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Abstract of the Dissertation

Upper and Lower Bounds for Sorting and Searching in External Memory

by
Dzejla Medjedovic

Doctor of Philosophy
in

Computer Science
Stony Brook University

2014

This dissertation presents variants on sorting and searching in external memory.
In the first part of the dissertation, we derive lower and upper bounds on sort-

ing with different-sized records. We show that the record size substantially af-
fects the sorting complexity, and so does the final interleaving of the smaller and
larger records in the final sorted sequence: sorting costs more when large and small
records are segregated than when they are interleaved in the final sorted order.

In the second part of the dissertation, we study the batched predecessor prob-
lem in external memory. Given the underlying sorted set S of size n, and a sorted
query Q of size x ≤ nc, 0 ≤ c < 1, we study tradeoffs between the searching cost,
and the cost to preprocess S. We give lower bounds in three external memory mod-
els: the I/O comparison model, I/O pointer-machine model, and the indexability
model. Our results show that in the I/O comparison model, the batched prede-
cessor problem needs Ω(logB n + 1/B) I/Os per element if the preprocessing is
polynomial; with exponential preprocessing, the problem can be solved faster, in
Θ((log2 n+ 1)/B).

In the third part of the dissertation, we introduce alternatives to the well-known
Bloom filter. The quotient filter is designed for RAM, but with better data local-
ity than the Bloom filter. The buffered quotient filter and the cascade filter are
SSD-optimized alternatives to the Bloom filter. In experiments, the cascade filter
and buffered quotient filter performed insertions 8.6-11 times faster than the fastest
Bloom filter variant and performed lookups 0.94-2.56 times faster.
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Chapter 1

Introduction

During my PhD career, I worked on variants of sorting and searching in external
memory. Sorting and searching are fundamental operations that lie at the backbone
of most database applications and are an integral step of many algorithms.

This dissertation studies three variants on these fundamental problems, but
with a practical tweak: we change the assumptions of the original problem to reflect
the constraints of real-life applications.

The first problem deals with sorting in external memory, but allowing input
records to vary in size. The second problem studies the fundamental problem of
merging two sorted lists in external memory when the length of one list x is poly-
nomially related to the other list y (x ≤ yc, 0≤ c < 1). Finally, the third problem
deals with designing Bloom filters that scale to large data sets.
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Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russel Kraner,
Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty,
Richard P. Spillane, and Erez Zadok

2. Don’t Thrash: How to Cache Your Hash on Flash, VLDB 2012, Michael
A. Bender, Martin Farach-Colton, Rob Johnson, Russel Kraner, Bradley C.
Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P.
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Spillane, and Erez Zadok

3. I/O-Complexity of Sorting with Different-Sized Records, MASSIVE 2013,
Michael A. Bender, Mayank Goswami, Dzejla Medjedovic, Pablo Montes
and Kostas Tsichlas

4. The Batched Predecessor Problem in External Memory, ESA 2014, Michael
A. Bender, Martin Farach-Colton, Mayank Goswami, Dzejla Medjedovic,
Pablo Montes and Meng-Tsung Tsai
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Chapter 2

I/O-Complexity of Sorting with
Different-Sized Keys

2.1 Introduction

Sorting in external memory (or I/O-sorting) has received a great deal of attention
in the literature [3]. The Disk-Access Model (DAM) [3], traditionally used to ana-
lyze problems in external memory, captures essential aspects of today’s computers,
where the cost of performing computations in internal memory is subsumed by the
cost of transferring the data between the external disk and RAM. In this model,
where data is stored on a disk of infinite size, and transferred to internal memory of
size M in the blocks of size B, the efficiency of an algorithm is measured by the
number of block transfers it performs.

Sorting was among the first problems studied in the DAM model [3]. The
optimal I/O-sorting algorithm for N unit-sized records is M/B-way merge sort
which mergesM/B sorted lists at once by dedicating a block of internal memory to
each list’s front elements. In one linear scan (N/B I/Os), the number of sorted lists
reduces by a factor of M/B, producing a single sorted list in O(N

B
logM/B

N
B

) block
transfers, which matches the information-theoretic lower bound for I/O-sorting.
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We derive the lower and upper bounds on the fundamental problem of I/O-
sorting when input records can vary in size. Our results show that the complexity of
sorting is substantially affected by the record size, and somewhat surprisingly, by
the final interleaving of the smaller and larger records in the final sorted sequence:
the sorting complexity is higher when large records are clustered together than when
they are interspersed with the small records.

In the real-world industrial applications, where data naturally admits irregu-
larity, input records routinely vary in size. Recently, there has been an interest in
developing algorithms and data structures that are able to efficiently store and pro-
cess different-sized data [5, 10, 11, 23, 37, 40, 43]. Most notably, [5] develops lower
and upper bounds for sorting strings in external memory.

We model records as indivisible, that is, to compare two records, an algorithm
needs to bring both into main memory in their entirety (this is consistent with the
atomic-key model of [10].) An important consequence of our model is that it im-
plicitly sets different comparison costs for records of different sizes: given that
transferring small records in and out of memory is cheaper than transferring large
records, the comparisons involving small records are also rendered cheaper than
the comparisons involving large records. In addition, large records consume more
space in internal memory and thus the algorithms is able to fit fewer large records,
reducing the parallelism inherent in batched sorting-like applications.

In this work, we investigate how varying record size affects the sorting com-
plexity in the indivisible-key model.

For the simplified setting where the input contains only two record sizes, the
unit size (set S) and the large size w (set L), our results show that the sorting
complexity depends on three following problems:

1. Sorting S.
2. Placing L (unsorted) within the sorted order of S.
3. Sorting each of large records that are consecutive in the final sorted sequence.

We derive lower and upper bounds on sorting using the three problems. The main
technical contribution is contained in the lower bounds for the second problem,
where we demonstrate a novel way to prove information-theoretic lower bounds for
problems with different-sized records. To the best of our knowledge, these are the
first worst-case lower bounds of this type. Lastly, we generalize the 2-sizes result to
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any number of record sizes, and give a structure of an optimal recursive algorithm.

Related work. Lower bounds for external-memory problems are traditionally
studied in the Disk-Access Model (DAM) [3, 29, 53], and its sub-models: exter-
nal comparison trees [3, 6, 15], external algebraic decision trees [26], and external
computation trees [8].

The importance of variable-sized keys has been recognized since Knuth [36],
who mentions the topic in side notes and exercises, acknowledging a gap between
theory and practice in sorting and searching. Most previous work studies external-
memory searching and B-trees, in particular [10, 23, 37, 40, 43].

Arge et al. [5] study external-memory string sorting. They show that the I/O
complexity depends upon the size of the strings relative to the block size and give
matching upper and lower bounds in some cases.

There is also work on batched external-memory dictionary operations for unit-
sized keys [4,7]. Finally, sorting multisets and set partitioning in RAM has connec-
tions to the PLE problem [25, 42].

Next, we give a technical overview of our results.

2.2 Problem Definitions and Results

First we study the simplified version of the sorting problem where records can come
in only two sizes (two-sized sorting); then we generalize the result to input records
having any number of sizes (multiple-sized sorting.)

2.2.1 Results: Two-Sized Sorting

The input to the two-sized sorting problem are S = {s∗} (the small records) and
L = {`∗} (the large records, each of size 1 < w ≤ M/2). A set of large elements
forms a stripe if for each pair of large elements `i and `j in the stripe, there does
not exist a small element between `i and `j in the final sorted order.

We use the parameter k to denote the number of large-element stripes. Let the
large-element stripes be L1,L2, . . . ,Lk, as they are encountered in the ascending
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sorted order. The parameters in the complexity analysis of sorting are thus S, L, w,
k, and {Li}ki=1.

Definition 1 (Two-Sized Sorting (2-Sort (N))).
INPUT: an unsorted set of elements N = S∪L. S consists of S unit-size elements,
and L consists of L/w elements, each of size w, where B ≤ w ≤M/2.1

OUTPUT: Elements in N , sorted and stored contiguously in external memory.

Definition 2 (Placement of Large Elements (PLE (S, L))).
INPUT: The sorted set of small elements S = {s1, s2, . . . , sS}, and the unsorted
set of large elements L = {`1, `2, . . . , `L/w}.
OUTPUT: Elements in S are sorted, and elements in L are sorted according to
which stripe they belong to, but arbitrarily ordered within their stripe.

Theorem 3 (Sorting Lower Bound). The worst-case I/O complexity for Two-
Sized Sorting is determined by the complexity of the PLE problem. So if
PLE-LOWER(S, L) is a lower bound of the PLE problem, then we have
SORT-LOWER(N) =

Ω

(
S

B
logM/B

S

B
+ PLE-LOWER(S, L) +

(
k∑
i=1

(
Li
B

logM/w

Li
w

)
+
L

B

))
.

Theorem 4 (PLE Lower Bound). The worst-case I/O complexity for the PLE prob-
lem is PLE-LOWER(S, L) =

Ω

(
min

{
kw

B
logM S +

L

B
logM k,

k

B
logS +

L

wB
log k +

L

B

})
.

The sorting lower bound has three terms: the first term corresponds to sorting
the small records, the second term corresponds to solving the PLE, and the third
term corresponds to sorting each large stripe. The two terms of the PLE lower
bound come from analyzing how much information an optimal algorithm learns
from 1) inputs of large records and 2) inputs of small records.

1The assumption that w ≥ B is stated only for the convenience of presentation. Our bounds
hold for any 1 < w ≤M/2.
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Theorem 5 (Sorting Upper Bound). There exists a Two-Sized Sorting algorithm
having I/O complexity SORT-UPPER(N) =

O

(
S

B
logM/B

S

B
+ PLE-UPPER(S, L) +

(
k∑
i=1

(
Li
B

logM/w

Li
w

)
+
L

B

))
.

Theorem 6 (PLE Upper Bound). There exists an algorithm for the PLE problem
having I/O complexity PLE-UPPER(S, L) =

O

(
min

{
L

B
logM S +

S

B
,
L

w
logB k + k logB S +

L

B
+
S

B

})
.

The upper bound has a similar structure to the lower bound. The algorithm
first sorts the small records, solves the PLE, and sorts the unsorted large stripes. We
design two algorithms for PLE: the first algorithm is optimized for the situations
when large elements are not too large (when w ≤ B logM ): it builds a tree data
structure with a large fan-out (M ), and sweeps large elements through each level
of the tree, thus benefiting from a large fan-out. The second algorithm is optimized
for large elements that are fairly large (w > B logM ). The algorithm processes
elements one by one by sending them down two B-trees. This way, the algorithm
needs to input the ‘heavy’ elements only once.

In most cases the PLE upper bounds match the lower bounds. Because the
first and the third terms of the sorting bounds are tight, the lower bounds are also
automatically tight in all cases when any one of these terms dominates the runtime.

2.2.2 Results: Multiple-Sized Sorting

Next we define the sorting problem for m size classes. The input is set N =⋃m
i=1Ni, where Ni denotes ith size class in the increasing order of element sizes.

We first define an i-stripe, the stripe-equivalent for the multiple-sized setting. De-
note i-stripe as a sequence of keys of size wi or larger in the final sorted order,
uninterrupted by the elements smaller than wi: for example, a 2-stripe represents
one maximal sequence of keys from N2, . . . , Nm consecutive in the final sorted or-
der. Denote 2-stripes in the set N as R1, . . . , Rk1 , and the number of distinct size
classes present in Ri as mi.
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Definition 7 (Multiple-Sized Sorting (m-Sort (N))).
INPUT: The input is N =

⋃m
i=1 Ni, where wi denotes the size of the elements in

class Ni. Also, w1 = 1, and wi ≥ B, for i > 1.2

OUTPUT: Elements in N , sorted and stored contiguously in external memory.

The essential component of m-Sort (N) is GPLE (S, L) problem, the general-
ization of PLE to any pair of record sizes.

Theorem 8 (m-Sort (N) Lower Bound). The worst-case I/O complexity for
Multiple-Sized Sorting is m-SORT-LOWER(N) =

Ω

(
N1

B
logM/B

N1

B
+

m∑
i=1

GPLE-LOWER(N1, Ni) +

k1∑
i=1

(mi)-SORT-LOWER(Ri)

)
.

Theorem 9 (GPLE (S, L) Lower Bound). The worst-case I/O complexity for the
GPLE (S, L) problem, with key sizes w1 and w2, w1 ≤ w2, and L forming k stripes
within S is GPLE-LOWER(S, L) =

Ω

(
min

{
kw2

B
logM/w1

S

w1

+
L

B
logM/w1

k,
kw1

B
log

S

w1

+
Lw1

Bw2

log k

})
.

The lower bound for multiple records first demonstrates that the following sub-
problems are all individually lower bounds on sorting: sorting the small records,
finding the position of every larger class within the small record class, and recur-
sively sorting all 2-stripes. To prove that the sum of the subproblems is a lower
bound, we argue independence between the subproblems. This lower exhibits the
structure of an optimal algorithm, i.e., an algorithm with this structure that opti-
mally solves each subproblem is optimal.

Theorem 10 (m-Sort (N) Upper Bound). There exists an algorithm for Multiple-
Sized Sorting with complexity m-SORT-UPPER(N) =

Ω

(
N1

B
logM/B

N1

B
+

m∑
i=1

GPLE-UPPER(N1, Ni) +

k1∑
i=1

(mi)-SORT-UPPER(Ri)

)
.

2Again, the limitation of wi ≥ B is made only for the ease of presentation of proofs, and our
results hold for any record size.
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Theorem 11 (GPLE (S, L) Upper Bound). When w1 = 1 and w2 ≥ B, the upper
bound for GPLE (S, L) becomes the upper bound of PLE (S, L). However, when
w1 ≥ B and w2 ≥ B, there exists an algorithm for GPLE (S, L) having complexity
GPLE-UPPER(S,L) =

O

(
min

{
L

B
logM/w1

S,
kw1

B
log

S

w1

+
Lw1

Bw2

log k +
L

B

})
.

The structure of results is similar to that of the two-sized sorting problem, in
that the optimal algorithm first sorts the smallest keys, performs GPLE(N1, Ni) for
all i > 1, and recurses on 2-stripes. Our GPLE algorithms are similar to those for
PLE, with one exception: when both record sizes are larger than a block, binary
search becomes optimal. The next corollary states that GPLE lower bounds are
optimal in the following wide range of parameters:

Corollary 12. If w2 > w1 log(M/w1),
GPLE-UPPER(S,L) = Θ (GPLE-LOWER(S,L)).

2.3 Lower Bounds

The main question we explore in this work is how to derive lower bounds on
comparison-based problems when records can vary in size. In this section, we show
a novel way to derive the sorting lower bound by decomposing the sorting problem
into subproblems in three different layers.

To understand what goes wrong when applying traditional information-
theoretic argument for different-sized key problems, first we recall the lower bound
argument for sorting unit-sized keys. Using the assumption that all blocks are inter-
nally sorted3, the total number of permutations that could potentially represent the
sorted order is t = Ω(N !/BN/B). In one I/O, at most B elements are transferred
into main memory that holds at mostM−B elements, thus the fraction of permuta-
tions that this I/O can eliminate corresponds to the number of ways to place the in-
coming B elements into the sorted order of elements in memory, and it equals

(
M
B

)
.

Thus the total number of I/Os required to sort equals log t/ log b = Ω
(
N
B

logM/B
N
B

)
.

3Achieved by an initial linear scan of input.
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However, the sleek argument for unit-sized records does not carry over to
the records of varying sizes for the following reason: the parameter t substan-
tially varies depending on whether the block transfer carries large records or small
records, and what are the contents of RAM at the time of the I/O. For example,
a transfer of a large element into main memory full of large elements gives only
t =

(
M/w

1

)
/(w/B) as a large-element transfer costs w/B. On the other hand,

a transfer of B small records into main memory filled with small records gives
t =

(
M
B

)
. The parameter t can be anything in the range between these two val-

ues, for any combination of small and large records being in memory, and inputs
of small or large records. If we simply take the highest t, one obtained from the
small record inputs, we don’t get a tight lower bound—this intuitively makes sense
because we can not sort the entire set using only small record comparisons. This
brings us to the first layer of decomposition of the sorting problem.

2.3.1 First Layer: Three Types of Comparisons

Here we decompose sorting into three subproblems, based on whether the subprob-
lem requires small-to-small, large-to-large or small-to-large record comparisons.
We show two lower bounds based on equal-sized record sorting: sorting all the
small records (small-to-small comparisons), and sorting all large stripes (large-to-
large comparisons). It is important to extricate these subproblems because they do
not directly deal with sorting records of different sizes and are trivially obtained
from the Aggarwal and Vitter result (see below). The remaining segment of the
problem is achieved using small-to-large record comparisons: this is the PLE prob-
lem, which we decompose in the next two levels.

Lemma 13. SORT-LOWER(N) = Ω
(
S
B

logM/B
S
B

)
.

Proof: We denote by p the total number of permutations that any algorithm for Two-
Sized Atomic-Key Sorting must distinguish between in order to sort. We bound p
in terms of the number of large-element stripes k:

p ≥ S!

(B!)S/B

(
S − 1

k

)(
L

w
!

)(
L/w − 1

k − 1

)
.

The four factors that comprise the right side include (1) sorting S (after sorting
within the small blocks, the total number of permutations goes down by a factor of
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(B!)S/B), (2) choosing the k locations for stripes within S, (3) sorting L and (4)
forming k large-element stripes by choosing k − 1 delimiters in the sorted L.

We can assume that the elements in memory are sorted at all times, because
maintaining this order requires no additional I/Os. The number of remaining per-
mutations goes down by at most

(
M
B

)
after one memory transfer, thus a lower bound

on the number of I/Os to sort is SORT-LOWER(N) = Ω
(
log p/log

(
M
B

))
. Using that

p ≥ S!
(B!)S/B

, and that log
(
M
B

)
= Θ(B log(M/B)), we get

SORT-LOWER(N) = Ω

(
S logS − S logB

B log(M/B)

)
= Ω

(
S

B
logM/B

S

B

)
,

concluding the lemma.
Next we show a generalization of the Aggarwal and Vitter result for records of

size w > 1.

Theorem 14 (Aggarwal and Vitter [3]). Consider an external-memory algorithm A

that sorts the total volume V of V/w elements, each of size w.

1. If 1 ≤ w < B, A requires Ω
(
V
B

logM/B
V
B

)
block transfers.

2. If w ≥ B, A requires Ω
(
V
B

logM/w
V
w

)
block transfers.

Proof: In both cases, we count the total number of possible output permutations
and the maximum permutations achievable during a single I/O, or during the input
of one element (w/B I/Os), whichever is larger.

1. 1 ≤ w < B: Assume that w divides B. In a linear scan, we can internally
sort every block, which restricts the possible output permutations to

(V/w)!

((B/w)!)V/B
.

When a block is input, there are at most (M − B)/w sorted elements in
memory. The incoming block contains B/w sorted elements, so the number
of remaining output permutations reduces by at most a factor of(

(M −B)/w +B/w

B/w

)
=

(
M/w

B/w

)
.

11



Thus we get that the algorithm requires at least

Ω

(
log
(
(V/w)!/((B/w)!)V/B

)
log
(
M/w
B/w

) )
block transfers. Using the same bounds for

(
n
k

)
as in Lemma 13, we get the

desired bound.

2. w ≥ B: Assume for simplicity thatw is an integer multiple ofB. In this case,
there are (V/w)! possible output permutations. One can scan every chunk
of size M , but this does not change the bound we present asymptotically (
logM/w V/w changes to logM/w V/M ).

When an element is input, there are at most (M − w)/w = (M/w) − 1

(sorted) elements in memory. The input of an element costs w/B I/Os, and
this element can go into any one of M/w positions between the elements
in memory. Hence the maximum branching factor for one element input is
M/w.

This implies that the number of element inputs is

Ω

(
(V/w) log(V/w)

log(M/w)

)
= Ω

(
V

w
logM/w

V

w

)
,

and multiplying by the cost of every large element input (w/B) gives us the
claimed bound.

Lemma 15.

SORT-LOWER(N) = Ω

(
k∑
i=1

Li
B

logM/w

Li
w

)
.

Proof: Consider an instance of sorting where the collection of small elements S
is already sorted, and every element from L knows its position within S. To finish
sorting, the only useful comparisons are now between the large elements from the
same stripe. This reduces to having k independent sorting instances, and by The-
orem 14 and a trivial linear-scan bound, the lower bound to sort in this scenario is
SORT-LOWER(N) = Ω

(∑k
i=1

Li

B
logM/w

Li

w

)
block transfers.

We remark that Lemmas 13 and 15 give the first and third terms of the lower
bound from Theorem 3, and the second term comes from the PLE:

12



Lemma 16.
SORT-LOWER(N) = Ω(PLE-LOWER(S, L)).

2.3.2 Second Layer: Interleaving-Sensitive Analysis

Because we are interested in the interleaving-sensitive analysis of the PLE, we ex-
press the complexity of the PLE using its three instances:

1. S-k: An instance with only one large element in each large-element stripe.

• Input: Unit-sized elements s1, . . . , sS (sorted), where s1 = −∞ and
sS =∞, and large elements `1, . . . , `k (volume kw) unsorted.
• Output: The entire set in the sorted order.

2. k-k̃: An instance with only one small element in each small-element stripe.

• Unit-sized elements s1, . . . , sk+1 sorted, where s1 = −∞ and sk+1 =

∞, and large elements `1, . . . , `k̃ (volume k̃w) unsorted.
• Output: For each `i, output its predecessor and successor in S.

3. k-k: An instance with only one element in each stripe, large or small.

• Input: Unit-sized elements s1, . . . , sk+1 sorted, where s1 = −∞ and
sk+1 =∞, and large elements `1, . . . , `k (volume kw) unsorted.
• Output: The entire set in the sorted order.

The lower bounds for these problems are also lower bounds for the PLE problem,
thus we have the following lemma:

Lemma 17.

PLE-LOWER(S, L) = Ω(S-k-LOWER(S, L)+k-k̃-LOWER(S, L)+k-k-LOWER(S, L)).

2.3.3 Third Layer: Small-Block Input vs. Large-Record Input

In this section, we prove lower bounds for S-k, k-k̃ and k-k by analyzing the
amount of information an optimal algorithm learns from a small-block input and
from a large-record input. The minimum of the two terms is a lower bound on the

13



problem. If the large records are very large, then the lower bound comes from solv-
ing the problem by predominantly inputting the small records, whereas if the large
records are not very large, the lower bound comes from predominantly inputting
large records.

The format of lower bounds for S-k, k-k̃ and k-k is as follows: given X as the
total number of bits that an algorithm needs to learn in order to solve the problem,
all three problems have a lower bound of

min

(
X

B
,

Xw

B logM

)
.

See Theorems 22, 23 and 25 later for the exact expressions. To prove these lower
bounds, we design an adversary strategy that ensures the following: in each block
transfer of small records, an algorithm learns at most O(B) bits, and in each input
of a large record (which costs w/B I/Os), the algorithm learns O(logM) bits of
information.

The proofs of three lower bounds share the same setup and most of the adver-
sary’s strategy. We first describe this common framework; at the end of the section,
we explain how the main strategy is modified to obtain lower bounds for each indi-
vidual subproblem.

We capture the information learned at every point of the algorithm by assigning
a search interval to every large element:

Definition 18 (Search interval). A search interval R(`) = (si, sj) for a large ele-
ment ` at step t is the narrowest interval of small elements where ` can possibly
land in the final sorted order, given what the algorithm has learned so far. A search
interval R(sj) is given as an interval (si, sk) where si is the predecessor and sk is
the successor of sj in S.

Mechanics of the Strategy We denote by {`p−1
i }

M/w
i=1 the set of at most M/w

large elements in memory before the tth I/O. The nodes in T belonging to the
set {vp−1(`p−1

i )}M/w
i=1 have no ancestor-descendant relationships between them. We

write Sp−1
i to denote I(vp−1(`p−1

i )), the search interval of `p−1
i at step p− 1.

Small-block input. Consider the incoming block. We denote npi as the number
of incoming small elements that belong to Sp−1

i . These elements divide Sp−1
i into

14



npi + 1 parts {P1, . . . , Pnpi+1}, some of them possibly empty. The largest of these
parts (say Pj) is of size at least 1/(npi + 1) times that of Sp−1

i . The new search
interval of `pi is defined to be the highest node in T such that I(v) ⊂ Pj .
Large element input. On an input of a large element `pnew (with search interval
Sp−1

new ), the adversary uses the strategy similar to that one on a small-block input to
compare `pnew with the (at most) M small elements present in memory. These M
small elements divide Sp−1

new into at mostM parts, and the new search interval of `pnew

corresponds to the highest node in T that contains the largest part.
This is the temporary search interval Snew, with the corresponding node vnew.
Snew can be related to the search intervals of memory-resident large elements

in three following ways:

Case 1. The element `pnew shares a node with another large element `pi . The conflict
is resolved by sending `pnew and `pi to the left and right children of vnew respectively.

Case 2. The element `pnew has an ancestor in memory. The ancestor is sent one
level down, to the child that does not contain vnew in its subtree. Thus the conflict is
resolved while giving at most O(1) bit.

Case 3. The element `pnew has descendants in memory.
Denote the nodes that are descendants of vnew in T as v1, . . . , vM/w. Let

the corresponding search intervals be Sp−1
1 , . . . , Sp−1

M/w, respectively. Let X =

∪M/w
i=1 S

p−1
i and Y = Snew \ X . The set Y is a union of at most M/w inter-

vals, each of which we denote by Yi. Let Z be the largest interval from the set
{Sp−1

1 , . . . , Sp−1
M/w, Y1, . . . , YM/w}. Hence, ‖Z‖ ≥ ‖Snew‖/(2M/w).

There are two cases to consider. The first case is when Z = Sp−1
i for some

i. In this case, Snew = Sp−1
i . In doing this we have given at most O(logM) bits.

Now we proceed as in Case 1 to resolve the conflict with at most O(1) extra bits.
Otherwise, if Z = Yi for some i, then the adversary allots `pnew to the highest node
v in T such that I(v) ⊆ Z.

Analysis of the Strategy. We have the following lemmas:
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Lemma 19. On a small-block input, the adversary gives at most O(log(npi + 1))

bits to `pi .

Proof: Observe that

‖Pj‖ ≥
‖Sp−1

i ‖
(npi + 1)

.

Divide Sp−1
i into 2(npi + 1) equal parts (with the last one being possibly

smaller). If Pj is equal to the union of two consecutive such parts, there is a
node in T corresponding to Pj , and the adversary has given exactly log(npi + 1)

bits. Otherwise, Pj contains at least one of these parts, for which there is a node
log(npi + 1) + 1 levels below vp−1(`p−1

i ), which is how many bits the adversary
gives in this scenario.

In either case, the maximum number of bits given by the adversary is
O(log(npi + 1)), as claimed.

Lemma 20. On a small-block input, the adversary gives at most O(B) bits.

Proof: This follows easily from Lemma 19. Let G denote the total number of bits
given by the adversary during the input of a block of small elements. It can be seen
that G =

∑B
i=1 (log(npi + 1) + 1). By definition

∑B
i=1 npi = B, implying that∑B

i=1 log(nti + 1) ≤ B, which in turn implies that G < 2B = O(B).

Lemma 21. During the input of a large element, the adversary gives at most
O(logM) bits.

Proof: The number of bits given due to comparisons with small elements already
in memory is O(logM). In each of the three cases an additional O(log(M/w)) bits
are given. Thus, the total number of bits given by the adversary during the I/O of a
large element is O(logM).

Now we are ready to prove the individual lower bounds for k-k, k-k̃ and S-k:

2.3.4 Putting It All Together

S-k Lower Bound. The proof rests on the following action of the adversary: in
the very beginning, the adversary gives the algorithm the extra information that the
ith largest large element lies somewhere between s(i−1)α and siα, where α = S/k.
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In other words, the adversary tells the algorithm that the large elements are equally
distributed across S, one in each chunk of size S/k in S.

This deems the invariant of large elements in main memory having disjoint
search intervals automatically satisfied.

Because any algorithm that solves S-k must achieve Ω(k log(S/k)) bits of
information, we have that

Theorem 22. The worst-case complexity of S-k is
Ω
(
min

(
kw
B

logM
S
k
, k
B

log S
k

+ kw
B

))
.

k-k̃ Lower Bound. To solve k-k̃, an algorithm needs to learn k log k̃ bits of infor-
mation. Using the adversary strategy we described, we obtain the following lower
bound:

Theorem 23. The worst-case complexity of k-k̃ is
Ω
(

min
(
k̃w
B

logM k, k̃
B

log k + k̃w
B

))
.

k-k Lower Bound. To solve k-k, an algorithm needs to learn k log k bits of in-
formation. In the k-k problem, we expect to produce the perfect interleaving of the
small and large elements in the final sorted order. That is, each element lands in its
own leaf of T .

Therefore, the adversary does not posses the freedom to route elements down
the tree at all times using the strategy we described. Instead, the strategy is used
for a fraction of total bits the algorithm learns, and the remaining fraction is used to
make up for the potential imbalance created by sending more elements to the left or
to the right. We call these early and late bits, respectively. Late bits are effectively
given away for free by the adversary.

More formally, we define the node capacity (cT (v)) as the number of large
elements that pass through v during the execution of an algorithm. If the k-k algo-
rithm runs in T I/Os, then the node capacity of v at a level h of T is designated by
cT (v) = k/2h.

Definition 24 (early and late bits). A bit gained by a large element ` is an early
bit if, when ` moves from v to one of v’s children, at most cT (v)/4− 1 other large
elements have already passed through v. The remainder of the bits are late bits.
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Because a small-block input gives O(B) bits and a large-element input gives
O(logM) bits, and we need to achieve all early bits to solve the problem (there are
(k log k)/4 of them), we obtain the following lower bound:

Theorem 25. The worst-case complexity of k-k is
Ω
(
min

(
kw
B

logM k, k
B

log k + kw
B

))
.

Proof of Theorem 4. Here we give details on how to combine the lower bounds of
PLE subproblems to obtain the expression from Theorem 4. The lower bounds for
k-k, k-k̃ and S-k are each a minimum of two terms; it is safe to add the respective
terms as the transition between which term dominates occurs at exactly the same
value of w for each of the subproblems.

Adding the terms for the lower bounds of k-k (Theorem 25) and S-k (Theo-
rem 22), provides the k

B
logS and kw

B
logM S terms in Theorem 4.

Adding the terms for the lower bounds of k-k (Theorem 25) and k-k̃ (Theo-
rem 23), and using that k + k̃ = L/w provides the L

wB
logS and L

B
logM S terms in

Theorem 4.
Proof of Theorem 3. Adding the terms from sorting small elements (Lemma 13),
sorting the large element stripes (Lemma 15) and the PLE (S, L) lower bound (The-
orem 4) proves the lower bound in Theorem 3.

2.4 Algorithms

Our sorting algorithm includes three major steps: (1) sort the small elements, (2)
solve the PLE problem, and (3) sort each large-element stripe.

The costs to implement Steps 1 and 3 optimally using a multi-way external
merge sort [3] are

O

(
S

B
logM/B

S

B

)
and O

(
Li
B

logM/w

Li
w

)
. (1)

We give two algorithms to solve Step 2: PLE-DFS and PLE-BFS.

PLE-DFS. PLE-DFS builds a static B-tree T on S, and searches for large el-
ements in T one by one. This approach is preferred in the case of really large
elements, and it is better to input them fewer times.
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We dynamically maintain a smaller B-tree T ′ that contains only border ele-
ments (the two small elements sandwiching each large element in the final sorted
order) and has depth at most logB k. All large elements first travel down T ′ to locate
their stripe. Only those elements for which their stripe has not yet been discovered
need to travel down T . After a new stripe is discovered in T , it is then added to T ′.
The total cost becomes

O

(
L

w
logB k + k logB S +

L

B
+
S

B

)
. (2)

PLE-BFS. Our second algorithm for PLE uses a batch-searching tree with fanout
Θ(M). When a node of the tree is brought into memory, we route all large elements
via the node to the next level. We process the nodes of the M -tree level by level so
all large elements proceed at an equal pace from the root to leaves. This technique
is helpful when large elements are sufficiently small so that bringing them many
times into memory does not hurt while they benefit from a large fanout.

The analysis is as follows: at each level of M-tree, the algorithm spends
Θ(L/B) I/Os in large-element inputs. Every node of the tree is brought in at most
once, which results in total (S/B) I/Os in small-element inputs. The total number
of memory transfers for PLE-BFS then becomes

O

(
L

B
logM S +

S

B

)
. (3)

Proof of Theorem 6. Bounds (2) and (3) imply Theorem 6.
Proof of Theorem 5. Theorem 6 and the bounds given in (1) imply Theorem 5.

2.5 Sorting with Multiple Key Sizes

This section gives generalized lower and upper bounds for sorting when the input
keys can have any number of key sizes. We focus our attention on a particular class
of algorithms—interleaving-based algorithms— that sort ‘bottom-up’: in these al-
gorithms, comparisons are performed between keys of size wi and higher only after
all smaller keys have been sorted. We prove that there exists an algorithm in this
class which is optimal. Lastly, we describe the specifics of our upper bound.
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We denote by mSORT an instance of sorting with keys of m distinct sizes,
and the input set to be sorted by N =

⋃m
i=1Ni, where Ni denotes the ith size class

in the increasing order of element sizes.

Definition 26 (Class of Interleaving-Based Sorting Algorithms for mSORT (Cm)).
Define Cm, m ≥ 2 inductively as follows:

1. (Base case) C2 is the class of algorithms that has the following steps:
• Sort N1.
• Solve GPLE(N1,N2).
• Sort each stripe of elements from N2 independently, i.e., without using

any comparisons to elements outside the given stripe.
2. (General case) Cm is the class of algorithms that sort as follows:

• Sort N1.
• Solve GPLE (N1,Ni), ∀i, 1 < i ≤ m. Every key lands into one of the

resulting stripes R1, . . . , Rk. Denote the number of distinct key sizes in
Ri by mi, mi < m.
• For each 1 ≤ i ≤ k, sortRi using an algorithm from the class Cmi

. Each
Ri is sorted separately, without comparisons to the elements outsideRi.

Proof sketch for Theorem 8. We prove the theorem by showing that there exists
an optimal algorithm Am for mSORT such that Am ∈ Cm. Definition 26 formal-
izes how Am unravels into a sequence of calls to subroutines GPLE(Si,Sj) and
SORT(Sk), where Sk is an equal-size element set. In order to establish that an algo-
rithm that optimally solves each of these subroutines is also an optimal algorithm
for mSORT, we need to argue the following:
• Lower bounds for GPLE(Si,Sj) and SORT(Sk) do not increase once the in-

put is restricted from N to Si ∪ Sj and Sk, respectively. (GPLE(Si,Sj) and
SORT(Sk) with input N are trivially lower bounds on mSORT.)
• All individual GPLE instances are mutually independent, i.e., solving one

instance does not help solve the other one faster. We give the same argument
for SORT instances.

Our upper bound is an algorithm from the class Cm that implements
the subroutines as follows: SORT(Sk) uses equal-sized sorting algorithm, and
GPLE(Si,Sj) is implemented as in the two-sized algorithm (see previous section).
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However, when both key sizes in the GPLE instance are larger than the cacheline B,
the complexity of GPLE changes. It turns out that in this case, GPLE can be solved
faster by replacing B-trees in the two-sized algorithm by binary search trees.
Proof of Theorem 9. As in the case of two sizes, we get lower bounds on
GPLE (S, L) by deriving lower bounds on the generalized versions of three prob-
lems: (G)k-k, (G)k-k̃ and (G)S-k, that are defined analogously. In each of the
three subproblems, a sorted set of w1-size elements is given, and one is required to
place an unsorted set of w2-size elements amongst the sorted set (in (G)k-k these k
elements are perfectly interleaved, and in (G)S-k the k elements go into different
slots amongst the small(er) elements). One easily observes

Observation 27. The number of bits required by any algorithm to solve:

1. (G)k-k is Ω(k log k).

2. (G)k-k̃ is Ω(k̃ log k).

3. (G)S-k is Ω(k log(S/kw1))

Our adversary maintains the same invariant as in the proofs of k-k, k-k̃ and
S-k; all the large(r) elements (size w2) in memory have disjoint search spaces. The
strategy is randomized in (G)k-k, and deterministic in (G)k-k̃. This ensures:

Claim 28. In all of the three scenarios, the adversary strategy guarantees:

1. The I/O of a small element (costing w1/B I/Os) achieves O(1) bits w.h.p.

2. The I/O of a large element (costing w2/B I/Os) achieves O(log(M/w1)) bits
w.h.p.

Thus, a max(1/(w1/B), log(M/w1)/(w2/B)) bits can be achieved per I/O.
Dividing the number of bits required by this quantity now gives lower bounds on
(G)k-k, (G)k-k̃ and (G)S-k, and adding them up gives us the lower bound claimed
in Theorem 9.
Generalization to the case when w1 < w2 < B: The number of bits required
by an algorithm for any of the three instances remains unchanged, as that is an
information lower bound. It remains to see how the invariant maintained by the
adversary limits the information achieved by any algorithm.
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The input of a small block contains B/w1 elements now. Since the large ele-
ments in memory have disjoint search spaces, the maximum number of bits achiev-
able by this I/O is B/w1, which is the case when each of these small elements is a
pivot for a unique large element. Thus we get O(B/w1) bits per I/O.

The input of a large block contains B/w2 large elements. The memory can
contain at most (M − B)/w1 small elements, and so the total number of possible
permutations achievable is

P =

(M−B
w1

+ B
w2

B
w2

)(
B

w2

!

)
<

(M
w1

B
w2

)(
B

w2

!

)
<

(
ew2M

Bw1

)B/w2
(
B

w2

!

)
This gives

logP = O

(
B

w2

log

(
Mw2

Bw1

)
+
B

w2

log

(
B

w2

))
= O

(
B

w2

log

(
M

w1

))
bits per I/O.

In both cases, the amortized number of bits achieved is:

1. O(B/w1) bits per I/O, equivalent to O(1) bit per w1/B I/Os.

2. B
w2

log
(
M
w1

)
bits per I/O, equivalent to log(M/w1) bits per w2/B I/Os

2.6 Conclusion

The aim of this work is to understand how the complexity of classical external-
memory problems such as sorting changes when keys have variable sizes. This
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chapter gives the first sorting bounds for variable-size keys, analyzed in terms of
final key interleaving. Our results show that when giving interleaving-dependent
bounds, a vital component of sorting in the atomic-key setting is an underlying
batched searching problem.

Our motivation derives from industrial databases, including TokuDB [52],
which routinely sort keys of varying sizes, and our results illustrate that there is
a rich set of issues that arise when sorting keys of variable sizes.

Open problems abound. A question of immediate interest is how can these
results be extended to cases where keys are typical database rows—splittable in a
limited sense. And, how can these results be used to give more precise bounds on
sorting strings? Even though the atomic-key model accentuates the dependence of
sorting complexity on interleaving, there exist cases in which our algorithms help
sort strings faster.
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Figure 1: Pseudocode for Two-Sized Sorting

TWO-SIZED-SORT(N)

1 Partition N in two sets S and L of short and long elements, respectively.
2 Sort S
3 L1, . . . , Lk ← min (PLE-BFS(S, L), PLE-DFS(S, L))

4 Sort each Li.

PLE-DFS(S, L)

1 Build a B-tree T on S.
2 T ′ ← ∅
3 for each e ∈ L
4 do Bring e into memory.
5 found ← SEARCH(T ′, e)

6 if not found
7 then SEARCH(T , e)
8 Let x and y be the predecessor and successor of e in S.
9 INSERT(T ′, [x, y])

10 Write e to the corresponding stripe.

PLE-BFS(S, L)

1 Build an M-tree T on S.
2 Bring the root of T into memory.
3 Read each long element and send it to the

appropriate child.
4 Recurse in BFS order on each child until a leaf is reached.
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Chapter 3

The Batched Predecessor Problem in
External Memory

3.1 Introduction

A static dictionary is a data structure that represents a set S = {s1, s2, . . . , sn}
subject to the following operations:

PREPROCESS(S): Prepare a data structure to answer queries.

SEARCH(q, S): Return TRUE if q ∈ S and FALSE otherwise.

PREDECESSOR(q, S): Return maxsi∈S{si < q}.

The traditional static dictionary can be extended to support batched operations. Let
Q = {q1, . . . , qx}. Then, the batched predecessor problem can be defined as fol-
lows:

BATCHEDPRED(Q,S): Return A = {a1, . . . , ax}, where
ai = PREDECESSOR(qi, S).

In this work we prove lower bounds on the batched predecessor problem in
external memory [3], that is, when the dictionary is too large to fit into main mem-
ory. We study tradeoffs between the searching cost and the cost to preprocess the
underlying set S. We present our results in three models: the comparison-based I/O
model [3], the pointer-machine I/O model [48], and the indexability model [30,31].
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We focus on query size x ≤ nc, for constant c < 1. Thus, the query Q can
be large, but is still much smaller than the underlying set S. This query size is
interesting because, although there is abundant parallelism in the batched query,
common approaches such as linear merges and buffering [4,15,17] are suboptimal.

Our results show that the batched predecessor problem in external memory
cannot be solved asymptotically faster than Ω(logB n) I/Os per query element if the
preprocessing is bounded by a polynomial; on the other hand, the problem can be
solved asymptotically faster, in Θ((log2 n)/B) I/Os, if we impose no constraints
on preprocessing. These bounds stand in marked contrast to single-predecessor
queries, where one search costs Ω(logB n) even if preprocessing is unlimited.

We assume that S and Q are sorted. Without loss of generality, Q is sorted
because Q’s sort time is subsumed by the query time. Without loss of generality,
S is sorted, as long as the preprocessing time is slightly superlinear. We consider
sorted S throughout. For notational convenience, we let s1 < s2 < · · · < sn and
q1 < q2 < · · · < qx, and therefore a1 ≤ a2 ≤ · · · ≤ ax.

Given that S and Q are sorted, an alternative interpretation of this work is as
follows: how can we optimally merge two sorted lists in external memory? Specifi-
cally, what is the optimal algorithm for merging two sorted lists in external memory
when one list is some polynomial factor smaller than the other?

Observe that the naïve linear-scan merging is suboptimal because it takes
Θ(n/B) I/Os, which is greater than the O(nc logB n) I/Os of a B-tree-based so-
lution. Buffer trees [4,15,17] also take Θ(n/B) I/Os during a terminal flush phase.
We show that with polynomial preprocessing, performing independent searches for
each element inQ is optimal, but it is possible to do better for higher preprocessing.

Single and batched predecessor problems in RAM.

In the comparison model, a single predecessor can be found in Θ(log n) time using
binary search. The batched predecessor problem is solved in Θ(x log(n/x) + x)

by combining merging and binary search [35, 36]. The bounds for both problems
remain tight for any preprocessing budget.

Pătraşcu and Thorup [44] give tight lower bounds for single predecessor
queries in the cell-probe model. We are unaware of prior lower bounds for the
batched predecessor problem in the pointer-machine and cell-probe models.
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Although batching does not help algorithms that rely on comparisons, Karpin-
ski and Nekrich [33] give an upper bound for this problem in the word-RAM
model (bit operations are allowed), which achieves O(x) for all batches of size
x = O(

√
log n) (O(1) per element amortized) with superpolynomial preprocess-

ing.

Batched predecessor problem in external memory.

Dittrich et al. [24] consider multisearch problems where queries are simultaneously
processed and satisfied by navigating through large data structures on parallel com-
puters. They give a lower bound of Ω(x logB(n/x) +x/B) under stronger assump-
tions: no duplicates of nodes are allowed, the ith query has to finish before the
(i+ 1)st query starts, and x < n1/(2+ε), for a constant ε > 0.

Buffering is a standard technique for improving the performance of external-
memory algorithms [4, 15, 17]. By buffering, partial work on a set of operations
can share an I/O, thus reducing the per-operation I/O cost. Queries can similarly be
buffered. In this work, the number of queries, x, is much smaller than the size, n, of
the data structure being queried. As a result, as the partial work on the queries pro-
gresses, the query paths can diverge within the larger search structure, eliminating
the benefit of buffering.

Goodrich et al. [29] present a general method for performing x simultaneous
external memory searches in O((n/B + x/B) logM/B(n/B)) I/Os when x is large.
When x is small, this technique achieves O(x logB(n/B)) I/Os with a modified
version of the parallel fractional cascading technique of Tamassia and Vitter [49].

Results
We first consider the comparison-based I/O model [3]. In this model, the problem
cannot be solved faster than Ω(logB n) I/Os per element if preprocessing is polyno-
mial. That is, batching queries is not faster than processing them one by one. With
exponential preprocessing, the problem can be solved faster, in Θ((log2 n)/B) I/Os
per element. We generalize to show a query-preprocessing tradeoff.

Next we study the pointer-machine I/O model [48], which is less restrictive
than the comparison I/O model in main memory, but more restrictive in external
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memory.1 We show that with preprocessing at most O(n4/3−ε) for constant ε > 0,
the cost per element is again Ω(logB n).

Finally, we turn to the more general indexability model [30, 31]. This model
is frequently used to describe reporting problems, and it focuses on bounding the
number of disk blocks that contain the answers to the query subject to the space
limit of the data structure; the searching cost is ignored. Here, the redundancy
parameter r measures the number of times an element is stored in the data structure,
and the access overhead parameter α captures how far the reporting cost is from
the optimal.

We show that to report all query answers in α(x/B) I/Os, r = (n/B)Ω(B/α2).
The lower bounds in this model also hold in the previous two models. This result
shows that it is impossible to obtain O(1/B) per element unless the space used by
the data structure is exponential, which corresponds to the situation in RAM, where
exponential preprocessing is required to achieve O(1) amortized time per query
element [33].

The rest of this section formally outlines our results.

Theorem 29 (Lower and upper bound, unrestricted preprocessing, I/O comparison
model). Let S be a set of size n and Q a set of size x ≤ nc, 0 ≤ c < 1. In the I/O
comparison model, computing BATCHEDPRED(Q,S) requires

Ω
( x
B

log
n

xB
+
x

B

)
I/Os in the worst-case, no matter the preprocessing. There exists a comparison-
based algorithm matching this bound.

Traditional information-theoretic techniques give tight sorting-like lower
bounds for this problem in the RAM model. In external memory, the analogous ap-
proach yields a lower bound of Ω

(
x
B

logM/B
n
x

+ x
B

)
. On the other hand, repeated

finger searching in a B-tree yields an upper bound of O(x logB n). Theorem 29
shows that both bounds are weak, and that in external memory this problem has a
complexity that is between sorting and searching.

1An algorithm can perform arbitrary computations in RAM, but a disk block can be accessed
only via a pointer that has been seen at some point in past.
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We can interpret results in the comparison model through the amount of infor-
mation that can be learned from each I/O. For searching, a block input reduces
the choices for the target position of the element by a factor of B, thus learn-
ing logB bits of information. For sorting, a block input learns up to log

(
M
B

)
=

Θ(B log(M/B)) bits (obtained by counting the ways that an incoming block can
intersperse with elements resident in main memory). Theorem 29 demonstrates
that in the batched predecessor problem, the optimal, unbounded-preprocessing al-
gorithm learns B bits per I/O, more than for searching but less than for sorting.

The following theorem captures the tradeoff between the searching and pre-
processing: at one end of the spectrum lies a B-tree (j = 1) with linear construction
time and logB n searching cost per element, and on the other end is the parallel
binary search (j = B) with exponential preprocessing cost and (log2 n)/B search-
ing cost. This tradeoff shows that even to obtain a performance that is only twice
as fast as that of a B-tree, quadratic preprocessing is necessary. To learn up to
j log(B/j + 1) bits per I/O, the algorithm needs to spend nΩ(j) in preprocessing.

Theorem 30 (Search-preprocessing tradeoff, I/O comparison model). Let S be a
set of size n and Q a set of size x ≤ nc, 0 ≤ c < 1. In the I/O comparison
model, computing BATCHEDPRED(Q,S) in O((x logB/j+1 n)/j) I/Os requires that
PREPROCESSING(S) use nΩ(j) blocks of space and I/Os.

In order to show results in the I/O pointer-machine model, we define a graph
whose nodes are the blocks on disk of the data structure and whose edges are the
pointers between blocks. Since a block has sizeB, it can contain at mostB pointers,
and thus the graph is fairly sparse. We show that any such sparse graph has a large
set of nodes that are far apart. If the algorithm must visit those well-separated nodes,
then it must perform many I/Os. The crux of the proof is that, as the preprocessing
increases, the redundancy of the data structure increases, thus making it hard to pin
down specific locations of the data structure that must be visited. We show that if
the data structure is reasonable in size—in our case O(n4/3−ε)—then we can still
find a large, well dispersed set of nodes that must be visited, thus establishing the
following lower bound:

Theorem 31 (Lower bound, I/O pointer-machine model). Let S be a set of size n.
In the I/O pointer-machine model, if PREPROCESSING(S) usesO(n4/3−ε) blocks of
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space and I/Os, for any constant ε > 0, then there exists a constant c and a set Q of
size nc such that computing BATCHEDPRED(Q,S) requires Ω(x logB(n/x)+x/B)

I/Os.

We note that in this theorem, c is a function of ε in that, the smaller the preprocess-
ing, the larger the set for which the lower bound can be established.

Finally, we consider the indexability model [30, 31], where we show:

Theorem 32 (r − α tradeoff, indexability model). In the indexability model, any
indexing scheme for the batched predecessor problem with access overhead α ≤√
B/4 has redundancy r satisfying log r = Ω (B log(n/B)/α2).

A crucial ingredient in our proof is a well-known result from extremal set
theory due to Rödl [45]. Partly due to the techniques we use and partly due to
the generality of this model, we do not get lower bounds for query time exceeding
Q/
√
B, which was possible in the previous two models.

3.2 Batched Predecessor in the I/O Comparison
Model

In this section we give the lower bound for when preprocessing is unrestricted.
Then we study the tradeoff between preprocessing and the optimal number of I/Os.

3.2.1 Lower Bounds for Unrestricted Space/Preprocessing

We begin with the definition of a search interval.

Definition 33 (Search interval). At step t of an execution, the search interval Sti =

[`ti, r
t
i ] for an element qi comprises those elements in S that are still potential values

for ai, given the information that the algorithm has learned so far. When there is no
ambiguity, the superscript t is omitted.

Proof of Theorem 29 (Lower Bound). Consider the following problem instance:

1. For all qi, |Si| = n/x. That is, all elements in Q have been given the first
log x bits of information about where they belong in S.
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2. For all i and j (1 ≤ i 6= j ≤ x), Si ∩ Sj = ∅. That is, search intervals are
disjoint.

We do not charge the algorithm for transferring elements of Q between main
memory and disk. This accounting scheme is equivalent to allowing all elements of
Q to reside in main memory at all times while still having the entire memory free
for other manipulations. Storing Q in main memory does not provide the algorithm
with any additional information, since the sorted order of Q is already known.

Now we only consider I/Os of elements in S. Denote a block being input as
b = (b1, . . . , bB). Observe that every bi (1 ≤ i ≤ B) belongs to at most one Sj .
The element bi acts as a pivot and helps qj learn at most one bit of information—by
shrinking Sj to its left or its right half.

Since a single pivot gives at most one bit of information, the entire block b can
supply at most B bits, during an entire execution of BATCHEDPRED(Q,S).

We require the algorithm to identify the final block in S where each qi belongs.
Thus, the total number of bits that the algorithm needs to learn to solve the problem
is Ω(x log(n/xB)). Along with the scan bound to output the answer, the minimum
number of block transfers required to solve the problem is Ω

(
x
B

log n
xB

+ x
B

)
.

We devise a matching algorithm (assuming B log n < M ), which has O(nB)

preprocessing cost. This algorithm has huge preprocessing costs but establishes that
the lower bound from Theorem 29 is tight.
Proof of Theorem 29 (Upper Bound). The algorithm processes Q in batches
of size B, one batch at a time. A single batch is processed by simultaneously
performing binary search on all elements of the batch until they find their rank
within S.

In the preprocessing phase, the algorithm produces all
(
n
B

)
possible blocks.

The algorithm also constructs a perfectly balanced binary search tree T on S. The
former takes at most B

(
n
B

)
I/Os, which is O(nB), while the latter has a linear cost.

The
(
n
B

)
blocks are laid out in a lexicographical order in external memory, and it

takes B log n bits to address the location of any block.

31



3.2.2 Preprocessing-Searching Tradeoffs

We give a lower bound on the space required by the batched predecessor problem
when the budget for searching is limited. We prove Theorem 30 by proving Theo-
rem 35.

Definition 34. An I/O containing elements of S is a j-parallelization I/O if j
distinct elements of Q acquire bits of information during this I/O.

Theorem 35. For x ≤ n1−ε (0 < ε ≤ 1) and a constant γ > 0, any algorithm that
solves BATCHEDPRED(Q,S) in at most (γx log n)/(j log(B/j + 1)) + x/B I/Os
requires at least

(
εjnε/2/2eγB

)εj/2γ
I/Os for preprocessing in the worst case.

Proof: The proof is by a deterministic adversary argument. In the beginning, the
adversary partitions S into x equal-sized chunks C1, . . . , Cx, and places each query
element into a separate chunk (i.e., Si = Ci). Now each element knows log x ≤
(1 − ε) log n bits of information. Each element is additionally given half of the
number of bits that remain to be learned. This leaves another T ≥ (εx log n)/2

total bits yet to be discovered. As in the proof of Theorem 29, we do not charge for
the inputs of elements in Q, thereby stipulating that all remaining bits to be learned
are through the inputs of elements of S.

Lemma 36. To learn T bits in at most (γx log n)/(j log(B/j+1)) I/Os, there must
be at least one I/O in which the algorithm learns at least (j log(B/j + 1))/a bits,
where a = 2γ/ε.

If multiple I/Os learn at least (j log(B/j+1))/a bits, consider the last such I/O
during the algorithm execution. Denote the contents of the I/O as bi = (p1, . . . , pB).

Lemma 37. The maximum number of bits an I/O can learn while parallelizing d
elements is d log(B/d+ 1).

Lemma 38. The I/O bi parallelizes at least j/a elements.

Proof: Given that the most bits an I/O can learn while parallelizing j/a−1 elements
is (j/a− 1) log (B/(j/a− 1) + 1) bits. For all a ≥ 1 and j ≥ 2, j

a
log
(
B
j

+ 1
)
>(

j
a
− 1
)

log
(

B
j/a−1

+ 1
)

. Thus, we can conclude that with the block transfer of bi,
the algorithm must have parallelized strictly more than j/a− 1 distinct elements.
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We focus our attention on an arbitrarily chosen group of j/a elements paral-
lelized during the transfer of bi = {p1, . . . , pB}, which we call q1, . . . , qj/a.

Lemma 39. For every qu parallelized during the transfer of bi there is at least one
pivot pv, 1 ≤ v ≤ B, such that pv ∈ Su.

Consider the vector V = (S1, S2, . . . , Sj/a) where Su denotes the search inter-
val of qu right before the input of bi.

Each element of Q has acquired at least (1 − ε/2) log n bits, (ε log n)/2 of
which were given for free after the initial (1− ε) log n. For any i, the total number
of distinct choices for Si in the vector V is at least nε/2, because the element could
have been sent to any of these nε/2-sized ranges in the initial nε range. We obtain
the following:

Lemma 40. The number of distinct choices for V at the time of parallelization is
at least njε/2a.

Lemma 41. For each of the njε/2a choices of V = (S1, . . . , Sj/a) (arising from the
nε/2 choices for each Si), there must exist a block with pivots p1, p2, . . . , pj/a, such
that pk ∈ Sk.

If the algorithm did not preprocess a block for each vector choice, the adver-
sary could scan all blocks, find a vector for which no block exists, and assign those
search intervals to q1, . . . , qj/a, thus avoiding parallelization.

The same block can serve multiple vector choices, because the block has B
elements and we are parallelizing only j/a elements. The next lemma quantifies
the maximum number of vectors covered by one block.

Lemma 42. A block can cover at most
(
B
j/a

)
distinct vector choices.

As a consequence, the minimum number of blocks the algorithm needs to pre-
process is at least njε/2a/

(
B
j/a

)
≥
(
nε/2/(eaB/j)

)j/a. Substituting for the value of

a, we get that the minimum preprocessing is at least
(
εjnε/2/2eγB

)εj/2γ .

Algorithms.

An algorithm that runs in O((x log n)/j log(B/j + 1) + x/B) I/Os follows an idea
similar to the optimal algorithm for unrestricted preprocessing. The difference is
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that we preprocess
(
n
j

)
blocks, where each block correspond to a distinct combina-

tion of some j elements. The block will contain B/j evenly spaced pivots for each
element. The searching algorithm uses batches of size j.

3.3 Batched Predecessor in the I/O Pointer-Machine
Model

Here we analyze the batched predecessor problem in the I/O pointer-machine
model. We show that if the preprocessing time is O(n4/3−ε) for any constant ε > 0,
then there exists a query set Q of size x such that reporting BATCHEDPRED(Q,S)

requires Ω(x/B + x logB n/x) I/Os. Before proving our theorem, we briefly de-
scribe the model.

I/O pointer machine model. The I/O pointer machine model [48] is a gener-
alization of the pointer machine model introduced by Tarjan [51]. Many results in
range reporting have been obtained in this model [1, 2].

To answer BATCHEDPRED(Q,S), an algorithm preprocesses S and builds a
data structure comprised of nk blocks, where k is a constant to be determined later.
We use a directed graph G = (V , E) to represent the nk blocks and their associated
directed pointers. Every algorithm that answers BATCHEDPRED(Q,S) begins at
the start node v0 in V and at each step picks a directed edge to follow from those
seen so far. Thus, the nodes in a computation are all reachable from v0. Further-
more, each fetched node contains elements from S, and the computation cannot
terminate until the visited set of elements is a superset of the answer set A. A node
in V contains at most B elements from S and at most B pointers to other nodes.

Let L(W) be the union of the elements contained in a node set W , and let
N (a) be the set of nodes containing element a. We say that a node set W covers a
set of elements A if A ⊆ L(W). An algorithm for computing A can be modeled as
the union of a set of paths from v0 to each node in a node set W that covers A.

To prove a lower bound on BATCHEDPRED(Q,S), we show that there is a
query set Q whose answer set A requires many I/Os. In other words, for every node
set W that covers A, a connected subgraph spanning W contains many nodes. We
achieve this result by showing that there is a set A such that, for every pair of nodes
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a1, a2 ∈ A, the distance between N (a1) and N (a2) is large, that is, all the nodes in
N (a1) are far from all the nodes in N (a2). Since the elements of A can appear in
more than one node, we need to guarantee that the node set V of G is not too large;
otherwise the distance between N (a1) and N (a2) can be very small. For example,
if |V | ≥

(
n
2

)
, every pair of elements can share a node, and a data structure exists

whose minimum pairwise distance between any N (a1) and N (a2) is 0.
First, we introduce two measures of distance between nodes in any (undi-

rected or directed) graph G = (V,E). Let dG(u, v) be the length of the
shortest (di-)path from node u to node v in G. Furthermore, let ΛG(u, v) =

minw∈V (dG(w, u) + dG(w, v)). Thus, ΛG(u, v) = dG(u, v) for undirected graphs,
but not necessarily for directed graphs.

For each W ⊆ V , define fG(W ) to be the minimum number of nodes in any
connected subgraph H such that (1) the node set of H contains W ∪{v0} and (2) H
contains a path from v0 to each v ∈ W . Observe that fG({u, v}) ≥ ΛG(u, v). The
following lemma gives a more general lower bound for fG(W ). In other words, the
size of the graph containing nodes of W is linear in the minimum pairwise distance
within W .

Lemma 43. For any directed graph G = (V,E) and any W ⊆ V of size |W | ≥ 2,
fG(W ) ≥ rW |W |/2, where rW = minu,v∈W,u6=v ΛG(u, v).

Proof Sketch. Consider the undirected version of G, and consider a TSP of the
nodes in W . It must have length rW |W |. Any tree that spans W must therefore
have size at least rW |W |/2. Finally, fG(W ) contains a tree that spans W .

Our next goal is to find a query setQ such that every node setW that covers the
corresponded answer setA has a large rW . The answer setAwill be an independent
set of a certain kind, that we define next. For a directed graph G = (V,E) and an
integer r > 0, we say that a set of nodes I ⊆ V is r-independent if ΛG(u, v) > r for
all u, v ∈ I where u 6= v. The next lemma guarantees a substantial r-independent
set.

Lemma 44. Given a directed graph G = (V,E), where each node has out-degree
at most B ≥ 2, there exists an r-independent set I of size at least |V |2

|V |+4r|V |Br .

Proof: Construct an undirected graph H = (U, F ) such that U = V and (u, v) ∈ F
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iff ΛG(u, v) ∈ [1, r]. Then, H has at most 2r|V |Br edges. By Turán’s Theo-
rem [50], there exists an independent set of the desired size inH , which corresponds
to an r-independent set in G, completing the proof.

In addition to r-independence, we want the elements in A to occur in few
blocks, in order to control the possible choices of the node set W that covers A. We
define the redundancy of an element a to be |N (a)|. Because there are nk blocks
and each block has at most B elements, the average redundancy is O(nk−1B). We
say that an element has low redundancy if its redundancy is at most twice the av-
erage. We show that there exists an r-independent set I of size nε (here ε depends
on r) such that no two blocks share the same low-redundancy element. We will
then construct our query set Q using this set of low-redundancy elements in this
r-independent set.2

Finally, we add enough edges to place all occurrences of every low-redundancy
element within ρ < r/2 of all other occurrences of that element. We show that we
can do this by adding few edges to each node, therefore maintaining the sparsity
of G. Since this augmented graph also contains a large r-independent set, all the
nodes of this set cannot share any low-redundancy elements.

The following lemma shows that nodes sharing low-redundancy elements can
be connected with low diameter and small degrees.

Lemma 45. For any k > 0 and m > k there exists an undirected k-regular graph
H of order m having diameter logk−1m+ o(logk−1m).

Proof: In [13], Bollobás shows that a random k-regular graph has the desired di-
ameter with probability close to 1. Thus there exists some graph satisfying the
constraints.

Consider two blocks B1 and B2 in the r-independent set I above, and let a and
b be two low-redundancy elements such that a ∈ B1, b /∈ B1 and a /∈ B2, b ∈ B2.
Any other pair of blocksB′

1 andB′
2 that contain a and b respectively must be at least

(r − 2ρ) apart, since B′
i is at most ρ apart from Bi. By this argument, every node

set W that covers A has rW ≥ (r− 2ρ). Now, by Lemma 43, we get a lower bound
of Ω((r−2ρ)|W |) on the query complexity of Q. We choose r = c1 logB(n/x) and

2Our construction does not work if the query set contains high redundancy elements, because
high redundancy elements might be placed in every block.
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get ρ = c2 logB(n/x) for appropriate constants c1 > 2c2. This is the part where we
require the assumption that k < 4/3 as shown in Theorem 31, where nk was the size
of the entire data structure. We then apply Lemma 44 to obtain that |W | = Ω(x).

Proof of Theorem 31. We partition S into S` and Sh by the redundancy of elements
in these nk blocks and claim that there exists A ⊆ S` such that query time for the
corresponded Q matches the lower bound.

Let S` be the set of elements of redundancy no more than 2Bnk/n (i.e., twice
of the average redundancy). The rest of elements belong to Sh. By the Markov
inequality, we have |Sh| ≤ n/2. Let G = (V,E) represent the connections between
the nk blocks as the above stated. We partition V into V1 and V2 such that V1 is the
set of blocks containing some elements in S` and V2 = V \ V1. Since each block
can at most contain B elements in S`, |V1| = Ω(n/B).

Then, we add some additional pointers to G and obtain a new graph G ′ such
that, for each e ∈ S`, every pair u, v ∈ N (e) has small ΛG′(u, v). We achieve this
by, for each e ∈ S`, introducing graph He to connect all the nk blocks containing
element e such that the diameter in He is small and the degree for each node in He

is O(Bδ) for some constant δ. By Lemma 45, the diameter of He can be as small as

ρ ≤ 1

δ
logB|He|+ o(logB|He|) ≤

k − 1

δ
logB n+ o(logB n).

We claim that the graph G ′ has a (2ρ+ ε)-independent set of size nc, for some
constants ε, c > 0. For the purpose, we construct an undirected graph H(V1, F )

such that (u, v) ∈ F iff ΛG′(u, v) ≤ r. Since the degree of each node in G ′ is
bounded by O(Bδ+1), by Lemma 44, there exists an r-independent set I of size

|I| ≥ |V1|2

|V1|+ 4r |V |O(Br(δ+1))
≥ n2−k

4rO(Br(δ+1)+2)
= nc.

Then, r = ((2− k− c) logB n)/(δ + 1) + o(logB n). To satisfy the condition made
in the claim, let r > 2ρ. Hence, (2− k− c)/(δ + 1) > 2(k− 1)/δ. Then, k → 4/3

for sufficiently large δ. Observe that, for each e ∈ S`, e is contained in at most
one node in I; in addition, for every pair e1, e2 ∈ S` where e1, e2 are contained in
separated nodes in I , then ΛG′(u, v) ≥ ε for any u 3 e1, v 3 e2. By Lemma 43, we
are done.
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3.4 Batched Predecessor in the Indexability Model

This section analyzes the batched predecessor problem in the indexability
model [30, 31]. This model is used to analyze reporting problems by focusing on
the number of blocks that an algorithm must access to report all the query results.
Lower bounds on queries are obtained solely based on how many blocks were pre-
processed. The search cost is ignored—the blocks containing the answers are given
to the algorithm for free.

A workload is given by a pair W = (S,A), where S is the set of n input
objects, and A is a set of subsets of S—the output to the queries. An indexing
scheme I for a given workloadW is given by a collection B of B-sized subsets of
S such that S = ∪B; each b ∈ B is called a block.

An indexing scheme has two parameters associated with it. The first param-
eter, called the redundancy, represents the average number of times an element is
replicated (i.e., an indexing scheme with redundancy r uses rdn/Be blocks). The
second parameter is called the access overhead. Given a query with answer A, the
query time is min{

∣∣B′∣∣ : B′ ⊆ B, A ⊆ ∪B′}, because this is the minimum number
of blocks that contain all the answers to the query. If the size of A is x, then the best
indexing scheme would require a query time of dx/Be. The access overhead of an
indexing scheme is the factor by which it is suboptimal. An indexing scheme with
access overhead α uses αdx/Be I/Os to answer a query of size x in the worst case.

Every lower bound in this model applies to our previous two models as well.
To show the tradeoff between α and r, we use the Redundancy Theorem from [30,
46]:

Theorem 46 (Redundancy Theorem [30, 46]). For a workloadW = (S,A) where
A = {A1, · · · , Am}, let I be an indexing scheme with access overhead α ≤

√
B/4

such that for any 1 ≤ i, j ≤ m, i 6= j, |Ai| ≥ B/2 and |Ai| ∩ |Aj| ≤ B/(16α2).
Then the redundancy of I is bounded by r ≥ 1

12n

∑m
i=1 |Ai|.

Proof of Theorem 32. For the sake of the lower bound, we restrict to queries where
all the reported predecessors reported are distinct. To use the redundancy theorem,
we want to create as many queries as possible.

Call a family of k-element subsets of S β-sparse if any two members of the
family intersect in less than β elements. The size C(n, k, β) of a maximal β-sparse
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family is crucial to our analysis. For a fixed k and β this was conjectured to be
asymptotically equal to

(
n
β

)
/
(
k
β

)
by Erdös and Hanani and later proven by Rödl

in [45]. Thus, for large enough n, C(n, k, β) = Ω(
(
n
β

)
/
(
k
β

)
).

We now pick a (B/2)-element, B/(16α2)-sparse family of S, where α is the
access overhead of I. The result in [45] gives us that

C

(
n,
B

2
,
B

16α2

)
= Ω

((
n

B/ (16α2)

)
/

(
B/2

B/ (16α2)

))
.

Thus, there are at least (2n/eB)B/(16α2) subsets of size B/2 such that any pair
intersects in at most B/(16α2) elements. The Redundancy Theorem then implies
that the redundancy r is greater than or equal to (n/B)Ω(B/α2), completing the proof.

We describe an indexing scheme that is off from the lower bound by a factor
α.

Theorem 47 (Indexing scheme for the batched predecessor problem). Given any
α ≤

√
B, there exists an indexing scheme Iα for the batched predecessor problem

with access overhead α2 and redundancy r = O((n/B)B/α
2
)

Proof: Call a family of k-element subsets of S β-dense if any subset of S of size
β is contained in at least one member from this family. Let c(n, k, β) denote the
minimum number of elements of such a β-dense family. Rödl [45] proves that for
a fixed k and β,

lim
n→∞

c(n, k, β)
(
k
β

)(
n
β

)−1
= 1,

and thus, for large enough n, c(n, k, β) = O(
(
n
β

)
/
(
k
β

)
).

The indexing scheme Iα consists of all sets in a B-element, (B/α2)-dense
family. By the above, the size of Iα is O((n/B)B/α

2
).

Given a query answer A = {a1, · · · , ax} of size x, fix 1 ≤ i < dx/Be and
consider the B-element sets Ci = {a(i−1)B, · · · , aiB} (Cdx/Be may have less than
B elements). Since Iα is an indexing scheme, we are told all the blocks in Iα that
contain the ais. By construction, there exists a block in Iα that contains a 1/α2

fraction of Ci. In at most α2 I/Os we can output Ci, by reporting B/α2 elements
in every I/O. The number of I/Os needed to answer the entire answer A is thus
α2dx/Be, which proves the theorem.
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Chapter 4

Bloom Filters for External Memory

4.1 Introduction

Many databases, storage systems, and network protocols maintain Bloom fil-
ters [12] in RAM in order to quickly satisfy queries for elements that do not exist
in the database, in external storage, or on a remote network host.

The Bloom filter is the classic example of an approximate membership query
data structure (AMQ). A Bloom filter supports insert and lookup operations on a
set of keys. For a key in the set, lookup returns “present.” For a key not in the
set, lookup returns “absent” with probability at least 1 − ε, where ε is a tunable
false-positive rate. There is a tradeoff between ε and the space consumption. Other
AMQs, such as counting Bloom filters, additionally support deletes [14, 27]. For a
comprehensive review of Bloom filters, see Broder and Mitzenmacher [16].

Bloom filters work well when they fit in main memory. However, Bloom fil-
ters require about one byte per stored data item. Counting Bloom filters—those
supporting insertions and deletions [27]—require 4 times more space [14]. Once
Bloom filters get larger than RAM, their performance decays because they use ran-
dom reads and writes, which do not scale efficiently to external storage, such as
flash.

This research was supported in part by DOE Grant DE-FG02-08ER25853, NSF Grants
CCF-0540897, CNS-0627645, CCF-0634793, CCF-0937829, CCF-0937833, CCF-0937854, CCF-
0937860, and CCF-0937822, and Politécnico Grancolombiano.
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Results

We present three alternatives to the Bloom filter (BF): the quotient filter (QF), the
buffered quotient filter (BQF), and the cascade filter (CF). The QF is designed to
run in RAM and the BQF and CF are designed to run on SSD. Unlike the BF, which
performs many random writes, these data structures achieve good data locality, and
all three support deletions.

The CF is asymptotically more efficient than the BQF at insertions, and thus
performs well when the data structure grows much larger than RAM; the BQF is
slightly more optimized for queries.

Our evaluation compares the QFs, BQFs, and CFs to BFs and recently pro-
posed BF variants, including buffered Bloom filters (BBF) [18], forest-structured
Bloom filters (FBF) [38], and elevator Bloom filters (EBF). For the overview of BF
variants, see Section 4.2. The BBF and FBF were proposed to address the scaling
problems of Bloom filters, in particular, when they spill onto SSDs. The EBF is an
extension of the BF, which we include as a baseline.

To differentiate the previously existing structures: the EBF is a straightforward
application of buffering to BFs. The BBF uses buffering and hash localization to
improve SSD performance. The FBF uses buffering, hash localization, as well as
in-RAM buffer-management techniques.

Tables 1 and 2 present a summary of our experimental results. To put these
numbers in perspective, on an Intel X-25M SSD drive, we measured 3,910 random
1-byte writes per second and 3,200 random 1-byte reads per second. Sequential
reads run at 261 MB/s, and sequential writes run at 109 MB/s.

We performed three sets of experiments: in RAM, small-scale on SSD, and
large-scale on SSD. We performed the different SSD experiments because the ef-
fectiveness of buffering decreases as the ratio of in-RAM to on-disk data decreases.

In each case, we compared the rate of insertions, the rate of uniform random
lookups, which amounts to lookups for elements not in the AMQ, and the rate of
successful lookups, that is, lookups of elements present in the AMQ. We make
this distinction in lookups because a BF only needs to check an expected two bits
for unsuccessful lookups, but k bits for successful lookups when there are k hash
functions. (For our error rates, the BF had 6, 9, and 12 hash functions, respectively.)
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In-RAM Experiments

For our in-RAM experiments, we compare the QF and the BF. The QF is supposed
to be used when it is at most 75% full; as Figure 7 shows, the QF performance
deteriorates as it fills. Table 1 reports on results when the structures are 75% full.

For inserts, QFs outperform BFs by factors of 1.3× to 2.5×, depending on the
false positive rates. For uniform random lookups, BFs are 1.4×-1.6× faster. For
successful lookups, there is no clear winner.

Small On-SSD Experiments

We compared our two SSD data structures to the three Bloom filter variants. In these
experiments, the AMQs were grown so that they are approximately four times the
size of RAM. See Section 4.5.2 for details.

We find that both BQF and CF insert at least 4 times faster than other data
structures and that BQF is at least twice as fast for lookups as all the other AMQs
we measured. In fact, on successful lookups, it runs roughly 11 times better than
EBF and BBF.

The BQF is the clear winner for this set of experiments.

Large On-SSD Experiments

We ran all AMQs for 35,000 seconds. This was enough time for CF and BQF to
insert the full data set. However, BBF, FBF, and EBF were at least 10 times slower
for insertions and none of them managed to get through even 10% of the insertion
load. We therefore conclude that these data structures are not suitable for such
workloads.

We note that this workload was large enough for asymptotics to kick in: the
CF was 26% faster than the BQF. BQF still dominates for queries, outperforming
CF by at least 60%. Therefore the choice of CF versus BQF depends on the ratio of
insertions to queries in a particular workload.
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AMQ BF QF BF QF BF QF
False
Positive 0.01 0.01 0.002 0.002 0.0002 0.0002
Rate
Uniform
Random 1.72 mil 2.44 mil 1.29 mil 2.43 mil 991,000 2.45 mil
Inserts
Uniform
Random 3.1 mil 2.1 mil 3.35 mil 1.98 mil 3.37 mil 2.13 mil
Lookups
Successful
Lookups 1.93 mil 1.61 mil 1.65 mil 1.7 mil 1.44 mil 1.71 mil

Table 1: In-RAM experimental results (operations per second).

Other Considerations

For typical configurations, e.g. a 1% false positive rate, a QF uses about 20% more
space than a BF. However, QFs (and BQFs and CFs) support deletion, whereas BFs
incur a 4× space blow-up to support deletion, and even then they may fail. QFs
support in-order iteration over the hash values inserted into the filter. Consequently,
QFs can be dynamically resized, and two QFs can be merged into a single larger
filter using an algorithm similar to the merge operation in merge sort. QF inserts and
lookups require a single random write or read. BF inserts require multiple writes,
and lookups require two reads on average.

Applications

Write-optimized AMQs, such as the CF and BQF, can provide a performance im-
provement in databases in which inserts and queries are decoupled, i.e. insertion op-
erations do not depend on the results of query operations. Webtable [19], a database
that associates domain names of websites with website attributes, exemplifies such
a workload. An automated web crawler adds new entries into the database while
users independently perform queries. The Webtable workload is decoupled because
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AMQ CF BQF EBF BBF FBF
Uniform
Random 1.075 mil 1.32 mil 205,000 249,000 43,100
Inserts

Small Uniform
Experiment Random 2,200 4,480 2,180 2,340 1,510

Lookups
Successful
Lookups 2,950 4,690 372 441 1,830
Uniform
Random 728,000 576,000
Inserts

Large Uniform
Experiment Random 1,940 3,600

Lookups
Successful
Lookups 2,380 3,780

Table 2: On-disk experimental results (operations per second).

it permits duplicate entries, meaning that searches for duplicates need not be per-
formed before each insertion.

The system optimizes for a high insertion rate by splitting the database tables
into smaller subtables, and searches are replicated across all the subtables. To make
searches fast, the system maintains an in-memory Bloom filter for each subtable.
The Bloom filter enables the database to avoid I/O to subtables that do not contain
the queried element.

The CF and BQF could enable databases, such as Webtable, to scale to larger
sizes without a concomitant increase in RAM. SSD-optimized AMQs, such as the
CF and BQF, can keep up with the high insertion throughput of write-optimized
databases.

Similar workloads to Webtable, which also require fast insertions and indepen-
dent searches, are growing in importance [19,28,34]. Bloom filters are also used for
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deduplication [55], distributed information retrieval [47], network computing [16],
stream computing [54], bioinformatics [20,39], database querying [41], and proba-
bilistic verification [32].

The remainder of this chapter is organized as follows. Section 4.2 describes
the Bloom filter and its external-memory variants. Section 4.3 presents the quotient
filter and gives a theoretical analysis. Section 4.4 presents the buffered quotient
filter and cascade filter. Section 4.5 presents our experiments.

4.2 Bloom Filter and SSD Variants

This section reviews the traditional Bloom filter and its SSD variants.
A Bloom filter B is a lossy, space-efficient representation of a set. It supports

two operations: INSERT(B, x) and MAY-CONTAIN(B, x).
A BF B consists of a bit array B[0 . .m − 1] and k hash functions hi : U →

{0, . . . ,m − 1}, where 1 ≤ i ≤ k and U is the universe of objects that may be
inserted into the filter. To insert an item x, the filter sets

B[hi(x)]← 1 for i = 1, . . . , k.

To test whether an element x may have ever been inserted, the filter checks all the
bits that would have been set:

MAY-CONTAIN(B, x) =
k∧
i=1

B[hi(x)].

The false-positive rate of a BF after inserting n items is approximately

(1− e−nk/m)k.

This rate is optimized by choosing

k =
m

n
ln 2,

which means that roughly half of the bits in B are set to 1.
As a concrete example, an optimally filled BF with m = 8n (i.e., 1 byte per el-

ement) would use six hash functions and can achieve a false positive rate of 1.56%.
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Figure 2: False positive rates for BF and QF. For typical parameters (e.g., 1% false
positive rate), QF require about 20% more space than a BF. For extremely low false
positive rates, QF use less space than a BF.

Figure 2 shows the BF false positive rate, assuming the optimal number of
hash functions, as a function of the number of bits per element.

BFs has several limitations. A BF does not expand to accommodate new el-
ements, so sufficient space for all the elements must be allocated in advance. A
BF does not support deletions. A BF does not naturally scale to external storage
because of the poor data locality, and consequently they are usually stored in RAM.
To illustrate, a BF stored on a rotating disk, with k = 10 hash functions, could
insert fewer than 20 elements per second.

Researchers have devised several approaches to improve BF scalability:

• Replacing magnetic disks with SSDs. SSDs offer random read and write rates
superior to those of magnetic disks. With an off-the-shelf SSD, the traditional
BF with k = 10 hash functions can achieve roughly 500 inserts per second.
High-end devices, such as FusionIO, can offer further speedups.

• Buffering. Reserve a buffer space in RAM, and cache these updates in the
buffer. Flush the buffer as it becomes full. With buffering, multiple bit writes
destined for the same SSD block require only one I/O. The elevator Bloom
filter implements this strategy. In general, buffering performs well when the
ratio between the Bloom filter size and the RAM buffer size is small. As
described in [18], queries can also be delayed and buffered in a multithreaded

46



environment, but the present work measures the performance when queries
must be answered immediately.

• Hash localization. Improve data locality by directing all hashes of one in-
sertion into a single SSD block. When combined with buffering, this can
substantially improve the locality of writes. Queries see a less dramatic im-
provement in locality. BF variants, such as the buffered Bloom filter [18] and
the closely related BloomFlash [22], use this strategy.

• Multi-layered design. Maintain multiple on-disk BFs, exponentially increas-
ing in size. Insert only into the largest and most recent BF. This approach
effectively reduces the ratio between the RAM size and the active BF by a
factor of 2, but increases the search cost, since a search must query all Bloom
filters. The forest-structured Bloom filter [38] uses this strategy.

• Buffer design and flushing policy. Different buffer management schemes may
lead to different performance characteristics. In the BBF, the buffer is equally
divided into a number of sub-buffers, each serving updates for a particular
SSD block. When a sub-buffer becomes full, its updates are applied with
one I/O. BloomFlash flushes the group of c contiguous sub-buffers that has
the most updates, and optimizes for c. The FBF does space stealing between
sub-buffers to delay flushing to disk until the RAM is full.

4.3 Quotient Filter

In this section we describe the quotient filter, a space-efficient and cache-friendly
data structure that delivers all the functionality of the Bloom filter. We explain ad-
vantages of the QF over the BF that make the QF particularly suitable to serve as the
foundation for our SSD-resident data structures. Finally, we give implementation
details, describe potential variations, and analyze asymptotic performance.

The QF represents a multi-set of elements S ⊆ U by storing a p-bit fingerprint
for each of its elements. Specifically, the QF stores the multi-set F = h(S) =

{h(x) | x ∈ S}, where h : U → {0, . . . , 2p − 1} is a hash function. To insert an
element x into S, we insert h(x) into F . To test whether an element x ∈ S, we
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check whether h(x) ∈ F . To remove an element x from S, we remove (one copy
of) h(x) from F .

Conceptually, we can think of F as being stored in an open hash table T with
m = 2q buckets using a technique called quotienting, suggested by Knuth [36,
Section 6.4, exercise 13]; see the open hash table (i.e., hash table with chaining) at
the top of Figure 3. In this technique a fingerprint f is partitioned into its r least
significant bits, fr = f mod 2r (the remainder), and its q = p − r most significant
bits, fq = bf/2rc (the quotient). To insert a fingerprint f into F , we store fr in
bucket T [fq]. Given a remainder fr in bucket fq, the full fingerprint can be uniquely
reconstructed as f = fq2

r + fr.
To reduce the memory required to store the fingerprints and achieve better

spatial locality, the hash table is compactly stored in an array A[0 . .m − 1] of
(r + 3)-bit items, similar to that described by Cleary [21]; see Figure 3, bottom.
Each slot in A stores an r-bit remainder along with three meta-data bits, which
enable perfect reconstruction of the open hash table.

If two fingerprints f and f ′ have the same quotient (fq = f ′q) we say there is
a soft collision. In this case we use linear probing as a collision-resolution strategy.
All remainders of fingerprints with the same quotient are stored contiguously in
what we call a run. If necessary, a remainder is shifted forward from its original
location and stored in a subsequent slot, wrapping around at the end of the array.
We maintain the invariant that if fq < f ′q, fr is stored before f ′r in A, modulo this
wrapping.

The three meta-data bits in each slot of A work as follows. For each slot i,
we maintain an is-occupied bit to quickly check whether there exists a fingerprint
f ∈ F such that fq = i. For a remainder fr stored in slot i, we record whether fr
belongs to bucket i (i.e., fq = i) with an is-shifted bit. Finally, for a remainder fr
stored in slot i, we keep track of whether fr belongs to the same run as the remainder
stored in slot i− 1 with an is-continuation bit. Intuitively, the is-shifted bit, when
it is set to 0, tells the decoder the exact location of a remainder in the open hash
table representation, the is-continuation bit enables the decoder to group items that
belong to the same bucket (runs), and the is-occupied bit lets the decoder identify
the correct bucket for a run.

We define a cluster as a sequence of one or more consecutive runs (with no
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Figure 3: An example quotient filter with 10 slots along with its equivalent open
hash table representation. The remainder, fr, of a fingerprint f is stored in the
bucket specified by its quotient, fq. The quotient filter stores the contents of each
bucket in contiguous slots, shifting elements as necessary and using three meta-data
bits to enable decoding.

empty slots in between). A cluster is always immediately preceded by an empty slot
and its first item is always un-shifted. The decoder only needs to decode starting
from the beginning of a cluster. However, rather than decoding, we can perform all
operations in place. Figure 4 shows the algorithm for testing whether a fingerprint
f might have been inserted into a QF A.

To insert/delete a fingerprint f , we operate in a similar manner: first we
mark/unmark A[fq] as occupied. Next, we search for fr using the same algorithm
as MAY-CONTAIN to find the slot where it should go. Finally, we insert/remove
fr and shift subsequent items as necessary, while updating the other two meta-data
bits. We stop shifting items as soon as we reach an empty slot.

Since the QF is just a compact representation of F , its false positive rate is
a function of the hash function, h, and the number of items, n, inserted into the
filter. In particular, a false positive happens when an element x′ /∈ S has the same
fingerprint as an element x ∈ S (h(x) = h(x′)). We refer to this event as a hard
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MAY-CONTAIN(A, f)

fq ← bf/2rc � quotient
fr ← f mod 2r � remainder
if ¬ is-occupied(A[fq])

then return FALSE

� walk back to find the beginning of the cluster
b← fq

while is-shifted(A[b])

do DECR(b)

� walk forward to find the actual start of the run
s← b

while b 6= fq

do � invariant: s points to first slot of bucket b
� skip all elements in the current run
repeat INCR(s)

until ¬ is-continuation(A[s])

� find the next occupied bucket
repeat INCR(b)

until is-occupied(A[b])

� s now points to the first remainder in bucket fq
� search for fr within the run
repeat if A[s] = fr

then return TRUE

INCR(s)

until ¬ is-continuation(A[s])

return FALSE

Figure 4: Algorithm for checking whether a fingerprint f is present in the QF A.

collision. Assuming h generates outputs uniformly and independently distributed
in {0, . . . , 2p − 1} , the probability of a hard collision is given by
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1−
(

1− 1

2p

)n
≈ 1− e−n/2p ≤ n

2p
≤ 2q

2p
= 2−r.

Figure 2 shows the false positive rate (on a log scale) for QF as a function of
the bits per element. In the figure, α is the load factor of the QF (i.e., the fraction
n/m of occupied slots). Figure 2 also shows the false-positive rate for the BF and
for a QF variant, described later, that uses only two meta-data bits per slot.

The time required to perform a lookup, insert, or delete in a QF is dominated
by the time to scan backwards and forwards. One such operation need only scan
through one cluster. Therefore, we can bound the cost by bounding the size of
clusters. The following theorem can be proved by a straightforward application of
Chernoff Bounds.

Fact. Let α ∈ [0, 1). Suppose there are αm items in a quotient filter with m slots.
Let

k = (1 + ε)
lnm

α− lnα− 1
.

Then
Pr [there exists a cluster of length ≥ k] < m−ε

m→∞−−−→ 0.

For example, with q = 40 (m = 240) and α = 3/4, the largest cluster in the QF
has approximately 736 slots. On average, clusters are O(1) in size. The expected
length of a cluster is less than 1/(1 − αe1−α). For example, with α = 3/4, the
average cluster length is 27. Figure 5 shows the distribution of cluster sizes for
three choices of α. With α = 1/2, 99% of the clusters have less than 24 elements.

We have shown that QF offers space and false-positive performance that is
comparable to BF, but QF has several significant advantages.

Cache friendliness. QF lookups, inserts, and deletes require decoding and
possibly modifying a single cluster. Since clusters are small, these slots usually fit
in one or two cache lines. On SSD, they usually fit in one disk page, which can be
accessed with a single serial read or write. BF inserts, on the other hand, require
writing to k random locations, where k is the number of hash functions used by the
filter. Similarly, BF lookups require about two random reads on average for absent
elements and k for present elements.
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Figure 5: Distribution of cluster sizes for 3 choices of α.

In-order hash traversal. As mentioned before, it is possible to reconstruct the
exact multi-set of fingerprints inserted into a QF. Furthermore, the QF supports in-
order traversal of these fingerprints using a cache-friendly linear scan of the slots in
the QF. These two features enable two other useful operations that are not possible
with BF: resizing and merging.

Resizing. Like most hash tables, the QF can be dynamically resized—both
expanded and shrunk—as items are added or deleted. Unlike hash tables, how-
ever, this can be accomplished without the need of rehashing by simply borrow-
ing/stealing one bit from the remainder into the quotient. This can be implemented
by iterating over the array while copying each fingerprint into a newly allocated
array.

Merging. Similarly, two or more QF can be merged into a single, larger filter
using an algorithm similar to that used in merge sort. The merge uses a sequential
scan of the two input filters and sequentially writes to the output filter and hence is
cache friendly.

Deletes. The QF supports correct deletes while standard Bloom Filters do
not. In contrast, Counting Bloom filters [14, 27] support probabilistically correct
deletions by replacing each bit in a BF with a 4-bit counter, but this incurs a large
space overhead and there is still a probability of error.
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Quotient Filter Variants

We now give space-saving variations on the QF. The QF decoder maintains two
pointers: b, a pointer to the current bucket and s, a pointer to the current slot. The
decoder needs to initialize b and s to correct values in order to begin decoding.
That is the purpose of the is-shifted bit: if ¬ is-shifted(A[i]), then the decoder can
initialize b = s = i. There are other ways to initialize b and s:

• Synchronizers. The QF could store a secondary array, S[0 . . (2q/`) − 1],
of c-bit items. Entry S[i] would hold the offset between bucket i` and the
slot holding its first element. The decoder can initialize b = i` and s =

i` + S[i] mod 2q for any i. For example, to lookup an element in bucket fq,
the decoder would choose i = bfq/`c. As a special case, when S[i] = 2c− 1,
the offset between bucket i` and the slot holding its first element is greater
than or equal to 2c−1. The decoder cannot use such entries to begin decoding
– it must walk backwards to find the nearest index i such that S[i] < 2c − 1.
Since clusters are small, so are the offsets, so we can choose small c (e.g., 5
or 8). The frequency, `, of synchronizers can trade space for decoding speed.
The current system, with is-shifted bits, is essentially a special case of this
scheme with c = ` = 1. By choosing a large `, the per-slot overhead of the
QF can be arbitrarily close to two bits.

• Reserved remainders. We can also reserve a special remainder value, e.g. 0,
to indicate that a slot is empty, and decoding can begin at an empty slot i with
b = s = i. This would require only 2 meta-data bits, but reduces the hash
space slightly.

• Sorting tricks. Finally, it is possible to indicate empty slots by ordering ele-
ments within each bucket and placing “illegal” unordered sequences of ele-
ments in empty regions of the QF. In this way, we can achieve exactly two
bits of overhead. Decoding in this version is complex and slower.
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4.4 Quotient Filters on Flash

In this section we give two AMQs designed for SSD, the buffered quotient filter and
the cascade filter. Both structures use the QF as a building block. The false positive
rates of these structures are exactly the same as that of a single QF storing all of the
elements.

Buffered Quotient Filter

The BQF uses one QF as the buffer and another QF on the SSD. When the in-RAM
QF becomes full, we sequentially iterate over it and flush elements to disk. The QF
serves well as a buffer because of its space efficiency and because it allows the flush
to iterate sequentially through its fingerprints and write to SSD. Since elements are
stored in sequential order, the writes to SSD will also be sequential. Since each flush
may write to every page of the on-disk structure, the amortized cost of inserting an
item into a BQF of n items with a cache of size M and a block size of B bytes
is O( n

MB
). The BQF is optimized for lookup performance. Most lookups perform

one I/O. As with the buffering approaches from Section 4.2, performance degrades
as the filter-to-RAM size increases.

Cascade Filter

The CF is optimized for insertion throughput but offers a tradeoff between lookup
and insertion speed.

The overall structure of the CF is loosely based on a data structure called the
COLA [9]; see Figure 6. The CF maintains an in-memory QF, Q0. In addition, for
RAM of size M , the CF maintains ` = log(n/M) +O(1) in-flash QFs, Q1, . . . , Q`,
of exponentially increasing size. New items are initially inserted into Q0. When Q0

reaches its maximum load factor, the CF finds the smallest i such that the elements
in Q0, . . . , Qi can be merged into level i. It then creates a new, empty quotient filter
Q′i, merges all the elements in Q0, . . . , Qi into Q′i, replaces Qi by Q′i, and replaces
Q0, . . . , Qi−1 with empty QFs. To perform a CF lookup, we perform a lookup in
each nonempty level, which requires fetching one page from each.

It is possible to implement this scheme with different branching factors, b.
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Figure 6: Merging QFs. Three QFs of different sizes are shown above, and they
are merged into a single large quotient filter below. The top of the figure shows a
CF before a merge, with one QF stored in RAM, and two QFs stored in flash. The
three QFs above have all reached their maximum load factors (which is 3/4 in this
example). The bottom of the figure shows the same CF after the merge. Now the
QF at level 3 is at its maximum load factor, and the QFs at levels 0, 1, and 2 are
empty.

That is, Qi+1 can be b times as large as Qi. As b increases, the lookup performance
increases because there are fewer levels, but the insertion performance decreases
because each level may be rewritten multiple times.

The theoretical analysis of CF performance follows from the COLA: a search
requires one block read per level, for a total of O(log(n/M)) block reads, and an
insert requires only O((log(n/M))/B) amortized block writes/erases, where B is
the natural block size of the flash. Typically, B � log(n/M), meaning the cost
of an insertion or deletion is much less than one block write per element. Like
a COLA, a CF can be deamortized to provide better worst-case bounds [9]. This
deamortization removes delays caused by merging large QFs.

4.5 Evaluation

This section answers the following questions:
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1. How does the quotient filter compare to the Bloom filter with respect to in-
RAM performance?

2. How do the cascade filter and buffered quotient filter compare to various
Bloom filter alternatives on Flash?

3. How does the on-disk performance of the cascade filter and buffered quotient
filter change as the database scales out of RAM?

4. How do the different data structures compare on lookup performance? We
investigate the performance of both successful lookups and uniform random
lookups (which are almost all unsuccessful).

5. What is the insert/lookup tradeoff for the cascade filter with varying fan-outs?

This section comprises three parts.
In the first part, we compare the QF and the BF in RAM. We compare the two

data structures for three different false positive rates: 1/64 ≈ 1%, 1/512 ≈ 0.2%,
and 1/4096 ≈ 0.02%.

In the second part, we measure the on-disk performance of the CF, the BQF,
the EBF, the BBF and the FBF. Here, we perform experiments with the RAM-to-
database size ratios of 1 : 4 and 1 : 24, which we call small and large experiments,
respectively.

In the third part, we measure the performance tradeoffs between the insertion
and the lookup performance when varying the fanout of the CF. We report results
for fanouts of 2, 4, and 16.

In all experiments, we measure three performance aspects:

Uniform random inserts: Keys are selected uniformly from a large universe.

Uniform random lookups: Keys are selected as before. When performed on an
optimally filled AMQ data structure, such queries will report true with prob-
ability equal to that of our false positive rate.

Successful lookups: Keys are chosen uniformly at random from one of the keys
actually present.
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We use an interleaved workload. Every 5% of completed insertions, we spend
60 seconds performing uniform random lookups, followed by 60 seconds perform-
ing successful lookups. This way, we can measure the lookup performance at dif-
ferent points of data structure occupancy.

Experimental Setup We created C++ implementations of all the data structures
evaluated in these experiments. Our BF, EBF, BBF, and FBF implementations
always uses the optimal number of hash functions. The BBF “page size” parameter
controls the amount of space that will be written when buffered data is flushed to
SSD. We configured our BBF to use 256KB pages, which is the erasure block size
on our SSDs, as recommended by the BBF authors. The analogous FBF parameter
is called the “block size”, and we configured our FBF implementation to use 256KB
blocks. The FBF “page size” governs the size of reads performed during lookups;
our FBF implementation used 4KB pages.

Our benchmarking infrastructure generated a 512-bit hash for each item in-
serted or queried in the data structure. Each data structure could partition the bits
in this hash as it needed. For example, a BF configured to use 12 hash functions,
each with a 24-bit output, would use 288 bits of the 512-bit hash and discard the
rest. We chose 512-bit hashes because many real-world AMQ applications, such as
de-duplication services, use cryptographic hashes, such as SHA-512.

We ran our experiments on two identically configured machines, running
Ubuntu 10.04.2 LTS. Each machine includes a single-socket Intel Xeon X5650
(6 cores with 1 hyperthread on each core, 2.66GHz, 12MB L2 cache). The ma-
chines have 64GB of RAM; to test the out-of-RAM performance, we booted them
with 3GB each.

Each machine has a 146.2GB 15KRPM SAS disk used as the system disk and
a 160GB SATA II 2.5in Intel X25-M Solid State Drive (SSD) used to store the out-
of-RAM part of the data. We use only a 95GB partition of the SSD to minimize
the SSD FTL firmware interference. We formatted the 95GB partition as an ext4
filesystem and out-of-RAM data was stored in a 80GB file in that filesystem. We
used dd to zero the file between each experiment. With this configuration, we
could perform 3,910 random 1 byte writes per second, 3,200 1 byte random reads
per second, sequential reads at 261 MB/s, and sequential writes at 109 MB/s.
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To avoid swapping, we set the Linux swappiness to zero and we monitored
vmstat output to ensure that no swapping occured.

Each data structure require different number of bits for their fingerprints. In
order to measure the performance independent of the time to compute the finger-
prints, we always compute a 512-bit hash for each data structure. We can do this
because our data structures require the least number of bits overall.

We implemented all data structure in C++. We did our best effort to follow
the description given by the author in their respective papers. In some cases we
contacted the authors for advice on implementation details. In any case, when in
doubt, we always made whichever assumption would give the most advantage to
the other data structures

4.5.1 In-RAM Performance: Quotient Filter vs. Bloom Filter

This section presents the experimental comparison of QF to the BF, with varying
false positive rates.

Both data structures were given 2GB of space in RAM and we tested their
performance on three false positive rates: 1/64, 1/512, and 1/4096.

In both experiments, we construct the data structures that can fit the maximum
number of elements without violating the false positive rate nor the space require-
ments. We fill the BF to the maximum occupancy. Because the insertion throughput
of the QF significantly deteriorates towards maximum occupancy, we let the QF ex-
periment run up to 90% full.

Results Figure 7 shows the insertion, random lookup, and successful lookup
throughputs of the BF and quotient filter.

The quotient filter substantially outperforms the BF on insertions until the quo-
tient filter is 80% full. The BF insertion throughput is independent of its ocupancy,
but degrades as the false positive rate goes down, since it has to set more bits for
each inserted item. The quotient filter insertion throughput is unaffected by the false
positive rate, but it gets slower as it becomes full, since clusters become larger.

The quotient filter matches the BF random lookup performance until about
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Figure 7: In-RAM Bloom Filter vs. Quotient Filter Performance.
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Capacity
FP rate BF QF (90%)

1/64 1.98 billion 1.71 billion
1/512 1.32 billion 1.29 billion
1/4096 991 million 1.03 billion

Table 3: Capacity of the quotient filter and BF data structures used in our in-RAM
evaluation. In all cases, the data structures used 2GB of RAM.

65% occupancy. The quotient filter performance degrades as its occupancy in-
creases because clusters become longer. The BF performance degrades because
the density of 1 bits increases, so the lookup algorithm must, on average, check
more bits before it can conclude that an element is not present.

The quotient filter significantly outperforms the BF on successful lookups up
to about 75% capacity. The BF performance is independent of occupancy since, in
all successful lookups, it must check the same number of bit positions. The quotient
filter performance degrades as clusters get larger.

Table 3 shows the capacity of the BFs and quotient filters in our experiments.
As predicted in Figure 2, the capacities are almost identical, with the quotient filter
more efficient for lower false positive rates.

Overall, the quotient filter outperforms the BF until its occupancy reaches
about 70%. The quotient filter requires slightly more space for high false positive
rates, and less space for lower false positive rates.

4.5.2 On-disk Benchmarks

We evaluate the insert and lookup performance of CFs, BQFs,EBFs, BBFs and
FBFs when they are bigger than RAM. To see how performance of various data
structures scales as the RAM-to-filter ratio shrinks, we run two experiments, with
RAM-to-filter ratios of 1 : 4 and 1 : 24. The false positive rate in both experiments
is fixed to f = 1/4096 ≈ 0.024%, which sets the number of hash functions for the
EBF, the BBF and the FBF to k = 12, k = 13 and k = 14, respectively.

We refer to the first experiment, which uses a RAM-to-filter ratio of 1 : 4, as
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the small experiment. The RAM buffer size is set to 2GB and the size of data struc-
tures on disk is roughly 8GB. The remaining 1GB of RAM is left for the operating
system (to use partly as page cache). We inserted 3.97 billion elements into each
data structure.

The second experiment, using a RAM-to-filter ratio of 1 : 24 can be thought
of as a “large” experiment. In this case all data structures employ 2GB of RAM
buffer, and a 48GB on-disk data structure. As in the previous experiment, 1GB is
set aside for the page cache. In this configuration, the CF and BQF can hold 23
billion elements, and they can insert them in under 35,000 seconds. All the other
data structures were too slow to complete the experiment – we present only partial
results obtained after inserting elements for 35,000 seconds.

Results Figure 8 shows the insertion, random lookup, and successful lookup per-
formance obtained in the small and large experiments. The small CF and BQF
experiments completed in about 1 hour. The small EBF and BBF experiments took
about 10 hours, and the small FBF experiment took about 25 hours to complete.
Consequently, Figure 8(a) only shows the throughput of each data structure through
the first hour of the small experiment. See Table 2 for the overall throughputs.

Figures 8(a), 8(b) and 8(c): Small disk experiment In 8(a), the staircase pat-
tern of the CF is due to the merges of the small QFs into a larger quotient filter. The
stalls in the BQF performance are due to flushing of the in-RAM quotient filter to
the on-disk quotient filter. In 8(b) and 8(c), the lookup performance of the cascade
filter depends on the number of full QFs. The BBF and the EBF perform more
poorly on the successful lookups, as they need to check 12 bits, performing roughly
12 random reads.

Figures 8(d), 8(e) and 8(f): Large disk experiment In 8(d), the cascade filter
outperforms the buffered quotient filter. In 8(e) and 8(f) the cascade filter lookup
performance depends on the number of levels it has: at 35 percent and 65 percent,
it has only one level, and performs one random read, like buffered quotient filter.

In this experiment, the other three data structures all completed less than 10
percent of the experiment. Figure 8(d) shows their cumulative throughput for the
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first 35,000 seconds, but Figures 8(e) and 8(f) do not plot their lookup performance,
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since the data structures were too slow to obtain this data.
There are two main trends to notice in the insertion throughput graphs: (1) the

CF and BQF are orders of magnitude faster than the EBF, BBF, and FBF, and (2)
the CF scales better than the BQF. In the small experiment, the BQF outperforms
the best BF variant by a factor of 5.2, and slightly outperforms the CF. In the large
experiment, the CF performs 11 times more insertions than any of the BF variants,
and the BQF performs 9 times more insertions than the BF variants.

The BQF outperforms the CF in the small experiment, but the CF outperforms
the BQF in the large experiment, which is consistent with our prediction. Recall
that an insert into the BQF requires O(n/M/B) writes, and an insert into the CF
requires (O(log(n/M)/B) writes. In the small experiment, n/M ≈ 4, but in the
large experiment, n/M ≈ 24. Hence, the difference between n/M and log(n/M)

becomes significant and the CF begins to outperform the BQF. As the size of the
database grows, the gap should get larger.

The insertion performance graphs also display the effects of each data struc-
ture’s buffering strategy. For example, the stalls in the BQF performance corre-
spond to flushing of the full in-RAM QF to the on-disk QF. The stalls become
longer as the on-disk QF becomes fuller, making insertions into it more CPU-
intensive. The stalls in the CF performance correspond to the merges of QFs. The
largest stall is in the middle, where all but the in-RAM QFs are being merged into
the largest QF in the CF. There are deamortization techniques, which we did not
implement, that can remove such long stalls [9]. The EBF stalls during flushes,
too, but each flush takes the same amount of time since BF insertion performance
is independent of occupancy. The FBF insertion throughput starts high, during the
FBF’s in-RAM phase, but drops sharply once data begins spilling to disk. Although
it appears to outperform the BBF and EBF in Figure 8(a), Table 2 shows that its
overall performance is about 5x less than the BBF and EBF.

The EBF, BBF, and FBF were not able to complete the large experiment, so we
cannot compare their overall performance, but we can report their performance on
the insertions they completed. The FBF had a cumulative throughput of 67,000 in-
sertions/second during the 35,000 second experiment. The BBF performed 44,600
inserts per second, and the EBF completed 53,000 insertions per second. The CF
had a cumulative throughput of 728,000 insertions per second.
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The lookup performance graphs support three conclusions: (1) the BQF and
CF outperform the BF variants, (2) The BQF performs one random read per lookup,
and (3) the CF performs between 1 and log(n/M) random reads per lookup. For
uniform random lookups, the BQF performance is roughly 1.9 times higher than
either the best BF variant or the CF. The CF uniform random lookup performance
is comparable to the EBF and BBF performance, and almost 50% higher than the
FBF uniform lookup rate. For successful lookups, the BQF performs 1.6 times
better than the CF, 2.5 better than the FBF and 10 to 12 times better than the BBF
and the EBF. The FBF maintains the most favorable successful lookup performance
among the BF variants.

The EBF needs to perform k = 12 random reads for each successful lookup,
which matches with our results. The BBF is slightly more efficient, due to hash
localization and OS prefetching (the lookup indices are sorted.)

The CF always outperforms the BF variants, except under one circumstance.
The FBF outperforms the CF when the CF has flushed to disk but the FBF is still
operating in RAM. Since the FBF in-RAM phase uses a BF, which is slightly more
space efficient than a QF, it can buffer more data before its first flush to disk.
Hence the FBF outperforms the CF betwen 20% and 30% occupancy. Once the
FBF flushes to disk, though, it becomes much slower than the CF. Also note that
when both the CF and the FBF are operating in RAM, the CF is over twice as fast.
Similarly, the BQF outperforms the BF variants once the structures have inserted
30% of the data.

The BQF and CF lookup performance curves match our theoretical analysis.
The BQF performance is always around 4, 000 lookups/second, consistent with the
conclusion that each BQF lookup requires one random read and the empirical mea-
surement that our SSD can perform about 4, 000 random reads/second. The CF
performance also matches theoretical predictions. For example, since the total data
set size in the large experiment is 24 times larger than RAM, the CF should have
between 1 and 4 ≈ log(24) active levels, and hence its lookup throughput should
be between 1 and 4 times slower than the disk’s random read throughput. Fig-
ures 8(e) and 8(f) match this expectation. The slowest points are at about 1, 000

lookups/second, the fastest at 4, 000 lookups/second.
The lookup figures also reveal several other caching and buffering effects.
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Lookup throughputs for the CF and BQF exhibit a sawtooth pattern: the upside
of the curve is due to populating the in-RAM QF, and thus satisfying a larger frac-
tion of lookups in RAM. Throughput peaks right before the in-RAM QF is flushed
– at 20%, 40% 60% and 80% in the small experiment. This effect is also more
pronounced for successful lookups, since a successful lookup is more likely to stop
in RAM. This effect becomes less significant as more data is inserted, since the data
in the buffer becomes a smaller fraction of the inserted elements.

The BBF and the EBF uniform random lookup performance mildly decays as
the data structures become fuller. This is due to the on-disk BF having more bits set
to one as the occupancy of the filter grows. When the data structure is 100% full,
the EBF and BBF need to check 2 bits on average. For EBF, this means 2 random
reads; for the BBF, it is slightly less than 2 because two bits from the same subfilter
(the erase block) may fall into the same read page. This is confirmed by our results,
where the BBF slightly outperforms the EBF in lookups, but both are just above
half of the random read throughput of the SSD.

4.5.3 Cascade Filter: Insert/Lookup Tradeoff

To investigate the effect of the fanout in the CF, we inserted 12 billion items into
CFs with the same basic configuration as before: a 2GB buffer and a false positive
rate of 1/4096. After inserting all 12 billion elements, we performed lookups for
60 seconds. We repeated this experiment with CFs for fanouts of 2, 4, and 16.
Figure 9 shows the tradeoff between insert and lookup performance in these three
experiments.

As expected, a higher fanout improves lookup performance, and a lower fanout
improves insert performance. High fanouts reduce the number of levels in the CF,
so lookups have fewer levels to check. The drawback of a high fanout is that each
level will be written to disk several times, wasting disk bandwidth. According to
Figure 9, even a fanout of 16 exceeds the insert performance of all the BF based
data structures in our evaluations.
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4.5.4 Evaluation Summary

QF-based data structures outperformed BF-based data structures in our evaluation.
The QF outperforms the BF, although it uses more space in some configurations.
The CF and BQF dramatically outperform all the BF variants. They can perform
insertions an order of magnitude faster, and offer comparable or superior lookup
performance.

The CF was the most scalable data structure in our experiments. As filter-
to-RAM ratio grows, the CF outperforms the BQF. With ratios larger than 24, we
expect the CF and the BQF performance to further diverge. When the ratio between
the filter and the RAM buffer grows too large, then the flushes that BQF performs
become distributed across the large filter, losing some of the space locality.
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[44] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. In
Proc. 38th Annual ACM Symposium on Theory of Computing (STOC), pages
232–240, 2006.

[45] V. Rödl. On a packing and covering problem. European Journal of Combina-
torics, 6(1):69–78, 1985.

[46] V. Samoladas and D. P. Miranker. A lower bound theorem for indexing
schemes and its application to multidimensional range queries. In Proc. ACM
Symposium on Principles of Database Systemsi (PODS), pages 44–51, 1998.

[47] A. Singh, M. Srivatsa, L. Liu, and T. Miller. Apoidea: A decentralized peer-
to-peer architecture for crawling the world wide web. In SIGIR Workshop on
Distributed Multimedia Information Retrieval, pages 126–142, 2003.

[48] S. Subramanian and S. Ramaswamy. The p-range tree: A new data structure
for range searching in secondary memory. In Proc. Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 378–387, 1995.

[49] R. Tamassia and J. S. Vitter. Optimal cooperative search in fractional cascaded
data structures. In Algorithmica, pages 307–316, 1990.

[50] T. Tao and V. H. Vu. Additive Combinatorics. Cambridge University Press,
2009.

73



[51] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. Journal of Computer and System Sciences, 18(2):110–127, 1979.

[52] Tokutek Inc. TokuDB. http://www.tokutek.com/, 2013.

[53] J. S. Vitter. External memory algorithms and data structures: dealing with
massive data. ACM Comput. Surv., 33(2):209–271, June 2001.

[54] Z. Yuan, J. Miao, Y. Jia, and L. Wang. Counting data stream based on im-
proved counting Bloom filter. In WAIM, pages 512–519, 2008.

[55] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data
domain deduplication file system. In FAST, pages 18:1–18:14, 2008.

74


