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Abstract of the Dissertation

Computational Modeling and Analysis of Cardiac Excitation

by

Abhishek Murthy

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

Modeling, analysis, and control of cardiac excitation, the biological process car-
diac cells undergo on a periodic basis, is indispensable for understanding and coun-
tering life-threatening electrical disturbances of the heart, such as atrial and ventric-
ular fibrillation. Modeling involves the derivation of a mathematical/computational
representation of the dynamics of cardiac cells and their diffusivity. The key to effec-
tive modeling lies in striking a balance between i) precision, the ability of the model
to replicate the underlying biological phenomena, and ii) performance, in terms of
amenability to automated analysis techniques, such as simulation and formal verifi-
cation.

The techniques of abstraction and compositionality have been instrumental
in striking this balance. Abstraction is the process of removing unnecessary detail
from a given model so that the resulting abstract version is both observationally
equivalent to the original model and a conservative approximation of it, but better
suited for the analysis of the properties of interest. Given a system consisting of
a number of interacting components, also known as subsystems, Compositionality
enables us to substitute a component by its equivalent abstraction, such that the
overall system retains the properties of interest.

In the case of real-valued continuous-time dynamical systems, such as cardiac-
cell models, a notion of approximate equivalence has been proposed, which can be
used to show that an abstraction is approximately equivalent to the concrete model.
Care must be taken, however, when a concrete model of a system component C
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is replaced by an approximately equivalent abstraction C ′ within a feedback loop;
in such situations, the approximation error between C and C ′ may get amplified.
For feedback compositions, Antoine Girard has shown that Lyapunov-like Bisim-
ulation Functions (BFs) satisfying a certain Small Gain Theorem can be used to
establish substitutivity, which follows from i) input-to-state stability of the concrete
and abstract subsystems, and ii) the robustness of the rest of the system to input
deviations.

In this thesis, we first extend BFs to handle input-to-output stability and
present two Sum-of-Squares formulations for automating the search for BFs. The au-
tomated proof technique, which has been implemented using MATLAB SOSTOOLS,
enables component-wise approximate model-order reduction of feedback-composed dy-
namical systems. Using our techniques, we show that within a detailed 67-variable
cardiac-cell model, the 13- and 10-variable Markovian subsystems for sodium and
potassium channels can be safely (with bounded error) substituted by two-variable
Hodgkin-Huxley-type models. The two-variable abstractions were identified using
using a two-step curve fitting technique.

We then present the Spiral Classification Algorithm (SCA), a fast and accu-
rate algorithm for computing the curvature of electrical waves and their associated
breakup in cardiac tissues. Given a digitized frame of a propagating wave, SCA
constructs a highly accurate representation of the front and the back of the wave,
piecewise interpolates this representation with cubic splines, and subjects the result
to an accurate curvature analysis. SCA has been applied to a number of representa-
tive types of spiral waves, and, for each type, a distinct curvature evolution in time
(signature) has been identified.

Finally, we present explicit and online Model-Predictive Controllers for an
excitable-cell simulator based on the nonlinear FitzHugh-Nagumo model. Despite
the plant’s nonlinearity, we formulate the control problem as an instance of quadratic
programming, using a piecewise affine abstraction of the plant. The speed-versus-
accuracy tradeoff for the explicit and online versions is analyzed on various reference
trajectories.
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Chapter 1

Introduction

The cardiovascular system, which enables the circulation of blood and its constituent
nutrients throughout the body, is composed of two circulatory loops: pulmonary
circulation, the circuit through the lungs, where blood is oxygenated, and systemic
circulation, which provides the rest of the body with oxygenated blood. The heart
is the central organ of this system, and is responsible for pumping the blood through
the pulmonary and the systemic circulation loops. Cardiovascular disorders, such
as coronary heart disease and arrhythmias, affect the heart, the blood vessels and
the cardiac tissue.

An estimated 81,000,000 American adults, more than one in three, have one
or more types of cardiovascular disorders [51]. These disorders can be potentially
fatal; about 600,000 people die of heart disease in the United States every year [60].
In addition to the grave health risks, heart diseases also pose a significant financial
burden on the economy; coronary heart disease alone costs the United States $108.9
billion each year [64].

Arrhythmias, electrical disturbances of the heart, are an important subclass
of cardiovascular diseases. Under nominal conditions, the cardiac tissue undergoes
rhythmic electrical excitation, known as the sinus rhythm. This electrical excita-
tion then induces the synchronized contraction of the cardiac tissue. Arrhythmias,
anomalous patterns of electrical excitation, can originate in the atria, the upper
chambers of the heart, or the ventricles, the lower chambers of the heart. Tachycar-
dia, the abnormally fast electrical pacing of the heart, and Bradycardia, abnormally
slow pacing, are common forms of arrhythmias. Tachycardia, in either the atria or
ventricles, may lead to fibrillation, which is potentially fatal in the case of ventricles.
Atrial fibrillation may lead to stroke and is an important precursor to ventricular
arrhythmias.

Detailed understanding of cardiac electrical excitation is critical to controlling
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the pathological behaviors, such as tachycardias and arrhythmias. In this regard,
model-based approaches have played a transformative role. Mathematical modeling
of cardiac excitation is an active area of research [15, 16, 17]. Experimental data is
used to calibrate models that range from the sub-cellular to the organ-level. With the
ability to model and simulate complex arrhythmias on computers, many potential
solutions, both drug-based and device-based, can be quickly evaluated, effectively
reducing the the search space to focus on a few hypotheses that can then be exper-
imentally validated. Iterative interaction between simulation-based approaches and
experimentation has yielded invaluable insights, and promises to further refine our
understanding and predictive ability of cardiac excitation.

To this end, the National Science Foundation’s expedition in computing, en-
titled “Computational Modeling and Analysis of Complex Systems (CMACS)”1 is
aimed at gaining fundamental new insights into the emergent behavior of complex
biological and embedded systems through the use of revolutionary, highly scalable
and fully automated modeling and analysis techniques. The project entails devel-
oping the next generation of Formal Verification algorithms and tools. Formal Ver-
ification involves exhaustively exploring the behaviors (trajectories) of a model of
the underlying system to check if it satisfies a given property, as opposed to purely
simulation-based approaches, which involve a finite number of behaviors. Model
Checking (MC) [12] and Abstract Interpretation (AI) [13] are two main techniques
of formal verification. Four challenge problems have been identified as drivers for
the development of the next generation of formal verification tools and techniques:
i) Atrial Fibrillation, ii) Pancreatic Cancer, iii) Distributed Automotive Software,
and iv) Avionics.

The Atrial Fibrillation challenge is the focus of this dissertation; the chal-
lenge entails the development and validation of personalized, adaptive strategies
that counteract life-threatening electrical disturbances of the heart such as atrial
fibrillation. Fig. 1.1 illustrates a typical workflow for formal verification-based com-
putational modeling and analysis of cardiac excitation.

First, a mathematical model of cardiac excitation is identified using experi-
mental data. These models usually take the form of a system of partial differential
equations, which captures the excitation of the cardiac cells and the diffusion pro-
cess of the tissue. The cell-level excitation is highly nonlinear in time, and can be
captured at varying levels of detail. Physiologically detailed models reproduce the
intracellular and transmembrane ion movements that contribute to cellular excita-
tion. On the other hand, abstract models lack physiological details, and sketch a
caricature of aggregate cell-level behavior. Due to their nonlinearity, mathematical
models may not be directly amenable to formal verification-based analysis.

1See http://cmacs.cs.cmu.edu for more details.
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Figure 1.1: Computational modeling and analysis of cardiac excitation: a typical work-
flow.

The mathematical models are then transformed to computational models, such
as hybrid automata and timed automata, which are better suited for formal verifica-
tion. The conversion from mathematical models to computational ones might incur
some loss in precision, but guarantees better performance in terms of verification
techniques, such as MC, AI and reachability analysis.

The focus of this dissertation is to enable the Atrial Fibrillation Challenge
workflow of Fig. 1.1. The results presented in the thesis fall into three broad cat-
egories: Modeling, Analysis and Control, see Fig. 1.2. We elaborate on these three
aspects below.

Modeling : Computational models derived from detailed mathematical models, which
intricately capture the electrophysiology of the cells, are not very well-suited for
the workflow in Fig. 1.1. A detailed high-dimensional model of the underlying
system often leads to the problem of state-explosion [32] when formal verification
techniques are applied. The Iyer-Mazhari-Winslow model [36], which is introduced
in Chapter 2, is an example of such a high-dimensional model; it uses 67 state-
variables to capture the electrical behavior of a single cell. On the other hand,
abstract models, such as the Minimal Model [8], use fewer variables to sketch a
caricature of the cell-level behaviors. Such reduced models are better suited to the
workflow in Fig. 1.1.

The downside of using abstract models for analysis is as follows. When an
abstract model, such as the Minimal model, is used for analysis, the quantitative
and qualitative insights provided by the verification techniques are in terms of the
corresponding abstract state and parameter spaces. In other words, they lack phys-
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iological interpretation, which is essential for drug design and root-cause detection.

The concept of towers of abstraction has been proposed in [40, 22] to alleviate
this problem. As shown in Fig. 1.1, a hierarchy of cardiac models is constructed.
The hierarchy relates a detailed model, such as the Iyer-Mazhari-Winslow model, to
abstract ones, such as the Minimal model. By formally establishing the equivalence
of the Iyer-Mazhari-Winslow model and the Minimal model, the hierarchy allows
the insights obtained from the later to be interpreted in terms of the physiological
state-variables of the former model.

Figure 1.2: Overview of the results in the dissertation.

In this dissertation, we propose a model-order reduction technique that can
be used iteratively to construct a tower of abstraction for cardiac models, and thus
enable the workflow depicted in Fig. 1.1. Components of detailed cardiac models
are approximated using low-dimensional models. Specifically, we propose a curve
fitting-based approximation technique to identify two-variable models corresponding
to the ion-channel subsystems of the Iyer-Mazhari-Winslow model.

The two-variable models are approximately equivalent to the detailed ion-
channel components. Care must be taken when the detailed component is substi-
tuted by its approximation within the whole-cell model. The feedback loop, within
which the ion-channel components are composed in a cardiac-cell model, may am-
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plify the approximation error between the detailed component and its two-variable
approximation. We propose a control-theoretic proof technique to show that the
substitution leads to bounded error.

Analysis : After identifying the cardiac-cell model at the requisite level of detail, its
analysis becomes important. Parameter range identification, a pertinent analysis
problem, involves estimating the parameters of a given cardiac-cell model that re-
produce a particular arrhythmia. Arrhythmias are defined by tissue-level wave-like
patterns of electrical excitation, and can be identified using the geometry of the
waves. To this end, we propose a curvature estimation algorithm for cardiac waves:
the Spiral Curvature Analysis algorithm. The algorithm can be used to automat-
ically characterize and classify the arrhythmias, thus enabling the exploration of
parameter spaces of a given cardiac model.

Control : In this part of the dissertation, we explore model predictive control of ex-
citable cells. Model predictive control entails computing optimal inputs to the plant,
the system being controlled, by solving an optimization problem, such that the plant
follows a given reference trajectory. The optimization problem involves simulating
a model of the plant over a finite time horizon. We investigated the case where the
controller is equipped with a piecewise affine approximation of the nonlinear plant.
Offline and online approaches to model predictive control are compared over several
reference trajectories.

A Dynamical system, a recurring modeling formalism in the thesis, is defined
using a 6-tuple (X ,X 0,U , f,O, g), where X is the state space, X 0 ⊆ X is the set of
initial conditions, U is the input space, f : X × U → X is the vector field defining
the dynamics, O is the set of outputs, and g : X → O maps a state to its output.

The outline of the dissertation is as follows. In the next chapter, we introduce
the Iyer-Mazhari-Winslow cardiac cell model, and identify two of its subsystems as
candidates for component-wise model-order reduction. Chapters 3 and 4 are dedi-
cated to model-order reduction. Chapter 3 presents a curve fitting-based approach
to approximating the ion-channel subsystems of detailed cardiac models with two-
variable abstractions. Chapter 4 presents a proof technique that allows us to show
that the detailed ion-channel subsystem can be substituted, with bounded error, by
its approximately equivalent two-variable abstraction within the whole-cell model.
Chapter 5 presents the Spiral Curvature Analysis algorithm. Chapter 6 presents
model-predictive controllers for excitable cells. Chapter 7 presents concluding re-
marks and directions for future research.
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Chapter 2

Background

This chapter begins with an overview of cardiac electrophysiology and introduces the
detailed Iyer-Mazhari-Winslow ventricular-cell models. The Sodium and potassium-
channel subsystems of the model are described in detail.

The heart is the central organ of the circulatory system and is responsible
for pumping blood in the pulmonary and systemic circulation loops [19]. Pumping
is achieved through electrically induced synchronized contraction and expansion of
the cardiac tissue, which is composed of excitable myocytes. Thus, there are two
aspects to the heart’s operation: i) electrophysiology, which describes the electrical
excitation of the cardiac cells and the tissue and ii) the mechanical properties which
determine the rhythmic contractions. In this thesis, we will focus exclusively on
cardiac electrophysiology.

Electrical excitation originates in the sino-atrial node, which consists of spe-
cialized impulse-generating cells, see Fig. 2.1 (a). The electrical impulses diffuse
to the immediate neighboring myocytes and excite them. The cells then diffuse the
charge to their neighbors, and this process continues resulting in sustained propa-
gation of electrical energy across the cardiac tissue. Different regions of the heart,
like the four atrial (upper) and ventricular (lower) chambers, the cardiac septum
and the atrio-ventricular junction have different types of cardiac cells that respond
to electrical stimulus in slightly different ways. Their electrical properties regulate
the conduction of electrical impulses throughout the organ.

Electrical coupling between adjacent cardiac cell results in the diffusion of
electrical impulses across the entire tissue. These propagating impulses manifest as
characteristics patterns known as electrical waves, see Fig. 2.1 (b). Planar waves
correspond nominal patterns of propagation, whereas anomalous patterns, such as
a single spiral wave or multiple spiral wavelets, correspond to disorders, such as
reentrant tachycardia and fibrillation respectively.
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(a) Cardiac Electrophysiology.
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(b) Measuring and modeling electrophysiological
behaviors of the heart.

Figure 2.1: Cardiac electrophysiology: an emergent cyber-physical system with hy-
brid micro-level behavior.

Cardiac Electrophysiological modeling attempts to capture the cellular elec-
trical excitation and coupled diffusion that jointly lead to the emergent tissue-level
patterns that characterize nominal and anomalous cardiac behaviors. We begin
this chapter with an overview of electrophysiological models for cardiac cells. The
sodium- and potassium-channel subsystems of a detailed cardiac model are reviewed.

Cardiac myocytes belong to the class of excitable cells, which also includes
neurons and skeletal muscle cells. Such cells have the following excitability prop-
erty: supra-threshold electrical excitation, either external or from neighboring cells,
results in a characteristic change in the transmembrane voltage known as the Ac-
tion Potential (AP). Either an external stimulus, or the diffusing charge from the
neighboring cells can excite the myocyte, causing an AP to quickly depolarize the
membrane from a negative resting potential of Vres mV to a maximum of Vmax mV
followed by gradual repolarization. See Fig. 2.2 for a typical AP.

The transmembrane potential V of the cell is determined by the differences in
the concentrations of sodium (Na), potassium (K), and calcium (Ca) ions present in
the extracellular and intracellular mediums. The resulting gradients of concentra-
tions lead to the flow of ions across the membrane that can be measured as an ionic
current for each type of flow. The ion flow is facilitated by ion channels present
in the membrane of the cells. Ion channels are proteins that exhibit conforma-
tional changes on varying the transmembrane voltage, and are selectively permeable
to either Na, K, or Ca ions. Some of the conformations allow ion flow, whereas
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others inhibit the respective current. The rate of change of voltage resulting from
the ion flows is a function of the various ionic currents at any point in time. The
Iyer-Mazhari-Winslow model captures the various ion-channel dynamics and the
corresponding ionic currents of a ventricular myocyte. We describe this model next.

2.1 Iyer-Mazhari-Winslow Model for Ventricular

Myocytes

The IMW model [36] is a detailed mechanistic model for ventricular myocytes. The
membrane potential V is modeled as

−CdV
dt

= INa+INab
+I

Ca
+I

Cab
+I

Kr
+I

Ks
+I

K1
+Ito1+Ip(Ca)

+ (2.1)

I
NaCa

+I
NaK

+I
CaK

+Ist ,

where C is the membrane conductance. The terms on the right represent 12
ionic currents and the external stimulus Ist. Each ionic current results from the
ion flow through the corresponding ionic channel. Each type of ion-channel channel
contributes a subsystem (submodel) that is responsible for the corresponding ionic
current. Each such submodel is a mean-field approximation of the collective stochas-
tic behavior of all the ion channels of the corresponding type. In this report, we focus
on the sodium-channel subsystem, which contributes INa, and the potassium chan-
nel subsystem, which contributes the IKv4.3 component of the calcium-independent
transient outward Potassium current Ito1. The sodium current INa is primarily re-
sponsible for the upstroke phase, whereas Ito1 influences the AP’s notch in the early
repolarization phase. See Fig. 2.2 for a schematic of the IMW model.

2.1.1 Sodium-Channel Subsystem of the IMW Model

The sodium current INa is modeled as:

INa(V, t) = gNa(O1 +O2)(V − VNa), (2.2)

where gNa is the maximum conductance of the sodium channel, and VNa is sodium’s
Nernst potential. The term (O1 + O2) represents the conductance (output) of the
sodium-channel subsystem, which is defined as follows.

Definition 2.1.1. The sodium channel subsystem ΣI is given by (XI , X
0
I ,V , fI ,OI , gI).

A state xI ∈ XI ⊆ R13
≥0 is the occupancy probability distribution over the 13 states of

the voltage-controlled Continuous Time Markov Chain (CTMC) shown in Fig. 2.3 in
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Figure 2.2: (Left) Currents in IMW: Blue and brown arrows show ionic currents flowing
through channels. Blue circles and arrows correspond to ionic exchanger currents and
green circles denote ionic pumps. Intra-cellular currents are shown in Magenta. (Right)
A typical AP and its phases.

the following order of the state labels: [C0, C1, C2, C3, C4, O1, O2, CI0, CI1, CI2, CI3,
CI4, I]. The dynamics fI is given by

fI : ẋI = AI(V ) xI , (2.3)

where V ∈ V ⊆ R, the transmembrane voltage, is the input to the system and AI(V )
is the 13× 13 voltage-controlled rate matrix. The off-diagonal entry AI(i, j), i 6= j,
is the transition rate from state xI j to state xI i. For example, AI(5, 6) = δ(V ),
the transition rate from O1 to C4. The diagonal entry AI(i, i) is the sum of all the
outgoing rates from state xI i. The transition rates are exponential functions of V ,
and can be found in Table 2.1.

The set of outputs OI ⊆ R≥0 contains the conductance values for the states.
Given a state xI , gI(xI) , xI6 + xI7 maps it to its conductance given by the sum of
the occupancy probabilities of the states labeled O1 and O2. We use OI to denote
the output when the state can be inferred from the context. The system has a single
initial condition xI0 ∈ X0, which is defined in Table 4 of [36].

2.1.2 Potassium Channel Subsystem of the IMW Model

The potassium current IKv4.3 is modeled as

IKv4.3 = gKv4.3 (OK(V )) (V − VK), (2.4)

where gK is the maximum conductance of the channel, VK is the Nernst potential
for potassium, OK(V ) = O(V ) is the conductance (output) of the potassium-channel
subsystem, which is defined as follows.
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Figure 2.3: The sodium-channel subsystem ΣI of the IMW model.

rate function rate function rate function
α(V ) c.e−19.6759+0.0113V δδ(V ) c.e−38.4839−0.1440V ε 0.0227
β(V ) c.e−26.2321−0.0901V γγ(V ) c.e−21.9493+0.0301V ω 1.0890
γ(V ) c.e−16.5359+0.1097V η(V ) c.e−19.6729+0.0843V cn 0.7470
δ(V ) c.e−27.0926−0.0615V On(V ) c.e−20.6726+0.0114V cf 0.2261
ν(V ) c.e−26.3585−0.0678V Of (V ) c.e−39.7449+0.0027V a 1.4004

Table 2.1: Transfer rates of ΣI , which is shown in Fig. 2.3. Values were instantiated from
Table 6 of [36] at temperature T = 310K, and c = 8.513× 109.

Definition 2.1.2. The potassium channel subsystem ΣK is given by (XK , X
0
K ,V , fK ,

OK , gK). A state xK ∈ XK ⊆ R10
≥0 is the occupancy probability distribution over the

10 states of the voltage-controlled CTMC shown in Fig. 2.4 in the following order
of the state labels: [C0, C1, C2, C3, O, CI0, CI1, CI2, CI3, OI]. The dynamics fk is
given by

fK : ẋK = AK(V ) xK , (2.5)

where V ∈ V ⊆ R, the transmembrane voltage, is the input to the system and AK(V )
is the 10× 10 voltage-controlled rate matrix. The off-diagonal entry AK(i, j), i 6= j,
is the transition rate from state xKj to state xKi. For example, AK(4, 5) = 4βa(V ),
the transition rate from O to C3. The diagonal entry AK(i, i) is the sum of all the
outgoing rates from state xi. The transition rates are exponential functions of V ,
and can be found in Table 2.2.

The set of outputs OK ⊆ R≥0 contains the conductance values for the states.
Given a state xK , gK(xK) , x5 maps it to its conductance given by the occupancy
probability of the state labeled O. We use OK to denote the output when the
state can be inferred from the context. The system has a single initial condition
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xK0 ∈ X0, which is defined in Table 4 of [36].

Figure 2.4: The potassium-channel subsystem ΣK of the IMW model.

rate function rate function rate function
αa(V ) 0.5437e0.029V f1 1.8936 b1 6.7735
βa(V ) 0.0802e−0.0468V f2 14.2246 b2 15.6213
αi(V ) 0.0498e−0.0004V f3 158.5744 b3 28.7533

βi(V ) 0.0008e(5.374×10
−8V ) f4 142.9366 b4 524.5762

Table 2.2: Transfer rates of ΣK , shown in Fig. 2.4. c = 8.513 × 109. Note that these
values are different from the ones given in Table 9 of [36]. Corrections were made to the
parameters to match the observed APs of the IMW model.
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Chapter 3

Model-order Reduction of
Ion-Channel Models

In this chapter, we present an abstraction technique based on [61, 34] for the ion-
channel subsystems of the IMW model. We begin by motivating model-order reduc-
tion for ion-channel components, and then present the Hodgkin-Huxley formalism
for ion-channels. Then, we present a curve fitting-based approach to identifying two-
variable Hodgkin-Huxley-type abstractions for the sodium and potassium-channel
subsystems introduced in Sections 2.1.1 and 2.1.2. We conclude with empirical re-
sults showing that the sodium and potassium channel subsystems can be substituted
with their respective two-variable abstractions with bounded error.

3.1 Motivation

Improved data acquisition has led to the creation of increasingly sophisticated car-
diac models. Their main purpose is to elucidate the biological laws governing the
electric behavior of cardiac myocytes, i.e., their underlying ionic processes [20].

Inspired by the squid-neuron model [31], which will be introduced in the next
section, Luo and Rudy devised one of the first myocyte models, for guinea pig ven-
tricular cells [52]. Adapting this model to human myocytes led to the ten Tusscher-
Noble2-Panfilov model [72], which has 17 state variables and 44 parameters. Based
on updated experimental data, IMW subsequently developed their model comprising
of 67 state variables and 94 parameters [36].

From 17 to 67 variables, all such models capture myocytic behavior at a par-
ticular level of abstraction, and hence all of them play an important role in the
modeling hierarchy. It is essential, however, to maintain focus on the purpose of a
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particular model; that is, of the particular cellular and ionic processes whose behav-
ior the models is intended to capture. Disregarding this purpose may lead to the
use of unnecessarily complex model, which may render not only analysis, but also
simulation, intractable.

If the only entity of interest is the transmembrane voltage, Cherry and Fenton
have experimentally shown that the Minimal model [8] consisting of only 4 variables
and 27 parameters can accurately capture voltage propagation properties in 1D, 2D,
and 3D networks of myocytes. The Minimal model has enabled dramatic simulation
speedups [3], and its linear hybridization has even been used for formal symbolic
analysis [29].

Since new technological advances are expected to lead to further insights into
myocytic behavior, it is likely that the IMW model will be further refined by adding
new variables. As in model checking and controller synthesis, one would therefore
like to compute the smallest approximation that is observationally equivalent to
the state-of-the-art cardiac model with respect to the property of interest, modulo
some bounded approximation error. This, however, is not easily accomplished, as
it implies the automatic approximation of very large system of nonlinear Ordinary
Differential Equations (ODEs).

A first step toward the desired automation is to identify a set of approximation
techniques that allow one to systematically remove unobservable variables from say,
a detailed model such as IMW to end up with the Minimal model, assuming that
the only observable variable is the voltage. A byproduct of this work is to establish
a long-missing formal relation among the existing myocyte models, thus facilitating
the transfer of properties established at one layer of abstraction to the other layers.
Building such towers of abstraction is becoming increasingly prevalent in systems
biology [40, 22].

In this chapter we focus on model-order reduction and abstraction of ion chan-
nel dynamics. The main question posed in this chapter is the following: Assuming
that the conductance of the ion channel is the only observable, is the behavior of a
Hodgkin-Huxley-type channel equivalent to the behavior of the IMW channel, mod-
ulo a well-defined approximation error? Specifically, we answer this question for
the sodium and the calcium-independent potassium channels. See Fig. 3.1 for an
overview of the chapter.
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Figure 3.1: A modular view of the IMW model, which was introduced in Section 2.1. It
composes various concurrently evolving components corresponding to the different ionic
currents. We replace the 13- and the 10-variable subsystems for INa and IKv4.3 respec-
tively with corresponding 2-variable Hodgkin-Huxley-type abstractions. A two-level curve
fitting process, described in Section 3.3, is used to identify the abstractions. Approximate
equivalence of the detailed components and their corresponding abstractions allows us to
substitute them for each other within the whole-cell model. The stimulus current affects
the overall voltage update and is not an input to the ionic current components. The
system outputs the 13 currents in Eq. (2.1).

3.2 Hodgkin-Huxley Formalism for Modeling Ion-

Channels

Hodgkin and Huxley, in their seminal work of [31], modeled the squid neuron’s
sodium channel behavior using two independent processes: activation and inacti-
vation. Starting from the resting potential, if the cell is depolarized to a constant
voltage, activation causes a sudden increase in the channel’s conductance. This
is followed by inactivation, which gradually brings the conductance down, before
reaching a steady state. The activation and inactivation processes are captured by
the Hodgkin-Huxley (HH) model as follows.

Definition 3.2.1. The HH model ΣH is given by (Y, Y 0,V , fH ,O, gH). Its state
y ∈ Y ⊆ R2

≥0 measures the degrees of activation, denoted by m, and inactivation of
the channel, denoted by h. Component y1 corresponds to m and y2 corresponds to
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h. The dynamics fH is given by

fH : ẏ = AH(V ) y +BH(V ), (3.1)

where AH =

[
−(αm(V ) + βm(V )) 0

0 −(αh(V ) + βh(V ))

]
, BH =

[
αm(V )

αh(V )

]
, and V ∈

V ⊆ R, the transmembrane voltage, is the input. The rates αi(V ) and βi(V ),
i ∈ {m,h}, are nonlinear functions of V that will be identified during the two-step
curve-fitting process.

The set of outputs O ⊆ R≥0 contains the conductance values for the states.
Given a state y, gH(y) , yγ1y2, maps it to its conductance, which corresponds to
mγh. The parameter γ is called the degree of activation. We use OH to denote the
output when the state can be inferred from the context.

The system has a single initial condition that will be identified in the curve
fitting process.

3.3 Model-Order Reduction of Ion Channel Dy-

namics

We construct two HH-type models, ΣHI and ΣHK , that can be substituted for ΣI

and ΣK respectively within the IMW cardiac-cell model. We perform the following
abstractions in the process:

• The abstractions ΣHI and ΣHK employ three and four activating subunits
respectively. In other words, the degree of activation γ = 3 for ΣHI and γ = 4
for ΣHK . A single subunit is used to model inactivation.

• We abstract away the conditional dependence between activation and inac-
tivation. This is done by abstracting away the scaling factors: a of ΣI and
f1 − f4, b1 − b4 of ΣK , see Figs. 2.3 and 2.4.

After identifying ΣHI , its conductance, m3h, is substituted for ΣI ’s conductance,
O1+O2, in the IMW model’s Eq. (2.2). Similarly ΣHK ’s conductance, m4h, replaces
ΣK ’s conductance, OK in Eq. (2.4). Note that this leads to two levels of substitution.
First, the conductance of the detailed ionic current components is substituted by
the abstract model conductances. Then the modified current component replaces
the original term in Eq. (2.1).

Our approach to identifying ΣHI and ΣHK from the detailed models, ΣI and
ΣK respectively, is summarized in Fig. 3.2, and described as follows.
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Figure 3.2: Abstraction process for the ion-channel models. The voltage-controlled
CTMC components are simulated at constant voltages (clamp potentials) using the steady
state values corresponding to V = Vres as the initial conditions. The conductance time
courses are then fit as per Eq. (3.2) to obtain the parameters αm, βm, αh, βh at the clamp
potentials used for voltage clamp simulations. The four parameter values, along with the
initial conditions determine the abstractions at constant voltage. The parameters are then
fit in the RFI step to obtain parameter functions αm(V ), βm(V ), αh(V ), βh(V ).

1. Voltage clamp simulations
Voltage Clamp Experiments (VCEs), pioneered by Hodgkin and Huxley in
their seminal work of [31], are intended to expose the activation and inac-
tivation processes governing a channel’s behavior. The experiments involve
stimulating the channel by changing the membrane potential suddenly and
then holding it constant, starting from appropriate initial conditions. As the
ion channel reacts by opening, and then closing, the resulting ionic currents
are recorded. The corresponding conductance time courses characterize the
channel’s response to varying the membrane potential.

We simulated VCEs by simulating the detailed models, ΣI and ΣK , for var-
ious values of V . In other words, the systems of linear differential equations
governing the evolution of Σv

I and Σv
K , were simulated for different values of

Vres ≤ v ≤ Vmax. We used 20,000 uniformly spaced voltage values for v. The
models Mv

Na and Mv
K were simulated using MATLAB’s ODE45 solver [57],

starting from the initial conditions specified in Table 4 of [36]. The initial
conditions correspond to the steady state of the models at v = Vres. This
is exactly the initially conditions used by Hodgkin and Huxley in [31]. The
resulting conductance time courses, O1(t)+O2(t) for Σv

I and O(t) for Σv
K , were
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recorded until steady state was reached. As per Theorem A.0.1 in Appendix
A, for all v ∈ [Vres, Vmax], Σv

I and Σv
K have stable equilibria and therefore

steady state is guaranteed. Simulating the models at constant voltage values
corresponds to the clamp potentials to which the membrane was excited in
[31] to uncover the activation and inactivation process.

2. Parameter Estimation from Finite Traces (PEFT)
Parameter Estimation from Finite Traces (PEFT) is a procedure that iden-
tifies Σv

HI and Σv
HK models corresponding to Σv

I and Σv
K respectively. The

parameters αvm, β
v
m, α

v
h, β

v
h for both the models are estimated such that the

resulting conductance time courses, produced by Σv
HI and Σv

HK , match the
conductance time courses observed in the voltage clamp simulations for Σv

I

and Σv
K respectively.

In our implementation, we fit Σv
I ’s conductance time series, O1(t) + O2(t), to

Σv
HI ’s m

3(t)h(t). Time series O(t) observed from Σv
K was fit with m4(t)h(t)

to identify Σv
HK . At constant voltage v, the trajectories m(t) and h(t) of Σv

HI

and Σv
HK are given by

z(t) =
αvz

αvz + βvz
+

(
z(0)− αvz

αvz + βvz

)
exp (− (αvz + βvz ) t) (3.2)

where z ∈ {m,h} and x ∈ {I,K}. The fitting was performed using MATLAB’s
curve fitting utility cftool [58] for each voltage value v used in the voltage clamp
simulations. Two aspects of our implementation deserve further elaboration:

• Choosing m(0) and h(0) - The initial conditions were chosen such that
for Σv

HI , m(0)3h(0) and for Σv
HK , m(0)4h(0) was approximately equal to

the steady state conductances of ΣVres
HI and ΣVres

HK respectively. As per con-
vention, we also ensured thatmv(0) ≈ 0 and h(0) ≈ 1 for both the models.
We chose m(0) = 0.0027, h(0) = 0.95 for Σv

HI ; m(0) = 0.007, h(0) = 0.98
for Σv

HK .

• Providing seed-values - For each voltage-value v, cftool needs seed
values of αvx, β

v
x, x ∈ {m,h}, to start optimizing over the parameter

space. The parameters estimated for the ith voltage vi were used as seed-
values for vi+1. For i = 0, when v = vres, the parameters were calculated
by trial and error.

3. Rate Function Identification (RFI)
Rate Function Identification (RFI) is a procedure that fits the parameter val-
ues, αvm, βvm, αvh and βvh, as functions of voltage to produce the parameter
functions αm(V ), βm(V ), αh(V ) and βh(V ). We fit polynomial functions using
cftool [58]. The parameter functions defining ΣHI and ΣHK are as follows.
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Rate functions that define ΣHI :

αm(V ) =

{
13.63− 14.3

1+exp(0.061V+1.72)
V ≤ 19.98

20.76− 7.89
1+exp(464.1V−13920) V > 19.98

(3.3)

βm(V ) =


9.925 V ≤ −65

4.7− 2.58
1+exp(0.61V+38.19)

−65 < V ≤ 5.8

12.24− 7.77
1+exp(1877V−56314) V > 5.8

(3.4)

αh(V ) =
0.1745

1 + exp(269.8V + 17720)
(3.5)

βh(V ) = 10.1− 10

1 + exp(0.0579V + 0.71)
(3.6)

Rate functions that define ΣHK

αm(V ) =

{
0.45 exp(0.026V ) V ≤ 24.5

0.85− 0.048
1+exp(−0.2V+9.5)

V > 24.5
(3.7)

βm(V ) =

{
0.029 exp(0.065V ) V ≤ 24.5

0.1839− 0.05
1+exp(0.19V−9.32) V > 24.5

(3.8)

αh(V ) = 0.0015− 0.0014

1 + exp(0.027V − 2.54)
(3.9)

βh(V ) =

{
0.12− 0.06

1+exp(−0.054V+2.62)
V ≤ 24.5

0.109 + 0.015
1+exp(−0.033V+10.83)

V > 24.5
(3.10)

Adapting the Abstraction Process to Arbitrary Observable Functions of
ΣI and ΣK :
The two-step abstraction process, consisting of PEFT and RFI, assumed that the
conductance of the detailed model was the observable (ouput) function for them. In
other words, O1(V, t) + O2(V, t) for ΣI , and O(V, t) for ΣK mapped a state of the
corresponding model to its output. The abstraction methodology described above
is not restricted by these observable functions and can be adapted to arbitrary
functions that map a state to its output.

Suppose we are given a stochastic (detailed) ion-channel model Σ, with a func-
tion that maps the state occupancy probability vector to a real-valued output. The
goal is to reduce it to an HH-type abstraction, ΣH , that has a degree of activation
λ and 1 as the degree of inactivation. We provide details for modifying PEFT, such
that the resulting set of constant-voltage Σv

H systems are behaviorally equivalent to
constant-voltage versions, Σv, of the detailed model.
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The first step is to establish a mapping between the states of Σ and a 2(λ+1)-
state stochastic model corresponding to the HH-type model, denoted by Σstoch

H .
We will label the states of Σstoch

H as xij, and denote the corresponding occupancy
probability by pij where i = 0, . . . , λ and j = 0, 1. The model Σstoch

H interprets the
degrees of activation and inactivation as the number of independent activating and
inactivating subunits of the channel. In our case, the state xij corresponds to the
conformation of the channel where i activating and j inactivating subunits are in an
“open” state that allow ion flow. Fig. 3.3 shows the model Σstoch

H corresponding to
an HH-type model with λ = 3 and a degree of inactivation of 1. In the model, the

Figure 3.3: Invariant manifolds can be used to map the states of a 2(λ+1)-state stochastic
model to an HH-type model with a degree of activation λ and degree of inactivation 1
(λ = 3 in the example).

state x21 corresponds to the a conformation where the inactivating subunit and two
of the activating subunits are open. The inactivating subunit can close at a rate of
βh(V ) and change the conformation to x20. The remaining activating subunit can
open at the rate of αm(V ) to change the state to x31. In this conformation, all the
three activating subunits and the inactivating subunit are open. Thus, this state
corresponds to the conformation of the channel which allows ion flow. From the
state x21, any of the two independent activating subunits could close at a rate of
2βm(V ) to change the state to x11. Once we have mapped the states of the given
stochastic model to the states of Σstoch

H , PEFT can be modified to identify Σstoch,v
H

systems that can match the behavioral traces observed from Σv.
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The two-state HH-type model forms an invariant manifold [47] of Σstoch
H . The

occupancy probability of the state xij is given by mihj. This correspondence helps
us map a state vector of Σstoch

H to a state of the HH-type model (the vector [m,h]T ).
Note that this mapping is exact and provides an output function that can be matched
to the output function of ΣI . Suppose the output function maps the states of Σ
that correspond to the states x11 and x31 of Σstoch

H . Then the output function of ΣH

will take as arguments mh and m3h. PEFT can be used to minimize divergence of
this new observation function to identify Σstoch,v

H systems.

3.4 Empirical Evidence of Substitutivity

The subsystems ΣI and ΣK were substituted by their respective HH-type abstrac-
tions ΣHI and ΣHK within the IMW model. The substitutions were done in three
combinations: 1) substitution of ΣI only, 2) substitution of ΣK only, and 3) sub-
stitution of both ΣI and ΣK . The modified IMW models were simulated in MAT-
LAB in all three cases with an integration time step of 0.001 ms. Both supra- and
sub-threshold stimuli, lasting 0.5 ms, were used to excite the cardiac cell. Supra-
threshold stimuli used were: S1 = −100 pA/pF, and S2 = −120 pA/pF. Sub-
threshold stimuli employed were: S3 = −10 pA/pF, and S4 = −20 pA/pF.

S V (mV) INa (pA/pF) IK (pA/pF)

Na
Only

K
Only

Both Na
Only

K
Only

Both Na
Only

K
only

Both

S1 7.73×
10−4

1.4 ×
10−3

1.6 ×
10−3

2.7 ×
10−3

8.3 ×
10−6

5.2 ×
10−3

6.2 ×
10−5

1.72×
10−4

1.1 ×
10−3

S2 7.3 ×
10−4

1.4 ×
10−3

1.5 ×
10−3

5.2 ×
10−3

5.4 ×
10−5

5.2 ×
10−2

4.67×
10−5

2.54×
10−4

2.5 ×
10−4

S3 1.61×
10−5

1.1
×10−3

1.1 ×
10−3

- - - - - -

S4 1.39×
10−4

1.2 ×
10−3

1.3 ×
10−3

- - - - - -

Table 3.1: Mean L2 errors incurred in the simulations after substituting ΣI by ΣHI and
ΣK by ΣHK in the IMW model. The first column S stands for the stimulus used to excite
the cell at the beginning of the simulation. Only the voltage errors were recorded for the
sub-threshold stimuli S3 and S4 as the currents were negligible.

Fig. 3.4 provides empirical evidence of the modified whole cell models being
behaviorally equivalent to the original models. The model retains both normal and
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Figure 3.4: Comparison of the original and the modified IMW models when ΣI and
ΣK are substituted by ΣHI and ΣHK respectively. Subfigures (a)-(c) are obtained for
the S1 stimulus, (d)-(f) for the S2 stimulus, (g) for the S3 stimulus and (h) for the S4
stimulus. S1 and S2 are supra-threshold stimuli and lead to an AP, whereas S3 and S4
being subthreshold stimuli fail to produce the AP.
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anomalous cell-level behaviors on replacing the 13-state sodium channel and/or 10-
state potassium channel components with the corresponding 2-state abstraction(s).

In the following chapter, we will introduce a control theoretic proof technique
that can be used to show the approximate equivalence of i) ΣI and ΣHI , ii) ΣK

and ΣHK , and iii) the original IMW model and the modified version obtained by
substituting ΣI and ΣK with ΣHI and ΣHK respectively.
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Chapter 4

Compositionality Results for
Cardiac Cell Dynamics

In the previous chapter, we presented the two-step procedure, based on PEFT and
RFI, to identify the HH-type abstractions ΣHI and ΣHK corresponding to the de-
tailed ion-channel models ΣI and ΣK respectively. We substituted the detailed
models with their respective abstractions within the IMW model, and presented em-
pirical results that show that the error remains bounded. In this chapter, we present
a control theoretic proof technique that enables us to formally derive proofs of sub-
stitutivity. The proofs entail computing Lyapunov-like functions that characterize
input-to-state stability and robustness of dynamical systems, using sum-of-squares
optimization.

We begin with a brief introduction in the next section. Then, we present
canonical cell models, and pose the pose the problem of substitutivity fir them.
The proof technique is presented in the following section. We then present two
algorithms for implementing the technique using sum-of-squares optimization. The
two algorithms are then applied to show that ΣI and ΣK can be substituted by ΣHI

and ΣHK respectively within canonical cell models. We conclude the chapter by
presenting results and comparing the two algorithms.

4.1 Motivation

Effective modeling for insightful analysis of a given biological system has been the
cornerstone of Systems Biology. Modeling involves coming up with a mathemati-
cal, and often a computational, representation of the dynamics of the states of the
biolgical system. The key to effective modeling lies in striking the balance between
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i) precision: the ability of the model to replicate the underlying biological intri-
cacy, and ii) performance: being amenable to automated computational analysis
techniques, such as simulations and formal verification. The techniques of abstrac-
tion and compositionality have been instrumental for striking this balance [40, 22].
Abstraction is the process of removing unnecessary detail from a given model such
that the resulting abstract version is an equivalent conservative approximation, but
is better suited for the analysis of the given properties-of-interest. Given a system
consisting of several interacting components, also known as a subsystems, Compo-
sitionality enables us to substitute a component by its abstraction. Compositional
reasoning is used to show that the overall system retains the properties-of-interest
when the component is substituted by its equivalent abstraction.

Mechanistic cardiac models, such as the IMW model, capture the electro-
physiology of the myocytes in great detail, but do scale with automated analysis
techniques, such as Model Checking [12] and Reachability Analysis [14]. Even sim-
ulations become intractable. On the other hand, the Minimal model portrays only
a caricature of the action potential, but is amenable to very fast simulations [3] and
even formal analysis [29].

In the case of real-valued continuous-time dynamical systems, which are often
used to model biological systems, a notion of approximate model-order reduction has
been proposed, where the abstraction is approximately equivalent to the concrete
model [26, 27, 28, 43]. PEFT and RFI, presented in Sections 3.3, constitute a curve
fitting-based approach to component-wise model-order reduction of cardiac models.
Detailed electrophysiological models, such as the IMW model can be systematically
reduced to abstract models, such as the Minimal model, by performing PEFT and
RFI-based reduction on each of the components of the IMW model.

Fig. 4.1 illustrates component-wise model-order reduction of the IMW model.
The sodium-channel component ΣI is reduced to ΣHI using PEFT and RFI. Then,
ΣI is substituted by ΣHI within the IMW model. In Section 3.4, we presented
empirical evidence that the substitution does not lead to divergent systems, i.e. the
error remains bounded.

The feedback composition R || C of two dynamical systems R and C is obtained
by feeding the output of R as the input to C and vice versa. Care must be taken,
however, when a concrete model of a system component C is replaced by an approx-
imately equivalent abstraction C ′ within a feedback loop. In a feedback loop, the
approximation error between C and C ′ may get get amplified. The ΣI component is
present in a feedback loop within the IMW model, as shown in Fig. 4.1. Thus, it is
important to ensure that the feedback loop does not amplify the error between ΣI

and ΣHI . Similarly, ΣK is in a feedback loop within the IMW model, and we must
ensure that the error between ΣK and ΣHK does not get amplified.
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Figure 4.1: Component-wise model-order reduction of IMW model using abstraction and
compositional reasoning. PEFT and RFI, see Section 3.3, present a curve fitting-based
technique to identify HH-type abstractions for the components of the IMW model. The
sodium-channel component ΣI is replaced by ΣHI within the feedback loop of the IMW
model. Similarly, ΣK is replaced by ΣHK .

In this chapter, we present a proof technique that enables us to show that the
feedback loop does not amplify the error when components are substituted by their
approximate model-order reduced versions within feedback loops.

4.2 Canonical Cell Models

We begin this section by introducing the voltage subsystem ΣC , which represents the
cell membrane. ΣC is feedback composed with the detailed ion-channel components
ΣI and ΣH , and their respective HH-type abstractions ΣHI and ΣHK to obtain four
Canonical Cell Models (CCMs). We then state our compositionality results in terms
of the CCMs.

Definition 4.2.1. The voltage subsystem ΣC is a capacitor-like model given by
(V ,V0,O, fC ,V , gC). State V ∈ V ⊆ R is the voltage. ΣC evolves as:

fC : V̇ = −G(V − Veq) O, (4.1)
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where G and Veq are the parameters of the model, and O ∈ O ⊆ R≥0, the conduc-
tance of the ion channel, is ΣC ’s input. The system outputs its state, i.e., for V ∈ V ,
gC(V ) = V , and the initial condition is denoted by V0.

As per Eq. (4.1), Veq represents the equilibrium for a fixed-conduc-tance input.
In the case of detailed cardiac cell models, such as the IMW model, ion-channel
subsystems such as ΣI and ΣK take voltage as input from the rest of the model and
provide the conductance of the channel as the output. The rest of the model takes
the channel conductance as input and outputs the voltage, which is then fed back
to the ion-channel subsystems.

Next, we define CCMs ΣCI , ΣCK , ΣCHI , and ΣCHK that reflect this feedback-
based composition. The models are canonical in the sense that other ion-channel
subsystems can be similarly added to obtain a complete cardiac-cell model.

Definition 4.2.2. Systems ΣCI , ΣCK , ΣCHI , and ΣCHK (see Fig. 4.2) are obtained
by performing feedback-composition on the voltage subsystem ΣC with ΣI , ΣK ,
ΣHI , and ΣHK respectively; i.e., ΣCI = ΣC ||ΣI , ΣCH = ΣC ||ΣH , ΣCHI = ΣC ||ΣHI ,
and ΣCHK = ΣC ||ΣHK . The state spaces, initial conditions, dynamics and outputs
are inherited from the subsystems, as explained below. The composed systems are
autonomous systems and do not receive any external inputs.

A state of ΣCI is given by [xI , VI ]
T , where xI is a state of ΣI and VI is a state

of ΣC . The subscript I in VI is used to denote the copy of ΣC composed with ΣI .
The system dynamics are given by Eqs. (2.3) and (4.1). The parameters for ΣC ’s
dynamics, which is given by Eq. (4.1), are G = 5, Veq = 30 mV , V0 = −30 mV .
The output is given by [gI(xI), VI ]

T . The initial condition is the pair of the initial
conditions of ΣI and ΣC .

A state of ΣCK is given by [xK , VK ]T , where xK is a state of ΣK and VK is
a state of ΣC . The subscript K in VK is used to denote the copy of ΣC composed
with ΣK . The system dynamics are given by Eqs. (2.5) and (4.1). The parameters
for ΣC ’s dynamics, which is given by Eq. (4.1), are G = 4.5, Veq = −30 mV ,
V0 = 30 mV . The output is given by [gK(xK), VK ]T . The initial condition is the
pair of the initial conditions of ΣK and ΣC .

A state of ΣCHI is given by [yI , VHI ]
T , where yI denotes a state of ΣHI and

VHI denotes a state of ΣC . The subscript HI in VHI is used to denote the copy of
ΣC composed with ΣHI . The system dynamics are given by Eq. (3.1), where the
rate functions are given by Eqs. (3.3) - (3.6), and Eq. (4.1). The parameters for
ΣC ’s dynamics are duplicated from ΣCI : G = 5, Veq = 30 mV , V0 = −30 mV . The
output is given by [gH(yI), VHI ]

T . Note that gH(yI) = y31y2. The initial condition
is the pair of the initial conditions of ΣHI and ΣC .

A state of ΣCHK is given by [yK , VHK ]T , where yK denotes a state of ΣHK and

26



VHK denotes a state of ΣC . The subscript HK in VHK is used to denote the copy
of ΣC composed with ΣHK . The system dynamics are given by Eq. (3.1), where the
rate functions are given by Eqs. (3.7) - (3.10), and Eq. (4.1). The parameters for
ΣC ’s dynamics are duplicated from ΣCK : G = 4.5, Veq = −30 mV , V0 = 30 mV .

The output is given by [gH(yK), VHI ]
T . Note that gH(yI) = y41y2. The initial

condition is the pair of the initial conditions of ΣHK and ΣC .

(a) ΣCI and ΣCHI .

(b) ΣCK and ΣCHK .

Figure 4.2: CCMs ΣCI , ΣCHI , ΣCK , and ΣCHK : ion-channel subsystems ΣI , ΣHI , ΣK ,
ΣHK are feedback-composed with ΣC , which represents the cell membrane. ΣCHI is
obtained by i) identifying the 2-variable abstraction ΣHI of ΣI using the curve-fitting
procedure given in Section 3.3, and ii) substituting ΣHI for the detailed model ΣI in the
composition ΣCI . Similarly, ΣCHK is obtained by i) identifying the 2-variable abstraction
ΣHK of ΣK using the curve-fitting procedure given in Section 3.3, and ii) substituting
ΣHK for the detailed model ΣK in the composition ΣCK .

The four CCMs are illustrated in Fig. 4.2 below. The two pairs of CCMs, i)
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ΣCI and ΣCHI and ii) ΣCK and ΣCHK are obtained by replacing the detailed ion
channel models, ΣI and ΣK , by the abstract models, ΣHI and ΣHK , respectively
within feedback loops. In the following sections, we present a proof technique based
on the theory of Bisimulation functions to prove the equivalence of the pairs of the
CCMs.

4.3 Bisimulation Functions

The concept of Input-to-Output Stability (IOS) is key to proving our composition-
ality results. IOS is formalized using contractive metrics, called Bisimulation Func-
tions [25], that characterize the joint IOS of two dynamical systems. The following
definition is adapted from [25] and uses ‖ . ‖ to denote the squared L2 norm.

Definition 4.3.1. Let Σi = (Xi,X 0
i ,U , fi,Y , gi), i = 1, 2, be two dynamical systems

such that Xi ⊆ Rni , U ⊆ Rm and Y ⊆ Rp. A Bisimulation Function (BF) is a smooth
function S : Rn1 × Rn2 → R≥0 such that for every x1 ∈ X1, x2 ∈ X2, u1,u2 ∈ U :

‖ g1(x1)− g2(x2) ‖≤ S(x1,x2), (4.2)

∀x1,x2,u1,u2,∃λ > 0, γ ≥ 0 :
∂S

∂x1

f1(x1,u1) +
∂S

∂x2

f2(x2,u2) (4.3)

≤ −λS(x1,x2) + γ ‖ u1 − u2 ‖

Next, we present a modified version of Theorem 1 of [25], which captures the
joint IOS of two systems.

Theorem 4.3.2. Let S be a BF with parameters λ and γ between dynamical
systems Σi, i = 1, 2, and let x1(t) and x2(t) be two trajectories of the systems. For
all t ≥ 0,

‖ g1(x1(t))− g2(x2(t)) ‖ ≤ S(x1(t),x2(t))

≤ e−λtS(x1(0),x2(0))+
γ

λ
‖ u1 − u2 ‖∞

where ‖ u1 − u2 ‖∞= supt≥0 ‖ u1(t) − u2(t) ‖ denotes the maximum difference in
the input signals being fed to the two systems.

Proof. See Appendix B for a proof.
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When subsystems are connected using feedback, their respective BFs can be
composed subject to a small-gain condition. We formalize this idea by stating a
result based on Theorem 2 of [25].

Theorem 4.3.3. Let Σi = (Xi,X 0
i ,Ui, fi,Oi, gi), i = 1, 2, A,B, be dynamical sys-

tems such that U1 = OA, UA = O1, U2 = OB and UB = O2. Let S12, parameterized
by λ12 and γ12, be a BF between Σ1 and Σ2. Let SAB, parameterized by λAB and
γAB, be a BF between ΣA and ΣB.

Let ΣA1 = ΣA||Σ1 and ΣB2 = ΣB||Σ2. If the small-gain condition (SGC)
γABγ12
λABλ12

< 1 is met, then a BF S can be constructed between ΣA1 and ΣB2 by com-
posing SAB and S12 as follows:

S(xA1,xB2) = α1SAB(xA,xB) + α2S12(x1,x2) (4.4)

where xA1 = [xA,x1]
T and xB2 = [xB,x2]

T and the constants α1 and α2 are given by:
γ12
λAB

< α1 <
λ12
γAB

and α2 = 1 if λAB ≤ γ12

α1 = 1 and γAB

λ12
< α2 <

λAB

γ12
if λ12 ≤ γAB

α1 = 1 and α2 = 1 in other cases

(4.5)

Proof. See Appendix B for a proof.

4.4 Compositional Approach

BFs characterize IOS between dynamical systems and thus establish equivalence
between them. We use BFs to establish the following compositionality results.

Compositionality Result 1 : There exists a BF S1 between ΣCI and ΣCHI that ren-
ders the two CCMs to be approximately equivalent in the sense characterized by
Theorem 4.3.2.

Compositionality Result 2 : There exists a BF S2 between ΣCK and ΣCHK that
renders the two CCMs to be approximately equivalent in the sense characterized by
Theorem 4.3.2.

S1 is computed compositionally as follows. First, the components ΣI and ΣHI

are proved to be approximately equivalent by computing a BF SIH between the
two systems. Then, the context ΣC is proved to be robust to input deviations by
computing a BF SC for it. The computation procedure ensures that the prerequi-
site SGC condition is satisfied by SIH and SC , thereby enabling the application of
Theorem 4.3.3; this results in a BF S1 between ΣCI and ΣCHI .
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S2 is computed compositionally as follows. First, the components ΣK and
ΣHK are proved to be approximately equivalent by computing a BF SKH between
the two systems. SC , as explained above, characterizes the robustness of ΣC to
input deviations. The computation procedure again ensures that the prerequisite
SGC condition is satisfied by SKH and SC , thereby enabling the application of
Theorem 4.3.3; this results in a BF S2 between ΣCK and ΣCHK .

We describe the computation procedure for SIH , SC , and S1 in the next section.
An alternative procedure, see Section 4.7, is used to compute SKH , SC and S2.

4.5 BF Computation Using Sum-of-Squares Op-

timization and Input-Space Sampling

In this section, we present the Sum-of-Squares (SOS) optimization-based algorithm
from [35] for computing BFs, and comment on its input-space sampling approach.

A multivariate polynomial p(x1, x2, . . . , xn) = p(x) is an SOS polynomial if
there exist polynomials f1(x), . . . , fm(x) such that p(x) =

∑m
i=1 f

2
i (x). For example,

p(x, y) = x2 − 6xy + 12y2 is an SoS polynomial; it can be expressed as (x− 3y)2 +
(
√

3y)2. We denote the set of all SoS polynomials by S.

An SoS optimization Problem (SoSP), involves finding an S ∈ S such that
a linear objective function, whose decision variables are the coefficients of S, is
optimized. The constraints of the problem are linear in the decision variables. A
formal definition of an SoSP can be found in the MATLAB SOSTOOLS user guide
([65], p. 7).

Figure 4.3: U : a grid formed by uniformly sampling the input space. A solution of
Eqs. (4.6)- (4.8) satisfies Eq. (4.3) only on the blue points denoting the samples on the
grid.

Consider two dynamical systems (Xi, {x0
i }, [umin, umax], fi, O, gi), i = 1, 2.

Firstly, note that the two dynamical systems have singleton initial conditions {x0
i }, i =
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1, 2. Also, both the systems accept scalar inputs u1 and u2 respectively. Let U repre-
sent a discretized grid for u1 and u2 as shown in Fig. 4.3. The input space [umin, umax]
is divided into a finite number of uniformly spaced intervals, and (ui1, u

j
2) denotes

the pair of inputs where u1 takes the ith value and u2 takes the jth value.

In [35], we presented the following SoSP for computing BFs using SoS opti-
mization.

SOSP 1:

Minimize S(x0
1,x

0
2) (4.6)

subject to:

− S(x1,x2) + [g1(x1)− g2(x2)]
2 ∈ S, (4.7)

∃λ > 0, γ ≥ 0 such that ∀ui1, u
j
2 ∈ U : (4.8)

− ∂S

∂x1

f1(x1, u
i
1)−

∂S

∂x2

f2(x2, u
j
2)− λS(x1,x2) + γ(ui1 − u

j
2)

2 ∈ S.

The BF S starts at its maximum value at the pair of initial conditions (x0
1,x

0
2), and

then decays along various trajectories of the two systems. Thus, along any pair of
trajectories, the gap between S(x1(t),x2(t)) and the output difference ||g1(x1(t))−
g2(x2(t))|| is maximum at t = 0, i.e. at the initial states. To improve the bound
on the output difference given by S, we minimized S(x1(0),x2(0)) as the objective
function of the SoSP.

Note that Eq. (4.8) represents a family of constraints. In the implementation,
the equation contributes one constraint for each pair (ui1, u

j
2) ∈ U .

4.5.1 Computing SIH, SC, and S1 in SOSTOOLS

Next, we show how to compute the BFs SIH and SC by implementing SOSP 1 in
MATLAB SOSTOOLS. SIH is a BF between ΣI and ΣHI , with parameters λIH and
γIH , while SC is a BF between ΣC and itself, with parameters λC and γC . Values for
these parameters must be determined such that the SGC condition of Theorem 4.3.3
is satisfied.

I. Rewriting the system definitions
The rate matrix AI(VI) of ΣI has a zero eigenvalue for all VI ∈ [−30, 30], the values
the input can take when ΣI is composed with ΣC . The system dynamics can be
rewritten to make the new rate matrix Hurwitz, which is a necessary and sufficient
condition for exponential stability. As the system is a voltage-controlled CTMC,
one of the variables is always redundant; i.e., the occupancy probability of one state
can be expressed as 1 - (sum of all other occupancy probabilities).
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Using this fact, we removed the redundant state occupancy probability cor-
responding to state I of ΣI , see Fig. 2.3. The resulting dynamics are affine: ẋ′I =
A′I(VI).x

′
I +BI(VI), where the state vector x′I now contains the first 12 probabilities

from xI . The 12× 12 matrix A′I and the 12× 1 affine term BI can be found in [33].
For a fixed voltage input VI = v, the equilibrium of the resulting linear system was
shifted to the origin by solving A′I(v).x′I = −BI .

ΣHI has an output function of degree 4, which would require SIH to be an 8th-
order polynomial. Higher-order polynomials lead to possibly intractable instances
of SoS optimization in SOSTOOLS. To resolve this issue, the 2-state system was
converted to an equivalent 8-state stochastic model that has a linear output function.
In [47], ΣHI is shown to be the exact invariant manifold of the 8-state voltage-
controlled CTMC shown in Fig. 4.4. SIH is then defined as a quadratic function
over 19 (12 + 7) variables, which ensures that the corresponding SOS problem can
be solved despite the increase in the number of undetermined coefficients.

Figure 4.4: Sodium channel models: ΣI , ΣHI , and its 8-variable stochastic version.

The output of ΣHI , m
3h, represents the probability that three activation (m-

type) gates and one inactivation (h-type) gate are open. As they are all independent,
we obtain the net probability of the event as m3h. This event corresponds to the
occupancy probability of the state labeled O in voltage-controlled CTMC of Fig. 4.4,
which is the output of this 8-state model. Similarly, the occupancy probability of
each of the other 7 states corresponds to a certain number of m-type (maximum
3) and the h-type (maximum 1) gates being open. For example, the state labeled
C1 corresponds to one m-type gate and the h-type gate being open, resulting in a
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net probability of mh. Similarly, the state labeled C1I corresponds to one m-type
gate being open and the h-type gate being closed, resulting in a net probability
of m(1 − h). Also see the discussion titled “Adapting the Abstraction Process to
Arbitrary Observable Functions of ΣI and ΣK” in Section 3.3.

The 8-state stochastic version has dynamics of the form ẏI = AH(VHI), where
y ∈ R8 is the vector representing the occupancy probability distribution among the
eight states in the order [C0, C1, C2, O,
C0I, C1I, C2I, C3I]. AH(VHI) is an 8×8 matrix similar toAI(VHI) in Definition 2.1.1.
The linear system was converted to its affine form to remove the zero eigenvalue, as
was done for ΣI : ẏ′I = A′H(VHI).y

′
I +B′H(VHI), by eliminating the state labeled C3I.

The new state vector y′I denotes the occupancy probabilities of the first 7 states
from yI . The 7× 7 rate matrix A′H and the 7× 1 affine term BH can be found [33].
The output of this system is y4, corresponding to the occupancy probability of the
state labeled O.

For a fixed voltage input VHI = v, the equilibrium of the resulting linear system
was shifted to the origin by solving A′H(v).y′I = −B′H . Similarly, the equilibrium of
ΣC , for a fixed conductance input, was shifted to the origin using an offset of Veq.

II. SoS Optimization
We constructed two SoSPs: PIH and PC , to compute SIH(x′I ,y

′
I) and SC(VI , VHI),

respectively. The two problems were then solved using SOSTOOLS. Next, we ex-
plain the construction of PIH and PC .

III. Choosing the form of the SoS BFs
Defining an instance of SoS optimization begins with declaring the form of the de-
sired polynomial. We chose ellipsoidal forms for the BFs using the sossosvar func-
tion provided by SOSTOOLS: SIH(x′I ,y

′
I) = [x′I ,y

′
I ].QIH .[x

′
I ,y

′
I ]
T and SC(VI , VHI) =

[VI , VHI ].QC .[VI , VHI ]
T . Variables x′I ,y

′
I , VI , and VHI are declared using the pvar

polynomial variable toolbox. The coefficients of the BFs, which form the decision
variables of the SoS optimization problems, are contained in the positive semidefinite
matrices QIH (19× 19) and QC (2× 2).

Eq. (4.2), the first constraint defining a BF, was implemented as:

PIH : SIH − ((x′I6 + x′I7)− (y′I4))
2 ∈ S, and

PC : SC − (VI − VHI)2 ∈ S.

IV. Input-space quantization
We sampled pairs of inputs to the two subsystems: ΣI and ΣHI for PIH , and the
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two copies of ΣC for PC . Eq. (4.3) was thus implemented as follows:

PIH : −
[
∂SIH
∂x′I

(A′I(vi).x
′
I) +

∂SIH
∂y′I

(A′H(vj).y
′
I)

]
− λIHSIH(x′I ,y

′
I) + γIH |vi − vj| ∈ S, (4.9)

PC : −
[
∂SC
∂VI

(−G oi VI) +
∂SC
∂VHI

(−G oj VHI)

]
− λCSC(VI , VHI) + γC |oi − oj| ∈ S. (4.10)

For PIH , the input pairs are (vi, vj) ∈ V × V , where V = {−60, −30, 0, 20, 30}. For
PC , the input pairs are (oi, oj) ∈ O×O, whereO = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1}. We use the dynamics of the system, with the origin shifted to the equilibrium
corresponding to the input pair (vi, vj). Hence, there are no affine terms in the
multipliers of ∂SIH/∂x′, ∂SIH/∂y′, ∂SC/∂VI and ∂SC/∂VHI terms. Note that each
input pair contributes one constraint to the corresponding problem. Thus, Eq. (4.3)
was implemented as 25 constraints in PIH and 100 constraints in PC .

The use of input-space sampling in computing BFs can be justified as follows.
As per Theorem 4.3.2, BF SIH bounds the difference in the outputs of ΣI and
ΣHI when the maximum difference in the voltage (input) signals is ‖ VI − VHI ‖∞.
Voltage signals VI(t) and VHI(t) can be approximated by quantizing them using the
set V . At any point in time, the voltage signals would be rounded off to the nearest
member of V . The error in the outputs due to the quantization error in the inputs
can be bound using sensitivity analysis. Then, the bound on the output difference
given by SIH would have to take into account the output error resulting from the
quantization.

A similar analysis can be performed for SC , where the conductance signals
would now be quantized using O. Providing revised bounds that reflect input-space
quantization is part of our future work.

V. Handling the parameters
Eqs. (4.9) and (4.10) were implemented in SOSTOOLS with fixed values for param-
eters λIH , γIH of PIH , and λC , γC of PC . The parameter values we used are given in
Table 4.1. We were unable to make λIH and λC decision variables of PIH and PC ,

Problem BF λ γ
PIH SIH λIH = 0.1 γIH = 0.001
PC SC λC = 0.01 γC = 0.0001

Table 4.1: SOSP1: parameter values used for the BFs.
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respectively, as Eqs. (4.9) and (4.10) would have become nonlinear in the decision
variables. Parameters γIH and γC , however, could have been declared as decision
variables of PIH and PC , respectively. We tried this approach and also defined an
objective function to minimize the amplification factor γ/λ of Theorem 4.3.2. The
resulting BF was inferior to our current approach of defining the objective function
(see below), and thus the parameters were fixed to the values provided in Table 4.1.

VI. Optimizing the BFs
Theorem 4.3.2 implies that ∀t ≥ 0, the value of the BF bounds the difference in
outputs observed from the two systems. Ideally, we want this bound to be as tight
as possible. Also, the value of the BF at t = 0 is the highest value that it can assume
along a pair of the trajectories (as it decays ∀t > 0).

To obtain a BF that provides tight bounds on the output difference, we im-
plemented an objective function that minimizes the BF at the initial states of the
two subsystems:

PIH : Minimize SIH(x′I(0),y′I(0)) and

PC : Minimize SC(−30,−30),

where x′I(0) and y′I(0) represent the initial conditions of ΣI as per Definition 2.1.1
and as per Section 3.3 for ΣHI .

PIH and PC were solved in SOSTOOLS. In the process, SOSTOOLS outputs
feasratio, pinf, dinf and numerr, which reflect the accuracy and reliability of the
solutions. Both PIH and PC were solved by error-free executions with feasratio =
1 and pinf, dinf, numerr = 0, resulting in reliable and accurate BFs. SOSTOOLS
took 956.17 seconds to solve PIH and 2.43 seconds to solve PC on an Intel i5 2.5
GHz CPU-based PC with 6 GB of memory.

The computed value of SIH , as defined by the 19 × 19 matrix QIH , can be
found in the supplementary document [33]. SC , the BF between ΣC and itself, was
computed as:

SC(VI , VHI) = 1.27V 2
I − 1.4599VI .VHI + 1.27V 2

HI .

VII. Composing SIH and SC
The parameters of SIH and SC , given in Table 4.1, satisfy the SGC condition of The-
orem 4.3.3, as γIHγC

λIHλC
= 0.0001 < 1. Applying Theorem 4.3.3, we linearly composed

SIH and SC to obtain S1 = α1SIH + α2SC , where α1, α2 = 1. S1 is a BF between
the composite systems ΣCI and ΣCHI . As per Theorem 2 of [25], the parameter λ
of S1 can be calculated as

λ = min

(
α1λIH − α2γC

α1

,
α2λC − α1γIH

α2

)
= 0.009.
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4.6 Visualizing BFs SIH, SC, and S1

In this section, we experimentally validate BFs SIH , SC and S1, which were obtained
as described in the previous section. As per Theorem 4.3.2, BFs decay along a pair
of trajectories of the two systems under consideration. To this end, we simulated ΣI

and ΣHI (for SIH), ΣC (for SC), and ΣCI and ΣCHI (for S1) using different inputs
and initial conditions, and evaluated the BFs along the resulting trajectories.

Empirical validation of the BFs is first provided by plotting them in 2D along
the time axis. As the time proceeds in the same manner in both systems, the
corresponding BF is plotted for the pair of states occurring at the same time along
the trajectories of the systems. The squared difference in outputs observed for the
pair of states is also plotted in the same graph. The resulting plots show that the
BFs bound the (squared) Output Difference (OD) and decay in time along the pairs
of trajectories, as per Theorem 4.3.2.

We also provide 3D plots, where the x- and y-axes measure time, and the BF
along with the OD are plotted on the z-axis. This form of plotting allows us to
visualize the fact that the BF upper bounds the difference in the outputs for all
possible pairs of states. These plots also show that the BF decays along pairs of
trajectories, even when there is a delay between the systems (off-diagonal states).

Fig. 4.5 shows SIH plotted along three pairs of trajectories of ΣI and ΣHI . Each
pair was generated by supplying a pair of constant voltage signals (VI(t), VHI(t)) as
inputs to ΣI and ΣH , respectively. The two subsystems were initialized as per
Defs. 2.1.1 and 3.2.1, and simulated using MATLAB’s ODE45 solver [57]. SIH was
then evaluated along the resulting pair of trajectories after shifting the origin to the
equilibrium defined by (VI(t), VHI(t)).

Fig. 4.5(a) plots, in blue, the OD along two trajectories that receive the same
input of -30 mV. SIH is plotted in red and exhibits the decaying behavior predicted
by Theorem 4.3.2. Fig. 4.5(b) plots the OD along two trajectories with the maximum
possible difference in inputs: VI(t) = −30 mV and VHI(t) = 30 mV . This results
in a relatively large OD observed for the two subsystems. SIH is shown to upper
bound this difference and decay along the pair of trajectories. Fig. 4.5(c) inverts
the inputs with VI(t) = 30 mV and VHI(t) = −30 mV .

SC characterizes the ability of ΣC to tolerate small changes in the input con-
ductance signals. In the composite systems ΣCI and ΣCHI , these signals are provided
by subsystems ΣI and ΣHI , and thus vary slightly due to the fitting errors incurred
by the abstraction process of Section 3.3.

As in Fig. 4.5, SC is plotted in Fig. 4.6 along three pairs of trajectories of ΣC .
Each pair of trajectories was generated by supplying constant conductance (input)
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(a) VI(t) = VHI(t) =
−30 mV .
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(b) VI(t) = −30 mV ,
VHI(t) = 30 mV .
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(c) VI(t) = 30 mV , VHI(t) =
−30 mV .

Figure 4.5: BF SIH and the OD plotted along three pairs of trajectories of ΣI and ΣHI

generated using constant voltage (input) signals. SIH upper bounds the OD and decays
along the trajectories.

signals (OI(t), OHI(t)). ΣC was initialized at −30 mV and simulated using the
Euler method. SC was evaluated along the resulting trajectories after shifting the
origin to the equilibrium, 30 mV (Veq). Fig. 4.6(a) shows the case when both OI(t)
and OHI(t) were 0.01, resulting in equal voltage traces with an OD of 0. We have
not scaled the systems nor the BFs; thus the scale of Fig. 4.6 is very different from
that of Fig. 4.5. We can see that even when the input conductances vary by a factor
of 8, in Fig. 4.6(c), SC bounds the OD and decays along the trajectories.
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(a) OI(t) = 0.01, OHI(t) =
0.01.
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(b) OI(t) = 0.04, OHI(t) =
0.01.
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(c) OI(t) = 0.08, OHI(t) =
0.01.

Figure 4.6: BF SC and the OD plotted along three pairs of trajectories of ΣC generated
using constant conductance (input) signals. SC bounds OD even when input signals vary
by a factor of 8 (subfig. c).

CCMs ΣCI and ΣCHI are autonomous dynamical systems and do not receive
any external inputs. To visualize the composite BF S1, we simulated ΣCI and ΣCHI

using the Euler method. Fig. 4.8 plots the trajectories obtained from these simula-
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tions. The corresponding conductance traces of Fig. 4.8(a) and the voltage traces of
Fig. 4.8(b) empirically validate that the composed models are approximately equiv-
alent as predicted by Theorem 4.3.3. BF S1 along this pair of trajectories is plotted
in Fig. 4.7(a). The value of S1 is dominated by the value of SC , as it bounds the
squared difference of voltages and is much larger than SIH , which bounds differences
in probabilities. This is reasonable as voltage is the primary entity of interest when
analyzing excitable cells. One could scale subsystem ΣC such that its output lies in
[0, 1] and is thus comparable to the outputs of ΣI and ΣHI .

To test extreme cases, we simulated ΣCI and ΣCHI by initializing ΣC at dif-
ferent values. Fig. 4.7(b) shows the OD plotted along pairs of trajectories, where
ΣC in ΣCI starts at VI(0) = −30 mV and in ΣCHI at VHI(0) = 30 mV . Fig. 4.7(c)
plots the other extreme, where the copy of ΣC in ΣCI starts at 30 mV and the copy
in ΣCHI is initialized to −30 mV . S1 bounds the OD in all these cases and decays
along the trajectories.
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(a) VI(0) = −30 mV ,
VHI(0) = −30 mV .
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(b) VI(0) = −30 mV ,
VHI(0) = 30 mV .
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(c) VI(0) = 30 mV VHI(0) =
−30 mV .

Figure 4.7: S1 and OD along pairs of trajectories of ΣCI and ΣCHI . Subfig. (a) plots OD
and S1 along trajectories shown in Fig. 4.8. Subfigs. (b) and (c) plot OD and S1 along
trajectories where ΣC is initialized at different voltages. Value of OD is dominated by
difference of outputs of the two copies of ΣC , which is in mV. Similarly, value of S1 is
dominated by SC , which bounds differences in voltages as opposed to SIH , which bounds
differences in probabilities.

Fig. 4.9 provides 3D views of SIH , SC , and S1. Fig. 4.9(a) was generated as
follows. ΣI an ΣHI were simulated using constant voltage input signals of VI(t) =
−30 mV and VHI(t) = 30 mV. The two models were simulated using ODE45, starting
from the nominal initial conditions specified in Defs. 2.1.1 and 3.2.1 until steady
state was reached. Let T denote the time steps [t1, t2, ..., tn] of the two discrete-
time simulations, and OI(t) and OHI(t) denote the resulting conductance (output)
time series, with their origins shifted to the respective equilibria. Fig. 4.9(a) plots
in red the squared output difference (OI(ti) − OHI(tj))

2 for all (ti, tj) ∈ T × T .
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(a) OI(t) and OHI(t) of ΣCI and
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(b) VI(t) and VHI(t) of ΣCI and
ΣCHI respectively.

Figure 4.8: Simulations of ΣCI and ΣCHI : when ΣI is replaced by ΣHI , feedback com-
position tends to accumulate the error incurred due to the abstract component. S1 proves
that these errors remain bounded due to the approximate equivalence of ΣI and ΣHI ,
established by BF SIH , and the ability of ΣC to tolerate deviations in the conductance
inputs, established by BF SC . The mean L1 errors: ONa : 9× 10−3, V : 1.42 mV .

SIH is plotted at the pair of states (x′I(ti),y
′
I(tj)) obtained in the simulation for all

(ti, tj) ∈ T × T , where x′I and y′I denote the origin-shifted versions of xI and yI ,
respectively. The 3D view of SIH shows that the BF provides an upper bound for
the OD at all pairs of states of the two systems. It also shows that SIH decays along
the trajectories even when the two systems have a delay between them.

Fig. 4.9(b) was obtained by simulating ΣC with two constant conductance
signals of 0.1 and 0.01. The resulting voltage output signals differ significantly due
to a 10-fold difference in the input signals. Fig. 4.9(c), on the other hand, was
obtained by simulating ΣCI and ΣCHI using different initial conditions. In both the
cases, the respective BFs SC and S1 bound the output difference and decay along
the trajectories (even when the two systems have a delay between them).

Eq. (4.8) of SOSP1 enforces Eq. (4.3) on a sampled subset of the entire input
space. In the next section, we address this restriction, and present a revised BF
computation procedure that enforces Eq. (4.3) on the entire input space, as opposed
to the input-quantization-based approach of SOSP 1.

4.7 BF Computation: Version 2.0

In this section, we describe a revised computation procedure for BFs. In the previous
section, we presented an algorithm, based on [35], for computing BFs using SoS
optimization, which used input-space quantization. In this section, we modify the
SoSP formulation of [35] to exhaustively cover the input-space. Then, we show that
the solutions of our SoSP are indeed BFs.
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(a) VI(t) = −30 mV, VHI =
30 mV.

(b) OI(t) = 0.1, OHI = 0.01. (c) VI(0) = −30 mV,
VHI(0) = 30 mV.

Figure 4.9: 3D visualization of BFs (in blue): SIH in subfig. (a), SC in subfig. (b) and S1
in subfig. (c) are plotted for pairs of states obtained at time points (ti, tj) ∈ T × T , where
T = [t1, t2, ...] are the time steps of discrete-time simulations of the corresponding pairs of
systems. The BFs upper bound the OD, plotted in red for all pairs of states, and decay
along the trajectories even when there is delay between the two systems. The captions of
subfigs. (a)-(b) specify the input signals used for simulation and the caption of subfig. (c)
provides the initial conditions used for ΣC while simulating ΣCI and ΣCHI .

We assume that the input spaces are described using sets, such as U = {u ∈
R : ρ(u) ≥ 0}, where ρ(u) is called a descriptor function. For example, ρ(u) =
(u− umin)(umax − u) describes the input-space U = [umin, umax].

Definition 4.7.1. Consider two dynamical systems Σi = (Xi,
x0
i , [umin, umax], fi,O, gi), i = 1, 2. The SoSP formulation for a BF, S ∈ S, between

the systems is given by:

SOSP 2:

Minimize S(x0
1,x

0
2) (4.11)

subject to:

− S(x1,x2) + [g1(x1)− g2(x2)]
2 ∈ S, (4.12)

∀u1 ∈ [umin, umax], u2 ∈ [umin, umax],∃λ > 0, γ ≥ 0, σ1(x1, u1) ∈ S,
σ2(x2, u2) ∈ S such that : (4.13)

− ∂S

∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− λS(x1,x2) + γ(u1 − u2)2

− σ1(x1, u1)ρ(u1)− σ2(x2, u2)ρ(u2) ∈ S.

Next, we show that the feasible solutions of the SoSP in Definition 4.7.1 are
indeed BFs for the two systems.
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Proposition 4.7.2. Consider a feasible solution, (S, σ1, σ2, λ, γ), of the SoSP in
Definition 4.7.1. S satisfies Eqs. (4.2) and (4.3), and thus is a BF between Σ1 and
Σ2.

Proof. A feasible solution (S, σ1, σ2, λ, γ) satisfies Eq. (4.12), i.e.

∀x1,x2 : −S(x1,x2) + [g1(x1)− g2(x2)]
2 ∈ S.

As an SoS polynomial is always non-negative, we get

−S(x1,x2) + [g1(x1)− g2(x2)]
2 ≥ 0,

which implies
[g1(x1)− g2(x2)]

2 ≤ −S(x1,x2),

i.e. S satisfies Eq. (4.2).

The feasibility of (S, σ1, σ2, λ, γ) implies that Eq. (4.13) is satisfied, i.e.

− ∂S

∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− λS(x1,x2) + γ(u1 − u2)2 . . .

− σ1(x1, u1)ρ(u1)− σ2(x2, u2)ρ(u2) ∈ S.

Non-negativity of SoS polynomials results in

− ∂S

∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− λS(x1,x2) + γ(u1 − u2)2 . . .

− σ1(x1, u1)ρ(u1)− σ2(x2, u2)ρ(u2) ≥ 0,

which implies

− ∂S
∂x1

f1(x1, u1)−
∂S

∂x2

f2(x2, u2)− σ1(x1, u1)ρ(u1)− σ2(x2, u2)ρ(u2)

≥ λS(x1,x2)− γ(u1 − u2)2.

Multiplying both sides by -1 and then reversing the inequality, we get

∂S

∂x1

f1(x1, u1) +
∂S

∂x2

f2(x2, u2) + σ1(x1, u1)ρ(u1) + σ2(x2, u2)ρ(u2)

≤ −λS(x1,x2) + γ(u1 − u2)2.

As σ1(x1, u1)ρ(u1) + σ2(x2, u2)ρ(u2) is always non-negative, we can eliminate it and
still retain the inequality to get

∂S

∂x1

f1(x1, u1) +
∂S

∂x2

f2(x2, u2) ≤ −λS(x1,x2) + γ(u1 − u2)2.
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4.7.1 Polynomialization of Ion-Channel Rate Matrices

In this section, we focus on implementing the SoSP of Defn. 4.7.1 in automated
solvers such as MATLAB SOSTOOLS [65]. Specifically, we focus on the restriction
that only polynomial vector fields, denoted by fi(xi, ui), i = 1, 2 in Eq. (4.13), can
be specified in SOSTOOLS. In other words, fi must be a polynomial function of xi
and ui. In the case of cardiac-cell models, the ion-channel subsystems do not satisfy
this requirement. Their dynamics usually take the form ẋ = A(V ).x, where x is the
occupancy-probability vector, V denotes the input membrane potential and A is a
rate matrix, whose entries are exponential functions of V . Thus, the dynamics do
not have a polynomial form. We present a workaround for our ion channel models.

We transformed the rate matrix AK(V ) to an approximately equivalent matrix
Ap(V ) by fitting the entries of AK with polynomial functions, see Fig. 4.10.

Figure 4.10: Polynomialization of vector fields of ion-channel models. Each of the rate-
functions of A are fit with polynomial functions of varying degrees.

We used MATLAB’s curve-fitting tool cftool [58] to obtain the polynomial fits
of the functions. The original rate functions and their polynomial approximations
for ΣK are shown in Table 4.2.

Rate Original function Polynomial Approximation
αa(V ) 0.5437e0.029V (1.654 × 10−8)V 4 + (2.301 × 10−6)V 3 +

0.0002282 V 2 + 0.01574 V + 0.5437
βa(V ) 0.0802e−0.0468V (1.759×10−8)V 4−(1.532×10−6)V 3+(8.752×

10−5)V 2 − 0.003725V + 0.0802
αi(V ) 0.0498e−0.0004V (−1.859× 10−5)V + 0.04984

βi(V ) 0.0008e(5.374×10
−8V ) (4.404× 10−11)V + 0.0008195

Table 4.2: Transfer rates of ΣK , which is illustrated in Fig. 2.4, and defined in Def. 2.1.2.
The polynomial approximations were obtained by fitting the the original exponential func-
tions, which are given in Table 2.2, by polynomials for V ∈ [−30, 30].

The rate functions αm(V ), βm(V ), αh(V ), and βh(V ), which were identified
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using PEFT and RFI in Section 3.3, see Eqs. (3.7) - (3.10), were also fit using poly-
nomial functions. Table 4.3 contains the polynomial versions of the rate functions.

Rate Polynomial Approximation
αm(V ) (2.195× 10−6)V 3 + (0.0002444)V 2 + (0.01572)V + 0.5385
βm(V ) (−1.884× 10−6)V 3 + (0.0001333)V 2 − 0.004262V + 0.04788
αh(V ) 1.022× 10−10V 4 − (6.407× 10−9)V 3 + (1.678× 10−7)V 2 − (2.938×

10−6)V + 0.0001217
βh(V ) (2.849 × 10−8)V 4 + (3.179 × 10−7)V 3 − (6.913 × 10−5)V.2 +

(0.001316)V + 0.1115

Table 4.3: Transfer rates of ΣHK and its 10-variable stochastic version, which is illus-
trated in Fig. 4.11. The polynomial approximations were obtained by fitting the the
original exponential functions, which were identified in Section 3.3, by polynomials for
V ∈ [−30, 30].

Based on the polynomialized versions of ΣK and ΣKH , we proceed to comput-
ing SKH , SC , and S2 using SOSP 2.

4.7.2 Computing SKH, SC, and S2 in SOSTOOLS

Next, we show how to compute the BFs SKH , SC , and S2 by implementing SOSP
2 in MATLAB SOSTOOLS. SKH is a BF between ΣK and ΣHK , with parameters
λKH and γKH , while SC is a BF between ΣC and itself, with parameters λC and
γC . Values for these parameters must be determined such that the SGC condition
of Theorem 4.3.3 is satisfied. Then, we can linearly compose SKH and SC to obtain
S2, a BF between the composed systems ΣCK and ΣCKH .

I. Rewriting the system definitions
The first step is to rewrite the system definitions, as was done for computing SIH
and SC . The rate matrix AK(VK) of ΣK has a zero eigenvalue for all VK ∈ [−30, 30],
the values the input can take when ΣK is composed with ΣC . The system dynamics
can be rewritten to make the new rate matrix Hurwitz, which is a necessary and
sufficient condition for exponential stability. As the system is a voltage-controlled
CTMC, one of the variables is always redundant; i.e., the occupancy probability of
one state can be expressed as 1 - (sum of all other occupancy probabilities).

Using this fact, we removed the redundant state occupancy probability cor-
responding to state OI of ΣK , see Fig. 2.4. The resulting dynamics are affine:
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Figure 4.11: Potassium channel models: ΣK , ΣHK , and its 10-variable stochastic version.

ẋ′K = A′K(VK).x′K + BK(VK), where the state vector x′K now contains the first 9
probabilities from xK . The 9 × 9 matrix A′K and the 9 × 1 affine term BK can be
found in [33]. For a fixed voltage input VI = v, the equilibrium of the resulting
linear system was shifted to the origin by solving A′I(v).x′I = −BI .

ΣHK has an output function of degree 5, which would require SIH to be an
10th-order polynomial. Higher-order polynomials lead to possibly intractable in-
stances of SoS optimization in SOSTOOLS. To resolve this issue, the 2-state system
was converted to an equivalent 10-state stochastic model that has a linear output
function. In [47], ΣHK is shown to be the exact invariant manifold of the 10-state
voltage-controlled CTMC shown in Fig. 4.11. Then, the redundant variable corre-
sponding to the state OI was removed as was done for ΣK . SKH is then defined as a
quadratic function over 18 (9 + 9) variables, which ensures that the corresponding
SOS problem can be solved despite the increase in the number of undetermined
coefficients.

Similarly, the equilibrium of ΣC , for a fixed conductance input, was shifted to
the origin using an offset of Veq.

II. SoS Formulation
We constructed two SoSPs: PKH and PC , to compute SKH(x′K ,y

′
K) and SC(VK , VHK),

respectively. The two problems were then solved using SOSTOOLS. Next, we ex-
plain the construction of PKH and PC .
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III. Choosing the form of the SoS BFs
We chose ellipsoidal forms for the BFs using the sossosvar function provided by
SOSTOOLS: SKH(x′K ,y

′
K) = [x′K ,y

′
K ].QKH .[x

′
K ,y

′
K ]T and SC(VK , VHK)

= [VK , VHK ].QC .[VK , VHK ]T . Variables x′K ,y
′
K , VK , and VHK are declared using the

pvar polynomial variable toolbox. The coefficients of the BFs, which form the de-
cision variables of the SOS optimization problems, are contained in the positive
semidefinite matrices QKH (18× 18) and QC (2× 2).

Eq. (4.2), the first constraint defining a BF, was implemented as:

PKH : SKH − (x′K5 − y′K5)
2 ∈ S, and

PC : SC − (VK − VHK)2 ∈ S.

IV. Implementing SOSP 2
In addition to the BF S and the parameters λ and γ, SOSP 2 also has two other
unknowns: σ1(x1,u1) and σ2(x2,u2). In Eq. (4.13), these functions strengthen the
decay condition of Eq. (4.3). In our SOSP problems, PKH and PC , we declare
the ellipsoidal functions σKH1 (x′K , VK), σKH2 (y′K , VKH), for PKH , and σC1 (VK , OK),
σK2 (VKH , OKH), for PC .

Eq. (4.13) is implemented in PKH as

− ∂SKH
∂x′K

A′K(VK)x′K −
∂SKH
∂y′K

A′KH(VKH)y′K − λKHSKH(x′K ,y
′
K)+

γKH(VK − VKH)2 − σKH1 (x′K , VK)ρV (VK)− σKH2 (y′K , VKH)ρV (VKH) ∈ S,

where ρV (v) = (30 − v)(v + 30), which is always positive when v ∈ [−30, 30].
Eq. (4.13) is implemented in PC as

− ∂SC
∂VK

(−G VK OK)− ∂SC
∂VKH

(−G VKH OKH)− λCSC(VK , VKH)+

γC(OK −OKH)2 − σC1 (VK , OK)ρO(OK)− σC2 (VKH , OKH)ρO(OKH) ∈ S,

where ρO(o) = (1−o)(o), which is always positive when the conductance o ∈ [omin, 1].
The lower bound omin = 10−4, as making it 0 leads to infeasibility in SOSTOOLS.

Another important implementation aspect is the use of the sparse option.
SOSTOOLS offers the option of using a sparse representation of the inequality con-
straints. This option constructs a memory-efficient representation of the constraints
using the default convhull function. PKH becomes infeasible when convhull is used,
due to the large 18 × 18 symbolic matrix QKH . To resolve this, we used the CDD
convex hull package, as suggested Section 3.4.3 of the user guide [65].
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V. Handling the parameters
The parameter values we used are given in Table 4.4.

Problem BF λ γ
PKH SKH λKH = 0.01 γKH = 0.001
PC SC λC = 0.00001 γC = 0.00001

Table 4.4: SOSP2: parameter values used for the BFs.

VI. Optimizing the BFs
To obtain a BF that provides tight bounds on the output difference, we imple-
mented an objective function that minimizes the BF at the initial states of the two
subsystems:

PKH : Minimize SKH(x′K(0),y′K(0)) and

PC : Minimize SC(30, 30),

where x′K(0) and y′K(0) represent the initial conditions of ΣK as per Definition 2.1.2
and as per Section 3.3 for ΣHK .

The computed value of SKH , as defined by the 18 × 18 matrix QKH , can be
found in the supplementary document [33]. SC , the BF between ΣC and itself, was
computed as:

SC(VK , VHK) = 1.9666V 2
K − 0.066847VK .VHK + 1.9666V 2

HK .

VII. Composing SKH and SC
The parameters of SKH and SC , given in Table 4.4, satisfy the SGC condition of
Theorem 4.3.3, as γKHγC

λKHλC
= 0.0001 < 1. Applying Theorem 4.3.3, we linearly com-

posed SKH and SC to obtain S2 = α1SKH + α2SC , where α1 = 1, α2 = 100. S1 is a
BF between the composite systems ΣCK and ΣCHK . As per Theorem 2 of [25], the
parameter λ of S1 can be calculated as

λ = min

(
α1λKH − α2γC

α1

,
α2λC − α1γKH

α2

)
= 0.001.

4.8 Visualizing BFs SKH, SC, and S2

In this section, we plot the BFs SKH , SC , and S2 along the trajectories of the
corresponding pairs of systems, and show that they satisfy Eqs. (4.2) and Eqs. (4.3).
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Fig. 4.12 shows SKH plotted along three pairs of trajectories of ΣK and ΣHK .
Each pair was generated by supplying a pair of constant voltage signals (VK(t), VHK(t))
as inputs to ΣK and ΣHK , respectively. The two subsystems were initialized as per
Defs. 2.1.2 and 3.2.1, and simulated using MATLAB’s ODE45 solver [57]. SKH was
then evaluated along the resulting pair of trajectories after shifting the origin to the
equilibrium defined by (VK(t), VHK(t)).
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(a) VK(t) = VHK(t) =
−30 mV .
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(b) VK(t) = −30 mV ,
VHK(t) = 30 mV .
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(c) VK(t) = 30 mV ,
VHK(t) = 30 mV .

Figure 4.12: BF SKH and the OD plotted along three pairs of trajectories of ΣK and ΣH

generated using constant voltage (input) signals. SKH upper bounds the OD and decays
along the trajectories.

Fig. 4.12(a) plots, in blue, the OD along two trajectories that receive the
same input of -30 mV. SKH is plotted in red and exhibits the decaying behavior
predicted by Theorem 4.3.2. Fig. 4.12(b) plots the OD along two trajectories with
the maximum possible difference in inputs: VK(t) = −30 mV and VHK(t) = 30 mV .
This results in a relatively large OD observed for the two subsystems. SKH is shown
to upper bound this difference and decay along the pair of trajectories. Fig. 4.12(c)
inverts the inputs with VK(t) = 30 mV and VHK(t) = −30 mV .

SC characterizes the ability of ΣC to tolerate small changes in the input con-
ductance signals. In the composite systems ΣCI and ΣCHI , these signals are provided
by subsystems ΣI and ΣHI , and thus vary slightly due to the fitting errors incurred
by the abstraction process of Section 3.3.

As in Fig. 4.12, SC is plotted in Fig. 4.13 along three pairs of trajectories
of ΣC . Each pair of trajectories was generated by supplying constant conductance
(input) signals (OK(t), OHK(t)). ΣC was initialized at 30 mV and simulated using
the Euler method. SC was evaluated along the resulting trajectories after shifting
the origin to the equilibrium, −30 mV (Veq). Fig. 4.13(a) shows the case when both
OK(t) and OHK(t) were 0.1, resulting in equal voltage traces with an OD of 0. We
have not scaled the systems nor the BFs; thus the scale of Fig. 4.13 is very different
from that of Fig. 4.12. We can see that even when the input conductances vary by
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(a) OK(t) = OHK(t) = 0.1.
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(b) OK(t) = 0.1, OHK(t) =
0.9.
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(c) OK(t) = 0.9, OHK(t) =
0.9.

Figure 4.13: BF SKH and the OD plotted along three pairs of trajectories of ΣK and ΣH

generated using constant voltage (input) signals. SKH upper bounds the OD and decays
along the trajectories.

a factor of 9, in Fig. 4.13(b), SC bounds the OD and decays along the trajectories.

CCMs ΣCK and ΣCHK are autonomous dynamical systems and do not receive
any external inputs. To visualize the composite BF S2, we simulated ΣCK and ΣCHK

using the Euler method. Fig. 4.14 plots the trajectories obtained from these simula-
tions. The corresponding conductance traces of Fig. 4.14(a) and the voltage traces
of Fig. 4.14(b) empirically validate that the composed models are approximately
equivalent as predicted by Theorem 4.3.3. BF S2 along this pair of trajectories is
plotted in Fig. 4.15(a). The value of S2 is dominated by the value of SC , as it bounds
the squared difference of voltages and is much larger than SKH , which bounds differ-
ences in probabilities. This is reasonable as voltage is the primary entity of interest
when analyzing excitable cells. One could scale subsystem ΣC such that its output
lies in [0, 1] and is thus comparable to the outputs of ΣK and ΣHK .

To test extreme cases, we simulated ΣCK and ΣCHK by initializing ΣC at
different values. Fig. 4.15(b) shows the OD plotted along pairs of trajectories,
where ΣC in ΣCK starts at VK(0) = −25 mV and in ΣCHK at VHK(0) = 25 mV .
Fig. 4.15(c) plots the other extreme, where the copy of ΣC in ΣCK starts at 25 mV
and the copy in ΣCHK is initialized to −25 mV . S2 bounds the OD in all these cases
and decays along the trajectories.

4.9 Discussion

In Sections 4.5 and 4.7, we presented two SOS formulations for computing BFs.
These BFs were then used to derive compositionality results for the ΣI and σK
components of the IMW model. In this section, we compare and contrast the two
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(a) OK(t) and OHK(t) of ΣCK and
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(b) VK(t) and VHK(t) of ΣCK and
ΣCHK respectively.

Figure 4.14: Simulations of ΣCK and ΣCHK : when ΣK is replaced by ΣHK , feedback
composition tends to accumulate error incurred due to the abstract component. S2 proves
that these errors remain bounded due to the approximate equivalence of ΣK and ΣHK ,
established by BF SKH , and the ability of ΣC to tolerate deviations in the conductance
inputs, established by BF SC .
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(a) VK(0) = −25 mV ,
VHK(0) = −25 mV .
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(b) VK(0) = −25 mV ,
VHK(0) = 25 mV .
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(c) VK(0) = 25 mV
VHK(0) = −25 mV .

Figure 4.15: S2 and OD along pairs of trajectories of ΣCK and ΣCHK . Subfig. (a) plots
OD and S2 along trajectories where the ΣC component is initialized to -25 mV. Subfigs. (b)
and (c) plot OD and S2 along trajectories where ΣC is initialized at different voltages.
Value of OD is dominated by difference of outputs of the two copies of ΣC , which is in
mV. Similarly, value of S2 is dominated by SC , which bounds differences in voltages as
opposed to SKH , which bounds differences in probabilities.

SOS formulations and their implementation issues in SOSTOOLS. Table 4.5 presents
a summary of our discussion. We elaborate on each of the points below.

SOSP 1, which is defined in Eqs.(4.6) - (4.8), computes the BF, the decay rate
λ and the input-gain parameter γ as per Defn. 4.3.1. On the other hand, SOSP 2
involves two additional unknowns: σ1(, ) and σ2(, ).

Polynomialization of vector fields is not needed for SOSP 1. The rate matrices
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SOSP 1 SOSP 2

Definitions Eqs.(4.6)-(4.8). Eqs.(4.11)-(4.13).
Unknowns S, λ, and γ. S, λ, γ, σ1, and σ2.
Polynomia-
lization

Not needed, input-space dis-
cretization makes the rate-
matrix constant.

Required, exponential rate
functions must be converted
to polynomial forms before
implementing in SOSTOOLS.

Use of
the sparse
option in
SOSTOOLS

MATLAB’s default convex
hull program convhulln is
sufficient.

The CDD package has to be
used as per Section 3.4.3 of the
SOSTOOLS user guide [65].

Input
space

The BF is valid only on the
quantized input space given by
U .

The BF is valid over the entire
input space.

Error
bounds

The BFs provide much tighter
bounds on the OD.

The BFs are more conservative
and provide relatively weaker
bounds on the OD.

Table 4.5: A comparison of SOSP1 and SOSP 2.

AI(VI), AK(VK), AIH(VIH), AKH(VKH) become constant matrices due to input-
space quantization. On the other hand, SOSP 2 requires the entries of the matrices
to be polynomial functions of the respective inputs. Therefore the rate functions,
which constitute the entries of the matrices, need to be approximated using polyno-
mial functions as per Section 4.7.2.

Scalability is an important issue for computing BFs. Specifically, declaring the
inequalities in SOSTOOLS is a memory-intensive operation. SOSTOOLS provides
the sparse option to the sosineq function. When this option is used, SOSTOOLS
constructs a sparse representation of the inequality using convex hull operations.
MATLAB’s convex hull function, convhulln, is called internally by default. SOSP 1,
which works for a discretized input space, can exploit this feature to compute the
BFs. SOSP 2, which involves a higher number of symbolic variables, does not scale
well with the default convhulln-based sparse option. As a workaround, a specialized
convex hull program, CDD, must be used, as per Section 3.4.3 of the SOSTOOLS
user guide [65].

Finally, we observed that SOSP 2 results in BFs that provide a relatively
more conservative bounds on the OD, as compared to the BFs provided by SOSP
1. Figs. show that the BF SIH , which was computed using SOSP 1, and the OD
have the same order of magnitude. On the other hand, Figs show that the BF
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SKH , which was computed using SOSP 2, is approximately two orders of magnitude
greater than OD.

Despite its relatively weaker bound, SOSP 2 satisfies Eq. 4.3 exhaustively over
the input space. On the other hand, the BFs computed using SOSP 1 satisfy Eq. 4.3
only on the discretized input space.

In Chapter 7, as a potential direction for future research, we propose an algo-
rithm that combines SOSP 1 and SOSP 2 to compute BFs that provide meaningful
bounds on the OD in addition to a proof of stability.
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Chapter 5

Curvature Estimation of Cardiac
Excitation Waves

Determining the physiological conditions underlying a cardiac arrhythmia is a grand
challenge, whose resolution may lead to innovative treatment strategies. An impor-
tant component of this quest is the mathematical modeling, analysis and simulation
of cardiac-cell networks as seen in the previous chapters, also see [11, 3, 29]. In
the context of reaction-diffusion-based cardiac models, the above challenge can be
reformulated as follows: For what parameter ranges does a DEM network accurately
reproduce the arrhythmia? In this chapter, we will present a simulation-based ap-
proach to this problem.

We present the Spiral Classification Algorithm (SCA) [61, 34], a fast and ac-
curate algorithm for classifying electrical spiral waves and their associated breakup
in cardiac tissues. The classification performed by SCA is an essential component
of the detection and analysis of various cardiac arrhythmic disorders, including ven-
tricular tachycardia and fibrillation. Given a digitized frame of a propagating wave,
the SCA constructs a highly accurate representation of the front and the back of
the wave, piecewise interpolates this representation with cubic splines, and subjects
the result to an accurate curvature analysis. This analysis is more comprehensive
than methods based on spiral-tip tracking, as it considers the entire wave front and
back. To increase the smoothness of the resulting symbolic representation, the SCA
uses weighted overlapping of adjacent segments which increases the smoothness at
join points.

SCA has been applied to a number of representative types of spiral waves,
and, for each type, a distinct curvature evolution in time (signature) has been iden-
tified. Distinct signatures have also been identified for spiral breakup. These results
represent a significant first step in automatically determining parameter ranges for
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which a computational cardiac-cell network accurately reproduces a particular kind
of cardiac arrhythmia, such as ventricular fibrillation.

5.1 Motivation

The past two decades have witnessed the development of increasingly sophisticated
DEMs [20], ranging from 4 to 87 state variables [8, 52, 66, 72, 36, 23]. The increase in
the number of variables reflects the technological advances in capturing the intrinsic
ionic mechanisms more accurately. Unfortunately, the increase in the number of
state variables inevitably leads to an increase in simulation time. In particular,
simulation of the 67-variable DEM is so slow that its authors only simulated it
in a single cell and even provided initial conditions corresponding to the steady
state at different pacing rates to reduce the computation time for assessing the
dynamics associated with those rates. In [3], the authors present CUDA-based
GPU implementations for many of the above-cited DEMs, on both Tesla and Fermi
cards, with a dramatic reduction in simulation times. This allows us to perform, for
the first time on a desktop computer, a 2D (surface) simulation of the 67-variable
DEM.
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Figure 5.1: Simulation-based estimation of parameters τ−w /τ
+
w : (a) Wave forms. (b) Tip

movement and regions of fibrillation.

One of the smallest cardiac models that can accurately replicate, in simula-
tions, the macroscopic behavior of cardiac cells is the 4-variable Minimal Model
(MM) of Fenton and Cherry [8]. The Graphics Processing Unit (GPU) implementa-
tion of the MM is so fast, that it allows the real-time simulation of a 500× 500 grid
of cells: one second of MM simulation time is approximately equal to one second of
real-time.
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Figure 5.2: SCA: Block diagram for curvature estimation.

This increase in the simulation speed enables systematic exploration [70] of its
associated parameter space. For example, in a student workshop on Computational
Modeling and Analysis of Complex Systems [4], undergraduate students were asked
to repeatedly simulate the MM so that the ranges of two parameters, τ−w and τ+w ,
leading to fibrillation could be determined, see Fig. 5.1. Specifically, given a fixed
spiral-initiation protocol, the students were asked to simulate the MM on each node
of a 2D grid of parameter values, capture the generated waves, and track the tip
movement of the spirals.

This “Crowd Sourcing” approach provided very encouraging initial results.
Crowd sourcing, however, is unlikely to scale up to the exploration of large parameter
spaces. Such exploration minimally requires: 1) A principled way of partitioning the
parameter space; and 2) a fast and accurate algorithm for classifying spiral waves and
their breakup. The Spiral Classification Algorithm (SCA) serves the later purpose
by automatically classifying spiral waves and their associated breakup. See Fig. 5.2
for a block diagram.

5.2 Isopotential Reconstruction

The simulation data obtained by executing an N×N grid of DEMs, or the experi-
mental data obtained by optically mapping a cardiac tissue with resolution N×N ,
is a sequence of digital frames Ft of dimension N×N . Each frame Ft is the snapshot
at time t, with resolution N×N , of the transmembrane electrical potential Vt, of the
cardiac tissue.

The wave-fronts (wave-backs) of Vt are defined as the regions of Vt where each
cell is in the activation (recovery) phase; that is, their electrical potential Vt(x, y)
equals -30mV, and their derivative dV (x, y)/dt is positive (negative). The two fronts
define together the isopotentials I−30 of Vt. These are curves of constant voltage in
Vt, that never intersect each other. For simplicity, we will drop the subscript t
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Figure 5.3: Marching squares.
occurring in Ft and Vt.

For any potential value v, the isopotentials Iv of V are smooth curves, whereas
the isopotentials Iv of F are not. This is a consequence of the N×N resolution. The
isopotential reconstruction problem is therefore defined as follows: Given a frame F ,
and a voltage value v, reconstruct the smooth Iv, isopotentials of V . As we will see
in the following sections, smoothness is essential for an accurate curvature analysis
of the wave-fronts and wave-backs.

The Isopotentials Reconstruction Algorithm is a key component of the SCA,
as it consumes most of the memory and time resources of the SCA. Hence, IRA
has to be designed very carefully, and run on an appropriate hardware platform, to
make the SCA a success. Today, the the NVIDIA GPUs Fermi or Tesla video cards
allow one to run a computationally intensive tasks on desktop machines. We take
advantage of these cards to implement the Compute Unified Device Architecture
(CUDA)-based Parallel Isopotential Reconstruction Algorithm (PIRA).

PIRA belongs to a new CUDA-based class of algorithms that minimize the
amount of synchronization; they require reconstruction of global information from
a frame F . To achieve this goal, PIRA divides its work into: Parallel March-
ing Squares (PMS), a fully parallel, local-information-computation procedure; Par-
allel Isopotential Extraction (PIE), a hierarchically parallel, global-information-
computation procedure; and Selection and Output Generation (SOG), an optional,
sequential to random-access, global-information-computation procedure.

Parallel marching squares (PMS)
The fully parallel, local-information-computation procedure PMS uses an adapta-
tion of the marching squares algorithm. Given a frame F , PMS considers in parallel,
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that is in a different thread of a acCUDA block, each 2×2 square s, of an adjacency-
based (N−1)×(N−1) partition of F . Each thread locally and accurately computes
the intersection points of zero, one or two lines with s. The number of lines and
their crossing pattern with s depends on the values in the corners of s (type of s).

To determine the type of each square s of F , frame F is first subjected, in
parallel, to the test Fi,j ≥ v, for each index (i, j). The result of the test is stored in
a boolean matrix B. The boolean value of the corners of s in B, traversed say in
clockwise order, determine 16 possible intersection cases. These cases are shown in
Figure 5.3. In summary: 1) If all corners of s in B have the same value, there is
no line crossing at all. 2) Otherwise, if diagonal corners have the same value, there
are two ambiguous line crossings. Ambiguity is removed by averaging the value in
all corners in s and comparing it with v. 3) Otherwise precisely one line is crossing
s. Our adaptation also associates each with line, a direction by requiring that the 0
corners of square s only occur to its left.

An isoline intersects s only between two corners that have opposite boolean
value in B. In other words, one corner has a value less than v and the other
has a value which is greater than v. The intersection points, which also represent
the starting and the ending points of a directed, one-segment-long polyline, are
computed via linear interpolation. For example, suppose that the corners of s at
position (i, j) in B, result in bitvector 0111. Then, the line segment crossing s has
the points ((x0, y0), (x1, y1)) defined as follows:

x0 = j, y0 = i+ (v − Fi,j) / (Fi+1,j − Fi,j)
y1 = i, x1 = j + (v − Fi,j) / (Fi,j+1 − Fi,j)

This information is stored in the corresponding one segment-polyline at position
(i,j), in an N ×N matrix S of squares. The starting and ending polylines of the
open polylines list are initialized to the location of this polyline. If there are two
polylines, the first one is the first in the list and the second one is the second. The
list of closed polylines is initialized to null. The number of polyline segments and
the number of open/closed polylines is also appropriately initialized.

struct Point // typed points

{
int type; // 0 = row crossing, 1 column crossing

float x,y; // x and y coordinates

float y; // y coordinate

}

struct PolyLine // directed polylines
{

int type; // 17 types

56



int number; // number of segments

Point start, end; // start and end points

PolyLine * next; // ptr to next polyline

}

To speedup the interpolation process, the case analysis of the square type is effi-
ciently pre-stored in a lookup table T , allocated in the constant memory of the GPU
card.

struct Square // Data Structure for Squares

{
int num of opl; // number of open polylines

int num of cpl; // number of closed polylines

PolyLine * opl start; // pointer to first open polyline

PolyLine * opl end; // ptr to the last open polyline

PolyLine * cpl start; // ptr to the first closed polyline

PolyLine * cpl end; // ptr to the last closed polyline

PolyLine poly lines[2]; // storage allocated on leaf level

}

For each square type t and for each one-segment polyline p, the table consists of the
following entries: Two line coefficients and four coordinate displacements. For the
above example, where t= 7, p= 0, table Tt,p contains:

Tt,p = {{a = 0,b = 0,i1 = 0,j1 = 0,i0 = 0,j0 = 0},
{a = 1,b = 0,i1 = 1,j1 = 0,i0 = 0,j0 = 0},
{a = 1,b = 0,i1 = 0,j1 = 1,i0 = 0,j0 = 0},
{a = 0 b = 0,i1 = 0,j1 = 0,i0 = 0,j0 = 0}}

Denote Tt,0 and Tt,1 with the corresponding field names, indexed by subscripts 0 and
1. Then the one-segment-polyline starting coordinate can be computed uniformly,
as follows:

x0 =j+b0 +a0(v−Fi+i00,j+j00)/ , (Fi+i01,j+j01−Fi+i00,j+j00)
y0 =i+b1 +a1(v−Fi+i10,j+j10)/ , (Fi+i11,j+j11−Fi+i10,j+j10)

Parallel isoline extraction (PIE)
Using PMS one can readily plot the isolines of V . However, there is no global
information available yet, despite the fact that we know the isoline segments, their
orientation, and their linking. However, we do not know: 1) Which segments to the
particular isolines? 2) How many isolines are there in V ? 3) How many segments
do they contain? 4) What are their starting and ending points.

The public contour function of Octave uses a sequential, recursive algorithm
to obtain global information. This works as follows: 1) Traverse a matrix of inter-
polated segments, row by row and column by column, and pick the first unmarked
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Figure 5.4: Isopotential extraction.

one. 2) Then recursively follow matching segments in a meaningful way, until the
border or the starting point is reached again (no direction is readily available as in
our PMS). During this process, dump all points traversed in a dynamic array, and
mark all the segments as visited. 3) Once an entire isoline is found, search for the
next unmarked segment, until the last row and column is reached.

Recursion and the sequential traversal of the entire matrix of segments is how-
ever prohibitive for a fast curvature analysis. The isoline function available at [54] is
sequential, but not recursive. It: uses the marching squares algorithm to compute all
(disoriented) segments and dump them, in no particular order, in a dynamically allo-
cated array. Then, it extracts the first unmarked segment, and repeatedly searches
the entire array for an unmarked, matching continuation. Its time complexity is
therefore comparable to the recursive algorithm.

To obtain a fast algorithm, we take advantage of the GPU cards. However
this imposes several important restrictions on PIE: 1) It cannot be recursive. 2) It
cannot dynamically allocate memory. 3) It can only contain for-loops with known
upper bounds. As shown in Figure 5.4, the main idea of PIE is to organize the
squares S passed by PMS in a quad-tree fashion, such that, at every level in the tree
hierarchy, sibling nodes (and their immediate children) are processed in parallel, by
a different CUDA thread. Hence, global information is computed sequentially in
log4N steps.

During this process, a parent either collects or pastes together the polylines of
its children, if they have matching start and end points. A particular problem during
this process is dynamic memory allocation. In the CUDA core, such allocation
is not possible. Moreover, there is no way to predict in advance, without gross
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overestimation, the amount of memory needed in each node, to store the list of
polylines it has identified so far, and the polylines themselves.

Our solution is to reuse the memory already allocated in the leaf squares for
their two one-segment-long polylines during the upward sweep of the quad-tree.
Each time, when information is collected from the 4 children, the result is stored
in child 0. This information is later on passed upward in the hierarchy. Therefore,
child 0’s information gets lost.

Whenever the parent process matches the ending point of polyline p of child
c with the starting point of polyline q of child d, it updates the starting and ending
points of polyline pq in p, and removes q from the polyline list of child d. It then
continues from a copy of q to find the next match. The total number of matches, is
bound by the number of polylines in all children, and this is used in a find-next-match
for-loop. This loop is the equivalent of the recursive match-next-segment search in
contour or isoline, but it is limited to the polylines of the parent’s children. This
dramatically decreases the time complexity of the recursive search.

Whenever, the parent process collects the polyline lists of the children, it
appends these lists to the lists of child 0. For this purpose, the Square structure
has the start/end fields of the list of open/closed polylines, and each polyline has a
next polyline field. The number of polylines, and the number of segments, are also
updated accordingly.

In order to efficiently match the end point of a polyline p of a child c with the
starting point of a polyline q, it is important to know what sibling of c might have
such a q. For this purpose, we classify the polylines according to their starting and
ending faces in c, as shown in Figure 5.4. This leads to a classification of polylines
that is similar to the one for squares. In contrast to squares however, polylines may
start and end on the same face or they may be closed (that is, they are completely
contained in c). The second case does not require further processing. Similarly, if
a polyline of square c starts and ends on a face that is not adjacent to any of the
c’s siblings, no processing is required at this level either. To enable this kind of
analysis, a type field is added to the polyline data structure, too.

The downside of reusing the squares while collecting and propagating infor-
mation is that the linking information of one-segment-long polylines is lost. Con-
sequently, one has to store this information in a different place. For simplicity and
speedup reasons, we allocate two hash tables X and Y of size N×N : the first is
indexed by the integer value of horizontal intersection points, the second by the
integer value of vertical intersection points. Each entry of X and Y stores the des-
tination point and a bit classifying it as a horizontal or vertical intersection. This
allows us to determine whether to choose the X or the Y hash table next. In
general, unless the isolines are fractals, the number of segments is orders of mag-
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nitude smaller than N×N . Hence, more information acquired about the expected
kind of isolines may improve the size allocation, by choosing M << N for the tables.

Selection and Output Generation (SOG) procedure
The optional SOG procedure selects the isolines of interest according to some given
criterion, for example, the longest isoline, and stores the points of these isolines in
an array, sorted by their traversal order. The size of the isolines their starting point,
and their ending points are available at the root of the quad-tree. This information
is used to dynamically allocate the corresponding arrays outside of the CUDA core.
The X and Y hash tables are then used to traverse the associated isoline and dump
the points traversed in the array. This process transforms the local sequential-linking
information, into a global, random-access information, where entry i+1 is known to
be the successor point of entry i.

We reconstructed the isolines of 10 000 frames, both with PIRA and the con-
tour function of MATLAB. The first took 1.65 seconds while the second took 720
seconds. Hence, PIRA had a 444.44-fold speedup compared to contour. The plat-
form was equipped with Intel Core i7-930 2.8GHz LGA 1366 130W Quad-Core
Desktop Processor with OCZ Gold 12GB (6 x 2GB) 240-Pin DDR3 SDRAM DDR3
1600 (PC3 12800) Low Voltage Desktop Memory and a GPU Tesla C1060 with
240 SP cores divided equally among 30 SMs, and 4GB of DRAM. The SP core
clock speed was 1.29 GHz and the maximum bandwidth of memory access was 102
GB/sec. The rest of the SCA has not been parallelized yet. However, this can easily
accomplished, as described in the following sections.

5.3 Curvature Estimation

Propagation patterns of cardiac waves (isopotentials produced by SOG in the pre-
vious section) characterize cardiac arrhythmia. Obstacles or deformities affect the
nominal linear motion of the waves resulting in anomalous propagation. Reentry
is one such anomalous pattern in which cardiac waves assume spiral shapes, many
of which are precursors to more dangerous arrhythmias. When these spiral waves
break up, fibrillation, a possibly fatal arrhythmia follows. In [49], authors provide
experimental evidence of atrial fibrillation being characterized by reentrant cardiac
waves breaking-up into chaotic patterns.

Local geometric features like curvature can be critical in affecting wave prop-
agation and breakups. In [18], the authors establish the relation between the cur-
vature of the isopotential and its propagation velocity. If θ0 is the steady state
velocity of a linear isopotential, then the velocity of a curved isopotential is given by
θ = θ0− D

r
, where r is the local radius of curvature and D is a coefficient determined
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by the passive properties of the cardiac medium. Thus, any part of the isopotential
that has high positive curvature slows down and eventually breaks off. Also, the
existing arrhythmia can be classified accurately based on the curvature of the under-
lying cardiac waves. Thus, an efficient method of measuring the evolving curvature
would enable expressing emergent tissue-level behaviors. This would further help in
predicting and identifying arrhythmias.

In reality, the cardiac tissue is strongly anisotropic, with waves propagating
approximately three times faster along the direction of the heart muscle fibers (lon-
gitudinal) than in the transverse direction. This anisotropy can lead to problems
in measuring the true wave curvature, as noted in [75]. In practice, however, an
anisotropic medium can be rescaled according to the known ratio of diffusion coef-
ficients along and across the fibers to recover an isotropic medium. This rescaling
can be used to extend our algorithm to anisotropic tissue behaviors. Section 4 of
[75] discusses other methods that can be used to adjust the measurements so that
they can be compared with isotropic theory. We will therefore restrict our focus to
isotropic media in the following discussion.

Any method that estimates the curvature of cardiac isopotentials must satisfy
the following requirements: not only must it be highly accurate but the method must
provide curvature values continuously along the perimeter of the isopotential. In
other words, the method must be independent of the spatial resolution at which the
isopotential was estimated or the grid on which the cardiac model was numerically
integrated.

The workflow of our curvature estimation technique is shown in Fig. 5.2. The
isopotential obtained in the previous section is a series of points on R2. Starting from
this, our method of obtaining a smooth curvature estimate involves the following
steps:

1. Step 0 - Preprocessing: Divides the isopotential obtained by SOG into
overlapping strips of constant length.

2. Step 1 - Bézier curve fitting: Fits each strip with a third degree Bézier
curve, thus obtaining a piecewise degree-3 polynomial fit of overlapping Bézier
curves.

3. Step 2 - Estimate curvature using symbolic analysis: Curvature is
calculated along the Bézier curves using symbolic calculations.

4. Step 3 - Obtain overall curvature estimate: Obtains a smooth estimate
of curvature along the entire isopotential.

First, we divide the isopotential Iv, obtained at potential v, into overlapping seg-
ments which we refer to as strips. The length of each strip is controlled by the
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parameter STRIP LENGTH (SL). The percentage overlap among them is con-
trolled by the parameter OV ERLAP . This is the initial pre-processing done before
the polynomial fitting. The following sections describe each of the remaining steps
in detail.

5.4 Piecewise Bézier Fitting

Most of the formalisms of curvature in R2 involve second-order derivative terms.
This motivates a degree-3 polynomial approximation to the isopotential. We fit
the isopotential with overlapping cubic Bézier curves in a piecewise manner, thus
satisfying the above-mentioned requirements of curvature estimation.

Let the jth strip of the isopotential Iv be denoted as Iv,j. We obtain one Bézier
curve that approximates this strip up to a certain degree of L2 error. A Bézier curve
approximation for Iv,j would have the following parametric form, where t ∈ [0, 1]:

Xj(t) = (1− t)3P 0
j + 3t(1− t)2P 1

j + 3t2(1− t)P 2
j + t3P 3

j (5.1)

Yj(t) = (1− t)3Q0
j + 3t(1− t)2Q1

j + 3t2(1− t)Q2
j + t3Q3

j (5.2)

Here P 0
j - P 3

j and Q0
j - Q3

j are the control points of the Bézier curves, which ap-
proximate the isopotential strip along x- and y-axes respectively. To sample from
this curve, we evaluate the above-mentioned expressions over the interval t ∈ [0, 1].
Terminal control points P 0

j , P 3
j , Q0

j and Q3
j coincide with the start and end points of

the strip respectively. The fitting procedure, adapted from [48] and [68], optimizes
the intermediate control points P 1

j , P 2
j , Q1

j and Q2
j to minimize the least squared

error. We assume uniform parametrization of t in [0, 1] for each segment. The error
functions for fitting Iv,j are

Ex =
SL∑
i=1

[xi −Xj(ti)]
2, Ey =

SL∑
i=1

[yi − Yj(ti)]2,

where (xi, yi) denotes the ith point on the isopotential strip. On replacing Eq. (1)
and (2) in the above error functions respectively, we obtain:

SL∑
i=1

[xi − (1− ti)3P 0
j − 3t(1− ti)2P 1

j − 3t2i (1− ti)P 2
j − t3iP 3

j ]2,

SL∑
i=1

[yi − (1− ti)3Q0
j − 3ti(1− ti)2Q1

j − 3t2i (1− ti)Q2
j − t3iQ3

j ]
2
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as expressions for Ex and Ey, respectively. We show the calculations only for Ex.
For Ey, the expressions follow from those for Ex. Control points P 1

j and P 2
j can be

obtained at the minimum value of Ex by:

∂Ex
∂P 1

j

= 0,
∂Ex
∂P 2

j

= 0.

Solving the above two equations we obtain the following expressions for P 1
j and P 2

j :

P 1
j =

αj2β
j
1 − α

j
3β

j
2

αj1α
j
2 − α

j
3

2 , P
2
j =

αj1β
j
2 − α

j
3β

j
1

αj1α
j
2 − α2

3
j ,

where, α1, α2, α3, β1 and β2 for the jth segment are given by:

α1 = 9
SL∑
i=1

[t2i (1− ti)4],

α2 = 9
SL∑
i=1

[t4i (1− ti)2], α3 = 9
SL∑
i=1

[t3i (1− ti)3],

β1 = 3
SL∑
i=1

[ti(xi − (1− ti)3P0 − t3iP3)(1− ti)2],

β2 = 3
SL∑
i=1

[t2i (xi − (1− ti)3P0 − t3iP3)(1− ti)].

The fitting procedure described above is sequential in nature. However, for all
the strips, one can run this procedure in parallel, by using a different CUDA-thread
on the GPU cards. Although we have not done this yet, this is a simple adaptation
of this algorithm. To make the curvature estimates smooth, we fit the curves on
overlapping segments, as explained in the next section.

5.5 Weighted Average-based Improvement

After each strip is fit with cubic Bézier curves as explained above, we improve the
smoothness of the overall fit. A pure piecewise fitting approach would create dis-
continuities in the derivative of the isopotential-approximation at the points where
two curves meet. We ensure that derivatives up to second order are well defined
everywhere on the isoline. To do this, fitting is performed on overlapping strips.
Parameter OVERLAP determines the percentage overlap between adjacent strips
of the isopotential.

63



Figure 5.5: Weighted average-based fit smoothing and curvature estimation.

Consider a part of the isopotential that has two adjacent overlapping strips
with indices j and j + 1. To define the Bézier curve fit for the part of the isoline
covered by the two strips, we use a weighted average-based method. Suppose the
curves describing the two strips are fj and fj+1. Then the fit for the region covered
by the two strips is given by wjfj(tj) + wj+1fj+1(tj+1), where wj+1 + wj = 1. In
essence, the influence of the adjacent curves on the fit is gradually varied in the
region of overlap. In the region where there is no overlap, the fit is completely
described by the only Bézier curve corresponding to that strip. As one enters the
region of overlap, the fit is a weighted average of the two Bézier curves corresponding
to adjacent strips. The weights are varied linearly in our scheme, as shown in
Fig. 5.5. The same weighted-average smoothing is performed for the derivatives and
the curvature values.

Each Bézier curve is a third degree polynomial. In the overlapping region,
the fit is a weighted average of two cubic polynomial functions. Thus even in the
overlapping region the fit is C2 smooth, rendering it amenable to curvature esti-
mation (described in the next section). The smoothing described above can also
be performed in parallel. The weighted-average based scheme is different from [46],
which uses cubic splines to fit the isopotentials.

5.6 Curvature Estimation using MATLAB Sym-

bolic Computation

We use symbolic computations in MATLAB to evaluate curvature along the isopo-
tential. This constitutes step 2 of our method listed above. The fitting procedure
described above provides a set of smooth Bézier curves that describe the isopoten-
tials. As these are closed form expressions, they can be manipulated symbolically
to calculate the magnitude of the curvature along the isopotentials. MATLAB’s
symbolic toolbox provides the facility to declare symbolic variables, construct func-
tions out of them and operate on those functions. Once the operations yield the
expressions-of-interest, they can be evaluated at arbitrary spatial resolution by suit-
ably specifying the interval for the symbolic variables.
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In our case, we obtain the functionsXj(t) and Yj(t) for each strip. The absolute
curvature of the strip of the isopotential is derived using elementary calculus:

κj(t) =
|r′j(t)× r′′j (t)|
|r′j(t)|3

(5.3)

where rj(t) = [Xj(t), Yj(t)] is the position vector described by the Bézier curve.
The grid size for all the cardiac simulations is in the order of microns, thus, the
unit of the curvature measured is (µm)−1. The important point to note is that
Xj(t), Yj(t) and thus rj(t) are managed as symbolic expressions which are functions
of the symbolic variable t. Thus κj(t) is obtained in closed form as an expression
in t. Symbolic operations on rj(t) are performed using MATLAB’s symbolic math
toolbox [55].

After obtaining closed form expressions for curvature, their continuity ensures
that we can evaluate them at any resolution of the parameter t. This translates to
obtaining a continuous estimate of curvature along the perimeter of the isopotential.

Step 3 of our method evaluates these curvature functions along the isopoten-
tial using the weighted approach described in the previous section. Currently we
maintain uniform resolution for t along all the strips. Adapting this to the shape of
the isoline is part of our future work. In particular, the information stored in the
quad-tree of PIE, for example the filling factor of the area associated to its nodes
might facilitate a fast and accurate breakup of the isoline in isoline-strips, improving
on the idea in [46].

An alternative approach to curvature estimation involves pre-computing the
generic form of the curvature function for a Bézier curve. Consider a curve r(t) =
[X(t), Y (t)] where X(t) and Y (t) are described by Bézier curves in Eq. (5.1) and
(5.2) respectively. Also let ax = −P 0

j + 3P 1
j − 3P 2

j + P 3
j , bx = 3P 0

j − 6P 1
j + 3P 2

j ,
cx = −3P 0

j + 3P 1
j , dx = P 0

j and ay, by, cy, dy be defined symmetrically. Expressions
ax . . . dx and ay . . . dy define the curves X(t) and Y (t) in the nominal polynomial
form, for example, X(t) = axt

3 + bxt
2 + cxt+ dx. Now

|r′(t)× r′′(t)| = X ′(t).Y ′′(t)− Y ′(t).X ′′(t)
= [12(bxay − axby) + 6(axby − bxay)]t2

+ [6(cxay − axcy)]t+ 2[bycx − bxcy]

In the same way, we can calculate

|r′(t)| = [r′(t).r′(t)]1/2

= [(3axt
2 + 2bxt+ cx)

2 + (3ayt
2 + 2byt+ cy)]

1/2

Using the above expressions, the curvature of each strip can be calculated. This
method is also amenable to parallel computation as it does not need the symbolic
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computational toolbox of MATLAB. We have implemented both techniques. The
curvature for the whole isoline is calculated using the weighted average-based method
as explained above.

The runtimes for the curve fitting and curvature calculation routines depend
on the length of the isopotential. The extraction process checks each grid square for
a possible point of the isopotential. The number of edges on a n × n grid can be
calculated by solving the following recurrence:
E(n) = E(n− 2) + 4n+ 4(n− 3) + 8
E(1) = 4, E(2) = 8
The solution is given by

E(n) = −2(−1)n + 2n(n+ 1)− 2

Hence the maximum length of the isoline is O(n2), which bounds the number of
operations in the fitting and curvature routines to O(n2).

5.7 Curvature Estimation Accuracy

The curvature estimation technique developed in Sections 5.3-5.6 was implemented
on data generated by plotting standard curves, for which curvature can be calculated
in closed-form. A summary is given in Table 5.1.

Curve in polar co-
ordinates (r, t)

Curvature κ(t) Average fit (L2) error Average per-
centage L2 er-
ror: κ

Archimedes’ spiral:
r = at

2+t2

a(1+t2)3/2
0.0515 1.62

Hyperbolic spiral:
r = a/t

t4

a(1+t2)3/2
0.0011 1.88

Circle: r = a 1/a 0.0073 0.76
Parabola:
r = −2

1+cost

1
2(1+t2)3/2

0.0025 8.1

Table 5.1: Curvature estimation for standard curves, a = 15, total number of points on
each curve = 4000, SL = 150, OV ERLAP = 70.

The standard curves were generated by plotting them in MATLAB. Then
their fits were obtained using the weighted average-based Bézier curve fitting, and
curvature was computed along the perimeter of the curve. The error depends on
the granularity of the data; if more points are sampled from the theoretical curve
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and then subjected to curvature estimation, the accuracy increases. Fig. 5.6 (a)-(h)
show the results of these experiments.
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(a) Archimedes’ spiral fits.
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(b) Archimedes’ spiral curva-
ture.
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(c) Hyperbolic spiral fits.
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(d) Hyperbolic spiral curva-
ture.
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(e) Circle fits.
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(f) Circle curvature.
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(g) Parabola fits.
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(h) Parabola curvature.

Figure 5.6: Accuracy experiments.

5.8 Case Studies

To demonstrate our isopotential tracking and curvature estimation techniques, we
simulated six different types of tachycardia and one case of fibrillation. In an addi-
tional case study, the spiral waves resulting due to an obstacle in the tissue were in-
vestigated. We applied isopotential extraction on regularly-spaced (in time) frames
from the simulation results. Then we estimated the curvature along the cardiac
wave to capture the characteristic trend in time. In this section we show for each
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case study: 1) one typical frame from the simulation results, 2) the corresponding
isopotential that was tracked, 3) weighted average-based Bézier curve fit, and 4)
curvature trend, in time, for that simulation. We refer to the curve traced by the
wave, along which the curvature was measured, as the wave’s perimeter. The curva-
ture trend plots the curvature of the wave along its perimeter, as it evolved in time.
The perimeter for our case studies is measured in microns, as the simulations were
performed at that scale. Curvature is therefore measured in (microns)−1 units. We
used the Barkley model [2] in the first case study and thus the spatial dimension
(and therefore the perimeter and the curvature) is unitless. It should be noted that
to generate 4) we plot the closed-form function corresponding to curvature. The
function itself can be evaluated at any resolution of the Bézier curve parameter t.

Our case studies support two findings. First we demonstrate the correctness of
the isopotential extraction and the curvature estimation techniques explained above.
Second, the results show the feasibility of using the curvature trend as a feature to
classify different arrhythmic spiral excitation waves. For this section, we define the
tip of a spiral-shaped cardiac wave as the point with the highest curvature and it
separates the wavefront and the waveback regions of the wave. The case studies
were generated such that the tips of the spirals trace trajectories of different shapes
resulting in different types of abnormal propagation.

Case 1. Reentry with circular core:
In this case study we simulated the Barkley model [2] on a tissue of 514×514 cells.

Simulation frames were processed at a rate of once every 10 ms in simulation time, i.e
the frames were sampled at the rate of once every 10 ms, from the simulation. The
core of the spiral shaped excitation waves traced a circular trajectory. One sample
frame of simulation result is shown in Fig. 5.7(a). After the initial excitation, the
spiral-shaped isopotentials were extracted at a scaled level of u = 0.7 (where u is a
state-variable of the Barkley model).

Fig. 5.7(b) shows the propagation of the isopotential with the tip tracking
a circular trajectory. The waves in the first and last time steps of simulation are
shown in solid blue. The overlapping red curve is the weighted average-based Bézier
fit. Isopotentials are shown for intermediate frames in dotted blue. As the spiral
rotates, its tip tracing a circular trajectory, the basic shape of the spiral isopotential
does not change. As the basic shape of the wave remains unchanged, we would
expect the curvature trend to remain the same over time. The curvature trend is
shown is Fig. 5.7(c). The region of maximum curvature corresponds to the spiral tip
which remains around the center of the isopotential throughout the simulation. The
rest of the isopotential shows a relatively lower curvature. This trend characterizes
circular-core reentrant spiral waves in the heart.
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(a) Simulation, colorbar: unitless
scaled potential u of the Barkley
model [2].

(b) Isopotential evolution.

(c) Curvature Trend.

Figure 5.7: Results for case study 1: Reentry with circular core. For the curvature trend,
the perimeter and the curvature are unitless and time is in steps of 10 ms.

Case 2. Re-entry with hypocycloidal core:
It is not always the case that the tip is located around the center of the spiral wave.

To simulate asymmetric shapes, we generated waves whose tips trace hypocycloidal
trajectories. In this case study, a tissue of size 1024 × 1024 was simulated using
the Minimal model [8]. The isopotential was extracted again for u = 0.7 (where
u is a state variable of the Minimal model) and the rate at which the frames were
processed was once every 10 ms. A typical frame of the simulation can be seen in
Fig. 5.8(a). Both the isopotentials extracted and the Bézier fits are shown for the
first and the last frames of the simulation. The intermediate dotted blue lines are
isopotentials for some of the intermediate frames.
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(a) Simulation, colorbar: unitless
scaled potential u of the Minimal
model [8].

(b) Isopotential evolution.

(c) Curvature Trend.

Figure 5.8: Results for case study 2: Re-entry with hypocycloidal core. For the curvature
trend, perimeter is measured in µm, curvature in (µm)−1 and time is steps of 10 ms.

As the tip rotates, the length of the wave changes and at times, the tip is not
the center of the isopotential. This turning causes the shape of the wave to become
asymmetric. The turn of the spiral is evident in the curvature trend in Fig. 5.8(c).
As the length of the spiral changes, the region of highest curvature shifts on the
curvature trend. This further demonstrates that a trend of morphological features
like curvature, can capture the dynamics of different types of cardiac arrhythmias.

Case 3. Reentry with linear core:
In practice, spiral waves may exhibit more complex behavior. In the presence of an
obstacle or deformity in the medium, the rotating waves may assume linear trajecto-
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(a) Simulation, colorbar: unitless
scaled potential u of the Minimal
model [8].

(b) Isopotential evolution.

(c) Curvature trend.

Figure 5.9: Results for case study 3: Reentry with linear core. For the curvature trend,
perimeter is measured in µm, curvature in (µm)−1 and time is in steps of 10 ms.

ries. We studied such waves in this case study by simulating a tissue of 1024× 1024
cells using the Minimal model [8] and processed the simulation frames at a rate of
once every 10ms. Isopotential extraction was done for a scaled level of u = 1.0.
Fig. 5.9(a) shows a snapshot of the simulation. The linear trajectory along which
the wave rotates can be seen with the tip of the wave at one end. Fig. 5.9(b) shows
the evolving isopotential. It starts from the solid isopotential line of Fig. 5.9(b) and
ends at the other solid isoline.

As shown in Fig. 5.9(c), during its linear motion, the wave has three regions
of high curvature. The first two are present at the ends of the linear path of the tip.
As always, the highest curvature is found at the tip which separates the wavefront
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and the wave-back. As the tip moves along the linear path, the separation between
curvature peaks corresponding to the high curvature regions, changes. The highest
peak starts near the left peak that corresponds to the first high curvature bend of
the isopotential. With time, as the tip moves down to the other end of the linear
path, the central curvature peak shifts toward the right peak.

Case 4. Spiral wave breakup:
We study the onset of fibrillation in this case study. The spatio-temporal defini-

(a) Simulation, colorbar - membrane
potential (mV).

(b) Isopotential evolution.

(c) Curvature trend.

Figure 5.10: Results for case study 4: Spiral break-up. For the curvature trend, perimeter
is measured in µm, curvature in (µm)−1 and time is in steps of 1 ms.

tion of the fibrillating myocardium involves the breakup of reentrant waves [49].
This breakup creates spirals which interact to produce emergent behavior. Thus,
predicting the occurrence of spiral breakup is crucial to the problem of predicting
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fibrillation. A tissue of 1024 × 1024 cells was simulated using the Beeler-Reuter
model [5]. Spiral breakup occurs at a very short time scale. Therefore, the frames
(output) of the simulation were processed at the rate of once every 1 ms.

Fig. 5.10(a) shows one simulation frame, where the first breakup has already
occurred. We tracked the isopotential of value V = −3mV (where, V is the mem-
brane potential variable in the model) until the first breakup occurred. As we
approached the moment of detachment, the isopotential showed a dent near the site
of break-up. This change in shape translated to the creation of a high curvature
region. The changing shape of the isopotential is shown in Fig. 5.10(b). Again, the
isopotential and the polynomial fits are shown for the first and last step, and the
intermediate steps are shown in dashed lines. As compared to other studies, there
seem to be fewer intermediate curves. This is because, with a small time step of 1
ms, most of the frames do not show any change, leading to overlapping isopotentials.
The time scale at which detachment occurs forced us to increase the processing rate
of the frames of the simulation.

Fig. 5.10(c) shows the trend of curvature as the isopotential evolves toward
breakup. Just before detachment, we see high curvature corresponding to the evolv-
ing site of breakup. Thus the gradual build-up of a high curvature site on the wave
is a strong indication of future breakup eventually leading to fibrillation.

Case 5. Cycloidal core:
A tissue of 402 × 402 cells was simulated using the 3-variable model of [19] and
the frames were processed at the rate of once every 10ms. The tip of the spiral
followed a cycloidal trajectory. In this process, the length of the contour, estimated
at a normalized level of u = 0.7 (where u is a state variable of the model), did not
remain constant. The trajectory traversed by the tip can be observed in the isoline
evolution shown in Fig. 5.11(b). The weighted average-based fit is shown only for
the first and last frames. As shown in Fig. 5.11(c), a region of high curvature is
found near the tip of the spiral. The changing position of the curvature peak, re-
flects the path traversed by the tip along its trajectory.

Case 6. Epicycloidal core:
In this case study, a tissue of 402×402 cells was simulated using the 3-variable model
of [19], using a processing rate of once every 10 ms. In this case the tip follows an
epicycloidal trajectory. Fig. 5.12(a) shows a typical frame of the simulation. The
isopotential and curvature evolution show the traversal of the tip of the spiral along
an epicycloidal ath. Isolines were calculated for a scaled level of u = 0.7 for this
case study.

73



(a) Simulation, colorbar: unitless
scaled potential u of the 3-variable
model [19].
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(b) Isopotential evolution.

(c) Curvature trend.

Figure 5.11: Results for case study 5: Cycloidal core. For the curvature trend, perimeter
is measured in µm, curvature in (µm)−1 and time in steps of 10 ms.

Case 7. Hypermeandering core:
Hypermeandering spirals involve irregular motion of the tip along various paths.
For this case study, a tissue of 402 × 402 cells was simulated using the 3-variable
model of [19] and the frames were processed at the rate of once every 10 ms. The
isolines were estimated at a scaled level of u = 0.9. At this level, the spiral shape
of the contour is not evident initially. This is reflected in the flat curvatures shown
in Fig. 5.13(c). The starting isoline and its fit are diagrammed in Fig. 5.12(b). As
this isoline moves along an unpredictable path, a spiral shape appears and results
in high curvature peaks in the curvature plots of Fig. 5.13(c).
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(a) Simulation, colorbar: unitless
scaled potential u of the 3-variable
model [19].
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(b) Isopotential evolution.

(c) Curvature trend.

Figure 5.12: Results for case study 6: Epicycloidal core. For the curvature trend, perime-
ter is measured in µm, curvature in (µm)−1 and time is in steps of 10 ms.

Case 8. Obstacle-induced reentry:
This case study explored the curvature trend of reentrant waves that develop due to
tissue inhomogeneities. We simulated a tissue of 1038×1038 cells using the Minimal
model [8] in two different settings. First, all the cells were simulated under nominal
conditions, which resulted in planar excitation wavefronts shown in Fig. 5.14(a)-(e).
Then, the cells lying in a circular region, were made inactive by decoupling them
from the tissue, resulting in inhomogeneity. The inactive cells do not participate in
the propagation of waves, and cause them to slow down. This results in spiral waves
shown in Fig. 5.14(f)-(j). We only plot a part of the tissue consisting of 550 × 550
cells and some time steps (t) of the simulation.
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(a) Simulation, colorbar: unitless
scaled potential u of the 3-variable
model [19].
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(b) Isopotential evolution.

(c) Curvature trend.

Figure 5.13: Results for case study 7: Hypermeandering core. For the curvature trend,
perimeter is measured in µm, curvature in (µm)−1 and time is in steps of 10 ms.

The curvature of the waves was recorded using our algorithm, as they trans-
formed from planar to spirals. Fig. 5.8 plots the curvature trend for isopotentials of
value u = 0.7. Initially, when the waves are planar the curvature is 0. The obstacle
causes the slowing down of a part of the wave, resulting in small curvature peaks.
These peaks developed into sustained patterns as the obstacle-induced arrhythmia
sets in. The simulation frames were processed once every 10 ms.
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(a) t = 17. (b) t = 49. (c) t = 81.

(d) t = 113. (e) t = 145. (f) t = 17.

(g) t = 49. (h) t = 81.

(i) t = 113. (j) t = 145.

Figure 5.14: Case study 8: Simulation frames for planar ((a) through (e)) and obstacle-
induced reentrant waves ((f) through (j)).
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Figure 5.15: Curvature trend of reentry setting in due to tissue inhomogeneity, case study
8. The perimeter is measured in µm, curvature in (µm)−1 and time in steps of 10 ms.
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Chapter 6

Model-Predictive Control

In addition to modeling and analysis, control is the third important aspect of
this thesis. In this chapter, we present explicit and online Model-Predictive Con-
trollers (MPCs) for an excitable cell simulator based on the nonlinear FitzHugh-
Nagumo model. Despite the plant’s nonlinearity, we are able to formulate the model
predictive control problem as an instance of quadratic programming, using a Piece-
Wise Affine (PWA) abstraction of the plant. The speed-versus-accuracy tradeoff for
the explicit and online versions is analyzed on various reference trajectories. Our
MPC-based approach, enabled by the PWA abstraction, presents a framework for
designing automated in silico biomedical control strategies for excitable cells, such
as cardiac myocytes and neurons.

6.1 Introduction

Excitable cells, like neurons and cardiac myocytes, are building blocks of mam-
malian organ systems like the nervous and the cardiovascular systems. As explained
Chapter 2 they exhibit characteristic cyclical APs to electrical stimuli, which could
be provided externally or by neighboring cells via diffusion. The cells are arranged
contiguously to form the corresponding tissue. As we saw in the previous chapter,
the periodic electrical excitation and diffusion at the cell-level leads to emergent
patterns of electrical-wave propagation at the tissue-level [75]. Anomalous patterns
at the tissue-level are associated with potentially fatal disorders like epilepsy and
cardiac arrhythmias. For example, reentry, which corresponds to spiral waves in the
cardiac tissue, is a precursor of Atrial Fibrillation [49].

Controlling the cell-level response is critical for countering abnormal patterns
at the tissue level. Excitable cells have the following distinguishing features that
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pose challenges to designing effective control strategies.

• Nonlinearity: The state space models for neurons and cardiac myocytes have
highly nonlinear vector fields, which leads to multiple time scales.

• Noise: An actuator controlling a biological entity receives noisy readings cor-
responding to the state of the plant. Thus, robustness is critical while designing
a control law.

• Dimensionality: Excitable cells are large dynamical systems and many state
variables could be non-observable.

Model predictive control, a widely used process-control strategy, is well suited
for biomedical applications involving excitable cells. It involves solving a finite
horizon open-loop optimal control problem subject to the dynamics of the plant,
which is the system to be controlled. Based on the measurements obtained at time
T, the controller predicts the dynamic behavior of the system over a prediction
horizon (Tp) and optimizes the control input over a control horizon (Tc < Tp) such
that a predetermined open-loop performance objective function is minimized [21].
The objective function usually measures the plant’s divergence from a prescribed
reference trajectory, and thus is minimized by the controller. Disturbances and
model mismatch constrain the controller’s performance. The optimization can either
be performed online (for accuracy) or can be done offline (for speed).

We present implementations of both the online and offline strategies for model
predictive control of a neuron. Specifically, MPCs for a nonlinear model-based sim-
ulator of an neuron are presented. Fast and accurate model predictive control of
excitable cells can be used for in-silico testing of biomedical control strategies, where
a control law is designed and tested in software before fabrication. The biological
entity being controlled is modeled using a simulator and the control law is tested on
it, in software. Authors in [44] and [69] present novel strategies controlling and man-
aging anomalous behaviors of neurons (epilepsy) and cardiac myocytes (ventricular
tachycardia) respectively.

Model predictive control of plants with nonlinear dynamics, such as neurons,
has garnered interest in the community, due to its unique challenges and wide-
ranging applicability [21, 67]. The nonlinearity of the neuron dynamics results in an
instance of nonlinear optimization to be solved during MPC. In general, nonlinear
optimization is NP hard [50] and thus the implementation of online MPC is compu-
tationally expensive. Explicit MPC for nonlinear systems was proposed in [71], and
has limited tool support. To circumvent these issues, we adopt an approximately
equivalent PieceWise Affine (PWA) abstraction of the nonlinear neuron model for
both the online and explicit MPCs. In [6], the Mixed Logical Dynamical (MLD)
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formalism was introduced for modeling systems whose state variables evolve contin-
uously in time subject to logical constraints. The MPC problem for MLD systems
was shown to be an instance of Mixed-Integer Quadratic Programming (MIQP).
Later in [30], it was shown that PWA systems are equivalent to MLD systems.
Thus, converting the nonlinear neuron model to an approximately equivalent PWA
form transforms the corresponding MPC problem from an instance of nonlinear op-
timization to one of MIQP. Also, the PWA abstraction enables the design of explicit
MPC by using the Multi-Parametric Toolbox (MPT) [53] in MATLAB.

Next, we outline the architecture of the controllers, see Fig. 6.1. The plant
simulates an excitable cell and outputs the AP corresponding to the input stimuli
provided by the MPC. The MPC’s goal is to compute optimal inputs such that
the plant tracks, in discrete time, a reference trajectory that consists of a nominal
sequence of APs.

Figure 6.1: Architecture for tracking action potentials of nonlinear excitable cells using
MPCs.

1. The plant uses a nonlinear model Mp of an excitable cell for its simulation.
We use the FitzHugh-Nagumo (FHN) model [37], described in Section 6.2, as
Mp.

2. The plant outputs the n-dimensional state of Mp as the state of the underlying
excitable cell. For the FHN model n = 2, and one of the state variables is the
dimensionless transmembrane potential, which tracks the reference trajectory.

3. The MPC uses a PWA abstraction, MC , of the plant model, to predict the
behavior of the cell under simulation. We use a modified version of the hybrid
model proposed in [38], henceforth referred to as the (DR) model, as Mc.
The PWA abstraction is used to cast the MPC’s optimization problem as an
instance of MIQP.

4. MPC is also equipped with an optimizer to compute the optimal stimulus
input I, such that the observed state of the plant tracks a pre-defined reference
trajectory.
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The following simplifying assumptions are made in our implementation, and justified
in the appropriate sections of the chapter:

1. The plant’s state is completely visible to the MPC. Ideally, only the membrane
potential is measurable and the internal state is hidden.

2. No exogenous inputs (noise) are considered in the current implementation.

3. The only mismatch between the plant and its model, Mp, used by the MPC is
due to the PWA abstraction.

We summarize our contributions below before outlining the remaining sections.

1. MPCs for a nonlinear model-based neuron have been designed by using a PWA
abstraction. The resulting MIQP optimization instance is solved using both
online and explicit approaches.

2. The PWA abstraction is used to enable the design of explicit MPC in MPT.
The toolbox has been extended to track moving reference trajectories by aug-
menting the state vectors and thus making the penalty matrices time-varying.

3. The online and explicit approaches to the PWA abstraction-based MPC are
compared using several test cases to analyze the tradeoff between accuracy
and speed.

The remainder of the chapter is organized as follows. The next section intro-
duces the two models Mp and Mc in detail. We formulate the MPC problem for
the FHN model-based plant in Section 6.3. The implementation details follow in
Section 6.4. Then, we compare and contrast the online and explicit strategies in
Section 6.5. We discuss related work in Section 6.6, and present concluding remarks
in Section 6.7.

6.2 Physiological Background

As mentioned in the previous section, excitable cells are characterized by their re-
sponse to an external electric current, called the stimulus. ODE models capture the
behavior of excitable cells in terms of the change in the transmembrane potential in
time, as the cell oscillates between depolarization and repolarization in response to
the stimulus.
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Figure 6.2: Simulations of the FHN and the MDR model. Maximum absolute L1
error for v = 0.0056 and w = 0.0013.

The FHN model [37] is a two-dimensional system of differential equations,
representing the dynamics of a neuron:

v̇ = v(1− v)(v − a)− w + I(t), (6.1a)

ẇ = bv − cw, (6.1b)

where v is the dimensionless transmembrane potential, w is a dimensionless recovery
variable, I is the magnitude of the stimulus current and the parameters a, b and c
are given in Table 6.2.

Parameter a b c
Value 0.20 0.05 0.01

Table 6.1: Parameters of the FHN model (Mp) used by the plant.

The MPC uses a Modified Dumas-Rondepierre (MDR) model [38], a PWA
version of the FHN model, to predict the plant’s behavior (simulation of the excitable
cell). The cubic term in (6.1a) is linearized to obtain the PWA dynamics (6.2):

v̇ = p̃(v)− w + I(t), (6.2)

where

p̃(v) =


p(v−)
v−

v v < v−[
p(v+)−p(v−)
v+−v−

]
v +

[
p(v+)− p(v+)−p(v−)

v+−v− v+

]
v− ≤ v ≤ v+

p(v+)
1−v+ (1− v) v > v+.

(6.3)

The constants v+ and v− are given by

83



v− =
a+ (1−

√
a2 − a+ 1)

3
, and (6.4a)

v+ =
a+ (1 +

√
a2 − a+ 1)

3
. (6.4b)

The function p(.) is given by

p(v−) = v−(1− v−)(v− − a), and (6.5a)

p(v+) = v+(1− v+)(v+ − a). (6.5b)

The MDR model model represents Mc used by the controller to predict the plant’s
behavior and compute optimal stimuli values. It can be viewed as a hybrid model
consisting of three modes and can be written in the following format:

ẋ = Aix +Biu + fi (6.6)

y = Cix +Diu + gi (6.7)

where

• i = index of the mode (piece),

• x(t) = Rn state vector,

• u(t) = Rm input vector,

• y(t) = Rp output vector,

• Ai = n× n the Dynamics matrix for mode i,

• Bi = n×m the Input matrix for mode i,

• Ci = p× n the Output matrix for mode i,

• Di = p×m the Feed-through matrix,

• fi = non-homogeneity in dynamics - real vector of size n× 1 and

• gi = real vector of size p× 1.

In the MDR model, we have:

1. Three modes, i.e., 1 ≤ i ≤ 3.

2. Two states v and w, i.e., n = 2.

3. One input, Stimulus I, i.e., m = 1.
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4. Two outputs v and w produced by plant, i.e., p = 2 (all the states are observ-
able).

The MPC works in discrete time. MATLAB’s c2dm function was used, with a
sampling rate of 0.01 sec/sample and the zero-order hold (zoh) method, to generate
the discrete time version of the MDR model. We obtain the following matrices based
on the parameters in Table 6.2. The superscript “d” denotes the corresponding
matrix in the discrete time version.

1. Mode 1, i = 1

(a) Invariant: v < 0.0945.

(b) A1 =

[
−0.0955 −1

0.05 −0.01

]
,

Ad1 =

[
−0.9990 −0.01
0.0005 0.9999

]
.

(c) B1 =

[
1
0

]
, Bd

1 =

[
0.01

0

]
.

(d) f1 =

[
0
0

]
, fd1 =

[
0
0

]
.

(e) C1 =

[
1 0
0 1

]
, Cd

1 =

[
1 0
0 1

]
.

(f) D1 =

[
0
0

]
, Dd

1 =

[
0
0

]
.

(g) g1 =

[
0
0

]
, gd1 =

[
0
0

]
.

2. Mode 2, i = 2

(a) Invariant = 0.0945 ≤ v ≤ 0.7055.

(b) A2 =

[
0.1867 −1
0.05 −0.01

]
,

Ad2 =

[
1.0019 −0.01
0.0005 0.9999

]
.

(c) B2 =

[
1
0

]
, Bd

2 =

[
0.01

0

]
.
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(d) f2 =

[
−0.0267

0

]
, fd2 =

[
−0.0267

0

]
.

(e) C2 =

[
1 0
0 1

]
, Cd

2 =

[
1 0
0 1

]
.

(f) D2 =

[
0
0

]
, Dd

2 =

[
0
0

]
.

(g) g2 =

[
0
0

]
, gd2 =

[
0
0

]
.

3. Mode 3, i = 3

(a) Invariant = v > 0.7055.

(b) A3 =

[
−0.3566 −1

0.05 −0.01

]
,

Ad3 =

[
0.9964 −0.01
0.0005 0.9999

]
.

(c) B3 =

[
1
0

]
, Bd

3 =

[
0.01

0

]
.

(d) f3 =

[
0.3566

0

]
, fd3 =

[
0.3566

0

]
.

(e) C3 =

[
1 0
0 1

]
, Cd

3 =

[
1 0
0 1

]
.

(f) D3 =

[
0
0

]
, Dd

3 =

[
0
0

]
.

(g) g3 =

[
0
0

]
, gd3 =

[
0
0

]
.

Fig. 6.2 compares the FHN model and the MDR model in continuous time. A
stimulus consisting of a spike of height 2.5 at the first time step was used to excite
the model. The simulation was performed in MATLAB using the Euler method
using a time step of 0.01 ms till 100 ms. Initial conditions were v = 0 and w = 0.

6.3 MPC Problem Formulation

Based on the n×1 state measurement (assuming that the complete state of the plant
is observable: a state estimator would be needed in case of partial observability.)
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x(t) obtained at time t, the MPC predicts the dynamic behavior of the system
and optimizes the control inputs such that the objective function in Eq. (6.8) is
minimized:

minimize
U=[u(t),...,u(t+N−1)]

J(U,x(t)) =

N∑
k=1

[(x(t+ k)− xref (t+ k))′λk.Q(x(t+ k)− xref (t+ k))

+ (∆u(t+ k − 1))′R(∆ u(t+ k − 1))]

subject to:

x(t+ k + 1) = Adix(t+ k) +Bd
i u(t+ k) + fdi ,

y(t+ k) = Cd
i x(t+ k) +Dd

i u + gi,

where

∆u(t+ k − 1) = u(t+ k − 1)− u(t+ k − 2)

0 ≤ k ≤ N − 1 and 1 ≤ i ≤ 3.

(6.8)

Optimization is performed over a finite horizon of length N. Q is an n × n
identity matrix and 0 < λ ≤ 1 is a parameter that assigns exponentially receding
weights to the predicted deviations, (x(t+k)−xref (t+k)), over the horizon. Thus,
the scheme is also called receding horizon control. R is a positive definite matrix
that determines the penalty on differences between consecutive inputs.

The optimization problem is solved at time t and the inputs are calculated
for the next N time steps. Only the next input is passed on to the plant, before
repeating the MPC process.

6.4 Implementation of Model Predictive Controllers

for the FHN model-based Plant

Explicit and online MPCs were implemented for the FHN model-based plant using
the MDR model for prediction purposes. The receding horizon parameter λ was
fixed at 0.8 and R =

[
10−3

]
was the input penalty matrix. Next, we describe the

implementation aspects of the online and explicit MPCs.

6.4.1 Online MPC

Online MPC involves solving Eq. (6.8) at every time step in runtime. The con-
strained nonlinear optimizer fmincon [56] was used to implement online MPC in
MATLAB. At each time step t, the current state x(t) of the plant and the reference
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input [xref (t + 1), ...,xref (t + N)] over the finite horizon N were provided to the
controller which then computed the optimal input for the FHN plant. An interior
point algorithm was used for optimization. The FHN plant was then simulated using
Euler method for one time step by applying the optimal input. This process was
repeated for the whole simulation duration.

6.4.2 Explicit MPC

In explicit MPC, the optimization problem of Eq. (6.8) is cast as an instance of multi-
parametric quadratic programming (mpQP) and solutions are computed offline for
possibly overlapping polyhedral partitions, also known as coverings, of the state
space. As shown in Fig. 6.3, the result of this one-time computation is a table of
control laws corresponding to the partitions. At runtime, the current state sample
is tested for membership in the list of partitions. The state may lie in more than
one region due to possible overlap. In this case, the control law resulting in the most
optimal value of the objective function is applied. The process is then repeated for
the next state sample.

Figure 6.3: Workflow for explicit MPC.

We implemented explicit MPC for the FHN model-based neuron simulator us-
ing the MDR model as its PWA abstraction. MATLAB’s MPT [53] was used for
the implementation. The current implementation of MPT supports time-varying
reference trajectories, but it considers constant reference at every time step of pre-
diction horizon. We extended the tool to overcome this limitation. In the remaining
sections, we elaborate on these modifications.

The key idea for incorporating time-varying reference trajectories is as follows.
The reference trajectory over the prediction horizon, xref is considered to be to be a
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sequence of unknown variables. Then these unknown variables are used to augment
the state vector x. Then, the dynamics of the augmented system is reformulated in
a ∆u-form, as the input necessary to keep the states at the reference are also not
generally known. In this formulation, the input at time k is ∆u(k), where u(k − 1)
is an additional state in the dynamical model. So, the original system input can be
obtained as u(k) = u(k − 1) + ∆u(k). The state update equation is then given by
Eq. (6.9).  x(k + 1)

u(k)
xref (k + 1)

 =

Ai Bi 0
0 I 0
0 0 I

 x(k)
u(k − 1)
xref (k)

+

AiBi

0

∆u(k), (6.9)

As the state vector is augmented with new state variables, the penalty matrix Q
also needs to be augmented. The newly augmented penalty matrix is given by Q 0 −Q

0 0 0
−Q 0 Q


In our modification scheme, we consider time-varying reference at all steps of the
prediction horizon. We augment x with the reference state vector for all steps of the
horizon. The newly modified state update equation is given by Eq. (6.10).

x(k + 1)
u(k)

x1ref (k + 1)
...

xNref (k + 1)

 =

Ai Bi 0
0 I 0
0 0 I




x(k)
u(k − 1)
x1ref (k)

...
xNref (k)

+

AiBi

0

∆u(k), (6.10)

where N is the number of steps in the horizon and xjref (k) is the reference vector in

jth time step of the horizon.

Due to the receding horizon principle, the penalty matrix will be different for
each step of prediction horizon. The current implementation of the MPT is amenable
to adding a variable penalty matrix. The general form of the penalty matrix is Q(k) 0 −Q(k) 0

0 0 0 0
−Q(k) 0 Q(k) 0

 ,

where Q(k) = λkQ for k− th step of the prediction horizon. The positions of −Q(k)
in the first row and Q(k) in the third row are adjusted based on k.
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6.5 Results

We conducted two sets of experiments on the online and the explicit MPCs to com-
pare and contrast them.
Experiment Set 1: Speed vs. Accuracy Tradeoff for Different Reference Trajecto-
ries
The online and the explicit MPCs were tested against the same reference trajectory
to study the speed vs. accuracy tradeoff. Two reference trajectories [vir(t), w

i
r(t)],

i = 1, 2 were generated by simulating the FHN model. The protocols used to gen-
erate them were as follows.

S1 Protocol for generating [v1r(t), w
1
r(t)]

1. Initial conditions: v = 0, w = 0 (rest conditions).

2. Time step used in the simulation: 0.1 ms.

3. Total duration of simulation: 240 ms (2400 time steps).

4. Stimuli pattern: One time-step-long (0.1ms) supra-threshold stimulus pulses
of intensity (height) 1.5 were applied every 80 ms, to produce three APs in
the simulation. Thus, the pacing frequency was 12.5 Hz.

S2 Protocol for generating [v2r(t), w
2
r(t)]

1. Initial conditions: v = 0, w = 0 (rest conditions).

2. Time step used in the simulation: 0.1 ms.

3. Total duration of simulation: 240 ms (2400 time steps).

4. Stimuli pattern: 10-steps-long (1 ms) supra-threshold stimulus pulses of in-
tensity (height) 1.5 were applied every 80 ms, to produce three APs in the
simulation. Thus, the pacing frequency was again 12.5 Hz.

The simulation was carried out using the Euler’s method of numerical integration
in MATLAB. Both the MPCs were tested against the S1 and S2 reference trajecto-
ries using a 3-step lookahead horizon. Their performance was compared using the
following two metrics:

1. Accuracy of the plant’s operation (µvl2, µ
w
l2): measured using the mean

L2 error between the reference trajectory and the output of the simulation
carried out by the plant.
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2. Timeliness constraint on the MPC: dictates that the working of the MPC
must be fast enough to cope with the plant’s operation. The degree to which
the two MPCs met this constraint was measured as follows. The time taken
by the Euler method-based simulation for producing the reference trajectory
was noted, say t1 secs. The plant + MPC combination was run on a single
thread in a lock-step fashion, i.e., the plant was halted till the MPC finished its
computation and provided the stimuli value for the next time step. The total
time taken for tracking the reference trajectory was noted, say t2 secs. Then,
t12 = (t2− t1) provided an estimate of the time taken by the MPC to compute
the stimuli. Ideally, t12 < t1, which ensures that the MPC’s computation runs
faster than the rate at which the plant evolves (simulates the FHN model).

Table 6.2 provides performance metrics for the two MPCs. Fig. 6.4 and Fig. 6.5
plot the evolution of v and w for protocols S1 and S2, respectively.

Protocol Controller µvl2 µwl2 t1(s) t2(s)

S1
Online MPC 2.8× 10−5 4.9× 10−5 0.023 136.8
Explicit MPC 4.3× 10−4 1.1× 10−4 0.023 88.8

S2
Online MPC 1.8× 10−4 2.2× 10−4 0.023 147.3
Explicit MPC 2.7× 10−2 1.1× 10−2 0.023 88.3

Table 6.2: Performance metrics for assessing the speed vs. accuracy tradeoff across
different reference trajectories.
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Figure 6.4: Performance of the online and explicit MPCs on spike-shaped stimuli produced
by the S1 protocol.
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Figure 6.5: Performance of the online and explicit MPCs on rectangular pulse-shaped
stimuli produced by the S2 protocol.

Discussion

Following inferences can be made from the results shown in the preceding para-
graphs:

1. The accuracy of the fmincon-based online MPC is better than the MPT-based
explicit MPC. This can be attributed to an accurate solution to the optimiza-
tion problem, found by fmincon at run time, for the specific current state of
the plant. The explicit MPC on the other hand, partitions the state space and
finds a common control law for the whole partition. Accuracy is lost in this
process.

2. The fmincon-based online MPC is much slower than the MPT-based explicit
MPC. FMINCON exhaustively explores the whole state space at every time
step of the plant’s operation. This leads to its slow operation. The most
time consuming step for the explicit MPC is searching for the partition corre-
sponding to the current state, and this is achieved much faster than the online
MPC’s operation.

Experiment Set 2: Effect of Horizon Length on Explicit MPC
Explicit MPC is enabled for time-varying reference trajectories by augmenting the
state vectors and reformulating the dynamics. State space augmentation leads to an
exponential increase in the number of polyhedral partitions. Table 6.3 compares the
build-time and the number of partitions for different horizon lengths. Increasing the
horizon length N is expected to improve the predictive accuracy of MPC. In the case
of MPT-based design of explicit MPC, we observed that accuracy did not improve
considerably on changing the horizon length from 2-step to 3-step lookahead. For
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Horizon length Build-time in MPT (secs.) Number of partitions
0 0.45 3
1 2.78 30
2 51.36 277
3 576.41 2581

Table 6.3: Effect of N on explicit MPC design in MPT. Horizon length of 0, which
corresponds to 0-step lookahead, is specified for comparison purposes.

both cases, the mean L2 errors for v and w were recorded to be around 0.027 and
0.001 respectively (for S2-type stimuli).

Having a smaller horizon leads to significant reduction in the search space,
while searching for the partition corresponding to a given state sample. This re-
duction is critical as the search operation is performed at every time step during
operation. In our case, t2 reduced from 88.3 secs. to 11.2 secs when the horizon
length was changed from 3 to 2 for the S2 protocol.

6.6 Related Work

MPC has been widely used in many domains like the chemical, food-processing,
automotive, and aerospace industries. An exhaustive survey of both the theoretical
and the practical aspects can be found in [24]. Explicit MPC, which is relatively
new, has been surveyed in [1]. Recently MPC has found interesting biological and
biomedical applications. In [39, 73], a platform for in silico realtime closed-loop
control of gene expression in yeast has been proposed. It uses MPC to perturb
inducible promoters in a systematic way to gain insights about gene expression.
MPC has been successfully applied to devise therapeutic strategies in [9, 10, 63, 41].
In [59] MPC is used for functional electrical stimulation to estimate stimulation
patterns for muscles that have been paralyzed due to spinal cord injury. Controllers
for tracking neuron APs are designed in [62, 7] and thus are closest to our work. We
compare and contrast each of them with our MPC-based approach below.

In [62], an adaptive input-output feedback linearization controller is presented
to track a nominal AP using the FHN model. In contrast, MPC is a feed-forward
control technique. Its predictive capability allows the controller to quickly adapt to a
model mismatch caused due to the degradation/aging of excitable cells. Parameter
estimation and tuning the model are the only steps involved in adapting to the
changes, whereas a feedback controller needs complete redesign. Also, explicit MPC
can track arbitrary fast-changing APs whereas the controller in [62] is designed for
a nominal AP.
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In [7], the authors present a sophisticated controller for a neuron based on
the Hodgkin-Huxley (HH) model [31]. The HH model is augmented with random
variables to capture stochastic behavior and external disturbances. Membrane po-
tential is treated as the only observable and a state-estimator is employed for the
other hidden variables of the HH model. On the other hand, we focus on comparing
the online and explicit approaches to MPC in the case of a nonlinear plant being
modeled using a PWA abstraction. The realistic setting of [7] is complementary to
our work and provides directions for extending our scheme. Also, the FHN and the
MDR models used in our work are order-reduced versions of the HH model.

6.7 Conclusions

Explicit and online MPC was presented for tracking a reference sequence of APs us-
ing an FHN model-based neuron simulator. The controllers employ a PWA abstrac-
tion of the nonlinear plant, thus enabling a QP formulation of the model predictive
control optimization problem. The speed versus accuracy tradeoff was assessed us-
ing several test cases. The online approach provides excellent accuracy, but fails to
satisfy the timeliness constraint. Offline MPC on the other hand, satisfies the time-
liness constraint for a limited set of reference trajectories, but provides relatively
lower accuracy than the online version.
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Chapter 7

Conclusions and Directions for
Future Research

We begin with concluding remarks, and then present some directions for future
research.

Conclusions

In Chapter 3, we presented a model-order reduction technique to enable the con-
struction of a tower of abstraction for cardiac models, as described in Chapter 1.
Reduction entails approximating the subsystems of detailed cardiac models using
HH-type models. We constructed two-state HH-type models, ΣHI and ΣHK , corre-
sponding to the detailed ion channel components, ΣI (13-state) and ΣK (10-state)
respectively, of the IMW model.

We then presented a proof technique to show that the detailed subsystem can
be substituted by the HH-type abstraction within the whole-cell model. The proofs
entail computing Lyapunov-like BFs. In Chapter 4, we presented two algorithms for
computing the BFs. We used the small-gain theorem to show that ΣI and ΣK can be
replaced by ΣHI and ΣHK within the CCMs. This substitution of (approximately)
equals for equals is “safe” in the sense that, despite the feedback nature of the
composition of the detailed ion-channel component and the rest of the IMW model,
the approximation error remains bounded in this context.

After identifying a model with the requisite level of detail, its analysis becomes
important. One of the pertinent analysis questions is the parameter identification
problem. Technological developments within the graphics processing community,
NVIDIA in particular, coupled with theoretical advances in the computer-aided
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verification community, have set the stage for fast simulation-based parameter iden-
tification for cardiac models. In Chapter 5, we presented a key component of such
a framework: a parallel curvature analysis algorithm that given a series of frames
generated via simulation or optical mapping, produces a curvature-based signature
of the wave/spiral captured in the frames. Our isopotential reconstruction algo-
rithm takes advantage of NVIDIA’s Tesla and Fermi graphics processing cards, and
the associated CUDA architecture. Our results demonstrate speed-up by a factor
of 444.44 for isopotential reconstruction compared to the MATLAB-based contour
algorithm. Our case studies identified distinct signatures for various forms of cardiac
arrhythmias (eight in total), which may be used to classify a wave by its spiral type.

In Chapter 6, explicit and online MPCs were presented for tracking a reference
sequence of APs using an FHN model-based neuron simulator. The MPCs employ
a PWA abstraction of the nonlinear plant, thus enabling a QP formulation of the
model predictive control optimization problem. The speed versus accuracy tradeoff
was assessed using several test cases. The online approach provides excellent accu-
racy, but fails to satisfy the timeliness constraint. The offline MPC, on the other
hand, satisfies the timeliness constraint for a limited set of reference trajectories,
but provides relatively lower accuracy than the online version.

Directions for Future Research

In Chapter 4, we presented SOSP 1 and SOSP 2, two SOS optimization-based BF-
computation algorithms. SOSP 1 produces functions that satisfy Eq. 4.3 only on
a sampled subset of the input space, which is defined by grid-based discretization.
SOSP 2 overcomes this limitation by adding the unknowns σ1 and σ2, see Section
4.7, Eqs. (4.11)-(4.13). Despite overcoming the restriction of SOSP 1, SOSP 2 pro-
vides relatively weaker bounds on the OD. Thus, the algorithms present a tradeoff:
soundness of BFs versus the bound on the OD.

Fig. 7.1 illustrates a revised workflow, which combines SOSP 1 and SOSP 2,
along with a validation procedure for BFs computed using SOSP 1. The workflow is
as follows. Given the two dynamical systems Σ1 and Σ2, SOSP 2 is implemented to
obtain a BF. If the BF provides satisfactory bounds on the OD, then we are done.
If the user seeks a tighter bound, SOSP 1 is implemented, using an input-space
discretization, as per Section 4.5. The resulting function, now known as a candidate
BF satisfies the decay condition only on the grid points. In other words, the ψ ≥ 0,
in Fig. 7.1 holds on the grid points shown in blue.

The candidate BF is then validated using a technique based on [45]. First,
a local minima is computed for ψ, if it is negative, then the input pair (u1, u2)
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Figure 7.1: Validating BFs using Satisfiability Modulo Theory.

represents a counterexample to ψ ≥ 0. This input-pair is then used to augment the
input-space discretization, and SOSP 1 is repeated. If the minima is non-negative,
then Satisfiability Modulo Theory (SMT) is used to validate ψ ≥ 0. In [45], authors
use an ensemble of SMT-based tools to validate Lyapunov functions. A similar
approach can be used to validate the candidate BFs. Any counterexample to the
ψ ≥ 0 claim is used to further refine the input-space quantization. Thus, the BF
computation involves iterating between SOSP 1 and generating counterexamples.
The process terminates when no further counterexamples are found; in other words,
the candidate BF is validated.
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Appendix A

Stability properties of
voltage-controlled CTMCs for Ion
Channels

In this chapter, we use compartmental systems theory [74] to state and prove stabil-
ity properties of the constant-voltage ion channel models Σv

I and Σv
K . This in turn

justifies the simulation strategy used in PEFT, i.e. finite-length simulations of Σv
I

and Σv
K are sufficient to obtain the approximately equivalent HH-type abstractions

Σv
HI and Σv

HK .

Theorem A.0.1. Let Ax(v), be the rate matrix of the corresponding dynamical
system Σx, x ∈ {I,K}, as per Definitions 2.1.1 and 2.1.2. For all the values of the
bounded input v ∈ [Vres, Vmax], Ax(v) has exactly one eigenvalue that is 0 and the
real part of all the other eigenvalues is negative.

Proof. First, we will prove a lemma showing that the rate matrices Ax(v) are com-
partmental matrices for v ∈ [Vres, Vmax].

Lemma A.0.2. The rate matrix Ax(v) is a compartmental matrix for v ∈ [Vres,
Vmax].

Proof. A square matrix M ∈ Rn×n is called a compartmental system if it satisfies
the following properties:

1. All the non-diagonal entries are greater than or equal to 0, i.e Mij ≥ 0 for
i = 1, . . . , n, j = 1, . . . , n, i 6= j.

2. Sum of the entries along all the columns is less than or equal to 0, i.e.∑n
i=1Mij ≤ 0, j = 1, . . . , n.
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The Mij entry of the matrix is interpreted as the rate of flow of mass from the jth

compartment to the jth compartment, i 6= j. The diagonal entry Mii is the total
rate of outflow from the ith compartment.

For the rate matrices Ax(v), the first property is satisfied as the non-diagonal
entries on the ith row of Ax(v) represent incoming transfer rates for state i. These
rates are positive as they are exponential functions of the input v. For ΣI and ΣK ,
these functions are listed in Tables 2.1 and 2.2 respectively.

Consider the jth column of Ax(V ). The entry Ax,ij, i 6= j denotes the transfer
rate from state j to state i. The diagonal entry of this column Ax,jj is the negated
sum of all the outgoing rates from state j. Thus, the sum of every column is 0.

Lemma A.0.3. The rate matrix Ax(v) is irreducible for v ∈ [Vres, Vmax].

Proof. Irreducibility of Ax(v) can be proved using a graph-theoretic argument. We
construct a directed graph Gv

x(W,E), where the set of vertices W corresponds to
the states of Mx. The set of edges E is constructed as follows. An edge, eij, from
vertex i to vertex j, i, j = 1, . . . , n exists if Ax,ij(v) 6= 0.

From linear algebra, we know that the matrix Ax(v) is irreducible if and only
if Gv

x(V,E) is connected, i.e. there is a path between every pair of vertices.

If there is an edge from state i to state j of Mx, then the transfer rate Ax,ij(v)
does not become 0 for any value of v as it an exponential function of v. Also,
for a given value of v ∈ [Vres, Vmax], the corresponding graph Gv

x always remains
connected. Thus Ax(v) is irreducible for all v ∈ [Vres, Vmax].

Now we introduce the concept of a trap of a compartmental system. A trap is
a compartment or a set of compartments from which there are no transfers or flows
to the environment nor to the compartments that are not in that set. A formal
definition is as follows. Let S be a linear compartmental system consisting of com-
partments C1, C2, . . . , Cn. Let T ⊆ S, be a subset of the compartments. We number
the compartments such that T consists of the compartments Cm, Cm+1, . . . , Cn for
m ≤ n. Let F ∈ Rn×n be the rate matrix consistent with the new numbering. The
subset T is a trap if and only if Fij = 0 for (i, j) such that j = m,m+ 1, . . . , n and
i = 0, 1, . . . ,m − 1. A trap is said to be simple is it does not strictly contain any
traps.

Lemma A.0.4. The only trap in Ax(v) is the set of all states.

Proof. As Ax(v) is irreducible, as per Lemma A.0.3, flow between any pair of com-
partments is nonzero. Thus the only trap is the set of all compartments,

The proof of the Theorem A.0.1 now follows from Theorems 2.2.4 and 2.2.6 of
[74]. Prerequisite conditions have been proved in Lemmas A.0.3 and A.0.4.
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Appendix B

Proofs of Theorems 4.3.2 and 4.3.3

A proof of Theorem 4.3.2 is as follows.

Proof. From Eq. 4.2, we have the first inequality. From Eq. 4.3, we have

dS(x1(t),x2(t))

dt
≤ −λS(x1(t),x2(t)) + γ ‖ u1(t)− u2(t) ‖

≤ −λS(x1(t),x2(t)) + γ ‖ u1 − u2 ‖∞

Let η(t) = e−λtS(x1(0),x2(0)) + λ
γ
‖ u1 − u2 ‖∞. It is a solution of the differential

equation η̇(t) = −λη(t) + γ ‖ u1 − u2 ‖∞. Moreover, S(x1(0),x2(0)) ≤ η(0); then
from the funnel theorem [42], it follows that ∀t ≥ 0, S(x1(t),x2(t)) ≤ η(t).

A proof of Theorem 4.3.3 is as follows.

Proof. Consider S be the function as per the theorem. We will find conditions on
α1 and α2 such that S is a BF between ΣA1 and ΣB2. If α1 ≥ 1 and α2 ≥ 1, then

S(xA1,xB2) ≥ SAB(xA,xB) + S12(x1,x2)

≥‖ gA(xA)− gB(xB) ‖ + ‖ g1(x1)− g2(x2) ‖,

because SAB and S12 satisfy Eq. 4.2. The output difference of ΣA1 and ΣB2:

‖ gA1(xA1)− gB2(xB2) ‖ =
√
‖ gA(xA)− gB(xB) ‖2 + ‖ g1(x1)− g2(x2) ‖2

≤‖ gA(xA)− gB(xB) ‖ + ‖ g1(x1)− g2(x2) ‖
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Therefore, it shows that S satisfies Eq. 4.2. Applying similar steps as in [25], we
can write the following:

∂S

∂xA1
fA1(xA1,uA1) +

∂S

∂xB2

fB2(xB2,uB2)

≤ −(α1λAB − α2γ12)SAB(xA,xB)− (α2λ12 − α1γAB)S12(x1,x2)

If (α1λAB − α2γ12) > 0 and (α2λ12 − α1γAB) > 0 and

λ = min( (α1λAB−α2γ12)
α1

, (α2λ12−α1γAB)
α2

), then

∂S

∂xA1
fA1(xA1,uA1) +

∂S

∂xB2

fB2(xB2,uB2) ≤ −λS(xA1,xB2).

Therefore, S will be a BF if α1 ≥ 1, α2 ≥ 1, (α1λAB − α2γ12) > 0 and (α2λ12 −
α1γAB) > 0. As shown in [25], these four conditions can be expressed as λABλ12

γABγ12
< 1.
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