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Abstract of the Dissertation

Advanced Applications of Generalized Hyperbolic Distributions
in Portfolio Allocation and Measuring Diversification

by

Xiang Shi

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Quantitative Finance)

Stony Brook University

2016

This thesis consists of two parts. The first part addresses the parame-
ter estimation and calibration of the Generalized Hyperbolic (GH) distribu-
tions. In this part we review the classical expectation maximization (EM)
algorithm and factor analysis for the GH distribution. We also propose a
simple shrinkage estimator driven from the penalized maximum likelihood.
In addition an on-line EM algorithm is implemented to the GH distribution;
and its regret for general exponential family can be represented as a mix-
ture of Kullback-Leibler divergence. We compute the Hellinger distance of
the joint GH distribution to measure the performances of all the estimators
numerically. Empirical studies for long-term and short-term predictions are
also performed to evaluate the algorithms.

In the second part we applied the GH distribution to portfolio optimiza-
tion and risk allocation. We show that the mean-risk portfolio optimization
problem of a certain type of normal mixture distributions including the GH
distribution can be reduced to a two dimensional problem by fixing the loca-
tion parameter and the skewness parameter. In addition, we show that the
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efficient frontier of the mean-risk optimization problem can be extended to
the three dimensional space. We also proposed a simple algorithm to deal
with the transaction costs. The first and second derivatives of the CVaR are
computed analytically when the underlying distribution is GH. With these
results we are able to extend the effective number of bets (ENB) to general
risk measures with the GH distribution. By diagonalizing the Hessian ma-
trix of a risk measure we are able to extract locally independent marginal
contributions to the risk. The minimal torsion approach can still be applied
to get the local coordinators of the marginal contributions.
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1 Introduction

The quantitative financial modeling can be traced back to [24] who assumes
that the stock price follows the Brownian motion with zero drift. The most
influential option pricing theory developed by [8] applies the geometric Brow-
nian motion to model stock price; and derive the famous Black-Scholes for-
mula by deducting a unique risk-neutral measure. In the geometric Brown-
ian motion stock price model, the log returns are assumed to be normally or
Gaussian distributed. However, this assumption was rejected by the empiri-
cal studies from [25], who conjectured that the log returns of most financial
instruments are well described by a class of stable distributions. Further
solid evidences were discovered by [16]. Stable distributions can be viewed
as a generalization of the normal distribution; but they are heavy-tailed in
nature. The “tails” of a distribution can be viewed as the probability of the
occurrence of extreme values. It can be measured by kurtosis of a distribu-
tion. And a continuous probability distribution is heavy-tailed if its kurtosis
is greater than the one of the normal distribution.

The major fallacy of the normal distribution in finance is that it wrongly
underestimates the frequency of extreme events such as financial crisis. It is
well-known that the geometric Brownian motion based Black-Scholes formula
failed on Black Monday, October 19, 1987. Today it is widely recognized
that the financial time series has three important stylized facts: (i) they have
heavy tails; (ii) they are skewed; (iii) they exhibits volatility clustering. There
are branch of studies in heavy-tailed stable distributions and their application
to finance, see [33], [35], [38], [37] and [46]. However a drawback of stable
distributions is that they do not have the second moment, or equivalently,
finite variance. Some stable distributions do not have even the first moment.
Thus they may be too heavy-tailed to fit finance data properly. A simple
way to fix this problem to truncated the tails of stable distributions a bit,
see [29] for example. Another more mathematically beautiful approach is
to multiply the Lévy measure of stable distributions by an function with
exponential decay. The new distribution constructed by this approach is
called the tempered stable distribution. We refer readers to [42] for detailed
construction of the tempered stable distribution. [22], [36] and [41] applied
the tempered stable distribution with time series models to option pricing.

Despite the fact that financial market exhibits heavy-tails, the normal
distribution is still the most widely-used distribution in financial industry
and literatures, for two major reasons. First, there is a natural multivari-
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ate version of the normal distribution; and the linear transformation of any
multivariate normally distributed random vectors still follows the normal
distribution. Copula is often used to model the dependence structures of
heavy-tailed distributions that lacks multivariate extension. However the
copula-based structure would often be destroyed by linear transformation.
For many heavy-tailed distributions, problems such as portfolio allocation,
stress testing, measuring diversification and risk contribution can only be
done via Monte Carlo numerically; while the normal distribution can pro-
vide analytical solutions to most of these problems.

Secondly, the normal distribution has better statistical properties. It
belongs to the exponential family, so distance measures like the Kullback-
Leibler divergence or Hellinger distance are trivial. Unfortunately, an expo-
nential family defined on the whole real line cannot be heavy-tailed. Some
heavy-tailed distributions such as stable or tempered stable distribution do
not even have analytical representations of their density functions, which can
only be computed numerically via fast Fourier transform (FFT), see [28], [32]
and [7] for example. Furthermore, traditional unbiased estimators usually
have a poor performance in modeling high dimensional noisy financial data.
A branch of biased estimators have been invented for parameter estimation
for Gaussian models. Typical examples include the principle component
analysis (PCA); factor analysis with the expectation maximization (EM) al-
gorithm; Lasso regression proposed by [44]; James-Stein shrinkage estimator
proposed by [19] and Ledoit-Wolf shrinkage estimator proposed by [23]. Ap-
plying these techniques to heavy-tailed distributions is not trivial and often
numerically intractable.

In order to solve the first problem, a class of normal mixture distributions
are introduced to financial modeling. The idea is to multiply a Gaussian
random vector by an independent positive heavy-tailed random number, so
that the mixture distribution is closed under linear transformation, and still
has heavier tails than the normal distribution. The positive heavy-tailed
random number is sometimes called a subordinator, since it corresponds to
the randomized time under stochastic process framework. For example, if the
subordinator follows the inverse Gaussian (IG) distribution, then the mixture
distribution is called the normal inverse Gaussian (NIG) distribution, see
[6]. Its continuous time counter-party is sometimes called the Carr-Geman-
Madan-Yor (CGMY) process proposed by [10]. A generalization of the NIG
distribution is called the normal tempered stable (NTS) distribution, whose
subordinator is given by a positive tempered stable random number. [21]
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studies the portfolio optimization problem based on the NTS distribution.
The IG distribution is also a special case of the generalized inverse Gaussian
(GIG) distribution. The mixture distribution with a GIG subordinator is
called the generalized hyperbolic (GH) distribution, first introduced by [5].
The applications of the GH distribution to finance can be found in [13], [14]
and [18]. The skewed multivariate t distribution and the variance gamma
(VG) distribution are the limiting cases of the GH distribution.

The goal of this paper is to address the second problem: efficient pa-
rameter estimation, portfolio optimization and risk allocation approaches for
normal mixture distributions. We choose the GH distribution as an example
to illustrate these approaches for two reasons. First, the majority of normal
mixture distributions applied to finance can be viewed as subclasses of the
GH distribution. Secondly, although the GH distribution does not belong to
exponential family itself; it is the marginal distribution of a strict exponen-
tial family. Thus it shares some nice statistical properties with exponential
families.

This paper is organized as follows. In chapter 2 we review the definitions
and statistical properties of the GIG and the GH distribution. In chapter
3 we first review the expectation maximization (EM) algorithm for the GH
distribution and the regularization of the GH parameters. Then we introduce
three potentially advanced approaches: a shrinkage approach with penalized
likelihood, the factor analysis and the on-line EM algorithm. These ap-
proaches are tested both numerically and empirically using U.S equity data.
In the last chapter we investigate the general mean-risk portfolio optimiza-
tion problem with normal mixture distributions. We find that Markowitz’s
mean-variance efficient frontier can be extended to the three dimensional
space. Then we compute the first and second derivatives of the conditional
value-at-risk (CVaR) for normal mixture distributions. The results can be
applied to a fast mean-CVaR portfolio algorithm with transaction costs; and
measuring portfolio diversification based on the generalized effective number
of bets (ENB) proposed by [40].
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2 Preliminary

2.1 The Generalized Inverse Gaussian Distributions

In this section we review the definition and statistical properties of the gen-
eralized inverse Gaussian (GIG) distributions.

Definition 1. The generalized inverse Gaussian distribution is a continuous
probability distribution with the density function:

p(y|λ, χ, ψ) =
(ψ/χ)

λ
2

2Kλ(
√
χψ)

yλ−1 exp
(
− 1

2
(χy−1 + ψy)

)
, y > 0, (1)

where Kλ(·) is the modified Bessel function of the second kind and the pa-
rameters (λ, χ, ψ) satisfies:

χ > 0, ψ ≥ 0, if λ < 0
χ > 0, ψ > 0, if λ = 0
χ ≥ 0, ψ > 0, if λ > 0

.

Throughout this paper we assume that χ > 0 and ψ > 0 for simplicity.
Another useful way to parameterize the GIG distribution is to set δ =

√
χ/ψ,

η =
√
χψ. In that case the density function can be written as:

p(y|λ, δ, η) =
δλ

2Kλ(η)
yλ−1 exp

(
− η

2
(δy−1 + δ−1y)

)
, y > 0. (2)

Without the loss of generality we will denote the triple (λ, χ, ψ) for the GIG
distribution with density (1) and (λ, δ, η) for (2). It is easy to compute the
moment generating function of a GIG distributed random variable Y is given
by:

E[euY ] =

(√
ψ

ψ − 2u

)λKλ(
√
χ(ψ − 2u))

Kλ(
√
χψ)

=

(√
η

η − 2δu

)λ
Kλ(

√
η2 − 2δu)

Kλ(η)
.

From the second equation one can observe that δ is served as a scale parame-
ter of the GIG distribution. This is even clear when we look at the moments
of Y :

E[Y α] =

(√
χ

ψ

)α
Kλ+α(

√
χψ)

Kλ(
√
χψ)

= δα
Kλ+α(η)

Kλ(η)
. (3)
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The GIG distribution is an exponential family with natural parameters (λ, χ, ψ).
On the other side, the corresponding expectation parameters are given by:

s1 = E[Y −1] =

√
ψ

χ

Kλ−1(
√
χψ)

Kλ(
√
χψ)

,

s2 = E[Y ] =

√
χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

, (4)

s3 = E[log(Y )] =
∂

∂α
E[Y α]|α=0.

Unfortunately we do not have an analytical formula for s3. In practice it
can be only approximated numerically. On the other side, given (s1, s2, s3)
computing (λ, χ, ψ) by solving the above equations is proved to be a hard
problem. First note that computing the natural parameters from the expec-
tation parameters of an exponential family is basically the same as computing
the maximum likelihood given sufficient statistics. Let y1, y2, . . . , yn be a se-
quence of sample data, then the maximum likelihood estimator (MLE) of
GIG are given by:

(λ̂, χ̂, ψ̂) = arg max
λ,χ,ψ

LGIG(λ, χ, ψ|ŝ1, ŝ2, ŝ3), (5)

where LGIG is the log-likelihood function excluding constants:

LGIG(λ, χ, ψ|s1, s2, s3) := (6)

− 1

2
χŝ1 −

1

2
ψŝ2 + λŝ3 +

λ

2
log(ψ/χ)− log(Kλ(

√
χψ)), (7)

and ŝ1 = 1
n

∑n
k=1 y

−1
k , ŝ2 = 1

n

∑n
k=1 yk and ŝ3 = 1

n

∑n
k=1 log(yk). One can

check that the optimal solution (λ̂, χ̂, ψ̂) must satisfies (4) where (s1, s2, s3)
are replaced by (ŝ1, ŝ2, ŝ3).

As far as we know, there is no analytical expression of λ̂ or even its
partial derivatives. Most literatures, for example [20], suggests to fix λ when
we maximize the log likelihood function. Even λ is fixed, [18] reports that
when |λ| is large, say above 10, there might be no solution for the first two
equations in (4).

To test the maximum likelihood approach we first need to find a proper
way to measure the estimation errors. One good choice is to Hellinger dis-
tance between the true and estimated parameters.
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Proposition 1. Let (λ1, χ1, ψ1) and (λ2, χ2, ψ2) be the parameters of two
GIG distributions. The squared Hellinger distance between the two distribu-
tions is given by:

H2
GIG(λ1, χ1, ψ1‖λ2, χ2, ψ2) = 1− (ψ1/χ1)

λ1
4 (ψ2/χ2)

λ2
4√

Kλ1(
√
χ1ψ1)Kλ2(

√
χ2ψ2)

Kλ̄(
√
χ̄ψ̄)

(ψ̄/χ̄)
λ̄
2

,

where λ̄ = 1
2
λ1 + 1

2
λ2, χ̄ = 1

2
χ1 + 1

2
χ2 and ψ̄ = 1

2
ψ1 + 1

2
ψ2.

Proof. The Hellinger affinity is given by:∫ ∞
0

√
p(y|λ1, δ1, η1)p(y|λ2, δ2, η2)dy

=
(ψ1/χ1)

λ1
4 (ψ2/χ2)

λ2
4

2
√
Kλ1(

√
χ1ψ1)Kλ2(

√
χ2ψ2)

∫ ∞
0

yλ̄−1 exp
(
− 1

2
(χ̄y−1 + ψ̄y)

)
dy

=
(ψ1/χ1)

λ1
4 (ψ2/χ2)

λ2
4√

Kλ1(
√
χ1ψ1)Kλ2(

√
χ2ψ2)

Kλ̄(
√
χ̄ψ̄)

(ψ̄/χ̄)
λ̄
2

.

Now we are ready to analyze the optimization problem (5). In order
to see how ill-conditioned it might be, we first set λ = −10, χ = 1 and
ψ = 10−5. Then we compute the expectation parameters using (4) and get:
s1 = 20.0000, s2 = 0.0556 and s3 = −2.9449. Instead of fixing λ, we use
Matlab function fmincon together with the interior-point algorithm to solve
(4) directly. The partial derivatives of χ and ψ have analytical expressions
while the derivative of λ is computed numerically. The results are given by
Table 1.

True parameters Estimated parameters Relative errors
λ -10 -9.9538 0.0046
χ 1 0.9975 0.0025
ψ 10−5 0.7612 7.6119× 104

Table 1: Relative errors of the GIG parameters

We can observe that the estimated λ and χ are quite accurate, but ψ is
not even close to the true one. However the log-likelihoods of the two sets of
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parameters are almost the same, which is about -3.3537. In fact the difference
are approximately 10−7. This fact indicts that the log-likelihood function is
very flat with respect to ψ. Figure 1 plots the log-likelihood function against
ψ when λ = −10 and χ = 1. The x-axis is plotted in the log scale.

psi
10

-10
10

-8
10

-6
10

-4
10

-2
10

0
10

2

lo
g

-l
ik

e
lih

o
o

d

3.3524

3.3526

3.3528

3.353

3.3532

3.3534

3.3536

3.3538

Figure 1: Log-likelihood function of GIG

The Hellinger distance between two sets of parameters are also small,
which is approximately 6.1809×10−8. This implies that the two distributions
are almost the same.

It is easy to explain this phenomena. Let us write θk = (λk, χk, ψk), k =
1, 2, θ̄ = (θ1 +θ2)/2 and s = (s1, s2, s3) for simplicity. Note that the GIG dis-
tribution is an exponential family, it is easy to see that the squared Hellinger
distance satisfies:

H2
GIG(θ1‖θ2) = 1− exp

(
LGIG(θ1|s) + LGIG(θ2|s)

2
− LGIG(θ̄|s)

)
,

for any choice of s. Since LGIG is concave, we always have (LGIG(θ1|s) +
LGIG(θ2|s))/2−LGIG(θ̄|s) ≤ 0 where the equality holds if and only if θ1 = θ2.
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On the other side, we can apply Talyor expansion to LGIG(θ̄):

LGIG(θ̄) ≤ 1

2
(LGIG(θ1|s) + LGIG(θ2|s))

+
1

4
(θ2 − θ1)T(∇LGIG(θ1|s)−∇LGIG(θ2|s)).

It follows immediately that:

HGIG(θ1‖θ2) ≤ 1

2

√
(θ2 − θ1)T(∇LGIG(θ1|s)−∇LGIG(θ2|s)). (8)

Thus if the difference between each element in θ1 and θ2 is bounded and
both θ1 and θ2 reaches the “local” optimal in the sense of each element
∇LGIG(θk|s), k = 1, 2 is close to zero, then the Hellinger distance would be
small even θ1 and θ2 are not close to each other. This fact can be applied
to most exponential families. We will observe the same phenomena later for
the GH distribution.

There are other special cases of the GIG distribution that are widely
applied to finance: the inverse Gaussian (IG) distribution (when λ = −1/2),
the gamma distribution (when λ > 0 and χ = 0), and the inverse gamma
distribution (when λ < 0 and ψ = 0).

2.2 The Generalized Hyperbolic Distributions

In this section we briefly review the basic properties of the GH distribution.

Definition 2. Let Y be a GIG random variable with parameters (λ, χ, ψ), Z
be an independent Gaussian random vector with zero mean and covariance
Σ, Then the random vector:

X
d
=µ+ γY +

√
Y Z (9)

follows the generalized hyperbolic distribution with parameters (µ, γ,Σ, λ, χ, ψ),
where µ, γ ∈ Rd and Σ ∈ Rd×d is a positive definite matrix.

In the above definition we can see that µ is the location parameter, γ
is the skewness parameter, Σ models the dependency structure of the multi-
variate distribution, and λ, χ, ψ serves to the heavy-tailness. In general many
multivariate heavy-tailed distributions can be defined by (9) given some non-
negative random variable Y . These distributions are usually called normal
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mixture or Gaussian mixture distributions. In many literatures normal mix-
ture means a discrete mixture of normal densities. In this paper we always
refer the normal mixture distributions to any random variables that can be
expressed by (9).

The joint distribution of X and Y is crucial in analyzing the GH distribu-
tion. In this paper we will call the distribution of X and Y as the joint-GH
distribution. Its density function is as follows:

p(x, y|µ, γ,Σ, λ, χ, ψ) =
1√

(2π)d|Σ|
(ψ/χ)

λ
2

2Kλ(
√
χψ)

yλ−1− d
2

exp
(
− 1

2
(x− µ− γy)TΣ−1(x− µ− γy)y−1 − 1

2
(χy−1 + ψy)

)
, y > 0, (10)

from which one get the marginal distribution of x which is the GH density
function:

p(x|µ, γ,Σ, λ, χ, ψ) =

∫ ∞
0

p(x, y|µ, γ,Σ, λ, χ, ψ)dy

= c
Kλ− d

2
(
√

(χ+ (x− µ)TΣ−1(x− µ))(ψ + γTΣ−1γ))

(
√

(χ+ (x− µ)TΣ−1(x− µ))(ψ + γTΣ−1γ))
d
2
−λ

e(x−µ)TΣ−1γ, (11)

where

c =
(ψ/χ)

λ
2 (ψ + γTΣ−1γ)

d
2
−λ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

. (12)

Similar as before one can use another parameterization δ and η instead of χ
and ψ:

p(x|µ, γ,Σ, λ, δ, η) =

c
Kλ− d

2
(
√

(η + (x− µ)T(δΣ)−1(x− µ))(η + (δγ)T(δΣ)−1δγ))

(
√

(η + (x− µ)T(δΣ)−1(x− µ))(η + (δγ)T(δΣ)−1δγ))
d
2
−λ

e(x−µ)T(δΣ)−1δγ,

where

c =
(η + (δγ)T(δΣ)−1δγ)

d
2
−λ

(2π)
d
2 |δΣ| 12Kλ(η)

.

9



From the above representation one can observe that the GH model is not
regular since the parameter sets (µ, γ/c,Σ/c, λ, cδ, η) have the same distribu-
tionx for any c > 0. So the Fisher information matrix of the GH distribution
would be singular. There are several ways to regularize the GH family. The
simplest way is to set δ = 1. [34] sets χ = 1 in the EM-algorithm; [18] sug-
gests to fix χ when λ > −1 and fix ψ when λ < 1, due to the ill-condition
of the GIG optimization problem discussed in the previous section; and [26]
suggests to fix the determinant of Σ, for example, set |Σ| = 1.

There is a good reason to fix |Σ| = 1 when the dimension of the problem
is high. Note that |Σ/c| = |Σ|/cd, any small perturbation of the matrix
scale will make |Σ| change dramatically when d is large. The inversion of the
matrix would be intractable if |Σ| is too large or too small to be computed
numerically. And the matrix inversion is the key step in the EM algorithm
that we will discuss in following sections.

Let us return to the joint-GH distribution (10). It is clear that it is also
an exponential family with the expectation parameters:

s1 := E[Y −1] =

√
ψ

χ

Kλ−1(
√
χψ)

Kλ(
√
χψ)

,

s2 := E[Y ] =

√
χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

,

s3 := E[log(Y )] =
∂

∂α

(√
χ

ψ

)α
Kλ+α(

√
χψ)

Kλ(
√
χψ)

∣∣∣∣
α=0

, (13)

s4 := E[X] = µ+ γs2,

s5 := E[XY −1] = µs1 + γ,

s6 := E[XXTY −1] = Σ + µµTs1 + γγTs2 + µγT + γµT,

where s1, s2, s3 ∈ R, s4, s5 ∈ Rd and s6 ∈ Rd×d. Note that s1, s2, s3 are
exactly the expectation parameters of GIG random variable Y . On the other
side, given all the expectation parameters we can get the original parameter

10



as follows:

µ =
s4 − s2s5

1− s1s2

,

γ =
s5 − s1s4

1− s1s2

,

Σ = s6 − s5µ
T − µsT5 + s1µµ

T − s2γγ
T, (14)

(λ, χ, ψ) = arg max
λ,χ,ψ

LGIG(λ, χ, ψ|s1, s2, s3),

where LGIG is given by (6). As we already know that the above equations
are exactly the solutions of the optimization problem:

max
µ,γ,Σ,λ,χ,ψ

LGH(µ, γ,Σ, λ, χ, ψ|s1, s2, s3, s4, s5, s6),

where

LGH(µ, γ,Σ, λ, χ, ψ|s1, s2, s3, s4, s5, s6)

= −1

2
µTΣ−1µs1 −

1

2
γTΣ−1γs2 + γTΣ−1s4 + µTΣ−1s5

− 1

2
tr(Σ−1s6)− µTΣ−1γ − 1

2
log |Σ|+ LGIG(λ, χ, ψ|s1, s2, s3)

is the log-likelihood function of the joint-GH distribution excluding some
constants. We will see later that (13) and (14) forms the E-step and the M-
step in the EM algorithm, except that the expectations in (13) are replaced
by the conditional ones.

As far as we know, there is no analytical formulation of the Hellinger
distance between two GH distributions. However the Hellinger distance of
the joint-GH distributions is easy to compute:

Proposition 2. Let θ1 = (µ1, γ1,Σ1, λ1, χ1, ψ1) and θ2 = (µ2, γ2,Σ2, λ2, χ2, ψ2)
be the parameters of two joint-GH distributions. The squared Hellinger dis-
tance between the two distributions is given by:

H2
JGH(θ1‖θ2) =1− |Σ1Σ2|

1
4

|Σ̄| 12
(ψ1/χ1)

λ1
4 (ψ2/χ2)

λ2
4√

Kλ1(
√
χ1ψ1)Kλ2(

√
χ2ψ2)

Kλ̄(
√

(χ̄+ 1
4
∆µTΣ̄−1∆µ)(ψ̄ + 1

4
∆γTΣ̄−1∆γ))

((ψ̄ + 1
4
∆γTΣ̄−1∆γ)/(χ̄+ 1

4
∆µTΣ̄−1∆µ))

λ̄
2

e−
1
4

∆µTΣ̄−1∆γ,

11



where ∆µ = µ1 − µ2, ∆γ = γ1 − γ2, Σ̄ = 1
2
Σ1 + 1

2
Σ2, λ̄ = 1

2
λ1 + 1

2
λ2,

χ̄ = 1
2
χ1 + 1

2
χ2 and ψ̄ = 1

2
ψ1 + 1

2
ψ2.

Proof. The Hellinger affinity is given by:∫ ∫ √
p(x, y|θ1)p(x, y|θ2)dxdy

=

∫ ∫ √
p(x|y, θ1)p(x|y, θ2)dx

√
p(y|θ1)p(y|θ2)dy

=

∫
|Σ1Σ2|

1
4

|Σ̄| 12
exp

(
− 1

8
(∆µ+ ∆γy)TΣ̄−1(∆µ+ ∆γy)y−1

)
√
p(y|λ1, χ1, ψ1)p(y|λ2, χ2, ψ2)dy

=
|Σ1Σ2|

1
4

|Σ̄| 12
(ψ1/χ1)

λ1
4 (ψ2/χ2)

λ2
4√

Kλ1(
√
χ1ψ1)Kλ2(

√
χ2ψ2)

Kλ̄(
√
χ̄ψ̄)

(ψ̄/χ̄)
λ̄
2∫

exp

(
− 1

8
(∆µ+ ∆γy)TΣ̄−1(∆µ+ ∆γy)y−1

)
p(y|λ̄, χ̄, ψ̄)dy

=
|Σ1Σ2|

1
4

|Σ̄| 12
(ψ1/χ1)

λ1
4 (ψ2/χ2)

λ2
4√

Kλ1(
√
χ1ψ1)Kλ2(

√
χ2ψ2)

Kλ̄(
√

(χ̄+ 1
4
∆µTΣ̄−1∆µ)(ψ̄ + 1

4
∆γTΣ̄−1∆γ))

((ψ̄ + 1
4
∆γTΣ̄−1∆γ)/(χ̄+ 1

4
∆µTΣ̄−1∆µ))

λ̄
2

e−
1
4

∆µTΣ̄−1∆γ.

It is easy to see that if µ1 = µ2, γ1 = γ2 and Σ1 = Σ2 then HJGH(θ1‖θ2) =
HGIG(λ1, χ1, ψ1‖λ2, χ2, ψ2). Although HJGH is different with the Hellinger
distance of GH, it gives an upper bound of the latter so we are able to use it
the measure how close two GH distributions are.

Now suppose that θ = (µ, γ,Σ, λ, χ, ψ) are the “true” parameters and
(s1, s2, s3, s4, s5, s6) are the corresponding expectation parameters. Then if
we do (14) in computer, we would get a different set of parameters, say
θ̃ = (µ̃, γ̃, Σ̃, λ̃, χ̃, ψ̃). Since the formula for µ are arithmetic, we must have
‖µ̃− µ‖/‖µ‖ = O(ε) where ε denotes the machine epsilon. This is true for γ
and Σ. Thus we can believe that HJGH(θ‖θ̃) ≈ HGIG(λ, χ, ψ‖λ̃, χ̃, ψ̃). Then
we are able to apply (8) and conclude that the HJGH(θ‖θ̃) would be small if
λ̃, χ̃, ψ̃ reaches to “local” optimal of the GIG log-likelihood function.

12



To illustrate this point, we first use EM algorithm to fit the S&P 500
index daily return from 2010 to 2015. λ is fixed to be 10 in order to make
the problem ill-conditioned. The output parameters are assumed to be the
“true” ones; then we compute (13) and (14) via Matlab. Table 2 shows the
results.

True parameters Estimated parameters Relative errors
µ 0.2646 0.2646 1.2587e-15
γ -0.3013 -0.3013 -1.4740e-15
σ 1 1 0
λ 10 9.9897 0.0010
χ 8.4438e-05 0.0099 115.9873
ψ 24.1022 24.0932 0.0004

Table 2: Relative errors of the GH parameters

It is clear that the relative errors of µ and γ are around the machine
epsilon. σ is set to be 1 in order to regularize the GH parameters, which
we will discuss in the next chapter. The relative error of χ is tremendous.
However the Hellinger distance between the true and the estimated parame-
ters is small, which is about 1.5359× 10−8. And the GIG Hellinger distance
is almost the same as the GH distance. To conclude, the computation of
(14) is not stable in terms of relative error under certain conditions; but it is
relatively stable in terms of the Hellinger distance.
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3 Parameter Estimation of the Generalized

Hyperbolic Distributions

3.1 Expectation-Maximization Algorithm for the Gen-
eralized Hyperbolic Distributions

The EM algorithm is a classical iterative method for fitting data with hidden
values. [12] shows that the EM algorithm would converge to the traditional
MLE. There are several different types of the EM algorithms for the GH
distribution. In this paper we follow the EM framework in [18]. However,
our approach is slightly different with the previous works. First we use
general convex optimization algorithms to solve (5) directly without fixing
the parameter λ. The numerical tests in the previous chapter show that
the computation of λ is relatively precise. In addition, constraints on χ or
ψ are also unnecessary since the optimization problem (5) is stable under
the Hellinger distance. The best way to regularize the GH parameters is to
fix the determinant of Σ, as suggested by [26]. Unlike the algorithm in [26]
however, we show that the regularization can be done directly at the end of
each EM iteration without affecting the convergence.

Let θ = (µ, γ,Σ, λ, χ, ψ) be the parameter set of the GH distribution
for simplicity. Recall that a GH random vector X can be expressed as (9)
and the joint distribution of X and Y has the density (10). We are able to
compute the conditional density of Y given X:

p(y|x, θ) =
p(x, y|θ)
p(x|θ)

∼ yλ−1− d
2 exp

(
− 1

2
(x− µ− γy)TΣ−1(x− µ− γy)y−1 − 1

2
(χy−1 + ψy)

)
∼ yλ−1− d

2 exp
(
− 1

2
(χ+ (x− µ)TΣ−1(x− µ))y−1 − 1

2
(ψT + γΣ−1γ)y

)
,

where the operator ∼ means “proportional” since (x, θ) are regarded as con-
stants in the conditional distribution. It is clear that the above density is
the GIG distribution with parameters (λ− d/2, χ+ (x− µ)TΣ−1(x− µ), ψ+
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γTΣ−1γ). Apply (3) we obtain:

E[Y α|X = x, θ] =

(√
χ+ (x− µ)TΣ−1(x− µ)

ψ + γTΣ−1γ

)α

Kλ− d
2

+α(
√

(χ+ (x− µ)TΣ−1(x− µ))(ψ + γTΣ−1γ))

Kλ− d
2
(
√

(χ+ (x− µ)TΣ−1(x− µ))(ψ + γTΣ−1γ))
,

(15)

E[log Y |X = x, θ] =
∂

∂α
E[Y α|X = x, θ]

∣∣∣
α=0

.

Like before the derivative in the second equation can be computed numeri-
cally.

Now let x1, . . . , xn ∈ Rd be a sequence of i.i.d sample data. The EM algo-
rithm is an iterative approach for maximizing the likelihood. Each iteration
consists two steps: the expectation or the E-step, and the maximization or
the M-step. Given a set of initial parameters θ0 = (µ0, γ0,Σ0, λ0, χ0, ψ0), the
k+ 1-th E-step of the EM algorithm computes the average of the conditional
expectation of the sufficient statistics:

ŝ
(k)
1 =

1

n

n∑
j=1

E[Y −1|X = xj, θk],

ŝ
(k)
2 =

1

n

n∑
j=1

E[Y |X = xj, θk],

ŝ
(k)
3 =

1

n

n∑
j=1

E[log Y |X = xj, θk],

ŝ
(k)
4 =

1

n

n∑
j=1

E[X|X = xj, θk] =
n∑
j=1

xj,

ŝ
(k)
5 =

1

n

n∑
j=1

E[XY −1|X = xj, θk] =
1

n

n∑
j=1

xjE[Y −1|X = xj, θk],

ŝ
(k)
6 =

1

n

n∑
j=1

E[XXTY −1|X = xj, θk] =
1

n

n∑
j=1

xjx
T
j E[Y −1|X = xj, θk],

where the expectations can be computed by (15). The M-step is to solve the
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optimization problem:

θk+1 = arg max
θ

n∑
j=1

E[log p(X, Y |θ)|X = xj, θk].

And this is exactly equivalent to

θk+1 = arg max
θ
LGH(µ, γ,Σ, λ, χ, ψ|ŝ(k)

1 , ŝ
(k)
2 , ŝ

(k)
3 , ŝ

(k)
4 , ŝ

(k)
5 , ŝ

(k)
6 ), (16)

whose solutions are given by (14). Rewrite (14) we have the M-step of the
algorithm:

µk+1 =
ŝ

(k)
4 − ŝ

(k)
2 ŝ

(k)
5

1− ŝ(k)
1 ŝ

(k)
2

,

γk+1 =
ŝ

(k)
5 − ŝ

(k)
1 ŝ

(k)
4

1− ŝ(k)
1 ŝ

(k)
2

,

Σk+1 = ŝ
(k)
6 − ŝ

(k)
5 µT − µ(ŝ

(k)
5 )T + ŝ

(k)
1 µµT − ŝ(k)

2 γγT, (17)

(λk+1, χk+1, ψk+1) = arg max
λ,χ,ψ

LGIG(λ, χ, ψ|ŝ(k)
1 , ŝ

(k)
2 , ŝ

(k)
3 ).

There are some numerical issues in the above algorithm when the dimension
d is high. The first one is the computation of the modified Bessel functions
in (15). For large d, say 500 for example, Kλ+ d

2
+α might turns to zero or

infinity in Matlab for some data points x. This problem is addressed in the
appendix.

The second problem is to compute Σ−1. As we have discussed in the
previous chapter, a good way to regulate GH distribution is to set its de-
terminant to be 1. Instead of adding an extra constraint such that |Σ| = 1
in the optimization problem (16), we rescale the parameters at the end of
M-step:

(µk, γk,Σk, λk, χk, ψk)→ (µk, |Σk|−
1
dγk, |Σk|−

1
dΣk, λk, |Σk|

1
dχk, |Σk|−

1
dψk).

As we know these two sets of parameters are equivalent for the GH distribu-
tion. And a simple calculation will show that such rescaling will not change
the result and the convergency of the EM algorithm:
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Proposition 3. If we write the k + 1-th iteration of the EM algorithm as a
function f , i.e.

(µk+1, γk+1,Σk+1, λk+1, χk+1, ψk+1) = f(µk, γk,Σk, λk, χk, ψk),

then for any c > 0

(µk+1, cγk+1, cΣk+1, λk+1, χk+1/c, cψk+1) = f(µk, cγk, cΣk, λk, χk/c, cψk).

Proof. Let θk = (µk, γk,Σk, λk, χk, ψk) and θ̃k = (µk, cγk, cΣk, λk, χk/c, cψk).
A direct computation using (15) shows that:

E[Y α|X = x, θ̃k] = E[Y α|X = x, θk]/c
α,

E[log Y |X = x, θ̃k] = E[log Y |X = x, θk]− log c.

Thus if ŝ
(k)
1 , ŝ

(k)
2 , ŝ

(k)
3 , ŝ

(k)
4 , ŝ

(k)
5 , ŝ

(k)
6 are the outputs of the E-step given θk, then

cŝ
(k)
1 , ŝ

(k)
2 /c, ŝ

(k)
3 − log c, ŝ

(k)
4 , cŝ

(k)
5 , cŝ

(k)
6 would be the corresponding outputs

given θ̃k. We finish the proof by applying these parameters to (17).

Another approach is the multi-cycle expectation conditional maximiza-
tion (MCECM) algorithm proposed by [26]. Unlike the EM-algorithm which
updates all parameters via (17), the MCECM algorithm first computes µk+1,
γk+1 and Σk+1 according to the first three equations in (17) and set Σk+1 ←
Σk+1/|Σk+1|1/d so that it has unite determinate while µk+1 and γk+1 are
unchanged. Then it sets θ̃k+1 := (µk+1, γk+1,Σk+1, λk, χk, ψk) and computes:

s̃
(k+1)
1 =

1

n

n∑
j=1

E[Y −1|X = xj, θ̃k+1],

s̃
(k+1)
2 =

1

n

n∑
j=1

E[Y |X = xj, θ̃k+1],

s̃
(k+1)
3 =

1

n

n∑
j=1

E[log Y |X = xj, θ̃k+1].

Finally the updates of the rest of the parameters are given by:

(λk+1, χk+1, ψk+1) = arg max
λ,χ,ψ

LGIG(λ, χ, ψ|s̃(k+1)
1 , s̃

(k+1)
2 , s̃

(k+1)
3 ).
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Both the MCECM and the EM algorithm that rescales parameters in each
iteration converge to the MLE. In terms of efficiency they are also very similar
to our experience. The simpler EM algorithm might have a bit computation
advantage, but the difference is not significant.

To illustrate, we test both algorithms numerically. First we fit the stan-
dardized daily returns of S&P 500 and FTSE indices from 2008 to 2016 by
a two dimensional GH distribution via the EM algorithm with fixed λ. Ac-
cording to [18] the accuracy of the M-step would be affected by λ, especially
under extreme cases. Thus We set λ to be −10,−9, . . . , 10 and get corre-
sponding 21 sets of parameters given by the EM algorithm. Then for each
set of parameters we generate 5000 i.i.d multivariate GH random samples.
Then we fit the sample by the EM algorithm and compute the relative error
of the estimated parameters. We define the relative errors as ‖θ̂ − θ‖2/‖θ‖2

where ‖ · ‖2 is the 2-norm. The results are given by table 3.
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Relative errors H2

λ µ γ Σ λ χ ψ
-10 0.3207 0.3559 0.0108 1.3591 0.8636 4.3056× 105 0.0344
-9 0.0728 0.0899 0.0071 1.4072 0.8687 9.9812× 106 0.0166
-8 0.4742 0.4723 0.0232 1.1493 0.6154 5.5261× 105 0.0137
-7 0.4419 0.3541 0.0089 1.3486 0.8194 1.1266× 107 0.0223
-6 0.3038 0.4189 0.0439 0.1366 0.1683 71.3657 0.0086
-5 0.5297 0.6145 0.0140 1.1887 0.7586 1.0123× 107 0.0239
-4 0.5717 0.7755 0.0048 0.8570 0.5648 3.9045× 105 0.0166
-3 0.1336 0.0950 0.0117 0.0125 0.0179 92.9025 0.0013
-2 0.2183 0.2638 0.0156 0.0088 0.0591 5.2433× 103 0.0013
-1 0.0650 0.3661 0.0135 0.0416 0.0397 0.3508 0.0008
0 0.3208 0.1452 0.0029 2.2441 0.0916 0.0377 0.0017
1 0.0618 0.0762 0.0155 0.0662 0.6320 0.0789 0.0005
2 0.0714 0.4336 0.0432 0.2634 4.2627× 105 0.0571 0.0055
3 0.2339 0.3040 0.0195 0.5092 1.4997× 105 0.2553 0.0059
4 0.4386 0.5570 0.0049 0.0748 1.9663× 105 0.0160 0.0137
5 0.7064 0.8024 0.0096 0.3068 1.4570× 105 0.3109 0.0282
6 0.2725 0.3564 0.0143 0.2359 1.9352× 103 0.2478 0.0113
7 0.2371 0.2265 0.0175 0.0741 1.0459× 103 0.0617 0.0029
8 0.2232 0.2190 0.0057 0.1029 6.4067× 103 0.0948 0.0041
9 0.2340 0.1965 0.0062 0.1255 5.7621× 103 0.1232 0.0039
10 0.2487 0.2793 0.0233 0.0624 1.7391× 104 0.0572 0.0069

Table 3: Errors of the GH EM algorithm

H2 in the last column denotes for the squared Hellinger distance. As we
can see that the error of ψ is huge if λ is negative and the error χ is huge
if λ is positive. This corresponds to our discussion in section 2.2. Even the
estimated parameters are not close to the “ture” ones, small Hellinger dis-
tance implies that the two distributions are close. Figure 2 and 3 compares
two marginal density functions of the “ture” distribution to the fitted dis-
tribution when λ = 10. We can see that even the relative errors of χ are
tremendous, the fitted distributions is still quite close to the true ones.
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Figure 2: Marginal distribution of S&P 500
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Figure 3: Marginal distribution of FTSE
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Now we fit the same samples via the MCECM algorithm. The comparison
between two algorithms are shown by table 4. It is not surprising to see
that the log-likelihoods of two algorithms are almost the same, since both
algorithms converge to the MLE. The computation times are also similar.
The EM algorithm takes about 82 seconds and the MCECM algorithm takes
about 96 seconds to compute all of these results on a laptop with 1.8 GHz
Intel Core i7 processor and 4 GB 1333 MHz DDR3 memory.

EM algorithm MCECM algorithm
Log-likelihood H2 Log-likelihood H2

-10 -0.4582 0.0344 -0.4582 0.0346
-9 -0.4310 0.0166 -0.4310 0.0166
-8 -0.4080 0.0137 -0.4080 0.0140
-7 -0.4197 0.0223 -0.4197 0.0228
-6 -0.3734 0.0086 -0.3735 0.0090
-5 -0.3534 0.0239 -0.3534 0.0246
-4 -0.3079 0.0166 -0.3079 0.0171
-3 -0.3432 0.0013 -0.3432 0.0012
-2 -0.3293 0.0013 -0.3293 0.0012
-1 -0.4024 0.0008 -0.4025 0.0008
0 -0.4149 0.0017 -0.4149 0.0017
1 -0.4037 0.0005 -0.4037 0.0005
2 -0.3661 0.0055 -0.3660 0.0051
3 -0.4407 0.0059 -0.4407 0.0057
4 -0.4388 0.0137 -0.4388 0.0137
5 -0.5328 0.0282 -0.5328 0.0284
6 -0.5199 0.0113 -0.5199 0.0115
7 -0.5341 0.0029 -0.5341 0.0029
8 -0.5422 0.0041 -0.5422 0.0042
9 -0.5451 0.0039 -0.5451 0.0038
10 -0.5542 0.0069 -0.5542 0.0066

Table 4: Comparison between the EM algorithm and the MECEM algorithm
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3.2 Shrinkage with the Penalized Likelihood

By letting |Σ| = 1 we ensure that the matrix is numerically invertible in
each iteration of the EM algorithm. But this does not guarantee that matrix
inversion is well-conditioned. The third formula in (17) has the same problem
as the sample covariance: the condition number of Σk would be huge when
the sample size is relatively small. Thus some biased estimators such as
shrinkage are necessary to improve the condition number of Σ. In this section
we introduce a simple shrinkage approach based on the penalized likelihood.

Let us first consider a general exponential family with density:

p(x, y|θ) = h(x, y) exp(θTS(x, y)−G(θ)), (18)

where

G(θ) = log

∫
h(x, y) exp(θTS(x, y))dxdy.

And recall that the Kullback-Leibler divergence between two exponential
families are given by

DKL(θ1‖θ2) = E

[
log

p(X, Y |θ1)

p(X, Y |θ2)

∣∣∣θ1

]
= G(θ2)−G(θ1) + sT1 (θ2 − θ1),

where s1 = E[S(X, Y )|θ1]. This also corresponds to the Bregman divergence
with potential function G.

Now let us assume that x is observable while y is hidden. Given an
sequence of sample x1, x2, . . . , xn and some parameter θ0, our goal is to max-
imize the following penalized likelihood:

max
θ

1

n

n∑
j=1

log p(xj|θ)− τDKL(θ0‖θ),

where p(x|θ) =
∫
p(x, y|θ)dy is the marginal density of X and τ ≥ 0 repre-

sents the amount of “shrinkage”. If τ = 0 then this is the same as the original
maximum likelihood. As τ grows larger the optimal solution θ̂ would be closer
to θ0.

This problem can also be solved iteratively by the following EM-algorithm:

θk+1 = arg max
θ

1

n

n∑
j=1

E[log p(X, Y |θ)|xj, θk]− τDKL(θ0‖θ),

22



where the E-step computes the conditional expectation of the log-likelihood
and the M-step solves the optimization problem. One can easily show that
the penalized likelihood would increase as the number of iterations grows:

1

n

n∑
j=1

log p(xj|θk+1)− τDKL(θ0‖θk+1)− 1

n

n∑
j=1

log p(xj|θk) + τDKL(θ0‖θk)

=
1

n

n∑
j=1

E[log p(X, Y |θk+1)− log p(Y |X, θk+1)|X = xj, θk]− τDKL(θ0‖θk+1)

− 1

n

n∑
j=1

E[log p(X, Y |θk)− log p(Y |X, θk)|X = xj, θk]− τDKL(θ0‖θk)

≥ 1

n

n∑
j=1

E[log p(X, Y |θk+1)|X = xj, θk]− τDKL(θ0‖θk+1)

− 1

n

n∑
j=1

E[log p(X, Y |θk)|X = xj, θk]− τDKL(θ0‖θk) ≥ 0,

since E[log p(Y |X, θk) − log p(Y |X, θk+1)|X = xj, θk] ≥ 0 is the Kullback-
Leibler divergence between two conditional distributions. Using the repre-
sentation (18) we find that the above optimization problem is equivalent to:

θk+1 = arg max
θ

1

n

n∑
j=1

θT
(
E[S(X, Y )|xj, θk] + τs0

)
− (1 + τ)G(θ),

where s0 = E[S(X, Y )|θ0]. As a result, in the k-th E-step we computes the
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shrinked sufficient statistcs:

ŝ
(k)
1 =

1

(1 + τ)n

n∑
j=1

E[Y −1|X = xj, θk] +
τ

1 + τ
E[Y −1|θ0],

ŝ
(k)
2 =

1

(1 + τ)n

n∑
j=1

E[Y |X = xj, θk] +
τ

1 + τ
E[Y |θ0],

ŝ
(k)
3 =

1

(1 + τ)n

n∑
j=1

E[log Y |X = xj, θk] +
τ

1 + τ
E[log Y |θ0],

ŝ
(k)
4 =

1

(1 + τ)n

n∑
j=1

xj +
τ

1 + τ
E[X|θ0],

ŝ
(k)
5 =

1

(1 + τ)n

n∑
k=1

xjE[Y −1|X = xj, θk] +
τ

1 + τ
E[XY −1|θ0],

ŝ
(k)
6 =

1

(1 + τ)n

n∑
j=1

xjx
T
j E[Y −1|X = xj, θk] +

τ

1 + τ
E[XXTY −1|θ0],

where

E[Y α|θ0] =

(√
χ0

ψ0

)α
Kλ0+α0(

√
χ0ψ0)

Kλ0(
√
χ0ψ0)

,

E[log Y |θ0] =
∂

∂α
E[Y α|θ0]

∣∣∣
α=0

,

E[X|θ0] = µ0 + γ0E[Y |θ0],

E[XY −1|θ0] = µ0E[Y −1|θ0] + γ0,

E[XXTY −1|θ0] = Σ0 + µ0µ
T
0E[Y −1|θ0] + γ0γ

T
0 E[Y |θ0] + µ0γ

T
0 + γ0µ

T
0 .

Thus penalized maximum likelihood turns out to be a linear shrinkage of the
conditional expectation parameters. The M-step is the same as the original
EM-algorithm (17). Furthermore the linear relationship between Σk+1 and

ŝ
(k)
6 suggests that Σk+1 can be shrinked to Σ0 directly. By setting proper Σ0

we are able to improve the condition of Σk+1 for each k.
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3.3 Factor Analysis for the Generalized Hyperbolic Dis-
tributions

Another way to improve the condition of Σ is the factor analysis proposed
by [45]. Here we assume that Σ follows a certain structure: Σ = FFT + D
where F ∈ Rd×r, r < d and D ∈ Rd×d is a positive definite diagonal matrix.
This is equivalent to say that a GH random vector X can be expressed as:

X
d
=µ+ γY +

√
Y (FZ + ε),

where Z ∈ Rr ∼ N(0, I) and ε ∼ N(0, D). The conditional distribution of X
given Y and Z follows N(µ+γY +

√
Y FZ,DY ). Thus the joint distribution

of (X, Y, Z) is given by:

p(x, y, z|µ, γ, F,D, λ, χ, ψ) = p(x|y, z, µ, γ, F,D)p(y|λ, χ, ψ)p(z)

=
1√

(2π)d+r|D|
(
√
χ/ψ)λ

2Kλ(
√
χψ)

yλ−1− d
2 exp

(
− 1

2
zTz − 1

2
(χy−1 + ψy)

− 1

2
(x− µ− γy − F√yz)TD−1(x− µ− γy − F√yz)y−1

)
, y > 0. (19)

One can observe that the above density function belongs to a curved expo-
nential family, i.e. which has the expression:

p(x, y, z) = h(x, y, z) exp(θ(u)TS(x, y, z)−G(θ(u))),

where θ(·) is a nonlinear function that projects u to a higher dimension
space. In (19) the function S(x, y, z) can be written as a composition of eight
elements: y−1, y, log y, x, xy−1, xxT, xzTy−1/2, zy−1/2, zy1/2 and zzT. Similar
as before let us replace these functions of x, y and z by s = (s1, s2, . . . , s8)
respectively, and denote the set of parameters as u = (µ, γ, F,D, λ, χ, ψ) for
simplicity. Then the log-likelihood function of factor analysis can be defined
as:

LFA(u|s) = −1

2
log |D| − 1

2
µTD−1µs1 −

1

2
γTD−1γs2 + γTD−1s4 + µTD−1s5

− 1

2
tr(D−1s6) + tr(FTD−1s7)− µTD−1Fs8 − γTD−1Fs9

− 1

2
tr(FTD−1Fs10)− µTD−1γ + LGIG(λ, χ, ψ|s1, s2, s3).
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Unlike a full exponential family that always has one to one projection be-
tween the natural parameters θ and the expectation parameters s, maximiz-
ing the log-likelihood function of a curved exponential family projects the
expectation parameters to a lower dimension space. We refer [2] for detail.

The partial derivatives of LFA with respect to µ, γ, F,D are:

∂LFA
∂µ

= D−1(−s1µ+ s5 − Fs8 − γ),

∂LFA
∂γ

= D−1(−s2γ + s4 − Fs9 − µ),

∂LFA
∂F

= D−1(s7 − µ(s8)T − γsT9 − Fs10),

∂LFA
∂D−1

=
1

2

(
− s1µµ

T − s2γγ
T + s4γ

T + γ(s4)T + s5µ
T + µsT5 − s6 + s7F

T

+ FsT7 − Fs8µ
T − µFsT8 − Fs9γ

T − γFsT9 − Fs10F
T − µγT − γµT −D

)
.

By setting the derivatives to be zero we get the analytic formulas for the
projection:

µ =
t2t5 − t3t4
t22 − t1t3

,

γ =
t2t4 − t1t5
t22 − t1t3

, ,

F =
(
s7 − µsT8 − γsT9

)
s−1

10 ,

D = diag
(
s1µµ

T + s2γγ
T − s4γ

T − γsT4 (20)

− s5µ
T − µsT5 + s6 − s7F

T − FsT7 ,
+ Fs8µ

T + µ(Fs8)T + Fs9γ
T + γ(Fs9)T,

+ Fs10F
T + µγT + γµT

)
,

(λ, χ, ψ) = arg max
λ,χ,ψ

LGIG(λ, χ, ψ|s1, s2, s3),

where

t1 = sT8 s
−1
10 s8 − s1,

t2 = sT9 s
−1
10 s8 − 1,

t3 = sT9 s
−1
10 s9 − s2, (21)

t4 = sT7 s
−1
10 s8 − s5,

t5 = sT7 s
−1
10 s9 − s4.
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Now let us consider the M-step of the EM algorithm. It is clear that if
we integrate (19) over z we can find that the joint distribution of x and y is
given by (10) where Σ = FFT +D. As a result, the conditional distribution
of y given x follows the GIG with parameter (λ− d/2, χ+ (x− µ)T(FFT +
D)−1(x− µ), ψ + γT(FFT +D)−1γ). So similar as before we have:

E[Y α|X, u] =

(√
χ+ (x− µ)T(FFT +D)−1(x− µ)

ψ + γT(FFT +D)−1γ

)α

Kλ− d
2

+α(
√

(χ+ (X − µ)T(FFT +D)−1(X − µ))(ψ + γT(FFT +D)−1γ))

Kλ− d
2
(
√

(χ+ (X − µ)T(FFT +D)−1(X − µ))(ψ + γT(FFT +D)−1γ))
,

(22)

E[log Y |X, u] =
∂

∂α
E[Y α|X, u]

∣∣∣
α=0

.

On the other side, the joint distribution of X and Z conditional on Y follows
the Gaussian distribution:(

(X − µ− γY )/
√
Y

Z

) ∣∣∣∣
Y,u

∼ N

(
0,

(
FFT +D F

FT I

))
.

Thus it is easy to obtain:

E[Z|X, Y, u] = β

(
X − µ− γY√

Y

)
,

and

E[ZZT|X, Y, u] = I − βF + β(X − µ− γY )(X − µ− γY )TβTY −1,

where

β = FT(FFT +D)−1.

So we solve the rest of conditional expectations that we need in the EM-
algorithm:

E[ZY −
1
2 |X, u] = β(X − µ)E[Y −1|X, u]− βγ,

E[ZY
1
2 |X, u] = β(X − µ)− βγE[Y |X, u],

E[ZZT|X, u] = I − βF + β(X − µ)(X − µ)TβTE[Y −1|X, u]

− β(X − µ)γTβT − βγ(X − µ)TβT + βγγTβTE[Y |X, u].
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Now suppose that we have i.i.d samples: x1, . . . , xn. The k-th E-step com-
putes the conditional expectation of all ten sufficient statistics given x1, . . . , xn.
The first six is the same as before:

s
(k)
1 =

1

n

n∑
j=1

E[Y −1|X = xj, uk],

s
(k)
2 =

1

n

n∑
j=1

E[Y |X = xj, uk],

s
(k)
3 =

1

n

n∑
j=1

E[log Y |X = xj, uk],

s
(k)
4 =

1

n

n∑
j=1

xj,

s
(k)
5 =

1

n

n∑
j=1

xjE[Y −1|X = xj, uk],

s
(k)
6 =

1

n

n∑
j=1

xjx
T
j E[Y −1|X = xj, uk],

where uk = (µk, γk, Fk, Dk, λk, χk, ψk) is the result of the previous iteration.
The rest four sufficient statistics are all determined by the first six ones:

s
(k)
7 =

1

n

n∑
j=1

E[XZTY −
1
2 |X = xj, uk] = (s

(k)
6 − s

(k)
5 µT

k − s
(k)
4 γTk )βT

k ,

s
(k)
8 =

1

n

n∑
j=1

E[ZY −
1
2 |X = xj, uk] = βk(s

(k)
5 − µks

(k)
1 − γk),

s
(k)
9 =

1

n

n∑
j=1

E[ZY
1
2 |X = xj, uk] = βk(s

(k)
4 − µk − γkS

(k)
2 ),

s
(k)
10 =

1

n

n∑
j=1

E[ZZT|X = xj, uk]

= I − βkFk + βk

(
S

(k)
6 − S

(k)
5 µT

k − µk(s
(k)
5 )T + µkµ

T
k s

(k)
1

− (s
(k)
4 − µk)γTk − γk(s

(k)
4 − µ)T + γkγ

T
k s

(k)
2

)
βT
k .
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The M-step maximizes the following log-likelihood function:

uk+1 = arg max
u

n∑
j=1

LFA(uk|s(k)),

where s(k) = (s
(k)
1 , . . . , s

(k)
8 ). The solution of the optimization problem is

given by (20) and (21).
To test the factor analysis for GH, we first fit standardized daily returns

of Dow Jones 30 companies from 2008 to 2015 via the original EM algorithm
where λ is fixed to be −10,−9, . . . , 9, 10. Like before we generate 5000 i.i.d
samples for each set of these estimated parameters. Then we fit the samples
by the EM algorithms with and without factor analysis. In addition, we
apply the principle component analysis (PCA) to the positive definite matrix
Σ without factor analysis. Given the singular value decomposition (SVD):
Σ = USUT where U ∈ Rd×d is unitary and S ∈ Rd×d is diagonal such that
the singular values S11 ≥ S22 ≥ · · · ≥ Sdd, the PCA of Σ returns a structured
positive definite matrix:

ΣPCA = FFT +D,

where

F = UrS
1
2
r ,

D = diag(Σ− FFT),

Ur ∈ Rd×r are the first r columns of U and Sr ∈ Rr×r is the first r by r block of
S. By doing this we obtain an approximation ΣPCA with improved condition
numbers. This is a naive approach to impose the structure to the matrix Σ.
Table 5 compares this method to the factor analysis. The columns “EM”,
“FA” and “PCA” denote the original EM algorithm, the EM algorithm for
factor analysis and the PCA after the original EM algorithm. Columns 2-3
list the squared Hellinger distance between the estimated distribution and
the ture one. Columns 4-6 are the condition numbers of Σ generated by three
algorithms. The last three columns are the average log-likelihood of these
parameters.
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H2 Condition number Log-likelihood
λ EM FA PCA EM FA PCA EM FA PCA

-10 0.1000 0.1729 0.3754 1994.20 867.10 691.08 4.7370 4.4345 3.4113
-9 0.0705 0.1393 0.3452 1974.33 910.35 652.46 5.0906 4.7829 3.7616
-8 0.0802 0.1595 0.3652 1954.36 848.52 699.37 5.1395 4.8390 3.7902
-7 0.0530 0.1240 0.3275 2087.17 908.11 697.45 4.9642 4.6519 3.6912
-6 0.0413 0.1181 0.3264 1880.44 825.69 652.00 4.9823 4.6854 3.7247
-5 0.0527 0.1262 0.3405 1941.21 857.07 674.09 4.7375 4.4521 3.4715
-4 0.0328 0.1044 0.3363 1865.89 889.10 647.46 4.8930 4.6235 3.5839
-3 0.0273 0.1035 0.3349 2045.80 880.74 687.54 4.2625 3.9536 2.9333
-2 0.0255 0.0975 0.3301 1957.20 892.15 677.09 3.1803 2.9007 1.8659
-1 0.0260 0.1018 0.3185 1906.74 858.30 670.68 2.7241 2.4332 1.4935
0 0.0233 0.0968 0.3311 1913.15 866.64 663.03 2.6073 2.3293 1.3293
1 0.0236 0.0921 0.3191 2109.98 938.91 699.25 2.1358 1.8556 0.8953
2 0.0286 0.1093 0.3157 2030.69 851.70 698.08 2.1970 1.8906 0.9731
3 0.0343 0.1028 0.3288 1989.78 908.03 673.02 1.7883 1.5097 0.5330
4 0.0365 0.1135 0.3217 1935.65 825.38 667.19 1.1949 0.8893 -0.0374
5 0.0470 0.1209 0.3320 1990.66 925.24 687.06 1.4294 1.1380 0.1686
6 0.0524 0.1261 0.3353 2033.83 893.15 681.75 1.2452 0.9458 -0.0203
7 0.0525 0.1216 0.3369 2031.71 939.93 705.08 1.4742 1.1971 0.2129
8 0.0662 0.1487 0.3414 2004.60 876.78 689.10 1.5345 1.2367 0.2912
9 0.0917 0.1545 0.3685 2023.68 914.30 688.21 1.4006 1.1069 0.0266
10 0.0908 0.1543 0.3631 2057.76 959.67 677.09 1.7179 1.4378 0.4026

Table 5: Analysis of three methods

First it is clear that the factor analysis that maximize the likelihood
with the constraint Σ = FFT + D always has a larger likelihood than the
PCA. The original EM algorithm achieves the maximum likelihood without
any constraint on Σ. In addition it also has the smallest Hellinger distances
among three columns while the factor analysis has a better performance than
the naive PCA. On the other side the condition number of the original EM
algorithm is huge, this corresponds to our discussion that the MLE of the
parameter Σ might be ill-conditioned just like the sample covariance matrix.
Σ given by the factor analysis has much smaller condition numbers. Although
they are larger than the ones of PCA they are still significant improvements
of the matrix conditions.
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There are two problems in the above test. First the parameters which we
used to generate samples are estimated via the EM algorithm without factor
analysis; thus the “true” matrix Σ has relative large condition number itself.
Secondly, the factor analysis for Gaussian distribution is usually known as a
better choice than the sample covariance when sample size is small. Usually
we do not have 5000 sample size in low frequency finance.

So we modify the above test to see under what situations the factor
analysis might outperform the MLE. Instead of generating random samples
right after fitting the 30 stocks via the EM algorithm, we first shrink the
singular values of the estimated Σ so that it is well-conditioned. Then we
rescale it so that its determinant is one again. 1000 i.i.d samples are generated
based on this shrinked Σ. The results are shown by table 6, from which one
can observe that the condition numbers of all three approaches are much
smaller than before. While the Hellinger distances of the factor analysis are
overall smaller than the ones in the “EM” column, which corresponds to our
conjecture. This does not mean, of course, that factor analysis would always
be better than MLE. As the sample size increases, the MLE will converges
to the true distribution while the factor analysis which is a biased estimator
may never reach to the true one even it can be quite close.
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H2 Condition number Log-likelihood
λ EM FA PCA EM FA PCA EM FA PCA

-10 0.3032 0.2981 0.5138 68.6334 65.0819 67.6515 5.1644 5.0416 4.0143
-9 0.3565 0.3306 0.5311 64.8407 62.5625 65.7507 5.4475 5.3448 4.4495
-8 0.2914 0.2723 0.5091 63.5038 60.1229 64.1358 5.2004 5.0930 4.0253
-7 0.3417 0.3123 0.5174 57.6966 56.7443 61.2092 4.9359 4.8376 3.9381
-6 0.1645 0.1474 0.3998 66.3506 64.1371 66.9552 5.0843 4.9768 4.0433
-5 0.1876 0.1718 0.4303 63.7664 61.4185 69.9162 4.9568 4.8572 3.9241
-4 0.1599 0.1494 0.4023 60.6704 59.3149 62.8858 4.6953 4.6183 3.6512
-3 0.1182 0.1032 0.3583 63.1663 61.1375 64.5315 4.4342 4.3238 3.4138
-2 0.1268 0.1149 0.3881 63.4210 61.3255 66.8355 3.3633 3.2623 2.3230
-1 0.1345 0.1220 0.3828 68.9667 66.8575 69.8567 2.8859 2.7807 1.8908
0 0.1094 0.0954 0.3512 65.5393 61.3081 65.5617 3.0521 2.9281 2.0972
1 0.1344 0.1232 0.3625 62.5816 59.9246 65.0075 1.9517 1.8444 0.9857
2 0.1295 0.1128 0.3855 67.3400 65.0696 68.7618 2.6876 2.5931 1.7133
3 0.1232 0.1131 0.3780 57.1453 55.0849 58.3601 1.9194 1.8123 0.8495
4 0.1811 0.1654 0.4030 61.6218 60.0264 62.0237 1.9479 1.8484 0.8972
5 0.1524 0.1476 0.3882 78.3277 72.5415 75.3105 1.7491 1.6246 0.6563
6 0.2114 0.2063 0.4424 66.5814 63.5592 67.6542 1.6017 1.5143 0.5993
7 0.2685 0.2748 0.4749 60.4194 58.2861 62.7466 1.5260 1.4329 0.5920
8 0.3047 0.3015 0.4987 66.5735 63.8823 68.2195 1.8319 1.7368 0.7560
9 0.4188 0.4221 0.5804 71.9542 70.3681 73.6883 1.6385 1.5272 0.5244
10 0.3389 0.3093 0.5182 62.8962 60.3928 65.6060 2.0215 1.9075 0.9179

Table 6: Analysis of three methods with shrinked Σ

3.4 On-line EM algorithm for the Exponential Families

In this section we review the on-line EM algorithm proposed by [9]. In
addition we define and compute the regret of the algorithm. Let us consider
the exponential families whose density function has the form:

p(x, y|θ) = h(x, y) exp(θTS(x, y)−G(θ)), (23)

where x is observable, y is hidden and

G(θ) = log

∫
h(x, y) exp(θTS(x, y))dxdy.
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The expectation parameter or the dual-parameter is given by η = ∇G(θ); the
dual of G is given by F (η) = ηTθ − G(θ) and θ = ∇F (η). Furthermore one
can show that DG(θ1‖θ2) = DF (η2‖η1) where DG and DF are the Bregman
divergences with potential functions G and F .

We can think the process of parameter estimation as a game. Suppose
that at time t − 1 we make a decision or prediction denoted by θt−1. Then
at time t the environment reveals an observation xt. The loss of our decision
θt−1 is then given by the function l(xt, θt−1). Our goal is to find a sequence
of strategies θt that minimize the regret from t = 1, . . . , T :

T∑
t=1

l(xt, θt−1)−min
θ

T∑
t=1

l(xt, θ).

We refer [11] for a detailed description of the above setup. If we define
loss function l as the minus log-likelihood function, then we transfer the
parameter estimation to an on-line optimization problem. In fact [4] defines
the regret of online density estimation for an exponential family as:

−
T∑
t=1

log p(xt, yt|θt−1)−min
θ

(
−

T∑
t=1

log p(xt, yt|θ) + τ0DG(θ‖θ0)
)
,

where DG(θ‖θ0) = G(θ)−G(θ0)+∇G(θ0)T(θ−θ0) is the Bregman divergence
with the potential function G, which is also the Kullback-Leibler divergence
between p(x, y|θ0) and p(x, y|θ). The Bregman divergence in the above equa-
tion denotes the penalty function as we discussed in section 3.2.

However y is assumed to be unobservable. Hence we have to replace the
joint density in the regret function by the marginal density of x:

p(x|θ) =

∫
p(x, y|θ)dy,

and the regret is defined as:

rT (θ0, . . . , θT−1) :=

−
T∑
t=1

log p(xt|θt−1)−min
θ

(
−

T∑
t=1

log p(xt|θ) + τ0DG(θ‖θ0)
)
. (24)
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[9] proposes an online EM algorithm for exponential families with hidden
data:

η0 = ∇G(θ0),

ηt = ηt−1 + τ−1
t (S̄(xt|θt−1)− ηt−1), (25)

θt = ∇F (ηt),

where

S̄(xt|θt−1) := E[S(X, Y )|X = xt, θt−1],

F is the Legendre dual function of G, ∇G and ∇F are the gradients of G
and F respectively.

Theorem 1. Let τt = τ0 + t, then the regret defined by (24) of the online
EM algorithm (25) is given by:

rT (θ0, . . . , θT−1)

=
T∑
t=1

τtDG(θt−1‖θt) +
T∑
t=1

DKL(xt, θt−1‖xt, θML)− τTDF (ηT‖ηML), (26)

where

θML := arg min
θ

(
−

T∑
t=1

log p(xt|θ) + τ0DG(θ‖θ0)
)
,

is the MLE given sample x1, . . . , xT , ηML = ∇G(θML) and DKL(xt, θt−1‖xt, θML)
denotes the Kullback-Leibler divergence between p(y|xt, θt−1) and p(y|xt, θML).

Proof. First note that:

−
T∑
t=1

log p(xt|θt−1) =−
T∑
t=1

E[log p(X, Y |θt−1)|X = xt, θt−1]

+
T∑
t=1

E[log p(Y |X, θt−1)|X = xt, θt−1],
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since p(y|x, θ) = p(x, y|θ)/p(x|θ). The conditional expectation of the log of
the joint density is:

−
T∑
t=1

E[log p(X, Y |θt−1)|X = xt, θt−1]

=
T∑
t=1

(G(θt−1)− θTt−1S̄(xt|θt−1))−
T∑
t=1

E[log h(X, Y )|X = xt, θt−1],

where

T∑
t=1

(G(θt−1)− θTt−1S̄(xt|θt−1))

=
T∑
t=1

(−F (ηt−1)− θTt−1(S̄(xt|θt−1)− ηt−1))

=
T∑
t=1

(−F (ηt−1)− τtθTt−1(ηt − ηt−1))

=
T∑
t=1

(τt(F (ηt)− F (ηt−1)− θTt−1(ηt − ηt−1))− τtF (ηt) + (τt − 1)F (ηt−1))

=
T∑
t=1

(τtDF (ηt‖ηt−1)− τtF (ηt) + τt−1F (ηt−1))

=
T∑
t=1

τtDG(θt−1‖θt) + τ0F (η0)− τTF (ηT ).

Here we use the fact that F (η) = θTη −G(θ). So we have:

−
T∑
t=1

log p(xt|θt−1) =
T∑
t=1

τtDG(θt−1‖θt) + τ0F (η0)− τTF (ηT )

−
T∑
t=1

E[log h(X, Y )|X = xt, θt−1] +
T∑
t=1

E[log p(Y |X, θt−1)|X = xt, θt−1],
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as the first part of the regret. The second part can be written as:

min
θ

(
−

T∑
t=1

log p(xt|θ) + τ0DG(θ‖θ0)
)

= −
T∑
t=1

E[log p(X, Y |θML)|X = xt, θt−1]

+
T∑
t=1

E[log p(Y |X, θML)|X = xt, θt−1] + τ0DG(θML‖θ0).

On the other side we have:

−
T∑
t=1

E[log p(X, Y |θML)|X = xt, θt−1] + τ0DG(θML||θ0)

=
T∑
t=1

(G(θML)− θTMLS̄(xt, θt−1)) + τ0DG(θML‖θ0)−
T∑
t=1

E[h(X, Y )|X = xt, θt−1],

where

T∑
t=1

(G(θML)− θTMLS̄(xt, θt−1)) + τ0DG(θML‖θ0)

=
T∑
t=1

(G(θML)− θTMLS̄(xt, θt−1)) + τ0DF (η0‖ηML)

=
T∑
t=1

(θTMLηML − F (ηML)− θTMLS̄(xt, θt−1)) + τ0(F (η0)− F (ηML)− (η0 − ηML)TθML)

= τ0F (η0)− τTF (ηML) + τT θ
T
MLηML − θTML

(
τ0η0 +

T∑
t=1

S̄(xt, θt−1)
)

= τ0F (η0)− τTF (ηML) + τT θ
T
ML(ηML − ηT )

= τ0F (η0)− τTF (ηT ) + τTDF (ηT‖ηML).

Here we use the fact that ηT satisfies:

ηT = τ−1
T

(
τ0η0 +

T∑
t=1

S̄(xt, θt−1)
)
.
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As a result the second part of the regret is given by:

min
θ

(
−

T∑
t=1

log p(xt|θ) + τ0DG(θ‖θ0)
)

= τ0F (η0)− τTF (ηT ) + τTDF (ηT‖ηML)

−
T∑
t=1

E[h(X, Y )|X = xt, θt−1] +
T∑
t=1

E[log p(Y |X, θML)|X = xt, θt−1].

Finally by combining the two parts we obtain (26).

3.5 On-line EM algorithm for the Generalized Hyper-
bolic Distributions

Now we consider the joint GH distribution (10) which is an exponential
family. Suppose that we have a sequence of observations x1, x2, . . . , xT , it is
not difficult to see that the on-line EM algorithm for the GH updates the
sufficient statistics as follows:

s
(t+1)
1 = s

(t)
1 + τ−1

t+1(E[Y −1|X = xt+1, θt]− s(t)
1 ),

s
(t+1)
2 = s

(t)
2 + τ−1

t+1(E[Y |X = xt+1, θt]− s(t)
2 ),

s
(t+1)
3 = s

(t)
3 + τ−1

t+1(E[log Y |X = xt+1, θt]− s(t)
3 ),

s
(t+1)
4 = s

(t)
4 + τ−1

t+1(xj − s(t)
4 )

s
(t+1)
5 = s

(t)
5 + τ−1

t+1(xjE[Y −1X = xt+1, θt]− s(t)
5 ),

s
(t+1)
6 = s

(t)
6 + τ−1

t+1(xjx
T
j E[Y −1|X = xt+1, θt]− s(t)

6 ),

where the conditional expectations are given by (15). And the parameters
θt = (µt, γt,Σt, λt, χt, ψt) are given by:

µt =
s

(t)
4 − s

(t)
2 s

(t)
5

1− s(t)
1 s

(t)
2

,

γt =
s

(t)
5 − s

(t)
1 s

(t)
4

1− s(t)
1 s

(t)
2

,

Σt = s
(t)
6 − s

(t)
5 µT

t − µt(s
(t)
5 )T + s

(t)
1 µtµ

T
t − s

(t)
2 γtγ

T
t ,
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and

(λt, χt, ψt) = arg min
λ∈R,χ,ψ>0

−χ
2
s

(t)
1 −

ψ

2
s

(t)
2 + λs

(t)
3

− λ

2
logχ+

λ

2
logψ − logKλ(

√
χψ).

Here is an numerical example for the on-line EM algorithm. Similar as before
we first fit standardized daily returns of Dow Jones 30 stocks from 2008 to
2015. This time we will not fix λ for simplicity. Then we generate 1000
i.i.d samples from the estimated parameters. We divide the samples into
two parts: the first 500 samples are fitted by the EM algorithm to get a
set of initial parameters. Then we update these parameters via the on-line
algorithm using the rest 500 samples. For each step we will get a new set
of parameters. For comparison we also use the original EM algorithm to fit
the sample with increasing size, i.e, at step t we will fit first 500 + t samples.
The coefficient τt is also set to be 500 + t. At each step we compute the
squared Hellinger distances between our estimated parameters and the true
distribution. It is clear that the Hellinger distance would decrease as new
samples come in. Figure 4 compares the squared Hellinger distances of the
original EM and the on-line EM algorithm. Although the Hellinger distances
of the EM algorithm with increasing sample size are overall smaller than the
ones of the on-line EM, both of them exhibit a similar decreasing rate. The
differences between them are negligible.
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Figure 4: Squared Hellinger distance of the on-line EM algorithm

We also compute the cumulative loss of the two algorithms. The loss of
the algorithm at step t is given by the minus log-likelihood of the estimated
parameters given the data point at t + 1. Thus the original EM algorithm
is not guaranteed to have the smallest loss. Table 7 lists the cumulative loss
together with the Hellinger distance of two algorithms on step 50 to 500.
Interestingly the cumulative loss of the EM algorithm is slightly larger than
the loss of the on-line EM algorithm. But the increasing rate is very much
the same and the differences are also negligible. On the other side, the speed
of the on-line EM is much faster than the EM algorithm. One would expect
that the EM algorithm would be slower as the sample size increases; while
the speed of stepwise on-line EM algorithm is not affected by the sample size
at all.
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H2 Cumulative loss
Steps EM On-line EM EM On-line EM

50 0.2260 0.2294 1262.1595 1262.0578
100 0.2085 0.2129 2455.9476 2454.4570
150 0.1854 0.1900 3534.6732 3532.4671
200 0.1658 0.1707 4707.1562 4703.7384
250 0.1463 0.1517 5905.4282 5900.1418
300 0.1445 0.1490 7065.7341 7059.2635
350 0.1381 0.1426 8243.4580 8235.8861
400 0.1385 0.1428 9369.5228 9360.6765
450 0.1308 0.1348 10435.9610 10425.5031
500 0.1123 0.1168 11583.7467 11571.7180

Table 7: Squared Hellinger distance and cumulative loss of the on-line EM

One drawback of the on-line EM algorithm proposed by [9] is that it may
not converge for some curved exponential families that have the form:

p(x, y|u) = h(x, y) exp(θ(u)TS(x, y)−G(θ(u))),

where θ(u) is a non-linear function which projects the parameter u to a higher
dimensional space. The EM algorithm for curved exponential families solves
the equation of u:

∇θ(u)T
(

1

n

n∑
j=1

E[S(X, Y )|xj, θ(u)]−∇G(θ(u))

)
= 0,

while the on-line EM algorithm tends to solve:

1

n

n∑
j=1

E[S(X, Y )|xj, θ(u)]−∇G(θ(u)) = 0,

which may not have a solution when the dimension of u is lower than θ.
Thus unfortunately we are not be able to apply the on-line EM algorithm
introduced in this section to the factor analysis.
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3.6 Empirical Studies of the Generalized Hyperbolic
Distribution

In this section we test the GH distribution with the estimation algorithms
introduced in the previous sections in the real market. The data is the
daily adjusted prices of S&P 500 stocks from 2010 to 2015 downloaded from
Yahoo! Finance. We compute the standardized log-returns from the price
data. Some of the equities that contain missing values are removed. So there
are overall 453 equities left. The data is divided into two parts. The first part
includes all the data from 2010 to 2013 which will be used for our estimation.
The second part includes the data from 2014 to 2015 which will be used for
out-of-sample backtesting.

For comparison we also fit the sample data to the NIG, VG and Gaussian
distributions. The NIG and VG distributions are the special cases of the GH
distribution so we can apply the same EM algorithm to them by introducing
additional constraints. Then we generate 106 i.i.d random vectors for each
distribution. In the meantime we also generate 100 random portfolio weights
using uniform random numbers. We use these random weights to project
the multivariate GH distributions to the univariate ones. So we are able to
compare these univariate distributions to the realized portfolio returns via
the two-sample Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests.
The reason for which we use the two-sample tests instead of one-sample tests
is that generating random numbers from the GH distribution is relatively easy
and efficient comparing to computing the CDF of GH distribution directly.
For the KS test we use the Matlab function kstest2 while for the AD test
we refer [15] for details.

Table 8 shows the results of the KS tests for the original EM algorithm.
The second and the fifth column lists the total number of rejections out of 100
in-sample tests and out-of-sample tests respectively. The third and the sixth
columns are the average p-values; and the forth and the seventh columns are
the average test statistics. Table 9 shows the results of the AD test. We can
see that the GH, NIG and VG distributions are better than the Gaussian in
both in-sample and out-sample tests. The performances of the three skewed
and heavy-tailed distributions are very similar. The GH distribution is overall
a bit better than the other two. One might worry that the GH distribution
which has more parameters might over-fit the sample, but the its performance
in out-of-sample tests are still the best over all four distributions. Figure 5
plots the estimated density function and sample histogram of one random
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portfolio; and figure 5 polts its left tail. The differences between the GH,
NIG and VG distributions are too small to be observed from the figure for
that portfolio, which corresponds to the results of the KS tests.

In-sample 2010-2013 Out-of-sample 2014-2015
Rejections p-value Statistics Rejections p-value Statistics

GH 6 0.621031 0.024523 28 0.290718 0.050514
NIG 6 0.620764 0.024534 28 0.290330 0.050555
VG 6 0.620138 0.024564 28 0.289382 0.050574

Gaussian 16 0.395765 0.031707 41 0.218632 0.057003

Table 8: Kolmogorov-Smirnov test of the EM algorithm

In-sample 2010-2013 Out-of-sample 2014-2015
Rejections Statistics Rejections Statistics

GH 6 0.775848619 32 2.418293289
NIG 7 0.777107138 32 2.423416348
VG 7 0.790174126 32 2.432192316

Gaussian 19 1.763408361 43 3.304100218

Table 9: Anderson-Darling test of the EM algorithm

λ χ ψ
GH -1.8719 1.8396 11.0056
NIG -0.5 1.4760 15.2859
VG 5.5186 0 35.6627

Table 10: Tail parameters from the EM algorithm
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We also test the factor analysis using the same data and the same portfolio
weights. The dimension of the factor is 200. The results are given by table
11 and 12. We find that the factor analysis actually does not improve the
performance in both in-sample test and out-of-sample test.

In sample 2010-2013 Out sample 2014-2015
Rejections p-value Statistics Rejections p-value Statistics

GH 12 0.586917 0.026097 33 0.278299 0.052536
NIG 12 0.586117 0.026123 33 0.277507 0.052617
VG 12 0.585154 0.026165 33 0.276345 0.052631

Gaussian 16 0.405141 0.031402 40 0.221002 0.056863

Table 11: Kolmogorov-Smirnov test of the factor analysis

In sample 2010-2013 Out sample 2014-2015
Rejections Statistics Rejections Statistics

GH 12 1.098944595 34 2.769573648
NIG 12 1.112162981 34 2.781897982
VG 12 1.130512659 34 2.792557894

Gaussian 19 1.738648795 42 3.294081305

Table 12: Anderson-Darling test of the factor analysis

λ χ ψ
GH -1.2297 1.7876 11.8080
NIG -0.5000 1.5797 13.9212
VG 5.3051 0.0000 31.5123

Table 13: Tail parameters from the factor analysis

However the above tests may not tell the whole story. The underlying
assumption is that our prediction, i.e. the estimated distribution does not
change over next two years. Thus these test are designed for long term
predictions. In practice people usually update their prediction in a daily,
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weekly or monthly basis. Therefore we are more interested in the accuracy
of our prediction in a short term. In that case, the loss function defined in
section 2.4 and 2.5 is a good way to evaluate the prediction. Recall that the
loss function is defined as:

l(xt, θt−1) := − log p(xt|θt−1),

where xt is the observation on day t, p is the density function of a certain
distribution and θt−1 is the parameter estimated using the data before t. p
and θt−1 forms our prediction on t − 1. Under this framework we test the
following five strategies using the daily returns from 2014 to 2015:

1. Original EM algorithm with 1000 days’ moving window;

2. Original EM algorithm with increasing size window starting with past
1000 days’ data;

3. On-line EM algorithm whose initial parameters are given by the EM
algorithm using past 1000 days’ data;

4. Factor analysis with 1000 days’ moving window;

5. Factor analysis with increasing size window starting with past 1000
days’ data.

The moving window strategies are the most common approach in fitting
financial data. The performance of the moving window strategies are con-
sistent over time so it is easy to evaluate them. The increasing size window
strategies are applied to compare with the on-line EM algorithm, as we have
seen in the last section. Figure 7 plots the cumulative losses of the five
strategies from 2014 to 2015. Note that we ignore the log(2π) constant in
computing the log likelihood, so the loss function may not be positive. If we
do not ignore that constant then the cumulative loss would be very close to a
straight line and the differences between the strategies might not be visually
clear.

Figure 7 plots the cumulative losses of the five strategies from 2014 to
2015. Table 14 lists the cumulative losses at the end of each month and
the average computation time of each strategy. First of all, the algorithms
with increasing window have smaller loss than the ones with moving or fixed
size window. This indicates that 1000 days might not be the optimal win-
dow size in this case. The on-line EM algorithm’s cumulative losses are
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overall larger than the EM algorithm with increasing window; but the the
difference is relatively small comparing to the EM algorithm with moving
window. Surprisingly, the factor analysis which was not doing well in the
first test outperforms the other strategies. This indicates that the factor
analysis might be a better choice for short-term predictions. On the other
side, the factor analysis’s convergence speed is slow comparing to the original
EM algorithm. The on-line EM algorithm is clearly the fastest one. Inter-
estingly the increasing window strategies are faster then the moving window
ones. The reason might be that we use the warm-start approach, i.e. using
pervious estimated parameters as the initial value of the current algorithm.
The changes of the parameters of the increasing window strategies are smaller
than the fixing window ones. This makes the warm-start to be more efficient
for the increasing window strategies.
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Figure 7: Cumulative losses
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Year-Month Moving EM On-line EM Increasing EM Moving FA Increasing FA
2014-1 2045.20 1992.91 1990.68 1306.11 1287.60
2014-2 3550.87 3437.04 3420.11 2148.18 2099.02
2014-3 3585.03 3407.00 3349.78 1405.82 1327.23
2014-4 5251.25 4915.39 4807.09 2230.11 2059.65
2014-5 6842.66 6208.52 6101.49 2785.56 2506.86
2014-6 6298.43 5503.32 5339.25 1475.94 1114.91
2014-7 6739.50 5734.93 5510.33 1193.97 740.16
2014-8 4630.87 3487.10 3168.90 -1572.30 -2072.81
2014-9 3201.66 1851.99 1454.69 -3713.38 -4319.83
2014-10 5503.15 3909.38 3396.40 -2159.57 -2876.82
2014-11 6633.18 4789.58 4192.89 -1710.60 -2549.19
2014-12 6417.91 4382.22 3636.45 -2553.23 -3510.56
2015-1 8676.51 6306.37 5467.32 -1042.13 -2152.82
2015-2 10737.50 8132.02 7194.13 326.54 -875.65
2015-3 11484.88 8528.51 7476.15 302.28 -1030.98
2015-4 13256.00 9957.27 8778.69 1413.33 -106.07
2015-5 13578.59 10037.39 8732.91 994.59 -538.08
2015-6 12934.59 9000.23 7548.03 -459.13 -2112.99
2015-7 15007.99 10769.27 9176.84 788.36 -964.79
2015-8 18407.57 13815.71 12038.33 3394.66 1540.98
2015-9 21751.93 17398.74 15293.74 5887.14 4341.62
2015-10 25870.80 21011.15 18758.47 9199.42 7473.96
2015-11 29302.42 23914.83 21585.85 11813.77 9910.38
2015-12 31293.90 25735.18 23186.19 13035.16 11150.92

Average time (sec) 1.65 0.23 1.31 2.44 1.64

Table 14: Cumulative losses per month
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4 Portfolio Optimization and Risk Allocation

with the Generalized Hyperbolic Distribu-

tion

4.1 Mean-Risk Optimization for the Normal Mixture
Distributions

The mean-risk portfolio optimization problem is a generalization of Markowitz’s
mean-variance framework by replacing variance by other risk measures. In
general, a risk measure is said to be coherent if it satisfies the axioms pro-
posed by [3]:

Definition 3. Let (Ω,F ,P) be the probability space and L(Ω,F) be the set of
one dimensional random variables on the space. The coherent risk measure
is a function ρ : L(Ω,F) → R which satisfies the following axioms for all
X, Y ∈ L(Ω,F):

1. (Monotonicity) If X ≤ Y , then ρ(X) ≥ ρ(Y );

2. (Translation invariance) For all x ∈ R, ρ(X + x) = ρ(X)− x;

3. (Positive homogeneity) For all λ ≥ 0, ρ(λX) = λρ(X);

4. (Subadditivity) ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

One of the classical examples of coherent risk measure is the conditional
value at risk or average value at risk:

Definition 4. Let X ∈ L(Ω,F) whose distribution is continuous and α ∈
(0, 1), then the value at risk (VaR) is

V aRα(X) := − inf{x ∈ R : P(X ≤ x) > α};

and the conditional value at risk (CVaR) is

CV aRα(X) := −E[X|X ≤ −V aRα(X)].

VaR is widely used in financial industry as an alternative risk measure
to standard deviation. But it is well-know that VaR is not coherent since
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it does not have subadditivity. Recall that a normal mixture random vector
can be written as:

X
d
=µ+ γY +

√
Y Z, (27)

where µ, γ ∈ Rd, d ∈ N+, Y is a univariate non-negative random variable
and Z is a random vector which follows multivariate normal distribution
with zero mean and covariance Σ ∈ Rd×d. Y and Z are independent. Recall
that when Y follows the GIG distribution then the above equation defines
the GH distribution. In this section however we will not impose any specific
distribution to Y .

Now let us consider the univariate case when the dimension d = 1 and
Z ∼ N(0, σ2) where σ > 0. The following theorem is simple but it builds
an important connection between the Markowitz’s portfolio theory to the
normal mixture distribution.

Theorem 2. Let ρ be a coherent risk measure which depends only on the
distribution, i.e. if X1 and X2 have the same distribution then ρ(X1) =
ρ(X2), and X follows the normal mixture distribution with parameters µ,γ
and σ defined by (27), then

1. µ 7→ ρ(X) is decreasing in R;

2. γ 7→ ρ(X) is non-increasing in R;

3. σ 7→ ρ(X) is non-decreasing in R+.

Proof. (i) is obvious since ρ(X) = ρ(µ+γY +
√
Y σZ) = ρ(γY +

√
Y σZ)−µ.

For any ∆γ ≥ 0 we have

ρ((γ + ∆γ)Y +
√
Y σZ)

≤ ρ(γY +
√
Y σZ) + ρ(∆γY )

≤ ρ(γY +
√
Y σZ) + ρ(0) = ρ(γY +

√
Y σZ),

which proves (ii).
For (iii) note that σ 7→ ρ(γY + σ

√
Y Z) is convex on the whole real line:

ρ(γY + (aσ1 + (1− a)σ2)
√
Y Z)

= ρ((a+ 1− a)γY + (aσ1 + (1− a)σ2)
√
Y Z)

≤ aρ(γY + σ1

√
Y Z) + (1− a)ρ(γY + σ2

√
Y Z),
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for any a ∈ [0, 1]; and that σ 7→ ρ(γY + σ
√
Y Z) is symmetric about zero

since γY +σ
√
Y Z

d
=γY −σ

√
Y Z. Therefore it must be non-decreasing on R+.

Otherwise suppose that there exits 0 < σ1 < σ2 such that ρ(γY +σ1

√
Y Z) >

ρ(γY + σ2

√
Y Z). Then find a := σ1+σ2

2σ2
∈ (0, 1) and therefore

ρ(a(γY + σ2

√
Y Z) + (1− a)(γY − σ2

√
Y Z))

= ρ(γY + σ1

√
Y Z)

> aρ(γY + σ2

√
Y Z) + (1− a)ρ(γY + σ2

√
Y Z)

= aρ(γY + σ2

√
Y Z) + (1− a)ρ(γY − σ2

√
Y Z),

which draws the contradiction.

Intuitively one can think (27) as an portfolio with a risk-free asset whose
weight is µ, an asset with non-negative return whose weight is γ and a risky
asset whose weight is σ. Any reasonable risk measure or risk-averse utility
function should prefer large µ and γ and small σ.

Now consider again the high dimensional case where there are d assets
whose returns are modeled by a normal mixture random variable X. A
portfolio on these assets is given by a vector w ∈ Rd which denotes the weight
on each asset and satisfies wTe = 1 where e = (1, . . . , 1)T. It is easy to check
that the portfolio return also follows the normal mixture distribution:

wTX
d
=wTµ+ wTγY +

√
wTΣwY Z, (28)

and the expectation of the return is given by:

E[wTX] = wTµ+ wTγE[Y ].

Followed by the classical Markowitz portfolio optimization problem, the gen-
eralized mean-risk portfolio optimization problem is formulated as follows:

min
w
ρ(wTX) (29)

s.t.

{
wTe = 1
E[wTX] ≥ m

,

where m ∈ R and ρ is a coherent risk measure. [27] introduce the mean-
skewness frontier in a specific optimization problem. Here we can use this
concept to reduce the dimension of the problem from d to 2:
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Proposition 4. The solution of the optimization problem (29) is given by

w∗ = Σ−1[µ γ e]A−1[µ̃∗ γ̃∗ 1]T,

where [µ γ e] ∈ Rd×3 are the matrix composed by µ, γ and e; and µ̃∗, γ̃∗ ∈ R
are the solutions of:

min
µ̃,γ̃

ρ(µ̃+ γ̃Y +
√
g(µ̃, γ̃)Y Z)

s.t. µ̃+ γ̃E[Y ] ≥ m,

where

g(µ̃, γ̃) = [µ̃, γ̃, 1]A−1[µ̃, γ̃, 1]T,

and

A =

 µTΣ−1µ γTΣ−1µ eTΣ−1µ
µTΣ−1γ γTΣ−1γ eTΣ−1γ
γTΣ−1e γTΣ−1e eTΣ−1e

 .
Proof. Define the function w∗(µ̃, γ̃) : R × R → Rd as the solution of the
optimization problem:

w∗(µ̃, γ̃) := arg min
w
ρ(wTX) (30)

s.t.


wTe = 1
wTµ = µ̃
wTγ = γ̃

Then (30) is equivalent to

min
µ̃,γ̃

ρ(w∗(µ̃, γ̃)TX)

s.t. µ̃+ γ̃E[T ] ≥ m.

Theorem 1 and equation (28) implies that if wTγ and wTγ are fixed then
ρ(wTX) is non-decreasing with respect to wTΣw. Therefore (30) is equivalent
to

w∗(µ̃, γ̃) = arg min
w

(wTΣw)

with the same set of constraints. This problem can be easily solved by
Lagrange multiplier. One can shown that the solution is given by

w∗(µ̃, γ̃) = Σ−1[µ γ e]A−1[µ̃ γ̃ 1]T,

Applying the solution to (28), we prove the theorem.
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Note that we are able to extend the efficient frontier to three dimensional
space using equation (30). In this case, the three dimensions are given by the
location parameter, the skewness parameter and the risk respectively. Here
we call the 3 dimensional “efficient frontier” as the efficient surface in order
to distinguish it with the traditional definition of the efficient frontier. Figure
8 plots the efficient surface of CVaR of a GH distribution. Here we assume
that x-axis is for the location parameter, y-axis is for the skewness parameter
and z-axis is for the risk. Each point on the surface is the solution of the
optimization problem (30) given µ̃ and γ̃. From figure 8 one can observe that
surface is convex with respect to the location parameter µ̃ and the skewness
parameter γ̃.
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Figure 8: Efficient Surface

To visualize the proof of the proposition, observe that once the objective
expectation m is fixed, the space of µ̃ and γ̃ is the straight line µ̃+γ̃E[Y ] = m.
In the 3 dimensional space, it is a plane orthogonal to the x-y plane, as shown
by figure 9a. The intersection of the plane and the efficient surface is a convex
curve from which we find the minimal of point of the risk. The minimal risk
together with the target expectation m forms the efficient frontier, which is
the red curve in figure 9b. To make it more clear, we are able to transform
the coordinate system by replacing µ̃ by m = µ̃ + γ̃E[T ]. In this case we
have figure 9c. By projecting the red curve onto the y-z plane we obtain the
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efficient frontier in figure 9d.
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(a) Intersection of two surfaces
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(b) Efficient frontier on efficient surface
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(c) Change of the coordinate system
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Figure 9: Geometry of the proposition

Here we given another example of the application of theorem 2 to fi-
nance. [17] shows that the worst-case conditional value at risk (WCVaR) of
generalized hyperbolic distribution under the box uncertainty can be solved
explicitly. By theorem 1 we can extend this result to the general case for the
coherent risk measure and the normal mixture distribution.

Definition 5. Let X be a random vector whose density is given by f and w
be the portfolio weights, the worst-case coherent risk measure is defined as a
function of w:

ρ∗(w) := sup
f∈P
{ρ(wTX)},
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where P is some sets of probability density function.

There are several specification of the set P , see [48]. Here we only consider
the box uncertainty set for normal mixture models defined by

P = {pX(·|µ, γ,Σ) such that µ � µ � µ, γ � γ � γ,Σ � Σ � Σ, pY is fixed.},

where pX and pY are the marginal densities of X and Y defined by (27):

pX(x|µ, γ,Σ) =∫ ∞
0

1√
(2π)d det(Σ)y

exp

(
− 1

2y
(x− µ− γy)TΣ−1(x− µ− γy)

)
pY (y)dy,

and pY is defined on the interval (0,∞). By � we mean the each elements
of a vector are smaller than the elements of another one. Then it is straight
forward to get the following results based on theorem 2:

Proposition 5. For any w ∈ Rd
+,

ρ∗(w) = ρ(wTµ+ wTγ +
√
wTΣwY Z).

4.2 CVaR Derivatives of the Normal Mixture Distri-
butions

In this section we compute the derivatives of CVaR for the normal mixture
distributions. For simplicity let us define rV aRα(w) := V aRα(wTX) and
rCV aRα(w) := CV aRα(wTX) as the VaR and CVaR of a portfolio where
X ∈ Rd is the vector of returns and w ∈ Rd is the portfolio weights. First we
review the general results of the first and second derivatives of rCV aRα given
by [39] and [43].

Assumption 1. Let p(x1|x2, . . . , xn) be the conditional density function of
X1 given X2, . . . , Xn. p satisfies:

1. y 7→ p(y|x2, . . . , xn) is continuous for fixed x2, . . . , xn.

2. The mapping

(y, w) 7→ E[p(w−1
1 (y −

n∑
l=2

wlXl)|X2, . . . , Xn)]

is finite valued and continuous on R× R/0× Rn−1.
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3. For each w ∈ R/0× Rn−1

E[p(w−1
1 (−rV aRα(w)−

n∑
l=2

wlXl)|X2, . . . , Xn)] > 0.

4. The mapping

(y, w) 7→ E[Xjp(w
−1
1 (y −

n∑
l=2

wlXl)|X2, . . . , Xn)]

is finite valued and continuous on R×R/0×Rn−1 for each j = 2, . . . , n.

5. The mapping

(y, w) 7→ E[XjXkp(w
−1
1 (y −

n∑
l=2

wlXl)|X2, . . . , Xn)]

is finite valued and continuous on R × R/0 × Rn−1 for each j, k =
2, . . . , n.

Proposition 6. If (X1, . . . , Xn) satisfies Assumption 1 1-4 and w ∈ R/0×
Rn−1, then rV aRα(w) and rCV aRα(w) are partially differentiable with contin-
uous derivatives:

∂rV aRα
∂wj

(w) = −
E
[
Xjp

(
w−1

1 (−rV aRα(w)−
∑n

j=2wjXj)|X2, . . . , Xd

)]
E
[
p
(
w−1

1 (−rV aRα(w)−
∑n

j=2 wjXj)|X2, . . . , Xd

)] ,

∂rV aRα
∂w1

(w) = w−1
1

(
rV aRα(w)−

n∑
j=2

wj
∂rV aRα
∂wj

(w)

)
,

and

∂rCV aRα
∂wj

(w) = −E[Xj|wTX ≤ −rV aRα(w)]

= −α−1E[XjI{wTX≤−rV aRα (w)}],

for j = 1, . . . , n.

The second derivatives are just the results of direct computation under
Assumpution 1.
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Proposition 7. If (X1, . . . , Xn) satisfies Assumption 1 and w ∈ R/0×Rn−1,
rCV aRα(w) are second order differentiable:

∂2rCV aRα
∂wj∂wk

(w) =(α|w1|)−1E

[
Xk

(∂rV aRα
∂wj

(w) +Xj

)
p
(
w−1

1

(
− rV aRα(w)−

n∑
l=2

wlXl

)∣∣∣X2, . . . , Xn

)]
,

where j, k = 2, . . . , n.

∂2rCV aRα
∂wj∂w1

(w) = −w−1
1

n∑
k=2

wk
∂2rCV aRα
∂wj∂wk

(w),

where j = 1, . . . , n.

Proof. Let j, k = 2, . . . , n and w1 > 0,

∂2rCV aRα
∂wj∂wk

(w) = −α−1 ∂

∂wj
E[XkI{wTX≤−rV aRα (w)}]

= −α−1 ∂

∂wj
E
[
XkE[I{wTX≤−rV aRα (w)}|X2, . . . , Xn]

]
= −α−1E

[
Xk

∂

∂wj
P

(
X1 ≤ w−1

1

(
− rV aRα(w)−

n∑
l=2

wlXl

)∣∣∣X2, . . . , Xn

)]
= (αw1)−1E

[
Xk

(∂rV aRα(w)

∂wj
(w) +Xj

)
p
(
w−1

1

(
− rV aRα(w)−

n∑
l=2

wlXl

)∣∣∣X2, . . . , Xn

)]
.

If w1 < 0,

∂2rCV aRα
∂wj∂wk

(w)

= −α−1E

[
Xk

∂

∂wj
P

(
X1 ≥ w−1

1

(
− rV aRα(w)−

n∑
l=2

wlXl

)∣∣∣X2, . . . , Xn

)]
= −(αw1)−1E

[
Xk

(∂rV aRα(w)

∂wj
(w) +Xj

)
p
(
w−1

1

(
− rV aRα(w)−

n∑
l=2

wlXl

)∣∣∣X2, . . . , Xn

)]
.
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Note that Assumption 1 ensures the continuity and differentiability of the
conditional distribution function of X1 given X2, . . . , Xn, and the finiteness
of the results. Thus we are able to interchange the expectation and the
differentiation. The second equation is simply the result of 1-homogeneity of
rCV aRα :

∂rCV aRα
∂wj

(w) =
∂

∂wj

n∑
k=1

wk
∂rCV aRα
∂wk

(w) =
∂rCV aRα
∂wj

(w) +
n∑
k=1

wk
∂2rCV aRα
∂wj∂wk

(w).

Recall that the representation of a univariate normal mixture distribution
(27) can be viewed as a “portfolio” with two risky assets; and that the
portfolio weight in propositions 6 and 7 is not necessarily normalized. Thus
we can apply the propositions directly to (27) and get the CVaR derivatives
of normal mixture distributions with respect to three parameters µ, γ, σ ∈
R, σ > 0. Let us define:

rV aRα(µ, γ, σ) := V aRα(µ+ γY + σ
√
Y Z),

rCV aRα(µ, γ, σ) := CV aRα(µ+ γY + σ
√
Y Z),

to be VaR and CVaR of univariate normal mixture distributions for simplic-
ity. Then by applying proposition 6 we have

∂rV aRα
∂µ

(µ, γ, σ) = −1,

∂rV aRα
∂γ

(µ, γ, σ) = −
E
[√
Y pnorm

(−rV aRα (µ,γ,σ)−µ−γY
σ
√
Y

)]
E
[
pnorm

(−rV aRα (µ,γ,σ)−µ−γY
σ
√
Y

)
/
√
Y
] ,

∂rV aRα
∂σ

(µ, γ, σ) = σ−1

(
V aRα(X) + µ− γ ∂

∂γ
rV aRα(µ, γ, σ)

)
,

where pnorm denotes the density function of standard normal distribution:

pnorm(x) =
1√
2π

exp(−x2/2);
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and

∂rCV aRα
∂µ

(µ, γ, σ) = −1,

∂rCV aRα
∂γ

(µ, γ, σ) = −α−1E

[
Y Fnorm

(
−rV aRα(µ, γ, σ)− µ− γY

σ
√
Y

)]
,

∂rCV aRα
∂σ

(µ, γ, σ) = σ−1

(
rCV aRα(µ, γ, σ) + µ− γ ∂rCV aRα

∂γ
(µ, γ, σ)

)
,

where Fnorm denotes the cumulative distribution function of the standard
normal distribution. Here we assume that the distribution of Y satisfies
Assumption 1. Then the second derivatives are just the results of direct
computations:

∂2rCV aRα
∂µ2

(µ, γ, σ) =
∂2rCV aRα
∂µ∂γ

(µ, γ, σ) =
∂2rCV aRα
∂µ∂σ

(µ, γ, σ) = 0,

∂2rCV aRα
∂γ2

(µ, γ, σ) =
1

ασ
E

[√
Y pnorm

(
−rV aRα(µ, γ, σ)− µ− γY

σ
√
Y

)
(
∂rV aRα
∂γ

(µ, γ, σ) + Y

)]
,

∂2rCV aRα
∂γσ

(µ, γ, σ) =− γ

σ

∂2rCV aRα
∂γ2

(µ, γ, σ),

∂2rCV aRα
∂σ2

(µ, γ, σ) =− γ

σ

∂2rCV aRα
∂γσ

(µ, γ, σ).

The above derivatives can all be computed efficiently via Monte Carlo by
generating i.i.d samples of the subordinator Y .

Now let us consider the derivatives of rCV aRα(w) for the normal mixture

distributions. We are able to write rCV aRα(w) = rCV aRα(wTµ,wTγ,
√
wTΣw)

without loss of generality. Thus the derivatives of rCV aRα(w) can be repre-
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sented by the derivatives of rCV aRα(µ, γ, σ):

∂rCV aRα
∂wj

(w) = −µj + γj
∂rCV aRα
∂γ

(wTµ,wTγ,
√
wTΣw)

+
(Σw)j√
wTΣw

∂rCV aRα
∂σ

(wTµ,wTγ,
√
wTΣw),

∂2rCV aRα
∂wj∂wk

(w) = γjγk
∂2rCV aRα
∂γ2

(wTµ,wTγ,
√
wTΣw)

+

(
γj

(Σw)k√
wTΣw

+ γk
(Σw)j√
wTΣw

)
∂2rCV aRα
∂γ∂σ

(wTµ,wTγ,
√
wTΣw)

+
(Σw)j(Σw)k
wTΣw

∂2rCV aRα
∂σ2

(wTµ,wTγ,
√
wTΣw)

+
1√

wTΣw

(
σjk −

(Σw)j(Σw)k
wTΣw

)
∂rCV aRα
∂σ

(wTµ,wTγ,
√
wTΣw),

where (·)j denotes the j-th element of an vector. The matrix representation
of the above equation is given by:

HrCV aRα
(w) = γγT

∂2rCV aRα
∂γ2

(wTµ,wTγ,
√
wTΣw)

+ (wTΣw)−
1
2 (γwTΣ + ΣwγT)

∂2rCV aRα
∂γσ

(wTµ,wTγ,
√
wTΣw)

+ (wTΣw)−1ΣwwTΣ
∂2rCV aRα
∂σ2

(wTµ,wTγ,
√
wTΣw)

+ (wTΣw)−
3
2 (ΣwTΣw − ΣwwTΣ)

∂rCV aRα
∂σ

(wTµ,wTγ,
√
wTΣw),

where HrCV aRα
denote the Hessian matrix of the function rCV aRα .

4.3 Portfolio Optimization with Transaction Costs

In this section we consider the following d dimensional portfolio optimization
problem:

max
w∈Rd

wTm− c1r(w)− c2‖w − w0‖1 (31)

s.t.

{
wTe = 1
Aw ≤ b

,
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where w ∈ Rd is the portfolio weight to be optimized, m ∈ Rd is the expected
return, r : Rd → R is some convex non-negative risk function, w0 ∈ Rd

is the current portfolio weight that satisfies the constraints, and c1, c2 are
some positive constants. Thus the first term in the objective function is the
expected return of the portfolio, the second term measures the risk, and the
third term c2‖w − w0‖1 measures the portfolio turnovers or the transaction
costs.

Because of the existence of transaction costs we are not able to use the
same approach as we discussed in the section 3.1 when r(w) := ρ(wTX)
for some coherent risk measure ρ and the asset returns are modeled by a
normal mixture random vector X. On the other side, the solution of the
optimization problem cannot be very different with w0 if there is a relatively
strong constraint on the transaction costs in practise. Thus we are able to
approximate the convex function r(w) by its Taylor expansion:

r(w) ≈ r(w0) + (w − w0)T∇r(w0) +
1

2
(w − w0)THr(w0)(w − w0).

Thus the mean-risk portfolio optimization problem can be approximated by

max
w∈Rd

wT(m− c1∇r(w0))− c1

2
(w − w0)THr(w0)(w − w0)− c2‖w − w0‖1

(32)

s.t.

{
wTe = 1
Aw ≤ b

,

where ∇r is the gradient and Hr is the Hessian matrix of r. This problem is
still a general convex optimization problem that is not smooth at w0. But it
can be transferred to a quadratic programming problem:

max
w∈Rd

vTm̃− 1

2
c1v

TH̃v (33)

s.t.

{ vTẽ = 0

Ãv ≤ b̃
v ≥ 0

,
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where

m̃ =

(
m− c1∇r(w0)− c2e
−m+ c1∇r(w0)− c2e

)
,

H̃ =

(
Hr(w0) −Hr(w0)
−Hr(w0) Hr(w0)

)
,

ẽ =

(
e
−e

)
,

Ã = (A − A),

b̃ = b− Aw0.

The dimension of the above problem is 2d. If v∗ is the solution of problem
(33), then the optimal solution of problem (32) is given by:

w∗ = w0 + (I − I)v∗,

where I is the d dimensional identity matrix. Note that H̃ is not of full
rank, thus the quadratic programming problem (33) is not strictly convex.
For some algorithms one may shrink the zero eigenvalues of the semi-positive
definite matrix H̃ a bit to make the problem strictly convex. In that case
we can only get a suboptimal solution w∗. In practice we can check compare
objective function’s value at w∗ with the one at w0 in each step. If it is not
greater than the later then we may just hold the current position.

To test the approximated optimal portfolio, we use the daily returns of
Dow Jones 30 companies from 2010 to 2014. We fit 2010 to 2013’s returns
by GH distribution and get a set of initial parameters. Than we apply the
on-line EM algorithm to update GH parameters each day from Jan 2014 to
Jan 2015. The initial portfolio weights are set to be equally weighted. And
we consider long only strategies, i.e the inequality constraints are set such
that w ≥ 0. Parameter c1 and c2 are set to be 0.1 and 0.01 respectively. First
we solve the general mean-risk convex optimization problem (31), where ρ
is given by CVaR, using Matlab function fmincon with the interior-point
algorithm. The CVaR is computed by Monte Carlo with 105 scenarios. Since
the original problem is not smooth, fmincon may not always return the
optimal solution. So at each step we check whether the objective function
value is improved by rebalancing the portfolio. If not then we will keep the
position unchanged. Then we compute the gradient and Hessian of CVaR at
current position, using the formulas derived in the last section. The quadratic
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programming problem (33) is solved by Matlab function quadprog with the
interior-point algorithm. In order to compare the two portfolios, we compute
not only the true object function value given by (31), but also their expected
turns, CVaR and turnovers. The benchmark we used is the equally weighted
portfolio. Note that the equally weighted portfolio is not free of transaction
costs; one need to constantly rebalance it in order to keep the weights stay
the same. But here we just ignore their turnovers for connivence. If our
approximated optimal portfolio is correct, then its expected returns, CVaR
and objective function values should be similar as the true optimal one, and
be superior than the equally weighted one. The comparison among three
portfolios are shown by figure 10.
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Figure 10: Optimization Results

The four subfigures are the expected return, CVaR, turnover and value
of (31) over 252 days in 2014. The red, blue and yellow lines represent
the original mean-CVaR portfolio, the Taylor approximation portfolio and
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the benchmark equally weighted portfolio. All four statistics of first two
portfolios are very close comparing to the ones of the benchmark. One may
expect that the Taylor approximation portfolio would stick to the true one
for a while and diverges ultimately. But this is not true in our experiment.
The portfolio weights of the 30 assets at the end of year is plotted in figure
11.
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Figure 11: Terminal Weights

We can observe that the approximation is doing well even after 252 pe-
riods. There are a few exceptions when the mean-CVaR portfolio changes
a lot because of strong signals. One can observe few downside blue spikes
in the last subfigure. In these cases the Taylor approximation would be less
accurate than the usual case. Despite of these differences, the Taylor ap-
proximation with quadratic programming is about 500 times faster than the
general convex optimization problem on a laptop with 1.8 GHz Intel Core i7
processor and 4 GB 1333 MHz DDR3 memory. Finally, the realized returns
of the mean-CVaR portfolio and its approximation does not outperform the
equally weighted benchmark. The first reason is that our model just assumes
that the log returns are i.i.d GH distributed without any cross-sectional de-
pendency. A good time series model for alpha prediction is necessary for
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constructing a portfolio that outperform the market. But this topic is out
of scope of this paper. Secondly we did not add any additional constraints
to make portfolio well diversified. From figure 11 we can see that the mean
CVaR portfolio only concentrates on 9 out of 30 stocks. We will discuss how
to measure portfolio diversification in the following sections.

4.4 Effective Number of Bets and Minimum Torsion

In this section we briefly review the effective number of bets (ENB) together
with the minimum torsion approach for measuring portfolio diversification
proposed by [30] and [31].

Similar as before, let X ∈ Rn be a random vector which denotes the
return of n > 0 assets. Here we do not impose any distribution assumptions
on X. The portfolio weights are given by the vector w ∈ Rn with wTe = 1.
Then the portfolio return is given by wTX. Let Σ denotes the covariance
matrix of X, the portfolio variance is denoted by rV ar(w) := wTΣw.

The gradient of the portfolio variance is given by∇rV ar(w) = 2Σw. In [43]
the marginal contribution of the k-th asset to the variance is defined as
wk(Σw)k, where (·)k denotes the k-th element of the vector. So the risk
contributions are clearly not independent. To solve this problem, notice that
there exists a square matrix T ∈ Rn×n such that TΣTT = D is diagonal.
For example, T can be the unitary matrix UT in the SVD of the covariance:
Σ = USUT. And it is obvious that T is not unique, for example, you can
also set T to be the inverse of the Cholesky factor of Σ.

Let Y = TX be the linear transformation of all asset returns, and
v = (TT)−1w. It is clear that the portfolio return remain unchanged, i.e.
wTX = vTY and wTΣw = vTDv. The random vector Y can be viewed
as uncorrelated risky factors of the portfolio. Now the first derivative w.r.t
v is Dv = (d1v1, . . . , dnvn)T, where d1, . . . , dn are the diagonal elements of
D. Then the risk contributions are given by d1v

2
1, . . . , dnv

2
n, and the sum of

which is equal to the portfolio variance. We can normalize these numbers by
dividing them by wTΣw.

Let pk, k = 1, . . . , n be the normalized risk contributions:

pk =
dkv

2
k

wTΣw
, k = 1, . . . , n. (34)

Note that {pk} forms a discrete probability distributions since for each k
0 ≤ pk ≤ 1 and

∑n
k=1 pk = 1. [30] defines the ENB as the exponential
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entropy of the distribution {pk}:

N = exp
(
−

n∑
k=1

pk log pk

)
.

In fact − logN = −
∑n

k=1 pk log pk is proportional to the Kullback-Leibler
divergence between {pk} and the uniform distribution qk = 1/n, k = 1, . . . , n.
Therefore N reaches to its maximum which is exactly n if pk = 1/n for each
k. On the other hand, when one element of {pk} is 1 and the rest are
0, the ENB is equal to 1. Intuitively, N measures the “real” numbers of
uncorrelated risky factors in the portfolio.

Now the problem is how to construct a transformation T which diagonal-
ize the covariance Σ. Note that diagnoalizing Σ is equivalent to diagnoalizing
the correlation matrix C: Σ = diag(Σ)

1
2Cdiag(Σ)

1
2 where diag(·) denotes the

diagonal part of a square matrix and the square root of a diagonal matrix
means the square root of its diagonal elements. Let us consider the SVD of
C: C = USUT where S is diagonal and U is unitary. Using the uniqueness
of SVD it is easy to show that:

Proposition 8. Let Σ be a positive definite covariance matrix and T is a
square invertible matrix and D is diagonal. Then TΣTT = D if only if there
is a unitary matrix V such that

T = D
1
2V S−

1
2UTdiag(Σ)−

1
2 , (35)

where S and U are the SVD of the correlation matrix of Σ: C = USUT.

Proof. The “if” part is obvious; the “only if” part is the result of:

USUT =
(
diag(Σ)−

1
2T−1D

1
2

)(
diag(Σ)−

1
2T−1D

1
2

)T
,

and the fact that the SVD of diag(Σ)−
1
2T−1D

1
2 must have the form US

1
2V T.

Lemma 1. Let N be the ENB given covariance Σ and transformation T
which has the expression (35), then N is independent with the choice of D.

Proof. Let u = V S−
1
2UTdiag(Σ)

1
2w and v = D−

1
2u. It is clear that pk given

by (34) is independent with D since dkv
2
k = u2

k.
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This implies that it is enough to consider T = V S
1
2UTdiag(Σ)−

1
2 and

pick v = (TT)−1w as the adjusted portfolio weights. However the unitary

matrix V is just a rotation of the vector S−
1
2UTdiag(Σ)

1
2w. Since there

is no restriction on V we can rotate the vector to any direction we want.
We can always find a V such that v1 = · · · = vn = ‖v‖/

√
n where ‖ · ‖

denotes the vector norm. In this case N = n implies that the portfolio is
completely diversified. We can also find another V such that v1 = ‖v‖ and
vk = 0, k = 2, . . . , n (using Householder reflection for example). In this case
N = 1 implies that the portfolio is not diverse at all. In fact we can get any
1 ≤ N ≤ n we want by choosing V . As a result, we should find a reasonable
way to determine the linear transformation T .

[31] proposed an approach called minimum torsion to find the proper
transformation T . The rationale of the method is as follows. First note that
in practice, we usually consider a portfolio which puts small weights on a
large number of assets to be more diversified than a portfolio which puts
large weights on a few assets. This implies that the linear transformation
T should keep that property of the original weights, i.e. if w is close to
equally-weighted, then v = (TT)−1w should also be close to equally-weighted
and vise versa. Thus we want the change of the original w to be as small as
possible while making the covariance diagonalized. The degree of the change
is measured by normalized tracking error (NTE) given by:

NTE(T ) =

√
1

n
tr
(
diag(Σ)−

1
2 (T − I)Σ(T − I)Tdiag(Σ)−

1
2

)
,

where tr(·) denote the trace of the matrix. This can be viewed as a dis-
tance between T and identity transformation with metric Σ. And our goal
is to find T that minimize NTE(T ) while TΣTT is diagonal. Applying the
representation (35) we can rewrite the minimization problem as:

min
D,V

tr(D − 2D
1
2V S

1
2UT),

s.t. D is diagonal, V is unitary.

Although we have shown that the ENB does not depend on the choice of D,
but the above optimization problem clearly depends on D. If we fix D in
the above equation to be identity matrix, then the optimal solution would
simply be V ∗ = U . If there is no further restrictions on D then we can solve
the minimization problem using an iterative algorithm which converges very
fast, we refer [31] for details.
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4.5 Generalized Effective Number of Bets

In this section we extend the ENB to general risk measures. First we present
the major results in [43].

Definition 6. A function r : Rn → R is τ -homogeneous if for each w ∈ Rn

and t > 0 we have tτr(w) = r(tw).

Proposition 9 (Tasche). Let r : Rn → R be a real-valued function and τ ∈ R
be fixed.

1. If r is τ -homogeneous and partially differentiable in wk for some k =
1, . . . , n, then the derivative ∂r/∂wk is (τ − 1)-homogeneous.

2. If r is totally differentiable then it is τ -homogeneous if only if for all
w ∈ Rn

τr(w) =
n∑
k=1

wk
∂r

∂wk
(w) = wT∇r(w). (36)

We can think r as the measure of risk and w as the weight of a portfolio.
For example r(w) = wTΣw is a 2-homogeneous function. If τ 6= 0 the above
theorem tells us that the portfolio risk can be decomposed as the sum of
wk
τ

∂r
∂wk

(w), k = 1, . . . , n, which are the marginal contributions to risk of each
asset. So similar as the covariance case we may define

pk(v) =
vk

τr(v)

∂r

∂vk
(v),

and compute the ENB.
However there are two problems need to be solved. First, similar as the

covariance case which we have discussed before, ∂r
∂vk

(w), k = 1, . . . , n are not

independent. Secondly, pk(v) may be negative so its entropy is not well-
defined.

To solve the first problem, assume that r is totally differentiable, then
from Taylor expansion we have the following approximation

r(w + ∆w) ≈ r(w) + ∆wT∇r(w) +
1

2
∆wTHr(w)∆w,

where Hr(·) is the Hessian matrix of r and ∆w is a small perturbation of w.
If r is convex then Hr is semi-positive definite. This implies that r(w) can
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be approximated by a quadratic function which is similar as covariance in a
small neighborhood of w. Therefore by diagonalizing Hr(w) we can extract
locally independent marginal contributions to r(w) as what we discussed
in the previous section. Let T (w)Hr(w)T (w)T = D(w) where D(w) is a
diagonal square matrix and T (w) is invertible. Then we may change the
local coordinate system whose origin is w using linear transformation T (w)
so that

r(w + ∆w)

≈ r(w) + ∆wTT (w)−1T (w)∇r(w) +
1

2
∆wTT (w)−1D(w)(T (w)T)−1∆w

= r(w) + ∆vTT (w)∇r(w) +
1

2
∆vTD(w)∆v,

where ∆v = (T (w)T)−1∆w. An important result of proposition 9 is that
(∇r(w))k, k = 1, . . . , n is also τ − 1 homogeneous:

(τ − 1)(∇r(w))k =
n∑
j=1

wj
∂2r

∂wk∂wj
(w) = (Hr(w)w)k.

Therefore:

(τ − 1)T (w)∇r(w) = T (w)Hr(w)w

= T (w)Hr(w)T (w)T(T (w)T)−1w = D(w)v,

where v = (T (w)T)−1w. If τ > 1

r(w) =
1

τ
wT∇r(w) =

1

τ
vTT (w)∇r(w) =

1

τ(τ − 1)
vTD(w)v.

Thus we decompose r(w) into n risky factors 1
τ(τ−1)

dk(w)v2
k, k = 1, . . . , n

where dk(w) is the diagonal elements of D(w) which is greater or equal to
zero since Hr(w) is semi-positive definite. So the second problem is solved
by letting τ > 1. To see why these factors are locally independent, we can
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rewrite the Taylor expansion of r as:

r(w + ∆w) =
1

τ
(w + ∆w)T∇r(w + ∆w)

≈ 1

τ
(w + ∆w)T(∇r(w) +Hr(w)∆w)

=
1

τ
(v + ∆v)T

(
1

τ − 1
D(w)v +D(w)∆v

)
= r(w) +

1

τ − 1
∆vTD(w)v +

1

τ
∆vTD(w)∆v,

where each components of the small increment ∆v has approximately inde-
pendent contributions to the difference r(w + ∆w) − r(w). Finally we have
the ENB:

pk(w) :=
dk(w)v2

k

τ(τ − 1)r(w)
, k = 1, . . . , n

N(w) := exp
(
−

n∑
k=1

pk(w) log pk(w)
)
.

Unlike the covariance case, the Hessian matrix depends on the choice w, so
each time the linear transformation T has to be recomputed. But proposition
8 and lemma 1 is still valid. That is, let

C(w) := diag(Hr(w))−
1
2Hr(w)diag(Hr(w))−

1
2

be the ‘correlation’ of the Hessian matrix and U(w), S(w) be the SVD of
C(w). Then T (w) must have the representation:

T (w) = D
1
2V S(w)−

1
2U(w)Tdiag(Hr(w))−

1
2 ,

where D is diagonal and V is unitary. And it is clear that the choice of
D does not effect the ENB N(w). So we define the constrained minimum
torsion linear transformation as

TMT (w) := U(w)S(w)−
1
2U(w)Tdiag(Hr(w))−

1
2 ,

and the corresponding ENB as NMT (w).
Now given a coherent risk measure ρ and define rρ(w) := ρ(wTX), then

it is clear that rρ(w) is a convex and 1-homogeneous function due to the
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subadditivity and positive homogeneity of ρ. Thus we have to consider the
power of rρ, or more specifically, the square of rρ in order to apply the ENB
to the coherent risk measure. This is the same reason why we use variance
instead of standard deviation to compute the ENB.

Here we give a simple numerical example to illustrate the advantage of
the generalized ENB. Consider a unrealistic portfolio which includes five in-
dependent assets. The return of first four assets follow identically standard
normal distribution. While the return of the fifth asset has a normalized
student’s t distribution with degree of freedom ν = 5 and unit variance. So
the covariance of these assets is just identity, it is obvious that the original
ENB of the equally weighted portfolio is just 5 and the corresponding nor-
malized marginal distribution p given by (34) is just p1 = · · · = p5 = 0.2.
This implies that the equally weighted portfolio is perfectly diversified.

This is clearly not true since the last asset has very heavy tails and is
more risky than the others. To compute the CVaR-based ENB, we generate
200,000 i.i.d samples of the 5 assets’ returns. Then we are able to compute
the Hessian matrix of squared-CVaR with α = 0.01 using proposition 6 and
7 with Monte Carlo. The conditional distribution p(·|X2, X3, X4, X5) is just
the density of standard normal distribution because of the independency.
Note that the Hessian of squared-CVaR is not necessarily diagonal even if
the assets’ returns are all independent. A simple calculation will show that
the generalized ENB is 4.905. It would be much clear by looking at figure 1
which compares the normalized marginal contribution p of two ENB.
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Figure 12: Comparison of two ENB
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For comparison we also compute the variance-based ENB using the sam-
ple covariance matrix. It is clear that the CVaR-based ENB depends on the
tail risk instead of variance.

One might ask whether the ENB would be smaller if we reduce the weight
of the heavy-tailed asset or replaced it by an asset with thiner tails. The
answer is given by figure 2.
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Figure 13: ENB with different weights and ν

Figure 2 plots the CVaR-based ENB against the weight of the fifth asset.
Here we keep other assets’ weights to be identical and the sum of weight to be
1. Each curve corresponds to different distributions of the last asset’s return:
student’s t with ν = 5, 7, 9 and standard normal distribution. Observe that
the blue curve (ν = 5) reaches it maximum around 0.175 instead of 0.2 of
the equally weighted portfolio. As the degree of freedom increase, or the tail
risk reduces, the optimal weight is closer to 0.2. Finally note that the ENB
in this case would above 4 unless the last asset’s weight is exactly zero.

Now we use the returns of Dow Jones 30 stocks from 2005 to 2013 to
test the performance of the generalized ENB. The data is separated into 3
groups: 2005-2007 (prior-crisis), 2008-2010 (crisis), 2010-2013 (post-crisis).
We first use 2005-2007 data to fit the GH distribution via EM algorithm.
Based on our i.i.d GH model, we construct four constantly rebalanced and
long only portfolios by (i) letting all weights to be equal, (ii) maximizing the
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variance-based ENB, (iii) minimizing the CVaR, (iv) maximizing the CVaR-
based ENB, respectively. The weights of the portfolios are given by figure
14.
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Figure 14: Portfolio weights

The equally-weighted portfolio is represented by the blue flat line. One
can observe that the portfolio with the smallest CVaR concentrates only on
a few stocks. This corresponds to our observation in the last section. The
variance-based and CVaR-based ENB are very similar; even the Hessian of
CVaR and the covariance matrix are quite different. Table 15 shows the
variance-based ENBs, CVaR-based ENBs and CVaRs of four portfolios.

Variance-ENB CVaR-ENB CVaR
Equally-weighted 28.7637 28.3638 0.0245

Best variance-ENB 29.4521 29.2177 0.0231
Smallest CVaR 14.9157 15.3699 0.0182

Best CVaR-ENB 29.2859 29.3985 0.0224

Table 15: Portfolio statistics

Then we compute the drawdowns of each portfolio during 2005-2007 (in-
sample) and 2008-2010 (out-of-sample). The quantiles of the drawdowns of
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each portfolio are shown by figure 16. The same test is applied to 2008-2010
(in-sample) and 2011-2013 (out-of-sample) data. The drawdown quantiles
are given by figure
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Figure 15: Drawdown quantiles 2005-2010
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Figure 16: Drawdown quantiles 2008-2013

The values at 0% percentage is the well-known maximum drawdown.
The smallest CVaR portfolio has the smallest maximum drawdowns in all
four figures. The drawdowns of ENB portfolios are consistently better than
equally-weighted benchmark. The CVaR-based ENB portfolio outperforms
the variance-based one in both in-sample tests; but their differences become

73



very small in out-of-sample tests. One possible explanation for which the
CVaR-based and the variance-based ENBs are so similar is that the tail of
the GH distribution and other normal mixture distributions is controlled by a
single random variable. Therefore all the components of a GH random vector
have the same tails. The differences between the marginal contributions to
CVaR are determined by the dispersion matrix Σ and the skewness vector γ,
both of which are the components of the covariance matrix.

On the other side, the 30 stocks became strongly correlated during the
financial crisis. Thus a portfolio that is well-diversified among these 30 stocks
is still exposed to the downside risk. The CVaR portfolio, on the other side,
only picks several stocks with the lowest historical risks. This might be the
reason why the smallest CVaR portfolio outperforms the diversified ones in
terms of controlling the drawdown risk. The advantage of portfolio diversifi-
cation is not significant in a small pool of equities. However, maximizing the
generalized ENB in high dimension is numerically difficult. A fast approach
to compute the gradient and Hessian of the ENB is not known yet.

5 Conclusion and Future Work

This dissertation addresses the parameter estimation and portfolio allocation
problems with the GH distribution. A lot of the algorithms and techniques
introduced in this paper can also be applied to a general class of normal
mixture distributions. The most attractive properties of the GH distribution
are: (i) it has heavy tails; (ii) it introduces skewness; (iii) it has a natural
multivariate extension; (iv) the multivariate GH distribution is closed under
linear transformation; (v) the joint distribution of a GH variable and its GIG
subordinator is an exponential family.

However there are also several drawbacks of the GH distribution and other
normal mixture distributions. First of all, these distributions are nearly ellip-
tical and therefore their components have the same tails. And these compo-
nents can only be uncorrelated but never be independent because they share
the same univariate subordinator. In financial markets however, different
assets clearly have different tail risks; and there might be independent risky
drivers behind them. Therefore a mixture of these assets such as financial in-
dex often has smaller tails than the individual assets, due to the central limit
theorem. The multivariate GH distribution fails to capture these stylized
facts. Variety of extensions of the GH distribution are constructed to solve
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these problems; but efficient parameter estimation and portfolio optimization
methods still need to be discovered.

The linear combination of independent GH random variables does not fol-
low the GH distribution. This makes it very hard to apply the GH distribu-
tion to a majority of financial econometrics models such as ARMA-GARCH,
in which the residuals are assumed to be i.i.d. A possible way to solve this
problem is to use Gaussian copula together with GH marginal distributions
to model the cross-sectional dependency of a financial time series. There-
fore a lot of statistical properties of the Gaussian time series models can be
preserved.

The on-line EM algorithm we introduced in this paper is just one of the
many on-line density estimation algorithms. For parameter estimation, the
on-line learning technique is not just a faster way to solve the convex opti-
mization problem of maximum likelihood. It also naturally introduces some
shrinkage estimators or Bayesian priors. For example, the Vovk-Azoury-
Warmuth on-line forecaster proposed by [47] is closely related to the ridge
regression, see [11]. The regret we derived in section 3.4 is also a simple exam-
ple of the relationship between on-line learning and traditional information
theory. Unfortunately we do not have an on-line EM algorithm for factor
analysis yet. But we may solve the problem proposed at the end of section
3.5 by approximating the curved exponential family by a strict exponential
family using the Talyor expansion of θ(u).
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Fabozzi. Financial models with Lévy processes and volatility clustering,
volume 187. John Wiley & Sons, 2011.

[37] Svetlozar T Rachev, Christian Menn, and Frank J Fabozzi. Fat-tailed
and skewed asset return distributions: implications for risk management,
portfolio selection, and option pricing, volume 139. John Wiley & Sons,
2005.

[38] Svetlozar Todorov Rachev. Handbook of Heavy Tailed Distributions in
Finance: Handbooks in Finance, volume 1. Elsevier, 2003.

[39] Hans Rau-Bredow. Value at risk, expected shortfall, and marginal risk
contribution.

[40] Xiang Shi. Marginal contribution to risk and generalized effective num-
ber of bets. Available at SSRN 2642408, 2015.

[41] Xiang Shi, Lihua Zhang, and Young Shin Aaron Kim. A markov chain
approximation for american option pricing in tempered stable-garch
models. Frontiers in Applied Mathematics and Statistics, 1:13, 2015.

[42] Peter Tankov. Financial modelling with jump processes, volume 2. CRC
press, 2004.

[43] Dirk Tasche. Risk contributions and performance measurement. Report
of the Lehrstuhl für mathematische Statistik, TU München, 1999.

[44] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological), pages
267–288, 1996.

[45] Cristina Tortora, Paul D McNicholas, and Ryan P Browne. A mixture
of generalized hyperbolic factor analyzers. Advances in Data Analysis
and Classification, pages 1–18, 2013.

79



[46] Vladimir V Uchaikin and Vladimir M Zolotarev. Chance and stability:
stable distributions and their applications. Walter de Gruyter, 1999.

[47] Volodya Vovk. Competitive on-line statistics. International Statistical
Review/Revue Internationale de Statistique, pages 213–248, 2001.

[48] Shushang Zhu and Masao Fukushima. Worst-case conditional value-
at-risk with application to robust portfolio management. Operations
research, 57(5):1155–1168, 2009.

80



A Asymptotic Approximation of Modified Bessel

function of the second kind

First we review the definition and some basic properties of modified Bessel
functions.

Definition 7. The modified Bessel function of the first kind Iν(z) is defined
as:

Iν(z) :=
∞∑
k=0

(−1)k

Γ(k + ν + 1)k!

(
z

2

)2k+ν

,

where ν, z ∈ R and Γ(·) is the gamma function. The modified Bessel function
of the second kind Kν(z) is defined as:

Kν(z) :=
π csc(πν)

2
(I−ν(z)− Iν(z)).

It is obvious from the definition that Kν(z) = K−ν(z). There first deriva-
tive of Kν(z) is given by:

d

dz
Kν(z) = −Kν−1(z)− ν

z
Kν(z) =

ν

z
Kν(z)−Kν+1(z).

On the interval (0,∞) Kν(z) is a positive function that diverges as z → 0
and decays exponentially as z → ∞. The following equations show the
asymptotic properties of Kν(z);

Kν(z) ∝
√

π

2z
e−z, as |z| → ∞, (37)

Kν(z) ∝
{
− log z

2
− γem if ν = 0

Γ(ν)
2

(
2
z

)ν
if ν > 0

, as |z| → 0, (38)

where γem is the Euler-Mascheroni constant and Γ(·) is the gamma function.
We refer [1] for more properties of the modified Bessel functions.

The asymptotic properties are very useful in the computation of the log
of GH density (11) which contains logKν(z). In practice Kν(z) may exceed
the largest floating-point number N̄ in IEEE double precision when z is large
or close to zero. In Matlab for example, the function log(besselk(v,z))

may just return Inf or -Inf when its actual value is far smaller than N̄ .
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There are many ways to compute logKν(z), in this paper we just take the
logarithm of (37) and (38) and adjust it by a constant. The constant is to fill
the gap between the asymptotic values and the largest or smallest possible
value from direct computation. Figure 17 and 18 plot the logKν(z) with
asymptotic tails when ν = 250, 500. The blue line is the direct computation of
log(besselk(v,z)). The red line represents the asymptotic approximation.
One can observe that as ν increases the left red dash tail turns to be longer.
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Figure 17: Asymptotic approximation of logK250(z)
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Figure 18: Asymptotic approximation of logK500(z)

The asymptotic approximation of course is not a perfect approach for the
computation of logKν(z). The error of the right side asymptotic approxi-
mation, for example, would increase as λ grows large. To our experience the
approximation is good enough for about 500 dimension. A better numerical
computation of logKν(z) would be very helpful if we want to calibrate the
GH distribution under higher dimensions.

The computation of the ratio Kν1(z)/Kν2(z) is even more crucial than
logKν(z) since it is the key step (15) in the EM algorithm. The idea of ap-
proximation is basically the same. Figure 19 and 20 compare the asymptotic
approximation and the direct computation. The vertical axis is measured by
logarithmic scale.
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Figure 19: Asymptotic approximation of K−251(z)
K−250(z)
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Figure 20: Asymptotic approximation of K−501(z)
K−500(z)
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