

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Theoretical and Practical Aspects of Compact Data
Structures for Range and Membership Queries in

Sparse Sets

A Dissertation Presented

by

Pablo Montes Arango

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

August 2014

Stony Brook University

The Graduate School

Pablo Montes Arango

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Michael A. Bender – Dissertation Advisor
Associate Professor, Department of Computer Science

Rob Johnson – Chairperson of Defense
Assistant Professor, Department of Computer Science

Jie Gao
Associate Professor, Department of Computer Science

Martín Farach-Colton – External Member
Professor, Department of Computer Science

Rutgers University

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Theoretical and Practical Aspects of Compact Data Structures for Range and

Membership Queries in Sparse Sets

by

Pablo Montes Arango

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

There is an increasing need for data structures that efficiently manipulate huge

amounts of data. When the data to be represented does not fit into main memory

all at once, data structures designed without taking this constraint into account fail

to perform as expected. Data structures conceived specifically for this purpose fall

into two, not necessarily exclusive, categories. The first consists of data structures

designed and analyzed under a model of computation where the cost is given by

the amount of data transferred between external and internal memory. The second

comprises data structures that make the most out of the internal memory by repre-

senting the data using as few space as possible, without hurting the performance of

the operations they support.

This dissertation falls in the intersection of both categories: It studies repre-

sentations that use space close to the information-theoretic lower bound while, at

the same time, provide good performance guarantees in terms of the number of

memory transfers. The resulting data structures are not only of theoretical interest,

iii

but can also be (and in most cases have been) easily turned into robust, efficient,

well tested, and usable implementations, where the constants and low order terms

hidden by O notation do not take over the running time in practice.

The focus of this dissertation is on data structures that dynamically maintain

a set in order to efficiently answer range and membership queries. Specifically,

this work presents two compact data structures: the level-based packed memory

array, for range and membership queries, and the quotient filter, for approximate

membership queries. Furthermore, three extension to this last data structure are also

described: the buffered quotient filter, the cascade filter, and the counting quotient

filter.

Finally, this dissertation shows that the standard B-tree data structure is asymp-

totically optimal for the batched predecessor problem in external memory if the

space is a constrain. The tradeoff that quantifies the minimum space required for a

given query cost is also presented.

iv

To Alejandro.

v

Contents

Contents vi

List of Tables ix

List of Figures x

Preface xi

Acknowledgements xii

1 Introduction 1

1.1 Preliminaries . 3

1.1.1 Space Efficient Data Structures 3

1.1.2 External Memory Model 3

1.2 Results . 4

2 Range and Membership Queries 6

2.1 Introduction . 6

2.2 Related Work . 8

2.3 Level-based Packed Memory Array 9

2.3.1 Algorithm . 10

2.4 Other Rebalancing Strategies . 12

vi

3 Approximate Membership 15

3.1 Introduction . 15

3.1.1 Evaluation Results . 18

3.1.2 Applications . 21

3.2 Related Work . 22

3.3 Quotient Filter . 26

3.4 Implementation Details . 34

3.4.1 Quotient Filter Variants . 37

3.5 Quotient Filter Extensions . 39

3.5.1 Buffered Quotient Filter 39

3.5.2 Cascade Filter . 39

3.5.3 Counting Quotient Filter 41

3.6 Evaluation . 46

3.6.1 In-RAM Performance: Quotient Filter vs. Bloom Filter . . . 49

3.6.2 On-disk Benchmarks . 50

3.6.3 Cascade Filter: Insert/Lookup Tradeoff 54

3.6.4 Evaluation Summary . 55

4 Batched Predecessor in External Memory 60

4.1 Introduction . 60

4.2 Related work . 63

4.2.1 Single and batched predecessor problems in RAM 63

4.2.2 Batched predecessor problem in external memory 63

4.3 Batched Predecessor in the I/O Comparison Model 64

4.3.1 Lower Bounds for Unrestricted Space/Preprocessing 64

4.3.2 Preprocessing-Searching Tradeoffs 68

4.4 Batched Predecessor in the I/O Pointer-Machine Model 72

vii

4.5 Batched Predecessor in the Indexability Model 78

Bibliography 82

viii

List of Tables

1 Summary of evaluation results. 20

2 Capacity of the quotient filter and BF data structures used in our

in-RAM evaluation. 50

ix

List of Figures

1 False positive rates for BF and QF 23

2 An example quotient filter along with its equivalent open hash table

representation . 28

3 Distribution of cluster sizes for 3 choices of α. 33

4 An example quotient filter with three meta-data bits. 36

5 Algorithm for checking whether a fingerprint f is present in the QF

A. 37

6 Merging QFs. 40

7 In-RAM Bloom Filter vs. Quotient Filter Performance. 56

8 Small disk experiment for Cascade Filter and Buffered Quotient Filter. 57

9 Large disk experiment for Cascade Filter and Buffered Quotient Filter. 58

10 The Cascade Filter Insert/Lookup Tradeoff. 59

11 Batched predecessor algorithm with unlimited space/preprocessing. 67

x

Preface

Chapter 2 is based on unpublished joint work with Michael A. Bender, Jeremy T.

Fineman, Seth Gilbert, and Tsvi Kopelowitz.

Chapter 3 is based on work presented at the 38th International Conference on

Very Large Databases (VLDB 2012) and published in the proceedings of the VLDB

Endowment under the name “Don’t thrash: How to cache your hash on flash” [17].

A preliminary version appeared in the proceedings of the 3rd USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage 2011) [18]. This research

was done jointly with Michal A. Bender, Martín Farach-Colton, Ron Johnson, Rus-

sell Kraner, Bradley C. Kuszmaul, Dzejla Medjedovic, Pradeep Shetty, Richard P.

Spillane, and Erez Zadok.

A version of Chapter 4 was published in the proceedings of the 22nd European

Symposium on Algorithms (ESA 2014) under the name “The batched predecessor

problem in external memory” [16]. This work was done together with Michael A.

Bender, Martín Farach-Colton, Mayank Goswami, Dzejla Medjedovic, and Meng-

Tsung Tsai.

xi

Acknowledgements

First and foremost I wish to thank my advisor, professor Michael A. Bender. I have

learned so many things from him, but in particular I am very grateful of how he

helped me understand and develop my strengths and find what style of research

works best for me. Having him as my advisor has been pivotal in realizing what it

is that I want to do for the rest of my life.

For this dissertation I would like to thank my committee members: Martín

Farach-Colton, Jie Gao, and Rob Johnson, for their time, interest, helpful com-

ments, and insightful questions. Special thanks go to Rob, who has always been

available to discuss research ideas, has always provided valuable comments and

suggestions, and has helped me get unstuck on more than one occasion.

I would also like to thank all my coauthors: Michael A. Bender, Martín Farach-

Colton, Mayank Goswami, Rob Johnson, Joondong Kim, Rusell Kraner, Bradley

C. Kuszmaul, Dzejla Medjedovic, Heraldo Memelli, Joseph S. B. Mitchell, Pradeep

Shetty, Steven Skiena, Richard P. Spillane, Meng-Tsung Tsai, Charles B. Ward, and

Erez Zadok. I know that this is a long list compared to the number of publications,

but I can honestly say that I have always enjoyed the the collaborative research

process and I have learned something from each and every one of them.

I have to recognize professors Steven Skiena and Joseph Mitchell. Steve is the

reason why I came to Stony Brook in the first place and, even though we did not

end up working together, his advice in terms of finding an advisor was extremely

xii

helpful. Joe is the kind of professor that I would like to be if I ever become a one.

I truly admire him. I am very happy that I managed to reduce both My “Skiena

number” and my “Mitchell number” down to 1.

I would like to express my gratitude to Dzejla Medjedovic, for all the time we

spent chasing red herrings and wandering into dead ends, and Heraldo Memelli, for

all the coffee and the second-hand smoke. Knowing that I was not the only one

struggling to get by made the load much more bearable.

Special thanks to all my colleagues in the Algorithms Lab. In particular, I

would like to acknowledge Roozbeh Ebrahimi and Sam McCauley. It is a shame

that none of the several research projects that we started together crystallized into a

publication.

I owe a token of appreciation to the administrative staff at the Department of

Computer Science at Stony Brook University: Kathy Germana, Betty Knittweis,

and, very fondly, Cindy Scalzo, who has always gone above and beyond to help me

in every possible way.

Further, I owe my gratitude to Google for three amazing internship experi-

ences. I had a lot of fun, learned a lot of new and interesting things, and met the

most amazing people. I would like to thank my hosts: Vlad Petric, Stacey Gammon,

and Yaniv Inbar, and my co-hosts: Nick Taylor and Joe Gregorio.

I am in eternal debt to Politécnico Grancolombiano for giving me the oppor-

tunity to pursue a Ph.D. while still maintaining my affiliation to the university. No-

tably, I would like to thank Javier Arango, for his role in making it a reality, and

Rafael García, for always believing in me and for acting as a buffer between me and

the university. I regret that things did not work out in the end and I really hope that

one day our paths cross again.

At a personal level, I would like to give very special thanks to my family.

To my Parents, because without them I would not be here today (both literally

xiii

and figuratively). I know that they do not understand why I decided to embark in this

crazy endeavor, but they have always supported and encouraged me nonetheless.

To my sisters and brother, whom I love more than they will ever know. I am

really glad to have them in my life.

And last, but certainly not least, to my wife, Angela, for her endless encour-

agement, optimism and support. Without her by my side I would have probably

quit the Ph.D. after the first year. I am also eternally grateful for her willingness to

partially fund my refusal to grow up and find a real job.

I dedicate this dissertation to my son, Alejandro, the main reason why I wake

up every morning (again, both literally and figuratively). His timely arrival helped

me gain perspective on the really important things in life. I hope this work will

serve him as an example that he should always pursue his dreams, no matter how

unattainable they may seem.

xiv

Chapter 1

Introduction

It has been said over and over again: The world is drowning in data [8, 60, 77, 93].

Just to cite a few examples, in 2013 Twitter’s IPO filing revealed that 500 million

tweets are twitted every day [92], Facebook disclosed that it stores more than 300

petabytes of user data [56], and Skybox Imaging, a startup recently acquired by

Google, asserted that each of their satellites generate over a terabyte of data per

day [86].

The amount of data produced is growing at an alarming rate. This trend is not

expected to stop any time in the near future. According to estimates, the volume of

business data worldwide doubles every 1.2 years [51] and data production will be

44 times greater in 2020 than it was in 2009 [1].

It is absolutely impossible to fit these vast amounts of data completely in-

side the computer’s internal memory. As a result, access to data stored in external

memory becomes a major performance bottleneck. Data structures and algorithms

designed using the traditional RAM model of computation, without taking this lim-

itation into account, fail to perform as expected.

Two major and complementing lines of research have emerged to address this

issue. The first is the design and study of data structures and algorithms under a

different model of computation, the DAM model [4], in which the performance is

1

measured by the number of block transfers between external and internal memory.

The second is to conceive representations that improve space utilization by squeez-

ing the data so that it uses an amount of space that is “close” to the information-

theoretic lower bound, while still allowing efficient operations [68]. This second

approach reduces the dependency on slow I/O devices by increasing the amount

of data that can can be read/written with one block transfer and, hence, improving

spacial locality and reducing the number of disk transfers required to see the data.

This dissertation falls in the intersection of both categories. We are specifically

concerned with compact data structures. That is, data structures whose space uti-

lization is at most a constant factor away from the minimum number of bits required

to represent the data. At the same time, we are interested in data structures that pro-

vide good performance guarantees in terms of the number of memory transfers.

The focus of this dissertation is on dynamic data structures—those allowing

insertions and deletions—to maintain a set S from a universe U . We consider data

structures specifically designed to efficiently answer range—report all element in S

within a given interval—and membership—is a given element x in S—queries.

We strive to provide enough details to make our data structures not only of

theoretical interest, but also highly implementable. We regard our data structures

as efficient, not only in the theoretical sense, but also in a practical setting. That is

because we aim for representations where the constants and low order terms hidden

by O notation do not take over the execution running time in practice.

We focus our attention to the common case where, even thought the size of S

(the set represented by our data structures) is extremely large, the size of the uni-

verse, U , (the set of all possible elements that our data structures could potentially

represent) is much larger in comparison. It is in this context that we say that our

data structures are specifically designed with sparse sets in mind. It is important

to clarify that our data structures still work even when the size of S is comparable

2

to the size of U (e.g., |S| = c|U | for constant c ≤ 1). However, they cannot be

considered to be compact any more, as their space usage diverges from the optimal

number of bits required to represent the data.

1.1 Preliminaries

We begin by formally defining what a compact data structure is and the external

memory model of computation.

1.1.1 Space Efficient Data Structures

The study of space-efficient data structures dates back to the mid-70s [52,53]. Since

then, there has been a large body of work on data structures with bounded space [24,

31, 40, 68, 79].

A space-efficient data structure is a data structure that uses an amount of space

that is “close” to the information theoretic lower bound while remaining compet-

itive with state-of-the-art data structures. Formally speaking, if we let Z be the

information-theoretic optimum number of bits to store some data, a data structure

is considered to be Implicit if it uses Z + O(1) bits, Succinct if it uses Z + o(Z)

bits, and Compact if it uses O(Z) bits. In this dissertation we focust on the last-

mentioned category.

1.1.2 External Memory Model

Algorithms and data structures specifically designed for external memory execution

are usually modeled using the external-memory model [4] (also known as the I/O

model, or the DAM model). This model is a simplified two-level abstraction of

3

a computer memory hierarchy that captures the performance bottleneck of access-

ing data stored in an external memory device. In this model, the internal memory

level has limited size, M , and the external memory is unbounded. Transfers be-

tween these two levels take place in blocks of size B (B elements are transfered

in each block). Any computation can only be performed on data residing in the

internal memory. The cost of the algorithm is the number of block transfers (I/Os)

performed. The model assumes an optimal cache replacement policy.

1.2 Results

In Chapter 2 we give a compact data structure for the range and membership prob-

lem: the level-based packed memory array. The space usage of this data structure

is (1+ε)n lg u bits, where n is the size of the set being represented and u is the size

of the universe of all possible elements that our data structures could potentially

represent. With this data structure, membership queries take optimal O(lg n) com-

parisons, and range queries take O(lg n+ k) comparisons and O(lg(n/B) + k/B)

block transfers, where k is the size of the output. Our approach yields O(lg2 n)

amortized cost and O((lg2 n)/B) amortized I/Os for insertions, the same as previ-

ous approaches. We also give a single unified analysis that covers a broad range of

rebalance algorithms and choices of rebalance interval.

Chapter 3 explores the approximate membership problem. We present the

quotient filter, a compact data structure with a space usage of O(n lg(1/ε)) bits for

a false positive rate of at most ε. The cost to insert or query an element in this data

structure is O(1) in expectation. We also give two new data structures specifically

designed for external memory: the buffered quotient filter and the cascade filter.

The first achieves O
(
N
MB

)
I/Os amortized per insert and O (1) I/Os per query in

expectation. The second performs O
(
b logb(N/M)

B

)
I/Os amortized per insert and

4

O (logb (N/M)) I/Os per query in expectation, where b is the branching factor of

the cascade filter, which provides a tradeoff between insert and lookup performance.

Lastly, we introduce the counting quotient filter to handle workloads with lots of

duplicates and to efficiently estimate the number of occurrences of a given element.

Finally, in Chapter 4 we show that the batched predecessor problem cannot

be solved faster than Ω(logB n) I/Os per element if preprocessing is polynomial.

That is, B-trees are asymptotically optimal. We also show that with unbounded

space/preprocessing, the problem can be solved faster, in Θ((log2 n)/B) I/Os per

element. We generalize to show the following query-preprocessing tradeoff: the

search cost of O(logB/j+1(n/x)/j) per element requires Ω(nΩ(j)) in preprocessing

for query size x ≤ nc, where 0 ≤ c < 1.

5

Chapter 2

Range and Membership Queries

2.1 Introduction

In this chapter we give a new compact data structure to efficiently answer range

and membership queries. We call it the level-based packed memory array given

its similarity in spirit to the packed memory array [12, 13]. The main difference is

that we do not rebalance regions of the array based on density (ratio of number of

elements to size of the subarray) thresholds. In addition, the performance analysis

for our insertion algorithm is quite simple and applies to a wide range of strategies

for choosing rebalance windows and for rebalancing. We also give a single unified

analysis that covers a broad range of rebalance algorithms and choices of rebalance

interval.

First, let us formally define the range and membership problems.

Definition 2.1 (Membership Problem). Maintain a set S ⊂ U , subject to insertions

and deletions, to efficiently answer membership queries. That is, given an element

x ∈ U , output TRUE if x ∈ S and FALSE otherwise. By efficient we mean that the

cost to answer a membership query isO(lg n) comparisons, which is asymptotically

optimal in the comparison model.

Definition 2.2 (Range Query Problem). Maintain a set S ⊂ U , subject to insertions

6

and deletions, to efficiently answer range queries. That is, given a range [x`, xr] ⊂

U , output a set {x ∈ S|x` ≤ x ≤ xr}. By efficient we mean that the cost to answer

a range query is O(lg n+ k) comparisons and O(lg(n/B) + k/B) I/Os, where k is

the size of the output.

Since we are interested in designing a compact data structure, we now give the

information-theoretic minimum number of bits required to solve these problems.

Theorem 2.3 (Entropy lower bound for the membership problem). Any data struc-

ture that represents a static set S, of size n, from a universe U , of size u, (n < u1−ε

for 0 < ε ≤ 1) requires at least Ω(n lg u) bits.

Proof. For any of the
(
u
n

)
possible sets of size n there must be some instance I of

the data structure. Let m be the number of bits used by the data structure. An m-bit

data structure can represent at most 2m unique instances. Thus,

2m ≥
(
u

n

)
.

Taking logs on both sides we get that

m ≥ lg

(
u

n

)
≥ n lg

u

n
.

Finally, under the assumption that n < u1−ε,

m = Ω(n lg u).

7

2.2 Related Work

Itai, Konheim, and Rodeh [67] first showed how to achieve O(lg2 n) amortized ele-

ment moves per insert and delete. The data structure was subsequently deamortized

by Willard [94–96], and the deamortized version was later simplified by Bender,

Cole, Demaine, Farach-Colton, and Zito [10]. Andersson and La [5] used similar

update schemes to maintain dynamic binary trees with height at most an additive

O(1) from optimal.

Dietz and Zhang [48,98] gave a Ω(lg2 n) lower bound for smooth rebalancing,

in which all elements that participate in a rebalance are spread out evenly within

their rebalance window (subarray). While evenly spreading out may seem as though

it should be the best possible, there are cases where somewhat uneven rebalancing

can help [23], meaning that this lower bound, while interesting and powerful, is not

the last word. Very recently Bulánek, Koucký, and Saks exhibited a matching lower

bound of Ω(lg2 n) without this smooth-rebalancing restriction [33].

The first sparse tables [67, 94–96] rebalance within only those subarrays ob-

tained by implicitly viewing the array as a tree, i.e., the entire array, the left and

right halves, the four quarters, and so on. Thus, rebalance windows have special

structure, since subarrays are either nested or disjoint. Itai and Katriel [66, 70] and

Bender et al. [10] showed that the same rebalancing algorithms can be used for arbi-

trary subarrays—the subarrays need not be aligned and nested, and need not divide

the array into some power of 2.

Over the past decade, there has been interest in sequential-file maintenance be-

cause of its application in external-memory and cache-oblivious data structures; see

e.g., [13, 14, 29]. The external-memory version of a sparse table (called a packed-

memory array (PMA) [13]) supports both upper and lower density thresholds so

8

that sequential scans of subarrays have an asymptotically optimal number of I/Os.

Some external-memory and cache-oblivious structures (e.g., [15, 19, 21]) need the

flexibility to choose arbitrarily sized and/or arbitrarily aligned rebalance windows.

Sparse tables have also found applications in database query processing [62, 82],

sorting [20], and distributed computing [54].

Bender and Hu [22, 23] propose an adaptive packed-memory array (APMA),

which enables several common insertion patterns to run using only O(lg n) element

moves per insert/delete, while still supporting the optimal O(lg2 n) element moves

per insert/delete for arbitrary insertion patterns. The APMA improves performance

via slightly uneven (nonsmooth) rebalances, which are biased based upon recent

insertions/deletions. One should view the APMA as incomparable with the present

k-cursor result. On one hand, the APMA does not require prior knowledge of the

number k of insertion points. On the other hand, it is not known to perform better

thanO(lg n) element moves per insert/delete and is only known to give performance

improvements for a specialized class of insertion patterns.

Sequential-file maintenance is closely related to order maintenance [11,45,47,

91], where the objective is answer order queries (which element comes first) on a

dynamic set of elements. Some solutions to order maintenance can be viewed as

maintaining a dynamic very sparse array, where n elements are stored in an array

of size Θ(n1+ε). There is a lower bound of Ω(lg n) for this problem [33, 46].

2.3 Level-based Packed Memory Array

The most basic version of the level-based packed memory array maintains n ele-

ments in sorted order in an array of size m = (1 + ε)n, for 0 < ε ≤ 1, subject to

element insertion (after an existing element) and deletion. We focus only on inser-

tions, because deletions can be supported trivially by marking elements as deleted

9

(“ghost elements”) and rebuilding the entire data structure every n/2 operations,

removing the ghost elements.

We partition the array into dm/(2 lgm)e segments, each of size 2 lgm. With-

out loss of generality, we assume that n is divisible by lgm, as we can insert up to

lgm “dummy elements” without affecting the performance bounds. Each element

in the array is assigned a level from {0, 1, . . . , lgm− 1} ∪ {∞} in such a way that

the following invariants are maintained:

Invariant 2.4. Every segment contains exactly lgm elements at level∞.

Invariant 2.5. Every segment contains at most one element at each level other than

∞.

We maintain the level of an element implicitly, based on its position within a

segment. In particular, if an element is in an odd array slot, then it has level ∞;

if an element is in the i-th even slot within the segment, then it has level i. This

construction directly implies Invariant 2.5.

We call a contiguous group of segments an interval, and we define its size to

be the number of segments spanned. For an interval K, of size |K|, we quantify its

amount of dirt as the number of elements in K at or below level lg |K|. We say that

K is dirty if it has at least |K| dirt, and not dirty otherwise. If an interval has zero

dirt we say it is clean.

At a high level, upon an insertion of a new element y the algorithm finds an

appropriate intervalK containing y that is not too dirty (or too clean), and performs

a cleaning process. That is, the algorithm promotes all of its dirt to level lg |K|.

Once this promotion is done, all subintervals of K are clean.

2.3.1 Algorithm

We now describe how to insert an element y after an existing element x.

10

Let s be the segment containing x. We first insert y in s at level 0. Since

levels are implicitly maintained based on the position, what we actually do is shift

elements in s so that all previously filled positions are still filled, plus the level 0

position.

Next we find an appropriate interval, K, to start a cleaning process. Initially

K is the segment containing x. If K is dirty, we double its size (to either side).

Otherwise, we start a cleaning process on K.

A cleaning process has to guarantee that, once it is done, Invariants 2.4 and 2.5

are maintained. We also shift elements within K in such a way that at the end of

the cleaning process:

1. each level i > lg |K| has the same number of elements as it had before the

cleaning process started,

2. the total number of elements at level lg |K| is equal to the total dirt in K

before the cleaning process started, and

3. there are no elements in K below level lg |K|.

Note that we do, however, change which specific elements are at what levels, as

well as which segments contain an element at those levels.

A naive algorithm for a cleaning process that runs in linear time with respect

to number of positions in K is as follows. Let dK be the amount of dirt in K. First

pack everything tightly to the left (towards the beginning of the array) while mark-

ing all positions representing levels above lg |K| that were occupied as available.

Also choose any dK positions representing level lg |K| and make them available.

All other slots are unavailable. Next, starting from he rightmost element, spread

elements to the right into the next available position.

11

If the entire array is dirty, we rebuild the entire array increasing its size so that

all elements can be promoted to level∞. Invariants 2.4 and 2.5 hold trivially when

the array is rebuilt.

The following lemma implies Invariants 2.4 and 2.5 across cleanings. It also

provides the basis for the performance analysis by lower-bounding the number of

level increases that occur during a cleaning process.

Lemma 2.6. Consider a cleaning process on an interval K. Let k = lg |K|. For

each level j, let nj and n′j be the number of elements in K at level j before and

after the cleaning process, respectively. Then for all j > k, we have n′j = nj . For

all j < k, we have n′j = 0. Finally, n′k =
∑

j≤k nj , meaning that at least
∑

j<k nj

promotions occur.

Proof. Because the number of slots made available is exactly the number of el-

ements, all available slots are occupied when the cleaning process finishes. The

claim follows from the choice of slots made available.

Theorem 2.7. The level-based packed memory array performs O(lg2 n) amortized

element moves per insert.

Proof. A cleaning process for an interval K promotes at least |K| /2 and strictly

less than |K| elements. The cost of this cleaning process is O(|K| lgm). Thus,

the amortized cost of a cleaning process per promotion is O(|K| lgm)/Θ(|K|) =

O(lgm) = O(lg n). Since an element can only be promoted to lgm different levels,

the amortized cost of inserting an element is O(lg2 n).

2.4 Other Rebalancing Strategies

The region-doubling approach presented in Section 2.3 is already more general than

cleaning according to say a logical tree over segments, as employed in the original

12

sparse table [67], because the cleaning interval can grow arbitrarily in either direc-

tion. In this section we give a more general analysis that supports many different

implementations.

Theorem 2.8. Consider any rebalance procedure with the following property:

whenever rebalancing an interval consisting of X segments,

(a) the number of elements promoted is Ω(X),

(b) the cost to promote all Ω(X) elements and restore Invariants 2.4 and 2.5 is

O(X lgm), and

(c) the total number of elements at any level is at most X lgm for level∞ and

X for other levels.

Then the amortized insertion cost into the sparse table is O(lg2 n).

Proof. Charge the cost of performing the rebalance to the level increases, for an

amortized cost of O(lg n) per level increase. Since there can be at most O(n lg n)

level increases in total for n elements, or O(lg n) increase per element, the amor-

tized cost of an insertion becomes O(lg2 n) per element for rebalances plus O(lg n)

for inserting into the chunk, which is O(lg2 n) in total.

There are many possible rebalancing procedures that satisfy Theorem 2.8:

Arbitrary windows. As stated before, the region-doubling approach is already

more general than cleaning according to say a logical tree over the segments. Thus,

always extending the intervals in the same direction is nearly trivial. If we want

intervals that only grow to the right, then a slight complication here is that a rela-

tively small interval may extend off the end of the array, and thus we cannot afford

to rebuild the entire array. This issue can be resolved by allocating some additional

13

empty segments at the end of the array. If a rebalance ever extends off the end,

all elements in the interval can then be promoted to level ∞, and the appropriate

number of segments at the end can be claimed.

Monotonically moving elements. Cleaning such that all elements move in the

same direction (e.g., as employed in [15]) basically amounts to growing the region

continuously, say “to the right,” increasing by 1 chunk at a time, until we find

an interval K such that the total number of elements at or below level dlg |K|e is

equal to K. To guarantee one-directional movement, elements need only be packed

as tightly to the right as allowed by Invariants 2.4 and 2.5, so that the number of

elements in any prefix of the rebalance region is nonincreasing. Given that the slots

for levels 1, 2, . . . , lgm − 1 occur in left-to-right order, any promotion moves an

element to the right. The analysis of the insertion cost here is already captured by

Theorem 2.8. In contrast, one-directional rebalances in the standard density-based

algorithm require a more complicated analysis [15, 70].

Nonsmooth rebalances. This approach allows for nonuniform redistribution of

elements during a rebalance. Specifically, a cleaning process allows for some ar-

bitrary assignment, so it is allowable for one chunk to receive elements at many

levels while others receive elements at few levels. Finally, levels can be increased

arbitrarily as long as Invariants 2.4 and 2.5 is not violated. For example, there is

nothing wrong with inserting directly at a higher level, so long as the strategy is

consistent with Invariants 2.4 and 2.5 and Theorem 2.8.

14

Chapter 3

Approximate Membership

3.1 Introduction

In Chapter 2 we showed that any data structure that solves the membership prob-

lem requires at least Ω(n lg u) bits. When n is extremely large, however, even the

cost for maintaining an implicit data structure that uses exactly this much space is

prohibitive. For some applications, for example, it might be desirable to store the

data structure in main memory for efficiency reasons. In this chapter we show that

it is actually possible use much less space, as long as you are willing to sacrifice

precision.

To be more precise, in this chapter we study the approximate membership

problem, where the answers given by the data structure can be wrong. The prob-

ability of getting the wrong answer, however, is bounded, small, and tunable. The

space usage of the data structure is a function of this probability—the probability

of being wrong grows as the space consumption decreases.

We are explicitly concerned in one-sided error data structures. That is, if the

data structure asserts that an element is not in the set, we can be sure that this is

correct. On the other hand, if the data structure claims that an element is in the set,

then there is a small probability that this is not actually the case. We call this type

15

of data structures approximate membership query (AMQ) data structures.

The formal definition of the approximate membership problem is as follows.

Definition 3.9 (Approximate Membership Problem). Maintain a set S ⊆ U , subject

to insertions and deletions, to efficiently answer approximate membership queries.

That is, given an element x ∈ U , output

• If x ∈ S, TRUE

• If x /∈ S

– FALSE with probability at least 1− ε

– TRUE with probability at most ε (a false positive)

In this case we step outside the comparison model and define efficient as O(1)

comparisons in expectation.

As stated above, the space requirement for this type of data structures is much

less than the requirements for the accurate counterpart, and is a function of its false

positive probability.

Theorem 3.10 (Entropy lower bound for the approximate membership problem).

Any data structure that represents a static set S, of size n, from a universe U , of

size u, (n <
√
εu) that supports approximate membership queries allowing false

positives for at most a fraction ε of the universe but no false negatives requires at

least Ω(n lg(1/ε)) bits.

Proof. The proof follows Dietzfelbinger and Pagh [49]. An instance I of the data

structure corresponds to a set UI ⊆ U—the set of elements for which the data

structure answers x ∈ S—with at most n+ ε(u− n) elements. For any set S ⊆ U ,

of size n, there must be some instance of the data structure. An instance of the data

16

structure can represent at most
(
n+ε(u−n)

n

)
such sets. Let m be the number of bits

used by the data structure. An m-bit data structure can represent at most 2m unique

instances. Thus,

2m ≥
(
u
n

)(
n+ε(u−n)

n

)
≥
(

u

n+ ε(u− n)

)n
=

(
u

εu+ (1− ε)n

)n
=

(
1

ε

(
1− (1− ε)n

εu+ (1− ε)n

))n
≥
(

1

ε

)n(
1

e

)− (1−ε)n2

εu+(1−ε)n

Taking logs on both sides and assuming that n <
√
εu we get that

m ≥ n lg
1

ε
−O(1)

as required.

The most well-know AMQ data structure is the Bloom filter [25]. The Bloom

filter has found wide application in databases, storage systems, and networks in

order to quickly satisfy queries for elements that do not exist in the database, in ex-

ternal storage, or on a remote network host. This chapter first describes the quotient

filter, which supports the basic operations of the Bloom filter, achieving roughly

comparable performance in terms of space and time, but with better data locality.

Bloom filters work well when they fit in main memory. However, because the

Bloom filter performs frequent random reads and writes, it is used almost exclu-

sively in RAM, limiting the size of the sets it can represent. Once Bloom filters get

17

larger than RAM, their performance decays and, thus, they do not scale efficiently

to external storage, such as flash. In this chapter we give two data structures, the

buffered quotient filter and the cascade filter, which exploit the quotient filter ad-

vantages, but are specifically designed to be efficient in external storage. Both

data structures significantly outperform recently-proposed SSD-optimized Bloom

filter variants, such as the elevator Bloom filter, buffered Bloom filter, and forest-

structured Bloom filter. In experiments, the cascade filter and buffered quotient

filter performed insertions 8.6-11 times faster than the fastest Bloom filter variant

and performed lookups 0.94-2.56 times faster.

3.1.1 Evaluation Results

Our evaluation compares the QFs, BQFs, and CFs to BFs and recently proposed BF

variants, including buffered Bloom filters (BBF) [34], forest-structured Bloom fil-

ters (FBF) [74], and elevator Bloom filters (EBF). For the overview of BF variants,

see Section 3.2. The BBF and FBF were proposed to address the scaling problems

of Bloom filters, in particular, when they spill onto SSDs. The EBF is an extension

of the BF, which we include as a baseline.

To differentiate the previously existing structures: The EBF is a straightfor-

ward application of buffering to BFs. The BBF uses buffering and hash localization

to improve SSD performance. The FBF uses buffering, hash localization, as well

as in-RAM buffer-management techniques.

Table 1 presents a summary of our experimental results. To put these numbers

in perspective, on an Intel X-25M SSD drive, we measured 3,910 random 1-byte

writes per second and 3,200 random 1-byte reads per second. Sequential reads run

at 261 MB/s, and sequential writes run at 109 MB/s.

We performed three sets of experiments: in RAM, small-scale on SSD, and

18

large-scale on SSD. We performed the different SSD experiments because the ef-

fectiveness of buffering decreases as the ratio of in-RAM to on-disk data decreases.

In each case, we compared the rate of insertions, the rate of uniform random

lookups, which amounts to lookups for elements not in the AMQ, and the rate of

successful lookups, that is, lookups of elements present in the AMQ. We make

this distinction in lookups because a BF only needs to check an expected two bits

for unsuccessful lookups, but k bits for successful lookups when there are k hash

functions. (For our error rates, the BF had 6, 9, and 12 hash functions, respectively.)

3.1.1.1 In-RAM Experiments

For our in-RAM experiments, we compare the QF and the BF. The QF is supposed

to be used when it is at most 75% full; as Figure 7 shows, the QF performance

deteriorates as it fills. Table 1 reports on results when the structures are 75% full.

For inserts, QFs outperform BFs by factors of 1.3× to 2.5×, depending on the

false positive rates. For uniform random lookups, BFs are 1.4×-1.6× faster. For

successful lookups, there is no clear winner.

3.1.1.2 Small On-SSD Experiments

We compared our two SSD data structures to the three Bloom filter variants. In these

experiments, the AMQs were grown so that they are approximately four times the

size of RAM. See Section 3.6.2 for details.

We find that both BQF and CF insert at least 4 times faster than other data

structures and that BQF is at least twice as fast for lookups as all the other AMQs

we measured. In fact, on successful lookups, it runs roughly 11 times better than

EBF and BBF.

The BQF is the clear winner for this set of experiments.

19

(a) In-RAM experimental results (operations per second).
AMQ BF QF BF QF BF QF
False Positive Rate 0.01 0.01 0.002 0.002 0.0002 0.0002
Uniform Random Inserts 1.72 mil 2.44 mil 1.29 mil 2.43 mil 991,000 2.45 mil
Uniform Random Lookups 3.1 mil 2.1 mil 3.35 mil 1.98 mil 3.37 mil 2.13 mil
Successful Lookups 1.93 mil 1.61 mil 1.65 mil 1.7 mil 1.44 mil 1.71 mil

(b) On-disk experimental results (operations per second).
AMQ CF BQF EBF BBF FBF
Small Uniform Random Inserts 1.075 mil 1.32 mil 205,000 249,000 43,100
experiment Uniform Random Lookups 2,200 4,480 2,180 2,340 1,510

Successful Lookups 2,950 4,690 372 441 1,830
Large Uniform Random Inserts 728,000 576,000
experiment Uniform Random Lookups 1,940 3,600

Successful Lookups 2,380 3,780

Table 1: Summary of evaluation results.

3.1.1.3 Large On-SSD Experiments

We ran all AMQs for 35,000 seconds. This was enough time for CF and BQF to

insert the full data set. However, BBF, FBF, and EBF were at least 10 times slower

for insertions and none of them managed to get through even 10% of the insertion

load. We therefore conclude that these data structures are not suitable for such

workloads.

We note that this workload was large enough for asymptotics to kick in: the

CF was 26% faster than the BQF. BQF still dominates for queries, outperforming

CF by at least 60%. Therefore the choice of CF versus BQF depends on the ratio of

insertions to queries in a particular workload.

3.1.1.4 Other Considerations

For typical configurations (e.g., a 1% false positive rate) a QF uses about 20% more

space than a BF. However, QFs (and BQFs and CFs) support deletion, whereas BFs

incur a 4× space blow-up to support deletion, and even then they may fail. QFs

20

support in-order iteration over the hash values inserted into the filter. Consequently,

QFs can be dynamically resized, and two QFs can be merged into a single larger

filter using an algorithm similar to the merge operation in merge sort. QF inserts and

lookups require a single random write or read. BF inserts require multiple writes,

and lookups require two reads on average.

3.1.2 Applications

Write-optimized AMQs, such as the CF and BQF, can provide a performance im-

provement in databases in which inserts and queries are decoupled (i.e., insertion

operations do not depend on the results of query operations). Webtable [35], a

database that associates domain names of websites with website attributes, exempli-

fies such a workload. An automated web crawler adds new entries into the database

while users independently perform queries. The Webtable workload is decoupled

because it permits duplicate entries, meaning that searches for duplicates need not

be performed before each insertion.

The system optimizes for a high insertion rate by splitting the database tables

into smaller subtables, and searches are replicated across all the subtables. To make

searches fast, the system maintains an in-memory Bloom filter for each subtable.

The Bloom filter enables the database to avoid I/O to subtables that do not contain

the queried element.

The CF and BQF could enable databases, such as Webtable, to scale to larger

sizes without a concomitant increase in RAM. SSD-optimized AMQs, such as the

CF and BQF, can keep up with the high insertion throughput of write-optimized

databases.

Similar workloads to Webtable, which also require fast insertions and indepen-

dent searches, are growing in importance [35,58,71]. Bloom filters are also used for

21

deduplication [99], distributed information retrieval [85], network computing [30],

stream computing [97], bioinformatics [37,75], database querying [78], and proba-

bilistic verification [65].

3.2 Related Work

The first known AMQ data structure, introduced more than four decades ago [25],

is the Bloom filter (BF). A BF is a lossy, space-efficient representation of a set. It

supports two operations: INSERT(B, x) and MAY-CONTAIN(B, x).

A BF B consists of an m-bit array B[0 . .m − 1], initially all set to 0, and k

independent random hash functions hi : U → {0, . . . ,m − 1}, where 1 ≤ i ≤ k

and U is the universe of objects that may be inserted into the filter. To insert an item

x, the filter sets

B[hi(x)]← 1 for i = 1, . . . , k.

To test whether an element x may have ever been inserted, the filter checks all the

bits that would have been set:

MAY-CONTAIN(B, x) =
k∧
i=1

B[hi(x)].

If not all of them are set, then we conclude that s is not in the set; otherwise, we

assume that that the element is present in the set, although in fact the element could

be absent.

The false-positive rate of a BF after inserting n items is approximately

(1− e−nk/m)k.

22

bpe

Page 1

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Bits/element

0

1

2

3

4

5

6

7

8

-l
o
g
(f

a
ls

e
 p

o
si

ti
v
e
 r

a
te

)

Quotient Filter (2 bits, alpha = 0.75)
Quotient Filter (2 bits, alpha = 0.9)
Quotient Filter (3 bits, alpha = 0.75)
Quotient Filter (3 bits, alpha = 0.9)
Bloom Filter

Figure 1: False positive rates for BF and QF. For typical parameters (e.g., 1% false
positive rate), QF require about 20% more space than a BF. For extremely low false
positive rates, QF use less space than a BF.

This rate is optimized by choosing

k =
m

n
ln 2,

which means that roughly half of the bits in B are set to 1.

As a concrete example, an optimally filled BF with m = 8n (i.e., 1 byte per el-

ement) would use six hash functions and can achieve a false positive rate of 1.56%.

Figure 1 shows the BF false positive rate, assuming the optimal number of hash

functions, as a function of the number of bits per element.

There exist many variants of Bloom filters, optimizing for the false-positive

rate, the space-efficiency, or both [36, 42, 61, 76, 80]. For a comprehensive review

of Bloom filters, see Broder and Mitzenmacher’s survey [30].

BFs has several limitations:

• A BF does not expand to accommodate new elements, so sufficient space for

all the elements must be allocated in advance.

• A BF does not support deletions. The data structure can be easily modified to

23

support deletions by substituting each entry with a counter [57]. This modifi-

cation substantially increases the space requirements—for most applications,

four bits per entry are sufficient to avoid a counter overflow [27].

• A BF does not naturally scale to external storage because of the poor data

locality, and consequently they are usually stored in RAM. To illustrate, a BF

stored on a rotating disk, with k = 10 hash functions, could insert fewer than

20 elements per second.

The Buffered Bloom filter, described by Canim et al. [34], is a Bloom filter

variation specifically designed for use on flash. They make two modifications. First,

the filter is divided into smaller sub-Bloom filters, each of which is configured to

be the size of a virtual page. A given element is represented in exactly one sub-

filter chosen at random. Second, each sub-filter has a dedicated in-RAM buffer that

collects the read/write requests. Upon filling the buffer, the elements are flushed in

bulk to the corresponding sub-filter on flash. This approach improves the locality

of otherwise random bit writes that a Bloom filter performs. However, if the flash is

much larger than RAM, buffers in RAM will hold only a small fraction of the total

sub-filter on flash. Thus, the structure becomes dependent on the random write

throughput of the flash, limiting its scalability significantly. Canim et al. report a

3× performance improvement over the traditional Bloom filter on flash.

In general, the following approaches have been used by researchers to improve

BF scalability:

• Replacing magnetic disks with SSDs. SSDs offer random read and write

rates superior to those of magnetic disks, which partly alleviates the perfor-

mance issues of an on-disk BF. With an off-the-shelf SSD, the traditional

BF with k = 10 hash functions can achieve roughly 500 inserts per second.

High-end devices, such as FusionIO [38], can offer further speedups.

24

• Buffering. Reserve a buffer space in RAM, and cache these updates in the

buffer. Flush the buffer as it becomes full. With buffering, multiple bit writes

destined for the same SSD block require only one I/O. Similarly, when most

pages have a pending update, there is an additional performance gain of the

sequential disk write. The elevator Bloom filter implements this strategy. In

general, buffering performs well when the ratio between the Bloom filter size

and the RAM buffer size is small. As described in [34], queries can also be

delayed and buffered in a multithreaded environment, but the present paper

measures the performance when queries must be answered immediately.

• Hash localization. Improve data locality by directing all hashes of one in-

sertion into a single SSD block. When combined with buffering, this can

substantially improve the locality of writes. Queries see a less dramatic im-

provement in locality. BF variants, such as the buffered Bloom filter [34] and

the closely related BloomFlash [44], use this strategy. Localizing hashes to

one block moderates the randomness of bit reads/writes across the disk and,

in expectation, does not substantially hurt the false positive rate.

• Multi-layered design. Maintain multiple on-disk BFs, exponentially increas-

ing in size. Insert only into the largest and most recent BF. This approach

effectively reduces the ratio between the RAM size and the active BF by a

factor of 2, but increases the search cost, since a search must query all Bloom

filters. The forest-structured Bloom filter [74] uses this strategy.

• Buffer design and flushing policy. Different buffer management schemes

may lead to different performance characteristics. In the BBF, the buffer

is equally divided into a number of sub-buffers, each serving updates for a

particular SSD block. When a sub-buffer becomes full, its updates are applied

25

with one I/O. BloomFlash flushes the group of c contiguous sub-buffers that

has the most updates, and optimizes for c. The FBF does space stealing

between sub-buffers to delay flushing to disk until the RAM is full. A mayor

disadvantage of this design is the space overhead necessary to achieve this

dynamism, reducing the actual space available to cache the insertions.

3.3 Quotient Filter

In this section we describe the quotient filter, a space-efficient and cache-friendly

data structure that delivers all the functionality of the Bloom filter. We explain

advantages of the QF over the BF that make the QF particularly suitable to serve as

the foundation for our SSD-resident data structures.

The QF represents a multi-set of elements S ⊆ U by storing a p-bit fingerprint

for each of its elements. Specifically, the QF stores the multi-set F = h(S) =

{h(x) | x ∈ S}, where h : U → {0, . . . , 2p − 1} is a uniform random hash func-

tion. To insert an element x into S, we insert h(x) into F . To test whether an

element x ∈ S, we check whether h(x) ∈ F . To remove an element x from S, we

remove (one copy of) h(x) from F .

Conceptually, we can think of F as being stored in an open hash table T with

m = 2q buckets using a technique called quotienting, first suggested by Knuth [73,

Section 6.4, exercise 13] based on the observation that the first q bits of the hash

can be inferred by the bucket number in which the hash is stored; see the open

hash table (i.e., hash table with chaining) at the top of Figure 2. In this technique

a fingerprint f is partitioned into its r least significant bits, fr = f mod 2r (the

remainder), and its q = p− r most significant bits, fq = bf/2rc (the quotient). To

insert a fingerprint f into F , we store fr in bucket T [fq]. Given a remainder fr in

bucket fq, the full fingerprint can be uniquely reconstructed as f = fq2
r + fr.

26

In a static setting, we can think of q and r in terms of both, n and ε. Specif-

ically, we let q = lg(cn), for 1 < c ≤ 2, and r = lg(1/ε), where ε is a negative

power of two. The constant c specifies the load factor α = 1/c of the hash table.

As expected, as c gets closer to one the performance of the QF declines.

To reduce the memory required to store the fingerprints and achieve better

spatial locality, we actually use open addressing (closed hashing) instead of a hash

table with chaining. As such, the QF can be thought of as an array A[0 . .m− 1] of

r-bit items.

If two fingerprints f and f ′ have the same quotient (fq = f ′q) we say there is a

soft collision. In this case we use linear probing as a collision-resolution strategy.

All remainders of fingerprints with the same quotient are stored contiguously in

what we call a run. If necessary, a remainder is shifted forward from its original

location and stored in a subsequent slot, wrapping around at the end of the array.

We maintain the invariant that if fq < f ′q, fr is stored before f ′r in A, modulo this

wrapping.

In order to be able to reconstruct the fingerprints stored in a QF we need to be

able to distinguish the original bucket in which a given remainder belongs. This is

trivial if we where using an open hash table, but not as much when we use open

addressing. To see why, consider a remainder currently in the QF. Just by looking

at its current position in the array it is impossible to tell if it is currently stored in

its original bucket, or if it has been shifted because of a soft collision.

To solve this, we need to maintain an offset that keeps track of how far from its

original location a remainder is; see Figure 2, bottom. Obviously, maintaining this

offsets as regular counters is expensive in terms of space. In Section 3.4 we show

one possible way of encoding the offsets using only three extra bits per bucket. We

note that it is actually possible to reduce this number down to two bits per bucket,

and that this is provably optimal. Designing, implementing, and benchmarking

27

0
a

1
b

2
c

3
d

4
e

5
f

6
g

7
h

8 9

0 1 2 3 4 5 6 7 8 9

a

b

c

d

e

f g

h

run
cluster

1
1
3
3
3
4
6
6

a
b
c
d
e
f
g
h

A
B
C
D
E
F
G
H

f fq fr

0 1 0 1 2 2 1 2offset

Figure 2: An example quotient filter with 10 slots along with its equivalent open
hash table representation. The remainder, fr, of a fingerprint f is stored in the
bucket specified by its quotient, fq. The quotient filter stores the contents of each
bucket in contiguous slots, shifting elements as necessary. We also store an offset
to identify the actual quotient of a remainder even after shifting.

other encodings is left as future work.

Theorem 3.11. The space usage of QF is O(n lg(1/ε)).

Proof. Recall that q = lg(cn) and r = lg(1/ε). The QF comprises an array of size

2q. Each position in the array stores r + b bits, where b is the number of bits used

to encode the offsets. As such, the space usage of the QF is

2q(r + o) = cn(lg(1/ε) + o)

= O(n lg(1/ε)) +O(n)

Theorem 3.12. The false positive rate of the QF is at most ε = 2−r.

28

Proof. Since the QF is just a compact representation of F , its false positive rate

is a function of the hash function, h, and the number of items, n, inserted into the

filter. In particular, a false positive happens when an element x′ /∈ S has the same

fingerprint as an element x ∈ S (i.e., h(x) = h(x′)). We refer to this event as a

hard collision.

Assuming h generates outputs uniformly and independently distributed in

{0, . . . , 2p − 1}, the probability of a hard collision after a single element has been

inserted is clearly 1/2p. Conversely, the probability of not having a hard collision

in this case is 1− 1/2p.

After n = α2q elements have been inserted, the probability of not having a

hard collision is (
1− 1

2p

)n
≈ e−n/2

p

.

Finally, the probability of having a hard collision is given by

1− e−n/2p ≤ n

2p

≤ 2q

2p

= 2−r.

Figure 1 shows the false positive rate (on a log scale) for QF as a function of

the bits per element. In the figure, α is the load factor of the QF (i.e., the fraction

n/m of occupied slots). Figure 1 also shows the false-positive rate for the BF and

for a QF variant, described later, that uses only two meta-data bits per slot.

A QF for p-bit fingerprints can have at most 2p slots, so the size of the fin-

gerprint must be selected in advance based on the number of elements expected

to be inserted in the filter and a desired false positive rate. A BF has a similar

29

limitation—it cannot be expanded to accommodate new items—so sufficient space

for all the elements must be allocated in advance. In either case, if the system im-

plementor chooses too small a fingerprint or too small a BF, then the false positive

rate will become unacceptably large and the data structure will have to be rebuilt

from scratch with better parameters. If the implementor chooses too large of a fin-

gerprint or too large of a BF, then false positive rates will be acceptable, but space

will be wasted. Here, however, QF has a significant space advantage. For example,

if the implementor overestimates the number of items by a factor of two, then the

BF will consume twice the necessary space. The QF, on the other hand, will only

consume 1 or 2 extra bits per element which, for typical parameters, will be about

10-20% too much space.

We define a cluster as a sequence of one or more consecutive runs (with no

empty slots in between). A cluster is always immediately preceded by an empty

slot and its first item is always un-shifted (i.e., its offset is equal to 0); see Figure 2,

bottom.

The time required to perform a lookup, insert, or delete in a QF is dominated

by the time to scan backwards and forwards. One such operation need only scan

through one cluster. Therefore, we can bound the cost by bounding the size of

clusters. The following theorem can be proved by a straightforward application of

Chernoff Bounds.

Theorem 3.13. Let α ∈ [0, 1). Suppose there are αm items in a quotient filter with

m slots. Let

k = (1 + ε)
lnm

α− lnα− 1
.

Then

Pr [there exists a cluster of length ≥ k] < m−ε
m→∞−−−→ 0.

Proof. Let k be an arbitrary positive integer. We argue that if there is a cluster

30

spanning slots i, . . . , i + k − 1, then there must be k items that hash into some

contiguous region of k slots. Without loss of generality, suppose i is the start of

the cluster. Since all items are stored at or after their canonical location, every item

stored in slots i, . . . , i + k − 1 must hash into the range i, . . . , i + k − 1. This

establishes that some range of k slots has k items that hash into it.

We use Chernoff bounds to limit the probability that k items all hash into the

range i, . . . , i+ k − 1. Let

Xij =

1 if item j hashes into one of slots i, . . . , i+ k − 1

0 otherwise

and let Xi =
∑m

j=1Xij . Then E[Xi] = αm k
m

= αk = µ.

Recall the multiplicative form of the Chernoff bound: if X is a sum of inde-

pendent 0/1 random variables with E[X] = µ, then for any δ > 0,

Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)1+δ

]µ
.

Taking 1 + δ = 1/α in this formula yields that

Pr[Xi > k] <

[
e1/α−1

(1/α)1/α

]αk
=

ek−αk

(1/α)k

= (αe1−α)k.

Thus, for any particular i,

Pr[Xi > k] < (αe1−α)k.

31

Now observe that

Pr[∃i s.t. Xi > k] <
m∑
i=0

Pr[Xi > k]

< m(αe1−α)k.

Thus we need to solve for k such that

m(αe1−α)k
m→∞−−−→ 0.

Taking logs and simple algebra show that if

k = (1 + ε)
lnm

α− lnα− 1
,

then

m(αe1−α)k = m−ε
m→∞−−−→ 0.

For example, with q = 40 (m = 240) and α = 3/4, the largest cluster in the QF

has approximately 736 slots. On average, clusters are O(1) in size. The expected

length of a cluster is less than 1/(1 − αe1−α). For example, with α = 3/4, the

average cluster length is 27. Figure 3 shows the distribution of cluster sizes for

three choices of α. With α = 1/2, 99% of the clusters have less than 24 elements.

We have shown that QF offers space and false-positive performance that is

comparable to BF, but QF has several significant advantages, as described next.

Cache friendliness. QF lookups, inserts, and deletes require decoding and pos-

sibly modifying a single cluster. Since clusters are small, these slots usually fit in

32

distribution

Page 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Cluster Length

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b

ili
ty

alpha=0.5
alpha=0.75
alpha=0.9

Figure 3: Distribution of cluster sizes for 3 choices of α.

one or two cache lines. On SSD, they usually fit in one disk page, which can be

accessed with a single serial read or write. BF inserts, on the other hand, require

writing to k random locations, where k is the number of hash functions used by the

filter. Similarly, BF lookups require about two random reads on average for absent

elements and k for present elements.

In-order hash traversal. As mentioned before, it is possible to reconstruct the

exact multi-set of fingerprints inserted into a QF. Furthermore, the QF supports in-

order traversal of these fingerprints using a cache-friendly linear scan of the slots in

the QF. These two features enable two other useful operations that are not possible

with BF: resizing and merging.

Resizing. Like most hash tables, the QF can be dynamically resized—both ex-

panded and shrunk—as items are added or deleted. Unlike hash tables, how-

ever, this can be accomplished without the need of rehashing by simply borrow-

ing/stealing one bit from the remainder into the quotient. This can be implemented

by iterating over the array while copying each fingerprint into a newly allocated

array.

33

Merging. Similarly, two or more QF can be merged into a single, larger filter

using an algorithm similar to that used in merge sort. The merge uses a sequential

scan of the two input filters and sequentially writes to the output filter and hence is

cache friendly.

Deletes. The QF supports correct deletes while standard Bloom filters do not. In

contrast, Counting Bloom filters [27, 57] support probabilistically correct deletions

by replacing each bit in a BF with a 4-bit counter, but this incurs a large space

overhead and there is still a probability of error.

3.4 Implementation Details

In this section we give details for one possible implementation of QF, as described

in [17, 18]. This particular implementation uses 3 meta-data bits per slot. We also

briefly describe potential variations.

We begin by analyzing the minimum number of bits per element required to

encode the offsets in a particular cluster.

Theorem 3.14. Any encoding of the offsets for a cluster of size n requires Ω(2n)

bits.

Proof. The proof is by an information theoretic argument.

First, recall that a cluster is defined as as a sequence of slots with no empty slots

in between. Let m be the total number of different possible offset combinations

in a cluster of size n. An alternate formulation is to count the total number of

ways to place n balls into n bins, with the additional restriction that the number of

balls stored in the first k bins is greater or equal than k. Formally, let x1, . . . , xn

be non-negative integers representing the number of balls stored in bins 1, . . . , n,

34

respectively. Then m is the number of solutions to the equation x1 + · · ·+ xn = n

such that, for all k (1 ≤ k ≤ n),

k∑
i=1

xi ≥ k.

Using the “stars and bars” method, we consider a string of n stars, representing

the balls, and a string of n−1 bars, representing separators between two contiguous

bins. Then all possible offset combinations can be represented by merging these two

strings, and the problem reduces to counting the possible number of ways to merge

them. We model the additional constraint by requiring that no initial segment of the

merged string has more bars than stars.

Now, if we place an additional bar at the end of all merged strings, this is

equivalent to counting the number of Dyck words [39] of length 2n—strings con-

sisting of n X’s and n Y’s such that no initial segment of the string has more Y’s

than X’s—which is Cn = 1
n+1

(
2n
n

)
, the nth Catalan number.

Thus, m = Cn and the total number of bits required to differentiate all m

possible offset combinations is lgm = 2n+o(n), by Stirling’s Approximation.

Our QF implementation is similar in spirit to Cleary Tables [41], a compact

representation of hash tables based on quotienting and a bi-directional linear prob-

ing scheme utilizing 8 additional meta-data bits per slot—three control bits and five

counter bits. Here, each slot in A stores an r-bit remainder along with three meta-

data bits, which enable perfect reconstruction of the open hash table; see Figure 4,

bottom.

The three meta-data bits in each slot of A work as follows. For each slot i,

we maintain an is-occupied bit to quickly check whether there exists a fingerprint

f ∈ F such that fq = i. For a remainder fr stored in slot i, we record whether fr

35

0 0 0
0

1 0 0
a

1
0 1 1

b

2
1 0 0

c

3
1 1 1

d

4
0 1 1

e

5
1 0 1

f

6
0 0 1

g

7
0 1 1

h

8
0 0 0
9

is_occupied

is_continuation

is_shifted

0
a

1
b

2
c

3
d

4
e

5
f

6
g

7
h

8 9

0 1 0 1 2 2 1 2offset

Figure 4: An example quotient filter with 10 slots along with its equivalent repre-
sentation using three meta-data bits to encode the offsets. Note that this is the same
quotient filter as the one in Figure 2

belongs to bucket i (i.e., fq = i) with an is-shifted bit. Finally, for a remainder fr

stored in slot i, we keep track of whether fr belongs to the same run as the remainder

stored in slot i− 1 with an is-continuation bit. Intuitively, the is-shifted bit, when

it is set to 0, tells the decoder the exact location of a remainder in the open hash

table representation, the is-continuation bit enables the decoder to group items that

belong to the same bucket (runs), and the is-occupied bit lets the decoder identify

the correct bucket for a run.

In order to reconstruct the fingerprints stored in a QF, we only need to decode

starting from the beginning of a cluster. However, rather than decoding, we can

perform all operations in place. Figure 5 shows the algorithm for testing whether a

fingerprint f might have been inserted into a QF A.

To insert/delete a fingerprint f , we operate in a similar manner: first we

mark/unmark A[fq] as occupied. Next, we search for fr using the same algorithm

as MAY-CONTAIN to find the slot where it should go. Finally, we insert/remove

fr and shift subsequent items as necessary, while updating the other two meta-data

bits. We stop shifting items as soon as we reach an empty slot.

36

MAY-CONTAIN(A, f)

fq ← bf/2rc � quotient
fr ← f mod 2r � remainder
if ¬ is-occupied(A[fq])

then return FALSE

� walk back to find the beginning of the cluster
b← fq
while is-shifted(A[b])

do DECR(b)
� walk forward to find the actual start of the run
s← b
while b 6= fq

do � invariant: s points to first slot of bucket b
� skip all elements in the current run
repeat INCR(s)

until ¬ is-continuation(A[s])
� find the next occupied bucket
repeat INCR(b)

until is-occupied(A[b])
� s now points to the first remainder in bucket fq
� search for fr within the run
repeat if A[s] = fr

then return TRUE

INCR(s)
until ¬ is-continuation(A[s])

return FALSE

Figure 5: Algorithm for checking whether a fingerprint f is present in the QF A.

3.4.1 Quotient Filter Variants

We now give space-saving variations on the QF. The QF decoder maintains two

pointers: b, a pointer to the current bucket, and s, a pointer to the current slot. The

decoder needs to initialize b and s to correct values in order to begin decoding.

That is the purpose of the is-shifted bit: if ¬ is-shifted(A[i]), then the decoder can

37

initialize b = s = i. There are other ways to initialize b and s:

• Synchronizers. The QF could store a secondary array, S[0 . . (2q/`) − 1],

of c-bit items. Entry S[i] would hold the offset between bucket i` and the

slot holding its first element. The decoder can initialize b = i` and s =

i`+S[i] mod 2q for any i. For example, to lookup an element in bucket fq, the

decoder would choose i = bfq/`c. As a special case, when S[i] = 2c− 1, the

offset between bucket i` and the slot holding its first element is greater than

or equal to 2c − 1. The decoder cannot use such entries to begin decoding—

it must walk backwards to find the nearest index i such that S[i] < 2c − 1.

Since clusters are small, so are the offsets, so we can choose small c (e.g., 5

or 8). The frequency, `, of synchronizers can trade space for decoding speed.

The current system, with is-shifted bits, is essentially a special case of this

scheme with c = ` = 1. By choosing a large `, the per-slot overhead of the

QF can be arbitrarily close to two bits.

• Reserved remainders. We can also reserve a special remainder value, e.g. 0,

to indicate that a slot is empty, and decoding can begin at an empty slot i with

b = s = i. This would require only 2 meta-data bits, but reduces the hash

space slightly.

• Sorting tricks. Finally, it is possible to indicate empty slots by ordering ele-

ments within each bucket and placing “illegal” unordered sequences of ele-

ments in empty regions of the QF. In this way, we can achieve exactly two

bits of overhead. Decoding in this version is complex and slower.

38

3.5 Quotient Filter Extensions

In this section we give two AMQs designed for SSD, the buffered quotient filter

and the cascade filter, and a data structure designed to efficiently handle duplicate

elements that can also be used as a frequency estimator, the Counting Bloom Filter.

All three structures use the QF as a building block. The false positive rates of the

first two data structures is exactly the same as that of a single QF storing all of the

elements.

3.5.1 Buffered Quotient Filter

The BQF uses one QF as the buffer and another QF on the SSD. When the in-RAM

QF becomes full, we sequentially iterate over it and flush elements to disk. The QF

serves well as a buffer because of its space efficiency and because it allows the flush

to iterate sequentially through its fingerprints and write to SSD. Since elements are

stored in sequential order, the writes to SSD will also be sequential. Since each flush

may write to every page of the on-disk structure, the amortized cost of inserting an

item into a BQF of n items with a cache of size M and a block size of B bytes

is O(n
MB

). The BQF is optimized for lookup performance. Most lookups perform

one I/O. As with the buffering approaches from Section 3.2, performance degrades

as the filter-to-RAM size increases.

3.5.2 Cascade Filter

The CF is optimized for insertion throughput but offers a tradeoff between lookup

and insertion speed.

The overall structure of the CF is loosely based on a data structure called the

Cache-Oblivious Lookahead Array (COLA) [15]; see Figure 6. The CF maintains

39

0

1

2

RAM

FLASHB I K N S U

A C D F H J L M O P V X

E G Q R T W

0

1

2

3

RAM

FLASH

A B C D E F G H I J K L M N O P Q R S T U V W X

Figure 6: Merging QFs. Three QFs of different sizes are shown above, and they
are merged into a single large quotient filter below. The top of the figure shows a
CF before a merge, with one QF stored in RAM, and two QFs stored in flash. The
three QFs above have all reached their maximum load factors (which is 3/4 in this
example). The bottom of the figure shows the same CF after the merge. Now the
QF at level 3 is at its maximum load factor, and the QFs at levels 0, 1, and 2 are
empty.

an in-memory QF, Q0. In addition, for RAM of size M , the CF maintains ` =

lg(n/M) + O(1) in-flash QFs, Q1, . . . , Q`, of exponentially increasing size. New

items are initially inserted into Q0. When Q0 reaches its maximum load factor, the

CF finds the smallest i such that the elements in Q0, . . . , Qi can be merged into

level i. It then creates a new, empty quotient filter Q′i, merges all the elements

in Q0, . . . , Qi into Q′i, replaces Qi by Q′i, and replaces Q0, . . . , Qi−1 with empty

QFs. To perform a CF lookup, we perform a lookup in each nonempty level, which

requires fetching one page from each.

It is possible to implement this scheme with different branching factors, b.

That is, Qi+1 can be b times as large as Qi. As b increases, the lookup performance

increases because there are fewer levels, but the insertion performance decreases

because each level may be rewritten multiple times.

40

The theoretical analysis of CF performance follows from the COLA: a search

requires one block read per level, for a total of O(lg(n/M)) block reads; and an

insert requires only O((lg(n/M))/B) amortized block writes/erases, where B is

the natural block size of the flash. Typically, B � lg(n/M), meaning the cost

of an insertion or deletion is much less than one block write per element. Like a

COLA, a CF can be deamortized to provide better worst-case bounds [15]. This

deamortization removes delays caused by merging large QFs.

3.5.3 Counting Quotient Filter

One disadvantage of QF is that, if elements are not distributed uniformly, then large

clusters can form and, consequently, operations on the QF can become slow. This

is a generalized and well-known problem with hash-based containers. If elements

inserted into the table are almost always unique, then a good hash function can

generate uniformly distributed outputs. The question is how to deal with this issue

when some elements are likely to be inserted repeatedly. One possible solution is to

check for duplicates whenever an element is inserted, and only allow insertions of

new items; however, this would make deletions impossible. Alternatively, the QF

can maintain a secondary table, C, of 2q counters, where entry C[i] indicates the

number of times the fingerprint stored in slot i of the QF has been inserted. In this

section we analyze this approach.

Interestingly, the CQF can also be used to estimate the number of times that a

specific element has been inserted. This problem is normally studied in the area of

data stream algorithms under the name frequency estimator. This area of research

is characterized by (1) algorithms and data structures whose space is sublinear in

both data and input size, (2) the restriction that data can only be seen once or, in

some cases, a constant number of times, (3) fast processing time for both updates

41

and queries, and (4) a small bounded probability of giving a wrong answer, where

the factor from which the answer is incorrect is also bounded.

The formal definition of the problem is given below.

Definition 3.15 (Frequency Estimator Problem). Process a stream of elements

ψ = (x1, x2, . . .), where each xi belongs to a set S = {s1, s2, . . . , sn}, so that

at any time t (i.e., after the tth element in stream ψ has been processed), we can

efficiently estimate the number of occurrences in ψt = (x1, . . . , xt) of a given el-

ement. Specifically, let (si)t be the actual number of occurrences of element si at

time t, and (ŝi)t the number of occurrences reported by the data structure. Then

(si)t ≤ (ŝi)t, and (ŝi)t ≤ (si)t + εt with probability at least 1 − δ, where ε and δ

are parameters of the data structure.

Data Structure. Given parameters ε and δ, let q = lg(1/ε), r = lg(1/δ), and

p = q + r. The Counting Quotient Filter (CQF) is almost identical to a Quotient

Filter (QF) with the exception that each of the 2q slots store a counter in addition to

the remainder and the meta-data bits. The counter keeps track of how many times

has the remainder currently stored in that slot been inserted.

When an element xi from stream ψ arrives we compute a uniformly random

p-bit hash h(xi). Next we partition h(xi) into its r least significant bits hr(xi) =

h(xi) mod 2r (the remainder), and its q most significant bits hq(xi) = bh(xi)/2
rc

(the quotient). As in QF, we then store hr(xi) in bucket hq(xi). If this is the first

time that h(xi) is inserted, we initialize its counter to zero. Otherwise, we increment

the associated counter by 1.

To compute the estimated number of occurrences of a given element si we

search the QF for the corresponding hash, h(si), and return its associated counter.

42

Theorem 3.16. At any time t the estimate (ŝi)t reported by CQF is such that

(si)t ≤ (ŝi)t, and (1)

(ŝi)t ≤ (si)t + εt with probability at least 1− δ. (2)

Proof. First we define some notation. Given two elements si, sj ∈ S, let the in-

dicator random variable Ii,j be such that Given two indices 1 ≤ i, j ≤ n let the

indicator random variable Ii,j be such that

Ii,j =

1 if si 6= sj and h(si) = h(sj), and

0 otherwise.

In other words, Ii,j is 1 if and only if the hash value for elements si and sj collide.

The expected value of Ii,j is given by

E(Ii,j) = Pr[h(si) = h(sj)] ≤
1

2p
.

For a given element si ∈ S, define the variable

Xi =
n∑
j=1

(Ii,j(sj)t).

That is, the number of occurrences of all elements that collide with si. By construc-

tion, (ŝi)t = (si)t +Xi, so clearly Inequality (1) holds.

From the definitions given above and by linearity of expectation we can com-

pute the expected value of Xi as

43

E(Xi) = E

(
n∑
j=1

(Ii,j(sj)t)

)

≤
n∑
j=1

((sj)tE(Ii,j))

≤
n∑
j=1

(sj)t
2p

=
1

2p
·

n∑
j=1

(sj)t

=
t

2p
.

For Inequality (2), observe that

Pr [(ŝi)t > (si)t + εt] = Pr

[
(ŝi)t > (si)t +

t

2q

]
= Pr

[
(si)t +Xi > (si)t +

t

2q

]
= Pr

[
Xi >

t

2q

]
= Pr [Xi > 2rE(Xi)] .

Therefore, by Markov’s inequality.

Pr [(ŝi)t > (si)t + εt] ≤ 1

2r

= δ.

The time for both, processing an element and producing the estimate, is O(1),

44

just as in QF.

Theorem 3.17. The space usage of CQF is

1

ε
lg

1

δ
+O

(
1

ε

)
.

Proof. Let w be the machine word size, where 2w ≥ max{t, n}, and c be the

number of meta-data bits, depending on the QF implementation. Each of the 2q

slots in CQF has (r + c+ w) bits, for a total space usage of

2q(r + c+ w) =
1

ε

(
lg

1

δ
+ c+ w

)
=

1

ε
lg

1

δ
+
c+ w

ε

Comparison with Count-Min Sketch. The Count-Min Sketch [43] (CMS) for

parameters ε and δ can be seen as a Counting Bloom Filter [57] (CBF) with k =

dln(1/δ)e pair-wise independent hash functions and m = de/εe k counters, where

each counter is as large as a machine word, w. The CBF is sliced into k arrays of

size de/εe, each with its own hash function.

The CMS provides the same guarantees as CQF. That is, the estimate (ŝi)t

reported is such that (si)t ≤ (ŝi)t and (ŝi)t ≤ (si)t + εt with probability at least

1− δ. The time to produce the estimate is O(k), the same as the time to process an

element. The space usage of CMS is

⌈e
ε

⌉⌈
ln

1

δ

⌉
w = O

(
1

ε
ln

1

δ

)
,

which is more than the space usage of CQF for all typical and reasonable values of

45

ε and δ.

3.6 Evaluation

This section answers the following questions:

1. How does the quotient filter compare to the Bloom filter with respect to in-

RAM performance?

2. How do the cascade filter and buffered quotient filter compare to various

Bloom filter alternatives on Flash?

3. How does the on-disk performance of the cascade filter and buffered quotient

filter change as the database scales out of RAM?

4. How do the different data structures compare on lookup performance? We

investigate the performance of both successful lookups and uniform random

lookups (which are almost all unsuccessful).

5. What is the insert/lookup tradeoff for the cascade filter with varying fan-outs?

This section comprises three parts. In the first part, we compare the QF and the

BF in RAM. We compare the two data structures for three different false positive

rates: 1/64 ≈ 1%, 1/512 ≈ 0.2%, and 1/4096 ≈ 0.02%. In the second part, we

measure the on-disk performance of the CF, the BQF, the EBF, the BBF and the

FBF. Here, we perform experiments with the RAM-to-database size ratios of 1 : 4

and 1 : 24, which we call small and large experiments, respectively. In the third

part, we measure the performance tradeoffs between the insertion and the lookup

performance when varying the fanout of the CF. We report results for fan-outs of 2,

4, and 16.

In all experiments, we measure three performance aspects:

46

Uniform random inserts: Keys are selected uniformly from a large universe.

Uniform random lookups: Keys are selected as before. When performed on an

optimally filled AMQ data structure, such queries will report true with prob-

ability equal to that of our false positive rate.

Successful lookups: Keys are chosen uniformly at random from one of the keys

actually present.

We use an interleaved workload. Every 5% of completed insertions, we spend

60 seconds performing uniform random lookups, followed by 60 seconds perform-

ing successful lookups. This way, we can measure the lookup performance at dif-

ferent points of data structure occupancy.

Experimental Setup. We created C++ implementations of all the data structures

evaluated in these experiments. Our BF, EBF, BBF, and FBF implementations

always uses the optimal number of hash functions. The BBF “page size” parameter

controls the amount of space that will be written when buffered data is flushed to

SSD. We configured our BBF to use 256KB pages, which is the erasure block size

on our SSDs, as recommended by the BBF authors. The analogous FBF parameter

is called the “block size”, and we configured our FBF implementation to use 256KB

blocks. The FBF “page size” governs the size of reads performed during lookups;

our FBF implementation used 4KB pages.

Our benchmarking infrastructure generated a 512-bit hash for each item in-

serted or queried in the data structure. Each data structure could partition the bits

in this hash as it needed. For example, a BF configured to use 12 hash functions,

each with a 24-bit output, would use 288 bits of the 512-bit hash and discard the

rest. We chose 512-bit hashes because many real-world AMQ applications, such as

de-duplication services, use cryptographic hashes, such as SHA-512.

47

We ran our experiments on two identically configured machines, running

Ubuntu 10.04.2 LTS. Each machine includes a single-socket Intel Xeon X5650

(6 cores with 1 hyperthread on each core, 2.66GHz, 12MB L2 cache). The ma-

chines have 64GB of RAM; to test the out-of-RAM performance, we booted them

with 3GB each.

Each machine has a 146.2GB 15KRPM SAS disk used as the system disk and

a 160GB SATA II 2.5in Intel X25-M Solid State Drive (SSD) used to store the out-

of-RAM part of the data. We use only a 95GB partition of the SSD to minimize

the SSD FTL firmware interference. We formatted the 95GB partition as an ext4

filesystem and out-of-RAM data was stored in a 80GB file in that filesystem. We

used dd to zero the file between each experiment. With this configuration, we

could perform 3,910 random 1 byte writes per second, 3,200 1 byte random reads

per second, sequential reads at 261 MB/s, and sequential writes at 109 MB/s.

To avoid swapping, we set the Linux swappiness to zero and we monitored

vmstat output to ensure that no swapping occurred.

Each data structure require different number of bits for their fingerprints. In

order to measure the performance independent of the time to compute the finger-

prints, we always compute a 512-bit hash for each data structure. We can do this

because our data structures require the least number of bits overall.

We implemented all data structure in C++. We did our best effort to follow

the description given by the author in their respective papers. In some cases we

contacted the authors for advice on implementation details. In any case, when in

doubt, we always made whichever assumption would give the most advantage to

the other data structures

48

3.6.1 In-RAM Performance: Quotient Filter vs. Bloom Filter

This section presents the experimental comparison of QF to the BF, with varying

false positive rates. Both data structures were given 2GB of space in RAM and we

tested their performance on three false positive rates: 1/64, 1/512, and 1/4096. In

both experiments, we construct the data structures that can fit the maximum number

of elements without violating the false positive rate nor the space requirements. We

fill the BF to the maximum occupancy. Because the insertion throughput of the QF

significantly deteriorates towards maximum occupancy, we let the QF experiment

run up to 90% full.

Results. Figure 7 shows the insertion, random lookup, and successful lookup

throughputs of the BF and quotient filter.

The quotient filter substantially outperforms the BF on insertions until the quo-

tient filter is 80% full. The BF insertion throughput is independent of its occupancy,

but degrades as the false positive rate goes down, since it has to set more bits for

each inserted item. The quotient filter insertion throughput is unaffected by the false

positive rate, but it gets slower as it becomes full, since clusters become larger.

The quotient filter matches the BF random lookup performance until about

65% occupancy. The quotient filter performance degrades as its occupancy in-

creases because clusters become longer. The BF performance degrades because

the density of 1 bits increases, so the lookup algorithm must, on average, check

more bits before it can conclude that an element is not present.

The quotient filter significantly outperforms the BF on successful lookups up

to about 75% capacity. The BF performance is independent of occupancy since, in

all successful lookups, it must check the same number of bit positions. The quotient

filter performance degrades as clusters get larger.

49

Capacity
FP rate BF QF (90%)
1/64 1.98 billion 1.71 billion
1/512 1.32 billion 1.29 billion
1/4096 991 million 1.03 billion

Table 2: Capacity of the quotient filter and BF data structures used in our in-RAM
evaluation. In all cases, the data structures used 2GB of RAM.

Table 2 shows the capacity of the BFs and quotient filters in our experiments.

As predicted in Figure 1, the capacities are almost identical, with the quotient filter

more efficient for lower false positive rates.

Overall, the quotient filter outperforms the BF until its occupancy reaches

about 70%. The quotient filter requires slightly more space for high false positive

rates, and less space for lower false positive rates.

3.6.2 On-disk Benchmarks

We evaluate the insert and lookup performance of CFs, BQFs,EBFs, BBFs and

FBFs when they are bigger than RAM. To see how performance of various data

structures scales as the RAM-to-filter ratio shrinks, we run two experiments, with

RAM-to-filter ratios of 1 : 4 and 1 : 24. The false positive rate in both experiments

is fixed to f = 1/4096 ≈ 0.024%, which sets the number of hash functions for the

EBF, the BBF and the FBF to k = 12, k = 13 and k = 14, respectively.

We refer to the first experiment, which uses a RAM-to-filter ratio of 1 : 4, as

the small experiment. The RAM buffer size is set to 2GB and the size of data struc-

tures on disk is roughly 8GB. The remaining 1GB of RAM is left for the operating

system (to use partly as page cache). We inserted 3.97 billion elements into each

data structure.

The second experiment, using a RAM-to-filter ratio of 1 : 24 can be thought

50

of as a “large” experiment. In this case all data structures employ 2GB of RAM

buffer, and a 48GB on-disk data structure. As in the previous experiment, 1GB is

set aside for the page cache. In this configuration, the CF and BQF can hold 23

billion elements, and they can insert them in under 35,000 seconds. All the other

data structures were too slow to complete the experiment—we present only partial

results obtained after inserting elements for 35,000 seconds.

Results. Figures 8 and 9 show the insertion, random lookup, and successful

lookup performance obtained in the small and large experiments. The small CF

and BQF experiments completed in about 1 hour. The small EBF and BBF exper-

iments took about 10 hours, and the small FBF experiment took about 25 hours

to complete. Consequently, Figure 8(a) only shows the throughput of each data

structure through the first hour of the small experiment. See Table 1 for the overall

throughputs.

In the large experiment, the other three data structures all completed less than

10 percent of the experiment. Figure 9(a) shows their cumulative throughput for the

first 35,000 seconds, but Figures 9(b) and 9(c) do not plot their lookup performance,

since the data structures were too slow to obtain this data.

There are two main trends to notice in the insertion throughput graphs: (1) the

CF and BQF are orders of magnitude faster than the EBF, BBF, and FBF, and (2)

the CF scales better than the BQF. In the small experiment, the BQF outperforms

the best BF variant by a factor of 5.2, and slightly outperforms the CF. In the large

experiment, the CF performs 11 times more insertions than any of the BF variants,

and the BQF performs 9 times more insertions than the BF variants.

The BQF outperforms the CF in the small experiment, but the CF outperforms

the BQF in the large experiment, which is consistent with our prediction. Recall

that an insert into the BQF requires O(n/M/B) writes, and an insert into the CF

51

requires (O(lg(n/M)/B) writes. In the small experiment, n/M ≈ 4, but in the

large experiment, n/M ≈ 24. Hence, the difference between n/M and lg(n/M)

becomes significant and the CF begins to outperform the BQF. As the size of the

database grows, the gap should get larger.

The insertion performance graphs also display the effects of each data struc-

ture’s buffering strategy. For example, the stalls in the BQF performance corre-

spond to flushing of the full in-RAM QF to the on-disk QF. The stalls become

longer as the on-disk QF becomes fuller, making insertions into it more CPU-

intensive. The stalls in the CF performance correspond to the merges of QFs. The

largest stall is in the middle, where all but the in-RAM QFs are being merged into

the largest QF in the CF. There are deamortization techniques, which we did not

implement, that can remove such long stalls [15]. The EBF stalls during flushes,

too, but each flush takes the same amount of time since BF insertion performance

is independent of occupancy. The FBF insertion throughput starts high, during the

FBF’s in-RAM phase, but drops sharply once data begins spilling to disk. Although

it appears to outperform the BBF and EBF in Figure 8(a), Table 1 shows that its

overall performance is about 5x less than the BBF and EBF.

The EBF, BBF, and FBF were not able to complete the large experiment, so we

cannot compare their overall performance, but we can report their performance on

the insertions they completed. The FBF had a cumulative throughput of 67,000 in-

sertions/second during the 35,000 second experiment. The BBF performed 44,600

inserts per second, and the EBF completed 53,000 insertions per second. The CF

had a cumulative throughput of 728,000 insertions per second.

The lookup performance graphs support three conclusions: (1) the BQF and

CF outperform the BF variants, (2) The BQF performs one random read per lookup,

and (3) the CF performs between 1 and lg(n/M) random reads per lookup. For uni-

form random lookups, the BQF performance is roughly 1.9 times higher than either

52

the best BF variant or the CF. The CF uniform random lookup performance is com-

parable to the EBF and BBF performance, and almost 50% higher than the FBF

uniform lookup rate. For successful lookups, the BQF performs 1.6 times better

than the CF, 2.5 better than the FBF and 10 to 12 times better than the BBF and the

EBF. The FBF maintains the most favorable successful lookup performance among

the BF variants. The EBF needs to perform k = 12 random reads for each success-

ful lookup, which matches with our results. The BBF is slightly more efficient, due

to hash localization and OS prefetching (the lookup indices are sorted.)

The CF always outperforms the BF variants, except under one circumstance.

The FBF outperforms the CF when the CF has flushed to disk but the FBF is still

operating in RAM. Since the FBF in-RAM phase uses a BF, which is slightly more

space efficient than a QF, it can buffer more data before its first flush to disk. Hence

the FBF outperforms the CF between 20% and 30% occupancy. Once the FBF

flushes to disk, though, it becomes much slower than the CF. Also note that when

both the CF and the FBF are operating in RAM, the CF is over twice as fast. Sim-

ilarly, the BQF outperforms the BF variants once the structures have inserted 30%

of the data.

The BQF and CF lookup performance curves match our theoretical analysis.

The BQF performance is always around 4, 000 lookups/second, consistent with the

conclusion that each BQF lookup requires one random read and the empirical mea-

surement that our SSD can perform about 4, 000 random reads/second. The CF

performance also matches theoretical predictions. For example, since the total data

set size in the large experiment is 24 times larger than RAM, the CF should have

between 1 and 4 ≈ lg(24) active levels, and hence its lookup throughput should

be between 1 and 4 times slower than the disk’s random read throughput. Fig-

ures 9(b) and 9(c) match this expectation. The slowest points are at about 1, 000

lookups/second, the fastest at 4, 000 lookups/second.

53

The lookup figures also reveal several other caching and buffering effects.

Lookup throughputs for the CF and BQF exhibit a sawtooth pattern: the upside

of the curve is due to populating the in-RAM QF, and thus satisfying a larger frac-

tion of lookups in RAM. Throughput peaks right before the in-RAM QF is flushed

– at 20%, 40% 60% and 80% in the small experiment. This effect is also more

pronounced for successful lookups, since a successful lookup is more likely to stop

in RAM. This effect becomes less significant as more data is inserted, since the data

in the buffer becomes a smaller fraction of the inserted elements.

The BBF and the EBF uniform random lookup performance mildly decays as

the data structures become fuller. This is due to the on-disk BF having more bits set

to one as the occupancy of the filter grows. When the data structure is 100% full,

the EBF and BBF need to check 2 bits on average. For EBF, this means 2 random

reads; for the BBF, it is slightly less than 2 because two bits from the same subfilter

(the erase block) may fall into the same read page. This is confirmed by our results,

where the BBF slightly outperforms the EBF in lookups, but both are just above

half of the random read throughput of the SSD.

3.6.3 Cascade Filter: Insert/Lookup Tradeoff

To investigate the effect of the fanout in the CF, we inserted 12 billion items into

CFs with the same basic configuration as before: a 2GB buffer and a false positive

rate of 1/4096. After inserting all 12 billion elements, we performed lookups for

60 seconds. We repeated this experiment with CFs for fan-outs of 2, 4, and 16.

Figure 10 shows the tradeoff between insert and lookup performance in these three

experiments.

As expected, a higher fanout improves lookup performance, and a lower fanout

improves insert performance. High fanouts reduce the number of levels in the CF,

54

so lookups have fewer levels to check. The drawback of a high fanout is that each

level will be written to disk several times, wasting disk bandwidth. According to

Figure 10, even a fanout of 16 exceeds the insert performance of all the BF based

data structures in our evaluations.

3.6.4 Evaluation Summary

QF-based data structures outperformed BF-based data structures in our evaluation.

The QF outperforms the BF, although it uses more space in some configurations.

The CF and BQF dramatically outperform all the BF variants. They can perform

insertions an order of magnitude faster, and offer comparable or superior lookup

performance.

The CF was the most scalable data structure in our experiments. As filter-

to-RAM ratio grows, the CF outperforms the BQF. With ratios larger than 24, we

expect the CF and the BQF performance to further diverge. When the ratio between

the filter and the RAM buffer grows too large, then the flushes that BQF performs

become distributed across the large filter, losing some of the space locality.

55

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

C
u
m

u
la

ti
v
e

T
h
ro

u
g
h
p
u
t

Percent full

BF-FP-12
QF-FP-12

BF-FP-9
QF-FP-9
BF-FP-6
QF-FP-6

(a) Cummulative inserts

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 20 40 60 80 100

A
v

er
ag

e
In

st
an

ta
n

eo
u

s
T

h
ro

u
g

h
p

u
t

Percent full

BF-FP-12
QF-FP-12

BF-FP-9
QF-FP-9
BF-FP-6
QF-FP-6

(b) Uniform random lookups

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 20 40 60 80 100

A
v

er
ag

e
In

st
an

ta
n

eo
u

s
T

h
ro

u
g

h
p

u
t

Percent full

BF-FP-12
QF-FP-12

BF-FP-9
QF-FP-9
BF-FP-6
QF-FP-6

(c) Successful lookups

Figure 7: In-RAM Bloom Filter vs. Quotient Filter Performance.

56

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 500 1000 1500 2000 2500 3000 3500

N
u
m

b
e
r

o
f

in
se

rt
io

n
s

Time (seconds)

CF
BQF
EBF
BBF
FBF

(a) Inserts

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100

A
v
er

ag
e

T
h
ro

u
g
h
p
u
t

Percent full

CF: 2.96mil FBF: 1.17mil CF
BQF
EBF
BBF
FBF

(b) Uniform random lookups

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100

A
v
er

ag
e

T
h
ro

u
g
h
p
u
t

Percent full

CF: 2.61mil
BQF: 2.6mil

FBF: 983970 CF
BQF
EBF
BBF
FBF

(c) Successful lookups

Figure 8: Small disk experiment. In Figure 8(a), the staircase pattern of the CF is
due to the merges of the small QFs into a larger quotient filter. The stalls in the
BQF performance are due to flushing of the in-RAM quotient filter to the on-disk
quotient filter. In Figures 8(b) and 8(c), the lookup performance of the cascade filter
depends on the number of full QFs. The BBF and the EBF perform more poorly
on the successful lookups, as they need to check 12 bits, performing roughly 12
random reads.

57

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 0 5000 10000 15000 20000 25000 30000

N
u

m
b

e
r

o
f

in
se

rt
io

n
s

Time (seconds)

CF
BQF
EBF
BBF
FBF

(a) Inserts

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

A
v

er
ag

e
T

h
ro

u
g

h
p

u
t

Percent full

CF
BQF

(b) Uniform random lookups

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

A
v

er
ag

e
T

h
ro

u
g

h
p

u
t

Percent full

CF
BQF

(c) Successful lookups

Figure 9: Large disk experiment. In Figure 9(a), the cascade filter outperforms the
buffered quotient filter. In Figures 9(b) and 9(c) the cascade filter lookup perfor-
mance depends on the number of levels it has: at 35 percent and 65 percent, it has
only one level, and performs one random read, like buffered quotient filter.

58

 0

 200000

 400000

 600000

 800000

 1e+06

 0 1000 2000 3000 4000 5000

In
se

rt
 T

h
ro

u
g
h
p
u
t

Uniform Random Lookup Throughput

CF-2

CF-4

CF-16

Figure 10: The Cascade Filter Insert/Lookup Tradeoff: Varying fanouts. Higher
fanouts foster better lookup performance; lower fanouts optimize the insertion per-
formance.

59

Chapter 4

Batched Predecessor in External Memory

4.1 Introduction

Buffering is a standard technique for improving the performance of external-

memory algorithms. By buffering, partial work on a set of operations can share

an I/O, thus reducing the I/O cost per operation. In this chapter we study if buffer-

ing queries, so that they are lazily processed in batches, can in fact improve their

performance.

The standard ubiquitous data structure to efficiently answer membership

queries in external memory is the B-tree [9]. B-trees achieve O(logB n) I/Os per

query element. It is easy to prove, by a simple information-theoretic argument, that

this bound is, indeed, optimal. The natural question then is if it is possible conceive

a data structure that performs better when queries are processed in batches.

Let us begin by formally defining the batched membership problem.

Definition 4.18 (Batched Membership Problem). Represent a static set S ⊂ U

to efficiently answer batched membership queries. That is, given a set Q =

{q1, . . . , qx} ⊂ U , output a set C = {c1, . . . , cx}, where ci = TRUE if qi ∈ S

and FALSE otherwise. The data structure is created in a preprocessing phase, be-

fore any query is performed.

60

In this chapter we consider a more general problem—the batched predecessor

problem—where, instead of simply returning whether an element is in the set or

not, we return the actual element if it is present; if it is not, then we return the ele-

ment immediately before it in the sorted order. Note that the answer to the batched

predecessor problem can be used to give the answer to the batched membership

problem in time proportional to the size of the query/answer set: we just have to

compare each of the elements of the answer set to its corresponding element in the

query set. If both are the same, then we can say that the element is in S; otherwise

we say it is not. Hence, we can say that the batched predecessor problem is at least

as hard as the batched membership problem.

Definition 4.19 (Batched Predecessor Problem). Represent a static set S ⊂ U

to efficiently answer batched predecessor queries. That is, given a set Q =

{q1, . . . , qx} ⊂ U , output a set A = {a1, . . . , ax}, where ai = maxsj∈S {sj ≤ qi}.

As before, the data structure is created in a preprocessing phase, before any query

is performed.

Our results show that, even in the static setting, buffering does not help. That

is, the batched predecessor problem in external memory cannot be solved asymp-

totically faster than Ω(logB n) I/Os per query element if the preprocessing/space is

bounded by a polynomial. We focus on query size x ≤ nc, for constant c < 1.

Thus, the query Q can be large, but is still much smaller than the underlying set S.

This query size is interesting because, although there is abundant parallelism in the

batched query, common approaches such as linear merges and buffering [6, 28, 32]

are suboptimal. On the other hand, Q is too large for the B-tree to be an obvious

choice. On the positive side, we show that the problem can be solved asymptotically

faster, in Θ((log2 n)/B) I/Os, if we impose no constraints on preprocessing/space.

In this chapter we prove lower bounds on the batched predecessor problem in

61

the comparison-based I/O model [4] We also study tradeoffs between the searching

cost and the cost to preprocess the underlying set S.

We assume that S and Q are sorted. Without loss of generality, Q is sorted

because the time to sort Q is subsumed by the query time. Similarly, without loss

of generality, S is sorted, as long as the preprocessing time is slightly superlinear.

We consider sorted S throughout the paper. For notational convenience, we let

s1 < s2 < · · · < sn and q1 < q2 < · · · < qx, and therefore a1 ≤ a2 ≤ · · · ≤ ax.

Given that S and Q are sorted, an alternative interpretation of this chapter

is as follows: how can we optimally merge two sorted lists in external memory?

Specifically, what is the optimal algorithm for merging two sorted lists in external

memory when one list is some polynomial factor smaller than the other?

Observe that the naive linear-scan merging is suboptimal because it takes

Θ(n/B) I/Os, which is greater than the O(nc logB n) I/Os of a B-tree-based so-

lution. Buffer trees [6, 28, 32] also take Θ(n/B) I/Os during a terminal flush

phase. This paper shows that with polynomial preprocessing, performing inde-

pendent searches for each element in Q is optimal, but it is possible to do better for

higher preprocessing.

Finally, we give lower bounds in two other external-memory models: the I/O

pointer-machine model, and the indexability model. In the I/O pointer-machine

model, we show that with O(n4/3−ε) preprocessing/space for any constant ε > 0,

the optimal algorithm cannot perform asymptotically faster than a B-tree. In the

indexability model, we exhibit the tradeoff between the redundancy r and access

overhead α of the optimal indexing scheme, showing that to report all query answers

in α(x/B) I/Os, lg r = Ω((B/α2) lg(n/B)).

62

4.2 Related work

4.2.1 Single and batched predecessor problems in RAM

In the comparison model, a single predecessor can be found in Θ(lg n) time using

binary search. The batched predecessor problem is solved in Θ(x lg(n/x) + x)

by combining merging and binary search [72, 73]. The bounds for both problems

remain tight for any preprocessing budget.

Pătraşcu and Thorup [81] give tight lower bounds for single predecessor

queries in the cell-probe model. Although batching does not help algorithms that

rely on comparisons, Karpinski and Nekrich [69] give an upper bound for this prob-

lem in the word-RAM model (bit operations are allowed), which achieves O(x) for

all batches of size x = O(
√

lg n) (O(1) per element amortized) with superpolyno-

mial preprocessing.

4.2.2 Batched predecessor problem in external memory

Dittrich et al. [50] consider multisearch problems where queries are simultaneously

processed and satisfied by navigating through large data structures on parallel com-

puters. They give a lower bound of Ω(x logB(n/x) +x/B) under stronger assump-

tions: no duplicates of nodes are allowed, the ith query has to finish before the

(i+ 1)st query starts, and x < n1/(2+ε), for a constant ε > 0. They do not study the

tradeoffs between preprocessing and queries.

Several data structures have been proposed that take advantage of the large

block size to buffer insertions in order to amortize their cost [6,28,32]. Queries can

be similarly buffered and lazily pushed down the tree if the data structure is allowed

to answer queries at a later time. However, buffering works well only if the number

63

of queries is not too small compared to the size of the data structure being queried,

or if there are several elements trickling down the same branch of the tree together.

Otherwise elements can get stuck in the buffers and flushing them eliminates the

benefit of buffering, as each query independently has to at least to finish its walk

down a root-to-leaf path in order to find the answer.

Goodrich et al. [59] present a general method for performing x simultaneous

external memory searches in O((n/B + x/B) logM/B(n/B)) I/Os when x is large.

When x is small, this technique achieves O(x logB(n/B)) I/Os with a modified

version of the parallel fractional cascading technique of Tamassia and Vitter [88].

4.3 Batched Predecessor in the I/O Comparison

Model

This section analyzes the batched predecessor problem in the I/O comparison

model. First we give the lower bound for the case when preprocessing is unre-

stricted. Then we study the tradeoff between preprocessing and the optimal number

of I/Os.

4.3.1 Lower Bounds for Unrestricted Space/Preprocessing

Now we show two lower bounds for the batched predecessor problem in external

memory under the comparison model. The first lower bound is given for pedagogi-

cal reasons and is derived using information-theoretic techniques normally used to

prove comparison-based lower bounds [4,55]. This first bound, however, is not tight

in general. Next we derive a stronger lower bound, assuming assuming unrestricted

preprocessing.

64

Lemma 4.20. Any algorithm that solves BATCHEDPRED(Q,S) requires

Ω
(x
B

logM/B

n

x
+
x

B

)
I/Os in the worst case.

Proof. The proof is by an information-theoretic argument. The total number of

possible ways to choose the predecessors from S (for the case when they are all

distinct for different query elements) is
(
n+x
x

)
. One block transfer can reduce the

number of candidate interleavings by at most a factor of
(
M
B

)
. The lower bound is

given by

lg
(
n+x
x

)
lg
(
M
B

) ≥ x lg(n/x)

Θ(B lg(M/B))

= Ω
(x
B

logM/B

n

x

)
.

Finally, Ω(x/B) is a lower bound due to the output size.

The same lower bound can be derived by relating the number of comparisons

needed to solve the batched predecessor problem in RAM with the number of I/Os

required to achieve this many comparisons, as described in [7].

Even though the RAM analog of this bound is tight, this lower bound is too

weak in external memory. Next we derive a stronger lower bound for this problem,

assuming unrestricted preprocessing.

We begin with the definition of a search interval.

Definition 4.21 (Search interval). At step t of an execution, the search interval

Sti = [`ti, r
t
i] for an element qi comprises those elements in S that are still potential

values for ai, given the information that the algorithm has learned so far. When

there is no ambiguity, the superscript t is omitted.

65

Theorem 4.22 (Lower bound, unrestricted preprocessing). Let S be a set of size n

and Q a set of size x ≤ nc (0 ≤ c < 1). In the I/O comparison model, computing

BATCHEDPRED(Q,S) requires

Ω
(x
B

lg
n

xB
+
x

B

)
I/Os in the worst-case, regardless of the preprocessing.

Proof. Consider the following problem instance:

1. For all qi, |Si| = n/x. That is, all elements in Q have been given the first lg x

bits of information about where they belong in S.

2. For all i and j (1 ≤ i 6= j ≤ x), Si ∩ Sj = ∅. That is, search intervals are

disjoint.

We do not charge the algorithm for transferring elements of Q between main

memory and disk. This accounting scheme is equivalent to allowing all elements of

Q to reside in main memory at all times while still having the entire memory free

for other manipulations. Storing Q in main memory does not provide the algorithm

with any additional information, since the sorted order of Q is already known.

Now we only consider I/Os of elements in S. Denote a block being input as

b = (b1, . . . , bB). Observe that every bi (1 ≤ i ≤ B) belongs to at most one Sj .

The element bi acts as a pivot and helps qj learn at most one bit of information—by

shrinking Sj to its left or its right half.

Since a single pivot gives at most one bit of information, the entire block b can

supply at most B bits, during an entire execution of BATCHEDPRED(Q,S).

We require the algorithm to identify the final block in S where each qi belongs.

Thus, the total number of bits that the algorithm needs to learn to solve the problem

66

BATCHEDPRED(Q,S)

1 Do a linear merge of Q and the `th level of T , where ` = dlg xe.
2 for each batch Ci = {qiB+1, qiB+2, . . . , q(i+1)B}, set j = iB + 1
3 do Input the batch Ci.
4 repeat
5 Bring in a block b = (pj, . . . , pj+B−1), where pk is a median of Sk.
6 Compare each pj ∈ b with qj and adjust Sj accordingly.
7 Construct a B-bit string, β, based on the results of the comparisons.
8 Use β to decide which block to bring in next.
9 until the search interval of every element has size at most B.

Figure 11: Batched predecessor algorithm with unlimited space/preprocessing.

is Ω(x lg(n/xB)). Along with the scan bound to output the answer, the minimum

number of block transfers required to solve the problem is Ω
(
x
B

lg n
xB

+ x
B

)
.

Next we give a matching algorithm (assuming B lg n < M), which has O(nB)

preprocessing cost. This algorithm is highly impractical given its huge preprocess-

ing costs and space requirements, but serves as an evidence that the lower bound

from Theorem 4.22 is tight, unless we pose further restrictions on preprocessing.

Theorem 4.23 (Upper bound, unrestricted preprocessing). Let S be a set of size n

and Q a set of size x ≤ nc (0 ≤ c < 1). There exists a comparison-based algorithm

for BATCHEDPRED(Q,S) that performs

Ω
(x
B

lg
n

xB
+
x

B

)
I/Os in the worst-case, regardless of the preprocessing.

Proof. In the preprocessing phase, the algorithm constructs a perfectly balanced

binary search tree T on S. This step has linear cost. In this phase we also produce all

possible blocks of the form b = (b1, b2, . . . , bB), where each bi ∈ S (1 ≤ i ≤ B). In

67

total, there are
(
n
B

)
such blocks. To produce and output each block, we then require

at most B
(
n
B

)
I/Os, which is O(nB). These blocks are laid out in lexicographical

order in external memory. It takes B lg n bits to address the location of any block.

At a high level, the algorithm processes Q in batches of size B, one batch at

a time. A single batch is processed by simultaneously performing binary search on

all elements of the batch until they find their rank within S.

Figure 11 gives the algorithm in detail. The goal of Step 1 is, for all qi ∈ Q,

to reduce Si such that |Si| = Θ(n/x). The block brought by Step 5 is such that,

for each element of the batch, there is one pivot in the block that is a median of its

search interval. Step 6 shrinks Sj based on the result of the comparison. The B-bit

string constructed in Step 7 represents whether each of the B elements in Ci go into

the left/right half of their respective search intervals.

Each of the x/B batches, C1, . . . , Cx/B, is brought once into memory. The

cycle in Steps 4–9 takes lg(n/xB) I/Os until it finds the final block in S where each

element in Ci belongs. This gives a total of (x/B) lg(n/xB) I/Os. Finally, it takes

O(x/B) I/Os to output the answer.

4.3.2 Preprocessing-Searching Tradeoffs

We now give a lower bound on the space required by the batched predecessor prob-

lem when the budget for searching is a constraint. The lower bound is posed in

terms of a tradeoff where it is clear how the number of I/Os performed in the query-

ing process is affected by restricting the number of blocks generated beforehand.

Definition 4.24. An I/O containing elements of S is a j-parallelization I/O if j

distinct elements of Q acquire bits of information during this I/O.

Theorem 4.25. Let S be a set of size n andQ a set of size x ≤ n1−ε (0 < ε ≤ 1) and

let γ be a constant greater than 0. Any algorithm that solves BATCHEDPRED(Q,S)

68

in at most
γx lg n

j lg(B/j + 1)
+
x

B

I/Os requires at least (
εjnε/2

2eγB

)εj/2γ
I/Os for preprocessing in the worst case.

Proof. The proof is by a deterministic adversary argument. As before, in the begin-

ning, the adversary partitions S into x equal-sized chunks C1, . . . , Cx, and places

each query element into a separate chunk (i.e., Si = Ci). Now each element knows

lg x ≤ (1−ε) lg n bits of information. Each element is additionally given half of the

number of bits that remain to be learned. This leaves another T ≥ (εx lg n)/2 total

bits yet to be discovered. As in the proof of Theorem 4.22, we do not charge for the

inputs of elements in Q, thereby stipulating that all remaining bits to be learned are

through the inputs of elements of S.

Lemma 4.26. To learn T bits in at most

γx lg n

j lg(B/j + 1)

I/Os, there must be at least one I/O in which the algorithm learns at least

j lg(B/j + 1)

a

bits, where a = 2γ/ε.

If multiple I/Os learn at least (j lg(B/j+ 1))/a bits, consider the last such I/O

during the algorithm execution. Denote the contents of the I/O as bi = (p1, . . . , pB).

69

Lemma 4.27. The maximum number of bits an I/O can learn while parallelizing d

elements is d lg(B/d+ 1).

Proof. Solving the following maximization program, where ci is the number of

pivots dedicated to the ith element parallelized,

max
d∑
i=1

lg(ci + 1) subject to
d∑
i=1

ci = B,

gives that for all i, ci = B/d.

Lemma 4.28. The I/O bi parallelizes at least j/a elements.

Proof. Given that the most bits an I/O can learn while parallelizing j/a−1 elements

is (
j

a
− 1

)
lg

(
B

j/a− 1
+ 1

)
bits. For all a ≥ 1 and j ≥ 2,

j

a
lg

(
B

j
+ 1

)
>

(
j

a
− 1

)
lg

(
B

j/a− 1
+ 1

)

. Thus, we can conclude that with the block transfer of bi, the algorithm must have

parallelized strictly more than j/a− 1 distinct elements.

We focus our attention on an arbitrarily chosen group of j/a elements paral-

lelized during the transfer of bi = {p1, . . . , pB}, which we call q1, . . . , qj/a.

Observation 4.29. For every qu parallelized during the transfer of bi there is at

least one pivot pv, 1 ≤ v ≤ B, such that pv ∈ Su.

Consider the vector V = (S1, S2, . . . , Sj/a) where Su denotes the search in-

terval of qu right before the input of bi. Each element of Q has acquired at least

70

(1−ε/2) lg n bits, (ε lg n)/2 of which were given for free after the initial (1−ε) lg n.

For any i, the total number of distinct choices for Si in the vector V is at least nε/2,

because the element could have been sent to any of these nε/2-sized ranges in the

initial nε range. Thus, we can observe that

Observation 4.30. The number of distinct choices for V at the time of paralleliza-

tion is at least njε/2a.

By a simple adversary argument, we obtain that:

Lemma 4.31. For each of the njε/2a choices of V = (S1, . . . , Sj/a) (arising from

the nε/2 choices for each Si), there must exist a block with pivots p1, p2, . . . , pj/a,

such that pk ∈ Sk.

Proof. Assume there exists a vector choice for which there is no block with a pivot

from each search interval. The adversary will then make decisions consistent with

assigning these search intervals to q1, . . . , qj/a, and thus avoid parallelization. Note

that no natural blocks already contain the combinations of these search intervals,

and that such block must be manufactured in the preprocessing phase.

The same block can serve multiple vector choices, because the block has B

elements and we are parallelizing only j/a elements. The next lemma quantifies

the maximum number of vectors covered by one block.

Lemma 4.32. A block can cover at most
(
B
j/a

)
distinct vector choices.

Proof. Call ti the number of pivots in the block b that fall in distinct search intervals

of the element qi. Then we are trying to maximize

j/a∏
i=1

ti subject to
j/a∑
i=1

ti = B.

71

This gives that ti = aB/j. By selecting aB/j pivots for each element, we cover

(aB/j)j/a distinct vectors.

As a consequence, the minimum number of blocks the algorithm needs to pre-

process is at least
njε/2a(
B
j/a

) ≥ (nε/2

eaB/j

)j/a
.

Substituting for the value of a, we get that the minimum preprocessing is at least

(
εjnε/2

2eγB

)εj/2γ
.

4.3.2.1 Algorithm

An algorithm that runs in O((x lg n)/j lg(B/j + 1) + x/B) I/Os follows an idea

similar to the optimal algorithm for unrestricted preprocessing. The difference is

that we preprocess
(
n
j

)
blocks, where each block correspond to a distinct combina-

tion of some j elements. The block will contain B/j evenly spaced pivots for each

element. The searching algorithm uses batches of size j.

4.4 Batched Predecessor in the I/O Pointer-Machine

Model

In Section 4.3 we showed that, in the comparison-based I/O model, the batched pre-

decessor problem cannot be solved asymptotically faster than Ω(logB n) I/Os per

query element if the preprocessing/space is bounded by a polynomial. A natural

72

question then is if this is a limitation of the problem itself, or if it is a restriction im-

posed by the model. In Sections 4.4 and 4.5 we show similar lower bounds in two

other external-memory models: the I/O pointer-machine model, and the indexabil-

ity model. The first model is less restrictive than the comparison I/O model in main

memory, but more restrictive in external memory. This is because an algorithm can

perform arbitrary computations in RAM, but a disk block can be accessed only via

a pointer that has been seen at some point in past. The latter model bounds the

number of blocks that an algorithm must preprocess/access to report all the query

results; the search cost is ignored. The lower bounds in this model also hold in the

previous two models.

In this section we focus on the batched predecessor problem in the I/O pointer-

machine model [87]. This model is a generalization of the pointer machine model

introduced by Tarjan [90]. Many results in range reporting have been obtained in

this model [2, 3]. In particular, we show that if the preprocessing time is O(n4/3−ε)

for any constant ε > 0, then there exists a query set Q of size x such that reporting

BATCHEDPRED(Q,S) requires Ω(x/B + x logB n/x) I/Os.

At a high level, in order to show results in the I/O pointer-machine model, we

define a graph whose nodes are the blocks on disk of the data structure and whose

edges are the pointers between blocks. Since a block has size B, it can contain at

most B pointers, and thus the graph is fairly sparse. We show that any such sparse

graph has a large set of nodes that are far apart. If the algorithm must visit those

well-separated nodes, then it must perform many I/Os. The crux of the proof is

that, as the preprocessing increases, the redundancy of the data structure increases,

thus making it hard to pin down specific locations of the data structure that must

be visited. We show that if the data structure is reasonable in size—in our case

O(n4/3−ε)—then we can still find a large, well dispersed set of nodes that must be

visited, thus establishing the lower bound.

73

To answer BATCHEDPRED(Q,S), an algorithm preprocesses S and builds a

data structure comprised of nk blocks, where k is a constant to be determined later.

We use a directed graph G = (V,E) to represent the nk blocks and their associated

directed pointers. Every algorithm that answers BATCHEDPRED(Q,S) begins at

the start node v0 in V and at each step picks a directed edge to follow from those

seen so far. Thus, the nodes in a computation are all reachable from v0. Further-

more, each fetched node contains elements from S, and the computation cannot

terminate until the visited set of elements is a superset of the answer set A. A node

in V contains at most B elements from S and at most B pointers to other nodes.

Let L(W) be the union of the elements contained in a node set W , and let

N (a) be the set of nodes containing element a. We say that a node set W covers a

set of elements A if A ⊆ L(W). An algorithm for computing A can be modeled as

the union of a set of paths from v0 to each node in a node set W that covers A.

To prove a lower bound on BATCHEDPRED(Q,S), we show that there is a

query set Q whose answer set A requires many I/Os. In other words, for every node

set W that covers A, a connected subgraph spanning W contains many nodes. We

achieve this result by showing that there is a set A such that, for every pair of nodes

a1, a2 ∈ A, the distance between N (a1) and N (a2) is large. That is, all the nodes

inN (a1) are far from all the nodes inN (a2). Since the elements of A can appear in

more than one node, we need to guarantee that the node set V of G is not too large;

otherwise the distance between N (a1) and N (a2) can be very small. For example,

if |V | ≥
(
n
2

)
, every pair of elements can share a node, and a data structure exists

whose minimum pairwise distance between any N (a1) and N (a2) is 0.

First, we introduce two measures of distance between nodes in any (undi-

rected or directed) graph G = (V,E). Let dG(u, v) be the length of the

shortest (di-)path from node u to node v in G. Furthermore, let ΛG(u, v) =

minw∈V (dG(w, u) + dG(w, v)). Thus, ΛG(u, v) = dG(u, v) for undirected graphs,

74

but not necessarily for directed graphs.

For each W ⊆ V , define fG(W) to be the minimum number of nodes in any

connected subgraph H such that (1) the node set of H contains W ∪{v0} and (2) H

contains a path from v0 to each v ∈ W . Observe that fG({u, v}) ≥ ΛG(u, v). The

following lemma gives a more general lower bound for fG(W). It shows that the

size of the graph containing nodes of W is linear in the minimum pairwise distance

within W .

Lemma 4.33. For any directed graphG = (V,E) and anyW ⊆ V of size |W | ≥ 2,

fG(W) ≥ rW |W |/2, where rW = minu,v∈W,u6=v ΛG(u, v).

Proof. Consider the undirected version of G, and consider a TSP of the nodes in

W . It must have length rW |W |. Any tree that spans W must therefore have size at

least rW |W |/2. Finally, fG(W) contains a tree that spans W .

Our next goal is to find a query setQ such that every node setW that covers the

corresponded answer setA has a large rW . The answer setAwill be an independent

set of a certain kind, that we define next. For a directed graph G = (V,E) and an

integer r > 0, we say that a set of nodes I ⊆ V is r-independent if ΛG(u, v) > r for

all u, v ∈ I where u 6= v. The next lemma guarantees a substantial r-independent

set.

Lemma 4.34. Given a directed graphG = (V,E), where each node has out-degree

at most B ≥ 2, there exists an r-independent set I of size at least

|V |2

|V |+ 4r|V |Br

.

Proof. Construct an undirected graph H = (U, F) such that U = V and (u, v) ∈ F

if and only if ΛG(u, v) ∈ [1, r]. Then, H has at most 2r|V |Br edges. By Turán’s

75

Theorem [89], there exists an independent set of the desired size in H , which cor-

responds to an r-independent set in G, completing the proof.

In addition to r-independence, we want the elements in A to occur in few

blocks, in order to control the possible choices of the node set W that covers A. We

define the redundancy of an element a to be |N (a)|. Because there are nk blocks

and each block has at most B elements, the average redundancy is O(nk−1B). We

say that an element has low redundancy if its redundancy is at most twice the av-

erage. We show that there exists an r-independent set I of size nε (here ε depends

on r) such that no two blocks share the same low-redundancy element. We will

then construct our query set Q using this set of low-redundancy elements in this

r-independent set.1

Finally, we add enough edges to place all occurrences of every low-redundancy

element within ρ < r/2 of all other occurrences of that element. We show that we

can do this by adding few edges to each node, therefore maintaining the sparsity

of G. Since this augmented graph also contains a large r-independent set, all the

nodes of this set cannot share any low-redundancy elements.

The following lemma shows that nodes sharing low-redundancy elements can

be connected with low diameter and small degrees.

Lemma 4.35. For any k > 0 andm > k there exists an undirected k-regular graph

H of order m having diameter logk−1m+ o(logk−1m).

Proof. In [26], Bollobás shows that a random k-regular graph has the desired di-

ameter with probability close to 1. Thus there exists some graph satisfying the

constraints.
1Our construction does not work if the query set contains high redundancy elements, because

high redundancy elements might be placed in every block.

76

Consider two blocks B1 and B2 in the r-independent set I above, and let a and

b be two low-redundancy elements such that a ∈ B1, b /∈ B1 and a /∈ B2, b ∈ B2.

Any other pair of blocksB′1 andB′2 that contain a and b respectively must be at least

(r−2ρ) apart, sinceB′i is at most ρ apart fromBi. By this argument, every node set

W that covers A has rW ≥ (r − 2ρ). Now, by Lemma 4.33, we get a lower bound

of Ω((r−2ρ)|W |) on the query complexity of Q. We choose r = c1 logB(n/x) and

get ρ = c2 logB(n/x) for appropriate constants c1 > 2c2. This is the part where we

require the assumption that k < 4/3 as shown in Theorem 4.36, where nk is the size

of the entire data structure. We then apply Lemma 4.34 to obtain that |W | = Ω(x).

Now we are ready to prove the main theorem of this section.

Theorem 4.36 (Lower bound, I/O pointer-machine model). Let S be a set of size n.

In the I/O pointer-machine model, if PREPROCESSING(S) usesO(n4/3−ε) blocks of

space and I/Os, for any constant ε > 0, then there exists a constant c and a set Q of

size nc such that computing BATCHEDPRED(Q,S) requires Ω(x logB(n/x)+x/B)

I/Os.

Note that in this theorem, c is a function of ε in that, the smaller the prepro-

cessing, the larger the set for which the lower bound can be established.

Proof. We partition S into S` and Sh by the redundancy of elements in these nk

blocks and claim that there exists A ⊆ S` such that query time for the corresponded

Q matches the lower bound.

Let S` be the set of elements of redundancy no more than 2Bnk/n (i.e., twice

of the average redundancy). The rest of elements belong to Sh. By the Markov

inequality, we have |S`| = Θ(n) and |Sh| ≤ n/2. Let G = (V,E) represent the

connections between the nk blocks as the above stated. We partition V into V1 and

V2 such that V1 is the set of blocks containing some elements in S` and V2 = V \V1.

Since each block can at most contain B elements in S`, |V1| = Ω(n/B).

77

Then, we add some additional pointers to G and obtain a new graph G ′ such

that, for each e ∈ S`, every pair u, v ∈ N (e) has small ΛG′(u, v). We achieve this

by, for each e ∈ S`, introducing graph He to connect all the nk blocks containing

element e such that the diameter in He is small and the degree for each node in He

is O(Bδ) for some constant δ. By Lemma 4.35, the diameter of He can be as small

as

ρ ≤ 1

δ
logB |He|+ o(logB |He|) ≤

k − 1

δ
logB n+ o(logB n).

We claim that the graph G ′ has a (2ρ+ ε)-independent set of size nc, for some

constants ε, c > 0. For the purpose, we construct an undirected graph H(V1, F)

such that (u, v) ∈ F if and only if ΛG′(u, v) ≤ r. Since the degree of each node in

G ′ is bounded by O(Bδ+1), by Lemma 4.34, there exists an r-independent set I of

size

|I| ≥ |V1|2

|V1|+ 4r|V |O(Br(δ+1))
≥ n2−k

4rO(Br(δ+1)+2)
= nc.

Then, r = ((2− k − c) logB n)/(δ + 1) + o(logB n). To satisfy the condition

made in the claim, let r > 2ρ. Hence, (2 − k − c)/(δ + 1) > 2(k − 1)/δ. Then,

k → 4/3 for sufficiently large δ. Observe that, for each e ∈ S`, e is contained in at

most one node in I . In addition, for every pair e1, e2 ∈ S` where e1, e2 are contained

in separated nodes in I , then ΛG′(u, v) ≥ ε for any u 3 e1, v 3 e2. By Lemma 4.33,

we are done.

4.5 Batched Predecessor in the Indexability Model

This section analyzes the batched predecessor problem in the indexability

model [63, 64]. This model is frequently used to analyze reporting problems by

focusing on bounding the number of blocks that an algorithm must access to report

all the query results. Lower bounds on queries are obtained solely based on how

78

many blocks were preprocessed. The search cost is ignored—the blocks containing

the answers are given to the algorithm for free. Here, the redundancy parame-

ter r measures the number of times an element is stored in the data structure, and

the access overhead parameter α captures how far the reporting cost is from the

optimal.

We show that to report all query answers in α(x/B) I/Os, r = (n/B)Ω(B/α2).

This result shows that it is impossible to obtain O(1/B) per element unless the

space used by the data structure is exponential. This corresponds to the situation in

RAM, where exponential preprocessing is required to achieve O(1) amortized time

per query element [69].

A workload is given by a pair W = (S,A), where S is the set of n input

objects, and A is a set of subsets of S—the output to the queries. An indexing

scheme I for a given workloadW is given by a collection B of B-sized subsets of

S such that S = ∪B; each b ∈ B is called a block.

An indexing scheme has two parameters associated with it. The first param-

eter, called the redundancy, represents the average number of times an element is

replicated (i.e., an indexing scheme with redundancy r uses rdn/Be blocks). The

second parameter is called the access overhead. Given a query with answer A, the

query time is min{|B′ | : B′ ⊆ B, A ⊆ ∪B′}, because this is the minimum number

of blocks that contain all the answers to the query. If the size of A is x, then the best

indexing scheme would require a query time of dx/Be. The access overhead of an

indexing scheme is the factor by which it is suboptimal. An indexing scheme with

access overhead α uses αdx/Be I/Os to answer a query of size x in the worst case.

To show the tradeoff between α and r, we use the Redundancy Theorem (stated

below for completeness) from [63, 84]:

Theorem 4.37 (Redundancy Theorem [63,84]). For a workloadW = (S,A) where

79

A = {A1, · · · , Am}, let I be an indexing scheme with access overhead α ≤
√
B/4

such that for any 1 ≤ i, j ≤ m, i 6= j, |Ai| ≥ B/2 and |Ai ∩ Aj| ≤ B/(16α2).

Then the redundancy of I is bounded by r ≥ 1
12n

∑m
i=1 |Ai|.

Next we prove the main theorem for this section.

Next we prove Theorem 4.38.

Theorem 4.38 (r − α tradeoff, indexability model). In the indexability model,

any indexing scheme for the batched predecessor problem with access overhead

α ≤
√
B/4 has redundancy r satisfying lg r = Ω (B lg(n/B)/α2).

Proof. For the sake of the lower bound, we restrict to queries where all the reported

predecessors reported are distinct. To use the redundancy theorem, we want to

create as many queries as possible.

Call a family of k-element subsets of S β-sparse if any two members of the

family intersect in less than β elements. The size C(n, k, β) of a maximal β-sparse

family is crucial to our analysis. For a fixed k and β this was conjectured to be

asymptotically equal to
(
n
β

)
/
(
k
β

)
by Erdös and Hanani and later proven by Rödl

in [83]. Thus, for large enough n, C(n, k, β) = Ω(
(
n
β

)
/
(
k
β

)
).

We now pick a (B/2)-element, B/(16α2)-sparse family of S, where α is the

access overhead of I. The result in [83] gives us that

C

(
n,
B

2
,
B

16α2

)
= Ω

((
n

B/ (16α2)

)
/

(
B/2

B/ (16α2)

))
.

Thus, there are at least (2n/eB)B/(16α2) subsets of size B/2 such that any pair

intersects in at most B/(16α2) elements. The Redundancy Theorem then implies

that the redundancy r is greater than or equal to (n/B)Ω(B/α2), completing the proof.

80

We now describe an indexing scheme that is off from the lower bound by a

factor α.

Theorem 4.39 (Indexing scheme for the batched predecessor problem). Given any

α ≤
√
B, there exists an indexing scheme Iα for the batched predecessor problem

with access overhead α2 and redundancy r = O((n/B)B/α
2
)

Proof. Call a family of k-element subsets of S β-dense if any subset of S of size

β is contained in at least one member from this family. Let c(n, k, β) denote the

minimum number of elements of such a β-dense family. Rödl [83] proves that for

a fixed k and β,

lim
n→∞

c(n, k, β)
(
k
β

)(
n
β

)−1
= 1,

and thus, for large enough n, c(n, k, β) = O(
(
n
β

)
/
(
k
β

)
).

The indexing scheme Iα consists of all sets in a B-element, (B/α2)-dense

family. By the above, the size of Iα is O((n/B)B/α
2
).

Given a query answer A = {a1, · · · , ax} of size x, fix 1 ≤ i < dx/Be and

consider the B-element sets Ci = {a(i−1)B, · · · , aiB} (Cdx/Be may have less than

B elements). Since Iα is an indexing scheme, we are told all the blocks in Iα that

contain the ais. By construction, there exists a block in Iα that contains a 1/α2

fraction of Ci. In at most α2 I/Os we can output Ci, by reporting B/α2 elements

in every I/O. The number of I/Os needed to answer the entire answer A is thus

α2dx/Be, which proves the theorem.

81

Bibliography

[1] Data rEvolution. Technical report, CSC Leading Edge Forum, 2011. http:

//www.csc.com/innovation/ds/84818-data_revolution.

[2] P. Afshani, L. Arge, and K. D. Larsen. Orthogonal range reporting: Query

lower bounds, optimal structures in 3-d, and higher-dimensional improve-

ments. In 26th Annual Symposium on Computational Geometry (SoCG),

pages 240–246, 2010.

[3] P. Afshani, L. Arge, and K. G. Larsen. Higher-dimensional orthogonal range

reporting and rectangle stabbing in the pointer machine model. In 28th Annual

Symposium on Computational Geometry (SoCG), pages 323–332, 2012.

[4] A. Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and

related problems. Commun. ACM, 31:1116–1127, 1988.

[5] A. Andersson and T. W. Lai. Fast updating of well-balanced trees. In 2nd

Scandinavian Workshop on Algorithm Theory (SWAT), pages 111–121, 1990.

[6] L. Arge. The buffer tree: A technique for designing batched external data

structures. Algorithmica, 37(1):1–24, 2003.

[7] L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the I/O-

complexity of comparison-based algorithms. In Workshop on Algorithms and

Data Structures (WADS), pages 83–94, 1993.

82

http://www.csc.com/innovation/ds/84818-data_revolution
http://www.csc.com/innovation/ds/84818-data_revolution

[8] P. Backhouse. Drowning in data? Digital archaeology: bridging method and

theory, page 50, 2006.

[9] R. Bayer and E. M. McCreight. Organization and maintenance of large or-

dered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)

Workshop on Data Description, Access and Control, SIGFIDET ’70, pages

107–141, New York, NY, USA, 1970. ACM.

[10] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two sim-

plified algorithms for maintaining order in a list. In 10th European Symposium

on Algorithms (ESA), pages 152–164, 2002.

[11] M. A. Bender, R. Cole, E. D. Demaine, and M. Farach-Colton. Scanning and

traversing: Maintaining data for traversals in a memory hierarchy. In 10th

Annual European Symposium on Algorithms (ESA), volume 2461 of Lecture

Notes in Computer Science, pages 139–151, 2002.

[12] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious

B-trees. In 41st Annual Symposium on Foundations of Computer Science

(FOCS), pages 399–409, 2000.

[13] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-

trees. SIAM Journal on Computing, 35(2):341–358, 2005.

[14] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-

oblivious dynamic dictionary. Journal of Algorithms, 3(2):115–136, 2004.

[15] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul,

and J. Nelson. Cache-oblivious streaming B-trees. In 19th Annual ACM Sym-

posium on Parallel Algorithms and Architectures (SPAA), pages 81–92, 2007.

83

[16] M. A. Bender, M. Farach-Colton, M. Goswami, D. Medjedovic, P. Montes,

and M.-T. Tsai. The batched predecessor problem in external memory. In

Proceedings of the 22nd European Symposium on Algorithms (ESA), Wro-

claw, Poland, September 2014.

[17] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,

D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t

thrash: How to cache your hash on flash. Proceedings of the VLDB Endow-

ment, 5(11):1627–1637, August 2012.

[18] M. A. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul, D. Medje-

dovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t thrash: How

to cache your hash on flash. In Proceedings of the 3rd USENIX Workshop on

Hot Topics in Storage and File Systems (HotStorage), Portland, Oregon, USA,

June 2011.

[19] M. A. Bender, M. Farach-Colton, and B. Kuszmaul. Cache-oblivious string B-

trees. In 25th Symposium on Principles of Database Systems (PODS), pages

233–242, 2006.

[20] M. A. Bender, M. Farach-Colton, and M. A. Mosteiro. Insertion sort is

O(n log n). Theory of Computing Systems, 39(3):391–397, 2006.

[21] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul. Concurrent

cache-oblivious B-trees. In 17th Annual Symposium on Parallelism in Algo-

rithms and Architectures (SPAA), pages 228–237, 2005.

[22] M. A. Bender and H. Hu. An adaptive packed-memory array. In 25th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS), pages 20–29, 2006.

84

[23] M. A. Bender and H. Hu. An adaptive packed-memory array. ACM Trans.

Database Syst., 32(4), 2007.

[24] D. K. Blandford. Compact Data Structures with Fast Queries. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA, USA, 2006.

[25] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communincations of the ACM, 13(7):422–426, 1970.

[26] B. Bollobás and W. Fernandez de la Vega. The diameter of random regular

graphs. Combinatorica, 2(2):125–134, 1982.

[27] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An

improved construction for counting Bloom filters. In Proceedings of the 14th

Annual European Symposium on Algorithms (ESA), pages 684–695. Springer-

Verlag, 2006.

[28] G. S. Brodal and R. Fagerberg. Lower bounds for external memory dictionar-

ies. In 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 546–554, 2003.

[29] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via bi-

nary trees of small height. In 13th Annual Symposium on Discrete Algorithms

(SODA), pages 39–48, 2002.

[30] A. Broder and M. Mitzenmacher. Network applications of Bloom filters: A

survey. Internet Mathematics, 1(4):485–509, 2003.

[31] A. Brodnik and J. I. Munro. Membership in constant time and almost-

minimum space. SIAM J. Comput., 28(5):1627–1640, May 1999.

85

[32] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. West-

brook. On external memory graph traversal. In 11th Annual ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), pages 859–860, 2000.

[33] J. Bulánek, M. Koucký, and M. Saks. Tight lower bounds for the online label-

ing problem. In Proceedings of the 44th Symposium on Theory of Computing

Conference (STOC2), pages 1185–1198, 2012.

[34] M. Canim, G. A. Mihaila, B. Bhattacharhee, C. A. Lang, and K. A. Ross.

Buffered Bloom filters on solid state storage. In VLDB ADMS Workshop,

2010.

[35] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system

for structured data. In OSDI, pages 205–218, 2006.

[36] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: an

efficient data structure for static support lookup tables. In Proceedings of

the fifteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),

pages 30–39. Society for Industrial and Applied Mathematics, 2004.

[37] Y. Chen, B. Schmidt, and D. L. Maskell. A reconfigurable Bloom filter ar-

chitecture for BLASTN. In Proceedings of the 22nd International Conference

on Architecture of Computing Systems (ARCS), pages 40–49. Springer-Verlag,

2009.

[38] H. Cheung. TG Video: Fusion io - the power of 1000 hard drives in the palm

of your hand. http://www.tgdaily.com/hardware-features/34065-tg-video-

fusion-io-the-power-of-1000-hard-drives-in-the-palm-of-your-hand, 2007.

86

[39] N. Chomsky and M. P. Schützenberger. The Algebraic Theory of Context-

Free Languages. In Computer Programming and Formal Systems, Studies in

Logic, pages 118–161. North-Holland Publishing, Amsterdam, 1963.

[40] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In

Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Al-

gorithms (SODA), pages 383–391, Philadelphia, PA, USA, 1996. Society for

Industrial and Applied Mathematics.

[41] J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE

Transactions on Computing, 33(9):828–834, 1984.

[42] S. Cohen and Y. Matias. Spectral Bloom filters. In Proceedings of the 2003

ACM SIGMOD international conference on Management of data (SIGMOD),

pages 241–252. ACM, 2003.

[43] G. Cormode and S. Muthukrishnan. An improved data stream summary: The

count-min sketch and its applications. J. Algorithms, 55(1):58–75, Apr. 2005.

[44] B. Debnath, S. Sengupta, J. Li, D. Lilja, and D. Du. Bloomflash: Bloom filter

on flash-based storage. In Proceedings of the 31st International Conference

on Distributed Computing Systems (ICDCS), pages 635–644, 2011.

[45] P. F. Dietz. Maintaining order in a linked list. In Fourteenth Annual ACM

Symposium on Theory of Computing (STOC), pages 122–127, 1982.

[46] P. F. Dietz, J. I. Seiferas, and J. Zhang. A tight lower bound for on-line

monotonic list labeling. In 4th Scandinavian Workshop on Algorithm Theory

(SWAT), volume 824 of Lecture Notes in Computer Science, pages 131–142,

1994.

87

[47] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list.

In 19th Annual Symposium on Theory of Computing (STOC), pages 365–372,

1987.

[48] P. F. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In 2nd

Scandinavian Workshop on Algorithm Theory (SWAT), volume 447 of Lecture

Notes in Computer Science, 1990.

[49] M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval and ap-

proximate membership. CoRR, abs/0803.3693, 2008.

[50] W. Dittrich, D. Hutchinson, and A. Maheshwari. Blocking in parallel mul-

tisearch problems (extended abstract). In 10th Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAA), pages 98–107, 1998.

[51] eBay study: How to build trust and improve the shopping experience. http:

//knowwpcarey.com/article.cfm?aid=1171. Accessed: 2014-

07-21.

[52] P. Elias. Efficient storage and retrieval by content and address of static files.

J. ACM, 21(2):246–260, 1974.

[53] P. Elias and R. A. Flower. The complexity of some simple retrieval problems.

J. ACM, 22(3):367–379, 1975.

[54] Y. Emek and A. Korman. New bounds for the controller problem. Distributed

Computing, 24(3–4):177–186, 2011.

[55] J. Erickson. Lower bounds for external algebraic decision trees. In 16th An-

nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 755–761,

2005.

88

http://knowwpcarey.com/article.cfm?aid=1171
http://knowwpcarey.com/article.cfm?aid=1171

[56] Presto: Interacting with petabytes of data at Facebook. https:

//www.facebook.com/notes/facebook-engineering/

presto-interacting-with-petabytes-of-data-at-facebook/

10151786197628920. Accessed: 2014-07-21.

[57] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-

area web cache sharing protocol. IEEE/ACM Transactions on Networking,

8(3):281–293, 2000.

[58] L. Freeman. How NetApp deduplication works - a primer.

http://blogs.netapp.com/drdedupe/2010/04/

how-netapp-deduplication-works.html, April 2010.

[59] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory

computational geometry. In 1993 IEEE 34th Annual Foundations of Computer

Science (FOCS), pages 714–723, 1993.

[60] A. Gupta. Succinct data structures. PhD thesis, Duke University, 2010.

[61] F. Hao, M. Kodialam, and T. V. Lakshman. Building high accuracy Bloom

filters using partitioned hashing. SIGMETRICS Perform. Eval. Rev., 35:277–

288, June 2007.

[62] B. He and Q. Luo. Cache-oblivious query processing. In 3rd Biennial Con-

ference on Innovative Data Systems Research (CIDR), pages 44–55, 2007.

[63] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou, and

V. Samoladas. On a model of indexability and its bounds for range queries. J.

ACM, 49:35–55, 2002.

89

https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
http://blogs.netapp.com/drdedupe/2010/04/how-netapp-deduplication-works.html
http://blogs.netapp.com/drdedupe/2010/04/how-netapp-deduplication-works.html

[64] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the analysis of

indexing schemes. In 16th ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems (PODS), pages 249–256, 1997.

[65] G. J. Holzmann. Design and validation of computer protocols. Prentice-Hall,

Inc., 1991.

[66] A. Itai and I. Katriel. Canonical density control. Inf. Process. Lett.,

104(6):200–204, 2007.

[67] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of pri-

ority queues. In Proc. 8th Internationl Colloquium on Automata, Languages,

and Programming (ICALP), volume 115 of Lecture Notes in Computer Sci-

ence, pages 417–431, 1981.

[68] G. J. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie Mellon

University, 1988.

[69] M. Karpinski and Y. Nekrich. Predecessor queries in constant time? In 13th

Annual European Conference on Algorithms (ESA), pages 238–248, 2005.

[70] I. Katriel. Implicit data structures based on local reorganizations. Master’s

thesis, Technion – Israel Inst. of Tech., Haifa, 2002.

[71] K. Keeton, C. B. Morrey, III, C. A. Soules, and A. Veitch. Lazybase: freshness

vs. performance in information management. SIGOPS Operating Systems Re-

view, 44(1):15–19, 2010.

[72] M. Knudsen and K. Larsen. I/O-complexity of comparison and permutation

problems. Master’s thesis, DAIMI, November 1992.

90

[73] D. E. Knuth. The Art of Computer Programming: Sorting and Searching,

volume 3. Addison Wesley, 1973.

[74] G. Lu, B. Debnath, and D. H. C. Du. A forest-structured bloom filter with

flash memory. In Proceedings of the IEEE 27th Symposium on Mass Storage

Systems and Technologies (MSST), pages 1–6, 2011.

[75] K. Malde and B. O’Sullivan. Using Bloom filters for large scale gene se-

quence analysis in Haskell. In Proceedings of the 11th International Sympo-

sium on Practical Aspects of Declarative Languages (PADL), pages 183–194.

Springer-Verlag, 2009.

[76] M. Mitzenmacher. Compressed bloom filters. In Proceedings of the twenti-

eth annual ACM symposium on Principles of distributed computing (PODC),

pages 144–150. ACM, 2001.

[77] M. Mukherjee and L. B. Holder. Graph-based data mining on social networks.

PhD thesis, University of Texas at Arlington, 2004.

[78] J. K. Mullin. Optimal semijoins for distributed database systems. IEEE Trans-

actions on Software Engineering, 16(5):558–560, 1990.

[79] J. I. Munro. An implicit data structure supporting insertion, deletion, and

search in o(log:os2:oen) time. J. Comput. Syst. Sci., 33(1):66–74, 1986.

[80] A. Pagh, R. Pagh, and S. S. Rao. An optimal Bloom filter replacement. In

Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete al-

gorithms (SODA), pages 823–829. Society for Industrial and Applied Mathe-

matics, 2005.

91

[81] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. In

38th Annual ACM Symposium on Theory of Computing (STOC), pages 232–

240, 2006.

[82] V. Raman. Locality-preserving dictionaries: theory and application to clus-

tering in databases. In 18th Symposium on Principles of Database Systems

(PODS), pages 337–345, 1999.

[83] V. Rödl. On a packing and covering problem. European Journal of Combina-

torics, 6(1):69–78, 1985.

[84] V. Samoladas and D. P. Miranker. A lower bound theorem for indexing

schemes and its application to multidimensional range queries. In 17th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS), pages 44–51, 1998.

[85] A. Singh, M. Srivatsa, L. Liu, and T. Miller. Apoidea: A decentralized peer-

to-peer architecture for crawling the world wide web. In SIGIR Workshop on

Distributed Multimedia Information Retrieval, pages 126–142, 2003.

[86] Technology: End-to-end technology stack translating photons into informa-

tion. http://www.skyboximaging.com/technology. Accessed:

2014-07-21.

[87] S. Subramanian and S. Ramaswamy. The p-range tree: A new data struc-

ture for range searching in secondary memory. In Sixth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 378–387, 1995.

[88] R. Tamassia and J. S. Vitter. Optimal cooperative search in fractional cascaded

data structures. In Algorithmica, pages 307–316, 1990.

92

http://www.skyboximaging.com/technology

[89] T. Tao and V. H. Vu. Additive Combinatorics. Cambridge University Press,

2009.

[90] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain

disjoint sets. Journal of Computer and System Sciences, 18(2):110–127, 1979.

[91] A. K. Tsakalidis. Maintaining order in a generalized linked list. Acta Infor-

matica, 21(1):101–112, 1984.

[92] Twitter’s ipo filing shows 215 million monthly ac-

tive users. http://abcnews.go.com/Business/

twitter-ipo-filing-reveals-500-million-tweets-day/

story?id=20460493. Accessed: 2014-07-21.

[93] J. S. Vitter. Algorithms and Data Structures for External Memory. Now Pub-

lishers Inc., Hanover, MA, USA, 2008.

[94] D. E. Willard. Maintaining dense sequential files in a dynamic environment

(extended abstract). In 14th Annual Symposium on Theory of Computing

(STOC), pages 114–121, 1982.

[95] D. E. Willard. Good worst-case algorithms for inserting and deleting records

in dense sequential files. In 1986 ACM SIGMOD International Conference on

Management of Data, pages 251–260, 1986.

[96] D. E. Willard. A density control algorithm for doing insertions and deletions

in a sequentially ordered file in good worst-case time. Information and Com-

putation, 97(2):150–204, 1992.

[97] Z. Yuan, J. Miao, Y. Jia, and L. Wang. Counting data stream based on im-

proved counting Bloom filter. In Proceedings of the 9th International Confer-

ence on Web-Age Information Management (WAIM), pages 512–519, 2008.

93

http://abcnews.go.com/Business/twitter-ipo-filing-reveals-500-million-tweets-day/story?id=20460493
http://abcnews.go.com/Business/twitter-ipo-filing-reveals-500-million-tweets-day/story?id=20460493
http://abcnews.go.com/Business/twitter-ipo-filing-reveals-500-million-tweets-day/story?id=20460493

[98] J. Zhang. Density control and on-line labeling problems. Technical report,

University of Rochester, Computer Science Department, 1993.

[99] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data do-

main deduplication file system. In Proceedings of the 6th USENIX Conference

on File and Storage Technologies (FAST), pages 18:1–18:14, 2008.

94

	Contents
	List of Tables
	List of Figures
	Preface
	Acknowledgements
	Introduction
	Preliminaries
	Space Efficient Data Structures
	External Memory Model

	Results

	Range and Membership Queries
	Introduction
	Related Work
	Level-based Packed Memory Array
	Algorithm

	Other Rebalancing Strategies

	Approximate Membership
	Introduction
	Evaluation Results
	Applications

	Related Work
	Quotient Filter
	Implementation Details
	Quotient Filter Variants

	Quotient Filter Extensions
	Buffered Quotient Filter
	Cascade Filter
	Counting Quotient Filter

	Evaluation
	In-RAM Performance: Quotient Filter vs. Bloom Filter
	On-disk Benchmarks
	Cascade Filter: Insert/Lookup Tradeoff
	Evaluation Summary

	Batched Predecessor in External Memory
	Introduction
	Related work
	Single and batched predecessor problems in RAM
	Batched predecessor problem in external memory

	Batched Predecessor in the I/O Comparison Model
	Lower Bounds for Unrestricted Space/Preprocessing
	Preprocessing-Searching Tradeoffs

	Batched Predecessor in the I/O Pointer-Machine Model
	Batched Predecessor in the Indexability Model

	Bibliography

