

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

GPU-Acceleration of X-ray Photon Scattering Simulation

A Thesis Presented

by

Jaewoo Pi

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

December 2014

ii

Stony Brook University

The Graduate School

Jaewoo Pi

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Klaus Mueller
Professor, Department of Computer Science

Pradipta De
Assistant Professor, Department of Computer Science

Ilchul Yoon
Assistant Professor, Department of Computer Science

This thesis is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

iii

GPU-Acceleration of X-ray Photon Scattering Simulation

by

Jaewoo Pi

Master of Science

in

Computer Science

Stony Brook University

2014

Computed Tomography is widely used in numerous fields. To facilitate the development

of an algorithm while avoiding additional radiation dose to the patient, the simulation of the CT

imaging process is required. The scattering effect of X-ray photons impact on quality of output

images. Thus, modeling the scattering is an important task to predict and eliminate the effects on

energy. However, the simulation has been challenging task. Two approaches, deterministic and

Monte Carlo method has been widely used, but both methods have to undergo trade-off between

speed and sampling rate. In this research, the new algorithm which exploits Bi-directional ray

tracing technique, is suggested and implemented. The experimental program is focused

specifically on parallelism on general-purpose GPUs. With the optimization, the result shows

promising mark.

iv

“All forward motion counts.”

 - Hollie Baylor

v

Table of Contents

Pages

Chapter 1. Introduction ………………………………………………………………………….. 1

Chapter 2. Related Research ……………………………………………………………….……. 3

Chapter 3. Theories and Backgrounds …………………………………………………………... 5

 3.1. CT Image Formation ………………………………………………………………... 5

 3.2. The Scattering Effect ……………………………………………………………….. 9

 3.3. Bi-directional Ray Tracing …………………………………………………………11

 3.4. General-Purpose GPU Utilization ………………………………………………….13

 3.5. Combining Tomographic Image Reconstruction with Bi-directional Ray Tracing...15

Chapter 4. System Configuration ……………………………………………………………….17

Chapter 5. System Implementation and Performance …………………………………………..19

 5.1. Attenuation Caching Layer Generation …………………………………………….19

 5.2. Scattering from All Pixels Computation ……………………………………………21

 5.3. Simulation Performance …………………………………………………………….23

 5.4. Improvement of the Algorithm ……………………………………………………..24

Chapter 6. Conclusion and Future Work ……………………………………………………......26

Bibliography …………………………………………………………………………………….27

vi

List of Figures/Tables/Illustrations

Pages

Table 1. Table 1. Tissues with their corresponding CT numbers …………………………...……5

Figure 3.1. Formation of Sinogram ……………………………………………………………….7

Figure 3.2. Overall CT Image acquisition Processs ………………………………………………8

Figure 3.3. Principle of Compton Scattering ……………………………………………………..9

Figure 3.4. Klein-Nishina Distribution ………………………………………………………….10

Figure 3.5. Bi-directional ray tracing ……………………………………………………………11

Figure 3.6. A 2-D Geometry of Formation of Caching Layer …………………………………..16

Figure 4.1. Simple Phase Functions for Experiments ……………………..……………….……18

Figure 5.1. Pseudo code of Attenuation Caching Layer (Map) generation algorithm …………..19

Figure 5.2. Examples of Attenuation Layer: Original Cross Section (Left), and Attenuation Layer
(Right)……………………………………………………………………………………………20

Figure 5.3. Pseudo code of computing scattering from all pixels ……………………………….21

Figure 5.4. Example of scattering effect: (a) original cross-sectional image, intensity of the
energy at the detector (b) with no scattering, (c) reasonable scattering, and (d) extreme scattering

……………………………………………………………………………………………………22

Figure 5.5. Result of experiment: Computation time of CPU and GPU, with input image size
100x100 pixels to 500x500 pixels …………………………………………………………........23

Figure 5.6. Performance comparison: 3-D grid of threads versus 2-D grids with iterative ……..24

Figure 5.7. Video memory usage comparison: 3-D grid of threads versus 2-D grids with iterative
method …………………………………………………………………………………………..25

vii

List of Abbreviations

CT - Computated Tomography

GPU - Graphics Processing Unit

GPGPU - General-Purpose Graphics Processing Unit

MRI - Magnetic Resonance Imaging

PET - Position Emission Tomography

RoI - Region of Interest

CUDA - Computer Unified Device Architecture

AMD – Advanced Micro Devices

viii

Acknowledgments

I do appreciate Dr. Klaus Mueller, for his invaluable guidance. Thanks to

my family for infinite support. Thanks to colleagues from department of

Computer Science at SUNY Korea for professional discussions, especially Dr.

Pradipta De and Dr. Ilchul Yoon, Arani Bhattacharya, Darius Coelho, Tan Le, and

Quoc Duy Vo. Thank you colleagues at Visual Analytics and Imaging lab at

Stony Brook University for all their input and ideas.

1

Chapter 1

Introduction

 In Computed Tomography (CT), also known as Computed-Aided

Tomography (CAT) is used for patient diagnosis in hospital, and also used for

airport baggage security and for nondestructive evaluation in manufacturing [1].

In recent years scientists in the field of x-ray tomography rely on the simulation,

and the sophistication of tomographic reconstruction algorithm has improved

dramatically.

 The effort of reducing radiation exposure is another important issue in

medical imaging. To facilitate the development of new algorithms while avoiding

additional radiation dose to the patient, the simulation of the imaging process is

required. The scatter effect of X-ray photons significantly impact to quality of

output images. More specifically, it impacts CT number inaccuracy, contrast

difference, and more artifacts that hinders from getting an accurate output images.

In early 70’s, it has been realized that the Compton Effect may give rise to

new challenging imaging modalities. Compton scattered radiation behaves as

noise hindering image quality. Modeling this scattering effect for the simulation

has been challenging task [2]. Much sophisticated model is needed to model and

simulate such scattering effects, and eventually minimize the effect of scattering

2

on output images. However, more sophisticated model led high computational

cost.

 The rise of General-Purpose GPU shed a light on reducing computation

time, by adopting parallelism. It is relatively lower cost than numerous multi-core

systems, still enables running program in parallel for computer graphics, and

various scientific simulations. The GPUs, however, has unique hardware

architecture, and a developer have to have understandings on internal structure.

 The main goal of this research is to achieve fast, yet considering scattering

effects from all samples. The remainder of thesis is organized as following:

chapter 2 shows related research that have been done to achieve same or similar

goals, chapter 3 explains background knowledge and theories about CT image

formation, X-ray photon scattering effect, bi-directional ray tracing algorithm,

followed by the architectural properties of GPU, and methodology of GPU

utilization for bi-directional ray tracing. Chapter 4 shows system configuration for

the simulation, and chapter 5 depicts implementation details with the result of

experiments. Finally, chapter 6 sums up and discuss about the result and possible

future research.

3

Chapter 2

Related Research

There are numerous computer codes for simulation based on ray tracing

technique and on the X-ray attenuation, developed by a number of research

groups. In general, two methods are widely used. Conventionally, the ray tracing

algorithm is deterministic which accounts for attenuation from direct ray. This

method is fast, but does not take into account of indirect photons. The other is

Monte Carlo method, which is used at one of the well-developed simulations

Duvauchelle et al. [3]. Their software includes test chain to reduce the number of

experimental tests. However, a major drawback of Monte Carlo simulation is the

extensive expenditure of computation time.

Several research groups have proposed hybrid approaches by adding

stochastic properties into the deterministic approaches, to achieve physical

accuracy [4][5]. Parallel implementation of scattering simulations have also been

introduced to overcome tremendous amount of computation cost [6][7]. However,

both of these methods have to confront speed and accuracy trade-off.

In this research, we developed an algorithm that simulates first-order

scattering of X-ray photons. The idea shares common property with the global

illumination problem in Computer Graphics; simulating photons which collide

and are reflected, absolved, refracted. Traditional ray tracing algorithm build the

4

ray around the importance of the viewing point. Progressive radiosity method, in

contrast, emphasize more contributions of the light sources. Bi-directional ray

tracing method is the idea of shooting and gathering power to create photorealistic

images [8]. This method performs better than single-directional ray tracing,

however still utilizes Monte Carlo method and thus has trade-offs between over-

solving (more accuracy, less speed), and less-solving (less accuracy, more speed).

In general, transporting a CPU-based algorithm to the GPU is not

straightforward. It requires a new set of algorithms that involves a deep

understanding of the GPU architecture and its programming model, and fitting the

physical phenomenon into the General-Purpose GPU parallelism. The new

algorithm that suggested in the rest of the contents has achieved higher

performance in terms of both speed, yet not sacrificing the sample rate.

5

Chapter 3

Theories and Background

3.1. CT Image Formation

 Almost all diagnostic imaging techniques, such as X-ray computed

tomography (CT), magnetic resonance imaging (MRI), and position emission

tomography (PET) rely on tomographic reconstruction. The formation of a

digitized image utilizes image reconstruction algorithm from the raw data

acquired from CT detectors. Figure 3-1 depicts the procedure of generating cross-

sectional image from CT machine. The detector and the x-ray cone beam

projector rotates around the target object, and casted photons travel through the

object. The photons loses energy as they penetrate through the matters, called

attenuation coefficient, and denoted as	ૄ.

 In reality, the attenuation is measured by CT number, which is normalize

value compared to attenuation of water. The following formula calculates CT

number, which is referred to as Hounsfield Unit (HU):

࢞ࢁࡴ																					 ൌ 	
࢞ࣆ െ ࢘ࢋ࢚ࢇ࢝ࣆ
࢘ࢋ࢚ࢇ࢝ࣆ

.ܙ۳												૚૙૙૙.	ܠ	 ሺ૚ሻ

Table 1 gives a section of tissues with their corresponding CT numbers

[9]. Note that the bigger number indicates more attenuation and less number

means that the matter allows more photons to penetrate.

6

Tissue CT Number, approx.

Dense Bone 1000+

Muscle 10-40

Liver 40-60

Blood 40

Kidney 30

Water 0

Fat -50 to -100

Air -1000+

Table 1. Tissues with their corresponding CT numbers

 In 2-D case, Radon transform ࣆࡾሺࣂ, ࢙ሻ is defined as line integral of

function ࣆሺ࢞, ࢟	ሻ along a line	ࡸ, inclined at angle	ી, at distance s from the origin.

This is formally defined as:

,ࣂሺࣆࡾ ࢙ሻ ൌ 	නࣆሺ࢞, ࢟ሻ࢛ࢊ
ࡸ

		

,ࣂሺࢌࡾ ࢙ሻ ൌ න න ,ሺ࢞ࣆ ࢟ሻࢾሺ࢞ࣂܛܗ܋ ൅ ࣂܖܑܛ࢟ െ ࢙ሻ࢟ࢊ࢞ࢊ,
ஶ

ିஶ

.ܙ۳											 ሺ૛ሻ
ஶ

ିஶ

	

where ઼ሺ࢞ሻ denotes Dirac’s delta function [10].

A function ࣆሺ࢞, ࢟	ሻ denotes the distribution of the X-ray attenuation

coefficient within the object.

7

The photon Intensities ۷ܒ at the detector bin positions ܒ are preprocessed to

projection data	࢐࢖, which is:

ܒ࢖					 ൌ 	െ ܖܔ
࢐ࡵ

૙ࡵ
ൌ 	නࣆሺ࢞, ࢟ሻ,࢟ࢊ࢞ࢊ																			ܙ۳. ሺ૜ሻ

ࡸ

and the X-ray photons traveling along line ࡸ is attenuated by the object according

to Beer’s law for the photon intensities ࢐ࡵ can be formally defined as:

࢐ࡵ								 ൌ 	 ૙ࡵ ,ሺ࢞ࣆെන	ቆܘܠ܍ ࢟ሻ
ࡸ

ቇ࢟ࢊ࢞ࢊ .ܙ۳														, ሺ૝ሻ

where ࡵ૙ is the initial photon intensity.

Figure 3.1. Formation of Sinogram

Reconstruction in tomography means a recovery from samples of Radon

transform of an unknown object density distribution. The goal of CT imaging is to

reconstruct ࣆሺ࢞, ࢟	ሻ from the projections of the object. Inverse radon transform is

8

the basic tool to perform the reconstruction, however, there needs much more

sophisticated method to reconstruct.

In summary, Figure 3.2 depicts the overall process of the CT image

acquisition. Section 3.2 covers the scattering effect in progress of getting

sinogram.

Figure 3.2. Overall CT Image acquisition process

9

3.2. The Scattering Effect

In early 70’s it has been realized that the Compton Effect may give rise to

new challenging imaging modalities. Compton scattered radiation behaves as

noise hindering image quality. Compton Effect is the scattering of X-photons with

electric charges. The energy of a scattered photon is related to the scattering angle

ω can be formally defined as:

௪ܧ																						 ൌ 	
଴ܧ

1 ൅	
଴ܧ
݉ܿଶ

ሺ1 െ cos߱ሻ
.ܙ۳																 ሺ5ሻ

where ܧ଴ is the emitted photon energy and ݉ܿଶ denotes the energy of an electron

at rest (0.511MeV). Figure 3.3 below depicts the principle of Compton Effects

[1]. As a result, a scattered photon steers its direction with lowered energy.

Figure 3.3. Principle of Compton Scattering

10

 The Compton scattering equation is correlated to the mass of electron,

initial and final wavelength, and scattering angle ૑. In other words, different

materials and the intensity of initial energy from the X-ray source decides the

scattering angle and final energy intensity. This relation is formally given by

Klein-Nishina formula. Figure 3.4 shows the Klein-Nishina distribution of

scattering-angle cross sections over a range of commonly encountered energies.

Note that the diameter of the circular plot indicates ratio of photon energy after

and before the collision [11].

Figure 3.4. Klein-Nishina Distribution

11

3.3. Bi-direction Ray Tracing

Originally, ray tracing has been widely used technique for global

illumination in computer graphics. The goal of global illumination is to find a

relevant set of virtual point light sources to illuminate the object seen by camera

[12]. Formally, solving the global illumination problem leads to evaluate the

following equation:

ሻ܍૑,ܠሺࡸ			 ൌ ሻࢋ࣓,ሺ࢞࢖ࡸ ൅	නࡸሺ࢞,࣓࢏ሻ࢘ࢌሺ࢞,࢝࢏, ሻࢋ࢝ ሻ࢏ࣂሺܛܗ܋ .ܙ۳										࢏࣓ࢊ ሺ૟ሻ
ષ

where ࡸሺܠ,૑܍ሻ is the incoming radiance from point x in direction	૑࢖ࡸ ,܍ሺ࢞,࣓ࢋሻ

is the emission from point x in direction	૑ࡸ ,܍ሺ࢞,࣓࢏ሻ is the outgoing radiance at

point x in direction 	૑܍ , and ࢘ࢌሺ࢞,࢝ࢋ࢝,࢏ሻ is the bi-directional reflectance

distribution function (BRDF) of the material at point x.

Bi-direction ray tracing technique, also called ‘two-pass’ ray tracing has

been originated from the concept of caching illumination. Two paths use cached

illumination maps of each other’s so that the computation cost can be dramatically

reduced. Bidirectional ray tracing technique combined with Monte Carlo method

has been developed for faster computation cost and consideration of all kind of

indirect illumination [13]. The fundamental idea is that rays or photons are cast

simultaneously at selected light source and viewing points. More specifically,

figure 3.5 depicts that the virtual ray creates the sub-paths from both light source

12

and detector (or camera) at random points. The source S cast ray to the random

point p1, and it continuously cast to the random point to reach p2. At the same

time, D cast a ray in same way as light source does, and reach to p3. A complete

path is created by concatenating these two paths. From the randomness of the

technique, not all casted rays generate full-paths from the light source to the

detector. For example, a sub-path connecting p2 and p3 may not be generated [14],

and will not be contributed for the image. Suppose there is connected path

between the light source and the detector, the tracing ray algorithm accumulates

the effects of reflection, refraction, and absorption. As a result, the detector (eye)

knows what brightness value on the object surface.

Figure 3.5. Bi-directional ray tracing

With this technique, the system can go into diverse types of geometrical

objects. Furthermore, diffuse lighting effects, soft shadows, specular and glossy

reflection and refraction can be simulated with much more accuracy [8].

13

3.4. General-Purpose GPU Utilization

 Conventionally improving performance of computers is attained by CPU

clock rate increment. However, the physical components of processors are

reaching physical limitation of circuit density and power consumption. Thus

Moore’s Law, which states the speed of processors doubles every eighteen

months, now implies not only clock rate increment, but also increasing concurrent

execution with efficient communication among parallel cores.

 Typical GPUs contains hundreds of multiprocessing core. The throughput

of a high-end graphics card is on the order of four teraflops per second. They are

designed to perform calculations on large amounts of independent data. In recent

trends, General-purpose Graphical Processing Unit (GPGPU) has been widely

used not only for computer graphics, but also mathematical and scientific

computing. GPGPU code executes massively parallel on personal computers.

The largest graphics card manufacturers provide software development

kits for programming on their GPUs. OpenCL framework is for writing program

that execute across heterogeneous platforms, such as GPUs, DSPs, or FPGAs.

OpenCL has been adopted by various chip vendors, and their use of GPU for

general purpose is currently in stable release. However NVIDIA’s CUDA is

currently dominant in the market [15].

14

CUDA (Computer Unified Device Architecture) is a C-like API used to

program the NVIDIA GPUs. It supports single program multiple data (SIMD),

which means one set of instruction is executed by many threads. A CUDA

program begins with initialization of variables and memory allocation from host

(CPU) to device (GPU). Typically, the GPU cannot access the memory of the

CPU, and special operation is needed to copy data between host and device.

Execution of a task by a CUDA kernel is organized into thread blocks.

Thread blocks are organized into grids. The GPU used for our experiment

supports CUDA 2.1, supports up to 1024 threads per thread block. Once a thread

block is assigned to a streaming multi-processor, it is further divided into 32-

thread units called warps, and each warp is following same instruction.

 For our simulation, we accelerated the first-order scattering simulation on

NVIDIA GTX 560. This GPU, like all modern GPUs has off-chip memory and

on-chip caching mechanisms. Off-chip memory includes global, texture and

constant memory which incurs hundreds of cycles of memory latency. This

device, unlike 1.x version, supports maximum three dimensional grid of thread

blocks, has 32K of 32-bit registers per multiprocessor, and has 32 shared memory

banks.

15

3.5. Combining Tomographic Image Reconstruction with Bi-directional Ray

Tracing

Bi-directional ray tracing technique has been applied on the backscattering

tomographic image reconstruction algorithm. In the case of CT, the light source is

regarded as an X-ray source, and the camera is an X-ray detector.

 Suppose photons travel from the X-ray source through ray. At each small

portion of the object (a pixel in cross-sectional image), major number of photons

travel straight towards the detector, while little portion of photons will scatter

with reduced amount of energy. The scattered photons may reach to another

detector bucket with lowered energy. From the view at the detector bin in terms of

bi-directional ray tracing, each bin has limited view of detecting scattered photons.

First step of the algorithm is to compute a layer of photon-scattered cross-

sectional image, assuming a cross-sectional image with no scattering is acquired

first. As stated in section 3.2., the layer caches source to pixel attenuation. To

achieve the attenuation, each thread on CUDA block accounts for each pixel at

the cross-sectional image, and compute the intensity of the energy and traveling

angle of photons shot from the X-ray source just before ray hits the corresponding

pixel. Then, the threads multiply by the attenuation at its pixel itself and store.

16

Second step is to generate the region of interest (ROI) from detector side.

The detector consist of a number of buckets, which collects X-ray photons that are

not absorbed or scattered within their ROI. The system traces a ray from the

detector. In reality each detector bin in CT machine has filter so that it reduces the

amount of artifacts [16], thus their sight angle to catch the photon is limited. I

define a ‘fishnet’, literally implies that a detector bin catches coming photon

within its fishnet to simulate filtering property. Each pixel of the object has a

phase function that simulates Compton scattering. The phase function steers

photons with lowered energy. Since this energy shift depends on the angle of

scattering and not on the nature of the scattering medium, it is reasonable to

simulate that all pixel have common phase function.

Figure 3.6. A 2-D Geometry of Formation of Caching Layer

17

Chapter 4

System Configuration

The major goal of the experiment is to get rid of the randomness, yet does

not sacrifice the computing speed. As stated section 3.3, the deterministic method

sacrifices computation cost, while Monte Carlo method sacrifices the accuracy as

it has random characteristic.

For the experiment, the test machine has AMD Fx-8350 4.0GHz CPU

with 16GB of RAM. For GPU side, the system utilized NVIDIA GTX560 with

1GB of graphics memory. The CPU has 8 cores, but the application only uses

single core for the fair comparison with parallelism. This system configuration is

reasonable setting to compare performance between CPU with high clock speed

versus non-professional GPU.

In the experimental simulation, many properties has been simplified. For

example, attenuation coefficient is proportional to its CT-number, which means

the system the grayscale pixel value on pre-computed cross-sectional image.

Furthermore, the fathom images is used instead of realistic image, to see the clear

effect of the algorithm. The intensity of X-ray beam can be controlled by phase

functions at pixels, and separate parameter for controlling X-ray photon intensity

is not set. The phase function for the simple experiment is shown in figure 4.1.

18

The cosine function, although it is non-identical to real phase function, is used to

see how well the experimental simulation code reveals the effect of scattering.

Figure 4.1. Simple Phase Functions for Experiments

Measurement metrics is the time comparison between CPU and GPU

version of code, with experiment of various image size. Although a GPU has

multiprocessor with a number of cores, global memory operations are bottleneck

of GPU codes. On the experiment, performance of improved version of

parallelism is also measured.

19

Chapter 5

System Implementation and Performance

5.1. Attenuation Caching Layer Generation

 In first phase of the simulation the system builds Source-to-Pixel

attenuation layer. Each 2-D GPU thread take the pixel, thus tracing of a ray from

the source to each pixel runs concurrently on the GPU.

Algorithm	1.	Generate	Attenuation	Caching	Layer in	Parallel

for	all	threads	ሺthreadx,	threadyሻ do in	parallel	

								pixelx		threadx,	pixely	 thready

								Attenuation1.0	

								for	ሺrayx,	rayyሻ	ൌ	ሺsourcex,	sourceyሻ	 ሺpixelx,	pixelyሻ do

																Attenuation		Attenuation	* Objectሺrayx,	rayyሻ	* μሺrayx,	rayyሻ	

								end	

								AttenuationLayerሺthreadx,	threadyሻ Attenuation

end	

Figure 5.1. Pseudo code of Attenuation Caching Layer (Map) generation algorithm

The attenuation layer examples are shown in figure 5.2. Right hand side

shows the attenuation layer of original cross sectional image on the left. The

underlying assumption is that all pixels in the object contribute to scattering. Also,

the experimental implementation has one point source at the top of the image, and

it has enough distance to the top of the object, so that the X-ray source can cover

all pixels of the object.

20

In the attenuation map layer from the right side of figure 5.2, white area

indicates that the intensity of energy is high, while dark area has low energy

intensity. In general CT system, the most bottom line of the attenuation layer is

the energy intensity that the detector acquires.

Figure 5.2. Examples of Attenuation Layer: Original Cross Section (Left), and

Attenuation Layer (Right)

21

5.2. Scattering from all Pixels Computation

Computing scattering consists of three smaller steps. In the first step, a

thread in the RoI takes one pixel and compute attenuation from the pixel to

detector bin. In the next step, a thread combines two attenuation value at

corresponding pixel position, which are source-to-pixel, and pixel-to-bin. Also,

the phase function ߬ሺ߶ሻ is taken account. Finally, sum up all values in RoI

position for all available detector bucket, Binj. Figure 5.3 shows pseudo code for

this three step.

Algorithm	2.	Computing	Scattering	from	all	Pixels in	Parallel

for	each	bin	Binj	0	to	inf	do

								for	all	threads		ሺthreadx,	threadyሻ	in	RoI,	do	in	parallel

															pixelx	 threadx		൅offsetx,	pixely thready൅	offsety
															Attenuation	1.0	

															for	ሺLayerx,	Layeryሻ	ൌ	ሺpixelx,	pixelyሻ	 ሺbinjx,	binjyሻ do

																						Attenuation		Attenuation	*	ObjectሺLayerx,	Layeryሻ	*	μሺLayerx,	Layeryሻ
															end	

															Roij	ሺpixelx,	pixelyሻ			Attenuation	*	AttenuationLayerሺpixelx,	pixelyሻ*τሺϕሻ	

								end	

								Binj	ൌ	sumሺRoijሻ	

End	

Figure 5.3. Pseudo code of computing scattering from all pixels

Figure 5.4 shows examples of how scattering effects on two square

objects. From figure 5.3 (a) original image, three experiments, which are (b) non-

scattering, (c) reasonable amount of scattering, and (d) extreme amount of

22

scattering. For the simulation, the amount of scattering is controlled by phase

function in the object. For test case of (c) cos150(x) is applied, and cos30(x) is used

for case (d).

Figure 5.4. Example of scattering effect: (a) original cross-sectional image, intensity of

the energy at the detector (b) with no scattering, (c) reasonable scattering, and (d)

extreme scattering.

(a) (b)

(c) (d)

23

5.3. Simulation Performance

 For the evaluation metric, I use computation time compared with CPU

code. Since the performance of the GPU varies by number of cores, size of

installed memory, and CUDA machine versions, it is hard to measure the

performance of the algorithm itself within GPU experiments. Instead of using

multiple threads of the GPU, CPU code use for-loop to iterate over all pixel

positions. Figure 5.5 depicts the comparison result from five cross-section images

with different size as input. Note that since the CPU alters its clock rate for power

saving, the CPU time is averaged over 10 top results (when the clock rate reached

maximum) out of 30 test cases. The performance of GPU dominants the CPU.

Figure 5.5. Result of experiment: Computation time of CPU and GPU, with input image

size 100x100 pixels to 500x500 pixels

24

5.4. Improvement of the Algorithm

 Although the performance of GPU dominates CPU, there is still room for

improvement. The pseudo code of computing scattering algorithm in figure 5.3

has two for-loops within a loop. The loop is major drag of CPU computing, but it

can be improved by parallelism, if outer- and inner-loop has no dependent

relationship. Since the most outer loop goes towards each detector bins, it can be

parallelized. The major issue, however, is memory consumption. It requires more

memory to be allocated at the same time, which hinders GPU computing

performance. Figure 5.6 shows performance improvement from iterative method

on 2-D grid to 3-D grid.

Figure 5.6. Performance comparison: 3-D grid of threads versus 2-D grids with iterative

25

 As shown in figure 5.7, more active blocks of threads use more memory. It

measures minimum memory required to process the algorithm. From the reason

that memory operation is a bottleneck of GPU computation, the use of 3-D thread

grids have less efficient, i.e., computational time linearly increases as the size of

the image gets larger.

Figure 5.7. Video memory usage comparison: 3-D grid of threads versus 2-D grids with

iterative method

26

Chapter 6

Conclusion and Future Work

 In this study, we modeled an algorithm and implemented code for

simulating fast, but considers all possible first-order scattering. To overcome the

trade-offs between speed and accuracy, the developed algorithm exploited bi-

directional ray tracing method, which enables simulating one or more order

scattering. The suggested GPU algorithm showed dominant performance over

CPU in terms of speed.

The experiment shows that using more thread block speeds up the overall

computation. However, since the GPU memory operation is a bottleneck, it may

result in small improvements depending on the GPU performance. Thus, use of

more thread blocks needs careful consideration, and at the same time the

optimization for less memory use is needed.

The evaluation metrics measures the performance of the algorithm itself.

Further research and implementation will focus more on i) finding a correct phase

function given a material and X-ray source intensity, and ii) reconstruction

performance with scatter effects. This will lead far more sophisticated simulation

and possibly applied to the general applications.

27

Bibliography

[1] G. Rigaud, M. K. Nguyen, and A. K. Louis, “Modeling and simulation
results on a new Compton scattering tomography modality,” Simul. Model.
Pract. Theory, vol. 33, pp. 28–44, Apr. 2013.

[2] D. Lazos, Z. Kolitsi, and N. Pallikarakis, “A Software Data Generator for
Radiographic Imaging Investigations,” vol. 4, no. 1, pp. 76–79, 2000.

[3] P. Duvauchelle, N. Freud, V. Kaftandjian, and D. Babot, “A computer code
to simulate X-ray imaging techniques,” Nucl. Instruments Methods Phys.
Res. Sect. B Beam Interact. with Mater. Atoms, vol. 170, no. 1–2, pp. 245–
258, Sep. 2000.

[4] N. Freud, J.-M. Létang, and D. Babot, “A hybrid approach to simulate
multiple photon scattering in X-ray imaging,” Nucl. Instruments Methods
Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 227, no. 4, pp.
551–558, Jan. 2005.

[5] N. Freud, P. Duvauchelle, S. a. Pistrui-Maximean, J.-M. Létang, and D.
Babot, “Deterministic simulation of first-order scattering in virtual X-ray
imaging,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact.
with Mater. Atoms, vol. 222, no. 1–2, pp. 285–300, Jul. 2004.

[6] J. Giersch, A. Weidemann, and G. Anton, “ROSI—an object-oriented and
parallel-computing Monte Carlo simulation for X-ray imaging,” Nucl.
Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect.
Assoc. Equip., vol. 509, no. 1–3, pp. 151–156, Aug. 2003.

[7] F. Inanc, B. Vasiliu, and D. Turner, “Parallel Implementation of the
Integral Transport Equation-Based Radiography Simulation Code,” Nucl.
Sci. Eng., vol. 137, no. 2, pp. 173–182, 2001.

[8] E. Lafortune and Y. Willems, “Bi-directional path tracing,” Proc.
CompuGraphics, vol. 93, pp. 145–153, 1993.

[9] J. Da Silva, “A generalized model for the conversion from ct numbers to
linear attenuation coefficients,” IEEE Trans. Nucl. Sci., vol. 50, no. 5, pp.
1510–1515, Oct. 2003.

28

[10] A. Averbuch, I. Sedelnikov, and Y. Shkolnisky, “CT reconstruction from
parallel and fan-beam projections by a 2-D discrete Radon transform.,”
IEEE Trans. Image Process., vol. 21, no. 2, pp. 733–41, Feb. 2012.

[11] X.-M. Hua, “Monte Carlo simulation of Comptonization in inhomogeneous
media,” Comput. Phys., vol. 11, no. 6, p. 660, 1997.

[12] S. B., I. J.C., M. R., and P. B., “Bidirectional Instant Radiosity,” in
Proceedings of the 17th Eurographics conference on Rendering
Techniques, 2006, pp. 389–397.

[13] H. Jensen and N. Christensen, “Photon maps in bidirectional Monte Carlo
ray tracing of complex objects,” Comput. Graph., vol. 19, no. 2, pp. 215–
224, 1995.

[14] E. Veach, “Robust Monte Carlo methods for light transport simulation,”
Stanford University, 1997.

[15] D. B. Kirk and W. Hwu, Programming Massively Parallel Processors : A
Hands-on Approach, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010.

[16] L. W. Goldman, “Principles of CT and CT technology.,” J. Nucl. Med.
Technol., vol. 35, no. 3, pp. 115–28; quiz 129–30, Sep. 2007.

