

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Learning to Read Recipes : Activity

Diagramming with Narrative Event

Chains

A Thesis Presented

by

Ganesa Thandavam Ponnuraj

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

December 2014

Stony Brook University

The Graduate School

Ganesa Thandavam Ponnuraj

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis

Prof. Yejin Choi – Thesis Advisor
Assistant Professor, Department of Computer Science and

Engineering, University of Washington

Prof. Steven Skiena – Chairperson of Defense
Distinguished Teaching Professor, Department of Computer

Science, Stony Brook University

Prof. Paul Fodor
Research Assistant Professor, Department of Computer Science,

Stony Brook University

This thesis is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii

Abstract of the Thesis

Learning to Read Recipes : Activity
Diagramming with Narrative Event Chains

by

Ganesa Thandavam Ponnuraj

Master of Science

in

Computer Science

Stony Brook University

2014

In this work, we generate activity diagrams of the recipe text auto-
matically, with the help of narrative event chains. Cooking recipes,
that have predominantly imperative sentences, present unique chal-
lenges in the form of frequent argument drops and co-reference
resolution over evolving (or merging) entities. Here, we introduce
an unsupervised approach to automatically recover the recipe flow
graphs. Then we illustrate the usefulness of our learned models via
narrative cloze task; for the automatic evaluation of our learned
models, we make use of one of the oft-used task in Discourse analy-
sis, namely the sentence re-ordering and illustrate their utility. To
report the effectiveness of our diagramming algorithm, we report
the Precision-Recall metric based on the small set of gold-standard
annotations that we made.

To evaluate a diagramming algorithm on a large scale we need a lot
of human annotations. To this end we propose a design for a Game
with a purpose (GWAP) that could help us in crowd-sourcing the
human annotations. We describe the game design with regards to

iii

ease of game play and the considerations that could be taken to
keep the player motivated. This game could be used to build a
richly annotated recipes corpus. We leave the task of building the
game as a future work.

iv

Dedicated to my parents and my siblings.

v

Contents

List of Figures viii

List of Tables ix

Acknowledgements x

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 3

2 Related Work 5

3 Recipe Flow Graph and Linguistic Phenomena in Recipes 9
3.1 Recipe Flow Graph . 9
3.2 Linguistic Phenomena . 9

4 Dataset and Method 11
4.1 Dataset . 11
4.2 Method . 12

4.2.1 Tregex Semantic Parsing 14
4.2.2 Coreference-Resolution Heuristics 14
4.2.3 Arborescence as a Natural Recipe Flow 15
4.2.4 Arborescence formulation 16
4.2.5 Content Model for Multiple Argument Events in Recipes 17

5 Experimental Setup and Results 20
5.1 Precision Recall for Diagramming 20
5.2 Viterbi sentence order decoding 21

5.2.1 Generating Training/Testing Samples 21
5.2.2 Global inference using viterbi sequence decoder : Con-

tent Model and Linear SVM Probability 23
5.3 Narrative Event Cloze . 24

vi

6 Conclusion and Future work 25
6.1 Limitations of Arborescence formulation 25
6.2 Introduction to the GWAP . 25

6.2.1 Intra-sentence Arguments 26
6.2.2 Inter-sentence Arguments 28
6.2.3 Suitability for Activity Diagramming 30
6.2.4 System Design . 30

Bibliography 32

vii

List of Figures

1.1 Recipe flow graph generated for the Banana-Crumb-Muffins recipe 3
1.2 Recipe flow graph generated for the Baked-Mac-and-Cheese-for-

One recipe . 4

2.1 Sample output from the coreference resolver 6
2.2 The resulting arborescence . 7

4.1 Sample Event Chains recovered by our approach Left: A typi-
cal event chain that “toppings” participate in the dish “Veggie
Pizza” Right: A typical event chain that “chicken” participates
in the dish “Chicken Stir Fry” 11

4.2 Sample output from the coreference resolver 16
4.3 Graph (input to arborescence algorithm) with extra edges (in

red) and a gray sentinel node 17
4.4 The resulting arborescence . 18

6.1 Hypothetical Limitation of Arborescence formulation 26
6.2 Examples for argument marking 27
6.3 A sample layout for the game 27
6.4 What’s in the ‘bran mixture’ 28
6.5 ’bran cereal’ is not referred by ‘dry ingredients’. ‘bran mixture’

in the text is the additional cue to the player 29
6.6 ‘Bake’ predicate with 2 implicit arguments 29
6.7 Entity Diagram for the simple game design 31

viii

List of Tables

4.1 Recipes Event Chain Dataset 12
4.2 Semantic Parsing using Tregex 13
4.3 Content Model for edge weight assignment 19

5.1 Precision and Recall for Diagramming algorithms 21
5.2 Sentence Re-ordering experiment 23
5.3 Narrative Cloze for Recipe Events 24

ix

Acknowledgements

The 2 rewarding years of my life at the Stony Brook University has been a
great learning experience that taught me not just the virtue of patience and
persistence but also helped me understand myself better. I am grateful for
getting this opportunity to meet and interact with people with great talents
from different walks of life, different parts of the world. My sincere thanks to
Professor Yejin Choi who guided me, patiently, through the ups and downs
during the research project. I feel lucky that I got a chance to work with Yejin
who always encouraged me and gave me enough space to learn and grow. The
lessons learnt during the research, not just the technical lessons - life lessons
too, truly will have a positive bearing in my life going forward, I am sure.

My heartfelt thanks to Polina Kuznetsova who played the role of a men-
tor while collaborating on my thesis project. I also thank members of the
Stony Brook NLP reading group Song Feng, Ritwik Banerjee, Jun Seok Kang,
Jianfu Chen and Vikas Ashok for the numerous paper reading sessions and
discussions.

Many thanks to Chloe Kiddon and Professor Luke Zettlemoyer for useful
comments and discussions.

I also extend my thanks to my mentor Mukarram, my brother Jothi, my
sister Shree Priya and my parents Ponnuraj appa and Rani amma for backing
me throughout as I embarked on this memorable graduate school life.

No graduate school life without friends. Finally, I would like to thank all
my friends who were a constant source of support and inspiration.

x

Chapter 1

Introduction

1.1 Motivation

Semantic parsing is the process of mapping a natural-language sentence into
a formal representation of its meaning. In this work we recover one such
representation for recipe graphs namely the flow graph. Through this rep-
resentation, we can observe the partial order relations existing between the
different event chains in any recipe, which naturally gives us a graph plan for
the cooking tasks.

Imagine the problems one would come across when trying to build a chef-
robot that could carry out recipe instructions and make any dish. If we think
about a robot carrying out text instructions given to it, we give it the context
of semantic parsing required to help the robot understand text instructions.
It is this problem, which forefronts task of building a chef-robot that can
understand recipes in natural language, we attack in this thesis. We also
provide the corpus that we curated from web for our experiments, to the
community.

Now let us take a look at the recipe instructions for Banana Crumb Muffins
1.

1.

2. In a large bowl, mix together 1 1/2 cups flour, baking soda, baking
powder and salt. In another bowl, beat together bananas, sugar,
egg and melted butter. Stir the banana mixture into the flour

1Recipe text parsed from http://allrecipes.com/Recipe/Banana-Crumb-Muffins/

1

http://allrecipes.com/Recipe/Banana-Crumb-Muffins/

mixture just until moistened. Spoon batter into prepared muffin
cups.

3.

Figure 1.1 is the graph generated by our approach for Banana Crumb
Muffins recipe. One interesting point to talk about in this graph is the fact
that we were able to identify an interesting relation that is not evident in the
recipe text directly:

• The fact that “stirring” banana mixture and flour mixture gives the
batter. We will refer to this phenomenon as “Evolving” entities. In
other words, banana mixture and flour mixture have evolved to become
the “batter”, upon “stirring”.

Similarly, if we look at Figure 1.2 and recipe instructions for Baked-mac-
and-cheese-for-one recipe 2, we will identify the following:

1. Preheat an oven to 400 degrees F (200 degrees C). Grease an oven-
proof soup crock or 1 cup baking dish.

2.

3.

4. Bake, uncovered, until the cheese is melted and the macaroni is
heated through, about 10 minutes.

• The fact that “bake” action depends on “preheated oven”. We will refer
this phenomenon as Argument Drop

We will see more about these linguistic phenomena in Chapter 3.

2Recipe text parsed from http://allrecipes.com/Recipe/

Baked-Mac-and-Cheese-for-One/

2

http://allrecipes.com/Recipe/Baked-Mac-and-Cheese-for-One/
http://allrecipes.com/Recipe/Baked-Mac-and-Cheese-for-One/

stir

bake

…

banana mixture into the flour mixture

preheat
spoon

Bon Appetit!

into prepared muffin cupsbatter to 375 degrees Foven

…

Figure 1.1: Recipe flow graph generated for the Banana-Crumb-Muffins recipe

1.2 Thesis Outline

We will review literature in Chapter 2, talk about our graph representation
and linguistic phenomena in Chapter 3, describe out data-set and method in
Chapter 4, mention about our experimental setup and results in Chapter 5
and finally give our conclusions and direction for future work in Chapter 6.

3

bake

…

preheatsprinkle

Bon Appetit!

to 375 degrees Foven

…

…

Figure 1.2: Recipe flow graph generated for the Baked-Mac-and-Cheese-for-
One recipe

4

Chapter 2

Related Work

The seminal work of [1] introduced the idea of capturing partial order relations
among events which they called as the narrative chains. However, in cooking
recipes, because we have to deal with argument drops, learning such chains
become challenging. [2] did a thorough study of implicit arguments (otherwise
called as null instantiations by [3]) for nominal predicates. The idea central to
[2] was about identifying coreference chains of a candidate implicit argument
(otherwise also referred by [2] as extra-sentential arguments).

However [2] provide a supervised learning scheme to identify implicit ar-
guments and thereby improve argument coverage in Nombank; whereas we
propose an unsupervised approach for recovering these implicit arguments.
Additionally, the recipes corpus presents us a unique challenge of dealing with
evolution of participating entities through the procedural narrative chains. for
eg: a typical procedural narrative chain for a Mac-and-cheese recipe looks like

• add water to a pan

• boil water [in the pan is implicit]

• add pasta [added to boiling water is implicit]

• cook pasta

• drain [pasta is implicit]

• add cheese sauce over cooked pasta [pasta over the course of time has
evolved to become cooked pasta].

5

bring

a large pot of
salted water to a boil

melt

butter in a large pot

cook

in the boiling
water

macaroni

preheat

To 350
degrees F

oven

bake

mix

mixture

cooked macaroni

…

add

Figure 2.1: Sample output from the coreference resolver

In both [1] and [2], the coreference resolver plays a crucial role. But, the
state of the art coreference resolution system by [4] fails to capture the evolu-
tion of entities in the recipes corpus, because it is against the word inclusion
principle, based on which 3 of their 7 sieves were built. According to [5] “word
inclusion principle exploits the property of discourse that it is uncommon to
introduce novel information in later mentions.”.

More appropriate way of dealing with evolution of entities would be to
frame the problem as joint entity and event co-reference resolution. Even-
though [6] came up with one such approach for entity and event coreference
resolution, their system also relies on the word inclusion principle; also their
system is not publicly available. Moreover for the purposes of recipe corpus,
we do not need elaborate features like gender, animacy, named entity recogni-
tion etc.., to resolve co-reference. Hence we apply simplified set of rules, some
of which we borrow from [4] and [6], to help us identify procedural narrative
chains.

6

bring

a large pot of
salted water to a boil

melt

butter in a large pot

cook

in the boiling
water

macaroni

preheat

To 350
degrees F

oven

bake

mix

mixture

cooked macaroni

…

add

Figure 2.2: The resulting arborescence

[7] study the problem of identifying scripts with multiple arguments, similar
to our work. [7] also give a summary of the problems one would face in building
content-models for multiple-argument events. However, we differ from [7] in
the following aspects:

1. We study the multiple argument events in the cooking recipes data-
set that has imperative event chains with linguistic phenomena that is
unique to procedural narratives as detailed in Chapter 3

2. We build content-models that make use of 3-skip bigram modelling (sim-
ilar in spirit to [8]) to recover the activity diagram for the recipe by con-
sidering only nouns that occur in arg1 or arg2 as explained in Chapter 4.
This is a reasonable approximation as we will see in Chapter 4.

7

Implicit Argument Heuristics

Furthermore, we deal with the implicit argument identification task in the
recipes corpus, in 2 ways:

1. We use a heuristic that the implicit argument is always the result of the
immediately preceding predicate, with the precedence relation between
the predicates determined by the textual order. This assumption works
for most cases in the recipes corpus.

2. Secondly, we build models from related recipes to aid implicit argument
resolution. By formulating the diagramming problem as that of finding a
minimum arborescence, with edges having weights given by these models,
we correct the errors made by the coreference resolver and also identify
the implicit arguments that are not identified by our first heuristic. For
example, refer (Figure 2.1) and (Figure 2.2) to observe the following:

(a) deletion of an edge from predicate “bring” to argument “in a large
pot” (correction of error made by co-reference resolver)

(b) “preheated oven” is identified as an (implicit) argument for the verb
“bake” (arg-drop resolution)

8

Chapter 3

Recipe Flow Graph and
Linguistic Phenomena in
Recipes

3.1 Recipe Flow Graph

A finite collection of objects which are related with a partial ordering are said
to form a directed acyclic graph, by definition. [1] show that narrative chains
generally have a partial order relation among them. Therefore we capture this
information in the form of a directed acyclic graph. This representation is
similar in principle to the representation used by [9]. [9] have used the repre-
sentation to annotate a corpus whereas we propose an unsupervised approach
to recover such a graph from the recipe text automatically. Like [9], we make
use of a sentinel node at the bottom that connects different event chains in
the recipe text and unifies them. For generating visualizations we use graphviz
([10]).

3.2 Linguistic Phenomena

We assume the following predicate-argument template for capturing cooking
knowledge from the corpus. The terminologies are taken from Propbank ([11])

1. Each predicate is assumed to have at-most 2 arguments

2. arg1 (optional)

3. arg2 (optional)

9

Implicit Arguments

Now, let us take a look at a sequence of actions mentioned in a Mac and Cheese
recipe namely “tasty-baked-mac-and-cheese”1.

1. Bring a large pot of water to a boil.

2. Cook elbow macaroni in the boiling water, stirring occasionally until
almost cooked through and firm to the bite, about 7 minutes.

3. Drain and transfer to a large bowl.

4. ...

If we look at the 3rd step in isolation, we will notice the argument drop
for drain (both arg1 and arg2 are missing) and transfer (only arg1 is missing)
predicates. We can also notice that the arguments lost are usually either arg1
or arg2 in the predicates that occurred immediately before them. This is the
intuition behind our simplified heuristic for implicit argument identification.
It is important to mention that for the predicate “Drain”, when we resolve
implicit arguments, we resolve for only arg1. As a side-effect we will have
more arguments of type arg1 than of type arg2 in our model.

Evolving Entities

Also, for the purpose of building the recipe flow graph, we look at the argu-
ments in a slightly different manner. In the above example we consider arg1
of Drain to be the output of the stir predicate. Similarly, implicit arg1 of stir
predicate is the output of cook.

This results in the emergence of the following chain for the elbow macaroni:

elbow macaroni ⇒ cook ⇒ stir ⇒ drain ⇒ transfer

This kind of argument resolution is slightly different from the way co-
reference chains are handled in the literature. It is this phenomenon that we
call as evolving discourse entities.

1Recipe text available at http://allrecipes.com/Recipe/

Tasty-Baked-Mac-n-Cheese/

10

http://allrecipes.com/Recipe/Tasty-Baked-Mac-n-Cheese/
http://allrecipes.com/Recipe/Tasty-Baked-Mac-n-Cheese/

Chapter 4

Dataset and Method

4.1 Dataset

...

Cook

Add

Cook

Stir

Unroll

Spread

Bake

...

...

Stir

Cover

Marinate

Remove

Squeeze

Reserve

Cook

...

1

Figure 4.1: Sample Event Chains recovered by our approach Left: A typical
event chain that “toppings” participate in the dish “Veggie Pizza” Right: A
typical event chain that “chicken” participates in the dish “Chicken Stir Fry”

To capture the linguistic phenomena explained in detail in Chapter 3, we
would benefit from having a data-set that truly reflects the event chains that
are unique to a particular dish. To this end, we parsed data from http:

//allrecipes.com; the unique aspect of this data-set is the fact that there

11

http://allrecipes.com
http://allrecipes.com

are several recipes for preparing a dish. From our learnt models we show the
different prominent event chains per dish, refer figure 4.1.

Dish Name No of Recipes
BananaMuffins 66
BeefChilli 212
BeefMeatLoaf 186
BeefStroganoff 47
CarrotCake 52
CheeseBurger 63
ChickenSalad 302
ChickenStirFry 92
Coleslaw 145
CornChowder 70
DeviledEggs 91
EggNoodles 278
FrenchToast 86
MacAndCheese 100
MeatLasagna 101
PecanPie 81
PotatoSalad 196
PulledPork 70
PumpkinPie 121
VeggiePizza 100

Table 4.1: Recipes Event Chain Dataset

It is because the event chains vary from dish to dish, as shown in figure 4.1,
that we want more recipes per dish to build the content-models. The data-set
is available here for download All Recipes Data-set,

4.2 Method

We present an unsupervised learning algorithm for recovering these diagrams.
The algorithm 1 paints a bird’s eye-view of the scheme of things. We will take
a look at each step now.

12

http://www.gthandavam.in/AllRecipes-dataset.tar.gz

Tregex Expression Explanation
V P ! >> SBAR[<, V BP |<, V B][[<
NP$ − −PP] | [< NP < PP] | [<
NP] | [< PP]|[<, V BP] | [<, V B]]

Tregex used for parsing; explanation in
the following lines.

V P ! >> SBAR Verbal phrases that are not a part of
sub-ordinate clause

<, V BP |<, V B Verbal phrases having “VBP” or “VB”
forms of the verb as its head

< NP$−−PP

< NP < PP

< NP
Handling cases when arg1 and/or arg2
can be absent

< PP

<, V BP

<, V B

Table 4.2: Semantic Parsing using Tregex

13

Algorithm 1 Unsupervised Activity Diagramming for a dish

1: for All recipes for the dish do . Pre-processing
2: Identify relevant predicates and their arguments . semantic parsing
3: Run co-reference resolver from high precision to low precision
4: Build content models based on co-reference resolver output
5: end for

6: for iter ← 1, n do . iterative-learning
7: for All recipes for the dish do
8: if iter = 1 then
9: contentModel ← model from line 4
10: else
11: contentModel ← model saved from previous iteration
12: end if
13: Run arborescence algorithm using contentModel
14: end for
15: Build content models based on arborescence output and save for next

iteration
16: end for

4.2.1 Tregex Semantic Parsing

To build a recipe flow graph, as a first step, we need to identify the predicates
and their participating arguments, otherwise known as (semantic parsing).

We use the Tregex [12] mentioned in Table 4.2 to extract our simplified
templates < verb, NP, PP >, and <PP, verb, NP > from the stanford PCFG
parser [13] output.

We consider all VPs that are not part of a SBAR. We make this assumption
because we want to capture main cooking actions without going into details.
To capture the relevant imperative cooking actions, we consider only VBP and
VB forms of the verbs participating in the recipe text.

4.2.2 Coreference-Resolution Heuristics

In our recipe corpus we have largely imperative narrative chains; also we deal
only with utensils, ingredients, intermediate results in a recipe etc.., As such,
like already mentioned, features like animacy, gender, named entity recognition
etc.., are not useful here. Therefore, in our simplified co-reference resolution
model, we rely on the following heuristics, for the purpose of capturing proce-
dural narrative chain:

14

1. Implicit argument resolution (IArg)

2. Derivationally Related form (Der. Reln)

3. String match of nouns in the participating lexical chains (ArgString
match)

Since the entities may evolve with each step in a recipe narrative, to re-
solve co-referring entities, at each predicate we apply rules on nodes preceding
the predicate in the reverse textual order. We stop once we identify a can-
didate antecedent, since we keep track of the lexical argument chains at each
predicate.

Similar in spirit to [4], we run the rules from high precision (IArg) to
low precision (ArgString match). By evaluating our diagrams using different
ordering of heuristics, having IArg heuristic as the first rule yielded highest
precision and also recall. This is in agreement with our observation that most
of the times, the implicit arguments are present in the immediately preceding
sentence.

Once we apply co-reference resolution heuristics, we get islands of con-
nected components. It is because some of the argument slots are not filled by
our coreference resolver that we end up having a forest. For example (Fig-
ure 4.2). Therefore to connect the islands in the forest into a single unified
tree, we formulate the problem as that of finding min-weight arborescence.

4.2.3 Arborescence as a Natural Recipe Flow

Output from the co-reference resolver is not yet suitable for activity diagram-
ming for 2 reasons.

• Firstly, it contains parallel edges. Figure 4.2 shows an example of such
edges. Predicate “bring” can have either “large pot” or “boiling” water
as its output (artifact of the coreference resolution heuristics). These
two possible outcomes represent two completely different branches in the
recipe instruction chart. One is related to “cook macaroni”, another one
to “melt butter”. From the original recipe text a person can easily infer
that “bring” should be connected to “boiling water”.

• Secondly, in Figure 4.2 one can see several connected components of the
graph, not connected to each other (incomplete diagram). For example,
the component corresponding to “preheating the oven”, is isolated from
the rest of the graph.

15

bring

a large pot of
salted water to a boil

melt

butter in a large pot

cook

in the boiling
water

macaroni

preheat

To 350
degrees F

oven

bake

mix

mixture

cooked macaroni

…

add

Figure 4.2: Sample output from the coreference resolver

Thus, we need to both, delete ambiguous edges and introduce additional
ones. But which nodes must the additional edges connect and which edges
should we delete ? Let us answer this in the following section.

4.2.4 Arborescence formulation

Denote flow graph as G (Figure 4.2). We introduce additional edges between
connected components of graph G (Figure 4.3). For each connected component
we find all nodes with 0 out-degree. We call those nodes bottom nodes as
they are at the bottom of the connected component output by the coreference
resolver. It is worth noting that only predicates play the role of a bottom
node. From each bottom node we draw an edge leading to particular nodes
in other connected components. A destination node can be of one of the two
categories.

1. The first category includes any predicate

16

bring

a large pot of
salted water to a boil

melt

butter in a large pot

cook

in the boiling
water

macaroni

preheat

To 350
degrees F

oven

bake

mix

mixture

cooked macaroni

…

add

Figure 4.3: Graph (input to arborescence algorithm) with extra edges (in red)
and a gray sentinel node

2. The second category consists of only arguments represented by nodes
with 0 in-degree. An argument can be of any type i.e arg1 or arg2

We also introduce an additional ‘’sentinel” node, which represents the final
output of the recipe and connect all nodes with 0 out-degree to it. The result-
ing graph we denote as G′. Then arborescence of the reverse of the graph G′

is a reverse flow graph of the recipe.

4.2.5 Content Model for Multiple Argument Events in
Recipes

Because of our semantic parsing explained in Section 4.2.1, we will have phrases
in arg1 and arg2 positions. It is worth noting that in recipe text we will

17

bring

a large pot of
salted water to a boil

melt

butter in a large pot

cook

in the boiling
water

macaroni

preheat

To 350
degrees F

oven

bake

mix

mixture

cooked macaroni

…

add

Figure 4.4: The resulting arborescence

have either ingredients or intermediate results (noun phrases) or utensils or
duration appearing in these slots. So to model them we consider only the
distinct nouns present in these positions. We build models based on counts
mentioned in Table 4.3. We use 2-skip bigram based counts similar in spirit to
[8], to account for data-sparsity. There are 2 kinds of edges that we will have:

1. predicate to predicate edge: We call them implicit argument edge

2. predicate to (output)argument edge: We call them evolution edge

We assign weights (1 − P (.)) to all edges in the graph using our content
models (refer Table 4.3) and find minimum weight arborescence.

We apply ChuLiu/Edmonds’ algorithm [14] and [15] for finding the result-
ing arborescence. The algorithm is run on the reversed G′ and then the final

18

Edge Type Value considered

Evolution P (edge(v, output arg) | arg(1or2), output arg)
P (edge(v, output arg) | v, v arg1, v arg2, output arg)
P (edge(v, output arg) | v, v arg1, output arg)
P (edge(v, output arg) | v arg1, v arg2, output arg)
P (edge(v, output arg) | v arg1, output arg)

Implicit P (edge(v1, v2) | v1 arg1, v1, v2, v2 arg(1or2))
P (edge(v1, v2) | v1 arg1, v1 arg2, v1, v2, v2 arg(1or2))
P (edge(v1, v2) | v1 arg1, v1, v2)
P (edge(v1, v2) | v1 arg1, v1 arg2, v1, v2)
P (edge(v1, v2) | v1 arg(1or2), v1)
P (edge(v1, v2) | v1, v2)

Table 4.3: Content Model for edge weight assignment

result is obtained by taking the reverse graph of arborescence. An example of
the result shown at Figure 4.4.

19

Chapter 5

Experimental Setup and Results

We evaluate the utility of our content models and our unsupervised approach
using 3 different experiments. We present precision-recall P/R metric for the
diagramming algorithms in section 5.1, elaborate on the sentence re-ordering
experiment and present results for the same in section 5.2, and finally present
results for the narrative cloze task that is used traditionally to evaluate content
models that try to capture narrative event chains, in section 5.3.

5.1 Precision Recall for Diagramming

To demonstrate the utility of our diagramming algorithm, we generate di-
agrams using the following approaches and report the Precision and Recall
metric for the edges identified by our algorithms. To report this metric we
need some gold standard annotations. For this purpose we manually anno-
tated a small subset of recipes. To get these annotations on a large scale, we
propose a game in Chapter 6.

The different approaches for diagramming are :

1. 5 iterations of Algorithm 2

2. 2 iterations of Algorithm 2

3. 5 iterations of Algorithm 2 without co-reference resolution

4. Single Iteration. Using Text order instead of Content Model in Algo-
rithm 2 without co-reference resolution

The annotations that we used for evaluating the algorithms are available
here Gold Standard Annotations

20

http://gthandavam.in:8001#/index.xhtml/ActivityDiagramming/BananaMuffins/

Method Recall - Im-
plicit Argu-
ments

Recall -
Evolution

Recall All
Edges

Precision All
Edges

Coref + 5
Iterations

0.40 0.23 0.51 0.63

Coref +
Single
Iteration

0.40 0.21 0.51 0.62

No Coref +
5 iterations

0.22 0.14 0.44 0.55

No Coref +
Text Order

0.17 0.07 0.42 0.52

Table 5.1: Precision and Recall for Diagramming algorithms

5.2 Viterbi sentence order decoding

The process of identifying the coherent order of sentences among the given
sentences is called the sentence re-ordering task. Several experiments have
been conducted in the past ([16] and [17]) to show how Centering theory [18]
could be used to identify sentence ordering. This experiment is also used as
a metric for text-to-text generation tasks [19]. We introduce this experiment
to automatically evaluate content models that learn narrative event chains.
We use our content models and recover the viterbi style sentence order. For
comparison we use 2 simple baselines based on our Algorithm 1

5.2.1 Generating Training/Testing Samples

For this task, among all the (predicate, arg1, arg2) groups - henceforth called
sem-group, we generate all possible pairs

(
N
2

)
. Based on a coin-flip we generate

a + or a - negative sample, type of which is determined by the precedence
relation in the recipe-text. For example :

1. Sample(sem-group i-1, sem-group i) is a positive pair

2. Sample(sem-group i+1, sem-group i) is a negative pair

Now we train a Linear kernel in SVM [20], using unigram features in sem-
group, to predict the precedence relation between given pair of sem-groups.

21

Algorithm 2 Viterbi Sequence Finder

1: procedure getPathProbability(path, transitions, next)
2: ret← 0
3: for i← 1, length(path) do . adding log probabilities
4: ret← ret+ transitions[path[i]][next]
5: end for
6: for i← 1, length(path) do . accounting for all the following nodes in

the path
7: if i <> next, i 6∈ path then
8: ret← ret+ transitions[next][path[i]]
9: end if
10: end for
11: return ret
12: end procedure

13: procedure getViterbiSequence(transitions, n) . returns the max
probable sequence

14: for i← 1, n do . First viterbi iteration
15: path[i]← [i] . Initializing, for starting state
16: if i = 1 then
17: Initialize sentence 1 with max probability
18: else
19: Initialize other sentences with miniscule probability
20: end if
21: end for
22: for t← 2, n do . Remaining viterbi iterations, from 2 to n
23: for s1← 1, n do
24: for s0← 1, n do
25: candidates ← candidates.add((viterbi[t − 1][s0] +

addPathProbability(path[s0], s1, transitions), s1))
26: end for
27: (maxProb,maxState)← max(candidates)
28: viterbi[t][s1]← maxProb
29: newPath[y]← path[maxState] + s1
30: end for
31: path← newPath
32: end for
33: maxState← argmax(viterbiTable[t][x])
34: return path[maxState] . max probable viterbi sequence
35: end procedure

22

Metric Binary Classification Precision Kendall’s τ

Method: SVM
(MAP)

method
1

method
2

method
1

method
2

BananaMuffins 76.86 77.44 82.56 0.50 0.70
BeefChilli 74.68 76.09 72.43 0.62 0.54
BeefMeatLoaf 77.23 78.13 70.99 0.67 0.59
BeefStroganoff 72.74 73.73 69.49 0.54 0.47
CarrotCake 75.34 78.93 68.90 0.58 0.39
CheeseBurger 72.74 73.89 68.15 0.47 0.45
ChickenSalad 68.99 71.27 62.39 0.53 0.50
ChickenStirFry 66.10 67.53 62.82 0.46 0.32
Coleslaw 70.05 74.06 77.59 0.51 0.64
CornChowder 77.97 80.23 72.19 0.62 0.45
DeviledEggs 88.57 89.13 60.66 0.81 0.36
EggNoodles 70.36 72.72 65.22 0.54 0.43
FrenchToast 68.95 73.43 72.76 0.58 0.53
MacAndCheese 78.73 80.36 68.78 0.64 0.45
MeatLasagna 73.25 74.44 65.23 0.55 0.44
PecanPie 63.91 64.37 60.44 0.48 0.39
PotatoSalad 79.30 80.30 64.12 0.68 0.39
PulledPork 68.48 72.73 70.09 0.50 0.45
PumpkinPie 66.60 67.68 58.45 0.55 0.51
VeggiePizza 69.43 72.95 64.11 0.39 0.40

Table 5.2: Sentence Re-ordering experiment

5.2.2 Global inference using viterbi sequence decoder :
Content Model and Linear SVM Probability

We use viterbi style algorithm outlined in Algorithm 2 to identify the document
level ordering of sentences. We use kendall tau [21] metric to compare the
ordering identified by different approaches.

Refer Table 5.2 to compare the different approaches. Method 1 uses pre-
diction probabilities directly from Linear kernel SVM to recover the document
level ordering via our viterbi style algorithm. Similarly Method 2 uses proba-
bilities outlined in Table 4.3 for viterbi decoding of document structure. Ta-
ble 5.2 clearly shows that the SVM baseline is tough to beat for our content
models. There is scope for modelling the interactions between arguments and

23

Method Recall@10 Recall@30 Recall@50 Accuracy
Coref + 5 iterations 0.60 0.80 0.90 0.15
Coref + Text Order 0.45 0.80 0.85 0.05

5 Iterations without Coref 0.40 0.75 0.90 0.0

Table 5.3: Narrative Cloze for Recipe Events

actions in a recipe in a different way. For example, we could model the inter-
actions via a HMM and see if we get better results for this experiment. We
leave this as future work.

5.3 Narrative Event Cloze

We evaluate our content models by performing cloze test on the learnt event
chains. From the graphs in the test-set we identify the longest chain per graph
for evaluation. We leave one predicate in the chain at random and generate
a list of ranked guesses using our content models. The search space for this
experiment is the list of all cooking verbs that we have in our corpus. Similar
in spirit to [7] and [8] we report the Recall at N metric. Our experiment is
similar to the single protagonist model explained in [7]. Accuracy is measured
based on the first guess returned by our models. If the first guess is the
left out verb, the guess gets scored, otherwise not. For identifying the most
probable candidate, we use the following scoring function in which ≺ indicates
precedence relation:

score(acandidate) =
∑

1<i<candidate

log(P (ai ≺ acandidate))+∑
candidate<i<n

log(P (acandidate ≺ ai))
(5.1)

From the Table 5.3 it is evident that iterative learning with co-reference
resolution heuristics seem to outperform 2 other baselines.

24

Chapter 6

Conclusion and Future work

6.1 Limitations of Arborescence formulation

One of the limitations of our diagramming formulation is the fact that they
could introduce parallel evolution edges, which is against our initial assump-
tion that output of one action becomes either the input of another action
either directly (through implicit argument edge) or indirectly (through evo-
lution edge). For instance, refer Figure 6.1 to see a hypothetical case when
the arborescence formulation may not guarantee a recipe flow graph consistent
with our assumptions. We call this a theoretical limitation since we did not
notice any such case empirically in our dataset.

6.2 Introduction to the GWAP

Like mentioned in Chapter 5, we need annotations done on a large scale to
evaluate an activity diagramming algorithm. [22] introduced a game to collect
image descriptions. The concept called Game with a Purpose (GWAP) has
become popular since then and it has been used widely in several projects to
collect human annotations on a large scale. [23], [24], [25] and [26] are some
of the examples. In similar vein we introduce a GWAP to collect annotations
for the recipes corpus.

The following sections in this chapter describe the Game With a Purpose
(henceforth GWAP) for crowd sourcing annotations for the recipes corpus.
There are 2 parts to the game. First part tries to collect labels for intra-
sentence arguments and the second part for inter-sentence arguments. The
second part of the game has 2 sections to it. One section of this part of
the game tries to collect annotations for entities (ingredients or intermediate
results in a recipe) involved in a referring expression (result or intermediate

25

Action 1

Action N

…

Input 11 Input 12

Action iAction 2

Bon Appetit!

Input 21
Input i2Input i1

…

Action 3

Input 31

Figure 6.1: Hypothetical Limitation of Arborescence formulation

result in a recipe); the other section is for identifying implicit arguments for
the cook predicates. As we will see, the case of implicit arguments becomes
interesting when the implicit argument is not available in the immediately
preceding sentence.

6.2.1 Intra-sentence Arguments

This part is intended for getting cooking predicates and their intra-sentence
arguments. For prototyping we used openNLP chunker to identify different
chunks of a sentence. A player will be presented with (predicate, chunk-of-
text) pair. Then we will ask the player if the given chunk-of-text is object or
co-object or location or duration or other of the predicate. (this is annotation
mode of the game). Player has to say a simple yes or no.

For each question, a player will be shown definition of the label that is
shown to him/her. For eg: for marking ‘object’ label, definition and examples
for ‘object’ label will be shown in the UI; a snapshot of the UI is show in
Figure 6.3.

In case the answer chosen by the player is ’no’, we will ask the player to
correct the label. The player will be rewarded based on the inter-annotator
agreement, which would become useful as more number of people participate
in the annotation. (validation mode for the annotations)

26

● Place patties on the grill.

● Cook for 5 minutes per side, or until well done.

● Place a slice of cheese on top of each one

during the last minute.

Intra-sentence arguments

Verb

Object

Duration

Co-Object

Figure 6.2: Examples for argument marking

Figure 6.3: A sample layout for the game

To begin with, we will use some human-made annotations as bootstrap
data. Once we have more annotations collected using the game, the annota-
tions with inter-annotator agreements will become a part of the seed data.

To generate more questions, we will generate random labels for the chosen
pair of (predicate, chunk) and ask the player if he/she agrees with the chosen

27

label. Like before, if a player disagrees with the label, we will ask the player to
correct the label (or say ‘Does not fit any category’), using his/her judgement.

6.2.2 Inter-sentence Arguments

Evolving Entities

Does bran mixture contain yogurt ?

● Combine bran cereal, bananas and yogurt in a
medium bowl.

● Let stand for a couple minutes to allow cereal to
soften.

● Meanwhile, combine flour, baking powder,
baking soda, salt, and nuts and/or raisins in a
large bowl; set aside.

● Stir eggs, sugar and oil into bran mixture, then
add to dry ingredients; stir just until combined.

Figure 6.4: What’s in the ‘bran mixture’

One unique aspect of our corpus that we could capture in this game is
the marking of evolving entities and what they refer to. For this part, we
will identify a noun phrase NPFollowing (or human labelled evolved entities)
and a random noun phrase that precedes this identified definite noun phrase
NPPreceding. For this pair (NPFollowing, NPPreceding) we ask the player to answer
if NPPreceding is one of the ingredients/utensil in making NPFollowing.

To bootstrap we could use some human labelled evolved-entities annota-
tion. Once we have more players, response of one player could be used to
question the other player’s judgement thereby allowing us to collect inter-
annotator agreement.

Figure 6.4 is a sample question given to the player. By looking at the text
the player is expected to spot the fact that bran and yogurt are combined to
form the bran mixture.

Figure 6.5 is an example of a wrong annotation given to the player. Player
can mark the annotation as valid or invalid. If the player marks it as invalid,
he/she will be asked to pick at least one ingredient that is a part of the
expression ‘dry ingredients’.

28

Dry ingredients and bran cereal ?

● Combine bran cereal, bananas and yogurt in a
medium bowl.

● Let stand for a couple minutes to allow cereal to
soften.

● Meanwhile, combine flour, baking powder, baking
soda, salt, and nuts and/or raisins in a large bowl;
set aside.

● Stir eggs, sugar and oil into bran mixture, then add
to dry ingredients; stir just until combined.

Figure 6.5: ’bran cereal’ is not referred by ‘dry ingredients’. ‘bran mixture’ in
the text is the additional cue to the player

Implicit Arguments

Implicit Argument example

● Preheat oven to 400 degrees F.
● Prepare a muffin tin with paper liners.
● Prepare muffins according to package
instructions using water, eggs and oil, but use
only 1/4 cup oil instead of 1/2 cup, and add 1/4
cup applesauce.

● Bake 15-20 minutes, until a tester comes out
clean.

Figure 6.6: ‘Bake’ predicate with 2 implicit arguments

Similar to the Section 6.2.1, we give the players a (predicate, chunk-of-text)
pair; except that the chunk-of-text is from any of the sentence preceding the
sentence of the predicate. We expect to see a lot of negative labels here.
Restricting ourselves only to the preceding sentence may not be a good idea
as there are cases of implicit arguments that are far apart from the sentence
containing the predicate. For example: In Figure 6.7, ‘bake’ predicate has 2
implicits arguments ‘oven’ and ‘muffins’ as highlighted.

29

Identifying suitable NPs for Inter-sentence markables

From the chunker output it is easy to identify NP chunks. However, we need
to avoid NPs that are part of PPs that function as adverbial. To this end we
use a set of heuristics to identify the PP as playing a role of adjective or adverb
and filter for NPs that are part of adjective PPs, along with stand-alone NPs.

Upon simple post-processing we get a list of candidate markables that can
participate in question generation for Section 6.2.2 and Section 6.2.2.

Find whether a PP is adverbial or adjective
Solution:

Heuristic 1: If the PP is first chunk in a sentence or is immediately preceded
by VP, then it is more likely to be an adverbial.
Heuristic 2: If the PP is immediately preceded by a NP, it is more likely
to be adjective PP.

The suitability of the above mentioned heuristics needs to be investigated
for our All-Recipes corpus. Though, we don’t have empirical evidence to
support these heuristics, we believe this should be a good starting point for
building the game.

6.2.3 Suitability for Activity Diagramming

It is worth mentioning that by having these 2 strategies (Section 6.2.2 and
Section 6.2.2) for inter-sentence argument annotations, we will be able to re-
trieve the details required for evaluating our activity diagramming by simple
post-processing. Also, we will capture the text-spans in the game to aid us
in scoring of automatically generated diagrams, by using partial overlap of
text-spans.

6.2.4 System Design

We present here a simple system design that could form the back-end for this
proposed game. The design doesnt talk about handling user-login details now,
but this should be a good place to start.

30

Fri Nov 7 12:28:50 2014, New Model - EER Diagram (part 1 of 1)

1 of 1

annotation

id MEDIUMINT(9)

question_id MEDIUMINT(9)

user_identity VARCHAR(256)

user_response TINYINT(1)

destination MEDIUMINT(9)

source MEDIUMINT(9)

Indexes

annotation_type

id MEDIUMINT(9)

name VARCHAR(32000)

question_asked VARCHAR(32000)

Indexes

dish

id MEDIUMINT(9)

name VARCHAR(32000)

Indexes

inter_sentence_markable

id MEDIUMINT(9)

value VARCHAR(750)

sentence_num INT(11)

text_span_start INT(11)

text_span_end INT(11)

dish_id MEDIUMINT(9)

recipe_id MEDIUMINT(9)

Indexes

markable

id MEDIUMINT(9)

value VARCHAR(750)

chunk_tag VARCHAR(10)

sentence_num INT(11)

text_span_start INT(11)

text_span_end INT(11)

dish_id MEDIUMINT(9)

recipe_id MEDIUMINT(9)

Indexes

question

id MEDIUMINT(9)

source MEDIUMINT(9)

destination MEDIUMINT(9)

annotation_type MEDIUMINT(9)

question_usability_score DOUBLE

Indexes

recipe

id MEDIUMINT(9)

dish_id MEDIUMINT(9)

name VARCHAR(750)

Indexes

sentence

value VARCHAR(750)

sentence_num MEDIUMINT(9)

dish_id MEDIUMINT(9)

recipe_id MEDIUMINT(9)

Indexes

Figure 6.7: Entity Diagram for the simple game design

31

Bibliography

[1] Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narra-
tive event chains. In ACL/HLT, 2008. URL pubs/narrative-chains08.

pdf.

[2] Matt Gerber, Joyce Y. Chai, and Adam Meyers. The role of implicit argu-
mentation in nominal srl. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, NAACL ’09, pages 146–154,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.
ISBN 978-1-932432-41-1. URL http://dl.acm.org/citation.cfm?id=

1620754.1620776.

[3] Charles J. Fillmore and Collin F. Baker. Frame semantics for text un-
derstanding. In Proceedings of WordNet and Other Lexical Resources
Workshop, Pittsburgh, June 2001. NAACL, NAACL.

[4] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael
Chambers, Mihai Surdeanu, Dan Jurafsky, and Christopher Manning. A
multi-pass sieve for coreference resolution. In Proceedings of EMNLP
2010, 2010.

[5] B. A. Fox. Discourse structure and anaphora: written and conversational
english. Cambridge University Press, 1993.

[6] Heeyoung Lee, Marta Recasens, Angel X. Chang, Mihai Surdeanu, and
Dan Jurafsky. Joint entity and event coreference resolution across doc-
uments. In EMNLP-CoNLL, pages 489–500. ACL, 2012. ISBN 978-1-
937284-43-5.

[7] Karl Pichotta and Raymond J. Mooney. Statistical script learning with
multi-argument events. In Proceedings of the 14th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (EACL
2014), Gothenburg, Sweden, April 2014. URL http://www.cs.utexas.

edu/users/ai-lab/pub-view.php?PubID=127421.

32

pubs/narrative-chains08.pdf
pubs/narrative-chains08.pdf
http://dl.acm.org/citation.cfm?id=1620754.1620776
http://dl.acm.org/citation.cfm?id=1620754.1620776
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127421
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127421

[8] Bram Jans, Steven Bethard, Ivan Vulic, and Marie-Francine Moens. Skip
n-grams and ranking functions for predicting script events. In Walter
Daelemans, Mirella Lapata, and Llúıs Màrquez, editors, EACL 2012, 13th
Conference of the European Chapter of the Association for Computational
Linguistics, Avignon, France, April 23-27, 2012, pages 336–344. The As-
sociation for Computer Linguistics, 2012. ISBN 978-1-937284-19-0. URL
http://aclweb.org/anthology-new/E/E12/E12-1034.pdf.

[9] Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and Tetsuro Sasada.
Flow graph corpus from recipe texts. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mar-
iani, Asunción Moreno, Jan Odijk, and Stelios Piperidis, editors, LREC,
pages 2370–2377. European Language Resources Association (ELRA),
2014.

[10] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North, Gordon
Woodhull, Short Description, and Lucent Technologies. Graphviz open
source graph drawing tools. In Lecture Notes in Computer Science, pages
483–484. Springer-Verlag, 2001.

[11] Paul Kingsbury and Martha Palmer. From treebank to propbank. In
LREC. European Language Resources Association, 2002.

[12] Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for query-
ing and manipulating tree data structures. In Proceedings of the 2006
conference on Language Resources and Evaluation, page 22312234, 2006.

[13] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing.
In Erhard W. Hinrichs and Dan Roth, editors, ACL, pages 423–430. ACL,
2003.

[14] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed
graph. Science Sinica, pages 1396–1400, 1965.

[15] J. Edmonds. Optimum branchings. J. Research of the National Bureau
of Standards, 71B, pages 233–240, 1967.

[16] Nikiforos Karamanis. Evaluating centering for sentence ordering in two
new domains. In Proceedings of the Human Language Technology Con-
ference of the NAACL, Companion Volume: Short Papers, NAACL-
Short ’06, pages 65–68, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics. URL http://dl.acm.org/citation.cfm?

id=1614049.1614066.

33

http://aclweb.org/anthology-new/E/E12/E12-1034.pdf
http://dl.acm.org/citation.cfm?id=1614049.1614066
http://dl.acm.org/citation.cfm?id=1614049.1614066

[17] Mirella Lapata. Probabilistic text structuring: Experiments with sen-
tence ordering. In Proceedings of the 41st Annual Meeting on Associ-
ation for Computational Linguistics - Volume 1, ACL ’03, pages 545–
552, Stroudsburg, PA, USA, 2003. Association for Computational Lin-
guistics. doi: 10.3115/1075096.1075165. URL http://dx.doi.org/10.

3115/1075096.1075165.

[18] Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein. Centering: A
framework for modeling the local coherence of discourse. Computational
Linguistics, 21(2):203–225, 1995.

[19] Regina Barzilay and Mirella Lapata. Modeling local coherence: An
entity-based approach. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05, pages 141–148,
Stroudsburg, PA, USA, 2005. Association for Computational Linguis-
tics. doi: 10.3115/1219840.1219858. URL http://dx.doi.org/10.3115/

1219840.1219858.

[20] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM TIST, 2(3):27, 2011. doi: 10.1145/1961189.
1961199. URL http://doi.acm.org/10.1145/1961189.1961199.

[21] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):
pp. 81–93, 1938. ISSN 00063444. URL http://www.jstor.org/stable/

2332226.

[22] Luis von Ahn and Laura Dabbish. ESP: labeling images with a com-
puter game. In Knowledge Collection from Volunteer Contributors, Pa-
pers from the 2005 AAAI Spring Symposium, Technical Report SS-05-
03, Stanford, California, USA, March 21-23, 2005, pages 91–98. AAAI,
2005. URL http://www.aaai.org/Library/Symposia/Spring/2005/

ss05-03-014.php.

[23] Luis von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom: a game for
locating objects in images. In Grinter et al. [27], pages 55–64. ISBN
1-59593-372-7. doi: 10.1145/1124772.1124782. URL http://doi.acm.

org/10.1145/1124772.1124782.

[24] Luis von Ahn, Shiry Ginosar, Mihir Kedia, Ruoran Liu, and Manuel Blum.
Improving accessibility of the web with a computer game. In Grinter et al.
[27], pages 79–82. ISBN 1-59593-372-7. doi: 10.1145/1124772.1124785.
URL http://doi.acm.org/10.1145/1124772.1124785.

34

http://dx.doi.org/10.3115/1075096.1075165
http://dx.doi.org/10.3115/1075096.1075165
http://dx.doi.org/10.3115/1219840.1219858
http://dx.doi.org/10.3115/1219840.1219858
http://doi.acm.org/10.1145/1961189.1961199
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://www.aaai.org/Library/Symposia/Spring/2005/ss05-03-014.php
http://www.aaai.org/Library/Symposia/Spring/2005/ss05-03-014.php
http://doi.acm.org/10.1145/1124772.1124782
http://doi.acm.org/10.1145/1124772.1124782
http://doi.acm.org/10.1145/1124772.1124785

[25] Luis von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom: a game for
locating objects in images. In Computer Human Interaction, pages 55–64,
2006. doi: 10.1145/1124772.1124782.

[26] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara L. Berg.
Referit game: Referring to objects in photographs of natural scenes. In
EMNLP, 2014.

[27] Rebecca E. Grinter, Tom Rodden, Paul M. Aoki, Edward Cutrell, Robin
Jeffries, and Gary M. Olson, editors. Proceedings of the 2006 Conference
on Human Factors in Computing Systems, CHI 2006, Montréal, Québec,
Canada, April 22-27, 2006, 2006. ACM. ISBN 1-59593-372-7.

35

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation
	Thesis Outline

	Related Work
	Recipe Flow Graph and Linguistic Phenomena in Recipes
	Recipe Flow Graph
	Linguistic Phenomena

	Dataset and Method
	Dataset
	Method
	Tregex Semantic Parsing
	Coreference-Resolution Heuristics
	Arborescence as a Natural Recipe Flow
	Arborescence formulation
	Content Model for Multiple Argument Events in Recipes

	Experimental Setup and Results
	Precision Recall for Diagramming
	Viterbi sentence order decoding
	Generating Training/Testing Samples
	Global inference using viterbi sequence decoder : Content Model and Linear SVM Probability

	Narrative Event Cloze

	Conclusion and Future work
	Limitations of Arborescence formulation
	Introduction to the GWAP
	Intra-sentence Arguments
	Inter-sentence Arguments
	Suitability for Activity Diagramming
	System Design

	Bibliography

