

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Interacting with Gigapixel Displays

A Dissertation Presented

By

Charilaos Papadopoulos

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2015

Copyright c⃝
by Charilaos Papadopoulos

2015

Stony Brook University

The Graduate School

Charilaos Papadopoulos

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Arie E. Kaufman - Advisor

Distinguished Professor, Dept. of Computer Science, Stony Brook University

Dimitris Samaras - Chairperson of Defense

Associate Professor, Dept. of Computer Science, Stony Brook University

Klaus Mueller

Professor, Dept. of Computer Science, Stony Brook University

Amitabh Varshney

Professor, Dept. of Computer Science, University of Maryland

This dissertation is accepted by the Graduate School.

Charles Taber

Dean of the Graduate School

ii

Abstract of the Dissertation

Interacting with Gigapixel Displays

by

Charilaos Papadopoulos

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Large, high-resolution displays (LHiRDs) are a powerful visualization and data explo-

ration tool. These facilities, with resolutions in the hundreds of millions of pixels, have

proliferated in industry and research laboratories, enabling scientists, engineers or physi-

cians to better understand the problems that they face. Recently, the Reality Deck pushed

LHiRDs past the gigapixel resolution barrier, offering 1.5 gigapixels and providing a 360◦

horizontal field of view, within a large workspace of 33′ × 19′.

Room-sized facilities such as the Reality Deck simultaneously promote and demand phys-

ical navigation on behalf of the user. Consequently, static user interfaces (e.g., keyboard

and mouse) do not translate themselves well to such systems. Additionally, the sheer size

and resolution of the Reality Deck can trigger new and interesting usage patterns in how

users navigate within the visualization space. These patterns are worthy of investigation

and can also be exploited in order to improve the system performance.

The goal of this dissertation is to evaluate, leverage and further enable the physical navi-

gation aspects of room-sized gigapixel resolution displays such as the Reality Deck. This

is accomplished via four pillars of research work. The first pillar is the introduction of

interfaces for unencumbered, device-less and hand-driven interaction with such systems.

The second pillar utilizes the perceptual characteristics of LHiRDs and the human visual

system in order to improve performance when displaying gigapixel-resolution data. The

iii

third pillar focuses on the evaluation of user performance within LHiRDs, while perform-

ing core visualization tasks through physical navigation. The fourth pillar is the introduc-

tion of VEEVVIE , the Visual Explorer for Empirical Visualization, VR and Interaction

Experiments. VEEVVIE is a visual analytics tool that enables the visual exploration of

data that stems from visualization, virtual reality and interaction experiments, such as

those conducted in LHiRDs, allowing researchers to validate and generate insights and

hypotheses in an interactive way.

iv

To my family

v

Contents

List of Figures x

List of Tables xiii

Acknowledgements xv

List of Publications xviii

1 Introduction 1

1.1 Why build Large High-Resolution Displays? 1

1.2 Evolution of LHiRDs . 2

1.3 Overarching Motivation . 3

1.4 Enabling Physical Navigation . 4

1.5 Leveraging Physical Navigation . 4

1.6 Evaluating the limits of LHiRDs . 5

1.7 Visual Analytics for Visualization Experiments 6

1.8 Summary . 6

2 Related Work 7

2.1 Fundamentals of Visualization System Design 7

2.2 Large-scale Immersive Visualization Environments 9

2.2.1 CAVE Automatic Visual Environment and Variations 10

2.2.2 Large High-Resolution Displays . 12

2.2.3 Hybrid Systems . 13

2.3 Distributed Visualization Software . 15

2.3.1 Graphics API Stream Replication 16

2.3.2 Distributed Rendering Libraries . 17

vi

2.3.3 Multi-application Clustered Rendering Frameworks 18

2.4 Gesture-based User Interfaces . 19

2.4.1 Navigation in Immersive Virtual Environments 20

2.4.2 Hand pose recognition . 21

2.4.3 Activity recognition . 22

2.4.4 Chirocentric User Interfaces . 23

2.5 Gigapixel Visualization . 24

2.5.1 Rendering and Exploring Gigapixel Images 24

2.5.2 Focus and Context Techniques . 26

2.5.3 Perceptually Optimized Level-of-Detail 27

2.6 Experimental Evaluation in Visualization, VR and HCI 28

2.6.1 Experimental Design . 28

2.6.2 User Studies . 29

2.6.3 Visual Analytics for Experiments 31

3 The Reality Deck - Immersive Gigapixel Display 32

3.1 Introduction . 32

3.2 “Immersifying” a Tiled Display Wall . 35

3.3 Building an Immersive Gigapixel Display 37

3.3.1 Display Selection and Customization 37

3.3.2 Visualization Cluster and Peripherals 41

4 Visualization Software and Applications 42

4.1 Visualization Software Architecture . 42

4.2 Visualization Applications . 45

4.2.1 Gigapixel Image Exploration . 45

4.2.2 Geospatial Data Visualization . 50

4.2.3 2D GIS Visualization . 50

4.2.4 3D GIS Immersive Visualization . 56

5 NuNav3D - Natural User Interface for 3D Navigation 66

5.1 Introduction . 66

5.2 NuNav3D: A Navigation NUI for 3D Visualization 68

5.2.1 Pose Recognition Framework . 68

5.2.2 Definition of the Navigation Scheme 70

vii

5.2.3 Transition to/from Navigation Mode 70

5.2.4 Hand Motions to Navigation . 71

5.3 Implementation . 73

5.3.1 4-DOF versus 6-DOF . 74

5.4 Evaluation . 74

5.4.1 Hypothesis and Metrics . 74

5.4.2 Apparatus . 75

5.4.3 Trial Data Sets . 75

5.4.4 Trial Procedure . 77

5.4.5 Results . 79

5.5 Conclusion . 80

6 Practical Chirocentric 3DUI Platform for Immersive Environments 82

6.1 Introduction . 82

6.2 Algorithmic Framework . 83

6.2.1 Hand Pose Recognition . 84

6.2.2 Gesture Recognition . 86

6.3 Experiments . 88

6.3.1 Data Sets . 88

6.3.2 Algorithm Performance . 90

6.4 A Practical Chirocentric User Interface . 94

6.4.1 Visualization platform and applications 94

6.4.2 Supported Interactions . 95

6.4.3 Implementation . 98

6.4.4 Observations from Deployment . 98

6.5 Conclusion . 100

7 Acuity-driven Gigapixel Visualization 102

7.1 Introduction . 102

7.2 Acuity-driven LoD Selection . 105

7.3 Acuity-driven Tessellation for F+C Lenses 107

7.3.1 Lens-based Tessellation Metric . 107

7.3.2 View-based Tessellation . 109

7.3.3 Combined Metric . 110

viii

7.4 Implementation . 110

7.5 Results . 114

7.6 Evaluation . 114

7.6.1 Study Design . 116

7.6.2 Results and Discussion . 118

7.6.3 Performance . 120

7.6.4 Data Transfer Overhead for Acuity-driven LoD Selection 121

7.6.5 Frame Rates for Acuity-driven Tessellation 122

7.7 Conclusion and Lessons Learned . 123

8 Scalability of Large, Immersive, High-Resolution Displays 124

8.1 User Study Design . 125

8.1.1 Selecting the Information Space . 125

8.1.2 Hypotheses . 126

8.1.3 Apparatus, Display Form-factors and Implications 127

8.1.4 Data, Visualization and Tasks . 129

8.1.5 Participants . 130

8.1.6 Independent and Dependent Variables 131

8.1.7 Protocol . 132

8.2 Results . 134

8.2.1 ET . 134

8.2.2 SET . 134

8.2.3 SMEQ . 135

8.2.4 TRAVEL . 135

8.3 Interpretation of Results . 137

8.4 Physical Navigation Analysis . 138

8.5 Discussion . 140

8.5.1 Implications for design . 144

8.6 Conclusion . 144

9 VEEVVIE - Visual Explorer for Empirical Visualization, VR and In-

teraction Experiments 145

9.1 Introduction . 145

9.2 Defining the Problem Space . 147

ix

9.2.1 Examples of Visual Analysis for Experiments 147

9.2.2 Tasks . 149

9.2.3 Input Data . 149

9.3 An Ontology for Describing Experiments 150

9.3.1 Core Classes . 150

9.3.2 Application to Experiments . 152

9.3.3 Implementation . 153

9.4 The VEEVVIE Front-end . 154

9.4.1 Layout and Functionality . 154

9.4.2 Implementation and Extensibility 155

9.4.3 Built-in Visualizations . 157

9.5 Usage . 161

9.5.1 Experiment Description . 161

9.5.2 Implementing a Custom Visualization Widget 162

9.5.3 Case 1: Hypothesis Validation . 162

9.5.4 Case 2: Insight Gathering . 164

9.5.5 Case 3: Hypothesis Generation . 164

9.6 Conclusion . 166

10 Conclusions 169

10.1 Summary of Contributions . 169

10.2 Future Work . 171

10.2.1 Short-term Guidance . 171

10.2.2 Long-term Guidance . 173

Bibliography 175

x

List of Figures

1 Visual acuity heatmaps for the CORNEA and the Reality Deck. 33

2 Synthetic view of the Reality Deck with the door closed. 34

3 Four usage scenarios for the Reality Deck. 35

4 Reality Deck Monitor Customization. 39

5 The Reality Deck door assembly. 40

6 Visualization software architecture diagram. 43

7 Sample view of the OpenSceneGraphRenderer module - Sponza model. . . 43

8 Sample view of the OpenSceneGraphRenderer module - Colon model. . . . 44

9 Gigapixel Image Rendering in the Reality Deck. 47

10 F+C lens applied on top of a gigapixel image. 49

11 2D GIS scenario rendering example. 52

12 2D tiled map rendering example. 53

13 Spatial datasource generator tool. 55

14 2D GIS glyph visualization. 56

15 2D GIS overlay visualization. 57

16 3D immersive GIS visualization. 59

17 3D immersive GIS visualization sample view. 61

18 3D immersive GIS visualization example. 61

19 3D immersive GIS visualization of synthetic building geometry. 62

20 Immersive 3D ADCIRC simulation visualization. 64

21 Immersive 3D ADCIRC simulation visualization. 65

22 NuNav3D pose uniformization process . 69

23 The NuNav3D navigation pose . 71

24 High level overview of the NuNav3D pipeline. 72

xi

25 NuNav3D user study experimental apparatus. 76

26 Sample colonoscopy dataset used for NuNav3D path-following task. 77

27 Sample scene used for the NuNav3D exploration task. 78

28 NuNav3D qualitative evaluation results. 79

29 Low-cost, passively tracked gloves used by chirocentric user interface. . . . 85

30 Gestures supported by our chirocentric user interface prototype. 89

31 Hand poses supported by our chirocentric user interface prototype. 90

32 Average confusion matrix for our hand pose recognition technique. 91

33 Confusion matrices for our gesture recognition technique. 93

34 A user leveraging our chirocentric user interface. 99

35 Motivation for acuity-driven F+C lens tessellation. 104

36 Schematic representation of lens-based tessellation factor calculation. . . . 108

37 Parametric error for a Gaussian lens under different conditions. 111

38 Results of the acuity-driven LoD selection scheme. 112

39 Off-axis rendering of 3 overlapping F+C lenses. 115

40 Cross-section of the HiRISE data set used during the user study. 117

41 Performance evaluation of our F+C lens tessellation scheme. 122

42 Illustration of the different display conditions in our user study. 127

43 Example of the visualization design of our experiment. 131

44 Summarization of the ET, SET, TRAVEL and SMEQ metrics from our

study. 133

45 Visualization of user presence within the apparatus space. 136

46 Visualization of estimated participant gaze. 138

47 Visualization of the physical navigation of two study participants. 141

48 Example of the between-task variation for two different participants. 143

49 The VEEVVIE ontology. 148

50 Sample view of the VEEVVIE front-end during a visual exploration session.153

51 Sample (simplified) declaration of a VEEVVIE widget. 156

52 Illustration of coordinated linked views with brushing support. 157

53 Participant-centric visualization of a physical navigation dependent variable.159

54 Sample views of the physical navigation visualization widget. 160

xii

55 Illustration of utilizing VEEVVIE for the hypothesis validation. 163

56 Leveraging VEEVVIE for insight development. 165

57 Illustration of the generation of a new hypothesis using VEEVVIE 167

xiii

List of Tables

1 Summary of the performance of our gesture recognition algorithm. 94

2 Report of our TOST equivalence analysis for our user study. 120

3 Summary of high-level input experimental data. 147

4 Overview of how the VEEVVIE ontology can be used to capture the high-

level design of experiments. 152

xiv

Acknowledgements

Personal Acknowledgments

The pursuit of a PhD is a long, sometimes arduous yet ultimately rewarding journey. My

academic travels would not have been successful without the mentoring, guidance and

personal support of a number of people.

Most important of all, I am immensely grateful to my parents, George Papadopoulos and

Margarita Rapti Papadopoulos for enabling me to pursue my goals and supporting me

along the way. Had they not been there for me, this dissertation would not exist. I would

also like to give a shoot-out to my brothers, Thymios and Panagiotis!

Another person of extreme importance to my academic pursuits is my advisor, Prof. Arie

E. Kaufman. His leap of faith, when offering me a position at Stony Brook University,

is what enabled the research pursuits detailed in this document. Through his continued

advice and personal support, Prof. Kaufman taught me what it means to be an academic

and guided me through six years worth of studies. For the chance to be his student and

ultimate academic offspring, I am extremely grateful. I would be remiss if I did not ac-

knowledge the other three members of my dissertation committee. Professors Dimitris

Samaras and Klaus Mueller of Stony Brook University allowed me to grow academically

through their excellent courses and, along with Professor Amitabh Varshney of the Uni-

versity of Maryland, have made this a better dissertation via their feedback and support.

Finally, I would like to thank Prof. Georgios Papaioannou at the Athens University of

Economics and Business for advising me through my undergraduate degree and inspiring

me to pursue a PhD.

xv

I would also like to thank several members of the Center of Visual Computing for their per-

sonal and professional guidance and work, which made this dissertation possible. Firstly,

many thanks are due to Dr. Kaloian Petkov, a dear academic sibling and repeat co-

author, for guiding me as I fumbled through my first few years at Stony Brook. My

gratitude goes out to Ken Gladky for his impeccable technical support at the Center

and to Brad Nelson, the amazing engineer who helped put together the numerous vir-

tual reality facilities I got to tinker with. I would also like to thank my labmates (and

sometimes co-authors), Koosha Mirhosseini, Ievgeniia Gutenko, Qi Sun, Ji Hwan Park,

Krishna Chaitanya, Joseph Marino and anyone else I might have missed.

Finally, I would like to offer my sincere gratitude to a number of folks who supported me

personally at different periods while at Stony Brook University. Listed in alphabetical or-

der: Mohammadali Bankehsaz, Caspian Blobber, Ritwik Bose, Samira Darvishi, Ievgeniia

Gutenko, Saj Hossain, Lena Lazareva, Heraldo Memelli, Carlos Oreggo, Jill Purrington,

Jen Sidorova, Juhi Tyagi, Spyros Triantafillakis, Bill Woerner, Tomas Yago. Thank you

all ladies and gentlemen!

Data Sources

A substantial number of the experimental results and benchmarks, presented in figures

throughout this dissertation, have been conducted using data sources (e.g. geometry

models, medical datasets, map tilesets, gigapixel imagery) which have been graciously

made available to the public by a number of individuals, institutions and corporations.

These parties include: Mapquest, Gigapan, the University of Arizona High Resolution

Imaging Science Experiment (HiRISE), Jacco Bikker, Frank Meinl, Crytek, the RCSB

Protein Data Bank, the National Institute of Health (NIH), Pelican Mapping, the United

States Geological Service (USGS), the North American Space Administration (NASA),

the Stony Brook University School of Marine and Atmospheric Sciences (SoMAS) and

the New York Resiliency Institute for Storms and Emergencies (NYSRISE). The author

of this dissertation makes no copyright claims regarding those data sources.

xvi

Funding Sources

The research work presented in this dissertation has been generously funded by a number

of institutions, including the United States National Science Foundation (NSF Grants

CNS-0959979, IIP-1069147 and CNS-1302246), the Stony Brook University Center of Ex-

cellence in Wireless and Information Technology (CEWIT) and the New York Resiliency

Institute for Storms and Emergencies (NYSRISE).

xvii

List of Publications

JOURNAL PUBLICATIONS:

C. Papadopoulos, K. Petkov, A. E. Kaufman and K. Mueller. “The Reality Deck -

Immersive Gigapixel Display”. IEEE Computer Graphics and Applications. 35(1), pp

33-45, 2015. Refer to Chapter 3.

C. Papadopoulos and A. E. Kaufman. “Acuity-Driven Gigapixel Visualization”. IEEE

Transactions on Visualization and Computer Graphics, 19(12), pp 2886-2895, 2013. Refer

to Chapter 7.

K. Petkov, C. Papadopoulos, M. Zhang, A. E. Kaufman and X. Gu. “Interactive

Visibility Retargeting in VR Using Conformal Visualization”. IEEE Transactions on

Visualization and Computer Graphics, 18(7), pp 1027-1040, 2012.

G. Papaioannou, M. L. Menexi and C. Papadopoulos. “Real-time Volume-based Ambi-

ent Occlusion”. IEEE Transactions on Visualization and Computer Graphics, 16(5), pp

752-762, 2010.

REFEREED CONFERENCE PUBLICATIONS:

C. Papadopoulos, I. Gutenko and A. E. Kaufman. “VEEVVIE - Visual Explorer for

Empirical Visualization, VR and Interaction Experiments”. Conditionally accepted to

IEEE Visual Analytics Science and Technology, 2015. Refer to Chapter 9.

C. Papadopoulos, S. Mirhosseini, I. Gutenko, K. Petkov, A. E. Kaufman and B. Laha.

“Scalability limits of large immersive high-resolution displays”. IEEE Virtual Reality, pp

11-19, March 2015. Refer to Chapter 8.

C. Papadopoulos, H. Choi, J. Sinha, K. Yun, A. E. Kaufman, D. Samaras and B. Laha.

xviii

“Practical Chirocentric 3DUI Platform for Immersive Environments”. IEEE 3D User

Interfaces Symposium, pp 31-34, March 2015. Refer to Chapter 6.

C. Papadopoulos, B. Laha and A. E. Kaufman. “Interacting with mixed-reality sys-

tems”. Death of the Desktop Workshop (hosted by IEEE VisWeek), November 2014.

Refer to Chapter 6.

I. Gutenko, K. Petkov, C. Papadopoulos, X. Zhao, J. H. Park, A. E. Kaufman and

R. Cha. “Remote volume rendering pipeline for mHealth applications”. SPIE Medical

Imaging, March 2014.

K. Petkov, C. Papadopoulos and A. E. Kaufman. “Visual Exploration of the Infinite

Canvas”. IEEE Virtual Reality, pp 11-14, March 2013. Refer to Chapter 3.

K. Petkov, C. Papadopoulos, M. Zhang, A. E. Kaufman and X. Gu. “Conformal Vi-

sualization for Partially Immersive Platforms”. IEEE Virtual Reality, pp 143-150, March

2011.

WORKSHOP PUBLICATIONS AND POSTERS:

Q. Sun, S. Mirhosseini, I. Gutenko, J. H. Park, C. Papadopoulos, B. Laha, and A. E.

Kaufman; “Buyer’s Satisfaction in A Virtual Fitting Room Scenario Based on Realism of

Avatar”. IEEE 3D User Interfaces Symposium, pp 183-184, March 2015.

C. Papadopoulos, S. Mirhosseini and A. E. Kaufman. “Immersive Visualization of

Storm-surge Simulations”. CEWIT International Conference & Expo on Emerging Tech-

nologies for a Smarter World, October 2014. Refer to Chapter 3 and Chapter 4.

C. Papadopoulos, H. J. Choi, J. Sinha, K. Yun, D. Samaras and A. E. Kaufman.

“Gestural Interfaces for the Reality Deck”. Center for Dynamic Data Analytics (CDDA)

Workshop, September 2013. Refer to Chapter 6.

C. Papadopoulos, K. Petkov, A. E. Kaufman, A. Pinkas-Sarafova, C. Chipev, M. Simon.

“Immersive Training for Work under cGMP”. NYSTEM Collaboration & Renewal, May

2013.

C. Papadopoulos, K. Petkov and A. E. Kaufman. “Building the Reality Deck”. POW-

ERWALL International Workshop on Interactive, Ultra-High-Resolution Displays (hosted

by ACM CHI), April 2013. Refer to Chapter 3.

xix

A. Kaufman, C. Papadopoulos and K. Petkov. “1,500,000,000 pixels on a budget

- Building the RealityDeck”. CEWIT International Conference & Expo on Emerging

Technologies for a Smarter World, November 2012. Refer to Chapter 3.

C. Papadopoulos, D. Sugarman and A. E. Kaufman. “NuNav3D: A Touch-less, Body-

driven interface for 3D Navigation”. IEEE Virtual Reality, March 2012. Refer to Chapter

5.

C. Papadopoulos, D. Sugarman and A. E. Kaufman. “Body-driven Navigation for

3D Visualization using NuNav3D”. IEEE Pacific Vis, February 2012. Refer to Chapter

5.

A. E. Kaufman, K. Mueller, D. Samaras, H. Qin, A. Varshney, C. Papadopoulos and

K. Petkov. “The RealityDeck - Immersive Giga-Pixel Display”. CEWIT International

Conference & Expo on Emerging Technologies for a Smarter World, November 2011.

Refer to Chapter 3.

C. Papadopoulos and G. Papaioannou. “Realistic Real-time Underwater Caustics and

Godrays”. Graphicon, October 2009.

TALKS:

C. Papadopoulos. “Immersive Visualization of Storm-surge Simulations”. CEWIT

International Conference & Expo on Emerging Technologies for a Smarter World, October

2014. Refer to Chapter 3 and Chapter 4.

C. Papadopoulos. “Immersive Display and Exploration of Gigapixel Images”. IEEE

Virtual Reality 2014 Doctoral Consortium, March 2014. Refer to Chapter 3 and Chapter

6.

C. Papadopoulos and A. E. Kaufman. “Acuity-Driven Gigapixel Visualization”. IEEE

Visualization, October 2013. Refer to Chapter 7.

C. Papadopoulos and A. E. Kaufman. “Gestural Interfaces for the Reality Deck”.

CEWIT International Conference & Expo on Emerging Technologies for a Smarter World,

October 2013. Refer to Chapter 6.

A. E. Kaufman, C. Papadopoulos and K. Petkov. “Immersive Visualization for Big

Data”. Center for Dynamic Data Analytics (CDDA) Workshop, September 2013.

xx

C. Papadopoulos. “Looking at Bits & Bytes - A History of Virtual Reality”. Stony

Brook University Provost’s Graduate Lecture Series, May 2013.

xxi

Chapter 1

Introduction

1.1 Why build Large High-Resolution Displays?

Most domain experts, like the vast majority of computer users, interact with visualizations

on a single screen via a pointer based interface. This setup can manifest itself in a number

of ways. A desktop computer with a mouse and keyboard, a laptop with a touchpad and,

more recently, a tablet with a touch-based interface. In all of these cases the visualization

is delivered via a screen of fixed resolution, between two and four megapixels (or millions

of pixels) in a modern setup. Moreover, pointer-based visualization interfaces expose

some sort of panning and zooming functionality, allowing users to reposition their virtual

viewport into the visual representation of the data only focusing on a segment of it.

Such an approach to visualization is efficient as long as the data “fits” within the available

screen resolution. If the data is substantially larger than the available screen real-estate,

then the user has to resort to extensive virtual navigation motions (panning and zooming)

in order to inspect areas of interest. From this abundance of virtual navigation, two

issues arise. First, the user spends substantial amounts of time doing “grunt work” while

repositioning the virtual camera, increasing fatigue and overall taking longer to complete

visualization tasks. Secondly, when zoomed into a sub-section of the data, the user is no

longer able to appreciate the surrounding context (which is critical for decision making,

as outlined earlier).

Increasing the size and resolution of the display is an obvious solution to this problem.

1

In fact, multi-display desktop computer setups are becoming more commonplace. They

allow for increased productivity as users can partition multiple data views or applications

into separate monitors. Consequently, important information can remain visible all the

time. Furthermore, the user has to spend less time context-switching and wrestling with

the window manager in order to recover the relevant application from a multitude of

minimized or backgrounded windows. When taken to the extreme, this multi-display

approach can be scaled up to wall-sized display setups. Such systems are often comprised

of tens or hundreds of displays (connected to multiple computers), which are abstracted

into a single desktop via distributed rendering software. Multiple monickers exist for these

facilities. Tiled display walls, Large High-Resolution Displays or Powerwalls are a few

terms found in the literature used to describe these systems. In this dissertation, the term

Large, High Resolution Displays and the acronym LHiRD are used to refer this category

of visualization environments. Generally speaking, these facilities are differentiated from

multi-display desktop setups in the following ways. First, LHiRDs are significantly larger

than a multi-display desktop, in terms of screen count and, more importantly, aggregate

screen size/resolution. Second, LHiRDs enable and encourage physical navigation of the

data, rather than forcing users to virtually manipulate the visualization. Effectively, users

can zoom by walking up to the displays in order to resolve high-frequency details and pan

simply by looking at a different section of the LHiRD. Physical navigation in the context

of LHiRD visualization can result in substantially increased performance for numerous

visualization tasks (this has been well documented in the human-computer interaction

literature, as overviewed in Chapter 2). As a result, even though constructing an LHiRD

can be an expensive proposition, such systems have proliferated throughout academic,

research and industrial settings throughout the years.

1.2 Evolution of LHiRDs

The progenitor of LHiRDs was the University of Minnesota Powerwall (constructed in

the early 90s), providing a 3200 by 2400 viewport using 4 projectors driven by SGI Onyx

computers. Since then, advances in hardware (particularly the proliferation of 3D graph-

ics accelerators and high-resolution LCD panels) permitted the scalability of the LHiRD

into systems that offer hundreds of megapixels in resolution and hundreds of square feet

of display space. However, up until 2012 it appeared that the size of such systems had

2

reached a cap. In fact, at that time, the largest LHiRD in the world was the Stallion

Powerwall at the Texas Advanced Computing Center (with a few similar systems being

installed at other research facilities), offering approximately 300 megapixels in resolution.

This resolution cap was not imposed by hardware or software limitations and felt rather

arbitrary. Rather, it appeared feasible that a significantly more capable LHiRD could be

constructed, offering substantially higher resolution and an enlarged workspace. Addi-

tionally, such a system could further enable physical navigation by providing a panoramic

experience to the user (whereas prior tiled displays had mostly been planar). A group

of visualization researchers at Stony Brook University conceived such a system and pro-

ceeded to implement it in 2012. The author of this dissertation had the good fortune to be

part of this group of scientists. The resulting facility, termed the Reality Deck [PPKM15],

is a gigapixel resolution immersive display. It is comprised of four walls made out of a

total of 416 modified LCD monitors. It offers a total resolution of over 1.5 billion pixels

in a horizontally immersive setting and a workspace of approximately 33′ by 19′ (and 11′

high). The Reality Deck’s design and implementation is described in detail in Chapter

3 and the software and visualization applications in Chapter 4. This visualization envi-

ronment served as the motivation and implementation platform for the majority of the

research work described in this dissertation.

1.3 Overarching Motivation

The recurring theme of this dissertation is the notion of physical navigation. Physical

navigation is the most “natural” way in which users interact with LHiRDs. Thus, being

an interaction modality in and of itself, physical navigation should be enabled, exploited

and evaluated. Other interaction methods should be designed with physical navigation

in mind. Rendering algorithms and techniques can be enhanced to take advantage of

physical navigation in order to improve performance. And physical navigation within a

LHiRD, along with its implications in the conduct of various tasks, needs to be measured.

Finally, the conduct and analysis of such usability experiments can be enhanced through

interactive visual exploration tools. These four main research directions grew organically

from the author’s interaction with LHiRDs through the years. They are briefly discussed

in the following paragraphs and, in more detail, in later chapters of this dissertation.

3

1.4 Enabling Physical Navigation

The large workspace of the Reality Deck promotes physical navigation, even more so than

previous tiled display designs. A simple pan of the head can provide an overview of 1.5

gigapixels of visualized information. But data exploration is not constrained to “looking”.

Users must be provided with appropriate interaction modalities. Most LHiRDs, includ-

ing the Reality Deck, support traditional interaction techniques (e.g., mouse/keyboard).

However, the implementation of the LHiRD should not require that the user return to a

fixed location every time she wishes to interact with the visualization. Indeed, research

has shown that such tethering effects can affect the ergonomics of user interactions with

LHiRDs [BN08]. Thus, it is important to provide users with interfaces that are fully

untethered. Optimally, such an interface should be deviceless, controllable by the user’s

hands, with gestures and motions mapping to different manipulations of the data. The

first contribution of this dissertation examines a hand-based natural user interface that

provides 4 degrees of freedom (DoFs) of camera control without the need for external

devices. This interface, termed NuNav3D [PSK12a] and described in Chapter 5, is imple-

mented using a Microsoft Kinect sensor and evaluated in two different data exploration

settings.

The evaluation of NuNav3D revealed a shortcoming of mapping hand-motions to cam-

era manipulations. Specifically, users state their intent to begin and end navigation by

assuming a predetermined navigation pose. When entering or exiting that pose, unin-

tended navigations could occur which could affect a carefully positioned viewport into

the data. It quickly became obvious that a more “explicit” way of declaring navigation

intent would be required. Additionally, NuNav3D was strictly focused on navigation and

did not provide a modality for triggering other actions within the visualization. Both of

these shortcomings are addressed in our chirocentric user interface platform for immersive

virtual environments, described in Chapter 6.

1.5 Leveraging Physical Navigation

Since physical navigation is a de-facto characteristic of LHiRDs, it can be leveraged to aug-

ment the performance of the software and hardware driving the system. When streaming

4

high resolution data, positional tracking can be used to guide the level-of-detail (LoD)

selection across the display, delivering high-resolution data near the user, but lower fi-

delity imagery farther away. By ensuring that the LoD calculation takes into account

the user’s visual acuity and the physical specifications of the display, this manipulation

of the rendering can be unnoticeable. This technique, termed Acuity-Driven Gigapixel

Visualization [PK13b] is the third major contribution of this dissertation and is described

in Chapter 7.

1.6 Evaluating the limits of LHiRDs

Prior research into the ergonomics of LHiRDs has thoroughly quantified the benefits they

can offer to user performance in various types of data exploration tasks. However, a

closer look at the literature yields an important fact. The vast majority of user studies

have been conducted on LHiRDs of relatively small size compared to the state of the art

(even prior to the construction of the Reality Deck). In fact, the largest LHiRD utilized

in a peer review study offered an aggregate resolution of approximately 131 megapixels,

substantially smaller than the 300 megapixel systems that predate the Reality Deck.

Consequently, the quantifiable benefits of LHiRDs can only be claimed for displays of

similar sizes. Conceivably there exists a point of diminishing returns, past which the total

pixel count or surface area of the display is too large for further performance improvements

to be obtained. The fourth major contribution of this dissertation is the report on a user

study aimed at quantifying the scalability limits of LHiRDs. By thoroughly examining the

literature, we identified several core visualization tasks and designed a user study, with

the display resolution being the main variable, targeted at quantifying user performance.

We report on this study in Chapter 8.

5

1.7 Visual Analytics for Visualization Experi-

ments

Empirical experimentation and hypothesis-driven evaluation have been at the core of

research centered around human-factors for computing systems (including the study pre-

sented in Chapter 8). Visualization often seems to serve as a supplementary tool to this

type of evaluation, helping researchers generate new insights and hypotheses. In fact, in

our study, it was through the visualization of user movement, gaze and presence that we

unearthed interesting patterns for how users tackle different tasks within a large immer-

sive gigapixel display. The final contribution of this thesis aims to take the application

of visualization in empirical experimentation to the next level. In Chapter 9, we de-

scribe VEEVVIE , the Visual Explorer for Empirical Visualization, VR and Interaction

Experiments. Driven by an ontology which is informed by prior visualization and interac-

tion experiments, VEEVVIE allows scientists to visually analyze experimental data and

enables them to gain insight that would not be obvious through statistical analysis.

1.8 Summary

The overall goal of this dissertation is to enable, leverage and evaluate physical user inter-

actions with gigapixel-resolution LHiRDs. This task is accomplished by offering insights

on natural user interface design, providing techniques for improving system performance

by taking advantage of the perceptual affordances such systems, quantifying their scal-

ability limits and providing tools that empower researchers to better understand these

limits. Through these works, the author hopes to document the design of the current

state of the art LHiRD, enable new forms of user interactions with such systems, allow

engineers to squeeze every drop of performance out of their facilities, and finally guide

future LHiRD designs.

6

Chapter 2

Related Work

The contributions presented in this dissertation are based on foundational work in the

broad fields of visualization, virtual environments engineering and user interaction. The

goal of this chapter is to provide a thorough overview of related work in numerous ar-

eas:

1. Central concepts of visualization system design

2. Existing immersive visualization environment installations

3. Software frameworks that ease the development of distributed visualization appli-

cations

4. Gesture-based user interfaces and 3D navigation techniques

5. Techniques for rendering and exploring gigapixel imagery

6. User studies on large high resolution displays or similar systems

2.1 Fundamentals of Visualization System Design

During the dawn of Virtual Reality (VR) research in 1965, Ivan E. Sutherland introduced

the concept of the “Ultimate Display” [Sut65], a room within which the computer can

control the existence of matter. While such a machine does not currently exist, Suther-

land’s vision triggered an explosion of different approaches that strived to achieve the

7

objective of the “Ultimate Display”. These approaches, aimed to fulfill two main require-

ments, saturating the observer’s field of view and providing sufficient visual acuity for the

displayed imagery to be considered realistic.

The field-of-view (FoV) requirement can be further analyzed as follows. The FoV provided

by a single display is a single angle equal to 2tan−1(W
2D

) [CNSD+92], where W is the width

of the display and D is the distance of the user from the display. For example, a single

19-inch diagonal display provides the user with a 45◦ FoV when the user’s eyes are 18”

away. Modern Head Mounted Displays (HMDs) produce a FoV in the 100◦ range. When

examining FoV for multi-display installations, the FoV for each individual display will

vary depending on the user’s position inside the environment but the entirety of the

system will generate a full 360◦ FoV (for a completely immersive setup such as a 6-wall

CAVE). The impact of the provided FoV on immersion can be exemplified by commercial

entertainment applications such as IMAX movie theaters, in which the position of a very

large screen in relation to the viewer facilitates the suspension of disbelief and creates a

more immersive experience.

The quality of a rendered image on a computer graphics display is often measured by its

resolution - the number of pixels the display uses to generate the image. However, the

perceived detail of a computer generated image by a human observer is a factor of both

the resolution of the display and the position of the observer in relation to the display.

This measurement is termed the visual acuity of the display. Formally, visual acuity is

defined as the portion of a pixel taken from the center of the display that spans one

minute of the field of view. For a display of H pixels of horizontal resolution with a width

of W inches, the pixel pitch of that display is equal to P = H
W

pixels per inch. If the user

is standing D inches away from the center of the display, then the angular imprint of a

single pixel on the user’s retina is roughly tan−1(P
D
) (measured in minutes) [CNSD+92].

The inverse of this metric is the visual acuity of the display. Another popular metric

of visual acuity is the Snellen fraction. For a viewer with visual acuity of 20
X
, according

to the Snellen fraction, that viewer is able to perceive at 20′ what a person of average

eyesight perceives at 100′. The straightforward implication is that 20
20

is the visual acuity

metric for an average person (for whom a visual angle of one minute is perceivable), 20
10

being above average, 20
40

being the minimum for driving at night-time and 20
200

being the

definition for legally blind. As an example, we will apply the definition of visual acuity to

a 1280 × 1024 display with a 19” diagonal and the user standing at a distance of 0.45m

8

away from it. This provides us with a 20
45

acuity metric, good enough to drive at night

but not enough to saturate the average human visual system.

Apart from the two main considerations of FoV and visual acuity, the intrusion of the

VR instrument into the user experience must be taken into consideration. Such intrusion

is a result of the isolation of the viewer’s sensory input. A necessity stemming from

this shortcoming of certain VR systems, is the need for a visual representation of the

user’s body and the entirety of the physical environment the user will be operating in.

This demand can be complicated even further when there exists a need for collaborative

interaction inside the virtual environment. In that case, multiple users have to be tracked

inside the physical space, then subsequently modeled and displayed inside the virtual

environment in order to reduce the disconnection between the physical and virtual world.

Certain types of IVEs (such as CAVEs) overcome this shortcoming, as the representations

of the users and the physical constraints of the space are implicit, a result of the fact that

the users visual system is not obstructed by a head-mounted display or other device.

Designing and constructing a large visualization system is an act of balancing the above

three criteria. In the following section, we examine different implementations of such

systems and discuss the user experience they provide to users.

2.2 Large-scale Immersive Visualization Environ-

ments

Large-scale visualization systems that strive to satisfy the above factors are frequently and

interchangeably termed “Immersive Visualization Environments” or “Immersive Virtual

Environments”. Through this dissertation we utilize the acronym IVE when referring

to these facilities. Such systems are generally split into two broad categories. On one

hand are facilities that aim at maximizing immersion, creating a VR experience without

the presence and ergonomics issues of head-mounted displays. On the other side exist

facilities whose goal is the optimization of visual acuity, often going hand-in-hand with a

high aggregate resolution. Until relatively recently those two categories had been relatively

distinct. In this section we present several IVE examples from each category as well as a

few “hybrid systems”.

9

2.2.1 CAVE Automatic Visual Environment and Variations

The concept of the CAVE Automatic Visual Environment as a virtual reality system was

introduced in 1992 by Cruz-Neira et al. [CNSD+92]. The CAVE was proposed as an

alternative to VR systems of the time (HMDs, BOOMs and basic CRT stereo displays),

effectively addressing individual issues with each system. When compared to HMDs,

the CAVE offered a similarly immersive FoV without any sensory intrusion and superior

visual acuity (due to the limitations of head-mounted displays of the time).

From an engineering perspective, the original CAVE consisted of 3 walls and a floor

surface. The wall images were displayed using back-projection, whereas the floor was

rendered via front projection from above, using a highly reflective mirror to reduce space

requirements. The original CAVE was driven by SGI workstations and utilized an ac-

tive shutterglass system to achieve stereoscopic rendering. A magnetic tracking system

was used to track the viewer’s head position in a single user scenario and offer correct

perspective projections. The display surfaces were framelocked among each other so as

to refresh simultaneously and eliminate screen tearing along CAVE edges. Refresh for

the entire CAVE was also synchronized to an external IR beacon system that drove the

shutterglasses. The engineering considerations mentioned above remain highly relevant

in modern CAVE systems.

More recent CAVE designs such as the 5-wall Immersive Cabin (IC) [QZP+08] have in-

creased the available immersion while reducing costs. The IC utilizes low-cost commodity

workstations and a cheap IR based-tracking system to achieve an immersive visualization

with 4 back-projected wall surfaces and a front-projected floor. In a similar fashion, 6-wall

CAVEs 1 can also be constructed, in which the floor and ceiling surfaces are also back

projected using mirrors to reduce the spatial requirements while accommodating for the

throw distance of the projectors. However, in the case of a back-projected floor surface,

there exists a significant consideration in that the floor must also be able to bear a load

equal to the maximum number of simultaneous users of the environment. This sometimes

demands the utilization of at least one support beam running underneath the floor sur-

face, the footprint of which must be taken into account when designing the projection

subsystem (a potential solution would be to split the floor surface into two subsurfaces,

with each projection effectively grazing across the support structure to create a seamless

1http://kvl.kaust.edu.sa/Pages/CORNEA.aspx

10

http://kvl.kaust.edu.sa/Pages/CORNEA.aspx

image). In any case, 6-wall CAVEs present several engineering challenges that increase

cost significantly when compared to 4 or 5 surface solutions while the benefit in immersion

is relatively small (since the horizontal FoV remains the same whereas the vertical FoV is

already almost saturated in 4-5 wall systems). In terms of resolution, the original CAVE

offered a visual acuity of 20
140

on the Snellen scale, which was state-of-the-art for the time

but still nowhere near the required amount for visualization of intricate datasets. This

lack of detail was a result of projecting a 1 megapixel image on a 3m2 screen. Modern

projectors resolutions can scale up to 8 megapixel and multiple projectors can be tiled to

further increase resolution on a single surface. However, the cost of such projectors (such

as the Christie 4k2) can be prohibitively high for most CAVE setups.

In original CAVE paper, Cruz-Neira et al. [CNSD+92] touched upon several issues that

are still of significant importance when designing IVEs. It is well known that to achieve

a correct stereo effect, the rendering system must be aware of the viewer’s position inside

the CAVE volume (in order for proper off-axis projections to be calculated). However,

a second important consideration is the orientation of the viewer’s head. If one assumes

a static vertical head orientation, then as the viewer turns his head while observing the

visualization, the stereo effect may be inverted or lost (this is particularly noticeable in the

floor and ceiling surfaces of CAVEs). Another important matter related to CAVEs is the

inherit clash between collaborative usage and head-tracking. At the moment, there exist

few methods that allow multiple people to get individual perspective correct visualizations

out of a single IVE. A simplistic method for accommodating such multi-user projections

in a CAVE would be to multiplex the projections in the time-domain by using active

shutter glasses (the Responsive Workbench [ABM+97] is such a system that supports two

simultaneous users). However, this imposes certain requirements in terms of the refresh

rate of the display and shutter-glass system since, in order to achieve a natural and non-

disorienting effect, a refresh rate of 60Hz per user per eye must be attained. Usually

when multiple users are present, a static head position is assumed for the entirety of the

visualization. Kulik et al. [KKB+11] have described a solution for providing unique stereo

views for up to six users via a multiplexing system. However their approach multiplies

the number of projectors required for each display surface. Modern IVEs tend to either

generate the collaborative visuals assuming a fixed viewer position or use compromise

solutions such as “panoptic” stereo [FNM+14].

2http://www.christiedigital.com/AMEN/Products/christieMirageS4K.htm

11

http://www.christiedigital.com/AMEN/Products/christieMirageS4K.htm

2.2.2 Large High-Resolution Displays

While CAVEs offer a near-total immersive feeling (depending on the configuration), they

do not offer enough resolution to saturate the human visual system (even for state of

the art systems). The lack of large-scale high-resolution visualization systems triggered

the development of Large, High-Resolution Displays (LHiRDs) or “Powerwalls”. These

visualization systems are comprised of a lattice of tiled display devices, traditionally, either

LCDs or Projectors (with more expensive display system solutions such as the Christie

Microtile3 being also available).

Early work on Powerwalls began in the early 1990s in places like University of Min-

nesota4 , University of North Carolina and Princeton University. Princeton University

pioneered the field with an eight-tile display wall using back-projection which was later

scaled to a 24 tile setup for a total resolution of 18 megapixels. In their series of pa-

pers [CWG+02] [LCC+00] the researchers from Princeton have tackled various issues

regarding the usage of projectors to drive tiled display arrays as well as design principles

for clustered applications. One of the main shortcomings with projector-driven Pow-

erwalls is the necessity for calibration to compensate for projector misalignment, color

and brightness mismatching and distortions introduced by peculiarities in the projector

lenses [WCL03] [YCF+00]. Additionally, projectors require regular maintenance (mainly

replacement of the internal light bulbs) and tend to have high power requirements. They

also produce large amounts of heat, leading to the need for improved HVAC support.

An alternative to projector-driven Powerwalls, is using a lattice of LCD displays. The

University of Texas Stallion Powerwall5 , the highest resolution single-wall display in the

world, utilizes 75 4-megapixel monitors for a combined resolution of over 300 megapixels.

Multiple other facilities with comparable offered resolutions exist6 . Using LCD displays

instead of projectors largely deals with the mechanical alignment and lens distortion

issues that plague projector based setups. A major disadvantage of LCD-based systems

is the existence of bezels, the material that surrounds a single monitor and often provides

structural support for the internal components. A number of techniques exist targeted at

ameliorating the existence of bezels. For example, Ebert et al. [ETO+10] have overlaid

3http://www.christiedigital.com/en-us/microtiles/pages/digital-display.aspx
4http://www.lcse.umn.edu/research/powerwall/powerwall.html
5http://www.tacc.utexas.edu/resources/visualization/
6http://calit2.net/research/areas/materials/project?id=34

12

http://www.christiedigital.com/en-us/microtiles/pages/digital-display.aspx
http://www.lcse.umn.edu/research/powerwall/powerwall.html
http://www.tacc.utexas.edu/resources/visualization/
http://calit2.net/research/areas/materials/project?id=34

visuals on top of the bezel surface that are generated by a projector. Another approach is

to utilize positional user tracking to provide perspective shift for the visualization, allowing

users to peek past the bezels via simple head movements [APPC12]. On the hardware

side, there exist several “ultra-narrow bezel” products, some of which have been utilized

in LHiRD construction [FNT+13]. Those products however tend to be targeted at the

promotional industry, offering large diagonals at relatively low resolutions. Consequently,

they reduce the overall pixel density and visual acuity of the LHiRD.

2.2.3 Hybrid Systems

While the original CAVE offered immersion and, for the time, relatively high visual acuity,

it still placed users in the “legally blind” territory with regard to the amount of perceived

detail (approximately 20
140

on the Snellen metric). As mentioned earlier, high resolution

CAVEs exist (one such CAVE is the Cornea at King Abdulah’s University of Science

and Technology 7), but they require prohibitively expensive projector arrangements to

achieve the required resolution. Striving for complete immersion (including floor and

ceiling surfaces) makes the overall cost of the IVE even greater. A number of research

institutions have constructed hybrid visualization systems, that blur the lines between

CAVEs and LHiRDs in terms of display technology, arrangement and provided immersion

and visual acuity.

The pursuit for a relatively affordable fully immersive IVE with a high degree of visual

acuity led to the development of the StarCAVE in 2007 at the California Institute of

Telecommunication and Technology [DDS+09]. While the StarCAVE draws inspiration

off the original CAVE designs, it augments them a variety of ways. It uses a pentagonal

wall arrangement instead of the conventional 3 or 4 wall system. Each wall is divided into

3 segments. The middle segment is perpendicular to the viewer’s eye-sight at head level,

while the top and bottom segments are slanted inwards. This surface arrangement pro-

vides several benefits. It reduces reflections between surfaces since no surface is perfectly

parallel to another. The user experiences less oblique views since the typical viewing

angle is less off-axis that in a square CAVE. The slanted top segments of the CAVE sig-

nificantly increase immersion on the vertical axis as the lack of a ceiling surface becomes

harder to notice. Finally, the slanting of each wall segment at the top and bottom (and

7http://kvl.kaust.edu.sa/Pages/CORNEA.aspx

13

http://kvl.kaust.edu.sa/Pages/CORNEA.aspx

by extension, the offset projector placement) results in a brighter perceived image for the

viewer. It is important to note that the StarCAVE implements stereoscopic rendering

using passive light polarization, which had significant implications in the design (a result

of the creators striving to maximize the brightness of the resulting visualization). Details

pertaining to their approach of this problem can be found in the paper by DeFanti et

al. [DDS+09]. Other challenges of the design include the mounting superstructure for

supporting the screens and projectors and the need for one of the walls to be movable in

order to serve as an entrance to the environment. Overall, the StarCAVE utilizes 34 2

megapixel projectors. It offers an experimental 20
40

visual acuity metric at 3 meters or a

more realistic 20
60

at 1.5 meters (which would be the average distance from a display for a

user).

A more recent hybrid system is the CAVE2, constructed at the University of Illinois

Chicago [FNT+13]. The CAVE2 is comprised of 72 LCD displays, arranged in a near-

complete cylinder (with a horizontal FoV of approximately 320◦, accommodating for an

entry point to the system’s interior). These displays support stereoscopic 3D via polarized

stereo and have been modified to reduce the polarization-related ghosting which is often

present at off-axis view angles. With each display having a resolution of 1366×736 pixels,

the facility provides an aggregate resolution of 72 megapixels in 2D mode or half that

number when using stereoscopic 3D. In fact, the CAVE2 is described as a “hybrid” reality

visualization facility, with the ability to intermix 2D and 3D applications as appropriate.

The facility does offer a visual acuity of 20
20
, but only at its very center, as is usually the

case for most CAVE-like systems.

From surveying the landscape of existing IVEs, it became apparent that there existed

no system that offered 20
20

acuity for the majority of the visualization space while also

providing a substantial degree of immersion. Both of these characteristics promote phys-

ical navigation, enable collaboration and can potentially improve user performance. This

“gap” in IVE design served as a primary motivator for the construction of the Reality

Deck, which is outlined later in this thesis.

14

2.3 Distributed Visualization Software

If one excludes single user systems such as HMDs or relatively relativel small tiled displays,

a pattern arises among all IVEs. Due to the necessity to push a large amount of pixels to a

significant number of monitors, there exists a requirement for multiple Image Generators

(IG) to work together, in parallel in order to create the final visualization. For example,

in the case of the StarCAVE, a total of 16 high-end workstations with dual Graphics

Processing Units (GPUs) have to work in tandem. Similarly the CAVE2 utilizes 36 IGs,

each driving two displays.

This distributed rendering process has to be carefully synchronized among all nodes. It

is imperative that at every point in time, the visualized image among all display surfaces

of the IVE has the same global timestamp so that the user does not observe any image

tearing (or stereo inconsistencies). The rendering of a single frame is a factor of a variety

of parameters such as the user’s head position, timing information, virtual camera position

based on user interaction, the location of tracked interaction devices within the physical

space of the IVE, etc. All this information must be robustly distributed to all IGs in a

synchronized fashion. Furthermore, modern visualization often demands the rendering

of very large data-sets, reaching multiple gigabytes or terabytes in size. Since this data

cannot live in main or graphics memory, it must be streamed to and distributed among

IGs depending on the current timestamp and the part of the virtual scene that each IG is

rendering. Additionally, this distribution of rendering responsibilities between a number

of machines should optimally result in performance that is at least equal to that of a

feature-equivalent application running on a single workstation.

The above requirements define an outline of features that a distributed rendering frame-

work should expose. Generally, current research and development of such frameworks

falls into two broad categories, stream replication frameworks and distributed render-

ing APIs. The two categories offer a trade-off between ease of application porting (from

single-node to a distributed environment) and variety of features and flexibility. Following

is an overview of the most popular frameworks that fall under either of these categories.

Additionally, we briefly touch on frameworks that allow multiple applications to be exe-

cuted simultaneously on a clustered visualization system. Chung et al. [CAN14] offer a

very thorough overview of the distributed rendering framework landscape.

15

2.3.1 Graphics API Stream Replication

Early work into distributed rendering frameworks was motivated by the need to drive

large tiled displays. The WireGL framework [HBEH00], developed at Stanford Univer-

sity, effectively unified a large number of rendering nodes into a single “framebuffer” (not

in the strict sense, as separate framebuffers obviously existed at the IGs but in terms

of what was exposed to the application via the API), via an OpenGL-like interface to

facilitate development. It also introduced a compositing framework that provided addi-

tional flexibility in terms of combining the framebuffers into a final image. Thus different

configurations of displays were supported (for example, a multi-display lattice could be

driven by a cluster of machines or the same cluster could render a single-display complex

visualization, with each machine handling a different part and the compositor aggregat-

ing the resulting images). WireGL utilized sort-first processing of the OpenGL streams,

forwarding them to the rendering clients. This indiscriminate sort-first process failed to

effectively utilize GPU resources on the rendering nodes. As a result, while performance

was not hurt in comparison to a single-node application, no performance benefit would

often be observed either.

The Chromium Stream Processing Framework described in the paper by Humphreys et

al. [HHN+02], has expanded on WireGL in a variety of ways. It introduced the notion

of Stream Processing Units (SPUs) that can accept and output one or multiple OpenGL

streams, performing transformations to them, with an effect on rendering. Chromium pro-

vided much more flexibility than WireGL, allowing multiple OpenGL applications to run

in a distributed fashion in the same cluster and permitting rendering effects that WireGL

could not perform by modifying the streams. For instance, a Chromium server could

modify a default OpenGL stream by replacing instances of the OpenGL calls that define

the rendering mode (fill, line or framework). Thus, two Chromium servers could work in

tandem to produce a fused wireframe+solid rendering from a single unmodified OpenGL

application, by simply intercepting the relevant rendering commands and replacing them

appropriately, then forwarding the results to the rendering server. However, Chromium

still suffered, to a large extend, from the sort-first bottleneck that plagued WireGL. It

also required that the whole OpenGL specification be replicated by the Chromium li-

brary.

16

More recent work at CALIT2, inspired by WireGL and Chromium, resulted in the intro-

duction of the Cross-platform Cluster Graphics Library (CGLX) [DK10]. CGLX takes

a step back from the complete reimplementation of OpenGL by only intercepting a few

select OpenGL calls (that pertain mostly to modelview and projection matrix control as

well as viewport specification) and reimplementing them to compensate for the different

physical locations of display surfaces in the cluster. All other calls run natively on the

IGs with full 3D acceleration using whatever implementation is provided by the graphics

driver. A side-benefit of CGLX is that all nodes effectively run the same application

binary.

The benefit of stream-replication-centric libraries is the ability to relatively easily port a

desktop application to a distributed rendering system. Often an application recompila-

tion is all that is required (or a binary-compatible version of the OpenGL interface can

conceivably be loaded at runtime). However, this approach imposes some restrictions on

application design. In particular, most stream-replication APIs intercept and manipulate

calls to OpenGL functions that set the projection and modelview matrices for rendering.

In early OpenGL versions (up to OpenGL 2.0) these matrices are passed through func-

tions with well defined semantics (by specifying the active OpenGL matrix stack, e.g.,

GL MODELVIEW, and using a glLoadMatrix call). However, this functionality is depre-

cated in more recent versions of OpenGL and, in fact, its usage is strongly discouraged or

disallowed on certain implementations. Thus, stream-replication approaches tend to not

function with modern OpenGL applications. On the other hand, intrusive distributed ren-

dering libraries can work around this problem, at the expense of additional development

work.

2.3.2 Distributed Rendering Libraries

On the opposite side of the distributed rendering spectrum are frameworks that provide

a “runtime” for the development of clustered visual applications. These frameworks of-

ten define an application model (often with a clear separation between the “state” and

“rendering” components) and abstract several OS-level functionalities. For example, a

distributed rendering framework often takes care of window and OpenGL context cre-

ation, provides a main application loop and aggregates input from a variety of devices

17

(and even across the nodes of the distributed rendering cluster). Such software develop-

ment libraries permit the creation of truly “cluster-aware” applications but porting an

existing application to them can be time consuming.

A recent framework that follows the above paradigm is Equalizer [EMP09]. Equalizer is

a collection of libraries that expose different types of functionality relevant to distributed

rendering (such as a complete cluster configuration system, a distributed object system,

a networked event system, etc). It also exposes a robust compositing framework allow-

ing for complex configurations of clusters, with some machines arbitrarily performing the

rendering and others handling the display of images. Other functionality offered includes

different rendering modes (such as sort-last rendering, variable frame rendering, etc),

scene-graph decomposition and distribution, etc. However this additional functionality

comes at the expense of application development time. While, in principle, the main

rendering loop of an application can be maintained relatively intact when porting to

Equalizer, taking advantage of more advanced functionality increases development time,

as the application state needs to be distributed from the main controller node to the

IGs. An older, Java-centric, framework that offers similar features to Equalizer is VRJug-

gler [BJH+01]. The visualization applications that were created during the development

of this dissertation are based on the Equalizer parallel rendering framework.

2.3.3 Multi-application Clustered Rendering Frameworks

In a collaborative scenario, there exists a demand for multiple applications to be displayed

simulatenously on a clustered IVE. These applications can potentially be running locally

on the cluster or remotely on a computer controlled by a collaborator. The two categories

of frameworks described above cannot accommodate for such a usage scenario as they

are targetted at the distribution of a single 3D application. The extremely high band-

width demand of stream replication makes it unsuitable for transfer over the Internet,

whereas libraries such as Equalizer impose restrictions that third-party developers might

not conform to.

The Scalable Adaptive Graphics Environment library, developed at the Electronic Visu-

alization Laboratory (EVL) by Jeong et al. [BJ05] [JJR+05] has aimed to answer this

challenge. SAGE is comprised of three main components. The Freespace Manager that

acts as a window manager for the entirety of the IVE and manages different application

18

windows, the SAGE Application Interface Library, an API that allows an application to

transmit its framebuffer and communicate with Freespace and the SAGE Receiver that

runs on the IGs of a tiled display and receives generated images and Freespace commands

in order to compose the final image on the display. SAGE also includes a networking

framework that handles pixel distribution and synchronization among the cluster. An

interesting aspect of SAGE is the ability of users to run applications on their personal

computer and stream the resulting visuals onto the IVE’s displays.

A more recent multi-application framework is OmegaLib, developed again at EVL by

Febretti et al. [FNM+14]. OmegaLib is a high-level application development framework

for clustered visualization systems. It utilizes Equalizer for low-level window creation

and input handling. On top of that foundation, OmegaLib provides an easy to use 3D

scenegraph interface that supports various types of visualization toolkits and user in-

terface widgets. Additionally, OmegaLib implements an input system aggregator and a

cross-application communication system. Finally, the majority of OmegaLib is exposed

over Python bindings, enabling rapid application development. In contrast to SAGE,

OmegaLib applications can be executed locally on the IGs, taking advantage of the ren-

dering prowness of the rendering cluster. Framebuffer streaming is also supported. The

main drawback of OmegaLib is the need to pre-define the maximum rendering extends

of locally-executing applications prior to launch. Additionally, OmegaLib (at least as of

the time of writing of this dissertation) does not support compositing and overlapping

application windows.

2.4 Gesture-based User Interfaces

In this section, we overview previous work on various areas that are relevant to this

dissertation’s contributions on gesture-driven hand-centric user interfaces. Specifically,

we cover 3D navigation interfaces, hand pose recognition, activity recognition (which

drives our gesture detection system) and chirocentric user interfaces in general.

19

2.4.1 Navigation in Immersive Virtual Environments

To fully control a virtual camera inside a 3D visualization, a navigation scheme must ex-

pose 6-DOF. Metaphors for directly controlling all 6-DOF exist [WO90], but devices that

implement such metaphors (e.g., the 3DConnexion Space Navigator8) are hard to use for

non-experts and not ubiquitous. For desktop applications, virtual camera manipulation

work has focused on abstracting 6-DOF behind a 2-DOF device such as a mouse. Depend-

ing on the navigation task, different methods are available. For the task of orbiting around

an object, the prevalent abstraction is that of the ARCBALL [Sho92] (and other virtual

trackball techniques [BRP05]) that allows for rotational control around an object as well

as zooming. However, this abstraction is not suitable for other navigation tasks that

have a changing point of interest such as flying through a scene. Commercial applications

usually abstract camera manipulation behind widgets that toggle different modalities like

virtual trackballs or simple 1 and 2-DOF schemes. A more advanced widget-driven in-

terface is the iBar [SGS04] that exposes most extrinsic and intrinsic camera parameters

through hotspots on a single widget. However, the iBar still ”locks” the user into manip-

ulating only a few DOF at a single time. Another interesting widget-based abstraction

is the Navidget [HDKG08a], that simultaneously handles point-of-interest (POI) based

navigation and camera positioning around the POI in a fluid fashion. It has also been

adapted for usage inside Immersive Virtual Environments [HDKG08b]. The Navidget

however does not deal with the task of free flight through a 3D scene.

Traditionally navigation in IVEs is handled via some sort of tracked navigation device or

prop. World-in-Miniature [SCP95] modalities facilitate navigation but must usually be

projected either inside the virtual environment or projected on a surface and manipulated

via props or touch (such as in [BH06] [SD10] or, to an extend, the Responsive Workbench

[KBF+95]). LaViola et al. [LFKZ01] have introduced the concept of foot gestures for

navigation inside an IVE but demands the usage of sensor-equipped ”slippers” and the

presence of a floor-projected WIM visualization thus being mostly limited for use in

CAVE-like environments. Arch-Explore [BSH09] is a navigation paradigm for “walking”

exploration of indoor environments that utilizes path bending to map a larger virtual

space onto a constrained physical domain. Zielinski et al. [ZMB11] have proposed a low-

cost walk-in-place implementation for 6-wall CAVEs. This approach however requires

8http://www.3dconnexion.com

20

http://www.3dconnexion.com

that the visualization be explorable in a “walkable” fashion. It also demands a fully

immersive environment to surround the user, who also must be extensively motion tracked.

Other recent approaches in locomotion interfaces utilize the entirety of the user’s body.

Marchal et al. [MPL11] introduce the concept of a human-scale joystick, tracked using a

mechanical apparatus. Kapri et al. [KRF11] have presented a novel navigation scheme

in which the projections of the user’s hands and head on the floor of an IVE are used

to define a direction of travel as well as modulate the translation speed. However both

these interfaces allow for navigation on a 2D plane, making them unsuitable when a free-

flight approach is required. The goal of the NuNav3D interface (described in Chapter 5)

is to expose multiple degrees of translation and rotation (technically up to 6 DoFs are

supported) in a generic fashion, enabling multiple interaction paradigms.

2.4.2 Hand pose recognition

The term “hand pose” can refer to either the orientation and position of a subject’s palm in

relation to some coordinate system or, the configuration of the hand’s finger joints, given

some input data. We are interested in the second definition, as it allows us to correlate

different types of manipulations to particular poses. Wang et al. [WP09] utilize an image

of a textured glove with a known pattern, as input to a nearest neighbor search of a

database of synthesized image-pose pairs, achieving real-time estimation. More recently,

Hackenberg et al. [HMB11] have proposed a recognition pipeline for palm and finger

tracking that utilizes a depth image as input and does not require any prior knowledge.

However, their method assumes that the user is facing the depth sensor head-on and

does not successfully deal with situations when the user’s hand is perpendicular to the

sensor’s image plane. Work by Keskin et al. [KKKA13] also utilizes depth images for

hand pose estimation, along with a large database of synthetic images as training data

for Random Decision Forests, similar to the approach of Shotton et al. [SSK+13] for

body pose estimation. Compared to most previous work that aims at estimating the

actual finger joint configuration for some input data, the hand-pose recognition algorithm

utilized in our chirocentric user interface platform (described in Chapter 6) classifies the

user’s current hand pose under a set of predetermined pose labels that are correlated with

specific interactions. By reducing the problem scope in this way, we have developed an

algorithm that performs adequately well for an interactive application, given the sparse

21

marker cloud data provided by the IR tracking system.

2.4.3 Activity recognition

Human activity (or action) recognition is an important field for applications such as

surveillance, human-computer interaction, content-based video retrieval, etc. [AR11,

Pop10]. Depending on the way of feature extraction, activity recognition techniques are

roughly classified into two types: sensor-based (e.g., motion capture data), and vision-

based approaches [MMY11].

In sensor-based approaches, sensors are usually placed in the environment or attached

to the human body to capture its motion. Action recognition is done using the

joint angles, point trajectories or acceleration data from an articulated body skele-

ton [MBS09, KG04, MRC05, YGVG12, ZDlTH13]. However, they suffer from widely

known shortcomings such as: errors due to intrusive setup, problems with occlusion, nec-

essary post- processing, high cost, etc.. Early attempts at vision-based human action

recognition used the tracks of a person’s body parts as input features [GD95, YB98].

However, most recent research [LMSR08, DRCB05, NWFF08, SLC04] moves from the

high-level representation of the human body (e.g., skeleton) to the collection of low-level

features (e.g., local features) since full-body tracking from videos is still a challenging

problem.

Recently, the proliferation of depth sensors (e.g., Microsoft Kinect) enabled low-cost full-

body tracking with relatively robust accuracy [SSK+13]. Such technologies improved

the accuracy and reach of skeleton based features for activity recognition. Masood et

al. [MEN+11] have used skeleton joints as a feature for real-time activity recognition and

actions are detected by logistic regression. However, action categories are chosen from

gestures for playing video games, and can easily be discriminated from each other using a

single pose. Sung et al. [SPSS11] have used color, depth and skeleton joints as features for

classifying daily activities by a hierarchical maximum entropy Markov model (MEMM).

However, various classes detected by their system do not exhibit significant motion and

their chosen skeleton features are highly dependent on the input data. Recently, Yun et

al. [YHC+12] have explored several different types of body-pose features for two-person

interaction detection. They demonstrated that geometric relational body-pose features

based on distance between all pairs of joint outperformed other features on noisy skeleton

22

data. Moreover, these features are more generally adaptable to various applications for

both single person [MRC05, YGVG12] and multiple people activity recognition [YHC+12].

The gesture-recognition algorithm utilized in our chirocentric user interface contribution

(exposed in Chapter 6) is based on this work.

2.4.4 Chirocentric User Interfaces

Unencumbered, hand-driven (or chirocentric) user interfaces are, in some ways, the holy

grail of UI research. In the early 1980s, Bolt incorporated gestural input in his “put that

there” experiment [Bol80]. Later, Baudel and Beaudouin-Lafon [BBL93] have described

a prototype system that utilized a wired DataGlove in order to expose a set of gestural

commands to the user for controlling a presentation. Importantly, they also outlined

one of the earlier models for defining gestural commands in chirocentric interfaces. More

recently, Grossman et al. [GWB04] have described a simple chirocentric interface for

gestural interactions for a volumetric display, which utilized an optical tracking system.

Hackenberg et al. [HMB11], in addition to describing a finger tracking pipeline from

depth sensor data, also utilized their system as a backbone for a direct-manipulative 3D

user interface. However, their approach is not really suitable to large immersive virtual

environments, due to the small range of commercial depth sensors and the assumption that

the sensor is looking at the user head-on. In the commercial realm, Oblong Industries9 has

developed a chirocentric UI termed “g-speak”, which also utilizes a high end IR tracking

system. However, to our knowledge there exists no published work detailing the inner

workings of the system, such as the various recognition algorithms. Based on the g-speak

system, Zigelbaum et al. [ZBL+10] have implemented a user interface for the exploration

of a data set of animated videos. Banerjee et al. [BBGV11] designed the WaveForm

interface, aimed at Video Jockey-ing. Their system is similar to ours, in that it uses an

IR tracking system in conjunction with passively tracked marker gloves, however they

offer little exposition in terms of the algorithm used for hand pose detection. The goal of

our chirocentric user interface contribution is to describe a practical end-to-end system

that provides this sort of functionality and demonstrate its use within a large IVE.

9www.oblong.com

23

www.oblong.com

2.5 Gigapixel Visualization

Gigapixel resolution image data is becoming increasingly commonplace as related sensor

technologies (e.g. gigapixel cameras, telescopes, microscopes) improve. One of the main

contributions of this dissertation is an “acuity-driven gigapixel visualization” framework

(described in Chapter 7), enabling performant exploration of such visuals via physical

navigation within the confines of a LHiRD. In this section, we review previous work

relevant to this contribution, including techniques for rendering gigapixel imagery in an

out-of-core fashion, various systems for improving the exploration of these vast data sets

and technologies that levelerage the physiology of the human visual system to improve

the delivery of such content to the display.

2.5.1 Rendering and Exploring Gigapixel Images

Gigapixel resolution images present unique challenges due to their size. Even though

modern PCs provide a large amount of memory to applications (both on the CPU and

GPU side), data-set resolutions often exceed available memory capacity and demand that

out-of-core schemes be utilized. In fact, most gigapixel content is generally broken up

into constant resolution tiles for more performant management and indexing prior to

visualization.

Fitting very large images to a limited amount of graphics memory has been a topic of

constant interest in the rendering field. Effectively it amounts to mapping a large M ×N

texture into a much smaller MPhys×NPhys GPU-resident physical texture. Early work by

Tanner et al. at SGI introduced the Clipmap concept [TMJ98], the notion of only using the

visible part of a mipmap [Wil83] pyramid while rendering. More recently and motivated

by the increasing texture requirements of video games, the concept of virtual textures has

been pursued in the rendering industry [Mit08]. In virtual texture implementations, a

determination of the visible parts of the original texture is made (usually in a preliminary

rendering pass at lower resolution, which is read from the GPU to the host and processed

on the CPU) and the necessary tiles are paged into the physical texture in the background

(without blocking the rendering process in order to allow for smooth interaction). At this

stage, the pipeline also makes a determination of the appropriate LoD for each pixel (we

cover this aspect in more detail in the next section). Graphics hardware is now shipping

24

with support for Sparse Virtual Textures10 , effectively implementing virtual texturing at

the GPU/driver level.

The visualization community has also been investigating the rendering and manipulation

of gigapixel resolution data. Powell et al. [PRS10] have presented a distributed framework

for image operations on high resolution data from planetary imaging with on-demand

paging of tiles. The Giga-stack framework, by Ponto et al. [PDK10], suggests a rendering

scheme in which tile state is determined using a “texture table” and tiles are loaded to

the GPU memory on demand in a fashion similar to Virtual Texturing. This technique

has been extended include large image collections [YDK11]. Kopf et al. [KUDC07] have

presented a system for capturing panoramic gigapixel images using an automated panning

mount, preprocessing and rendering with a custom projection and tone mapping scheme

to improve the visualization quality. Summa et al. [SSJ+11] have introduced an efficient

framework for interactive editing of gigapixel imagery. By using a progressive Poisson

solver and intelligent data accessing, it allows for interactively applying complex operators

on data spanning hundreds of gigapixels.

Exploring gigapixel resolution images adds an additional layer of complexity on top of

the existing challenges of 2D visualization. When visualizing on a limited resolution

display, salient features of the data may not even create a screen-space impact. Ip and

Varshney [IV11] have presented a framework for saliency assisted navigation of gigapixel

images that combines multi-scale computer vision techniques with user feedback to detect

and visualize important regions in the data. Luan et al. [LDK+08] have presented a

system for inserting and intelligently rendering annotations to large images. Appert et

al. [ACP10] have tackled the issue of quantization in F+C lens manipulation on high

resolution data, meaning the disparity between visual precision and user interface accuracy

in the magnification region. Han and Hoppe [HH10] have introduced a system for the

generation of a mipmap pyramid that ensures smooth transitions between coarse and fine

imagery with different visual characteristics.

Our gigapixel rendering framework utilizes virtual texturing for out-of-core rendering.

This design decision is motivated by the fact that this method makes no assumptions

about the underlying geometry as the visibility and LoD determination is made through

10https://www.opengl.org/registry/specs/ARB/sparse_texture.txt

25

https://www.opengl.org/registry/specs/ARB/sparse_texture.txt

a rasterization-based preprocessing pass (rather than analytically). As a result, manipu-

lations to the gigapixel image that translate to operations on the geometry can be trans-

parently handled with correct texturing. Out-of-core rendering (and more specifically

virtual texturing) is an active research topic but to our knowledge there is no significant

work on its acuity-driven integration within a large visualization environment that affords

significant physical navigation.

2.5.2 Focus and Context Techniques

Traditionally, large 2D datasets are explored using a series of panning and zooming mo-

tions. However, when zooming in to examine a ROI, the context (which is very often

important in the decision making process) is lost. Various techniques can be combined

with traditional exploration controls to enhance the user’s ability to make sense of data.

A classical approach, the overview-detail model [PCS95] would display the context region

in a separate viewport of the visualization, however this has the side effect of disconnect-

ing the focal region from the overall context. F+C techniques aim to merge the focus

and context regions in the same visualization by providing in-place magnification of the

ROI while applying a transformation/deformation to the context (that may or may not

preserve some of its properties, e.g. shape, size, etc.)

F+C techniques have been investigated for a large number of visualization modalities

such as tree structures [MGT+03], graphs [GKN05], networks [TS99] and volume visual-

ization [CBP08]. Here, we focus on techniques that are applicable to 2D image datasets

and in particular F+C techniques for in-situ magnification that require the deformation

of the transition area to maintain the size of the context. Other F+C techniques, such

as the DragMag [WL95] will present the ROI in an offset inset and show its connectivity

with the context region but will not actually illustrate the transition between focus and

context.

Spence and Apperley [SA82] have proposed the concept of a bifocal representation, effec-

tively viewing the entirety of a data set while part of it is presented to the user in full detail.

This concept sparked vast amounts of research in F+C such as the generalized fish-eye

view concept [Fur86]. Early work by Biet et al. [BSP+93] introduced a see-through inter-

face for interacting with different types of lenses (not limited to magnification). Pietriga

et al. [PA08] have introduced the Sigma Lens concept that incorporates transitions in the

26

time domain and formalizes the F+C lens as a composition of several different functions.

Additionally, they proposed a framework for representation-independent magnification

based on the Sigma Lens [PBA10]. In their work, a lens is implemented as a two-pass

rendering method (with the first pass rendering the context, while the second pass, at a

higher resolution, dealing with the Region of Interest (ROI) and the transition region).

In the second pass, the resulting pixels are redirected based on a displacement and com-

positing function. The pixel redirection component of a Sigma-lens can be implemented

in a fragment shader. The focus rendering pass of a sigma lens assumes that the ROI

and transition region information is readily available for rendering. Since most gigapixel

resolution schemes work in an out-of-core fashion on the GPU (as we detail later on in

this section) this may not always be the case, thus making the Sigma Lens somewhat

unsuitable for our target application.

Another lens formulation is the Elastic Presentation Framework (EPF) of Carpendale et

al. [CM01]. EPF places the information to be visualized on a 2D plane and renders it using

a 3D perspective camera model, defining different presentation variations by displacing the

points on the plane. When very large magnification factors are used, occlusion becomes a

problem as the enlarged focus area blocks visibility towards the distorted context. Further

work by the same group [CLP04] deals with this problem. EPF-based F+C lenses can be

implemented simply on the GPU as vertex shaders displacing texture mapped geometry

based on an F+C lens function. The final image quality of the F+C lens application is

then directly dependent on the tessellation of this geometry and as a result, the method is

not directly applicable to gigapixel images. However, the simplicity of EPF and its direct

application to the GPU led us to adopt it as the F+C formulation for our acuity-driven

gigapixel visualization framework.

2.5.3 Perceptually Optimized Level-of-Detail

The spatial resolution of the human retina decreases as distance from the retina increases.

This property has been been utilized by a number of researchers in order to improve ren-

dering performance. For example, Guenter et al. [GFD+12] have achieved a 5-fold accel-

eration in rendering speed by combining 3 image layers rendered at decreasing spatial res-

olutions with an efficient antialiasing algorithm. Previous approaches focused on specific

rendering modalities. Levoy and Whitaker [LW90] have introduced gaze-directed volume

27

rendering. Most of the work on foveal rendering utilizes eye-tracking and is targeted at

single displays and/or head-mounted systems. Watson et al. [WWH97] have combined

head-tracking and eye-tracking to investigate the effect of reduced peripheral acuity in

large displays. Some large display systems, such as that by Minakawa et al. [MMYT01]

are based on this principle. However, we are not aware of any work that drives LoD based

on the formulation of visual acuity and its variation during the visual exploration process

within an immersive system.

2.6 Experimental Evaluation in Visualization, VR

and HCI

2.6.1 Experimental Design

Even before Lind’s work on the treatment of scurvy [Lin72], controlled experimentation

has been an essential tool of the scientific process. Critical to the value of a controlled

experiment is its design, the set of parameters that define how it will be conducted.

Experimental design has been covered in countless books and scientific articles, from

Fisher’s fundamental work [Fis92] to modern textbooks [Mon08][CW11]. Such designs

involve several important decisions, like the selection of meaningful factors at which to

perform measurements, the assignment strategy of participants to factor levels, the types

of measurements that are important to a productive statistical analysis, etc. In order to

define the semantics that drive the visual analytics framework that is described in Chapter

9 of this dissertation, we are interested in the aspects of an experiment’s design that can

be used to characterize the resulting information. Specifically, we are interested in the

following:

• Independent Variables - The aspects of the experiment that are controlled and

explicitly varied by the experimenters. Independent variables have levels or prede-

termined values. For example, in an HCI experiment, the interaction device could

be an independent variable, with mouse, touch and gamepad being its levels.

• Dependent Variables - Values or measurements that result or are dependent upon

the experiment. In the case of an HCI experiment, dependent variables could include

28

accuracy, speed, etc.

• Participants - A sample of the population being evaluated that takes part in the

experiment. In an HCI experiment conducted at a research university, the partic-

ipants may include students taking a class for credit, laypeople who respond to a

recruitment flyer, etc. Participants often are characterized based on demographi-

cal information (such as age or sex), various aptitude questionnaires (e.g., spatial

cognition [EFH79], simulator sickness [KLBL93]), etc.

2.6.2 User Studies

A number of user studies have been conducted that evaluate different aspects of user

performance when examining data on high resolution displays of various sizes and pixel

counts. Tan et al. [TGSP06] have showed that the larger field of view offered by bigger

displays has a tangible effect on user performance. Ball and North [BN05] have evaluated

different navigation tasks when using a traditional pan and zoom interface on three display

grid configurations (single monitor, 2× 2 and 3× 3). Later work by these authors [BN07]

evaluated user performance in core visualization tasks (search, navigation, pattern finding

and insight gathering) on a 100 megapixel data set, while scaling up the size to the

display. The maximum display resolution of that experiment was 32 megapixels and in

that condition, the display extended to 2.74m by 1.06m in size. Through this work, Ball

and North demonstrated very tangible performance increases for large displays (up to 10×
when the information space remains constant). Additionally, they measured a substantial

user preference towards physical navigation in certain tasks. In a later experiment [BN08],

the same authors quantified the effects of peripheral vision and physical navigation on

a similar GIS-centric visualization, performed on a 100 megapixel wall with an area of

4.4m× 1.7m. They demonstrated that users are more inclined to physically navigate and

also perform better when using LHiRDs. Shupp et al. [SADK+09] have evaluated user

performance in a study with display resolution and display curvature as the independent

variables. They discovered that a curved display decreases performance timings and allows

for less strenuous physical navigation for certain tasks. Still, the largest display condition

used in their study was approximately 32 megapixels and spanned roughly 2.74m by

1.06m when arranged planarly (this appears to be the same experimental setup as in

[BN07]).

29

The above studies include tasks designed around geospatial visualization scenario (e.g.,

prices of houses for sale within an area). Other studies evaluate the suitability of different

visualization designs for display on LHiRDs. Yost and North [YN06] have evaluated the

scalability of space-centric and attribute-centric visualizations by varying the information

space along with the display shape, size and resolution.They demonstrated that increasing

the information space 20 times results in a 3-fold increase to task completion. A follow-

up study by Yost, Haciahmetoglu and North [YHN07] evaluates the scalability of these

visualizations past the visual acuity threshold. Here, the authors showed that a display

that exceeds visual acuity does not offer benefits for detail-centric tasks but users did

realize some performance gains for certain overview tasks.

Endert et al. [EALN11] have investigated the impact of viewing distance from the

LHiRD on aggregating visual information. Later work by Endert and his collabora-

tors [EBZ+12] has given insights on the design of high-resolution display workspaces.

Ruddle et al. [RFT+13] evaluated LHiRDs as a platform for exploring genomics visualiza-

tions. In parallel, Ruddle et al. [RTR+15] have also investigated the effect of resolution

on the users’ ability to locate targets in large imagery. Recently, Liu et al. [LCBL+14]

have reported on the scalability of an abstract classification task from a desktop to a wall

sized display.

While the above studies have demonstrated the benefits of LHiRDs in a number of scenar-

ios, the apparatuses have been limited in terms of resolution and size. To our knowledge,

the largest facility in terms of resolution to have been used in an evaluation focused on

user performance, is the apparatus of Ball et al. [BN08] while the overall-largest display

(131 megapixels) was used by Bezerianos et al. [BI12] in their perception-centric exper-

iment. Consequently, the scalability of such facilities to extreme resolutions and sizes

has not been quantified. The user study outlined in Chapter 8 provides guidance on this

question. Specifically, we evaluate user performance across several display size conditions,

starting at 100 megapixels (with an area of 4.41m× 1.47m) and scaling up to 1 gigapixel

(planarly spanning 30.24m by 2.22m).

Additionally we can identify several unifying characteristics in the experimental design of

the above works:

• Small numbers of independent (e.g. interaction modality, visualization design, task,

etc) and dependent variables (elapsed time, accuracy, etc.).

30

• Pre- and post- experiment questionnaires that are administered per-subject.

• Supplementary per-trial data, such as motion tracking which is leveraged to either

produce additional dependent variables (e.g. travel distance) or as material for

discussion.

These observations inform the design of the ontology that drives the visual analytics

framework that is described later in this thesis.

2.6.3 Visual Analytics for Experiments

Visual analytics tools have been proposed for several domain-specific applications, some

of which involve or are centered around hypothesis-testing via empirical experiments. For

example, recent work by Palmas et al. [PBO+14] has described the MovExp tool which

fused biomechanical simulations with performance data from interaction tasks in order to

assist HCI developers. Their tool is similar to VEEVVIE , the visual analytics system de-

scribed in Chapter 9, in that it allows the linked visualization of generic performance data

together with interface-specific visualizations and domain-relevant views. However, it is

does not seem to expose data related to hypothesis testing (such as statistically significant

effects). Papers by Andrienko et al. [AABW12] and Kurzhals and Weiskopf [KH14] have

introduced several techniques for the exploration of data stemming from eye-tracking

studies. Tools proposed by Steenwijk et al. [SMvB+10] and, more recently, Klemm et

al. [KOJL+14] have focused on the exploration of cohort studies in the medical domain.

Their motivation is similar to ours (e.g., hypothesis validation and generation). Over-

all, while visualization is often a part of several experimental evaluations, the tools that

enable such types of analyses do not readily exist.

31

Chapter 3

The Reality Deck - Immersive

Gigapixel Display

3.1 Introduction

A vast number of data sources, such as supercomputers and sensors, have become “fire

hoses”, generating information at a far greater rate than it can be digested. For example,

the AWARE-2 camera system can capture a 1.47 gigapixel photograph [MST+11]. In

cosmology, the Large Synoptic Survey Telescope1 , will feature a 3.2 gigapixel sensor and

capture approximately 200, 000 images annually.

One approach towards visualization is to fit vast quantities of data on a single display.

Various summarization, abstraction and focus + context techniques aim at accomplishing

that, while providing users with the overall patterns and structure of the data.

Maximizing available screen real estate demonstrably affects the visualization pro-

cess [NBC06]. Tiled display arrays (or powerwalls) are a realization of this concept,

offering a large, high-resolution, collaborative workspace. For applications that benefit

from physical immersion (e.g., surrounding the user with visuals), CAVEs [CNSD+92] are

a suitable visualization setting, potentially offering a fully immersive field of view (FoV)

and stereoscopic 3D. Immersive Virtual Environments (IVEs), however, present a funda-

mental dichotomy. When large-scale datasets are being visualized, total screen real estate

1www.lsst.org

32

www.lsst.org

-16ft 16ft0ft

-9ft

9ft

0ft

-16.5ft 16.5ft0ft

-9ft

9ft

0ft

0 20/20

(a) (b)

Figure 1: Visual acuity heatmaps for the CORNEA and the Reality Deck. The CORNEA
(a) facility offers 20

34
visual acuity in a 10′ × 10′ workspace. However, the maximum visual

quality is achievable only at the very center of the facility. In contrast, the Reality Deck
(b) offers a large workspace of 33′ × 19′. Given its monitor configuration, 20

20
visual acuity

can be achieved approximately 31′′ from the displays. This translates to a total workspace
area with 20

20
visual acuity of about 384′2.

33

Figure 2: Synthetic view of the Reality Deck with the door closed. This render shows the
Reality Deck facility. The human figure is rendered to scale in relation to the size of the
system. Also visible is the position of a Microsoft Pixelsense touch table which is used
for controlling the system.

and resolution must be maximized, making powerwalls more appropriate. However, pow-

erwalls lack immersion and their resolution can be limited by physical constraints (e.g.,

a 100′ planar powerwall is unwieldy to construct and utilize). Conversely, CAVEs offer

immersion but their maximum resolution is roughly 100 megapixels per eye for state-of-

the-art systems. As a result, the visual acuity offered by CAVEs tends to be limited and

maximized at a sweet spot in the center of the facility (see Fig. 1) limiting physical navi-

gation. Furthermore, their total workspace can be somewhat constrained (approximately

9′ × 9′ for typical setups).

Motivated by the current landscape, we designed and built the Reality Deck [PPKM15,

PK13a, PPK12, KMS+11], the world’s first gigapixel resolution display in a fully enclosed

setting. A synthetic, to-scale, rendering of the facility is depicted in Fig. 2. The Reality

Deck offers more than 1.5 gigapixels worth of resolution, a 360◦ horizontal FoV and a

workspace of approximately 33′ × 19′ × 11′, allowing multiple users to naturally explore

data at different scales by approaching or distancing themselves from the displays while

maintaining the panoramic context. This display real estate can be abstracted in planar or

immersive configurations. In this chapter, we examine the motivation and design process

34

(a) (b)

(c) (d)

Figure 3: Four usage scenarios for the Reality Deck. (a) Four-wall gigapixel CAVE,
visualizing a large proteomics data set. (b) Single, “virtually planar”, gigapixel display,
offering an immersive view into 2D GIS data. (c) Four independent high resolution tiled
displays, providing independent views into a panoramic gigapixel photograph, a 3D data
set and a GIS application (the data corresponding to the rear wall is not shown). (d) Dual-
CAVE configuration, each with about 0.76 gigapixels worth of resolution. A gigapixel
panorama and a 3D proteomics model are immerisvely and independently visualized.

behind the Reality Deck. We expose findings and benchmarks that arose during the

engineering process. Finally, we present a number of novel techniques that evolved while

utilizing a gigapixel resolution display.

3.2 “Immersifying” a Tiled Display Wall

As a higher-level goal, we felt that the Reality Deck should provide the high pixel density of

tiled displays but also the full FoV of CAVEs. As a next generation facility, it should offer

a significantly leap in aggregate resolution (with the gigapixel milestone being an obvious

choice). Additionally, 20
20

visual acuity should be available for the majority of a large

visualization space, to promote physical navigation. Two further constraints imposed that

35

the facility fit within the available 40′ by 30′ lab space and the budget of $1, 000, 000.

The Reality Deck defines an enclosed space, surrounded by high pixel density displays.

The arrangement of the displays presented an open design problem. After considering

different placements of display surfaces, we opted for a rectangular arrangement with four

walls, spanning approximately 33′ × 19′. This layout enables interesting usage scenarios,

depending on the nature of the data and collaborative situation. It is different to most

CAVE systems that use a cube-like arrangement of displays. Our rectangular layout allows

for more flexibility in operation and also maximizes usage of available lab space.

The four walls of the Reality Deck serve as configurable viewports into visualizations.

The straightforward mapping allows the four walls of the system to serve as a 4-viewport

configuration into the virtual world, akin to a CAVE. Alternatively, the display can be

interpreted as a single continuous planar viewport. This configuration is useful for large

scale two-dimensional data (e.g., GIS, parallel coordinates). A visual discontinuity exists

at the point where the two extremes of the logical frustum meet on the physical display

surface (typically in the middle of the rear wall). The Infinite Canvas technology [PPK13]

can be used to naturally ameliorate this shortcoming - this “continuous viewport” display

mapping addresses scalability problems of traditional, planar, powerwalls.

In multi-user scenarios, the facility display space can be subdivided in various ways.

First, it can be split into 4 planar tiled-displays, one per wall. Here, each of the two

long walls offers approximately 471 megapixels of resolution while each narrow side wall

has 295 megapixels. For additional immersion, we can create two CAVE-like systems,

with three walls each, operating independently. Each one of these CAVEs offers roughly

0.76 gigapixels worth of resolution, depending on the “border” space that separates the

viewports of the two CAVEs. This pixel count is several times larger than that offered by

state of the art CAVE systems, at the expense of bezels and anaglyph-only stereo (due

to the selected panel technology). These four viewport configurations are illustrated in

Fig. 3.

36

3.3 Building an Immersive Gigapixel Display

3.3.1 Display Selection and Customization

Arguably the most critical component of a visualization environment is the display sub-

system. CAVEs are usually based on projectors while tiled display arrays are constructed

using both projectors and LCD monitors.

The main benefit of projectors is that they can create a nearly seamless image. On the

other hand, projectors require regular maintenance. Based on our experience with our

5-sided Immersive Cabin [QZP+08], maintenance must always be followed by a manual

recalibration of the system, which can be time consuming for the 10 projector CAVE-like

Immersive Cabin and unmanageable for a system that utilizes hundreds of projectors.

Additionally, projectors produce significant amounts of heat and noise and the space

requirements are affected by the need to accommodate the throw distance (as much as

1.5′ for short-throw lenses). Finally, projectors are generally much more expensive than

LCDs to acquire and maintain. Due to these drawbacks, projectors were eliminated early

in our design process.

We then considered different types of LCD monitors based on the following criteria:

Resolution target: Based on the available space and super-gigapixel resolution target,

the monitors should provide approximately 100 PPI.

Bezel size: Ideally smaller than 5mm, however the size should not exceed 8mm for a

23” display and 15mm for a 30” display. These metrics were based on bezel dimensions

of commercially available monitors with potential structural modifications.

Display size: Larger monitors are preferable as long as they can deliver the required

pixel density.

Image quality: The monitors should use high quality panels with good contrast, back-

light uniformity and viewing angles.

Stereo support: Stereo is a very desirable feature, but not at the cost of image quality

or significantly reduced pixel density.

Based on these characteristics, we evaluated a number of displays with panel sizes from 23”

37

to 60”, IPS, PVA and PLS panel technologies and various bezel sizes. We also considered

secondary factors, such as power consumption and weight, which affect the requirements

for the mounting, power and cooling infrastructure. The different tiled display designs

were simulated in our Immersive Cabin in order to analyze the perceptual effects of the

bezels on different visualization tasks, including medical and architectural visualization.

The results of an informal user study were then used as a contributing factor in the display

selection process.

We considered several offerings from a variety of vendors, including ultra-narrow bezel

LCDs and monitors with stereoscopic 3D support. At the time of construction no commer-

cially available display satisfied all five of these criteria, however the Samsung S27A850D

provided a good balance. It is a professional 27” PLS panel with 2560 × 1440 resolu-

tion and excellent contrast, color saturation and viewing angles. In contrast to CCFL

monitors, the S27A850D uses LED backlighting, which significantly reduces the weight

and power requirements (46W for the S27A850D versus 134W for a Dell U2711). Finally,

while the original bezel is relatively large, the monitors were easily modified with a custom

mount that reduces the bezel to 14mm.

Given the available physical space, we arranged the monitors in four orthogonal surfaces.

The front and back walls are 16 displays wide while the left and right span 10 displays.

All four walls are 8 displays tall for a total of 416 tiled monitors.

The mass-produced nature of commercial monitors entails certain variation in image qual-

ity, even for products from the same batch. We evaluated every monitor before modi-

fication, looking primarily at image uniformity when displaying a full white and a full

black signal, as well as identifying issues with color reproduction. Three photographs

were taken of each monitor from a fixed camera position and with a standardized set of

camera and display settings. Approximately 30% of tested monitors had to be replaced

due to inconsistencies in backlight uniformity. After testing the second batch, we selected

the best 416 displays, as well as a set of spares, for modification and use in the Reality

Deck.

Using lightweight monitors allowed us to design custom mounting brackets and a simple

aluminum frame so that individual monitors can be aligned with sub-millimeter accuracy

(confirmed via laser leveling) and can also be replaced by a single person. The plastic

cover of the S27A850D houses the circuit board, user controls and power supply. These

38

Figure 4: Reality Deck Monitor Customization. (a) The Samsung S27A850D fully assem-
bled. (b): The monitor with its backing plate removed and the electronics exposed. (c)
The monitor with our custom mounting bracket installed and the PCB/PSU mounted.
(d) The front of the monitor post-customization.

39

(a) Door Open (b) Door Closed

Figure 5: The Reality Deck door assembly. A section of 3 × 5 displays are attached to
the Reality Deck door, shown open in (a) and closed in (b). They are mounted on an
aluminum subframe that attaches with spring-loaded hinges to the main frame and rests
on a pivot wheel base. The mechanism can be remotely operated. When closed, the door
blends into the rest of the structure creating a continuous display surface (in this case,
showing a GIS visualization of New York City).

components have been moved to the rear bracket, resulting in a uniform black frame

around the display with no visual distractions. The modification process is illustrated in

Fig. 4.

The door to the facility is a section of the frame that is mounted on a hinge and holds a

3×5 grid of monitors. It is power operated but can also be opened manually in case of an

emergency. When closed, the door rests completely flush with the rest of the wall and it

is visually indistinguishable from the other displays (Fig. 5). The displays are offset from

the floor of the facility by approximately 7” to allow the installation of tracking cameras

and sound speakers.

The facility provides a visualization space of approximately 33′ × 19′ × 11′ (W ×D×H).

Fig. 1 shows a heatmap of the visual acuity within our facility, illustrating the 384 sq. ft.

space in which the system achieves 20
20

or better visual acuity.

40

3.3.2 Visualization Cluster and Peripherals

The vast number of displays presented a challenge when designing a cost-efficient high-

performance visualization cluster. We evaluated a number of different configurations, at

various GPU and display per node densities. Our final setup consists of 18 ExxactCorp

nodes, with dual hexcore Intel Xeon E5645 CPUs. Each node contains four AMD FirePro

V9800 GPUs. The head node is a similarly configured machine with a single GPU. The

majority of the cluster nodes drive 24 displays, six per GPU, in a 3×2 monitor grid. The

displays of two render nodes in the front-right and back-left corners of our facility operate

in groups of 1× 4 to ensure that no display group “straddles” the corners of the facility,

which would necessitate two rendering passes when the facility operates in “immersive”

mode. Each display group is abstracted as a single framebuffer using AMD Eyefinity

functionality, simplifying software development and improving performance. The cluster

is located in a machine room adjacent to the facility and connects to the displays using

Gefen DisplayPort fiber optic extenders. All nodes are interconnected via Ethernet and

40 Gbps InfiniBand networks. A rough total of seven miles of cables were utilized in the

facility.

The Reality Deck is also equipped with a 24-camera tracking system from OptiTrack,

based on the S250e IR camera. A number of research techniques, described later in the

paper, utilize this tracking system for both user interaction and performance optimization.

Additionally, we have deployed a 24.4 surround sound system with Genelec 6010A speakers

and JBL LSR4312SP subwoofers. The total material cost of the facility, including spare

monitors and a hot-swappable spare visualization node was less than $1, 000, 000.

41

Chapter 4

Visualization Software and

Applications

4.1 Visualization Software Architecture

For the purposes of this dissertation, we developed a multi-platform distributed visual-

ization application framework that enables the display of a variety of data types within

the Reality Deck. Our framework is built upon several open-source libraries. Window

creation, basic input handling, data distribution and application lifetime are managed

by the Equalizer library [EMP09]. Equalizer allows our software to scale from a tradi-

tional, single computer setup to a full clustered rendering environment simply by changing

human-readable configuration file. An additional benefit of Equalizer is the modularity

of its various components. For example, the distributed object fabric (“Collage”) can be

utilized on its own, separate of the clustered rendering framework. This permits us to de-

velop applications that communicate with the clustered visualization but do not operate

as part of the main rendering loop. For instance, we have developed a complementary

“Control Application” that allows users to interface with the visualization from external

devices (such as portable x86 tables). Since this software does not utilize Equalizer’s

distributed rendering functionalities, it can run on low power devices and can be more

easily ported across platforms. In fact, our visualization software compiles and runs on

32- and 64-bit platforms and supports several versions of Microsoft Windows and Apple

Mac OS X.

42

Figure 6: Diagram of the high-level architecture of our visualization software, with ren-
derer modules leveraging the Equalizer framework for distributed rendering. On top of
the renderer modules, we develop several visualization applications.

Figure 7: In this view, our Reality Deck software pipeline is rendering the Crytek Sponza
Atrium Scene2via the Visualization Library renderer module.

Equalizer provides the basic application model within which graphical visualization appli-

cations can be developed. In our software, we have developed several renderer modules,

that permit the visualization of different types of data via two rendering frameworks. Our

software includes support for two OpenGL-based rendering libraries. The first rendering

module utilizes the Visualization Library1 (shortened to VL throughout this dissertation)

to render numerous common geometric file formats. Additionally it provides support for

a binary VL-specific file format which enables faster loading. A sample view from the VL

rendering module can be seen in Fig. 7.

The second core rendering module is based on OpenSceneGraph3 . OpenSceneGraph

(OSG) is an extremely popular, open-source rendering library with support for OpenGL

rendering backends of different versions. It supports numerous popular file formats and

1http://www.visualizationlibrary.org
2Available at www.crytek.com/cryengine/cryengine3/downloads
3http://www.openscenegraph.org

43

http://www.visualizationlibrary.org
www.crytek.com/cryengine/cryengine3/downloads
http://www.openscenegraph.org

Figure 8: A geometric dataset of the human colon is being rendered within the Reality
Deck using the OpenSceneGraph-based renderer of our visualization application.

also offers a robust and easily extensible asset loading system. Additionally, OSG is geared

towards performance and scalability, offering multi-threaded scenegraph traversal. While

at first glance the results of the OSG-based rendering module are not different from the

VL-centric version, the additional flexibility of OSG was very useful in the development of

the GIS-centric applications described later in this dissertation. An example visualization

generated with the OSG rendering module can be seen in Fig. 8.

This visualization software provides support for several input modalities. Traditional

mouse and keyboard controls are exposed by Equalizer. Gamepad and joystick input is

handled by platform-specific libraries. Under Microsoft Windows, we provide support for

OptiTrack tracking systems from NaturalPoint via the NatNet library4 . Natural user

interface via the Leap Motion controller5 is supported across all platforms. All inputs

are aggregated within the main Equalizer application frame loop and then forwarded

to application-specifc interaction handlers. This approach decouples interaction handling

from general input event processing (which is important since a particular controller input

can result in substantially different interaction calculations and state manipulations for

different applications). Interaction handlers are generally tied to a relevant renderer mod-

ule and expose varying levels of interactivity depending on the application. For instance,

the VL-specific interaction handler is relatively simple, translating inputs into manip-

ulations of the virtual camera’s position and orientation. Conversely, the OSG-specific

interaction handler actually maintains a copy of the OSG scenegraph and runs a sim-

plified, “head-less” rendering loop internally, allowing for more complicated interactivity.

The supported interactions are covered in more detail in the next section.

4http://www.optitrack.com/products/natnet-sdk/
5https://www.leapmotion.com

44

http://www.optitrack.com/products/natnet-sdk/
https://www.leapmotion.com

Following the input processing, each interaction handler manipulates the master copy

of a distributed “FrameData” object. This object is mapped on application startup at

the render nodes. While rendering, each node utilizes the relevant information from this

distributed object (e.g., camera position and orientation, overloaded camera modelview

matrix, shader uniform variables, etc) in order for a consistent visualization to be gen-

erated across the cluster. As mentioned earlier, external applications can also map and

affect this object, enabling some visualization control from computers that are not a part

of the Equalizer application. The overall architecture of our distributed visualization

software can be seen in Fig. 6.

4.2 Visualization Applications

During the development of the contributions outlines in this dissertation, we focused on

two main application areas that are a natural fit for a gigapixel resolution display like the

Reality Deck. The first application is the display and exploration of gigapixel resolution

imagery which presents unique challenges due to the size of the underlying data. The

second application area is the exploration of large geospatial data sets. The focus on this

second application area stems from two motivations. GIS visualizations can scale in terms

of complexity and simple versions can be easily understood by layment. Consequently

GIS applications have been used frequently in various user studies on LHiRDs, as we

discussed in Chapter 2. Thus, the development of a flexible GIS scenario renderer was

imperative for some of the contributions outlined within this text. Additionally, GIS

applications are extremely relevant in several scientific fields. In particular, we describe

the development of a visualization system for the display of the effects of storm-surge

due to extreme weather phenomena, as derived by ADCIRC (or ADvanced CIRCulation)

simulations.

4.2.1 Gigapixel Image Exploration

An obvious application for a gigapixel resolution display such as the Reality Deck is the

visualization and exploration of gigapixel resolution imagery. It is important to note that

the term imagery should not be constrained to traditional photography as several scientific

sensors often yield similarly large datasets that can be treated as gigapixel images and

45

visualized with similar techniques (e.g., high resolution microscopy, data from telescopes,

etc). The resolution of this data is often so vast that it can not be contained within the

available memory on the visualization device.

Virtual Texturing When a traditional image is rendered via GPU acceleration, the

entirety of the pixel data is uploaded onto a buffer in GPU memory. Then, a piece of ge-

ometry will be submitted for rendering, with the image buffer provided as a texture, which

is to be mapped on to it. This geometry will be instrumented with texture coordinates,

providing a correspondence between itself and the imagery. In modern programmable

GPUs, the geometry is rasterized, producing “fragments” on which a fragment shader is

executed. Within the fragment shader, the interpolated texture coordinates are used to

sample the provided texture in order to resolve the appropriate color. Additionally, GPUs

offer various texture filtering functions, often implemented in hardware, which enhance

the resulting image quality at very low (or no) computational cost.

However, when the imagery does not fit into GPU memory, an “out-of-core” rendering

scheme must be utilized. We provide an overview of several such schemes in Chapter 2.

For the visualization application described herein, we utilize the “sparse virtual textur-

ing” technique, described by Mittring [Mit08]. Virtual texturing obviates the need for

the entirety of the image data to be immediately accessible during rendering on the GPU

through a memory management scheme somewhat similar to “virtual memory” imple-

mented by most modern operating systems. Effectively, virtual texturing allows access to

a very large texture space (the virtual texture) when only a substantially smaller physical

texture memory space is available.

Virtual texturing works by decoupling the rendering process of large textures into two

steps. During the first step, the visible sections of the abstracted texture are determined.

This determination can happen in a number of ways. For simple geometries (such as a

plane which is perpendicular to the camera), the determination can happen analytically

and on the CPU side. However, most virtual texturing schemes target arbitrary geome-

tries, making an analytical determination non-viable. Thus, visibility determination is

usually carried out via a secondary rendering step that occurs before the rendering of the

full visualization. In this rendering step, which happens off-screen in a dedicated buffer,

the renderer rasterizes the virtual texture coordinates of all objects and any auxiliary

information (e.g., the identifier of a particular virtual texture). This step often happens

46

Figure 9: Our Visualization Library renderer module is displaying a gigapixel resolution
panoramic view of Dubai6.

at a reduced resolution in order to increase performance. Following this rendering, the

resulting buffer is streamed on the CPU and then processed in order to determine which

sections of the virtual texture are visible during the current frame. Virtual texture data

is usually divided into fixed-resolution chunks (often called tiles or pages). By keeping

track of the tiles that already reside in GPU memory, the virtual texture system then

generates page-faults for the sections of the data that need to be brought into memory

for correct texturing. Upon uploading the pages to the GPU (something that frequently

happens in a separate thread to improve interactivity) the virtual texture system also

updates a secondary indirection texture (described later). It is worth noting that there

exist techniques that can accelerate this visibility determination step by compacting the

texture coordinate buffer and calculating the page faults on the GPU [HPLVdW10].

After this visibility determination step, the geometry is then rendered to the screen. How-

ever, instead of using traditional texture mapping functionality exposed by the graphics

API, a custom fragment shader needs to be utilized in order to properly sample the phys-

ical texture that contains the virtual texture pages. This shader translates the virtual

texture coordinates of the geometry into the physical texture space by sampling an indirec-

tion texture which contains information for the position of each page within the physical

texture. If a page is not available, then the indirection texture can potentially point to a

mipmapped page which will contain a lower-resolution version of the required image data.

Upon determining the appropriate physical texture coordinates, regular texture-sampling

APIs are used to determine the color values from the physical texture.

6Sourced from http://www.gigapan.org.

47

http://www.gigapan.org

Our gigapixel image exploration application handles the rendering of large images by im-

plementing this above virtual texturing functionality. We utilized the openly-available

libVT7 , which was extended to integrate within our distributed rendering framework.

Specifically, we integrated libVT with our Visualization Library rendering module. We

have also developed a preprocessing framework which can transform imagery from com-

mon sources into the libVT-specific texture atlas format used by our application. An

example of the gigapixel image rendering functionality provided by our system can be

seen in Fig. 9. The system supports virtual textures up to approximately four gigapixels

in size with real-time interactivity. It can be trivially expanded to larger virtual texture

sizes.

F+C Lenses Focus and Context (F+C) techniques are an important tool for the explo-

ration of large datasets, particularly when the display space is limited. Even in situations

when the display space is not a problem, F+C techniques can be useful by allowing the

in-place magnification of sections of the data, which can reduce the need for physical

navigation as users do not have to approach the screens more closely in order to zoom

in.

The F+C technique domain is quite vast (several techniques are covered in Chapter 2).

For our software, we implemented the Elastic Presentation Framework (EPF) F+C lens

technique, described by Carpendale et al. [CM01]. Our choice of EPF is motivated by its

simplicity and direct applicability to GPU-accelerated rendering pipelines. Specifically,

EPF lenses are implemented in our software via vertex shaders, which distort the image

geometry based on a displacement function. The displacement function can be analyt-

ically defined, or precomputed and provided to the vertex shader via a texture. The

distorted geometry is then rendered via perspective projection. The magnified areas are

brought closer to the virtual camera and thus appear larger. Utilizing EPF for F+C lenses

results in customizable lenses that can be applied to high resolution imagery at negligible

computational cost. Additionally, this approach to F+C integrates directly with the vir-

tual texturing system described earlier, allowing the application of lenses onto gigapixel

resolution imagery. Some examples of gigapixel image exploration via F+C lenses can be

seen in Fig. 10.

7http://www.sourceforge.net/projects/libvt

48

http://www.sourceforge.net/projects/libvt

Figure 10: A gaussian F+C lens is applied via the Elastic Presentation Framework formu-
lation on top of a gigapixel image. The lens acts as a displacement function (implemented
in a vertex shader) bringing sections of the image closer to the camera under perspective
projection and resulting in magnification.

49

4.2.2 Geospatial Data Visualization

The second application area that this dissertation focuses on is the visualization of world-

wide geospatial data. On this front, we have developed two Geographic Information

System modules (shortened to GIS throughout this text). The first module is a two

dimensional GIS renderer, providing support for tile-based maps, georeferenced image

overlays, information glyphs and ADCIRC-related visualizations. This GIS module inte-

grated with the Visualization Library renderer. The second module utilizes the osgEarth

SDK8 to provide support for complex GIS visualization scenarios. We also extend os-

gEarth to allow the visualization of storm-surge effects determined by simulations. As

with all visualization applications described in this thesis, this software can scale from

running on a single computer all the way up to clustered rendering setups, such as the

Reality Deck.

4.2.3 2D GIS Visualization

The first GIS visualization application provides support for complex two-dimensional

geospatial scenarios, viewed under Mercator projection. To this front, we have developed

a map layer hierarchy that can be described by users in simple human-readable scenario

files. A scenario file describes various map layers that are to be visualized. Several types

of map layers are supported:

1. Tiled-based map services such as Mapquest Open9 .

2. Georeferenced images in various file formats.

3. Glyph-based visualizations from a custom-developed spatial datasource.

4. Color-mapped overlay visualizations of ADCIRC data.

Layers are described in scenario files, one layer per line. The first token in each line

states the layer type while following tokens provide relevant layer parameters. Additional

visualization settings, such as the focal point of the map, zoom scale and a bounding

box within which rendering is restricted can also be communicated in this way. Finally,

scenario files include descriptions of the datasources used to drive various glyph and

8http://www.osgearth.org
9http://developer.mapquest.com/web/products/open/map

50

http://www.osgearth.org
http://developer.mapquest.com/web/products/open/map

overlay layers (the datasource architecture is described below). As an example, consider

the following scenario file:

CENTER | -121.85548|37.35197

SCALE |0.16763

BBOX | -121.91673|37.34776| -121.79423|37.3561

DATASOURCE|FILE|DATA0|sample -DataSource.dat

LAYER|TILE |256|18| http :// otile1.mqcdn.com/tiles /1.0.0/ sat/

LAYER|GLYPH|DATA0 |0|1|2|3

This scenario file describes a visualization in which the map is centered at approximately

121.85◦ West and 37.35◦ North, with a scale of 0.167 (a scale of 1.0 displays the entire

globe). The BBOX line specifies a restrictive bounding box. Only visual information

within this bounding box will be displayed during rendering. The BBOX directive is

especially useful during user studies when we wish to limit the visible visual information.

The DATASOURCE line describes a source of data that is used to drive the GLYPH

layer described at the end of the file. This datasource (with identifier DATA0) will

load information from the provided file. For debug purposes our software also supports

datasources with random and constant values (these can be obtained by changing the

FILE token in the relevant line). The first LAYER line described a tile-based imagery

layer. Following tokens provide parameters such as the tile resolution (in this case 256 and

used for level-of-detail calculations), maximum available zoom levels (18) and a URL to

the content distribution network that serves the tiles. The final layer definition requests a

glyph-based visualization of the geospatial information provided by DATA0. Each data

source can expose several different types of information. The trailing tokens in the glyph

layer specify the data identifiers that should be visualized by this particular layer. A

sample of the resulting visualization can be seen in Fig. 11.

After the visualization application parses the scenario file, it generates the layer hierarchy

which is maintained within the map renderer module. Before rendering each frame, the

renderer utilizes the distributed camera state in order to perform a load operation on

each layer. Specifically, utilizing the camera’s position, current zoom scale and frustum

information that is provided by Equalizer, each layer queries the underlying data source

for information.

51

Figure 11: Example view of a 2D GIS scenario visualization. A scenario file was used to
describe a visualization which includes a tiled based map streaming from Mapquest Open
and a glyph data overlay driven from an ADCIRC simulation.

52

Figure 12: A two-dimensional tiled map is being streamed from an online service and
visualized within the Reality Deck.

Tiled Map Layers For tile-based layers, this results in a zoom-level calculation, deter-

mining the appropriate tile LoD that needs to be fetch from the server. This calculation

factors in the screen resolution and also the resolution of the tiled map service in order to

provide imagery that saturates the pixel density of the display. Once the zoom level has

been determined, the software also calculates the appropriate tile identifiers that need to

be fetched from the map service. Most popular web-based mapping services expose raster

imagery via an X/Y/Z tiling scheme, with Z being the zoom level and X and Y being

quad tree node identifiers. The tile identifier calculations, converting from a coordinate

bounding box to the appropriate X/Y/Z tuples can differ from one service to another10

. Once the tile identifiers are resolved then the software proceeds to download the tiles

asynchronously on multiple threads. Image tiles are cached locally on the visualization

cluster using a Least-Recently-Used scheme in order to improve performance. During ren-

dering, the tiles are textured mapped onto geo-referenced geometry which is injected into

the Visualization Library scenegraph and rendered using the relevant layer parameters

(such as Z-index and opacity). An example of a tiled map rendering from our application

can be seen in Fig. 12.

Geospatial Data Sources - ADCIRC Data Handling For semantic data that can

be visualized via the glyph and overlay layers, we have developed a spatial datasource

that allows for low-latency bounding box queries. Our datasource can store geo-referenced

points and polygons. Each point (and polygon vertex) can carry an arbitrary number of

10A good resource on the topic can be found at http://www.maptiler.org/

google-maps-coordinates-tile-bounds-projection/

53

http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/
http://www.maptiler.org/google-maps-coordinates-tile-bounds-projection/

datums (or pieces of information) and datums can also be time-varying. This approach

provides a significant amount of flexibility, allowing us to store complex, multi-modal

simulations in a single data source and query them at run-time. For example, the results

of an ADCIRC simulation11 can include information such as the residual surge across

multiple simulation timesteps (which is a single scalar value), wind conditions across

multiple timesteps (which can potentially be a vector) and several minimum and maximum

values over the simulation domain. This data is different for each point in the simulation

grid and a grid can have hundreds of thousands of points. Moreover, the output of an

ADCIRC simulation is a set of ASCII files, which do not lend themselves to real-time

processing. We have developed a preprocessing pipeline that generates a quad-tree based

spatial data source from an input ADCIRC model. The user can specify an ADCIRC

grid file along with several input information files. The resulting data source (which is

comprised of a human-readable descriptor file and several binary data files) is generated

promptly (approximately 1− 2 minutes on a consumer grade laptop for a simulation with

roughly 200, 000 grid points) and from that point on it can be reused. Our datasource

implementation also offers runtime introspection functionality, allowing applications to

query for the provided information at each grid point (including its name, time resolution

and format -e.g., floating point, double precision, vector, etc.). Finally, we have developed

a datasource generator application which can be used to create semi-randomized geospatial

datasources that can be used for debugging and user study purposes. A screenshot of our

datasource generator interface can be seen in Fig. 13.

Glyph Layers The glyph visualization layer allows the display of arbitrary numerical

information that is provided by a geospatial datasource. When a user defines a glyph

layer in the scenario file she provides a series of numerical identifiers (in the example

above the identifiers are 0, 1, 2 and 3) which correspond to available information sources

in the data source. During runtime, at the layer load step, the renderer module queries

the datasource for available points within the visible bounding box. The returned points

are then processed in a background thread. For each point, the required information is

extracted based on the requested identifiers. Each data points position along with the

required information are then forwarded to a geometry generation system. The geometry

11http://www.adcirc.org

54

http://www.adcirc.org

Figure 13: Sample view of our spatial datasource generator tool, used to create semi-
randomized datasources for debugging and user study purposes. Users can control data
point density, properties and alignment with respect to the bezels of the Reality Deck.

generator returns a generic “georenderable” object which can be injected into the scene-

graph and drawn with at a fixed screen size. This approach allows for new visualizations

to be created by developing a new geometry generator rather than a completely new layer.

It is also worth noting that the generation of geometry also happens in a separate thread,

improving interactivity for the application. In our current implementation the glyphs

provide a fused text + barchart display, similar to the visualizations used by Ball et

al. [BN08] in their user studies. A sample glyph visualization can be seen in Fig. 14.

Overlay Layers Our 2D map renderer also supports color-mapped overlay layers driven

by a spatial datasource. In part these layers operate similarly to the glyph layers de-

scribed above. However, once the datasource has been queried and the relevant points

are returned, rather than generating individual glyph per point, this layer proceeds to tri-

angulate all visible points into a single mesh. This triangulation, powered by the CGAL

library12 also happens in the background in order to preserve application performance.

The resulting mesh is then uploaded to the GPU and injected into the scenegraph for

12http://www.cgal.org

55

http://www.cgal.org

(a) (b)

Figure 14: Example of 2D GIS glyph visualization. (a) Section of the Reality deck
showing glyphs visualized using our two-dimensional GIS renderer. (b) Closeup of a
glyph illustrating the dual text+barchart visualization.

rendering. In the layer declaration, the user provides the identifier of the piece of infor-

mation to be visualized. During the generation of the overlay geometry, the system will

query the datasource for the value range of this particular datum and use that to provide

a color-mapped visualization of the values by normalizing each value and then mapping

it to the HSV color-space. An example of this overlay visualization driven by ADCIRC

simulation data can be seen in Fig. 15.

4.2.4 3D GIS Immersive Visualization

While two-dimensional maps can provide a familiar visualization modality for certain

situations, some scenarios can benefit from a more immersive graphical experience. For

example, when visualizing ADCIRC simulations in order to predict impact areas during

a storm, the user can benefit from seeing the results of the simulation overlaid on top of

a three dimensional terrain model. Additionally, providing additional context (by adding

visual cues such as buildings) can be beneficial to the data exploration process.

In order to enable these complex, immersive visualizations we developed a second map

renderer, this time based on the OpenSceneGraph renderer module of our software. The

terrain engine which drives map rendering is implemented by osgEarth. The osgEarth

SDK is an open-source plugin for OpenSceneGraph. From a bird’s eye view, it enables

OpenSceneGraph to parse and load .earth descriptor files (which correspond to layer

56

Figure 15: Sample view of 2D GIS overlay visualization. Residual surge values stemming
from the ADCIRC simulation are color-mapped to the HSV color-space.

57

hierarchies), generating appropriate geometry for rendering. However, osgEarth is in

fact very complex, providing a separation between map data and rendering, enabling the

utilization of a vast range of geospatial data formats, providing support for scriptable

rendering and finally offering a foundation on which custom GIS-related applications can

be constructed.

Integrating osgEarth within our OpenSceneGraph renderer was not without challenges.

Simply loading .earth files proved to be extremely straightforward (all that is needed is

the presence of the appropriate plugin libraries within OpenSceneGraph’s plugin folder),

actually interacting with the visualization was more complex. The reason is that the ge-

ometry generated by osgEarth spans over extreme value ranges (which is to be expected

since it can represent an entire planet). This leads to interaction issues. Interactions are

affected since the utilized modality needs to provide large enough manipulations when

far away from the planet’s surface yet offer high fidelity when zoomed-in. Additionally,

users expect that applications which visualize an entire planet offer an “ARCBALL”-style

navigation interface (similar to Google Earth for example). Consequently, the approach

for interactions within our VL-based renderer module (manipulating the distributed cam-

era state directly based on user inputs) did not apply itself in this case. Thankfully,

the osgEarth SDK contained an interaction module, termed “EarthManipulator”. Ma-

nipulators are a component of the OpenSceneGraph architecture that can be installed

on an OpenSceneGraph “Viewer” object. They consume input events from the window

that the viewer is drawing to and use them to manipulate the virtual camera a viewer

is rendering with. This EarthManipulator implements an ArcBall style interface along

with additional functionalities (such as double tap to zoom, camera pitch, etc) while being

cognizant of osgEarth’s geometry. The osgEarth manipulator is integrated within our ren-

derer application in the following way. Within the application interaction handler (which

was described earlier in this chapter) we integrate a “headless” OpenSceneGraph Viewer.

This Viewer performs most steps of a normal viewer’s frame loop (e.g. cull and update

traversals) but does not perform any rendering. Overall, it has been modified to ensure

that no OpenGL calls whatsoever occur during its simulation loop. We then install an

EarthManipulator on our custom headless viewer. When the interaction handler receives

input events, it “translates” them to OpenSceneGraph-specific input events and forwards

them to the Viewer’s proxy window object. The Viewer processes these events during its

simulation loop and manipulates its internal camera. We then capture the camera state

58

Figure 16: Sample view generated via our osgEarth-based 3D GIS renderer. This image
shows a view of downtown Boston with synthetic building geometry derived from building
outlines. The base image layer and building facades were sourced from the osgEarth
distribution.

(e.g. its modelview matrix) and distribute that to the visualization nodes for rendering.

The visualization nodes utilize this distributed modelview matrix and also view frustum

information provided by Equalizer to draw the appropriate view. A sample view of our

osgEarth-based renderer can be seen in Fig. 16.

By leveraging the flexibility of osgEarth we can generate powerful immersive geospatial

visualizations. This is achieved by manipulating .earth files which define the visualiza-

tions.

59

Consider the following example:

<map name="sample map" type="geocentric" version="2">

<elevation name = "elevation layer" driver = "gdal">

<url >./dem/</url >

<extensions >tif </extensions >

</elevation >

<image name="image layer" driver="xyz">

<url >http :// oatile [1234]. mqcdn.com/tiles /1.0.0/ sat/{z

}/{x}/{y}.jpg </url >

<profile >spherical -mercator </profile >

</image >

</map >

This very basic .earth file defines a visualization with one elevation layer and one image

layer. The elevation layer will source its data using the “gdal” driver. The driver infras-

tructure is a core component of osgEarth, allowing developers to provide support for new

sources of data while integrating within the existing layer architecture. We utilize the

driver architecture for our ADCIRC-related extensions to osgEarth, described below. In

this example, the gdal driver will interface with the Geospatial Data Abstraction Library13

in order to load any .tif (GeoTIFF) files within the provided folder and utilize them as

elevation data for the planet model. The image layer on the other hand will utilize the

“xyz” driver (a source for tile-based imagery from online services) to obtain color imagery

from Mapquest Open (as is obvious by the url property). It is worth noting that multiple

elevation and image layer definitions can exist within the same .earth file, with different

priorities and geospatial coverages. Additional immersive visualizations with osgEarth in

the Reality Deck can be seen in Fig. 17 and Fig. 18.

ADCIRC-related extensions to osgEarth In order to support the visualization of

ADCIRC simulations within our osgEarth-based renderer we utilize the “model” layer

architecture. Model layers are the simplest of all osgEarth layers but also provide the

greatest degree of flexibility. Out of the box, osgEarth provides two drivers for model

layers. The first is a “feature” driver (with two implementations) which can be used to

13http://www.gdal.org

60

http://www.gdal.org

Figure 17: Zoomed-out view of the earth from our 3D GIS renderer. The base map layer
was streamed from Mapquest Open.

Figure 18: State-level view of Massachusetts in the Reality Deck. A high-resolution image
layer (stored offline) is overlaid on top of a steamed base map. This GIS scenario is part
of the osgEarth distribution.

61

Figure 19: 3D immersive GIS visualization of synthetic building geometry. This geometry
is generated by osgEarth through processing of building outlines provided as a shapefile.
The facade textures are selected automatically depending on building properties.

62

render vector-based data. In our applications we utilize the built-in feature driver in order

to generate procedural 3D building geometry in the areas which are included in our visu-

alization, as seen in Fig. 19. The second model driver is termed “Simple Model” allowing

the display of general 3D models, in formats supported by OpenSceneGraph, on top of the

map. Generally, all osgEarth model drives are expected to return an OpenSceneGraph

node which is inserted into the scenegraph. Additional operations (such as paging and

level of detail) can be implemented within this node.

To support the visualization of ADCIRC data, we have developed an “adcirc overlay”

driver for osgEarth model layers. The driver leverages the spatial datasource that we

described earlier in this chapter in order to visualize ADCIRC simulations in real-time.

Since the size of the ADCIRC simulation domain can be substantial our driver uses a

deferred paging scheme and plugs into the OpenSceneGraph pager system. Specifically,

when the model layer is initialized, our driver is queried. It proceeds to load the metadata

of the ADCIRC simulation (e.g. simulation extents, total timesteps, etc). Then, the simu-

lation extents are subdivided based on a user-provided parameter. For each subdivision of

the coordinate extent, the driver then generates a single OpenSceneGraph paged-loading

node. The totality of the nodes are then aggregated under an OpenSceneGraph group

node and returned to the system. During runtime, the OSG paged loading system comes

into effect. When one of the paged-loading nodes is close enough to the camera, an asyn-

chronous load request is placed to the OSG asset loading system using a custom URI,

specific to our application. Our driver is registered as supporting this specific URI and

responds by querying the spatial datasource for the relevant data and synthesizing the

geometry. The returned geometry is then inserted into the scenegraph and rendered.

Our system [PMK14] supports multiple visualization modes and provides a number of user

configurable parameters. Consider the following ADCIRC model layer definition:

<model name="ADCIRCOverlay" driver="adcirc_overlay">

<url >./ data_folder /</url >

<datasetname >sampleDataSource.dat </ datasetname >

<subdivisionfactor >50.0 </ subdivisionfactor >

<renderingmode >flat </ renderingmode >

</model >

The URL and DATASETNAME parameters specify the location and name of the

63

Figure 20: Immersive 3D ADCIRC simulation visualization.
Illustration of simulated flooding in down-town Manhattan, generated via our extensions
to osgEearth which permit interfacing with ADCIRC simulations.

spatial datasource that will be used to generate the ADCIRC grid geometry. The SUB-

DIVISIONFACTOR parameter specifies how many times each side of the coordinate

extent bounding box will be decimated (and consequently the number of paged-loading

nodes that will be inserted into the scenegraph). Finally the RENDERINGMODE

parameter allows the user to specify the shading and geometry generation mode for the

overlay. Our system currently supports two modalities:

• Flat-shaded overlay with DEM interaction In this modality the results of the AD-

CIRC simulation are interpreted as a water surface which is offset from the base

elevation provided by the vertical datum of the visualization. This allows the over-

lay to “interact” with the digital elevation model, covering parts of it if the water

level is adequately high. Effectively this modality allows the visualization of flood

impact areas, granted that an appropriate digital elevation model is available. For

a sample visualization using this rendering mode, please see Fig. 20.

• Color-mapped overlay This second modality is similar to the overlay layer provided

64

Figure 21: Immersive 3D ADCIRC simulation visualization.
In this example, the ADCIRC simulation mesh is visualized directly, and the residual
surge is color-mapped to a blue-green hue range.

by our two-dimensional map renderer. The key difference is that rather than tri-

angulating the visualization mesh on the fly, we instead preserve and visualize the

same mesh topology that was used for simulation purposes. The overlay is rendered

with depth-testing disabled in order to ensure that the map’s digital elevation model

does not cause occlusions. Some examples of this visualization modality can be seen

in Fig. 21.

65

Chapter 5

NuNav3D - Natural User Interface

for 3D Navigation

5.1 Introduction

3D navigation is perhaps the most important component of interaction with virtual real-

ity environments. Traditional solutions include gamepad controllers and tracked wands.

Touch-based interaction is also used under certain situations (large tiled displays). Lo-

comotion techniques such as Walking-In-Place or real walking (perhaps in combination

with path bending) also tackle the issue of navigation inside a VR visualization. We pre-

sented an overview of traditional and more novel navigation methods in Chapter 2. The

common denominator of most of these methods is that they require the use of some sort

of navigation device, prop and/or the utilization of a tracking system. However under

certain situations, these conditions may be unattainable, i.e:

• Using a controller for extended periods of time may cause fatigue.

• Public displays or VR systems, for which providing a device for every user may be

infeasible.

• Large touch-driven system require the user to repeatedly walk up to the display for

interaction and then walk away for observation.

66

Bowman et al. [BCF+08] have described some of these scenarios as promising for 3D user

interface research.

NuNav3D [PSK12a, PSK12b] tackles the 3D navigation task based on one main principle.

That the user shall require no devices, props or markers to navigate through the VR

environment. NuNav3D directly exposes 4 DOFs of navigational control to the user,

mapping rotational and transitional controls for a virtual camera to hand movements in

a manner similar to analogue sticks on a game controller. Additional DOFs can also be

exposed (up to a total of 6 maximum) by direct mapping to hand movements or through

the usage of gestural modifiers.

It is worth noting that development of NuNav3D occured prior to the construction of the

Reality Deck so the implementation and experiments were conducted on a smaller-scale

visualization setup. Specifically, we have implemented NuNav3D using a low-cost Time

of Flight (ToF) sensor (Microsoft Kinect1) and compatible skeletal mapping software

(Primesense NITE2). We have developed a simple pose recognition framework that al-

lows the definition and detection of full body poses that trigger the navigation modality

or affect visualization parameters. The usage of a ToF sensor makes NuNav3D an essen-

tially transparent interface as it does not require any additional controllers or tracking

markers to be mounted on the user before interaction. NuNav3D is evaluated under two

scenarios:

• A path-following task within tight geometrical constraints (inspired by Virtual

Colonoscopy [KLKB05]).

• A general exploration task of an open scene.

In both cases, it is compared to a traditional joypad controller.

In this chapter, we begin by presenting our NuNav3D framework and defining the base

navigation scheme. We describe our pose recognition algorithm and its usage in tran-

sitioning to and from the navigation modality. Afterwards, we introduce the current

implementation of NuNav3D and proceed to describe our experimental protocol. We

conclude by presenting findings that guide the design of the user interface described in

Chapter 6.

1http://www.microsoft.com/en-us/kinectforwindows/
2Since the development of NuNav3D, Primesense was purchased by Apple Inc. and no longer maintains

an online presence.

67

http://www.microsoft.com/en-us/kinectforwindows/

5.2 NuNav3D: A Navigation NUI for 3D Visualiza-

tion

Before introducing the NuNav3D scheme for 3D navigation, we must define some basic

concepts used throughout this chapter. NuNav3D operates on poses, skeletal data pro-

vided by an external system. We define a pose P as a collection of n joint positions

p1, . . . , pn and orientations R1, . . . , Rn in 3D space:

P = {p1, . . . , pn, R1, . . . , Rn}

The positions are defined as 3-component vectors in 3D space and the rotations as 3× 3

matrices. We use the notations pLH and pRH to refer to the positions of the joints

corresponding to the user’s left and right hands respectively, as they are important to our

navigation scheme. We define a pose history P (1, · · · ,m) as a sequence of consecutive

poses:

P (1, . . . ,m) = {P1, . . . , Pm}

5.2.1 Pose Recognition Framework

We have developed a simple, threshold-based pose recognition framework. To make our

system invariant to changes in user physique, we transform each pose Pi from 3D world-

space coordinates as provided by the skeletal mapping framework into a uniform coordi-

nate space. We term this process pose uniformization and describe it below:

1. We translate the skeleton to the center of the coordinate system. This is achieved

by expressing each joint position as p
′
i = pi− pTorso (pTorso being the position of the

sternum as returned by the skeletal tracking system).

2. We compensate for any rotation of the user with respect to the tracking sensor by

rotating each joint position by the inverse of the torso’s rotation p
′′
i = R−1

Torsop
′
i.

3. Each joint position can be expressed as an addition of vectors starting from the torso.

For instance, pLH = pTorso + (pLeftShoulder − pTorso) + (pLeftElbow − pLeftShoulder) +

68

Figure 22: NuNav3D pose uniformization process. All figures have been extracted from a
tracked user who was standing with his arms to his sides. (1) Original skeletal mapping.
(2) Skeletal mapping after centering. (3) Skeletal mapping after rotation compensation
and size normalization. (4) Frontal view of the skeleton pre-uniformization. (5) Frontal
view of the skeleton post-uniformization.

(pLH − pLeftElbow). Similar linear combinations can be straightforwardly defined for

all other joint positions. We normalize these vectors to unit length and then add

them to calculate the joint positions in uniform space. For the above example, we

have punifLH = (0, 0, 0)+norm(pLeftShoulder−pTorso)+norm(pLeftElbow−pLeftShoulder)+

norm(pLH − pLeftElbow) since we have already translated the joint positions in Step

1, thus the torso is now aligned with the center of the coordinate system.

A visual view of the uniformization process can be seen in Figure 22.

We use the symbol P unif
i to denote a pose Pi after the uniformization process. In the

uniform space, we can define a scalar pose variation metric s that expresses the difference

between two poses PA and PB:

sAB =
1

n

n∑
i=0

{|P unif
A (i)− P unif

B (i)|}

69

where P unif
A (i) and P unif

B (i) are functions that return the positions of the i-th joint of

P unif
A and P unif

B .

Experimentation has demonstrated that the uniformization process makes the metric sAB

relatively invariant against differences in user physique (height, length of appendages,

etc).

We define a collection of uniformized tracked poses T (1, . . . , l) = {P unif
1 , . . . , P unif

l }. Our

pose recognition algorithm scans through a pose history P (1, . . . ,m) and computes the

metric sP (m),T (l) for each tracked pose. If the metric is lower than some threshold value

sthres, then a vote is cast in favour of pose Tl. In order for a pose action to be triggered,

we require that a pose receives at least 30 votes throughout a pose history. This vote

threshold ensures that actions are not triggered by involuntary user movements such as

conversational hand gestures. Additionally, a pose history P will usually contain more

than a few seconds worth of pose data (5 seconds in our implementation). In this case, the

pose with the highest number of votes is triggered. Upon recognition of a pose, the pose

history is cleared to prevent deprecate poses from triggering recognition events.

5.2.2 Definition of the Navigation Scheme

In order to formalize the navigation scheme, we first need a well-defined navigation pose.

The user assumes this pose when he wishes to trigger the 3D navigation interaction

modality. While technically any pose can be used, for comfort and usability reasons the

navigation pose is set as the user standing or sitting, with the arms parallel to the chest

and the forearms extended perpendicularly to them. This pose is termed PNav and can

be seen in Fig. 23.

5.2.3 Transition to/from Navigation Mode

Upon startup, our system is running in the pose tracking state. At any point the user

may assume PNav. Once the navigation pose is detected (as described above), the system

transitions to the navigation state. Once this transition happens, the system takes a

snapshot of the user’s current pose PBase
Nav . Furthermore, it relaxes the threshold value

sthres by a factor λ. To transition back to the pose tracking state the user must assume

70

Figure 23: The NuNav3D navigation pose. (1) The image map captured from the
Kinect while the user is in the navigation pose. (2) The equivalent skeletal map pre-
uniformization.

another pose Pi that has sPiPBase
Nav

> sthres · λ (as opposed to just sPiPBase
Nav

> sthres which

would be required for a pose to no longer be recognized by the system under the pose

tracking state). This relaxation is necessary in order to afford the user with a greater

range of motion for his hands inside navigation mode. During our testing, users achieved

transitioning out of the navigation state by dropping both their hands and standing

naturally. A schematic representation of the pose recognition and navigation pipeline can

be seen in Fig. 24.

5.2.4 Hand Motions to Navigation

We describe the process of mapping the left hand motion to a normalized navigation

vector. The same process can be applied for the right hand. We define an offset vector

voffset = Pi(LeftHand) − PBase
Nav (LeftHand). We wish to scale this 3D vector to a [0, 1]

range, with |voffset| = 1 being the maximum hand displacement the user can achieve

without transitioning out of the navigation state. Assuming that the user maintains

perfectly still, this would allow a maximum displacement of sthres·λ
2

per hand. Thus scaling

by this factor yields a roughly normalized navigation vector. Practically the scale factor

is slightly larger, to accommodate for natural shifts in body position during navigation.

71

Figure 24: High level overview of the NuNav3D pipeline. This flow diagram illustrates
the data flow and interaction trigger process for our system.

72

When the user maintains one hand close to the original position of PBase
Nav then the other

hand can achieve a maximum |voffset| ≈ 2. This case can be either handled by clamping

the vector length to 1 or allowing it to extend to provide the user with a wider range of

motion. The two resulting vectors (one per hand) from this process can then be interpreted

by a virtual camera manipulator.

5.3 Implementation

We have created a C++ based implementation of NuNav3D. The current version utilizes a

Microsoft Kinect sensor. The Kinect is a Time-Of-Flight sensor, providing a scene depth

map that is generated from an infra-red pattern projection. It also offers visible-light

images via a second camera. However, our implementation is not strictly limited to the

Microsoft Kinect for sensory data, as it is built upon the OpenNI middleware. OpenNI

abstracts depth and skeletal data generators behind generic nodes that can be easily

reconfigured using an XML file. Thus alternate versions of NuNav3D can use other types

of depth sensors or even full motion tracking systems, as long as they are abstracted

by OpenNI. The current version uses the PrimeSense NITE framework for extracting

skeletal data from depth images. NITE offers 15 joint positional and rotational data

(although rotational data for the arms and feet is not robust and should not be used).

Our implementation also uses the Qt framework for threading and graphical user interface

purposes. It exposes the navigation data through the Qt event system and thus is very

easy to integrate with other applications.

The implementation of the pose recognition framework closely mirrors the theoretical

description of the above section. In practice, we have opted to ignore the head and

leg positional data for the pose classification algorithm since users often adjust their leg

positions during interaction with the system. Additionally, this relaxation allows usage

of the system when the user is sitting down (however the tracking robustness of the

NITE framework for sitting users is reduced). The values for sthres and λ used in our

implementation were 0.12 and 1.4 respectively and were determined experimentally.

The resulting vectors from the process are interpreted by the virtual camera manipulator

of our visualization software. The vector lengths are clamped to [0, 1] length then their

73

components are individually interpreted as translations or rotations. The y and x coor-

dinates of the left hand offset vector vLH are used for rotating along the x and y axis of

the virtual camera respectively. Similarly the x and y coordinates of the right hand offset

vector vRH are interpreted as translations along the x and z axis (in camera coordinates,

y is the up vector, z is the view direction vector and y × z = x). In both cases, we

apply thresholding to the offset values and then raise them to an experimentally defined

exponent to ensure smoother controls. The same manipulator is applied to navigational

data derived from the joypad controller against which we compare in our user study.

5.3.1 4-DOF versus 6-DOF

The above mapping effectively ignores the z components of each offset vector (displace-

ment towards and away from the camera sensor). We initially utilized them to add support

for rolling the virtual camera and translating along its y axis, but the additional degrees

of freedom were hard to control for non expert users (particularly in the case of rolling the

camera where there is no intuitive mapping between moving one’s hand closer or farther

from the depth sensor and having the movement result in a rotational change along the z

axis of the camera). We can expose these 2 remaining DOF via modifier poses that allow

the user to explicitly manipulate them with one hand.

5.4 Evaluation

We have performed experimental evaluation of NuNav3D via a user study.

5.4.1 Hypothesis and Metrics

Our experimental hypothesis is that, given a group of test subjects with limited experience

under 3D navigation scenarios, NuNav3D will perform comparatively to a conventional

dual-analogue stick controller under two separate 3D navigation tasks. The two tasks are

path following and exploration. We also hypothesize that users will find the NuNav3D

experience to be more natural and less intrusive than the one provided by the game

controller.

74

Path following involves test subjects controlling a 3D visualization and being asked to

follow a predetermined path through a scene. Exploration involves the users being placed

inside a 3D scene with a number of out-of-sight objects. The users are asked to explore

the scene and find these objects. In both cases, the quantitative performance metric is

the amount of time each user takes to complete the task. We also performed a qual-

itative evaluation of the user experience via questionnaire after the study trials were

completed.

5.4.2 Apparatus

The experimental apparatus used in our user study is as follows. A Dell Precision T7500

workstation with a quad-core Intel Xeon CPU and 16 Gigabytes of memory drove our vi-

sualization framework. The workstation used an AMD FirePro V9800 graphics processing

unit to drive a lattice of 6 23-inch Samsung MD230 displays. The displays were arranged

in a 2 row by 3 column geometry for an effective screen resolution of 5760-by-2160. A

Microsoft XBOX 360 Joypad Controller was connected to the workstation via a wireless

RF dongle. A Microsoft Kinect sensor was positioned under the display array and con-

nected via USB. While in pose-detection mode, the visualization software displayed the

user’s current skeleton as well as the skeleton of the target navigation pose. When the

user entered navigation mode, the two navigation offset vectors were visualized instead.

A photograph of our experimental apparatus can be seen in Fig. 25.

5.4.3 Trial Data Sets

For the path-following task we created two synthetic virtual colonoscopy data sets. These

datasets are based on actual colon centerlines extracted from real patient data but provide

a smoother tubular structure. An example of such a data set can be seen in Figure 26.

The initial virtual camera placement was in the location of the rectum. The data set

for the exploration task is comprised of a collection of 9 simple buildings3 on a plane.

Each building had up to three levels. The trial area was well-defined by a surrounding

wall structure. Four teapot objects were scattered throughout the scene, either in the

buildings or out-of-sight. Two different building and teapot location arrangements were

3Building geometry was sourced from http://igad.nhtv.nl/~bikker/.

75

http://igad.nhtv.nl/~bikker/

Figure 25: NuNav3D user study experimental apparatus. Red frame: Samsung MD230
display lattice. Green frame: Microsoft Kinect sensor. Blue frame: Dell Precision T7500
workstation. Purple frame: Microsoft XBOX 360 Wireless Controller.

76

Figure 26: Sample colonoscopy dataset used for NuNav3D path-following task. The
geometry normals are pointing towards the interior of the colon, making it transparent
from the outside.

developed, one for each part of the trial. In both cases the camera was placed in the

center of the scene, with a consistent initial direction. A sample screenshot of this data

set can be seen in Fig. 27.

5.4.4 Trial Procedure

Each participant was introduced to the concept of NuNav3D by an instructor. Both the

joypad scheme and NuNav3D were briefly (for approximately 5 minutes) demonstrated

to the participant by the instructor. Then the participant was asked to step in front

of the sensor for calibration (necessary for the NITE skeletal mapping implementation).

Following, the instructor loaded a basic scene and asked the participant to familiarize

herself with both navigation schemes (for a period no longer than 10 minutes). Each

participant was then asked to complete the path following task using the game controller.

Then the alternate colon data set was loaded and the participant was asked to repeat

the process using NuNav3D. The order of the first interface used was alternated between

77

Figure 27: Sample scene used for the NuNav3D exploration task. The inlet demonstrates
a top view of the scene with the starting camera position and direction visible. The hidden
object positions have been marked with red circles.

78

Figure 28: NuNav3D qualitative evaluation results. These timings are broken down based
on the participants’ 3D navigation experience level.

participants. A similar protocol was followed for the exploration task. In both cases

the participants were timed. Collision detection was off during the trials to allow for

maximum mobility in navigation. After trial completion, the participants were asked to

fill a questionnaire regarding their user experience.

5.4.5 Results

The study was conducted on a group of 12 participants (10 male, 2 female). Average age

was 24.16 and standard deviation was 1.89. On a scale from 1-5, the users were asked

to rate their familiarity with 3D navigation (whether in an entertainment or professional

context), with 1 being no experience and 5 being daily experience. The mean experience

rating was 3.25 (SD 1.65).

In the path-following task, average time to completion was 2m26s when using the joypad

controller and 3m50s using NuNav3D, failing to verify our original hypothesis. However,

all participants completed the trial with our proposed interface. We observed that par-

ticipants, when using the game controller, opted to move in discrete steps by flicking

the translation stick as opposed to smooth controlled movements. On the other hand,

NuNav3D exposed a wider range of motion and allowed for smoother translations and

79

rotations. However, on several occasions participants would overtranslate and exit the

colon interior (which required corrective manoeuvres that in turn increased trial comple-

tion time). Some participants also complained about the ability to accidentally translate

along the x axis of the camera while flying (strafing).

For the exploration task our comparative performance hypothesis was verified. The mean

completion time between the two systems was very similar. Mean time for NuNav3D was

2m 20s whereas for the game controller it was 2m 3s. Our observations with regards

to smoothness of movement were consistent with those of the first trial. Participants

commented that the open-area nature of the trial scene did not impose the rigid posi-

tional restrictions of the Virtual Colonoscopy dataset and allowed for a more pleasant and

intuitive navigation experience.

The qualitative results of the evaluation are as follows. On the question “Which user

interface did you find easier to get accustomed with?” 83.3% of participants preferred

the game controller as opposed to NuNav3D. Users with high levels of 3D navigation

experience particularly favoured the game controller. For the question “Which user inter-

face did you find less intrusive during your experience?”, 66.6% of participants answered

NuNav3D. Finally, we asked users to express their navigation interface of choice for the fu-

ture. 50% of users preferred NuNav3D overall. Users that expressed a preference towards

the game controller stated that they would opt to use NuNav3D if the performance for

navigation in constrained spaces was improved. These results are summarized in Fig. 28.

To further clarify Fig. 28, no participants of experience level 2 indicated NuNav3D as an

answer to the questions of the qualitative evaluation questionnaire.

5.5 Conclusion

Our evaluation of NuNav3D yields some interesting conclusions. Even users that have

not had significant experience with game controllers found that system easy to pick up

and use. This finding may be a result of the pervasiveness mainstream interaction enter-

tainment applications. Contrarily the concept of using one’s hands to navigate in 3D was

considered more foreign for participants in the study. Nevertheless, by the end of the trial,

participants were able to navigate effectively in 3D using NuNav3D, especially when the

scenario at hand did not require following a very strictly defined path or remaining within

80

tight geometrical constraints. Another observation we made was that the assumption of a

single, well-defined, navigation pose did not feel comfortable for all users. Some users felt

that the pose was unnatural, at least initially. Furthermore using a threshold-based ap-

proach to enter and exit the navigation modality resulted in users being forced to recenter

themselves to the navigation pose mid-motion, interrupting the smoothness of the experi-

ence. Users with more experience in NuNav3D did not encounter this issue and were able

to complete the entirety of the trials without dropping out of the navigation modality.

Still, in the interest of user experience, a less naive method of detecting the user’s action

intent may be necessary. This observation led to the development of our chirocentric user

interface which utilizes hand-pose recognition in order to identify the user’s interaction

intent. Additionally NuNav3D did not expose a method for triggering actions within the

visualization - rather it was strictly a navigation interface. The second contribution of

this dissertation also provides this functionality via gesture detection.

81

Chapter 6

Practical Chirocentric 3DUI

Platform for Immersive

Environments

6.1 Introduction

Interaction with large immersive systems (CAVEs, HMDs, etc) is usually conducted via

dedicated controller devices, such as tracked wands. These devices provide tactile buttons

that can be used to either trigger specific actions (e.g., manipulating a visualization param-

eter) or enter and exit various manipulation states (e.g., dragging an object, translating

the virtual camera, etc). In the majority of recent systems, tracking of the interaction

props is provided via an infra-red (IR) tracking system, and generally through a commer-

cial rigid-body solver that translates fixed arrangements of IR markers to positions and

orientations within the tracking space. Deviceless approaches such as NuNav3D suffer

from ambiguity in user intent which can result in unwanted camera movements.

These dedicated devices can instead be replaced with hand gestures and hand poses, cre-

ating effectively a chirocentric user interaction experience. In this chapter, we introduce

two algorithms that enable the implementation of such a user interface, within the con-

straints imposed by a commercial IR tracking system. The first algorithm is targeted

at the recognition of unimanual or bimanual hand gestures, which can then be used to

82

affect the virtual environment in specific ways (such as cycling through Points of Interest

or switching rendering modes). This algorithm is inspired by work in the field of human

activity recognition and driven by a gesture data set collected over 9 subjects. Our second

algorithm tackles the problem of hand pose recognition from sparse point clouds provided

by the IR tracking system. By utilizing a pair of low-cost gloves, with attached retrore-

flective markers, we can accurately determine the user’s hand poses for each hand and

use them to trigger various directly manipulative interaction modalities. This algorithm

is evaluated over a 5 subject data set.

Utilizing the platform defined by these two techniques [PCS+15, PCS+13], we have de-

veloped a prototype chirocentric user interface for the exploration of 2D and 3D data

within immersive environments. Our system exposes unimanual and bimanual manip-

ulative interactions. We discuss the implementation details of our system and present

various insights gained through its development and deployment within a large tiled dis-

play. We conclude with an outline of future plans for utilizing our platform for the formal

evaluation of bimanual chirocentric 3DUIs under the Framework for Interaction Analysis

(FIFA) [McM11].

6.2 Algorithmic Framework

Our chirocentric UI platform is driven by two algorithms that utilize prior knowledge for

the recognition of hand poses and gestures based on input data from a tracking system.

For hand poses, we utilize a feature vector of pair-wise distances between markers that are

assigned to each of the user’s hands, which is then used to predict a hand pose label via

an Support Vector Machine. For gesture recognition, we utilize a more complex feature

that incorporates both the distances between different joints of interest, as well as their

motion. In this section, we expose in detail the specifics of our recognition algorithms.

Both algorithms are targeted at commercial IR tracking systems and operate on two types

of data:

• Rigid Body Positions - Denoted Pi for a single body, these rigid body positions

correspond to the positions of various body parts of the user within the tracking

space. Our gesture recognition generalizes to an arbitrary number of body parts,

although for practical reasons we utilize the hands and head positions.

83

• Marker Clouds - Annotated as Mi for the i-th marker of the cloud, these positions

correspond to the raw markers that are reconstructed by the tracking system. It

is worth noting that, for a single physical marker at frames t and t + 1, there is

no guarantee that Mt
i and Mt+1

i will report its position. Effectively, our algorithm

can not expect per-frame consistency in the ordering of reported markers from the

tracking system.

6.2.1 Hand Pose Recognition

For our hand pose recognition algorithm, we assume that the tracking system provides

us with PH which is the position of the hand (obtained by a rigid body mounted on the

back of a simple glove). Additionally, we are provided with a marker cloud Markers =

{M0 · · ·Mn}, which contains all markers reconstructed by the tracking system. This cloud

includes markers that are mounted on the tips of the thumb, middle and index figure of

the user. Our low-cost tracked glove is shown in Fig. 29. In total, we are interested in

the markers that correspond to the hand’s rigid body (3 in our case), and the 3 finger tip

markers. We construct a subset of Markers termed FilteredMarkers as follows:

Algorithm 1 FilterMarkers(Markers, PH , DistThres)

ClusteredMarkers = {}
for Mi ∈ Markers do

if |Mi −PH| ≤ DistThres then

ClusteredMarkers.append(Mi)

end if

end for

while ClusteredMarkers.size() < 6 do

ClusteredMarkers.append(PH)

end while

SortedMarkers = DistanceSort(ClusteredMarkers,PH)

FilteredMarkers = SortedMarkers.subarray(0, 6)

return FilteredMarkers

In this algorithm, DistanceSort(ClusteredMarkers,PH) sorts the ClusteredMarkers

vector based on the distance of each marker from the hand rigid body. Additionally, if

84

Figure 29: Low-cost, passively tracked gloves used by chirocentric user interface. It is
constructed by attaching a tracking system rigid body to the back of a soft glove, using
wires running through the fabric to preserve its elasticity and ensure a deformation-
resistant connection. Retroreflective markers are attached on the tips of the thumb, index
and middle fingers. The total cost of materials for one glove is under $25.

the original Markers set does not contain enough markers (due to tracking occlusion), we

insert placeholder markers at the position of the rigid body itself. Given FilteredMarkers

we can then proceed to the feature calculation for a particular hand pose.

Feature Calculation For a particular hand pose we construct feature vector Fh from

markers Mi ∈ FilteredMarkers:

Fh(i, j) = ∥Mi −Mj∥, ∀Mi,Mj ∈ FilteredMarkers

Effectively, our feature vector is defined as the pairwise Euclidean distance between all

markers. However, as mentioned earlier, the ordering of the markers is not guaranteed to

85

be consistent between each frame delivered by the tracking system. To ameliorate this,

we sort Fh in descending fashion, resulting in Fh
sorted, ensuring consistency in its ordering.

The dimensionality of the feature vector is 36 for our experiments (assuming 3 rigid body

markers and 3 finger tip markers).

Training and Classification With the feature calculation defined, training and clas-

sification of hand poses are quite straightforward. We utilize a Support Vector Machine

(implemented via the libSVM library [CL11]) using a Radial Basis Function kernel. We

determined SVM parameters C = 2 and γ = 1 via grid search on a subset of the labelled

training data. We report additional details on the training data in the experiments sec-

tion below. Finally, our classification algorithm runs in real time (approximately 5 to 10

milliseconds per incoming frame of tracking data).

6.2.2 Gesture Recognition

Contrary to the potentially unreliable marker cloud data (which maybe require the inser-

tion of placeholders and does not guarantee between-frame consistency between marker

identifiers), rigid body data is significantly more robust. We assume that of Pi is the po-

sition of the i-th rigid body in 3D space as reported by the tracking system (practically,

we utilize 3 rigid bodies, for the head, left and right hands of the user but our feature

calculation generalizes to an arbitrary number). In the rare occasion that a rigid body

is not tracked during a particular frame, we replace it with a placeholder at the center

of the coordinate system. Since these rigid bodies correspond to joints of a very basic

human skeleton, we refer to their positions as joint positions for the remainder of this

chapter.

Feature Calculation Our feature is a combination of the distance between joints and

their motion, aggregated over a window of time. In contrast to our hand pose feature,

which identifies static poses, without a progression component, this feature calculation

allows us to capture the dynamics of a particular gesture as it advances through time.

We augment the earlier notation by letting Pi,t ∈ ℜ3 be the 3D location and of joint i of

the subject at time t. Let T be the set of all the frames within the size of a frame window,

86

W . The feature of each such frame window is a single vector, defined as the concatenation

of all computed features F(·; t), where t ∈ T . In particular, we compute two sub features,

one based on the pair-wise distance of joints for the current frame and the second based

on the pair-wise distance of all pairs of joints in consecutive frames.

Joint distance The joint distance feature Fjd is defined as the pairwise Euclidean

distance between all the joints of a persons at time t. It is defined as:

Fjd(i, j; t) = ∥Pi,t −Pj,t∥, (1)

where i and j are any joints of the user and t ∈ T

Joint motion The joint motion feature Fjm is defined as the Euclidean distance be-

tween all pairs of joints of a person at time t1 and at time t2. It captures dynamic motions

between joints and mathematically formulated as:

Fjm(i, j; t1, t2) = ∥Pi,t1 −Pj,t2∥, (2)

where i and j are any joints of the user, t1, t2 ∈ T , t1 ̸= t2.

Training and Classification The window W spans a total of 13 frames (we report

on the performance impact of experimentally determined constant later in this chapter).

In order to ensure that the between-timestep differences are substantial enough (since

our tracking system delivers data at 120hz), we sample every 3rd frame of this 13 frame

window. This value was chosen to balance the algorithm’s performance, response time and

the dimensionality of the feature vector. For each of the 5 sampled frames, we calculate

the aforementioned joint distance feature, resulting in a total of 3 distances per frame

(or 15 for the entire frame window). Additionally, for every combination of the 5 frames

sampled from the window, we utilize 10 pairs of frames (5 choose 2) as sources for our

joint motion feature calculation. For every pair, we determined the euclidean distance

between joint i of the 1st element in the pair and all the 3 joints of the second element

of the pair and hence we obtain a 9 dimensional vector for each pair and in totality we

have a 90-dimensional joint motion vector extracted from a window of 13 frames. The

dimensionality of the combined feature vector is 15 + 90 = 105.

87

We utilize a SVM driven by an RBF kernel for training and classification. The parameters

C = 1.0 and γ = 1.0 were determined via grid search on our test data.

6.3 Experiments

Prior to the development of a chirocentric user interface based on our two algorithms, we

evaluated their efficacy on two data sets, collected using an IR tracking system. Specifi-

cally, we utilized an Optitrack system, with 24 S250e cameras. Our cameras are arranged

to cover the volume defined by a large immersive environment, which spans approximately

33′ × 19′ × 11′. Practically, approximately 10 cameras closest to the user contributed to

the rigid body tracking and marker cloud reconstruction (this determination was made

using the visualization tools of Optitrack’s Motive software).

6.3.1 Data Sets

Our first data set is targeted at evaluating the performance of the gesture detection

algorithm outlined earlier. Specifically, we selected a set of 7 gestures that were relevant

to various interactive applications within an immersive virtual environment. These are as

follows (the parenthesized bold-face shorthand notations are used throughout the rest of

the chapter):

• Pointing (POINT) - Pointing movement towards a display located in front of the

user.

• Left Swipe (SWIPEL) - Swipe to the left.

• Right Swipe (SWIPER) - Swipe to the right.

• Zoom in (ZOOMIN) - The user’s hands start extended in front of them and then

diverge horizontally, mimicking a zoom-in gesture on a multi-touch display.

• Zoom out (ZOOMOUT) - The opposite of ZOOMIN.

• Expand (EXPAND) - The user’s hand start extended in front of them and then

expand vertically, in a gesture similar to expanding a scroll.

• Contract (CONTRACT) - The opposite of EXPAND.

88

Figure 30: Gestures supported by our chirocentric user interface prototype. Abstract
frontal view of the user, with his right and left hands represented by the green and blue
spheres. The red arrows illustrate the hands’ trajectories during the gesture progression.

These gestures are schematically visualized in Fig. 30. We also captured several seconds

of each user idling in a resting state (termed NEUTRAL). It is worth noting that,

depending on the user’s natural preference, some of these gestures can be performed

with either the left or right hand taking preference. For example, CONTRACT can

be performed with the user’s right hand being on top as both hands converge, but the

same gesture can be performed with the left hand being on top instead. During our

capture session, we specially directed subjects to perform the gestures in both ways.

The resulting data was then merged under a single label during training/classification.

In total, we captured data from 9 subjects, which each subject repeating the gesture 5

times. The data was segmented manually to remove the downtime between each gesture

repetition.

Additionally, we gathered a second dataset of hand poses, for the purpose of evaluating

our respective recognition algorithm. This is comprised of marker clouds and rigid body

positions, as delivered by the tracking system, of 5 users holding their hands in the

requested poses over approximately 5 seconds. We captured data for both the right and

left hands, as the rigid body marker arrangements differ for each tracked glove. The

captured poses are:

89

Figure 31: Hand poses supported by our chirocentric user interface prototype. Top Row:
Photographs of the poses performed by a user (without wearing the tracked glove). Middle
row: Equivalent tracking system data. The green spheres are markers and the single red
sphere reports the rigid body position.

• Neutral (NEUTRAL) - The user’s hand is resting naturally.

• Fist (FIST) - The subject’s hand is clenched into a fist.

• Widget (WIDGET) - The thumb, index and middle fingers are arranged perpen-

dicularly to each other, resembling a translation widget from 3D modeling software.

• Pinch (PINCH) - The subject pinches with his thumb and index finger.

• Two fingers extended (TWOEXT) - The subject’s index and thumb fingers are

extended while her middle finger is clenched.

Samples of the captured hand poses are visualized in Fig. 31.

6.3.2 Algorithm Performance

Hand Pose Recognition We evaluated our hand pose recognition algorithm via leave-

one-out cross validation on our data set (training on data from 4 subjects and testing on

1). Our training and test sets are comprised of frames of frames of marker cloud and

rigid body data, which are labeled for each particular gesture. In each iteration, the

training set is filtered to only incorporate ”valid” poses that did not require the insertion

of placeholders during the execution of the FILTERMARKERS step of our algorithm.

90

Figure 32: Average confusion matrix for our hand pose recognition technique. The mis-
classification of PINCH is the only outlier and we attribute it to unreliable training data
from a single subject. Excluding that subject from the cross-validation process boosts the
accuracy to 89.9%.

The test set however is used directly as provided by the tracking system. We report the

average recognition performance and standard deviations for our algorithm under this test

setting. Specifically, our technique achieved an average precision of 94.9% (±7%) and an

average recall of 92.2% (±17%). By inspecting the average confusion matrix (see Fig. 32)

we can observe that the algorithm can clearly differentiate between the most hand poses

with an accuracy of 95% or more. The only exception is PINCH which gets misclassified

as NEUTRAL or FIST approximately 24% of the time. By more closely examining the

cross-validation results, we determined that the confusion withNEUTRAL was localized

to a particular iteration (with PINCH getting classified as NEUTRAL approximately

80% of the time) which led us to believe that the underlying data for that subject session

was unreliable. Indeed, excluding the subject in question from the cross validation resulted

in an improved recognition accuracy for PINCH of 89.9%. As we will discuss below, even

the full data set provided sufficient accuracy for the development of a chirocentric user

interface.

Gesture Recognition An important parameter of our hand gesture recognition algo-

rithm is the size of window W over which the feature calculation occurs. We experi-

mentally determined the window size by evaluating a number of candidate values and

91

inspecting precision and recall values. This evaluation occurred over a 9-fold cross valida-

tion over our gesture data set and the results are reported in Table 1. The joint motion

feature was competitive in terms of recall with the combined feature for W = 10 and

W = 13. The combined feature demonstrated smaller variability in the reported results

and was thus used in our implementation. Small window sizes reduced the efficacy of

the joint motion feature, as they do not allow it to capture the underlying dynamics of

the gesture. However, increasing the window size past 20 frames results in potentially

multiple gestures being captured within it, reducing recognition accuracy. Based on our

benchmarks, we selected a window size of 13 for our system.

Additionally, we evaluated the effect of the joint feature vector on the recognition process.

We performed the cross-validation process by utilizing the joint distance and joint motion

features separately (in addition to the combined feature). This evaluation exposed a num-

ber of interesting findings. Using solely joint distance feature resulted in low performance

for smaller window sizes (W = 5 and W = 10). Joint motion exhibited similar results for

W = 5 but was competitive with the combined feature in terms of precision for W = 10

and W = 13. The combined feature vector offered better or equivalent precision to the

singular approaches at all window sizes, provided a higher recall % compared to joint

motion for W = 13 and demonstrated smaller variability between the cross-validation it-

erations. These results are summarized in Table 1. Additional motivation can be found in

the confusion matrices generated by our evaluation. Specifically, we notice that by using

the joint distance feature on its own, we observe significant confusion between SWIPEL

and POINTING and a similar result between SWIPER and POINTING. This is due

to the fact that the progression of distances between the user’s static hand and head and

his gesturing hand is very similar in these two gestures. Utilizing the joint distance feature

resolves this ambiguity and the combined feature provides an increase in accuracy. These

results are summarized in Fig. 33. Since the overhead of computing the combined feature

is not substantial when compared to only computing the joint-motion feature, we opted

to use the higher dimensionality vector for our system.

92

Figure 33: Confusion matrices for our gesture recognition technique. Results are pre-
sented for all feature combinations, with W=13. Using only the joint distance feature
results in significant confusion between SWIPEL/SWIPER and POINT. The joint
motion feature captures the underlying difference between the gestures and resolves the
confusion. Using the combined feature yields an additional increase in accuracy with
minor computational overhead.

(a) All features

(b) Joint distance

(c) Joint motion

93

Table 1: Summary of the performance of our gesture recognition algorithm. The results
are presented for different frame window sizes (column marked W). Utilizing only the
joint distance feature results in low performance for windows of 5 and 10 frames.

Features W Average precision (%) Average recall (%)
Joint distance 5 43.49 ± 13.40 30.64 ± 10.44
Joint motion 5 39.09 ± 15.21 29.24 ± 10.39
All features 5 57.68 ± 14.76 46.00 ± 12.83

Joint distance 10 56.45 ± 14.41 43.10 ± 14.75
Joint motion 10 77.42 ± 7.39 69.80 ± 14.80
All features 10 77.99 ± 6.60 70.79 ± 14.31

Joint distance 13 79.14 ± 7.52 72.57 ± 13.17
Joint motion 13 80.59 ± 7.74 65.97 ± 14.34
All features 13 79.62 ± 6.81 73.60 ± 12.97

6.4 A Practical Chirocentric User Interface

We demonstrate our chirocentric user interface platform by implementing a bimanual

3DUI for control of visualizations on the Reality Deck. For more information on the

Reality Deck and the underlying software framework we refer the reader to Chapter 3

and Chapter 4. Fig. 34 shows a user utilizing our prototype for interaction with a GIS

application within our facility.

6.4.1 Visualization platform and applications

Arguably, the most important aspect of interacting with a visualization is the ability

to manipulate the virtual camera, allowing for new views into the data. In the case

of a first person view into 3D data, this implies the ability to precisely translate the

camera, and also rotate on one or more axes (with control over the camera’s yaw being

the most important). If an arcball style camera manipulator is used, then the ability

to independently control rotation and zoom variables is a useful modality. Generally, a

3D navigation interface should expose the highest number of Degrees of Freedom (DoFs)

possible, allowing powerful manipulations, without overwhelming the user.

For two dimensional data, the range of DoFs that must be exposed decreases, as the

possible transformations are limited to translations along the 2D plane, zooming and a

single degree of rotational freedom. This frees up a number of interaction triggers, than

94

can be used to expose more delicate modes of camera manipulation. Additionally, 2D

data (particularly maps) is frequently consumed by users on tablet devices and explored

via multitouch Rotate-Scale-Translate gestures. Thus, a chirocentric UI targeted at this

application domain should expose these features.

Such 2D and 3D camera manipulations are traditionally mapped to the translation of a

physical input device (such as a mouse), with buttons acting as modifiers and affecting

the active axes of manipulation. In our system, these physical modifiers are instead

replaced by the user’s hand poses, which place the system into a particular interaction

state. Within that state, the user’s hand motions are either directly applied to the virtual

camera, or act as relative transforms that continuously affect the visualization until the

interaction modality is terminated by the hands returning to their resting state.

Obviously, interactivity with visualizations is not limited to camera manipulations. For

example, in a 3D visualization the ability to manipulate rendering parameters (e.g., tog-

gling from solid surface rendering to a wireframe representation) is important and should

be readily exposed. Similarly, in the case of 2D GIS data, the ability to rapidly cycle be-

tween locations of interest or traverse map zoom levels is very useful. These interactions

are traditionally triggered via a selection on a graphical user interface (either on top of

the visualization or on a second screen). Alternatively, they can be mapped to buttons

on a controller device. In our system, such actions are activated directly through our

chirocentric UI, with a gesture serving as the trigger.

6.4.2 Supported Interactions

Our prototype supports a number of chirocentric camera manipulations. In describing

these interactions, we use the notation Pt
R and Pt

L for the positions of the user’s right

and left hand at time t as reported by our tracking system. Some manipulations assign

certain actions to particular hand. This assignment can be changed at runtime based

on user preference. In the descriptions below, we assume that the right hand is set as

the ”primary” hand. Additionally, to simplify the descriptions, we assume that the user

is always oriented towards the front wall of the immersive system. Thus, the physical

coordinate system in which positional data is reported by the tracking system matches

the virtual camera’s coordinate space. In the general case, a change of basis would have

to occur, based on the user’s orientation within the visualization space.

95

For 3D data, the primary forms of interaction are:

Unimanual 3 DoF Continuous Translation The system enters this mode when it

detects the WIDGET pose on the primary hand. It sets PCenter = Pt0
R . In subsequent

frames t
′
, it calculates ṽ = Pt

′

R −PCenter. ṽ is then applied as a translation vector to the

virtual camera, translating it in 3D space. For example, if the hand is offset upwards from

PCenter, the camera is continuously translated along its vertical axis. A small amount of

tresholding is applied (approximately 2cm) to ensure that natural motion while the user

is at rest does not trigger an unintended interaction. This interaction mode continues

until a pose other than WIDGET is detected on the primary hand.

Bimanual 4 DoF Continuous Translation and Rotation The system enters this

mode when it detects the WIDGET pose on both hands. A continuous translation is

mapped to the right hand, in the same way as described above. Additionally, the system

sets PL
Center = Pt0

L upon entering the state. For following frames, the system calculates

ṽ = Pt
′

L − PL
Center. The x (horizontal) component of ṽ is used to determine a rotation,

which is continuously applied to the camera. This allows control of the camera’s yaw,

using the secondary hand. The system remains in this state until a pose other than

WIDGET is detected on either hand. If WIDGET is maintained on the right hand

while the left hand assumes NEUTRAL, then the system reverts to the above modality

without resetting PR
Center.

Unimanual Continuous Flythrough This mode is triggered once TWOEXT is de-

tected on the user’s right hand. From then on, at every frame t, Pt
R is used along with

the hand’s orientation information to define a pointing direction p̃physical within the vir-

tual environment (this is one of a variety of ways to determine a user’s intended pointing

direction within the visualization space). p̃physical is then transformed to the 3D scene’s

coordinate system, yielding p̃virtual which is then applied as a per-frame translation to

the virtual camera’s position.

For our 2D GIS application, we expose the following functionality:

96

Unimanual Directly Manipulative Translation When the user’s right hand is in

the FIST pose, this mode is entered. Upon entry at time t, the system stores Pprev
R = Pt

R.

At each subsequent frame t
′
, the system calculates ṽ = Pt

′

R−Pprev
R . The x and y compo-

nents of ṽ are then applied as a translation to the virtual camera, manipulating its position

on the 2D plane (the z component is unused). Following the manipulation, the system

updates Pprev
R = Pt

′

R. This process continues for as long as FIST is maintained.

Bimanual Rotate-Scale-Translate This mode (which has also been referred to as

”air multitouch” by some of our users) in triggered when both hands are in the FIST

pose. At each incoming frame t, we calculate ˜diff
t
= Pt

R − Pt
L, M

t = ˜diff
t
/2 and the

between-hand distance dt = ∥ ˜diff
t∥. Based on these values and the previous frame’s data,

we can then define a translation vector t̃ = Mt − Mt−1 which is used to translate the

virtual camera. Additionally, we calculate a scale factor z = dt/dt−1 which is applied to

the current zoom factor. Finally, a rotation value ϕ is applied to the camera based on the

angle between ˜diff
t
and ˜diff

t−1
. Effectively, our system mirrors traditional multitouch

functionality. This manipulation continues until either hand exits the FIST pose. If

the primary hand remains in FIST, the system transitions to the unimanual directly

manipulative translation mode instead.

Unimanual Continuous Translation and Zoom This interaction mode is similar

to the Unimanual 3 DoF Continuous Translation for 3D scenes that we described earlier.

However, instead of directly applying ṽ to translate the camera position, only its x and y

components are used to translate the camera along the 2D plane, while the z component is

scaled and applied as an offset to the current zoom factor. Effectively, forwards/backwards

offsets of the user’s hand result in zooming in and out respectively.

Additionally, we correlate gestures to certain application-specific actions. For example, in

our GIS viewer, the SWIPEL and SWIPER gestures are used to sequentially cycle be-

tween a list of predetermined points of interest. ZOOMIN and ZOOMOUT allow the

user to instantly increment or decrement the current zoom level. EXPAND minimizes

the zoom setting, providing the user for a view of the entire world, while CONTRACT

zooms to the highest available level for the particular region (while maintaining the cam-

era’s longitude and latitude coordinates).

97

6.4.3 Implementation

Our chirocentric user prototype is implemented in C++ and integrated with the visual-

ization stack described in Chapter 4. We utilize the NatNet API for the streaming of rigid

body and marker cloud data from the OptiTrack system controller over standard TCP/IP

networking. We utilize libSVM [CL11] for quering our trained models. For hand pose

recognition, we aggregate the predicted labels over a 10 frame pose window and utilize a

voting scheme to determine the current active pose. This approach improves interaction

reliability (as singular outlier labels do not disturb an ongoing manipulation) although it

does introduce a small amount of input lag before a hand pose is detected (approximately

0.04 seconds, or enough time for 5 or more slots of the pose window to be occupied by

the hand pose label at 120Hz). The gesture detection algorithm is only active while both

of the user’s hands are in the NEUTRAL pose, in order to avoid intended actions due

to hand motions that naturally occur during other manipulations. Finally, we impose a 2

second cool down period when a gesture is detected and before another gesture can be rec-

ognized by the system. A view from within the Reality Deck, illustrating our chirocentric

user interface in operation can be seen in Fig. 34.

6.4.4 Observations from Deployment

We report a number of anecdotal findings that arose from the utilization of our UI proto-

type internally, as well as a by small number of external users. In 2D exploration scenarios,

users were able to accurately navigate, using both the unimanual and bimanual directly

manipulative modalities. In a way, these modalities are direct mappings of traditional

single and multitouch interactions on modern tablets, making users more likely to be fa-

miliar with their operation. However, we received commentary that, for long exploration

sessions (or when the traversal of a large amount of virtual space is required), these two

modalities can impose additional user fatigue, as they demand multiple repeating arm

motions. We reached the same conclusion early in the design process, which was one of

the drivers for the addition of the unimanual continuous translation and zoom modality.

Here users can just determine the direction and speed of translation by offsetting their

hand, and the camera manipulation continues until they return to the NEUTRAL pose.

Effectively, there exists a precision-versus-comfort tradeoff between these two modes of

manipulation. Arguably, the comfort level for the FIST based manipulations can also be

98

Figure 34: Photograph of a user leveraging our chirocentric user interface. The user is
exploring a 2D GIS dataset in the Reality Deck. The rendering is generated with our
VL-based renderer module.

improved by implementing support for inertial camera manipulations in our visualization

system.

For 3D navigation, our system exposes a powerful tool in the form of the bimanual transla-

tion and rotation feature. Effectively, it provides a total of 4 navigational DoFs, without

a dedicated controller device. More experienced users were able to perform complex

maneuvers within and around 3D structures with ease. For non-experts, this type of ma-

nipulation proved somewhat unwieldy, but we hypothesize that this may be related to a

general lack of familiarity with 3D navigation in general. Originally, we attempted expos-

ing additional degrees of rotation (camera pitch and roll) through this modality, but they

proved to be overwhelming for almost all users. The continuous flythrough modality was

found very intuitive to use, but it is naturally somewhat constrained in its functionality

(particularly if the virtual environment is not fully immersive).

A point of contention is the selection of support gestures and hand-poses that can be rec-

ognized by the system. In our current implementation, various interactions were assigned

to hand-poses and gestures somewhat arbitrarily. While some of these assignments make

99

sense (for example the FIST pose, similar to a “grabbing” movement, triggering a direct

manipulation) others may not (a vertical “zoom-out” gesture minimizing the zoom scale).

Nielsen et al. [NSMG04] and several other scholars can provide guidance on this front

when developing further UI prototypes. Additionally, the notion of frames of reference is

extremely important, particularly in an immersive setting. Our existing implementation

assumes that the user is aligned to the front wall of the facility. Consequently, interac-

tions along the axes of the virtual camera map to hand motions along the width, depth

and height of the physical space. In a practical setting, this assumption may not hold,

since users can physically navigate and interact with the display from any point and with

any body and head orientation. Consequently, the mapping between the physical interac-

tion space, the visual feedback space and any manipulations is not well-defined for some

modalities.

Our initial observations place the gesture recognition quality on-par with our reported

cross validation figures, meaning that users occasionally had to repeat a gesture before it

would recognized by the system. However, these gestures proved to be a useful tool for

rapidly accessing functionality from anywhere within the virtual environment, that would

otherwise require that the user either carry a controller device or physically move to a

controller computer. Finally, early usage of our system underlined the need for some sort

of feedback to the user upon entering and exiting a particular interaction mode. This is

due to the fact that rare hand pose misclassifications can lead to occasional unintended

interactions and disturb the user’s view into the data. Since our gloves are passively

tracked and contain no electronics, tactile feedback is not an option. In future versions

of the system, we plan on incorporating some visual feedback, informing the user that

their intended mode of interaction has been detected by the system. Overall however this

chirocentric approach to interfacing with a visualization works much more robustly than

NuNav3D.

6.5 Conclusion

This section described the development of a practical chirocentric UI platform, to be used

for the development of bimanual 3DUIs. Our platform is based on two algorithms for

the recognition of hand poses and hand gestures, the two main pillars of a chirocentric

100

user experience. They are targeted at data provided by commercial IR tracking systems,

which are usually found in immersive environments such as CAVEs and tiled displays.

Using this platform, we developed a prototype 3DUI that exposes a number of uni- and

bimanual modalities for the navigation of 2D and 3D data and a set of hand gestures as

triggers for various effects on the visualization.

101

Chapter 7

Acuity-driven Gigapixel

Visualization

7.1 Introduction

Recent advances in data acquisition, display and rendering technology have brought to

the masses the ability to interact with extremely high resolution data. For instance,

the Gigapan project1 allows any person with a web browser to explore images that

span hundreds of gigapixels. While these vistas are composed over a period of time

using offline stiching, research projects are yielding devices (such as parallel arrays of

micro-cameras [BGS+12, CMN11, MST+11]) that can capture gigapixel images with a

wide Field-of-View (FoV). Simultaneously, devices for visualizing such high resolution

data are also expanding in size and fidelity. Large-format displays or Powerwalls are

a traditional visualization platform for scientific and industrial applications. While the

original Powerwall only spanned a few megapixels in size, modern systems of this kind,

that maintain a planar form-factor, can expand into the hundreds of megapixels. In

2012, the Reality Deck [PPKM15] broke the gigapixel resolution barrier for large-format

displays by utilizing 416 LCD panels in an immersive setting, providing a 360◦ horizontal

FoV. Visually exploring data within such systems has a number of advantages. Such

facilities have been shown to greatly improve performance in basic visualization tasks

([BN05, YHN07] and many others). These benefits largely stem from the ability of users

1www.gigapan.org

102

www.gigapan.org

to naturally navigate through the data by physically moving within the space of the

system. It has been shown that, when given an option between virtual and physical

navigation, users will generally prefer to move to different areas of the display rather than

manipulate the virtual camera [BN07].

An obvious side effect of the physical navigation in front (or within) a high resolution

immersive system is the fact that at any point in time, a user may be at an optimal

distance from some display surfaces but at a suboptimal distance from others. This

means that the user may not be able to perceive the full amount of detail delivered by all

displays. For gigapixel data this implies a waste in terms of computational resources and

network bandwidth as the visualization system has loaded and rendered a version of the

data that can not be perceived by the user due to her physical location. When integrated

over the area of a large immersive system and over time, this waste is significant and

can actually hamper certain use-cases (for example dynamically updating data or video

that would result in local caches being invalidated at every frame). We can also consider

the case where an F+C lens is applied on the visualization. If the rendering system is

oblivious to the user’s position within the visualization space, it will strive for maximum

visual fidelity in the lens application, when a lower quality approximation would have

yielded the same effect to the user and provided performance gains.

In this chapter we propose optimizing the visualization process of gigapixel data by

smoothly degrading the quality of the visuals based on the user’s physical position in

relation to the display surfaces. We apply this concept to two different aspects of the

visualization pipeline:

• Rendering of gigapixel images in an out-of-core fashion using virtual texturing.

• Application of displacement-based F+C zoom lenses (based on Carpendale’s Elastic

Presentation Framework [CM01]) with enhanced visual quality through GPU-based

tessellation in an effort to ameliorate visual artifacts such as those seen in Fig. 35.

We term our approach acuity-driven gigapixel visualization [PK13b] since the rendering

optimizations are guided by the analytical formulation for visual acuity. We posit that,

due to the physiological basis of this formulation (based on the spacing of photoreceptors

on a person’s retina), the visual quality degradation will not be noticeable to the majority

users of the visualization system and will not affect performance in various visualization

tasks. We test our assumption via a user study, carried out by deploying our visualization

103

Figure 35: Motivation for acuity-driven F+C lens tessellation. Without adaptive tessella-
tion, the geometry that an image is mapped on may not be able to capture the smoothness
of the F+C lens, particularly in the transition region. The red boxes annotate some of the
visible rendering artifacts. Top left inset: Wireframe of the underlying geometry after lens
application. The gigapixel photograph of Dubai used in this figure is available online2.

framework in the Reality Deck. Additionally, utilizing the tracking data gathered from

our study (positions of users over time) we create a number of synthetic usage scenarios,

based on which we conduct a performance evaluation of our method. Finally, we discuss

insights gained from our user study and potential visualization scenarios enabled by our

acuity-driven framework.

2http://www.gigapan.com/gigapans/75554

104

http://www.gigapan.com/gigapans/75554

7.2 Acuity-driven LoD Selection

A virtual texture pipeline maintains several sub-sampled levels of the original texture

data. When texture mapping a particular pixel, the system must determine which LoD

is appropriate given the screen-space impact of the geometry. On a GPU virtual texture

implementation, this determination is performed within a shader using local data, in a

way that is similar to traditional texture mipmapping [Wil83]. Briefly, the virtual texture

pipeline makes the determination based on the image-plane spatial derivatives of the

texture coordinates [u, v] :

[
∂u

∂x
,
∂v

∂x
] and [

∂u

∂y
,
∂v

∂y
]

These spatial derivatives can be used to estimate the size d of the pixel projection into

texture space, based on Heckbert’s heuristic [Hec83]:

A =

√
max([

∂u

∂x
,
∂v

∂x
] · [∂u

∂y
,
∂v

∂y
])

By estimating the subdivision level that reduces this texture space projection to approx-

imately 1 texel, one can determine the appropriate MIP level (with 0 being the original,

non-downsampled texture data):

mMIP = log2(A)

This MIP level m is a factor of the display resolution (as lower resolution implies larger

texture coordinate spatial derivatives) and the orientation of the geometry with respect

to the virtual camera. It does not take into account the visual information delivered to

the user, based on her spatial relationship to the display. For example, a 2048px×2048px

texture is mapped on a quadrilateral that is aligned precisely with the boundaries of an

imaginary 2048px × 2048px resolution display of 20” diagonal. For this display, Dopt =

23.74”. Based on the standard virtual texture LoD determination, for this configuration

m = 0 and the highest resolution is accessed for each pixel. For a user standing at

a distance ≤ Dopt the entirety of this detail is perceivable. However, as the user moves

away from the display, the visual angle between individual pixels crosses the 1
60

◦
threshold

105

and they (and their underlying texture detail) become increasingly indiscernible.

Our acuity-driven gigapixel visualization framework is based on the assumption that, as

the visual angle of the pixel on the user’s retina gets smaller, so does its effective projection

within the texture space. More concretely, for a certain display configuration (with dot

pitch P) we can define a visual angle Vopt =
P

Dopt
. Now assume that the user is at distance

D′ from the display, then the visual angle of a pixel is V ′ = P
D′ or V ′ = Dopt

D′ V . We

scale the texture-space projection A of each pixel A′ = D′

Dopt
A. The intuition behind this

is that as the user moves away from the screen and neighboring pixels begin to overlap

on his retina, texture coverage from both pixels should be considered, thus the texture-

space projection of the pixel should be expanded. Having already determined mMIP , we

calculate a secondary mipmap level macuity as follows:

1

2macuity
=

Dopt

D′ ⇒ 2macuity =
D′

Dopt

⇒ macuity = log2(
D′

Dopt

)

It is worth noting that for D′ ≤ Dopt, mMIP should be selected (as there is no point in

actually going ”lower” in the LoD pyramid if the display/geometry arrangement can not

deliver the detail). Thus,

macuity = max(0, log2(
D′

Dopt

))

Additionally, this calculation can be biased towards quality by ensuring that the finest

acuity-driven LoD is selected at each time by setting:

macuity = ⌊max(0, log2(
D′

Dopt

)⌋

Thus at distance D′ the final LoD level m′ is:

m′ = mMIP +macuity

106

7.3 Acuity-driven Tessellation for F+C Lenses

Applying an F+C lens onto an image under the EPF framework is tantamount to dis-

placing the proxy geometry of the image along its normal based on the lens function.

Under a rasterization environment, this implies that between individual vertices of the

underlying geometry, the lens function is linearly approximated rather than accurately

sampled. By naively increasing the granularity of the geometry, the lens function can be

captured more accurately but at a fixed performance overhead and without taking into

account the user’s position in relation to the visualization.

Instead, we propose that the geometry can be adaptively tessellated by considering the

following two conditions:

• The curvature of the F+C lens. For example, if the lens has a flat focal region,

then tessellating its geometry would not yield a visible effect. On the other hand,

it makes sense to more finely tessellate the transition region of the lens in an effort

to avoid the visual artifacts seen in Fig. 35.

• The distance of the viewer from the physical display. Similarly motivated to the

acuity-driven LoD selection, the tessellation can be set to a maximum available

upper limit (user or hardware imposed) when the viewer is standing at a distance

≤ Dopt and reduced as she distances herself from the display.

In our acuity-driven visualization framework we calculate an adaptive parametrization

for the gigapixel image geometry based on the above conditions. This parametrization is

comprised of two factors: a lens-based tessellation metric and a view-based tessellation

metric, which we describe below.

7.3.1 Lens-based Tessellation Metric

The goal of this method is to provide an adaptive tessellation metric that captures the

curvature of the F+C lens function Flens(x, y), parametrized over the image-plane x, y.

Effectively, the tessellation should be maximized in areas that demonstrate high curvature

variation (e.g. the transition regions of the F+C lens) but in the flat regions it should

remain minimal (maintaining the complexity of the base mesh). Additionally, since the

tessellation metric is calculated on the GPU and inside a tessellation shader (that only has

107

Figure 36: Schematic representation of lens-based tessellation factor calculation. Starting
at vertex v1 the algorithm calculates the difference between v0 and other vertices along
the edge at regular intervals. The inlet shows the resulting ⃗diff for this invocation of the
algorithm. In this example, ⃗diff is defined using the the sampled F+C function gradients
that show maximum divergence (in this case v0 and v2).

local knowledge of the geometry, meaning that it can only access the vertex information

of the original, coarse, primitive), the metric calculation should be feasible without global

knowledge of the structure of Flens(x, y).

Each edge ei of the underlying geometry is sampled uniformly kPerEdge times at regular

intervals. At each sampling point vcur, we calculate the difference ⃗diff of the gradient

of Flens(x, y) between vcur and v0 (the first vertex of the edge), effectively capturing the

curvature variation along the edge. The length of the difference is normalized by the

distance between the two vertices |vDispl
0 − vDispl

cur |. The resulting tessellation factor is the

maximum of this metric across ei. The algorithmic process is outlined below:

108

Algorithm 2 For edge ei = [v0, v1] :
slens = edgeLensTessellationFactor(v0, v1, kSamplesPerEdge)

vDispl
0 := v0 + n⃗v0 ∗ Flens(v0)

result := 0

d⃗ir = ∥v1 − v0∥
for i = 1, i → kSamplesPerEdge do

vcur := v0 + i ∗ step ∗ d⃗ir
vDispl
cur := vcur + nvcur ∗ Flens(vcur)

dist := |vDispl
0 − vDispl

cur |
⃗diff := ∇Flens(vcur)−∇Flens(v0)

if | ⃗diff |
dist

> max then

result := | ⃗diff |
dist

end if

end for

return result

In Algorithm 2, nvi is the normal vector for vertex vi of the image proxy mesh (in our

case a simple, 4 vertex quadrilateral). Effectively, vDispl
i := vi + nvi ∗ Flens(vi) is the

geometric displacement process that results in magnification under EPF. Algorithm 2 is

schematically illustrated in Fig. 36.

7.3.2 View-based Tessellation

Practically, render-time tessellation of geometric primitives can be defined as the choice

between a base mesh with subdivision s0 and a maximum available tessellation smax. An

additional constraint is imposed by the size of the projection of the geometry on to the

screen. Intuitively, edges at a distance from the virtual camera position need only be

tessellated densely enough so that the resulting sub-edges have a desirable screen-space

footprint. We term this amount of tessellation sview. Of course, sview ≤ smax.

In our acuity-driven gigapixel visualization framework, sview represents the upper tessella-

tion parametrization that is utilized when the user is at distance ≤ Dopt from the display.

We scale this tessellation factor based on the user’s actual distance D′ from the display

in order to define sacuity:

109

sacuity =
Dopt

max(Dopt, D′)
∗ (sview − s0)

The impact of the view-dependent tessellation component on the parametric error can be

see in Fig. 37.

7.3.3 Combined Metric

We can combine these two parametrization metrics in the following way to determine

sfinal:

sfinal = slens ∗ sacuity + s0

Effectively, sacuity sets the upper tessellation bound for the parts of Flens(x, y) that max-

imize the response of slens. For example, if the user is standing at Dopt from the display

(and is thus maximizing sacuity), the focal region of a flat-top F+C lens would still remain

coarsely tessellated as slens would go to zero.

7.4 Implementation

We integrated our acuity-driven LoD selection with our gigapixel image renderer described

in Chapter 3. Our system supports gigapixel data in tile form (usually 256px × 256px).

Each image tile at full resolution is mapped onto a single quadrilateral. With this approach

(rather than utilizing a single piece of proxy geometry for the entire gigapixel image),

we can work around hardware-imposed GPU tessellation limits on individual geometric

primitives. The polygon count for such an approach still remains low (e.g., a 4 gigapixel

images requires approximately 61, 000 quadrilaterals). At the same time, it allows us to

implement our tessellation technique entirely on the GPU. The virtual texture visibility

determination pass is performed by rendering to an off-screen buffer at 25% the resolution

of the display and streamed to the CPU for processing using a Pixel Buffer Object. Pages

are loaded in order of “importance” (effectively tied to their screen-space coverage).

Our acuity-driven LoD selection scheme is implemented on the GPU. Since the LoD

determination for virtual texturing happens on the per-pixel level, any shaders need to

110

Figure 37: Parametric error for a Gaussian lens under different conditions. The lens
is defined analytically allowing exact error metric calculation. Each pixel has a [grey,
blue, green, red] hue if the error is [< 0.1, < 0.5, < 1.0,≥ 1.0] pixels respectively. (a)
A low-density static mesh. (b) Our acuity-driven tessellation algorithm at a distance of
approximately 9′ from the display. (c) Our proposed method at Dopt = 31”. At Dopt, the
parametric error for the majority of the lens is reduced to less than 0.5 pixel. The visible
Moire pattern is the result of the parametric error varying along the new sub-edges, with
it being minimal at the added vertices and slightly increasing along each edge.

111

Figure 38: Results of the acuity-driven LoD selection scheme. Without acuity-driven
visualization, the entire scene would be texture-mapped at LoD 0. However, using our
acuity-driven gigapixel visualization framework, the system adaptively selects the LoD
based on the viewer’s position within the space. (a) Standing in the middle of the visual-
ization space and based on the Dopt value of the display (≈ 31”), the system selects LoD
4 for the visualization. (b) The user comes within Dopt of the middle of the front wall,
thus the LoD 0 is selected to offer the maximum amount of visual detail for that area. (c)
The high detail area tracks the user as she moves to the front-left corner of the facility.

112

be able to calculate the position of each pixel within the physical space. Assuming that

the canonical screen space position pcss for each pixel is known, then its physical position

pphys is:

pphys = pscreencorner + (pcss.xy ∗ 0.5 + 0.5) ∗ dscreen

with dscreen being a two dimensional vector containing the display width and height and

pscreencorner being the physical position of the bottom left corner of the screen in the

physical space. This calculation assumes that the display lays on the x − y plane of the

real world coordinate system and can be easily generalized for multiple screens that are

not co-planar (as is the case for the Reality Deck, our testbed facility). The value of pphys

is calculated within the GLSL shaders that are involved in the visibility determination

or rendering of the virtual texture. The screen position and size information as well as

the user’s head position are passed to the shaders though uniform variables. Our acuity-

driven LoD calculation is combined with the MIP default, as described earlier. It is worth

mentioning that in our implementation, we do not interpolate between adjacent LoD levels

(m
′
is clamped to the most detailed level).

Our acuity-driven tessellation scheme for F+C lenses is also entirely implementable on the

GPU. Our implementation of the EPL framework uses vertex shaders for displacement of

the underlying mesh. In particular, we utilize OpenGL tessellation shaders for performing

runtime subdivision of the proxy geometry for our gigapixel image. We calculate sacuity

for each edge of every quadrilateral of the base mesh via OpenGL geometry shaders. More

specifically, we utilize sfinal as the per-edge tessellation factor of the Tessellation Control

shader. Flens(x, y) can either be defined analytically within the shader program or it can

be precomputed and stored in a lookup texture.

While framework can be used on a variety of visualization facilities with minor changes,

ranging from a single desktop to a fully immersive setup. For the purposes of this contri-

bution, we deployed our software on the Reality Deck, described earlier in this thesis in

Chapter 3.

113

7.5 Results

In this section, we provide some results of our acuity-driven framework within the Reality

Deck facility. First, we illustrate the expected behavior of our acuity-driven LoD scheme.

The displays of the Reality Deck have a resolution of 2560px× 1440px with a diagonal of

approximately 27” (or 0.68m”) for a Dopt of approximately 0.78m. Given that the Reality

Deck is approximately 10.05m in width and 5.79m in depth, with the viewer in the very

middle, we would expect to see a log2(
10.05m

2
/0.78m) bias in the LoD for the very middle

of the left and right walls. Similarly, we would expect a log2(
5.79m

2
/0.78m) bias for the

very middle of the front and back walls, which is added to the MIP-based value. Indeed,

this effect materializes within the Reality Deck, as Fig. 38 shows.

Our acuity-driven tessellation algorithm experiences a linear behavior between distance

from screen and resulting tessellation. Additionally, it accurately captures the underlying

structure of the F+C lens that is applied to the gigapixel image, as seen in Fig. 39.

7.6 Evaluation

At its core, our gigapixel visualization framework aims to maximize overall system perfor-

mance (by minimizing the overhead associated with transferring image data to the GPU

and rendering high-fidelity F+C lenses). With regard to the LoD selection, it is crucial

that our technique does not hamper the user’s ability to visually explore the data effi-

ciently. Consequently, we want to quantitatively compare our acuity-driven LoD scheme

against a standard gigapixel visualization pipeline (with no LoD optimizations taking

place, other than the usual MIP selection). More formally:

We hypothesize that the operation of our acuity-driven visualization framework will not

hinder performance in search tasks on a large format display when compared to naive

gigapixel rendering.

This hypothesis of equivalency is somewhat unconventional in the domain of visualization

research, as most techniques are targeted at improving user performance versus some

established baseline or state of the art. In our case, the benefit of our visualization

framework lies in the improvements in system performance. The purpose of the qualitative

evaluation is to quantify the effect of the acuity-driven LoD selection on visualization

114

Figure 39: Off-axis rendering of 3 overlapping F+C lenses. Left column: Using a coarsely
tessellated mesh. Right column: using our adaptive tessellation technique. Our method
accurately captures the underlying lens function and eliminates rendering artifacts. The
bottom row shows zoomed views of the areas annotated in red, illustrating the smooth
deformation that is achievable with our method and the improvement in visual quality
(especially visible along the body of the crane).

115

search tasks. A negative impact would indicate that utilizing this technique is unsafe

as it would result in the user requiring additional time to complete visual search tasks

or miss the intended targets altogether, both undesirable outcomes. Demonstrating the

equivalency of our technique in terms of user performance to a baseline system will allow

for its deployment without fear of negative impact on the visual exploration process, while

simultaneously realizing the system performance benefits that we discuss later.

In this section we describe the design and results of a user study aimed at testing this

hypothesis. Additionally, we discuss some qualitative comments from our users pertaining

to the image quality of the adaptive LoD for gigapixel images and the adaptive tessellation

for F+C lenses.

7.6.1 Study Design

Apparatus Our user study was conducted within the Reality Deck. Three columns of

the rear wall remained inactive during the study. This reduced the effective resolution of

the Reality Deck to approximately 1.4 gigapixels. We utilized a baseball cap with mounted

IR retroreflective markers (defining a rigid body) for head tracking. The tracking volume

of our OptiTrack system is large enough for reliable recognition close to the walls of the

facility and past the Dopt of the monitors. A joypad controller was utilized for scene

manipulation.

Participants We recruited 10 graduate and undergraduate students to participate in

our study. Average age was 26 (σ = 2.93). Seven participants were male and 3 were

female. Two had prior experience with the Reality Deck and scientific visualization in

general. However, the task (described in the following paragraph) did not require any

domain-specific knowledge and all users were given the opportunity to familiarize them-

selves with the Reality Deck facility prior to commencing the study. Additionally, the

exploration of the task data sets during the quantitative portion of the study was con-

ducted purely through physical navigation, eliminating any potential bias due to unfamil-

iar user interfaces. Consequently, we posit that this discrepancy in user familiarity with

the visualization domain did not significantly affect our quantitative evaluation. Finally,

all participants reported average 20
20

vision either naturally or through corrective glasses

or lenses.

116

Figure 40: Cross-section of the HiRISE data set used during the user study. This section of
the data was visible on the displays of the Reality Deck. The resolution is approximately
85K × 14K pixels. The insets show progressively zoomed-in crops from the main view,
illustrating the size of the targets used in our study in relation to the entire data set. The
right-most inset shows three targets for the -E, -M and -H values of DIFF (respectively
from left to right). The smallest target’s dimensions are 25px× 50px.

Tasks and Procedure We wanted to evaluate the impact of our acuity driven gigapixel

visualization (termed ADGV) on the data exploration process and compare it against

the baseline ”standard” gigapixel visualization (SGV). This variable is termed technique

(TECH). We designed a number of search tasks targeted at testing our hypothesis within

our gigapixel resolution system. We utilized the High Resolution Imaging Science Experi-

ment3 data set to generate a gigapixel resolution image of Mars topography. The original

data spans approximately 1.8 gigapixels and is texture-mapped to an ellipsoid that sur-

rounds the display volume of the Reality Deck (the resolution of the visible part of the

data was approximately 1.2 gigapixels). This vast landscape serves as the background for

our search task. Within this backdrop, we hide 3 targets that the study subjects must lo-

cate. Our tasks are split into 3 difficulty levels (DIFF): easy, medium and hard (denoted

by the suffixes -E, -M and -H). The differentiator between the levels is the size of the

targets in relation to the data set. In the -E level, targets span 256px×512px, in -M their

size is 128px× 256px and in the -H condition they are reduced to 25px× 50px. Fig. 40

shows the data set used in the study and illustrates the scale of the targets in relation

to the backdrop. The artwork used as a target in our study is available in the public

domain. The targets were similar in hue and brightness to the background data set. For

this task, we recorded Elapsed Time (ET) until discovery of all 3 targets. Furthermore,

we captured positional information for the majority of the users for further analysis.

Additionally, we wished to evaluate the image quality provided by our F+C adaptive

tessellation scheme. For this purpose, we utilize a second gigapixel photograph, this

3http://hirise.lpl.arizona.edu/

117

http://hirise.lpl.arizona.edu/

time from Dubai4 . We placed an EPF-based F+C lens, aligned with the center of the

view frustum and connected to the translation of the virtual camera. Subjects could

translate along the x−y image plane using the left stick of the joypad controller (rotation

was fixed) and could alternate between our acuity-guided tessellation (ADGV), a coarse

version of the image geometry (NGV) and a 16-fold pre-tessellated version of the same

mesh (PRE). They were also free to move within the visualization space. This evaluation

was qualitative and subjects were asked to comment on their method of preference in

terms of image quality.

Upon arriving at the study location, the users received a brief description of the Reality

Deck and its function. The mechanized door was closed and the users were allowed to

familiarize themselves with the space. At this stage, the screens of the Reality Deck

showed a static splash image. After being queried for their demographic information,

the subjects were shown a picture of the survey target and instructed to look for 3 such

targets in each task. They were also asked to wear the head tracking prop. This was a

single-blind experiment and the subjects were not aware of the choice between ADGV or

SGV (or even the fact that the LoD strategy was the between-subjects variable). Both

the order of task difficulty (-E, -M or-H) and the order of method were determined using

a Latin Square. For each difficulty, both methods were tested in succession and the user

was queried on the quality of the last two visualizations in an effort to determine whether

the presence of ADGV was noticeable. In summary, the design of the quantitative part

study was 10 participants× 3 tasks × 2 methods = 60 interactions in total.

7.6.2 Results and Discussion

We began by examining the effect of TECH on ET. Student’s t-test for each DIFF

(α = 0.05) did not show a significant effect (For -E, t(9) = 0.867, p = 0.408, for -M, t(9) =

0.568, p = 0.584 and for -H, t(9) = 1.110, p = 0.296). We performed between-TECH

Two One Sided T-test (TOST) equivalence analysis for each DIFF with a threshold

of 5% of mean ET but the evidence was not conclusive (for the sake of completeness,

relevant t-statistics and p-values can be seen in Table 2). We also evaluated the percentage

difference in performance of ADGV by considering SGV as the baseline performance

(in order to normalize the performance metric between subjects). We applied Student’s

4Available at https://www.gigapan.com/gigapans/75554.

118

https://www.gigapan.com/gigapans/75554

t-test on this percentage metric, with an expected mean of 0. This approach also did

not indicate a significant effect of TECH on ET (for -E t(9) = 1.45, p = 0.089, for -M

t(9) = 0.492, p = 0.317 and for -H t(9) = 0.016, p = 0.494). While there is no evidence

suggesting an effect of TECH on ET at any DIFF, we can not concretely claim that

there is no statistically significant effect at our chosen threshold level.

We conducted post-hoc analysis on the positional tracking data captured during our user

study. We focused, in particular, on the -H task as it would potentially require the most

adjustment of the users’ physical location in order to accommodate for the shifts in visual

quality during the exploration process. We calculated dclosest, the distance of the user from

the closest screen at any point during the exploration process. A TOST equivalence test

of dclosest indicated that there is no statistically significant effect of TECH on dclosest at

p-values 0.013 (t(9) = 2.684) and 0.012 (p(9) = 2.726) at 7% of the mean (approximately

5”). This leads to the conclusion that users did not have to significantly adjust their

average distance from the display while exploring the data under ADGV.

Out of the 10 study participants, only 1 rated SGV as demonstrating superior image

quality to ADGV during any of the tests (this user described herself as having expe-

rience with scientific visualization). Three users commented that under certain DIFF

values, they actually found the image quality of ADGV to be superior (which is obvi-

ously impossible since SGV presents an upper bound to image quality). Under all other

conditions, the subjects claimed to find no perceivable difference in image quality between

ADGV and SGV. We interpret these findings as an indication that the effect of TECH

on the perceived image quality is generally limited, at least under our test datasets.

Finally, we asked users to evaluate the image quality of F+C lens application. All study

participants rated ADGV as being of equal visual quality to PRE. Interestingly, only 2

users (who identified themselves as having experience in scientific visualization) could eas-

ily pin-point the improvement in visual quality betweenADGV andNGV (the smoother

approximation of the F+C lens function). The rest of the subjects could detect a visual

difference, but could not definitively say whetherADGV looked better than NGV. Some

users characterized the ADGV visualization as ”bulging” or ”bowing out”, a result of

the image geometry following the smooth underlying function more closely. This find-

ing raises some questions about the tangible effect of ADGV on the user experience for

non-experts.

119

Table 2: Report of our TOST equivalence analysis for our user study. Our analysis
compares between ADGV and SGV for each DIFF at a = 0.05. We did not observe an
effect of TECH on ET for any value of DIFF.

DIFF
-E -M -H

µ > θ µ < −θ µ > θ µ < −θ µ > θ µ < −θ
t(9) 1.083 0.652 0.751 0.385 0.85 1.37
p 0.15 0.27 0.24 0.35 0.21 0.10
θ (s) 5.515 6.755 32.075

7.6.3 Performance

Utilizing the motion capture data acquired during our user study, we created 3 synthetic

use cases under which we evaluated the performance of our framework. We focused on the

-H difficulty level since it yielded the longest overall user sessions. Based on the tracking

data, we created a heatmap of the users’ positions within the visualization space of the

Reality Deck (at a resolution of 160 × 100 cells). We then drew 1500 random samples

from the non-zero heatmap locations and performed k-means clustering on them to yield

6 ”hotspots” of user presence. Given this list of hotspots:

1. We randomly select pstart from the list.

2. We also randomly select pnext from the list.

3. We traverse the path pnext − pstart at a speed of 2.8mph at 120Hz

4. We remove pstart from the list, set pstart = pnext and repeat from Step 2 until the

list is empty.

We opted for this synthetic data set creation instead of utilizing prerecorded data directly

from our users in order to reduce the sensitivity of our benchmarks to the search patterns of

any one particular study subject. In total, we created 3 data sets (A, B,C), with duration

145, 216 and 175 seconds. For technical reasons, we had to limit our benchmarking to

the front, left and right display surfaces of the Reality Deck (a total of 13 nodes and

approximately 1.268 gigapixels of display space).

120

Using these synthetic user sessions, we evaluated two performance metrics, one for each

aspect of our technique:

• Data transfer overhead - the number of virtual texture pages required to fully texture

map the surface of the Reality Deck facility under ADGV and SGV. Since these

pages ultimately need to be transfered from some remote source (long term storage

or otherwise) to the render nodes and then to the GPUs, their count serves as a

good indicator of system performance under different values of TECH.

• Frame rate - our acuity-driven tessellation framework is evaluated by measuring the

cluster-wide frame rate of the visualization application while displaying an F+C

lens under ADGV and PRE (with an spre = 16). For the sake of comparison,

we also report the frame rate under NGV (which demonstrates significantly lower

image quality).

The only differentiating factor between each benchmark was the visualization technique,

allowing us to directly measure any performance gains over the baseline implementa-

tion.

7.6.4 Data Transfer Overhead for Acuity-driven LoD Selec-

tion

To evaluate the impact of our technique on data transfer overhead, we measured the

average number of pages per frame required to completely texture map the display surfaces

of the Reality Deck facility. In order to simulate dynamic gigapixel data, we invalidated

entirety of the page cache at each node every frame. As expected, under SGV, the number

of pages required for proper texturing is almost fixed (≈ 18, 000, with very small variations

occurring due to minute differences in the cluster-wide frame rate under each scenario). If

one assumes an average tile size of 9kB (as is the case with our data), approximately 162

megabytes of data per frame are required for complete coverage of the three walls of the

Reality Deck. That translates to 4.9 gigabytes per second worth of data transfer (with

the system running at a hypothetical 30 frames per second). Conversely, when ADGV

is active, under scenario A we observed a 70% reduction in page transfer overhead.

Scenario B demonstrated a decrease of 68% and for scenario C the savings were 72%.

To underline the significant reduction in data transfer overhead, under ADGV, assuming

121

Figure 41: Performance evaluation of our F+C lens tessellation scheme. (a)NGV - 15fps.
(b) PRE with spre = 16 - < 2fps. (c) ADGV with smax = 64 - 7.5fps. NGV exhibits
artifacting since the coarse base mesh can not accurately capture the smooth variation
of the lens function. This shortcoming manifests as sharp ”bends” along straight lines in
the image. ADGV delivers a much smoother visual result that is indistinguishable to
PRE while maintaining a substantially higher frame rate.

again a 30fps frame rate, the required bandwidth drops to approximately 1.5 gigabytes

per second.

7.6.5 Frame Rates for Acuity-driven Tessellation

Our acuity-driven tessellation scheme (ADGV) aims at bettering the rendering quality of

F+C lenses while improving system performance. To quantify this gain, we the average

cluster-wide average frame-rate under the three synthetic user sessions, while applying

ADGV on a single F+C lens. This results in a measurement of 7.5fps with an smax of

64. This is in contrast with the performance of naive pre-tessellation (PRE) with a fixed

tessellation factor spre = 16. Under this condition, the frame rate was under 2fps while

the upper visual quality bound is actually lower when compared to ADGV (since spre <

122

smax). As an additional point of comparison, applying a lens directly on the base mesh (the

NGV technique) provided a frame rate of 15fps at substantially reduced image quality.

Overall, our technique provides image quality that is not distinguishable from naive pre-

tessellation (according to the qualitative segment of our user study), at a substantially

faster frame rate. These frame rates, along with captures from within the Reality Deck

illustrating the improvements in visual quality, are summarized in Fig. 41.

7.7 Conclusion and Lessons Learned

In this chapter, we introduced a framework for acuity-driven gigapixel visualization. Our

method utilizes the formulation for visual acuity to guide the LoD selection process for a

virtual texturing pipeline. Using the same formulation, we can improve the visual quality

of F+C lenses, applied to gigapixel images, through adaptive tessellation. We conducted

a user-study in the Reality Deck, which did not show an effect of the acuity driven LoD

in search tasks of various difficulties. Also, we determined that users did not have to ad-

just their distance from the display during the visual exploration process. Qualitatively,

our adaptive LoD approach was rated equal to ”naive” gigapixel visualization by most

users. Our adaptive tessellation for F+C lenses rated equal to a pre-tessellated version

in terms of image quality. However, when compared against a coarse mesh, our scheme

was rated superior only by experts. While laymen could detect a difference in the render-

ing, they could not concretely state which of the modalities sported the superior visual

quality. Nevertheless, the acuity-driven LoD approach yielded very tangible benefits in

terms of data transfer overhead (≈ 70% or 3.4 gigabytes per second at 30fps in our syn-

thetic benchmarks) while the adaptive F+C lens tessellation showed significant frame rate

improvements compared to naive pre-tessellation.

123

Chapter 8

Scalability of Large, Immersive,

High-Resolution Displays

Large, high resolution displays (LHiRDs) are regarded as a useful instrument for the

exploration of large amounts of information. These devices permit users to digest large

amounts of data in a collaborative way. Simultaneously, they enable physical navigation of

a digital dataset, where, rather than moving a virtual camera within a 2D or 3D coordinate

system, a novel view in the data is obtained by the user simply looking at a different section

of the display. Several research studies in previous years have demonstrated the benefits

of LHiRDs ([BN07, BN08, YN06] and many others).

Recently, the proliferation of inexpensive GPU power and low-cost high resolution displays

has resulted in the construction of massive LHiRDs. Driven by ever-increasing data

sizes, single wall designs extend past 300 megapixels (e.g., the Stallion powerwall at the

Texas Advanced Computing Center) while the Reality Deck has broken the one gigapixel

threshold [PPKM15]. Such facilities can define room-sized immersive visualization spaces,

with aggregate pixel counts that afford and demand substantially increased amounts of

physical navigation. However, past studies that evaluated the ergonomics of LHiRDs have

been conducted on relatively small (or some may say “sane”) displays, with the largest

being in the 100 megapixel range. While these studies serve as evidence to support the

exploratory construction of massive LHiRDs, their findings may not generalize to very

large systems. Since the effects of resolution and display form-factor are largely unknown

for these very large form factors, we feel that a study of those variables is of value to

124

future builders of LHiRDs and other immersive virtual environments.

In this chapter, we present the results of a user study [PMG+15] targeted at quantifying

the performance implications of very large, physically-navigated, high-resolution displays.

Our experiment focuses on four basic tasks. We vary the display form factor and task

size, starting at 100 megapixels (arranged planarly) and topping out at 1 gigapixel in a

horizontally immersive setting. Our study is conducted within the Reality Deck. Follow-

ing the motivation and description of our experiment, we provide statistical analysis of

absolute and normalized user performance metrics, subjective mental effort and physical

travel distances. Additionally, we investigate further into the physical navigation data

acquired during our study, which yields interesting insights on how users utilize very large

tiled displays. Finally, we conclude with a discussion on our experimental findings and

the implications of our study on the design of future LHiRDs.

8.1 User Study Design

The development of a robust experimental design requires answers to a number of im-

portant questions. We discuss numerous choices relevant to our study design throughout

this section.

8.1.1 Selecting the Information Space

A subtle yet pivotal choice in the design of an experiment is the determination of the

information space. Jakobsen and Hornbaek [JH13] have covered thoroughly the interrela-

tion between display size, scale and information space. Specifically, they found that the

choice between a fixed and a variable information space greatly affects how performance

data should be interpreted. Additionally, they investigated the applicability of different

user interfaces to the two information space modalities. In a fixed information space ex-

periment, the size of the data remains constant across display size conditions. It needs

to be large enough to properly saturate the visualization space at the largest display

size, while still remaining manageable at the smaller display conditions. Additionally,

a fixed information space necessitates that some sort of interaction device be used so

that users can alter the scale ratio of the visualization. For desktop setups, a traditional

125

pan-and-zoom mouse interface could be used. However, in our case we are investigating

very large displays that require physical navigation. Consequently, if we were to opt for

a fixed information space design, we would have to use a more elaborate, portable, inter-

action device (perhaps a tracked wand or a tablet that serves as a multi-touch surface).

This would introduce variability to the performance timings, potentially confounding user

performance with user interface familiarity. We opted for a variable information space

design, meaning that the size of the datasets used for a specific task varies across study

conditions (e.g., display resolution and size). This choice necessitates that performance

timings be examined after normalization against the information space scaling occurs. We

will briefly touch on the raw performance results but the brunt of our analysis will focus

on normalized timings (similar to [YN06]).

8.1.2 Hypotheses

Our study design is targeted at evaluating the following five hypotheses:

• H1 - Larger display form-factors (and correspondingly scaled information spaces)

will negatively affect absolute performance. This is a relatively straightforward hy-

pothesis, with Yost et al. [YN06] providing guidance on this front.

• H2 - Larger display form-factors (and correspondingly scaled information spaces)

will positively affect normalized performance. This is a critical hypothesis and evi-

dence towards it would indicate that benefits of LHiRDs scale to large display sizes.

Similar results have been demonstrated by Yost et al. [YN06].

• H3 - Larger display form-factors will positively affect normalized performance scaling

for search tasks. Pattern-finding tasks should not be substantially affected. Ball et

al. [BN07] have observed substantial performance increases for search tasks as the

display grew in size and resolution but not for pattern-finding tasks. It is worth

noting that their experiment was of the fixed information space variety and also

incorporated virtual navigation.

• H4 - Larger display form-factors result in increased amounts of physical navigation.

Numerous studies (e.g., citeBall:2007, [BNB07]) have shown that users will take

advantage of additional display space, with the manifestation being an increase in

physical navigation, even when presented with the option of also navigating virtually.

126

• H5 - Larger display form-factors negatively affect user mental effort. Yost et

al. [YN06] have found that a larger display (and task size) resulted in increased

frustration. Jakobsen and Hornbaek [JH13] ohave bserved similar findings on an

SMEQ questionaire [ZH93] in their variable information space experiment.

PL100MP
PL300MP 600MP 1GP

Front WallLeft Wall Right Wall Rear WallRear Wall

30.24m

17.64m

8.82m

4.41m

2.22m

Figure 42: Illustration of the different display conditions in our user study. In this view,
the display space of the apparatus has been “flattened” to the 2D plane. The PL100MP
display condition spanned seven monitors in length and four monitors in height. At
PL300MP, the horizontal display space grew to 14 monitors while the vertical space
encompassed six displays. The display space expanded to 28 monitors at IM600MP and
finally 48 panels at IM1GP. The total “planarized” extents of all display conditions are
also visible in the figure. The human figure illustrates a user with a height of ≈ 1.8m
next to the display surface.

8.1.3 Apparatus, Display Form-factors and Implications

We conducted the user study within the Reality Deck [PPKM15]. For details on the facil-

ity, we refer the reader to Chapter 3. The maximum resolution of the facility exceeds 1.5

gigapixels. For this study, however, we excluded the top and bottom rows of the displays

from the visualization. We strived to maintain a specific data density in our visualization

experiments (as described later). However, at our target density, the visualization glyphs

were not clearly legible at the top and bottom rows of the facility unless users approached

the walls much closer than the visual acuity distance of 31′′. Rather than rendering two

different sizes of glyphs or implementing some sort of semantic zooming (which would

confound our study design), we decided to exclude the top and bottom rows of displays

from the visualization space. The remainder display space still allowed for meaningfully

large display conditions. Additionally, a column of four displays in the middle of the rear

wall was not used and served as a natural separator between the two horizontal ends of

the visualization.

Based on these constraints, we selected four different display configurations at which to

127

conduct the user study. The smallest display condition spans roughly 100 megapixels in

resolution, over a planar 7 × 4 display grid (PL100MP). We opted for this viewport

configuration (rather than one that would span six rows on the vertical axis) in order

to maintain a horizontal aspect ratio as is used in other display conditions throughout

the study. The second condition extents to approximately 300 megapixels over a pla-

nar 14× 6 display grid (PL300MP). The third condition grows the resolution past 600

megapixels. Here, the display encompasses 16 screens on the front wall of the facility and

another 6 screens on the left and right walls (the height of the display lattice remained

at six displays). This configuration is termed IM600MP. The largest display condition

(IM1GP) provided approximately one gigapixel in resolution and was 48 displays wide,

offering a near-complete horizontal immersion and covering the entire horizontal display

surface on the facility with the exception of four columns on the rear wall. Our choices

of display form factors were motivated by a number of reasons. The two planar display

conditions correspond roughly to the largest display used for a user study in the literature

and the largest planar tiled-display facility. The IM600MP condition doubles the pixel

count of PL300MP (allowing for consistent scaling factors for certain tasks as described

later). Finally, the IM1GP condition reached the gigapixel aggregate resolution mile-

stone. These form-factors, along with corresponding display dimensions are summarized

in Figure 42.

There are a number of experimental design implications stemming from the form factor

of our apparatus. Firstly, the resolution of each display condition is tightly coupled with

the size of the display. Rather than simulating unrealistic LHiRD configurations (such

as 100 megapixels at the 1 gigapixel geometry), we opted to scale both in unison, so as

to hopefully inform builders of future systems on the usefulness of ultra-high resolution

form factors. The second implication is a side effect of the physical layout of our facility.

Specifically, at the IM600MP condition, the display surface starts to surround the user,

almost engulfing her completely at IM1GP. Effectively, the geometry of our facility

confounds resolution and size with immersion. We posit that the immersive nature of

our system should improve performance versus arranging the same amount of displays

planarly since travel and view distances between any two points of the visualization space

are substantially smaller. A final implication of our apparatus is the fact that we are not

able to maintain a consistent display aspect ratio across display conditions.

128

8.1.4 Data, Visualization and Tasks

Our study was conducted using synthesized data, generated separately for each display

size, task and trial. This allowed us to control the data set size and the density of correct

answers to task questions.

Overall our visualization scenario was similar to that presented by Ball et al. [BN07, BN08,

BNB07], which showed data variables associated with houses for sale that are overlaid on

top of a map. Our alteration to the scenario was that the data represented households,

each with four attributes (income, wealth, number of children, and average age). We

use a similar visual representation to the aforementioned studies, with the data being

displayed by textual descriptions. Behind the text, a normalized bar chart illustrates the

position of that particular value within the range of values in the dataset that is being

visualized. Each glyph was exactly 150 pixels wide and approximately 100 pixels tall,

allowing for readability of glyphs across the entire height of the display when a user is

standing approximately 0.5m away from a screen. An example of our visualization can

be seen in Figure 43.

Within this scenario, we defined four tasks that have appeared in numerous past experi-

mental evaluations of LHiRDs [BN08, BNB07, JH13, YN06]:

• Visual Search (VS) - Subjects were presented with a base map. Within the map,

a single visualization glyph was placed. They were asked to locate this singleton

glyph and read out loud one of its attributes. Once the attribute value was verified,

the task was completed.

• Attribute Search (AS) - Subjects were presented with a base map with several

thousand visualization glyphs visible. They were asked to locate three households

that satisfied a particular attribute query (e.g., “Locate three households with more

than four children”). There were multiple correct answers for each trial of AS. Once

three correct answers were verified, the task was completed.

• Comparisons (C) - Subjects were presented with a base map with a small number

of visualization glyphs overlaid on top of it. Subjects were asked to locate the

household that satisfied a particular attribute query (e.g., “Find the household with

the lowest income”). These task queries only had a single correct answer for each

trial.

129

• Pattern-finding (P) - Subjects were presented with a base map with several thousand

visualization glyphs visible. They were asked to locate a cluster of households

that satisfied some attribute query (e.g., “Point out the area of households with the

highest incomes”). These tasks had a single, uniquely correct answer for each trial.

As stated earlier, we used a variable information space design, making the scaling of the

task data space critical. For all tasks, the base map grew inside linearly across display con-

ditions, increasing the area that was visible. For AS and P the map was populated with

uniformly scattered synthesized households. The number of visible households started at

1200 for the PL100MP condition and grew to 12000 at IM1GP. For AS the number

of data points that provided an answer to the trial query was 150 across all display con-

ditions (distributed uniformly across the display space). Meanwhile, for P the size of the

clusters that satisfied the trial queries was 200 data points (centered around a manually

selected centroid) across all display conditions. For VS trials, the unique target glyph

was manually placed during data set generation. Finally for C data sets, the number of

visualization glyphs scaled from two at PL100MP to 20 at IM1GP. These glyphs were

placed manually for each trial in order to span the display space of each condition. The

singleton target glyph, that satisfied the trial query, was also manually selected. The data

sets were crafted so that no visualization glyphs ever spanned across or were obscured by

display bezels. Our study design called for 16 combinations of display form-factors and

task types. For each combination three trials were conducted. Overall, we generated a

total of 16× 3 = 48 data sets.

The study was implemented using the distributed visualization software stack described

in Chapter 4. The base map layer was provided by Mapquest Open1 .

8.1.5 Participants

Sixteen volunteers (three female), with an average age of 27 (σ = 4.78) participated

in the study. Most participants were science graduate students, recruited by word of

mouth. All but one participants reported minimal to no experience with LHiRDs. Also,

all participants reported being of average vision, either naturally or via corrective glasses

or contact lenses.

1developer.mapquest.com

130

developer.mapquest.com

Figure 43: Example of the visualization design of our experiment. Each datum (describing
a household) carried four attributes: income, wealth, number of children and average
age. The raw value of an attribute is presented to the user next to its label in text form.
Additionally, normalized bar charts behind the text showed the position of each particular
attribute within the range of values in the data set that was being displayed at each time.

8.1.6 Independent and Dependent Variables

We opted for a within-subjects design, with the independent variables being DISPLAY

(with values PL100MP, PL300MP, IM600MP and IM1GP for the form-factors out-

lined earlier) andTASK (VS for visual search,AS for attribute search, C for comparisons

and P for pattern finding). The primary dependent variable was elapsed time to task com-

pletion (ET). However, absolute comparisons of ET across different display conditions do

not yield very useful information about the impact of different form factors since the size

of the data is also changing. With this in mind, we apply a normalization scheme that is

strictly based on the size of the data across display conditions. The reasoning behind our

scaling strategy is as follows. The data sets for all task types are comprised of distractors

and targets. For the VS and C tasks, the distractor is the background map. For the AS

and P tasks the distractors are the background map and the thousands of data points that

populate it that are not correct answers to task queries. The probability of successfully

completing a task at random is dependent on the ratio of targets versus distractors in

each particular dataset. If both targets and distractors were scaled similarly in numbers

or size across display conditions, task difficulty would not be affected (since the chance

of finding a target randomly would remain the same). However, since we only scale the

131

number or size of distractors, we posit that task difficulty increases linearly. We thus

define a second metric, scaled elapsed time or SET, which assumes a linear scaling in task

difficulty based on the size of the task data set and corresponding display condition, and

permits us to evaluate the impact of display form factor on performance as the size of the

data grows. In order to compare across display conditions, we calculate SET as follows.

For the PL100MP condition, SET = ET. At PL300MP SET = ET
3
, at IM600MP

SET = ET
6

and at IM1GP SET = ET
10

. Note that the scaling factors are equal to the

multipliers of the distractor sizes/populations, as reported earlier. It is worth mentioning

that our scaling strategy is similar to that employed by Yost et al. [YN06] for tasks that

have a singleton correct answer (VS,C,P).

To evaluate user effort, we administered a paper-based Subjective Mental Effort Question-

naire (SMEQ) [ZH93], which generates similar results to a Likert scale while providing

additional resolution [SD09]. We also measured the subjects’ physical navigation within

the facility’s ground plane (TRAVEL) by simplifying tracking trajectories using the

Douglas-Peucker [DP73] algorithm with a tolerance of 0.03.

Overall, each participant performed three trials for every task at every display condition

for a total of 4 × 4 × 3 = 48 data points for ET, SET and TRAVEL. A total of

4 × 4 = 16 SMEQ entries were generated as the test was administered once all three

trials were completed.

8.1.7 Protocol

Upon arriving to the experiment location, participants were given an introduction to

the immersive gigapixel display, while the system was displaying a sample data set that

was not used in the study. They were provided with an explanation of the visualization

and introductions to the four tasks that they would be performing. Each participant

was allowed approximately five minutes of familiarization with the facility and was given

the ability to ask questions regarding the visualization and task descriptions. Each par-

ticipant was asked to position themselves in the middle of the facility, in front of the

operator workstation, prior to starting each trial. After completing all three trials for all

tasks at a particular display condition, participants were allowed to take a five minute

break. Subjects performed each trial until successful completion. Consequently, accuracy

approached 100% for all users. To counterbalance for fatigue and learning effects, the

132

Figure 44: Summarization of the ET, SET, TRAVEL and SMEQ metrics from our
study. As expected, ET increases as the display grows in size. Both VS and C were
faster than AS and P up until IM600MP since the former involved a much smaller
number of datums to be discovered and examined. However, at 1G the mean ET for VS
increases substantially. For SET, at the PL100MP and up to the IM600MP display
condition we observe an improvement in user performance for most tasks. At the IM1GP
no statistically significant improvements are realized and normalized performance for the
VS deteriorates significantly. An expected increase in SMEQ was detected as the size of
the display grew. However, we observed a much more significant increase for the VS task
(more than 6× from PL100MPto IM1GP). Finally, we observed an expected increase
in TRAVEL as the display grew in size. The VS task at IM1GP showed significantly
higher amounts of physical navigation (with a mean travel distance of 39.86m versus less
than 25m for other task types).

133

order of exposure to both the display condition and task was determined using a Latin

Square design. Each session lasted approximately 1 hour and 30 minutes. At the end of

the sessions, we conducted a brief, informal, interview with each participant.

8.2 Results

In this section, we report on the statistical analysis performed on our dependent variables.

All analyses involved two-way repeated-measures ANOVAs on the respective variables

after ln-transformations (to ensure normality). Post-hoc statistics are reported based

on pairwise comparisons with Bonferroni correction. The reported means stem from the

original (non-transformed) data.

8.2.1 ET

As expected, our analysis of ET showed a main effect for DISPLAY (F (3, 141) =

116.850, p < 0.0001) and TASK (F (2.137, 100.425) = 18.938, p < 0.0001 with

Greenhouse-Geiser (GG) correction). Additionally, we found an interaction effect for

DISPLAY × TASK (F (6.341, 298.014) = 5.868, p < 0.0001 with GG correction). The

mean ET increased with DISPLAY across almost all tasks. A summary of raw perfor-

mance timings can be seen in Figure 44.

8.2.2 SET

We discovered a main effect on SET for DISPLAY (F (3, 141) = 54.885, p < 0.0001) and

for TASK (F (2.139, 100.514) = 18.952, p < 0.0001 with GG correction). Additionally,

we found an interaction effect for DISPLAY × TASK (F (6.346, 298.254) = 5.865, p <

0.0001 with GG correction). We report post-hoc comparisons with Bonferroni correction

after examining differences at the p < 0.05 significance level.

Overall, we found a significant difference between VS and AS (M = 8.57 to M =

14.46, p < 0.001), also between VS and P (M = 8.57 to M = 17.27, p = 0.001).

Additionally, we observed a significant difference between AS and C (M = 14.46 to

M = 8.83, p < 0.001). Overall, faster normalized completion times were recorded for the

134

visual search and comparison tasks. We also detected significant differences between the

PL100MP, PL300MP and IM600MP display conditions, with mean SET improving

from M = 18.67 to M = 12.21 (p < 0.001) and down to M = 8.09 (p < 0.001). We

observed a decline in normalized performance for IM1GP with M = 10.16, but it was

not statistically significant.

By examining the DISPLAY × TASK interaction more closely, we can see that the

performance for VS, C and P improves as the resolution increases, up to and including

the IM600MP condition. However, when transitioning from IM600MP to IM1GP,

the only performance improvement is for C (from M = 5.678 to M = 5.267 which falls

within the standard error threshold). Contrarily, we observe a statistically significant

drop for VS (from M = 5.476 at IM600MP to M = 9.888 at IM1GP). AS and P

means also regressed but not in a statistically significant manner. A breakdown of SET

means can be seen in Figure 44.

8.2.3 SMEQ

For SMEQ, we discovered a main effect for DISPLAY (F (3, 45) = 17.126, p < 0.0001).

A breakdown of SMEQ mean responses across tasks and display conditions can be seen

in Figure 44. Looking more closely at the mean of SMEQ responses over DISPLAY,

we can observe a nearly linear scaling. Specifically, at PL100MP users felt that tasks

were approximately “Not very hard to do” (M = 12.16). In comparison, IM600MP

was significantly different (p < 0.001), with the response exceeding the “A bit hard to

do” threshold on the SMEQ scale (M = 28.75). Finally, at IM1GP, we observe that

M = 36.73 (between “Fairly hard to do” and “A bit hard to do”), significantly different

from PL100MP (p < 0.001).

8.2.4 TRAVEL

Through analysis on TRAVEL, we discovered main effects for DISPLAY (F (3, 141) =

147.428, p < 0.0001), TASK (F (3, 141) = 5.013, p = 0.002) and an interaction effect

between TASK and DISPLAY (F (5.995, 281.778) = 8.549, p < 0.0001 with GG cor-

rection). These results are summarized in Figure 44. An examination of the interaction

135

Figure 45: Visualization of user presence within the apparatus space. The images are
generated for all combinations of TASK andDISPLAY. The color mapping corresponds
to time spent, with warmer colors signifying more time. The presence hotspots in the
middle of the facility denote the starting point for each task, right in front of the operator
workstation. A strong “detail” search pattern can be deduced from the AS column of
visualizations, with multiple presence hotspots aligning roughly with the displays of the
facility. Meanwhile, the VS task shows the “overview” pattern between the PL100MP
and IM600MP conditions, as users chose to stay near the center of the facility and inspect
displays from a distance. This pattern changes at the IM1GP level, with users navigating
more and examining sections of displays more closely. Somewhat similar patterns are
visible for the C task, but with additional navigation trails, due to users approaching
the displays to examine individual values. The P task displays more erratic physical
navigation trails.

between display size and task type showed significantly higher amounts of physical nav-

igation for the VS task at the IM1GP condition (M = 39.86m versus M = 24.95m for

other task types).

136

8.3 Interpretation of Results

A number of insights can be drawn from the statistically significant effects resulting from

our study. As expected, we found significant evidence in support of H1. Larger task (and

display) sizes generally resulted in increased ET measurements. The more interesting

finding however relates to SET. When transitioning from PL100MP to PL300MP

scaled performance improves significantly for VS, AS and C. Some gains are still visible

in the PL300MP to IM600MP transition. The P, VS and C tasks are positively

influenced. However, when the display and task space grows to IM1GP, performance

appears to at least plateau for AS and P and actually deteriorate for VS. Overall while

the analysis appears to support H2 for the first three display conditions, the expected

benefits of LHiRDs do not materialize at IM1GP and the performance regression for VS

is particularly striking.

An inspection of the TRAVEL-related statistics shows that users do indeed take ad-

vantage of the additional display space by navigating more, as hypothesized in H4. At

PL100MP users travelled on average 4.75 meters over all tasks. At PL300MP, this

metric increased to 9.64m, roughly a 2× increase in navigation for a 3× increase in

display size. A 6-fold increase to the size of the display (to IM600MP) resulted in a

2.81× increase in physical navigation distances, with mean distance travelled reaching its

maximum at IM1GP (M = 23.209m). As noted though, VS resulted in substantially

higher physical navigation than other task types. This finding matches the substantially

increased task completion times and negatively impacted SET for VS at IM1GP.

The SMEQ findings reflect expectations set in prior studies and outlined in H5. Larger

displays and task sizes correlate with increases in user mental effort and frustration. Yost

et al. [YN06] have found statistically significant increases on a NASA TLX survey for

both physical effort and user frustration when scaling visualizations from a 2 megapixel

single display to a 32 megapixel 24-monitor LHiRD. Jakobsen and Hornbaek [JH13] have

also observed a small increase in mental effort ratings for the large display condition in

their variable information space experiment. Interestingly, the SMEQ response for VS

at IM1GP was an outlier when compared to other tasks. The deterioration in SET

and increase in SMEQ and TRAVEL for this task and display condition leads us to

believe that visual search may not be an appropriate task for extremely large display

walls. Additionally, all three metrics counterindicated any performance improvements for

137

Visual

Search

(VS)

Attribute

Search

(AS)

Comparisons

(C)

Pattern

Finding

(P)

Left Wall Front Wall Right Wall Rear Wall

Figure 46: Visualization of estimated participant gaze. The images are generated for
all task types at the IM1GP display condition. The gaze distribution is presented in
the form of a heat map, with normalized gaze time mapping to a truncated HSV color
space and warmer hues indicated longer gaze periods. Additionally, the boundaries of
the facility walls are annotated by the black lines. Two main patterns can be observed.
First, participants commenced the tasks with an overall scan of the front wall, their gaze
distributed across most of the display space. Then, they proceeded to more closely focus
on the side and rear walls while “narrowing” their search space. Additionally, there is a
distinct lack of user attention towards the corners of the front wall. This pattern was also
observed by the facility operator during the user study sessions. The gap in the middle of
the rear wall corresponds to the section of displays that was not utilized during the study.

the VS task at the largest display condition, which implies that H3 also does not hold

for very large systems.

8.4 Physical Navigation Analysis

To gain additional insight on the quantitative results described above, we generated

per-task and per-display-condition views of the participants’ presence within the facil-

ity. These visualizations can be seen in Figure 45.

An examination of the VS condition shows that for the PL100MP, PL300MP and

IM600MP display form-factors, users primarily chose to remain near the center of the

facility and adopt an “overview” search pattern, examining the displays from a distance

while looking for the target. However, at IM1GP, the motion data indicates that at

138

least some users adopted a “detail” search pattern, moving around the facility more and

taking time to examine individual sections of the displays, which could explain the drop

in performance and increase in TRAVEL and SMEQ that we observed. A more pro-

nounced “detail” search pattern is apparent for the AS task at all but the smallest display

condition. In this case, it appears that users spent time examining individual columns of

displays in an effort to find datums that were valid answers to the task questions. This

pattern is particularly strong in the IM1GP condition, with presence hotspots approxi-

mately lining up with the centers of the display columns of the apparatus facility. For the

C task, we observe an “overview” pattern, with users opting to search the display space

from afar while searching for the small number of datums within the base map. Finally,

the P task appears more chaotic, with different users adopting different strategies. Some

opted for an “overview” approach, searching for the visual patterns generated by the bar

charts embedded in our visualization, while other users decided to examine the data labels

before making a determination.

To estimate the participants’ gaze direction within the visualization space, we use the

head orientation approximation. According to Kai and Rainer [NS03], head orientation is

a good predictor for eye gaze (with an accuracy of approximately 87% to 89% in pointing-

related experiments). We visualize gaze heat maps in Figure 46, calculated similarly to

the presence heat maps outlined above. We focus on the IM1GP display condition

since it generated patterns similar to IM600MP. The PL100MP and PL300MP gaze

patterns did not deviate from what has already been presented in the literature. Two main

observations can be made. Participants appear to commence a task via an examination

of the majority of the front wall display space (evident by the low intensity and evenly

distributed concentrations of gaze in the visualization). However, then they begin to more

closely examine the other display surfaces in search of the task answer while somewhat

limiting their range of search (notice the much stronger gaze patterns on the left, right

and rear walls, focused near the vertical middle of the display space). Additionally, one

can see that there appears to be a lack of user attention towards the corners of the facility,

particularly the ones between the front and side display walls. We observed this behavior

during our user study, particularly with some users that adopted a “detail” approach

to the VS task. They would scan the displays of each wall very closely up until they

reached the columns of displays that were adjacent to a corner. At that point, they would

rapidly divert their gaze to the next wall, rather than thoroughly scan that last column

139

of monitors (or the first column of the adjacent wall).

8.5 Discussion

The analysis of performance data from our user study indicated that normalized perfor-

mance does not measurably improve as the display configuration changes from IM600MP

to IM1GP. Contrarily, normalized performance for the visual search task dropped sub-

stantially. Meanwhile, performance in the attribute search, pattern-finding and compar-

isons tasks remained approximately flat. Why does this happen?

We think that very large LHiRDs can potentially “overwhelm” an user with visual in-

formation for certain tasks. For example, in the VS task, which required that users

potentially examine the entire display space multiple times, we found a significant in-

crease in the SMEQ response at the IM1GP level (where as others remained relatively

unchanged from the IM600MP level). When users are in this state, they seem to adopt

the “detail” search pattern, which substantially increased travel distances, compared to

other tasks. During the post-interview, users at the IM1GP level mentioned that “The

display was too large” and that “There were too many data points to inspect”. Overall,

a large LHiRD may not be the best apparatus for visual search search using physical

navigation. Or alternatively, traditional physical navigation could be enhanced by tech-

niques such as “saliency assisted navigation” (introduced by Ip and Varshney [IV11]). In

other task types, we observed a normalized performance plateau rather than an outright

degradation. Unfortunately, our study can not inform on whether these findings are a

result of the sheer size of the data being displayed or if the larger field of view for the

IM1GP also plays a role.

User performance was correlated to the task difficulty. It would be interesting to study

the AS tasks at different display conditions and for different densities of correct answers.

Anecdotally, during our study design phase, we briefly considered utilizing a total of 10

correct datums as answers to AS at all trial stages. This density proved manageable

at the PL100MP and PL300MP display conditions (approximately three to five times

slower than the times observed in our full study) but, users required upwards of 20 minutes

to locate one correct datum at the IM1GP level (30 to 40 times slower than the mean

ET for AS). We feel strongly that this discrepancy in difficulty scaling warrants more

140

Figure 47: Visualization of the physical navigation of two study participants. These
images are generated using tracking data from the P task at the PL300MP and IM1GP
display conditions. All visualizations are drawn from the same task trial (hence users
were examining the same data set and the targets were at the same locations for both).
Participant A demonstrates the “detail” search pattern. Overall, he navigated to different
places of the facility and examined separate sections of displays closely, as is evident by the
multiple presence hotspots. Participant B adopted the “overview” pattern. He remained
near the center of the experimental apparatus and inspected large sections of the displays
from a distance, only moving in to verify his answer to the operator. Participant B
performed substantially better in both tasks.

investigation.

The emersion of the “overview” and “detail” patterns intrigued us. We thus looked more

closely at individual participants and the performance across tasks. In Figure 47, we

visualize the movement of two participants for the P task across the PL300MP and

IM1GP configurations. Participant A opted for a detail-oriented approach, spending

time at different places within the facility in order to closely examine different sections

of the display. Meanwhile, Participant B largely remained near the center of the facility

and visually inspected the data for patterns, utilizing the embedded bar charts in the

visualization. Finally, he approached the screen to verify his answers, as part of our study

141

protocol. In this example, the performance of participant B was orders of magnitude

better than that of participant A (20s versus 261s at PL300MP and 18s versus 771s

at IM1GP). It is also worth noting that both participants had not been exposed to an

LHiRD prior to our study.

Additionally, while some users adapted their physical navigation patterns, depending on

the task at hand, others utilized the same pattern throughout all tasks. For example,

Figure 48 visualizes the search patterns of two participants in the VS and P tasks. Here

participant A chose to transition from a very “detail”-oriented navigation pattern for

the VS task, to an “overview” approach. He navigated substantially less (21.44m for P

versus 117.82m for VS). This change of approach is particularly interesting since both

these tasks incorporate a visual search component (since in P, participants had to locate

the datums prior to comparing). In contrast, Participant B chose a balanced approach

for both tasks, inspecting larger sections of the display from a distance.

The takeaway point is that evaluation of user performance in LHiRDs needs to go beyond

quantifiable metrics of time and accuracy. A smaller tiled-display affords some physical

navigation but the larger workspace of facilities, such as our experimental apparatus,

provides room for specific usage patterns to emerge. Through these usage patterns, some

users are able to handle visualization tasks better than others. The findings that arose

from the visualization of estimated gaze direction give rise to two main questions. Why

do users decide to cover the front wall of the visualization facility more thoroughly but

then focus their gaze towards the middle of the displays? Also, the lack of user attention

towards some of the corners of the facility makes us wonder whether a cylinder-style layout

would have been more optimal (even at the expense of overall resolution). In hindsight,

if we were to reconduct our study, we would have adjusted the large planar display form-

factor to also include the outer-most display columns. Still, it is interesting that this

pattern of “corner-blindness” does not appear at the edges of the left/right walls with

the rear displays at the IM1GP condition. We feel that this is fertile ground for further

visualization and human-factors research, targeted at understanding the root causes of

these behaviors and potentially improving user experience within these facilities.

A closing point that we wish to bring up is that our study design (due to the nature

of our apparatus) does not decouple of the high display resolution from the immersive

experience at the larger display conditions (IM600MP and IM1GP). This confound is

142

Participant

A

Participant

B

Visual Search (VS) Comparisons (C)

Figure 48: Example of the between-task variation for two different participants. Partici-
pant A employed the “detail” pattern for the VS task, scanning small sections of displays
at a small distance. However, for the C task, despite the substantial visual search com-
ponent, he switched to a more “overview”-centric approach, staying further back from
the monitors. Participant B was more consistent in his search patterns between the two
tasks, choosing to inspect larger sections of displays from a small number of hotspots. All
visualized trials were conducted at the IM1GP display condition.

significant and warrants additional investigation. During the engineering stages of our

system, 27” monitors with a resolution of 2560 × 1440 offered the highest pixel density

available at a reasonable cost. Nowadays, 4K monitors are quite affordable and multiple

of them can be driven by a single GPU. It is not hard to imagine a billion pixel planar

LHiRD (with a display area equal to that of our 300 megapixel display condition) being

built in the near future. The key difference of such a hypothetical facility, when compared

to our experimental apparatus, is that it would not require that the user substantially pan

their heads in order to see the entire display space. At that point however, one may be

tempted to construct an even larger facility by tiling multiple of these gigapixel resolution

walls, resulting in the same conundrum.

143

8.5.1 Implications for design

Based on our findings we offer the following recommendations to builders, users and

researchers of immersive LHiRD systems. The construction of facilities that scale to

dimensions and resolutions similar to the IM600MP condition of our study appears to

be worthwhile, with the expected performance improvements materializing. The layout

of an immersive LHiRD is important. While a rectangular layout such as that of our

apparatus maximizes the display surface that can fit within an existing physical space,

it seems to cause at least a small amount of impact on physical navigation patterns, as

found in our gaze analysis. User training and familiarity is important. Even with the

simple visualization scenario used in our study, we observed several users who adopted

suboptimal navigation patterns, leading to decreased performance timings. Providing

LHiRD users with introductory sessions that inform them on usage strategies for these

facilities could be beneficial.

8.6 Conclusion

We presented the result of a 16-subject user study targeted at quantifying the limits

of large, high-resolution displays (LHiRDs). A statistical analysis of normalized user

performance showed that the benefits of LHiRDs plateau past the 600 megapixel point,

demonstrating that the benefits of LHiRDs that were established in previous studies do not

scale arbitrarily. Meanwhile, an investigation of physical navigation data across display

conditions and task types yielded a number of insights. Total movement of the users

increased as the size of the display grew. More importantly, users adopted two physical

navigation strategies (termed “overview” and “detail”) when tackling different types of

tasks.

144

Chapter 9

VEEVVIE - Visual Explorer for

Empirical Visualization, VR and

Interaction Experiments

9.1 Introduction

Quantitative evaluation is the cornerstone of the scientific discovery process and it is

no-less important for relatively young fields, such as visualization, virtual reality and

human-computer interaction. Tory and Moller [TM04] have underlined the importance

of testing visualization systems, as part of human-factors research in visualization. In

IEEE’s Information Visualization Conference of 20141 , roughly half of the accepted papers

included some sort of formal evaluation through empirical experimentation. Similar trends

can be observed in the majority of seminal conferences and journals that focus on human-

centric computing.

These experiments are primarily conducted as evidence supporting the value of a newly

introduced technique and/or contrasting the effectiveness of several established methods.

These goals are pursued by performing statistical analysis, driven by a set of hypotheses

aimed at answering high-level research questions. When presenting the results of these

experiments, scientists follow their exposition of the analysis with a discussion, putting

1http://www.ieeevis.org/year/2014/

145

http://www.ieeevis.org/year/2014/

the results in context. Often this process involves inspecting the performance of indi-

vidual participants under the prism of the analysis results or isolating and visualizing

only parts of the experiment design. This post-hoc exploratory process is critical for

three reasons. Firstly, it further validates the results of the statistical analysis. Sec-

ondly, it generates insights that can not be captured directly through statistics (due to

the generally low granularity). Finally, it provides future research directions that drive

the conduct of more specific or differently targeted experiments through the generation

of new hypotheses.

The importance of empirical evaluation has driven researchers to develop visual analysis

systems, specifically targeted at the exploration of their experimental data. Blascheck

and Ertl [BE13] have suggested a generalizable methodology for visual experiment analy-

sis with a seeming focus on eye-tracking data. Generally, efforts to leverage visualization

for the exploration of empirical studies are targeted at specific domains. However, the un-

derlying data (e.g., the experimental design, the types of metrics, etc.) tend to be similar

across domains. This uniformity can be leveraged for the development of a generalizable

framework for the analysis of empirical experimental data.

In this chapter, we introduce VEEVVIE , the Visual Explorer for Empirical Visualization,

VR and Interaction Experiments [PGK15]. VEEVVIE is a versatile tool that enables the

visual analysis of empirical experiments in visualization and human-computer interaction.

At its core, VEEVVIE is driven by an ontology that can model a wide range of exper-

imental designs, with arbitrary variable, measurement and sample sizes. This ontology

can, on its own, capture multiple experimental designs that are based on “common” mea-

surements (e.g., ordinal or interval). Driven by this ontology, VEEVVIE generates several

familiar linked information visualizations of experimental measurements with support for

interactive brushing across different pivots. Additionally, the VEEVVIE ontology can be

expanded to support domain-specific data types. Through a plug-in architecture, new

visualization widgets can integrate in the VEEVVIE workspace and ingest this domain-

specific data. We demonstrate VEEVVIE through several use cases, examining data from

a prior visualization experiment.

This chapter is structured as follows. We begin by motivating the design decisions for

VEEVVIE and then present the ontology that drives our visual analytics framework.

Following this groundwork, we describe how VEEVVIE leverages this ontology to enable

146

Table 3: Summary of high-level input experimental data. This data is fed into the
VEEVVIE ontology in order to appropriately model an experiment.

Experimental
Design

Experimental
Measurements

Statistical
Effects

Independent Variables
(and valid levels)

Trial Descriptions
(participant,

factors,
measurements)

Affected
Dependent Variable

Dependent Variables
(and type information)

Type
(Main or Interaction)

Participants
(and factor assignments)

Trial Grouping Factors
Experiment-Wide
Measurements

Source Independent
Variable(s)

extensible visual analysis of experimental data. We conclude by presenting a set of case

studies from our usage of VEEVVIE in the visual analysis of the study outlined earlier

in this thesis.

9.2 Defining the Problem Space

In this section, we outline some examples of visual analytics that are used in a complemen-

tary fashion to statistical analysis as part of visualization and interaction experiments. We

outline several key “tasks” that emanate from those and other works and also summarize

the information that concretely describes a visualization experiment.

9.2.1 Examples of Visual Analysis for Experiments

The design of VEEVVIE is based on the utilization of visual analysis experiments con-

ducted by our research group and also those described in the literature. For example,

Ball et al. [BNB07] have generated simple visualizations of user movement and gain esti-

mation during different tasks on a tiled display. A sample observation was that during an

“insight” task, when participants were provided with a lectern for note-taking, physical

navigation was substantially different and clustered around the lectern. This observation

led to a recommendation later in the article. They also utilized visualizations to rein-

force the statistical findings, which indicated that increases in display width resulted in

147

Figure 49: The VEEVVIE ontology. Abstract classes are denoted by darker colored
backgrounds. Notice the separation between sections of the ontology which capture dif-
ferent aspects of the experimental process, with the referential relationships serving as
the connective tissue.

148

increases in physical navigation. Bezerianos et al. [BI12] utilized motion trajectory visual-

izations in order to categorize select participants’ movement strategies, which then served

as input into further statistical analysis. The usage of visualization in the exploration

of experimental data clusters around filtering, summarizing, highlighting aspects of the

experiment, in a manner driven by the findings of the statistical analysis.

9.2.2 Tasks

Overall we identify the following tasks that researchers might want to perform on their

experimental data using a visual analysis tool:

1. Emergence of the sources of statistical effects. Given a significant difference between

two levels of a factor, or an interaction between two factors, the visualization tool

should enable the rapid identification of the subset of the experiment that falls under

those factors.

2. Cross-experiment identification of trials or subjects. During the visual analysis pro-

cess, the researcher might identify a set of trials or subjects that exhibit an interest-

ing pattern (e.g., combination of measurements, type of movement, etc). The visual

analysis tool should permit the quick investigation of these datums under different

visualization modalities.

3. Summarization of experimental results across different pivots. The visualizations

generated by the tool should enable visual aggregations of the results across different

dimensions of the experiment (e.g., across all subjects, across trials, etc).

4. Filtering experimental data based on the current analytical task. When investigating

a subset of the experiment (e.g., a particular significant difference between two

levels of a four-level variable), the tool should allow the removal of non-relevant

information. Similar functionality should be enabled across other pivots of the

experiment.

9.2.3 Input Data

As described earlier, an experiment is fundamentally a set of trials, measurements con-

ducted for participants at different experimental conditions. Trials are the core data that

149

drives VEEVVIE and the ontology that we describe in the next section allows us to

uniquely characterize them. Each trial occurs for a particular combination of levels for

different independent variables (effectively at a cell of the experimental design matrix).

Every trial is associated with a single experiment participant. This is a deliberate design

decision since the majority of experiments that we have encountered are non-collaborative.

Each trial also corresponds to a number of values for the dependent variables that are

being observed. These variables can result from direct observations during a particu-

lar trial (e.g., the accuracy of a participant at a certain task) or from post-processing

information that was collected during the trial (e.g., calculating travel distances based

on motion tracking data). These measurements can be nominal, ordinal or interval, or

they can be described in an application-specific data format. Additionally, several ex-

periments (particularly ones that are based on repeated-measures designs) often require

more than one trial per participant at each cell of the design matrix. These repeated

trials are generally consistent across participants in order to reduce confounds. Thus,

each trial is also characterized by a set of grouping factors that can describe these cor-

relations. The trial descriptions, along with higher-level experiment meta-data (such as

the totality of independent and dependent variables, their types, their potential values),

experiment-wide measurements for each subject (e.g., pre- and post- experiment ques-

tionnaires) and descriptions of the statistical effects yielded by the analysis are the input

data to VEEVVIE . It also worth noting that we have identified designs for which the sta-

tistical analysis is carried out within individual grouping factors (but without considering

the factors themselves as an independent variable). This information is summarized in

Table 3.

9.3 An Ontology for Describing Experiments

Given the above task definitions and input data, we designed an ontology that can rep-

resent a large number of experiments.

9.3.1 Core Classes

The primary building block of an ontology is the notion of a class. The VEEVVIE

ontology defines several classes that allow the description of experimental data.

150

• Experiment - Instances of Experiment are objects that own the totality of informa-

tion for a particular study.

• Participant - Instances of Participant describe individuals who partook in the ex-

periment. Participant does not explicitly define any properties for demographical

information. Rather, these (and other experiment-wide measurements) are modeled

as instances of ExperimentWideDependentVariable.

• IndependentVariable - Class for describing the independent variables of the experi-

ment. The valid levels of each variable are attributes to its instance.

• DependentVariable - Instances of DependentVariable describe a metric that is sub-

stantive to the experiment. The type of the measurement (ordinal, interval, nominal,

or other custom types) are appended as attributes to instances of this class. Note

that this is effectively an abstract class.

• TrialDependentVariable - Subclass of DependentVariable. Describes dependent vari-

ables, the values of which result from experimental trials (e.g., an accuracy or per-

formance metric).

• ExperimentWideDependentVariable - Subclass of DependentVariable. Describes

metrics, the values of which are only acquired once for each participant during

the experiment (e.g., demographical data, pre/post study questionnaires, etc).

• IndependentVariableValue - Instances of this class describe a fixed value of a certain

factor. These are referred to by instances of Trial in order to determine membership

to a particular cell of the experimental design matrix.

• DependentVariableValue - Class for describing a measurement of a particular De-

pendentVariable. The instances of this class are owned either by the source Trial or

the Subject to which they correspond to (for ExperimentWideDependentVariable).

• GroupingFactor - Instances of GroupingFactor are referred to by trials in order to

denote cross-trial groupings as outlined earlier.

• Trial - A trial brings together one or more IndependentVariableValue instances

(denoting its membership in the experimental matrix), one or more DependentVari-

ableValue, one Participant instance and, optionally, one or more GroupingFactor

instances to describe a measurement event.

151

Table 4: Overview of how the VEEVVIE ontology can be used to capture the high-level
design of experiments.

Ball et al. [BNB07] Papadopoulos et
al. [PPKM15]

Laha et al. [LBS14]

Independent Vari-
able

Display width, task Display condition,
task

Field of regard,
stereoscopy, head
tracking

Trial Dependent
variable

performance tim-
ings, pan and zoom
counts, physical
navigation

Performance tim-
ing, scaled per-
formance timing,
physical navigation,
mental effort

Performance grade,
elapsed time, per-
ceived difficulty and
confidence

Experiment Wide
Dependent Variable

Demographic data Demographic data,
infovis experience

Demographic data,
VR experience,
Post-experiment
questionaire

Grouping Factor Task repetitions Task repetitions Task identifiers

• StatisticalEffect - This class serves as a base for subclasses describing statistical

effects. It points to a target DependentVariable and also refers to a number of

GroupingFactor instances, for which the statistical analysis was conducted.

• MainEffect - This class describes a main effect of an instance of IndependentVariable.

It also contains as attributes pairs of significant differences, as provided by the

statistical analysis.

• InteractionEffect - Instances of InteractionEffect bring together two or more Inde-

pendentVariables (as provided by the statistical analysis) to describe an interaction

on a DependentVariable (pointed by the base class).

The VEEVVIE ontology and relationships between classes are schematically illustrated

in Figure 49.

9.3.2 Application to Experiments

Our ontology is applicable to experiments in the fields of visualization, HCI and VR. To

illustrate this point, we have used it to model the experimental evaluations presented in

several pieces of research work. These modelings can be seen in Table 4.

152

Figure 50: Sample view of the VEEVVIE front-end during a visual exploration session.
The data filtering controls are visible in the sidebar on the left-hand side (a). These
enable researchers to drill down data by toggling on/off factors of independent variables,
grouping factors, and/or individual subjects. Visualizations can be generated through
the toolbar at the top of the interface (b) by selecting a widget and then binding ex-
perimental measurements to dimensions. Widgets appear in the main workspace (c) and
are moveable, resizeable and responsive. The four widgets visible in this image are: the
statistical-effect explorer, the subject-centric visualizer, a parallel coordinates visualiza-
tion of the experiment and a presence heatmap visualization.

9.3.3 Implementation

The VEEVVIE ontology is accessible through a series of REST-full [RR08] endpoints. The

core web application functionality is implemented on top of NodeJS2 , with the Sails.js3

framework handling interactions with a MongoDB4 database and enabling Create, Read,

Update, Delete (CRUD) functionality.

153

9.4 The VEEVVIE Front-end

In this section, we describe the implementation of the VEEVVIE front-end, through which

researchers can conduct visual analysis of experimental data modeled in our ontology.

We illustrate some of the generic visualization modalities, the overall functionality of our

interface, technical implementation details and also ways in which VEEVVIE can be

extended to visualize experiment-specific data.

9.4.1 Layout and Functionality

The VEEVVIE front-end application, seen in Figure 50, defines three main interaction

areas. On the left-hand side of the screen the user finds the persistent data selection

controls, contained in a sidebar. The user can select an experiment to be loaded from the

back-end. Following this selection, the left-hand sidebar populates with persistent data-

filtering tools. Specifically, VEEVVIE allows researchers to drill-down into subsections

of the experiment by excluding combinations of levels of independent variables, grouping

factors and/or subjects from the visual analysis.

The main VEEVVIE workspace occupies the majority of the screen. At the top of the

workspace lays the visualization generation toolbar which allows researchers to inject

visualization widgets into the workspace. The user binds experiment measurements to

different widget dimensions or axes and can also set various options. Widgets declare

options and support for different types of measurements as described below. VEEVVIE

widgets are responsive, resizable and can be moved around the workspace.

VEEVVIE leverages heavily the principles of coordinated multiple views [Rob07].

Through a standardized API, visualization widgets can request highlighting of combina-

tions of trials, subjects, or independent variable factors which are propagated throughout

the active view. Additionally, most VEEVVIE widgets support transient brushing oper-

ations [BC87] which trigger highlight operations. Custom widgets widgets can also access

this functionality through a standardized API.

2http://www.nodejs.org
3http://www.sailsjs.org/
4https://www.mongodb.org

154

http://www.nodejs.org
http://www.sailsjs.org/
https://www.mongodb.org

9.4.2 Implementation and Extensibility

The VEEVVIE front-end is implemented using standards-complaint HTML5, CSS and

Javascript. We opted for a browser-based solution rather than developing a native ap-

plication because it enables rapid development-testing-iteration cycles, cross-platform de-

ployment and access to several open-source and extremely powerful visualization and

interaction frameworks. The VEEVVIE front-end is structured as an AngularJS5 ap-

plication and makes heavy use of its data binding functionality for the propagation of

active filtering, highlighting and widget state options. The visualizations are based on

the Highcharts SDK6 , Data-Driven Documents7 and Kai Chang’s D3.js parallel coordi-

nates library8 .

The architecture of VEEVVIE allows the development of visualization plugins without

knowledge of the inner workings of the front-end or ontology back-end systems. The

plug-in API defines several callback functions for creating a visualization, responding to

resize events, reacting to and generating changes in filtering, highlighting, etc. These call-

backs are implemented by delegates, which define the functionality of new visualizations.

Delegates also declare the dimensions and corresponding supported data types for their

widget and also any additional options that they might provide to the user. A sample

declaration for one of the built-in widgets of our front-end can be seen in Figure 51. The

front-end provides each delegate with a DOM element in which it can render its content

and also several helper classes for managing access to experimental data, retrieving simple

statistics and ensuring a consistent appearance scheme across widgets. We found that this

affords flexibility in the widget development process. Widgets can be created separate

from the relatively heavy-weight VEEVVIE front-end and then ported to the final sys-

tem. A shortcoming of our current architecture is that widgets can not inject HTML and

CSS declaratively into the front-end (this can be done programmatically). We plan on

remedying this in the future by allowing delegates to declare paths to HTML templates

and stylesheets that VEEVVIE injects automatically.

5https://www.angularjs.org
6https://www.highcharts.com
7https://www.d3js.org
8https://syntagmatic.github.io/parallel-coordinates/

155

https://www.angularjs.org
https://www.highcharts.com
https://www.d3js.org
https://syntagmatic.github.io/parallel-coordinates/

SampleScatterplotWidget.declaration = {

name: ’Sample Scatterplot Widget ’,

delegate: ’SampleScatterplotWidgetDelegate ’,

dimensions: [{

description: ’X axis’,

supportedVariableTypes: [’interval ’],

repeatable: false

},{

description: ’Y axis’,

supportedVariableTypes: [’interval ’],

repeatable: false

}],

options: [{

description: ’Brush behavior ’,

values: [{

description: ’Brush to Zoom’

},{

description: ’Brush to Highlight ’

}]

}]};

Figure 51: Sample (simplified) declaration of a VEEVVIE widget. Widgets can declara-
tively define dimensions (including repeatable dimensions, e.g., for an arbitrarily dimen-
sional visualization) and supported data types. Additionally, widgets can define custom
options (e.g., toggle-able brushing behavior). This declarative approach allows widgets to
integrate with and digest the VEEVVIE ontology in a way that is agnostics to the inner
workings of the application.

156

Figure 52: Illustration of coordinated linked views with brushing support. In this exam-
ple, the parallel coordinates plot presents a high-level visual overview of the experimental
data. A linked scatterplot visualizes two dependent variables in more detail. By brush-
ing the parallel coordinates visualization, the user-researcher can drill down within the
scatterplot.

9.4.3 Built-in Visualizations

Using the VEEVVIE widget architecture, we have implemented several visualization wid-

gets that allow researchers to visually explore experiments that are centered around nu-

merical or categorical dependent variables.

Multidimensional Visualization Widgets: Traditional multi-dimensional visualiza-

tion is provided through two widgets. Researchers can create interactive scatterplots of

trials, across arbitrary pairs of dependent variables (or experiment-wide measurements).

157

Scatterplots support zooming and brushing. Brushing on scatterplots highlights the se-

lected trials across all active visualizations while hovering over a single datum with the

mouse pointer will either highlight that single trial across the workspace or (if a modi-

fier key is active) highlight all measurements traced to the subject of the current trial.

Thus, researchers can visually identify outliers in the visualization of two performance

metrics and then identify if these outliers also correlate to other aberrations in the source

data.

We also provide a parallel coordinates [ID91] visualization widget which can be config-

ured to display all or a subset of the measurements and/or independent variables of the

experimental design. Individual polylines correspond to single trials. Experiment-wide

measurements are concatenated with the per-trial measurements for the source subject in

order to complete the descriptor vector for each polyline. Parallel coordinates provide a

very effective way to generate a high-level aggregate view for the entire experiment. Addi-

tionally, through axial brushing researchers can highlight increasingly narrow sections of

the experimental data (e.g., all trials from a certain combination of independent variable

levels that fits within a particular performance threshold) which can in-turn be applied

as filtering in order to reduce cognitive load during the analysis. The scatterplot and

parallel-coordinates widgets included with VEEVVIE are illustrated in Figure 52.

Statistical Effect Explorer: As we described earlier, a critical task for the visual

analysis of experimental data is the identification of the source of statistically significant

effect. In order to facilitate this, VEEVVIE provides a widget that visualizes main and

interaction effects that are described using its ontology. The statistical effect visualizer

illustrates main effects in the form of a matrix, with cells corresponding on the presence

(or not) of a significant difference between pairs of levels for a particular independent vari-

able. Interaction effects are visualized in the form of radar charts. The combinations of

levels for the independent variables of the interaction define the axis of the chart while the

measurement for each axis corresponds to the mean of the dependent variable at that par-

ticular cell of the design. This approach allows to quickly visualize independent variable

combinations with interesting measurement characteristics while scaling to (theoretically)

arbitrary experimental designs. Both main and interaction effect visualizes support high-

lighting. For main effects, hovering over a particular cell of the visualization will highlight

the two source populations across all supporting widgets in the workspace. Highlighting a

158

Figure 53: Participant-centric visualization of a physical navigation dependent variable.
The columns of the matrix correspond to valid experimental factor combinations while
rows correspond to individual experiment participants. Subject performance is color
mapped from red to green depending on its deviation from the mean of each experimental
condition. By hovering over each cell, the source trials are highlighted on other linked
views.

159

Figure 54: Sample views of the physical navigation visualization widget. This widget was
developed using the VEEVVIE framework in order to visually analyze tracking data from
our case study. (a) Presence heatmap for the VS task. (b) Presence heatmap for the AS
task. (c) Heatmap highlight of a good performer for the VS task. (d) Heatmap highlight
of a poor performer for the VS task. (e) Motion tracking paths for all participants for
the VS task. All visualizations are generated for the 1G display condition.

160

particular factor combination brings out the source data. In both cases, tooltips provide

simple descriptive statistics. The functionality of the main effect visualizer is illustrated

in Figure 55 while both sub-widgets can be seen also in Figure 50.

Subject-centric Visualizer: A frequent task during the exploration of experimental

data is the identification of performance patterns across participants. For example, a

researcher may want to quickly identify if some participants deviated significantly from

the median of a measurement and then follow that up with an investigation of the root

case. To facilitate this analysis approach, VEEVVIE provides a subject-centric visualizer.

The researcher can select a dependent variable and is then presented with a heatmap

visualization of the performance of all (filtered) participants across all experimental design

levels. The heatmap cells are color-coded (red to green) to indicate deviation from the

mean of the selected dependent variable at each particular experimental condition while

hovering over a cell highlights the trials that satisfy the subject × condition constraint.

An example of the subject-centric visualizer is shown in Figure 57.

9.5 Usage

In this section, we demonstrate the usage of VEEVVIE for the purposes of analyzing the

experiment described in Chapter 8. We illustrate the application of VEEVVIE for three

use-cases: hypothesis validation, insight gathering and hypothesis generation.

9.5.1 Experiment Description

The overarching goal of our experiment was to evaluate the scalability limits of large,

high-resolution, immersive displays. We were motivated by prior research that illustrated

the benefits of large displays in data visualization, but which did not scale those benefits to

the absolutely massive display sizes and resolutions that are currently feasible. In pursuit

of our goal, we designed an experiment which asked of 16 participants to complete four

visualization tasks -attribute search (AS), visual search (VS), pattern finding (P) and

comparisons (C). These tasks were conducted under four display resolutions, sizes and

horizontal immersion fidelities - 100 megapixel planarly (100MP), 300 megapixel planarly

161

(300MP), 600 megapixel partially immersive (600MP) and 1 gigapixel fully immersive

(1GP). Our main metrics concerned user performance, specifically elapsed time (ET) and

scaled elapsed time (SET. We also measured subjective mental effort [ZH93] (SMEQ).

Finally, we captured physical navigation data and calculated total physical navigation

distance (TRAVEL). For a thorough exposition on the experimental design, tasks, data

and analysis we refer the reader to Chapter 8.

9.5.2 Implementing a Custom Visualization Widget

The VEEVVIE widget architecture and ontology allowed us to develop an interactive

visualization tool for displaying the physical navigation trajectories captured during our

experiment. We defined an additional dependent variable using the VEEVVIE ontology

(termed TRACKING) which also had a custom data type trackingURI. We then devel-

oped a visualization widget that declared its support for the trackingURI variable type.

The VEEVVIE back-end stored and delivered the Unique Resource Identifiers that cor-

responded to the tracking trajectory files. These files were served via another web server

and our new widget handled their download. The raw trajectories (which were recorded

at 120Hz) were simplified using the Douglas-Peucker algorithm [DP73] in order to reduce

file size and also remove jitter. The visualization was implemented using WebGL and

the BabylonJS9 scene graph. Our tracking visualizer widget can display trajectories

and also generate simple heatmaps of user presence via quad-splatting. It also supports

the VEEVVIE highlighting functionalities. Samples views of the tracking data visualizer

widget can be see in Figure 54.

9.5.3 Case 1: Hypothesis Validation

Prior to our experiment, we hypothesized that larger (in terms of resolution and total

visualized data) displays would enable users to more efficiently tackle core visualization

tasks. Our hypotheses were largely motivated by prior experiments in the space. Our

statistical analysis showed that performance, when scaled against the size of the visual-

ization, did improve up until and including the 600MP display condition. However the

hypothesis did not hold for the 1GP display condition. These results can be visually

9http://www.babylonjs.com

162

Figure 55: Illustration of utilizing VEEVVIE for the hypothesis validation. In this exam-
ple, the analysis did not indicate a significant difference between the 600MP and 1GP
display conditions. By utilizing the statistical effect explorer, the two populations can
be highlighted in the linked scatterplot shown in (a) (600MP in orange, 1GP in blue).
Conversely, the 100MP condition is highlighted in orange in the parallel coordinates plot
(b) along with the significantly different 1GP condition (visible in orange). The SET
axis has been highlighted for emphasis and the visual pattern of the difference is visible.

163

verified using VEEVVIE . In Figure 55 we show results generated using VEEVVIE , by

highlighting combinations of experimental conditions and looking at the distributions of

the SET measurement. Notice the relatively clear boundary between the 100MP and

1GP populations but the much more diffuse distribution when looking at the 600MP

and 1GP conditions. Similar visual patterns can be identified for most results of the

statistical analysis. These patterns (and their outliers) motivate the insight gathering

process. Visual hypothesis validation is illustrated in Figure 55.

9.5.4 Case 2: Insight Gathering

During the visual analysis of the results of our study, we wanted to delve into the driving

factors behind substantial differences in performance across our sample, particularly in the

largest display condition, for which our analysis did not indicate an overall improvement

in performance. Using the filtering controls, we narrow the data scope to the 1G display

condition. Using the interaction effect explorer we can see that mean SET regressed for

the VS task substantially. We further drill down in this particular task and attempt to

understand this performance regression. The participant-centric visualizer widget offers

a “compare against worse case” option which we leverage in order to quickly identify the

most and least performant subjects in this experimental condition. We identify subjects

2 and 3 as being good performers and subjects 9 and 15 as performing poorly.

We then proceed to visualize the motion trajectories and presence heatmaps of these

individuals. We observe that subjects 2 and 3 navigated substantially less. Contrarily, the

poor performers travelled much more throughout the visualization facility, often several

“rountrips” around the space and seemed to inspect individual columns of displays closely.

This initial insight along with additional observations led the hypothesis generation use

case that we describe

9.5.5 Case 3: Hypothesis Generation

The statistical analysis reported a main effect of the display condition on the SMEQ

metric. We begin by examining the significant difference between the 300MP and 1GP

display conditions and drill down to the AS task. A scatterplot of SMEQ × TRAVEL

shows that several participants exhibited high SMEQ measurements at the 1GP display

164

Figure 56: Leveraging VEEVVIE for insight development. The interaction effect explorer
points out a regression in scaled performance (SET) for the 1GP-VS independent vari-
able level combination (a). This leads us to examine the worse-case performance across
subjects and find exemplar good and poor performers (b). Sample physical navigation
trajectories and presence heatmaps from the selected participants are visualized in (c).
We notice that the good performer only navigates very little, standing near the center
of the visualization space and only moving to confirm his response. Contrarily, the poor
performer navigates much more as they frantically inspect individual columns of displays
within the visualization facility, potentially resulting in poor performance.

165

condition. However, these measurements do not seem to tightly correlate with the amount

of TRAVEL. In fact, we observe that several participants self-reported high SMEQ

values (≈ 70−80) but within a wide range of physical navigation measurements (between

10m and 75m), all generated at the 1GP display condition. The three participants that

generated those trials spanned a range of self-reported visualization experience (1, 2 and

5 on a 0 − 6 scale). The subject-centric visualizer indicated that their performance was

worse than the average within that particular design cell. Looking across the rows of the

visualizer, we also observe that these participants generally underperformed in the VS

task across all display conditions.

By visualizing the movement trajectories we can see a clear difference in how the approach

to the task affects user frustration. In this case, we contrast one of the participants

that self-reported high frustration with the task versus another participant that reported

lower than average frustration. The non-frustrated user preferred to look for targets that

answered the task query by observing displays from a distance. However, the highly-

frustrated participant approached the displays and basically aligned themselves with the

columns of the facility, individually inspecting visualization glyphs in search of an answer.

Both participants reported the same experience in visualization.

This leads us to believe that the strategy with which users tackle problems within large

display environments might be highly correlated to their eventual frustration. In this

case, neither participant had prior exposure to any large-scale visualization system. Both

participants performed approximately the same. However, one “enjoyed” their time in

the facility much more than the other and, consequently, would be more likely to use it

in the future. Thus, we feel that a future experiment should investigate this interrelation

between large-display strategies, user performance and frustration. This process of visually

driven hypothesis generation using VEEVVIE is illustrated in Figure 57.

9.6 Conclusion

This chapter introduced VEEVVIE , the Visual Explorer for Empirical Visualization, VR

and Interaction Experiments. Our experience with VEEVVIE has allowed us to generate

new insights and provided us with several investigative avenues for future research on

human factors for large visualization systems. We hope to eventually release VEEVVIE

166

Figure 57: Illustration of the generation of a new hypothesis using VEEVVIE . An SMEQ
× TRAVEL scatterplot (a), highlighted per display condition (orange for 1GP, blue
for 300MP) shows that the larger display condition three users (b) exhibited similarly
high frustration for varying levels of physical navigation. Using the participant-centric
visualizer we can observe that overall performance for all these subjects was below average
(c). The physical movement of these frustrated performers (e) is contrasted with that of
some other below-average performers that reported substantially lower SMEQ readings
(d). The patterns in (d) are much simpler while the patterns in (e) appear substantially
more involved, with users moving close to the displays. These different “strategies” in
tackling the visual search problem and their correlation to user frustration can form the
basis for a future experimental hypothesis.

167

to the visualization, VR and HCI communities so that our colleagues can utilize interactive

visual analysis as a tool in their experimental processes.

168

Chapter 10

Conclusions

The goal of this chapter is to briefly summarize the contributions outlined through this

dissertation and provide short and long-term directions for future research that build upon

this body of work.

10.1 Summary of Contributions

This dissertation has presented contributions focusing on several aspects of user interac-

tions with room-sized, gigapixel-resolution, immersive displays. These contributions are

enabled by the Reality Deck facility, a gigapixel resolution display which is described in

detail in Chapter 3. Additionally, the majority of this work is implemented on a flexible

distributed visualization software stack that is described in Chapter 4. This combination

of cutting-edge hardware and software has allowed the author of this thesis to make the

following contributions:

• The NuNav3D body-driven navigation (described in Chapter 5), which was imple-

mented on a Kinect sensor and evaluated for two different task types. NuNav3D

exposed 4 degrees of freedom simultaneously, allowing users to perform complex

navigation maneuvers in 3D without requiring a dedicated controller device. While

the evaluation of NuNav3D revealed certain shortcomings (particularly with regard

to navigating in constrained spaces), it proved the viability of body-driven, unen-

cumbered navigation interfaces.

169

• A chirocentric (or hand-centric) user interface platform for immersive environments,

exposed in Chapter 6. Motivated by the shortcomings of NuNav3D (particularly

the unintended navigations observed during our user study), this platform utilizes

machine learning algorithms for the detection of hand poses and the identification of

hand gestures (trajectories of the user’s hands over time). Hand poses are correlated

to certain interaction and navigation modalities, allowing users to explicitly declare

navigation intent while gestures can trigger actions in the visualization. Using this

platform, we implemented a chirocentric 3D user interface prototype which was

deployed in the Reality Deck.

• A unique optimization algorithm that leverages the de-facto occurring physical nav-

igation within an LHiRD to improve performance. This acuity-driven gigapixel

visualization system (described in Chapter 7) takes advantage of the perceptual

limitations of the human visual system in order to dynamically adjust level of detail

settings in different rendering modalities. Through its perceptual basis, this tech-

nique operates in a manner that is mostly invisible to the user, without affecting

their ability to appreciate finer details within the visualization (as was shown by

our user study). Meanwhile, it provides significant frame-rate and streaming savings

through its operation.

• A user study aimed at quantifying the scalability limits of room-sized immersive

displays. Prior work which evaluated the scalability of these systems was only

applicable to relatively small designs (of roughly 100 megapixels). In Chapter 8 we

describe a user study which attempts to quantify the scalability of immersive, high-

resolution displays, starting from a planar, 100 megapixel form-factor and scaling

to a near fully-immersive arrangement with a resolution of 1 gigapixel. Our results

showed that performance does not scale arbitrarily, but rather that there exists a

point of diminishing returns, after then 600 megapixel resolution point, past which

performance does not improve in a significant way. Additionally, by visualizing

movement patterns within the Reality Deck, we uncovered two distinct approaches

to these visualization tasks, termed “overview” and “detail” with implications on

user performance.

• The commonplace application of visualization as part of the analysis of the results of

empirical experiments is the driving force for the final contribution of this thesis. In

170

Chapter 9 we describe VEEVVIE , the Visual Explorer for Empirical Visualization,

VR and Interaction Experiments. VEEVVIE is a visual analytics framework which

allows researchers to explore data collected from hypothesis-driven experiments in

an interactive and extendable way. VEEVVIE is driven by an ontology which can

model several common experimental designs, while the web-based front-end offers

several familiar visualization modalities and allows researchers to implement widgets

that can ingest their custom data. VEEVVIE is demonstrated through use cases

that we draw from the study presented in Chapter 8.

10.2 Future Work

As a conclusion to this thesis, the author presents several directions for future research

work, both short-term (as a continuation of the contributions presented herein) and also

longer term, within the broader area of visualization and interaction with room-sized

displays.

10.2.1 Short-term Guidance

With regard to chirocentric user interfaces, there exists relatively little research in the

“best” or most “natural” hand-centric user interactions. What are the best gestures that

a system should support? Which hand pose is appropriate to activate a flythrough inter-

action? Such notions are relatively well established for two-dimensional UIs (especially

on touch-enabled devices), however the research in the 3D user interface domain barely

scratches the surface. Our chirocentric UI implementation offers a platform on which

this sort of investigation can be conducted. On the technical side, our system can benefit

from greater robustness, particularly in the recognition of gestures. An additional concern

is the determination of the “end-point” of a gesture. Currently our system triggers the

corresponding action as soon as the current frame window gets classified by the SVM,

which can result in inaccuracies when gestures have similar dynamics. Work by Hoai and

De la Torre [HDlT12] addresses this problem and we plan on exploring its applicability

to gesture recognition in an interactive setting. Finally, the chirocentric user interface

can be expanded so that includes support for additional types of gestures. More complex

gestures or even chords of gestures can greatly expand the interaction opportunities of the

171

system. Similarly, an expanded hand pose dictionary can allow the manipulation of vari-

ous non-binary visualization parameters. For example, in a volume rendering scenario, a

certain hand pose can enable a clipping plane manipulation mode, which is then modified

through the user moving their secondary hand. Naturally, expanding the gesture and

pose vocabulary requires the acquisition of additional training data for our classifiers. We

wish to explore the avenue of synthetic training data (based on exemplars), which has

proven to be quite powerful in a number of applications and would allow our techniques

to generalize to a wider audience.

The acuity-driven gigapixel visualization scheme system can be enhanced in a number of

ways. For instance it could be expanded in order to support multi-user scenarios. Another

research avenue is the implementation of a predictive approach to LoD selection, account-

ing for the user’s trajectory within the visualization system. Finally, an unexplored, yet

quite-relevant area is that of gigapixel resolution video streaming over bandwidth con-

strained networks. Sensors such as the AWARE cameras [MST+11] are currently being

realized and will soon be commercially available. The ulterior goal of these research

projects is the capture of real-time video and naturally a gigapixel resolution display is

an obvious visualization system for such an image stream. Our acuity-driven gigapixel

level-of-detail algorithm could be used to reduce bandwidth costs in these situations.

While the display scalability study described in this dissertation showed diminishing re-

turns in user performance past a certain resolution, it does not offer a definitive answer to

the question “Does size really matter?”. Our study did not decouple resolution from im-

mersion (since those two variables are physically coupled together for the Reality Deck).

A future study on this topic would probably be of tremendous help to builders of new

LHiRDs and other large visualization systems. Additionally, the “overview” and “detail”

navigation patterns, and the between-user differences in choosing these patterns for differ-

ent tasks, present an interesting human-factor research avenue. Finally, our study focused

on single-user visualization sessions. Another promising avenue for future evaluation is

that of collaborative data exploration within the confines of a room-sized LHiRD such

as the Reality Deck. If a one gigapixel display is overwhelming for one user but four

250 megapixel displays are not, then maybe the right way to use these large facilities is

“divide and conquer”.

Finally, we have identified several features that we would like to incorporate into future

172

versions of VEEVVIE . For example, the current filtering and highlighting functionality

can be enhanced by providing users with an interface for managing complex queries.

Additionally, visual analytics applications have sometimes offered domain-specific query

languages which can allow expert uses to more quickly delve into sections of the data.

The VEEVVIE ontology can be used to support such a language for experimental designs.

Alternatively, such functionality could be exposed through a visual query builder. We plan

on expanding the functionality of the built-in visualization widgets and also incorporate

new ones based on feedback. Additionally, our current system is geared towards single-user

experiments, since they are most commonly encountered in literature. While collaborative

experiments could be modeled with small modifications to our ontology, we feel that

their visualization presents unique challenges and would like to explore it in the future.

Finally, we wish to identify experimental designs that can not be captured by the existing

VEEVVIE ontology, in an effort to make our contribution even more generalizable.

10.2.2 Long-term Guidance

With the advent of consumer-priced, acuity-saturating head-mounted displays, one might

be inclined to dismiss LHiRDs as a “dying breed” of visualization facility. Why spend

hundreds of thousands of dollars of a tiled display when you can simulate one with a $500

HMD? In fact, during the six years of PhD studies that culminated in to this thesis, the

author was asked several times if he thought that LHiRDs were soon to become obsolete

by the advent of cheap and high-quality VR hardware.

While the author of this dissertation is fairly confident in the proliferation of HMDs over

the coming years, these devices present (and will continue to present) several fundamental

presence issues which hamper ergonomics and constrain opportunities for collaboration.

Additionally, even if those issues were to be solved, and HMDs eventually simulated room-

sized visualizations, the fundamentals of interactions with these virtual LHiRDs would

probably be similar to those of their real-world counterparts. Thus, the author of this

dissertation feels that LHiRDs will prove to be a fruitful long-term research topic.

If anything, existing work in the field of visualization and interaction with LHiRDs barely

scratches the surface of what these devices can offer. Most evaluations are centered

around simple visualizations in single-user situations. When these systems are deployed

in production settings (industrial or otherwise) they are often used as demonstration

173

platforms or simply as large-surface displays. However, this thesis and other research

works have shown that LHiRDs are fundamentally different than a desktop display with

a wall-sized surface area. Different users approach them in different ways, their size

requires that users move around in order to ingest the totality of the data and enables

new ways of interactions with the displayed content. Thus, why is it that, despite their

increased flexibility, LHiRDs are used mostly as large desktop displays? The author of

this thesis feels that there exist three causes to this issue. The first reason involves the

lack of robust tools for developing applications for these systems. While there exist a wide

range of frameworks for distributed rendering and visualization, they all present different

shortcomings (in terms of complexity, ease of development, portability, etc). Second,

there is no unified hardware platform for LHiRDs, since they are either designed and

built as one-off research projects or in small numbers by specialized vendors. Third, there

exists no consensus on what an “application” looks and works like on an LHiRD. While

the desktop computer settled on the WIMP (Window Icon Menu Pointer) paradigm and

mobile devices settled on single-window multi-touch, this uniformity has not been reached

for LHiRDs. Applications can range from large-scale WIMP-style designs to first-person

VR-style viewers, to gesture or proxemics-controlled prototypes to systems that utilize a

tablet for input. These three shortcomings of the platform, feed into each other, in a sort

of vicious circle which prevents the mass proliferation of LHiRDs.

In this author’s opinion, the single most important research direction for LHiRDs is stan-

dardization. What is desperately needed is the “CocoaTouch” or “Win32” for large,

high-resolution, displays. A single software platform and underlying hardware specifica-

tion that will allow developers to build fully fledged applications for these systems and

integrators to construct LHiRD designs that can ingest content from a variety of sources.

It is through standardization that PCs became a powerful appliance, accessible and useful

to billions of people. As the hardware that comprises LHiRDs becomes more and more

affordable, it is through this sort of standardization that these wonderful systems can

affect the lives of those that do not live next door to a top tier university or a national

research laboratory.

174

Bibliography

[AABW12] Gennady Andrienko, Natalia Andrienko, Michael Burch, and Daniel

Weiskopf. Visual analytics methodology for eye movement studies. IEEE

Transactions on Visualization and Computer Graphics, 18(12):2889–2898,

2012.

[ABM+97] Maneesh Agrawala, Andrew C. Beers, Ian McDowall, Bernd Froehlich,

Mark Bolas, and Pat Hanrahan. The two-user responsive workbench: sup-

port for collaboration through individual views of a shared space. 24th An-

nual Conference on Computer Graphics and Interactive Techniques, pages

327–332, 1997.

[ACP10] Caroline Appert, Olivier Chapuis, and Emmanuel Pietriga. High-precision

magnification lenses. 28th International Conference on Human Factors in

Computing Systems, pages 273–282, 2010.

[APPC12] Rodrigo A. de Almeida, Clement Pillias, Emmanuel Pietriga, and Pierre

Cubaud. Looking behind bezels: french windows for wall displays. Interna-

tional Working Conference on Advanced Visual Interfaces, pages 124–131,

2012.

[AR11] JK Aggarwal and Michael S Ryoo. Human activity analysis: A review.

ACM Computing Surveys, 43(3):16, 2011.

[BBGV11] Amartya Banerjee, Jesse Burstyn, Audrey Girouard, and Roel Vertegaal.

Waveform: remote video blending for vjs using in-air multitouch gestures.

Human Factors in Computing Systems (Extended Abstracts), pages 1807–

1812, 2011.

175

[BBL93] Thomas Baudel and Michel Beaudouin-Lafon. Charade: remote control of

objects using free-hand gestures. Communications of the ACM, 36(7):28–

35, 1993.

[BC87] Richard A Becker and William S Cleveland. Brushing scatterplots. Tech-

nometrics, 29(2):127–142, 1987.

[BCF+08] Doug A. Bowman, Sabine Coquillart, Bernd Froehlich, Michitaka Hirose,

Yoshifumi Kitamura, Kiyoshi Kiyokawa, and Wolfgang Stuerzlinger. 3d

user interfaces: New directions and perspectives. IEEE Computer Graphics

and Applications, 28(6):20–36, 2008.

[BE13] Tanja Blascheck and Thomas Ertl. Techniques for analyzing empirical

visualization experiments through visual methods. KI Workshop on Visual

and Spatial Cognition, pages 44–51, 2013.

[BGS+12] David J. Brady, Michael Gehm, Ronald Stack, Daniel Marks, David Kittle,

Dathon R. Golish, Esteban Vera, and Steven D. Feller. Multiscale gigapixel

photography. Nature, 486(7403):386–389, 2012.

[BH06] Leonard D. Brown and Hong Hua. Magic lenses for augmented virtual

environments. IEEE Computer Graphics and Applications, 26(4):64–73,

2006.

[BI12] Anastasia Bezerianos and Petra Isenberg. Perception of visual variables on

tiled wall-sized displays for information visualization applications. IEEE

Transactions on Visualization and Computer Graphics, 18(12):2516 – 2525,

2012.

[BJ05] Rajvikram Singh Andrew Johnson Jason Leigh Byungil Jeong, Luc Renam-

bot. High-performance scalable graphics architecture for high-resolution

displays. Report, Electronic Visualization Laboratory - University of Illi-

nois, Chicago, 2005.

[BJH+01] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert, Albert

Baker, and Carolina Cruz-Neira. VR juggler: A virtual platform for virtual

reality application development. IEEE Virtual Reality, pages 89–96, 2001.

176

[BN05] Robert Ball and Chris North. Effects of tiled high-resolution display on ba-

sic visualization and navigation tasks. CHI Extended Abstracts on Human

Factors in Computing Systems, pages 1196–1199, 2005.

[BN07] Robert Ball and Chris North. Realizing embodied interaction for visual

analytics through large displays. Computers & Graphics, 31(3):380–400,

2007.

[BN08] Robert Ball and Chris North. The effects of peripheral vision and physical

navigation on large scale visualization. Graphics Interface, pages 9–16,

2008.

[BNB07] Robert Ball, Chris North, and Doug A. Bowman. Move to improve: pro-

moting physical navigation to increase user performance with large displays.

SIGCHI Conference on Human Factors in Computing Systems, pages 191–

200, 2007.

[Bol80] Richard A Bolt. put-that-there: Voice and Gesture at the Graphics Inter-

face. 14(3):262–270, 1980.

[BRP05] Ragnar Bade, Felix Ritter, and Bernhard Preim. Usability comparison of

mouse-based interaction techniques for predictable 3D rotation. Interna-

tional Symposium on Smart Graphics, pages 138–150, 2005.

[BSH09] Gerd Bruder, Frank Steinicke, and Klaus H. Hinrichs. Arch-explore: A nat-

ural user interface for immersive architectural walkthroughs. IEEE Sym-

posium on 3D User Interfaces, pages 75–82, 2009.

[BSP+93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.

DeRose. Toolglass and magic lenses: The see-through interface. SIG-

GRAPH, pages 73–80, 1993.

[CAN14] Haeyong Chung, Christopher Andrews, and Chris North. A survey of soft-

ware frameworks for cluster-based large high-resolution displays. IEEE

Transactions on Visualization and Computer Graphics, 20(8):1158–1177,

2014.

[CBP08] Marcelo Cohen, Ken W. Brodlie, and Nick Phillips. The volume in focus:

Hardware-assisted focus and context effects for volume visualization. ACM

177

Symposium on Applied Computing, pages 1231–1235, 2008.

[CL11] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vec-

tor machines. ACM Transactions on Intelligent Systems and Technology,

2(3):27, 2011.

[CLP04] Sheelagh Carpendale, John Ligh, and Eric Pattison. Achieving higher mag-

nification in context. 17th Annual ACM Symposium on User Interface

Software and Technology, pages 71–80, 2004.

[CM01] Sheelagh Carpendale and Catherine Montagnese. A framework for unify-

ing presentation space. 14th Annual ACM Symposium on User Interface

Software and Technology, pages 61–70, 2001.

[CMN11] Oliver Cossairt, Daniel Miau, and Shree Nayar. Gigapixel computational

imaging. IEEE International Conference on Computational Photography,

pages 1–8, 2011.

[CNSD+92] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V.

Kenyon, and John C. Hart. The CAVE: Audio Visual Experience Auto-

matic Virtual Environment. Communications of the ACM, 35(6):64–72,

1992.

[CW11] Douglas W Cunningham and Christian Wallraven. Experimental Design:

From User Studies to Psychophysics. CRC Press, 2011.

[CWG+02] Han Chen, Grant Wallace, Anoop Gupta, Kai Li, Tom Funkhouser, and

Perry Cook. Experiences with scalability of display walls. Immersive Pro-

jection Technology Symposium, 2002.

[DDS+09] Thomas A. DeFanti, Gregory Dawe, Daniel J. Sandin, Jurgen P. Schulze,

Peter Otto, Javier Girado, Falko Kuester, Larry Smarr, and Ramesh Rao.

The StarCAVE, a third-generation CAVE and virtual reality OptIPortal.

Future Generation Computer Systems, 25(2):169–178, 2009.

[DK10] Kai-Uwe Doerr and Falko Kuester. Cglx: A scalable, high-performance

visualization framework for networked display environments. IEEE Trans-

actions on Visualization and Computer Graphics, 17(3):1077–2626, 2010.

178

[DP73] David H Douglas and Thomas K Peucker. Algorithms for the reduction of

the number of points required to represent a digitized line or its caricature.

Cartographica: The International Journal for Geographic Information and

Geovisualization, 10(2):112–122, 1973.

[DRCB05] Piotr Dollr, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Be-

havior recognition via sparse spatio-temporal features. International Work-

shop on Visual Surveillance and Performance Evaluation of Tracking and

Surveillance, pages 65–72, 2005.

[EALN11] Alex Endert, Christopher Andrews, Yueh Hua Lee, and Chris North. Visual

encodings that support physical navigation on large displays. Graphics

Interface, pages 103–110, 2011.

[EBZ+12] Alex Endert, Lauren Bradel, Jessica Zeitz, Christopher Andrews, and Chris

North. Designing large high-resolution display workspaces. International

Working Conference on Advanced Visual Interfaces, pages 58–65, 2012.

[EFH79] Ruth B Ekstrom, John W French, and Harry H Harman. Cognitive fac-

tors: Their identification and replication. Multivariate Behavioral Research

Monographs, 1979.

[EMP09] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. Equalizer: A

scalable parallel rendering framework. IEEE Transactions on Visualization

and Computer Graphics, 15(3):436–452, 2009.

[ETO+10] Achim Ebert, Sebastian Thelen, Peter-Scott Olech, Joerg Meyer, and Hans

Hagen. Tiled++: An enhanced tiled hi-res display wall. IEEE Transactions

on Visualization and Computer Graphics, 16(1):120–132, 2010.

[Fis92] Ronald A Fisher. The Arrangement of Field Experiments, pages 82–91.

Springer, 1992.

[FNM+14] Alessandro Febretti, Arthur Nishimoto, Victor Mateevitsi, Luc Renambot,

Andrew Johnson, and Jason Leigh. Omegalib: A multi-view application

framework for hybrid reality display environments. IEEE Virtual Reality,

pages 9–14, 2014.

179

[FNT+13] Alessandro Febretti, Arthur Nishimoto, Terrance Thigpen, Jonas Talandis,

Lance Long, JD Pirtle, Tom Peterka, Alan Verlo, Maxine Brown, and Dana

Plepys. Cave2: a hybrid reality environment for immersive simulation

and information analysis. IS&T SPIE Electronic Imaging, pages 864903–

864903–12, 2013.

[Fur86] George W. Furnas. Generalized fisheye views. SIGCHI Conference on

Human Factors in Computing Systems, pages 16–23, 1986.

[GD95] Dariu M. Gavrila and Larry Davis. Towards 3-d model-based tracking and

recognition of human movement: a multi-view approach. International

Workshop on Automatic Face and Gesture Recognition, pages 272–277,

1995.

[GFD+12] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder.

Foveated 3d graphics. ACM Transactions on Graphics, 31(6):164, 2012.

[GKN05] Emden R. Gansner, Yehuda Koren, and Stephen North. Topological fisheye

views for visualizing large graphs. IEEE Transactions on Visualization and

Computer Graphics, 11(4):457–468, 2005.

[GWB04] Tovi Grossman, Daniel Wigdor, and Ravin Balakrishnan. Multi-finger ges-

tural interaction with 3d volumetric displays. ACM Symposium on User

Interface Software and Technology, pages 61–70, 2004.

[HBEH00] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat Hanrahan. Dis-

tributed rendering for scalable displays. ACM/IEEE Conference on Super-

computing, 2000.

[HDKG08a] Martin Hachet, Fabrice Decle, Sebastian Knodel, and Pascal Guitton.

Navidget for easy 3D camera positioning from 2D inputs. IEEE Symposium

on 3D User Interfaces, pages 83–89, 2008.

[HDKG08b] Martin Hachet, Fabrice Decle, Sebastian Knodel, and Pascal Guitton.

Navidget for immersive virtual environments. Proceedings ACM sympo-

sium on Virtual Reality Software and Technology, pages 47–50, 2008.

[HDlT12] Minh Hoai and Fernando De la Torre. Max-margin early event detec-

tors. IEEE Conference on Computer Vision and Pattern Recognition, pages

180

2863–2870, 2012.

[Hec83] Paul S Heckbert. Texture mapping polygons in perspective. NYIT Com-

puter Graphics Lab Technical Memo, 13, 1983.

[HH10] Charles Han and Hugues Hoppe. Optimizing continuity in multiscale im-

agery. ACM Transactions on Graphics, 29(6):1–10, 2010.

[HHN+02] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern,

Peter Kirchner, and James T. Klosowski. Chromium: A stream processing

framework for interactive rendering on clusters. ACM Transactions on

Graphics, 21(3):693–702, 2002.

[HMB11] Georg Hackenberg, Rod McCall, and Wolfgang Broll. Lightweight palm

and finger tracking for real-time 3d gesture control. IEEE Virtual Reality,

pages 19–26, 2011.

[HPLVdW10] Charles Hollemeersch, Bart Pieters, Peter Lambert, and Rik Van de Walle.

Accelerating virtual texturing using cuda. GPU Pro: Advanced Rendering

Techniques, pages 623–641, 2010.

[ID91] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates, pages 199–

233. Springer, 1991.

[IV11] Cheuk Yiu Ip and Amitabh Varshney. Saliency-assisted navigation of very

large landscape images. IEEE Transactions on Visualization and Computer

Graphics, 17(12):1737–1746, 2011.

[JH13] Mikkel R. Jakobsen and Kasper Hornbaek. Interactive visualizations on

large and small displays: The interrelation of display size, information

space, and scale. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2336–2345, 2013.

[JJR+05] Byungil Jeong, Ratko Jagodic, Luc Renambot, Rajvikram Singh, An-

drew Johnson, and Jason Leigh. Scalable graphics architecture for high-

resolution displays. IEEE Information Visualization Workshop, 2005.

[KBF+95] Wolfgang Kruger, Christina-A. Bohn, Bernd Frohlich, Heinrich Schuth,

Wolfgang Strauss, and Gerold Wesche. The responsive workbench: a virtual

work environment. Computer, 28(7):42–48, 1995.

181

[KG04] Lucas Kovar and Michael Gleicher. Automated extraction and parame-

terization of motions in large data sets. ACM Transactions on Graphics,

23(3):559–568, 2004.

[KH14] Torsten Wolfgang Kuhlen and Bernd Hentschel. Quo vadis cave: Does

immersive visualization still matter? IEEE Computer Graphics and Appli-

cations, 34(5):14–21, 2014.

[KKB+11] Alexander Kulik, Andr Kunert, Stephan Beck, Roman Reichel, Roland

Blach, Armin Zink, and Bernd Froehlich. C1x6: a stereoscopic six-user

display for co-located collaboration in shared virtual environments. ACM

Transactions on Graphics, 30(6):1–12, 2011.

[KKKA13] Cem Keskin, Furkan Kra, Yunus Emre Kara, and Lale Akarun. Real time

hand pose estimation using depth sensors. Consumer Depth Cameras for

Computer Vision, pages 119–137, 2013.

[KLBL93] Robert S Kennedy, Norman E Lane, Kevin S Berbaum, and Michael G

Lilienthal. Simulator sickness questionnaire: An enhanced method for

quantifying simulator sickness. The International Journal of Aviation Psy-

chology, 3(3):203–220, 1993.

[KLKB05] Arie E. Kaufman, Sarang Lakare, Kevin Kreeger, and Ingmar Bitter. Vir-

tual colonoscopy. Communications of the ACM, 48(2):37–41, 2005.

[KMS+11] Arie E. Kaufman, Klaus Mueller, Dimitris Samaras, Hong Qin, Amitabh

Varshney, Charilaos Papadopoulos, and Kaloian Petkov. The realitydeck -

immersive giga-pixel display. CEWIT International Conference & Expo on

Emerging Technologies for a Smarter World, 2011.

[KOJL+14] Paul Klemm, Steffen Oeltze-Jafra, Kai Lawonn, Katrin Hegenscheid, Henry

Volzke, and Bernhard Preim. Interactive visual analysis of image-centric

cohort study data. IEEE Transactions on Visualization and Computer

Graphics, 20(12):1673–1682, 2014.

[KRF11] Anette von Kapri, Tobias Rick, and Steven Feiner. Comparing steering-

based travel techniques for search tasks in a cave. IEEE Virtual Reality,

pages 91–94, 2011.

182

[KUDC07] Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F Cohen.

Capturing and viewing gigapixel images. ACM Transactions on Graphics,

26(3):93, 2007.

[LBS14] Bireswar Laha, Doug A. Bowman, and John J. Socha. Effects of vr

system fidelity on analyzing isosurface visualization of volume datasets.

IEEE Transactions on Visualization and Computer Graphics, 20(4):513–

522, 2014.

[LCBL+14] Can Liu, Olivier Chapuis, Michel Beaudouin-Lafon, Eric Lecolinet, and

Wendy E Mackay. Effects of display size and navigation type on a classifica-

tion task. 32nd International Conference on Human Factors in Computing

Systems, pages 4147–4156, 2014.

[LCC+00] Kai Li, Han Chen, Yuqun Chen, Douglas W. Clark, Perry Cook, Stefanos

Damianakis, Georg Essl, Adam Finkelstein, Thomas Funkhouser, Timo-

thy Housel, Allison Klein, Zhiyan Liu, Emil Praun, Rudrajit Samanta,

Ben Shedd, Jaswinder Pal Singh, George Tzanetakis, and Jiannan Zheng.

Building and using a scalable display wall system. IEEE Computer Graph-

ics and Applications, 20(4):29–37, 2000.

[LDK+08] Qing Luan, Steven M. Drucker, Johannes Kopf, Ying-Qing Xu, and

Michael F. Cohen. Annotating gigapixel images. ACM Symposium on

User Interface Software and Technology, pages 33–36, 2008.

[LFKZ01] Joseph J. LaViola, Daniel Acevedo Feliz, Daniel F. Keefe, and Robert C.

Zeleznik. Hands-free multi-scale navigation in virtual environments. Pro-

ceedings Symposium on Interactive 3D Graphics, pages 9–15, 2001.

[Lin72] James Lind. A Treatise on the Scurvy. S. Crowder, 1772.

[LMSR08] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozen-

feld. Learning realistic human actions from movies. IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–8, 2008.

[LW90] Marc Levoy and Ross Whitaker. Gaze-directed volume rendering. SIG-

GRAPH, Computer Graphics, 24(2):217–223, 1990.

183

[MBS09] Meinard Mller, Andreas Baak, and Hans-Peter Seidel. Efficient and ro-

bust annotation of motion capture data. ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 17–26, 2009.

[McM11] Ryan Patrick McMahan. Exploring the effects of higher-fidelity display

and interaction for virtual reality games. Virginia Polytechnic Institute

and State University Thesis, 2011.

[MEN+11] Syed Zain Masood, Christopher Ellis, Adarsh Nagaraja, Marshall F Tap-

pen, JJ LaViola, and Rahul Sukthankar. Measuring and reducing obser-

vational latency when recognizing actions. International Conference on

Computer Vision Workshops, pages 422–429, 2011.

[MGT+03] Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang, and

Yunhong Zhou. Treejuxtaposer: scalable tree comparison using fo-

cus+context with guaranteed visibility. ACM Transactions on Graphics,

22(3):453–462, 2003.

[Mit08] Martin Mittring. Advanced virtual texture topics. ACM SIGGRAPH

Games, pages 23–51, 2008.

[MMY11] Al Mansur, Yasushi Makihara, and Yasushi Yagi. Action recognition us-

ing dynamics features. IEEE International Conference on Robotics and

Automation, pages 4020–4025, 2011.

[MMYT01] Tsuyoshi Minakawa, Toshio Moriya, Masami Yamasaki, and Haruo Takeda.

A multi-detailed spatial immersive display. 11th International Conference

on Artificial Reality and Tele-existence, pages 48–55, 2001.

[Mon08] Douglas C Montgomery. Design and Analysis of Experiments. John Wiley

& Sons, 2008.

[MPL11] Maud Marchal, Julien Pettre, and Anatole Lecuyer. Joyman: a human-

scale joystick for navigating in virtual worlds. IEEE Symposium on 3D

User Interfaces, pages 19–26, 2011.

[MRC05] Meinard Mller, Tido Rder, and Michael Clausen. Efficient content-based re-

trieval of motion capture data. ACM Transactions on Graphics, 24(3):677–

685, 2005.

184

[MST+11] Daniel L. Marks, Hui S. Son, Eric J. Tremblay, Joseph E. Ford, Paul O.

McLaughlin, Michael Gehm, Ronald A. Stack, Steven D. Feller, Jungsang

Kim, and David Brady. Optical testing of the AWARE wide field 2-gigapixel

multiscale camera. Frontiers in Optics, 2011.

[NBC06] Tao Ni, Doug A. Bowman, and Jian Chen. Increased display size and reso-

lution improve task performance in information-rich virtual environments.

Graphics Interface, pages 139–146, 2006.

[NS03] Kai Nickel and Rainer Stiefelhagen. Pointing gesture recognition based on

3D-tracking of face, hands and head orientation. 5th International Confer-

ence on Multimodal Interfaces, pages 140–146, 2003.

[NSMG04] Michael Nielsen, Moritz Strring, Thomas B Moeslund, and Erik Granum.

A procedure for developing intuitive and ergonomic gesture interfaces for

HCI. Gesture-Based Communication in Human-Computer Interaction,

pages 409–420, 2004.

[NWFF08] Juan Carlos Niebles, Hongcheng Wang, and Li Fei-Fei. Unsupervised learn-

ing of human action categories using spatial-temporal words. International

Journal of Computer Vision, 79(3):299–318, 2008.

[PA08] Emmanuel Pietriga and Caroline Appert. Sigma lenses: Focus-context

transitions combining space, time and translucence. 26th Annual SIGCHI

Conference on Human Factors in Computing Systems, pages 1343–1352,

2008.

[PBA10] Emmanuel Pietriga, Olivier Bau, and Caroline Appert. Representation-

independent in-place magnification with sigma lenses. IEEE Transactions

on Visualization and Computer Graphics, 16(3):455–467, 2010.

[PBO+14] Gregorio Palmas, Myroslav Bachynskyi, Antti Oulasvirta, H-P Seidel, and

Tino Weinkauf. Movexp: A versatile visualization tool for human-computer

interaction studies with 3d performance and biomechanical data. IEEE

Transactions on Visualization and Computer Graphics, 20(12):2359 – 2368,

2014.

[PCS95] Catherine Plaisant, David Carr, and Ben Shneiderman. Image-browser

taxonomy and guidelines for designers. IEEE Software, 12(2):21–32, 1995.

185

[PCS+13] Charilaos Papadopoulos, Ho Jin Choi, Joydeep Sinha, Kiwon Yun, Dimitris

Samaras, and Arie E. Kaufman. Gestural interfaces for the reality deck.

Center for Dynamic Data Analytics (CDDA) Workshop, 2013.

[PCS+15] Charilaos Papadopoulos, Ho Jin Choi, Joydeep Sinha, Kiwon Yun, Arie E.

Kaufman, Dimitris Samaras, and Bireswar Laha. Practical chirocentric

3dui platform for immersive environments. IEEE 3D User Interfaces Sym-

posium, pages 31–34, 2015.

[PDK10] Kevin Ponto, Kai Doerr, and Falko Kuester. Giga-stack: A method for

visualizing giga-pixel layered imagery on massively tiled displays. Future

Generation Computer Systems, 26(5):693–700, 2010.

[PGK15] Charilaos Papadopoulos, Ievgeniia Gutenko, and Arie E. Kaufman.

VEEVVIE - Visual Explorer for Empirical Visualization, VR and Interac-

tion Experiments. Submitted to IEEE Visual Analytics Science and Tech-

nology, 2015.

[PK13a] C. Papadopoulos and A. E. Kaufman. Building the reality deck. POW-

ERWALL: International Workshop on Interactive, Ultra-High-Resolution

Displays, SIGCHI Conference on Human Factors in Computing Systems,

2013.

[PK13b] Charilaos Papadopoulos and Arie E Kaufman. Acuity-driven gigapixel

visualization. IEEE Transactions on Visualization and Computer Graphics,

19(12):2886–2895, 2013.

[PMG+15] Charilaos Papadopoulos, Seyedkoosha Mirhosseini, Ievgeniia Gutenko,

Kaloian Petkov, Arie E. Kaufman, and Bireswar Laha. Scalability lim-

its of large immersive high-resolution displays. IEEE Virtual Reality, 2015.

[PMK14] Charilaos Papadopoulos, Seyedkoosha Mirhosseini, and Arie E. Kaufman.

Immersive visualization of storm-surge simulations. CEWIT International

Conference & Expo on Emerging Technologies for a Smarter World, 2014.

[Pop10] Ronald Poppe. A survey on vision-based human action recognition. Image

and Vision Computing, 28(6):976–990, 2010.

186

[PPK12] C. Papadopoulos, K. Petkov, and A. Kaufman. 1,500,000,000 pixels on a

budget - building the realitydeck. CEWIT 2012, 2012.

[PPK13] Kaloian Petkov, Charilaos Papadopoulos, and Arie E. Kaufman. Visual

exploration of the infinite canvas. IEEE Virtual Reality, pages 11–14, 2013.

[PPKM15] Charilaos Papadopoulos, Kaloian Petkov, Arie E. Kaufman, and Klaus

Mueller. The Reality Deck - Immersive Gigapixel Display. IEEE Computer

Graphics and Applications, 35(1):33–45, 2015.

[PRS10] Mark W. Powell, Ryan A. Rossi, and Khawaja Shams. A scalable image

processing framework for gigapixel Mars and other celestial body images.

IEEE Aerospace Conference, pages 1–11, 2010.

[PSK12a] Charilaos Papadopoulos, Daniel Sugarman, and Arie Kaufman. Nunav3d:

A touch-less, body-driven interface for 3D navigation. IEEE Virtual Reality

Poster Session, 0:67–68, 2012.

[PSK12b] Charilaos Papadopoulos, Daniel Sugarman, and Arie E. Kaufman. Body-

driven navigation for 3D visualization using NuNav3D. IEEE Pacific Vi-

sualization, 2012.

[QZP+08] Feng Qiu, Bin Zhang, Kaloian Petkov, Lance Chong, Arie Kaufman, Klaus

Mueller, and Xianfeng David Gu. Enclosed five-wall immersive cabin. 4th

International Symposium on Advances in Visual Computing, pages 891–

900, 2008.

[RFT+13] Roy A Ruddle, Waleed Fateen, Darren Treanor, Peter Sondergeld, and Phil

Ouirke. Leveraging wall-sized high-resolution displays for comparative ge-

nomics analyses of copy number variation. IEEE Symposium on Biological

Data Visualization, pages 89–96, 2013.

[Rob07] Jonathan C Roberts. State of the art: Coordinated & multiple views in

exploratory visualization. International Conference on Coordinated and

Multiple Views in Exploratory Visualization, pages 61–71, 2007.

[RR08] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly Media,

Inc., 2008.

187

[RTR+15] Roy A Ruddle, Rhys G Thomas, Rebecca S Randell, Philip Quirke,

and Darren Treanor. Performance and interaction behaviour during vi-

sual search on large, high-resolution displays. Information Visualization,

14:137–147, 2015.

[SA82] Bob Spence and Mark Apperley. Bifocal display, 1982. www.

interaction-design.org/encyclopedia/bifocal_display.html.

[SADK+09] Lauren Shupp, Christopher Andrews, Margaret Dickey-Kurdziolek, Beth

Yost, and Chris North. Shaping the display of the future: The effects

of display size and curvature on user performance and insights. Human

Computer Interaction, 24(1-2):230–272, 2009.

[SCP95] Richard Stoakley, Matthew J. Conway, and Randy Pausch. Virtual reality

on a wim: interactive worlds in miniature. SIGCHI Conference on Human

Factors in Computing Systems, pages 265–272, 1995.

[SD09] Jeff Sauro and Joseph S Dumas. Comparison of three one-question, post-

task usability questionnaires. SIGCHI Conference on Human Factors in

Computing Systems, pages 1599–1608, 2009.

[SD10] Martin Spindler and Raimund Dachselt. Exploring information spaces by

using tangible magic lenses in a tabletop environment. 28th International

Conference on Human Factors in Computing Systems (Extended Abstracts),

pages 4771–4776, 2010.

[SGS04] Karan Singh, Cindy Grimm, and Nisha Sudarsanam. The ibar: a

perspective-based camera widget. ACM Symposium on User Interface Soft-

ware and Technology, pages 95–98, 2004.

[Sho92] Ken Shoemake. Arcball: a user interface for specifying three-dimensional

orientation using a mouse. Graphics Interface, pages 151–156, 1992.

[SLC04] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human

actions: a local svm approach. International Conference on Pattern Recog-

nition, 3:32–36, 2004.

[SMvB+10] Martijn D. Steenwijk, Julien Milles, Mark A. van Buchem, John H.C.

Reiber, and Charl P. Botha. Integrated visual analysis for heterogeneous

188

www.interaction-design.org/encyclopedia/bifocal_display.html
www.interaction-design.org/encyclopedia/bifocal_display.html

datasets in cohort studies. IEEE VisWeek Workshop on Visual Analytics

in Health Care, 2010.

[SPSS11] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Human

activity detection from RGBD images. AAAI Workshop: Plan, Activity,

and Intent Recognition, 2011.

[SSJ+11] Brian Summa, Giorgio Scorzelli, Ming Jiang, Peer-Timo Bremer, and Vale-

rio Pascucci. Interactive editing of massive imagery made simple: turning

atlanta into atlantis. ACM Transactions on Graphics, 30(2):7, 2011.

[SSK+13] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark

Finocchio, Andrew Blake, Mat Cook, and Richard Moore. Real-time hu-

man pose recognition in parts from single depth images. Communications

of the ACM, 56(1):116–124, 2013.

[Sut65] Ivan E. Sutherland. The ultimate display. IFIP Congress, pages 506–508,

582–583, 1965.

[TGSP06] Desney S. Tan, Darren Gergle, Peter Scupelli, and Randy Pausch. Physi-

cally large displays improve performance on spatial tasks. ACM Transac-

tions on Computer-Human Interaction, 13(1):71–99, 2006.

[TM04] Melanie Tory and Torsten Moller. Human factors in visualization research.

IEEE Transactions on Visualization and Computer Graphics, 10(1):72–84,

2004.

[TMJ98] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The

clipmap: A virtual mipmap. 25th Annual Conference on Computer Graph-

ics and Interactive Techniques, pages 151–158, 1998.

[TS99] Masashi Toyoda and Etsuya Shibayama. Hyper mochi sheet: A predictive

focusing interface for navigating and editing nested networks through a

multi-focus distortion-oriented view. SIGCHI Conference on Human Fac-

tors in Computing Systems, pages 504–511, 1999.

[WCL03] Grant Wallace, Han Chen, and Kai Li. Color gamut matching for tiled

display walls. Workshop on Virtual Environments, pages 293–302, 2003.

189

[Wil83] Lance Williams. Pyramidal parametrics. SIGGRAPH, Computer Graphics,

17(3):1–11, 1983.

[WL95] Colin Ware and Marlon Lewis. The dragmag image magnifier. Human

Factors in Computing Systems, pages 407–408, 1995.

[WO90] Colin Ware and Steven Osborne. Exploration and virtual camera control in

virtual three dimensional environments. SIGGRAPH, Computer Graphics,

24(2):175–183, 1990.

[WP09] Robert Y Wang and Jovan Popovi. Real-time hand-tracking with a color

glove. ACM Transactions on Graphics, 28(3):63, 2009.

[WWH97] Benjamin Watson, Neff Walker, and Larry F. Hodges. Managing level of

detail through head-tracked peripheral degradation: a model and result-

ing design principles. ACM Symposium on Virtual Reality Software and

Technology, pages 59–63, 1997.

[YB98] Yaser Yacoob and Michael J Black. Parameterized modeling and recog-

nition of activities. International Conference on Computer Vision, pages

120–127, 1998.

[YCF+00] Chen Yuqun, D. W. Clark, A. Finkelstein, T. C. Housel, and Li Kai. Au-

tomatic alignment of high-resolution multi-projector displays using an un-

calibrated camera. IEEE Visualization, pages 125–130, 2000.

[YDK11] So Yamaoka, Kai-Uwe Doerr, and Falko Kuester. Visualization of high-

resolution image collections on large tiled display walls. Future Generation

Computer Systems, 27(5):498–505, 2011.

[YGVG12] Angela Yao, Juergen Gall, and Luc Van Gool. Coupled action recogni-

tion and pose estimation from multiple views. International Journal of

Computer Vision, 100(1):16–37, 2012.

[YHC+12] Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay, Tamara L Berg,

and Dimitris Samaras. Two-person interaction detection using body-pose

features and multiple instance learning. IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 28–35, 2012.

190

[YHN07] Beth Yost, Yonca Haciahmetoglu, and Chris North. Beyond visual acuity:

the perceptual scalability of information visualizations for large displays.

SIGCHI Conference on Human Factors in Computing Systems, pages 101–

110, 2007.

[YN06] Beth Yost and Chris North. The perceptual scalability of visualization.

IEEE Transactions on Visualization and Computer Graphics, 12(5):837–

844, 2006.

[ZBL+10] Jamie Zigelbaum, Alan Browning, Daniel Leithinger, Olivier Bau, and Hi-

roshi Ishii. g-stalt: a chirocentric, spatiotemporal, and telekinetic gestural

interface. Fourth International Conference on Tangible, Embedded, and

Embodied Interaction, pages 261–264, 2010.

[ZDlTH13] Feng Zhou, Fernando De la Torre, and J Hodgins. Hierarchical aligned clus-

ter analysis for temporal clustering of human motion. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(3):582–596, 2013.

[ZH93] Ferdinand Zijlstra and Rudolf Hendrikus. Efficiency in work behaviour: A

design approach for modern tools. Delft University Press, 1993.

[ZMB11] David J. Zielinski, Ryan P. McMahan, and Rachel B. Brady. Shadow

walking: An unencumbered locomotion technique for systems with under-

floor projection. IEEE Virtual Reality, pages 167–170, 2011.

191

	List of Figures
	List of Tables
	Acknowledgements
	List of Publications
	Introduction
	Why build Large High-Resolution Displays?
	Evolution of LHiRDs
	Overarching Motivation
	Enabling Physical Navigation
	Leveraging Physical Navigation
	Evaluating the limits of LHiRDs
	Visual Analytics for Visualization Experiments
	Summary

	Related Work
	Fundamentals of Visualization System Design
	Large-scale Immersive Visualization Environments
	CAVE Automatic Visual Environment and Variations
	Large High-Resolution Displays
	Hybrid Systems

	Distributed Visualization Software
	Graphics API Stream Replication
	Distributed Rendering Libraries
	Multi-application Clustered Rendering Frameworks

	Gesture-based User Interfaces
	Navigation in Immersive Virtual Environments
	Hand pose recognition
	Activity recognition
	Chirocentric User Interfaces

	Gigapixel Visualization
	Rendering and Exploring Gigapixel Images
	Focus and Context Techniques
	Perceptually Optimized Level-of-Detail

	Experimental Evaluation in Visualization, VR and HCI
	Experimental Design
	User Studies
	Visual Analytics for Experiments

	The Reality Deck - Immersive Gigapixel Display
	Introduction
	``Immersifying'' a Tiled Display Wall
	Building an Immersive Gigapixel Display
	Display Selection and Customization
	Visualization Cluster and Peripherals

	Visualization Software and Applications
	Visualization Software Architecture
	Visualization Applications
	Gigapixel Image Exploration
	Geospatial Data Visualization
	2D GIS Visualization
	3D GIS Immersive Visualization

	NuNav3D - Natural User Interface for 3D Navigation
	Introduction
	NuNav3D: A Navigation NUI for 3D Visualization
	Pose Recognition Framework
	Definition of the Navigation Scheme
	Transition to/from Navigation Mode
	Hand Motions to Navigation

	Implementation
	4-DOF versus 6-DOF

	Evaluation
	Hypothesis and Metrics
	Apparatus
	Trial Data Sets
	Trial Procedure
	Results

	Conclusion

	Practical Chirocentric 3DUI Platform for Immersive Environments
	Introduction
	Algorithmic Framework
	Hand Pose Recognition
	Gesture Recognition

	Experiments
	Data Sets
	Algorithm Performance

	A Practical Chirocentric User Interface
	Visualization platform and applications
	Supported Interactions
	Implementation
	Observations from Deployment

	Conclusion

	Acuity-driven Gigapixel Visualization
	Introduction
	Acuity-driven LoD Selection
	Acuity-driven Tessellation for F+C Lenses
	Lens-based Tessellation Metric
	View-based Tessellation
	Combined Metric

	Implementation
	Results
	Evaluation
	Study Design
	Results and Discussion
	Performance
	Data Transfer Overhead for Acuity-driven LoD Selection
	Frame Rates for Acuity-driven Tessellation

	Conclusion and Lessons Learned

	Scalability of Large, Immersive, High-Resolution Displays
	User Study Design
	Selecting the Information Space
	Hypotheses
	Apparatus, Display Form-factors and Implications
	Data, Visualization and Tasks
	Participants
	Independent and Dependent Variables
	Protocol

	Results
	ET
	SET
	SMEQ
	TRAVEL

	Interpretation of Results
	Physical Navigation Analysis
	Discussion
	Implications for design

	Conclusion

	VEEVVIE - Visual Explorer for Empirical Visualization, VR and Interaction Experiments
	Introduction
	Defining the Problem Space
	Examples of Visual Analysis for Experiments
	Tasks
	Input Data

	An Ontology for Describing Experiments
	Core Classes
	Application to Experiments
	Implementation

	The VEEVVIE Front-end
	Layout and Functionality
	Implementation and Extensibility
	Built-in Visualizations

	Usage
	Experiment Description
	Implementing a Custom Visualization Widget
	Case 1: Hypothesis Validation
	Case 2: Insight Gathering
	Case 3: Hypothesis Generation

	Conclusion

	Conclusions
	Summary of Contributions
	Future Work
	Short-term Guidance
	Long-term Guidance

	Bibliography

