

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Multilingual Named Entity

Recognition

A Thesis Presented

by

Vivek Vasant Kulkarni

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2014

Stony Brook University

The Graduate School

Vivek Vasant Kulkarni

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis

Prof.Steven Skiena – Thesis Advisor
Distinguished Teaching Professor, Department of Computer

Science

Prof.I.V.Ramakrishnan
Professor, Department of Computer Science

Prof.Leman Akoglu
Assistant Professor, Department of Computer Science

Prof.Yejin Choi
Assistant Professor, Department of Computer Science

This thesis is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii

Abstract of the Thesis

Multilingual Named Entity Recognition

by

Vivek Vasant Kulkarni

Master of Science

in

Computer Science

Stony Brook University

2014

With the massive amounts of unannotated text available from myr-
iad sources, learning representations useful for natural language
processing(NLP) tasks is an increasingly popular research area.
Using deep learning techniques, we learn distributed representa-
tions for words (word embeddings) using Wikipedia as the source
of text for 40 languages. These distributed representations rep-
resent each word as a point in feature space and capture useful
semantic and syntactic properties of words amd have been shown
to be useful in NLP Tasks like Part of Speech Tagging(POS) etc.
We have built 2 classes of word embeddings namely Polyglot and
Skipgram for these languages.

We build a named entity recognition (NER) system that supports
40 languages using the word embeddings we have generated as
features and seek to use freely available Wikipedia text as train-
ing data. This involves training language models to obtain the
word embeddings, understanding the properties of the learnt word
embeddings and culminates in learning models for named entity
classification. We also present a novel technique for evaluating

iii

our performance on the myriad languages for which no gold data
set for testing exists. Our results demonstrate that word embed-
dings exhibit nice community structure and can be used effectively
for NER with no explicit hand crafted feature engineering and
perform competitively with existing baselines when coupled with
simple language agnostic techniques.

iv

Dedicated to my parents.

v

Contents

List of Figures viii

List of Tables ix

Acknowledgements x

1 Introduction 1
1.1 Distributed Word Representations 1
1.2 Multilingual Named Entity Recognition using word embeddings 2
1.3 Thesis Outline . 2

2 Using GPU’s to train Deep Belief Networks 4
2.1 Introduction . 4
2.2 Overview of the Experimental Setup 5
2.3 Research methodology . 5
2.4 Experimental Results . 6

2.4.1 Baseline . 6
2.4.2 Profiling Theano . 6
2.4.3 Optimizing advanced indexing 7
2.4.4 Speed up in rate of training 8
2.4.5 Analysis of limits on training performance on GPU . . 8
2.4.6 Effect of Batch Size on training and convergence rates . 9

2.5 Future Work . 10
2.6 Conclusion . 11

3 Inducing Language Networks from Continuous Space Word
Representations 12
3.1 Introduction . 12
3.2 Continuous Space Language Models 13

3.2.1 Polyglot . 14
3.2.2 SkipGram . 15

vi

3.2.3 Random . 15
3.3 Word Embedding Networks 15

3.3.1 k-Nearest Neighbors 16
3.3.2 d-Proximity . 18
3.3.3 Discussion . 18

3.4 Related Work . 20
3.4.1 Language Networks . 20
3.4.2 Word Embeddings . 23

3.5 Conclusions . 24

4 Multilingual Named Entity Recognition 26
4.1 Introduction . 26
4.2 Semi-supervised Learning . 27

4.2.1 Learning Word Embeddings 27
4.2.2 Discriminative Learning 28
4.2.3 Optimization . 28

4.3 Extracting Entity Mentions 29
4.3.1 Article Categorization 29
4.3.2 Missing Links . 29

4.4 Experiments . 30
4.4.1 Testing Datasets . 31
4.4.2 Results . 31

4.5 Comparative Study . 32
4.6 Related Work . 35
4.7 Conclusion . 35

5 Conclusion 37
5.1 Conclusions . 37
5.2 Future Work . 38

Bibliography 39

vii

List of Figures

2.1 Effects of batch size on training and convergence rates. 10

3.1 Graph Coverage . 17
3.2 Community Metrics . 19
3.3 Polyglot Nearest Neighbor Graph 21
3.4 Comparison of clusters found in Polyglot and SkipGram lan-

guage networks . 22

4.1 Performance of oversampling entities (mmnerOS) on Dev datasets. 32
4.2 Performance improvement on CoNLL Dev datasets after ap-

plying coreference stage first on Wikipedia before oversampling. 33
4.3 Error analysis of mmner on person category compared to

other systems. 34

viii

List of Tables

2.1 Top 3 Hot spots in Theano . 7

3.1 A comparison of properties of language networks 23

4.1 Percentage of Wikipedia pages identified by Freebase as be-
ing about entities . 30

4.2 Percentage of words that are covered by entities phrases in each
corpus . 31

4.3 Exact F1 Performance on CoNLL corpora 35

ix

Acknowledgements

My stint at Stony Brook University to attend graduate school have been two
very fulfilling years of my life. I have had the opportunity of learning how
to do research and met some very talented people during the process. I have
also had the opportunity of meeting people from different walks of life which
has no doubt helped me grow as a individual.My interactions with faculty and
students from the life sciences, sociology and neuroscience have deepened by
fascination for science and rekindled the childlike curiosity I once had. I wish
to thank everyone of them without which this thesis would never be written.

I would like to thank my advisor Professor Steven Skiena for gently guid-
ing me all through the process and providing me his constant guidance and
encouragement to pursue research. I would also like to thank all the mem-
bers of the Data Science Lab for their support and encouragement especially
when I was feeling low(read dead ends in research) - Rami Al-Rfou’, Bryan
Perozzi, Vishwas Sharma, Moutupsi Paul, Abhinav Gupta. I would also like
to thank all my friends in graduate school especially Jagat Sastry, Alok Kati-
yar, Sagardeep Mahapatra, Sagar Trehan and Abhradeep Guha Thakurta for
helping me keep my sanity all through graduate school.

Finally I owe all of this to my family, who believed in my abilities and
without whose love and support I would never have taken the plunge into
graduate school.

x

Chapter 1

Introduction

1.1 Distributed Word Representations

Traditionally most applications in natural language processing, have revolved
around learning models from annotated data (training data) with explicit fea-
ture engineering geared towards the task at hand. Presently, given the massive
amount of unannotated text floating around on the internet and other sources,
the question of whether one can use computers to automatically learn features
and representations from this text useful for natural language processing tasks
becomes increasingly relevant. One approach that explores this problem and
has recieved a lot of popular media attention is the technique of deep learning.
Deep Learning seeks to learn useful feature representations by utilizing deep
neural networks. Deep Neural Networks learn features corresponding to differ-
ent levels of abstractions. Thus for natural language processing tasks we seek
to learn representations of words (word embeddings). Some useful features of
these word embeddings are highlighted below(see [1] for more details):

• Distributed Representations: Word embeddings are distributed rep-
resentations in the sense that each feature is not mutually exclusive of
the other. The fact that the representation learnt is distributed helps
deal with the curse of dimensionality.

• Continuous Valued Features: Word embeddings are continuous val-
ued. Thus each word can be thought of as representing a point in the
feature space. This is also known to make the optimization problem in
learning much simpler.

• Meaningful clusters of words: We hope that the neural network
learns word representations such that functionally or syntactically similar
words are close to each other in feature space. This is typically achieved

1

by different models by choosing a suitable loss function by usually noting
that similar words in the context can be replaced by one another.

We have built 2 word embeddings namely, Polyglot and Skipgram for 40
languages. These embeddings are learnt by using Wikipedia text as the data
source. A detailed description of the training procedure is described in Chapter
3.

1.2 Multilingual Named Entity Recognition us-

ing word embeddings

We seek to build a Named Entity Recognition system (NER) for 40 languages
using word embeddings that were learnt from Wikipedia texts for these 40 lan-
guages. In order to build this system, we attacked the following subproblems
in order:

1. Improving performance of training language models Since train-
ing language models is a time consuming task, we investigated how we
can train these language models faster. We investigated whether it is
beneficial to use GP-GPU’s for speedening up the training of these lan-
guage models.

2. Investigate the properties of Polyglot and Skipgram Embed-
dings In order to gain insight into how the different models differ in
the properties of the word representations learnt, we investigated the
network structure of Polyglot and Skipgram embeddings. This could
help us gain insights into the choice of the embeddings to be used for a
particular NLP task.

3. Multilingual Named Entity Recognition Having set the stage, and
gained insight into properties of Polyglot embeddings, we finally use
Polyglot Embeddings to build a NER system for 40 languages.

1.3 Thesis Outline

Chapter 2 explores the problem of training language models on GP-GPU’s
and outlines our findings and conclusions.Chapter 3 explores the properties
of both Polyglot and Skipgram embeddings by inducing a network over them
and studying their network structure.Chapter 4 describes our system for multi-
lingual NER for 40 languages.In Chapter 5 we conclude by outlining future

2

work and further research directions. Chapters 2, 3 and 4 are joint work with
Rami Al Rafou’ and Bryan Perozzi. Chapter 3 and Chapter 4 are publica-
tions and hence appear as is (except for minor modifications to suit thesis
requirements).

3

Chapter 2

Using GPU’s to train Deep
Belief Networks

2.1 Introduction

GPU computing has been of significant interest to the research community.
This has led to the evolution of heterogeneous parallel computing with the re-
alization that clock speeds on CPU’s have reached their limit. Heterogeneous
Parallel Computing offers a solution to this problem by offloading computation
that can be massively parallelized on the GPU’s and running serial compu-
tation on the CPUs. Thus GP-GPU applications are widely used to solve
several computational problems. For example, BarraCUDA is a software that
uses GPU’s to speed up the alignment of short sequence reads to a particular
location on some reference genome.[2] GPU’s have always been extensively
used in the field of computer vision for image processing. It is to be noted,
that most images are represented as dense matrices, and image processing algo-
rithms render themselves to be effectively parallelized as they tend to operate
on stencils(a fixed template of pixels). Since GPU’s are particularly suited for
vector computations, image processing applications typically are designed to
utilize the massive parallelism offered by the GPU’s.

In contrast in the field of Natural Language Processing(NLP), the models
are typically sparse. This implies that language models have a sparse repre-
sentation. Since the model is sparse, the computation does not admit to being
effectively accomplished on the GPU. However recent advances in machine
learning and natural language processing have resulted in the development of
new language models that learn representations. These representations which
are also termed embeddings are a dense representation. One popular tech-
nique of learning word representations is to use Deep Belief Networks. Deep

4

Belief Networks(DBNs) are neural networks which tend to have a large num-
ber of hidden layers. Training language models using DBNs requires massive
amounts of training examples and thus requires massive computation. In this
work, we investigate the performance of training such a language model on the
GPU. At a high level, we measure the performance of the training in terms
of the number of training examples processed per second. We evaluate the
performance in terms of the speed-up achieved on the GPU and compare it
against the CPU. We next briefly describe our experimental setup and describe
our research methodology.

2.2 Overview of the Experimental Setup

We run all our experiments on the GPU on GEForce GT 570 . This GPU
has 480 cores, with a processor clock speed of 1464MHz and a memory clock
speed of 1900MHz. GPU’s in the GEForce family are particularly suited for
research applications. To train the language model, we use a well-known li-
brary called Theano[http://deeplearning.net/software/theano/]. Theano is a
symbolic computation library that is particularly suited for machine learning
applications. It allows for developers to succinctly specify how the parameters
of the model are to be calculated. Using Theano to learn a model, allows the
developer to implement a machine learning algorithm easily as the complexity
involved in explicitly calculating the gradients of the loss function is abstracted
out by Theano. Theano has functionality built in to calculate gradients and
perform mathematical computation easily. Theano also transparently offloads
computation on to the GPU if required. Since training a model, significantly
involves computation required to learn a set of parameters that minimize a
loss function, it is imperative that the functions implemented in Theano are
efficient. This involves performing both macro level optimizations in optimiz-
ing the computational graph and micro level optimizations that target specific
functions. Having described our experimental setup, we now describe at a
high level, our research methodology in identifying bottle necks and optimiz-
ing these bottle necks.

2.3 Research methodology

We follow the below standard procedure to analyze and evaluate the perfor-
mance bottlenecks:

1. Note the number of training examples processed per second on the CPU
and GPU to establish a baseline.

5

http://deeplearning.net/software/theano/

2. Use a profiler to identify top hot spots.

3. Focus on the top hot spots and investigate how they can be optimized

(a) Identify any computational graph optimizations possible to reduce
computation

(b) Optimize function calls by investigating how parallelism can be
boosted.

(c) Micro-optimize function calls

(d) Unit Test the changes to ensure correctness

4. Repeat Steps 1 to 3 if required.

2.4 Experimental Results

2.4.1 Baseline

In this section, we present the baseline numbers for the GPU and the CPU. On
the CPU, the mean training rate was 5512.6 examples/second(σ = 30.315).
On the GPU, the mean training rate was 1265.8 examples/second(σ = 20.604).

The goal is to investigate the performance on the GPU and evaluate the
bottle-necks involved. On scanning the logs, we note that the percentage of
total time approximately spent on Theano processing was 96%.

This implies that it would be fruitful to analyze and focus on optimizations
in Theano to help boost performance. In the next section, we analyze the
performance of Theano using the built in Theano Profiler.

2.4.2 Profiling Theano

We profiled Theano to get some insight into what the performance hot spots
are, so that our efforts could be channeled into optimizing those hot spots.
We show the time taken per call and the fraction of time spent for these
functions in the Table 1 .We note that there is 1 major hot spot, namely
GpuAdvancedIncSubTensor1.

We thus narrow down our goal to optimizing the function GpuAdvancedInc-
SubTensor1. This function typically performs an operation called advanced-
indexing which is an operation that is typically performed while calculating
the gradient of parameter vector and updating them. In order to optimize
this, it is crucial to understand what the operation of advanced-indexing does.

6

Table 2.1: Top 3 Hot spots in Theano

Theano Function Fraction of time spent Time per call to function

GpuAdvancedIncSubtensor1 81.7% 4.60×10−03s
GpuElemwise 9.2% 6.93×10−05s

GpuAlloc 1.7% 1.91×10−04s

This operation operates takes as input 3 parameters: W and Y which are
matrices and a vector I. The vector I refers to (indexes) rows in W . Given a
row of W indexed by I, this operation adds the corresponding row of Y to it
to form the output. This is done for each row indexed by I.

Having understood the operation that we are targeting to optimize, we
now outline in the next section, the optimizations we investigated and present
how the performance of this function improves with these optimizations.

2.4.3 Optimizing advanced indexing

To enable quick testing of advanced indexing, we wrote a standalone script
that invokes the advanced indexing operation. This enables us to quickly test
our fixes and ensure their correctness.

On examining the code for the advanced indexing, the following was noted:

1. The implementation of advanced indexing was done in Python and can
be slower than an implementation in C. Hence it would be beneficial to
rewrite the implementation in C to boost performance.

2. The code was not highly parallelized and had a low degree of parallelism.
So we decided to not only write an implementation of advanced indexing
in C, but parallelize it as well. This was done by writing a CUDA kernel
which would perform the advanced indexing in parallel. More specifically
instead of indexing each row sequentially, each row is indexed in parallel,
and for each row, each cell in the row is added in parallel. This greatly
boosts the parallelism of the algorithm.

3. Another micro-optimization that was tried was to also make the oper-
ation in-place at the cost of an extra memory copy. However this was
shown to give diminishing benefits.

With these optimizations, the mean time taken for indexing 1000 rows is 3.6612
seconds(σ = 0.14116) compared to the baseline where the mean time for in-
dexing 1000 rows was 207.59 seconds (σ = 2.9652). We also noted specifically

7

that the time per function call to advanced indexing had reduced by a factor
of 50.

The above speedup thus results in Advanced Indexing no longer being the
bottle-neck. In the training of the model, we do not index as many rows(as the
context size and batch sizes are smaller) and hence the speed up in training is
expected to be lower. One of the reasons for having small batch sizes is that
the model converges faster. We in fact noted that increasing that batch size to
500 results in a much slower convergence rate of the model(as we will present
in Section 2.4.6).

2.4.4 Speed up in rate of training

On making the above optimization, the mean rate of training is now 3742
examples/s(σ = 32.6496) .

We thus note that we have achieved a reasonable speed up of 3− 4 times
on the GPU with our optimizations and the performance on the GPU is com-
parable to that on the CPU. We also note that advanced indexing is no longer
a major bottleneck in the training task. On performing these optimizations,
it is imperative to do a further analysis on whether further optimizations are
worth the “bang for the buck”. This requires us to analyze exactly what is
limiting the speedup. Thus in the next section we present our analysis on
what is limiting the speed up on the GPU and highlight our findings below
and outline the next steps.

2.4.5 Analysis of limits on training performance on GPU

We profiled the entire application(after we included all the optimizations above)
and analyzed the profile log using NVIDIA Profiler(nvprof). From the profile,
we extracted the following metrics:

1. Compute Utilization: This is the fraction of total time spent executing
on the GPU. We would like the compute utilization to be high. If this
ratio is small, this indicates that most of the time, the GPU’s are idle.
For our task, we note that the compute utilization is 7.4% which is low

2. Compute to Memory Op Ratio:Out of the time spent executing on the
GPU, what fraction of time was spent doing computation to amount of
time spent in transferring data to and from device is the Compute to Op
Ratio. This ratio should be high and at least 10 : 1. We noted that this
metric is 66.72 which is high.

3. We also note the top 2 kernels as follows:

8

(a) Composite Kernel :This kernel performs an element wise operation
on a C array which is contiguous in memory and is highly optimized
with less scope for optimization.

(b) copy kernel : This is a kernel which is a part of the BLAS Library.

(c) Also the above kernels are not expensive as they don’t have expen-
sive operations like exponentiation etc and hence are not bottle-
necks.

Based on the above we conclude the following:
The performance of training on GPU is limited by the low compute uti-

lization which implies that the GPU cores are mostly idle. The low compute
utilization is a fallout of the model, as we are unable to fully utilize the GPU
with our current implementation. One technique of improving compute uti-
lization in this task would be to increase the batch size of examples which
implies that each batch would contain more examples and thus increase the
computation on the GPU. In the next section, we present our results on this
task for increasing batch sizes.

2.4.6 Effect of Batch Size on training and convergence
rates

Currently, the batch size is set to 16. We decided to try a range of increasing
batch sizes from 16 to 512 and measured the training rate and the time taken
by the model to converge to an error less than 0.05. We make the following
observations(see Figure 2.1):

1. The training rate does increase as we increase the batch size.

2. The time taken to converge to a given error grows linearly (note the log
scale on the X-axis) as we increase the batch size

The observation that the convergence rate decreases as we increase the batch
size can be explained by the observations made by [3] that batch training is
generally inefficient as compared to online training. We note that by increasing
the batch size, the updates to weights accumulate and result in larger updates.
This results in the gradient descent taking unreasonably large steps thus pos-
sibly overshooting the local minima on the error surface. We thus conclude by
noting that increasing the batch size is not an effective strategy to speed up
training as the model converges more slowly. In the next section, we highlight
future research directions that could be investigated to speed up training.

9

(a) Effect of batch size on training rate.

(b) Effect of batch size on convergence rate

Figure 2.1: Effects of batch size on training and convergence rates.

2.5 Future Work

One area which could be investigated is to use the distributed algorithms for
calculating gradients(using gradient descent) outlined by Jeffrey Dean et.al in

10

[4] in the model and evaluate its performance. These algorithms update the
weight vector in a distributed fashion (with updates not being synchronized).
It is claimed that distributed stochastic descent performs reasonably well for
the models learnt. It would also be interesting to investigate if performance of
training other models can be optimized on the GPU.A second direction would
be to evaluate if we could effectively use GPU’s for other pre-processing tasks
like annotating the Web etc.

2.6 Conclusion

In this section, we briefly summarize our contributions below:

1. We were able to significantly optimize the operation of advanced indexing
on the GPU in Theano.

2. We showed that this boosted the performance of training on the GPU
by factor of 3-4 times and is comparable to the performance on CPU

3. We were able to analyze exactly what the limiting factors for training
performance were on the GPU and showed that this performance was
limited by low compute utilization.

4. We analyzed the effect of increasing batch size on the training speed and
the convergence rate and concluded that the model converges slower for
larger batch sizes even though we obtain a good speedup in training.

5. We also contributed back our optimizations to the Open source com-
munity so that these optimizations would benefit other members of the
research community as well.

11

Chapter 3

Inducing Language Networks
from Continuous Space Word
Representations1

3.1 Introduction

Unsupervised feature learning (deep learning) utilizes huge amounts of raw
data to learn representations that model knowledge structure and disentan-
gle the explanatory factors behind observed events. Under this framework,
symbolic sparse data is represented by lower-dimensional continuous spaces.
Integrating knowledge in this format is the secret behind many recent break-
throughs in machine learning based applications such as speech recognition,
computer vision, and natural language processing (NLP) [6].

We focus here on word representations (word embeddings) where each word
representation consists of a dense, real-valued vector. During the pre-training
stage, the representations acquire the desirable property that similar words
have lower distance to each other than to unrelated words [7]. This allows
the representations to utilize the abundance of raw text available to learn
features and knowledge that is essential for supervised learning applications

1This is joint work with Bryan Perozzi and Rami Al Rafou’ published as: Bryan
Perozzi, Rami Al-Rfou, Vivek Kulkarni, and Steven Skiena. Inducing language networks
from continuous space word representations. In Pierluigi Contucci, Ronaldo Menezes, An-
drea Omicini, and Julia Poncela-Casasnovas, editors, Complex Networks V, volume 549
of Studies in Computational Intelligence, pages 261–273. Springer International Publish-
ing, 2014. ISBN 978-3-319-05400-1. doi: 10.1007/978-3-319-05401-8 25. URL http:

//dx.doi.org/10.1007/978-3-319-05401-8_25.Original copyright notice is given to the
publication in which the material was originally published.With kind permission of Springer
Science and Business media

12

http://dx.doi.org/10.1007/978-3-319-05401-8_25
http://dx.doi.org/10.1007/978-3-319-05401-8_25

such as part-of-speech tagging, named entity recognition, machine translation,
language modeling, sentiment analysis etc [8–11].

Several methods and algorithms have been proposed to learn word rep-
resentations along different benchmarks for evaluation [12]. However, these
evaluations are hard to comprehend as they squash the analysis of the repre-
sentation’s quality into abstract numbers. To enable better understanding of
the actual structure of word relationships which have been captured, we have
to address the problems that come with analyzing high-dimensional spaces
(typically between 50-1000 dimensions). We believe that network induction
and graph analysis are appropriate tools to give us new insights.

In this work, we seek to induce meaningful graphs from these continuous
space language models. Specifically, our contributions include:

• Analysis of Language Network Induction - We propose two criteria
to induce networks out of continuous embeddings. For both methods, we
study and analyze the characteristics of the induced networks. Moreover,
the networks generated lead to easy to understand visualizations.

• Comparison Between Word Representation Methods - We eval-
uate the quality of two well known words embeddings. We contrast
between their characteristics using the analysis developed earlier.

The remainder of this paper is set up as follows. First, in Section 3.2, we
describe continuous space language models that we consider. In Section 3.3, we
discuss the choices involved with inducing a network from these embeddings
and examine the resulting networks. Finally, we finish with a discussion of
future work and our conclusions.

3.2 Continuous Space Language Models

The goal of a language model is to assign a probability for any given sequence
of words estimating the likelihood of observing such a sequence. The training
objective usually maximizes the joint probability of the training corpus. A
continuous space probabilistic language model aims to estimate such probabil-
ity distribution by, first, learning continuous representations for the words and
phrases observed in the language. Such mapping is useful to cope with the
curse of dimensionality in cases where data distribution is sparse as natural
language. Moreover, these representations could be used as features for natu-
ral language processing applications, domain adaptation and learning transfer
scenarios that involve text or speech.

More precisely, given a sequence of words S = [w1 . . . wk], we want to max-
imize P (w1, . . . , wk) and learn representations for words. During the training

13

process the continuous space language model learns a mapping of words to
points in Rd, where d usually ranges between 20 − 200. Prior to training
we build a vocabulary V that consists of the most frequent |V | words, we
map each word to a unique identifier that indexes an embeddings matrix C
that has a size of |V | × d. The sequence S is now represented by a matrix[
C[w1]

T . . . C[wk]
T
]T

, enabling us to compose a new representation of the
sequence using one of several compositional functions. The simplest is to con-
catenate all the rows in a bigger vector with size kd. Another option is to sum
the matrix row-wise to produce a smaller representation of size d. While the
first respects the order of the words, it is more expensive to compute.

Given a specific sequence representation as an input, we will define a task
that the model should solve, given the sequence representation as the only in-
put. Our choice of the task ranges from predicting the next/previous word(s)
to distinguishing between observed phrases and other corrupted copies of them.
The chosen task and/or the compositional function influence the learned rep-
resentations greatly as we will discuss later.

We will focus our investigations, here, on two embeddings which are trained
with different tasks and compositional functions; the Polyglot and SkipGram
embeddings.

3.2.1 Polyglot

The Polyglot project offers word representations for each language in Wikipedia
[13]. For large enough Wikipedias, the vocabulary consists of the most fre-
quent 100,000 words. The representations are learned through a procedure
similar to the one proposed by [8]. For a given sequence of words St =
[wt−k . . . wt . . . wt+k] observed in the corpus T , a corrupted sequence S ′t will
be constructed by replacing the word in the middle wt with a word wj chosen
randomly from the vocabulary V . Once the vectors are retrieved, we com-
pose the sequence representation by concatenating the vectors into one vector
called the projection layer St. The model is penalized through the hinge loss
function,

1

T

t=T∑
t=1

|1− score(S ′t) + score(St)|+

where score is calculated through a hidden layer neural network

score(St) = W2(tanh(W1St + b1)) + b2.

14

For this work, we use the Polyglot English embeddings2 which consist of
the 100,000 most frequent words in the English Wikipedia, each represented
by a vector in R64.

3.2.2 SkipGram

While the Polyglot embeddings consider the order of words to build the rep-
resentation of any sequence of words, the SkipGram model proposed by [14]
maximizes the average log probability of the context words independent of
their order

1

T

T∑
t=1

[k∑
j=−k

log p(wt+j|wt)
]

where k is the size of the training window. This allows the model to scale
to larger context windows. In our case, we train a SkipGram model3 on the
English Wikipedia corpus offered by the Polyglot project for the most frequent
350,000 words with context size k set to 5 and the embeddings vector size set
to 64.

3.2.3 Random

In order to have a baseline, we also generate random embeddings for the
most frequent 100,000 words. The initial position of words in the Polyglot
embeddings were sampled from a uniform distribution, therefore, we generate
the random embedding vectors by sampling from U(m̄−σ, m̄+σ), where m̄ and
σ are the mean and standard deviation of the trained Polyglot embeddings’
values respectively. This baseline allows us to see how the language networks
we construct differ from networks induced from randomly initialized points.

3.3 Word Embedding Networks

We now consider the problem of constructing a meaningful network given a
continuous space language model. As there are a variety of ways in which such
a network could be induced, we start by developing a list of desirable properties
for a language network. Specifically, we are seeking to build a network which:

2Polyglot embeddings and corpus available at http://bit.ly/embeddings
3SkipGram training tool available at https://code.google.com/p/word2vec/

15

http://bit.ly/embeddings
https://code.google.com/p/word2vec/

1. Is Connected - In a connected graph, all the words can be related to
each other. This allows for a consistent approach when trying to use the
network to solve real-world problems.

2. Has Low Noise - Minimizing the spurious correlations captured by our
discrete representation will make it more useful for application tasks.

3. Has Understandable Clusters - We desire that the community struc-
ture in the network reflects the syntactic and semantic information en-
coded in the word embeddings.

We also require a method to compute the distance in the embedding space.
While there are a variety of metrics that could be used, we found that Eu-
clidean distance worked well. So we use:

dist(x, y) = ||x− y||22 = (
m∑
i=1

(xi − yi)2)(1/2) (3.1)

where x and y are words in an d-dimensional embedding space (x, y ∈ Rd).
With these criteria and a distance function in hand, we are ready to proceed.
We examine two approaches for constructing graphs from word embeddings,
both of which seek to link words together which are close in the embedding
space. For each method, we induce networks for the 20, 000 most frequent
words for each embedding type, and compare their properties.

3.3.1 k-Nearest Neighbors

The first approach we will consider is to link each word to the k closest points
in the embedding space. More formally, we induce a set of directed edges
through this method:

Eknn = {(u, v) : min
x
dist(u, v)} ∀u, v ∈ V, x ≤ k (3.2)

where minx denotes the rank of the x-th number in ascending sorted order
(e.g. min0 is the minimum element, min1 the next smallest number). After
obtaining a directed graph in this fashion, we convert it to an undirected one.

The resulting undirected graph does not have a constant degree distribu-
tion. This is due to the fact that the nearest-neighbor relation may not be
symmetric. Although all vertices in the original directed graph have an out-
degree of k, their orientation in the embedding space means that some vertices
will have higher in-degrees than others.

Results from our investigation of basic network properties of the k-NN
embedding graphs are shown in Figures 3.1 and 3.2. In (3.1a) we find that the

16

2 3 4 5 6 7 8 9 10
nearest neighbors

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f

co
n
n
e
ct

e
d
 c

o
m

p
o
n
e
n
ts

0.95

0.96

0.97

0.98

0.99

1.00

G
C

C
 C

o
v
e
ra

g
e
 =

 |G
C

C
|/
|V
|

SkipGram (# Comp)
Polyglot (# Comp)
Random (# Comp)
SkipGram (Coverage)
Polyglot (Coverage)
Random (Coverage)

(a) k-NN Coverage

0.5 1.0 1.5 2.0 2.5 3.0
d

0.0

0.5

1.0

1.5

2.0

N
u
m

b
e
r

o
f

co
n
n
e
ct

e
d
 c

o
m

p
o
n
e
n
ts

1e4

0.0

0.2

0.4

0.6

0.8

1.0

G
C

C
 C

o
v
e
ra

g
e
 =

 |G
C

C
|/
|V
|

SkipGram (# Comp)
Polyglot (# Comp)
Random (# Comp)
SkipGram (Coverage)
Polyglot (Coverage)
Random (Coverage)

(b) d-Threshold Coverage

Figure 3.1: Graph Coverage. The connected components and relative size of
the Giant Connected Component (GCC) in graphs created by both methods.
We see that very low values of k quickly connect the entire network (3.1a),
while values of d appear to have a transition point before a GCC emerges
(3.1b).

embedding graphs have few disconnected components, even for small values of
k. In addition, there is an obvious GCC which quickly emerges. In this way,
the embeddings are similar to the network induced on random points (which
is fully connected at k = 2). We performed an investigation of the smaller
connected components when k was small, and found them to contain dense
groupings of words with very similar usage characteristics (including ordinal
values, such as Roman numerals (II,III,IV)).

In (3.2a) we see that the clustering coefficient initially grows quickly as
we add edges to our network (k ≤ 6), but has leveled off by (k = 20). This
tendency to bridge new clusters together, rather than just expand existing
ones, may be related to the instability of the nearest neighbor [15] in high
dimensional spaces. In (3.2b), we see that the networks induced by the k-NN

17

are not only connected, but have a highly modular community structure.

3.3.2 d-Proximity

The second approach we will consider is to link each word to all those within
a fixed distance d of it:

Eproximity = {(u, v) : dist(u, v) < d} ∀u, v ∈ V (3.3)

We perform a similar investigation of the network properties of embedding
graphs constructed with the d-Proximity method. The results are shown in
Figures 3.1 and 3.2. We find that networks induced through this method
quickly connect words that are near each other in the embedding space, but
do not bridge distant groups together. They have a large number of connected
components, and connecting 90% of the vertices requires using a relatively
large value of d (3.1b).

The number of connected components is closely related to the average
distance between points in the embedding space (around d =(3.25, 3.80, 2.28)
for (SkipGram, Polyglot, Random)). As the value of d grows closer to this
average distance, the graph quickly approaches the complete graph.

Figure 3.2a shows that as we add more edges to the network, we add
triangles at a fast rate than using the k-NN method.

3.3.3 Discussion

Here we discuss the differences exposed between the methods for inducing word
embeddings, and the differences exposed between the embeddings themselves.

Comparison of Network Induction Methods.

Which method then, provides the better networks from word embeddings? To
answer this question, we will use the properties raised at the beginning of this
section:

1. Connectedness - Networks induced through the k-NN method con-
nect much faster (as a function of edges) than those induced through
d-Proximity (Fig. 3.1). Specifically, the network induced for k = 6 has
nearly full coverage (3.1a) with only 100K edges (3.2a).

2. Spurious Edges - We desire that our resulting networks should be
modular. As such we would prefer to add edges between members of
a community, instead of bridging communities together. For low values

18

0 1 2 3 4 5
|E| 1e5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
v
e
ra

g
e
 c

lu
st

e
ri

n
g
 c

o
e
ff

ic
ie

n
t

(C
)

kNN-SkipGram

kNN-Polyglot

kNN-Random

d-SkipGram

d-Polyglot

d-Random

(a) Clustering Coeff., C

0 5 10 15 20 25 30 35
Nearest Neighbors

0.0

0.2

0.4

0.6

0.8

1.0

M
od

ul
ar

ity Polyglot
SkipGram
Random

(b) k-NN Modularity.,Qknn

Figure 3.2: Community Metrics. In (3.2a), C shown for k = [2,30] and
d = [0.8,1.6] against number of edges in the induced graph. When the total
number of edges is low (|E| < 150, 000), networks induced through the k-NN
method have more closed triangles than those created through d-Proximity.
In (3.2b), Qknn starts high, but slowly drops as larger values of k include more
spurious edges.

of |E|, the k-NN approach creates networks which have more closed
triangles (3.2a). However this does not hold in networks with more
edges.

3. Understandable Clusters - In order to qualitatively examine the qual-
ity of such a language network, we induced a subgraph with the k-NN of
the most frequent 5,000 words in the Polyglot embeddings for English.
Figure 3.3 presents the language network constructed for (k = 6).

According to our three criteria, k-NN seems better than d-Proximity. In
addition to the reasons we already listed, we prefer k-NN as it seems to re-
quire less parameterization (d-Proximity has a different optimal d for each

19

embedding type).

Comparison of Polyglot and SkipGram.

Having chosen to use k-NN as our preferred method for inducing language
networks, we now examine the difference between the Polyglot and SkipGram
networks.

Clustering Coefficient. We note that in Figure 3.2a, the SkipGram model
has a consistently higher clustering coefficient than Polyglot in k-NN networks.
A larger clustering coefficient denotes more triangles, and this may indicate
that points in the SkipGram space form more cohesive local clusters than
those in Polyglot. Tighter local clustering may explain some of the interesting
regularities observed in the SkipGram embedding [16].

Modularity. In Figure 3.2b, we see that Polyglot modularity is consistently
above the SkipGram modularity. SkipGram’s embeddings capture more se-
mantic information about the relations between words, and it may be that
causes a less optimal community structure than Polygot whose embeddings
are syntactically clustered.

Clustering Visulizations. In order to understand the differences between
the language networks better, we conducted an examination of the clusters
found using the Louvain method [17] for modularity maximization. Figure 3.4
examines communities from both Polyglot and SkipGram in detail.

3.4 Related Work

Here we discuss the relevant work in language networks, and word embeddings.
There is also related work on the theoretical properties of nearest neighbor
graphs, consult [19] for some basic investigations.

3.4.1 Language Networks

Word Co-occurrences. One branch of the study of language as networks seeks
to build networks directly from a corpus of raw text. [20] examine word co-
occurrence graphs as a method to analyze language. In their graph, edges
connect words which appear below a fixed threshold (d ≤ 2) from each other
in sentences. They find that networks constructed in this manner show both
small world structure, and a power law degree distribution. Language networks
based on word co-occurrence have been used in a variety of natural language
processing tasks, including motif analysis of semantics [21], text summarization
[22] and resolving disambiguation of word usages [23].

20

Figure 3.3: Polyglot Nearest Neighbor Graph. Here we connect the
nearest neighbors (k = 6) of the top 5,000 most frequent words from the
Polyglot English embeddings. Shown is the giant connected component of the
resulting graph (|V | = 11, 239; |E| = 26, 166). Colors represent clusters found
through the Louvain method (modularity Q = 0.849). Vertex label size is
determined by its PageRank. Best viewed in color.

Hypernym relations. Another approach to studying language networks re-
lies on studying the relationships between words exposed by a written language
reference. [24] use a thesaurus to construct a network of synonyms, which they
find to find to exhibit small world structure. In [25], Sigman and Cecchi in-
vestigate the graph structure of the Wordnet lexicon. They find that the

21

(a) Professions (SkipGram) (b) Professions (Polyglot)

(c) Locations (SkipGram) (d) Locations (Polyglot)

Figure 3.4: Comparison of clusters found in Polyglot and SkipGram language net-
works. Polyglot clusters viewed in context of the surrounding graph, SkipGram
clusters have been isolated to aide in visualization. SkipGram’s bag-of-words ap-
proach favors a more semantic meaning between words, which can make its clusters
less understandable (Note how in Figure 3.4c Petersburg is included in a cluster of
religious words, because of Saint.) Images created with Gephi [18].

22

semantic edges in Wordnet follow scale invariant behavior and that the inclu-
sion of polysemous edges drastically raises the clustering coefficient, creating
a small world effect in the network.

Relation to our work. Much of the previous work in language networks
build networks that are prone to noise from spurious correlations in word
co-occurrence or infrequent word senses [20, 25]. Dimensionality reduction
techniques have been successful in mitigating the effects of noise in a variety
of domains. The word embedding methods we examine are a form of dimen-
sionality reduction that has improved performance on several NLP tasks and
benchmarks.

The networks produced in our work are considerably different from lan-
guage networks created by previous work that we are aware of. We find that
our degree distribution does appear to follow a power-law (like [20, 24, 25])
and we have some small world properties like those present in those works
(such as C � Crandom). However, the average path length in our graphs is
considerably larger than the average path length in random graphs with the
same node and edge cardinalities. Table 3.1 shows a comparison of metrics
from different approaches to creating language networks.4

|V | |E| C Crandom pl plrandom γ
[20](UWN) 478, 773 1.77× 107 0.687 1.55× 10−4 2.63∗ 3.03 -1.50,-2.70
[20](RWN) 460, 902 1.61× 107 0.437 1.55× 10−4 2.67∗ 3.06 -1.50,-2.70
[24](PRE) 30, 244 − 0.53 0.002 3.16 − −
Polyglot, 6-NN 20, 000 96, 592 0.241 0.0004 6.78∗ 4.62∗ -1.31
SkipGram, 6-NN 20, 000 94, 172 0.275 0.0004 6.57∗ 4.62∗ -1.32

Table 3.1: A comparison of properties of language networks from the literature
against those induced on the 20,000 most frequent words in the Polyglot and
SkipGram Embeddings. (C clustering coefficient, pl average path length, γ
exponent of power law fits to the degree distribution) ‘*’ denotes values which
have been estimated on a random subset of the vertices.

3.4.2 Word Embeddings

Distributed representations were first proposed by [26], to learn a mapping of
symbolic data to continuous space. These representations are able to capture
fine grain structures and regularities in the data [16]. However, training these

4Our induced networks available at http://bit.ly/inducing_language_networks

23

http://bit.ly/inducing_language_networks

models is slow due to their complexity. Usually, these models are trained using
back-propagation algorithm [27] which requires large amount of computational
resources. With the recent advancement in hardware performance, [28] used
the distributed representations to produce a state-of-the-art probabilistic lan-
guage model. The model maps each word in a predefined vocabulary V to
a point in Rd space (word embeddings). The model was trained on a cluster
of machines for days. More applications followed, [8] developed SENNA, a
system that offers part of speech tagger, chunker, named entity recognizer,
semantic role labeler and discriminative syntactic parser using the distributed
word representations. To speed up the training procedure, importance sam-
pling [29] and hierarchical softmax models [30, 31] were proposed to reduce
the computational costs. The training of word representations involves min-
imal amount of language specific knowledge and expertise. [13] trained word
embeddings for more than a hundred languages and showed that the repre-
sentations help building multilingual applications with minimal human effort.
Recently, SkipGram and Continuous bag of words models were proposed by
[14] as simpler and faster alternatives to neural network based models.

3.5 Conclusions

We have investigated the properties of recently proposed distributed word
representations, which have shown results in several machine learning appli-
cations. Despite their usefulness, understanding the mechanisms which afford
them their characteristics is still a hard problem.

In this work, we presented an approach for viewing word embeddings as a
language network. We examined the characteristics of the induced networks,
and their community structure. Using this analysis, we were able to develop
a procedure which develops a connected graph with meaningful clusters. We
believe that this work will set the stage for advances in both NLP techniques
which utilize distributed word representations, and in understanding the prop-
erties of the machine learning processes which generate them.

Much remains to be done. In the future we would like to focus on comparing
word embeddings to other well known distributional representation techniques
(e.g. LDA/LSA), examining the effects of different vocabulary types (e.g.
topic words, entities) on the induced graphs, and the stability of the graph
properties as a function of network size.

24

Acknowledgments

This research was partially supported by NSF Grants DBI-1060572 and IIS-
1017181, with additional support from TASC Inc, and a Google Faculty Re-
search Award.

25

Chapter 4

Multilingual Named Entity
Recognition1

4.1 Introduction

Named entity recognition (NER) is an essential pre-processing stage in many
NLP and Information Retrieval (IR) systems. Most of the successful ap-
proaches in NER rely on supervised learning [32, 33]. Despite several shared
tasks (MUC, CoNLL, ACE), many languages still lack the necessary resources
to build NER annotators. In addition, it is often hard to find NLP practition-
ers proficient in every language of interest. This makes developing multilingual
applications quite tedious.

Here, we address both bottlenecks by developing a system which we call
mmner (Massive Multilingual NER). mmner uses language-independent tech-
niques which enable the automated construction of NER annotators for 40
languages, through the use of link structure and distributed word represen-
tations. Distributed word representations capture the semantic and syntactic
characteristics of words through unsupervised learning. They have been used
successfully as features in NLP applications [34, 35]. They have also been
proposed as a cornerstone for developing multilingual applications [13].

To address the lack of human annotated datasets for multilingual NER, our
method uses the internal links between the pages of Wikipedia. When the
links refer a page mentioning an entity, the sentence is considered a candidate
for inclusion in our corpus. Wikipedia covers well over a hundred languages,
and its link structure has been shown to result in better generalization than
using other human-annotated datasets [36].

Previous work has utilized the Wikipedia link structure through linguisti-

1This is joint work with Bryan Perozzi and Rami Al Rafou’.

26

cally inspired, language-specific preprocessing rules [37–40]. In stark contrast,
our method uses only language independent transformations to generate a
training dataset.

Our major contributions are the following:

1. NER annotators and datasets for 40 languages.2 These annotators
are valuable, especially for resource scarce languages, like Serbian, In-
donesian, Persian and Hebrew.

2. Techniques for dealing with missing labels in annotated datasets. We
propose oversampling of entity labels, and co-reference resolution to deal
with bias introduced by Wikipedia style guidelines. These techniques
improve the performance of our trained models by at least 45% F1 on
CoNLL datasets.

3. Comparative analysis using statistical machine translation to evaluate
the performance of our system in resource-scarce languages.

Section 4.2 defines the problem and presents a term-based classification
formulation. Section 4.3 highlights our approach to generate training data,
and Section 4.4 evaluates the results. We finalize with a comparative study
across all languages in Section 4.5.

4.2 Semi-supervised Learning

The Named Entity Recognition (NER) task is to identify sequences of tokens
as entities, and classify them into one of several categories.

In order to deal with noisy training data, we make different design decisions.
First, we use distributed word representations (or word embeddings) as fixed
features to provide prior knowledge of language that is independent of the
labeled data. Secondly, to minimize the effect of noise in inference, we use
a discriminative classifier (a neural network). This avoids errors which can
occur from propagating labels as features.

4.2.1 Learning Word Embeddings

Given a language with vocabulary V , a word embedding is a mapping function
Φ: w 7→ Rd, where w ∈ V and d ∈ [50, 500]. We use the Polyglot3 embeddings
[13] as our sole features for each language under investigation. The Polyglot

2Available at http://entityextractor.appspot.com.
3Available: http://bit.ly/embeddings

27

http://entityextractor.appspot.com
http://bit.ly/embeddings

embeddings were trained using an objective function proposed by [41], on
Wikipedia text without any labeled data. The objective function respects
the order of words, which makes it easier to distinguish proper nouns and
capitalized words without manual encoding or processing.

4.2.2 Discriminative Learning

We consider NER to be a classification problem. More formally, let Wn
i =

(wi−n · · ·wi · · ·wi+n) be a phrase centered around the word wi with a window
of size n. We seek to learn a model F : Wn

i 7→ Y , where Y is the set of tags.
First, we map the phrase Wn

i to its embedding representation

Φn
i = [Φ(wi−n); . . . ; Φ(wi); . . . ; Φ(wi+n)]

Next, we learn a model Ψy to score tag y given Φn
i , i.e Ψy : Φn

i 7→ R, using a
neural network with one hidden layer of size h

Ψy(Φ
n
i) = sT (tanh(WΦn

i + b)) (4.1)

where W ∈ Rh×(2n+1)d and s ∈ Rh are the first and second layer weights of the
neural network, and b ∈ Rh are the bias units of the hidden layer. Finally, we
construct a one-vs-all classifier F and penalize it by the following hinge loss,

J =
1

m

m∑
i=1

max
(

0, 1−Ψti(Φ
n
i) + max

y 6=ti
y∈Y

Ψy(Φ
n
i)
)

where ti is the correct tag of the word wi, and m is the size of the training set.

4.2.3 Optimization

We learn the parameters θ = (s,W,b) via backpropagation [42] with stochas-
tic gradient descent [43]. As the stochastic optimization performance is de-
pendent on a good choice of the learning rate, we automate the learning rate
selection through an adaptive update procedure [44]. This results in sepa-
rate learning rates ηi for each individual parameter, θi. More specifically the
learning rate at step t for parameter i is given by the following:

ηi(t) =
1.0√∑t

s=1

(∂J(s)
∂θi(s)

)2 (4.2)

28

4.3 Extracting Entity Mentions

In this section, we outline our two-step approach for creating a named entity
training corpus from Wikipedia. First, we categorize the pages into entity
classes, using Freebase. Second, we extend the annotations through over-
sampling and co-reference resolution.

4.3.1 Article Categorization

Wikipediaconsists of interlinked articles on a variety of topics. We categorize
the topics into the following categories, Y = {PERSON, LOCATION, ORGA-

NIZATION, NONENTITY} using Freebase [45] attributes.
The result is a mapping of Wikipedia page titles and their redirects to

Y . If an internal link points to any of these titles, we consider it an entity
mention. Table 4.1 shows the percentage of pages that are covered by Free-
base for some of the languages we consider. The entity coverage varies with
each language, and this greatly changes the label distribution of the generated
training data.

4.3.2 Missing Links

Unfortunately, generating a training dataset directly from the link structure
results in very poor performance with DevF1 < 10% in English, Spanish and
Dutch. This is a consequence of Wikipedia style guidelines4. Editors are
instructed to link the first mention in the page, but not later ones. This
results in leaving most entity mentions unmarked. This effect is examined in
Table 4.2, which contrasts the percentage of words that are covered by entity
phrases (ρ) in both CoNLL and Wikipedia. In the reminder of this section
we present our solution to this problem.

Oversampling

In the context of a cost sensitive learner, such a skewed label distribution leads
to under-performing models [46, 47]. To overcome this label bias, we change
the label distribution by oversampling from the entity classes. The intuition is
that untagged words are not necessarily non-entities. Conversely, we have high
confidence in the links which have been explictly tagged by users. Therefore,
we consider all the non-entity words to be negatively labeled. We oversample
from the positive class (the entity tags), uniformly.

4http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

29

http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking

Language Coverage Language Coverage
Malay 37.8% Arabic 15.6%
English 35.2% Dutch 14.7%
Spanish 24.8% Swedish 10.2%
Greek 24.3% Hindi 8.8%

Table 4.1: Percentage of Wikipedia pages identified by Freebase as being
about entities. There is a wide disparity across languages.

Co-reference Resolution

While oversampling mitigates the effect of the skewed label distributions, it
does not address the stylistic bias with which Wikipedia editors create links.
The first bias is to link only the first mention of a name in an article. This
canonical mention is usually the full name of an entity, and not the abbreviated
form used throughout the remainder of the article. Moreover, there are no self-
referential links inside an entity’s article (e.g. on Barack Obama’s page, none
of the sentences mentioning him are linked).

In 200K examples tagged with person, we found 45K examples belong to
three terms mentions, 140K to two terms mentions and only 15K belonging
to single term mentions. This bias against single term mentions in links does
not reflect the true distribution of named entities in the text.

In order to more accurately reflect the nature of the data, we extend our
annotations differently for each page. If a word appeared in an entity mention,
or in the title (for entity pages), then we consider all appearances of this word
in the current page to be annotated with the same tag. In the case of multiple
tags for the same word, we use the most frequent tag in the article.

For example: after this procedure, every mention of ‘Barack Obama’, Barack,
and Obama in the article on Barack Obama will be considered a link referring to
a person entity. In order to avoid mislabeling functional words which appear
in links (e.g. of, the, de) we exclude the most frequent 1000 words in our
vocabulary. This extension can be viewed as first-order coreference resolution
stage where we match mentions depending on string matching.

4.4 Experiments

In this section, we evaluate the performance of mmner stage-wise on CoNLL
datasets to demonstrate the efficiency of the proposed solutions to deal with
missing links in the Wikipedia markup and missing attributes in Freebase.

30

Language
% Entity Words
CoNLL Wiki

English 16.76% 2.34%
Spanish 12.60% 2.12%
Dutch 9.29% 2.28%

Table 4.2: Percentage of words that are covered by entities phrases in each
corpus. Hyperlinks under-represent named entities in text mandating over-
sampling.

4.4.1 Testing Datasets

We evaluate our models on the CoNLL 2002 Spanish and Dutch datasets
[48], and the CoNLL 2003 English dataset [49]. There are a variety of ortho-
graphic and contextual differences between Wikipedia and CoNLL. Training
on Wikipediaresults in low scores on CoNLL testing datasets compared to
models trained on CoNLL directly [36].

Common differences between the datasets include: trailing periods, lead-
ing delimiters, and modifiers and annotators’ disagreements. Specifically, the
English CoNLL dataset has an over representation of upper case words and
sports teams. In the Dutch dataset, country names were abbreviated after
the journalist name. For example, Spain will be mapped to Spa and Italy
to Ita. This leads to more out of vocabulary (OOV) terms for which Poly-
glot does not have word embeddings. Such notational differences pose more
harm to our performance than other approaches because we do not rely on
any tailored preprocessing steps.

4.4.2 Results

Here we present the experiment results of mmner evaluated on CoNLL. We
train our annotators on datasets of size 100K examples for 50 epochs.

Oversampling (mmnerOS): Figure 4.1 shows the results of oversampling.
The first point corresponds to the original distribution of labels in Wikipedia
text, where ρ ∼= 2.5%. We observe that regardless of the chosen ρ, oversampling
improves the results. This improvement is quite stable when 0.25 < ρ < 0.75,
and the Exact F1 score is increased by at least 40% for all languages we
consider.

Coreference (mmnerCOR+OS): We apply coreference resolution stage on
Wikipedia text before oversampling. Figure 4.2 shows that the F1 improve-
ments we observe in English, Spanish, and Dutch are significant, especially
when ρ ≤ 0.5. Most of this improvement is due to higher recall on the tag
person.

31

0.0 0.2 0.4 0.6 0.8 1.0
ρ

0

10

20

30

40

50

60

70
Ex

ac
t F

1

English
Spanish
Dutch

Figure 4.1: Performance of oversampling entities (mmnerOS) on Dev datasets.

Table 4.3 shows that oversampling (mmnerOS) alone is able to get com-
petitive results. With coreference applied to the data first (mmnerCOR+OS),
we outperform previous work on English and Spanish. Most of mmner Dutch
errors appear in the category of Organization. mmner shows this perfor-
mance without applying any language-specific rules.

4.5 Comparative Study

In order to evaluate mmner performance on the languages we do not have
human annotated data for, in this case 37 languages, we develop a benchmark
based on statistical machine translation. 1) We annotate English Wikipedia
sentences using Stanford NER. 2) We randomly pick 1500 sentences that
have at least one entity detected. 3) We translate these sentences using
Google translate to 40 languages. 4) We compare the number of entity
chunks our annotators find to the ones detected by Stanford NER.

Specifically, we define the count of an entity type e appearing in an anno-
tated English sentence Sen to be Ce(Sen), and the count that our annotator
produces in the destination language L to be Ce(SL). We define two classes of

32

0.2 0.3 0.4 0.5 0.6 0.7 0.8
ρ

5

0

5

10

15

20
Ex

ac
t F

1
 Im

pr
ov

em
en

t
English
Spanish
Dutch

Figure 4.2: Performance improvement on CoNLLDev datasets after applying
coreference stage first on Wikipedia before oversampling.

error measures: omitting entities EM and adding entities EA, as the following

Ze =
∑
S

Ce(Sen)

EM(e, L) =
∑
S

max(0, Ce(Sen)− Ce(SL))

Ze

EA(e, L) =
∑
S

max(0, Ce(SL)− Ce(Sen))

Ze

For brevity, we show our error analysis only for the person category. Sim-
ilar conclusion could be drawn for other categories. Figure 4.3 shows the per-
formance of our system compared to other annotators; OpenNLP {English,
Spanish, Dutch}, NLTK English, and Stanford German. Languages with
the largest number of Wikipedia pages like English (en), French (fr), Spanish
(es) and Portuguese (pt) show strong and consistent performance.

Our benchmark also highlights language specific issues. The poor perfor-
mance in Japanese (ja) is due to the mismatch between the embedding vocab-
ulary and the evaluation tokenizer. Vietnamese (vi) annotator is aggressive

33

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

EM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E A

de el

en vi

it

arcs et

id

es
ru

nl

pt

no
t r lv

lt
es

th

ro en

pl
fr

bg

hr

de da
fa hi

fi

hu

ja

he

sr

ko
sv

sk

nl

m s

sl

enen

en
es

nl

en

PERSON

Stanford

OpenNLP

NLTK

OurjSystem

Figure 4.3: Error analysis of mmner on person category compared to other
systems.

34

Dev English Spanish Dutch
mmnerOS 62.9 56.7 53.2
mmnerCOR+OS 72.0 59.0 56.9
(Nothman 2013) 67.9 60.7 62.2

Test
mmnerOS 58.5 58.5 51.5
mmnerCOR+OS 66.9 61.5 56.3
(Nothman 2013) 61.3 61.0 64.0

Table 4.3: Exact F1 Performance on CoNLL corpora. The best ρ on the Dev
is used to set ρ for the Test dataset.

in annotating chunks as Location (EA = 0.6) because there are more pages
Vietnamese Freebase identified as Location. Google Translate does not
translate the entities efficiently in some languages. This is the reason behind
the bad performance of Greek (el) and Thai (th). We outperform OpenNLP
and NLTK, by a significant margin. mmner German annotator covers more
person entities than Stanford without adding many false positives.

4.6 Related Work

Wikipedia has been used for generating NER datasets, [37] and [38] used
first sentences of Wikipedia articles to build their datasets. The first used
Wordnet as a supporting resource while the second relied on the existence
of a part of speech tagger to clean their annotations. Following their efforts
on utilizing Wikipedia metadata, [50] utilized the inter-wiki links to build
annotated dataset using several hand crafted rules. Such approach has been
extended to several languages [39, 40]. Parallel data was used to help building
multilingual NER [51]. We distinguish our work by avoiding any language
specific knowledge or expertise. We use automatically learned features and
process the noisy datasets with no lexical, morphological or syntactic rules.
This simplicity does not compromise the quality and still allows us to cover
40 languages compared to 9 languages offered by [40].

4.7 Conclusion

We successfully built a multilingual NER system for 40 languages with no
language specific knowledge or expertise. We use automatically learned fea-
tures, and apply language agnostic data processing techniques. The system
outperforms previous work in several languages and competitive in the rest

35

on human annotated datasets. We demonstrate its performance on the rest of
the languages, by a comparative analysis using machine translation. Our ap-
proach yields highly consistent performance across all languages. Wikipedia
Cross-lingual links will be used in combination with Freebase to extend our
approach to all languages.

36

Chapter 5

Conclusion

5.1 Conclusions

In this thesis we have demonstrated the following:

• The performance speedup obtained in training the current neural net-
work language model is limited by the low compute utilization of the
GPU and hence given the current language model, GPU’s are not well
suited for training them.

• We have investigated some of the structural properties of 2 classes of
word embeddings: Polyglot and Skipgram, and demonstrated rich but
varied community structure over networks induced on these word em-
beddings.

• Finally we present a Named Entity Recognition system for over 40 lan-
guages using only language agnostic techniques for dealing with noisy
training data and no explicit feature engineering. Importantly we were
able to demonstrate that using distributed word representations along
with language agnostic techniques can be effectively used to learn mod-
els which perform competitively on standard datasets when compared
models which use a slew of heuristics and language aware techniques.

• We also present a novel technique to evaluate the performance of our
models on languages for which no access to a gold standard test data set
was available.

37

5.2 Future Work

One can explore the following research directions from this thesis,which are
enumerated below:

• In a recent paper [52] it is shown that computing word embeddings can
be significantly simplified by using a technique called Hellinger PCA.
It would be interesting to investigate the properties (including network
structure) of embeddings learnt through Hellinger PCA and how they
compare to Polyglot and Skipgram embeddings.

• Using embeddings trained on corpora from different time periods, one
could analyze the network of these word embeddings and seek to investi-
gate how word clusters evolve over time. This could help provide insights
into how words change their usage and meaning across time.

• From an engineering standpoint, one could seek to extend the built NER
system for more languages and thus scale it up. One can also proceed
to analyze the performance of languages which are poor and attempt
to derive any language agnostic heuristics that could help boost the
performance or identify further systemic errors that contribute to poor
performance.

38

Bibliography

[1] Y. Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2013.

[2] The barracuda project. http://seqbarracuda.sourceforge.net/

index.html.

[3] D. Randall Wilson and Tony R. Martinez. The general inefficiency of
batch training for gradient descent learning. Neural Netw., 16(10):1429–
1451, December 2003. ISSN 0893-6080. doi: 10.1016/S0893-6080(03)
00138-2. URL http://dx.doi.org/10.1016/S0893-6080(03)00138-2.

[4] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc Le, Mark Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, and Andrew Ng. Large scale distributed deep networks. In
P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 25,
pages 1232–1240. 2012. URL http://books.nips.cc/papers/files/

nips25/NIPS2012_0598.pdf.

[5] Bryan Perozzi, Rami Al-Rfou, Vivek Kulkarni, and Steven Skiena. In-
ducing language networks from continuous space word representations. In
Pierluigi Contucci, Ronaldo Menezes, Andrea Omicini, and Julia Poncela-
Casasnovas, editors, Complex Networks V, volume 549 of Studies in Com-
putational Intelligence, pages 261–273. Springer International Publishing,
2014. ISBN 978-3-319-05400-1. doi: 10.1007/978-3-319-05401-8 25. URL
http://dx.doi.org/10.1007/978-3-319-05401-8_25.

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. 2013.

[7] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 313(5786):504–507, 2006.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)

39

http://seqbarracuda.sourceforge.net/index.html
http://seqbarracuda.sourceforge.net/index.html
http://dx.doi.org/10.1016/S0893-6080(03)00138-2
http://books.nips.cc/papers/files/nips25/NIPS2012_0598.pdf
http://books.nips.cc/papers/files/nips25/NIPS2012_0598.pdf
http://dx.doi.org/10.1007/978-3-319-05401-8_25

from scratch. The Journal of Machine Learning Research, 12:2493–2537,
2011.

[9] Holger Schwenk, Anthony Rousseau, and Mohammed Attik. Large,
pruned or continuous space language models on a gpu for statistical ma-
chine translation. In Proceedings of the NAACL-HLT 2012 Workshop:
Will We Ever Really Replace the N-gram Model? On the Future of Lan-
guage Modeling for HLT, pages 11–19. Association for Computational
Linguistics, 2012.

[10] Tomas Mikolov, Stefan Kombrink, Lukas Burget, JH Cernocky, and San-
jeev Khudanpur. Extensions of recurrent neural network language model.
In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE Inter-
national Conference on, pages 5528–5531. IEEE, 2011.

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation
for large-scale sentiment classification: A deep learning approach. vol-
ume 27, pages 97–110, jun 2011.

[12] Yanqing Chen, Bryan Perozzi, Rami Al-Rfou’, and Steven Skiena. The
expressive power of word embeddings. In ICML 2013 Workshop on
Deep Learning for Audio, Speech, and Language Processing, volume
abs/1301.3226, Atlanta, USA, 2013.

[13] Rami Al-Rfou’, Bryan Perozzi, and Steven Skiena. Polyglot: Distributed
word representations for multilingual nlp. In Proceedings of the Seven-
teenth Conference on Computational Natural Language Learning, pages
183–192, Sofia, Bulgaria, August 2013. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W13-3520.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[15] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is nearest neighbor meaningful? In Database TheoryICDT99, pages
217–235. Springer, 1999.

[16] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities
in continuous space word representations. In Proceedings of NAACL-HLT,
pages 746–751, 2013.

40

http://www.aclweb.org/anthology/W13-3520

[17] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[18] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An
open source software for exploring and manipulating networks, 2009. URL
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

[19] David Eppstein, Michael S Paterson, and F Frances Yao. On nearest-
neighbor graphs. Discrete & Computational Geometry, 17(3):263–282,
1997.

[20] Ramon Ferrer i Cancho and Richard V Solé. The small world of human
language. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 268(1482):2261–2265, 2001.

[21] Chris Biemann, Stefanie Roos, and Karsten Weihe. Quantifying semantics
using complex network analysis. In Proceedings of COLING 2012, pages
263–278, Mumbai, India, December 2012. The COLING 2012 Organizing
Committee. URL http://www.aclweb.org/anthology/C12-1017.

[22] Lucas Antiqueira, Osvaldo N Oliveira Jr., Luciano da Fontoura Costa,
and Maria das Graças Volpe Nunes. A complex network approach to text
summarization. Information Sciences, 179(5):584–599, 2009. ISSN 0020-
0255. doi: http://dx.doi.org/10.1016/j.ins.2008.10.032. URL http://

www.sciencedirect.com/science/article/pii/S0020025508004520.

[23] Jean Véronis. HyperLex: lexical cartography for information retrieval.
Computer Speech & Language, 18(3):223–252, 2004. ISSN 0885-2308.
doi: http://dx.doi.org/10.1016/j.csl.2004.05.002. URL http://www.

sciencedirect.com/science/article/pii/S0885230804000142.

[24] Adilson E. Motter, Alessandro P. S. de Moura, Ying-Cheng Lai, and
Partha Dasgupta. Topology of the conceptual network of language. Phys.
Rev. E, 65:065102, Jun 2002. doi: 10.1103/PhysRevE.65.065102. URL
http://link.aps.org/doi/10.1103/PhysRevE.65.065102.

[25] Mariano Sigman and Guillermo A Cecchi. Global organization of the
wordnet lexicon. Proceedings of the National Academy of Sciences, 99(3):
1742–1747, 2002.

[26] Geoffrey E Hinton. Learning distributed representations of concepts. In
Proceedings of the eighth annual conference of the cognitive science soci-
ety, pages 1–12. Amherst, MA, 1986.

41

http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aclweb.org/anthology/C12-1017
http://www.sciencedirect.com/science/article/pii/S0020025508004520
http://www.sciencedirect.com/science/article/pii/S0020025508004520
http://www.sciencedirect.com/science/article/pii/S0885230804000142
http://www.sciencedirect.com/science/article/pii/S0885230804000142
http://link.aps.org/doi/10.1103/PhysRevE.65.065102

[27] DE Rumelhart, GE Hinton, and RJ Williams. Learning internal represen-
tation by back propagation. Parallel distributed processing: exploration
in the microstructure of cognition, 1, 1986.

[28] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin,
and Jean-Luc Gauvain. Neural probabilistic language models. In Innova-
tions in Machine Learning, pages 137–186. Springer, 2006.

[29] Yoshua Bengio and J-S Senecal. Adaptive importance sampling to accel-
erate training of a neural probabilistic language model. Neural Networks,
IEEE Transactions on, 19(4):713–722, 2008.

[30] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural net-
work language model. In Proceedings of the international workshop on
artificial intelligence and statistics, pages 246–252, 2005.

[31] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed
language model. In Advances in neural information processing systems,
pages 1081–1088, 2008.

[32] Xavier Carreras, Llúıs Màrques, and Llúıs Padró. Named entity extraction
using adaboost. In Proceedings of CoNLL-2002, pages 167–170. Taipei,
Taiwan, 2002.

[33] Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named
entity recognition through classifier combination. In Walter Daelemans
and Miles Osborne, editors, Proceedings of CoNLL-2003, pages 168–171.
Edmonton, Canada, 2003.

[34] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)
from scratch. J. Mach. Learn. Res., 12:2493–2537, November 2011.
ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1953048.

2078186.

[35] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple
and general method for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics,
pages 384–394. Association for Computational Linguistics, 2010.

[36] Joel Nothman, Tara Murphy, and James R. Curran. Analysing Wikipedia
and gold-standard corpora for NER training. In Proceedings of the 12th
Conference of the European Chapter of the ACL (EACL 2009), pages

42

http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186

612–620, Athens, Greece, March 2009. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/E09-1070.

[37] A. Toral and R. Munoz. A proposal to automatically build and maintain
gazetteers for Named Entity Recognition by using Wikipedia. Proceedings
of the EACL-2006 Workshop on NEW TEXT-Wikis and blogs and other
dynamic text sources, 2006. URL http://acl.ldc.upenn.edu/W/W06/

W06-2809.pdf.

[38] Jun’ichi Kazama and Kentaro Torisawa. Exploiting Wikipedia as exter-
nal knowledge for named entity recognition. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL), pages
698–707, Prague, Czech Republic, June 2007. Association for Compu-
tational Linguistics. URL http://www.aclweb.org/anthology/D/D07/

D07-1073.

[39] Alexander E Richman and Patrick Schone. Mining wiki resources for
multilingual named entity recognition. In ACL, pages 1–9, 2008.

[40] Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R
Curran. Learning multilingual named entity recognition from wikipedia.
Artificial Intelligence, 194:151–175, 2013.

[41] R. Collobert and J. Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Interna-
tional Conference on Machine Learning, ICML, 2008.

[42] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Cognitive modeling, 1:213,
2002.

[43] Léon Bottou. Stochastic gradient learning in neural networks. In Pro-
ceedings of Neuro-Nı̂mes 91, Nimes, France, 1991. EC2. URL http:

//leon.bottou.org/papers/bottou-91c.

[44] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. The Journal of Ma-
chine Learning Research, 999999:2121–2159, 2011.

[45] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: A collaboratively created graph database for struc-
turing human knowledge. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pages

43

http://www.aclweb.org/anthology/E09-1070
http://acl.ldc.upenn.edu/W/W06/W06-2809.pdf
http://acl.ldc.upenn.edu/W/W06/W06-2809.pdf
http://www.aclweb.org/anthology/D/D07/D07-1073
http://www.aclweb.org/anthology/D/D07/D07-1073
http://leon.bottou.org/papers/bottou-91c
http://leon.bottou.org/papers/bottou-91c

1247–1250, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-
6. doi: 10.1145/1376616.1376746. URL http://doi.acm.org/10.1145/

1376616.1376746.

[46] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training
data. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 11:
131–167, 1999.

[47] Xingquan Zhu, Xindong Wu, and Qijun Chen. Eliminating class noise in
large datasets. In ICML, volume 3, pages 920–927, 2003.

[48] Erik F. Tjong Kim Sang. Introduction to the conll-2002 shared task:
Language-independent named entity recognition. In Proceedings of
CoNLL-2002, pages 155–158. Taipei, Taiwan, 2002.

[49] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-
2003 shared task: Language-independent named entity recognition. In
Proceedings of CoNLL-2003, pages 142–147, 2003.

[50] Joel Nothman, James R Curran, and Tara Murphy. Transforming
wikipedia into named entity training data. In Proceedings of the Aus-
tralasian Language Technology Association Workshop 2008, pages 124–
132, Hobart, Australia, December 2008. URL http://www.aclweb.org/

anthology/U08-1016.

[51] Sungchul Kim, Kristina Toutanova, and Hwanjo Yu. Multilingual named
entity recognition using parallel data and metadata from wikipedia. In
Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 694–702, Jeju Is-
land, Korea, July 2012. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P12-1073.

[52] Rémi Lebret and Ronan Lebret. Word emdeddings through hellinger pca.
CoRR, abs/1312.5542, 2013.

44

http://doi.acm.org/10.1145/1376616.1376746
http://doi.acm.org/10.1145/1376616.1376746
http://www.aclweb.org/anthology/U08-1016
http://www.aclweb.org/anthology/U08-1016
http://www.aclweb.org/anthology/P12-1073

	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Introduction
	1.1 Distributed Word Representations
	1.2 Multilingual Named Entity Recognition using word embeddings
	1.3 Thesis Outline

	2 Using GPU's to train Deep Belief Networks
	2.1 Introduction
	2.2 Overview of the Experimental Setup
	2.3 Research methodology
	2.4 Experimental Results
	2.4.1 Baseline
	2.4.2 Profiling Theano
	2.4.3 Optimizing advanced indexing
	2.4.4 Speed up in rate of training
	2.4.5 Analysis of limits on training performance on GPU
	2.4.6 Effect of Batch Size on training and convergence rates

	2.5 Future Work
	2.6 Conclusion

	3 Inducing Language Networks from Continuous Space Word Representations
	3.1 Introduction
	3.2 Continuous Space Language Models
	3.2.1 Polyglot
	3.2.2 SkipGram
	3.2.3 Random

	3.3 Word Embedding Networks
	3.3.1 k-Nearest Neighbors
	3.3.2 d-Proximity
	3.3.3 Discussion

	3.4 Related Work
	3.4.1 Language Networks
	3.4.2 Word Embeddings

	3.5 Conclusions

	4 Multilingual Named Entity Recognition
	4.1 Introduction
	4.2 Semi-supervised Learning
	4.2.1 Learning Word Embeddings
	4.2.2 Discriminative Learning
	4.2.3 Optimization

	4.3 Extracting Entity Mentions
	4.3.1 Article Categorization
	4.3.2 Missing Links

	4.4 Experiments
	4.4.1 Testing Datasets
	4.4.2 Results

	4.5 Comparative Study
	4.6 Related Work
	4.7 Conclusion

	5 Conclusion
	5.1 Conclusions
	5.2 Future Work

	 Bibliography

