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Abstract of the Dissertation 

Multiple-objective Clustering Analysis 

by 

Tingjun Ruan 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

2016 

 

Cluster analysis is an important tool for unsupervised learning. It is commonly used for 

pattern recognition and dimension reduction. Traditional clustering algorithms include 

hierarchical clustering and k-means clustering, as well as model based approach such as the 

group trajectory analysis.  A major draw-back of the traditional clustering analysis is that it 

considers only a single objective (dissimilarity measurement) whilst in reality, one usually holds 

several criteria for the classification. Therefore, in this thesis, we strive to develop novel 

multiple-objective clustering methods – with a focus on the more approachable dual-objective 

ones.  

This thesis consists of two parts. In the first part, we introduce the framework of 

multiple-objective clustering methods. We then introduce the Biclusering analysis method – an 

existing dual-objective clustering analysis classifying data matrix on the rows and columns 

simultaneously. Biclustering has been used in gene expression analysis to identify interpretable 
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biological patterns involving a subset of genes and a subset of conditions. Our novel contribution 

lies in generalizing and extending the objective function used in biclustering in the form of 

compound clustering, where it is a linear combination of the objective functions with respect to 

the rows and columns. We also compared the generalized biclustering to the original biclustering 

algorithm using a microarrary gene expression data set, and a simulation study. Both 

demonstrated that overall, the generalized biclustering is better than the original biclustering 

algorithm.  

Subsequently, we try to apply both the dual-objective bi-clustering algorithms as well as 

the classic clustering algorithms to understanding the stock market movements. We attempted to 

detect the patterns in the bear and the bull stock markets using the biclustering and the 

generalized biclustering techniques. The pros and cons of the dual-objective clustering in a time 

domain application are therefore summarized. Subsequently, we used the classic clustering 

method to identify historical stock market periods resembling the current market in an effort to 

infer the trend of our current market – especially whether we are approaching a recession or not. 

We conclude the thesis by performing analysis of intraday pattern of high frequency trading data 

at the aggregation level of one minute and five minute using stocks traded on NYSE using a 

model-based clustering approach. 
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Chapter 1 

1.1 Introduction 

Machine learning can be mainly categorized into two categories, supervised learning and 

unsupervised learning. In supervised learning, the goal is to use inputs to predict the value of the 

outcome measure. In unsupervised learning, there is no response/outcome variable, the goal is to 

group similar data together and find hidden patterns in the data. Difference between supervised 

learning and unsupervised learning is the presence of the outcome variable. Supervised learning 

has an outcome measure to guide the learning process; while in unsupervised learning, we only 

have data but no outcome measure (Hastie et al, 2009). The dimension of the data is sometimes 

very high which is mitigated by the fact that those inputs represent all of the variables under 

consideration (Hastie et al, 2009). Unsupervised learning algorithms include Principal 

Component Analysis (PCA), Self Organizing Maps (SOM), Clustering Analysis, Non-negative 

Matrix Factorization, Independent Component Analysis (ICA), and Multidimensional Scaling 

and etc. (Hastie et al, 2009). 

Clustering analysis is a very important tool for unsupervised learning which is essentially 

about finding hidden data patterns and discovering groups in data (Everitt et al, 2011). Clustering 

analysis is widely used in many applications, pattern recognition, image processing, market 

research, customer segmentation, as well as the analysis of gene expression data. Clustering as 

pattern recognition and dimension reduction are commonly used. On top of traditional clustering 

analysis which only considers single objective to cluster data, novel Multiple-objective clustering 

considers multiple objective functions. For example, MOCK (Handl and Knowles, 2007) clusters 

data based on both compactness and connectivity. Compound Clustering (Zhang, 2011) 
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integrated multiple data sources, and biclustering takes consideration into both rows and columns 

and find local patterns called biclusters. 

Financial time series have been documented to embrace the characteristics of asymmetry, 

mean reversion, fat tail and volatility, among which volatility clustering has interested many 

researchers. Volatility models are developed to model volatility clustering feature. In recent 

years, increased automation has reduced the role for traditional human market makers and led to 

the rise of high frequency trading (Brogaard et al, 2014). It was first documented by Wood et al. 

(1985) and Harris (1986) that average intraday return volatility exhibit distinct U shape over the 

trading day. Varies models are developed to model this phenomenon, for example Flexible 

Fourier method in Andersen and Bollerslev (1997) or incorporating seasonality into the GARCH 

model in Bollerslev and Ghysels (1996) and most recently the Multiplicative Component 

GARCH by Engle (2012).  

 

1.2 Thesis structure 

This thesis is organized as follows. Chapter 2 and Chapter 3 discuss Cluster Analysis and 

the Multiple-objective Clustering analysis methods. We provide literature review of cluster 

analysis, its general procedure, commonly used similarity/dissimilarity measurements and 

clustering algorithms, notably k-means and hierarchical clustering. Group-based trajectory 

analysis as a model based clustering is introduced in chapter two, followed by an analysis of 

trajectory analysis on Dow Jones Industrial stock prices. We also discussed different ways of 

determine the optimal number of clusters and review the application of cluster analysis. Having 

covered cluster analysis which considers single objective (similarity/dissimilarity measurement), 
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we introduce the framework of multiple-objective clustering analysis methods taking 

consideration into multiple objectives, the Multiple-objective Clustering with Automatic k 

determination (MOCK) and the novel Comstrained and Compound Clustering, as well as 

biclustering/co-clustering. Different algorithms of different objective functions of biclustering 

are discussed. In Chapter 4, we extended and generalized the objective function used in Cheng 

and Church (2000) algorithm, representing it in the form of compound clustering where it is a 

linear combination of different objective functions with respect to rows and columns of the 

matrix. Analysis on a microarray gene expression dataset as well as simulation study is 

performed. We conclude chapter 4 by performing biclustering analysis on financial stock data to 

detect the patterns of bear and bull stock market and thus predict and infer our current market 

type, which is in line with what we found in the analysis in Chapter 5. 

The second part of the thesis work is discussed in Chapter 5 and Chapter 6. Chapter 5 

discussed the identification of historical periods where stock prices exhibit similar pattern 

resembles current market pattern to infer the potential market trend and whether the market is 

going for recession/depression, and then we analyze all the sectors to see which sectors are 

mostly likely to be heavily impacted by the impending recession/depression. We conclude the 

thesis by detection of intraday pattern of high frequency trading data in Chapter 6. Literature 

review of financial time series and its characteristics is provided. We analyze the real stock high 

frequency trading data at the aggregation level of one minute and five minute using stocks traded 

on New York Stock Exchange (NYSE) to study the intraday pattern. We conclude the chapter by 

applying Multiplicative Component GARCH model to 1-minute return stock data and detect 

similar pattern which builds up the result. Finally, discussion and future work is laid out in 

Chapter 7. 
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Chapter 2 

Clustering Analysis 

Clustering is an unsupervised learning approach. It groups objects into groups of similar 

objects. Each group, called cluster, consists of objects similar with each other and dissimilar to 

objects of other groups. Clustering algorithms is most commonly categorized into two types, 

hierarchical clustering (Ward, 1963; Johnson, 1967) and partitional clustering (Steinhaus, 1957; 

Macqueen, 1967). Partitional clustering, notable k means clustering algorithm, splits data points 

into k partition, where each partition represents a cluster. Hierarchical clustering is a technique of 

clustering which divide the similar data points by constructing a hierarchy of clusters. Clustering 

is very useful in pattern recognition, grouping, machine learning, data mining, image 

segmentation and pattern classification, especially when there is little prior knowledge available 

about the data, clustering analysis is particularly appropriate to explore the hidden 

interrelationship among the data points (Jain et al., 1999).  

 

2.1 General Steps of Clustering 

Typical clustering steps includes the following (Jain and Dubes, 1988): 

1) Pattern representation (feature extraction and feature selection) 

2) Define pattern proximity measure  

3) Clustering or grouping 
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2.2 Similarity Measures 

 Similarity is fundamental to define clusters. Measure of the similarity between two 

patterns drawn from the same feature space is essential to most clustering algorithms. The 

distance measures should be chosen accordingly due to the variety of the feature types and 

scales. It is more common to calculate the dissimilarity defined on feature space (Jain et al., 

1999). In this section, we will review the most well-known distance measures for continuous 

variables. The summary of the distance measures are shown in Table 2.1 below: 

Table 2.1 Common Similarity/Dissimilarity Measurements for Continuous Variables  

Measure Distance Metric Comment 

Euclidean Distance 𝑑!"#(𝑥! , 𝑥!) = (𝑥!" − 𝑥!")
!

!!!

!

  

The most commonly used 

metric, special case of 

Minkowski Distance at p=2 

Manhattan Distance 𝑑!"#(𝑥! , 𝑥!) = |𝑥!" − 𝑥!"|
!

!!!

 
Special case of Minkowski 

Distance p=1 

Pattern	

Representations	

Feature	
Selection/Extr

action	

Interpattern	

Similarity	
Grouping	

Raw	

Data	

Clusters	

Figure 2.1 General Clustering Stage (Jain et al., 1999) 
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Chebyshev 

Distance 

𝑑!!!"(𝑥! , 𝑥!) = lim
!→!

𝑑!"#

= max
!
|𝑥!" − 𝑥!"| 

Special case of Minkowski 

Distance p=∞ 

Minkowski 

Distance 
𝑑!"#(𝑥! , 𝑥!) = 𝑥!" − 𝑥!"

!
!

!

!!!

!

 

Features with large values or 

variance tend to dominate 

others 

Mahalanobis 

Distance 
𝑑!"!(𝑥! , 𝑥!) = 𝑿𝒊 − 𝑿𝒋 Σ!! 𝑿𝒊 − 𝑿𝒋

!
 
Σ = 𝑐𝑜𝑣(𝑿𝒊 ,𝑿𝒋) covariance 

matrix 

Correlation-based 

Distance 
𝑑!"##(𝑥! , 𝑥!) =

1− 𝑐𝑜𝑟𝑟(𝑿𝒊,𝑿𝒋)
2  

Derived from correlation 

coefficient 

 

Euclidean distance is the most commonly used distance for continuous features (Per-Erik, 

1980). The Euclidean distance has is commonly used to evaluate the similarity in two or three-

dimensional space and it works very well when the data has compact or isolated clusters (Mao 

and Jain, 1996). Minkowski distance is the generalized metric distance. When p=2, the distance 

becomes the Euclidean distance. When p=1, the distance city becomes the city block or 

Manhattan distance. Chebyshev distance is a special case of Minkowski distance when p goes to 

∞. The distance can be used for both ordinal and quantitative variables (Grabusts, 2012). The 

drawback of using the Minkowski distance directly is the tendency of largest-scaled feature to 

dominate others. Solution is to include normalization of the continuous features for other 

weighting schemes (Jain et al., 1999). The regularized Mahalanobis distance was used in Mao 

and Jain (1996) to extract hyperellipsoidal clusters.  
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 It is problematic to compute distance between patterns with features being non-

continuous, that is to say, in the case when we have mixed data types. Practitioners, however, 

especially those in machine learning field where mixed data types are very common, have 

developed similarity measurements for heterogeneous type patters (Jain et al., 1999). For 

example, Wilson and Martinez (1997) proposed a combination of modified Minkowski metric 

for continuous features and a distance based on counts for nominal attributes. Diday and Simon 

(1976); Ichino and Yaguchi (1994) developed some other metrics for computing the similarity 

between patterns represented by both quantitative as well as qualitative features (Jain et al., 

1999). 

 

2.3 Hierarchical Clustering 

Hierarchical clustering procedure is characterized by tree like structure and is one of the 

most widely used clustering approaches. As early as the 1970s, it was held that about 75% of all 

published work on clustering employed hierarchical algorithms (Blashfield and Aldenderfer, 

1978). It can be categorized into agglomerative clustering and divisive clustering. Agglomerative 

hierarchical clustering techniques are by far the most common. Clusters are consecutively 

formed from objects starting with each objective as an individual cluster then sequentially 

merged two clusters that have smallest dissimilarity as measured by linkage, until there is only 

one cluster. A hierarchical clustering procedure is often displayed using dendrogram, which is a 

convenient graphic to display a hierarchical sequence of clustering assignments and cluster-

subcluster relationship. Hierarchical information is very useful in many applications (Handl and 

Knowles, 2007). As Duda and Hart (2001) pointed out: “ hierarchical clustering permeates 
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classificatory activities in science”. Different clusters are generated by cutting the dendrogram at 

different levels. An example of dendrogram is shown in the following:  

 

Figure 2.2 Clustering Dendrogram using 49 stocks from S&P100 

 

The general procedure of hierarchical clustering can be summarized in the following steps: 

1) Select a measure of similarity/dissimilarity 

2) Select a clustering algorithm/linkage criterion, merge two clusters into one based linkage 

criterion selected until there is only one cluster left 

 

There are a lot of measures to define the similarity/dissimilarity between any two objects. 

The most common dissimilarity measures are summarized above. They are expressed by means 

of distance matrix where the non-diagonal elements express distances between pairs of objects 
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and zeros on the diagonal. By choose a dissimilarity measure, the distance between objects is 

determined. Then linkage criteria should be chosen to define the distance between clusters. The 

major linkage algorithms include Single linkage (Sneath and Sokal, 1973), complete linkage 

(King, 1967) and average linkage (Ward, 1963; Murtagh, 1984): 

1) Single linkage (nearest neighbor): the dissimilarity between two clusters is the smallest 

dissimilarity between any two objects in the two clusters. 

2) Complete linkage (furthest neighbor or compact): the dissimilarity between two clusters 

is the largest dissimilarity between any two objects in the two clusters. 

3) Average linkage: the dissimilarity between two clusters is the average dissimilarity over 

all the objects in two clusters. 

4) Ward linkage (minimum variance): Combine objects with minimum within-cluster 

variance. 

 

 

Figure 2.3 Dendrograms of Iris data (random of 40 obs) using different linkages 
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Different linkage algorithm yields different clustering result on the same dataset, as each 

has its specific properties, as we can tell from Figure 2.3 above. The choice of linkage used 

significantly affects clustering algorithms as different linkage criteria reflect different 

connectedness and closeness. Single linkage and complete linkage algorithms are among those 

the most popular and commonly used ones. Complete linkage tends to create more compact 

clusters (Baeza-Yates, 1992); while single linkage tends to create clusters that are straggly or 

elongated suffering from a chaining effect (Nagy, 1968). However, complete linkage algorithms 

produce more useful hierarchies in many applications than single linkage algorithms (Jain and 

Dubes, 1988; Jain et al., 1999). 

Hierarchical clustering groups data in a hierarchical tree structure according to the 

proximity matrix. The result of hierarchical clustering is usually displayed in a dendrogram 

which is a very convenient representation of the data struture. The final clustering result is 

obtained by cutting the dendrogram at different levels which provides very informative 

descriptions.  

Hierarchical clustering methods can be traced back to early 1960s and 1970s is one of the 

most important clustering techniques addressed in many works. Some major surveys of 

clustering covering hierarchical clustering include Gorden (1981), March (1983), Jain and Dubes 

(1988), Jain et al., (1999), and Xu and Wunsch (2005). 

 

2.4 K-means Clustering 

 Another important clustering procedure is partitioning method, notably K-means is the 

most important clustering technique. The most intuitive and frequently used criterion for 
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partitional clustering techniques is the square error criterion, which works well with isolated and 

compact clusters (Jain et al., 1999). K-means is the simplest and most commonly used clustering 

algorithms employing a squared error criterion (McQueen, 1967). Unlike hierarchical clustering 

which is based on proximity measurements, k-means is based on within-cluster variance as a 

measure to for homogenous clusters. Specially, clusters are formed so that with-in cluster 

variance is minimized. Therefore, we do not need to calculate the similarity/dissimilarity 

measurements upfront of the analysis.  

 K-means is intended for situations in which all variables are of the quantitative type, and 

squared Euclidean distance is chosen as the dissimilarity measure (Hastie et al., 2009). The 

clustering process starts by random initial partition, which is user specified number of clusters. 

The objects are then successively reassigned to clusters to minimize the within-cluster variation 

which is the squared distance from each observation to the center of the clusters. The center of 

the cluster is then updated based on the objects assigned to the cluster. The process is repeated 

until the center of the cluster remains the same, or there is no reassignment of any objects to 

other clusters that can reduce the squared error significantly. The sum of squared error is defined 

as: 

𝑆𝑆𝐸 = 𝒙!
! − 𝒄!

!
!!

!!!

 
!

!!!

 

where 𝒙𝒊
𝒋 is the 𝑖!! objects belonging to the 𝑗!! cluster and 𝒄𝒋 is the centroid of the 𝑗!! cluster. 

Figure 2.4 shows k-means clustering using the famous Fisher’s Iris data. 

K-means algorithm is very popular because it’s easy to implement, and it complexity is 

𝑂(𝑛), where n is the number of objects (Jain et al., 1999). Generally, k-means is less affected by 
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outliers and it can be applied to very large dataset, as it is less computationally demanding than 

hierarchical clustering. One problem associated with k-means clustering, however, is that it 

requires the pre-specification of the initial partitions which makes k-means less versatile than 

hierarchical clustering. It is often employed by researchers to perform hierarchical clustering first 

to determine the number of clusters and then apply k-means clustering which provides some clue 

to find the initial clusters.  

  Anderberg (1973) has documented several variants of k-means clustering to select a 

good initial partition so that the algorithm is more likely to find the global minimum value (Jain 

et al., 1999). ISODATA (Ball and Hall, 1965) employs the technique of merging and splitting 

clusters based on a pre-specified threshold of the cluster variance. Diday (1973) and Symon 

(1977) proposed dynamic clustering algorithm to select a different criterion function by 

permitting representations other than centroid for each cluster.  

Figure 2.4 is the plots of applying k-means to famous Fisher’s Iris data.  We specify k=3. 
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Figure 2.4 K-means clustering using Fisher’s Iris data 

 

2.5 Model-based Clustering Method – Group-based Trajectory Analysis 

The modeling of longitudinal developing trajectories is very popular in psychology, 

sociology and criminology (Fergusson and el al., 1996; Loeber and LeBlanc 1990; Moffitt 1993; 

Patterson 1996; Patterson and et al., 1989; Nagin and Jones 2001). Group-based trajectory 

models are designed to identify clusters of individuals following similar progressions of some 

behavior or outcome over age or time, or developing trajectories (Nagin and Jones, 2007), which 

is especially useful in identifying meaningful different subgroups overtime. It is a model based 

clustering method. A polynomial relationship is used to model the link between time/age and 

model’s parameters. There is a SAS statistical modeling procedure PROC TRAJ developed by 

Nagin and Jones (2001) for estimating the developmental trajectories. The procedure is based on 

a semiparametric, group based modeling, specifically, it is a mixture of probability distributions. 

Proc traj procedure assumes that every subject in a group follows the same trajectory. Proc traj 

provides the option of modeling three different distributions and different data types. Zero-
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inflated Poisson model for count data when there are more zeros than under Poisson assumption; 

Censored Normal model (CNORM) for continuous data and logistic model (LOGIT) for binary 

data (Jones and Nagin, 2000). The Bayesian Information Criterion (BIC) score is used to select 

the best model, it can also be used to identify the number of groups within the population. The 

best model is one with highest BIC score. The software allows for the specification of the 

polynomial relationship between age and model’s parameters of up to a fourth order polynomial 

in age (Nagin and Jones, 2001). The underlying statistical theories are reported in detail in Nagin 

and Jones (2001, 2007).   

 

2.6 Application of PROC TRAJ on Financial Time Series Data 

 We use daily close price data on the Dow Jones Industrial Index, over the period of a 

month from 1 May 2013 to 28 May 2013 to illustrate trajectory analysis. Dow Jones Industrial 

Index is comprised of 30 industrial companies’ stocks, and it is one of the stock index that 

represent the US stock market. The sample consists of 30 stocks, 19 trading days during the 1 

month period. Trajectory analysis was performed to estimate the number of stock price patterns 

in the collected sample. PROC TRAJ plug-in in SAS developed by Nagin and Jones (2001) is 

used to calculate the result. Normal distribution (CNORM) model was specified in the estimation 

because the stock price data is continuous variable. BIC score was used to select the number of 

trajectory groups. Cubic polynomial relationship is specified to model the link between time 

variable and model’s parameter.  
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Table 2.2 BIC score of trajectory groups from 1 to 5 of the Dow Jones Industrial stocks price  

Group BIC (N=30) AIC (N=30) 

1 -2870.35 -2866.84 

2 -2673.28 -2666.27 

3 -2363.22 -2352.71 

4 -2251.96 -2237.95 

5 -2136.74 -2119.23 

 

Table 2.6 shows the BIC scores of the trajectory groups from 1 to 5. We select the number of 

trajectory groups with smallest absolute value of BIC (i.e., largest BIC score). Based on the table, 

five-group trajectory model is favored. Figure 2.5 is the estimated trajectory patterns of the stock 

prices, the percentage of each trajectory is greater than 5%, which means that the trajectory 

patterns are all robust.  
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Figure 2.5 Estimated trajectory patterns of Dows Jones Industrial stock prices (five 

trajectory groups) – (CNORM model: Censored Normal Distribution) 

 

2.7 Determination of Number of Clusters 

Clustering analysis is an important tool for unsupervised learning, to find groups in data 

without the help of response variables. The estimation of optimal cluster numbers is always a 

major challenge (Tibshirani, 2001). There are no completely satisfactory methods for 

determining the number of population clusters for any type of cluster analysis (Everitt, 1979; 

Hartigan, 1985; Bock, 1985). Many methods have been proposed for estimating the number of 

clusters. Milligan and Cooper (1985) give a very comprehensive summary on methods for 
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estimating the number of clusters. Gordon (1999) also summarized many methods for estimating 

the number of clusters, where he divides the approaches into global and local methods. Curvas et 

al. (2000) proposed method which relies on high dimensional density estimate.  

In this section, we will give a summary of existing methods for estimating the number of 

clusters, we will also introduce the “Complete linkage” R2 proposed by Zhang (2011) which he 

used to determine the number of clusters in his analysis of gene expression data.    

R2 was introduced to be considered (Sarle, 1996). The larger the R2 , the better the 

clusters. Zhang (2011) adopted the “complete linkage” hierarchical clustering method for his 

analysis of the data, defining the distance between clusters by maximum of distances between 

any two components of the clusters. He then proposed the “Complete Linkage R2” (Zhang, 2011) 

defined as follow:  

𝑅! = 1−
𝑆𝑆𝐸
𝑆𝑆𝑇 

𝑆𝑆𝑇 = 𝑋 − 𝑋 ! ⇒ 𝑆𝑆𝑇 ≈ 𝑛𝐷! 

𝑆𝑆𝐸! = 𝑋! − 𝐶!
! ⇒ 𝑆𝑆𝐸! ≈ 𝑛!𝐷!! 

where 𝑆𝑆𝐸! is for each cluster j, 𝑛! is the number of objects in each cluster j, and 𝐷! is the 

maximum distance within cluster j. That's defined, the “Complete Linkage R2” is: 

𝑅! = 1−
𝑛!𝐷!!!

𝑛𝐷!  

 



	

18 
	

 Kaufman and Rousseeuw (1990) proposed the largest average silhouette statistic. Denote 

𝑎! as the average distance to other objects in its cluster for observation i, and 𝑏! be the average 

distance to points in the nearest cluster besides its own is defined by the cluster minimizing this 

average distance (Tibshirani, 2001). The silhouette statistic is defined by  

𝑠 𝑖 =
𝑏! − 𝑎!

max (𝑎! , 𝑏!)
 

Kaufman and Rousseeuw (1990) proposed that the optimal number of clusters k is chosen to 

maximize the average 𝑠(𝑖) over the data set, which is equally to maximize: 

1
𝑁 𝑠(𝑖)

!

!!!

 

 

Tibshirani (2001) proposed an approach using Gap statistic. The idea is to standardize the 

graph of log 𝑊!  by comparing it with its expectation under an appropriate reference 

distribution of data without any clustering structure. The estimate of the number of clusters is k 

for which log 𝑊!  falls the farthest below the reference curve. Gap statistic is defined as 

𝐺𝑎𝑝! 𝑘 = 𝐸!∗ log 𝑊! − log (𝑊!) 

𝑊! =
1
2𝑛!

𝐷!

!

!!!

 

𝐷! = 𝑑!!!
!,!!∈!!
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where 𝑊! is the sum of pairwise distances for all objectives in cluster r, 𝐸!∗  denotes expectation 

under a sample of size n from the reference distribution. The optimal k would be the value 

maximizing 𝐺𝑎𝑝!(𝑘). 

  Milligan and Cooper (1985) and Cooper Milligan (1988) carried out a comprehensive 

simulation comparing 30 different methods, and Calinski and Harabasz index (1974) performs 

best among the global methods. Krzanowski and Lai (1985) proposed the quantity 𝑊!𝑘
!
! as a 

criterion for choosing the number of clusters and Marriott (1971) followed the proposal by using 

the determinant rather than trace of the within sum of square matrix. Hartigan (1975) proposed a 

statistic and its idea is to start from k=1 and add a cluster as long as the statistic is sufficiently 

large.  

 The number of clusters can also be found by resampling approach, that is, to choose k 

according to the similarity of clusters results on randomly produced or sampled data. Resampling 

can be interpreted as using many randomly produced copies of data for assessing statistical 

properties of a method in question (Mirkin, 2011). Minaei-Bidgoli, Topchy and Punch (2004), 

Dudoit, Fridlyand (2002), McLachlanm Khan (2004) and Bel Mufti, Bertrand, Moubarki (2005) 

have tried to find the number of clusters based on resampling approaches.  

 

2.8 Applications of Clustering Analysis 

Clustering analysis techniques as one of the most important unsupervised technique are 

used frequently in many areas: biology, botany, medicine, psychology, geography, marketing, 
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image processing, psychiatry, etc (Brian et al., 2011). We list some of the applications of 

clustering analysis in those areas.  

 In market research, dividing variables into homogeneous groups is always very important 

step in data analytics due to huge amount of customer information data. Green et al (1967) use 

cluster analysis to classify the cities into a small number of groups among which are very similar 

to each other on the basis of 14 variables including city size, newspaper circulation and etc. due 

to economic restrictions at early time. Chakrapani (2004) use clustering analysis to identify 

people with a lifestyle most a associated with buying sports cars to make market campaign 

strategy.  

In bioinformatics and genetics, DNA microarrays (Cortese, 2000) are a revolutionary 

breakthrough in molecular biology that has the ability to simultaneously study thousands of 

genes. After genome sequencing, DNA microarray analysis has become the most widely used 

functional genomics approach in the bioinformatics field. Cluster analysis can be applied to 

identify genes with similar patterns of expression, and can help to find hidden information how 

gene expression is affected by various disease and which genes are mostly likely to cause 

specific disease (Brian et al., 2011).  Clustering analysis on microarray data is presently by far 

the most used method for gene expression analysis which provides a strategy to extract 

meaningful information from the express profile (Naghieh and Peng, 2009). For example, Eisen 

et al. (1998) use clustering analysis of genome wide expression data to identify cancer subtypes 

associated with survival. Kerr and Churchill (2001) investigate and make statistical inferences 

using clustering applied to gene expression data.  
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 In weather classification, huge amount of data are collected on weather worldwide. 

Clustering analysis provides insights into climatological and environmental trends that have both 

scientific and practical significance (Brian et al., 2011). Average linkage was used to group data 

into days with similar weather conditions (Huth et al., 1993). Littmann (2000) uses clustering 

analysis on the daily occurrences of several surface pressures for weather in the Mediterranean 

basin. Liu and George (2005) applied fuzzy k-means clustering method to account for the 

spatiotemporal nature of weather data in the South Central USA (Brian et al., 2011).  

 In Psychiatry, clustering analysis techniques have been used a lot to refine or even 

redefine current diagnostic categories, much of the work has involved depressed patients (Brian 

et al., 2011). Pilowsky et al. (1969) clustered patients based on their responses to a depression 

questionnaire together with other information such as mental state, sex age and length of illness. 

Clustering analysis has also been used to find classification of individuals who attempt suicide. 

Clustering methods, Ward’s methods were applied to the suicide attempters together with pool of 

other variables to get a classification of three groups (Paykel and Rassaby, 1978). Kurtz et al. 

(1987) and Ellis et al. (1996) also investigate the use of clustering analysis (average linkage 

clustering) on suicidal psychotic patients. Further more, clustering analysis is also used to best 

classify eating disorders, Hay et al. (1996) applied Ward’s method of clustering to investigate the 

problem.  

In hedge fund, cluster analysis has been a popular tool among money managers to group 

investments. Clustering analysis can reveal hidden patterns that provide insights to help problem 

solving (Hartigan, 1975). Clustering is applied to classify various hedge funds based on the fund 

returns (Miceli and Susinno, 2003; 2004). They argue that clustering can be used to predict 

potential style drifts, conduct peer group analysis and identify benchmarks for groups of founds. 
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They also argue that cluster analysis makes things easier to interpret than large correlation 

matrices, and it is very helpful during portfolio construction. Martin (2001) concludes that there 

is significant heterogeneity in individual fund returns within clustering by analyzing monthly 

returns for hedge funds. Cluster analysis is more successful than the ZCM/Hedge classification 

in categorizing manager return histories by clustering managers based on asset class, style of 

hedge fund, incentive fee, risk level, and liquidity (Das, 2003). Fuzzy clustering was used to 

illustrate the degree of misclassification that exists in the industry-accepted investment-style 

classifications (Gibson and Gyger, 2007). 
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Chapter 3  

Multiple-objective Clustering Analysis 

3.1 Existing Multiple-objective Clustering Approach 

In this chapter, we will be discussing multiobjective clustering analysis methods. First 

part we provide the existing multiobjective clustering methods from literature review, 

specifically framework of MOCK algorithm (Multiobjective Clustering with automatic k-

determination) proposed by Handl and Knowles (2007), which is based on Multiobjective 

Evolutionary Algorithm (MOEA) obtained via the framework of Pareto optimality. We will 

introduce the theoretical advantage behind it. In the second part, we will introduce the 

framework of a novel multiobjective clustering analysis approach proposed by Zhang (2011), the 

Compound Clustering and Constrained Clustering. 

 There are many approaches for clustering analysis such as k-means and hierarchical 

clustering which have been detailed described in Chapter 2, Section 2.3 and Section 2.4. The 

main problem in clustering is to find the best partitions among k clusters and determine the 

optimal number of clusters. K-means is better at find partitions but users have to give the initial k 

while hierarchical clustering is better at determining k but worst at finding partitions. Both of the 

methods use a single objective, the objective of k-means is compactness and objective of 

hierarchical clustering is connectivity of similar data. MOCK optimizes two complementary 

objectives, considering both the cluster compactness and connectedness. It has been reported that 

MOCK shows better performance than k-means and hierarchical clustering and other 

evolutionary clustering algorithms (Matake et al., 2007). 
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In order to develop a clustering algorithm that simultaneously considers several 

complementary aspects of clustering quality, MOCK embraces the framework of Pareto 

optimization, Specifically, employ a multiobjective evolutionary algorithm (MOEA) to optimize 

several clustering objectives, and to obtain a set of trade-off solutions, which represent a good 

approximation to the Pareto front, that is a set of partitionings that Pareto optimal with respect to 

the objectives optimized. Compared with single clustering algorithm, multiobjective algorithm 

will always find a solution as good or better than those of single objective algorithms (Handl and 

Knowles, 2007). There are many other multiobjective optimization algorithms, such as MOGA 

(Fonseca and Fleming, 1993), VIENNA (Handl and Knowles, 2004), VEGA (Schaffer, 1984), 

Niched Pareto GA (Horn et al., 1994), SPEA (Zitzler and Thiele, 1998), NSGA (Srinivas and 

Deb, 1994), and classic PESA-II (Corne et al., 2001) which form the basis of MOCK.  

The classical ways of tackling multiple-objective optimization problems is fairly 

straightforward as reported by Deb (1999), to convert multiple objectives into a single objective 

problem. The conversion methods existed are: weighted sum approach, 𝜖-perturbation method, 

Tchybeshev method, min-max method, goal programming method, and etc (Chankong and 

Haimes, 1883; Miettinen, 1999; Sen and Yang, 1998; Deb, 1999). The conversion to a single-

objective optimization problem is usually subjective to the parameter settings chosen by the user. 

Additionally, only one solution can be found in one simulation run as usually a classical 

optimization is used for single-objective optimization problem. Therefore, in order to find 

multiple pareto solutions, the chosen optimization algorithms is need to run for many times. 

Classical methods have been found to be sensitive to convexity and continuity of the pareto-

optimal region (Deb, 1999). 
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3.2 Multiple-objective Clustering with automatic k-determination (MOCK) 

MOCK (Handl and Knowles, 2007) is a multiple-objective clustering algorithm that use 

MOEA to optimize two complementary clustering objectives based on compactness and 

connectivity with automatics k determination scheme. In the initialization and clustering phase, it 

adopts its initialization using graph-based minimum spanning tree (MST) and two objective 

functions. MST-based initialization is based on two different objectives to obtain good initial 

spread of solutions and a close approximation of Pareto front (Handl and Knowles, 2007). After 

optimizing two objective function through generic operations – crossover, mutation, and 

selection, Pareto solutions with a different k is generated, which are a set of different tradeoffs 

between the two objectives over a range of different cluster numbers (Matake et al., 2007). In the 

k determination phase based on Gap statistics (Tibshirani, 2001), it is able to determine the final 

solution from the Pareto solutions and find the optimal k. MOCK analyzes the output from the 

clustering phase, the tradeoffs and compare it to the tradeoffs obtained under an appropriate null 

reference distribution, such as uniform distribution. The estimate of the optimal number of 

clusters is the one falls the farthest away from the reference curve. 

Figure 3.1 The general procedure of MOCK algorithm 
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Two Objective Functions 

The two complementary objectives of MOCK selected are connectivity and compactness 

which are two criteria that reflect different aspects of good clustering solutions. Compactness is 

based on overall deviation and connectivity is based connectedness of clusters. To express the 

compactness of clusters, overall deviation is used which is defined as: 

𝐷𝑒𝑣 𝐶 = 𝛿(𝑖, 𝜇!)
!∈!!!!∈!

 

where 𝐶 is the set of all clusters, 𝜇! is the centroid of cluster 𝐶!, and 𝛿 is the distance function in 

which Euclidean distance is used in MOCK. Overall distance is minimized in order to make the 

clusters more compact. Minimizing the overall deviation increases the number of clusters.  

Connectivity intends to group similar data into the same cluster. To express the 

connectivity of clusters, a measure of connectivity is used, which evaluates the degree to which 

neighboring data points have been placed in the same cluster. 

𝐶𝑜𝑛𝑛 𝐶 = ( 𝑥!,!!!"

!

!!!

)
!

!!!

 

where 𝑥!,! =
!
!
,   𝑖𝑓 ∄𝐶!: 𝑟 ∈ 𝐶! ∧ 𝑠 ∈ 𝐶!
0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Connectivity is minimized. When all the similar data are group into one cluster, connectivity 

becomes zero; when similar data are grouped into different clusters, connectivity increases by !
!
.  

Minimizing the two complementary objectives gives the efficient solutions with different k, 
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therefore MOCK returns a range of k minimizing the two objectives compactness and 

connectivity.  

Initialization using Minimum Spanning Tree (MST) 

 The initialization is motivated by the fact that different single-objective clustering 

algorithms tend to perform well, or find good approximations in different regions of Pareto front 

(Handl and Knowles, 2007). In other words, algorithms based on connectivity tend to generate 

good approximations in the regions of Pareto front where connectivity is low, and algorithms 

based on compactness generate good approximation in the regions of Pareto front where overall 

deviation is low. Therefore, MOCK use an initialization based on two different single-objective 

algorithms to get a good spread of initial solutions. Solutions performing well under connectivity 

are generated using Minimum Spanning Tree (MST). MST is the shortest tree where the total 

cost of all edges is the minimum. In MST, similar data are connected and dissimilar data are not 

(Matake et al, 2007). On the other hand, solutions performing well under compactness are 

generated using k-means algorithms. Taking consideration of two objectives create good spread 

of initial solutions of pareto front close to the optimal solutions. MOCK uses Prim’s algorithm 

(Prim, 1957) to create MST.  

K-determination using Gap Statistic 

MOCK carries over the concept of Gap Statistic (Tibshirani et al, 2001) to determine the 

number of clusters in the dataset. Gap statistic is based on the expectation that most suitable 

number of clusters shows a significant “knee” when plotting the performance plot. MOCK 

extends this concept and apply it to the case of two objectives. Having two objectives, overall 

deviation decreases with an increasing k, and an increasing connectivity. Define 𝑅 = !!"#
!!"##

, when 
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k gradually increases, the significant change in R stands for an appropriate number of clusters, 

which is seen as “knee” (Handl and Knowles, 2007). MOCK also uses the random distribution 

(reference curve) from Gap statistics (Tibshirani et al, 2001). The purpose of this random 

distribution is getting estimates of the values of connectivity and overall deviation that can be 

expected for unstructured data. The estimate of optimal number of clusters would be the value of 

k for which the performance curve falls the farthest below the reference curve.  

 

3.3 Compound and Constrained Clustering 

We introduced two recently proposed novel multiple-objective cluster analysis methods 

(Zhang, 2011), the compound cluster analysis and the constrained cluster analysis. They cluster 

data using multiple data sources and similarity measures. 

3.3.1 Motivation 

 Tradition cluster analysis consists of single objective and single distance metrics 

generated from the dataset. In reality, however, we may get data from multiple data sources 

describing the data from different views.  All the information should be taken into consideration 

to better represent the data and let us better understand the objective of interest. A very good 

example in biology is the knowledge based clustering in biology. In biology, it is very common 

that we have continuous microarray data to describe the gene expression profile and also biology 

network database to describe the gene functions. Motivated by the needs in biology to consider 

more than just the gene expression data to cluster similar genes, Integrating all those information 

from difference data sources, such as the source of gene functions, knowledge based clustering 

will give us superior performance in grouping genes (Zhang, 2011). 
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Here we introduce the two recently proposed multiple-objective cluster analysis methods 

by Zhang (2011), the compound clustering and the constrained clustering, to cluster data by 

integrating multiple data sources and multiple dissimilarity measures. The general procedure will 

be given, and a dual-objective case (n=2) will be illustrated.  

 

3.3.2 General framework of compound clustering and constrained clustering 

 Zhang (2011) proposed two novel multiple-objective cluster analysis methods. Suppose 

we have n datasets with n distance/dissimilarity measurements 𝐃𝟏,… ,𝑫𝒏 

Compound Clustering 

Clusters are obtained by minimizing the overall distance 𝐃 as weighted average of the 

individual distance measurements. The overall distance can be defined as: 

𝐃 = 𝛌𝟏𝑫𝟏 + 𝝀𝟐𝑫𝟐 +⋯+ 𝝀𝒏𝑫𝒏,𝒘𝒉𝒆𝒓𝒆 𝝀𝒊 = 𝟏
𝒏

𝒊!𝟏

 

Constrained Clustering 

 Constrained Clustering is an n-step algorithm, in which step we minimize 𝐃𝐢 under the 

constraint that 𝐃𝐣 ≤ 𝒅𝒋, 𝒋 = 𝟏,𝟐,… , 𝒊− 𝟏. 

Algorithm for Constrained Clustering  

1. Perform clustering analysis based on 𝐃𝟏 on all objects  

2. For object from 𝐢 = 𝟐 𝐭𝐨 𝐧,  
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Perform clustering analysis based on 𝐃𝐢 on each cluster generated from step i 

And minimize 𝐃𝐢 

 

Dual-objective Case (n=2) 

 Compound clustering is to minimize the overall distance 𝐃 with parameter 𝛌 as follow: 

𝐃 = 𝛌𝐃𝟏 + 𝟏− 𝝀 𝑫𝟐 

 Constrained clustering is a two-step approach to minimize 𝐃𝟐 subject to the constraint 

that 𝐃𝟏 ≤ 𝒅𝟏. In other words, firstly cluster analysis based on 𝐃𝟏 is performed. Secondly, in 

each cluster generated from step one, cluster analysis is performed based on 𝐃𝟐 to determine the 

final cluster results. Compound clustering and constrained clustering are not equivalent with 

each other in term of clustering regions.  

Compound Clustering  

𝐃 𝐗𝟏,𝐗𝟐 ≤ 𝐝 ⇔ 𝐗𝟏 𝒂𝒏𝒅 𝑿𝟐 𝒂𝒓𝒆 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒆𝒅 

Constrained Clustering  

𝐃𝟏 𝐗𝟏,𝐗𝟐 ≤ 𝒄𝟏 & 𝑫𝟐 𝑿𝟏,𝑿𝟐 ≤ 𝒄𝟐  ⟺ 𝐗𝟏 𝒂𝒏𝒅 𝑿𝟐 𝒂𝒓𝒆 𝒄𝒍𝒖𝒔𝒕𝒆𝒓𝒆𝒅 

The figure below shows the comparison of clustering regions of compound clustering and 

constrained clustering region: 
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Figure 3.2 Clustering regions of compound clustering and constrained clustering (Zhang, 

2011) 

From clustering regions, it is obvious that the two clustering methods are not equivalent. 

It can be easily generalized to the case when 𝐧 > 𝟐.  

 Zhang (2011) performed compound clustering on microarray data from Cold Spring 

Harbor Laboratory (CSHL) to illustrate the method. He used two functional distance and two 

statistic to determine the appropriate parameter (𝜆, 𝑘) for compound clustering, specifically, he 

used correlation base distance as the gene expression distance 𝐷!, and two candidates for 

measuring the functional distance 𝐷!, the Hamming/Euclidean distance and the Kappa statistic 

based distance together with two approaches, his newly proposed “Complete Linkage R2” and 

the largest silhouette to determine the parameters. He performed the compound clustering using 

the hierarchical clustering algorithm. By comparison, he concluded that Euclidean distance as 

functional distance together with his newly proposed “Complete Linkage R2” is the best 

combination for compound clustering to generate the most meaningful clusters with enriched 

biological functions. He also compared the his compound clustering incorporating biological 

information to the traditional single-objective hierarchical clustering method using only gene 
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expression data, and found that compound clustering with Euclidean distance as functional 

distance yields more biological clusters. 

 

3.4 Biclustering Analysis  

3.4.1 Motivation 

 Clustering as an unsupervised learning technique clusters objects with the same attributes 

or functions. Traditional clustering algorithm clusters the data based either rows or the columns 

which sometimes is very difficult to extract local patterns including subsets of rows and subsets 

of columns while biclustering takes consideration of both rows and columns. It clusters data 

along the rows and columns simultaneously. The goal of biclustering is to find statistically 

significant sub-matrices, called biclusters. In other words, it searches for interpretable biological 

structure in gene expression microarray data.  

Biclustering was first used by Cheng and Church (2000) in gene expression data analysis.  

Tradition clustering identifies groups of genes/conditions that show similar activity under all the 

set of conditions and all the set of genes under analysis while biclustering identifies groups of 

genes with similar/coherent expression patterns under a specific subset of the conditions. In 

biology, clustering gene similarities reflected by their activity across all conditions is that all 

genes in the cluster share the exact same functions, therefore all effected by the same conditions. 

However, many genes could have more than one function which means that a group of genes 

displays similar expression behavior across some of the conditions (those related to the shared 

functions) and displays different expression behavior in some conditions relating to functions not 

shared among all the gens in the group (Sharan, 2006). Genes with similar expression patterns 
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are likely to be regulated by the same factors and therefore may share function. Analyzing gene 

expression profiles from different biological conditions and identifying joint patterns of gene 

expression among them, many researchers have characterized transcriptional programs and 

assigned putative function to thousands of genes (Spellman et al., 1998; Hughes et al., 2000; 

Gasch et al., 2001; Tanay et al., 2004). Influential papers including Eisen, Spellman, Brown and 

Bostein (1998) apply clustering methods to identify groups co-regulated genes from microarray 

data (Lazzeroni and Owen, 2000). Standard clustering analysis is oversimplified to detect the 

underlying patterns and biclustering is considered more appropriate for gene expression analysis. 

Biclustering performs clustering along both the genes and conditions (expression) 

simultaneously to find a joint behavior of some genes under some conditions while clustering 

can be applied to either rows (genes) or columns (conditions) of data matrix separately.  Figure 

3.3 below illustrates the difference between clustering and biclustering. Clusters of genes alone 

would be ( 𝐺!,𝐺! ,𝐶), highlighted in orange. Clusters of conditions alone would be 

(𝐺, {𝐶!,𝐶!,𝐶!}), highlighted in blue. Biclusters of both rows (genes) and columns (conditions) 

can be represented as ( 𝐺!,𝐺! , {𝐶!,𝐶!,𝐶!}), which is highlighted in green.  

 C1 C2 C3 C4 C5 

G1 A11 A12 A13 A14 A15 

G2 A21 A22 A23 A24 A25 

G3 A31 A32 A33 A34 A35 

G4 A41 A42 A43 A44 A45 

Figure 3.3 Clustering vs Biclustering  
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3.4.2 Biclustering Types 

 Just like traditional clustering, there many different ways of calculating the similarity 

within a bicluster, and many different algorithms have been development by researchers based 

this. Madeira and Oliveria (2004) reported that biclusters can be generally grouped into four 

types:  

1) Biclusters with constant values 

2) Biclusters with constant values on rows and columns  

3) Biclusters with coherent values 

4) Biclusters with coherent evolutions 

 

Figure 3.4 Example of different bicluster types (Madeira and Oliveria, 2004) 

Figure 3.4 explains the typical examples for those types corresponding to the four types 

reported in Madeira and Oliveria (2004). The last three aim to find bicluster with coherent 
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evolutions, which means that the algorithms are not looking for exact numeric value of the 

matrix elements, instead it is looking for subsets of columns with coherent behaviors.  

 

3.4.3 Algorithms 

Hartigan’s Direct Clustering (1976) 

Biclustering was originally introduced by Hartigan in 1972. It is not generalized until 

2000 when Cheng and Church proposed a biclustering algorithm based on variance and apply to 

gene expression data. Hartigan’s direct clustering begins with the entire data in a single block 

and then at each stage finds the row or column split of every block into two pieces, choosing the 

one that produces largest reduction in the sum of square, the splitting is continued till the 

reduction of SSQ is less than a given threshold. Equivalently, it is minimizing the SSQ (i.e., 

minimum variance). 

Objective function is the sum of squares:  

𝑆𝑆𝑄 = 𝑎!" − 𝑏!
!

!,!∈!!!

 

𝑆𝑆𝑄 = 𝑎!" − 𝑎!"
!

!"#,!"#

 

where 𝑏! is the average value in the bicluster 𝐵!, 𝑎!" is the element value in the cluster. The 

clustering technique was introduced in way in which the model for a single cluster relates a 

cluster of variables to a cluster of cases. Variables and cases are thus clustered simultaneously.  
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Cheng and Church (2000) 

 Cheng and Church (2000) were the first to introduce biclustering to gene expression 

analysis. The algorithm searches for constant values, rows or columns, where they define a score 

for each candidate bicluster. The objective function – the mean square residue score (MSRS) is 

defined as: 

𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑅! 𝑎!"

!∈!,!∈!

=
1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!∈!,!∈!

 

where 𝑎!" ,𝑎!", and 𝑎!" are defined as 

𝑎!" =
1
𝐼 𝑎!"

!

!!!

 

𝑎!" =
1
𝐽 𝑎!"

!

!!!

 

𝑎!" =
𝑎!"

!
!!!

!
!!!

𝐼𝐽  

They are the row and column means and the mean in the submatrix (I,J). A submatrix 𝐴!" is 

called a 𝛿 − 𝑏𝑖𝑐𝑙𝑢𝑠𝑡𝑒𝑟 if 𝐻 𝐼, 𝐽 ≤ 𝛿 for some 𝛿 ≥ 0.  

Cheng and Church assume that genes conditions pairs in a good has constant expression 

level, and row column effects. After removing row column, bicluster averages, the residual 

should be as small as possible (Tanay et al., 2004). The subset is called a cluster if the score is 

below a level 𝛿.  
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Row variance is defined as 

𝑉𝑎𝑟 𝐼, 𝐽 = 𝑉𝑎𝑟(𝑅𝑜𝑤) =
1
𝐽 𝑎!" − 𝑎!"

!

!"#

 

Column variance is defined as 

𝑉𝑎𝑟 𝐼, 𝐽 = 𝑉𝑎𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 =
1
|𝐼| 𝑎!" − 𝑎!"

!

!"#

 

 

Representation of Objective Function into Linear Combination of Different Objective 

Functions 

The objective function: 

𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!∈!,!"#

 

=
1
𝐼 |𝐽| [ 𝑎!" − 𝑎!")+ 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!"#,!"#

 

=
1
𝐼 |𝐽| [ 𝑎!" − 𝑎!")+ 𝑎!" − 𝑎!" − (𝑎!" − 𝑎!")

!

!"#,!"#

 

=
1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

!

!"#,!"#

 

=
1
𝐼 [

1
𝐽 𝑎!" − 𝑎!"

!

!"#

]
!∈!

+
1
|𝐽| [

1
𝐼 𝑎!" − 𝑎!"

!]
!"#!

+
1
𝐼 |𝐽| 𝑎!" − 𝑎!"

!

!"#,!"#

 

=
1
𝐼 𝑉𝑎𝑟 𝑅𝑜𝑤

!

+
1
|𝐽| 𝑉𝑎𝑟 𝐶𝑜𝑙𝑢𝑚𝑛

!

+
1
𝐼 |𝐽| 𝑎!" − 𝑎!"

!

!"#,!"#

 

= 𝑀𝑉𝐴𝑅 𝑅𝑜𝑤 +𝑀𝑉𝐴𝑅 𝐶𝑜𝑙 + 𝑉𝐴𝑅(𝑜𝑣𝑒𝑟𝑎𝑙𝑙) 
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It can be represented as the linear combination of three objective functions, which equals 

variance of the set of all elements in the bicluster, plus the mean row variance and the mean 

column variance. It is the effort representing the objective function in Cheng and Church (2000) 

in the form of compound clustering, where it's a linear combination of three objective functions. 

Zhang’s compound clustering (2011) incorporated more than single data source, so it’s linear 

objective function involving more than one objective functions from more than one data matrix, 

while here we only consider one data matrix, but perform clustering based on rows and columns 

simultaneously. So it is the linear combination of objective functions involving only one data 

matrix (in terms of rows/or columns). 

 From the objective function in Cheng and Church, where it can be represented as the 

linear combination of three objective functions, the third objective function, the variance of all 

elements in the bicluster, or the sum of squares, is actually the objective function in Hartigan’s. 

In other words, Cheng and Church is a generalization of Hartigan’s direct clustering, where it 

considers the row effect, column effect and overall effect, while only sum of squares was taken 

into consideration in Hartigan’s.   

 

3.4.4 Generation of Cheng and Church Algorithm  

Cheng and Church define the objective score function as  

𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!∈!,!"#

 

which proved can be equally written as 
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𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

!

!"#,!"#

 

= 𝑀𝑉𝐴𝑅 𝑅𝑜𝑤 +𝑀𝑉𝐴𝑅 𝐶𝑜𝑙 + 𝑉𝐴𝑅(𝑜𝑣𝑒𝑟𝑎𝑙𝑙) 

where the parameters are fixed.  

We generalize the objective function in Cheng and Church (2000) by representing the 

objective function in the form of compound clustering with the objective function in terms of 

rows and objective function in terms of columns as below: 

𝐻 𝐼, 𝐽 !"#"$%& = 𝜆 ∗
1
𝐼 𝐽 𝑎!" − 𝑎!"

! +
!"#,!"#

1− 𝜆 ∗
1
𝐼 𝐽 𝑎!" − 𝑎!"

!

!"#,!"#

 

= 𝜆 ∗𝑀𝑉𝐴𝑅 𝑅𝑜𝑤 + 1− 𝜆 ∗𝑀𝑉𝐴𝑅(𝐶𝑜𝑙) 

where the parameters 𝜆 is not fixed. 

The goal is to search for the submatrices with generalized objective function 𝐻 𝐼, 𝐽 !"#"$%& ≤ 𝛿. 

 

3.4.5 Other Algorithms 

Many other used algorithm such as Plaid model developed by Lazzeroni and Owen 

(2002) for analysis of gene expression data. This algorithm model data matrix to a sum of layers, 

the model is fitted through Ordinary Least Square (OLS) to minimize the error.  

𝑎!" = 𝜇! + 𝜃!"#𝜌!"𝑘!" + 𝜀!"

!

!!!

 

𝑎!" = 𝜇! + 𝛼!! + 𝛽!! + 𝜇! + 𝛼!" + 𝛽!" 𝜌!"𝑘!" + 𝜀!"

!

!!!
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𝜇! corresponds to the global effect layer 

𝜃!"# models the effect of layer k 

𝜇,𝛼,𝛽represent mean, row and column effect. 𝜌!"  𝑜𝑟 𝑘!"  identifies whether a row or a column 

is member of the layer respectively, it equals 1 when object i(or j) belongs to layer k, 0 

otherwise. 

Parameters are estimated by minimizing sum of squared residual  

1
2 a!" − θ!"# − θ!"#ρ!"k!"

!

!!!

!!

!!!

!

!!!

 

=
1
2 a!! − (µ! + α!" + β!")− (µ! + α!" + β!")ρ!"k!"

!

!!!

!!

!!!

!

!!!

 

Murali and Kasif (2003) developed algorithm Xmotifs to find biclusters with coherent evolutions 

and etc. There are many other algorithms developed for gene expression data analysis, Tanay et 

al. (2004) gives a very detailed summary on those algorithms. A summary table of algorithms 

with objective functions is summarized below: 
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Table 3.1 Summary of biclustering algorithms with objective functions 

Algorithm Objective Function Comment 

Direct Clustering 

Hartigan (1976) 
𝑆𝑆𝑄! = 𝑎!" − 𝑎!" !

!

!"#,!"#

 

Used in Hartigan’s 
direct clustering, 
algorithm spits the 
original data matrix into 
a set of submatrices 
minimizing the variance 

Cheng and Church 

(2000) 
𝐻 𝐼, 𝐽 ! =

1
𝐼 |𝐽|

𝑎!" − 𝑎!" − 𝑎!" + 𝑎!" !
!

!∈!,!"#

 

First algorithm applied 
on gene expression data, 
distance-based 
algorithm, can be 
represented as the 
summation of mean row 
variance, mean column 
variance and overall 
variance of submatrix. 

Plaid Model  

Lazzeroni and Owen 

(2002) 

𝑄! =
1
2

𝑎!" − 𝜃!"! − 𝜃!"#𝜌!"𝑘!"

!

!!! !

!!

!!!

!

!!!

 

Value of an element in 
the data matrix is 
assumed as sum of 
layers. Data matrix is 
described as linear 
function of layers 
corresponding to its 
biclusters: 

𝑎!" = 𝜃!"#𝜌!"𝑘!"

!

!!!

 

OLS is used to estimate 

the parameters. 
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3.6 Application of Biclustering on Microarray Gene Expression Data 

Microarray yeast data 

We use the microarray dataset Yeast data Prelic et al. (2006) used for biclustering 

technique to illustrate the algorithms. The microarray dataset is a subsample of the 

Saccharomyces Cerevisiae organism (Yeast), which contains 419 rows (Genes) and 70 columns 

(Conditions/Expression levels).  

We demonstrate the biclustering algorithms by Cheng and Church and plaid models using 

the gene expression data set. There are build up software packages for all those algorithms 

developed in R, the one we used here is called “Biclust” (Kaiser and et al., 2015) which comes 

with a lot of different algorithms. The heatmap of the first bicluster is shown below, we can also 

see the local heatmap with the first bicluster only with its rows (gene names) and columns 

(conditions) shown in the bottom right. Since Cheng and Church algorithm searches constant 

rows or columns, the heatmap of CC algoriothm of the first bicluster shows the same color 

compared to the plaid model result.  
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Figure 3.5 Left: heatmap of first bicluster performing CC algorithm Right: local heatmap 

of first bicluster performing CC algorithm 

	  

Figure 3.6 Left: heatmap of first bicluster performing plaid model Right: local heatmap of 

first bicluster performing plaid model 
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Setting the threshold 𝛿 = 0.01, Cheng and Church algorithm searches for submatrices 

with mean square residual score 𝐻 𝐼, 𝐽 ≤ 𝛿, Plaid model models data matrix with a sum of 

layers, and the model is fitted through minimization of the error as described before.  

10 biclusters patterns are found in result of performing plaid models, and 35 bicluster 

patterns are found using Cheng and Church algorithm. We only show the first two biclusters in 

the summary table 3.2. Table 3.2 is a summary table of first two biclustering results performing 

Cheng and Church algorithm and plaid model algorithm. We list the total number of biclusters 

found performing the two algorithms as well as the result on the first bicluster found. 

 

Table 3.2 Summary of biclustering results of CC algorithm and plaid model algorithm 

 Cheng & Church Plaid Model 

Total number of 

biclusters found 
35 10 

BC1 
30 rows 

21 columns 

23 rows 

7 columns 

BC2 
25 rows 

14 columns 

29 rows 

8 columns 
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Figure 3.7 (a) Left two: profile plots  - expression levels of conditions across their genes in 

the first bicluster of plaid models. Right two: profile plots – expression levels of conditions 

across their genes in the first bicluster of Cheng & Church algorithm. 
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Figure 3.7 (b) Left two: profile plots  - expression levels of conditions across their genes in 

bicluster two of plaid models. Right two: profile plots – expression levels of conditions 

across their genes in the bicluster two of Cheng & Church algorithm. 

Note: Dark lines are the profile of the corresponding biclusters, grey lines are the remaining of 

the data 

The profile plot (i.e., the parallelCoordinates plot), shows the expression levels of 

conditions across genes. The left two plots of Figure 3.7(a) and Figure 3.7(b) are the profile plots 

of first bicluster and second bicluster in the result of performing plaid models, and right two 

plots of Figure 3.6 are the profile plots of first bicluster and second bicluster in the result of 

performing Cheng and Church algorithm. Both Figure 3.7(a) and 3.7(b) shows that the plaid 

model identifies genes conditions patterns with expression levels close to zero. Cheng and 
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Church algorithm identifies bicluster patterns with smaller variance than the plaid model, clearly 

observed in the bottom row of zoomed in version which makes sense because Cheng and Church 

algorithm searches for biclusters with constant value.  Table 3.3 is a summary table of the results 

performing CC algorithm and Plaid model, we only list the first two biclusters.  
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Chapter 4  

Proposed Multiple-objective Clustering Approach  

– Generalized Compound Biclustering Algorithm 

We generalized the original Cheng and Church algorithm, representing the objective 

function in the form of compound clustering where it can be represented as the linear 

combination of different objective functions with regards to rows and columns, and compare it to 

the original CC algorithm on the gene expression dataset and the simulated dataset.  

 

4.1 Existing Method with objective function 

Cheng and Church (2000) 

 Cheng and Church (2000) were the first to introduce biclustering to gene expression 

analysis. The algorithm searches for constant values, rows or columns, where they define a score 

for each candidate bicluster. The objective function – the mean square residue score (MSRS) is 

defined as: 

Objective Function: 

𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑅! 𝑎!!

!∈!,!∈!

=
1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!∈!,!∈!

 

where 𝑎!" ,𝑎!", and 𝑎!" are defined as 

𝑎!" =
1
𝐼 𝑎!"

!

!!!
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𝑎!" =
1
𝐽 𝑎!"

!

!!!

 

𝑎!" =
𝑎!"

!
!!!

!
!!!

𝐼𝐽  

They are the row and column means and the mean in the submatrix (I,J). A submatrix 𝐴!" is 

called a 𝛿 − 𝑏𝑖𝑐𝑙𝑢𝑠𝑡𝑒𝑟 if 𝐻 𝐼, 𝐽 ≤ 𝛿 for some 𝛿 ≥ 0.  

Cheng and Church assume that genes conditions pairs in a good has constant expression 

level, and row column effects. After removing row column, bicluster averages, the residual 

should be as small as possible (Tanay et al., 2004). The subset is called a cluster if the score is 

below a level 𝛿.   

 

4.2 Representation of the objective function in the form of compound clustering  

We write and prove the objective function in Cheng and Church’s algorithm written as below: 

𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!∈!,!"#

 

=
1
𝐼 |𝐽| [ 𝑎!" − 𝑎!")+ 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!"#,!"#

 

=
1
𝐼 |𝐽| [ 𝑎!" − 𝑎!")+ 𝑎!" − 𝑎!" − (𝑎!" − 𝑎!")

!

!"#,!"#

 

=
1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

!

!"#,!"#

 



	

50 
	

=
1
𝐼 [

1
𝐽 𝑎!" − 𝑎!"

!

!"#

]
!∈!

+
1
|𝐽| [

1
𝐼 𝑎!" − 𝑎!"

!]
!"#!

+
1
𝐼 |𝐽| 𝑎!" − 𝑎!"

!

!"#,!"#

 

=
1
𝐼 𝑉𝑎𝑟 𝑅𝑜𝑤

!

+
1
|𝐽| 𝑉𝑎𝑟 𝐶𝑜𝑙𝑢𝑚𝑛

!

+
1
𝐼 |𝐽| 𝑎!" − 𝑎!!

!

!"#,!"#

 

= 𝑀𝑉𝐴𝑅 𝑅𝑜𝑤 +𝑀𝑉𝐴𝑅 𝐶𝑜𝑙 + 𝑉𝐴𝑅(𝑜𝑣𝑒𝑟𝑎𝑙𝑙) 

where row variance is defined as 

𝑉𝑎𝑟 𝐼, 𝐽 = 𝑉𝑎𝑟(𝑅𝑜𝑤) =
1
𝐽 𝑎!" − 𝑎!"

!

!"#

 

Column variance is defined as 

𝑉𝑎𝑟 𝐼, 𝐽 = 𝑉𝑎𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 =
1
|𝐼| 𝑎!" − 𝑎!"

!

!"#

 

 

4.3 Generalization of Cheng and Church Algorithm 

We generalize the objective function in Cheng and Church (2000) by representing the 

objective function in the form of compound clustering with the objective function in terms of 

rows and objective function in terms of columns as below: 

𝐻 𝐼, 𝐽 !"#"$%& = 𝜆 ∗
1
𝐼 𝐽 𝑎!" − 𝑎!"

! +
!"#,!"#

1− 𝜆 ∗
1
𝐼 𝐽 𝑎!" − 𝑎!"

!

!"#,!"#

 

= 𝜆 ∗𝑀𝑉𝐴𝑅 𝑅𝑜𝑤 + 1− 𝜆 ∗𝑀𝑉𝐴𝑅(𝐶𝑜𝑙) 
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where the parameters 𝜆 is not fixed. 

The goal is to search for the submatrices with generalized objective function 𝐻 𝐼, 𝐽 !"#"$%& ≤ 𝛿. 

 

4.4 Relationship between the original algorithm and the generalized compound algorithm 

Objective function in Cheng and Church: 

𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!∈!,!"#

 

which after derivation, we can write the objective function in the following intuitive form: 

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

! +
!"#,!"#

1
𝐼 |𝐽| 𝑎!" − 𝑎!"

!

!"#,!"#

 

= 𝑀𝑉𝐴𝑅 𝑅𝑜𝑤 +𝑀𝑉𝐴𝑅 𝐶𝑜𝑙 + 𝑉𝐴𝑅(𝑜𝑣𝑒𝑟𝑎𝑙𝑙) 

The first part is the mean row variance, the second part is mean column variance, and the 

third part is the overall variance of the bicluster matrix.  

Where  

𝑉𝑎𝑟(𝑅𝑜𝑤) =
1
𝐽 𝑎!" − 𝑎!"

!

!"#

 

𝑉𝑎𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 =
1
|𝐼| 𝑎!" − 𝑎!"

!

!"#
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Cheng and Church algorithm adds up the mean row variance, mean column variance and the 

overall variance with fixed parameter 1 in front of each part. 

Objective in the generalized algorithm: 

 We extend the Cheng and Church algorithm by introducing a parameter 𝜆 and express the 

objective function in the form of compound clustering where it’s linear relationship of different 

objective functions in term of rows and column in the form of below: 

𝐻 𝐼, 𝐽 !"#"$%& = 𝜆 ∗
1
𝐼 𝐽 𝑎!" − 𝑎!"

! +
!"#,!"#

1− 𝜆 ∗
1
𝐼 𝐽 𝑎!" − 𝑎!"

!

!"!,!"#

 

= 𝜆 ∗𝑀𝑉𝐴𝑅 𝑅𝑜𝑤 + 1− 𝜆 ∗𝑀𝑉𝐴𝑅(𝐶𝑜𝑙) 

where it’s linear combination of mean row variance and mean column variance with flexible 

parameter 𝜆. 

 

4.5 Evaluation Measurements 

4.5.1 Evaluation of single bicluster Measures 

Variance (VAR)  

Hartigan used bicluster variance as a coherence measure, where the goal is to minimize 

the sum of bicluster variances 

𝑉𝐴𝑅 𝐼, 𝐽 = 𝑎!" − 𝑎!" !
!

!∈!,!∈!

 

The smaller the variance is, the more coherent the bicluster is, and better its quality. 
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Mean Squared Residue (MSR) 

Cheng and Church defined the mean square residue score as below, and he used the MSR 

to access the quality of biclusters. Cho et al. also used the residue as the measure to evaluate the 

homogeneity of a bicluster. 

 

𝐻 𝐼, 𝐽 =
1
𝐼 |𝐽| 𝑟 𝑎!" !

! =
!∈!,!∈!

1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!" !

!

!∈!,!∈!

 

The lower the mean squared residue, the stronger the coherence exhibited by the bicluster, and 

better its quality.  

 

Constance and coherence Variance  

The variance is defined by (Sebastian Kaiser, 2011) building on the work by Madeira and 

Oliveira (2004). The Constance variance of rows returns the corresponding variance of rows as 

the average sum of Euclidean distances between all rows of the bicluster denoted as x: 

𝑉𝐴𝑅 =
1

𝑛𝑟𝑜𝑤 𝑥 ∗ (𝑛𝑟𝑜𝑤 𝑥 − 1)
1

𝑛𝑐𝑜𝑙 𝑥 𝑥 𝑖, 𝑘 − 𝑥 𝑗, 𝑘 !

!"#$ !

!!!

!"#$(!)

!!!

!"#$(!)

!!!

 

Similarly, the Constance variance of columns returns the corresponding variance of columns as 

the average sum of Euclidean distances between all columns of the biclusters, 
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and the Constance variance of the bicluster returns the weighted mean of row and column 

calculation. The variance here is a coherence measurement, it measures how much coherent a 

bicluster is. The lower the value is, the more coherent or constant the bicluster is.  

 

4.5.2 Evaluations of the overall quality of biclustering with k biclusters 

Overall Variance 

Hartigan (1976) introduced the partition-based algorithm called direct biclustering, and 

used variance to evaluate the quality of each bicluster. The quality of the resulting biclustering 

with K biclusters is evaluated by the overall variance of the K biclusters: 

𝑉𝐴𝑅 𝐼, 𝐽 ! = 𝑎!" − 𝑎!"
!

!∈!,!∈!

!

!!!

 

 

Average residue 

Yang et al. (2003) used the average residue to access the overall quality of a biclustering 

with K biclusters 

1
𝐾 𝐻 𝐼, 𝐽 !

!

!!!

 

=
1
𝐾

1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!" !

!

!∈!,!∈!

!

!!!
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Total Squared Residue 

Cho et al. (2004) used the mean squared residue score defined by Cheng and Church 

(2000) to evaluate the homogeneity of a bicluster, and used the total squared residue which is the 

sum of the squared residues of each bicluster to evaluate the overall quality of biclustering with 

K biclusters. 

𝐻(𝐼, 𝐽)
!,!

 

=
1
𝐼 |𝐽| 𝑎!" − 𝑎!" − 𝑎!" + 𝑎!"

!

!∈!,!∈!!,!

 

 

4.6 Comparison on Gene Expression Data Set 

4.6.1 Data 

The microarray dataset is a subsample of the Saccharomyces Cerevisiae organism 

(Yeast), which contains 419 rows (Genes) and 70 columns (Conditions/Expression levels).  

 

4.6.2 Determination of the parameter 𝝀 

 The key is to determine the parameter 𝜆 in the compound clustering. The generalized 

algorithm searches for the submatrices that satisfied 𝐻 𝐼, 𝐽 !"#"$%& ≤ 𝛿. We set the threshold 𝛿 

to be 0.02 and 0.05 and searches for the best combination of 𝜆 using the evaluation criteria 

discussed above. Once we find the best combination of the number of clusters and the 
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parameters, we will compare the generalized algorithm to the original CC algorithm in both 

scenarios to see the performances. Table 1 and table 2 are the measurements of biclustering 

results when 𝛿 is 0.05 and 0.02. Figure 1 and figure 2 are the corresponding efficiency plots of 

the scenarios.  

 

  Table 4.1 Measurements of biclustering result when 𝜹 = 𝟎.𝟎𝟓 

𝝀 Number of 
Biclusters 

Overall 
Variance 

Total Squared 
Residue 

Average 
Residue 

0.1 16 0.93973337 0.59434673 0.037146671 

0.2 15 0.86389596 0.5314821 0.03543214 

0.3 17 1.05989824 0.56961205 0.033506591 

0.4 18 1.10170686 0.61168484 0.033982491 

0.5 16 0.97374735 0.57314383 0.035821489 

0.6 14 0.91044969 0.4701282 0.033580586 

0.7 16 1.12046176 0.502107165 0.031381698 

0.8 13 1.12213149 0.45602933 0.035079179 

0.9 12 1.4115522 0.44326254 0.036938545 

 

 

Table 4.2 Measurements of biclustering result when 𝜹 = 𝟎.𝟎𝟐 

𝝀 Number of 
Biclusters 

Overall 
Variance 

Total Squared 
Residue 

Average 
Residue 

0.1 38 0.99646542 0.512536523 0.013487803 

0.2 37 0.9209575 0.471540078 0.012744326 

0.3 39 0.94096289 0.510466647 0.013088888 

0.4 38 0.92478016 0.474831769 0.012495573 
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0.5 40 0.98449448 0.50764566 0.012691142 

0.6 39 1.01786132 0.474742634 0.012172888 

0.7 37 1.10057987 0.441356481 0.011928554 

0.8 37 1.29950443 0.460428119 0.012444003 

0.9 31 1.49734192 0.3777463 0.012185365 

 

4.6.3 Efficiency plots 

 

Figure 4.1 Efficiency plot of biclustering result when 𝜹 = 𝟎.𝟎𝟓 
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Figure 4.2 Efficiency plot of biclustering result when 𝜹 = 𝟎.𝟎𝟐 

 

4.6.3 Results 

Table 4.3 Summary of the biclustering results from the generalized CC algorithm 

𝝀 Total Number of 
Biclusters 

Objective Function 

Criterion Threshold 

𝑯 𝑰, 𝑱 ≤ 𝜹 

0.2 37 
𝛿 = 0.02 

0.4 38 

0.2 15 
𝛿 = 0.05 

0.6 14 

 

Table 3.4 is the summary of results performing the generalized CC algorithm represented 

in the form of compound clustering. In order to find the best combination of parameter 𝜆 and 

number of biclusters, we decided to set the threshold 𝛿 to be 0.02 and 0.05 respectively and 
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searches for the biclusters with our generalized objective function to satisfy 𝐻 𝐼, 𝐽 !"#"$%& ≤ 𝛿. 

We decide the number of bicluster number and the parameter 𝜆 combination based on the 

evaluation criteria we found above. As we all know, a larger cluster number gives the less 

informative and meaningful result. Therefore, once we set 𝛿 to be 0.02 and 0.05 and we need to 

find 𝜆 that yields the smallest number of biclusters. Based on the results, we decided to choose 

𝜆 = 0.2 with a corresponding bicluster number 37 when 𝛿 is 0.02, and 𝜆 = 0.6 with a 

corresponding bicluster number 14 when 𝛿 is 0.05. We will compare the generalized algorithm 

to the original CC algorithm in both scenarios when the threshold 𝛿 is set to be 0.02 and 0.05. 

 

Table 4.4 Comparison performances on single biclusters of the generalized CC algorithm 
to the Original CC algorithm (𝜹 = 𝟎.𝟎𝟐) 

Algorithm 
Total 

Number of 
Bicluster 

Bicluster # 
Standard  

Deviation 

Coherence 

Variance 

Mean 
Square 
Residue 

CC 

(𝛿 = 0.02) 
20 

1 0.261819766 0.8166902 0.01977323 

2 0.23719277 0.6728342 0.01999681 

3 0.303272485 0.7636795 0.01993836 

4 0.217695085 0.5523057 0.01997881 

5 0.251900893 0.5519045 0.01951768 

Generalized 
CC 

(𝛿 = 0.02, 
𝜆 = 0.2) 

37 

1 0.150432144 0.4424418 0.013821774 

2 0.147961414 0.4193504 0.016383526 

3 0.148267731 0.3704083 0.015464489 

4 0.166964487 0.3637941 0.014766713 

5 0.151528446 0.3609276 0.014394898 
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Table 4.5 Comparison performances on single biclusters of the generalized CC algorithm 
to the Original CC algorithm (𝜹 = 𝟎.𝟎𝟓) 

Algorithm 
Total 

Number of 
Bicluster 

Bicluster # 
Standard  

Deviation 

Coherence 

Variance 

Mean 
Square 
Residue 

CC 

(𝛿 = 0.05) 
10 

1 0.311913193 1.3139724 0.0497105 

2 0.264815577 1.0753153 0.04955709 

3 0.377244788 1.0987554 0.04965742 

4 0.381239636 1.1234724 0.04989543 

5 0.310587588 0.8215469 0.0474674 

Generalized 
CC 

(𝛿 = 0.05, 
𝜆 = 0.6) 

14 

1 0.246740937 1.0131388 0.04200287 

2 0.268741214 0.8524074 0.03202411 

3 0.248631897 0.7375823 0.03954227 

4 0.259087823 0.6830453 0.03312338 

5 0.275722197 0.6709196 0.02952475 

Table 4.6 Comparison of the overall quality of the resulting biclustering of CC algorithm 
and generalized CC algorithm of K biclusters 

𝜹 Algorithm 
Overall 

Variance 

(Hartigan, 1972) 

Total Squared 
Residue 

(Cho et al., 
2004) 

Average 

Residue 

(Yang et al., 
2002) 

0.02 

CC 

 
2.03504914 0.38032461 0.019016231 

Generalized 
CC 0.9209575 0.471540078 0.012744326 

0.05 

CC 

 
1.12123431 0.48121408 0.048121408 

Generalized 
CC 0.91044969 0.4701282 0.033580586 
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Table 4.4 and table 4.5 are the biclustering results of the two algorithm comparing on 

single biclusters using three evalution criteria, and table 4.6 are the biclustering results of the two 

algorithm comparing on the overall performance using the three overall biclustering quality 

measurements. The results show that generalized CC algorithm overall performs better than the 

original CC algorithm in both scenarios when the threshold 𝛿 is set to be 0.02 and 0.05. 

 In conclusion, we compare the two methods using three measurements, variance Hartigan 

(1976) used in his direct clustering, the mean square residue and the constant and coherence 

variance defined by Sebastian (2011) to evaluate the single bicluster. Table 4.4 and table 4.5 are 

the evaluation results of the three measures comparing the two methods. The result shows that 

the generalized CC algorithm has better results than the original CC algorithm overall evaluating 

single biclusters in both scenarios when the threshold 𝛿 is 0.02 and 0.05. 

We used the overall variance, the average residue and the total squared residue to 

evaluate the overall quality of resulting biclustering with K biclusters (where K is the total 

number of biclusters found) shown in table 4.6. Table 4.6 shows that the generalized has better 

result (smaller in all three evaluations) than the original CC in both scenarios when the threshold 

𝛿 is set to be 0.02 and 0.05. 

 

Now we plot the profile plot to see the patterns those algorithms generate: 
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Figure 4.3 Profile plot of CC algorithm by Cheng and Church (2000) (expression levels of 

conditions across their genes) 
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Figure 4.4 Profile plot of the novel generalized CC algorithm (expression levels of 

conditions across their genes) 
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Heatmap 

 

Figure 4.5 Local and global heatmap of original CC algorithm 

 

Figure 4.6 Local and global heatmap of generalized CC algorithm 

From the heatmaps of the three algorithms, we can see that the original and the 

generalized CC algorithms have the bicluster with same color block than the Plaid model. 
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4.7 Comparison of the generalized CC and the original CC algorithm on the simulated data  

4.7.1 Data 

 The data matrix consists of 400 observations, 20 rows and 20 columns randomly 

generated by binomial distribution with parameters 𝑛 = 50 and 𝑝 = 0.4. Data information is 

summarized below. We perform both the original CC algorithm and the generalized CC 

algorithm on the data and the result is shown and summarized in Table 4.7. 

Table 4.7 Summary of the simulated data 

 Rows Col Observation Distribution 

Simulation 20 20 400 Binom (50, 0.4) 

 

 

4.7.2 Result 

Table 4.8 Summary of the biclustering result of the original and generalized CC algorithm 

Algorithm Parameter Objective Function Total Number of 
Bicluster 

CC 𝛿 = 1.5 𝐻 𝐼, 𝐽 ≤ 𝛿 5 

Generalized CC 
𝛿 = 1.5 

𝜆 = 0.3 
𝐻 𝐼, 𝐽 !"#"$%& ≤ 𝛿 5 

 

Table 4.8 is the summary result of the generalized CC algorithm and the original CC 

algorithm using the simulated dataset. The threshold is set to be 1.5, and we chose the parameter 

𝜆 is in the generalized algorithm to be 0.3 using the same method discussed.  



	

66 
	

Table 4.9 Comparison performances on single bicluster of the generalized CC algorithm to 
the original CC algorithm on the simulated data set  

Algorithm 
Total 

Number of 
Bicluster 

Bicluster # 
Standard  

Deviation 

Coherence 

Variance 

Mean 
Square 
Residue 

CC 5 

1 1.961859 2.678275 0.9755556 

2 2.018316 2.766359 1.3024 

3 2.107773 2.802292 1.303819 

4 2.740438 3.364539 1.345 

5 3.00458 2.928289 1.4625 

Generalized 
CC 5 

1 1.266557144 1.948807 1.13194444 

2 1.321398502 1.682047 0.53515625 

3 1.452368755 1.881989 0.765625 

4 1.802775638 1.846407 0.40277778 

5 1.384437431 1.343398 0.05555556 

 

Table 4.10 Comparison of the overall quality of the resulting biclustering of CC algorithm 
and generalized CC algorithm of the K biclusters (K=5) on the simulated data set 

Algorithm 

Overall Variance 

𝑉𝑎𝑟 𝐼, 𝐽 !

!

!!!

 

(Hartigan, 1972) 

Total Squared 
Residue 

𝐻(𝐼, 𝐽)
!,!

 

(Cho et al., 2004) 

Average 

Residue 

1
𝐾 𝐻 𝐼, 𝐽 !

!

!!!

 

(Yang et al., 2002) 

CC 

 
28.9027 6.389275 1.277855 

Generalized 
CC 10.626303 2.89105903 0.578211806 
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4.7.3 Profile Plot 

  

 

Figure 4.7 Profile plots of biclusters of CC algorithm and generalized CC algorithm across 

rows and columns on simulated dataset 

Table 3.6 summarized the result of performing the original CC algorithm and the 

generalized CC algorithm using the simulated dataset setting the threshold 𝛿 to be 1.5. We use 

the same method to determine the parameter 𝜆. The two algorithms generate same number of 

biclusters. The result shows that the biclusters generated by the generalized CC algorithm is 
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more coherent than the biclusters generated by the original CC algorithm which is consistent 

with the result we got from the microarray dataset. 

 

4.8 Stock Market Pattern Detection using Biclustering Technique 

Biclustering technique has been popularly and widely applied to microarray gene 

expression data to explore gene and expression level combinations and search for interpretable 

biological patterns. We now apply biclustering technique on financial data trying to find patterns 

using financial stock data. In biology, we have microarray gene expression data matrix consists 

of genes as rows and its expression levels (conditions) as columns. For financial data, most 

commonly, the data matrix consists of stocks as row and time as column. We apply biclustering 

technique on financial log return data clustering the stock on both time and stock price to detect 

the patterns of stocks that have same pattern over a subset of time points, which gives us more 

information about the financial market.  

 

4.8 Pattern Detection of Bear and Bull Stock Market using Biclustering Technique 

4.8.1 Data 

We cluster the all the historical log return of daily close price of Dow Jones Industrial 

Index Average (DJIA) index available from yahoo finance to analyze the pattern of bear and bull 

market using biclustering. Dow Jones Industrial Index is comprised of 30 industrial companies’ 

stock market representing about fifth of the total value of the US stock market (Engle and Patton, 

2000). We chose Dow Jones Industrial index because it represents large and well-known U.S. 
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companies, and it also covers all industrials with exception of transportation and utilities. We 

cluster the data based on day level.  

The earliest date available traces back to 3 Jan 2007, and it is documented that we were 

going through bear market from Jan 2000 to Dec 2010 (132 months/ 11 years) and we were 

going through bull market from Jan 2011 to Dec 2014 (48 months/ 4 years) (Figure 4.9). So our 

data ranges from 3 Jan 2007 to 31 Dec 2014 (8 years/ 96 months) as the earliest data we can get 

from Yahoo finance is from 3 Jan 2007. This period we chose for our analysis include both bear 

market period and bull market period. Our data contains 30 stocks (Dow Jones Industrial index 

has 30 components) over 2013 trading days (3 Jan 2007 to 31 Dec 2014), detailed data 

description is summarized in table 4.12 below. Log return is used in the analysis instead of stock 

closing price.  

Table 4.11 Dow Jones Industrial Average Index (DJI) top components 

Company Ticker Industry Weight (%) 

Goldman Sachs Group Inc GS Financials 6.72 

3M Co MMM Industrials 6.28 

Home Depot Inc HD Consumer Services 5.23 

Intl Business Machines Corp IBM Technology 5.19 

McDonald’s Corp MCD Consumer Services 5.15 

Boeing Co BA Industrials 5.00 

Unitedhealth Group Co UNH Health Care 4.79 

Travelers Cos Inc TRV Financials 4.45 

Johnson & Johnson JNJ Health Care 4.34 

Apple Inc. AAPL Technology 4.05 

 



	

70 
	

 

Figure 4.8 Dow Jones Industrial Average Historical Trends 

Source: Graph created by Guggenheim Investments using data from dowjones.com 

 

Table 4.12 Data Summary 

Symbol Time Trading Days Type 

DJI 

(30 stocks) 

2007/1/3-2010/12/31 1007 Bear Market 

2011/1/3-2014/12/31 1006 Bull Market 

 

4.8.2 Analysis 

 Biclustering analysis on stock data enables us to find a subset of stocks that exhibit the 

same price pattern over a subset of disjoint time points, which gives us more information about 

the stock market. The analysis consists of two parts. First, we performed biclustering analysis on 
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bear market ranging from 2007-01-03 to 2010-12-31 and bull market ranging from 2011-01-03 

to 2014-12-31 separately and compare the patterns of both market from the local biclustering 

pattern as well as the biclustering distribution plots. Secondly, we performed biclutering analysis 

on the entire time series ranging from 2007-01-03 to 2014-12-31 and compare the distribution of 

bear market and bull market. Finally, we perform biclustering analysis on our current market to 

detect our current market pattern and therefore infer current/future market type. We selected two 

time periods to analyze current market pattern: 2015-01-05 to 2016-02-23 (Now) and 2015-05-

21 (Market most recent peak) to 2016-02-23 (Now). We detect current market pattern and 

distribution on both periods to infer our current market type.  

 

Clustering Bear Market and Bull Market Separately  

Bear market local biclustering patterns from 2007-01-03 to 2010-12-31 
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Figure 4.9 Biclustering local pattern of bear market 

 

 

Figure 4.10 Biclustering Distribution of Bear Market from 2007-01-03 to 2010-12-31 
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Table 4.13 Summary of biclustering result on bear market 

Bear Market 2007-01-03 to 2010-12-31 

Bicluster # Trading Days Stocks Ticker 

1 28 days 

Chevron CVX 

IBM IBM 

Johnson & Johnson JNJ 

Coca-Cola KO 

McDonald’s MCD 

3M  MMM 

Merck MRK 

Procter & Gamble PG 

United Technologies UTX 

Verizon VZ 

Wal-mart WMT 

Exxon Mobil XOM 

2 16 days 

Boeing BA 

Disney DIS 

General Electric GE 

Goldman Sachs GS 

Home Depot HD 

Intel INTC 

Microsoft MSFT 

Pfizer PFE 

Travelers TRV 

3 21 days 
Apple AAPL 

American Express AXP 
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Caterpillar CAT 

E I du Pont de 
Nemours and Co DD 

JPMorgan Chase JPM 

UnitedHealth UNH 

 

Bull Market Local Biclustering Patterns from 2011-01-03 to 2014-12-31 

 

 

Figure 4.11 Biclustering local pattern of bull market 
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Figure 4.12 Biclustering Distribution of Bull Market from 2011-01-03 to 2014-12-31 

 

Table 4.14 Summary of biclustering result on bull market 

Bull Market 2011-01-03 to 2014-12-31 

Bicluster # Trading Days Stocks Ticker 

1 35 days 

American Express AXP 

Caterpillar CAT 

E I du Pont de 
Nemours and Co DD 

Disney DIS 

IBM IBM 

Johnson & Johnson JNJ 

Coca-Cola KO 

McDonald’s MCD 
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3M MMM 

Merck MRK 

Pfizer PFE 

 Procter & Gamble PG 

Travelers TRV 

United Technology UTX 

Verizon VZ 

Wal-mart WMT 

2 34 days 

Boeing BA 

Cisco CSCO 

Chevron CVX 

General Electric GE 

Home Depot HD 

Intel INTC 

Nike NKE 

Visa V 

Exxon Mobil XOM 

3 94 days 

Apple AAPL 

Goldman Sachs GS 

JPMorgan Chase JPM 

Microsoft MSFT 

UnitedHealth UNH 
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Clustering the entire time series from 2007 to 2014 

 

Figure 4.13 Biclustering distribution on the entire time series from 2007-01-03 to 2014-12-

31 

 

Current Market Type Analysis 

Table 4.15 Summary of current market data 

Symbol Start End Trading Days Type 

DJIA 

2015-01-05 
2016-02-23 

(Now) 
286 Current 

2015-05-21 

(Market most recent 
peak) 

2016-02-23 

(Now) 
191 Current 
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Figure 4.14 Biclustering local patterns of current market from 2015-01-05 to 2016-02-23 
(Now) 
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Figure 4.14 Biclustering distribution of current market from 2015-Now 

 

Figure 4.15 Biclustering distribution of current market from 2015-05-21 (market most 

recent peak) to 2016-02-23 (Now) 
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Table 4.16 Summary of biclustering results on current market 

Bicluster # 
Current Market 

2015-01-05 to 2016-02-23 2015-05-21 to 2016-02-23 

1 

AXP GE 

CSCO HD 

GS IBM 

HD JNJ 

IBM JPM 

JNJ KO 

JPM MCD 

KO MMM 

MMM MSFT 

MSFT PFE 

PFE TRV 

TRV UTX 

UTX V 

WMT WMT 

2 

CAT 
AXP 

CVX 
BA 

DD 
CSCO 

DIS 
CVX 

GE 
DIS 

MCD 
GS 

PG 
PG 

VZ 
XOM 

XOM 
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3 

BA 
AAPL 

INTC 
DD 

MRK 
INTC 

NKE 
NKE 

UNH 
UNH 

V 
VZ 

 

 

Interpretation 

 We performed two analysis, ran the biclustering analysis on bear and bull markets 

separately and ran the biclustering analysis on the entire time series ignoring bear and bull, 

compare the distribution of bear and bull market. Finally, we infer our current market type by 

detecting the patterns of current market.  

 From the results of both biclustering analysis of bear and bull market separately and on 

the entire time series, the same conclusion can be made. From the local biclustering patterns as 

well as the distribution plots, the pattern in bear market captures some all time lows with high 

volatility and very little return. The pattern in bull market captures some all time highs with 

small volatility, returns are very stable, swaging around 0. We then ran the biclustering analysis 

on our current market, we chose two time periods, from Jan 05 2015 to Feb 23 2016 and from 

market’s most recent peak May 21 2015 to Feb 23 2016 (Now), we see that market was very 

stable at the beginning of 2015, and then pattern captures some deep lows around -0.04 in the 

second half of 2015 till now with increasing volatility, we infer that our current market has 

shown signs of bear market.  
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 Figure 4.14 and figure 4.15 are the distribution plots of current market on both periods. 

Both distribution plots show that Cluster 3 in blue seems to be worst impacted, which means that 

we should avoid those stocks in cluster 3 in the portfolio of investment, e.g., INTL, AAPL, and 

etc. Table 4.13 and table 4.14 are the summary of biclustering results of the bear market and the 

bull market respectively, it listed stocks in each bicluster, and we find that in each bicluster, most 

of the stocks are the top components of Dow Jones Industrial Index listed in table 10. Table 4.16 

summarized the biclustering result on our current market. 

 

4.9 Other Application of Biclustering in Finance 

The prediction of stock market has always been a challenge for many researchers because 

the market is highly complicated and dynamic. In the past two decades, we have gone through 

two big financial crises which have brought us the attention that it is necessary to study the stock 

market and find the patterns. As Mark Twain often quoted: “History does not repeat itself, but it 

does often rhythm”. Technical analysis is one kind of method summarizing the market and 

forecasting the future trend by analyzing the historical stock prices and trading volume of stock 

utilizing financial technical indicators. Analyzing the stock market using technical analysis with 

financial indicators is very important to uncover the hidden patterns and help traders to make 

important trading decisions (i.e., buy, sell or no action). Traders may be interested in a small 

number of technical indicators which provide the most useful prediction to the market to help 

make trading decisions Biclustering can be used to find local patterns in the historical data where 

different patterns contain a subset of most important technical indicators (Xue et al., 2015). 

Biclustering uncovers the local coherent patterns in stock data through finding the subset of 
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indicators which have similar behaviors in a subset of turning points (trading days) to help the 

analysis of stock market.  

Huang et al. (2015) and Xue et al. (2015) propose the novel use of biclustering method to 

discover local trading patterns containing a subset of technical indicators from historical 

financial time series which are the first attempts to use biclustering on financial time series data 

instead of gene expression data. The patterns found can be transformed into trading rules. Xue et 

al. (2015) developed Biclustering-based Intelligent System (BIC) and applied it to find patterns 

and use those patterns in the short term prediction of stock price. Huang et al. (2015) proposed 

method biclustering algorithm and the K nearest neighbor (BIC-K-NN) in which they classified 

the trading patterns found by biclustering into three trading actions (sell, buy, and no-action 

signals) with respect to the maximum support and K nearest neighborhood (K-NN) method is 

applied to classification of trading day in the testing period. We will give brief introduction how 

they use biclustering to uncover the local trading patterns containing a subset of technical 

indicators.  
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Chapter 5 

Finding Historical Periods Resembles Current Stock Market Pattern 

 This chapter we first identified historical time periods where stock prices exhibit similar 

behavior resembles current market pattern and thus we infer the potential market trend and 

whether the market is going for recession/depression. In the second part of the analysis, we zoom 

into each financial sector to see which sectors will be heavily impacted by the impending 

recession/depression. 

 

5.1 Data 

In the analysis, we analyzed the S&P 500 index over the last 3 months (90 trading days) 

from 14 October 2015 to 23 February 2016, and we want to identify historical none overlapping 

3 month periods where S&P 500 index exhibit similar behavior to our current market pattern. We 

selected S&P 500 index because it is considered as one of the best representations of the U.S. 

stock market and U.S. economy. The data information is summarized below in table 5.1. 

Table 5.1 Summary of data 

Data Length Start Date End Date 
Duration/ 

Trading days 

Historical 10 years 17-Feb-06 23-Feb-16 2520 

Current 3 month 14-Oct-15 23-Feb-16 90 
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5.2 Measure of Similarity 

There is a wide selection of similarity measurements. We chose both the most commonly 

used Euclidean distance and a correlation-based distance Pearson correlation distance to measure 

the similarity of two time series, the current time series (query time series) to any historical time 

series (reference series).  

Euclidean Distance 

𝑑!"#(𝑥! , 𝑥!) = (𝑥!" − 𝑥!")
!

!!!

!

 

the smaller the distance, the more similar the two time series are. 

Pearson Correlation Distance 

𝑑!"## 𝑥! , 𝑥! =
1
2 (1− 𝑐𝑜𝑟𝑟 𝑥,𝑦 ) 

=
1
2 (1−

𝑥! − 𝑥 𝑦! − 𝑦!
!!!

𝑥! − 𝑥 !!
!!! 𝑦! − 𝑦 !!

!!!
) 

the closer to 0 the correlation distance, the more similar the two time series are. 

 

Monotone relationship between Pearson correlation distance and Euclidean distance 

Proof: 

Assume that x and y are normalized time series 
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Pearson Correlation: 

𝑟 =
𝐶𝑜𝑣(𝑥,𝑦)
𝛿!𝛿!

=
𝐸(𝑥 − 𝐸𝑥)(𝑌 − 𝐸𝑦)

𝛿!𝛿!
= 𝐸 𝑥𝑦 =

∑𝑥𝑦
𝑛  

⇒ 𝑟 =
∑𝑥𝑦
𝑛  

Euclidean Distance: 

𝑑 = ∑ 𝑥! − 𝑦! ! 

= ∑𝑥!! + ∑𝑦!! − 2∑𝑥!𝑦! 

= 2𝑛 − 2∑𝑥!𝑦! 

⇒ 𝑑! = 2𝑛 − 2𝑟𝑛 

⇒ 1− 𝑟 =
𝑑!

2𝑛 

⇒
1
2
𝑑!

2𝑛 =
1
2 (1− 𝑟) 

⇒ 𝐷!"## =
1
4𝑛𝐷!"#

!  

where on the left of the equation is Pearson correlation distance and on the right of the equation 

if the Euclidean distance. The two measurements have a monotone relationship with each other. 
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5.3 Results 

Based on the result, we selected the top 7 matches of historical periods measured by both 

the Pearson correlation distance and the Euclidean distance. Both similarity measurements 

generate the same results as they are in a monotone relationship with each other.  

 

Table 5.2 Summary of similar historical time periods to current market pattern 

Match # Start Date End Date 

Pearson 
Correlation-

based 
distance 

Euclidean 
Distance Type 

1 2-Jun-15 7-Oct-15 0.04223565 3.877614 Current 

2 4-Apr-08 11-Aug-08 0.04283016 3.904809 Bear Market 

3 13-May-11 20-Sep-11 0.07475694 5.158824 Bull Market 

4 3-Mar-10 9-Jul-10 0.075816995 5.195272 Bear Market 

5 21-Nov-08 2-Apr-09 0.08489055 5.497366 Bear Market 

6 14-Feb-12 21-Jun-12 0.092341355 5.733544 Bull Market 

7 7-May-07 12-Sep-07 0.096376205 5.857468 Bear Market 

Current 14-Oct-15 23-Feb-16    
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Figure 5.1 Pearson correlation distance top match chart 

 

Figure 5.2 Euclidean distance top match chart 
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Figure 5.3 Historical time periods similar to current market pattern  

Note: Blue – current market pattern 

          Red – identified historical periods 

 

Next we analyze S&P 500 index over the past 30 years from February 27 1986 to current 

(February 23 2016). Same similarity measurements are used as summarized in table 5.5. We 

selected the top 15 most matched historical periods as summarized in table 5.4. 

Table 5.3 Summary of data  

Data Length Start Date End Date Duration 
(trading days) 

Historical 30 years 27-Feb-1986 23-Feb-16 7560 

Current 3 month 14-Oct-15 23-Feb-16 90 
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Results 

 

Figure 5.4 15 top match historical time periods similar to current market pattern (Past 30 
years) 

  

Figure 5.4 is the 15 top-matched historical time periods similar to current market pattern 

over the past 30 years during which we went through two big financial crises. The time window 

covers recent three financial crashes in 1987, 2000 and 2008, so it should be enough to identify 

our current and potential market trend. 
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Table 5.4 Summary of top 15 top match similar historical periods 

Match # Start Date End Date Type 

1 27-Jul-87 1-Dec-87 Bear Market 

2 2-Jun-15 7-Oct-15 Current 

3 4-Apr-08 11-Aug-08 Bear Market 

4 18-May-90 25-Sep-90 Bull Market 

5 13-Jun-01 24-Oct-01 Bear Market 

6 6-Jan-94 16-May-94 Bull Market 

7 10-Apr-02 15-Aug-02 Bear Market 

8 9-Jun-98 14-Oct-98 Bull Market 

9 31-Oct-02 12-Mar-03 Bear Market 

10 13-May-11 20-Sep-11 Bull Market 

11 3-Mar-10 9-Jul-10 Bear Market 

12 21-Nov-08 2-Apr-09 Bear Market 

13 14-Feb-12 21-Jun-12 Bull Market 

14 7-May-07 12-Sep-07 Bear Market 

15 19-Jul-00 22-Nov-00 Bear Market 

Current 14-Oct-15 23-Feb-16  
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Table 5.5 Similarity measurements of 15 top match historical periods to current 

Match # Euclidean Distance Pearson Correlation 
Distance 

1 3.468788 0.033799135 

2 3.877614 0.04223565 

3 3.904809 0.04283016 

4 4.322032 0.0524718 

5 4.409774 0.054623885 

6 4.4628 0.055945455 

7 4.838296 0.06575593 

8 4.903195 0.06753179 

9 5.068073 0.072149915 

10 5.158824 0.07475694 

11 5.195272 0.075816995 

12 5.497366 0.08489055 

13 5.733544 0.092341355 

14 5.857468 0.096376205 

15 5.898328 0.097725495 

 

5.4 Historical Analogs VS current market pattern  

From the 15 top matched historical periods we found above, the following 8 historical 

periods plotted in red in the figure 5.5 below worth paying attention to because those are when 

we were having bear markets and also those are when the 2000 and 2008 financial crushes 

happened. The blue plot is our current latest 3-month stock price pattern.   
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Figure 5.5 S&P500 Historical analogs VS current pattern over past 30 years from Feb 27 

1986 to Feb 23 2016 

 

Table 5.6 Historical Analog 1987 

March # Start End Type Peak 

1 27-Jul-87 01-Dec-87 Bear Market Aug 25 87 

 

Table 5.7 Historical Analog 2000-2003 

March # Start End Type Peak 

5 13-Jun-01 24-Oct-01 Bear Market Mar 24 00 
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7 10-Apr-02 15-Aug-02 Bear Market 

9 31-Oct-02 12-Mar-03 Bear Market 

15 19-Jul-00 22-Nov-00 Bear Market 

 

Table 5.8 Historical Analog 2007-2009 

March # Start End Type Peak 

3 04-Apr-08 11-Aug-08 Bear Market 

Oct 09 07 12 21-Nov-08 02-Apr-09 Bear Market 

14 07-May-07 12-Sep-07 Bear Market 

 

Table 5.9 Current Market Pattern 

March # Start End Peak 

2 02-Jun-15 07-Oct-15 
May 21 15 

Current 14-Oct-15 23-Feb-16 

 

From figure 5.5, table 5.6, 5.7, 5.8, and 5.9 the results show that history does repeat itself. 

We experienced the two big financial crushes, the 2000 recession from Mar 11 2000 to October 

9 2002, and the 2008 global financial crisis starting from 2007 to 2009. Figure 5.5 shows that our 

current pattern very much similar to the past two historical analogs. The two historical analogs 

share the characteristics of the market reached its peak and then dropping drastically from its 

peak to bottom, and there are several drop downs, each dropping down is lower than the previous 

one. Figure 5.5 also shows that our current market is reaching its latest peak on May 21 2015, 

and it already followed by two small drops happening in the second half of 2015 and early 2016 

in table 5.10, while the most recent drop off (last 3 month) is lower than the previous one in 
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2015. We conclude that our current market has slight shown some similarity of the past historical 

analogs if the market continues with the dropping offs without any signs of going for its new 

high. 

 

5.5 Financial Sectors likely to be heavily impacted by the impending recession 

 In terms of sectors, we analyze all the sectors of S&P500 index during the recent two 

large recessions/sell-offs as well as the current market sell-off (latest peak to now). We then 

represent the results and infer which sectors are most likely to be heavily impacted by the 

impending recession/depression. 

Background of recent two recessions/depressions 

Table 5.10 Summary of recent three financial crises 

Depression 

/Recession 
Occurrence 

Peak 

Date 

Trough 

Date 

Peak to Trough 
/ Duration 

(Trading days) 
Type 

Black 
Monday 

1987 
Oct 19 87 25 Aug 87 Dec 04 87 -34% / 72 Bear 

Market 

Great 
Recession 

Mar 11 00- 
Oct 9 02 24 Mar 00 Oct 09 02 -49% / 638 Bear 

Market 

Global 
financial 

crisis 
2007-2009 09 Oct 07 09 Mar 09 -57% / 356 Bear 

Market 

 

From table 5.10 above, we see that the 2008 global financial crisis is the worst; the 

market declined 57% over 356 trading days. 
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S&P 500 declined 21% on October 19 1987 to 224.84, the largest one-day percentage 

drop in history. 

 

Figure 5.6 S&P 500 time plot during 2007 great recession 

The S&P500 declined 49% (Peak to Trough) from its peak 1527 in March 2000 to its 

bottom 777 in October 2002. 
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Figure 5.7 S&P 500 time plot during 2008 global financial crisis  

The S&P500 declined 57% (Peak to Trough) from its peak 1576 in October 2007 to its 

bottom 676 in March 2009. 

 

Financial Sectors likely be heavily impacted by impending recession 

We analyze SPY index (SPDR S&P 500) whose primary benchmark is S&P500 index 

and it seeks to provide investment results that correspond to the price and yield performance of 

the S&P500 index, and tracks the S&P 500 index. We looked at each sector and infer which 

sectors are likely to be heavily impacted by the impending recession/depression. Table below is 

the top sectors of SPY as of December 31 2015, and we will look at all the sectors in the analysis 

below. 
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Table 5.11 Top sectors of SPY (as of 12/31/2015) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.12 

Past two recessions/Sell-Offs 

Index Duration (Trading days) Peak-To-Trough 

S&P 500 638 -49% 

S&P 500 256 -57% 

 

 

Table 5.13 

Current Sell-Off 

 
Duration 

(Trading days) 
Peak-To-Trough Latest Peak Now 

S&P 500 191 -14% 21-May-2015 23-Feb-2016 

 

Top Sectors Ticker Symbol Weight (%) 

Technology XLK 20.68 

Financials XLF 16.48 

Health Care XLV 15.14 

Consumer Discretionary XLY 12.89 

Industrials XLI 10.06 

Consumer Staples XLP 10.05 

Energy XLE 6.48 

Utilities XLU 2.97 

Materials XLB 2.76 

Telecommunication Services XTL 2.43 
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Table 5.14 

S&P500 Sector stack up during 2000 Great Recession 

Energy Mat. Ind. C. Disc C. Staples HlthCare Fins Tech Telco Utilities 

-43% -32% -45% -32% -34% -30% -38% -82% * -57% 

Note: (*) no data available online 

 

Table 5.15 

S&P500 Sector stack up during 2008 Global Financial Crisis 

Energy Mat. Ind. C. Disc C. Staples HlthCare Fins Tech Telco Utilities 

-58% -61% -63% -58% -34% -41% -83% -54% -51% -49% 

 

Table 5.16 

S&P500 Recent two large Sell-Offs Median 

Energy Mat. Ind. C. Disc C. Staples HlthCare Fins Tech Telco Utilities 

-51% -47% -54% -45% -34% -36% -61% -68% 51% -53% 
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Table 5.17 

S&P500 Current Sell-Off Peak-to-Now 

Energy Mat. Ind. C. Disc C. Staples HlthCare Fins Tech Telco Utilities 

-36% -27% -16% -16% -11% -18% -23% -15% 23% 12% 

 

Table 5.17 shows that Energy and Materials sector have already began to show some 

decline towards the sell-offs as highlighted in green, that may be caused by a continued decline 

in commodity prices and slowing global growth while Industrials sector has not started to show 

and obvious decline. Table 5.16 is the performance of each sector on average (median of the 

recent two recessions/sell-offs). Looking at table 5.16 and table 5.17, we see that Consumer 

Discretionary, Financials, Technology and Utilities sector haven’t fallen as much as they had 

historically in the recent two big recessions which may potentially impacted by the impending 

recession/depression.  
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Chapter 6 

Intraday Pattern of High Frequency Data 

 In this chapter, we will be discussing patterns of financial time series data including the 

financial stock data and high frequency trading data. Financial time series data is characterized 

by many facts, among which volatility clustering is one of the most important characteristics that 

interested many researcher and many volatility models are developed to capture this property of 

financial time series data. Volatilities do cluster, that is small change in price tends to cluster 

together and big changes in price tend to cluster together. We use data on Dow Jones Industrial 

Average (DJIA) to illustrate the volatility clustering property. GARCH type models and its 

variants are able to capture volatility clustering property. Second part, we will discuss the 

intraday pattern of high frequency data. Over the last few decades, high frequency trading (HFT) 

has gained its great usage and popularity in the financial markets. Joe Ratterman, CEO of BATS 

exchange, commented that “Nearly all equity trading in the US today is automated in some 

fashion and can exhibit characteristics that fall under the umbrella label of high frequency 

trading.” Given the popular rise of the high frequency trading and motivated by the 

characteristics of financial time series, we will discuss the intraday pattern of high frequency 

data. High frequency stock trading data traded on New York Stock Exchange (NYSE) is used to 

analyze the intraday pattern.  

 

6.1 Characteristics of Financial Time Series  

Many characteristics about financial time series have been discussed in a lot of studies. In 

this section, we will summarize some of the common facts of financial time series volatility 
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behavior based on different documented studies. Empirically documented facts of financial time 

series are the following: 

Fat/heavy Tails 

The probability distributions of time series returns often exhibit fat tail feature, which is 

also known as excess kurtosis or leptokurtic. If returns are fat tailed, the probability of having 

extreme events, such as very high or very low returns is higher than if it’s normally distributed. 

Heavy tails implies that extreme values are more frequently than expect if the time series is 

normally distributed. Also, the distribution of the time series usually has narrower and higher 

peaks. Most volatility models such as GARCH model take into account this characteristic of the 

time series being fat tailed. This is true whether the underlying shocks are Gaussian or are 

themselves not Gaussian but fat tailed such as t distribution and so on.  

Volatility Clustering 

Financial time series usually exhibit a characteristic known as volatility clustering, also 

called persistence. Specifically, large changes tend to follow large changes and small changes 

tend to follow by small changes as noted by Mandelbrot (1963) This behavior of financial time 

series has been constantly reported in other studies too such as Bailie et al (1996), Chou (1988) 

and Schwert (1989) (Engle and Patton, 2000). The volatility is more likely to be high at time t if 

it was also high at time t-1. In other words, a shock at time t-1 increases not only the variance at 

time t-1 but also the variance at time t. Volatilities cluster in time, in which periods of low 

volatility are followed by periods of low volatility, and periods of high volatility are followed by 

periods of high volatility. We will find evidence of volatility clustering by plotting Dow Jones 
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Industrial Index (Figure 6.2). The GARCH type of models capture this effect very well, they also 

precisely specify how volatility at time t depends on past volatility.  

Mean reversion 

Volatility clustering implies that volatility sometimes is large and sometimes small. Thus, 

a period of high volatility will eventually return to a more normal volatility level and similarly, a 

period of low volatility will be followed by a high volatility period (Engle and Patton, 2000). 

Mean reverting implies that financial time series have their own normal level of volatility, and 

volatility tends to return to that level in the long run. For example, volatility not only spikes 

during financial crisis, but it eventually drops back to approximately as before the crisis. 

Statistical speaking, volatility is often stationary over time.  

Asymmetry 

Asymmetric implies that volatility of financial time series tend to react differently on big 

price increase or big price drop. Generally, bad news generate greater volatility than good news, 

and this phenomenon is also called leverage effect, or sometimes risk premium effect. The 

former story implies that the increase in risk was believed to come from the increased leverage 

induced by a negative shock. The latter story implies that news of increasing volatility reduces 

the demand for a stock because of risk aversion. The consequent decline in stock value is 

followed by the increased volatility as forecast by the news (Engle and Patton, 2000). Black 

(1976), Christie (1982), Nelson (1991), Glosten et al (1993) and Engle and Ng (1993) all find the 

evidence of volatility being negatively related to equity returns (Engle and Patton, 2000).  

Among those properties of financial time series, volatility clustering is the most popular 

topics interested many researchers. There exist volatility clusters, that is to say volatility may be 
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high for certain time periods and low for other periods (Tsay, 2002). To illustrate the 

characteristics of volatility clustering of financial time series, we plot the daily close price and 

log return of Dow Jones Industrial Index from 23 August 2000 to 21 August 2015 with total 

number of 3772 observations. The Dow Jones Industrial Index is comprised of 30 industrial 

companies’ stock market representing about fifth of the total value of the US stock market 

(Engle and Patton, 2000). Figure 1 is the daily close price of the Dow Jones Industrial Index in 

the last 15 years and Figure 6.2 is the log return of the Dow Jones Industrial Index over the same 

period (in the last 15 years). Figure 6.2 shows the evidence of volatility clustering, that is, we see 

that large changes tend to be followed by large changes and small changes tend to be followed 

by small changes. Volatilities are clustered together.  

 

Figure 6.1 The Dow Jones Industrial Index from 23 August 2000 to 21 August 2015. 
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Figure 6.2 Log Returns on the Dow Jones Industrial Index from 23 August 2000 to 21 
August 2015 showing volatility property 

 

Those characteristics of volatility play a very important role in volatility model 

development. Some volatility models were proposed to correct the weakness of the existing 

models because the existing ones may not be able to capture certain volatility characteristics. 

GARCH model captures both the fat tail phenomenon and volatility clustering commonly 

associated with financial time series, it primarily is to model volatility clustering phenomenon. 

Many proposed volatility models assumed that the conditional volatility is affected 

symmetrically by positive and negative shocks. GARCH(1,1) (Engle, 1982; Bollerslev, 1986) is 

commonly used in vast literature due to its simplicity. The key feature is its mean reversion 

imposed by the restriction of 𝛼 + 𝛽 < 1 and its symmetry, that is the magnitude of past returns, 

not the sign of the past returns influences future volatility (Brownlees et al, 2011). However, the 

sign of the innovation may also influence the volatility except for the magnitude (Engle and 

Patton, 2000). Normal GARCH model is not able to capture this. However, the GARCH model 
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can be easily augmented to capture this feature. Models account for asymmetry are Exponential 

GARCH (EGARCH) of Nelson (1991), the Threshold GARCH (TGARCH) (Glosten et al, 1993; 

Zakoian, 1994), also known as GJT-GARCH followed the work of Glosten, Jagannathan, Runkle 

(1993) motivated by EGARCH. Other models accounting for asymmetry are the nonlinear 

GARCH (NGARCH) proposed by Engle (1990) and asymmetric power ARCH (APARCH) by 

Ding et al (1993). Many studies were carried out to compare the performance of those models. 

The simplest asymmetric GARCH model, the threshold GARCH model of Glosten et al (1993) is 

claimed to be often the best forecaster (Brownlees et al, 2011).  

 

6.2 Intraday Pattern of High Frequency Data 

6.2.1 Motivation 

 Financial time series often exhibit volatility clustering property, that is large changes in 

price tend to cluster together, and small changes in price tend together. It was first documented 

by Mandelbert (1963): “ large changes tend to be followed by larges, of either sign, and small 

changes tend to be followed by small changes.” Motivated by the volatility clustering 

characteristic of financial time series, we wonder what is the intraday pattern of high frequency 

data. This chapter includes two parts, first part we will introduce the characteristics of financial 

time series, its asymmetry, mean reversion, volatility clustering and fat tail. Second part, we will 

introduce intraday pattern of high frequency data. Trading data is illustrated to detect notably 

intraday pattern. Standard time series models of volatility – GARCH family models have been 

proven inadequate to model high frequency data where the intraday return dynamics is neglected 

(Andersen and Bollerslev, 1997). Thus Engle’s (2012) Multiplicative Component GARCH 
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model is introduced when applying to high frequency data. Finally, we conclude the chapter by 

applying Citigroup one-minute return data to the Multiplicative Component GARCH model, 

where we observe the same intraday volatility pattern.  

 

6.2.2 Intraday/ Diurnal U-shape Pattern 

 It is widely documented that return volatility varies systematically over the trading day, 

and this pattern is highly correlated with the intraday variation of trading volume and bid-ask 

price (Anderson and Bollerslev, 1997). The empirical evidence on the average intraday stock 

returns dates back to Wood et al. (1985) and Harris (1986), they documented the existence of a 

distinct U-shaped pattern in return volatility over the trading day (Anderson and Bollerslev, 

1997). Volatility is high at the open and close of trading day and low in the middle of the day, 

that’s why the intraday trading activity is documented as U-shape. There are diurnal U-shaped 

patterns in intraday trading activity. Trading volume tends to be very high soon after the market 

opening (9:30 am in local time), volatility calms down during lunch hours and high again before 

the market closes (4pm in local time). These qualitative features are present at the aggregation 

level of one second and one minute (Ito, 2013). We will see later in the example that U-shape 

intraday patterns also exist at the aggregation level of five minute. Ito (2013) explains that 

extreme movements in trading activity in the first hour of trading day may be caused by news 

transmitted over night. Trading activity slows down towards in the middle of the day (lunch 

time) when the overnight information is processed, it picks up again in the afternoon as traders 

rebalance their positions before market closes.  
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6.2.3 Analysis of High Frequency Trading Data 

We perform the analysis using LOBSTER (Limit Order Book System – The Efficient 

Reconstructor) data. LOBSTER is an online limit order book data tool designed with the goal of 

providing researchers with limit order book data. LOBSTER provides “message” and 

“orderbook” file for each active trading day of a selected ticker. Orderbook file: The 'orderbook' 

file contains the evolution of the limit order book up to the requested number of levels. Message 

file: The ’message’ file contains indicators for the type of event causing an update of the limit 

order book in the requested price range. All events are timestamped to seconds.  

We analyze the trading volume (in the number of shares) and number of executions of 

Amazon (AMZN) and Apple (AAPL) stock traded on New York Stock Exchange (NYSE) on 22 

June 2012. Trade volume is a measure of intensity of trading activity. They are a variety of 

volume measures used in the literature including the number of shares traded, dollar volume, 

number of transactions, turnovers (shares traded divided by shares outstanding), and dollar 

turnover (Ito, 2013). We choose two measures to analyze the trading activity, trading volume as 

measured by the number of shares traded and number of executions.  

As mentioned, the raw data set is in tick-format and consists of the record of every trade 

in the sequence of occurrence. The tick-data is irregularly spaced and have multiple transactions 

in one second. The tick-data is aggregated over equally spaced time-intervals. There are total 

number of 269,747 observations and 6 variables (Time, Type, Order ID, Size, Price, Direction) 

in Message file. There are 269,747 observations and 40 variables (Ask Price 1, Ask Size 1, Bid 

Price 1, Bid Price 2,…, in 10 levels) in Order Book file. Here, we aggregate the raw data in tick 
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format by different intervals, 1 minute time interval and 5 minute time interval and describe the 

notably intraday patters.  

The left panel of Figure 6.3 shows the number of executions of Amazon (AMZN) at the 

aggregation interval of one minute during the market open hours of New York Stock Exchange 

(NYSE) (9:30 am to 4pm in local time) on 22 June 2012. The right panel of Figure 6.3 shows the 

trading volume of AMAZON at the aggregation interval of one minute during the market open 

hours on the same date. At the aggregation interval of five minute, there are 78 observations per 

trading day. Likewise, Figure 6.4 shows the number of executions and trading volume of at the 

aggregation interval of one minute. At the aggregation interval of one minute, there are 390 

observations per trading day. Figure 6.3 and Figure 6.4 are the number of executions and trading 

volume of Apple (AAPL) at the aggregation interval of five minute and one minute respectively.  

Figure 6.3-6.6 shows executions and trading volume of Amazon and Apple. We see 

extreme movements in the beginning of the day and end of the day, and the trading activity slows 

down during lunch hour, which exhibit a U-shape of trading activity. We see notably intraday 

pattern from the trading data we have, which coincide with what has been documented the U-

shape in the intraday pattern, and this builds up the result. Figure 6.7-6.8 shows an intraday 

evolution of depth plot at three levels. We clearly observe more volatility soon after the market 

begins (9:30am, official NYSE trading hour) and calms down during lunch hour and becomes 

more volatile before closure (4pm, official NYSE trading hour), showing the same intraday 

pattern. 
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Figure 6.3 Intraday Number of Executions and Trade Volume (5-min interval) for Amazon 

 

 

Figure 6.4 Intraday Number of Executions and Trade Volume (1-min interval) for Amazon 
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Figure 6.5 Intraday Number of Executions and Trade Volume (5-min interval) for Apple 

 

 

Figure 6.6 Intraday Number of Executions and Trade Volume (1-min interval) for Apple 
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Figure 6.7 Intraday Evolution of Depth for Amazon (3 levels) from 9:30am-4pm, official 
NYSE trading hours. 
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Figure 6.8 Intraday Evolution of Depth for Apple (3 levels) from 9:30am-4pm, official 

NYSE trading hours. 

 

Figure 6.7 and Figure 6.8 shows the Evolution of Depth plots for Amazon and Apple stock from 

9:30am – 4pm on 22 June 2012. The plots plot the level up to three (Ask price 1, Ask price 2, 

Ask price 3, Bid price 1, Bid price 2, Bid price 3) giving that the orderbook file contains up to 10 

levels. From the Evolution of Depth plots for both stock, we can see significant big movements 

in trading activity in the beginning and end of the day, and quiet movements in the middle of 

day, which consistent with the pattern detected before.  
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6.3 Multiplicative Component GARCH Model 

The key problem with using GARCH models for intraday data is the intraday pattern 

which can be considered as the seasonality effect (Ghalanos, 2015). The U-shaped intraday 

pattern is observed at the aggregation level of one minute and five minute – big movements in 

the beginning and end of the day and the movements slow down in the middle of the day. 

Ghalanos (2015) reported that for regular sampled intervals (1-min, 5-min), a number of models 

have tried to either “de-seasonalize” the residuals and then fit the GARCH model, for example, 

Flexible Fourier method in Andersen and Bollerslev (1997) or incorporating seasonality into the 

GARCH model in Bollerslev and Ghysels (1996).  

 

5.3.1 Background 

	 Many papers have reported intraday returns related work including Andersen and 

Bollerslev (1997, 1998), Giot (2005), Dacorogna et al (2001), Muller, Dacorogna, and Pictet 

(1996), Engle and Gallo (2006) (Singh et al, 2013). Engle and Sokalska (2012) which is the most 

recent work developing Multiplicative Component GARCH model based on Andersen and 

Bollerslev (1997, 1998). Among those, Andersen and Bollerslev (1997, 1998) is one of the most 

commonly cited studies, where they propose models for 5-minute returns on Deutschemark-

dollar exchange rate and the S&P500 index. Andersen and Bollerslev (1997) build a 

multiplicative model for daily and diurnal volatility. They add the additional component taking 

account of macroeconomic announcements (Engle and Sokalska, 2012). Engle and Sokalska 

(2012) argue that the intra-daily volatility component in Andersen and Bollerslev’s models are 

all deterministic. They then propose the multiplicative component GARCH model based on 
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Andersen and Bollerslev’s model incorporating both the deterministic volatility component and 

stochastic volatility component. They apply the model on a comprehensive sample consisting of 

10-minute returns on more than 2500 US equities. Conventional GARCH approaches were 

argued to be inadequate (Engle and Sokalska, 2012). The intraday return dynamics is neglected 

in standard time series models of volatility which have been proven inadequate when applied to 

high frequency data (Andersen and Bollerslev, 1997). 

 

5.3.2 The Model 

Engle and Sokalska (2012) propose a new way of modeling and forecasting intraday 

returns where the components in the model include both deterministic and stochastic. They 

compose the volatility of high frequency returns into multiplicative components, which can be 

easily interpreted and estimated. The conditional variance is expressed as the product of daily 

diurnal and stochastic intraday volatility components (Engle and Sokalska, 2012). In this section, 

we will give brief introduction to Engle and Sokalska’s (2012) Multiplicative Component 

GARCH model and conclude the chapter by applying the model to 1-minute return of Citigroup 

to capture the intraday volatility pattern. 

Consider the continuously compounded return 𝒓𝒕,𝒊, where 𝒕(𝒕 = 𝟏,… ,𝑻) denotes the day 

and 𝒊(𝟎,… ,𝑵) denotes the regularly spaced time interval at which returns are calculated. The 

current period is {𝒕, 𝒊}. Engle’s (2012) multiplicative component GARCH model for high 

frequency data models the conditional variance as the multiplicative product of daily, diurnal and 

stochastic intraday volatility components. Intraday return process can be described as: 
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𝒓𝒕,𝒊 = 𝒖𝒕,𝒊 + 𝜺𝒕,𝒊 

𝜺𝒕,𝒊 = (𝝈𝒕𝑺𝒊𝒒𝒕,𝒊)𝒛𝒕,𝒊 

where, 

𝝈𝒕 is the daily variance (exogenously determined forecast) component 

𝑺𝒊 is the diurnal variance component in each regularly spaced interval 𝒊 

𝒒𝒕,𝒊 is the stochastic intraday variance component  

𝒛𝒕,𝒊 is the i.i.d (0,1) standardized innovation (white noise). 

The daily volatility component can be estimated in different ways (Engle, 2012). Engle and 

Sokalska (2012) use commercially available volatility forecasts produced daily for each 

company in their analysis. Andersen and Bollerslev (1997, 1998) estimate the daily variance 

component from daily GARCH model. It can also be estimated based on daily realized variance 

(Engle, 2001; Engle and Gallo, 2006). Practically, it can be generated from a daily GARCH 

model. The diurnal (seasonal) part can be estimated as the variance of intraday returns in each 

regularly spaced interval.  

𝑺𝒊 =
𝟏
𝑻

𝜺𝒕,𝒊𝟐

𝝈𝟐

𝑻

𝒕!𝟏

 

Dividing the residuals by the diurnal and daily volatility gives the normalized residuals  

𝜺𝒕,𝒊 = 𝜺𝒕,𝒊/(𝑺𝒊𝝈𝒕) 
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The model is estimated in two stages. First, normalizing the returns by daily and diurnal 

volatility components. Second stage, model the residual volatility as a GARCH(1,1) process. 

𝒒𝒕,𝒊𝟐 = 𝝎+ 𝜶𝜺𝒕,𝒊!𝟏𝟐 + 𝜷𝒒𝒕,𝒊!𝟏𝟐  

 

6.3.3 Data and Results  

 We analyze Citigroup one-minute return data between 2 May and 29 May 2013 (span 

over a month) which includes 19 trading days and no public holiday. We get log return of the 

dataset and we then apply the multiplicative component GARCH model introduced earlier to our 

data. 

 

Figure 6.9 ACF plot of 1-min absolute return of Citigroup in May 2013 
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From Figure 6.9, we can see the regular pattern is very obvious, repeating approximately 

every 390 periods (minutes) which is one trading business day. The volatility is high at the open 

and close of the trading day and low in the middle of the day. The pattern is absolutely consistent 

with what have been documented the U-shape intraday pattern. From this figure, we can also tell 

why conventional GARCH model is not suitable to model high frequency data because general 

GARCH type models can only handle ACF exponentially decay, not the pattern we see in the 

plot.  

From Figure 6.10, we can tell that the diurnal intraday volatility and the total composite 

volatility for the 1-min Citigroup return intraday data also exhibit U-shape pattern, specifically, 

extreme movements in the beginning and end of the day and the movements slow down in the 

middle of the day, which builds up the result.  
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Figure 6.10 Volatility Components for Citigroup (1 min returns) Estimation Period May 2013. 

Top panel: the square root of diurnal variance component. Second panel: The square root of daily 

variance component. Third panel: The square root of intraday variance component. Fourth 

panel: The square root of the total variance component being the product of the up three variance 

component.  
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Chapter 7 

Discussion and Future Work  

7.1 Discussion 

 Clustering analysis is very popular unsupervised learning tool. It is vast used for 

dimension reduction and pattern recognition. Traditional clustering analysis only considers 

single objective or single dissimilarity measurements. In this thesis, the framework of multiple-

objective clustering framework is discussed. We include three multiple-objective clustering 

methods. Multiple-objective clustering with automatic k-determination (MOCK) which 

considers both compactness and connectivity of cluster. Novel constrained and compound 

clustering proposed by Zhang (2011) incorporating multiple data source and dissimilarity 

measurements which gives a more comprehensive representation of the data. In gene expression 

analysis, we can incorporate both the gene expression data source and gene function data source. 

Biclustering analysis is also discussed. It is multiple-objective clustering analysis in a way that 

allows simultaneous clustering of the rows and columns of the data matrix while tradition 

clustering allows clustering either on the rows or on the columns. It is often used to analyze gene 

expression data and discover the interpretable biological patterns involving a subset of genes 

(rows) and subset of columns (conditions), which was first introduced to gene expression 

analysis by Cheng and Church (2000). Biclustering has been used in gene expression analysis 

and many researchers have developed many algorithms (Cheng and Church, 2000; Barkow et al., 

2006; Turner et al., 2005; Kluger et al., 2003; Murali and Kasif, 2003) in analyzing gene 

expression data. The generalization of biclustering algorithm to represent it in the form of 

compound clustering with respect to rows and columns is discussed, where the paramester in the 
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objective function is flexible instead of fixed. We applied biclustering technique on financial 

stock data to detect and compare the patterns and distributions of bear and bull market, and thus 

infer our current market type.  

 In the second part of the thesis, we identified the historical periods where stock price 

exhibit similar pattern resembles current market pattern. In the analysis, we see that history does 

rhyme and repeat itself. We experienced recent two large financial crisis, the 2000 great 

recession and the 2008 global financial crisis which is by far the worst in history. Analyzing the 

patterns of historical periods and then infer whether the market is going for recession/depression 

again is very meaningful. We them zoomed into each sector and looked at the data to see which 

sectors are mostly likely to be heavily impacted by the impending recession/depression.  

  The thesis is concluded with the analysis of intraday pattern of high frequency data. 

Financial time series data exhibit volatility clustering phenomenon, that is big changes in price 

tend to cluster together and small changes in price tend to cluster together. Real high frequency 

trading stock data traded on New York Stock Exchange (NYSE) was analyzed to study the 

intraday pattern. Notable pattern (U-shape) is detected at the aggregation level of one minute and 

five minute - significant big movements in trading activity in the beginning and end of the day, 

and quiet movements in the middle of day. The U shape intraday pattern was first documented 

by Wood et al. (1985) and Harris (1986) that average intraday return volatility exhibit distinct U 

shape over the trading day. My analysis is consistent with their findings. Standard GARCH 

models are not suitable for high frequency data. Engle (2012) proposed a Multiplicative 

Component GARCH model which can be applied to high frequency trading data. We applied a 

one-minute stock data to this model and same U shape pattern is detected which builds up the 

result.  
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7.2 Future Work 

Multiple-resolution clustering analysis of financial time series can be considered as 

multiple-objective clustering with respect to clustering time series data at different time 

scale/resolution. For example, we want to cluster stocks that are show similar hourly, weekly, 

and monthly patterns which keeps both local and global information. Many works have made the 

effort to take consideration of multiple-resolution of financial time series data, such as 

Megalooikonomou et al. (2005), Fu et al. (2001), Vlachos et al. (2003) and Li and Kuo (2008). 

Also, in Chapter 5, identification of historical periods that resembles current market pattern to 

infer where the market is going for recession or depression and then analyze which sectors are 

likely to be heavily impacted by the impending recession. We performed the analysis using S&P 

500 and focused on US stock market, further analysis cross country using indexes other than 

S&P 500, e.g., MSCI ACWI (ACWI) for global index, MSCI Europe (IEUR) for Europe stock 

market, FTSE (^FTSE) for London stock market, TOPIX for Tokyo stock market, and MSCI EM 

for emerging markets can also be included to see the impaction of recession on those markets 

outside US. 
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