

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Finding the Right Balance: Security vs. Performance
with Network Storage Systems

A Thesis Presented

by

Arun Olappamanna Vasudevan

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

May 2015

Copyright by
Arun Olappamanna Vasudevan

2015

Stony Brook University

The Graduate School

Arun Olappamanna Vasudevan

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Dr. Erez Zadok, Thesis Advisor
Associate Professor, Computer Science

Dr. Scott Stoller, Thesis Committee Chair
Professor, Computer Science

Dr. Mike Ferdman
Assistant Professor, Computer Science

This thesis is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Thesis

Finding the Right Balance: Security vs. Performance with Network Storage Systems

by

Arun Olappamanna Vasudevan

Master of Science

in

Computer Science

Stony Brook University

2015

As cloud storage in particular and networked storage in general gain widespread adop-
tion, the biggest concern for customers is security. The concern is well warranted for two
reasons. First, the surface area of exploitation and vulnerability is greatly increased with the
communication channel and a possibly shared remote server, in addition to multiple clients.
Second, when the networked storage server is maintained by a third party, such as a cloud
provider, there is a lack of trust on the way data is managed at the server side.

In order to minimize the risks while out-sourcing the data management, networked stor-
age clients need security mechanisms at their end to ensure data integrity and confidentiality.
However, security mechanisms such as encryption, authentication, and virus-scanning often
have high performance overhead. Figuring out the security policy that offers the right balance
of security and performance is therefore important. To solve this problem, we examine the
performance overhead of different security features of a networked storage system, and de-
velop security policies that trade-off security and performance. This study was motivated by
the lack of previous work on performance overhead of security in the context of networked
storage systems.

A typical way to enforce security policies in client-server computer systems is using prox-
ies to monitor and regulate the client-server communication, as exemplified by network fire-
walls. While the security installations go into a proxy, clients and servers are kept intact,
and can continue to work without changes. The proxies are usually deployed at the trusted
end to fence off security threats from the untrusted end. For example, network firewalls are
often deployed by the server end to defend malicious clients; cloud-backed storage proxies
can be used by the client end to safeguard against the malicious cloud back-end. In addi-
tion to providing security, proxies can also improve performance by caching as with CDNs.
Considering that storage servers may be slow and over a WAN, as in cloud-backed systems,
caching proxies, deployed in the same LAN of the clients, can significantly reduce server
access latency.

iii

Specifically, we studied the trade-off between security and performance in a Network
File System (NFSv4) with a security and caching proxy. We designed and implemented
the proxy with a layered architecture, where each security feature is a stackable file system
layer. Each layer can be enabled or disabled, and configured separately as required by policy.
For example, an anti-virus layer can be configured with the size or type of file that it scans,
while an integrity layer can be configured independently whether or not to detect replay
attacks of file data. This layered architecture facilitates the security-performance trade-off
study because different security policies can be composed easily via composition of different
layers.

Our study showed interesting interaction between security policies and system perfor-
mance. We found that the order of the same set of security layers has significant performance
impact, and identified the optimal order of anti-virus, encryption, integrity, and caching lay-
ers. In addition to a broad idea of security policies and their effect on performance, we also
present insight into interactions between caching and security, a topic that is less studied in
academia.

iv

To my Mother Usha;
Father Vasudevan;
Teachers Smt Shobhana, and Sri Krishnamurthy;
Grandparents Muthassan, Muthassiamma, and Ammamma;
and
Sri Krishna, the Divine, the Consciousness!

iv

Contents

List of Figures vii

List of Tables vii

Acknowledgments ix

1 Introduction 1

2 Background 5
2.1 Prior Work . 5

2.1.1 HTTP with Integrity . 5
2.2 Network Attached Storage and Cloud . 6

2.2.1 IBM Panache . 6
2.2.2 Cloud NAS . 6
2.2.3 Cloud storage Gateways . 6

2.3 NFS-Ganesha . 7

3 Design 9
3.1 Threat Model . 9
3.2 Design Goals . 9
3.3 Security and Caching . 10

3.3.1 A General I/O Model . 10
Simple Cache Module . 11
Simple Security Module . 13
Extending the Simple Model to the File System Interface 15

3.3.2 Ordering of Security and Cache Layers 16
Approach A: Security Layer Above Cache Layer 16
Approach B: Cache Layer Above Security Layer 20

3.3.3 Coming Up with the Final Design 23

4 Implementation 29
4.1 Network Storage Architecture with Proxy 29
4.2 Anti-Virus . 29
4.3 Proxy-Cache FSAL . 31
4.4 Integrity and Encryption . 32
4.5 Proxy FSAL . 34

v

4.6 Development Effort . 34

5 Evaluation 35
5.1 Experimental Setup . 35
5.2 Performance of different read-write ratios 37
5.3 Macro-Workloads . 39

6 Conclusions 41
6.1 Limitations and Future Work . 42

Bibliography 43

vi

List of Figures

1.1 Secure proxy . 3

2.1 NFS-Ganesha in proxy configuration – overview 7

3.1 There are two ways that a security and cache module can be stacked in a
trusted proxy . 11

3.2 Approach A: Data in various stages of read request processing 16
3.3 Approach A: Flowchart for read . 17
3.4 Approach A: Data in various stages of write request processing 18
3.5 Approach A: Flowchart for write . 19
3.6 Approach B: Data in various stages of read request processing 21
3.7 Approach B: Flowchart for read . 22
3.8 Approach B: Data in various stages of write request processing 22
3.9 Approach B: Flowchart for write . 23
3.10 Stacking security and cache modules in proxy 26
3.11 Flowchart for read with anti-virus, cache, crypto, and integrity modules . . . 27
3.12 Flowchart for write with anti-virus, cache, crypto, and integrity modules . . . 28

4.1 AES-GCM for integrity and optionally encryption 32
4.2 Header, data blocks and data integrity field of a typical file 33
4.3 NFS End-to-end Data Integrity . 33

5.1 Benchmark setup. 35
5.2 Throughput of 1:1 read-write ratio. 37
5.3 Throughput of 16:1 read-write ratio. 38
5.4 Performance speed-up of different read-to-write ratios for 1MB files. 38
5.5 Throughput of 1:16 read-write ratio. 39
5.6 Performance of Filebench macro-workloads. 39
5.7 Filebench Web Server results . 40

vii

List of Tables

1.1 Storage service downtime of major cloud providers in 2014 1

2.1 Security guarantees of HTTP, HTTPS, HTTPA, HTTPI 6

3.1 Simple key–value storage access protocol 12
3.2 Simple cache interface . 13
3.3 Simple security interface . 14
3.4 Comparison of different layer orders of cache and security 24

4.1 Development effort in project . 34

5.1 Combinations of security features. 36

viii

Acknowledgments
“The whole is greater than the sum of its parts,” – Aristotle.

This work could not have been possible without the efforts and sacrifices of a lot of
people.

Dr. Erez Zadok has been extremely supportive throughout my spell at the File Systems
and Storage Lab (FSL). He was very involved with this work and gave invaluable suggestions.
In fact, the very idea of studying the interaction between cache and security modules was his.
I express my heartfelt gratitude to Prof. Zadok.

Ming Chen, a Ph.D. student at FSL, helped me with the project in several ways. It is
amazing that he was able to offer immensely to this project with coding, debugging, review-
ing, benchmarking, and project management. He did all of this on top of his thesis work and
personal responsibilities. He is such an inspiration, and I thank him profusely for everything.

Kelong Wang, a masters student at FSL, also worked hard to get a lot of work done in
relatively less time. I got to learn several concepts from him. Thankfulness to Kelong for his
contribution.

I also acknowledge all the other students at FSL. We spent quality time with each other
and discovered a lot.

Let me also appreciate Prof. Mike Ferdman (who taught Operating Systems and Com-
puter Architecture courses), Prof. Jie Gao (Algorithms), Prof. R. Sekar (Compilers), Prof.
Don Porter (Virtualization), and Prof. Long Lu (System Security). Courses with them im-
proved my knowledge of systems. Toshiba’s compiler division in Bangalore, who I worked
with, laid the foundation for my understanding of systems. I extend a special recognition to
Balachandher Sambasivam and the team.

Finally, gratefulness to the valuable feedback by committee members – Dr. Scott Stoller,
Committee Chair; Dr. Mike Ferdman; and Dr. Erez Zadok, Thesis Adviser.

This work was made possible in part thanks to NSF awards CNS-1302246, CNS-1305360,
CNS-1522834, and IIS-1251137.

This journey has not been a solitary one. My family and friends have ridden along!

ix

Chapter 1

Introduction

Cloud storage is popular as we can see from the prosperity of a long list of cloud storage
providers, such as Amazon S3, Google Drive, Dropbox, Microsoft OneDrive and Azure,
Apple iCloud drive, Box.net, etc. It is becoming increasingly popular as the vision of utility
computing is gradually being realized. More organizations and people have moved their
enterprise and personal data to the cloud as an economically more viable alternative to local
storage for traits such as data protection, scalability, and accessibility (from multiple devices,
at multiple locations) [5, 27]. Table 1.1 shows impressive availability statistics from major
cloud providers [45].

Outsourcing data storage to third-party cloud providers is a challenging decision with the
following concerns:

Availability Data should be available when needed.

Confidentiality Data should be accessible only to authorized users.

Integrity Data read should be same as data that was written.

While cloud storage has great availability, it is far from perfect. Data loss continues to
be a concern. A 2013 report by Symantec found that 43% of respondents have lost data in
the cloud [16]. Data loss prevention strategies include auditing the cloud, creating copies,
keeping data across multiple cloud providers [6, 10, 23, 25], etc.

Cloud Providers Storage downtime Storage uptime
(hours) %

Microsoft Azure 10.97 99.8751
Amazon Web 2.69 99.9694

Services
Google Cloud 0.23 99.9973

Platform (14 min)

Table 1.1: Storage service downtime of major cloud providers in 2014

In terms of integrity and confidentiality, cloud storage is doing much worse. It is scary
to note that there are reports of data corruption in the cloud [42], since it could easily go

1

undetected for long time, and used by applications as legitimate data. For instance, the data
in financial institutions, if corrupt, can lead to all sorts of incorrect calculations that affect a lot
of customers. With increasing volume of private data in the cloud, privacy and confidentiality
are big concerns. The significance is highlighted by highly publicized incidents such as
leakage of intimate photos of celebrities [4], stealing of patient records [30], and release of
confidential data of companies [44].

Security issues are inherent in cloud’s nature that data are managed be service providers
in a cloudy (opaque) manner. This cloudiness is flexible so that providers can consolidate,
scale, replicate, or migrate data without affecting clients. Meanwhile, the cloudiness also
begets mistrust of cloud storage providers. Even if the providers themselves are trusted,
security safeguards are still necessary because many cloud-storage providers share physical
resources among multiple potentially-malicious tenants.

In this thesis, we study how to secure outsourced data while assuming availability as the
bare minimum requirement that clients depend on the server for. The assumption is reason-
able because high availability is one of the key factors that motivate the adoption of cloud
storage. We focus on means that clients can use to ensure the confidentiality and integrity
of data. Confidentiality can be fully achieved through encryption of data that goes into the
cloud, whereas integrity can be verified by checking retrieved data against Message Authenti-
cation Code (MAC). Security concerns about the Internet that connects the organization with
the cloud storage is significant, but has been greatly reduced by HTTPS or Kerberos [41] that
are used for transport-layer security. Although a trusted transport layer is desired, our study
of integrity and confidentiality is agnostic to and does not require a trusted transport.

As an organization that uses a third-party provided cloud service, encryption and integrity-
checks are enough to take care of server-side trust issues. But, the end-users of cloud storage
facility in the organization, for instance, the employees, cannot be fully trusted. There could
be accidental infusion of virus files into client systems. Thus an organization should guard
against malware as well. Additionally there could be other issues to guard against, such as
accidental modification or deletion by the end-users. Solutions such as snapshotting can be
deployed to protect against this.

In this thesis, we focus on confidentiality and integrity issues with the network storage
server, and malware concerns at the client-side. As already discussed, the solutions are to
deploy data security measures such as encryption, integrity-checking, and anti-virus. The
security solutions often come with a performance overhead. It is important that we under-
stand and characterize the performance overhead and trade-offs of security, so that the right
decisions can be made when determining security policies. For example, we might be able
skip some security measures for certain temporary files. There could also be personal files
such as photos that may not be all that relevant for the company to protect with a full suite of
security measures.

To our best knowledge, there has not been any prior work that studies the security–
performance relation in a networked storage system. This work will serve as a good reference
for future research in this direction, in addition to helping decide security policies for similar
systems.

With an untrusted server and a semi-trusted client, using a proxy or a gateway machine is
a good way to monitor and regulate the client-server communication, as shown in Figure 1.1.
The proxy machine, being under the control of system administrators, is trusted and can guard

2

Cloud

Secure Proxy with Cache

Clients

Figure 1.1: Secure proxy

against security threats from both untrusted servers and semi-trusted clients. The proxy also
allows the client and server to continue to work as they used to, with minor modifications
such as the IP address to connect to. The proxy machine can be used to perform operations
to find checksum, encrypt, and scan for malware, when data is written to server; and decrypt
and verify checksum when data is read from server.

However, security is not free. Some researchers [8] argued that encryption was too ex-
pensive to justify storing encrypted data on the cloud, whereas other researchers [1, 43] have
claimed new hard acceleration make encryption viable and cheap for cloud storage. The
overhead of security might be minimized by caching contents and collecting multiple writes
before writing back to server. The benefits of a cache could turn out to be significant, con-
sidering that the storage server is accessed over the long-latency Internet. The proxy, on the
other hand, is in the same LAN as client machines.

The system that we built has a client that accesses data on a storage server using a Net-
work File System (NFS). Though in reality, a cloud storage would typically have a REST
or SOAP API [3], we selected NFS as the protocol for mainly two reasons. First, NFS ver-
sion 4 is designed for WAN with features such as a standard port number (2049), stronger
network security using RPCSEC GSS, compound requests, and delegations [7]. The newer
version 4.1 supports parallelism and data striping for improved performance. Second, there
are systems like Panache from IBM [26] that enable wide-area file access through caching.

With clients and the server using NFS, the proxy acts as NFS server to client and as an
NFS client to the server. We developed security features and caching as layers on top of
the NFS client part of the proxy. Development in stackable file system layers enabled easier
development and debugging. The stackable architecture also allowed enabling, disabling, and
even reordering of the layers, to compose different security policies and to study the effect

3

of each layer separately. In fact, we found that the order of the same set of security layers
has significant performance impact, and identified the optimal order of anti-virus, encryption,
integrity-check, and caching layers.

The rest of this thesis is organized as follows. Chapter 2 discusses background work to
justify the need for analyzing the impact of security policies on performance. Chapter 3 talks
about the interaction between security and caching modules from a theoretical perspective.
Chapter 4 details our implementation. Chapter 5 compares the performances of different
security policies using micro and macro workloads. This section also summarizes the cor-
rectness of our implementation. Chapter 6 concludes and discusses future work.

4

Chapter 2

Background

Though our work to find overhead of security in networked storage systems is novel, there
has been similar work in networking, earlier. In this section, we talk about HTTPi and related
technology that gives a choices of trading security with performance in networking space.
We follow this up with a few network storage systems that could use our research work. This
chapter ends with a brief about NFS-Ganesha and FSAL that is used in the system.

2.1 Prior Work

2.1.1 HTTP with Integrity
In the World Wide Web, two common transfer protocols are HTTP and HTTPS. While HTTP
gives no security, HTTPS provides security guarantees for server authentication, message in-
tegrity, and message confidentiality. HTTPS achieves confidentiality by encrypting messages
using a symmetric key that is exchanged at the time of establishing connection. The exchange
of symmetric key is protected by asymmetric encryption using public and private keys. En-
cryption of messages have a two-fold overhead. First, each message has to be encrypted
and decrypted, that adds to computation overhead. Second, the message cannot be cached in
intermediate servers, that adds to bandwidth requirements and network traffic.

In several cases such as open applications, server authentication and message integrity
are the only security guarantees that are needed and using HTTPS is an overkill. This led
to proposal of HTTPi (HTTP with Integrity) [9, 38] and SINE [19]. A list of HTTP-related
protocols and their security guarantees are listed in Table 2.1 [9]. With HTTPI, intermediate
servers can cache contents since the content is irrespective of which client accesses it. This
also enables the use of HTTPI in Content-Centric Networks and Named Data Networks [22].
HTTPI’s performance is almost as good as HTTP.

In case of networked storage systems, unlike the World Wide Web, server authentication
is not a problem, whereas, client authentication, message integrity, and message confidential-
ity are. The emergence of newer protocols to satisfy specific security guarantees in the World
Wide Web is a testimony and motivation to our study of performance overheads of different
security policies in a networked storage system. Apart from the motivation part, the HTTP
family bears no direct relation with the research that this thesis is about.

5

Server Client Message Message
Authentication Authentication Integrity Confidentiality

HTTP
HTTPS 4 8 4 4

HTTPS with password 4 4 4 4

HTTPA [17] 8 4 4 8

HTTPI 4 8 4 8

HTTPI with password 4 4 4 8

Table 2.1: Security guarantees of HTTP, HTTPS, HTTPA, HTTPI

2.2 Network Attached Storage and Cloud
Network Attached Storage (NAS) appliances are popular as a storage solution for enterprise.
There are several storage companies that provide NAS solutions with a lot of features. For
instance, FreeNAS [21], a free and open-source software for NAS, comes snapshotting, repli-
cation, compression, disk encryption, de-duplication, etc. NAS provides file-based protocols
such as NFS and CIFS for access by clients. If security of this system has to be enhanced to
detect malware, for example, we can use anti-virus scanners before writing to storage server.

Our work can give an idea of performance overhead for security enhancement of NAS
appliance. We have noted down a few more examples where our research can be used, in the
next few paragraphs.

2.2.1 IBM Panache
Panache [26] is a parallel file system cache that enables efficient global file access over WAN
without the fluctuations and latencies that WAN comes with. It uses pNFS to read data from
remote servers over the Internet and caches them locally in a cache cluster. Our work will
prove beneficial if IBM Panache is to be fortified with security enforcements. In that case,
the results of our study can help Pananche decides the security features to pursue considering
the potential performance overhead.

2.2.2 Cloud NAS
Virtual NAS on cloud such as Amazon S3 and Microsoft Azure is provided by companies
like SoftNAS [39] and Zadara Storage [47]. The clients to these cloud NAS servers are the
cloud compute nodes provided by the same provider. Thus there could be Amazon EC2
instances accessing a SoftNAS composed of Amazon S3 storage nodes. In such scenarios,
if we enhance the security of the system, our methodology of studying security features’
performance overhead can also be applied to SoftNAS.

2.2.3 Cloud storage Gateways
A cloud gateway appliance or virtual machine typically gives a transparent SAN or NAS
interface for local applications. On the other side, the cloud gateway appliance accesses

6

cloud storage by translating requests from local applications to a REST API. The motive for
a cloud storage gateway need not be necessarily for a protocol translations. There are cloud
gateways that provide one or more of features like deduplication, replication, security and
caching are also available.

There are several cloud gateway technologies, in both industry and academia. Hybris [15],
BlueSky [43], and Iris [40] are examples of cloud storage gateway systems that provide in-
tegrity. Hybris additionally gives fault tolerance by using multiple cloud providers. BlueSky
provides encryption. BlueSky and Iris have a file system interface on the client side, and Hy-
bris provides a key-value store. In the industry, NetApp SteelStore [31] is a cloud integrated
storage for backup. The exact security features in SteelStore are not known. Our work on
study of security overhead can be extended to cloud storage gateways to fine tune security
policy.

2.3 NFS-Ganesha
NFS-Ganesha [12, 13, 18] is a user-land implementation of NFS server. NFS-Ganesha can
be configured to export local file system or act as proxy for another NFS server. While NFS
Ganesha supports NFS v3, v4, and v4.1, the proxy configuration works only with NFS v4
onward.

Abstraction

System

File

Client

Proxy

(FSAL)

Layer

Server

NFSv4

cache_inode

FSAL_

PROXY

FSAL

Stackable

pxy_open

writereadopen

pxy_writepxy_read

Figure 2.1: NFS-Ganesha in proxy configuration – overview

Figure 2.1 shows a high-level overview of NFS-Ganesha in proxy configuration. The
config-parser module creates exports at the time of initialization. Once up and running,

7

NFS requests from clients are handled by the NFSv4 module. The cache-inode module is
a meta-data cache layer, and it also deals with content and attribute lock corresponding to
each file. The cache-inode module interacts with underlying file system via an abstracted
interface called File System Abstraction Layer (FSAL). FSALs are much like VFS in Linux,
and provides a generic interface to multiple file system implementations. Each FSAL has a
vector of functions for FSAL life-cycle management; file operations like open, read, write;
and name-space operations like lookup, create, makedir.

FSALs can also be stacked to give a more features in a modularized manner. For example,
FSALs for caching, encryption, integrity-checking, and anti-virus can be stacked on top of
the FSAL PROXY. Stackable FSALs are similar to stackable file systems in Linux [49]. In
the Figure 2.1 below, we have a caching FSAL, the FSAL PCACHE, above FSAL PROXY.
The original implementation had support for one stackable FSAL on top of FSAL proxy. We
contributed to NFS-Ganesha to support multiple stack [34].

The way cache inode module interacts with underlying FSAL is using a fsal obj handle,
which is a data structure similar to inode in VFS in Linux. Typically, every FSAL layer main-
tains its own fsal obj handle and keeps a pointer to the next layer’s object.

Each FSAL module is built as a shared object library that gets loaded based on FSAL
listed in export configuration.

8

Chapter 3

Design

In this section, we talk about the threat model, design goals, and the architecture of our secure
network storage proxy.

3.1 Threat Model
Our threat model reflects the settings of an enterprise office or academic laboratory where
multiple clients access the data on a storage server. In the case that the storage server is
outsourced to the cloud, the server is untrusted, and the clients are semi-trusted. The three
main information security requirements are confidentiality, integrity, and availability. We
discuss the trust on server and client with regard to these.

Server. Storage server is expected to have reasonably high up-time. Hence, availability is
not a problem. However, when it comes to confidentiality and integrity, the server is not
trusted at all.

Client. Clients are semi-trusted. That is, while the clients are not per se untrusted, there
could be accidental intrusion of malware that compromises the clients.

Since both the server and clients are not fully trusted, the solution is to use a trusted
proxy, as mentioned in Chapter 1. With a fully trusted proxy, all security enforcements and
data monitoring can be done in the proxy. In this study, we consider the simple case that there
is just a single proxy that is connected to multiple clients and a single server.

3.2 Design Goals
The intent of this thesis is to measure and understand the overhead of different security poli-
cies in networked storage systems. In order to measure the overhead of different security
policies in networked storage systems, we need a security architecture that

• supports advanced security features for integrity, confidentiality and availability of
data;

9

• allows configuration of security features to compose different security policies;

• is compatible with existing system;

• minimizes impact on performance; and

• is easy to develop and maintain.

Security is enforced in a proxy machine that sits between clients and storage server. This
way, clients and server can work without upgrades. With proxy in the same LAN as clients,
a cache in proxy can even offset the overhead of security enforcement to some extent. The
security and caching modules are implemented in a layered architecture. This helps easier
development and maintenance of each security layer independent of other layers. Moreover,
each security layer can be either enabled or disabled, based on security policies.

The proxy and layered architectures are discussed in detail in upcoming section.

3.3 Security and Caching
In a layered architecture, the order of the layers has important performance implications.
We first discuss a simplified secnario with only one generic security module and one cache
module and try to see how they can be stacked in a proxy machine.

There are two ways of stacking a cache module and a generic security module, as shown
in Figure 3.1.

A security module logically closer to client and

B cache module logically closer to client

To get further insights into these two approaches, we studied them using a general I/O model,
which describes common file system operations using simpler key value operations.

3.3.1 A General I/O Model
The terminology used in describing the model is as follows. “Stack” or “layer” in proxy have
to adhere to the server–client access protocol. “Module” is internal to a layer and can have
its own interface. Though layers have to adhere to server–client access protocol, there is no
restriction regarding exposing of additional functions. For example, there could be special
interactions between cache layer and security layer.

In our general I/O model, we assume a key–value store in the server. There are only 3
operations to access the store - read, write, and remove. While read and remove perform
what the name suggests, write has an additional functionality of creating a new key–value
pair, if the key does not exist. Since key creation is not part of read and remove, they could
return error code NOT FOUND if the key is not found in the server. Read operation may
additionally return INVALID code if the key is found but the value is not secure.

To define the model more formally, we use the following types:

• key

10

Approach BApproach A

P
ro

x
y

Client

P
ro

x
y

ServerServer

Client

Cache

CacheSecurity

Security

Figure 3.1: There are two ways that a security and cache module can be stacked in a trusted
proxy

• value

• typedef struct {
value val;
int err_code;

} ret_t;

The key is a tuple of file handle, offset, and length; the value is file data. File system opera-
tions described using the model are listed in Table 3.1.

Simple Cache Module

The simple cache is a module that uses the same interface as in Table 3.1. Cache maintains
a local key–value store. The local key–value store has to maintain additional meta-data, for
instance, to know whether value corresponding to a given key is clean or dirty.

The operations for accessing the key–value store is very similar to the server access in-
terface in Table 3.1, except for an additional meta-data field update in case of write. Also,
to differentiate from the client-server interface described earlier, we use insert for writing
to the cache, lookup for reading from cache, and delete for removing a key from cache.
These operations are listed in Table 3.2. We need a new struct for meta-data:

• meta-data

• typedef struct {
value val;
meta-data meta;
bool status;

} cache_ret_t;

11

Operation Parameters Return value
ret t read(key k);

Read value corresponding to
key k

k – key for which value needs to
be retrieved

.val – value corresponding to
key if .err code is FOUND
.err code – FOUND if key k is
found and value corresponding
to key is valid
NOT FOUND if key k is not found
INVALID if key k is found but
corresponding value is not valid.
For instance, if the value is
found to be malicious, then this
error code is returned.

bool write(key k, value

v);

Write value v for key k. If key k
does not exist, a new key–value
pair is created. If key k exists,
its value is rewritten with v.
There is a possibility that the
write fails.

k – key for which write is done
v – value corresponding to key
k

TRUE if write succeeds
FALSE if write fails. For in-
stance, if the value is found to be
malicious or due to space limita-
tions.

bool remove(key k);

Remove key–value correspond-
ing to key k

k – key that should be removed TRUE if key exists
FALSE if key does not exist

Table 3.1: Simple key–value storage access protocol

12

Operation Parameters Return value
cache ret t lookup(key

k);

cache ret t

check flags(key k);

Lookup for key k and re-
turn value, meta-data if
found. While lookup re-
turns both value and meta-data,
(check flags) returns just
meta-data.

k – key that should be looked up .val – value corresponding to
key if .status is TRUE and
function if lookup
.meta – meta-data correspond-
ing to key k

.status – TRUE if key k is
found
FALSE if key k is not found

bool insert(key k,

value v, meta-data m);

bool insert(key k,

value v);

bool mark(key k,

meta-data m);

void mark all(meta-data

m);

Insert to cache value v, if any,
and meta-data m, if any, for
key k. For mark all, update
meta-data m for all cached keys.
If key k does not exist, a new
key–value pair is created. If key
k exists, its value is rewritten
with v.

k – key for which insert is done
v – value corresponding to key
k

m – meta-data corresponding to
ket k

TRUE if insert succeeds
FALSE if insert fails.

bool delete(key k);

Remove key–value–meta-data
corresponding to key k

k – key that should be removed TRUE if key exists
FALSE if key does not exist

Table 3.2: Simple cache interface

Simple Security Module

The role of security module is to check if a given value is “good” or “bad.” In order to
check the security of a given value, additional values might be needed. For example, if a non-
aligned offset in a file is accessed, an encryption module needs the entire block. This is a case
where before doing any computations for security check, the dependency is identified. An
anti-virus module on the other hand, may want to check more data, based on pattern detected
in the currently accessed data. This is a case where during the security check, requirement of
more values is realized.

The operations of the security module are described in Table 3.3. We use the following
new type to describe the return value of a security check:

13

typedef struct {
key depends[];
int status;
value val[];

} check_ret_t;

Operation Parameters Return value
key[] precheck(key k);

precheck estimates additional
keys that need to be examined to
determine if value correspond-
ing to key k is secure for access

k – key that should be checked
by security module

Array of keys that are required
to determine if value corre-
sponding to key k is secure for
access. This could be empty.

check ret t check(key

k[], value v[]);

Checks the set of keys and
values for security issue

k – array of keys that need to
be checked for security issues.
This includes the original key
and the output of precheck.
v – array of values correspond-
ing to keys k

.status – GOOD if the set of
values v has no security issue.
Some security modules such as
encryption return a new set of
values in val field
BAD if the set of values v are
found to have security issues
INSUF if more values are
needed to decide on security
issues in the set of values v.
The keys whose corresponding
values are needed are populated
in depends field.
.depends – List of keys whose
values are required to assess the
given set of keys. This filed is
valid only if status is set as
INSUF.
.val – Array of new values that
the security module generated.
Whether this field is used really
depends on the type of security
the module enforces. The field
is valid only if status is GOOD.

void security update();

Call back function for any up-
date to security module
void report();

Report to administrator in case
of security breach. This may
involve logging values, user-
names, keys, etc.

Table 3.3: Simple security interface

14

In case of security, we factor the possibility of security upgrades where the cached results
might have to be purged. This is particularly relevant in case of anti-virus, where there could
be updates to signature databases on a daily basis. The call back for this is security update

as listed in Table 3.3.

Extending the Simple Model to the File System Interface

Some references to a file model is already made in examples in previous sub-sections. Here,
we show how the key–value model works with a file system interface.

A key translates to a tuple 〈file handle, offset, length〉. Value is the data in file at file
handle in the range [offset, offset + length).

As for protocol operations, read and write have additional open and close. Thus read
translates to open–read–close and write translates to open(O CREAT)–write–close. Remove
can be thought of as punching hole in file. When the entire file is hole, remove the file. With
this, read has to be redefined to return NOT FOUND when reading part of a hole.

More formally, we have definition of key and value:

• typedef struct {
const char *path;
size_t offset;
size_t length;

} key;

• typedef struct {
char *data;
size_t length;

} value;

As a simple example, ret t read(key k) translates to following in server storage:

ret_t read(key k) {
ret_t r = {{NULL, 0}, NOT_FOUND};
int fd;
ssize_t read_ret;
if ((fd = open(k.path, O_RDONLY)) == -1) {

r.err_code = NOT_FOUND;
return r;

}

r.val.data = malloc(k.length);
r.val.length = k.length;
// Assumption: read returns all data unless there’s an end-of-file
read_ret = read(fd, (void*) r.val.data, r.val.length);
if (read_ret != r.val.length) {

r.err_code = NOT_FOUND;
r.val.data = NULL;

15

return r;
}

return r;
}

3.3.2 Ordering of Security and Cache Layers
In this section, we analyze the effect of ordering security and cache layers. We look into the
interaction between the modules for two major operations – read and write.

Approach A: Security Layer Above Cache Layer

In approach A, we consider security layer above cache layer in proxy. Thus, the security
module is closer to client. We analyze read first, followed by a write.

v^^: Corresponding value

Data in various stages After event/function

read request (client)

precheck (security)

lookup (cache)

read (server)

check (security)

Legend

k: Key requested by client

v: Corresponding value

k^: Array of keys that security module

 requires

v^: Corresponding value

Data in cache

k$: Array of keys that has to be read

 from server

v$: Corresponding value

k^^: Array of keys that security module

 requires after scan of initial data

Figure 3.2: Approach A: Data in various stages of read request processing

Read. Read flow is depicted in Figure 3.2 and Figure 3.3. Figure 3.2 shows a pictorial view
of how data progresses down the layers whereas Figure 3.3 shows the flowchart diagram.
Figure 3.2 also serves as reference for terms used in flowchart.

The client’s read request is denoted by key k. As mentioned earlier, this corresponds to a
file–offset–length. The precheck function in case of integrity or encryption will extend the
read request to block units. In case of a signature matching anti-virus, the precheck might
add cushions [29] on either side to have enough bytes to match maximum pattern length. kˆ
corresponds to array of keys that correspond to this additional data. The request to cache
layer is now k+kˆ. The cache might have part of the data already available and the part that
is not available is denoted by k$. The request to server is this. Once k$ is fetched from server
and inserted to cache, the values corresponding to k+kˆ, v+vˆ is returned to security layer.
Here, it performs a check on v+vˆ. In case of anti-virus, this might lead to partial match or

16

Figure 3.3: Approach A: Flowchart for read

17

a multi-part pattern and need other parts of the file to be read in order to decide on whether
the data is infected or not. While the data identified as needed by precheck is assumed to
be immediately after or before the requested data, the extra data required by check could
be elsewhere in the same file. This extra data is depicted using kˆˆ and is read from the
underlying cache layer. Once vˆˆ that corresponds to kˆˆ arrives, the check function gives
verdict on security of the v+vˆ+vˆˆ possibly after more iterations of additional data requests
kˆˆ. The additional requests (kˆˆ) are not expected in case of integrity check and encryption.
Another point to note is that the value itself is modified by check if it is a crypto module. It
should basically do a decryption each time data is read by client.

Note that in order to optimize security check, we might cache GOOD/BAD for each key.
This helps malware scanning and integrity check to optimize the check function. Decryption
does not benefit from this and has to be done for every read. There is a possibility of writing
clear text to cache layer, but we have to make sure that only encrypted text gets written back
to server. In our design, we do not let the cache maintain both clear-text and cipher-text
versions of the same data. Hence, we cannot expect good performance for decryption with
approach A.

Data is clean and good

Data in various stages After event/function

write (server)

insert (cache)

check (security)

check (security)

read (server)

lookup (cache)

precheck (security)

write request (client)

Legend

k: Key for which write is requested by

 client

v: Corresponding value

k^: Array of keys that security module

 requires

v^: Corresponding value

Data in cache

k$: Array of keys that has to be read

 from server

v$: Corresponding value

k^^: Array of keys that security module

 requires after scan of initial data

v^^: Corresponding value

Data is good Data is good and in

cache

Data is dirty and good

Figure 3.4: Approach A: Data in various stages of write request processing

Write. The write flow is depicted in Figure 3.2 and Figure 3.3. Figure 3.2 shows a pictorial
view of how data progresses down the layers whereas Figure 3.3 shows the flowchart diagram.
Figure 3.2 also serves as reference for terms used in the flowchart.

18

Figure 3.5: Approach A: Flowchart for write

19

A client’s write request is denoted by key k. Similar to read request flow, precheck
estimates the data required by security modules. As discussed earlier, the estimated data may
be transforming to block units in case of integrity and encryption and cushion data in case of
anti-virus. The estimated data request is denoted using kˆ. Once this data is read from cache,
corresponding values v+vˆ are checked for security issues. If the security module does not
arrive at a conclusion based on available data, it might need further data, denoted by kˆˆ.
After multiple iterations, the security module will scan or process v+vˆ+vˆˆ and determine
whether the data is good to go. If not, this module returns an error to client and reports the
event to administrator. Once a clearance is obtained, the data is inserted to cache and marked
as GOOD and DIRTY. Client is acknowledged and at some stage, based on cache mechanism
and policy, a write back to server is initiated. Once server write back finishes, the key is
marked as CLEAN.

In the flowchart, we have shown the write to cache to include k+kˆ, v+vˆ. This is not
necessary for anti-virus, as only the new data k, v need to be inserted to cache. In case of
encryption, we need to write in block units and hence k+kˆ, v+vˆ is required. Even in case
of integrity, the checksum has to correspond to the entire block, though actual data write may
be only the new data k, v. Though not indicated in diagram, the meta-data may not indicate
just a flag such as GOOD/BAD but also have additional information such as checksum.

Note-worthy points. One interesting point to note here is that a write-back cache is per-
fectly alright in approach A. Even with a write-back cache, the client gets to know any re-
jection of read or write request synchronously. There is one catch, though. If the security
module gets updated, then there could be a case where client is acknowledged with a success,
whereas a security upgrade causes the data to be quarantined or removed without the client’s
knowledge.

Another positive with approach A is that all data, even the extra ones requested by se-
curity module, are cached. This reduces server accesses significantly and thus gives better
performance. The flip side is that all encryption and decryption have to be done for all access
requests.

Approach B: Cache Layer Above Security Layer

In approach B, we consider cache layer above security layer in proxy. Thus, security module
is closer to server. We analyze read first, followed by write.

Read. Read flow is depicted in Figure 3.6 and Figure 3.7. Figure 3.6 shows a pictorial view
of how data progresses down the layers whereas Figure 3.7 shows the flowchart diagram. The
Figure 3.6 does not cover all cases in flowchart, but serves as a reference for terms used in
flowchart. It also does not show the insert back to cache after security scan.

Write. Write flow is depicted in Figure 3.8 and Figure 3.9. Figure 3.8 shows a pictorial
view of how data progresses down the layers whereas Figure 3.9 shows the flowchart diagram.
The Figure 3.8 does not cover all cases in flowchart, but serves as a reference for terms used
in flowchart. It also does not show the insert back to cache after security scan.

20

v^: Corresponding value

Data in various stages

check (security)

(security)

server read request

lookup (cache)

precheck (security)

lookup (cache)

read request (client)

After event/function Legend

k: Key requested by client

v: Corresponding value

k’: Array of keys that’s not in cache

v’: Corresponding value

Data in cache Data is good

and in cache

k%: Array of keys that have security

v%: Corresponding value

 state unknown in cache

 module after initial scan

k#: Array of keys required by security

v#: Corresponding value

k$: Array of keys to be read from server

v$: Corresponding value

k*: Part of k^ that is in cache

v*: Corresponding value

k^: Array of keys required by security

 module

v^: Corresponding value

k^: Array of keys required by security

 module

Figure 3.6: Approach B: Data in various stages of read request processing

21

Figure 3.7: Approach B: Flowchart for read

check (security)

Data in various stages After event/function

lookup (cache)

precheck (security)

write request (client)

Legend

k: Key for which write is requested by

 client

v: Corresponding value

k^: Array of keys that security module

 requires

v^: Corresponding value

k$: Array of keys that has to be read

 from server

v$: Corresponding value

k^^: Array of keys that security module

 requires after scan of initial data

v^^: Corresponding value

k*: Part of k^ that is in cache

v*: Corresponding value

Data fetched from server

Figure 3.8: Approach B: Data in various stages of write request processing

22

Figure 3.9: Approach B: Flowchart for write

Note-worthy points. The main issue that can be observed with approach B is that there are
a lot of violations of the layered architecture. This can, of course, be avoided by not letting
the security module to access the cached contents and serving all read requests from server.
The fixing of violation will result in sub-optimal performance since server accesses have to
go over the WAN. A security update will also result in violation where cache module has to
be accessed by security module to invalidate status in cache.

The main reason for violation can be attributed to additional data required by security
module. This cannot be avoided for anti-virus scanning since there are all these complex
patterns. However, we can pre-determine data requirements for encryption and integrity.
By decrypting when data is read from server and encrypting when data is written to server,
the cache always contains cleartext. This avoids performance delays that would come with
approach A.

3.3.3 Coming Up with the Final Design
The analysis of previous sections have helped us arrive at some interesting trade-offs with
ordering of cache and security layers one way or the other. This is summarized in Table 3.4.

The security modules that we plan to have in our system are anti-virus, integrity, and
encryption. Of these, integrity check is for ensuring data-integrity in server; encryption is
done to protect data confidentiality in server; and anti-virus is to protect system from malware
that will usually come from clients. The requirements of each security module needs to be

23

Item Approach A
Security layer above cache layer

Approach B
Cache layer above security layer

Write-back cache Write-back cache can be sup-
ported easily. Dirty data in
cache is always good.

Write-back cache cannot be
supported if client has to get
success/failure response from
proxy. The success of a write
cannot be guaranteed at cache
layer.

Bad data in cache Bad data can come from the
server side

Bad data can come from the
client side

Additional data required by se-
curity

Since cache is below security
module, all extra data required
by security module can be read
from cache

Since security module is below
cache, extra data required by se-
curity module leads to violation
of layering principles

Caching the additional data re-
quired by security

Since cache is near to server, all
data read from server is cached

Since cache is near to client,
cache needs to accept more than
the data it requests from security
module. Thus, there’s violation
of layering principles.

Modification of data by security Cache contains modified
(cipher-text) data. All data
accesses involve computation
by security module. Though
it is possible to maintain both
cipher-text and clear-text in
cache, there is either an over-
head of space or meta-data
management.

All computation involved with
modification (such as en-
crypt/decrypt) can work below
cache. This enables cache to
maintain clear-text all the time
and let security module worry
about translations at the time
or read from or write back to
server.

Handling security updates Invalidate cache and check
security versioning in cache-
metadata

Invalidate cache and check-
ing security version in cache-
metadata at the expense of vi-
olation of layered architecture
principles

Table 3.4: Comparison of different layer orders of cache and security

24

understood in order to find out how to fit them around cache in layers.
The requirements of anti-virus module are as follows:

• Bad data from client should be guarded against. Hence all client writes should go
through the scanner. If the system is protected by integrity, then data from server can
be assumed to be safe to access. We can do away with scanning for data reads.

• Anti-virus has complex data requirements to check security. In order to determine if a
piece of data is good or bad, it would need several other bytes from the file. These data
requirements can often not be determined in advance and might happen as the scan
progresses.

• When there’s a malware signature database update, we should make sure that all data is
scanned against new set of signatures. One way to do this is to scan every time. Another
way is to maintain the database version in file or cache metadata. If this information
is kept in server (and system has integrity checks) then scans can be optimized to once
per file per signature. If we keep the information in cache, then we can scan every time
the data is inserted into cache after a previous eviction.

Requirements of anti-virus module suggests putting it closer to client and above cache layer.
This also enables using a write-back cache, which is more optimal.

The requirements of integrity module are as follows:

• Integrity of data from server should be protected. Hence all reads from server should
go through integrity check. For writes to server, a new checksum has to be calculated
before write. With these requirements, integrity module is best close to server since, in
this way, all data in cache is assured to be valid.

• Integrity does not have a success or failure for clients write. Hence, approach B does
not is not unsuitable, as mentioned in Table 3.4.

• Though integrity module would need additional data for reads and writes, it is pre-
determined. This means we can keep approach B, optimally and without layering vio-
lations, if we make sure all accesses are aligned to block units by the cache.

Requirements of integrity module show that it will work well if it is closer to server, with the
little tweak of cache accessing integrity layer in block units.

The requirements of encryption module are as follows:

• Data read from server should be decrypted and data written back to server should be
encrypted. Since it is protecting data confidentiality from server, the layer below cache
is suitable for crypto module. This way, cache can always contain clear text.

• Crypto module does not have a success or failure for clients write. Hence, approach B
is not unsuitable, as mentioned in Table 3.4.

• The data requirements of crypto module is similar to integrity, as in, it is in block units.
We assume for simplicity that both crypto and integrity module work with the same
block-size. Hence apporach B can be used for crypto with the same block-unit-access
requirement as in integrity.

25

Requirements of encryption module, or more aptly, the crypto module indicate that approach
B fits. Block-unit-access from cache ensures caching of all data accessed from server without
violating stach architecture principles.

With the above in mind, the final architecture—a hybrid of approaches A and B—is pre-
sented in Figure 3.10. Flowchart diagrams for read and write are captured in Figure 3.11 and
Figure 3.12, respectively.

P
ro

x
y

Client

Server

Cache

Integrity

Crypto

Anti−Virus

Figure 3.10: Stacking security and cache modules in proxy

It is interesting to note that in the final design in Figure 3.10, the cache is sandwiched
by security modules as if to fend off security threats from respective sides. That is while
anti-virus protects cache against malware from clients, the integrity-check and encryption
modules protect data integrity and confidentiality of data on the server.

26

Figure 3.11: Flowchart for read with anti-virus, cache, crypto, and integrity modules

27

Figure 3.12: Flowchart for write with anti-virus, cache, crypto, and integrity modules

28

Chapter 4

Implementation

In this section, we give details of implementation of the system. We start with information
about the basic details and then talk about cache, anti-virus, integrity and encryption modules.

4.1 Network Storage Architecture with Proxy
Our system has a set of clients, a proxy machine and a server machine for data storage.
The standard used for data exchange is Network File System (NFS). NFS is widely used for
networked storage. Version 4 of NFS is designed to work over the Internet (WAN) [7].

As established earlier, all our security enforcements are in the proxy machine. The proxy
should be able to act as NFS server to clients and as NFS client to storage server. It should also
support implementation of cache and security features in a layered manner. To implement
this, we used a user-land implementation of NFS server, the NFS-Ganesha.

4.2 Anti-Virus
We use ClamAV [24] as our anti-virus engine. ClamAV can be linked as statically with
an FSAL shared object. Malware databases are downloaded manually, using an executable
“freshclam” that comes with ClamAV source.

Once initialized with a malware signature database, the vanilla ClamAV accepted a file
path or a file descriptor as input and scans the entire file against viruses. We modified Cla-
mAV and added a scaning function to accept a memory buffer, which contains the data of
a whole file. This is reasonable because viruses tend to infect small files, and it is a com-
mon practice to scan only small files. For example, the popular email service, GMail, only
scan attachments smaller than 10MB. In our implementation, the size threshold of anti-virus
scanning is a configurable parameter with a default value of 10MB.

Miretskiy et al. optimized ClamAV and used the engine to incrementally scan data in an
on-access anti-virus stackable file system called Avfs [29]. The type of signatures at that point
were either a regular pattern or a multi-part pattern. These were matched using a variation of
Aho-Corasick pattern-matching algorithm [2]. Signature types in ClamAV [11] have evolved
considerably over the last decade and most signatures are based on hashes of either the entire

29

file or part of file such as section. The original pattern based signatures are less than 1% of
the entire database [24].

The anti-virus FSAL implementation does not maintain version of malware database that
was used to scan a file. Once a file is scanned, it is assumed to be free of virus. Although
not ideal, this implementation is enough for this study as we are focusing on the trade-off
between security and performance.

We use a full-file buffer scanner using ClamAV with an anti-virus FSAL module. Since
integrity FSAL is present, the server could not infect files with viruses without being caught.
Therefore, the anti-virus FSAL scans files only on write. Ideally, client that requests the write
should know whether the write succeeded or not with a return value. In our implementation,
clients do not get to know from return value whether the data that is written contains malware.
We decided to trade-off this limitation for a better performance by scanning the changed
content asynchronously at a configurable interval. We designed the anti-virus FSAL to scan
a file that is open for read-write:

• every configurable interval after the time of open (5 minutes by default)

• at close of file

The overhead of scanning the entire file for every write would be huge if the file is large, say,
a virtual disk image file.

For each file that a client opened for read-write, the anti-virus FSAL maintains a pointer
to fsal obj handle, and the last scan-time in a node. For files that are not scanned yet, the
node keeps time of open, instead. For fast (O(lnn)) lookup, the anti-virus FSAL maintains
the nodes in an AVL-tree with address of fsal obj handle as key. The anti-virus FSAL
also keeps the nodes in a queue (implemented as a doubly-linked-list), in increasing order
of scan-times. The anti-virus FSAL uses a timer thread to check if there are any files whose
scanning is due. This thread wakes up every 5 seconds and collects nodes from the head
of the queue. All nodes at the head of queue that are past their scan-times by more than
the configured interval are dequeued and passed to a newly spawned scanner thread. The
scanner thread scans the files corresponding to nodes. Scanning of a file is done only if it
has dirty data. Otherwise, the current time is noted as scan-time and no scanning is done.
Once scanning of a particular file starts, the anti-virus FSAL does not permit any concurrent
writes to that file. The FSAL allows further writes to the file only after the scanned contents
are written down to next layer. This ensures that only scanned contents are written back to
server. Once scanning is over, the nodes are enqueued again. A node keeps this dequeue and
enqueue process util it is reclaimed when the corresponding file is closed.

In the current implementation, when a file is found to be infected, there is no way of
informing the client that an earlier write was unsuccessful. This is because, anti-virus FSAL
performs scan asynchronously, as mentioned earlier. In our implementation, the proxy-cache
FSAL invalidates the cache. Subsequent reads would hence result in reading of good data
from server. Thus, if a file is infected, an earlier version of file is retrieved. The flip side
of dealing with malware detection in this way is that client is not informed. Other way
of dealing with detection of malware in files is to return error, such as, NFS4ERR IO on
subsequent open by any client. This is not implemented in anti-virus FSAL yet.

30

4.3 Proxy-Cache FSAL
The proxy-cache FSAL is responsible for maintaining a data-cache in proxy machine. The
data-cache has to support persistent storage, since the COMMIT operation of NFSv4 requires
that data is flushed to stable storage [36]. Also, since data has to eventually reach the server,
states of cached content such as “dirty” should also be stored in disk. This will ensure effec-
tive crash-recovery.

The proxy-cache FSAL is designed to be a write-back cache, to minimize server accesses.
This way multiple overlapping write requests over a duration can be merged and then sent
to server together. This also minimizes the overhead of overwrites. The cache write-back is
designed to perform a write-back for all files that are open for read-write:

• every configurable interval after the time of open, such as 5 min

• at close of file

The resemblance of write-back policy of proxy-cache with scan policy of anti-virus is no
coincidence. In fact, we designed anti-virus to be part of the proxy-cache FSAL. That is,
there is no separate FSAL that handles anti-virus alone. Thus every few seconds after a file is
open for read-write, there is a scan-and-write-back operation that first performs an anti-virus
scan and then a write-back to below layers. The same scan-and-write-back is performed even
at close of file. At all other times, writes translate to “insert” into cache and does not go down
to further layers. The details of timer-thread, scanner-thread, and data-structures involved are
already captured in Section 4.2.

Reads to proxy-cache FSAL works as with a regular cache. Read to proxy-cache looks
up for data in cache module first. If data is not available, proxy-cache FSAL passes down
request to underlying layers and inserts the replied data to cache once the request is done.

Cached contents and some meta-data related to the cached contents are maintained on
local storage of proxy machine. Meta-data about cached contents adds to cache-recoverability
after a crash. This is especially important when there are dirty data in cache that has not been
flushed to server. Storing cached contents stably is also required since NFSv4 server must
have “stable storage” [37].

For every file in the back-end server that is cached, the proxy-cache FSAL maintains
a sparse file in local storage. For the portion of data that is cached, the FSAL writes to
corresponding offset in the local file. Removal of extents are done by punching holes to file.
The presence of holes ensure that local storage does not run out of disk space too fast with
sparse files. This design simplifies the caching by delegating file block management to the
proxy’s local file system. Note that, proxy-cache can also implicitly keep the cached data in
the proxy’s memory through the OS’s page cache.

We designed the proxy-cache FSAL, carefully, to be thread-safe. We use file-specific
range-locks to make sure reads and writes to overlapping locations in cache does not happen.
We also handle the asynchronous write-back carefully so that there are no race conditions
between write-back threads and inserting threads.

31

4.4 Integrity and Encryption
Integrity check and data encryption are handled in a separate FSAL layer (module) at proxy-
side. On write operations, the module encrypts the plain text, computes the Message Authen-
tication Code (MAC) and stores the cipher text and MAC at remote storage server. On read
operations, the module decrypts the cipher text and verifies the MAC. A file is divided into
multiple blocks and authenticated encryption is applied on a per-block basis. In the following
paragraphs, we describe the security algorithm, key management, data organization and data
path.

ADATA

File Data

(optional)

Version

AES−GCM File Data

Integrity OnlyIntegrity + Encryption

AES−GCM

Integrity

Tag

Integrity

Tag (GMAC)

File Key

File Key

PDATA

(Plain−text)

Cipher−text

ADATA

Figure 4.1: AES-GCM for integrity and optionally encryption

We use Advanced Encryption Standard (AES) as symmetric key cryptographic block ci-
pher and Galois/Counter Mode (GCM) as mode of operation to provide authenticated en-
cryption. GCM accepts two input channels: PDATA that receives both confidentiality and
authentication, ADATA that is additional authenticated data. To enable both integrity check
and encryption, we put data block into PDATA, producing cipher text and tag (i.e, MAC).
To protect only integrity, data block is put into ADATA and the resulting integrity tag is also
called Galois Message Authentication Code (GMAC), illustrated in Figure 4.1. Potentially,
we can authenticate data block with its version number to defend against replay attack, which
requires a proxy-side database to keep block version numbers.

Key management is critical in encryption context. On file creation, we generate a cipher
key exclusively for that file and then encrypt the generated file key with proxy’s own public
key [20] with RSA algorithm. Encrypted file key, together with other encrypted attributes
(e.g., file hole record), is stored in the first (one or two) block of the file as file header,
depicted in Figure 4.2. To make a file accessible to a new proxy, existing proxy encrypts the
file key with new proxy’s public key and adds an identifiable entry in header. This approach
suggests that the proxy only needs to maintain its own public/private key pair and other
proxies’ public keys. On file lookup operation, the first thing for a proxy is to find its entry
in header and retrieve the file key with its private key. On file close, the proxy writes back
the header if proxy entries or attributes are modified. The module will cache the encrypted
file key portion of header instead of performing encryption each time on write-back because
it is rarely updated. Though it is expandable to multi-proxy environment, we focus on single
proxy setup at this stage.

32

Attributes encrypted with file key

File key encrypted with proxy’s public key

ing

E(FK,PbK1)

is_encrypted

file_hole[]

Data

Padd−
Header

DIFDIFDIFDIF (48B)

4K 4K 4K
Tail

...

...

effective_filesize

Figure 4.2: Header, data blocks and data integrity field of a typical file

We leverage Data Integrity eXtensions (DIX) [14] to store integrity tags (i.e, MAC) at
server-side instead of proxy-side, which eliminates block-to-tag bookkeeping. DIX extend
the disk sector from traditional 512 bytes to 520 bytes by adding 8 protection bytes, out
of which at most 6 bytes are available to applications. We aggregate several sectors to be
one logical block so that we have sufficient space for 16 bytes tag and other potential meta-
data. Specifically, we use 4096 bytes as our block size which is made up of 8 sectors, and
therefore we have in total 48 bytes Data Integrity Field (DIF) on disk for each block, depicted
in Figure 4.2. When storage server does not opt in DIX, proxy’s local database can be used
to maintain tags with careful mapping.

Internet

DIF

READ_PLUS: data, integrity_tag

I/O extension

DIX

WRITE(data) READ: data

READ: dataWRITE(data)

WRITE_PLUS(data, integrity_tag)

NFS Server

NFS Client

Proxy

APP

OS

HBA

Device

Figure 4.3: NFS End-to-end Data Integrity

To convey tags from proxy to server on read and write, we implemented NFS End-to-
end Data Integrity extension [33] in NFS-Ganesha. The extension specifies the protocol to

33

pass protection data with NFS READ PLUS and WRITE PLUS operations. In Figure 4.3,
the paths in bold are where the NFS extension is applied. At server-side, we use Linux I/O
extension [35] to commit data blocks along with their associated tags to the storage device
synchronously.

4.5 Proxy FSAL
Proxy FSAL is the underlying, non-stackable, “native” FSAL in the proxy machine. This is
the layer that talks to server. The proxy FSAL is already part of NFS-Ganesha. However,
we have improving the proxy FSAL in many aspects including fixing bugs, resolving race
conditions, and optimizing performance. We have contributed our improvements back to the
open-source community.

Proxy can be configured with server address and mount point in server. There are also
other configurations such as the maximum read and write size for NFS operations to server.

4.6 Development Effort
Table 4.1 captures code size of main components that were developed as part of our research.
In addition to this, we added features and fixed bugs in NFS-Ganesha and ClamAV.

Module Language files blank comment code
proxy-cache C 8 272 414 1649
and C++ 38 909 470 4949
anti-virus C/C++ Header 44 768 1349 2504
FSAL CMake 8 41 11 162

SUM: 98 1990 2244 9264
integrity C 6 374 427 1560
and C++ 10 469 119 1486
crypto C/C++ Header 6 147 225 472
FSAL CMake 1 23 4 68

SUM: 23 1013 775 3586
TOTAL: 121 3003 3019 12,850

Table 4.1: Development effort in project

34

Chapter 5

Evaluation

This chapter presents the evaluation of the secure proxy. Before running experiments, we
have verified the correctness of our implementation using xfstests [46], which is a pop-
ular file system test tool. Our secure proxy has passed all applicable xfstests test cases
when the stackable layers are enabled individually and combined together.

5.1 Experimental Setup

WAN (30ms RTT)

LAN (0.2ms RTT)

10 GbE

1 GbE

Server

Proxy

Client 5

Client 4

Client 3

Client 2

Client 1

Caching

Encryption

Integrity

Antivirus

Figure 5.1: Benchmark setup.

Figure 5.1 shows our experimental setup, which consists of seven identical Dell Pow-
erEdge R710 machines. Each machine has a six-core Intel Xeon X5650 2.66GHz CPU,
64GB of RAM, a Broadcom BCM5709 1GbE NIC, and an Intel 82599EB 10GbE NIC. Five
machines run as NFS clients, one as the secure NFS proxy, and one as an NFS server. Clients
communicate to the proxy using the 10GbE NIC via a Dell PowerConnect 8024F 24-port
10GbE switch; the proxy communicates to the server using the 1GbE NIC via a PowerCon-
nect J-EX4200 48-port 1GbE switch. We measured the RTT between the clients and the
proxy to be 0.2ms using ping. To emulate the proxy’s connection to the in-cloud server via

35

WAN, we injected a 30ms delay in the outbound link of the server using netem. We set the
delay to 30ms according to Panache’s report of inter-datacenter latency [26].

All machines ran CentOS, a freely available version of Red Hat Enterprise Linux widely
used in enterprise environments. The CentOS version is 7.0, and the kernel version is Linux
3.14. To use the Data Integrity eXtension (DIX), we patched the server’s kernel with DIX
support [35] which allows integrity payloads to be passed from user-land to the kernel. Be-
cause we do not have physical storage devices that support DIX yet, we set up a 10GB
DIX-capable virtual SCSI block device using targetcli [32]. The DIX-capable device is
backed by the server’s RAM and is formatted with ext4. Our DIX capable NFS-Ganesha
server exports the device as an NFS file system.

Configs Proxy Integrity Encryption Caching Antivirus
P 4 8 8 8 8
I 4 4 8 8 8
IE 4 4 4 8 8
IC 4 4 8 4 8
ICE 4 4 4 4 8
ICEA 4 4 4 4 4

Table 5.1: Combinations of security features.

The proxy also runs NFS-Ganesha, which acts as a client to the NFS server and re-exports
the server’s NFS file system to the clients. Note that the NFS protocol is NFSv4.2 with
the DIX extension [33], whereas the communication protocol between clients and the proxy
is NFSv4.0. The difference of the protocols is because the proxy adds additional integrity
payload to protect clients’ data when the data are written to the in-cloud server. The se-
cure features of the proxy, which are implemented as stackable NFS-Ganesha layers, can be
individually turned on or off using a configuration file. Specifically, we benchmarked six
different combinations of these features as listed in Table 5.1. To simplify our analysis of
caching effect, we used a 16GB ramdisk as caching device so that all data could be cached
without any cache evictions. We also emptied the cache before each experiment so that we
could observe the system’s behavior during the whole process when an initial empty cache is
gradually filled to full.

We used Benchmaster [7] to perform experiments so that workloads on multiple NFS
clients run concurrently. While experiments are running, Benchmaster periodically collects
system statistics using tools such as iostat and vmstat, and by reading procfs entries
such as /proc/self/mountstats. These statistics help us monitor system behavior
during the whole life-cycle of experiments. When experiments are finished, Benchmaster
also gathers all statistics from clients, the proxy, and the server to a central place for post-
analysis.

We benchmarked two sets of workloads: (1) a set of synthetic micro-workloads which
pre-configured read-write ratios, and (2) a set of Filebench macro-workloads including File
Server, Mail Server, and Web Server. The micro-workloads help us understand the behavior
of our secure proxy in a controlled environment; the macro-workloads reflect our secure
proxy’s performance impact in popular and realistic scenarios.

36

5.2 Performance of different read-write ratios
This section evaluates our secure proxy’s performance impact on workloads with different
read-write ratios. Our secure proxy has four features and each of them have different per-
formance impact: caching generally helps performance, whereas integrity, encryption, and
anti-virus hurt performance. The performance impact of these features heavily depend on
workload characteristics. The read-write ratio is an important characteristic. For example,
the performance of a read-only workload is not influenced by anti-virus and benefit a lot from
caching. Conversely, a write-heavy workload does not benefit much from caching, and also
incurs frequent anti-virus scanning and thus has large performance overhead.

We studied the performance impact of read-write ratio by running workloads with pre-
configured read-write ratios. Specifically, we pre-allocated 100 files, and then repeated the
following operation for two minutes: randomly pick one file, open it, perform n 4KB reads
and m writes at random offsets, and close it. We varied n and m to control the read-write
ratio, and compared the performance of the configurations shown in Table 5.1. We tried two
file sizes: 1MB and 10MB.

 0

 20

 40

 60

 80

 100

 120

 140

 160

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(a) 1M Files

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(b) 10M Files

Figure 5.2: Throughput of 1:1 read-write ratio.

Figure 5.2 shows the results when n = 1 and m = 1, i.e., with a read-write ratio of
1. Overall, the configurations with caching (i.e., IC and ICE) significantly outperformed
their counterparts without caching (i.e., I and IE) by 2–3×. Compared with the baseline
configuration with only proxy (P), integrity (I) has 3–26% lower throughput because integrity
performed more computation to calculate the message authentication code (MAC). Integrity
also performed more I/O operations to read and write the file headers that contain file keys
and effective file sizes. These I/O operations are slow because of the WAN latency between
the proxy and the server. The configuration of I and IE performed around the same despite
that IE has to decrypt (encrypt) for each read (write) operation. This is because the overhead
of extra CPU computation is negligible compared to the overhead of extra I/Os over the WAN.

As shown clearly in Figure 5.2, adding caching to integrity (i.e., IC) greatly improves
the performance and makes the throughput more than 2× higher than the baseline (P). When
encryption is further added, the performance of ICE does not drop compared to IC because
the caching layer is stacked above the encryption layer and stores data in plaintext form.
Further adding anti-virus to ICE only cause a performance penalty of 3% for 1MB files, and
of 23% for 10MB files. This is as expected because the anti-virus engine performs full file

37

scanning, and the overhead is higher for large files.
In summary, for this workload with read-write ratio of 1:1, the configuration with all

features (i.e., ICEA) performed 2.1× and 1.8× than the baseline (i.e., P) for 1MB and 10MB
files, respectively.

The caching layer in our secure proxy is a write-back cache backed by persistent stor-
age. The proxy can acknowledge to clients that writes are finished and stable as soon as the
writes are put into the cache. Therefore, it can improves not only read performance but also
write performance because overlapping writes can be merged to fewer larger I/Os and then
be pushed to the server asynchronously. However, caching’s boost to write performance is
limited to the period of a file open. Dirty file data in the cache have to be written back to the
server when the file is closed. This is required by NFS’s close-to-open consistency, which
guarantees that when a client opens an NFS file, it can observe the changes made by clients
that have closed the file before. Consequently, the write performance would not benefit from
the write-back cache when files are closed before any overlapping writes have been merged
or any asynchronous write-backs have happened. The overall effect is that writes benefit less
from the cache than reads do.

 0

 100

 200

 300

 400

 500

 600

 700

 800

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(a) 1M Files

 0

 100

 200

 300

 400

 500

 600

 700

 800

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(b) 10M Files

Figure 5.3: Throughput of 16:1 read-write ratio.

The above means that caching boosts performance more for workloads with a higher
read-write ratio, which is obvious as shown in Figure 5.3. In fact, we observed a increasing
performance speed-up as we gradually increase the read-write ratio from 1 to 2, 4, 8, then 16.
Figure 5.4 shows that trend.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16

S
p
ee

d
 u

p
 F

ac
to

r
R

el
at

iv
e

to
 B

as
el

in
e

Read-to-Write Ratio

I
IC

ICE
ICEA

Figure 5.4: Performance speed-up of different read-to-write ratios for 1MB files.

38

On the other hand, caching does not help the performance as much when the read-write
ratio decreases. Specifically, the results of 1:16 read-write ratio is presented in Figure 5.5,
where configurations with caching (IC and ICE) outperform their non-caching counterparts
(I and IE) by merely 5–18%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(a) 1M Files

 0

 10

 20

 30

 40

 50

 60

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(b) 10M Files

Figure 5.5: Throughput of 1:16 read-write ratio.

Results from the 16:1 (Figure 5.3) and 1:16 (Figure 5.5) read-write ratios reinforce our
observations from Figure 5.2 that (1) ICE’s performances are only slightly lower than IC’s
because cached data is cleartext and need no more decryption, and (2) the overhead of anti-
virus is negligible for small files (1MB), but significant for large ones (10MB).

5.3 Macro-Workloads
This section studies our secure proxy’s performance in more complex macro-workloads that
more closely match to realistic workloads. We chose the Filebench Mail Server and File
Server workloads, which are popular workloads where security features like integrity, en-
cryption, and antivirus are desired.

 0

 10

 20

 30

 40

 50

 60

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(a) Mail Server

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

(b) File Server

Figure 5.6: Performance of Filebench macro-workloads.

The results of Mail Server and File Server (Figure 5.6) are quite similar because these two
workloads behave similarly in the secure proxy. First, both workloads contains many small
operations (e.g., read, append, and update) wrapped by a pair of file open and close. These

39

open and close operations have performance penalty because many file headers have to be
read from the server across the WAN upon open, and all cached dirty data have to be written
back immediately upon close. This explains why the integrity configuration (I) performed
slower (around 25% for both Mail Server and File Server) than the baseline configuration
(P). Second, both workloads have low read-write ratios. This explains why caching does not
have a substantial benefit to performance.

We have also benchmarked the Filebench Web Server workload, which has also many
small open-read-then-close operations. Compared to the integrity configuration (I), we ob-
serve that caching is significantly boosting the performance (by 77%) because of its large
read-to-write ratio. However, the overall performance of the secure configurations is still
28% lower compared to the baseline configuration (P). The performance is still lower even
when caching are enabled (IC, ICE, and ICEA). This is again because of the frequent open
and close operations, which wrap each single small read operation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

P I IC IE ICE ICEA

#
O

p
s/

S
ec

Security and Caching Configs

Figure 5.7: Filebench Web Server results

40

Chapter 6

Conclusions

We presented a study of securing file data stored in cloud. We designed a secure NFS proxy
that can provide a rich set of security features to protect clients’ data without changing any
client or server code. By using stackable file systems [48], our secure proxy has a layered
architecture that allows security and performance-enhancing features be added easily and be
combined flexibly. We have implemented three security features (i.e., integrity, encryption,
and anti-virus) and one performance-enhancing feature (i.e., caching) as stackable file system
layers. We have evaluated the performance impact of these features to study the trade-off
between security and performance when outsourcing data to cloud storage.

Our secure proxy provides end-to-end integrity, which protects data integrity along the
full data path from the trusted proxies to the physical storage device on untrusted servers. We
based our design and implementation of the integrity feature on the upcoming technology of
Data Integrity eXtension (DIX), which stores a MAC in the out-of-band portion of modern
storage devices. The secure proxy protects data confidentiality using efficient authenticated
encryption, which encrypts data and generates a MAC at the same time. In addition, the proxy
can perform real-time on-access anti-virus scanning, which prevents viruses from spreading
across clients. Our secure proxy also provides a persistent caching layer to alleviate the
performance overhead of these security features.

We have evaluated our secure NFS proxy with different combinations of features using
both micro- and macro-workloads. Our experiments show that our integrity layer can protect
data with moderate performance overhead of 3–26%. We observed that adding encryption
to integrity introduced only negligible additional performance overhead. On top of integrity
and encryption, adding anti-virus cause only negligible additional performance overhead for
small files (1MB), but a more significant overhead (up to 23%) for large files (10MB). How-
ever, caching is very effective in boosting performance especially for workloads with larger
read-write ratios. Because of the caching boost, the overall performance with all four features
can be up to 8× of the baseline configuration using a plain proxy.

For all three Filebench macro-workloads (i.e., File Server, Mail Server, and Web Server),
we found that integrity incurred significant overhead because these workloads contain a large
number of open operations and sent many extra network operations to the remote server.
Nevertheless, encryption and anti-virus have only negligible overhead. Also, caching is less
effective here because of frequent cache-revalidation and write-back upon file open and close
operations. Overall, the secure proxy with all four features performed 23–28% slower than

41

the baseline configuration using plain proxy. This suggests we might need to relax NFS’s
strong consistency model to further improve performance: for example, allowing a file to be
opened without contacting the remote server if its meta-data has been cached recently.

6.1 Limitations and Future Work
The current secure proxy can be improved by adding stronger security protection and by
further performance optimization. The current integrity layer is still vulnerable to certain
type of attacks. A malicious server still can tamper with a file by substituting its data with
data of a different file, or by returning data of a previous version that have already been
overwritten. We plan to protect against this swap and replay attacks using a Merkle tree [28]
or version numbers in the future. The current encryption layer protects only data but not
meta-data. However, meta-data such as file name and directory layout might still leak some
important information. We plan to keep file system meta-data also confidential in the future.

Future performance optimizations are also desirable and we are actively working on that.
For example, anti-virus can be optimized to scan the file incrementally instead of entirely by
breaking common infected files (e.g., PE files) into sections and scanning one section at a
time. We also plan to explore the possibility of relaxing NFS’s consistency model to reduce
the number of round trips to the server. Alternatively, we can try different protocols between
the proxy and server such as RESTful protocols.

42

Bibliography

[1] A. Bessani and R. Mendes and T. Oliveira and N. Neves and M. Correia and M. Pasin and P.
Verissimo. SCFS: A Shared Cloud-backed File System. In USENIX ATC 14, pages 169–180.
USENIX, 2014.

[2] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search. Com-
munications of the ACM, 18(6):333–340, June 1975.

[3] Amazon. Amazon Simple Storage Service Developer Guide API Version2006-03-01, 2015.
http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-dg.pdf.

[4] CBS SF Bay Area. Nude celebrity photos flood 4chan after apple icloud hacked, 2014. http:
//goo.gl/p5a49Y.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, 2010.

[6] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. Dep-
sky: dependable and secure storage in a cloud-of-clouds. ACM Transactions on Storage (TOS),
9(4):12, 2013.

[7] M. Chen, D. Hildebrand, G. Kuenning, S. Shankaranarayana, B. Singh, and E. Zadok. Title:
Newer is sometimes better: An evaluation of nfsv4.1. In Proceedings of the 2015 ACM Interna-
tional Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2015),
Portland, OR, June 2015. ACM. To appear.

[8] Yao Chen and Radu Sion. To cloud or not to cloud?: musings on costs and viability. In Pro-
ceedings of the 2nd ACM Symposium on Cloud Computing, page 29. ACM, 2011.

[9] Taehwan Choi and Mohamed G Gouda. Httpi: An http with integrity. In Computer Communi-
cations and Networks (ICCCN), 2011 Proceedings of 20th International Conference on, pages
1–6. IEEE, 2011.

[10] Asaf Cidon, Stephen M Rumble, Ryan Stutsman, Sachin Katti, John K Ousterhout, and Mendel
Rosenblum. Copysets: Reducing the frequency of data loss in cloud storage. In Usenix Annual
Technical Conference, pages 37–48. Citeseer, 2013.

[11] ClamAV. Creating signatures for ClamAV, 2015. https://github.com/vrtadmin/
clamav-devel/blob/master/docs/signatures.pdf.

[12] P. Deniel. GANESHA, a multi-usage with large cache NFSv4 server. www.usenix.org/
events/fast07/wips/deniel.pdf, 2007.

[13] Philippe Deniel, Thomas Leibovici, and Jacques-Charles Lafoucrière. GANESHA, a multi-
usage with large cache NFSv4 server. In Linux Symposium, page 113, 2007.

[14] I/O Controller Data Integrity Extensions. https://oss.oracle.com/˜mkp/docs/
dix.pdf.

[15] Dan Dobre, Paolo Viotti, and Marko Vukolić. Hybris: Robust hybrid cloud storage. In Proceed-
ings of the ACM Symposium on Cloud Computing, pages 1–14. ACM, 2014.

[16] Yahoo Finance. Cloud computing users are losing data, symantec finds, 2013. http://goo.
gl/x2xnqF.

43

[17] John Franks, P Hallam-Baker, J Hostetler, S Lawrence, P Leach, Ari Luotonen, and L Stewart.
RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. Internet RFCs,
1999.

[18] NFS-GANESHA. http://sourceforge.net/apps/trac/nfs-ganesha/.
[19] Camille Gaspard, Sharon Goldberg, Wassim Itani, Elisa Bertino, and Cristina Nita-Rotaru. Sine:

Cache-friendly integrity for the web. In Secure Network Protocols, 2009. NPSec 2009. 5th IEEE
Workshop on, pages 7–12. IEEE, 2009.

[20] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing remote untrusted storage.
In Proceedings of the Tenth Network and Distributed System Security (NDSS) Symposium, pages
131–145, San Diego, CA, February 2003. Internet Society (ISOC).

[21] iXsystems. FreeNAS. http://www.freenas.org/.
[22] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H Briggs, and

Rebecca L Braynard. Networking named content. In Proceedings of the 5th international
conference on Emerging networking experiments and technologies, pages 1–12. ACM, 2009.

[23] Ari Juels and Alina Oprea. New approaches to security and availability for cloud data. Commu-
nications of the ACM, 56(2):64–73, 2013.

[24] T. Kojm. ClamAV. www.clamav.net, 2004.
[25] Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin. Safestore: a durable and practical storage

system. In USENIX Annual Technical Conference, pages 129–142, 2007.
[26] M. Eshel and R. Haskin and D. Hildebrand and M. Naik and F. Schmuck and R. Tewari. Panache:

A Parallel File System Cache for Global File Access. In FAST, pages 155–168. USENIX, 2010.
[27] Peter Mell and Tim Grance. The NIST definition of cloud computing. Technical report, Com-

puter Security Division, Information Technology Laboratory, National Institute of Standards and
Technology, 2011.

[28] Ralph C. Merkle. A digital signature based on a conventional encryption function. In A Confer-
ence on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology,
CRYPTO’87, pages 369–378, London, UK, 1988. Springer-Verlag.

[29] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs: An On-Access Anti-Virus File System.
In Proceedings of the 13th USENIX Security Symposium (Security 2004), pages 73–88, San
Diego, CA, August 2004. USENIX Association.

[30] CNN Money. Hospital network hacked, 2014. http://money.cnn.com/2014/08/18/
technology/security/hospital-chs-hack/.

[31] NetApp. NetApp SteelStore Cloud Integrated Storage Appliance. http://www.netapp.
com/us/products/protection-software/steelstore/, 2014.

[32] Linux-IO Target, 2015. https://lwn.net/Articles/592093/.
[33] End-to-end Data Integrity For NFSv4, 2014.

http://tools.ietf.org/html/draft-cel-nfsv4-end2end-data-
protection-01.

[34] Arun Olappamanna Vasudevan. Support stacking multiple FSALs, 2014.
http://sourceforge.net/p/nfs-ganesha/mailman/message/32999686/.

[35] Data integrity user-space interfaces, 2014. https://lwn.net/Articles/592093/.
[36] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck. Net-

work file system (NFS) version 4 protocol. Technical Report RFC 3530, Network Working
Group, April 2003.

[37] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck. NFS
Version 4 Protocol. Technical Report RFC 3530, Network Working Group, April 2003.

[38] Kapil Singh, H Wang, Alexander Moshchuk, Collin Jackson, and Wenke Lee. Httpi for practical
end-to-end web content integrity. In Microsoft technical report. Microsoft, 2011.

[39] SoftNAS. SoftNAS Cloud. https://www.softnas.com/wp/.

44

[40] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: A scalable cloud file system
with efficient integrity checks. In Proceedings of the 28th Annual Computer Security Applica-
tions Conference, pages 229–238. ACM, 2012.

[41] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication service for open
network systems. In Proceedings of the Winter USENIX Technical Conference, pages 191–202,
Dallas, TX, Winter 1988.

[42] vinf.net. Silent data corruption in the cloud and building in data integrity, 2011. http://
goo.gl/IbMyu7.

[43] Michael Vrable, Stefan Savage, and Geoffrey M Voelker. Bluesky: a cloud-backed file system
for the enterprise. In FAST, page 19, 2012.

[44] Wikipedia. Sony pictures entertainment hack, 2014. http://en.wikipedia.org/wiki/
Sony_Pictures_Entertainment_hack.

[45] Network World. Which cloud providers had the best uptime last year?, 2014. http://goo.
gl/SZOKUT.

[46] SGI XFS. xfstests. http://xfs.org/index.php/Getting_the_latest_
source_code.

[47] Zadara Storage. Virtual Private Storage Array. https://www.zadarastorage.com/.
[48] E. Zadok and I. Bădulescu. A stackable file system interface for Linux. In LinuxExpo Conference

Proceedings, pages 141–151, Raleigh, NC, May 1999.
[49] E. Zadok, I. Bădulescu, and A. Shender. Extending file systems using stackable templates. In

Proceedings of the Annual USENIX Technical Conference, pages 57–70, Monterey, CA, June
1999. USENIX Association.

45

