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Computed Tomography is widely used in numerous fields. To facilitate the development 

of an algorithm while avoiding additional radiation dose to the patient, the simulation of the CT 

imaging process is required. The scattering effect of X-ray photons impact on quality of output 

images. Thus, modeling the scattering is an important task to predict and eliminate the effects on 

energy. However, the simulation has been challenging task. Two approaches, deterministic and 

Monte Carlo method has been widely used, but both methods have to undergo trade-off between 

speed and sampling rate. In this research, the new algorithm which exploits Bi-directional ray 

tracing technique, is suggested and implemented. The experimental program is focused 

specifically on parallelism on general-purpose GPUs. With the optimization, the result shows 

promising mark.  
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“All forward motion counts.” 

                             - Hollie Baylor 
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Chapter 1 

Introduction 

 
 In Computed Tomography (CT), also known as Computed-Aided 

Tomography (CAT) is used for patient diagnosis in hospital, and also used for 

airport baggage security and for nondestructive evaluation in manufacturing [1]. 

In recent years scientists in the field of x-ray tomography rely on the simulation, 

and the sophistication of tomographic reconstruction algorithm has improved 

dramatically.  

 The effort of reducing radiation exposure is another important issue in 

medical imaging. To facilitate the development of new algorithms while avoiding 

additional radiation dose to the patient, the simulation of the imaging process is 

required. The scatter effect of X-ray photons significantly impact to quality of 

output images. More specifically, it impacts CT number inaccuracy, contrast 

difference, and more artifacts that hinders from getting an accurate output images. 

In early 70’s, it has been realized that the Compton Effect may give rise to 

new challenging imaging modalities. Compton scattered radiation behaves as 

noise hindering image quality. Modeling this scattering effect for the simulation 

has been challenging task [2]. Much sophisticated model is needed to model and 

simulate such scattering effects, and eventually minimize the effect of scattering 
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on output images. However, more sophisticated model led high computational 

cost.  

 The rise of General-Purpose GPU shed a light on reducing computation 

time, by adopting parallelism. It is relatively lower cost than numerous multi-core 

systems, still enables running program in parallel for computer graphics, and 

various scientific simulations. The GPUs, however, has unique hardware 

architecture, and a developer have to have understandings on internal structure. 

 The main goal of this research is to achieve fast, yet considering scattering 

effects from all samples. The remainder of thesis is organized as following: 

chapter 2 shows related research that have been done to achieve same or similar 

goals, chapter 3 explains background knowledge and theories about CT image 

formation, X-ray photon scattering effect, bi-directional ray tracing algorithm, 

followed by the architectural properties of GPU, and methodology of GPU 

utilization for bi-directional ray tracing. Chapter 4 shows system configuration for 

the simulation, and chapter 5 depicts implementation details with the result of 

experiments. Finally, chapter 6 sums up and discuss about the result and possible 

future research.  
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Chapter 2 

Related Research 

 

There are numerous computer codes for simulation based on ray tracing 

technique and on the X-ray attenuation, developed by a number of research 

groups. In general, two methods are widely used. Conventionally, the ray tracing 

algorithm is deterministic which accounts for attenuation from direct ray. This 

method is fast, but does not take into account of indirect photons. The other is 

Monte Carlo method, which is used at one of the well-developed simulations 

Duvauchelle et al. [3]. Their software includes test chain to reduce the number of 

experimental tests. However, a major drawback of Monte Carlo simulation is the 

extensive expenditure of computation time.  

Several research groups have proposed hybrid approaches by adding 

stochastic properties into the deterministic approaches, to achieve physical 

accuracy [4][5]. Parallel implementation of scattering simulations have also been 

introduced to overcome tremendous amount of computation cost [6][7]. However, 

both of these methods have to confront speed and accuracy trade-off. 

In this research, we developed an algorithm that simulates first-order 

scattering of X-ray photons. The idea shares common property with the global 

illumination problem in Computer Graphics; simulating photons which collide 

and are reflected, absolved, refracted. Traditional ray tracing algorithm build the 
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ray around the importance of the viewing point. Progressive radiosity method, in 

contrast, emphasize more contributions of the light sources. Bi-directional ray 

tracing method is the idea of shooting and gathering power to create photorealistic 

images [8]. This method performs better than single-directional ray tracing, 

however still utilizes Monte Carlo method and thus has trade-offs between over-

solving (more accuracy, less speed), and less-solving (less accuracy, more speed).  

In general, transporting a CPU-based algorithm to the GPU is not 

straightforward. It requires a new set of algorithms that involves a deep 

understanding of the GPU architecture and its programming model, and fitting the 

physical phenomenon into the General-Purpose GPU parallelism. The new 

algorithm that suggested in the rest of the contents has achieved higher 

performance in terms of both speed, yet not sacrificing the sample rate. 
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Chapter 3 

Theories and Background 

3.1. CT Image Formation 

 Almost all diagnostic imaging techniques, such as X-ray computed 

tomography (CT), magnetic resonance imaging (MRI), and position emission 

tomography (PET) rely on tomographic reconstruction. The formation of a 

digitized image utilizes image reconstruction algorithm from the raw data 

acquired from CT detectors. Figure 3-1 depicts the procedure of generating cross-

sectional image from CT machine. The detector and the x-ray cone beam 

projector rotates around the target object, and casted photons travel through the 

object. The photons loses energy as they penetrate through the matters, called 

attenuation coefficient, and denoted as	ૄ. 

 In reality, the attenuation is measured by CT number, which is normalize 

value compared to attenuation of water. The following formula calculates CT 

number, which is referred to as Hounsfield Unit (HU): 

 

࢞ࢁࡴ																					 ൌ 	
࢞ࣆ െ ࢘ࢋ࢚ࢇ࢝ࣆ
࢘ࢋ࢚ࢇ࢝ࣆ

.ܙ۳												૚૙૙૙.	ܠ	 ሺ૚ሻ 

 

Table 1 gives a section of tissues with their corresponding CT numbers 

[9]. Note that the bigger number indicates more attenuation and less number 

means that the matter allows more photons to penetrate.  
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Tissue CT Number, approx. 

Dense Bone 1000+ 

Muscle 10-40 

Liver 40-60 

Blood 40 

Kidney 30 

Water 0 

Fat -50 to -100 

Air -1000+ 

  
Table 1. Tissues with their corresponding CT numbers 

 
 
 In 2-D case, Radon transform ࣆࡾሺࣂ, ࢙ሻ  is defined as line integral of 

function ࣆሺ࢞, ࢟	ሻ along a line	ࡸ, inclined at angle	ી, at distance s from the origin. 

This is formally defined as: 

,ࣂሺࣆࡾ ࢙ሻ ൌ 	නࣆሺ࢞, ࢟ሻ࢛ࢊ
ࡸ

		

,ࣂሺࢌࡾ ࢙ሻ ൌ න න ,ሺ࢞ࣆ ࢟ሻࢾሺ࢞ࣂܛܗ܋ ൅ ࣂܖܑܛ࢟ െ ࢙ሻ࢟ࢊ࢞ࢊ,
ஶ

ିஶ

.ܙ۳											 ሺ૛ሻ
ஶ

ିஶ

	 

 

where ઼ሺ࢞ሻ denotes Dirac’s delta function [10].  

A function ࣆሺ࢞, ࢟	ሻ  denotes the distribution of the X-ray attenuation 

coefficient within the object. 
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The photon Intensities ۷ܒ at the detector bin positions ܒ are preprocessed to 

projection data	࢐࢖, which is: 

ܒ࢖					 ൌ 	െ ܖܔ
࢐ࡵ

૙ࡵ
ൌ 	නࣆሺ࢞, ࢟ሻ,࢟ࢊ࢞ࢊ																			ܙ۳. ሺ૜ሻ

ࡸ

 

and the X-ray photons traveling along line ࡸ is attenuated by the object according 

to Beer’s law for the photon intensities ࢐ࡵ can be formally defined as: 

࢐ࡵ								 ൌ 	 ૙ࡵ ,ሺ࢞ࣆെන	ቆܘܠ܍ ࢟ሻ
ࡸ

ቇ࢟ࢊ࢞ࢊ .ܙ۳														, ሺ૝ሻ 

where ࡵ૙ is the initial photon intensity. 

 

Figure 3.1. Formation of Sinogram 

 

Reconstruction in tomography means a recovery from samples of Radon 

transform of an unknown object density distribution. The goal of CT imaging is to 

reconstruct ࣆሺ࢞, ࢟	ሻ from the projections of the object. Inverse radon transform is 
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the basic tool to perform the reconstruction, however, there needs much more 

sophisticated method to reconstruct.  

In summary, Figure 3.2 depicts the overall process of the CT image 

acquisition. Section 3.2 covers the scattering effect in progress of getting 

sinogram. 

 

 

Figure 3.2. Overall CT Image acquisition process 
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3.2. The Scattering Effect  

In early 70’s it has been realized that the Compton Effect may give rise to 

new challenging imaging modalities. Compton scattered radiation behaves as 

noise hindering image quality. Compton Effect is the scattering of X-photons with 

electric charges. The energy of a scattered photon is related to the scattering angle 

ω can be formally defined as: 

௪ܧ																						 ൌ 	
଴ܧ

1 ൅	
଴ܧ
݉ܿଶ

ሺ1 െ cos߱ሻ
.ܙ۳																 ሺ5ሻ 

 

where ܧ଴ is the emitted photon energy and ݉ܿଶ denotes the energy of an electron 

at rest (0.511MeV). Figure 3.3 below depicts the principle of Compton Effects 

[1]. As a result, a scattered photon steers its direction with lowered energy. 

 

Figure 3.3. Principle of Compton Scattering   
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 The Compton scattering equation is correlated to the mass of electron, 

initial and final wavelength, and scattering angle ૑.  In other words, different 

materials and the intensity of initial energy from the X-ray source decides the 

scattering angle and final energy intensity. This relation is formally given by 

Klein-Nishina formula. Figure 3.4 shows the Klein-Nishina distribution of 

scattering-angle cross sections over a range of commonly encountered energies. 

Note that the diameter of the circular plot indicates ratio of photon energy after 

and before the collision [11].  

 

Figure 3.4. Klein-Nishina Distribution 
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3.3. Bi-direction Ray Tracing 

Originally, ray tracing has been widely used technique for global 

illumination in computer graphics. The goal of global illumination is to find a 

relevant set of virtual point light sources to illuminate the object seen by camera 

[12]. Formally, solving the global illumination problem leads to evaluate the 

following equation: 

ሻ܍૑,ܠሺࡸ			 ൌ ሻࢋ࣓,ሺ࢞࢖ࡸ ൅	නࡸሺ࢞,࣓࢏ሻ࢘ࢌሺ࢞,࢝࢏, ሻࢋ࢝ ሻ࢏ࣂሺܛܗ܋ .ܙ۳										࢏࣓ࢊ ሺ૟ሻ
ષ

 

where ࡸሺܠ,૑܍ሻ is the incoming radiance from point x in direction	૑࢖ࡸ ,܍ሺ࢞,࣓ࢋሻ 

is the emission from point x in direction	૑ࡸ ,܍ሺ࢞,࣓࢏ሻ is the outgoing radiance at 

point x in direction 	૑܍ , and ࢘ࢌሺ࢞,࢝ࢋ࢝,࢏ሻ  is the bi-directional reflectance 

distribution function (BRDF) of the material at point x.  

Bi-direction ray tracing technique, also called ‘two-pass’ ray tracing has 

been originated from the concept of caching illumination. Two paths use cached 

illumination maps of each other’s so that the computation cost can be dramatically 

reduced. Bidirectional ray tracing technique combined with Monte Carlo method 

has been developed for faster computation cost and consideration of all kind of 

indirect illumination [13]. The fundamental idea is that rays or photons are cast 

simultaneously at selected light source and viewing points. More specifically, 

figure 3.5 depicts that the virtual ray creates the sub-paths from both light source 
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and detector (or camera) at random points. The source S cast ray to the random 

point p1, and it continuously cast to the random point to reach p2. At the same 

time, D cast a ray in same way as light source does, and reach to p3. A complete 

path is created by concatenating these two paths. From the randomness of the 

technique, not all casted rays generate full-paths from the light source to the 

detector. For example, a sub-path connecting p2 and p3 may not be generated [14], 

and will not be contributed for the image. Suppose there is connected path 

between the light source and the detector, the tracing ray algorithm accumulates 

the effects of reflection, refraction, and absorption. As a result, the detector (eye) 

knows what brightness value on the object surface.  

 

Figure 3.5. Bi-directional ray tracing 

With this technique, the system can go into diverse types of geometrical 

objects. Furthermore, diffuse lighting effects, soft shadows, specular and glossy 

reflection and refraction can be simulated with much more accuracy [8].  
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3.4. General-Purpose GPU Utilization 

 Conventionally improving performance of computers is attained by CPU 

clock rate increment. However, the physical components of processors are 

reaching physical limitation of circuit density and power consumption. Thus 

Moore’s Law, which states the speed of processors doubles every eighteen 

months, now implies not only clock rate increment, but also increasing concurrent 

execution with efficient communication among parallel cores. 

 Typical GPUs contains hundreds of multiprocessing core. The throughput 

of a high-end graphics card is on the order of four teraflops per second. They are 

designed to perform calculations on large amounts of independent data. In recent 

trends, General-purpose Graphical Processing Unit (GPGPU) has been widely 

used not only for computer graphics, but also mathematical and scientific 

computing. GPGPU code executes massively parallel on personal computers.  

The largest graphics card manufacturers provide software development 

kits for programming on their GPUs. OpenCL framework is for writing program 

that execute across heterogeneous platforms, such as GPUs, DSPs, or FPGAs. 

OpenCL has been adopted by various chip vendors, and their use of GPU for 

general purpose is currently in stable release. However NVIDIA’s CUDA is 

currently dominant in the market [15]. 
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CUDA (Computer Unified Device Architecture) is a C-like API used to 

program the NVIDIA GPUs. It supports single program multiple data (SIMD), 

which means one set of instruction is executed by many threads. A CUDA 

program begins with initialization of variables and memory allocation from host 

(CPU) to device (GPU). Typically, the GPU cannot access the memory of the 

CPU, and special operation is needed to copy data between host and device.  

Execution of a task by a CUDA kernel is organized into thread blocks. 

Thread blocks are organized into grids. The GPU used for our experiment 

supports CUDA 2.1, supports up to 1024 threads per thread block. Once a thread 

block is assigned to a streaming multi-processor, it is further divided into 32-

thread units called warps, and each warp is following same instruction.  

 For our simulation, we accelerated the first-order scattering simulation on 

NVIDIA GTX 560. This GPU, like all modern GPUs has off-chip memory and 

on-chip caching mechanisms. Off-chip memory includes global, texture and 

constant memory which incurs hundreds of cycles of memory latency. This 

device, unlike 1.x version, supports maximum three dimensional grid of thread 

blocks, has 32K of 32-bit registers per multiprocessor, and has 32 shared memory 

banks.  
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3.5. Combining Tomographic Image Reconstruction with Bi-directional Ray 

Tracing 

Bi-directional ray tracing technique has been applied on the backscattering 

tomographic image reconstruction algorithm. In the case of CT, the light source is 

regarded as an X-ray source, and the camera is an X-ray detector.  

 Suppose photons travel from the X-ray source through ray. At each small 

portion of the object (a pixel in cross-sectional image), major number of photons 

travel straight towards the detector, while little portion of photons will scatter 

with reduced amount of energy. The scattered photons may reach to another 

detector bucket with lowered energy. From the view at the detector bin in terms of 

bi-directional ray tracing, each bin has limited view of detecting scattered photons. 

First step of the algorithm is to compute a layer of photon-scattered cross-

sectional image, assuming a cross-sectional image with no scattering is acquired 

first. As stated in section 3.2., the layer caches source to pixel attenuation. To 

achieve the attenuation, each thread on CUDA block accounts for each pixel at 

the cross-sectional image, and compute the intensity of the energy and traveling 

angle of photons shot from the X-ray source just before ray hits the corresponding 

pixel. Then, the threads multiply by the attenuation at its pixel itself and store.  
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Second step is to generate the region of interest (ROI) from detector side. 

The detector consist of a number of buckets, which collects X-ray photons that are 

not absorbed or scattered within their ROI. The system traces a ray from the 

detector. In reality each detector bin in CT machine has filter so that it reduces the 

amount of artifacts [16], thus their sight angle to catch the photon is limited. I 

define a ‘fishnet’, literally implies that a detector bin catches coming photon 

within its fishnet to simulate filtering property. Each pixel of the object has a 

phase function that simulates Compton scattering. The phase function steers 

photons with lowered energy. Since this energy shift depends on the angle of 

scattering and not on the nature of the scattering medium, it is reasonable to 

simulate that all pixel have common phase function. 

 

Figure 3.6. A 2-D Geometry of Formation of Caching Layer  
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Chapter 4 

System Configuration 

 

The major goal of the experiment is to get rid of the randomness, yet does 

not sacrifice the computing speed. As stated section 3.3, the deterministic method 

sacrifices computation cost, while Monte Carlo method sacrifices the accuracy as 

it has random characteristic.  

For the experiment, the test machine has AMD Fx-8350 4.0GHz CPU 

with 16GB of RAM. For GPU side, the system utilized NVIDIA GTX560 with 

1GB of graphics memory. The CPU has 8 cores, but the application only uses 

single core for the fair comparison with parallelism. This system configuration is 

reasonable setting to compare performance between CPU with high clock speed 

versus non-professional GPU. 

In the experimental simulation, many properties has been simplified. For 

example, attenuation coefficient is proportional to its CT-number, which means 

the system the grayscale pixel value on pre-computed cross-sectional image. 

Furthermore, the fathom images is used instead of realistic image, to see the clear 

effect of the algorithm. The intensity of X-ray beam can be controlled by phase 

functions at pixels, and separate parameter for controlling X-ray photon intensity 

is not set. The phase function for the simple experiment is shown in figure 4.1. 
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The cosine function, although it is non-identical to real phase function, is used to 

see how well the experimental simulation code reveals the effect of scattering. 

 

Figure 4.1. Simple Phase Functions for Experiments 

 

Measurement metrics is the time comparison between CPU and GPU 

version of code, with experiment of various image size. Although a GPU has 

multiprocessor with a number of cores, global memory operations are bottleneck 

of GPU codes. On the experiment, performance of improved version of 

parallelism is also measured. 
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Chapter 5 

System Implementation and Performance 

5.1. Attenuation Caching Layer Generation 

 In first phase of the simulation the system builds Source-to-Pixel 

attenuation layer. Each 2-D GPU thread take the pixel, thus tracing of a ray from 

the source to each pixel runs concurrently on the GPU.  

Algorithm	1.	Generate	Attenuation	Caching	Layer in	Parallel

for	all	threads	ሺthreadx,	threadyሻ do in	parallel	

								pixelx		threadx,	pixely	 thready

								Attenuation1.0	

								for	ሺrayx,	rayyሻ	ൌ	ሺsourcex,	sourceyሻ	 ሺpixelx,	pixelyሻ do

																Attenuation		Attenuation	* Objectሺrayx,	rayyሻ	* μሺrayx,	rayyሻ	

								end	

								AttenuationLayerሺthreadx,	threadyሻ Attenuation

end	

 

Figure 5.1. Pseudo code of Attenuation Caching Layer (Map) generation algorithm 

 

The attenuation layer examples are shown in figure 5.2. Right hand side 

shows the attenuation layer of original cross sectional image on the left. The 

underlying assumption is that all pixels in the object contribute to scattering. Also, 

the experimental implementation has one point source at the top of the image, and 

it has enough distance to the top of the object, so that the X-ray source can cover 

all pixels of the object.  
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In the attenuation map layer from the right side of figure 5.2, white area 

indicates that the intensity of energy is high, while dark area has low energy 

intensity. In general CT system, the most bottom line of the attenuation layer is 

the energy intensity that the detector acquires.  

 

 

Figure 5.2. Examples of Attenuation Layer: Original Cross Section (Left), and 

Attenuation Layer (Right) 
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5.2. Scattering from all Pixels Computation 

Computing scattering consists of three smaller steps. In the first step, a 

thread in the RoI takes one pixel and compute attenuation from the pixel to 

detector bin. In the next step, a thread combines two attenuation value at 

corresponding pixel position, which are source-to-pixel, and pixel-to-bin. Also, 

the phase function ߬ሺ߶ሻ  is taken account. Finally, sum up all values in RoI 

position for all available detector bucket, Binj. Figure 5.3 shows pseudo code for 

this three step.  

 

Algorithm	2.	Computing	Scattering	from	all	Pixels in	Parallel

for	each	bin	Binj	0	to	inf	do

								for	all	threads		ሺthreadx,	threadyሻ	in	RoI,	do	in	parallel

															pixelx	 threadx		൅offsetx,	pixely thready൅	offsety
															Attenuation	1.0	

															for	ሺLayerx,	Layeryሻ	ൌ	ሺpixelx,	pixelyሻ	 ሺbinjx,	binjyሻ do

																						Attenuation		Attenuation	*	ObjectሺLayerx,	Layeryሻ	*	μሺLayerx,	Layeryሻ
															end	

															Roij	ሺpixelx,	pixelyሻ			Attenuation	*	AttenuationLayerሺpixelx,	pixelyሻ*τሺϕሻ	

								end	

								Binj	ൌ	sumሺRoijሻ	

End	

  
Figure 5.3. Pseudo code of computing scattering from all pixels 

 

Figure 5.4 shows examples of how scattering effects on two square 

objects. From figure 5.3 (a) original image, three experiments, which are (b) non-

scattering, (c) reasonable amount of scattering, and (d) extreme amount of 
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scattering. For the simulation, the amount of scattering is controlled by phase 

function in the object. For test case of (c) cos150(x) is applied, and cos30(x) is used 

for case (d). 

 

Figure 5.4. Example of scattering effect: (a) original cross-sectional image, intensity of 

the energy at the detector (b) with no scattering, (c) reasonable scattering, and (d) 

extreme scattering. 

  

(a) (b) 

(c) (d) 
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5.3. Simulation Performance 

 For the evaluation metric, I use computation time compared with CPU 

code. Since the performance of the GPU varies by number of cores, size of 

installed memory, and CUDA machine versions, it is hard to measure the 

performance of the algorithm itself within GPU experiments. Instead of using 

multiple threads of the GPU, CPU code use for-loop to iterate over all pixel 

positions. Figure 5.5 depicts the comparison result from five cross-section images 

with different size as input. Note that since the CPU alters its clock rate for power 

saving, the CPU time is averaged over 10 top results (when the clock rate reached 

maximum) out of 30 test cases. The performance of GPU dominants the CPU.  

 
Figure 5.5. Result of experiment: Computation time of CPU and GPU, with input image 

size 100x100 pixels to 500x500 pixels 
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5.4. Improvement of the Algorithm 

 Although the performance of GPU dominates CPU, there is still room for 

improvement. The pseudo code of computing scattering algorithm in figure 5.3 

has two for-loops within a loop. The loop is major drag of CPU computing, but it 

can be improved by parallelism, if outer- and inner-loop has no dependent 

relationship. Since the most outer loop goes towards each detector bins, it can be 

parallelized. The major issue, however, is memory consumption. It requires more 

memory to be allocated at the same time, which hinders GPU computing 

performance. Figure 5.6 shows performance improvement from iterative method 

on 2-D grid to 3-D grid. 

 
Figure 5.6. Performance comparison: 3-D grid of threads versus 2-D grids with iterative 
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 As shown in figure 5.7, more active blocks of threads use more memory. It 

measures minimum memory required to process the algorithm. From the reason 

that memory operation is a bottleneck of GPU computation, the use of 3-D thread 

grids have less efficient, i.e., computational time linearly increases as the size of 

the image gets larger. 

 
Figure 5.7. Video memory usage comparison: 3-D grid of threads versus 2-D grids with 

iterative method 
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Chapter 6 

Conclusion and Future Work 

 

  In this study, we modeled an algorithm and implemented code for 

simulating fast, but considers all possible first-order scattering. To overcome the 

trade-offs between speed and accuracy, the developed algorithm exploited bi-

directional ray tracing method, which enables simulating one or more order 

scattering. The suggested GPU algorithm showed dominant performance over 

CPU in terms of speed. 

The experiment shows that using more thread block speeds up the overall 

computation. However, since the GPU memory operation is a bottleneck, it may 

result in small improvements depending on the GPU performance. Thus, use of 

more thread blocks needs careful consideration, and at the same time the 

optimization for less memory use is needed. 

The evaluation metrics measures the performance of the algorithm itself. 

Further research and implementation will focus more on i) finding a correct phase 

function given a material and X-ray source intensity, and ii) reconstruction 

performance with scatter effects. This will lead far more sophisticated simulation 

and possibly applied to the general applications.  
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