chapter 8

Conclusion

In this dissertation, we developed algorithms for doing inference and learning
in probabilistic logic programs with continuous random variables and linear
equality constraints. In this final chapter, we summarize the key contribu-
tions of this thesis in Section 8.1, discuss possible future work directions in
Section 8.2.

8.1 Contributions
The contributions of this thesis include: extension of PRISM with continuous
random variable and linear equality constraints; the idea of symbolic deriva-
tion and computation; inference and learning algorithms; formal distribution
semantics; and usable prototype or meta-interpreter for the extended language.

Extension of PRISM with continuous random variables and lin-
ear equality constraints. In this thesis, we extended PRISM with Gaus-
sian/Gamma distributed random variables and linear equality constraints over
reals. The use of linear equality constraints enables us to encode continuous
child-continuous parent Bayesian network. Thus the extended framework can
model a large class of hybrid Bayesian networks (e.g., HMM, FMM, KF) and
Hybrid models.

In this dissertation, we reviewed some representative related work in the
field of Statistical Relational Learning. Note that hybrid MLN and hybrid
ProbLog also extended their base models with continuous random variables.
Hybrid MLN supports description of continuous properties. But it does not
provide any mechanism for creating a new random variable which is a linear
combination of other random variables. Although hybrid ProbLog programs
can use a continuous random variable, further processing can be based only
on testing whether or not the variables value lies in a given interval. Thus
certain classes of Hybrid Bayesian Networks (with continuous child with con-

101

tinuous parents), Kalman Filters, and Hybrid Models can not be encoded in
hybrid MLN and ProbLog. The extension to PRISM described in this thesis
encodes such statistical models. In addition, the complexity of our inference
and learning techniques specializes to that of standard statistical models (e.g.,
HMM, FMM, KF).

Distribution semantics. PRISM’s approach (e.g., enumerable set of facts,
compatibility condition) of defining distribution semantics does not generalize
naturally for continuous random variables as the Herbrand universe is infinite.
Thus the formulation of the distribution semantics of the extended PRISM
programs is an important problem. In this thesis, we formally define the
distribution semantics of the extended PRISM programs.

Symbolic derivation. One of the key techniques used in this thesis is the
idea of symbolic derivation, which compactly represents sets of explanations
without enumerating over the outcomes of the random variables. Symbolic
derivation is the key aspect of our inference and learning algorithms.

Inference and learning algorithms. In this thesis, we developed an in-
ference algorithm in the context of PRISM; however the procedures core ideas
can be easily applied to other PLP languages as well. An interesting aspect
of our inference algorithm is that PRISMs query evaluation process becomes
a special case in the absence of any continuous random variables in the pro-
gram. The symbolic inference procedure enables us to reason over complex
probabilistic models such as large sub-class of Hybrid Bayesian Networks (e.g.,
HMM, FMM, Kalman filter) and hybrid models that were hitherto not possible
in PLP frameworks.

Our EM-based learning algorithm permits us to learn the distribution pa-
rameters of extended PRISM programs with discrete as well as Gaussian ran-
dom variables. The learning algorithm naturally generalizes the ones used for
PRISM and Hybrid Bayesian Networks.

Prototype implementation. We implemented the inference and learning
algorithms presented in this thesis in the XSB logic programming system [59].
This proof-of-concept prototype illustrates how the inference and learning al-
gorithms specialize to the specialized techniques that have been developed
for several popular statistical models such as HMM, FMM, Hybrid Bayesian
Networks and Kalman Filters.

Finally, this work opened up new directions of research in area of statistical
relational learning, more specifically in probabilistic logic programming.

102

8.2 Future Work
Discrete child-continuous parent Hybrid Bayesian Network. One av-
enue for future research would be to support discrete child-continuous par-
ent hybrid Bayesian network. As mentioned in the background section (Sec-
tion 2.3.4), this type of hybrid Bayesian networks are represented using soft-
max/logistic functions. Inclusion of logistic function in success or ESS function
computation does not satisfy the closure properties. Recent research [41] also
show that without numeric integration, exact inference is not possible for this
kind of hybrid Bayesian networks. Lerner et al. [35] proposed an exact in-
ference algorithm which does numerical integration. Thus it remains to be
investigated whether PLP frameworks can model this type of hybrid Bayesian
networks.

Approximate Inference. Approximate inference and sampling based tech-
niques can be used to perform inference when exact inference is not possible.
For example, approximate inference techniques can be used to support discrete
child-continuous parent hybrid Bayesian networks.

Many real world problems (e.g., decision making tasks) involve inequal-
ity constraints (e.g., X < 1.5). These problems involve making a decision
based on continuous variable values (e.g., temperature > 60, length < 5, etc).
Since inequality constraints can be represented using discrete child-continuous
parent Bayesian network, support of this kind of Bayesian networks will also
enable the support of inequality constraints.

In this thesis, we extended PRISM with Gaussian/Gamma distributed ran-
dom variables. One avenue of future research would be to support other con-
tinuous distributions, and approximate inference techniques can be used to
support those distributions.

Relationship with CLP. Constraint logic programming (CLP) supports
linear equality/inequality constraints. The operations performed in CLP are
very similar to our join and marginalize operations. For example, the join
operation in CLP joins two constraint stores. Thus we can extend the CLP
language to compute success functions. The idea is to have a distribution
constraint store in addition to the traditional variable/value constraint store.
The join operation in CLP will remain the same, whereas marginalize operation
will perform projection/integration w.r.t. a continuous variable.

Performance Evaluation and Optimization. We implemented the in-
ference and learning algorithms as a meta-interpreter in the XSB logic pro-
gramming system [59]. A lower level integration with XSB and performance
evaluation is a topic of future research. Note that various optimization tech-
niques (e.g., tabling, dynamic programming) can be used to minimize the

103

computation time.

Application. Although the framework presented in this thesis can model a
large sub-class of hybrid Bayesian networks, we have not thoroughly investi-
gated all the application areas. As mentioned in the introduction, PRISM has
been applied in the area of bioinformatics, sensor networks, and probabilis-
tic planning; along the same lines, our extension permits natural encoding of
those problems when data is continuous. However, we do not support vari-
ous decision making tasks where the decision is made based on comparing the
continuous value with a constant (e.g., turning a sensor on when the tempera-
ture goes below 60F). Note that this an example of discrete child-continuous
parent hybrid Bayesian network. Thus supporting discrete child-continuous
parent hybrid Bayesian networks will give a much broader level of applicabil-
ity of this framework in real-world applications.

104

Bibliography

[1] Ahrendt, P. The multivariate Gaussian probability distribution. Tech.
rep., jan 2005.

[2] Apt, K. R., and van Emden, M. H. Contributions to the theory of
logic programming. Journal of ACM 29, 3 (1982), 841–862.

[3] Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D. Magic
sets and other strange ways to implement logic programs. In Proceed-
ings of the ACM Symposium on Principles of Database Systems (PODS)
(1986), pp. 1–15.

[4] Bishop, C. Pattern recognition and Machine Learning. Springer (Infor-
mation Science and Statistics), 2006.

[5] Bratko, I. Prolog Programming for Artificial Intelligence. Addison-
Wesley Longman Ltd, 2000.

[6] Bryant, R. E. Graph-based algorithms for boolean function manipula-
tion. IEEE Transaction of Computers 35, 8 (1986), 677–691.

[7] Choi, J., Amir, E., and Hill, D. Lifted inference for relational con-
tinuous models. In Proceedings of Uncertainty in Artificial Intelligence
(UAI) (2010), pp. 126–134.

[8] Choi, J., Guzman-Rivera, A., and Amir, E. Lifted relational
Kalman filtering. In Proceedings of International Joint Conference in
Artificial Intelligence (IJCAI) (2011), pp. 2092–2099.

[9] Christiansen, H., Have, C. T., Lassen, O. T., and Petit, M.
Inference with constrained hidden Markov models in PRISM. Theory and
Practice of Logic Programming (TPLP) 10, 4-6 (2010), 449–464.

[10] Christiansen, H., and Lassen, O. T. Preprocessing for optimization
of probabilistic-logic models for sequence analysis. In Proceeding of In-
ternational Conference in Logic Programming (ICLP) (2009), pp. 70–83.

105

[11] Chu, D., Popa, L., Tavakoli, A., Hellerstein, J. M., Levis,
P., Shenker, S., and Stoica, I. The design and implementation of a
declarative sensor network system. In Proceedings of the ACM Conference
on Embedded Networked Sensor Systems (SenSys) (2007), pp. 175–188.

[12] Cussens, J. Parameter estimation in stochastic logic programs. Machine
Learning 44, 3 (2001), 245–271.

[13] de Salvo Braz, R., Amir, E., and Roth, D. Lifted first-order
probabilistic inference. In Proceedings of International Joint Conference
in Artificial Intelligence (IJCAI) (2005), pp. 1319–1325.

[14] Dehaspe, L., Toivonen, H., and King, R. D. Finding frequent sub-
structures in chemical compounds. In Proceedings of Knowledge Discovery
and Data mining (KDD) (1998), pp. 30–36.

[15] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, Series B 39, 1 (1977), 1–38.

[16] Dzeroski, S. From inductive logic programming to relational data min-
ing. In JELIA (2006), pp. 1–14.

[17] Dzeroski, S. Relational data mining. In Data Mining and Knowledge
Discovery Handbook. 2010, pp. 887–911.

[18] Finn, P. W., Muggleton, S., Page, D., and Srinivasan, A. Phar-
macophore discovery using the inductive logic programming system pro-
gol. Machine Learning 30, 2-3 (1998), 241–270.

[19] Forney, G. D. The Viterbi algorithm. In Proceedings of the IEEE
(1973), pp. 268–278.

[20] Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. Learn-
ing probabilistic relational models. In Proceedings of International Joint
Conference in Artificial Intelligence (IJCAI) (1999), pp. 1300–1309.

[21] Gelfand, A. E., and Smith, A. F. M. Sampling-based approaches
to calculating marginal densities. Journal of the American Statistical
Association (1990), 398–409.

[22] Getoor, L., and Taskar, B. Introduction to Statistical Relational
Learning. The MIT Press, 2007.

106

[23] Goswami, A., Ortiz, L. E., and Das, S. R. WiGEM: A learning-
based approach for indoor localizatio. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM) (2011).

[24] Gutmann, B., Jaeger, M., and Raedt, L. D. Extending ProbLog
with continuous distributions. In Proceedings of Inductive Logic Program-
ming(ILP) (2010), pp. 76–91.

[25] Gutmann, B., Kimmig, A., Kersting, K., and De Raedt, L. Pa-
rameter learning in probabilistic databases: A least squares approach. In
Proceedings of the European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases (ECML/PKDD)
(2008), pp. 473–488.

[26] Gutmann, B., Thon, I., and De Raedt, L. Learning the parameters
of probabilistic logic programs from interpretations. In Proceedings of the
European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD) (2011), pp. 581–596.

[27] Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., and De
Raedt, L. The magic of logical inference in probabilistic programming.
Theory and Practice of Logic Programming (TPLP) 11, 4-5 (2011), 663–
680.

[28] Heckerman, D. A tutorial on learning with Bayesian networks. In
Innovations in Bayesian Networks. 2008, pp. 33–82.

[29] Ishihata, M., Kameya, Y., Sato, T., and ichi Minato, S. An
EM algorithm on bdds with order encoding for logic-based probabilistic
models. Journal of Machine Learning Research - Proceedings Track 13
(2010), 161–176.

[30] Jaffar, J., Maher, M. J., Marriott, K., and Stuckey, P. J. The
semantics of constraint logic programs. Journal of Logic Programming 37,
1-3 (1998), 1–46.

[31] Kersting, K., and Raedt, L. D. Bayesian logic programs. In Induc-
tive Logic Programming(ILP) Work-in-progress reports (2000).

[32] Kersting, K., and Raedt, L. D. Adaptive Bayesian logic programs.
In Proceedings of Inductive Logic Programming(ILP) (2001), pp. 104–117.

[33] Kersting, K., Raedt, L. D., and Raiko, T. Logical hidden Markov
models. Journal of Artificial Intelligence Research (JAIR) 25 (2006),
425–456.

107

[34] Lari, K., and Young, S. J. The estimation of stochastic context-
free grammars using the inside-outside algorithm. Computer Speech and
Language 4 (1990), 3556.

[35] Lerner, U., Segal, E., and Koller, D. Exact inference in networks
with discrete children of continuous parents. In Proceedings of Uncertainty
in Artificial Intelligence (UAI) (2001), pp. 319–328.

[36] Lloyd, J. W. Foundations of Logic Programming. Springer-Verlag,
1987.

[37] Lowd, D., and Domingos, P. Efficient weight learning for Markov
logic networks. In Proceedings of the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD) (2007), pp. 200–211.

[38] McLachlan, G., and Peel, D. Finite mixture models. Wiley Series
in Probability and Statistics, 2000.

[39] Muggleton, S. Stochastic logic programs. In Advances in inductive
logic programming (1996).

[40] Murphy, K. P. Inference and learning in hybrid Bayesian networks.
Technical Report UCB/CSD-98-990 (1998).

[41] Murphy, K. P. A variational approximation for Bayesian networks with
discrete and continuous latent variables. In Proceedings of Uncertainty in
Artificial Intelligence (UAI) (1999), pp. 457–466.

[42] Närman, P., Buschle, M., König, J., and Johnson, P. Hybrid
probabilistic relational models for system quality analysis. In Proceedings
of the 14th IEEE International Enterprise Distributed Object Computing
Conference (EDOC) (2010), pp. 57–66.

[43] Pearl, J. Probabilistic reasoning in intelligent systems - networks of
plausible inference. Morgan Kaufmann series in representation and rea-
soning. Morgan Kaufmann, 1989.

[44] Poole, D. Probabilistic Horn abduction and Bayesian networks. Artifi-
cial Intelligence. 64, 1 (1993), 81–129.

[45] Poole, D. The independent choice logic and beyond. In Probabilistic
Inductive Logic Programming(ILP) (2008), pp. 222–243.

108

[46] Pourret, O., Naim, P., and Marcot, B. Bayesian Networks: A
Practical Guide to Applications. UK, Wiley, 2008.

[47] Rabiner, L. R. A tutorial on hidden Markov models and selected appli-
cations in speech recoginition. In Proceedings of the IEEE (1989), vol. 77,
pp. 257–286.

[48] Raedt, L. D., and Kersting, K. Probabilistic logic learning. Pro-
ceedings of the ACM SIGKDD Explorations, International Conference on
Knowledge Discovery and Data Mining 5, 1 (2003), 31–48.

[49] Raedt, L. D., and Kersting, K. Probabilistic inductive logic pro-
gramming. In Proceedings of the International Conference on Algorithmic
Learning Theory (ALT) (2004), pp. 19–36.

[50] Raedt, L. D., Kimmig, A., and Toivonen, H. ProbLog: A prob-
abilistic prolog and its application in link discovery. In Proceedings of
International Joint Conference in Artificial Intelligence (IJCAI) (2007),
pp. 2462–2467.

[51] Richardson, M., and Domingos, P. Markov logic networks. Machine
Learning 62, 1-2 (2006), 107–136.

[52] Riguzzi, F., and Swift, T. Tabling and answer subsumption for
reasoning on logic programs with annotated disjunctions. In Technical
Communications of the International Conference on Logic Programming
(2010), pp. 162–171.

[53] Russell, S., and Norvig, P. Arficial Intelligence: A Modern Ap-
proach. Prentice Hall Series in AI, 2003.

[54] Sato, T., and Kameya, Y. PRISM: a symbolic-statistical modeling
language. In Proceedings of International Joint Conference in Artificial
Intelligence (IJCAI) (1997), pp. 1330–1339.

[55] Sato, T., and Kameya, Y. Parameter learning of logic programs for
symbolic-statistical modeling. Journal of Artificial Intelligence Research
(JAIR) (1999), 391–454.

[56] Singh, A., Ramakrishnan, C. R., Ramakrishnan, I. V., Warren,
D., and Wong, J. A methodology for in-network evaluation of inte-
grated logical-statistical models. In Proceedings of the ACM Conference
on Embedded Networked Sensor Systems (SenSys) (2008), pp. 197–210.

109

[57] Singla, P., and Domingos, P. Discriminative training of Markov
logic networks. In Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI) (2005), pp. 868–873.

[58] Srinivasan, A., King, R. D., Muggleton, S., and Sternberg, M.
J. E. Carcinogenesis predictions using ilp. In Proceedings of Inductive
Logic Programming (ILP) (1997), pp. 273–287.

[59] Swift, T., Warren, D. S., et al. The XSB logic programming
system, Version 3.3. Tech. rep., Department of Computer Science, SUNY,
Stony Brook, 2011.

[60] Tamaki, H., and Sato, T. OLD resolution with tabulation. In Pro-
ceeding of International Conference in Logic Programming (ICLP) (1986),
pp. 84–98.

[61] Vennekens, J., Denecker, M., and Bruynooghe, M. CP-logic: A
language of causal probabilistic events and its relation to logic program-
ming. Theory and Practice of Logic Programming (TPLP) (2009).

[62] Vennekens, J., Verbaeten, S., and Bruynooghe, M. Logic pro-
grams with annotated disjunctions. In Proceedings of International Con-
ference on Logic Programming (ICLP) (2004), pp. 431–445.

[63] Wang, J., and Domingos, P. Hybrid Markov logic networks. In Pro-
ceedings of the Association for the Advancement of Artificial Intelligence
(AAAI) (2008), pp. 1106–1111.

[64] Warren, D. S. Memoing for logic programs. Communications of ACM
35, 3 (1992), 93–111.

[65] W.R., G., S., R., and D.J., S. Markov chain Monte Carlo in practice.
London, UK: Chapman and Hall, 1996.

[66] Zhou, N.-F., and Sato, T. Efficient fixpoint computation in linear
tabling. In Proceedings of the International Symposium on Principles and
Practice of Declarative Programming (PPDP) (2003), pp. 275–283.

110

	 List of Figures
	 Acknowledgements
	1 Introduction
	2 Background on Statistical ML
	2.1 Gaussian Distribution
	2.1.1 Properties of Gaussian Distributions
	2.1.2 Estimation of Parameters
	2.1.3 Mixture of Gaussians
	2.1.4 Multivariate Gaussian distribution

	2.2 Gamma Distribution
	2.2.1 Properties of Gamma Distributions

	2.3 Hybrid Bayesian Networks
	2.3.1 Discrete child and discrete parent HBN
	2.3.2 Continuous child and discrete parent HBN
	2.3.3 Continuous child and continuous parent HBN
	2.3.4 Discrete child and continuous parent HBN
	2.3.5 Inference in Bayesian networks
	2.3.6 Parameter Learning in Bayesian networks
	2.3.7 Application of Bayesian networks
	2.3.8 Hybrid Models

	2.4 Expectation-Maximization Algorithm
	2.4.1 Alternative view of the EM algorithm
	2.4.2 Derivation of the EM algorithm
	2.4.3 Convergence of the EM algorithm
	2.4.4 The Generalized EM algorithm

	3 Related Work
	3.1 SRL frameworks
	3.1.1 Bayesian Logic Programs
	3.1.2 Probabilistic Relational Models
	3.1.3 Markov Logic Networks
	3.1.4 Relational Gaussian Models
	3.1.5 Stochastic Logic Programs
	3.1.6 Independent Choice Logic
	3.1.7 PRISM
	3.1.8 CP-Logic and LPAD
	3.1.9 ProbLog

	4 PRISM
	4.1 Distribution Semantics
	4.2 Parameter Learning in PRISM
	4.2.1 Specialization of E and M Steps for Discrete Distribution
	4.2.2 Graphical EM algorithm

	5 Extended PRISM
	5.1 Encoding Hybrid Bayesian Networks in Extended PRISM
	5.2 Distribution Semantics
	5.2.1 Preliminaries
	5.2.2 Distribution Semantics of Extended PRISM Programs

	6 Inference
	6.1 Inference Algorithm
	6.2 Correctness of the Inference Algorithm
	6.3 Complexity Analysis
	6.4 Illustrative Example: Kalman Filter
	6.5 Extensions
	6.5.1 Gamma Distribution
	6.5.2 Multivariate Gaussian
	6.5.3 Call Functions and Smoothed Distributions
	6.5.4 Hybrid Models
	6.5.5 Lifting PRISM's restrictions

	6.6 Implementation
	6.7 Closure of Success Functions: Proof of Propositions 6 and 7

	7 Learning
	7.1 Learning Algorithm
	7.2 Correctness of the Learning Algorithm
	7.3 Complexity Analysis
	7.4 Implementation
	7.5 Closure of ESS functions: Proof of Proposition 14

	8 Conclusion
	8.1 Contributions
	8.2 Future Work

	 Bibliography

