

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Balanced Partitioning of Polygonal
Domains

A Dissertation Presented
by

Irina Kostitsyna
to

The Graduate School
in Partial Fulfillment of the

Requirements
for the Degree of

Doctor of Philosophy
in

Computer Science

Stony Brook University
August 2013

Stony Brook University

The Graduate School

Irina Kostitsyna

We, the dissertation committee for the above candidate for the Doctor of Philosophy
degree,

hereby recommend acceptance of this dissertation.

Joseph S. B. Mitchell - Dissertation Advisor
Professor, Computer Science Department

Esther M. Arkin - Chairperson of Defense
Professor, Computer Science Department

Jie Gao - Committee Member
Associate Professor, Computer Science Department

Michael Bender - Committee Member
Associate Professor, Computer Science Department

Arash Yousefi - Outside Member
Principal Analyst, Metron Aviation

This dissertation is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Balanced Partitioning of Polygonal Domains

by
Irina Kostitsyna

Doctor of Philosophy
in

Computer Science

Stony Brook University
2013

We study partitioning problems of polygonal domains under requirements of balancing
various objective functions. Some of them are specific to Air Traffic Management, but others
are more general and have a broader range of applications.

In Chapter 2 we start with a Districting problem, where we are given a partition of a
polygon into weighted polygonal subdistricts, and are asked to merge them into a given
number of districts while balancing their weights. We consider the problem in 1D and 2D,
and the static and dynamic versions of the problem. We show that in 1D this problem is
polynomially solvable, and becomes NP -complete in 2D. We give approximation algorithms
for several special cases of the problem.

In Chapter 3 we study the Airspace Sectorization problem, where the goal is to find a
sectorization, i.e., a partition of the airspace into sectors, under a number of requirements
on the geometry of the sectors, as well as on the air traffic flow-conformance, while bal-
ancing the controllers’ workload. In Chapter 4 we propose a Local Redesigning Method
(LRM), a heuristic that rebalances a given disbalanced sectorization by applying small local
adjustments to the sectors boundaries. We evaluate LRM experimentally on synthetically
generated scenarios as well as on the real historical traffic data and demonstrate that the
sectorizations produced by our method are superior in comparison with the current sector-
izations of the US airspace.

In Chapter 5 we propose a point-balancing convex polygonal partitioning problem defined
in the following way: Given a polygon and a set of points in it, partition the polygon into
the minimum number of convex pieces having a limited number of points in each piece. We
present two optimal algorithms for the case of a simple polygon with some restrictions on the
partitioning cuts. We also give a number of approximation algorithms for different variations
of the problem.

iii

Contents

Abstract iii

List of Figures vi

List of Tables ix

List of Algorithms x

Acknowledgments xi

List of Publications xii

1 Introduction 1

2 Districting Problem 4
2.1 Districting Problem in 1D . 5
2.2 Districting Problem in 2D . 6
2.3 Approximate Solutions . 9

2.3.1 Hamiltonian Path Case . 9
2.3.2 Low Degree Spanning Tree . 10
2.3.3 Dealing with Holes . 11

2.4 Dynamic Districting Problem . 13

3 Airspace Sectorization Problem 16
3.1 Introduction . 16
3.2 Flow Conforming Cut . 16
3.3 Airspace Sectorization Problem . 18
3.4 Complexity of the Airspace Sectorization Problem 20

4 Local Redesigning of Airspace Sectors 23
4.1 Introduction . 23
4.2 Overview of the Local Redesigning Method 24

4.2.1 Local Adjustments . 25
4.2.2 Details of the Objective Function . 27

4.3 Robust Sectorization Design . 30
4.4 Experimental Results . 31

iv

4.4.1 Synthetic Experiment . 32
4.4.2 Historical Data Experiment . 34
4.4.3 Simulation Experiment . 35
4.4.4 Robust Sectorization Design Experiments on Synthetic Data 36
4.4.5 Robust Sectorization Design Experiment on Historical Data 39

4.5 Conclusion . 49

5 Balanced Partitioning of Polygonal Domains into Convex Pieces 50
5.1 Introduction . 50
5.2 Simple Polygons . 52

5.2.1 Diagonal Cuts . 52
5.2.2 Boundary Steiner Points . 66
5.2.3 Inner Steiner Points . 68

5.3 Polygons with Holes . 69
5.3.1 Diagonal Cuts . 69
5.3.2 Inner Steiner Points . 71

5.4 Conclusion . 71

References 73

Appendices 76

A A Note on Generalized Planar Matching 76

B Constraints Implemented in GeoSect-Local 78

C MBP Algorithms Pseudocode 80

v

List of Figures

2.1 1D Districting problem. 5
2.2 Partial solution of the dynamic programming algorithm. Subintervals to the

right of position a are already merged into k− b intervals; current subproblem
is Districting(a, b) on a subintervals to be merged into b final intervals. . . 6

2.3 Input: a simple polygon P divided into subdistricts. 7
2.4 Left: an instance of planar graphG and a corresponding polygon P partitioned

into subdistricts. Right: a solution to the Districting problem and the
corresponding perfect 3-matching in G. 8

2.5 Reduction from 2-Partition to Districting problem. 8
2.6 Spanning tree. 11
2.7 Simple algorithm for 1D problem can cause existence districts which are not

simply connected. 12
2.8 Splitting a district into two pieces to get rid of a hole. 13
2.9 1D dynamic case. 14
2.10 Variables. 14
2.11 Clauses. 15

3.1 Flow conforming cut. 17
3.2 Flow Conforming Cut is hard. 18
3.3 Geometry of sectors, traffic flows. 19
3.4 An instance of the ASP with the constraint on the distance between critical

points and sector boundaries constructed from an instance of the Perfect
Planar P3-Matching problem. Sector σi has three airports that has to be
connected by a path. 20

3.5 An instance of the ASP with the constraint on the distance between critical
points and sector boundaries constructed from an instance of the 2-Partition
problem. Red points represent airports with light-red disks showing the areas
prohibited for sector boundaries to cross. Put a1, a2 . . . , an number of aircraft
to circle around the airports within the “no-crossing” areas. 21

4.1 Examples of local adjustments: (a) and (b) are cardinality preserving; (c) and
(d) are not. 27

4.2 The penalty function. 29

vi

4.3 Bad examples when GeoSect-Local can get stuck. Left: if f0 < f1 are
current sectors workloads, GeoSect-Local cannot make a local adjustment
while keeping sectors convex. Right: Let numbers in sectors denote the work-
load in the corresponding “corner”. Optimum solution would be to connect
the center with the red areas, but impossible to achieve by singular local moves. 31

4.4 Example of a synthetic experiment setting. 32
4.5 Dependency of the running time and resulting ACavg on the grid size. 32
4.6 Dependency between the workload and geometric parameters of sectorizations

optimized by GeoSect-Local. 33
4.7 Baseline sectorization before and after rebalancing. Numbers in sectors show

the total sector cost. 34
4.8 Comparison of flight delays induced by baseline sectorizations and three sets

of MIP/GeoSect sectorizations. 35
4.9 Synthetically generated input data for the robustness test experiment. 37
4.10 Robust experiment results in the synthetic data setting. The numbers in the

sectors denote their costs. 38
4.11 Sectorization R, optimized by R-GeoSect-Local for the all three scenarios.

The numbers in the sectors denote their costs. 38
4.12 Cost comparison charts for the robust experiment in the synthetic data setting.

S1-S3—sectorizations optimized by GeoSect-Local for the three scenarios
separately, R—sectorization optimized by R-GeoSect-Local robustly for
the three scenarios. Last columns show the expected cost. 39

4.13 Five scenarios corresponding to five different weather forecasts. 40
4.14 MIP sectorizations (left). and corresponding MIP sectorizations with straight-

ened sector boundaries (right). 42
4.15 R-MIP robust design (left), and R- MIP robust design with straightened sector

boundaries (right). 43
4.16 Optimizations of each of the MIP sectorizations for corresponding scenarios,

and the robust design produced by R-GeoSect-Local on R-MIP input. . . 43
4.17 Histogram plot of the average costs, maximum ACavg, and maximum ACmax.

Comparing the robust sectorization to the single scenario optimized sector-
izations. 44

4.18 Baseline (historical) sectorization. 45
4.19 Optimizations of each of the five ensemble member demands with baseline

sectorization as a “seed”, and the robust design given by R-GeoSect-Local
with the baseline sectorization as a “seed”. 46

4.20 Histogram plot of the average costs, maximum ACavg, and maximum ACmax.
Comparing the robust sectorization to the individually optimized, for every
scenario, sectorizations (input baseline sectorization). 47

4.21 Histogram plot of maximum, over all sectors, ACmax, comparing the opti-
mizations of GeoSect-Local (individual) and R-GeoSect-Local (ro-
bust) with the MIP sectorizations and the baseline sectorization as “seeds”
and unoptimized baseline sectorization. 48

vii

5.1 Polygon P and a set of points S in it. P is partitioned into the minimum
number of convex pieces while balancing the number of points in every piece. 51

5.2 Partially partitioned polygon P : light grey area is already partitioned sub-
polygon Pab, dab is the base diagonal, angles α and β are the left and the right
angles of the base convex piece, and k is the number of points in it. 53

5.3 Dynamic programming recursion step: iterate over all vertices c seen from a
and b. Decide if triangle 4acb can be merged with Minimum Balanced
Partition (MBP)s of subpolygons Pac and Pcb. αac and βac are the left and
the right angles of the base convex piece of a MBP of a subpolygon Pac. αacb,
βacb and γacb are the angles of triangle 4acb. 54

5.4 Data structure for storing L(a, b): two maps Mα(a, b) and Mβ(a, b) that
store the same set of triplets {αi, βi, ki} maintaining the weak-domination-free
property. Mα(a, b) maps the left angles of the base convex pieces of MBPs
of Pab to lists of corresponding pairs (βji , k

j
i) sorted in an ascending order by

βji ,Mβ(a, b) maps the right angles of the base convex pieces of MBPs of Pab
to lists of corresponding pairs (αji , k

j
i) sorted in an ascending order by αji . . . 57

5.5 Construction of the universe of keys for Van Emde Boas trees: ui ∈ Uα and
vi ∈ Uβ. 61

5.6 Using integer keys to store the pairs (angle, number of points) in van Emde
Boas trees. 62

5.7 Example of the MBP algorithm step computing MBPs for subpolygon Pab. . 63
5.8 Set of Steiner points includes: intersection points of the extensions of the

edges of P with the boundary of P (green points), and intersection points of
the rays shot from every vertex v of P through every visible point in the given
set S (blue points). Here we only show the rays extended from one vertex v. 66

5.9 Reduction. 67
5.10 Approximation algorithm for the case of MBP problem for polygon with holes

and diagonal cuts. Thick diagonals partition the polygon into convex sub-
polygons. Thin diagonals further decompose the subpolygons to satisfy the
constraint on the number of points from S. 70

5.11 Approximation algorithm for the MBP problem for polygon with holes and
unconstrained cuts. Thick diagonals partition the polygon into convex sub-
polygons. Thin lines further decompose the subpolygons to satisfy the con-
straint on the number of points from S. 71

A.1 Variable gadget: before (a) and after (b) modifications. 76
A.2 Left: instance of a planar graph corresponding to a Planar 3-SAT formula.

Right: Planar H-Matching instance construction. 77

viii

List of Tables

4.1 Description of constraints, corresponding parameters used in Local Redesign-
ing Method (LRM), and default settings for GeoSect-Local. 28

4.2 Dependency between the workload and the convexity of sectorizations opti-
mized by GeoSect-Local. 33

4.3 Comparisons of the parameters and penalties of the baseline sectorization
before and after rebalancing. 34

4.4 Constraints on the parameters used in the robustness experiment on synthetic
data. 37

4.5 Constraints used for the three rounds of the experiments. 40

5.1 Results for different variations of the MBP problem presented in this chapter. 52

ix

List of Algorithms

4.1 Local Redesigning Method optimizes sectorization S with respect to the multi-
criteria objective function. Here L(S) is a set of feasible local adjustments to
S at every step of the algorithm, and σ` is a sector σ after applying the local
adjustment `. 26

5.1 Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in
Pab visible from a and b) as an input, and calculates L(a, b) and h(a, b). . . . 58

C.1 Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in
Pab visible from a and b) as an input, and calculates L(a, b) and h(a, b). L(a, b)
is implemented as two maps of angles to van Emde Boas trees constructed on
the same universes Uα and Uβ for all diagonals dab. 80

C.2 Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in
Pab visible from a and b) as an input, and calculates L(a, b) and h(a, b). L(a, b)
is implemented as two maps of angles to van Emde Boas trees constructed on
linear size universes varying for different diagonals dab. 82

x

Acknowledgments

First and foremost I would like to thank my advisor, Joseph Mitchell, for all his support,
encouragement, all the knowledge he has shared with me, and for always knowing who, when
and where solved and published every big or little problem in computational geometry.

I have learned a lot from Valentin Polishchuk, whose advises are always invaluable, and
without whom there would be no Fun with Algorithms.

I would like to thank Prof. Jie Gao, Prof. Michael Bender, Prof. Esther Arkin, and Prof.
Steven Skiena for all the wonderful classes and seminars they teach and for setting an ex-
ample on how research collaboration is done.

The problems discussed in this thesis arose from the project with Metron Aviation that I
have been a part of for the last several years. I would like to give special thanks to Arash
Yousefi and the whole Metron Aviation team, and to Michael Bloem from NASA, Ames.

I would like to thank Prof. George Hart for great discussions, puzzle-solving and building
sessions, and for bringing algorithms, art, and games together.

I would like to thank Girishkumar Sabhnani, Michael Biro, Justin Iwerks, Jason Zou, Shang
Yang, Dzejla Medjedovic, Giordano Fusco, Mayank Goswami, Pablo Arango and all the stu-
dents at Stony Brook University with whom I enjoyed studying and working together.

I want to thank Cynthia Scalso and Prof. IV Ramakrishnan for all the help they’ve given
me over the last six years. I especially want to thank Shakeera Thomas for always giving the
best advices on career related subjects, and just for being cheerful, welcoming, and wonderful.

Finally, I want to thank my family and friends for missing me back at home, and for making
me feel at home here in Stony Brook. Quiero darle las gracias a Marcos por su compañerismo
y apoyo.

xi

List of Publications

[1] E. M. Arkin, A. Efrat, I. Kostitsyna, A. Kröller, J. S. B. Mitchell, and V. Polishchuk.
Scandinavian Thins on Top of Cake: On the Smallest One-Size-Fits-All Box, volume
7288 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012.

[2] E. M. Arkin, I. Kostitsyna, J. S. B. Mitchell, V. Polishchuk, and G. Sabhnani. The Dis-
tricting Problem. In 19th Annual Fall Workshop on Computational Geometry, Medford,
MA, Nov. 2009.

[3] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon based routing
and coverage. In 21st Fall Workshop on Computational Geometry, 2011.

[4] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon-based structures
in polygonal domains. In 1st Computational Geometry Young Researchers Forum, 2012.

[5] J. Kim, I. Kostitsyna, and J. S. B. Mitchell. The Embroidery Problem. In 20th Canadian
Conference on Computational Geometry, 2008.

[6] I. Kostitsyna, J. S. B. Mitchell, and G. Sabhnani. Balancing ControllersâĂŹ Work-
load by Locally Redesigning Airspace Sectors. In Abstracts of the 1st Computational
Geometry: Young Researchers Forum, 2012.

[7] I. Kostitsyna and V. Polishchuk. Simple Wriggling is Hard Unless You Are a Fat Hippo.
Theory of Computing Systems, 50(1):93–110, June 2011.

[8] G. Sabhnani, A. Yousefi, D. P. Kierstead, V. Polishchuk, J. S. B. Mitchell, and I. Kostit-
syna. Algorithmic Traffic Abstraction and its Application to NextGen Generic Airspace.
In 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference,
pages 2093–2102, Sept. 2010.

[9] A. Yousefi, J. S. B. Mitchell, A. Tafazzoli, B. Khorrami, I. Kostitsyna, and T. My-
ers. Integrated Airspace Configuration and Traffic Flow Management under Weather
Uncertainty. Technical report, 2012.

[10] A. Yousefi, G. Sabhnani, J. S. B. Mitchell, I. Kostitsyna, R. Hoffman, and B. Hackney.
Final report on dynamic airspace allocation algorithms and benefits of dynamic airspace
allocations. Technical report, 2010.

xii

Chapter 1

Introduction

Partitioning problems are fundamental in Computational Geometry. In addition to being in-
teresting in their own right, they have many applications in various fields including computer
graphics, VLSI, robotics, resource allocating problems, etc. Often partitioning a domain into
simpler components helps reduce a problem to a set of simpler subproblems.

Our motivation for studying partitioning problems arises from Air Traffic Management.
The current National Airspace System design divides the US airspace into 22 regions con-
trolled by Air Route Traffic Control Centers. Each region is further partitioned into sectors,
and each sector is managed by one or a small group of Air Traffic Controllers. The maximum
workload that air traffic controllers can safely handle results in a limitation on the capacities
of the sectors. The changes in traffic patterns and rapidly growing demand makes it crucial
to be able to efficiently partition the airspace into sectors with a well-balanced workload.

We begin with a Districting problem in Chapter 2 that is a geometrical variation of
the Redistricting problem, a well-known problem in social studies. Consider a polygonal
subdivision of a region into subdistricts with weights equal to the population size in each
subdistrict. The goal is to merge these subdistricts into k simple districts such that total
weights of the resulting districts are balanced. Our motivation for this problem comes from
the Air Traffic Management. In the National Airspace System (NAS) design the vast airspace
is divided into small regions, called sectors, each of which is overseen by one or a group of
Air Traffic controllers. From this point of view subdistricts correspond to so called Fix
Posting Areas (or “sub-sectors”), a fundamental unit of airspace; districts’ weights represent
a measure of controllers’ “workload”; and the goal of the merging is to provide a balanced
partitioning of the workload among a set of airspace sectors. We prove that the Districting
problem is NP -complete and provide a few approximation algorithms for special cases of the
problem.

In Chapter 3 we study the Airspace Sectorization problem where the goal is to find
an optimal partition (sectorization) of the airspace into a certain number of sectors. The
objective of the Airspace Sectorization problem is to find a “well-balanced” sectorization
that distributes the workload evenly among the controllers. We formulate the Airspace
Sectorization problem as a partitioning problem of a set of moving points in a polygonal
domain. In addition to the requirement of balancing the workload, we introduce restrictions

1

on the geometry of the sectorization which come from the Air Traffic Management aspects.
We investigate several versions of the problem that arise from different definitions of the
notion of the workload and various choices of geometric restrictions on the sectorization.
We conclude that most of the formulations of the problem, except maybe in some trivial
cases, are NP -hard. As a special case of the Airspace Sectorization we discuss a Flow
Conforming Cut problem. As it is clear from its name, the Flow Conforming Cut
problem asks one to divide a given region into two pieces under the constraint of conforming
to aircraft flows.

Finally, in Chapter 4 we propose a Local Redesigning Method (LRM), a heuristic algo-
rithm that rebalances a given sectorization by adjusting the boundaries of the sectors. We
evaluate LRM experimentally on synthetically generated scenarios as well as on the real
historical traffic data. We demonstrate that the sectorizations produced by our method are
superior in comparison with the current sectorizations of the US airspace.

In Chapter 5 we propose the following problem: given a polygon and a set of points in
it, divide it into the minimum number of convex pieces such that each piece contains no
more than a certain number of points. This problem can be viewed as a special case of the
Airspace Sectorization problem, where the points represent motionless aircraft.

Let us begin by introducing a Planar H-Matching problem which will help us to
prove hardness of many problems presented in this thesis.

Planar H-Matching

Matching problems have been well studied in graph theory. The basic version of the problem
asks one to find a setM of maximum size of vertex disjoint edges in a graph G with n vertices
and m edges. If edges in M cover all vertices of the graph G, i.e., |M | = n/2, then this
matching is called perfect. In [22] Micali and Vazirani gave an O(

√
nm) algorithm to find a

maximum matching (see also [29]), improving the original result of O(n4) by Edmonds [9].
A perfect matching can also be viewed as a 1-factor1 of a graph G.

The first step to generalize this problem is to consider the matching setM to be consisting
of not edges (i.e., pairs of connected vertices), but triangles (i.e., triplets of connected
vertices). In other words, for a given graph G find a maximum size set of vertex disjoint
triangles. This problem is known as Maximum Triangle Packing, it is NP -complete as
it is a special case of the Maximum 3-Dimensional Matching. To continue with the
generalization of the problem, one could ask to find in a graph G a maximum set of disjoint
subgraphs isomorphic to some graph H, and call this problem a Maximum H-Matching.
Hell and Kirkpatrick discuss this problem in [12], as well as even more general Maximum
H-Matching, where H is a family of graphs (for example, paths, cycles, stars, etc). By
analogy with perfect matching being a 1-factor, the authors call the Perfect H-Matching
an H-factoring. They show that if |H| ≥ 3 (and if H is not a union of K1 and K2 graphs2)
an H-Factoring problem is NP -complete. For packing G with a family of graphs H, they

1A k-factor of a graph G is a subgraph G′ on the same set of vertices such that every vertex of G′ has
degree k.

2K1 is a graph consisting of a single vertex, K2 is a graph on two vertices connected by an edge.

2

prove that H-Factoring is in P if K1 ∈ H or K2 ∈ H, and H-Factoring is NP -complete
otherwise.

One important subclass of these problems is maximum matching problems on planar
graphs. Berman et al. in [3] prove that the following two problems are NP -complete:
Maximum Planar H-Matching with |H| ≥ 3, and a Perfect Planar H-Matching
for an outerplanar graph H with |H| ≥ 3.

As a corollary of the results in [3], the following problem is NP -complete:

Problem 1.1 (Perfect Planar P3-Matching3). For a planar graph G = (V,E) with
|V | = 3k decide if there exists a set of k pairwise disjoint subgraphs in G isomorphic to P3.

3P3 is a path on three vertices.

3

Chapter 2

Districting Problem

The problem of Political Redistricting has been widely discussed in social sciences as well as
in computer science. The goal is to divide a region into several electoral districts with equal
or similar population distribution [28]. There are various versions of this problem which
arise by imposing certain conditions on the districts, such as restricting their number, sizes,
shapes, maximum population, etc.

In this chapter we consider a basic Districting problem defined on a grid of subdis-
tricts. Given a polygonal subdivision of a region into subdistricts with weights equal to the
population size in each subdistrict, merge them into the minimum number of simple districts
such that the total weight of each district is bounded.

We also consider a “dual” Districting problem, where one is asked to join subdistricts
into a given number of districts while minimizing the maximum district weight.

Our motivation for studying these problems arises from an Airspace Sectorization
problem (see Chapter 3) in which subdistricts correspond to Fix Posting Areas (or “sub-
sectors”) with weights representing a measure of controllers’ “workload”. The purpose of
merging is to provide a balanced partitioning of the workload among a set of airspace sectors.
In related work, Bloem et al. [5] analyze greedy heuristics for merging underutilized airspace
sectors to conserve air traffic control resources. The Districting Problem is also related to
problems in bin packing; in our case, however, the shape of the bins is not fixed (only their
capacity is fixed), and the items are not allowed to be moved, but only to be grouped.

We begin with a 1D case of the Districting problem and its dual problem in Section 2.1,
and show how to solve them optimally. In 2D, however, the problems become NP -hard. In
Section 2.2 we present hardness proofs and a number of approximations.

We conclude the chapter with a discussion of a dynamic version of the Districting
problem.

This chapter is based on joint work with Esther Arkin, Joseph Mitchell, Valentin Polishchuk and Girish
Sabhnani from Stony Brook University. Preliminary results were presented at the 19th Annual Fall Workshop
on Computational Geometry [1]

4

s1 s2 si sn

σ 1 σ 2 σ k

Figure 2.1: 1D Districting problem.

2.1 Districting Problem in 1D

In 1D subdistricts are intervals on a line (Figure 2.1). By analogy with the 2D terminology,
we are going to refer to these initial intervals as subintervals and refer to the resulting
intervals after merging as intervals. Because of the contiguity requirement, there are only
two options for a subinterval to be merged: with its left, or right neighbor, or both. The
Districting problem in 1D is equivalent to merging the subintervals into the minimum
number of intervals such that their weights do not exceed M . More formally:

Problem 2.1. Consider an interval I subdivided into n subintervals {s1, s2, ..., sn} and a
positive weight w(si) assigned to each of them. For a given positiveM , merge the subintervals
into the minimum number of intervals {σ1, σ2, ..., σk} such that:

w(σi) =
∑
sj∈σi

w(sj) ≤M .

The following simple greedy sweeping algorithm solves this problem. Sweep the interval
I from left to right; push the right end-point of every next district to be as far to the
right as possible, so that each district becomes saturated. More precisely, for any district
σ = ∪i≤`≤js` the following inequalities should hold:

w(σ) =

j∑
`=i

w(s`) ≤M < w(σ) + w(sj+1) .

Theorem 2.1. The greedy sweeping algorithm solves Problem 2.1 in O(n) time.

Proof. First we will show the correctness of the greedy algorithm. Let {σg1 , σ
g
2 , ..., σ

g
kg
} be

the intervals of the greedy solution ordered along I from left to right, and correspondingly
{σOPT1 , σOPT2 , ..., σOPTkOPT

} the intervals of the optimal solution (kOPT ≤ kg). Move along the
interval I from left to right and compare the relative positions of the right boundaries of
intervals σgi and σOPTi . By construction, the right boundary of σg1 cannot lie to the left of
the right boundary of σOPT1 . The right boundary of each next interval in the greedy solution
cannot lie to the left of the right boundary of the corresponding interval in the optimal
solution. Thus, kg ≤ kOPT , and therefore kg = kOPT .

During the sweep operation each subinterval is considered once with a constant amount
of work done per subinterval (maintaining a running weight-sum and comparing it to M).
Thus, the greedy algorithm takes O(n) time to run.

5

s1 si sa sn

σ b+1 σ k

i a

sa+1si+1

Figure 2.2: Partial solution of the dynamic programming algorithm. Subintervals
to the right of position a are already merged into k−b intervals; current subprob-
lem is Districting(a, b) on a subintervals to be merged into b final intervals.

One can define the “dual” version of Problem 2.1. Rather than minimizing the number
of districts with a bounded total weight, minimize the maximum weight for a given number
of districts.

Problem 2.2. Consider an interval I subdivided into n subintervals {s1, s2, ..., sn} and a
positive weight w(si) assigned to each of them. For a given positive integer k, merge the
subintervals into k intervals {σ1, σ2, ..., σk} to minimize their maximum weight.

To solve this problem we are going to use the dynamic programming technique. Refer
to Figure 2.2. The state of the dynamic programming is the current position separating the
part of I to be merged from the part of I that has already been merged, and the number
of intervals remaining. Let Districting(a, b) denote the min-max weight of the problem
with a initial subintervals to be merged into b final intervals. It can be recursively defined
through subproblems of smaller size in the following way:

Districting(a, b) = min
1≤i<a

max{Districting(i, b− 1),
a∑

j=i+1

w(sj)} .

Theorem 2.2. The dynamic programming algorithm solves Problem 2.2 in O(kn2) time.

Proof. Consider an intermediate state of the algorithm. The exact locations of the bound-
aries of the intervals in the part of the problem that is already solved do not affect the next
interval to be chosen. The algorithm considers every possible location for the boundary of
the next interval and choses the best among those.

The size of the table to be filled by the dynamic programming is k × n. At each step
the algorithm needs to find the minimum of O(n) of values, leading to a total running time
O(kn2).

2.2 Districting Problem in 2D

Consider a simple polygonal region partitioned into simple polygonal subdistricts with a given
population. The problem is to group subdistricts into the minimum number of districts such
that each district is a simple polygon and its total population is bounded by some given
value. More formally:

6

ai

Figure 2.3: Input: a simple polygon P divided into subdistricts.

Problem 2.3. Consider a simple polygon P partitioned into n simple polygonal subdistricts
{s1, s2, ..., sn} with weights w(s1) = a1, w(s2) = a2, ..., w(sn) = an. Given a positive M ,
merge subdistricts into the minimum number of districts σ1, σ2, ..., σk such that each district
is a simple polygon and its weight is bounded by M :

w(σi) =
∑
sj∈σi

w(sj) =
∑
sj∈σi

aj ≤M.

Problem 2.4. Consider a simple polygon P partitioned into n simple polygonal subdistricts
{s1, s2, ..., sn} with weights w(s1) = a1, w(s2) = a2, ..., w(sn) = an. Given a positive integer
k, merge subdistricts into k simple districts σ1, σ2, ..., σk to minimize their maximum weight.

We can reformulate Problems 2.3 and 2.4 to be a decision problem:

Problem 2.5. Consider a simple polygon P divided into n simple polygonal subdistricts
s1, s2, ..., sn with weights w(s1) = a1, w(s2) = a2, ..., w(sn) = an. Decide if it is possible to
group subdistricts into k districts σ1, σ2, ..., σk such that each district is a simple polygon and
its weight is bounded by M :

w(σi) =
∑
sj∈σi

w(sj) =
∑
sj∈σi

aj ≤M.

Theorem 2.3. The Problem 2.5 is NP-complete.

Proof. It is possible to check the correctness of a given solution in linear time, thus the
Problem 2.5 lies in NP.

To prove that the problem is hard we will use a reduction from the Problem 1.1 Perfect
Planar P3-Matching. Given a planar graph G = (V,E) with |V | = 3k we construct a
polygon P partitioned into simple subdistricts {s1, s2, . . . , s3k} so that G is its dual (see
Figure 2.4). For every node vi ∈ V there is a corresponding subdistrict si. For every edge
vivj ∈ E subdistricts si and sj share a boundary. Set weight of every subdistrict to be 1.
The solution of the constructed districting problem with M = 3 and k corresponds to a
perfect P3-matching of the graph G. Therefore, the Problem 2.5 is NP -complete.

As a corollary to this theorem, since it is hard to distinguish between the case with the
maximum district weight 3 and the case with the maximum weight 4, follows a hardness of
approximation for the Problem 2.3:

7

Figure 2.4: Left: an instance of planar graph G and a corresponding polygon P
partitioned into subdistricts. Right: a solution to the Districting problem and
the corresponding perfect 3-matching in G.

Corollary 2.4. It is NP-hard to approximate the Problem 2.3 to a factor (4/3− ε) for any
ε > 0.

Note that hardness of approximation works only for minimizing the max-weight of dis-
tricts (with constraint on number of districts). For the dual problem (minimizing the number
of districts, with constraint on max-weight), we show a weak hardness of approximation be-
low.

Theorem 2.5. The Problem 2.5 is weakly NP-complete.

a1 a2 anai

B=M/2

B=M/2

Figure 2.5: Reduction from 2-Partition to Districting problem.

Proof. The reduction is from 2-Partition: Given a set S of integers a1, a2, ..., an determine
whether it is possible to partition S into two (disjoint) sets with equal sum of the elements.
For an instance of 2-Partition, create an instance of the Districting problem as shown in
Figure 2.5, withM =

∑
ai/2 and the number of districts k = 2. There are two subdistricts of

weight B = M/2 on the top and the bottom of P , and n subdistricts with weights a1, a2, ..., an
in the middle layer of P . Since total weight of the top and the bottom subdistricts is M and
they are separated, they cannot belong to one district. Thus, a solution to the constructed
Districting problem exists if and only if a solution to the 2-Partition exists. Therefore,
the Problem 2.5 is weakly NP -complete.

Since it is hard to decide between the case with 2 districts and the case with 3 districts,
a weak NP -hardness of approximation for Problem 2.4 follows:

8

Corollary 2.6. It is weakly NP-hard to approximate the Problem 2.4 to a factor (3/2− ε)
for any ε > 0.

2.3 Approximate Solutions

In this section we present approximation algorithms for two special cases of Problem 2.3 and
an approximate algorithm for Problem 2.4.

2.3.1 Hamiltonian Path Case

Consider the dual graph G of the subdivision of the polygon P into subdistricts. If G has a
Hamiltonian path πH then we provide 4-approximation (2-approximation in a special case)
algorithm for 2D Districting problem. Renumber subdistricts in P in the order they
appear in the path πH . That is, if we go along πH subdistrict si comes before subdistrict sj
if i < j. Solving a 1D problem (as in Section 2.1) with the given order of subdistricts we
can get an approximate solution SAPX for 2D Problems 2.3 and 2.4.

Theorem 2.7. Algorithm described above is a 2-approximation for Problems 2.3 and 2.4.

Proof. Suppose, kOPT is a number of districts in optimal solution. It is obvious that

kOPT ≥
∑
ai

M
.

For any two consecutive districts σi and σi+1 from solution SAPX we have

w(σi) + w(σi+1) > M ,

otherwise in solution SAPX they would be joined in a single district. If the number of districts
kAPX in approximate solution is even then

w(σ1) + w(σ2) > M ,

w(σ3) + w(σ4) > M ,

...

w(σkAPX−1) + w(σkAPX
) > M .

Summing these inequalities we get∑
ai =

∑
1≤i≤kAPX

w(σi) >
kAPX

2
M .

Thus, in average each district has weight greater than M/2. And the number of districts
kAPX in approximate solution is less than 2kOPT :

kAPX <
2
∑
ai

M
≤ 2kOPT .

9

Suppose, the number of districts kAPX is odd. Summing inequalities

w(σ1) + w(σ2) > M ,

w(σ3) + w(σ4) > M ,

...

w(σkAPX−2) + w(σkAPX−1) > M ,

w(σkAPX
) > 0 ,

we get ∑
ai =

∑
1≤i≤kAPX

w(σi) >
kAPX − 1

2
M .

Thus,

kAPX − 1 <
2
∑
ai

M
≤ 2kOPT .

As kOPT and kAPX are integral numbers and the first part of the inequality above is strict
we have

kAPX ≤ 2kOPT .

Thus, number of districts kAPX in approximate solution is not greater than 2kOPT .

2.3.2 Low Degree Spanning Tree

If G has no Hamiltonian path, we turn instead to a low-degree spanning tree of G. One
can compute in polynomial time a spanning tree that has degree at most 1 greater than the
degree of a minimum degree spanning tree [11]. Consider a low degree spanning tree T∆ in
graph G with degree of every node not exceeding ∆ (refer to Figure 2.6). Arbitrarily select a
root node and assort the rest of the nodes in layers. Denote nodes (subdistricts) in ith layer
of T∆ with dij where j = 1, 2, Consider nodes in the lowest layer m, i.e., all nodes in
that layer are leaves. Consider any node from that layer and its parent node dm−1. Denote
all children of dm−1 as dm1 , dm2 , . . . , dmc . There are two cases: subdistrict represented by node
dm−1 and all his children subdistricts can be grouped into one district or not. If

w(dm−1) +
∑

1≤j≤c

w(dmj) ≤M ,

then subdistrict dm−1 and all its children can be grouped in one district (other subdistricts
might be added to this district later). In this case contract all edges dm−1, dmi in the tree T∆

and update weight of dm−1:

w(dm−1) := w(dm−1) +
∑

1≤j≤c

w(dmj) .

10

1−m
d

m

d
1

m

d
2

m

c
d

Figure 2.6: Spanning tree.

If
w(dm−1) +

∑
1≤j≤c

w(dmj) > M , (2.1)

then these subdistricts cannot be grouped into a single district. Sort all children of dm−1 by
weights: w(dm1) ≤ w(dm2) ≤ ... ≤ w(dmc). Group first several leaf subdistricts with parent
subdistrict in one district and the rest of children each forms a separate district. Remove
nodes dm−1, dm1 , d

m
2 , ..., d

m
c from the tree T∆. Repeat these steps until the whole tree T∆ is

divided into districts.

Theorem 2.8. Algorithm described above is a ∆-approximation for Problem 2.3.

Proof. As maximal degree of T∆ is ∆, that is, each node (except root node) has no more
than ∆ − 1 children. Consider districts that are being cut off from the tree in the second
case considered above. From inequality (2.1):

wAV G ≥
w(dm−1) +

∑
1≤j≤cw(dmj)

∆
>
M

∆
,

average weight of each district that gets cut is greater than M/∆. The weight of the last
remaining district in the tree can be less than M . Suppose the number of districts created
by this algorithm is kAPX and kOPT is the minimum possible number of districts, then

kOPT ≥
∑

1≤i≤nwi

M
>
M(kAPX − 1)

M∆
=
kAPX − 1

∆
. (2.2)

Taking into account that kAPX and kOPT are natural and inequality (2.2) is strict we get:

kAPX
kOPT

≤ ∆ .

2.3.3 Dealing with Holes

When we use the simple greedy algorithm for 1D problem along a Hamiltonian path, we can
get non-simple districts (Figure 2.7). We will show that most districts cannot have more

11

s1

sn
sns1

Figure 2.7: Simple algorithm for 1D problem can cause existence districts which
are not simply connected.

than one hole, and at most one district can have two holes. Splitting a district into two
pieces to reach simplicity is enough for all districts, maybe except for one.

We say that a subdistrict is boundary if its boundary has common part with the boundary
of P .

Lemma 2.9. If both ends of Hamiltonian path are boundary subdistricts, there cannot be
districts with holes.

Proof. Let σ be a district comprised of subdistricts si, si+1, ..., sj. If there is a hole in σ then
there exist two subdistricts sl and sm such that i ≤ l < m ≤ j and

• sl and sm have a common boundary, that is, there is a cycle s`, s`+1, ..., sm, s` in graph
G,

• subdistricts s1, s2, ..., s`−1 and subdistricts sm+1, sm+2, ..., sn lie on different sides of the
cycle s` − sm.

This means that at least one of the end subdistricts is not boundary – it lies inside a cycle
consisting of other subdistricts.

Moreover, it is obvious from the lemma that there can only be one hole per Hamiltonian
path end in each district. If there is a district σ with two holes then there is an end of
the Hamiltonian path in each hole. Any other district σ′ can lie inside a hole or outside of
subdistrict σ. In any case there cannot be more than one hole in σ′. Thus, there can be only
one district with two holes. This district can be split into three parts to get rid of holes.

The same is true about the case of a low-degree spanning tree approximation algorithm.
The districts built with this algorithm can have holes. To get the final subdivision into
simple districts we will divide districts with holes in several pieces. Each hole is a district
(or several districts) itself. Thus, there cannot be more than kAPX number of holes. For
each hole we will break the surrounding district into two pieces. As a result we will get
4-approximation in case of Hamiltonian path and 2∆-approximation in case of a low-degree
spanning tree.

12

h1

s0

Figure 2.8: Splitting a district into two pieces to get rid of a hole.

More precisely, consider a district σ with holes. Suppose it consists of subdistricts S =
{s1, s2, ...} and has holes H = {h1, h2, ...}. The holes are districts themselves or even several
districts. Consider a dual graph G′ built on nodes S∪H∪s0, where s0 is an outer face of the
district (see Figure 2.8). Find the shortest path from h1 to s0. Suppose it does not intersect
any other nodes from H. Delete all nodes from that shortest path from G′. If G′ breaks into
several connected components C1, C2, ..., where C1 is the component that touches hole h1,
we will break the original graph into two pieces C1 and G′\C1. Thus, we get rid of the hole
h1 by dividing σ into two pieces. If the shortest path from h1 to s0 intersects other holes,
consider the last hole h′ it crosses and consider the last piece of this shortest path from h′

to s0. Split G′ into two pieces the same way with respect to h′, and repeat the process for
all other holes. Therefore, we conclude the following:

Theorem 2.10. Algorithms described in Sections 2.3.1 and 2.3.2 are respectively 4- a 2∆-
approximations, where ∆ is a maximum degree of a spanning tree of a dual graph for a
subdivision into subdistricts.

2.4 Dynamic Districting Problem

Consider 1D problem with weights of subdistricts changing in time. We have a set of
moments of time T = {t0, t1, ..., ti, ...} when weights change. For any moment ti ≤ t < ti+1

weights of subdistricts remain constant, w(sj, t) = aij.

Here, an objective can be to find a minimum number of districts, or to minimize the
number of changes subject to bounded number of districts.

Problem 2.6. Consider 1D problem with weights of subdistricts changing in time. We
have a set of moments of time T = {t0, t1, ..., ti, ...} when weights change. For any moment
ti ≤ t < ti+1 weights of subdistricts remain constant, w(sj, t) = aij.

Input: Matrix M , a total number of rectangles K, horizontal and vertical stabbings H
and V , minimum height of a district h, min and max weights of any district at any time
wmin and wmax and whether only guillotine (BSP) partitions are sought.

Districting(M,K,H, V, h, wmin, wmax, g) is the problem of establishing whether there
exists a guillotine partition ofM respecting the constraints given byK,H, V, h, wmin, wmax. If

13

s1 s2 s3 sn

a1
0
a2
0
a3
0

an
0

a1
1
a2
1
a3
1

an
1

a1
i
a2
i
a3
i

an
i

t0

t1

t2

ti

t

Figure 2.9: 1D dynamic case.

a parameter is missing, then the parameter is not relevant. E.g., Districting(M,K, h, wmin, wmax)
is the version in which we do not restrict ourselves to only guillotine partitions, and in which
the horizontal and vertical stabbing can be arbitrary. Note that Districting is a decision
problem. Note also that wmin and wmax do not bound the weight of the rectangles, but only
the weight of every row of a rectangle.

Theorem 2.11. Districting(M,H, V, wmax) and Districting(M,V,wmin, wmax) are hard.

2.5

2.5

1 1

1 1 1

1

1 1 11 1

2.5 1 1 11 1True

False 2.5

Figure 2.10: Variables.

Proof. We show that Districting(M,V,wmin, wmax) is hard by reduction from 3-SAT. Sup-
pose algorithmA answers the question of existence of partition for given problem Districting(M,V,wmin, wmax).
Consider an instance of 3-SAT with n variables and m clauses. Let wmin = 2.5, wmax = 3.5
and V = 3n+ 1. Make a matrix M with 3n+ 2 rows and 6m columns as follows:

• Each 3k + 1 row corresponds to a variable xk. Choose cells weights to be such that
there is only two possible partitions of this row into sectors (Figure 2.10). The first
partition sets the variable to be True, the second — False;

• Each 3k + 2 row corresponds to a variable in a clause. A column with width in six
cells corresponds to a clause. If a variable appears in a clause weights in cells are
3-1-1-1-3-3 and by setting this variable to be True algorithm A will combine (merge)
three cells of weight 1 with 3 cells in a row above (for example variable x1 in clause
C1, Figure 2.11). Similarly, if a negation of variable appears in a clause weights in six
cells are 3-3-1-1-1-3 (x3 in clause C2, Figure 2.11). If a variable does not appear in a
clause, all cells weight 3;

14

11 1113 1

3

3

3

33

1.5

3

3

33

3

3

3

3

1.5 3 1.5

3

1.5

33

3

3

3

111

1

1 111

11

3113 3

3 3 3 3 3 3

3 33 3 33

3

x

1

=True

x

2

=False

x

3

=False

x

4

=True

C

1

=x

1

Vx

2

V¬x

4

C

2

=¬x

1

V¬x

3

Vx

4

3 3 3

3 3 3

3 3 3

3 3 3 3

3

3

3

3

Figure 2.11: Clauses.

• Cells weights in each 3k+ 3 row are wmin/6m thus algorithm A would combine all cells
into one sector;

• By choosing vertical stabbing number to be 3n + 1 and bottom two rows in M (as in
Figure 2.11) at least one of three variables in a clause has to get merged in a big 2x3
rectangle.

Thus, if algorithm A finds a feasible partition for given matrix M , it also solves original
3-SAT problem.

Similar proof with minor changes can be used to show hardness of Districting(M,H, V, wmax).

15

Chapter 3

Airspace Sectorization Problem

3.1 Introduction

In this chapter we study the Airspace Sectorization Problem (ASP) where the goal is to find
an optimal partition (sectorization) of the airspace into a certain number of sectors, each
managed by an air traffic controller. The objective of the problem is to find a “well-balanced”
sectorization that distributes the workload evenly among the controllers. We formulate the
ASP as a partitioning problem of a set of moving points in a polygonal domain. In addition
to the requirement of balancing the workload, we introduce restrictions on the geometry of
the sectorization which arise from Air Traffic Management considerations.

We investigate several versions of the problem that arise from different definitions of the
notion of workload, and various choices of geometric restrictions on the sectorization. We
conclude that most of the formulations of the problem, except perhaps in some trivial cases,
are NP -hard.

3.2 Flow Conforming Cut

Before discussing the ASP, we begin with a special case, the Flow Conforming Cut
problem.

Suppose we are given an airspace region with aircraft trajectories in some time interval
[t0, t1]. Each trajectory is a chain of segments crossing the region (Figure 3.1). For simplicity,
consider the workload of a sector to be the sum of its trajectories’ lengths. The Flow
Conforming Cut requires to find a cut that divides the region into two sectors with equal
workload. Similarly to trajectories, a cut is a chain of segments connecting two points on

This chapter is based on joint-work with Arash Yousefi from Metron Aviation and Joseph S. B. Mitchell
from Stony Brook University.

16

s

t

α

l

β

d

δ

Figure 3.1: Flow conforming cut.

the boundary. The Flow Conforming Cut requires the following to be true for some
constants A and D:

1. the cut must cross all aircraft trajectories and the boundary nearly perpendicularly:
α ≥ A,

2. the cut cannot pass too close to an intersection of aircraft trajectories: d ≥ D.

Problem 3.1. Given a region R, a set of tracks T and points on a region’s boundary
s, t ∈ ∂R find if there exists an s-t cut that satisfies requirements 1 and 2, and divides R
into two sectors S1, S2 with equal workloads:∑

τ∈T

length(τ ∩ S1) =
∑
τ∈T

length(τ ∩ S2).

We show, that even with these simple requirements, without any restrictions on the shape
of the cut, the problem is hard:

Theorem 3.1. Problem 3.1 is weakly NP-hard.

Proof. It is possible to check in polynomial time if a given cut satisfies the requirements of
the problem, therefore the problem is in NP.

To show that the problem is hard, we reduce from a known weakly NP -hard problem,
the 2-Partition: given a set of integers {a1, a2, . . . , an} decide if it is possible to divide
them into two sets with equal sums. Given an instance of the 2-Partition problem, build
an instance of the problem 3.1. Each pair of horizontal tracks intersecting in the middle
corresponds to one integer ai. A disk of radius D with its center in intersection point shows
a region forbidden for a cut. Make one of tracks to zigzag (Figure 3.2) to make the sum

17

a1 a2 an

s t
D

Figure 3.2: Flow Conforming Cut is hard.

length of tracks in the disk to be ai. The rest of the tracks we can make neglectable in
comparison with parts of tracks covered by the disks. If a cut goes to the right of the disk,
we put ai ∈ S1; if it goes to the left, we put ai ∈ S2. If there exists an s-t flow-conforming
cut balancing workload, respectively there exists an assignment of the integers to sets S1, S2

such that the sums of the numbers in each set is the same. Therefore the problem 3.1 is
weakly hard.

Even if we restrict the tracks not to have too many sharp turns, the hardness construction
can be changed by adding several horizontal tracks to each level corresponding to an integer
ai.

In addition to requirements 1 and 2 it is also preferably to have the following:

3. the cut cannot pass too close to a track if it does not intersect it: δ ≥ ∆,

4. an angle between consecutive segments must be less than some value: β ≤ B,

5. a length of each segment must be greater than some value: l ≥ L.

3.3 Airspace Sectorization Problem

The main objective of the ASP is to find a sectorization that distributes the workload evenly
among the sectors. In this study we use three different metrics for the workload: ACmax(σ)—
the maximum aircraft count in sector σ, ACavg(σ)—the time-average aircraft count in σ, and
δ(σ)—the delay introduced by the overload of σ. We give precise definitions of ACmax, ACavg
and δ in Section 4.2.2.

As discussed in [27], a human factor should also be taken into account when design-
ing a sectorization. This leads to geometric restrictions that can be roughly divided into
two groups: flow conformance requirements and sector geometry requirements. Flow con-
formance requirements reflect the compatibility of the sectors’s boundaries with the traffic
flows, weather obstacles, and locations of the airports or other singular points (refer to Fig-
ure 3.3). Airplanes should pass far enough from a sector boundary, and when they cross
the boundaries between sectors the intersection should be nearly orthogonal. Furthermore,

18

α

α

β

dCP

dDF

Tdwell

NL = 2

Figure 3.3: Geometry of sectors, traffic flows.

there is a restriction on the minimum dwell time for an airplane: after entering a sector
the airplane should spend some time within it before exiting. Any critical point, such as an
airport or a conjunction/intersection of major flows, should also be well inside the sector
to give air traffic controllers time to safely manage possible conflicts. If there is a weather
obstruction in a sector, there should be enough of the throughput capacity in the directions
of traffic flows to allow the sector to accommodate them. The second group of requirements
regulates the geometry of sectors: we require the sectors to be convex or nearly convex and
bound minimum and maximum angles.

Now, to formally state the ASP we can choose any of the requirements that we have dis-
cussed above to define the objective function f(·), and others to construct a set of constraints
C. For example, we can choose to optimize the average aircraft count while constraining the
convexity of sectors and maximum aircraft count:

optimize f = max
σ

ACavg(σ)

subject to constraints C = {convex sectors, ACmax(σ) ≤ AC∗max} .

Problem 3.2 (Airspace Sectorization Problem). Given a polygonal domain D, a set of
aircraft trajectories T in a time interval [0, T], and, possibly, a set of dominant flows DF ,
a set of critical points CP, a set of weather obstacles W, and a positive integer k, find
a partition S of D into k sectors to optimize f(S, T , CP ,DF ,W) subject to constraints
C(S, T , CP ,DF ,W) .

We also consider a dual problem whose goal is to minimize the number of sectors in a
sectorization subject to a set of constraints.

Problem 3.3. Given a polygonal domain D, a set of aircraft trajectories T in a time interval
[0, T], and, possibly, a set of dominant flows DF , set of critical points CP, and a set of
weather obstacles W, find a partition S of D into minimum number of sectors subject to
constraints C.

19

r

σi

Figure 3.4: An instance of the ASP with the constraint on the distance between
critical points and sector boundaries constructed from an instance of the Perfect
Planar P3-Matching problem. Sector σi has three airports that has to be
connected by a path.

3.4 Complexity of the Airspace Sectorization Problem

In a few special cases, the ASP can be solved polynomially. Consider a version of ASP whose
objective is to minimize ACavg. In the case when the airspace region is a convex polygon,
this problem can be solved, for example, by a line-sweeping technique. Balancing ACavg is
equivalent to balancing the total length of aircraft trajectories in each sector. Sweep the line
perpendicularly, slicing the polygon each time when a sector becomes “full”. If the polygon
is non-convex, this can result in sectors having multiple disconnected components, but this
issue can be easily worked around by connecting the pieces with thin corridors along the
polygon boundary.

Basu et al. [2] prove that ASP whose objective is to minimize the maximum aircraft count
with axis aligned rectangular sectors is NP -hard. Farrahi and Wood [10] strengthen this
result by showing that it is NP -hard to optimize the maximum aircraft count version of the
ASP with no geometric restrictions on sectors by reduction from the Planar-Partition-
into-Triangles. They also show NP -hardness of the ASP version with the objective to
minimize the total number of tracks in each sector, as well as the version with the objective
to minimize the maximum number of aircraft in a sector during any N -minute time interval
(with a constant N).

We present a proof of NP -completeness of the ASP by reduction from the Perfect
Planar P3-Matching (Problem 1.1).

Theorem 3.2. ASP with the constraint on the distance between critical points and sector
boundaries, with no constraints on sectors geometry, and with the objective to minimize
ACmax is NP-complete.

Proof. The problem is in NP, as it is possible to compute the maximum aircraft count for a
given sectorization.

Suppose we are given an instance of Perfect Planar P3-Matching: given a planar
graph G, find a perfect P3-matching. Suppose G has 3k vertices. We construct an instance

20

a1 a2 a3 an

Figure 3.5: An instance of the ASP with the constraint on the distance be-
tween critical points and sector boundaries constructed from an instance of the
2-Partition problem. Red points represent airports with light-red disks showing
the areas prohibited for sector boundaries to cross. Put a1, a2 . . . , an number of
aircraft to circle around the airports within the “no-crossing” areas.

of the ASP the following way (refer to Figure 3.4). For each vertex vi of G we place an
airport in vi that will serve as a critical point in ASP. Consider the time interval [t0, t1].
Subdivide it into n intervals τ1, τ2, . . . , τ3k. For every node vi ∈ G let 2 aircraft circulate
within radius r of the corresponding airport in time interval τi. If two vertices vi and vj
are not connected in G, let 1 aircraft circulate within radius r of the airport vi during time
interval τj, and 1 aircraft circulate within radius r of the airport vj during time interval
τi. An airspace partition of the given instance into k sectors with maximum workload not
greater than 3 corresponds to the perfect P3-partition of G. Indeed, there cannot be more
than four airports in a sector, as it would give workload of 4 aircraft in some time interval
τi (where vi is not connected with either of the 4 vertices). That means that every sector
has to have 3 airports in it. If in some sector one of three airports vi is not connected to at
least one of two airports vj or v` then the workload in this sector during time interval τi is 4
aircraft (2 from airport vi and 1 from each other airport). Therefore, in all sectors, all three
airports-vertices form a connected graph on three nodes (which has P3 as a subgraph).

Therefore, the ASP under consideration is as hard as the Perfect Planar P3-Matching
problem.

In Section 3.2 we showed that the Flow Conforming Cut problem is weakly NP -
complete. The Flow Conforming Cut is a special case of the ASP, thus the ASP is
also weakly NP -complete. In this section we consider a number of other special cases of the
ASP. A very similar construction with slight differences that account for the types of the
constraints works for all the cases. Here we show a proof that the ASP with the constraint
on the distance between critical points and sector boundaries with the objective to minimize
ACavg or ACmax is weakly NP -hard. The 2-Partition problem asks to determine if it
is possible to divide a set of positive integers a1, a2, . . . , an into two subsets such that the
total sums of the numbers in each subset are equal. Given an instance of the 2-Partition
problem we construct an instance of the ASP with the required number of sectors k = 2
(refer to Figure 3.5). Any solution of the 2-Partition problem corresponds to a subdivision
of the airspace into two sectors that solves the ASP. Thus, we have the following theorem:

Theorem 3.3. ASP with the constraint on the distance between critical points and sector

21

boundaries, with no constraints on sectors geometry, and with the objective to minimize
ACavg or ACmax is weakly NP-hard.

By modifying the construction for different requirements we can also show:

Theorem 3.4. ASP with the constraint on the minimum dwell time, with no constraints on
sectors geometry, and with the objective to minimize ACavg or ACmax is weakly NP-hard.

Theorem 3.5. ASP with the constraint on the intersection angles of dominant flows and
sector boundaries, with no constraints on sectors geometry, and with the objective to minimize
ACavg or ACmax is weakly NP-hard.

Theorem 3.6. ASP with no constraints and with the objective to minimize ACmax is weakly
NP-hard.

Having discussed theoretical aspects of the ASP, in the next chapter we move on to
present a heuristic method addressing this problem in a real-world setting.

22

Chapter 4

Local Redesigning of Airspace Sectors

4.1 Introduction

The current design of the National Airspace System (NAS) was developed based on flight
routes that were formed historically. Over the years, the demand and the geometry of the
routes have changed dramatically, yet the NAS has undergone little change. As a conse-
quence, the current sectorization is no longer able to accommodate the rapidly increasing
demand.

In this chapter we propose a Local Redesigning Method (LRM), a heuristic algorithm
that rebalances a given sectorization by adjusting the boundaries of the sectors. We evaluate
LRM experimentally on synthetically generated scenarios as well as on the real historical
traffic data. We demonstrate that the sectorizations produced by our method are superior
in comparison with the current sectorizations of the US airspace.

The problem of designing a flexible and dynamic airspace architecture that is able to
adapt to changing traffic flows is addressed by the Dynamic Airspace Configuration (DAC)
project as a part of the Next Generation Air Transportation System (NextGen) [16]. The
NAS is partitioned into 22 Air Route Traffic Control Centers, each subdivided into sec-
tors, which are overseen by air traffic controllers. The maximum workload that air traffic
controllers can safely handle results in a limitation on the capacities of the sectors. If the
changing traffic causes the demand on a sector to exceed its capacity, the sector will not be
able to accommodate all the incoming flights. This will lead to some flights being rerouted
around the congested area, and others to be delayed.

There are two basic approaches to handling changes in traffic. The first one is to design
a new sectorization from scratch. Such methods concentrate on new traffic patterns, while
discarding the old sectorization. Examples of this approach include: a cell-based Mixed

This chapter is based on joint-work with Arash Yousefi from Metron Aviation and Joseph S. B. Mitchell
from Stony Brook University.

23

Integer Programming (MIP) model [33, 32]; a sectorization method using binary space par-
titions [2, 27]; a Voronoi diagram method [31]; a graph partitioning method [21], etc. While
a clean-sheet sectorization design provides a wide range for finding an optimal solution, it
is undesirable due to a human factor; it is important for controllers to be familiar with the
geometry of sectors and traffic patterns.

The second approach is to perform a local rebalancing of the existing sectorization without
introducing dramatic changes to the sectors. Klein et al. [15] present an algorithm that shifts
pre-specified thin subsectors between adjacent sectors to rebalance them. A local method
for adjusting the boundaries of sectors that provides “outs” (or extra space) around weather
constraints is proposed by Drew [8]. This method uses a force-based approach to adjust
the boundaries in order to improve the capacities of the sectors that are most impacted by
weather. The Voronoi method presented by Xue [31] includes a local rebalancing option as
well as a clean-sheet design option; it adjusts the design of sectors by iteratively moving
the Voronoi centers. The existing sectorization (the one created by applying the Voronoi
method in clean-sheet mode) is used as the seed for a genetic algorithm that adapts the
sectorization to the new demand. Local methods may change the topology of the design,
including changes in the number of sectors. For instance, a pair of adjacent sectors may be
combined into one, or a single sector may be split into two. Sector combination methods,
based on computing predicted capacity gaps and then greedily combining pairs of sectors
having the largest such gaps, have been proposed and examined in experiments of [5].

In this chapter we present a new approach to the problem of redesigning sectorizations
by local adjustments of the sector boundaries. We present a LRM, a highly customizable
multi-criteria optimization heuristic. We have developed GeoSect-Local (a complement
to the GeoSect sectorization tool introduced in [2, 27]) that performs LRM adjustments
to an input sectorization. The input sectorization can be any partition of the airspace region
of interest, including the current NAS sectorization, manually entered sectors, or the output
of any other sectorization method, such as the top-down GeoSect clean-sheet method.

4.2 Overview of the Local Redesigning Method

As we have discussed in the previous chapter, solving the Airspace Sectorization prob-
lem optimally is difficult. This has led us to develop a heuristic Local Redesigning Method
(LRM) that improves a given sectorization by locally adjusting sector boundaries. To es-
timate the “quality” of sectors of a sectorization before and after an adjustment, the LRM
introduces an objective function cost(σ, T ,DF , CP ,W) that depends on the constraints of
the Airspace Sectorization. Here σ is a sector, T is a set of aircraft trajectories, DF is
a set of dominant flows, CP is a set of critical points, and W is a set of weather obstacles.
We will denote the objective function as cost(σ) for short. The value of cost(σ) is zero if the
constraints are satisfied, and it grows if the constraints are violated. We have extracted a
set of elemental parameters, each of which can numerically measure some simple property of
a sector in a given sectorization. These parameters include the maximum and time-average
aircraft count, the estimated delay, the angles of sectors, the distances between critical points
and sector boundaries, the intersection angles of traffic flows with the boundaries, etc. For

24

each of the constraints and a corresponding parameter we define a simple cost function that
determines a penalty for the violation of the given constraint, the greater the violation, the
higher the penalty. We take a linear combination of these cost functions to be the objective
function in the LRM:

cost(σ) =
∑
c∈C

wccostc(σ) , (4.1)

where c is a constraint, costc(σ) is a cost function associated with c, and wc is a user-
specified constant. Now the LRM can optimize an input sectorization with respect to this
objective function. We will describe the parameters and the cost functions in more detail in
Section 4.2.2.

At a high level, LRM redesigns a given sectorization with a sequence of local adjust-
ments, each making small changes to the geometry of the sectors, e.g., by moving (or insert-
ing/deleting) vertices or edges (see Section 4.2.1). Notice that our method can be applied
to 3D sectorizations as well, but here we focus on sectorizations that are constant with the
altitude, so the problem can be viewed as planar partitioning.

Consider a sectorization, S, a planar partition of an airspace into sectors {σ1, σ2, . . . , σk},
where each σi is a simple polygon. The boundary δS of S is the boundary of the region of
interest. LRM adjusts the interior of S leaving δS unchanged. Let L(S) be a set of feasible
local adjustments to sectorization S (the way these are selected is described in Section 4.2.1).

The objective function associates a penalty, cost(σ), to each sector σ. At each iteration of
the main loop, we examine the sector, σmax, with the highest cost. Consider L(σmax) ⊂ L(S):
all the local adjustments that affect sector σmax. LRM selects the best local adjustment
`max ∈ L(σmax) that maximizes its “benefit”, i.e., it minimizes the maximum cost among the
sectors affected by `(σmax), including σmax itself. If no `max can be selected from L(σmax)
that would decrease the maximum cost of sectors affected by L(σmax), sector σmax is in the
local minimum. In this case LRM moves to the sector with the next highest cost. Finally,
when no further reduction in the costs of the sectors is possible, the algorithm terminates,
having found a locally optimal solution within the parameters of the search space (refer to
Algorithm 4.1).

We have developed GeoSect-Local, a tool implementing the LRM. As an input it
takes a “seed” sectorization, scheduled traffic information, dominant flows and critical points,
and a weather prediction. As an output, it produces a locally optimal sectorization with
respect to the objective function. We use GeoSect (presented in [26]) to extract dominant
flows and critical points from the traffic schedule.

4.2.1 Local Adjustments

We distinguish between different types of local adjustments of an airspace partition. We
say that a set of local adjustments is cardinality preserving if the number of sectors remains
the same after the adjustments. Cardinality preserving adjustments can be of two subtypes:
topology preserving (the graph defining the partition remains constant, while the positions

25

Algorithm 4.1 Local Redesigning Method optimizes sectorization S with respect to the multi-criteria
objective function. Here L(S) is a set of feasible local adjustments to S at every step of the algorithm, and
σ` is a sector σ after applying the local adjustment `.

Input: Sectorization S and traffic T ; and optionally set of dominant flows DF , set of critical
points CP , and weather obstacles W

Output: Sectorization S∗ which is in a local minimum with respect to the objective function
cost(σ, T ,DF , CP ,W)

1: loop
2: define cost(σ) = cost(σ, T ,DF , CP ,W)
3: S← {σ1, σ2 . . . , σn}, sorted by cost(σ)
4: loop
5: if S is empty then
6: return S
7: end if
8: σmax ← S.pop()
9: c0 ← cost(σmax)
10: c` ← min`∈L(S) maxσ∈S(cost(σ`))
11: if cl < c0 then
12: apply ` to S
13: go to 1
14: end if
15: end loop
16: end loop

of the vertices may be changed), and topology modifying (allowing structural changes to the
graph of sector boundaries). Figure 4.1a is an example of a topology preserving adjustment,
and Figure 4.1b is an example of a topology modifying adjustment. Local adjustments that
are not cardinality preserving are necessarily topology modifying (since the number of faces
of the planar graph changes, implying a change in topology); such adjustments are of two
subtypes: merge (two or more sectors are merged into one) and split (one or more sectors
are split into a greater number of sectors). A simple example of a split operation is the
partitioning of a sector into two or into three smaller sectors; after the split, the newly
added vertices (each of degree 3) are readjusted, as in Figure 4.1c. (Such partitions form
the basis of GeoSect’s top-down recursive partitioning algorithm.) A simple example of a
merge operation is the deletion of a shared boundary uv in Figure 4.1d, between two adjacent
sectors; after deletion, vertices u and v (now each of degree 2, since they lie along sector
boundaries) are adjusted so that the corresponding sector boundaries are reoptimized.

We implement two types of local adjustments in GeoSect-Local: “vertex move” and
“edge flip”. These are cardinality preserving local adjustments (refer to Figure 4.1). For
“vertex move”, we identify all possible locations for relocating a vertex v using a grid centered
around v. (Users can define the size and resolution of the search grid within the GUI.) The
optimization evaluates the objective function at each candidate, and selects the candidate
providing the lowest cost. For “edge flip” adjustment of edge e, we investigate edges that
are perpendicular to e and cross it in the middle. (Again, users can define the lengths

26

(a) Cardinality and topology preserving (b) Cardinality preserving, topology modifying

(c) Cardinality increasing, topology modifying

u

v

(d) Cardinality decreasing, topology modifying

Figure 4.1: Examples of local adjustments: (a) and (b) are cardinality preserving;
(c) and (d) are not.

and number of candidate edges.) While there are inefficiencies in this relatively brute-
force approach to local optimization of vertex and edge position, using a search grid in this
manner makes the testing of various objective functions straightforward and is consistent
with the expectation that future airspace configurations will be based on an established grid
of coordinates, the National Referencing System (NRS). We have tested some methods for
reducing the number of discrete points searched for the optimal relocation, taking advantage
of properties of the objective functions. However, these methods have had limited success.
We have realized some computational efficiencies by evaluating components of the objective
function only when necessary. Future work will address algorithm efficiency through selective
search techniques, using bounding techniques to prune the search or using direct (non-grid)
optimization techniques to optimize objective functions that are amenable to exact solutions.

4.2.2 Details of the Objective Function

As mentioned before, now we will describe a set of elemental parameters that measure the
“quality” of a sectorization. For each parameter p we introduce one (or more) constraint c
and associate a penalty function costc(p). The penalty function costc(p) gives a measure of
how far the parameter p is outside of the permissible domain of values defined by c. For
example, for the parameter α (sector angle) one constraint can be to limit it from above
by αmax to ensure that there will be no angles in sectors that are too large. Thus, costc(α)
measures how far α is above αmax.

Table 4.1 specifies all the constraints that are implemented in GeoSect-Local. The
definitions of most of the parameters presented in the table are intuitive, however some of
them require a discussion. For a detailed definition of the constraints refer to Appendix B.

Maximum and time-average aircraft count. Let AC(σ, t) be the number of aircraft
in sector σ at a time moment t. Then we can define the maximum aircraft count and the

27

Parameter Parameter description Constraint Default threshold Limit
ACavg time-avg aircraft count ACavg ≤ T1 T1 L1 =∞
ACavg time-avg aircraft count dev(ACavg) ≤ T2 T2 = 20% L2 =∞
ACmax max aircraft count ACmax ≤ T3 T3 L3 =∞
δ estimated delay δ ≤ T4 T4 = 0 L4 =∞
NL throughput NL ≥ T5 T5 = 2 L5 = 0
Tdwell dwell time Tdwell ≥ T6 T6 = 300 sec L6 = 0 sec
β DF-bndry crossing angle β ≤ βmax T7 = βmax = 45◦ L7 = 90◦

dDF DF-bndry distance dDF ≥ T8 T8 = 0.3◦ (long/lat) L8 = 0◦

dCP CP-bndry distance dCP ≥ T9 T9 = 0.4◦ (long/lat) L9 = 0◦

α sector angle α ≥ αmin T10 = αmin = 80◦ L10 = 0◦

α sector angle α ≤ αmax T11 = αmax = 180◦ L11 = 360◦

cx sector convexity cx ≥ cxmin T12 = cxmin = 90% L12 = 0%
|e| edge length |e| ≥ T13 T13 = 0.4◦ (long/lat) L13 = 0◦

rcurv curvature radius rcurv ≥ T14 T14 = 0.6◦ (long/lat) L14 = 0◦

Table 4.1: Description of constraints, corresponding parameters used in LRM,
and default settings for GeoSect-Local.

time-average aircraft count as

ACmax(σ) = max
t

(
AC(σ, t)

)
, (4.2)

ACavg(σ) =

∫
AC(σ, t)dt∫

dt
. (4.3)

For ACavg, along with the simple constraint bounding the value of ACavg from above, we in-
troduce a more sophisticated constraint (second row in Table 4.1), that bounds the deviation
of the value of ACavg from the average value over all sectors.

Estimated delay. LetK(σ) be the capacity of σ, i.e., the number of aircraft that air traffic
controllers can safely operate in sector σ. The capacity of the sector can be estimated using
one of the following methods. One simple measure of K commonly used is sector’s MAP
value, estimated by (5/3) times the average dwell time (in minutes). A more sophisticated
estimate is that of [30], which defines the maximum allowed aircraft count to be

K =
−b+

√
b2 − 4ac

2a
, (4.4)

where a = 6.8/V , b = a+ 0.025 + 7/T , c = 0.7, T is the average dwell time (in seconds), and
V is the sector volume (in cubic nmi). Now we can define an estimated delay as

δ(σ) =

∫ (
AC(σ, t)−K(σ)

)
dt . (4.5)

28

T L

(a) The penalty function with
L > T .

TL

(b) The penalty function with
T > L.

T

(c) The penalty function with
L =∞.

Figure 4.2: The penalty function.

Sector convexity. We use a simple measure of non-convexity cx(σ): the ratio of the area
of sector σ to the area of its convex hull, i.e.,

cx(σ) =
area(σ)

area
(
ConvexHull(σ)

) . (4.6)

If this ratio is 1, the sector is convex. Smaller values of the ratio correspond to a greater
degree of non-convexity.

Throughput. We define a throughput value NL in a sector σ along a dominant flow
df to be the number of air traffic lanes admissible by σ along the flow df . The sectors
with the throughput 2 or more provide additional alternate lanes that can be used for
rerouting the traffic if needed. We compute NL by using the max-flow/min-cut analysis
(refer to [23, 25, 24]).

Curvature radius. This parameter prevents sectors from having two consecutive short
edges with a sharp angle in between them. We define the curvature radius for two consecutive
edges as the radius of the circle circumscribed about a triangle defined by these two edges.

Note that some of the objectives are defined either with respect to the set of all tracks
(trajectories in the input data) or with respect to a set of dominant flows, or route structures,
given as input. The dominant flows represent the primary flows, or route structures, of traffic
across the airspace of interest. Dominant flows are dynamic, and need to be updated over
time with changing conditions in traffic, especially in cases of weather-impacted airspace.
For related work on dominant flow extraction, see [26] and [27].

The formulas of penalty functions costc(σ) depend on two constants Tc and Lc, where Tc
is a user-defined threshold for parameter p, and Lc is a physical limit for p (refer to Table 4.1).
For example, the upper limit of a sector angle is 360◦ (sector angles cannot physically be
greater than 360◦), the lower limit of an edge length is 0 (edges cannot have negative length),
the upper limit for the average aircraft number in a sector is∞ (technically, there is no limit
on the number of airplanes in a sector). For the constraints on the parameters with bounded

29

limit Lc (such as constraints on sector angles, distances bounded from below, etc.) the
penalty function is the following (refer to Figures 4.2a and 4.2b):

costc(p) =

Tc − Lc
p− Lc

− 1 , if p is between Tc and Lc ,

0 , otherwise.

For the constraints on parameters with Lc =∞ (see Figure 4.2c):

costc(p) =

{
(p− Tc)2 , if p ≥ Tc ,

0 , otherwise.

The choice of the objective function used in evaluating the quality of each of the candidate
local adjustments is critical to the performance of the local optimization. One approach to
multi-criteria optimization is to combine all the criteria into a single objective function,
cost(σ) =

∑
(wccostc(σ)), according to user-specified weights wc. We chose this approach in

GeoSect-Local as the most natural one.
Another approach would be to treat the individual components as a vector, (c1, c2, · · · , ck),

and optimize sets of components while constraining other components, e.g., to obtain Pareto-
optimal solutions.

4.3 Robust Sectorization Design

Up until now we have been discussing sectorization design under the assumption that input
data is known and certain. But a good sectorization should be robust with respect to
uncertainties in demand, such as, those arising from uncertainty in weather forecasts. We
have implemented extra capabilities in GeoSect-Local to address these issues. We refer
to the new implementation as Robust GeoSect-Local (R-GeoSect-Local). It utilizes
a scenario-based model of uncertainty, taking as input a set of scenarios (of track data and
weather data), each with an associated probability. This gives a simple stochastic model
using a discrete set of samples of the probability space. We describe the scenario-based
approach to robustness below, and then go on to describe the experimental results illustrating
the method.

Suppose there are m scenarios {scen1, scen2, . . . , scenm} with probabilities of occurring
{p1, p2, . . . , pm}, and the input track data, dominant flows, critical points and the weather
forecast {Ti,DF i, CP i,Wi} for each sceni. Our goal now is to produce a sectorization that
will perform well in any scenario, proportionally to the corresponding probability. For each
scenario sceni and sector σ of a sectorization S we can calculate a penalty function value
ci = costi(σ). Thus, now for each sector there is a set of m costs, and we need to determine
a rule to select the best local move (as in line 10 of Algorithm 4.1). There are currently two
options, implemented in R-GeoSect-Local, computing an expected cost over all scenarios
(a weighted probabilistic sum of costs) for each sector,

costE(σ) =
m∑
i=1

(picosti(σ)) ,

30

or treating m cost values, sorted in the decreasing order, as a cost-vector and using a lexi-
cographic comparison to minimize the cost,

~cost(σ) =

pi1costi1(σ)
pi2costi2(σ)
· · ·

pimcostim(σ)

 .

These modifications to the GeoSect-Local allow us to introduce the robustness into
sectorization design. The experimental evaluations of R-GeoSect-Local will be presented
in Sections 4.4.4 and 4.4.5.

4.4 Experimental Results

It is important to mention that in the worst case LRM can produce a sectorization that is
arbitrarily bad in comparison with the optimal sectorization. For example, Figure 4.3 shows
two toy situations when LRM can get “stuck” in a local minimum of the objective function.
The example on the left shows a sectorization in a local minimum for a case when the weight
of the penalty function of the convexity constraint is so high that it does not to allow the
appearance of non-convex sectors. The example on the right shows a case of a non-convex
region that does not allow a single local adjustment to be made, and thus, is stuck in a local
minimum.

f0 f1

f1

f1f1f1

f1

f1

f1

f1 f1 f1

f1

24

4

25

1

Figure 4.3: Bad examples when GeoSect-Local can get stuck. Left: if f0 < f1
are current sectors workloads, GeoSect-Local cannot make a local adjustment
while keeping sectors convex. Right: Let numbers in sectors denote the workload
in the corresponding “corner”. Optimum solution would be to connect the center
with the red areas, but impossible to achieve by singular local moves.

Despite the obvious possibility of an arbitrarily bad solution, in practice GeoSect-Local
has proven to produce competitive sectorizations. In comparison with the sectorizations cur-
rently used by NAS, GeoSect-Local sectorizations improve the workload balance among
sectors and reduce sector delays, in some cases by 50% or more.

We begin by testing the performance of sectorizations produced by GeoSect-Local in
Sections 4.4.1-4.4.3. We present three sets of experiments, based on synthetically generated
track data, based on historical data, and based on “real-world” simulated track data with an
increased demand, which is twice the current one. In Sections 4.4.4 and 4.4.5 we continue
with experiments testing the robustness of the R-GeoSect-Local sectorizations.

31

(a) Generated weather
and traffic.

(b) Region of interest
with extracted dominant
flows.

(c) Seed sectorization. (d) GeoSect-Local
optimized sectorization.

Figure 4.4: Example of a synthetic experiment setting.

1

10

100

1000

10000

1 10 100 1000 10000

(a) Running time (sec) depend-
ing on the size of a search grid.

8

9

10

11

12

13

14

15

16

1 10 100

(b) Max value (over sectors)
ACavg depending on the size of
a search grid.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 10 100

(c) StDev of the ACavg values
depending on the size of a search
grid.

Figure 4.5: Dependency of the running time and resulting ACavg on the grid size.

4.4.1 Synthetic Experiment

We have run a number of synthetic experiments to analyze the advantages and the drawbacks
of the LRM. The test suite consisted of a number of randomly generated experiment settings
consisting of a set of airports uniformly distributed in a 12◦ × 12◦ square1. Each airport
had a corresponding normally distributed random weight which represented the size of the
airport and affected the amount of traffic departing and landing at the airport. For each
experiment setting we generated several random weather scenarios and sets of trajectories.
The region that we chose to sectorize was a square of size 9◦ × 9◦ in the center of the
12◦ × 12◦ square. This way there was traffic passing through the region as well as fully
contained inside it. Figure 4.4a shows one of the experiment settings with a weather scenario
and a traffic generated for this scenario. Figures 4.4b and 4.4c show the region of interest
with dominant flows extracted with the use of GeoSect, and a sample seed sectorization.
Finally, Figure 4.4d shows the output GeoSect-Local sectorization.

The first round of experiments tested the dependence of the running time of the LRM
and the variation of ACavg on the size of a search grid. The charts in Figure 4.5 display the
results for 8 different experiment settings. We can see from these charts that the running

1We chose a square of this size, so that it’s size would be comparable to a center.

32

Worst ACavg Min convexity
AVG StDev AVG StDev

No weather 8.1 0.11 0.99 0.03
Weather 1 9.55 0.11 0.99 0.04
Weather 2 9.06 0.07 1 0
Weather 3 8.74 0.06 0.99 0.03

Table 4.2: Dependency between the workload and the convexity of sectorizations
optimized by GeoSect-Local.

5

10

15

20

25

30

35

8 9 10 11 12 13 14

No	 weather	

Weather	 1	

Weather	 2	

Weather	 3	

(a) DF intersection angles (degrees)
vs. ACavg

100

120

140

160

180

200

220

240

260

280

8 9 10 11 12

No weather
Weather 1
Weather 2
Weather 3

(b) DF dwell time (sec) vs. ACavg

0.2

0.25

0.3

0.35

0.4

0.45

8 8.5 9 9.5 10 10.5 11 11.5 12

No weather
Weather 1
Weather 2
Weather 3

0.2

0.25

0.3

0.35

0.4

0.45

8 8.5 9 9.5 10 10.5 11 11.5 12

No weather
Weather 1
Weather 2
Weather 3

(c) CP distance to the boundaries
(degrees of long/lat) vs. ACavg

Figure 4.6: Dependency between the workload and geometric parameters of sec-
torizations optimized by GeoSect-Local.

time of the LRM depends nearly linearly on the size of the search grid, but there is not
much of a gain in balancing the ACavg for grids with more than 30 points. Based on this
we chose the search grid to have 0.4◦ radius and 0.15◦ grid step (in total 36 points) for the
following experiments.

We have run a number of tests to determine the correlation between the workload pa-
rameters and the geometric parameters. Table 4.2 shows a summary of an experiment where
the ACavg was minimized, using various weight settings, under the convexity constraint.
We observe that with no other constraints than the convexity constraint GeoSect-Local
produces sectorizations that are very close to optimal.

We have also run similar experiments by selecting three other constraints to serve as
a counterpart to the ACavg parameter: a constraint on the maximum intersection angle
of dominant flows and sector boundaries, a constraint on the minimum dwell time, and a
constraint on the minimum distance between critical points and the boundaries. Figure 4.6
shows the dependence of the ACavg on these geometric parameters that could have been
expected: As the ACavg decreases, the intersection angles of the flows with the boundaries
increase, the minimum dwell time decreases, and the distance from the critical points to the
boundaries decreases.

33

Figure 4.7: Baseline sectorization before and after rebalancing. Numbers in sec-
tors show the total sector cost.

Constraint
Worst Case Cost

Parameter Value Avg Max StDev
before after before after before after before after

δ ≤ T4 20.4 min 15.3 min 105.4 35.4 278.9 62.7 104.5 23.3
Tdwell ≥ T6 42 sec 125.5 sec 51.9 40.5 167.1 40.5 77.2 0
β ≤ T7 76◦ 65◦ 23.1 9.8 64.2 23.8 24.1 8.2
dDF ≥ T8 0.08◦ 0.25◦ 49.9 12.5 103.1 20.0 30.0 5.2
dCP ≥ T9 0.08◦ 0.4◦ 35.5 7.3 138.7 9.6 51.0 1.7
α ≥ T10 38◦ 59◦ 4.3 2.9 13.6 5.8 3.6 1.6
α ≤ T11 278◦ 191◦ 4.2 1.6 11.7 1.6 3.2 0
cx ≥ T12 0.85 0.95 1.5 0 1.5 0 0.03 0
total cost: 415.3 76.2 689.5 90.4 228.5 11.2

Table 4.3: Comparisons of the parameters and penalties of the baseline sectoriza-
tion before and after rebalancing.

4.4.2 Historical Data Experiment

In the experiment presented in this section we concentrate on minimizing the average delay
in the Kansas City center (ZKC) for 36 hours of historical traffic data. We set the priority of
the optimization to be the estimated delay by assigning a higher weight on the correspond-
ing penalty function and lower weights on other constraints. As an input sectorization to

34

1.994	 2.174	

0.591	 0.128	

12.602	

5.489	 4.916	
5.694	

26.825	

2.712	
3.405	

1.706	

0

5

10

15

20

25

30

Baseline	 MIP/GeoSect	 1	 MIP/GeoSect	 2	 MIP/GeoSect	 3	

1.994	 2.174	

0.591	 0.128	

12.602	

5.489	 4.916	
5.694	

26.825	

2.712	
3.405	

1.706	

0

5

10

15

20

25

30

Baseline	 MIP/GeoSect	 1	 MIP/GeoSect	 2	 MIP/GeoSect	 3	

(a) Average flight delay (minutes).

21.45	 20.433	 12.067	 4.6	

434.55	

150.833	

120.75	
145.183	

230.25	

72.367	
59.2	 56.3	

0

50

100

150

200

250

300

350

400

450

500

Baseline	 MIP/GeoSect	 1	 MIP/GeoSect	 2	 MIP/GeoSect	 3	

(b) Maximum flight delay (min-
utes).

3.953	 4.065	

1.528	
0.491	

33.672	

12.886	
10.801	

13.296	

39.613	

7.933	 8.587	

5.592	

0

5

10

15

20

25

30

35

40

45

Baseline	 MIP/GeoSect	 1	 MIP/GeoSect	 2	 MIP/GeoSect	 3	

(c) Standard deviation of flight de-
lay (minutes).

Figure 4.8: Comparison of flight delays induced by baseline sectorizations and
three sets of MIP/GeoSect sectorizations.

GeoSect-Local we selected the current NAS sectors for the ZKC center. Fig. 4.7 shows
the baseline sectorization before and after rebalancing.

Table 4.3 compares parameters’ penalties for the baseline sectorization (before and after
rebalancing). There are improvements in average and maximum values as well as in the
standard deviation of penalties for all the parameters. GeoSect-Local improved the
average delay over all sectors and reduced the maximum delay by 25%.

4.4.3 Simulation Experiment

In collaboration with NASA Ames and Metron Aviation, we conducted experiments uti-
lizing NASA’s ACES Flight simulator. The flight simulator takes scheduled flights and a
sectorization as an input and generates flight trajectories.

The goal of the experiment was to evaluate the sectorizations produced by LRM in “real-
world” settings of the ZKC center. The experiment had 3 stages corresponding to 3 time
periods in a day: early morning (light traffic), early afternoon (the heaviest traffic), and
evening (normal traffic). There are 3 current baseline sectorizations corresponding to these
time intervals consisting of 6, 24, and 19 sectors respectively. A set of sample trajectories (for
a flight schedule with twice the usual demand) was generated by the simulator for the first
stage with the option of no input sectorization. Based on the projected flight trajectories for
the first time interval, we were to produce a sectorization and feed it in the flight simulator for
the generation of the flight trajectories for the second stage of the experiment. The output
sectorization of the second stage was used in the same way to generate the trajectories for
the third stage.

Our colleagues at Metron Aviation used the Mixed Integer Programming (MIP) method
[33] to generate the seed sectorizations that were processed with GeoSect-Local. Our
objective was to minimize the estimated delay and to compare how well it corresponds
to the delay computed by the NASA’s Airspace Concept Evaluation System (ACES) flight
simulator. We generated three different sets of sectorizations with the same number of sectors
or less than in the baseline sectorizations. The comparison of the delays in the resulting

35

MIP/GeoSect-Local sectorizations is presented in Figure 4.8. MIP/GeoSect-Local
approach was able to almost eliminate the average delay in the first stage, and reduce it by
a factor of 2.5-7.8 in the second and third stages.

4.4.4 Robust Sectorization Design Experiments on Synthetic Data

To test the robustness of R-GeoSect-Local sectorizations we examine it in a simple
synthetically generated experimental setting, as well as historical “real-world” data.

Let us first discuss the synthetic data experiment. We have generated three scenarios,
with the same probability of occurring, based on three weather forecasts in a sample region.
For each of the weather forecasts, a set of trajectories that avoid the weather systems is
generated. The three weather systems in the scenarios affect the geometry of the dominant
flows. The first scenario corresponds to a clear sky day, there is no bad weather to be avoided
by the aircraft. In the second scenario there is a small bad weather system, that forces the
major flows to shift away from their preferred routes. The third scenario has a larger weather
system, that forces the major flows to shift even further. The three generated scenarios are
shown in Figures 4.9a-4.9c. We extract three sets of dominant flows and three sets of critical
points from the generated traffic data, and give them as an input to GeoSect-Local and
R-GeoSect-Local, along with the trajectories themselves.

We optimize the input sectorization shown in Figure 4.9d with GeoSect-Local for
these three scenarios independently, and with R-GeoSect-Local for the three scenarios
robustly, and then compare the resulting sectorizations. Table 4.4 shows the values and the
threshold of the parameters used in the experiment. We refer to the output sectorizations,
optimized individually for the three scenarios as S1, S2, and S3, and to the robustly opti-
mized sectorization as R. Figures 4.10a-4.10c show the output sectorizations S1, S2, and
S3, produced by GeoSect-Local for the three input scenarios. A sectorization, optimized
for one of the scenarios will not necessarily work well in case another scenario occurs. For
example, in Figure 4.10d we show sectorization S3 (which was optimized for the third sce-
nario), and an overlay of all the trajectories and the dominant flows for all the scenarios.
The numbers in the sectors represent the costs for each of the scenarios. Although, the
cost values are low in case of the third scenario, the costs in the first and second scenarios
are significantly higher. In particular, the dominant flow from the first scenario passes very
closely to one of the sectorization’s vertices, which causes the costs of the three adjacent
sectors spike to over 200. Figure 4.11 shows the output robust sectorization R produced by
R-GeoSect-Local.

In Figure 4.12 we present the comparison charts of average and maximum cost values
over all sectors for sectorizations S1, S2, S3, and R. The charts also include the expected
cost values for the sectorizations, assuming that the probability of occurrence of each sce-
nario is 1/3. Notice that for every scenario, a sectorization optimized specifically for that
scenario has the lowest average and maximum cost overall. Although the robustly opti-
mized sectorizations have higher costs than the sectorizations, optimized specifically for the
corresponding scenario, they outperform the sectorizations that were optimized for other
scenarios. The expected average and maximum cost over these three scenarios is higher

36

(a) Scenario 1: no weather. (b) Scenario 2: weather system forces the domi-
nant flows to shift.

(c) Scenario 3: weather system forces the domi-
nant flows to shift even further.

(d) Input sectorization.

Figure 4.9: Synthetically generated input data for the robustness test experiment.

Constraint Threshold Weight
dev(ACavg) ≤ T2 T2 = 10% 1
Tdwell ≥ T6 T6 = 300 sec 2
β ≤ T7 T7 = 0.5◦ (lat/long) 2
dDF ≥ T8 T8 = 0.4◦ (lat/long) 2
dCP ≥ T9 T9 = 0.5◦ (lat/long) 2
α ≥ T10 T10 = 60◦ 5
α ≤ T11 T11 = 180◦ 5
cx ≥ T12 T12 = 1 5
|e| ≥ T13 T13 = 0.4◦ (lat/long) 5
rcurv ≥ T14 T14 = 0.6◦ (lat/long) 5

Table 4.4: Constraints on the parameters used in the robustness experiment on
synthetic data.

37

(a) Sectorization S1, optimized by
GeoSect-Local for scenario 1.

(b) Sectorization S2, optimized by
GeoSect-Local for scenario 2.

(c) Sectorization S3, optimized by
GeoSect-Local for scenario 3.

(d) Sectorization, optimized for the third sce-
nario, with an overlay of the traffic patterns for
all the three scenarios.

Figure 4.10: Robust experiment results in the synthetic data setting. The num-
bers in the sectors denote their costs.

Figure 4.11: Sectorization R, optimized by R-GeoSect-Local for the all three
scenarios. The numbers in the sectors denote their costs.

38

2.
55

7.
26

1
1
.1

8

7.
00

7.
1
5

6.
7
5

6.
4
6

6
.7

9

43
8
.7

8

37
.9

9

4.
30

1
6
0
.3

6

1
0
0
.2

4

0.
62

28
.1

7

43
.0

1

0

2

4

6

8

10

12

14

Scenario 1 Scenario 2 Scenario 3 Expectation

S1

S2

S3

R

(a) Comparison of avg cost over all the sectors.

1
6
.1

6

1
5
.0

2

1
6
.2

7

1
5
.8

2 1
25

6
.5

9

55
.9

5

8.
9
5

44
0
.5

0

24
2.

9
7

1
.4

6

71
.1

9

1
05

.2
1

7
.8

9

1
7
.1

9 34
.2

5

1
9.

7
8

0

5

10

15

20

25

Scenario 1 Scenario 2 Scenario 3 Expectation

S1

S2

S3

R

(b) Comparison of max cost over all the sectors.

Figure 4.12: Cost comparison charts for the robust experiment in the synthetic
data setting. S1-S3—sectorizations optimized by GeoSect-Local for the three
scenarios separately, R—sectorization optimized by R-GeoSect-Local robustly
for the three scenarios. Last columns show the expected cost.

than the cost of the robustly optimized sectorization. Therefore, we conclude that it is more
beneficial to choose the robust sectorization R over any of the sectorizations S1, S2, or S3
in the presented experimental setting.

4.4.5 Robust Sectorization Design Experiment on Historical Data

We conducted a set of experiments based on historical data to test the performance of the
R-GeoSect-Local sectorizations in “real-world” scenarios. These experiments were run
in collaboration with our colleagues at Metron Aviation. They generated five datasets of
trajectories based on five weather forecasts for August 8, 2011 for ZOB (Cleveland) center.
These five sets of trajectories, along with the sets of extracted dominant flows and critical
points, constitute the five scenarios for the robust sectorization design experiment. Fig-
ure 4.13 shows these scenarios: trajectories indicated in light grey, dominant flows indicated
in green, and critical points indicated in red.

There were two suites of the experiments: first, using the robust outputs from R-MIP
(robust version of MIP sector design) as input seed sectorizations, and second, using the
baseline sectorization as an input seed. Our goal is to demonstrate the effectiveness of the
R-MIP to R-GeoSect-Local pipeline for producing robust designs. First, we show the
advantages of R-GeoSect-Local robust optimizations (with several scenarios as an input)
over individual optimizations (for each of the input scenarios separately). And second, we
compare the results of R-GeoSect-Local with R-MIP sectorizations as seeds with the
baseline sectorization as a seed.

There were three rounds in the experiments. Table 4.5 indicates the choices of param-
eters in the three runs of R-GeoSect-Local. The first round’s goal is to concentrate on
balancing the workload while maintaining favorable sector geometry; the flow conformance
parameters are ignored. The second round seeks to optimize the sectorization to conform to
the flow by introducing the corresponding flow conformance parameters. The third round

39

Figure 4.13: Five scenarios corresponding to five different weather forecasts.

Constraint 1st Round 2nd and 3rd Rounds
Threshold Weight Threshold Weight

dev(ACavg) ≤ T2 10% 50 15% 100
ACmax ≤ T3 18 10 22 20
Tdwell ≥ T6 300 sec 0.1 300 sec 3
β ≤ T7 30◦ 0.1 30◦ 2
dDF ≥ T8 0.4◦ (lat/long) 0.1 0.4◦ (lat/long) 3
dCP ≥ T9 0.5◦ (lat/long) 0.1 0.5◦ (lat/long) 1
α ≥ T10 60◦ 10 50◦ 50
α ≤ T11 180◦ 10 190◦ 50
cx ≥ T12 0.8 10 0.8 50
|e| ≥ T13 0.4◦ (lat/long) 10 0.3◦ (lat/long) 50
rcurv ≥ T14 0.6◦ (lat/long) 10 0.6◦ (lat/long) 10

Table 4.5: Constraints used for the three rounds of the experiments.

40

further optimizes the solution by allowing the sector’s edges to bend and by searching over
a finer grid than in the first two rounds.

Parameter tuning was done using experience, by hand; our hope is to automate or semi-
automate the process by implementing a user interface that allows one to set priorities among
cost components of the objective function, and then to perform lexicographic optimization
accordingly. We began, in the first round, with GeoSect-Local with the emphasis on
the geometric parameters and the balancing of ACavg. The weights on the flow-conformance
constraints were set to very low values (see Table 4.5). In the second round of the experiment,
weights on the flow-conformance constraints were increased, and the geometric constraints
were relaxed. In the third round, extra vertices were introduced along the boundaries of
the sectors, thus, allowing the program to further improve the flow-conformance. This
three-round approach allows us, first, to concentrate on the high priority constraints, such
as balancing the average aircraft count, or minimizing the estimated delay, and when the
balance is achieved, to address the flow-conformance requirements.

Robust Design with MIP/R-MIP Sectorization as a Seed

Figure 4.14 and Figure 4.15 show MIP sectorizations produced for the five scenarios under
consideration, and R-MIP robust design. As MIP approach is based on merging cells of a
hexagonal grid, the images on the left hand side have wiggly boundaries as an artifact. We use
sectorizations, with the boundaries smoothened by the Douglas-Peucker chain smoothening
algorithm, as an input to GeoSect-Local (images on the right).

Figure 4.16 shows five output sectorizations, optimized by GeoSect-Local on one of
the five scenarios, and the robust design generated by R-GeoSect-Local is shown in
Figure 4.16. We denote the sectorizations, individually optimized for one of the scenarios,
as S1, S2, . . . , S5, and the sectorization, robustly optimized for all of the scenarios, as R.

In Figure 4.17 we compare the performance of the robust sectorization and the sector-
izations, individually optimized for each of the possible scenarios. The charts compare the
maximum, over all sectors, cost, and the maximum, over all sectors, ACavg for each of the
produced sectorizations. We see that, while in each case, the design that is specifically op-
timized for a particular scenario generally has a lower cost than the robust design R, the
cost of the robust design is a close second, and is considerably better than any of the designs
computed using one of the other four scenarios. Moreover, in expectation, the robust design
R is better than any of the designs S1, S2, . . . , S5. This proves that a carefully computed
robust design can perform well over a spectrum of possible inputs.

41

Figure 4.14: MIP sectorizations (left). and corresponding MIP sectorizations with
straightened sector boundaries (right).

42

Figure 4.15: R-MIP robust design (left), and R- MIP robust design with straight-
ened sector boundaries (right).

Figure 4.16: Optimizations of each of the MIP sectorizations for corresponding
scenarios, and the robust design produced by R-GeoSect-Local on R-MIP
input.

43

1

10

100

1000

10000

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5 Exp

M
ax

 c
o
st

S1

S2

S3

S4

S5

R

(a) Comparison of the average, over all sectors, costs.

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5 Exp

M
ax

 A
C
a
vg
 S1

S2

S3

S4

S5

R

(b) Comparison of the maximum, over all sectors, ACavg.

20

21

22

23

24

25

26

27

28

29

30

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5 Exp

M
ax

 A
C
m
a
x
 S1

S2

S3

S4

S5

R

(c) Comparison of the maximum, over all sectors, ACmax.

Figure 4.17: Histogram plot of the average costs, maximum ACavg, and maximum
ACmax. Comparing the robust sectorization to the single scenario optimized
sectorizations.

44

Figure 4.18: Baseline (historical) sectorization.

Robust Design with the Baseline Sectorization as a Seed

The last part of the historical data robust design experiment constitutes of testing the
baseline sectorization as a seed to the GeoSect-Local and R-GeoSect-Local. Our goal
is to show the benefits of the MIP/R-MIP sectorizations as the GeoSect input sectorizations.

Figure 4.18 shows the baseline (historical) sectorization for the ZOB center. Figure 4.19
shows five sectorizations produced by the GeoSect-Local with input data of one of the
five scenarios. The robust design generated by R-GeoSect-Local is shown in Figure 4.19.
Figure 4.20 shows the comparison charts of total costs, and ACavg of the robust sectoriza-
tion R, produced by R-GeoSect-Local, and five sectorizations S1, S2, . . . , S5, produced
by GeoSect-Local. As in the previous section, the advantage is clear of the robust sec-
torization over the sectorizations that were individually optimized for each of the scenarios
separately. In each case, the robust sectorization does comparably well to the individu-
ally optimized sectorization on a given scenario, and does significantly better than these
sectorizations with respect to other scenarios.

45

Figure 4.19: Optimizations of each of the five ensemble member demands
with baseline sectorization as a “seed”, and the robust design given by
R-GeoSect-Local with the baseline sectorization as a “seed”.

46

1

10

100

1000

10000

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5 Exp

M
ax

 c
o
st

S1

S2

S3

S4

S5

R

(a) Comparison of maximum over all sectors costs.

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5 Exp

M
ax

 A
C
a
vg
 S1

S2

S3

S4

S5

R

(b) Comparison of maximum over all sectors ACavg.

20

21

22

23

24

25

26

27

28

29

30

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5 Exp

M
ax

 A
C
m
a
x
 S1

S2

S3

S4

S5

R

(c) Comparison of maximum over all sectors ACmax.

Figure 4.20: Histogram plot of the average costs, maximum ACavg, and maximum
ACmax. Comparing the robust sectorization to the individually optimized, for
every scenario, sectorizations (input baseline sectorization).

47

20

22

24

26

28

30

32

34

36

38

40

Scen 1 Scen 2 Scen 3 Scen 4 Scen 5

M
ax

 A
C
m
a
x

GeoSect (MIP)

R-GeoSect (R-MIP)

Baseline

GeoSect (Baseline)

R-GeoSect (Baseline)

Figure 4.21: Histogram plot of maximum, over all sectors, ACmax, comparing
the optimizations of GeoSect-Local (individual) and R-GeoSect-Local (ro-
bust) with the MIP sectorizations and the baseline sectorization as “seeds” and
unoptimized baseline sectorization.

MIP/R-MIP Sectorizations vs. Baseline Sectorization as Seeds

The chart in Figure 4.21 shows the maximum, over all sectors, ACmax of the following designs:

• GeoSect-Local (MIP)—individually optimized MIP sectorization for the given en-
semble;

• R-GeoSect-Local (MIP)—robustly optimized R-MIP sectorization with all five en-
sembles as an input;

• Baseline—the baseline sectorization before feeding it to GeoSect;

• GeoSect-Local (baseline)—individually optimized baseline sectorization for the given
ensemble;

• R-GeoSect-Local (baseline)—robustly optimized baseline sectorization with all five
ensembles as an input.

Sectorizations produced by R-GeoSect-Local and GeoSect-Local have lower aircraft
counts. Moreover, in most cases having MIP/R-MIP sectorizations as an input seed allows
GeoSect-Local/R-GeoSect-Local to achieve even better results than optimizing us-
ing the baseline sectorization as seed. In particular, the GeoSect-Local (MIP) ACavg is
never exceeding the GeoSect-Local (Baseline) ACavg, demonstrating the effectiveness of
MIP in providing a good design for further optimization in GeoSect-Local. Similarly, the
R-GeoSect-Local (R-MIP) values are consistently lower than the R-GeoSect-Local
(Baseline) values. Further, the baseline sectorization underperforms all four of the alterna-
tives, in this comparison study.

48

4.5 Conclusion

In this chapter we have presented a heuristic LRM for solving the Airspace Sectoriza-
tion problem. It uses a multi-criteria optimization approach to improve an input sectoriza-
tion.

We have implemented LRM algorithms in GeoSect-Local, a highly configurable tool
that produces high quality sectorizations. The result depends on the choice of initial sector-
izations (more specifically on their topology, and to a lesser degree on their exact geometry).
In all the experiments GeoSect-Local significantly reduced the average aircraft count
and delay, and the sectors had “nice” geometric and flow-conforming properties. One of the
important advantages of the LRM is that it can optimize sectorizations with respect to any
constraint that can be described with a simple parameter that can be evaluated numerically.
Thus, LRM is not limited to the set of constraints described in this chapter.

To be able to take into account an uncertainty of the weather predictions, we have
implemented R-GeoSect-Local, an extension of GeoSect-Local. For a set of scenarios
with given probabilities, it designs a robust sectorization, that performs well for all (or
most) of the input scenarios. We have determined, that the robust sectorizations produced
by R-GeoSect-Local outperform in expectation any sectorization optimized for any one
specific scenario.

Current and future work include extending LRM to produce dynamic sectorizations that
continuously adapt to the changing traffic.

49

Chapter 5

Balanced Partitioning of Polygonal
Domains into Convex Pieces

5.1 Introduction

In this chapter we are interested in the following partitioning problem: given a polygon and
a set of points inside, subdivide it into a minimum number of convex pieces while balancing
the number of points in each piece. We refer to this problem as the MBP problem. The
MBP problem can be viewed as a special case of the Airspace Sectorization problem,
where the points represent motionless aircraft, and sectors are required to be convex. It can
also be applied in other areas, for example, in facility location tasks. The MBP problem is
a generalization of several classic problems: the convex polygon decomposition problem, the
Ham Sandwich Cut problem, and the equitable partition of a set of points in a polygon.
Before addressing our problem, let us give a brief review of these problems.

The convex polygon decomposition problem asks one to partition a polygon into a min-
imum number of convex pieces. For the case of a simple polygon, Chazelle and Dobkin [7]
presented an optimal algorithm with O(n3) running time. In the case when a simple polygon
is allowed to be split only along its diagonals, Keil gave a dynamic programming algorithm
that runs in O(r2n log n) time, where r is the number of reflex vertices of the polygon [14].
The problem of finding a minimum convex partition of polygons with holes, however, is NP -
hard [18]. A simple linear-time algorithm by Hertel and Mehlhorn partitions a triangulated
polygon into at most 4 times the optimum number of convex pieces [13].

The Ham Sandwich Cut problem is another classic problem of Computational Geom-
etry. It asks one to divide two sets of points in a plane into halves with a single straight cut.
Lo and Steiger showed that it can be solved in linear time [20]. Lo, Steiger and Matousek [19]
considered the Ham Sandwich Cut problem in higher dimensions, and gave algorithms
that solve the problem in O(nd−1−a(d)), where d is the number of dimensions, a(d) > 0 and
tends to 0 when d grows.

Carlsson et al. [6] solve the problem of finding an equitable convex partition of a convex
polygon with a set of points inside, i.e., a partition into convex pieces each having one point

50

Figure 5.1: Polygon P and a set of points S in it. P is partitioned into the
minimum number of convex pieces while balancing the number of points in every
piece.

and equal area. Their algorithm takes O ((n+m)n log(n+m)) time, where n is the number
of points in the set and m is the size of the polygon.

Bespamyatnikh et al. [4] generalize the Ham Sandwich Cut problem and the problem
of finding equitable partitions in the following way: given two sets in plane with gn and gm
number of points respectively, find an equitable partition of the plane into g convex regions
with n points from the first set and m points from the second set in every region.

We now give a strict definition of the MBP problem:

Problem 5.1 (Minimum Balanced Partition). Given a polygon P with n vertices, a
set of m points S inside P , and a positive integer K, find the minimum number of convex
pieces such that the number of points in each piece does not exceed K.

Variations of this problem include cases where P is simple vs. polygon with holes, general
vs. rectilinear. Other variations include restrictions on the cuts, such as using only diagonals
of a polygon, allowing Steiner points only along the boundary of a polygon, or using Steiner
points on the boundary as well as inside the polygon.

In this chapter, we begin with the MBP problem for simple polygons, and consider three
types of cuts: straight cuts connecting vertices of P (diagonal cuts), straight cuts connecting
vertices and Steiner points on the boundary of P , and unconstrained cuts. As a corollary to
the algorithm for the MBP problem for a simple polygon with diagonal cuts, we obtain an
improvement in the running time of the algorithm for the Minimum Convex Decomposition
problem, presented in [14]. We give algorithms that solve the problem optimally for the first
two types of cuts, and an approximation algorithm for the case of the MBP problem with
unconstrained cuts. Next, we consider polygons with holes. An NP -hardness of the MBP
for polygons with holes follows from the NP -hardness of the minimum convex decomposition
problem. We present two approximation algorithms for the case with diagonal cuts, and the
case with unconstrained cuts. Table 5.1 summarizes the results presented in this chapter.

51

Simple polygon Polygon w/ holes
Diagonal cuts O(n4 log log n) time NP -hard, 6-appx
Boundary Steiner points O(n4m4 log log(nm)) time NP -hard
Inner Steiner points 2-appx NP -hard, 3-appx

Table 5.1: Results for different variations of the MBP problem presented in this
chapter.

5.2 Simple Polygons

5.2.1 Diagonal Cuts

We begin with the case of the MBP problem for a simple polygon P where only diagonal
cuts are allowed to partition the polygon:

Problem 5.2. For a given simple polygon P with n vertices, a set of m points S inside
P , and a positive integer K, partition P into the minimum number of convex pieces using
diagonals of P such that the number of points in each piece does not exceed K.

By analogy with the minimum convex decomposition algorithm presented by Keil in [14]
we construct a similar dynamic programming algorithm to solve our problem. To use the
dynamic programming method we need to be able to separate subproblems that can be solved
independently. Suppose some diagonal d is used as a cut in a MBP of P . The partition of
the subpolygon to the left of d does not affect the partition of the subpolygon to the right
of d, and can be computed independently. As a consequence, we can construct the dynamic
programming algorithm to solve the problem.

Before we continue with the details of the algorithm, we introduce some notation, which
closely follows the notation of [14]. Name the vertices of P in clockwise order {1, 2, . . . , n}.
Let V G(P) = (VP , EP) be a visibility graph built on the vertices of P : VP = {1, 2, . . . , n}
and EP = {(a, b) : a, b ∈ VP , a sees b}. Consider a diagonal dab (corresponding to an edge
(a, b) in a V G(P)) that connects two vertices a and b. Denote Pab to be a subpolygon that
diagonal dab cuts off from P , with its vertices being {a, a+1, . . . , b−1, b} (refer to Figure 5.2).
For every edge (a, b) ∈ EP there exists a corresponding subpolygon Pab. We say that the
convex piece of some MBP adjacent to dab is the base convex piece. The angles of the base
convex piece adjacent to dab are named left and right angle.

State and Recursion of the Dynamic Programming Algorithm

In the minimum convex decomposition problem it was sufficient to only consider diagonals
coming out of reflex vertices as potential cuts. In Problem 5.2 this is no longer the case
as we are trying to limit the number of points in every convex piece. Thus the dynamic
programming recursion has to consider all diagonals of P as potential cuts. A step of the
recursion calculates MBPs of a subpolygon Pab for some diagonal dab by iterating over all
triangles 4acb, and merging the MBPs of the subpolygons Pac and Pbc with the triangles.

52

1
n

α
β

dab

k

a

b

Figure 5.2: Partially partitioned polygon P : light grey area is already partitioned
subpolygon Pab, dab is the base diagonal, angles α and β are the left and the right
angles of the base convex piece, and k is the number of points in it.

Suppose that in the course of the execution of the algorithm we reach a state where
the subpolygon Pab is already partitioned, and the complementary subpolygon P\Pab is still
to be partitioned (refer to Figure 5.3). It suffices to keep the information about the base
convex piece to be able to decide if it can be further merged. Moreover, what we need to
know about the base convex piece is only its left and right angles, and the number of points
in it. Therefore, we can define the state of the dynamic programming to be {dab, α, β, k},
where dab is the diagonal connecting vertices a and b, α and β are the left and the right
angles of the base convex piece of some MBP of Pab, and k is the number of points in that
base convex piece. Of all the MBPs of Pab with the same triplet {α, β, k} we only need to
keep one of them. Moreover, similarly to Lemma 2.3 of [14] we have:

Lemma 5.1. If the base convex piece of MBP A of Pac has left angle α1, right angle β1, and
k1 points in it, and the base convex piece of MBP B of Pac has left angle α2, right angle β2,
and k2 points in it where α1 ≤ α2, β1 ≤ β2 and k1 ≤ k2, then B merging with 4acb implies
that A also merges with 4acb.

Proof. For any triangle 4acb with angles αacb, βacb, and γacb as in Figure 5.3, and kacb points
in it, B merging with 4acb implies that α2 + αacb ≤ π, β2 + γacb ≤ π, and k2 + kacb ≤ π.
From these inequalities and the inequalities stated in the lemma the following inequalities
follow: α1 + αacb ≤ π, β1 + γacb ≤ π, and k1 + kacb ≤ π. Thus, A can also be merged with
4acb.

We say that state s1 = {dab, α1, β1, k1} dominates state s2 = {dab, α2, β2, k2} if

α1 ≤ α2, β1 ≤ β2, and k1 ≤ k2 . (5.1)

We are also going to use the term dominate when talking about triplets {α1, β1, k1} and
{α2, β2, k2} assuming that they correspond to the states with the same diagonal dab.

53

1
n

c

α acb
β acb

β acγ acb

α ac

a

b

Figure 5.3: Dynamic programming recursion step: iterate over all vertices c seen
from a and b. Decide if triangle 4acb can be merged with MBPs of subpolygons
Pac and Pcb. αac and βac are the left and the right angles of the base convex piece
of a MBP of a subpolygon Pac. αacb, βacb and γacb are the angles of triangle4acb.

Lemma 5.1 states that if state s1 dominates state s2 then for any MBP of Pab that corre-
sponds to s2 there exists a MBP corresponding to s1. Therefore, it is sufficient for the space
of states of the dynamic programming to only contain those states that are not dominated
by others. If for any two states from the space, they do not satisfy the inequalities 5.1 then
we call this space domination-free.

However, in our solution we are going to use a weaker notion of domination. We say that
state s1 = {dab, α1, β1, k1} weakly dominates state s2 = {dab, α2, β2, k2} if

α1 = α2, β1 ≤ β2, and k1 ≤ k2 , (5.2)

or
α1 ≤ α2, β = β2, and k1 ≤ k2 , (5.3)

corresponding triplets {α1, β1, k1} weakly dominates {α2, β2, k2}, and the space of states is
weakly-domination-free. If the space of states is domination-free, it is also weakly-domination-
free.

Dynamic Programming Recursion

The MBP algorithm computes a list L(a, b) of tuples {α, β, k} for every subpolygon Pab.
The elements in this list shall correspond to the states that are not weakly dominated by
any other state. It also calculates the size of MBPs of Pab, which we denote as h(a, b).

54

Now we can write the recursion of the dynamic programming:

∀c : (a, c), (c, b) ∈ V G(P) :

h(a, b) = min
c
h(a, c, b) ,

L(a, b) = merge
c

h(a,c,b)=h(a,b)

(Ll(a, c, b), Lr(a, c, b)) ,
(5.4)

where

• h(a, c, b) is the size of a MBP of subpolygon Pab where one of the diagonals dac or dcb
is used to partition Pab,

• Ll(a, c, b) is a list of tuples {α, β, k} where diagonal dcb is used to partition P ,

• Lr(a, c, b) is a list of tuples {α, β, k} where diagonal dac is used to partition P ,

• Function merge(·) joins all the lists Ll(a, c, b) and Lr(a, c, b) for all c visible from both
vertices a and b. It also removes possible duplicates and triplets {α, β, k} that are
weakly dominated by others in L(a, b). Note, that only those lists Ll(a, c, b) and
Lr(a, c, b) contribute to the L(a, b) that correspond to MBPs of Pab, i.e., for which
h(a, c, b) = min

c
h(a, c, b).

In more detail, for every vertex c ∈ Pab that sees vertices a and b the algorithm considers
a triangle 4acb and checks if it can be merged with MBPs of subpolygons Pac and Pcb.
Denote the angles of 4acb adjacent to dab as αacb and βacb, and the angle across dab as
γacb (see Figure 5.3). We calculate h(a, b) and L(a, b) by merging 4acb with the MBPs of
subpolygons Pac and Pcb. Triangle 4acb can be merged with the base convex piece of a
MBP of a subpolygon if the resulting piece is still a convex polygon, and if the total number
of points in it does not exceed K. Now, to calculate h(a, b) and L(a, b) by the Formulas 5.4
we compute h(a, c, b), Ll(a, c, b) and Lr(a, c, b) in the following way:

1. If triangle 4acb has more than K points then

h(a, c, b) =∞ ,

Ll(a, c, b) = ∅ ,
Lr(a, c, b) = ∅ .

2. (a) If 4acb has less than K points, but it cannot be merged with any MBP of Pac
then

h(a, c, b) = h(a, c) + h(c, b) + 1 ,

Ll(a, c, b) = {{αacb, βacb, kacb}} .

Recall that h(a, c) and h(c, b) are the sizes of MBPs of subpolygons Pac and Pcb,
αacb and βacb are the angles of triangle4acb adjacent to dab, and kacb is the number
of points in it.

55

(b) If 4acb has less than K points, but it cannot be merged with any MBP of Pcb
then

h(a, c, b) = h(a, c) + h(c, b) + 1 ,

Lr(a, c, b) = {{αacb, βacb, kacb}} ,

where αacb and βacb are the angles of triangle 4acb adjacent to dab.

3. (a) If 4acb has less than K points and can be merged with some MBPs of Pac then

h(a, c, b) = h(a, c) + h(c, b) ,

Ll(a, c, b) = {{αacb + αac, βacb, kac + kacb} : {αac, βac, kac} ∈ L(a, c) ,

αac + αacb ≤ π ,

βac + γacb ≤ π ,

kac + kacb ≤ K } ,

(5.5)

where αac, βac, and kac are the left angle, the right angle, and the number of points
in a base convex piece for some MBP of subpolygon Pac (refer to Figure 5.3). As
above, αacb, βacb, and γacb are the angles of triangle 4acb, and kacb is the number
of points in it.

(b) If 4acb has less than K points and can be merged with some MBPs of Pcb then

h(a, c, b) = h(a, c) + h(c, b) ,

Lr(a, c, b) = {{αacb, βacb + βac, kac + kacb} : {αac, βac, kac} ∈ L(c, b) ,

βcb + βacb ≤ π ,

αcb + γacb ≤ π ,

kcb + kacb ≤ K } ,

(5.6)

where αcb, βcb, and kcb are the left angle, the right angle, and the number of points
in a base convex piece for some MBP of subpolygon Pcb.

Data Structure for L(a, b) and the Dynamic Programming Procedure

Computing L(a, b) and h(a, b) directly by Formulas 5.4 is not optimal as it involves many
redundant calculations. To make the algorithm more efficient, we do not compute lists
Ll(a, c, b) and Lr(a, c, b) explicitly. Instead, we introduce a procedure, mbpStep(·), that
performs all the calculations needed to compute MBPs for a subpolygon Pab. This proce-
dure computes the running value of h(a, b) and creates new elements in L(a, b) that only
correspond to the balanced partitions of Pab of the corresponding size.

In addition, storing the elements of L(a, b) in a naive way can lead to a bad running time
of the algorithm. To avoid this, we use the following data-structure to represent L(a, b):
L(a, b) consists of two maps Mα(a, b) and Mβ(a, b) that store the same set of elements
{αi, βi, ki} maintaining the weak-domination-free property. Mα(a, b) maps the left angles
{α1, α2, . . . } of the base convex pieces (for the diagonal dab) to lists of corresponding pairs

56

Mα(a, b) Mβ(a, b)

α1 ; (β1
1 , k

1
1)A(β2

1 , k
2
1)A . . .A(β`11 , k

`1
1) β1 ; (α1

1, k
1
1)A(α2

1, k
2
1)A . . .A(αr11 , k

r1
1)

↓ ↓

α2 ; (β1
2 , k

1
2)A(β2

2 , k
2
2)A . . .A(β`22 , k

`2
2) β2 ; (α1

2, k
1
2)A(α2

2, k
2
2)A . . .A(αr22 , k

r2
2)

↓ ↓

α3 ; (β1
3 , k

1
3)A(β2

3 , k
2
3)A . . .A(β`33 , k

`3
3) β3 ; (α1

3, k
1
3)A(α2

3, k
2
3)A . . .A(αr33 , k

r3
3)

↓ ↓
.

Figure 5.4: Data structure for storing L(a, b): two mapsMα(a, b) andMβ(a, b)
that store the same set of triplets {αi, βi, ki} maintaining the weak-domination-
free property. Mα(a, b) maps the left angles of the base convex pieces of MBPs
of Pab to lists of corresponding pairs (βji , k

j
i) sorted in an ascending order by βji ,

Mβ(a, b) maps the right angles of the base convex pieces of MBPs of Pab to lists
of corresponding pairs (αji , k

j
i) sorted in an ascending order by αji .

{(β1
i , k

1
i), (β

2
i , k

2
i), . . . }, sorted by βji in an increasing order (refer to Figure 5.4). This implies

that these lists are also sorted by kji in a decreasing order. Indeed, for any two pairs (βj1i , k
j1
i)

and (βj2i , k
j2
i), both corresponding to the same angle αi, by Lemma 5.1 the inequality βj1i ≤

βj1i implies that kj1i ≥ kj1i . The similar mapMβ(a, b) maps the right angles {β1, β2, . . . } of
the base convex pieces to lists of corresponding pairs {(α1

i , k
1
i), (α

2
i , k

2
i), . . . }, sorted by αji in

an increasing order and by kji in a decreasing order.

The procedure mbpStep(·) iterates over all the vertices c of Pab visible from a and
b, and selects the items from the lists L(a, c) and L(c, b) that correspond to the MBPs
of subpolygons Pac and Pcb that can be merged with the triangle 4acb. Then it inserts
these items into L(a, b) maintaining the weak-domination-free property. To avoid creating
new elements in L(a, b) for all the elements in L(a, c) that satisfy the inequalities 5.5, and
then deleting the ones that are weakly dominated, it suffices to only create one element
{αi +αacb, βacb, k

j
i + kacb} for each angle αi. This element corresponds to a pair (βji , k

j
i) from

the listMα[αi] with the minimum possible value kji while βji still does not exceed π − γacb.
The same is true for the items of L(c, b) that satisfy the inequalities 5.6. It is sufficient to
create one element {αacb, βi +βacb, k

j
i +kacb} in L(a, b) for each angle βi, so that this element

minimizes the number of points kji among all elements with αji ≤ π − γacb.
The pseudocode for the mbpStep(·) procedure is shown in the Algorithm 5.1. Here

pred(·) is the predecessor query. For example, pred(Mα(a, c)[αi], π − γacb) finds a pair
(βji , k

j
i) in the listMα(a, c)[αi] with the maximum value of βji that does not exceed π− γacb.

This de facto minimizes the corresponding number of points kji . Then, if this value k
j
i does

not exceed K−kacb, procedure insertAndCleanUp(·) adds the pair (βacb, k
j
i +kacb) in the

list Mα(a, c)[αi + αacb] and the pair (αi + αacb, k
j
i + kacb) into the list Mβ(a, c)[βacb] in an

ascending sorted order by the angles, ensuring that the lists are also sorted by the second

57

Algorithm 5.1 Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in Pab visible from
a and b) as an input, and calculates L(a, b) and h(a, b).

Input: Mα(a, c), Mβ(a, c), h(a, c), Mα(c, b), Mβ(c, b), and h(c, b) for all c ∈ VPab
such that

(a, c), (c, b) ∈ V G(P)
Output: Mα(a, b),Mβ(a, b), h(a, b)
1: procedure mbpStep({Mα(a, c),Mβ(a, c), h(a, c)}, {Mα(c, b),Mβ(c, b), h(c, b)})
2: h(a, b)← n
3: for c ∈ VPab

such that (a, c), (c, b) ∈ V G(P) do
4: αacb ← ∠bac, βacb ← ∠abc, γacb ← ∠acb
5: kacb ← number of points in 4acb
6: if kacb > K then
7: go to 3 and continue for next c ∈ VPab

8: end if
9: for αi ∈Mα(a, c) such that αi < π − αacb do
10: (βi, ki)← pred(Mα(a, c)[αi], π − γacb)
11: if (βi, ki) 6= ∅ and ki ≤ K − kacb and h(a, b) ≥ h(a, c) + h(c, b) then
12: if h(a, b) > h(a, c) + h(c, b) then
13: empty(Mα(a, b)), empty(Mβ(a, b))
14: h(a, b)← h(a, c) + h(c, b)
15: end if
16: insertAndCleanUp(Mα(a, b)[αi + αacb], (βacb, ki + kacb))
17: insertAndCleanUp(Mβ(a, b)[βacb], (αi + αacb, ki + kacb))
18: end if
19: end for
20: for βi ∈Mβ(c, b) such that βi < π − βacb do
21: (αi, ki)← pred(Mβ(c, b)[βi], π − γacb)
22: if (αi, ki) 6= ∅ and ki ≤ K − kacb and h(a, b) ≥ h(a, c) + h(c, b) then
23: if h(a, b) > h(a, c) + h(c, b) then
24: empty(Mα(a, b)), empty(Mβ(a, b))
25: h(a, b)← h(a, c) + h(c, b)
26: end if
27: insertAndCleanUp(Mβ(a, b)[βi + βacb], (αacb, ki + kacb))
28: insertAndCleanUp(Mα(a, b)[αacb], (βi + βacb, ki + kacb))
29: end if
30: end for
31: if h(a, b) ≥ h(a, c) + h(c, b) + 1 then
32: if h(a, b) > h(a, c) + h(c, b) + 1 then
33: empty(Mα(a, b)), empty(Mβ(a, b))
34: h(a, b)← h(a, c) + h(c, b) + 1
35: end if
36: insertAndCleanUp(Mα(a, b)[αacb], (βacb, kacb))
37: insertAndCleanUp(Mβ(a, b)[βacb], (αacb, kacb))
38: end if
39: end for
40: return {Mα(a, b),Mβ(a, b), h(a, b)}
41: end procedure

58

value k in a decreasing order. To accomplish this it compares the second value, kji + kacb, of
the currently inserted pair to the second values of its previous and next pairs in the list. If
the second value of the previous item is not greater than kji + kacb, then this previous pair
dominates the currently inserted pair. Thus, the currently inserted pair is removed from
the list. Otherwise, if the second value of the current pair, kji + kacb, is not greater than
the second value of the next pair in the list, then the current pair dominates the next pair.
Thus, the next pair is removed from the list. Repeating this step until the next pair is not
dominated by the currently inserted pair ensures that the list is sorted by k in a decreasing
order.

Minimum Balanced Partition Algorithm Outline and Running-Time

The preprocessing steps of the algorithm include:

1. Build a visibility graph V G(P) = (VP , EP). This can be done in O(n log n + |EP |),
where |EP | is the number of edges in the visibility graph, or the number of subpolygons
of P that we need to consider in the dynamic programming. In the worst case there
are O(n2) diagonals in P , thus the running time of this step is O(n2).

2. Sort the subpolygons of P in an ascending order by their size in O(n2 log n) time.

3. For every subpolygon Pab determine a set of vertices c ∈ Pab that form a triangle with
vertices a and b, i.e., {c ∈ VP : a < c < b, (a, c) ∈ EP , (c, b) ∈ EP}. This is done in
O(n3) time.

Lemma 5.2. For each diagonal dab, L(a, b) requires O(n2) space and can be computed by
procedure mbpStep(·) defined in Algorithm 5.1 in O(n2 log n) time.

Proof. There can be O(n) angles αi in the mapMα(a, b), and for each of these angles, there
can be O(n) pairs (βji , k

j
i). Therefore, the space required for Mα(a, b) is O(n2), similarly,

the space required forMβ(a, b) is O(n2).

The outer for loop of the mbpStep(·) procedure can run up to O(n) times. Indeed, there
can be O(n) vertices c in the sub-polygon Pab that are seen from the vertices a and b.

The inner for loops can also run up to O(n) times. Practically, there can be O(n) base
convex pieces with the same left angle αi (or with the same right angle βi), and therefore
the lists inMα andMβ can have a linear number of items in them.

The pred(·) query can find an element in an ordered list of size O(n) by using the binary
search in O(log n) time.

The insertAndCleanUp(·) procedure takes O(log n) time to insert an element in a
sorted list of size O(n). After that it can delete some items from the list that are dom-
inated by others. There can be many elements deleted from the list per one call of the
insertAndCleanUp(·) procedure, but in total, there can be only O(n) deletions from
every list, as every element can be added and deleted only once.

Thus, in total the mbpStep(·) procedure takes O(n2 log n) time to compute L(a, b).

59

After the preprocessing, the recursive part of the algorithm takes the sorted list of the
subpolygons of P as an input and computes L(a, b) and h(a, b) for every Pab:

1. For every Pab calculate h(a, b) and L(a, b) with the mbpStep(·) procedure. By Lemma 5.2,
the computation of each L(a, b) and h(a, b) takes O(n2 log n) time. There are O(n2)
diagonals in P , and therefore O(n2) subpolygons Pab. Thus, the total running time of
the recursive part of the algorithm is O(n4 log n).

The size of a MBP of P equals to h(1, n) and will be computed at the last step of
the dynamic programming algorithm. A MBP of P can be reconstructed by following the
computation of the algorithm backwards: choose any pair (βi, ki) from any listMα(1, n)[αi].
Suppose the angle βi corresponds to a diagonal d`n connecting some vertex ` of P to vertex
n. Add this diagonal d`n to the cuts in the MBP of P , continue to subpolygons P1` and P`n.
In the subpolygon P1` choose any item from the listMα(1, n)[αi−∠`1n], in the subpolygon
P`n choose any element from any list ofMα(`, n). Continue until the MBP is reconstructed.

The following theorem summarizes the results:

Theorem 5.3. A MBP of P can be computed in O(n4 log n) running time with O(n4) space.

Reducing the Running Time to O(n4 log log n) with O(n5) Space

The running time of the algorithm can be improved if we use special data structures. In
particular, the pred(·) and insertAndCleanUp(·) procedures can be sped up. Both of
these procedures take on average O(log n) time1 to run, if the elements ofMα(a, b)[αi] (and
Mβ(a, b)[βi]) are stored as a sorted list. If, instead of sorted lists we use van Emde Boas
trees, we can decrease the average2 running time of both of the procedures to O(log log n).
The part of the insertAndCleanUp(·) that deletes the elements dominated by others can
still take linear time, on the number of deleted elements, but in total there will not be too
many of these deletions and they will not affect the total running time. Van Emde Boas tree
is a data structure that stores integers from a universe {1, 2, . . . , U} and allows to perform
some queries, such as insert/delete or predecessor/successor, in O(log logU) time.

For our purposes we need to store the values of angles. Therefore, to use the van Emde
Boas trees we need to put an integer key in correspondence to every pair (angle, number of
points). For any two pairs (α1, k1), and (α2, k2) with the keys key1, and key2, the following
property should hold:

key1 < key2 ⇔ α1 < α2 .

Now, we need to be careful about choosing the keys for the elements. Firstly, the look up
time of the key by the corresponding angle should be constant. Because otherwise it beats
the whole purpose of using the van Emde Boas trees. Secondly, the pred(·) query uses the

1O(log n) is the worst case running time for pred(·), and the average running time for
insertAndCleanUp(·).

2Again, O(log log n) will be the worst case running time of pred(·), and the average running time of
insertAndCleanUp(·).

60

1
n

r

u2

ui

u1

1
n

r

v1
v2

vi

Figure 5.5: Construction of the universe of keys for Van Emde Boas trees: ui ∈ Uα
and vi ∈ Uβ .

values π−γacb to look up the necessary elements. Therefore, the universe of the trees should
not only maintain keys corresponding to all the possible angles between the diagonals of P ,
but also to some of their complements.

We propose the following solution to the problem of selecting the universe of keys that is
vast enough to circumvent possible issues. For every reflex vertex r, shoot rays from vertices
p of P , where 1 ≤ p < r, into the direction of r. Consider the rays that intersect the
boundary of P between vertices r and n if moving in a clockwise order (refer to Figure 5.5).
Calculate a set, Uα, of all the intersection points ui of such rays with the boundary of P for
all reflex vertices r. Also, insert all the vertices of P into Uα. Similarly, calculate a set Uβ
of all the intersection points vi of the rays shot from p, where r < p ≤ n, to r that intersect
the boundary of P between vertices 1 and r if moving in a clockwise order. Insert all the
vertices of P into Uβ. Now, sort the vertices of Uα in the order they appear on the boundary
of P moving from vertex n to vertex 1 in a counterclockwise direction, and assign to them
keys {keyα0 = 0, keyα1 = 1, keyα2 = 2, . . . }, where keyαi equals to integer i. Sort the vertices
of Uβ in the order they appear on the boundary of P moving from vertex 1 to vertex n in
a clockwise direction, and assign to them keys {keyβ0 = 0, keyβ1 = 1, keyβ2 = 2, . . . }, where
keyβi equals to integer i.

Because polygon P is simple the following two properties hold (refer to Figure 5.6a):

1. for any diagonal dab and any two points i and j with keys keyαi and keyαj from Uα such
that vertex a sees both points i and j

keyαi < keyαj ⇔ ∠(iab) < ∠(jab) ,

2. for any diagonal dab and any two points p and q with keyβp and keyβq from Uβ such that
vertex b sees both points p and q

keyβp < keyβq ⇔ ∠(pba) < ∠(qba) .

61

1
n

a

b

i(keyα)i(keyi

i(keyα)j(keyj
p(keyβ)p(keyp

q(keyβ)q(keyq

(a) Properties of Uα and Uβ :
keyαi < keyαj ⇔ ∠(iab) < ∠(jab),
keyβp < keyβq ⇔ ∠(pba) < ∠(qba).

1
n

a α acb

c

i(keyα)i(keyi

αi

b

(b) For vertex i with the key keyαi , and two diagonals,
dab and dac, the key keyαi corresponds to αi in the van
Emde Boas tree at dac, and to αi + αacb in the van
Emde Boas tree at dab.

Figure 5.6: Using integer keys to store the pairs (angle, number of points) in van
Emde Boas trees.

Thus, we can use Uα and Uβ as universes of keys in the van Emde Boas trees for storing the
pairs (angles, number of points), ordered by the corresponding angle. We replace the ordered
listsMα(a, b)[αi] andMβ(a, b)[βj] in the datastructure L(a, b) (recall Figure 5.4) by the van
Emde Boas trees build on the universes Uα and Uβ. We are using the same Uα and Uβ for all
the van Emde Boas trees built at every diagonal dab. However, the same key will correspond
to different angles for different diagonals. Consider an example in Figure 5.6b, two diagonals
dab and dac, and some point i with the keyαi . This key will correspond to the angle αi = ∠(iab)
in the van Emde Boas tree structure at diagonal dac, and to αi + αacb = ∠(iab) at diagonal
dab. At the step when 4acb is considered during the MBP algorithm progress, and the
procedure insertAndCleanUp(·) is called, we can use the same key, keyαi , in both van
Emde Boas structures, at diagonal dac and diagonal dab. For example, the call at line 17 in
Algorithm 5.1

insertAndCleanUp(Mβ(a, b)[βacb], (αi + αacb, ki + kacb))

is replaced with the call

insertAndCleanUp(Mβ(a, b)[βacb], key
α
i A(αi + αacb, ki + kacb)) .

62

1
n

a

b

γ acb

β acb

α acb

c(keyα)c(keyc

k

α i αcb

ki kcb

keyβ

eac(key
α eac(keyac)

i(keyα)i(keyi

β cb

Figure 5.7: Example of the MBP algorithm step computing MBPs for subpoly-
gon Pab. Consider 4acb for every c in Pab. The extension of ac intersects
the boundary of Pab in eac. For every angle βcb ≤ π − βacb, query keyαi =
pred(Mβ(c, b)[βcb], key

α
ac), and get the corresponding pair (αicb, k

i
cb). Merge the

triangle 4acb and the MBP that corresponds to the tuple {αicb, βcb, kicb}:
insertAndCleanUp(Mα(a, b)[αacb], key

β
A(βcb + βacb, k + kicb)),

insertAndCleanUp(Mβ(a, b)[βcb + βacb], key
α
cA(αacb, k + kicb)).

For the fast look-up of the key for an angle π−γ, store the references to the corresponding
points keyαab and key

β
ab, when they exist, at every diagonal dab. Then we can use these keys

to find the pairs (angle, number of points) with the maximum angles possible with the
procedure pred(·). For example, the call at line 21 in Algorithm 5.1

pred(Mβ(c, b)[βi], π − γacb)

is replaced with the call
pred(Mβ(c, b)[βi], key

α
ac) ,

where keyαac is the key corresponding to the intersection point eac of the extension of ac and
the boundary of Pcb. The key is stored at the diagonal dac, so we can add an initialization
of the variable keyαac after line 3 of the algorithm. Refer to the Appendix C, Algorithm C.1
for the detailed pseudocode.

To recapitulate, consider an iteration of the dynamic programming algorithm, where a
(weak-domination-free) set of MBPs is computed for subpolygon Pab. For all vertices c
in Pab such that a and b both see c, the triangle 4acb is merged with the MBPs of the
subpolygons Pac and Pcb. Figure 5.7 shows a step of the algorithm that merges all the
MBPs of Pcb, such that the right angle of the base convex piece is βcb, with the trian-
gle 4acb. The intersection point of an extension of dac and the boundary of Pcb is eac,
and keyαac is the corresponding key in Uα. The algorithm finds a pair (αicb, k

i
cb) in the

Mβ[βcb], that minimizes the number of points kicb, which is equivalent to maximizing the
angle αicb. This is done by running the predecessor query in the corresponding van Emde
Boas tree: pred(Mβ(c, b)[βcb], key

α
ac). The resulting tuple {αicb, βcb, kicb} dominates all other

possible tuples with the same angle βcb. At last, the algorithm inserts new elements in

63

the maps of the L(a, b): insertAndCleanUp(Mα(a, b)[αacb], key
β
A(βcb + βacb, k + kicb)),

insertAndCleanUp(Mβ(a, b)[βcb + βacb], key
α
cA(αacb, k + kicb)).

Theorem 5.4. A MBP of a simple polygon P , that only uses its diagonals as potential cuts,
can be computed in O(n4 log log n) with space O(n5).

Proof. The size of the universes Uα and Uβ is O(n2), therefore the van Emde Boas trees take
O(n2) space. Instead of an O(n) structure in the maps of L(a, b) per every angle, there is
an O(n2) structure now. Thus, in total space required is O(n5).

On the other hand, the O(log n) time operations pred(·) and insertAndCleanUp(·)
are replaced with theO(log log n) operations, thus making the total running timeO(n4 log log n).

Notice that the space requirement is larger than the running time of the algorithm. This
means that we need to be careful with the initialization of the van Emde Boas trees. The
space allocated for the trees should not be completely freed during the initialization, but the
new subtrees can be initialized as needed during the insert operations in Ω(1) time. It also
means that we do not really need so much space, the algorithm is not going to use all of it.
It is possible to improve the space requirements by using different universes for van Emde
Boas trees in different subpolygons.

Reducing the Space to O(n4) with O(n4 log log n) Running Time

By using the same universes for all the van Emde Boas trees for all the diagonals we introduce
an excessive overhead on the space usage. Instead of using van Emde Boas trees of size O(n2)
it is possible to reduce their size to be linear. For every subpolygon Pab it is sufficient to
have the universe Uα consisting of the angles corresponding to the vertices of Pab plus the
angles corresponding to the extensions of the diagonals dia, where i < a, that intersect the
boundary of Pab. Similarly, it is sufficient for the universe Uβ to be consisting of the angles
corresponding to the vertices of Pab plus the angles corresponding to the extensions of the
diagonals dbj, where b < j, that intersect the boundary of Pab. Thus, the size of Uα and Uβ
is O(n). By reducing the size of the universes we lost the ability to use the same keys for
the same points on the boundary of P for all the diagonals. We need to change the way
the procedure insertAndCleanUp(·) determines the key corresponding to the inserted
element. Keep 2-dimensional arrays Keysαi [a, b] = keyαi and Keysβi [a, b] = keyβi in every
vertex i of P . At the preprocessing step, the algorithm computes the values of the keys for
the vertices of P , and populates the arrays Keysαi and Keysβi . It also computes the keys
for the intersection points of the extensions of the diagonals with the boundary of P , and
assigns them to the corresponding diagonals. During the execution of the main part of the
algorithm, for the pred(·) and insertAndCleanUp(·) procedures, the keys are found in
the Keys arrays at every point of interest. For example, with the last changes to the van
Emde Boas trees, the call at line 21 in Algorithm 5.1

pred(Mβ(c, b)[βi], π − γacb)

64

is replaced with the call
pred(Mβ(c, b)[βi], Keys

α
eac [c, b]) ,

the call at line 27 in Algorithm 5.1

insertAndCleanUp(Mβ(a, b)[βi + βacb], (αacb, ki + kacb))

is replaced with the call

insertAndCleanUp(Mβ(a, b)[βi + βacb], Keys
α
c [a, b]A(αacb, ki + kacb)) ,

and the call at line 28 in Algorithm 5.1

insertAndCleanUp(Mα(a, b)[αacb], (βi + βacb, ki + kacb))

is replaced with the call

insertAndCleanUp(Mα(a, b)[αacb], Keysβi [a, b]A(βi + βacb, ki + kacb)) .

Refer to the Appendix C, Algorithm C.2 for the detailed pseudocode.

We conclude the discussion of the Problem 5.2 with the following theorem:

Theorem 5.5. A MBP of a simple polygon P , that only uses its diagonals as potential cuts,
can be computed in O(n4 log log n) with space O(n4).

Proof. Using the liner-size universes for the van Emde Boas trees reduces the size of the
data structure for every diagonal to O(n2). Therefore the total space needed to keep the
information about the MBPs for all the subpolygons is O(n4). The extra space required
to store the keys in the vertices of P is only O(n3). Therefore, the total space needed to
compute a MBP of P is O(n4).

Minimum Convex Decomposition in O(r2n log log n) Running Time

Applying a similar idea to the algorithm presented in [14], we are able to reduce its running
time from O(r2n log n) to O(r2n log log n). Recall, that in the minimum convex decomposi-
tion problem it suffices to consider only valid subpolygons, defined by diagonals incident to
at least one reflex vertex. A set of pairs (αi, βi) corresponding to the minimal decompositions
of some valid subpolygon Pab is recursively computed. By maintaining two van Emde Boas
trees for every valid subpolygon we achieve (depending on the type of the corresponding di-
agonal) an O(n log log n) or O(r log log n) running time per dynamic programming recursion
step. Overall, this leads to an O(r2n log log n) running time for the minimum decomposition
problem.

Theorem 5.6. A Minimum Decomposition of a simple polygon P , that only uses its diago-
nals as potential cuts, can be computed in O(r2n log log n), where n is the size of the polygon,
and r is the number of reflex vertices.

65

v

Figure 5.8: Set of Steiner points includes: intersection points of the extensions of
the edges of P with the boundary of P (green points), and intersection points of
the rays shot from every vertex v of P through every visible point in the given
set S (blue points). Here we only show the rays extended from one vertex v.

5.2.2 Boundary Steiner Points

A MBP of a polygon, that only uses its diagonals as cuts, is not always ideal, or even may
not always exist. If, in any triangulation of P , there is a triangle with more than K points, a
feasible partition does not exist. By allowing Steiner points on the boundary of the polygon,
we can decrease the number of convex pieces in a MBP. Thus, the next variant of the MBP
problem that we consider in this chapter is the following:

Problem 5.3. For a given simple polygon P with n vertices, a set of m points S inside P ,
and a positive integer K, partition P into the minimum number of convex pieces by only
using cuts that connect two points on the boundary of P so that the number of points in each
convex piece does not exceed K.

We propose a solution that is based on the previously discussed algorithm. We expand
the set of vertices of P by introducing new vertices along the boundary of P , and then apply
the algorithm from the previous section.

To select a set of Steiner points that is sufficient to add to the set of vertices of P to
solve the problem, notice the following fact.

Lemma 5.7. Any partition of P , that only uses straight cuts connecting two points on the
boundary of P , can be reduced to a partition with the cuts connecting points of the following
types:

• original vertices of P ,

• intersection points of the extensions of the edges of P , adjacent to the reflex vertices,
with the boundary of P ,

• intersection points of the rays, shot from every vertex of P through every point in the
given set S, with the boundary of P .

66

a

b

(a) Case 1.

a

b

a'

b'

a''

b''

(b) Case 2.

Figure 5.9: Reduction.

Proof. Consider some partition P of the polygon P with a cut ab that is not of suggested
type. There can be two cases: the cut connects a vertex of P with an interior to some
boundary edge point, or the cut connects two interior to some boundary edges points. In the
first case, when the cut connects a vertex a of P with a point b, interior to some boundary
segment, (Figure 5.9a), we can slide the point b along the boundary until one of these events
happens:

• point b reaches a vertex of P ,

• point b reaches a blue Steiner point (for example, if segment ab touches one of the
points in S),

• point b reaches a green Steiner point (for example, if segment ab aligns with an extension
of an edge adjacent to a),

• point b reaches a vertex of partition P , that is not a vertex of P , or blue or green
Steiner point.

In the first three events, cut ab becomes of a needed type. In case of the last event, we can
continue moving b further, now affecting two (or more) cuts of P , until one of the first three
events happens.

When the cut ab connects two points, interior to some boundary segments, (Figure 5.9b),
we can slide the points a and b along the boundary of P in the opposite directions, until one
of these events happens:

• point a or b reaches a vertex of P ,

• cut ab touches two of the points in S on the opposite sides,

• point a or b reaches a vertex of partition P , that is not a vertex of P .

67

In first event, the cut is reduced to the previous type. In the second event, the cut ab can
“jump” over the two points in S, that it touches, thus keeping the total number of points
in the convex pieces adjacent to the cut the same, and the points a and b continue to slide
along the boundary. In the case of the last event, we can continue sliding the points a and
b further, now affecting two (or more) cuts of P , until one of the first two events happens.

Thus, by moving the ends of the cuts of the partition P , we reduce it to a partition of a
required type.

We proved, that it suffices to consider only n vertices of P , plus the O(n) intersection
points of the extensions of the edges of P with the boundary of P , and O(mn) intersection
points of the rays, shot from every vertex of P through every point in S, with the boundary
of P , as the potential vertices of a MBP. Now we can apply the algorithm presented in
Section 5.2.1 to a polygon with O(nm) vertices obtained from a polygon P by adding these
Steiner points.

Theorem 5.8. A MBP of a polygon P that can introduce Steiner points on the boundary
of P can be constructed in O(n4m4 log log(nm)) time and requires O(n4m4) space.

5.2.3 Inner Steiner Points

Problem 5.4. For a given simple polygon P with n vertices, a set of m points S inside P ,
and a positive integer K, find the minimum number of convex pieces such that the number
of points in each piece does not exceed K.

A trivial version of this problem is the case where P is convex. Similarly to the reasoning
in Section 3.4, this problem can be solved optimally with a simple line sweeping algorithm
in O(n+m) time if the points are presorted by coordinates.

For a non-convex polygon P we propose the following algorithm: apply Chazelle’s algo-
rithm to decompose P into the minimum number of convex pieces, and then further divide
each of the convex pieces to satisfy the requirement on the number of points. We prove, that
this algorithm gives an approximate solution to the problem 5.4.

Theorem 5.9. Presented algorithm partitions a simple polygon P into at most two times
the number of pieces of an optimal MBP in O(n3) running time.

Proof. Suppose that Chazelle’s algorithm produces C convex pieces. Define OPT to be the
number of pieces in the optimal solution. All the pieces in the optimal solution are required
to be convex, and Chazelle’s algorithm gives an optimal convex partition of P , therfore the
following inequality holds:

OPT ≥ C .

Moreover, each piece in the optimal polygon partition has no more than K points, the
following inequality holds:

OPT ≥
⌈m
K

⌉
.

68

Let ALG be the number of pieces produced by the proposed algorithm.

ALG =
C∑
1

⌈mi

K

⌉
,

where mi is the number of points in each of the convex pieces produced by Chazelle’s algo-
rithm. Finally, combining the following inequality

C∑
1

⌈mi

K

⌉
≤
⌈m
K

⌉
+ C

with the inequalities above we get:

ALG =
C∑
1

⌈mi

K

⌉
≤
⌈m
K

⌉
+ C ≤ 2OPT .

5.3 Polygons with Holes

We continue by studying the MBP problem in the case of polygons with holes:

Problem 5.5. For a given polygon P with n vertices and h holes, a set of m points S inside
P , and a positive integer K, find the minimum number of convex pieces such that the number
of points in each piece does not exceed K.

The problem of finding a minimum convex partition of polygons with holes is NP -hard, even
if the cuts of the partition are restricted to the diagonals of the polygon [18]. Our problem
is as hard as this problem. Therefore,

Theorem 5.10. Problem 5.5 is NP-hard.

In this section we present two approximation algorithms for the cases with different types
of cuts.

5.3.1 Diagonal Cuts

In the case when the cuts of a partition are restricted to the diagonals of the polygon, we
propose the following algorithm: partition P into convex subpolygons using Hertel-Mehlhorn
algorithm [13]. This algorithm produces at most 2r + 1 − h convex subpolygons. Partition
those subpolygons that contain more than K points into smaller pieces by a set of diagonal
cuts coming out of one vertex of the subpolygon (refer to Figure 5.10). Let ALG denote the

69

Figure 5.10: Approximation algorithm for the case of MBP problem for polygon
with holes and diagonal cuts. Thick diagonals partition the polygon into convex
subpolygons. Thin diagonals further decompose the subpolygons to satisfy the
constraint on the number of points from S.

number of pieces that our algorithm produces, and OPT denote the number of pieces in an
optimal solution. As before, the optimal number of pieces is not less than m/K:

OPT ≥ m

K
,

and because one cut can affect at most two reflex vertices,

OPT ≥ r

2
+ 1 .

Consider a convex subpolygon Pi, produced by the Hertel-Mehlhorn algorithm. Let ci be
the number of convex pieces in it. For any pair of adjacent convex pieces we have:

mj +mj+1 > K ,

where mj and mj+1 is the number of points from S in the corresponding pieces. Similarly
as in Section 2.3.1, if we sum up the number of points in all the convex pieces of Pi we get:

ci∑
j=1

mj > K
⌊ci

2

⌋
≥ K

(
ci − 1

2

)
.

If we sum up all such inequalities for all the subpolygons, we get:

m =
∑
i

ci∑
j=1

mj > K
∑
i

(
ci − 1

2

)
≥ K

(
ALG− (2r + 1− h)

2

)
≥ K

(
ALG− 2r

2

)
.

Finally,

K ·OPT ≥ m ≥ K

(
ALG− 2r

2

)
≥ K

(
ALG− 4 ·OPT

2

)
,

therefore
ALG ≤ 6 ·OPT .

Theorem 5.11. Presented algorithm partitions a polygon P with holes into at most six times
the number of pieces of an optimal MBP.

70

Figure 5.11: Approximation algorithm for the MBP problem for polygon with
holes and unconstrained cuts. Thick diagonals partition the polygon into con-
vex subpolygons. Thin lines further decompose the subpolygons to satisfy the
constraint on the number of points from S.

5.3.2 Inner Steiner Points

In the case when Steiner points are allowed, we propose the following algorithm: partition
the polygon along the bisectors of reflex vertices into at most r+ 1− h convex subpolygons.
Further partition each of the subpolygons to satisfy the requirement on the number of points
of S in each piece, for example, with a liner sweep (refer to Figure 5.11). Let ALG denote
the number of pieces that our algorithm produces, and OPT denote the number of pieces in
an optimal solution. As in the previous section, the following two inequalities hold:

OPT ≥ m

K
,

OPT ≥ r

2
+ 1 .

Consider a convex subpolygon Pi, let ci be the number of convex pieces in it.

ci =
⌈mi

K

⌉
≤ mi

K
+ 1 ,

where mi is the total number of points of S in the subpolygon Pi. Then, summing up all
such inequalities for all the convex subpolygons we get:

ALG =
∑

ci =
∑⌈mi

K

⌉
≤ m

K
+ r + 1− h ≤ 3 ·OPT .

Theorem 5.12. The presented algorithm partitions a polygon P with holes into at most
three times the number of pieces of an optimal MBP.

5.4 Conclusion

The problem of partitioning a polygon into simpler components is a natural and well-studied
problem in Computational Geometry. It has a wide range of applications including VLSI,

71

robotics, computer graphics, and many others. Different variations of this problem include
restricting the simpler components to be convex or nearly convex, to have the same area,
perimeter, and other measures, or combinations thereof.

In this chapter, we have introduced the Minimum Balanced Partition problem, and
have considered several variations of it. We have presented two optimal algorithms for the
cases when the polygon under consideration is simple, and the cuts are restricted to the
diagonals of the polygon, or when the cuts are straight segments connecting points on the
boundary of P . We have also presented a simple linear-time approximation algorithm for
the case when there are no restrictions on the cuts that produces at most twice as many
convex pieces as an optimal solution.

For polygons with holes the MBP problem is NP -hard. We have presented two con-
stant factor approximation algorithms for the case with diagonal cuts, and the case with
unrestricted cuts.

The complexity of the MBP problem in the case of a simple polygon with unconstrained
cuts remains an open question. Furthermore, variations of these problems to include different
types of input polygons such as simple rectilinear polygons, rectilinear polygons with holes,
and polyominoes will be addressed in future work.

72

References

[1] E. M. Arkin, I. Kostitsyna, J. S. B. Mitchell, V. Polishchuk, and G. Sabhnani. The Dis-
tricting Problem. In 19th Annual Fall Workshop on Computational Geometry, Medford,
MA, Nov. 2009.

[2] A. Basu, J. S. B. Mitchell, and G. Sabhnani. Geometric algorithms for optimal airspace
design and air traffic controller workload balancing. Journal of Experimental Algorith-
mics, 14(1):3:2.3–3:2.28, Jan. 2010.

[3] F. Berman, D. Johnson, T. Leighton, P. W. Shor, and L. Snyder. Generalized planar
matching. Journal of Algorithms, 11(2):153–184, June 1990.

[4] S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink. Generalizing Ham Sandwich Cuts
to Equitable Subdivisions. Discrete & Computational Geometry, 24(4):605–622, Jan.
2000.

[5] M. Bloem and P. Kopardekar. Combining airspace sectors for the efficient use of air
traffic control resources. In AIAA Conference on Guidance, Navigation and Control,
Aug. 2008.

[6] J. G. Carlsson, B. Armbruster, and Y. Ye. Finding equitable convex partitions of points
in a polygon efficiently. ACM Transactions on Algorithms, 6(4):1–19, Aug. 2010.

[7] B. Chazelle and D. Dobkin. Decomposing a polygon into its convex parts. In Proceedings
of the eleventh annual ACM symposium on Theory of computing STOC’79, pages 38–48,
New York, New York, USA, Apr. 1979. ACM Press.

[8] M. C. Drew. Dynamically Evolving Sectors for Convective Weather Impact. In 10th
AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, 2010.

[9] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
Jan. 1965.

[10] A. H. Farrahi and Z. Wood. Computational Complexity of the Airspace Sectrization
Problem, 2013. Personal communication.

[11] M. Fürer and B. Raghavachari. Approximating the minimum degree spanning tree to
within one from the optimal degree. In Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms, pages 317–324. Society for Industrial and Applied
Mathematics, soda’92 edition, Sept. 1992.

73

[12] P. Hell and D. G. Kirkpatrick. On the Complexity of General Graph Factor Problems.
SIAM Journal on Computing, 12(3):601–609, Aug. 1983.

[13] S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In M. Karpinski,
editor, Foundations of Computation Theory, volume 158 of Lecture Notes in Computer
Science, pages 207–218. Springer Berlin Heidelberg, Berlin, Heidelberg, lecture no edi-
tion, 1983.

[14] J. M. Keil. Decomposing a Polygon into Simpler Components. SIAM Journal on
Computing, 14(4):799–817, Nov. 1985.

[15] A. Klein, M. D. Rodgers, and H. Kaing. Dynamic FPAs: A new method for dy-
namic airspace configuration. In Integrated Communications, Navigation and Surveil-
lance Conference, 2008. ICNS 2008, pages 1–11, May 2008.

[16] P. Lee, J. Mercer, B. Gore, N. Smith, K. Lee, and R. Hoffman. Examining Airspace
Structural Components and Configruation Practices for Dynamic Airspace Configura-
tion. In AIAA Conference on Guidance, Navigation and Control, Honolulu, HI, 2008.

[17] D. Lichtenstein. Planar Formulae and Their Uses. SIAM Journal on Computing,
11(2):329–343, July 1982.

[18] A. Lingas. The power of non-rectilinear holes. In M. Nielsen and E. M. Schmidt, editors,
Automata, Languages and Programming, volume 140 of Lecture Notes in Computer
Science, pages 369–383. Springer-Verlag, Berlin/Heidelberg, 1982.

[19] C.-Y. Lo, J. Matoušek, and W. Steiger. Algorithms for ham-sandwich cuts. Discrete &
Computational Geometry, 11(1):433–452, Dec. 1994.

[20] C.-Y. Lo and W. Steiger. An optimal time algorithm for ham-sandwich cuts in the
plane. In Second Canadian Conference on Computational Geometry, pages 5–9, 1990.

[21] S. Martinez, G. Chatterji, D. Sun, and A. Bayen. A weighted-graph approach for
airspace dynamic configuration. In AIAA Conference on Guidance, Navigation and
Control, Aug. 2007.

[22] S. Micali and V. V. Vazirani. An O(
√
|V ||E|) algoithm for finding maximum matching

in general graphs. In 21st Annual Symposium on Foundations of Computer Science
(sfcs 1980), pages 17–27. IEEE, Oct. 1980.

[23] J. S. B. Mitchell. On maximum Flows in Polyhedral Domains. Journal of Computer
and System Sciences, 40(1):88–123, Feb. 1990.

[24] J. S. B. Mitchell and V. Polishchuk. Thick Non-Crossing Paths and Minimum-Cost
Flows in Polygonal Domains. In Proceedings of the 23rd Annual Symposium on Com-
putational Geometry SoCG’07, pages 56–65, 2007.

[25] J. S. B. Mitchell, V. Polishchuk, and J. Krozel. Airspace Throughput Analysis Consid-
ering Stochastic Weather. In AIAA Conference on Guidance, Navigation and Control,
Keystone, CO, Aug. 2006.

74

[26] G. Sabhnani, A. Yousefi, D. P. Kierstead, V. Polishchuk, J. S. B. Mitchell, and I. Kostit-
syna. Algorithmic Traffic Abstraction and its Application to NextGen Generic Airspace.
In 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference,
pages 2093–2102, Sept. 2010.

[27] G. Sabhnani, A. Yousefi, and J. S. B. Mitchell. Flow Conforming Operational Airspace
Sector Design. In 10th AIAA Aviation Technology, Integration, and Operations (ATIO)
Conference, Fort Worth, TX, Sept. 2010.

[28] A. Tasnádi. The political districting problem: A survey. Society and Economy,
33(3):543–554, Dec. 2011.

[29] V. V. Vazirani. A Theory of Alternating Paths and Blossoms for Proving Ccorrectness of
the O(

√
V E) General Graph Maximum Matching Algorithm. Combinatorica, 14(1):71–

109, 1994.

[30] J. D. Welch, J. W. Andrews, B. D. Martin, B. Sridhar, and M. Field. Macroscopic
Workload Model for Estimating En Route Sector Capacity. 7th USAEurope Air Traffic
Management Research and Development Seminar ATM2007, pages 1–10, 2007.

[31] M. Xue. Airspace sector redesign based on voronoi diagrams. Journal of Aerospace
Computing, Information, and Communication, 6(12):624–634, Dec. 2009.

[32] A. Yousefi. Optimum Airspace Design with Air Traffic Controller Workload-Based Par-
titioning. PhD thesis, George Mason University, 2005.

[33] A. Yousefi and G. L. Donohue. Optimum Airspace Sectorization with Air Traffic Con-
troller Workload Constraints. In 1st International Conference for Research in Air Trans-
portation, Zilina, Slovakia, Nov. 2004.

75

Appendix A

A Note on Generalized Planar Matching

The two main results of the paper [3] are two theorems stating that the problems Maximum
Planar H-Matching with |H| ≥ 3, and a Perfect Planar H-Matching for an
outerplanar graph H with |H| ≥ 3 are NP -complete.

-
+

-
+

-
+

-
+

(a)

-
+

-
+

-
+

-
+-

+

-
+

-
+

-
+

True False

(b)

Figure A.1: Variable gadget: before (a) and after (b) modifications.

The authors prove the hardness of the Maximum Planar H-Matching by reduction
from Planar 3-SAT. As required by definition of a Planar 3-SAT (see [17]), there should
be edges connecting the “variable” nodes in a cycle, in addition to edges between the “variable”
nodes and the “clause” nodes, in the planar graph constructed based on the 3-SAT formula.
However, the variable gadgets in their proofs are not connected in a cycle. This can be fixed
by small modifications to the variable gadgets (Figures A.1a, A.1b), and to the planar 3-SAT
formula graph construction (Figure A.2).

76

C1

C2

C3

C4

C5

x1

x2

x3 x4

x5

x6

C1

C2

C3

C4

C5

x1

x2

x3 x4

x5

x6

Figure A.2: Left: instance of a planar graph corresponding to a Planar 3-SAT
formula. Right: Planar H-Matching instance construction.

77

Appendix B

Constraints Implemented in
GeoSect-Local

In this Appendix we describe the 14 constraints on the parameters implemented in GeoSect-Local
(see Chapter 4):

1. ACavg ≤ T1: time-average aircraft count is not grater than T1. This constraint enforces
sectors to have average airplane count that is not too large. The limit L1 =∞. Usually
we set T1 to be 4–8, depending on the overall traffic load. Another good way to choose
T11 is to integrate the total number of aircrafts in the region and divide it by the
number of sectors. This will ensure the balance of the workload among the sectors.

2. dev(ACavg) ≤ T2: deviation of the time-average aircraft count is not more than T2%.
Unlike the previous constraint, this constraint achieves a better ACavg balance. The
goal is to have no sectors with ACavg that is too high, nor underutilized sectors. The
limit L2 =∞, and the default T2 = 20%.

3. ACmax ≤ T3: peak aircraft count is not greater than T3. As with the constraint 1, the
limit L3 = ∞. The threshold T3 should be more relaxed than T1, as the requirement
for the peak aircraft count is more strict than for the time-average aircraft count.

4. δ ≤ T4: expected delay is not greater than T4. Our goal is to have sector capacities
approximately match the demand distribution. L4 = ∞, by default we set T4 = 0
unless the traffic demand is too heavy and we do not expect to find a sectorization
that does not introduce any delay.

5. NL ≥ T5: throughput along any dominant flow is not less than T5. This requirement
enforces a sector to have at least T5 number of lanes along a dominant flow. L5 = 0,
default T5 = 2.

6. Tdwell ≥ T6: dwell time of any dominant flow is not less than T6. This enforces the
aircraft to spend some time in a sector before they exit. L6 = 0, by default T6 = 5
min.

78

7. β ≤ T7: intersection angle of a dominant flow with sector’s boundaries is not greater
than T7. The limit L7 = 90◦, and the default T7 = 30◦.

8. dDF ≥ T8: distance from a dominant flow to sector’s boundaries is not less than T8.
This constraint requires vertices of the sectors to be at least some distance from the
dominant flows. Default T8 = 0.4◦ latitude/longitude, limit L8 = 0.

9. dCP ≥ T9: distance from a critical point to sector’s boundaries is not less than T9.
This imposes critical points to be well inside sectors. We sum over all critical points a
penalty function of the distance from the critical point to the nearest boundary of the
sector. The default T9 is 0.5◦ latitude/longitude, a lower limit L9 = 0.

10. α ≥ T10: minimum sector angle is not less than T10. The requirement limits sector’s
angle α from below. The L10 constant in this case is 0◦. By default T10 is set to
60◦. The penalty functions are summed over all the angles of sector σ to get the total
penalty corresponding to this constraint.

11. α ≤ T11: maximum sector angle is not greater than T11. The requirement on sector’s
angle α to avoid very large internal angles of sectors. The limit L11 is 360◦, and the
default T11 is 180◦. Again, we sum over all the angles of σ to get the total cost.

12. cx ≥ T12: ratio of the area of a sector to the area of its convex hull is not less than T12.
This enforces sectors to be nearly convex. L12 = 0, and the default T12 is 0.9.

13. |e| ≥ T13: minimum edge length is not less than T13. This constraint bounds the lengths
of sector’s edges from below. L13 = 0, and the default T13 = 0.4◦ latitude/longitude.

14. rcurv ≥ T14: curvature radius is not less than T14. This constraint prevents sectors from
having two consecutive short edges with a sharp angle in between them. We define
the curvature radius for two consecutive edges as a radius of a circle circumscribed
about a triangle defined by these two edges. L14 = 0, and the default T14 = 0.6◦

latitude/longitude.

79

Appendix C

MBP Algorithms Pseudocode

Algorithm C.1 (Part I) Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in Pab
visible from a and b) as an input, and calculates L(a, b) and h(a, b). L(a, b) is implemented as two maps of
angles to van Emde Boas trees constructed on the same universes Uα and Uβ for all diagonals dab.

Input: Mα(a, c), Mβ(a, c), h(a, c), Mα(c, b), Mβ(c, b), and h(c, b) for all c ∈ VPab
such that

(a, c), (c, b) ∈ V G(P)
Output: Mα(a, b),Mβ(a, b), h(a, b)
1: procedure mbpStep({Mα(a, c),Mβ(a, c), h(a, c)}, {Mα(c, b),Mβ(c, b), h(c, b)})
2: h(a, b)← n
3: for c ∈ VPab

such that (a, c), (c, b) ∈ V G(P) do
4: αacb ← ∠bac, βacb ← ∠abc, γacb ← ∠acb
5: kacb ← number of points in 4acb
6: keyαc ← c.keyα, keyβc ← c.keyβ

7: keyαac ← dac.key
α, keyβcb ← dcb.key

β

8: if kacb > K then
9: go to 3 and continue for next c ∈ VPab

10: end if
11: for αi ∈Mα(a, c) such that αi < π − αacb do
12: keyαi ← αi.key

α

13: if keyβcb 6= ∅ then
14: keyβi ← pred(Mα(a, c)[αi], key

β
cb)

15: else
16: keyβi ← pred(Mα(a, c)[αi],∞)
17: end if
18: if keyβi 6= ∅ and keyβi .ki ≤ K − kacb and h(a, b) ≥ h(a, c) + h(c, b) then
19: if h(a, b) > h(a, c) + h(c, b) then
20: empty(Mα(a, b)), empty(Mβ(a, b))
21: h(a, b)← h(a, c) + h(c, b)
22: end if
23: insertAndCleanUp(Mα(a, b)[αi + αacb], key

β
cA(βacb, key

β
i .ki + kacb))

24: insertAndCleanUp(Mβ(a, b)[βacb], key
α
i A(αi + αacb, key

β
i .ki + kacb))

25: end if
26: end for

80

Algorithm C.1 (Part II) Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in Pab
visible from a and b) as an input, and calculates L(a, b) and h(a, b). L(a, b) is implemented as two maps of
angles to van Emde Boas trees constructed on the same universes Uα and Uβ for all diagonals dab.

27: for βi ∈Mβ(c, b) such that βi < π − βacb do
28: keyβi ← βi.key

β

29: if keyαac 6= ∅ then
30: keyαi ← pred(Mβ(a, c)[βi], key

α
ac)

31: else
32: keyαi ← pred(Mβ(a, c)[βi],∞)
33: end if
34: if keyαi 6= ∅ and keyαi .ki ≤ K − kacb and h(a, b) ≥ h(a, c) + h(c, b) then
35: if h(a, b) > h(a, c) + h(c, b) then
36: empty(Mα(a, b)), empty(Mβ(a, b))
37: h(a, b)← h(a, c) + h(c, b)
38: end if
39: insertAndCleanUp(Mβ(a, b)[βi + βacb], key

α
cA(αacb, key

α
i .ki + kacb))

40: insertAndCleanUp(Mα(a, b)[αacb], key
β
i A(βi + βacb, key

α
i .ki + kacb))

41: end if
42: end for
43: if h(a, b) ≥ h(a, c) + h(c, b) + 1 then
44: if h(a, b) > h(a, c) + h(c, b) + 1 then
45: empty(Mα(a, b)), empty(Mβ(a, b))
46: h(a, b)← h(a, c) + h(c, b) + 1
47: end if
48: insertAndCleanUp(Mα(a, b)[αacb], key

β
cA(βacb, kacb))

49: insertAndCleanUp(Mβ(a, b)[βacb], key
α
cA(αacb, kacb))

50: end if
51: end for
52: return {Mα(a, b),Mβ(a, b), h(a, b)}
53: end procedure

81

Algorithm C.2 (Part I) Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in Pab
visible from a and b) as an input, and calculates L(a, b) and h(a, b). L(a, b) is implemented as two maps of
angles to van Emde Boas trees constructed on linear size universes varying for different diagonals dab.

Input: Mα(a, c), Mβ(a, c), h(a, c), Mα(c, b), Mβ(c, b), h(c, b) for all c ∈ VPab
such that

(a, c), (c, b) ∈ V G(P), Keysαi [][] and Keysβi [][], arrays of keys for all i ∈ VP
Output: Mα(a, b),Mβ(a, b), h(a, b)
1: procedure mbpStep({Mα(a, c),Mβ(a, c), h(a, c)}, {Mα(c, b),Mβ(c, b), h(c, b)})
2: h(a, b)← n
3: for c ∈ VPab

such that (a, c), (c, b) ∈ V G(P) do
4: αacb ← ∠bac, βacb ← ∠abc, γacb ← ∠acb
5: kacb ← number of points in 4acb
6: keyαac ← dac.key

α, keyβcb ← dcb.key
β

7: if kacb > K then
8: go to 3 and continue for next c ∈ VPab

9: end if
10: for αi ∈Mα(a, c) such that αi < π − αacb do
11: if keyβcb 6= ∅ then
12: keyβi ← pred(Mα(a, c)[αi], key

β
cb)

13: else
14: keyβi ← pred(Mα(a, c)[αi],∞)
15: end if
16: if keyβi 6= ∅ and keyβi .ki ≤ K − kacb and h(a, b) ≥ h(a, c) + h(c, b) then
17: if h(a, b) > h(a, c) + h(c, b) then
18: empty(Mα(a, b)), empty(Mβ(a, b))
19: h(a, b)← h(a, c) + h(c, b)
20: end if
21: insertAndCleanUp(Mα(a, b)[αi + αacb],Keys

β
c [a][b]A(βacb, key

β
i .ki + kacb))

22: insertAndCleanUp(Mβ(a, b)[βacb],Keys
α
i [a][b]A(αi + αacb, ki + kacb))

23: end if
24: end for

82

Algorithm C.2 (Part II) Procedure mbpStep(·) takes L(a, c), h(a, c), L(c, b), and h(c, b) (for all c in Pab
visible from a and b) as an input, and calculates L(a, b) and h(a, b). L(a, b) is implemented as two maps of
angles to van Emde Boas trees constructed on linear size universes varying for different diagonals dab.

25: for βi ∈Mβ(c, b) such that βi < π − βacb do
26: if keyαac 6= ∅ then
27: keyαi ← pred(Mβ(a, c)[βi], key

α
ac)

28: else
29: keyαi ← pred(Mβ(a, c)[βi],∞)
30: end if
31: if keyαi 6= ∅ and keyαi .ki ≤ K − kacb and h(a, b) ≥ h(a, c) + h(c, b) then
32: if h(a, b) > h(a, c) + h(c, b) then
33: empty(Mα(a, b)), empty(Mβ(a, b))
34: h(a, b)← h(a, c) + h(c, b)
35: end if
36: insertAndCleanUp(Mβ(a, b)[βi + βacb],Keys

α
c [a][b]A(αacb, ki + kacb))

37: insertAndCleanUp(Mα(a, b)[αacb],Keys
β
i [a][b](βi + βacb, ki + kacb))

38: end if
39: end for
40: if h(a, b) ≥ h(a, c) + h(c, b) + 1 then
41: if h(a, b) > h(a, c) + h(c, b) + 1 then
42: empty(Mα(a, b)), empty(Mβ(a, b))
43: h(a, b)← h(a, c) + h(c, b) + 1
44: end if
45: insertAndCleanUp(Mα(a, b)[αacb],Keys

β
c [a][b]A(βacb, kacb))

46: insertAndCleanUp(Mβ(a, b)[βacb],Keys
α
c [a][b]A(αacb, kacb))

47: end if
48: end for
49: return {Mα(a, b),Mβ(a, b), h(a, b)}
50: end procedure

83

	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgments
	List of Publications
	Introduction
	Districting Problem
	Districting Problem in 1D
	Districting Problem in 2D
	Approximate Solutions
	Hamiltonian Path Case
	Low Degree Spanning Tree
	Dealing with Holes

	Dynamic Districting Problem

	Airspace Sectorization Problem
	Introduction
	Flow Conforming Cut
	Airspace Sectorization Problem
	Complexity of the Airspace Sectorization Problem

	Local Redesigning of Airspace Sectors
	Introduction
	Overview of the Local Redesigning Method
	Local Adjustments
	Details of the Objective Function

	Robust Sectorization Design
	Experimental Results
	Synthetic Experiment
	Historical Data Experiment
	Simulation Experiment
	Robust Sectorization Design Experiments on Synthetic Data
	Robust Sectorization Design Experiment on Historical Data

	Conclusion

	Balanced Partitioning of Polygonal Domains into Convex Pieces
	Introduction
	Simple Polygons
	Diagonal Cuts
	Boundary Steiner Points
	Inner Steiner Points

	Polygons with Holes
	Diagonal Cuts
	Inner Steiner Points

	Conclusion

	References
	Appendices
	A Note on Generalized Planar Matching
	Constraints Implemented in GeoSect-Local
	MBP Algorithms Pseudocode

