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Abstract of the Dissertation

Non-Termination Analysis and Cost-Based Optimization for

Logic Programs

by

Senlin Liang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2013

Rule systems have seen an upsurge of interest in the past decade, as many in the

academia and industry started to discover more applications for rules such as the Se-

mantic Web, policy management, and program analysis. In response, high-level logic

languages such as Flora-2 1 and SILK2 have been invented as tools for developing

complex knowledge bases by knowledge engineers who are not programmers. The

knowledge bases that are created by this type of users are typically complex and they

stress the engine capabilities. Therefore, there are new challenges in order for logic

engines to be able to process these knowledge bases, and this thesis focuses on two of

them: non-termination analysis and cost-based optimization.

Non-termination analysis examines program execution history when the program

is suspected to not terminate and informs the programmer about the exact reasons

for this behavior. We study the problem of non-termination in tabled logic engines

and propose a suite of algorithms, called non-Termination Analyzer or Terminyzer,

which analyze forest logging traces of program execution and output sequences of

tabled subgoal calls and their host rule ids that cause non-termination. Moreover,

Terminyzer identifies the precise set of subgoals, together with their host rules, that

recursively call one another and lead to non-termination. Terminyzer also attempts

1http://flora.sourceforge.net
2http://silk.semwebcentral.org
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to automatically rectify non-terminating programs by heuristically fixing some causes

of misbehavior.

Besides the non-termination problem, cost-based optimizations similar to those in

Database systems are needed in order for rule systems to be practical in processing

complex queries against large knowledge bases. To this end, this thesis proposes a

Cost-based optimizer, called Costimizer, which first efficiently estimates predicate

statistics and then applies them to greedily optimize rules and queries. Costimizer

performs size estimation through an abstract evaluation of rules and it distinguishes

itself from previous size estimation approaches by efficiently preserving argument

dependencies.

Terminyzer and a prototype of Costimizer have been implemented for Flora-2

and SILK. Their effectiveness and practicability have been validated through exten-

sive experimental studies.
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Chapter 1

Introduction

The development of high-level logic languages such as Flora-2 and SILK aims at

making logic-based knowledge representation accessible to knowledge engineers who

are not programmers. The knowledge bases that are created by this type of users

are typically complex and stressing the engine capabilities, because knowledge engi-

neers usually have very limited knowledge of logic engine’s actual evaluation strategy.

Therefore, there are new challenges in order for logic engines to be able to process

these knowledge bases, and we focus on two of them: non-termination analysis and

cost-based optimization.

1.1 Non-Termination Analysis

The problem of run-away computations in logic programs is much more serious than

in procedural programming because of the declarative nature of the logic languages

and the large gap between the declarative semantics and the actual evaluation strat-

egy. This problem is even more vexing in high-level logic languages, which position

themselves as tools for developing complex knowledge bases by knowledge engineers.

These engineers cannot be expected to debug the procedural aspects of the rule bases

that they create and thus they require special support. Non-termination has been

flagged as a key issue standing on the way of creating complex biological knowledge

bases in the SILK project, where the use of function symbols is more common due

to the higher-order features of HiLog [CKW93] and F-logic [KLW95], and due to the
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proliferation of Skolemized head-existentials that are passed down to the engine by

the knowledge acquisition system.

There are three main scenarios where programs may not terminate. First, the use

of recursion plagues Prolog under the standard SLD-resolution evaluation strategy.

This can be illustrated by the following simple Example 1.1. The prevalent way to

address this problem is to use tabling, which is also known under the more technical

term of SLG-resolution. Tabling was pioneered by the XSB system [SW12] and is now

supported by a number of other systems, such as Yap [CDR12], B-Prolog [Zho12], and

Ciao [HBC+12]. In Example 1.1, tabling the predicate, p, will cause the evaluation

to terminate.1

Example 1.1 In the following program,

p(X) :- p(X).

?- p(a).

there are a recursive loop of calls. Therefore, Prolog’s SLD-resolution evaluation

strategy will not terminate the query. ✷

The second scenario where programs might not terminate, even under the SLG-

resolution, occurs when patterns of increasingly deep nested calls keep being generated

during the evaluation, as in the following Example 1.2. There, query evaluation will

successively call p(a), p(f(a)), p(f(f(a))), and so on. Since neither call subsumes the

other, tabling will not help terminate the evaluation process. However, a surprisingly

simple technique known as subgoal abstraction [RSar], also pioneered by XSB, takes

care of this problem. The idea is to modify the calls by “abstracting” deeply nested

subterms and replacing them with new variables. For instance, in Example 1.2, we

could abstract calls once the depth limit of 3 has been reached.2 As a result,

p(f(f(f(a)))) and all the subsequent calls would be abstracted to p(f(f(X))), X =

f(a).

1The derivatives in XSB are as follows.
:- table p/1 for variant tabling, or
:- table p/1 as subsumptive for subsumptive tabling.

2The derivatives in XSB are as follows.
:- set prolog flag(max table subgoal depth,3).
:- set prolog flag(max table subgoal action,abstract).
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Example 1.2 In the following program,

:- table p/1.

p(X) :- p(f(X)).

?- p(a).

an infinite number of tabled calls will be made due to recursion and the use of functor

symbol f . ✷

For instance, in XSB (which to our knowledge is the only system that supports

both tabling and subgoal abstraction), the above query in Example 1.2 will terminate.

Generally, tabling enhanced with subgoal abstraction is able to completely evaluate

all queries that have a finite number of answers. The only remaining major source of

non-termination, with both tabling and subgoal abstraction being used, is when the

number of answers to a query or its subqueries is infinite. A program that exhibits

this behavior is given in Example 1.3.

Example 1.3 In this program,

:- table p/1.

p(a).

p(f(X)) :- p(X).

?- p(X).

the query has an infinite number of answers: p(a), p(f(a)), p(f(f(a))), and so on. ✷

Clearly, such queries cannot be evaluated completely, but if the program is what

the user intended, the user could ask the system to stop after getting the required

number of answers or avoid generating increasingly deep terms using radial restraints

[GS13]. However, in our experience, the user usually does not intend to construct

infinite predicates. Finding out how the infinite number of answers came about

and fixing the problem is difficult even for an experienced programmer and even

for programs that have just a few dozens of rules. For knowledge bases that have

thousands of rules, like the ones we have been dealing with in the SILK project,

diagnosing this problem is an onerous and frustrating job. In the absence of subgoal

abstraction, this difficulty also exists for the aforesaid problem of detecting sequences
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of subgoals of increasing depth. For a knowledge engineer who is not a programmer,

debugging non-termination is out of the question.

We note that neither the problem of program termination nor that of whether

the number of answers is finite is decidable [SD94, Sip96], so no algorithm can prove

termination or non-termination in general. Sufficient conditions for termination of

logic programs have been proposed in the literature [BAK91, SD94, VDSS01, LSS04,

BCG+07, NDS07, NGSKDS08, SkGS+10], but most deal with Prolog or Prolog-like

evaluation strategies. Although many of these results are very deep, their practical

impact is limited because they provide only sufficient conditions for termination. The

precise classes of programs for which these algorithms work are typically punishingly

inexpressive and usually not investigated at all (see Section 2.6 for a discussion).

Moreover, neither tabling nor subgoal abstraction are taken into account by most of

these works, so they have limited use for advanced logic engines like XSB and its

derivatives, Flora-2 and SILK. This thesis takes a different approach and develops

a suite of algorithms, called non-Termination analyzer or Terminyzer [Lia12, LK13c,

LK13b], to help users to precisely locate and explain non-termination causes.

We first study the problem for tabled logic engines with subgoal abstraction. By

analyzing forest logging traces, Terminyzer detects both tabled subgoal sequences

that cause non-termination, and, more importantly, the exact rules where these calls

occur and the rule sequences that are fired in a cyclic manner, thus leading to non-

termination. This makes Terminyzer amenable to serving as a back-end for user-

friendly graphical interfaces, which can greatly simplify the debugging process. Such

an interface has been constructed by the SILK team and is currently underway for

the open-source Flora-2 system. Moreover, we make a step towards automatic

remediation of non-terminating programs by proposing an algorithm that heuristically

fixes some of the faulty programs. Finally, in order for Terminyzer to be applicable in

more tabled logic engines, we relax its system requirements and study non-termination

in tabled logic engines without subgoal abstraction.
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1.2 Cost-Based Optimization

As mentioned earlier, the knowledge bases created by knowledge engineers are nor-

mally complex and large, and more importantly these knowledge bases tend to stress

the engine capabilities. Therefore, whether meaningful queries can be processed rea-

sonably fast becomes an even more important task. To tackle this problem, this

thesis investigates adapting cost-based optimization similar to those in Database sys-

tem query optimizers to logic engines.

In selecting query execution plans, Database query optimizers depend on accurate

and fast algorithms for estimating predicate (relation) sizes, which in turn depend

on joint data distributions of values in different arguments. Traditionally, query

optimizers estimate these sizes using statistical summaries for base predicates and

propagating them to relational expressions assuming argument independence [Chr84].

Assuming that distributions of values in different arguments of a predicate are inde-

pendent, joint data distribution can be derived relatively easily.

To make size estimation practical, data distributions must be summarized ac-

curately and efficiently. Histogram is one such summarization technique that is in

wide use in all major Database systems. Briefly, histograms group values of similar

frequencies into buckets and estimate the frequencies of values in each bucket in a

uniform and efficient way. Different types of histograms have been proposed in the

literature, which differ in their complexity, cost, and accuracy. As usual, accuracy

comes at the expenses of time and space, and the problem of balancing these conflict-

ing requirements was discussed in [IP95]. Comprehensive surveys and classification

of various histograms can be found in [Ioa03, PHIS96].

Provided that data statistics of involved predicates for a given query are available,

optimizers search for the most efficient execution plans within predetermined time

and space budgets. There has been quite a lot of research on optimization algorithms

which are either optimal or greedy search. The two most popular and well studied

optimal search algorithms are dynamic programming [OL90, MN06, MN08] and top-

down partition search [VM96, DT07], and they have similar performances in both time

and space [DT07]. However, because of the exponential cost nature of optimal search,

most Database systems (e.g., DB2 [GLSW93] and Sybase SQL Anywhere [BP00])

implement greedy algorithms and restrict search space to left-deep trees [SAC+79].

5



There are two major challenges in adapting similar optimizations to rule systems.

First, because of the argument independence assumption, which is rarely true for real

application datasets, size estimates based on histograms can be off by orders of mag-

nitude [SLMK01], and it has been shown that estimation errors grow exponentially

with the number of involved join predicates [IC91, LK10, LK12, Lia12]. In logic

programming, this problem is exacerbated by the presence of recursive predicates.

Second, optimization algorithms have to consider not only how basic operations are

performed in logic engines, but also how facts are indexed since indexing is one of the

most important performance factors of all major rule systems as previously observed

[LFWK09b].

Aiming at addressing these two problems, this thesis proposes a Cost-based

optimizer, called Costimizer, which consists of two components: a cost estimator

and an optimizing unit. The cost estimator implements statistics for derived predi-

cates (SDP) [LK10, LK12], which is a suite of algorithms to perform size estimation

for different rule types (e.g., selection, union, intersection, projection, join, product,

negation, and recursion) where dependency matrices are used to store estimated pred-

icate statistics. Dependency matrices can be viewed as extensions of histograms and

they are designed to preserve argument dependencies, thus taking care of the problem

caused by argument independent assumption. The optimizing unit, using estimated

predicate statistics, greedily optimizes rules and queries by reordering relevant predi-

cates and adding necessary indexing commands that are believed to benefit targeted

logic engines. It is worth mentioning that our cost estimator is independent of the

optimizing unit, and thus its cost estimates can be used to benefit any cost-based

optimizer.

6



Chapter 2

Non-Termination Analysis

2.1 Preliminaries

2.1.1 Tabling in XSB

The limitations of Prolog’s standard SLD-resolution based evaluation strategy are

well-known: it is incomplete and can go into an infinite loop even for simple Datalog

rule sets. To address this problem, tabling (also known as SLG-resolution) was de-

veloped over two decades ago and [SW12] provides the most recent insight into this

mechanism. In tabled evaluation, calls to tabled predicates are cached in a table T

for subsequent calls. T can be viewed as a set of subgoal-answers pairs of the form

(sub, ansrs) where ansrs are proven instances of subgoal sub.

When a tabled subgoal, sub, is issued, tabling examines whether there is a pair

(sub ′, ansrs ′) ∈ T such that sub is similar (to be explained shortly) to sub ′. If so,

then answer clause resolution is performed instead of program clause resolution, i.e.,

ansrs ′ are used to satisfy sub. In this case, sub is referred to as the consumer of sub ′

while sub ′ is the producer of sub. If no tabled answers can be used above, a new table

entry of the form (sub, ansrs) is added to T , where initially ansrs = ∅. Then sub is

resolved against program clauses, as usual in Prolog. In such a case, all newly derived

answers for sub are added to ansrs , sub becomes a producer of these answers, and all

subsequent subgoals that are similar to sub become consumers of sub’s answers.

There are two main ways to define subgoal-similarity mentioned above. Depending

on which notion is chosen, the tabling strategy is called variant or subsumptive. In

7



variant tabling, sub is similar to sub ′ if sub is a variant of sub ′, i.e., they are identical

up to variable renaming. In subsumptive tabling, sub is similar to sub ′ if sub is

subsumed by sub ′, i.e., there is a variable substitution σ such that σ(sub ′) = sub. Note

that in this case the notion of similarity is asymmetric. Since only unique answers are

added to the table and returned to consumers, tabled evaluation terminates if there

is only a finite number of tabled subgoals and each tabled subgoal has finitely many

answers. For instance, this is the case in Datalog, i.e., when function symbols are not

present. It has been proven that tabled evaluation terminates for any program with

the bounded term depth property, i.e., when all terms that are ever generated in the

course of SLG-resolution, including all subgoals and answers, have an upper bound

on their depth [SW12].

The workings of SLG-resolution can be captured by an SLG-forest, which has an

SLG-tree for every new (dissimilar) subgoal to tabled predicates. The SLG-tree for

sub has root of the form sub :- sub, and each non-root node is of the form θ(sub)

:- θ(left subs), where θ is the substitution obtained from resolving sub against the

knowledge base and θ(left subs) are the remaining subgoals needed to prove sub. If

θ(left subs) is an empty clause, θ(sub) is an answer to sub. Children of a root node are

obtained through resolution of a tabled subgoal against program clauses. Children of

non-root nodes are obtained through answer clause resolution if the leftmost selected

literal is tabled or through program clause resolution if the leftmost selected literal

is not tabled. Each edge in the tree corresponds to a derivation step of program or

answer clause resolution.

Example 2.4 The SLG-forest for the evaluation of this following XSB program is

shown in Figure 1, where each node is labeled with an ordinal denoting the creation

order (a timestamp) of the node during evaluation.

:- table path/2.

edge(1,2). edge(1,3). edge(2,1).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

?- path(1,Y).

Children of node 11 are obtained through answer clause resolution since its leftmost se-

lected literal path(1, Y ) is tabled, while children of nodes 2 and 5 are obtained through

8



Figure 1: SLG-Forest of Example 2.4

program clause resolution because their leftmost selected literals are not tabled. This

is a simplified version of an example in [SWS+13]. ✷

2.1.2 Forest Logging in XSB

Compared to Prolog systems, logic engines that support tabling are much more in-

volved. They suspend and resume computation paths, delay negated subgoals that

are involved in loops through negation, simplify these subgoals once their truth values

become known, and manage the table accordingly. For debugging and performance

optimization purposes, programmers may need to inspect table operations during

evaluation. To this end, XSB has recently provided a new facility, called forest log-

ging (logforest), which makes certain table events available to the programmer.1

Currently, logforest records these following events.

1Although currently XSB is the only system supporting forest logging, all tabled logic engines
have the requisite information internally and could expose it to the user to take advantage of the
advanced debugging facilities, such as Terminyzer, that are enabled by this feature.
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• Call to a tabled predicate. If a subgoal parent calls another subgoal child , i.e.,

the evaluation of parent fires a rule that issues child , a Prolog fact of the form

tc(child , parent , status , timestamp) is logged. Here timestamp is the timestamp

of the event representing its sequence order. Status is the current status of

child , and it can take the following values:

– new if child is a newly issued subgoal,

– cmp if the evaluation of child has been completed, and

– incmp if child is not a new subgoal, but is yet to be completely evaluated.

If the subgoal is negative, a similar fact nc(child , parent , status , timestamp) is

logged. If child is the first tabled subgoal in an evaluation, parent is the special

subgoal root .

• Derivation of a new answer. When a new answer, ansr , is derived for sub and

added to the table, the fact na(ansr , sub, timestamp) is added to the log. When

a new conditional answer ansr :- delayed literals is derived for sub and added

to the table, a log entry of the form nda(ansr , sub, delayed literals , timestamp)

is recorded. Here ansr is the answer substitution and delayed literals are the

delayed literals whose truth value is yet to be determined (this usually occurs

due to recursive loops through negation).

• Return of an answer to a consumer. If an answer, ansr , is returned to

a consumer subgoal, child , which is called by parent , a fact of the form

ar(ansr , child , parent , timestamp) is added to the log. If the answer is con-

ditional, dar(ansr , child , parent , timestamp) is recorded.

• Subgoal completion. When all mutually recursive subgoals in a set, S, are

completed, logforest records cmp(sub, sccnum, timestamp) for each sub ∈ S ,

where sccnum is an ordinal that identifies S. If sub is completed early (i.e., its

truth is established without the need to fully evaluate all the dependent sub-

goals), a similar fact cmp(sub, ec, timestamp) is recorded where ec stands for

early completion.

• Other events. Logforest also records delays of negative literals, table abolishes,

and errors. These events are not needed for our purposes and are omitted.
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Example 2.5 For the evaluation of the program in Example 2.4, the forest logging

trace is given in the first column of Table 1. The second column in the table is the

Log Node Explanation

tc(path( 1, v0),root,new,0) 1 initial call

2 program clause resolution

na([ 2],path( 1, v0),1) 3 program clause resolution

new answer

na([ 3],path( 1, v0),2) 4 program clause resolution

new answer

5 program clause resolution

6 program clause resolution

tc(path( 2, v0),path( 1, v0),new,3) 7 new call made by node 6

8 program clause resolution

na([ 1],path( 2, v0),4) 9 program clause resolution

new answer

10 program clause resolution

tc(path( 1, v0),path( 2, v0),incmp,5) 11 repeated unfinished call

ar([ 2],path( 1, v0),path( 2, v0),6) 12 answer clause resolution

answer to consumer

na([ 2],path( 2, v0),7) 12 new answer

ar([ 3],path( 1, v0),path( 2, v0),8) 13 answer clause resolution

answer to consumer

na([ 3],path( 2, v0),9) 13 new answer

14 program clause resolution

tc(path( 3, v0),path( 1, v0),new,10) 15 new call made by node 14

16 program clause resolution

17 program clause resolution

cmp(path( 3, v0),3,11) 15 evaluation completed

ar([ 1],path( 2, v0),path( 1, v0),12) 9 return to consumer

na([ 1],path( 1, v0),13) 6 new answer

ar([ 2],path( 2, v0),path( 1, v0),14) 12 return to consumer

ar([ 3],path( 2, v0),path( 1, v0),15) 13 return to consumer

ar([ 1],path( 1, v0),path( 2, v0),16) 1 return to consumer

cmp(path( 1, v0),1,17) 1 evaluation completed

cmp(path( 2, v0),1,18) 7 evaluation completed

Table 1: Forest Log for the Evaluation of Example 2.4

label of the node in the SLG-trees of Figure 1 where a corresponding event happens.

The third column provides an explanation. An answer for a subgoal is represented

as a substitution for the list of variables in the subgoal. For instance, in the second

log entry na([2 ], path(1 , v0 ), 1 ), which records the derivation of a new answer, the
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answer is represented as [2 ] and its subgoal’s list of variables is [ v0 ], meaning that

the substitution v0 = 2 is an answer. ✷

2.2 Adding Ids to Rules

One key enabling idea in Terminyzer is a transformation that adds unique ids to

rules in such a way that this information is preserved in the forest logging trace. For

our purposes, we want each subgoal call in the trace to “remember” the rule from

which this call was issued. Although this information is not available in the original

program, one can instrument any logic program so that each subgoal call to tabled

predicates would be stamped with the id of its host rule, i.e., rule from whose body

the call was issued.

The transformation processes the original program rule by rule and assigns a new

id to each newly encountered rule. In each such rule, all non-tabled predicates stay

unchanged and each tabled predicate, p/n, is augmented with one more argument so

that p/n is replaced with p/(n + 1 ). The additional (last) argument is a new variable

for a tabled head predicate, and it is the rule’s id for every tabled body predicate.

Details are given in Algorithm 1.

1 while unprocessed rules remain do
2 Get the next program rule R: head(x1 , ..., xn) :- body .;
3 Generate a new rule id, id(R);
4 if head/n is tabled then
5 Change the head literal to head(x1 , ..., xn ,Newvar);
6 else
7 Leave the head literal unchanged;
8 end
9 Replace each tabled subgoal, p(y1 , ..., ym), in body with p(y1 , ..., ym , id(R));

10 end

Algorithm 1: Program Transformation: Adding Rule Ids

Queries are modified as follows: if the query predicate is not tabled, the query

is not changed. If that predicate is tabled, an additional (last) argument is added,

which contains a new variable. All tabling declarations are also modified accordingly

such that :- table p/n is replaced with :- table p/(n+1).
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It is easy to see that the new program is equivalent to the original one in the sense

that non-tabled queries to both programs have the same answers and the answers

to the tabled predicates are the same if the last component in each answer tuple is

chopped off.2 However, now each subgoal call recorded in the log will be labeled

with its host rule id.

Example 2.6 Consider the program of Example 2.4, where path/2 is tabled while

edge/2 is not. Assuming that the assigned rule ids for path(X,Y) :- edge(X,Y).

and path(X,Y) :- edge(X,Z), path(Z,Y). are r1 and r2 respectively, the trans-

formation will modify the program as follows

:- table path/3.

edge(1,2). edge(1,3). edge(2,1).

path(X,Y,_) :- edge(X,Y).

path(X,Y,_) :- edge(X,Z), path(Z,Y,r2).

?- path(1,Y,_).

whose correctness can be easily verified. ✷

The transformation of Algorithm 1 has been implemented for Flora-2 and SILK,

although the form of the last argument there is made more complex to provide addi-

tional support for truth maintenance.

2.3 Terminyzer for Tabled Logic Engines with Sub-

goal Abstraction

Since logforest, presented in Section 2.1.2, records only table operations of an eval-

uation and is implemented in C, it works much faster and produces much smaller logs

compared with traditional tracing facilities. This makes it possible to understand

non-terminating tabled evaluation by analyzing forest logging traces and thus help

to debug large programs. This section presents two such techniques, call sequence

analysis and answer flow analysis, for tabled logic engines with subgoal abstraction.

2We assume that the programs have no aggregate functions such as count, which are sensitive to
duplicate answers.
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Both techniques are based on stopping the execution after a time limit set by the

user or after the evaluation starts producing queries or answers that exceed certain

size limits, and then analyzing the logs. Our examples assume that the system stops

after generating queries or answers of depth greater than 10.

We should stress that due to the undecidability results mentioned in Section 1.1,

no algorithm can detect non-termination in all cases unless infinite logs are available.

Pragmatically, this means that, in working with Terminyzer, one must assume that

the available logs are long enough.

2.3.1 Call Sequence Analysis

Recall that, with subgoal abstraction, the only way for tabled query evaluation to

not terminate is when the query or its subgoals have infinitely many answers. Call

sequence analysis, in this case, finds the exact sequence of subgoal calls to tabled

predicates and, for each subgoal, its host rule’s id, that lead to non-termination.

Moreover, it identifies the potential sets of recursive predicates and rules that are

responsible for generating increasingly deeper nested terms.

Definition 2.1 A tabled subgoal call is said to be finished if it has been completely

evaluated and all its answers have been recorded in the table. Otherwise, it is an

unfinished subgoal. ✷

As discussed in Section 2.1.2, when a tabled subgoal sub is finished, logforest

records a log entry of the form cmp(sub, sccnum, timestamp). Therefore, unfinished

subgoals can be found via the following rule:

unfinished(Child,Parent,TS) :-

(tc(Child,Parent,new,TS) ; nc(Child,Parent,new,TS)),

not_exists(cmp(Child,SCCNum,TS1)).

Here not exists is the XSB well-founded negation operator, which, in this case,

existentially quantifies SCCNum and TS1. The fact unfinished(child , parent , timestamp)

says that unfinished subgoal child is called by parent and the event timestamp is

timestamp. Since parent is waiting for the answers from child, parent is a child of

another unfinished subgoal. The initial subgoal, root, has no parent.
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Theorem 2.1 (Soundness of the call sequence analysis) Consider a query to

a program all of whose predicates are tabled, and assume that the system supports

subgoal abstraction. If there are unfinished calls in the complete infinite forest logging

trace, then

i. the sequence of unfinished calls, sorted by their timestamps, is the exact sequence

of unfinished calls that caused non-termination, and

ii. the ids of the rules that issued each of these unfinished calls appear in the last

arguments of these calls. ✷

Proof: (i) Clearly, non-termination can be caused only by unfinished

calls. As described in Section 2.1.2, either tc(child , parent , stage, timestamp)

or nc(child , parent , stage, timestamp) must be logged whenever a tabled sub-

goal child is called by parent , and only when child is completely evaluated,

cmp(child , sccnum, timestamp) is recorded. The timestamps of these log entries pre-

serve the sequential order of the corresponding events. Therefore, the sequence of

unfinished calls defined above, sorted by their timestamps, record exactly those un-

finished calls that cause one specific non-termination.

(ii) The program transformation described in Algorithm 1 generates a new rule

id for each rule and embeds it in each of the rule’s tabled body subgoals as their last

argument, and these rule ids appear in each call to these subgoals just as their other

arguments. Therefore, the log entry for each unfinished subgoal includes the id of the

rule calling that subgoal. ✷

Clearly, however, one cannot obtain the complete infinite trace for a non-

terminating evaluation. In practice, one would let the program execute long enough

until it starts producing answers exceeding some size limits and then analyze the

available portion of the log.

Knowing the exact sequence of unfinished calls, the user still needs to spend

quite an amount of time understanding precisely which subgoals are forming recursive

cycles. We now turn to developing a more precise machinery for this task.

Definition 2.2 The unfinished-call child-parent graph (CPG) for a forest log-

ging trace is a directed graph Guc = (N , E) whose nodes are its unfinished sub-

goals, i.e., N = {child | unfinished(child , parent , timestamp)} ∪ {root}. A directed
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edge (sub1 , sub2 ) is in E if and only if sub1 is an unfinished parent-subgoal of sub2 ,

i.e., unfinished(sub2 , sub1 , timestamp) is true. ✷

In Definition 2.2, subgoals that are variants of each other (i.e., identical up to the

variable renaming) are treated as the same subgoal. Given an unfinished-call CPG

Guc = (N , E), each sub ∈ N is labeled with the timestamp of the first call to sub; it is

written as sub.timestamp. The timestamp of the initial subgoal root , root .timestamp,

is −1 . The edge that corresponds to the fact unfinished(sub2 , sub1 , timestamp) is

labeled with the timestamp of this fact and is denoted (sub1 , sub2 ).timestamp. The

timestamps of nodes and edges preserve the temporal order of their creation in the

forest logging trace.

An unfinished-call path is a path with no repeated edges in Guc; it is called an

unfinished-call loop if it is a cycle. An unfinished-call path of the form [sub, sub]

means that there is an edge (sub, sub) ∈ E and it is also an unfinished-call loop.

Loops that represent the same cycles in CPG are considered to be the same and we

keep only one representative for each set of such loops. For instance, [a, b, c, a] and

[b, c, a, b] are the same loop while [a, b, c, a] and [a, c, b, a] are not. Unfinished-call

loops contain recursive subgoals that are potential causes of non-termination.

Example 2.7 Consider the query ?- r(X) and the rules, below, where @!ruleid

indicates the id of the corresponding rule:

:- table p/1, q/1, s/1, r/1.

@!r1 p(a).

@!r2 p(f(X)) :- q(X).

@!r3 q(b).

@!r4 q(g(X)) :- p(X).

@!r5 r(X) :- r(X).

@!r6 r(X) :- p(X), s(X).

@!r7 s(f(b)).

The evaluation produces logs containing these unfinished calls:

unfinished(r(_h9900,_h9908), root, 0)

unfinished(r(_h9870,r5), r(_h9870,_h9889), 8)
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unfinished(r(_h9840,r5), r(_h9840,r5), 11)

unfinished(p(_h9810,r6), r(_h9810,r5), 12)

unfinished(q(_h9780,r2), p(_h9780,r6), 16)

unfinished(p(_h9750,r4), q(_h9750,r2), 20)

unfinished(q(_h9720,r2), p(_h9720,r4), 24)

This is the exact sequence of calls causing the non-termination. There are 6 unfinished

subgoals as shown in Figure 2(A), where each subgoal’s timestamp and the host rule’s

id are also given. Its unfinished-call CPG has 7 edges, shown in Figure 2(B), where

Figure 2: Unfinished-Call CPG of Example 2.7

timestamps are used to represent nodes instead of actual subgoals and each edge is

labeled with its timestamp. There are two unfinished-call loops in the CPG: [8 , 8 ] and

[16 , 20 , 16 ]. ✷

Algorithm 11, below, constructs the unfinished-call CPG Guc = (N , E) from

the set of unfinished calls of a forest logging trace. Construction starts by

adding the root call to the CPG. Then, for each log record of the form

unfinished(child , parent , timestamp), the node child and the edge (parent , child)

are added, if child has not been added before. All unfinished calls are pro-

cessed in the order of their timestamps, i.e., their addition to the log, which

is also the order in which these unfinished calls are made during evaluation.

17



Thus, when the record unfinished(child , parent , timestamp) is encountered, we

know that parent must have been added to the graph as an child-subgoal of

its parent, i.e., unfinished(parent , p ′, timestamp ′) must be true for some p ′ and

timestamp ′ < timestamp. We have two cases:

1. child ∈ N . The evaluation calls a previously issued subgoal.

2. child /∈ N . A new subgoal is called and a new node is added to the graph.

In the first case, an unfinished-call loop exists, so the current evaluation path of

parent is suspended and alternative derivations is explored. This implies an im-

portant property of unfinished-call CPGs: an unfinished-call loop is created out

of an acyclic path always by adding a final edge of the form (sub1 , sub2 ), where

sub1 .timestamp ≥ sub2 .timestamp. We call such an edge a critical loop edge — see

the edges labeled with 11 and 24 in Figure 2 of Example 2.7.

1 Let UC be the set of unfinished calls, N = {root}, root .timestamp = −1 , and
E = ∅;

2 while UC 6= ∅ do
3 Choose unfinished(child , parent , timestamp) from UC , where timestamp is

the smallest among UC , and remove it;
4 if child /∈ N then
5 N = N ∪ {child};
6 child .timestamp = timestamp;

7 end
8 E = E ∪ {(parent , child)};
9 (parent , child).timestamp = timestamp;

10 end
11 return Guc = (N , E)

Algorithm 2: Unfinished-Call CPG Construction

If critical loop edges are taken out, any unfinished-call CPG becomes a connected

directed acyclic graph (i.e., a tree) in which every edge goes from a node with a

smaller timestamp to a node with a larger timestamp. An unfinished-call path P ,

which connects the root node to a subgoal node sub, can be obtained by posing the

query ?- uc path(sub,P) to the following rules. After computing all unfinished-call

paths, without critical loop edges, from root to other nodes, all distinct unfinished-

call loops can be computed by checking whether there is a critical loop edge from the
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last vertex of a path to any other node in the same path. Consider an unfinished-call

path P = [root , sub1 , . . . , subn ]. If there is a critical loop edge (subn , subi), 1 ≤ i ≤ n,

then the second part of P from subi to subn , [subi , . . . , subn , subi ], is an unfinished-call

loop.

:- table reversed_uc_path/2.

uc_path(C,P) :- reversed_uc_path(C,RevP), reverse(RevP,P).

reversed_uc_path(C,[C,root]) :- unfinished(C,root,_Timestamp).

reversed_uc_path(C,[C|P]) :-

unfinished(C,Parent,Timestamp),

Parent.timestamp < Timestamp,

reversed_uc_path(Parent,P).

Theorem 2.2 (Completeness of the call sequence analysis) Consider a query

and a program all of whose predicates are tabled and assume that the system supports

subgoal abstraction. If the evaluation does not terminate, then

i. there is at least one unfinished-call loop in the unfinished-call CPG constructed

for the complete infinite forest logging trace, and the loop’s subgoals are respon-

sible for the generation of infinite number of answers, and

ii. the last arguments of these subgoals specify the rule ids from whose bodies these

subgoals were called. ✷

Proof: (i) There has to be at least one loop. Suppose there is no unfinished-call

loop in the corresponding unfinished-call CPG Guc = (N , E). Subgoal abstraction

ensures that only a finite number of calls to tabled predicates can exist, so Guc is

a finite graph. Since there is no unfinished-call loop, there must be terminal nodes

that have no outgoing edges. Let N t ⊆ N denote this set of nodes. It means that

their SLG-children are not in N , i.e., they are not unfinished subgoals. Therefore

the SLG-children of N t are either completely evaluated tabled subgoals or base facts.

But then, after long enough time, all subgoals in N t should have been completely

evaluated and completed. This contradicts the assumption that N t ⊆ N , i.e., the

subgoals in N t are unfinished.
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At least one of the loops must be responsible for the generation of an infinite

number answers; otherwise all answers would be derived and the evaluation would

terminate.

(ii) This is proved by the same argument as in Theorem 2.1 (ii). ✷

Since complete infinite traces for non-terminating computations cannot be had,

in practice one would let the program execute long enough until it starts producing

answers exceeding some size limits, and then analyze the available portion of the log.

Clearly, this opens up the possibility for false negatives, i.e., for blaming sequences

of calls that in actuality do terminate after a long time. However, even in this case,

such sequences are possible computational bottlenecks and identifying them is useful

in its own right.

Identification of the exact rules that cause infinite computations in Theorems 2.1

and 2.2 (and later in Theorems 2.3 and 2.4) is a major advance in debugging non-

termination as rule ids can be gainfully exploited by graphical tools, such as the one

built for SILK.

2.3.2 Answer Flow Analysis

Call sequence analysis finds the exact sequences of subgoal calls and the correspond-

ing host rules that are involved in a non-terminating computation. These subgoals

are marked as incomplete in the trace because they are waiting for answers for them-

selves or their children. However, many of these subgoals do not actually produce an

infinite number of answers and they are not true reasons for non-termination. A much

more useful outcome of the call sequence analysis are the sets of recursive predicates

that form the unfinished-call loops and cause generation of infinitely many answers.

Unfortunately, the number of such loops in an unfinished-call CPG can be exponen-

tial and, moreover, not all of these loops may be the reason for non-termination.

For instance, Figure 2 has two unfinished-call loops, but only [16 , 20 , 16 ] is at fault.

This problem of precisely identifying the faulty loops is dealt with using answer flow

analysis, described below.

We say that an unfinished-call loop is a culprit if it is a cause for non-termination.

Answer flow analysis looks for the log entries that specify the answers being re-

turned to parents (the ar -facts and dar -facts) at the end of the logforest trace and
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produces child-parent relationships among unfinished subgoals. These child-parent

relationships help to identify precisely which unfinished-call loops are culprits, so we

could track how answers percolate through the unfinished subgoals.

When there are infinitely many answers, each new answer, ansr , to an unfinished

subgoal, sub, is returned to the parents of sub and these parents use ansr to derive

their own answers. The newly derived answers for the parents of sub are returned to

the parents of the parents, and this gives rise to an endless process in which subgoals

continue to receive, derive, and return answers. An answer-flow child-parent sequence

is the sequence of child-parent pairs found in all the log entries for answers returned

to parents; it captures the child-parent relationships in the above endless process.

The pairs of an answer-flow child-parent sequence are sorted by their creation order

(timestamp). A child might continue returning multiple answers to a certain parent

before the parent starts deriving its own answers. In this case, only one child-parent

pair is recorded for all such answer returns, since all these pairs are identical.

Definition 2.3 An answer-flow child-parent sequence, cps, contains a child-parent

pattern, cpp, if cpp is a finite subsequence of cps such that cps = prefix • cppα,

where • is the sequence concatenation operator, α > 1 is a positive integer or ω (the

first infinite ordinal), and cppα represents the concatenation of α cpp’s. We call cppα

the cpp-suffix of cps. ✷

Example 2.8 For instance, [(c2 , p2 ), (c3 , p3 )] is a child-parent pattern of length

two in [(c1 , p1 ), (c2 , p2 ), (c3 , p3 ), (c2 , p2 ), (c3 , p3 )], and its [(c2 , p2 ), (c3 , p3 )]-suffix is

[(c2 , p2 ), (c3 , p3 ), (c2 , p2 ), (c3 , p3 )]. ✷

Definition 2.4 The optimal child-parent pattern in a child-parent sequence cps

is the shortest child-parent pattern, cpp, such that the cpp-suffix is the longest in cps

(longest by containment among all suffixes of child-parent patterns in cps). ✷

For an infinite trace, its child-parent sequence and the cpp-suffix of any of its child-

parent patterns are infinite, but all child-parent patterns have finite lengths. Since

there can be only a finite number of unfinished subgoals due to subgoal abstrac-

tion, the answer-flow child-parent sequence of a non-terminating trace must have an

optimal child-parent pattern (Theorem 2.3 below).
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Given a child-parent sequence, let pattern be the subsequence containing the last

n elements in the sequence. The predicate pattern(cps , length, pattern, times) speci-

fies the number of times times a child-parent pattern pattern of length length repeats

at the end of cps . Patterns of different lengths can be computed by posing the query

?- pattern(cps , length,Pattern,Times) to the following rules, where the length pa-

rameter successively assumes the values 1 , 2 , and so on. In this way, we will either

find an optimal child-parent pattern or determine that there is no pattern.

pattern(CPS,Len,Pat,Times) :-

length(Pat,Len),

%% This binds Pat to the suffix of CPS of length Len

append(CPSPrefix,Pat,CPS),

aux_pattern(CPSPrefix,Pat,Times).

aux_pattern(CPS,Pat,Times) :-

append(CPSPrefix,Pat,CPS), !,

pattern(CPSPrefix,Pat,TimesPrefix),

Times is TimesPrefix+1.

aux_pattern(CPS,Pattern,1).

Example 2.9 The child-parent sequence of the forest logging trace for Example 2.7

is as follows:

cps = [(q(_h599,r2),p(_h599,r4)), (p(_h599,r4),q(_h599,r2)),

(q(_h619,r2),p(_h619,r4)), (p(_h639,r4),q(_h639,r2)),

(q(_h659,r2),p(_h659,r4)), (p(_h679,r4),q(_h679,r2)),

(q(_h699,r2),p(_h699,r4)), (p(_h719,r4),q(_h719,r2)),

(q(_h739,r2),p(_h739,r4)), (p(_h759,r4),q(_h759,r2)),

(q(_h779,r2),p(_h779,r4))].

There are two child-parent patterns in the above cps. The first one is cpp1 =

[(p( h759, r4), q( h759, r2)), (q( h779, r2), p( h779, r4))] of length two and it repeats

five times. The second one is cpp2 = cpp2
1 of length four, twice repeated. The optimal

child-parent pattern is cpp1 , as it covers 2 × 5 = 10 entries in cps compared to cpp2 ,

which covers 4 × 2 = 8 entries. ✷
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As in the call sequence analysis, child-parent relationships in the optimal child-

parent pattern for a forest logging trace can be modeled as a graph.

Definition 2.5 Let cppopt be the optimal child-parent pattern for a forest logging

trace. The trace’s answer-flow child-parent graph (CPG) is a directed graph

Gaf = (N , E), where its nodes are the set of children and parent-subgoals in cppopt ,

i.e., N = {sub | (sub, ...) ∈ cppopt or (..., sub) ∈ cppopt}, and its edges are the child-

parent pairs in cppopt , i.e., E = {(child , parent) | (child , parent) ∈ cppopt}. ✷

A path in Gaf is called an answer-flow path; such a path is called an answer-

flow loop if it is a cycle. Two answer-flow loops that consist of the same nodes

and edges are considered to be the same and we will keep only one representa-

tive loop in such a case. Answer-flow paths and loops represent information flow

among unfinished subgoals in the infinite process of answer derivation. All answer-

flow paths from node child to node parent can be computed using the predicate

af path(child , parent , path); all answer-flow loops starting from child can be com-

puted using the predicate af loop(child , loop), defined below.3

:- table af_path/3.

af_path(Child,Parent,[Child]) :- optimal_cpp(Child,Parent).

af_path(Child,Parent,[Child|P]) :-

optimal_cpp(Child,Sub),

af_path(Sub,Parent,P),

\+ member(Child,P).

af_loop(Sub,Loop) :- af_path(Sub,Sub,Loop).

Example 2.10 Consider cpp1 , the optimal child-parent pattern of Example 2.9. Its

answer-flow graph is the subgraph shown inside the rectangle in Figure 2(B). The

only answer-flow loop is [16, 20, 16], which tells us that subgoal p called from rule r4

and subgoal q called from rule r2 return answers to each other in an infinite answer

derivation loop. ✷

Theorem 2.3 (Completeness of the answer flow analysis) Consider a query

to a program all of whose predicates are tabled and assume that the inference en-

gine supports subgoal abstraction. If the query evaluation does not terminate, then:

3We use optimal cpp(child , parent) to denote the fact that (child , parent) is in cppopt .
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i. there is an optimal child-parent pattern in its complete infinite trace,

ii. Gaf = (N , E) contains at least one answer-flow loop,

iii. every sub ∈ N appears in at least one answer-flow loop, and

iv. each edge (sub1 , sub2 ) ∈ E , where sub1 is of the form predicate(..., ruleid), tells

us that sub2 calls sub1 from the body of a rule with the id ruleid. ✷

Proof: (i) There can be only a finite number of unfinished subgoals due to subgoal

abstraction, and thus there must be at least one child-parent pattern. Otherwise the

evaluation would have terminated. Therefore, an optimal child-parent pattern must

exist in the forest logging trace.

(ii) Suppose there is no answer-flow loop in Gaf . There must be a set N t ⊆ N

of terminal nodes and, since these nodes are terminal, the graph has no edges going

out of N t . The SLG-children of these terminal nodes are therefore not in N and

answers for these SLG-children are not being repeatedly derived. Recall that, due

to subgoal abstraction, Gaf can have only a finite number of nodes and, if we let

the engine run long enough, all possible edges in Gaf will be generated and further

computation will not change that graph. Therefore, the nodes for which answers

are not derived repeatedly cannot stay unfinished (in the sense of unfinished SLG

subgoals) infinitely long. So, after a while, all SLG-children of N t must either become

completely evaluated tabled subgoals or they must have been base facts all along. This

implies that, given enough time, all subgoals in N t would be completed, contrary to

the assumption that N t ⊆ N . Therefore, there must be an answer-flow loop.

(iii) If sub ∈ N and sub is not contained in any answer-flow loop, then sub’s

evaluation would have been completed and it cannot be part of any child-parent

pattern, a contradiction.

(iv) Consider an edge (sub1 , sub2 ) ∈ E , where sub1 is of the form

predicate(..., ruleid). We know sub2 calls sub1 and sub1 keeps returning answers to

sub2 , by the definition of the edges in Gaf . It follows from the argument made in (ii)

of Theorem 2.1 that this call of sub1 must have been made from the rule with the id

ruleid . ✷
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Theorem 2.4 (Soundness of the answer flow analysis) Consider a query to a

program all of whose predicates are tabled. If the complete infinite trace of that query

has an optimal child-parent pattern then the query evaluation does not terminate. ✷

Theorem 2.4 follows directly from the definitions, since the optimal child-parent

pattern captures the information flow among unfinished subgoals in a non-terminating

computation. These theorems tell us that the set of subgoals contained in the optimal

child-parent pattern of a non-terminating trace, i.e., the nodes of the pattern’s answer-

flow CPG, are exactly the subgoals for which infinitely many answers continue being

derived. We call these subgoals the culprit unfinished subgoals.

In call sequence analysis, an unfinished-call CPG is constructed and the suspected

unfinished-call loops are flagged. Similarly, in answer-flow analysis, one builds answer-

flow CPG and computes culprit loops, which shed light on how answers flow among

culprit subgoals. The following Theorem 2.5 connects these two approaches.

Theorem 2.5 (Relationship between unfinished-call and answer-flow CPGs)

Let Guc = (Nuc, Euc) be the unfinished-call CPG and let Gaf = (Naf , Eaf ) be the

answer-flow CPG for a non-terminating forest logging trace. Then Naf ⊂ Nuc, and

for every edge (child , parent) ∈ Eaf there is an edge (parent , child) ∈ Euc. Further-

more, every answer-flow loop is a culprit unfinished-call loop. ✷

Proof: If sub ∈ Naf then it must be an unfinished subgoal, since answers to sub

continue to be derived. That is, the evaluation of sub has not been completed and

Naf ⊆ Nuc. In fact, we even have that Naf ⊂ Nuc, since root ∈ Nuc \ Naf . For any

edge (child , parent) ∈ Eaf , we know that child returns answers to parent , i.e., it is

issued in a SLG tree for parent . Therefore (parent , child) ∈ Euc. This implies that

any answer-flow loop is also an unfinished-call loop. ✷

Example 2.11 Let Guc = (Nuc, Euc) be the unfinished-call CPG of Example 2.7 and

Gaf = (Naf , Eaf ) be the answer-flow CPG of Example 2.10. It is easy to verify that

Theorem 2.5 holds. ✷

Theorem 2.6 (No false-positives for finite traces) If the evaluation of a query,

Q, terminates, then both the unfinished-call CPG and the answer-flow CPG for Q’s

forest logging trace are empty. ✷
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Proof: We know that the set of nodes of the unfinished-call CPG for a trace is its set

of unfinished subgoals. In case of a terminating evaluation, all subgoals are completed

and thus there are no unfinished subgoals, i.e., its unfinished-call CPG must be empty,

as it has no nodes. It follows from Theorem 2.5 that the corresponding answer-flow

CPG is likewise empty. ✷

Theorem 2.6 assures that neither the unfinished call nor the answer flow analysis

yield false-positive results for finite traces. Of course, for infinite traces, false-positives

are possible, as one can inspect only a finite prefix in such cases.

2.3.3 Auto-Repair of Rules

Call sequence analysis tells us the exact sequence of unfinished calls and their re-

spective host rule ids in the original program that initiate a non-termination, and

answer flow analysis further identifies a subset of these unfinished subgoals as culprit.

However, sometimes query evaluation does not terminate not because the query has

infinitely many answers but because one of its subgoals does. In such cases, the query

may terminate if a different evaluation order for its subgoals is used. This section

describes one such heuristic technique for fixing certain non-termination queries by

delaying the evaluation of unfinished subgoals.

Suppose that Guc = (Nuc, Euc) is the unfinished-call CPG of a non-terminating

evaluation. For each (parent , child) ∈ Euc, we know that the call to child from parent

has not been completed. Moreover, we know:

• the host rule for this call, and

• the common set of the unbound arguments of parent and child , which are also

the arguments whose bindings are to be derived.

To reduce the possibility that parent gets an infinite number of bindings from child

and thus diminish the possibility of non-termination caused by that call to child,

we can delay the evaluation of child in the host rule until the aforesaid unbound

arguments get bound. If later in the evaluation it is established that the arguments

cannot be bound, the delay of child ceases and the subgoal is executed. Similar

evaluation delays can be applied to all unfinished calls in Euc, which constitutes our

auto-repair technique.
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Example 2.12 Consider the evaluation and unfinished-call CPG of Example 2.7,

where edge (12, 16) which represents (p( h9780 , r6 ), q( h9780 , r2 )). Their common

set of arguments consists of their only argument, i.e., their first argument, and the

rule id contained in q( h9780 , r2 ) is r2 . Therefore, our technique will delay the

evaluation of q( h9780 ) in the rule r2 until its first argument becomes bound. ✷

Flora-2 and SILK support delay quantifiers of the form wish(cond) and

must(cond), where cond is an and/or combination of ground(variables) and

nonvar(variables). This is similar to the when/2 predicate found in many prologs

with the difference being that the delayed subgoal is eventually tried even if the bind-

ing conditions are not met. A delayed literal is of the form delay-quantifier^goal.

When such a literal is to be executed, the attached delay-quantifier is checked. If the

quantifier’s condition is satisfied, goal is executed immediately. Otherwise, the literal

is delayed until such time that the condition is satisfied. If the condition is eventu-

ally satisfied, goal is called. If the engine determines that satisfying the quantifier’s

condition is impossible, goal is called anyway (in case of the wish quantifier) or an

error is issued (in case of the must quantifier).

Example 2.13 Consider the program of Example 2.7. Our auto-repair heuristic will

delay the unfinished subgoals and modify the program as follows:

@!r1 p(a).

@!r2 p(f(X)) :- wish(ground(X))^q(X).

@!r3 q(b).

@!r4 q(g(X)) :- wish(ground(X))^p(X).

@!r5 r(X) :- wish(ground(X))^r(X).

@!r6 r(X) :- wish(ground(X))^p(X), s(X).

@!r7 s(f(b)).

?- wish(ground(X))^r(X).

The modified program successfully terminates with an answer X = f(b). ✷

It should be clear, however, that the above is only a heuristic and no automatic

fool-proof auto-repair technique is possible, in general. Since Terminyzer serves as a

debugging tool, the user needs to manually suggest the appropriate delay quantifiers
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to unfinished subgoals upon the detection of non-termination. A graphical interface

can help to ease the process.

2.4 Terminyzer for Tabled Logic Engines without

Subgoal Abstraction

We now turn to non-termination analysis that does not rely on subgoal abstraction.

This relaxation makes Terminyzer applicable in more tabled logic engines since none

of them (except XSB) currently supports subgoal abstraction. As discussed in Chap-

ter 1, non-termination may then also be caused by generation of infinitely many

subgoals. In this case, Terminyzer analyzes the sequence of unfinished subgoals and

reports the predicates and their respective host rule ids that form increasingly deep

nested subgoals. As before, we assume that users stop the execution after a time limit

or when subgoals or answers become too large.

For an unfinished subgoal, its simplified version is constructed out of the subgoal’s

predicate and the rule id as predicate(ruleid). For instance, p(f2 (f1 (a)), b, r3 ) is

simplified to p(r3 ). The simplified unfinished subgoal sequence is the sequence of

simplified unfinished subgoals sorted by the order of their first appearance in the

trace. When non-termination is caused by an infinite number of subgoals, these

subgoals must have increasingly deeply nested terms. Since a finite program has only

a finite number of predicates and functors, there must be repetitions in the aforesaid

sequence of simplified unfinished subgoals.

Definition 2.6 A simplified unfinished subgoal sequence, uss, contains a subgoal

pattern, subp, if subp is a finite subsequence of uss such that uss = prefix • subpα,

where α > 1 is a positive integer or ω (the first infinite ordinal). The suffix subpα

is called the subp-suffix of uss. The optimal subgoal pattern in a simplified

unfinished subgoal sequence uss is the shortest subgoal pattern, subp, such that its

subp-suffix is the longest in uss (longest by containment among all suffixes of subgoal

patterns in uss). ✷

Similar to the computation of optimal child-parent patterns in answer flow anal-

ysis of Section 2.3.2, the optimal subgoal pattern of a simplified unfinished subgoal
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sequence can be computed. For an infinite trace, its simplified unfinished subgoal se-

quence uss and the subp-suffixes of any of its subgoal patterns are infinite, but all sub-

goal patterns have finite lengths. Theorem 2.7, below, tells us that non-termination

implies the existence of an optimal subgoal pattern. This pattern will show which

subgoals in which rules recursively call one another and create increasingly deeper

and deeper terms.

Example 2.14 The evaluation of the query ?- r(a) given the program

@!r1 p(a).

@!r2 p(X) :- q(f1(X)).

@!r3 q(X) :- p(f2(X)).

@!r4 r(X) :- r(X).

@!r5 r(X) :- p(X), s(X).

@!r6 s(a).

produces a forest log containing infinitely many unfinished calls, the first of which are:

unfinished(r(a,_h46), root, 0).

unfinished(r(a,r4), r(a,_h27), 8).

unfinished(r(a,r4), r(a,r4), 11).

unfinished(p(a,r5), r(a,r4), 12).

unfinished(q(f1(a),r2), p(a,r5), 16).

unfinished(p(f2(f1(a)),r3), q(f1(a),r2), 19).

unfinished(q(f1(f2(f1(a))),r2), p(f2(f1(a)),r3), 22).

unfinished(p(f2(f1(f2(f1(a)))),r3), q(f1(f2(f1(a))),r2), 25).

unfinished(q(f1(f2(f1(f2(f1(a))))),r2), p(f2(f1(f2(f1(a)))),r3), 28).

unfinished(p(f2(f1(f2(f1(f2(f1(a)))))),r3),

q(f1(f2(f1(f2(f1(a))))),r2), 31).

unfinished(q(f1(f2(f1(f2(f1(f2(f1(a)))))),r2),

p(f2(f1(f2(f1(f2(f1(a)))))),r3), 34).

Its simplified unfinished subgoal sequence is [root, r( h46), r(r4), r(r4),

p(r5), q(r2), p(r3), q(r2), p(r3), q(r2), p(r3), q(r2)]. It has an opti-

mal subgoal pattern as [p(r3), q(r2)], which means that the predicates q in rule r2

and p in rule r3 are the ones causing the generation of increasingly deep subgoals. ✷
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Theorem 2.7 (Soundness and completeness) Consider a query to a tabled pro-

gram and assume that the engine does not perform subgoal abstraction. The forest

logging trace has an optimal subgoal pattern if and only if the computation is non-

terminating due to infinitely many subgoals. ✷

Proof: (Soundness) If an optimal subgoal pattern exists then the evaluation does not

terminate. Indeed, if the evaluation terminates, there would be no unfinished subgoals

and thus no optimal subgoal pattern. Suppose the evaluation produces only a finite

number of subgoals. Since there are only two causes for non-termination in a tabled

logic engine without subgoal abstraction—infinite number of answers or infinite num-

ber of subgoals—non-termination must be due to an infinite number of answers. As

described in Section 2.3.2, this means that a finite subset of these subgoals, contained

in the trace’s optimal child-parent pattern, keeps receiving, deriving, and returning

answers. Since there is an optimal subgoal pattern, this requires certain predicates

from certain rules to recursively and repeatedly call each other, supplying deeper and

deeper terms as arguments. These calls would then be causing new subgoals of bigger

and bigger sizes to appear in the child-parent pattern, contrary to the assumption

that the evaluation produces only a finite set of subgoals.

(Completeness) As discussed above, when non-termination happens because of

an infinite number of subgoals, these subgoals must have increasingly deep function

terms as arguments, and these subgoals’ predicates must be recursive. Otherwise

there would be only a finite number of terms in a finite program. Therefore, there

must be repetitions in the simplified unfinished subgoal sequence of the trace, which

implies that there must be an optimal subgoal pattern. ✷

Once the optimal subgoal pattern is computed, the user can easily find the sub-

goals and the rules that are likely causes of non-termination. Note that without

subgoal abstraction, the auto-repair technique presented in Section 2.3.3 does not

apply here since no subgoal reordering can cause the query to terminate.

2.5 Experiments

Terminyzer has been implemented for the Flora-2 and SILK systems, and we report

our experiments below. All tests were performed on a dual core 2.4GHz Lenovo X200
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with 3 gigabytes of main memory running Ubuntu 11.04 with Linux kernel 2.6.38.

The sources of the test programs as well the reports produced by Terminyzer are

available online.4

2.5.1 Test Programs

Here we include four test cases: T1 ,T2 ,T3 , and T4 , and none of them terminates.

The first three tests are performed with subgoal abstraction enabled, while T4 was

tested without subgoal abstraction. T1 is the query and the rule set of Example 2.7.

T2 and T3 are very large programs which were derived from Flora-2 programs used

in the SILK project. T2 has 844 rules and facts, and its corresponding XSB program

(after Flora-2 -to-XSB translation) is estimated to have 2,000 rules and facts. T3

consists of 4,774 rules and 919 facts, and its XSB program has over 1,000 facts and

over 5,500 rules.5 T4 is the program of Example 2.14.

For T1 and T2 , we set XSB to abort after the answer depth reached 30. For T3 ,

we let the evaluation continue until all available memory was consumed. The reason

is that T3 is a really complex program, and in order to get a usable prefix of its

infinite trace, we have to let it run “long enough.” The execution of T2 produces a

log trace of 3 megabytes with around 26,000 log entries, and the trace for T3 is in

excess of 2 gigabytes with more than 14 million log entries.

2.5.2 Test Results and Analysis

Terminyzer produced expected results in all the test cases. For T1 , Terminyzer

constructed the unfinished-call graph shown in Figure 2 and identified its culprit

loop. The auto-repair technique presented in Section 2.3.3 successfully fixed the non-

termination problem as demonstrated in Example 2.13.

For T2 , Terminyzer determined that the predicate entailed(X) of the following

rule was generating and infinite number of answers:

entailed(conjunction(Antecedent1,Antecedent2)) :-

entailed(Antecedent1), entailed(Antecedent2).

4http://rulebench.projects.semwebcentral.org/terminyzer+
5We also tested other, fairly large real programs from the SILK project with similarly positive

results.

31



The heuristic auto-repair method of Section 2.3.3 fails to fix this non-terminating

query since it is the query itself, not its subqueries, that has infinitely many answers.

For T3 , the unfinished-call CPG has 14 nodes and 34 edges, and its answer-flow

CPG has 9 nodes and 28 edges. Our auto-repair method successfully removes the

cause of non-termination and the remedied program terminates with one answer. We

should mention that an experienced knowledge engineer spent hours debugging T3

— all in vein.

For T4 , Terminyzer successfully identified the optimal subgoal pattern, as de-

scribed in Example 2.14.

2.5.3 Computation Times

For T1 , T2 , and T4 , Terminyzer took a tiny fraction of one second for each program.

For the much more complex T3 , it took 170 seconds. Compared to the fruitless hours

spent by our knowledge engineer, Terminyzer appears to be a much more inviting

alternative.

One optimization would be to split forest logging traces into multiple files for differ-

ent analyzers, since different analysis approaches largely make use of different entries

in the trace: call sequence analysis uses only the tc, nc, and cmp-facts; answer-flow

analysis needs ar and dar -facts; while Terminyzer for logic engines without subgoal

abstraction uses tc, nc and cmp-facts. Entries that are irrelevant for a particular anal-

ysis can be deleted thereby significantly reducing the size of the data set that we need

to deal with. This optimization is implemented in Terminyzer as a pre-processor.

2.6 Related Work

There have been many works on termination analysis for logic programs [BAK91,

Sah93, SD94, DDSL+98, She97, OCM00, SYY01, VDSS01, LSS04, BCG+07, NDS07,

NGSKDS08, SkGS+10, SDSV10] while non-termination analysis received much

less attention [NM99, Pay07, PM06, SYY01, VDS09, SDSV10, VDS11]. Most of

these studies are either norm-based or transformation-based. In norm-based ap-

proaches [BAK91, Sah93, SD94, DDSL+98, She97, SYY01, VDSS01, LSS04, BCG+07,

SDSV10, VDS11], termination analysis is performed by proving certain well-founded
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sufficient conditions for termination, which involve norms, i.e., abstractions of the size

of a term (e.g., the number of symbols, depth, etc.). Transformation-based algorithms

[NM99, OCM00, Pay07, PM06, NGSKDS08, SkGS+10] rewrite logic programs so that

the termination property of the rewritten program could be used to prove termination

of the original program.

There are three main points that differentiate Terminyzer. First, a log-based

approach to debugging expounded by Terminyzer is fundamentally different from

the works on proving termination. We do not aim to prove termination because if a

query terminates then there is nothing for Terminyzer to do. Second, the problems

discussed in most previous work of the subject—except [DDSL+98, VDSS01]—are

non-issues in our framework, since they stem from the severe incompleteness of the

Prolog inference mechanism and, therefore, do not apply to the inference engines un-

der consideration. Third, Terminyzer aims at helping the programmer to debug pro-

grams without syntactic restrictions. All other approaches perform static or dynamic

analysis in order to prove termination or non-termination for restricted classes of logic

programs, such as function-free programs, positive programs, etc. These restrictions,

if at all stated, are typically very strong; stated or not, they always exist because both

of the above problems are undecidable. This also applies to [DDSL+98, VDSS01],

which are the only works that study the termination problem for tabling engines.

Among all these previous studies, only the loop checker approach in [SYY01]

resembles our analysis of non-termination in the absence of subgoal abstraction.

This work aims at detecting repetitions of subgoals and clauses, which are akin to

Terminyzer’s optimal subgoal patterns. However, there are two major differences be-

tween Terminyzer’s analysis in Section 2.4 and the loop checkers in [SYY01]. First,

Shen et al. work with Prolog without tabling. For instance the following query:

p(X) :- p(f(X)).

?- p(X).

terminates without answers in our framework (with subsumptive tabling or subgoal

abstraction) and thus is a non-issue at all, while their loop checker will report non-

termination because it detects an infinite SLD-derivation. Second, they perform

static analysis of the original program clauses and try to detect possible loops, while

Terminyzer analyzes logs for actual execution. For instance, this query
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p(X) :- p(f(X)).

p(f(a)).

?- p(a).

will be reported as terminating in their framework since there is a successful SLD-

derivation. However, this is a drawback because this analysis considers only some

derivations, while Prolog may explore more. For instance, in the above example, if

the user asks for another answer by typing a “;” then Prolog will go into an infinite

loop. So, in that sense, this analysis is overly optimistic and not completely ade-

quate. In contrast, Terminyzer would consider the actual executions. For tabled

engines without subgoal abstraction that, like Prolog, return one answer at a time

(e.g., the batched engines of XSB and YAP), Terminyzer will report the first success-

ful derivation of p(a) as terminating and the subsequent ones as non-terminating.

Furthermore, with subgoal abstraction, the computation terminates and Terminyzer

will report this properly.
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Chapter 3

Cost-Based Optimization

3.1 Preliminaries

Consider a n-ary predicate p(x1, . . . , xn). If p is a base predicate, then its associated

set of facts are denoted by factset(p). The value sequence, vi (1 ≤ i ≤ n), is the

sorted sequence of xi -values that are present in factset(p), and vji is the j-th value

of vi. The frequency, f j
i , of v

j
i is the number of facts in factset(p) with xi = v j

i . We

will use v i to denote the i-th element of a sequence v and ‖...‖ to denote the length

of a sequence or the cardinality of a set. Since we are dealing with discrete values in

finite relations, all argument values can be assumed to be integers. Without loss of

generality, we adopt this assumption in the sequel, for simplicity.

Definition 3.7 Given a fact-set for an n-ary predicate p(x1, . . . , xn), the data dis-

tribution, di, for xi is the sequence of value-frequency pairs [(v1
i , f

1
i ), . . . , (v

m
i , f mi )]

where m = ‖vi‖. ✷

Data distribution is the basis for size estimation in all cost-based query opti-

mizers, but this information is normally too large to store and use efficiently. One

critical step of all size estimation algorithms is to partition data distributions into

distribution segments and summarize these segments in such a way that they can be

approximated efficiently both in time and space. Histogram is one such summariza-

tion method that groups values of similar frequencies into buckets and estimates the

frequencies of values in each bucket in a uniform and efficient way [Ioa03, PHIS96].
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The two most important aspects in constructing histograms are partition rules and

value frequency approximation. Partition rules describe how the value-frequency pairs

in data distributions are grouped and summarized into buckets, and value frequency

approximation is an algorithm that estimates the values and their frequencies in each

individual bucket.

There are many different partition rules and value frequency approximation al-

gorithms which provide various computational complexities and estimation accuracy

and one is free to choose those that work best in their applications. In this thesis, we

use the maxdiff partition rule (formally defined later), which groups a data distribu-

tion into β partitions using its β − 1 largest frequency differences as differentiators,

for its simplicity and efficiency. In term of value frequency approximation, all val-

ues are assumed to be uniformly distributed and thus their frequencies are averaged.

However, our size estimation algorithms can be easily adjusted to work for any other

partition rule.

Definition 3.8 Given a data distribution d = [(v1 , f 1 ), . . . , (vn , f n)] and the number

of partitions β (1 ≤ β ≤ n), maxdiff partition rule groups d into β partitions as

d [1 ] | ... | d [β] such that

• d is the concatenation of d [1 ], . . . , d [β], i.e., d = d [1 ] • . . . • d [β], and

• {|f ⊥
d [i]−f ⊤

d [i−1 ] | | 2 ≤ i ≤ β} contains the largest β−1 frequency differences of

{|f j − f j−1 | | 2 ≤ j ≤ n}, where (v⊥
d [i] , f

⊥
d [i]) and (v⊤

d [i] , f
⊤
d [i]) are the first and

last element of d[i], respectively. ✷

Each partition d[i] has four parameters: floor, ceiling, size, count ; they are defined

as d [i ].floor = v⊥
d [i] , d

[i ].ceiling = v⊤
d [i] , d

[i ].size = ‖d [i ]‖, d [i ].count =
∑

(v ,f )∈d [i] f . The

floor and ceiling of d[i] are the minimal and maximal values that it contains. Its size

is the number of distinct values in d[i] and count is the sum of frequencies for those

values. These four parameters constitute the summary of a partition and they are

stored by histogram buckets.

Definition 3.9 Given a fact-set for an n-ary predicate p(x1, . . . , xn), let di be the

data distributions of xi for 1 ≤ i ≤ n and d
[ji]
i (1 ≤ ji ≤ βi) be the maxdiff partitions

of di. The maxdiff histogram Hxi
, or Hp.xi

to make the predicate name explicit, for

xi consists of βi buckets, H
ji
xi
, defined as follows.
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• Histogram bucket H ji
xi
. It has four parameters H ji

xi
.floor, H ji

xi
.ceiling, H ji

xi
.size,

and H ji
xi
.count whose values are the same as those of d

[ji ]
i . These four parameters

constitute the bucket as (H ji
xi
.floor ,H ji

xi
.ceiling ,H ji

xi
.size,H ji

xi
.count).

• Value frequency approximation of H ji
xi
. The set of values contained in H ji

xi

is defined as vals(H ji
xi
) = {v | H ji

xi
.floor ≤ v ≤ H ji

xi
.ceiling}. The frequency of

vals(Hji
xi
) is approximated by their average, denoted avgf (H ji

xi
) =

H
ji
xi
.count

H
ji
xi
.size

. ✷

In Definition 3.9, Hji
xi
summarizes d

[ji]
i andHxi

summarizes di. Note that vals(H
ji
xi
)

is the set of all possible values between its floor and ceiling, which is usually differ-

ent from the set of values that actually appear in its fact set. The set of actual

argument values corresponding to d
[ji]
i , {v | (v , f ) ∈ d

[ji ]
i }, are not stored since it is

prohibitively expensive to do so [IP95]. Size estimation for the relational operations of

select, project, and join based on histograms were described in [BC02]. The following

Example 3.15 illustrates the idea for the case of select.

Example 3.15 Consider the following fact-set for predicate p(x1, x2):

p(2,2). p(3,7). p(3,8). p(4,4). p(5,5). p(5,7).

p(5,8). p(6,6). p(7,5). p(7,6). p(8,1). p(8,3).

Its data distributions are d1 = [(2 , 1 ), (3 , 2 ), (4 , 1 ), (5 , 3 ), (6 , 1 ), (7 , 2 ), (8 , 2 )] and

d2 = [(1 , 1 ), (2 , 1 ), (3 , 1 ), (4 , 1 ), (5 , 2 ), (6 , 2 ), (7 , 2 ), (8 , 2 )]. One maxdiff partition,

assuming β1 = β2 = 3 , groups them as d1 = [(2 , 1 ), (3 , 2 ), (4 , 1 )] • [(5 , 3 )] • [(6 , 1 ),

(7 , 2 ), (8 , 2 )] and d2 = [(1 , 1 )] • [(2 , 1 ), (3 , 1 ), (4 , 1 )] • [(5 , 2 ), (6 , 2 ), (7, 2), (8, 2)].

Its histogram buckets for x1 and x2 are H 1
x1

= (2 , 4 , 3 , 4 ), H 2
x1

= (5 , 5 , 1 , 3 ),

H 3
x1

= (6 , 8 , 3 , 5 ), H 1
x2

= (1 , 1 , 1 , 1 ), H 2
x2

= (2 , 4 , 3 , 3 ), and H 3
x2

= (5 , 8 , 4 , 8 ).

For the selection defined by q(x1 , x2 ) :- p(5 , x2 )., only values in vals(H 2
x1
) = {5}

can produce results. Since avgf (H 2
x1
) =

H 2
x1

.count

H 2
x1

.size
= 3

1
= 3 and the selection covers {5},

one can estimate the result size as the product of average frequency and the number

of values covered by the selection, i.e., size(q) = avgf (H 2
x1
)× ‖{5}‖ = 3 . ✷

The histograms for the arguments of q in Example 3.15 can be computed as follows.

Since the selection covers the second bucket of the histogram for p.x1 , H
2
p.x1

, we know

that the histogram for q .x1 consists of one single bucket which is the same asH2
p.x1

, i.e.,
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H 1
q.x1

= (5 , 5 , 1 , 3 ). By assuming argument independence [Chr84], we can compute

the histogram buckets for q .x2 as H 1
q.x2

= (1 , 1 , 1 , 0 .25 ), H 2
q.x2

= (2 , 4 , 3 , 0 .75 ), and

H 3
q.x2

= (5 , 8 , 4 , 3 , 2 ), where H i
q.x2

.[floor , ceiling , size] = H i
p.x2

.[floor , ceiling , size]1

and H i
q.x2

.count = size(q)
size(p)

× H i
p.x2

.count .

Although histogram produces good estimate for predicate q, it loses the argu-

ment dependency information while computing its histograms, as illustrated by the

following Example 3.16.

Example 3.16 Consider the selection: r(x1 , x2 ) :- q(x1 , x2 ), x2 ≤ 4 ., where q

is the same predicate in Example 3.15. Since only values in vals(H1
q.x2

)

and vals(H2
q.x2

) satisfy the selection, we can estimate the size of r as

size(r) = H 1
q.x2

.count + H 2
q.x2

.count = 1 . However, there is no fact of the form

p(5 , x2 ) such that x2 ≤ 4 . This estimation error is caused by the information loss

when we compute histograms for q(x1 , x2 ) by assuming argument independence. ✷

3.2 Dependency Matrices

This section presents our data structure dependency matrices, which can be viewed

as an extension of histograms, to store predicate statistics. Dependency matrices

successfully preserve argument dependency and thus take care of the problems (as

demonstrated in Example 3.16) caused by argument independence assumption. We

also describe intervals, interval sequences, and several dependency matrix operations,

which form an important part of our size estimation algorithms.

3.2.1 Definition of Dependency Matrices

Example 3.17 Consider the fact-set of predicate p(x1 , x2 ) in Example 3.15. Those

facts can be represented as a 2-dimension fact-matrix F as shown in Figure 3(A)

where F (x1 , x2 ) = 1 if and only if p(x1 , x2 ) is true, i.e., p(x1 , x2 ) ∈ factset(p). If

we segment the rows of F according to the partitioning of the distribution d1 of Ex-

ample 3.15, i.e., |2 , 3 , 4 |5 |6 , 7 , 8 |, and the columns according to the partitioning of

1Given two entities e1 and e2 and a sequence of parameters par1 , ..., parn , we will
use e1 .[par1 , ..., parn ] = e2 .[par1 , ..., parn ] to represent e1 .par1 = e2 .par1 , ..., e1 .parn = e2 .parn , in
short.
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Figure 3: Dependency Matrix of Example 3.17

d2 of Example 3.15, i.e., |1 |2 , 3 , 4 |5 , 6 , 7 , 8 |, we obtain a partition of the matrix

into rectangular regions as shown in Figure 3(B). The dependency matrix shown in

Figure 3(C) is a summary of Figure 3(B): each region of Figure 3(B) is reduced to

a single square in Figure 3(C) and the number in the square represents the number

of 1’s in the corresponding region of Figure 3(B).2 In addition, three of the four

parameters of each distribution segment are stored in Figure 3(C) in the form of

(floor , ceiling , size). For instance, the floor, ceiling, and size of the third distribution

segment of d1 are 6 , 8 , and 3 respectively. Therefore, the bottom coordinate on the

vertical axis is annotated with (6 , 8 , 3 ). ✷

Definition 3.10 Let p(x1 , . . . , xn) be an n-ary predicate and let di (1 ≤ i ≤ n) be the

distribution for xi . Suppose each di is partitioned into βi segments d
[ji]
i , 1 ≤ ji ≤ βi .

The dependency matrix for p, denoted M〈p〉, is a matrix whose (j1 , . . . , jn)-th

element, M〈p〉(j1 , . . . , jn), is

‖{p(x1, . . . , xn) ∈ factset(p) | ∧1≤i≤n xi ∈ vals(d
[ji]
i )}‖

In addition, the ji -th coordinate on its i-th axis, denoted M〈p〉jii , is associated with

three parameters: floor, ceiling, and size whose values are the same as the correspond-

ing values associated with the distribution segment d
[ji]
i . ✷

We often use M〈p〉i to denote the i -th axis of a matrix M〈p〉 and M〈p〉jii to denote

the ji -th coordinate on M〈p〉i, as in Definition 3.10. For instance, let M〈p〉 be the

2-dimension matrix in Figure 3(C), thenM〈p〉1 denotes the first axis ofM〈p〉, i.e., the

20’s are represented as blank spaces since dependency matrices are stored as sparse matrices.
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vertical axis, and M〈p〉21 denotes the second coordinate on M〈p〉1. Please note that

M〈p〉jii does not have a count parameter, since it is already stored as dependency ma-

trix values. A 1-dimension dependency matrix M〈p〉 for p(x ) is actually a histogram

where the count value of each histogram bucket is stored in the dependency matrix,

i.e. H j
x .count = M〈p〉(j ).

Consider a dependency matrix M〈p〉 for an n-ary predicate p(x1, ..., xn).

M〈p〉(j1 , . . . , jn) summarizes this set of argument values: vals(d
[j1 ]
1 )× ...× vals(d

[jn ]
n )

whose cardinality is denoted by M〈p∗〉(j1 , . . . , jn) = Π1≤i≤nM〈p〉jii .size. The depen-

dency matrix value stored in M〈p〉(j1 , . . . , jn) is the number of facts of the form

p(x1 , . . . , xn) such that (x1 , . . . , xn) is summarized by this matrix element. Therefore,

we always have M〈p〉(j1 , . . . , jn) ≤ M〈p∗〉(j1 , . . . , jn).

Example 3.18 Let M〈p〉 be the dependency matrix in Figure 3(C) of Example 3.17.

M〈p〉(1 , 2 ) summarizes {2 , 3 , 4} × {2 , 3 , 4} = {(2 , 2 ), (2 , 3 ), (2 , 4 ), (3 , 2 ), (3 , 3 ),

(3 , 4 ), (4 , 2 ), (4 , 3 ), (4 , 4 )}, from which only p(2 , 2 ) and p(4 , 4 ) are in the fact-set.

Thus, M〈p〉(1 , 2 ) = 2 ≤ M〈p∗〉(1, 2) = 9. ✷

Given a β1 × . . .× βn dependency matrix M〈p〉, the size estimate of p, size(p)

or size(M〈p〉), can be computed as the sum of all dependency matrix elements, i.e.,

size(p) =
∑

i1 ,...,in
M〈p〉(i1 , . . . , in).

3 Therefore, one could always estimate the size

of a predicate by computing its dependency matrix.

3.2.2 Intervals and Interval Sequences

An interval l is formed by a pair of integers as (low , high), low ≤ high. The set of

integers contained in such an interval is defined as vals(l) = {i | low ≤ i ≤ high}. We

often use l .low and l .high to denote the interval’s lower and upper bounds. Given

two intervals l1 and l2 , we say that they overlap if vals(l1 ) ∩ vals(l2 ) 6= ∅, and they

are disjoint otherwise. We also say that l1 is contained in l2 if vals(l1 ) ⊆ vals(l2 ),

l1 < l2 if l1 .high < l2 .low , and l1 = l2 if vals(l1 ) = vals(l2 ).

An interval sequence is a sequence, s = [s1 , . . . , sn ], of intervals, and the set

of values associated with s is vals(s) = ∪1≤i≤nvals(s
i). It is sorted if s i < s j for

1 ≤ i < j ≤ n. Two interval sequences s1 = [s11 , . . . , s
n
1 ] and s2 = [s12 , . . . , s

n
2 ] are

3Note that if p is a base predicate then size(p) is its actual size.
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equivalent, written as s1 = s2 , if s
i
1 = s i2 for all 1 ≤ i ≤ n. Given an n-dimension

β1 × . . .× βn dependency matrix M〈p〉 for p(x1 , ..., xn), we will use l(M〈p〉jii ) to de-

note the interval (M〈p〉jii .floor ,M〈p〉jii .ceiling) and s(M〈p〉i) to denote the sorted

interval sequence [l(M〈p〉1i ), . . . , l(M〈p〉βi

i )].

Let s1 = [s11 , . . . , s
m
1 ] and s2 = [s12 , . . . , s

n
2 ] be sorted interval sequences. Their

intersection s1 ⊗ s2 and union s1 ⊕ s2 are also sorted interval sequences which are

computed by Algorithms 3. Intuitively, s1 ⊗ s2 contains the common part of s1 and

s2 and s1 ⊕ s2 covers the union of s1 and s2 . The complexity of Algorithm 3 is

O(m + n) since each iteration of the while-loop takes constant time and there can

be at most m + n such iterations since each iteration removes at least one interval

from either s1 or s2 .

1 Initialize s1 ⊗ s2 = [ ] and s1 ⊕ s2 = [ ];
2 while s1 6= [ ] and s2 6= [ ] do
3 Remove the first intervals from s1 and s2 as l1 and l2 , respectively;
4 if l1 < l2 then
5 s1 ⊕ s2 = (s1 ⊕ s2 ) • [l1 ];
6 s2 = [l2 ] • s2 ;

7 else if l1 > l2 then
8 s1 ⊕ s2 = (s1 ⊕ s2 ) • [l2 ];
9 s1 = [l1 ] • s1 ;

10 else
11 s1 ⊗ s2 = (s1 ⊗ s2 ) • [(max{l1 .low , l2 .low},min{l1 .high, l2 .high})];
12 if l1 .low < l2 .low then
13 s1 ⊕ s2 = (s1 ⊕ s2 ) • [(l1 .low , l2 .low − 1 )];
14 else if l1 .low > l2 .low then
15 s1 ⊕ s2 = (s1 ⊕ s2 ) • [(l2 .low , l1 .low − 1 )];
16 end
17 s1 ⊕ s2 = (s1 ⊕ s2 ) • [(max{l1 .low , l2 .low},min{l1 .high, l2 .high})];
18 if l1 .high < l2 .high then
19 s2 = [(l1 .high+1 , l2 .high)] • s2 ;
20 else if l1 .high > l2 .high then
21 s1 = [(l2 .high+1 , l1 .high)] • s1 ;
22 end

23 end

24 end
25 s1 ⊕ s2 = (s1 ⊕ s2 ) • s1 • s2 ;

Algorithm 3: Intersection and Union of Interval Sequences
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Example 3.19 Let M〈p〉 be the dependency matrix of Example 3.17. We know that

s(M〈p〉1 ) = [(2 , 4 ), (5 , 5 ), (6 , 8 )] and s(M〈p〉2 ) = [(1 , 1 ), (2 , 4 ), (5 , 8 )]. Their in-

tersection and union are as follows: s(M〈p〉1 )⊗ s(M〈p〉2 ) = [(2 , 4 ), (5 , 5 ), (6 , 8 )]

and s(M〈p〉1 )⊕ s(M〈p〉2 ) = [(1 , 1 ), (2 , 4 ), (5 , 5 ), (6 , 8 )]. ✷

Theorem 3.8 Let s1 ⊗ s2 and s1 ⊕ s2 be the intersection and union of two sorted

interval sequences s1 and s2 , respectively. Then,

i. for each l ∈ s1 ⊗ s2 , there is exactly one l1 ∈ s1 (respectively l2 ∈ s2 ) such that

l is contained in l1 (respectively l2 ), and

ii. for each l ∈ s1 ⊕ s2 , either l is contained in exactly one interval of s1 (respec-

tively s2 ) or l is disjoint from all intervals of s1 (respectively s2 ). ✷

Proof: During each while-loop, the first internals of s1 and s2 are removed as

l1 and l2 at line 3. Then, the common part of l1 and l2 is extracted and added to

l ∈ s1 ⊗ s2 and the parts that are covered by either l1 or l2 are added to l ∈ s1 ⊕ s2 .

Moreover, both s1 and s2 are sorted. Therefore, the theorem holds. ✷

Theorem 3.8 tells us one important property about interval sequence operations

that will be used when defining dependency matrix operations below in Section 3.2.3.

3.2.3 Dependency Matrix Operations

In Section 3.3 we will estimate the sizes of derived predicates using certain operations

on dependency matrices. We define these operations in this section.

Definition 3.11 Consider a β1 × . . . ,×βn dependency matrix M〈p〉, axis index

a (1 ≤ a ≤ n), and coordinate index c (1 ≤ c < βa) of its a-th axis. The merge

of M〈p〉ca and M〈p〉c+1

a , denoted merge(M〈p〉, a, c), produces a β′
1 × . . .× β′

n depen-

dency matrix M〈p〉′ that can be obtained from M〈p〉 as follows.

• Axis sizes. β′
k = βk for 1 ≤ k ≤ n and k 6= a, and β′

a = βa−1 .

• Coordinate parameters. For 1 ≤ k ≤ n, k 6= a and 1 ≤ ik ≤ β′
k , M〈p〉′

ik

k .[floor ,

ceiling , size] = M〈p〉ikk .[floor , ceiling , size]. M〈p〉′
ia

a .[floor , ceiling , size] =







M〈p〉iaa .[floor, ceiling, size] for 1 ≤ ia < c,

M〈p〉ia+1
a .[floor, ceiling, size] for c < ia ≤ β′

a.
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M〈p〉′
c

a .floor = M〈p〉ca .floor, M〈p〉′
c

a .ceiling = M〈p〉c+1

a .ceiling, M〈p〉′
c

a .size =

M〈p〉ca .size +M〈p〉c+1

a .size.

• Matrix values. For 1 ≤ i1 ≤ β′
1 , ..., 1 ≤ in ≤ β′

n , M〈p〉′(i1 , ..., ia , ..., in) =



















M〈p〉(i1, ..., ia, ..., in) if 1 ≤ ia < c,

M〈p〉(i1, ..., c, ..., in)+M〈p〉(i1, ..., c+1, ..., in) if ia = c,

M〈p〉(i1, ..., ia+1, ..., in) if c < ia ≤ β′
a .

In other words, M〈p〉′ is like M〈p〉 except that M〈p〉′
c

a is obtained by element-wise

additions of M〈p〉ca and M〈p〉c+1

a and then deleting M〈p〉c+1

a . ✷

Merge of coordinates is used to reduce storage requirements of dependency

matrices. The best merge of M〈p〉 is the merge merge(M〈p〉, a, c) such that

|avgf (M〈p〉ca)−avgf (M〈p〉c+1

a )| is minimum among all 1 ≤ a ≤ n and 1 ≤ c ≤ βa .

Best merges try to minimize the information loss caused by reducing dependency

matrix sizes.

Example 3.20 Consider M〈p〉 of Example 3.17, which is copied in Figure 4(A). Its

Figure 4: The Best Merge of Dependency Matrix of Example 3.20

best merge is merge(M〈p〉, 2 , 1 ) since |avgf (M〈p〉12 )− avgf (M〈p〉22 )| = 0 is minimal

among all average frequency differences. The resulting dependency matrix is given in

Figure 4(B). ✷

Definition 3.12 Consider an n-dimension β1 × ...× βn dependency matrix M〈p〉,

an axis index a and a sorted interval sequence s. Assume that for each l ∈ s, either
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l is contained in some interval of s(M〈p〉a) or l is disjoint from all intervals of

s(M〈p〉a).
4 The alignment of the a-th axis of M〈p〉 with s produces a β′

1 × . . .× β′
n

dependency matrix M〈p〉′ = align(M〈p〉, a, s), defined below.

• Axis sizes. β′
k = βk for 1 ≤ k ≤ n and k 6= a, and β′

a = ‖s‖.

• Coordinate parameters. For 1 ≤ k ≤ n, k 6= a and 1 ≤ ik ≤ β′
k , M〈p〉′

ik

k .[floor ,

ceiling , size] = M〈p〉ikk .[floor , ceiling , size]. For i = 1 , ..., ‖s‖,

– M〈p〉′
i

a .floor = s i .low and M〈p〉′
i

a .ceiling = s i .high;

– If s i is contained in some l(M〈p〉ca), then M〈p〉′
i

a .size = M〈p〉ca .size×
vals(si )

vals(M〈p〉ca )
; otherwise, M〈p〉′

i

a .size = 0 .

• Matrix values. For 1 ≤ i1 ≤ β′
1 , ..., 1 ≤ in ≤ β′

n , if s ia is contained in some

l(M〈p〉ca), then M〈p〉′(i1 , ..., in) = M〈p〉(i1 , ..., ia−1 , c, ia+1 , ..., in)×
vals(sia )

vals(M〈p〉ca )
;

otherwise, M〈p〉′(i1 , ..., in) = 0 ; ✷

The alignment, M〈p〉′ = align(M〈p〉, a, s), creates M〈p〉′ from M〈p〉 by splitting

M〈p〉a such that s(M〈p〉′a) = s . For each s i , if it is contained in some M〈p〉ca, then

that portion of M〈p〉ca that overlaps with s i is extracted out as M〈p〉′
i

a; otherwise,

M〈p〉′
i

a contains only 0 ’s.

Example 3.21 Let M〈p〉 be the 2-dimension dependency matrix of Example 3.17, re-

peated in Figure 5(A), and s = s(M〈p〉1 )⊕ s(M〈p〉2 ) = [(1 , 1 ), (2 , 4 ), (5 , 5 ), (6 , 8 )].

M〈p〉′ = align(M〈p〉, 1 , s) is shown in Figure 5(B), where M〈p〉′
1

1 contains only

0’s since s1 is disjoint with any interval of s(M〈p〉1 ). M〈p〉′′ = align(M〈p〉′, 2 , s)

is shown in Figure 5(C), where M〈p〉′′
3

2 and M〈p〉′′
4

2 are obtained by exact-

ing corresponding portions from M〈p〉′
3

2 . Their parameters are in the form of

(floor , ceiling , size). ✷

Consider a βp
1 × ...× βp

m dependency matrix for predicate p(x1, ..., xm), a

βq
1 × ...× βq

n dependency matrix for predicate q(x1, ..., xn), and two axis indexes

1 ≤ ap ≤ m and 1 ≤ aq ≤ n. We say that the ap-th axis of M〈p〉 and the aq -th axis

of M〈q〉 are aligned if s(M〈p〉ap) = s(M〈q〉aq ). For any pair of dependency matrices

4For instance, it is the case if s = s(M〈p〉a) operator s ′ where operator can be ⊗ or ⊕ and s ′ is

another sorted interval sequence.

44



Figure 5: Dependency Matrix Alignment of Example 3.21

M〈p〉 and M〈q〉 and a pair of axis indexes ap and aq , we can always make M〈p〉ap and

M〈q〉aq aligned by performing operations align(M〈p〉, ap , s) and align(M〈q〉, aq , s)

where s = s(M〈p〉ap)⊕ s(M〈q〉aq ).

Let M〈p〉 and M〈q〉 both be β1 × . . .× βn matrices. It follows directly from the

definitions that M〈p〉(i1 , ..., in) and M〈q〉(i1 , ..., in) summarize the same values for

all i1 , ..., in if and only if M〈p〉a and M〈q〉a are aligned for a = 1 , ..., n. In such case,

we say that M〈p〉 and M〈q〉 are perfectly aligned. Since, as noted above, any two

axises of two matrices can always be aligned, it follows that any pair matrices can be

refined so that they are perfectly aligned.

3.3 Statistics for Derived Predicates

The dependency matrices for base predicates are obtained directly following the con-

structive Definitions 3.8 and 3.10 as illustrated by Examples 3.17. Dependency matri-

ces of derived predicates are computed by abstractly evaluating their defining rules,

where rule bodies are replaced with algebraic expressions over the dependency ma-

trices for the body predicates. Recursive rules are evaluated iteratively until approx-

imate fixed points (to be defined later) are reached. This section first describes the

abstraction interpretation for each individual rule type and then presents algorithms

to compute dependency matrices for all query related predicates. Complexity analysis

for different operations of SDP is also included.
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3.3.1 Dependency Matrix for Selection

Let M〈p〉 be the n-dimension dependency matrix for p(x1 , ..., xn). We consider the

following two types of selections: selection with constant equalities (s1) and selection

with range restrictions (s2)

r(X1,...,Xn) :- p(X1,...,Xn), Xa == val. (s1)

r(X1,...,Xn) :- p(X1,...,Xn), Xa >= l, Xa =< h. (s2)

where 1 ≤ a ≤ n. Observing that s1 is a special case of s2 when l = h = val , we can

focus on computing M〈r〉 for s2. Let s = s(M〈p〉a)⊗ [(l , h)], and we know that the

selection is to restrict xa-values to vals(s). Therefore, the dependency matrix M〈r〉

can be computed by M〈r〉 = align(M〈p〉, a, s) as given in Definition 3.12.

Example 3.22 Consider the same fact-set for predicate p(x1 , x2 ) as in Example 3.15

and these two selections:

q(X1,X2) :- p(X1,X2), X1 == 5.

r(X1,X2) :- q(X1,X2), X2 =< 4.

M〈p〉 is repeated in Figure 6(A) for easy reference. Now, we compute M〈q〉

and M〈r〉. Let s1 = s(M〈p〉1 )⊗ [(5 , 5 )] = [(2 , 4 ), (5 , 5 ), (6 , 8 )]⊗ [(5 , 5 )] = [(5 , 5 )],

then the dependency matrix for q can be computed by M〈q〉 = align(M〈p〉, 1 , s1 ),

as given in Figure 6(B). Similarly, let s2 = s(M〈q〉2 )⊗ [(−∞, 4 )] = [(1 , 1 ), (2 , 4 ),

(5 , 8 )]⊗ [(−∞, 4 )] = [(1 , 1 ), (2 , 4 )], then M〈r〉 = align(M〈q〉, 2 , s2 ), shown in Fig-

ure 6(C).

Figure 6: Dependency Matrix for Selection

The size estimate of q and r are size(q) = 3 and size(r) = 0 , respectively. Please

note that here we have size(r) = 0 , which is different from its size estimate given in
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Example 3.16 (it was then estimated as 1 ). It is easy to see that dependency matrix

produces more accurate estimates by preserving argument dependencies. ✷

3.3.2 Dependency Matrix for Union

Consider the predicate p defined as the union of r and s by the following rules:

p(X1,...,Xn) :- r(X1,...,Xn).

p(X1,...,Xn) :- s(X1,...,Xn).

Before performing the union, we assume that M〈r〉 and M〈s〉 are both β1 × ...× βn

dependency matrices and they are perfectly aligned. This assumption guarantees

that any pair of matrix elements, M〈r〉(i1 , ..., in) and M〈s〉(i1 , ..., in), summarize the

same set of possible (x1 , ..., xn)-values so that union can be performed on them.

The dependency matrix for the union is also a n-dimension β1 × ...× βn depen-

dency matrix that is computed by union(M〈r〉,M〈s〉) given in Algorithm 4. There,

lines 1 – 4 compute the floor, ceiling, and size parameters in a natural way, where

line 3 is based on the containment assumption [SAC+79]. This assumption states

that each individual value in a smaller set matches some value from the larger set. It

is a common assumption in the literature on size estimation. Then, line 6 computes

the values of M〈p〉 by integrating M〈r〉 and M〈s〉 in an element-wise manner.

1 for all 1 ≤ i ≤ n and 1 ≤ ji ≤ βi do

2 M〈p〉jii .[floor , ceiling ] = M〈r〉jii .[floor , ceiling ];

3 M〈p〉jii .size = max{M〈r〉jii .size,M〈s〉jii .size};

4 end
5 for 1 ≤ i1 ≤ β1 , ..., 1 ≤ in ≤ βn do
6 M〈p〉(i1 , ..., in) = integrate({M〈r〉(i1 , ..., in),M〈s〉(i1 , ..., in)},M〈p∗〉(i1 , ..., in))

/* to be explained later */

7 end
8 return M〈p〉;

Algorithm 4: union(M〈r〉,M〈s〉)

SDP investigates three alternative definitions of integrate({M〈r〉(i1 , ..., in),

M〈s〉(i1 , ..., in)},M〈p∗〉(i1 , ..., in)) (line 6 of Algorithm 4): minimal, maximal, and

normalized integrations, which yield the minimal, maximal and expected number of
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results respectively. Minimal integration is based on the containment assumption and

defines it as max{M〈r〉(i1 , ..., in),M〈s〉(i1 , ..., in)}. Maximal integration assumes that

the fact-sets of r and s do not intersect and takes the sum of corresponding dependency

matrix values: min{M〈r〉(i1 , ..., in) +M〈s〉(i1 , ..., in),M〈p∗〉(i1 , ..., in)} (Recall that

M〈p∗〉(i1 , ..., in) is the upper limit for M〈p〉(i1 , ..., in)). The most involved defini-

tion of integrate is normalized integration. Consider a fact s(x1 , ..., xn) such that

(x1 , ..., xn) is summarized by M〈s〉(i1 , ..., in), there is a probability of M〈r〉(i1 ,...,in )
M〈p∗〉(i1 ,...,in )

that r(i1 , ..., in) is also a fact, meaning that there is a duplicate in the union results.

Therefore, after removing expected number of duplicates, the number of union results

can be estimated as M〈r〉(i1 , ..., in) + (1 − M〈r〉(i1 ,...,in )
M〈p∗〉(i1 ,...,in )

)×M〈s〉(i1 , ..., in).

These three definitions of integrate differ in their treatments of duplicates. Min-

imal integration removes most duplicates, maximal integration does not remove

duplicates, while normalized integration normalizes results by removing expected

number of duplicates. They can be extended to handle a set of values, V , as

integrate(V ,M〈p∗〉(i1 , ..., in)) defined below.

• minimal: max{v ∈ V };

• maximal: min{
∑

v∈V v ,M〈p∗〉(i1 , ..., in)};

• normalized: norm sum(V ,M〈p∗〉(i1 , ..., in)) as defined by Algorithm 5.

1 Let V be a set of numbers and b be an upper bound;
2 Initialize norm sum(V , b) = 0 ;
3 while V 6= ∅ do
4 Remove v from V ;

5 norm sum(V , b) = norm sum(V , b) + v − norm sum(V ,b)×v

b
;

6 end
7 return norm sum(V , b)

Algorithm 5: Normalized Integration

3.3.3 Dependency Matrix for Intersection

Consider the following intersection:

p(X1,...,Xn) :- r(X1,...,Xn), s(X1,...,Xn).
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Similar to the case of union, we assume that M〈r〉 and M〈s〉 are both β1 × ...× βn

dependency matrices and they are perfectly aligned.

Algorithm 6 computes the n-dimension β1 × ...× βn dependency matrix for the

above intersection as intersect(M〈r〉,M〈s〉). The outline of the algorithm is the same

as in the case of union operation, but the details are simpler. Lines 3 and 6 are based

on the containment assumption [SAC+79].

1 for all 1 ≤ i ≤ n and 1 ≤ ji ≤ βi do

2 M〈p〉jii .[floor , ceiling ] = M〈r〉jii .[floor , ceiling ];

3 M〈p〉jii .size = min{M〈r〉jii .size,M〈r〉jii .size};

4 end
5 for 1 ≤ i1 ≤ β1 , ..., 1 ≤ in ≤ βn do
6 M〈p〉(i1 , ..., in) = min{M〈r〉(i1 , ..., in),M〈s〉(i1 , ..., in)};
7 end
8 return M〈p〉;

Algorithm 6: intersect(M〈r〉,M〈s〉)

3.3.4 Dependency Matrix for Projection

Consider a projection on predicate r(x1 , ..., xn) that projects out a subset of

arguments out args = {xout1 , ..., xoutk} and leaves in args = {xin1
, ..., xinm

} where

out args ∪ in args = {x1, ..., xn}. Such a projection can be defined using a rule of the

form

p(Xin1 , ..., Xinm) :- r(X1, ..., Xn).

where 1 ≤ ini ≤ n and 1 ≤ i ≤ m. Let M〈r〉 be a n-dimension β1 × ...× βn de-

pendency matrix. The m-dimension βin1
× ...× βinm

dependency matrix, M〈p〉 =

project(M〈r〉, {xin1
, ..., xinm

}), is computed via Algorithm 7, below.

3.3.5 Dependency Matrix for Join

The most complicated part of any size estimation algorithm in query optimizers is

finding accurate estimates for the result of a join. Consider the following join:

p(Z1,...,Zk,Xk+1,...,Xm,Yk+1,...,Yn) :- r(Z1,...,Zk,Xk+1,...,Xm),

s(Z1,...,Zk,Yk+1,...,Yn).
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1 for 1 ≤ i ≤ m and 1 ≤ ji ≤ βini
do

2 M〈p〉jii .[floor , ceiling , size] = M〈r〉jiini
.[floor , ceiling , size];

3 end
4 for 1 ≤ i1 ≤ βin1

, ..., 1 ≤ im ≤ βinm
do

5 V = {M〈r〉(j1 , ..., jn) | ∧1≤k≤m ik = jink
};

6 M〈p〉(i1 , ..., im) = integrate(V ,M〈p∗〉(i1 , ..., im));

7 end
8 return M〈p〉;

Algorithm 7: project(M〈r〉, {xin1
, ..., xinm

})

where r and s join on k arguments, z1 , ..., zk , which are listed first, for simplicity. As-

sume M〈r〉 and M〈s〉 are m-dimension βr
1 × ...× βr

m and n-dimension βs
1 × ...× βs

n

dependency matrices respectively, and the first k axes of M〈r〉 and M〈s〉 are

aligned. The (m+n−k)-dimension dependency matrix for p can be computed as

join(M〈r〉,M〈s〉) by Algorithm 8. The abstract evaluation of the join is inspired by

the sort-merge-join algorithm (e.g., [KBL06]).

The overall outline of the algorithm is the same as before. Lines 1 – 6 set the

number of coordinates for each axis and lines 7 – 16 compute parameter values of

each coordinate. However, the computation details of dependency matrix values are

somewhat involved. They are inspired by [BC02] and described below.

Lines 17 – 18 compute M〈r〉′ and M〈s〉′ as projections of M〈r〉 and M〈s〉 which

keep only join arguments. M〈r〉′(i1 , ..., ik ) is the estimated number of (z1 , ..., zk )-

values such that zj ∈ vals(l(M〈r〉
ij
j )) for 1 ≤ j ≤ k , and M〈s〉′(i1 , ..., ik ) is the es-

timated number of (z1 , ..., zk )-values such that zj ∈ vals(l(M〈s〉
ij
j )) for 1 ≤ j ≤ k .

Now, consider one fixed (z1 , ..., zk )-value. We know that there are, on aver-

age, M〈r〉(i1 ,...,im )

M〈r〉′(i1 ,...,ik )
facts of the form r(z1 , ..., zk , xk+1 , ..., xm) that are summarized by

M〈r〉(i1 , ..., im), and
M〈s〉(i1 ,...,ik ,im+1 ,...,im+n−k )

M〈s〉′(i1 ,...,ik )
facts of the form s(z1 , ..., zk , yk+1 , ..., yn)

that are summarized by M〈s〉(i1 , ..., ik , im+1 , ..., im+n−k ). Thus, the number of re-

sulting p(z1 , ..., zk , xk+1 , ..., xm , yk+1 , ..., yn) from the join on this fixed (z1 , ..., zk )-

value can be estimated as M〈r〉(i1 ,...,im )

M〈r〉′(i1 ,...,ik )
× M〈s〉(i1 ,...,ik ,im+1 ,...,im+n−k )

M〈s〉′(i1 ,...,ik )
. The contain-

ment assumption [SAC+79] says that the number of such fixed (z1 , ..., zk )-values is

min{M〈r〉′(i1 , ..., ik ),M〈s〉′(i1 , ..., ik )}. Therefore, we have the formula at line 20.

Example 3.23 Assume that dependency matrices M〈r〉 and M〈s〉 are the same de-

pendency matrix as M〈p〉′′ in Example 3.21. Consider the following join rule
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1 for 1 ≤ i ≤ m do
2 βp

i = βr
i ;

3 end
4 for m < i ≤ m+n−k do
5 βp

i = βs
i−m+k ;

6 end
7 for 1 ≤ i ≤ k and 1 ≤ ji ≤ βp

i do

8 M〈p〉jii .[floor , ceiling ] = M〈r〉jii .[floor , ceiling ];

9 M〈p〉jii .size = min{M〈r〉jii .size,M〈s〉jii .size};

10 end
11 for k < i ≤ m and 1 ≤ ji ≤ βp

i do

12 M〈p〉jii .[floor , ceiling , size] = M〈r〉jii .[floor , ceiling , size];
13 end
14 for m < i ≤ m + n − k and 1 ≤ ji ≤ βp

i do

15 M〈p〉jii .[floor , ceiling , size] = M〈s〉jii−m+k .[floor , ceiling , size];
16 end

17 M〈r〉′ = project(M〈r〉, {z1 , ..., zk});

18 M〈s〉′ = project(M〈s〉, {z1 , ..., zk});
19 for 1 ≤ i1 ≤ βp

1 , ..., 1 ≤ im+n−k ≤ βp
m+n−k do

20 M〈p〉(i1 , ..., im+n−k ) = min{M〈r〉′(i1 , ..., ik ),M〈s〉′(i1 , ..., ik )} ×
M〈r〉(i1 ,...,im )

M〈r〉′(i1 ,...,ik )
×

M〈s〉(i1 ,...,ik ,im+1 ,...,im+n−k )

M〈s〉′(i1 ,...,ik )

21 end
22 return M〈p〉;

Algorithm 8: join(M〈r〉,M〈s〉)

p(Z,X,Y) :- r(Z,X), s(Z,Y).

where r and s join on one argument z . Since M〈r〉 and M〈s〉 are the same, their

first axes, which correspond to the join argument z , are already aligned. Their

projections that keep the z -argument are computed as M〈r〉′ = project(M〈r〉, {z})

and M〈s〉′ = project(M〈s〉, {z}), and both M〈r〉′ and M〈s〉′ are the same 1-

dimension dependency matrix, i.e., histogram. If “minimal integration” is

used as the definition of integrate function when computing these two projec-

tions, we will have M〈r〉′
1

1 = M〈s〉′
1

1 = (1 , 1 , 1 , 0 ), M〈r〉′
2

1 = M〈s〉′
2

1 = (2 , 4 , 3 , 2 ),

M〈r〉′
3

1 = M〈s〉′
3

1 = (5 , 5 , 1 , 1 ), and M〈r〉′
4

1 = M〈s〉′
4

1 = (6 , 8 , 3 , 2 .25 ).

Finally, dependency matrix values are computed. For instance, M〈p〉(2 , 2 , 4 ) =

min{M〈r〉′(2 ),M〈s〉′(2 )} × M〈r〉(2 ,2 )

M〈r〉′(2 )
× M〈s〉(2 ,4 )

M〈s〉′(2 )
= min{2 , 2} × 2

2
× 1 .5

2
= 1 .5 . ✷
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3.3.6 Dependency Matrix for Cross Product

Consider the following cross product

p(X1,...,Xm,Y1,...,Yn) :- r(X1,...,Xm), s(Yk,...,Yn).

where M〈r〉 and M〈s〉 are m-dimension βr
1 × ...× βr

m and n-dimension βs
1 × ...× βs

n

dependency matrices respectively. The (m + n)-dimension βp
1 × ...× βp

m+n depen-

dency matrix for p can be estimated via the operation product(M〈r〉,M〈s〉) defined

in Algorithm 9, which follows the intuitions behind the cross product operation.

1 for 1 ≤ i ≤ m do
2 βp

i = βr
i ;

3 end
4 for 1 ≤ i ≤ n do
5 βp

i+m = βs
i ;

6 end
7 for 1 ≤ i ≤ m and 1 ≤ ji ≤ βp

i do

8 M〈p〉jii .[floor , ceiling , size] = M〈r〉jii .[floor , ceiling , size];
9 end

10 for 1 < i ≤ n and 1 ≤ ji ≤ βs
i do

11 M〈p〉ji+m

i+m .[floor , ceiling , size] = M〈s〉jii .[floor , ceiling , size];
12 end
13 for 1 ≤ i1 ≤ βp

1 , ..., 1 ≤ im+n ≤ βp
m+n do

14 M〈p〉(i1 , ..., im+n) = M〈r〉(i1 , ..., im)×M〈s〉(im+1 , ..., im+n);
15 end
16 return M〈p〉;

Algorithm 9: product(M〈r〉,M〈s〉)

3.3.7 Dependency Matrix for Negation

Let M〈r〉 be a n-dimensional β1 × ...× βn dependency matrix for r and M〈s〉 be

a m-dimensional β1 × ...× βm dependency matrix for s. We consider the following

negation

p(X1,...,Xn) :- r(X1,...,Xn), not s(X1,...,Xm).

where m ≤ n and the first m arguments are chosen to be common to r and s, for

simplicity. We also assume that the first m axes of M〈r〉 and M〈s〉 are aligned.
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Algorithm 10 computes the operation minus(M〈r〉,M〈s〉), where lines 5 – 7 compute

dependency matrix values using function negate ratio whose details are given below.

1 for 1 ≤ i ≤ n and 1 ≤ ji ≤ βi do

2 M〈p〉jii .[floor , ceiling , size] = M〈r〉jii .[floor , ceiling , size];
3 end

4 M〈r〉′ = project(M〈r〉, {x1 , ..., xm});
5 for 1 ≤ i1 ≤ β1 , ..., 1 ≤ in ≤ βn do
6 M〈p〉(i1 , ..., in) = negate ratio(M〈r〉′,M〈s〉, {i1 , ..., im})×M〈r〉(i1 , ..., in)
7 end
8 return M〈p〉;

Algorithm 10: minus(M〈r〉,M〈s〉)

Given m-dimension dependency matrices M〈r〉′ and M〈s〉 and coordinate indexes

i1 , ..., im , SDP explores three definitions of negate ratio(M〈r〉′,M〈s〉, {i1 , ..., im}):

minimal, maximal and normalized negations which compute the minimal, max-

imal and expected percentages of (x1 , ..., xk )-values that are summarized by

r ′(i1 , ..., im) but not by s(i1 , ..., im) respectively. Minimal negation assumes

that there is a fact of the form r ′(x1 , ..., xm) for every fact s(x1 , ..., xm), thus

negate ratio(M〈r〉′,M〈s〉, {i1 , ..., im}) =
max{M〈r〉′(i1 ,...,im )−M〈s〉(i1 ,...,im ),0}

M〈r〉′(i1 ,...,im )
. Opposite to

minimal negation, the maximal approach assumes that the intersection of the set of

(x1 , ..., xm)-values that are summarized by M〈r〉′(i1 , ..., im) and those values that are

summarized by M〈s〉(i1 , ..., im) are minimal, therefore producing maximal possible

results. It is given by the formula 1 − max{M〈r〉′(i1 ,...,im )+M〈s〉(i1 ,...,im )−M〈r〉′∗(i1 ,...,in ),0}

M〈r〉′∗(i1 ,...,im )
.

Similar to the intuition of normalized integration, normalized negation computes the

expected percentage as 1 − M〈s〉(i1 ,...,im )

M〈r〉′∗(i1 ,...,im )
.

3.3.8 Dependency Matrix for Recursive Predicates

The matrix for recursive predicates are computed iteratively until their size estimates

reach approximate fixed points. For a set of mutually recursive predicates, the itera-

tion stops when their size estimates simultaneously reach approximate fixed points.

Definition 3.13 Consider a recursive predicate p. According to the definitions in

Sections 3.3.1 – 3.3.7, the dependency matrix for p can be defined by the follow-

ing recurrent equation: M〈p〉 = expr(M〈p〉, other), where expr is an expression
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in the algebra of estimation operators defined in earlier sections. This equation

is recursive in M〈p〉 but expr may take other arguments as well. We say that

I
n+1 is an ∆-approximation of M〈p〉 if |size(In+1 )−size(In )|

size(In )
≤ ∆, where I

0 = ∅ and

I
i+1 = expr(Ii , other). SDP uses ∆-approximations to estimate the size of p. ✷

Example 3.24 Consider the following recursive program, which defines two mutually

recursive predicates tcp and tcq:

tcp(X1,X2,X3) :- p(X1,X2,X3).

tcq(X1,X2,X3) :- q(X1,X2,X3).

tcp(X1,X2,X4) :- tcq(X1,X2,X3), p(X2,X3,X4). %% recp

tcq(X1,X2,X4) :- tcp(X1,X2,X3), q(X2,X3,X4). %% recq

Initially, the dependency matrices M〈p〉 and M〈q〉 are computed and propagated to

M〈tcp〉 and M〈tcq〉 using the first two rules. Then, the following iterative steps are

performed.

1. Compute M〈tcp〉 using the rule recp as in the case of a join followed by

a projection, and then union with current dependency matrix M〈tcp〉, i.e.,

M〈tcp〉 = union(M〈tcp〉, project(join(M〈tcq〉,M〈p〉), {x1 , x2 , x4})). In this

case, the expression used in Definition 3.13 is expr(M〈tcp〉,M〈tcq〉,M〈p〉) =

union(M〈tcp〉, project(join(M〈tcq〉,M〈p〉), {x1 , x2 , x4})).

2. Similarly, M〈tcq〉 = union(M〈tcq〉, project(join(M〈tcp〉,M〈q〉), {x1 , x2 , x4}))

and the expression used in Definition 3.13 is expr(M〈tcq〉,M〈tcp〉,M〈q〉) =

union(M〈tcq〉, project(join(M〈tcp〉,M〈q〉), {x1 , x2 , x4})).

3. If the iteration reaches ∆-approximation for both M〈tcp〉 and M〈tcq〉 (as defined

in Definition 3.13), the computation stops. Otherwise, we keep iterating. ✷

In the above Example 3.24, one can also first compute M〈tcq〉 and then M〈tcp〉,

i.e., switching the first two steps, during each iteration. That is to say, there exist

many abstraction evaluation orders at each iteration step if multiple predicates are

mutually recursive. We choose the order in which these predicates are first defined by

rules in our current implementation. Since we are computing ∆-approximations, we
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assume that this evaluation order is trivial with respect to final estimates. However,

more experimental studies are needed to validate this assumption.

The parameter∆ can be selected in various ways. Larger values make computation

reach ∆-approximation sooner, while smaller ∆’s cause longer computations, but

produce better estimates. Note that the evaluation is not guaranteed to reach an

approximate fixed point for a chosen ∆, since size(In) in Definition 3.13 may oscillate.

In this case, we can stop the iteration over In once oscillation of size(In) is detected

and, as a practical measure, we can do with a coarser approximation.

3.3.9 Dependency Matrices for All Predicates

This section presents our algorithm to compute size estimates for all predicates in a

bottom-up fashion using the algebra over matrices defined earlier.

Definition 3.14 Given a knowledge base K, its predicate dependency graph is a

directed graph Gpdg(K ) = (N , E) where the set of nodes, N , consists of all predicates

contained in K and (p1 , p2 ) ∈ E if and only if there is a rule in K such that p1 is the

rule’s head predicate and p2 is one of its body predicates. ✷

A graph is strongly connected if there is a path between any pair of nodes. The

strongly connected components (SCC) of a directed graph are its maximal strongly

connected subgraphs. An SCC in a predicate dependency graph contains a maximal

subset of recursive predicates that mutually depend on one another. Thus, the de-

pendency matrices for all predicates in the same SCC should be iteratively computed

until their size estimates all become ∆-approximate for some chosen ∆.

Definition 3.15 The condensation of a predicate dependency graph Gpdg(K ) =

(N , E), written as Gc
pdg(K ) = (N c, Ec), is a directed acyclic graph (a forest of trees)

where N c consists of all the SCC’s of Gpdg(K ). There is an edge (scc1 , scc2 ) ∈ Ec,

where scc1 = (N1 , E1 ) and scc2 = (N2 , E2 ), if and only if there are p1 ∈ N1 and

p2 ∈ N2 such that (p1 , p2 ) ∈ E . ✷

Example 3.25 Let K be the set of rules of Example 3.24, then its predicate de-

pendency graph Gpdg(K ) = (N , E) is given in Figure 7(A). There are three SCC’s:

scc1 = ({tcp, tcq}, {(tcp, tcq), (tcq , tcp)}), scc2 = ({p}, ∅), and scc3 = ({q}, ∅); they

are given in Figure 7(B). The condensation of Gpdg(K ) is shown in Figure 7(C). ✷
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Figure 7: Predicate Dependency Graph of Example 3.25

Given a knowledge base K, let Gc
pdg(K ) be the condensation of its predicate de-

pendency graph. The dependency matrices for the set of predicates in each tree of

Gc
pdg(K ) can be computed by a bottom-up traversal of the tree, as shown in Algo-

rithm 11. The algorithm resembles the usual naive bottom-up procedure for eval-

uating Horn rules except that here we employ abstract computation over the size

estimation algebra. For instance, let Gc
pdg(K ) be the graph in Figure 7(C) and T be

its only tree. Initially, sccs = {scc2 , scc3} at line 3 of the algorithm. During the first

iteration of the while-loop, the dependency matrices for predicates contained in scc2

and scc3 , i.e., M〈p〉 and M〈q〉, are computed, and then, on line 8, we follow the edges

of T upwards and set sccs = {scc1}. After the second iteration of the while-loop, all

dependency matrices are computed.

1 Let Gc
pdg(K ) = (N c, Ec) be the predicate dependency condensation graph of K;

2 for each tree T ∈ Gc
pdg(K ) do

3 Let leaf sccs be set of leaf SCC’s of T ;
4 while leaf sccs 6= ∅ do
5 for each scc ∈ leaf sccs do
6 Compute dependency matrices for predicates in scc;
7 end
8 leaf sccs = {scc1 ∈ N c | (scc1 , scc2 ) ∈ Ec, scc2 ∈ leaf sccs};

9 end

10 end

Algorithm 11: Compute Dependency Matrices for All Predicates in K

Algorithm 11 computes dependency matrices for all predicates in the knowledge

base in a bottom-up manner, without considering the query. If a query is given

then we only need to evaluate one tree in the condensation graph, i.e., the tree that

contains the query predicate. Moreover, we need to perform the computation only
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for the subtree rooted in the clique that contains the query predicate. We call this

subtree the query spanning tree of the given query.

Note that, given a set of rules for a predicate p, we can apply estimation operators

for computing M〈p〉 in different orders, and this may yield different estimates. Cur-

rently, we choose the order in which these rules appear in the program. We believe

that this evaluation order is trivial with respect to final estimates.

3.3.10 Complexity Analysis

This section gives the time and space complexity of SDP operations defined in early

sections. We assume that predicates mentioned in this section are all n-ary, depen-

dency matrices are all n-dimension β × ...× β and they are stored as sparse ma-

trices, the fact-set sizes of base predicates are bounded by factsize, and argument

domains are bounded by domainsize (note that domainsize is usually much smaller

than factsize). The complexity of SDP operations that are defined in earlier sections

is summarized in Table 2. It is worth mentioning that typical applications in the

Semantic Web community mostly use triple stores and thus their arities are bounded

by 4, which makes the overhead of computing predicate sizes affordable. Below, we

elaborate the complexity for each operation.

Operation Complexity
construct M〈p〉 O(n × factsize)
align(M〈r〉, a, s) O(βn)
project(M〈r〉, in args) O(βn)
union(M〈r〉,M〈s〉) O(n × βn)
intersect(M〈r〉,M〈s〉) O(n × βn)
minus(M〈r〉,M〈s〉) O(n × βn)
join(M〈r〉,M〈s〉) on k arguments O(βm+n−k )
product(M〈r〉,M〈s〉) O(βm+n)

Table 2: Complexity of SDP Operations

To construct M〈p〉 from the fact-set factset(p) of a base predicate p is

O(n × factsize). There are three steps in computing M〈p〉 as given in Definition 3.10.

First, all maxdiff partitions d
[ji]
i are computed. Consider a fixed i (1 ≤ i ≤ n), di can

be computed within a scan of factset(p) and thus it is O(factsize). Moreover, di can
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be grouped into β distribution segments d
[ji]
i in O(domainsize × lg(domainsize)) since

it involves sorting the number of domainsize frequency differences to find the β−1

frequency differentiators. Thus, the complexity of computing all maxdiff partitions

is O(n × (domainsize × lg(domainsize) + factsize)). Second, dependency matrix val-

ues are computed. For each fact, it takes O(n) to determine which M〈p〉(i1 , ..., in)

summarizes the fact since we can build indexes from argument values to parti-

tions for all arguments. Therefore, the complexity of computing all dependency

matrix values is O(n × factsize). Finally the attribute values can be computed in

O(n × domainsize) from maxdiff partitions. We then know that the complexity to

construct M〈p〉 is (n × (domainsize × lg(domainsize) + factsize)) + O(n × factsize)

+ O(n × domainsize), which is O(n × factsize), considering domainsize is much

smaller than factsize.

The complexity of align(M〈r〉, a, s) is O(βn). In Definition 3.12, dependency ma-

trix coordinate sizes and parameters are computed in O(n) and O(n × β) respectively,

and dependency matrix values are computed in O(βn) since there are O(βn) such val-

ues and each value can be computed in constant time. Therefore, the complexity of

align(M〈p〉, a, s) is O(βn).

The complexity of project(M〈r〉, in args) is O(βn). In Algorithm 7, dependency

matrix parameters are computed O(m × β). There are O(βm) dependency matrix

values, and the complexity to compute each M〈p〉(i1 , ..., im) is O(βn−m) since the size

of {M〈r〉(j1 , ..., jn) | ∧1≤k≤m ik = jink
} is O(βn−m) and the integrate function is linear.

Therefore, the complexity of project(M〈r〉, in args) is O(βm)×O(βn−m) = O(βn).

Union(M〈r〉,M〈s〉) of Algorithm 4 and intersect(M〈r〉,M〈s〉) of Algorithm 6 are

O(n × βn). Algorithm 4 assumes that M〈r〉 and M〈s〉 are perfectly aligned, which is

O(n × βn) since align is O(βn) and there are n such operations. The parameters are

computed in O(n × β) from lines 1 – 4. The dependency matrix values are computed

in O(βn) in line 6. Therefore, the complexity of union(M〈r〉,M〈s〉) is O(n × βn).

Similar argument holds for intersect(M〈r〉,M〈s〉).

The complexity of minus(M〈r〉,M〈s〉) of Algorithm 10 is O(n × βn). As dis-

cussed above in this section, it is O(n × βn) to perfectly align M〈r〉 and M〈s〉.

dependency matrix parameters are computed in O(n × β) at lines 1 – 3, M〈r〉′ is

O(βn) at line 4, and dependency matrix values are computed in O(βn) at lines 5 – 7.
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Now, consider the join operation, join(M〈r〉,M〈s〉), defined in Algorithm 8. To

make M〈r〉 and M〈s〉 aligned on their first k axes is O(k × βn). Dependency matrix

coordinate sizes are computed in O(n) at lines 1 – 6, and parameters are computed in

O(n × β) from lines 7 – 16. The projects M〈r〉′ and M〈s〉′ are computed in O(βn) at

lines 17 and 18, and finally dependency matrix values are computed in O(βm+n−k ) in

line 20 considering there are O(βm+n−k ) such values and each is computed in constant

time. Therefore, the complexity of join(M〈r〉,M〈s〉) on k arguments is O(βm+n−k ).

It is obvious that the complexity of product(M〈r〉,M〈s〉) is O(βm+n) consider-

ing there are O(βm+n) dependency matrix values to compute at lines 13 – 15 of

Algorithm 9.

Theorem 3.9 Given a program with m predicates. Assume that their maximal arity

is n, then the number of space units needed to store their dependency matrices is at

most m × (βn + 3 × n × β). ✷

Theorem 3.9 obviously holds considering each dependency matrix needs

(βn + 3 × n × β) amount of space units, where unit is the amount of bytes

to store one dependency matrix value or coordinate parameter. Given a lim-

ited space budget budget , the coordinate size β can be any integer satisfying

m × (βn + 3 × n × β) ≤ budget . However, larger β values produce better estimates

and are more expensive in computation as discussed above.

3.4 Optimization Algorithms

Given a query ?- query to a knowledge base whose predicate statistical informa-

tion is available, the query optimizer greedily searches for an optimized join order for

query and each rule’s body predicates and adds appropriate indexing commands for

each predicate. In our implementation, the search space of join ordering is restricted

to left-deep trees which enforce that at least one predicate must be a base predicate

in every join step. Figure 8 shows a left-deep search tree for an n-way join of pred-

icates {pi | 1 ≤ i ≤ n} and the tree represents the join ordering of O = [po1 , ..., pon ].

Therefore, the main task of the optimizing unit is to find such a join ordering based

on predetermined performance measures.
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Figure 8: A Left-Deep Search Tree

Algorithm 12 defines the greedy search algorithm of Costimizer’s optimizing unit.

It starts with an empty join ordering and performs the join of current result r with one

more predicate during each step until all predicates are processed. Line 1 initializes

the join ordering as O = [ ], M〈r〉 as an empty matrix, the set of arguments of r,

denoted r .args , as ∅, and the set of predicates to be ordered as P = {pi | 1 ≤ i ≤ n}.

During each while-loop from line 2 to 17, one predicate p is chosen at line 11 (to

be explained later) to join with r. Lines 12 – 13 build the index of p on arguments

index argsp , on which p joins r. Line 14 adds p.args to r .args , line 15 updates M〈r〉,

and line 16 appends p to O .

1 Initialize O = [ ], r as the join results of predicates in O , M〈r〉 be an empty
matrix, r .args = ∅, and P = {pi | 1 ≤ i ≤ n};

2 while P 6= ∅ do
3 for each pi ∈ P do
4 if M〈r〉 is empty then
5 M〈r ✶ pi〉 = M〈pi〉;
6 else
7 M〈r ✶ pi〉 = join(M〈r〉,M〈pi〉);
8 end
9 join argspi = (pi .args ∪ r .args) ∩ (∪pj∈P\{pi}pj .args);

10 end

11 Choose p from P where size(M〈r✶p〉)
‖join argsp‖

is minimal, and remove it;

12 index argsp = r .args ∩ p.args ;
13 Build indexes on index argsp for p;
14 r .args = r .args ∪ p.args ;
15 M〈r〉 = M〈r ✶ p〉;
16 O = O • [p];

17 end
18 return O

Algorithm 12: Greedy Search Optimization
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Now we explain how p is chosen at line 11. Suppose pi is chosen to join with r at

line 3 and the result is r ✶ pi. Then, line 8 computes M〈r ✶ pi〉 and line 9 defines

join argspi as the common set of arguments of r ✶ pi and the predicates yet to be

joined. The idea in greedily choosing p on line 11 is based on two observations. First,

the size of the current join result r ✶ p, size(M〈r ✶ p〉), should be minimized since

r ✶ p will join with the rest of the predicates in P . Second, the number of arguments

in join argsp should be maximized because these arguments will be used to restrict

future joins.

Now we come back to another important issue that is critical for the performance

and scalability of logic engines, indexing, as observed in [LFWK09b]. Indexing com-

mands which are believed to benefit query evaluation are automatically generated

during the greedy search. Line 12 of Algorithm 12 computes the set of arguments,

index argsp , that should be indexed on predicate p, since the join of p with previous

results r is performed on this exact set of arguments.

3.5 Experiments

We tested the performance of the SDP approach to estimate sizes and applied

Costimizer to query optimization, and this section shares the results and provides

analysis. All tests were performed on a machine with an Intel Xeon processor E5-1650

(6-core and 3.2GHz) and 64 gigabytes of main memory. The machine was running

Ubuntu 12.10 (Quantal Quetzal) with Linux kernel 3.5.0-17-generic. Our implemen-

tation uses XSB Prolog version 3.3.7 (Pignoletto).5

3.5.1 Size Estimation

We performed experiments of SDP on size estimation using several rule sets some of

which also appeared in [LK10, LK12]. This section analyzes the results for these pro-

grams: transitive closure (TC), same generation (SG), the mutual recursive transitive

closure (MRTC), and one negation rule set.

5http://xsb.sourceforge.net
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3.5.1.1 Test Parameters

There are three parameters involved in size estimation tests and they are the depen-

dency matrix coordinate size (β), alternative definitions of integrate function (Sec-

tion 3.3.2), and alternatives of negate ratio function (Section 3.3.7). In all tests, we

used β × . . .× β dependency matrices for β = 10 , 20 , 30 , 40 , 50 and all alternative

definitions of integrate and negate ratio. For recursive predicates, we computed their

5%-approximations.

3.5.1.2 Test Programs

TC. The well-known transitive closure rule set consists of the following two rules

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

where there is a path from x to y, path(x, y), if there is an edge from x to y, edge(x, y),

or there is an edge from x to z and a path from z to y. Datasets for edge are randomly

generated from the Thomas process using rThomas(κ, σ, µ) [BT05]. The Thomas

process first generates a uniform Poisson point process of parent points with intensity

κ and then each parent point is replaced by a random cluster of points. The number of

points in each cluster follows Poisson distribution with intensity µ and their positions

are isotropic Gaussian displacements (σ) from the cluster’s parent point location.

Different datasets can be generated with different parameter values. In our exper-

iments, we used κ = 100 , σ = 0 .001 , 0 .005 , 0 .01 , and µ = 10 , 20 , 100 . In each case,

the number of facts generated is approximately κ× µ and the argument domain is

[1 , 1000 ]. Figure 9 shows the datasets generated with µ = 100 but different σ values,

where the (x , y)-pair of a fact edge(x , y) is plotted as a point in two dimension planes.

It is obviously observable that data dependencies decrease with increasing σ values.

Experiments with TC over datasets generated with alternative distributions can be

found in [LK10].

SG. The following same generation rule set says that x and y are of the same gen-

eration, sg(x, y), if they are siblings, sibling(x, y), or their parents, px and py, are of

the same generation.
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σ = 0 .001 σ = 0 .005 σ = 0 .01

Figure 9: TC Datasets Generated Using rThomas(100 , σ, 100 )

sg(X,Y) :- sibling(X,Y).

sg(X,Y) :- parent(X,PX), parent(Y,PY), sg(PX,PY).

The number of sibling facts in each dataset is roughly twice that of parent facts.

Each test dataset is generated by two separate Thomas processes: rThomas(κ, σ, µsib)

for sibling and rThomas(κ, σ, µpar ) for parent, where µsib = 2 × µpar . We tested

κ = 100 , σ = 0 .001 , 0 .005 , 0 .01 , and µpar = 5 , 10 , 50 .

MRTC. MRTC consists of the four rules of Example 3.24 and each dataset has about

one million facts of p and one million facts of q from the domain of [1 , 1000 ]. The

set of facts for p (similarly for q) are randomly generated from a two-step homoge-

neous Poisson process using system R [BT05]. First, a homogeneous Poisson process

of 10 , 000 parent facts are generated, and then each parent point is replaced by a

cluster of 100 child facts. Each cluster of child points are generated by a separate

homogeneous Poisson process from domain [1 , σ], where σ controls dependencies in

the generated datasets. Datasets generated with smaller σ values have higher depen-

dency since they are more clustered together, while those generated with larger σ

values have lower dependency. We used σ = 6 , 8 , 10 , 12 , 14 , 16 in our tests.

Negation test. We test SDP on negation using this following rule

long_path(X,Y) :- path(X,Y), not edge(X,Y).

where path and edge are the same as those in the TC test. The fact long path(x , y)

says that there is a path of length at least 2 from x to y , i.e., there is a path from

x to y but there does not exist an edge from x to y . We use the same datasets as in

the case of TC test.
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3.5.1.3 Test Results and Analysis

This section presents and analyzes our size estimation results. Since the results of

SG and MRTC are similar to those of TC, we will only elaborate the case of TC and

omit SG and MRTC in this thesis. More complete experiment details can be found

in [LK13a].

TC. Figure 10 shows the size estimates of path by SDP against real sizes6 for datasets

generated with rThomas(100 , σ, µ). The number of coordinates of each axis used here

is β = 30 . For each different µ, one figure presents the sizes estimated with different

integration methods (see Section 3.3.2) for datasets with decreasing dependencies

(increasing σ).

µ = 10 µ = 20 µ = 100

Figure 10: TC Results with Different Integration Methods

There are three important observations. First, in most cases (except that mini-

mal integration performs better for datasets generated by rThomas(100 , σ, 10 ) with

σ = 0 .001 , 0 .005 ), normalized integration produces better estimates than minimal

6Real sizes are obtained by evaluating the actual queries.
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and maximal integrations, as expected. Second, when normalized integration is

used, the estimates preserve the relative order of real sizes except for the dataset

of rThomas(100 , 0 .005 , 10 ). Since most query optimization algorithms use relative

sizes to decide on the proper join orderings, this means that our size estimates are

sufficiently accurate to be used for that purpose. Third, consider the datasets gener-

ated with the same µ parameter. They have roughly the same number of edge(x , y)

facts, but the real sizes of their transitive closure (path(x , y)) vary dramatically due

to the different dependencies between edge.x and edge.y among these datasets. It

further validates that cost estimators should take data dependency into account in

order to produce useful statistics for recursive predicates.

Figure 11 presents the size estimates of path by SDP against real sizes for same

datasets from a different perspective. Here, normalized integration is used and for

each different µ, one figure presents the sizes estimated with different dependency

matrix sizes (β) for datasets with decreasing dependencies. We can see that larger

β values, i.e., larger number of coordinates in each axis, produce better estimates.

The obvious reason is that larger dependency matrices are preferred to store more

accurate dependencies and thus reduce information loss.

Negation test. Negation test results are shown in Figure 12, where the size estimates

of long path are compared against its real sizes. Here we only report results for

normalized negation because it performs better than minimal and maximal negation.

As in the cases of TC tests, for each different µ, one figure presents the size estimates

using different β values for all three datasets of decreasing dependencies. We can see

that in most cases larger β values, i.e., larger dependency matrices, produce better

estimates, as expected. Moreover, our estimates preserve the relative orders of real

sizes for reasonably large dependency matrices (e.g., β = 30 ), which is very important

as discussed above.

SDP Overhead. As all other optimization techniques, our size estimator incurs

some overhead. Fortunately, with β = 30 and normalized integration and negation

in our tests, SDP produces good estimates which keep the relative order of real sizes.

Under these settings, the cputimes taken by SDP are on average less than 3% of

the cputimes to compute real sizes. This overhead is very acceptable compared with

the potential performance gain that its size estimates can bring, as demonstrated in
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Figure 11: TC Results with Different Dependency Matrix Sizes

Section 3.5.2. Furthermore, we believe this overhead can be substantially reduced

considering our implementation itself can be further optimized. We are currently

working on this optimization.

3.5.2 Query Optimization

In order to evaluate the performance of Costimizer on query optimization, we ex-

perimented with several most popular benchmarks including the WordNet tests7 and

the Lehigh University Benchmark (LUBM) [GPH05] which also appeared in Open-

RuleBench [LFWK09b], and the Berlin SPARQL Benchmark (BSBM) [BS09].

3.5.2.1 Test Parameters

When computing predicate statistics, we used normalized integration and the number

of coordinates of each axis is β = 30 . Given a knowledge base, queries and rule bodies

7http://wordnet.princeton.edu
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Figure 12: Negation Test Results with Different Dependency Matrix Sizes

are optimized using Algorithm 12. If a query takes more than 30 minutes to evaluate,

we kill its evaluation and record a timeout.

3.5.2.2 Test Programs

WordNet. The WordNet tests include common queries from natural language pro-

cessing based on WordNet, a semantic lexicon for the English language. These queries

seek to find all hypernyms – words more general than a given word, hyponyms –

words more specific than a given word, meronyms – words related by the part-of-a-

whole semantic relation, holonyms – words related by the composed-of relation, tro-

ponyms, same-synset – groups of semantically equivalent words, glosses, antonyms,

and adjective-clusters. The base facts were extracted from WordNet Version 3.0 and

converted to the XSB syntax. The database consists of about 115 , 000 synsets with

over 150 , 000 words in total. In most tests, the number of solutions is over 400 , 000

(some queries return more than 2 , 000 , 000 answers). Below, we provide the rules
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defining hypernyms, which is obtained by a join of three predicates following a tran-

sitive closure computation. It demonstrates the way in which most of the queries in

WordNet tests are defined — see [LFWK09a] for a complete description of the rules

and datasets.

hypernyms(W1,W2) :- s(S1,_,W1,_,_,_),

hypernymSynsets(S1,S2),

s(S2,_,W2,_,_,_).

hypernymSynsets(S1,S2) :- hypernym(S1,S2).

hypernymSynsets(S1,S2) :- hypernym(S1,S3), hypernymSynsets(S3,S2).

LUBM. The Lehigh University Benchmark is a university database where the number

of universities, departments, and students can vary. The dataset for each university

contains around 100 , 000 facts, and we generated datasets for 1 , 5 , 10 , 50 , and 100

universities. We tested all the 14 queries in the benchmark and here we elaborate on

four representative cases. The third LUBM query, lubm3, retrieves the publications

of a given professor; it is similar to queries 1 , 5 , 10 , 11 , and 13 . The fourth query

seeks the set of professors, together with their names, emails, and phones, who work

for some given department; it is similar to queries 8 and 12 . The sixth query finds all

students, and it is similar to query 14 , which finds all undergraduate students. The

ninth query finds these triples of the form <student , faculty , course>, where faculty is

a faculty advisor of student , and student takes the course from faculty ; it represents

queries 2 and 7 .

lubm3(Publication) :-

publication(Publication),

publicationAuthor(Publication,professor).

lubm4(Professor,Name,Email,Phone) :-

professor(Professor),

worksFor(Professor,department),

name(Professor,Name),

emailAddress(Professor,Email),

telephone(Professor,Phone).

lubm6(Student) :- student(Student).
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lubm9(Student,Faculty,Course) :-

student(Student),

faculty(Faculty),

course(Course),

advisor(Student,Faculty),

teacherOf(Faculty,Course),

takesCourse(Student,Course).

The 14 queries in LUBM tests explore many different query patterns and they

return dramatically different numbers of answers. Therefore, they can be used to test

the robustness of Costimizer. For the 100 -university dataset, the number of answers

for the above four queries are given in Table 3.

query 3 4 6 9
answers 18 34 1,048,533 27,247

Table 3: Number of Answers of LUBM for 100 -University Dataset

BSBM. The Berlin SPARQL Benchmark is built around an e-commerce use case. In

this benchmark, a set of products is offered by different vendors and consumers review

the products. Its knowledge base consists of 10 base relations such as vendor, product,

person, and review. The provided data generator supports creation of arbitrarily

large datasets using the number of products as the scale factor. We generated datasets

with different number of products: 666 , 2 , 785 , 25 , 000 , and 70 , 812 ; these datasets

roughly have 50 , 000 , 200 , 000 , 2 , 000 , 000 , and 6 , 000 , 000 base facts, respectively.

Its queries illustrate search and navigation patterns when a user looks for a product.

In our test, we used 10 out of the 12 queries included in BSBM’s explore use case

and computed all answers, and we detail two of them blow as examples.

bsbm1(Number,Label,propertynum1,feature1,feature2,type) :-

product(Number,Label,_,_,PN1,_,_,_,_,_,_,_,_,_,_,_,_,_),

producttypeproduct(Number,type),

PN1 > propertynum1,

productfeatureproduct(Number,feature1),

productfeatureproduct(Number,feature2).
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bsbm5(Nubmer,Label,product) :-

product(Number,Label,_,_,PN1,PN2,_,_,_,_,_,_,_,_,_,_,_,_),

product(product,_,_,_,PN1O,PN2O,_,_,_,_,_,_,_,_,_,_,_,_),

productfeatureproduct(Number,Feature),

productfeatureproduct(product,Feature),

Number =\= product,

PN1 < PN1O+120,

PN1 > PN1O-120,

PN2 < PN2O+170,

PN2 > PN2O-170.

The first query bsbm1 finds a product number and label given product type, a range

for perpertynum1, and features feature1 and feature2. Query bsbm5 finds products

that are similar to a given product. In each query, all given argument values are

randomly picked from their respective set of possible values. For instance, in bsbm5,

we randomly selected a product number from the set of all products and provided it

to the query as product.

All queries except the fifth query return very few answers. For the datasets gen-

erated with 70 , 812 products, the number of answers for these queries are given in

Table 4.

query bsbm1 bsbm2 bsbm3 bsbm4 bsbm5 bsbm8 bsbm9 bsbm10 bsbm11 bsbm12
answers 0 37 0 0 501 3 22 5 1 1

Table 4: Number of Answers of BSBM for 70 , 812 -Product Dataset

3.5.2.3 Test Results and Analysis

Definition 3.16 Given a program K and its Costimizer-optimized version Kopt ,

and let cputime and cputimeopt be the cputimes of evaluating K and Kopt , respectively.

The speedup of Costimizer is defined as cuptime

cputimeopt
. ✷

WordNet. The original program without optimization took 930 .95 seconds to

compute all hypernyms, hyponyms, meronyms, holonyms, troponyms, same-synset,

glosses, antonyms, and adjective-clusters. If indexing on all arguments of all pred-

icates were added and no cost-based optimization was performed, they took 3 .692
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seconds, while our optimized version finished in 3 .448 seconds. Here, our optimiza-

tion did not gain much in performance compared with the version with all arguments

indexed, which already has a speedup of 252 .15 times. The reason is that all these

queries have the pattern where a transitive closure computation is followed by a join

of two or three predicates and most of the rules are already in their optimized form.

Therefore, the key performance factor here is indexing. For instance of the predicate

hypernyms defined above, the definition of hyponymSynsets and the join order of

the body predicates in hypernyms rule (s, hyponymSynsets, and s) are already opti-

mal. The slight performance improvement of Costimizer is achieved by optimizing a

couple of rules and reducing the overhead of indexing all arguments in all predicates.

LUBM. The results for LUBM tests are given in Table 5, where only the results of

above four representative queries are included. Query lubm3 sees speedups of 3–8 .8

universities optimized? lubm3 lubm4 lubm6 lubm9

1
no 0.004 0.004 0.000 1055.218
yes 0.000 0.000 0.004 0.404

5
no 0.048 0.008 0.048 timeout
yes 0.016 0.000 0.036 22.093

10
no 0.116 0.012 0.096 timeout
yes 0.024 0.004 0.104 122.060

50
no 0.976 0.072 0.612 timeout
yes 0.132 0.004 0.700 timeout

100
no 2.352 0.140 1.268 timeout
yes 0.268 0.004 1.568 timeout

Table 5: CPU Times of LUBM

times with increasingly large datasets. The fourth query achieves speedups of 3 .0–35

times for different datasets. The sixth query, lubm6, experiences a slight slow-down.

The reason is that lubm6 is a simple query, which does not benefit from cost-based

optimization, while Costimizer brings some small overhead. Query lubm9, the most

complex query of these four representatives, has a performance improvement of thou-

sands of times. There are three observations worth mentioning. First, Costimizer

has very good scalability behavior in terms of performance gains. With increasingly

larger datasets, the seepdups become even larger. Second, Costimizer achieves better

performance gains for more complex queries (e.g., lubm9) and thus has the potential

for optimizing real complex queries. Finally, as with all optimizers, there is some

overhead incurred by Costimizer and we may experience performance loss for some

queries (e.g., the simple query lubm6). Actually, one of the important requirements
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for a successful query optimizer is that it should provide performance gain in most

cases without significant slow-down when it fails to optimize. In our case, the perfor-

mance loss is within reasonable ranges (speedups = 0 .8 in the worst case), and it is

even less significant considering the slow-downs are for simple queries.

BSBM. The results for the BSBM tests are given in Table 6. Since these queries

return very few answers, our optimization did not achieve much performance gain. In

these cases, very few tuples are generated as intermediate join results even without

optimization, and this limits the efficiency of any cost-based optimization. For the

fifth query, which returns more than just a few answers, Costimizer achieved a

speedup of more than 30 times for all test datasets.

products optimized? bsbm1 bsbm2 bsbm3 bsbm4 bsbm5 bsbm8 bsbm9 bsbm10 bsbm11 bsbm12

666
no 0.008 0.000 0.004 0.004 0.016 0.000 0.004 0.004 0.008 0.004
yes 0.008 0.000 0.004 0.008 0.000 0.004 0.004 0.004 0.004 0.004

2785
no 0.016 0.004 0.080 0.024 0.052 0.012 0.016 0.024 0.020 0.016
yes 0.020 0.000 0.080 0.024 0.000 0.012 0.016 0.020 0.020 0.016

25000
no 0.788 0.012 0.192 0.212 0.668 0.128 0.140 0.196 0.184 0.168
yes 0.792 0.012 0.184 0.208 0.020 0.108 0.116 0.172 0.188 0.172

70812
no 2.880 0.032 0.616 0.620 1.908 0.336 0.388 0.528 0.448 0.480
yes 2.881 0.032 0.564 0.588 0.044 0.284 0.320 0.472 0.448 0.480

Table 6: CPU Times of BSBM

3.6 Related Work

3.6.1 Size Estimation

Traditional estimation techniques. Traditional size estimates use base table

statistics and propagate them through derived predicates by assuming independence

among arguments. However such estimates could be off by orders of magnitude

[SLMK01], which was confirmed by our implementation of the histogram algorithms

[LK10] given in [BC02]. In contrast, SDP maintains argument dependencies for both

base and derived predicates, providing more accurate estimates.

Graph-based approaches. The present paper was inspired by the size estimation

techniques based on dependency graphs [SAdM08] and on the graph-based selectivity

estimate approach [SP06]. In [SAdM08], the statistics for predicates (both base and

derived) were kept in dependency graphs, which were essentially 1×. . .×1 dependency
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matrices. Recursive predicates were unfolded up to three steps without considering

data distribution. Here dependency matrices keep more fine-grained dependency

information and SDP computes the statistics for recursive predicates via incremental

evaluation that approximates fixed points and takes base dataset distributions into

account. It is unclear how to do this using the framework of [SAdM08] and whether

such a generalization is possible at all.

Graph based selectivity estimates were proposed in [SP06], where relational

datasets were modeled as graphs and join queries as graph traversals. Fixing a spe-

cific set of binary joins, the task in [SP06] was to summarize base data distributions

and the joins within the given storage allowance. There are two obvious points that

differentiate our work. First, [SP06] required an a priori fixing of all the joins of in-

terest, while SDP does not and thus is more flexible. Second, SDP handles recursion,

while [SP06] dealt only with relational queries.

Multi-dimensional histograms. Multi-dimensional histograms have been pro-

posed to keep argument dependency information in literature [MD88, PI97, FM99,

DGR01]. [PI97] introduced several different definitions of multi-dimensional his-

tograms and compared their performance with traditional histograms. Multi-

dimensional histograms are able to accurately capture argument dependency since

they approximate joint data distributions directly by heuristically grouping similar

values. They have been implemented to estimate the selectivity of spacial data in Ge-

ographic Information Systems [APR99] and dynamic multi-dimensional histograms

for continuous data streams were studied in [TGIK02]. However, multi-dimensional

histograms are quite expensive to compute and for an n-ary predicate, there are an

exponential number of multi-dimensional histograms to compute [PI97]. Moreover,

it is not clear how to efficiently compute multi-dimensional histograms for joins and

recursions.

Size estimation for recursive predicates. Computing the expected sizes for re-

cursive predicates was studied in [LN89, SN91]. An adaptive sampling algorithm

was proposed to estimate the sizes of transitive closures in [LN89], where base rela-

tions were modeled as digraphs. They provided estimates within certain confidence

intervals of the real sizes. [SN91] studied the expected sizes of transitive closure,

73



same generation, and canonically factorable recursion of uniformly distributed base

datasets. There they proved many asymptomatic expressions about the expected

sizes. Our method, SDP, also performs size estimates for recursive predicates, but it is

different in that SDP summarizes base relations using dependency matrices and does

not assume any specific data distribution, although our experimental datasets were

generated from the Thomas process and homogeneous Poisson distributions. Second,

[SN91] focused on deriving theoretical asymptotic expressions for the expected sizes,

while SDP computes size estimates by maintaining data statistics for both base and

derived predicates. Therefore, our size estimation algorithms are more practical since

most real world datasets do not follow any predetermined distributions.

3.6.2 Optimization Algorithms

There have been extensive research on optimization algorithms, most of which fall

into two categories: optimal and greedy algorithms. Two most popular and well

studied optimal search algorithms are dynamic programming [OL90, MN06, MN08]

and top-down partition search [VM96, DT07], which have similar performances in

time and space [DT07]. However, most database systems such as DB2 [GLSW93]

and Sybase SQL Anywhere [BP00] implement greedy algorithms and restrict search

space to left-deep trees [SAC+79].

Dynamic programming computes solutions for a given problem by integrating

solutions for its sub-problems of the same form in a bottom-up fashion. When applied

to join order optimization, dynamic programming computes the best join order for

a n-way join of predicates P = {p1, . . . , pn} in two steps. First, it computes the

optimized join orders for all non-empty subsets of P . Then, it compares the joins of

all pairs of P1 and P2 such that P1 ∪P2 = P and P1 ∩P2 = ∅, and picks the pair with

lowest overall join cost. Several dynamic programming algorithms for different join

patterns were extensively studied and compared in [OL90, MN06, MN08].

Unlike dynamic programming which computes optimal solutions by composing

those for sub-problems, top-down partition search obtains optimality in the opposite

direction [DT07]. Consider a join of predicates P = {p1, . . . , pn}. It first partitions

P into P1 and P2 such that P1 ∪ P2 = P in all possible ways. Then, unlike dynamic
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programming which requires that optimized solutions for P1 and P2 be computed, top-

down partition search, combined with memoization, recursively computes optimized

solutions for P1 and P2 and combines them. While not sacrificing optimality, top-

down partition search can benefit from several heuristics such as exploring multiple

interesting orders and utilizing partial information, which is not feasible in dynamic

programming. Compared with dynamic programming, top-down partition search can

achieve better performance in computing optimal join orders [DT07]. However,they

have the same computational complexity.

Despite their optimality and continuous performance improvements in both time

and space, dynamic programming and top-down partition search are rarely imple-

mented in popular systems because of their exponential cost nature, which is pro-

hibitive for large joins. Instead, most systems such as DB2 [GLSW93] and Sybase

SQL Anywhere [BP00] implement heuristic algorithms that sacrifice acceptable op-

timality by restricting search spaces but achieve significant efficiency gain. These

greedy algorithms have great practical advantages over optimal search in terms of

time and space, and meanwhile produce reasonably competitive results. One of the

most common such heuristics is restricting the search space to left-deep trees.

With a known search algorithm, optimizers in traditional database systems then

unfold queries and compute execution plans of the unfolded queries based on cost

estimates. The challenge in utilizing similar strategies in logic engine optimizers is

that such unfolding is not always practical due to recursive predicates. Therefore,

Costimizer takes a different track by reordering query predicates and each rule’s

body predicates individually.
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Chapter 4

Conclusion

This thesis attempted to address two major problems standing on the way of enabling

logic engines to process meaningful queries against large and complex knowledge

bases: non-termination analysis and cost-based optimization.

To help user detect, locate, and examine non-termination, we have developed a

non-termination analyzer, called Terminyzer, for tabled logic engines with subgoal

abstraction such as XSB. It includes a suite of algorithms which analyze program

execution history and report non-termination causes, i.e., sequences of tabled sub-

goal calls and their host rule ids. It also reports the rule sequences that get fired

cyclically, thus causing non-termination. We then relax the system requirements and

study non-termination in tabled logic engines without subgoal abstraction. Further-

more, Terminyzer attempts to automatically rectify non-terminating programs by

heuristically fixing some causes of misbehavior. Terminyzer back-ends have been

developed for the SILK and Flora-2 systems. A graphical interface has been devel-

oped by the SILK team and is currently underway for Flora-2 .

This thesis also presented a cost-based optimizer, Costimizer, which aims at

adapting successful optimizations of database systems to rule engines. Such opti-

mizations are highly desirable in order for rule systems to be practical in processing

complex queries against large knowledge bases, especially for those engine unfriendly

knowledge bases created by knowledge engineers who usually have very limited knowl-

edge of logic engine’s evaluation strategies. Costimizer first efficiently estimates

predicate statistics by preserving argument dependencies and then applies them to
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greedily optimize rules and queries. The practicality and usefulness of Costimizer

have been validated by extensive experimental studies of several major benchmarks.

Costimizer achieved exciting performance gains in most cases, and, more impor-

tantly, it did not significantly slow down queries where it failed to optimize.
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Chapter 5

Future Work

Our next step for non-termination analysis will be focused on offering better back-

end supports to user-friendly graphical interfaces and performing more experimental

studies using large and real-world knowledge bases. We will pursue several directions

for cost-based optimization. First, we would like to fully implement Costimizer

such that it allows user to specify whether optimization should be performed or not,

and automatically does it in cases where it is asked. Second, more cost estimation

algorithms need to be explored. For instance, partial cost information can be obtained

from an execution’s forest log. Third, we would like to investigate more optimization

algorithms such as the near optimal join algorithms in [Wil02, NPRR12]. Fourth, we

want to evaluate Costimizer on real large and complex knowledge bases. Finally,

the relationships between cost-based optimization and other optimization techniques

should be investigated. For example, how mode analysis [Mel85, CLP86, MJMB89,

UM94, CU96] can be integrated into Costimizer.
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