

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Minimally Disruptive Management Frameworks for Network Functions

A Dissertation presented

by

Zafar Ayyub Qazi

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2015

Stony Brook University

The Graduate School

Zafar Ayyub Qazi

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Samir Das - Dissertation Co-Advisor
Professor, Department of Computer Science

Vyas Sekar - Dissertation Co-Advisor
Research Assistant Professor, Department of Computer Science

Aruna Balasubramanian - Chairperson of Defense
Assistant Professor, Department of Computer Science

Phillipa Gill
Assistant Professor, Department of Computer Science

Vijay Gopalakrishnan
Director Inventive Science, AT&T Research

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Minimally Disruptive Management Frameworks for Network Functions

by

Zafar Ayyub Qazi

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Networks today rely on network functions or middleboxes (e.g., firewalls, WAN optimizers)

to provide critical performance, security, and policy compliance capabilities. However, today the

management of these middleboxes is hard. First, these middleboxes are implemented as dedicated

hardware appliances, making it difficult to dynamically scale resources. Second, operators need to

carefully plan the network topology, manually set up rules to route traffic through the desired se-

quence of middleboxes, and implement safeguards for correct operation in the presence of failures

and overload.

We can overhaul today’s network infrastructure to address these problems by introducing flex-

ibility in routing and the implementation of these middleboxes. However, from network operator’s

perspective a key question is whether we can address these problems in a minimally disruptive

manner, e.g., which require minimal changes to existing middlebox implementations and routing

mechanisms.

In this thesis, I describe two case studies for introducing more flexibility in middlebox man-

agement with minimal changes to existing middlebox implementations and routing mechanisms.

In the first part of the thesis, I describe SIMPLE, a Software-Defined Networking (SDN) based ef-

iii

ficient middlebox traffic steering solution which works with existing middlebox implementations

and uses existing SDN APIs. In SIMPLE, I address algorithmic and system design challenges to

demonstrate the feasibility of using SDN to simplify middlebox traffic steering. In the second part

of the thesis, I describe KLEIN a cellular core re-design that uses Network Function Virtualization

(NFV) and smart resource management, stays within the confines of current cellular standards and

uses legacy routing in the core network. I address key challenges w.r.t. scalability, responsiveness

and in realizing KLEIN via backwards-compatible orchestration mechanisms.

iv

Dedicated to my parents and my siblings, Ihsan and Ali, for their constant support and unwa-

vering belief in my abilities.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Approach and Contributions . 3

1.3 Outline . 5

2 Background 6

2.1 Middleboxes . 6

2.2 Software Defined Networking . 7

2.3 Network Function Virtualization . 9

2.4 Cellular Network Background . 10

3 SIMPLE: Simplifying Middlebox Policy Enforcement Using SDN 13

3.1 Motivation and Contributions . 13

3.2 Related Work . 15

3.3 Opportunities and Challenges . 18

3.3.1 Middlebox composition . 18

3.3.2 Middlebox resource management . 19

3.3.3 Dynamic traffic transformation . 21

3.4 SIMPLE System Overview . 22

3.5 SIMPLE Data Plane Design . 25

3.5.1 Unambiguous forwarding . 25

3.5.2 Compact forwarding tables . 26

vi

3.6 SIMPLE Dynamics Handler . 28

3.6.1 Design constraints . 28

3.6.2 Idea: Flow correlation . 29

3.6.3 Similarity-based correlation . 31

3.7 Resource Management . 33

3.7.1 Offline-Online Decomposition . 34

3.7.2 Offline ILP-based pruning . 34

3.7.3 Online load balancing with LP . 37

3.7.4 Extensions . 37

3.8 Implementation . 38

3.9 Evaluation . 40

3.9.1 Benefits of SIMPLE . 41

3.9.2 Scalability and optimality . 43

3.9.3 Accuracy of the DynHandler . 45

3.10 Summary . 48

4 A Framework to Evaluate the NFV Design Space 49

4.1 Motivation . 51

4.1.1 Design Space of NFV . 51

4.1.2 Motivating Scenarios . 53

4.2 Inputs and Requirements . 55

4.3 Provisioning Model . 56

4.3.1 Control Variables . 56

4.3.2 Formulation . 57

4.4 Example Use Cases . 60

4.5 Summary . 63

5 KLEIN: A Minimally Disruptive Design for an Elastic Cellular Core 65

5.1 Motivation and Contributions . 65

vii

5.2 Related Work . 68

5.3 Limitations of Current Practises . 72

5.3.1 Data Set . 72

5.3.2 Load Balancing . 73

5.3.3 Impact on Applications . 74

5.3.4 Resource Provisioning . 75

5.3.5 Provisioning Cost vs. Wider Deployment 76

5.3.6 Summary . 76

5.4 Design Space Exploration . 76

5.4.1 Design space . 77

5.4.2 Methodology . 78

5.4.3 Results . 80

5.4.4 Summary . 81

5.5 System Overview and Challenges . 81

5.5.1 Overview . 82

5.5.2 Challenges . 83

5.6 Resource Manager . 84

5.6.1 Problem Formulation . 85

5.6.2 Key Ideas . 86

5.6.3 Our Approach . 87

5.7 Network Orchestration . 92

5.7.1 Wide-area orchestration . 92

5.7.2 Intra-datacenter orchestration . 93

5.7.3 KLEIN’s reconfigurations . 94

5.8 Implementation . 95

5.9 Evaluation . 96

5.9.1 Scalability and Optimality . 98

5.9.2 End-to-End System Validation . 99

viii

5.9.3 New Opportunities . 100

5.9.4 UE Migrations . 101

5.10 Summary . 103

6 Conclusions and Future Work 105

6.1 Contributions . 105

6.2 Future Work . 106

6.2.1 Customization and Modularization of EPC Network Functions 106

6.2.2 Efficient State Management . 109

Bibliography 110

ix

List of Figures

2.1 Typical LTE elements and architecture. 10

3.1 Example to illustrate the requirements that middlebox deployments place on SDN.

The table shows the different physical sequences of switches and middleboxes used

to implement the two logical policy chains: Firewall-IDS and Firewall-IDS-Proxy. 19

3.2 Example of potential data plane ambiguity to implement the policy chain Firewall-

IDS-Proxy in our example topology. We annotate different instances of the same

packet arriving at the different switches on the arrows. 20

3.3 Overview of the SIMPLE approach for using SDN to manage middlebox deploy-

ments. 22

3.4 Example of SIMPLE data plane configurations. The other cases: hop-by-hop with

loop and SwitchTunnels with no loop are similar and are not shown for brevity. . . 27

3.5 Similarity based correlation of incoming and outgoing flows through a middlebox. . 32

3.6 High-level overview of the offline-online decomposition in the ResMgr. 35

3.7 Integer Linear Program (ILP) formulation for pruning the set of physical sequences

to guarantee coverage for each logical chain while respecting switch TCAM con-

straints. 36

3.8 Linear Program (LP) formulation for balancing load across middleboxes given a

pruned set. 38

3.9 Load on all middleboxes for Internet2 topology. 42

3.10 Maximum middlebox load comparison across topologies with SIMPLE, CoMb,

today’s Ingress-based deployments relative to the optimal ILP-based configuration. 43

x

3.11 Response time in the case of a middlebox failure and traffic overload. 44

3.12 Fraction of sequences with loops. 45

3.13 Coverage vs. available switch capacity for selected topologies. We use 3 policy

chains per ingress-egress pair. 46

3.14 Accuracy of the SIMPLE DynHandler for two types of proxy-specific policies. . . 47

4.1 The current fixed and proprietary implementation of network functions vs the NFV

vision of elastic, cost effective, mix-match and potentially hybrid deployment of

network functions. 50

4.2 Example to motivate the different design tradeoffs in provisioning. 52

4.3 Example to illustrate the different design tradeoffs in functional placement and

routing. 53

4.4 Example to illustrate how flow conservation is modeled. 59

4.5 Total provisioning cost for different NFV models. 60

4.6 Impact on total provisioning cost wit varying cloud cost. 61

4.7 Impact on total provisioning cost with varying setup+OPEX cost. 62

4.8 Impact on provisioning cost with varying resources. 63

5.1 Load across different data centers over the course of a day. 72

5.2 Load distribution across data centers for each time interval. 73

5.3 Impact of EPC load on file download time. 74

5.4 Provisioning cost vs. number of data centers with static provisioning and routing. . 75

5.5 Linear Program (LP) formulation for CLEANSLATE. 77

5.6 The load balancing optimality gap between INTERMEDIATE and CLEANSLATE. . . 78

5.7 Reduction in provisioning cost with INTERMEDIATE and CLEANSLATE. 79

5.8 KLEIN system overview. 82

5.9 Decomposition and decoupling in resource management. 87

5.10 Global controller formulation for distributing load across regions. 89

5.11 Regional controller formulation for control traffic placement (CP). 90

5.12 Regional controller formulation for data traffic placement (DP). 91

xi

5.13 Network orchestration mechansims in a KLEIN based cellular core. 92

5.14 KLEIN’s responsiveness . 96

5.15 KLEIN’s optimality . 97

5.16 Varying reconfiguration period . 98

5.17 KLEIN’s failure handling . 99

5.18 KLEIN’s failure response . 100

5.19 Impact on end-application performance . 101

5.20 Handling traffic overload on an EPC instance by instantiating a new EPC instance. 102

5.21 Validation of KLEIN on EPC testbed . 103

5.22 Varing UE migration threshold, and observing the impact on optimality gap. 104

6.1 Examples of functional customization. 107

xii

List of Tables

3.1 A taxonomy of the dynamic actions performed by different middleboxes that are

commonly used today [124] and the corresponding information that we need to

infer at the SDN controller. 30

3.2 End-to-end metrics for the topology in Figure 3.1 on Emulab and Mininet. Having

confirmed that the results are similar, we use Mininet for larger-scale experiments. . 40

3.3 Time and control traffic overhead to install forwarding rules in switches. 40

3.4 Time to generate load balanced configurations subject to switch constraints. 47

5.1 Scalability with a 2-level resource management decomposition. 83

xiii

List of Abbreviations

SDN Software Defined Networking

NFV Network Function Virtualization

3GPP Third Generation Partnership Program

S-GW Serving Gateway

P-GW Packet Gateway

MME Mobile Management Entity

HSS Home Subscriber Server

LTE Long Term Evolution

xiv

Acknowledgements

As I reflect back on my graduate school journey, I feel my most important learning has been

to understand myself a little better. Failures, successes, periods of loneliness and contemplation,

have provided me an opportunity to discover myself. I am indebted to a large number of people

for providing me support, care and help during this period. Their support has been instrumental in

making this journey fruitful and fun.

First, I am grateful to my advisors Samir Das and Vyas Sekar for their constant support, help

and guidance. Samir has been incredibly supportive and patient. Apart from five years of financial

support, he allowed me the freedom to pursue interesting research directions. I am deeply indebted

to Vyas Sekar for his constant support and for always being a message away. I have been and

continue to be amazed by Vyas’s incredible conscientiousness and attention to technical detail. I

have been even more amazed by his sense of concern for his students and willingness to help; he

has always been ready to give feedback on a technical draft, look at a mathematical formulation

or an algorithm. I am also grateful to Vijay Gopalakrishnan and Kaustubh Joshi for educating me

about cellular networks and for all their help. I would like to thank Minlan Yu, Seungjoon Lee

and JK Lee, all of whom have been great mentors. I am also grateful to my other thesis committee

members Aruna Balasubramanian and Phillipa Gill for being part of the committee and for giving

me comments on my thesis. I would also like to thank my fellow student collaborators for all

their help: Pralhad Deshpande, Navid Azimi, Luis Chang, Rui Mao, William Tu, Phani Krishna,

Himanshu Shah, Zhibin Zhou, Seyed Fayazbakhsh, Ashish Tanswer.

This thesis would not have been possible without the support of my parents. Being the youngest

of three kids, it hasn’t been easy on my mother while I have been away all these years. However,

she has always motivated me to do what I enjoy and always believed in my abilities. She has

constantly reminded me not to forget the bigger picture in life – my health, family and friends. My

xv

father has been a rock of solid support, his kind words have always inspired me. He has been a

constant inspiration. I feel fortunate that my parents have visited me four times in the US. They

attended my orientation and would this year be attending my convocation ceremony.

One of the inspirations for me in pursuing a PhD was my elder brother Ihsan Qazi. He has been

an inspiration, a great mentor, some one who has always reminded me of the joys of learning and

creating new things. During my entire graduate studies, he has always been available to discuss

anything, from reviewing my paper to giving me advice on life. I am also grateful to him for

believing in me far more than I have believed in my self and for always finding the best in me.

Surely, this thesis would not have been possible without him. I also deeply grateful to my eldest

brother Raza Ali for his constant support through the years. He has always motivated me to attack

important problems in my research, to strike a balance in life and most importantly to enjoy life.

I would also like to thank my sister-in-law, Saleha Ali for her amazing support. I would also to

thank Uncle Rana and their family for all their support while I have been in US.

I have been very fortunate to have my best friend Saad Nadeem here at Stony Brook University.

We have been friends for almost two decades. I am really grateful to him for believing in me for all

these years, for providing me amazing support, for reminding me to keep contributing and helping

other people, and for all the intellectually invigorating discussions. I am also indebted to my friend

Chitra Mohan. She has been extremely supportive, believed in me more than I do, and on innumer-

able occasions given me perspective on life. She has motivated me to stay fit, been my gym partner,

and also helped me learn many amazing food recipes.I would like to thank my friend and apart-

ment mate Rami. Rami has been a great help and true friend. I have enjoyed listening to his strong

opinions on a variety of topics which have been both educating and entertaining. I would also like

to thank my other friends and collegues who made my stay in US memorable: Salman Mahmood,

Uzair Shujaa, Wasif Shabbir, Summit Bajaj, Moussa Ehsan, Sindhuja Thirumalai, Taimoor Shahid,

Dawood Ibrahim, Sana Dawood, Ayon Chakraborty, Fatima Zarinni, Zahaib Akther and Ruwaifa

Anwar.

xvi

Chapter 1

Introduction

1.1 Motivation
Networks today no longer just perform routing and forwarding responsibilities, they in reality

perform a lot of complex in-network processing. They rely on specialized network functions or

middleboxes to provide critical performance, security, and policy compliance capabilities. These

middleboxes such as WAN optimizers, proxies, intrusion detection and prevention systems, net-

work and application-level firewalls, caches and load-balancers have found widespread adoption

in modern networks. Surveys show that these middleboxes play a critical role in many network

settings [74, 92, 125, 128, 137]. For instance, a survey across 57 network operators [128] showed

the number of these middleboxes is comparable to the number of routers and switches for many

enterprise networks of various deployment sizes. Similarly, cellular networks host a large number

of middleboxes [137].

Today the infrastructure for these middleboxes has developed in a largely uncoordinated man-

ner. New form of middleboxes typically emerge as one-off solutions addressing a specific need, and

are patched into the infrastructure through adhoc and often manual techniques. For instance, oper-

ators manually set up rules to route the traffic through the desired sequence of middleboxes. This

process of deploying middleboxes in today’s networks is inflexible and prone to misconfiguration.

According to [11], 78% of data center downtime is caused by misconfiguration. A middlebox sur-

vey [128] across 57 network operators showed that there are large number of middlebox failures,

1

and network operators spent an estimated time of between one and five hours per week dealing

with middlebox failures. More than 50% of middlebox failures are due to misconfiguration and

about 15% are due to middlebox overload scenarios [128].

A key challenge in supporting middleboxes in today’s networks is that there are no available

protocols and mechanisms to explicitly insert these middleboxes on the path between end-points.

As a result, network operators deploy middleboxes implicitly by placing them on the physical path.

Network operators need to carefully plan the network topology, manually set up rules to route traf-

fic through the desired sequence of middleboxes, and implement safeguards for correct operation

in the presence of failures and overload [74]. As the complexity and scale of networks increase,

it is becoming harder and harder to rely on these ad-hoc mechanisms [92]. In addition, middle-

box applications are typically resource intensive. They are implemented as dedicated hardware

appliances, and each middlebox is provisioned resources to handle peak traffic load. Hence these

middlebox resources cannot be amortized across space and applications even if workloads offer

natural opportunities to do so. These problem make it difficult to achieve the following desired

objectives:

• Policy Composition: Network policies typically require packets to go through a sequence

of middleboxes (e.g., firewall+intrusion detection system+proxy). Today, network operator’s

have to manually plan middlebox placements and configure routes to enforce such policies.

A desired goal would be to ensure that given a set of middlebox-specific policies, these

policies can be correctly and dynamically implemented in the network.

• Resource Management: Middleboxes perform complex packet processing (e.g., deep packet

inspection). A key requirement from network operators is to be able to control how the load

is distributed across different middlebox instances, and to avoid overload scenarios [128].

Additionally given the diversity of middleboxes, network operator’s would also want to con-

trol how these network functions are provisioned and placed. Unfortunately, today the net-

work operators manually set up routing paths to balance load across different middlebox

instances and they have to pre-provision middleboxes to handle peak load scenarios [124].

• Packet Modification Middleboxes modify packet headers (e.g, NATs) and even change

2

session-level behaviors (e.g., WAN optimizers and proxies use persistent connections). To-

day, network operators have to account for these effects via careful placement or manually

reason about the impact of these modifications on routing configurations. The desired goal

would be to detect these modifications automatically and dynamically account for these mod-

ifications.

On approach to achieve these objectives is to overhaul today’s network infrastructure. We can

consider new architectures for middlebox deployments that change both how individual middle-

boxes are implemented and how a network of middleboxes are managed [124, 50, 71]. However,

such an approach will not work with existing middlebox deployments. Middleboxes are today

deployed in huge numbers in all types of networks and the middlebox market is worth billions

of dollars [43], with many vendors selling different types of middleboxes with proprietary im-

plementations. From a network operator’s perspective a key question is whether we can address

these problems in a minimally disruptive manner, e.g., which require minimal changes to existing

middlebox implementations and routing mechanisms. In thesis, we try to address this question

and investigate how we can address middlebox management challenges in a minimally disruptive

manner.

1.2 Thesis Approach and Contributions
The key contribution of this thesis is to investigate whether we can address middlebox managment

challenges in a minimally disruptive manner, and the design of orchestration mechanisms to ad-

dress the above middlebox management challenges with minimal changes to existing middlebox

implementations and routing interfaces. In this thesis I will describe two case studies for introduc-

ing more flexibility in middlebox management, in a minimally disruptive manner.

1. In my first study, I propose SIMPLE [116], a Software-Defined Networking-based orches-

tration layer for efficient middlebox-specific traffic steering. Software-Defined Networking

(SDN) offers a promising alternative for control and coordination over traffic forwarding, by

using logically centralized management, decoupling the data and control planes, and provid-

ing the ability to programmatically configure forwarding rules [55]. Middleboxes, however,

3

introduce new aspects (e.g., policy composition, resource management, packet modifica-

tions) that fall outside the purvey of traditional L2/L3 functions that SDN supports (e.g.,

access control or routing). [146]. In SIMPLE, I addresses these challenges and propose an

efficient middlebox-specific policy enforcement layer. In designing SIMPLE, I take an ex-

plicit stance to work within the constraints of existing SDN interfaces and middleboxes. To

this end, I address algorithmic and system design challenges to demonstrate the feasibility

of using SDN to simplify middlebox traffic steering.

2. In my second study, I will describe KLEIN a cellular core re-design that uses Network

Function Virtualization (NFV) and smart resource management, stays within the confines

of current cellular standards and uses legacy routing in the core network. Network Function

Virtualization (NFV) aims to leverage standard virtualization technologies to consolidate

many network appliance and equipment types onto industry standard high volume servers

and storage, which could be located in data centers and network nodes [25]. However,

realizing the benefits of NFV introduces several challenges: 1) The need for dynamic re-

source management for managing the placement and deployment of virtualized NFs and 2)

Network orchestration mechanisms to dynamically route traffic to required network func-

tions. Addressing these challenges in minimally disruptive manner in the cellular core,

means designing a resource management layer that can be scalable and responsive while

using backwards-compatible orchestration mechanisms, and staying within the confines of

existing cellular standards. In KLEIN, I address key challenges w.r.t. scalability, responsive-

ness and in using backwards-compatible orchestration mechanisms to realize the benefits of

dynamic resource management layer.

These approaches, besides providing practical and minimally disruptive solutions, also give in-

sights on, to what extent these problems can be solved by constraining the flexibility and control on

a specific design dimension, such as routing or middlebox implementation. For instance, SIMPLE

provides more control over routing while working with unmodified middlebox implementations.

KLEIN on the other hand, for a wide area context, introduces more flexibility in middlebox im-

plementations, while working with legacy wide-area protocols and being within the confines of

4

cellular protocols. In a sense, any additional flexibility will only help these solutions to add more

freedom on the constrained dimensions.

A general contribution of this thesis is to formulate these middlebox management problems

as optimization problems, and to design scalable and efficient heuristics for solving these other-

wise hard problems. With the emergence of Software Defined Networking (SDN), about which

we provide background in Chapter 2, a number of management problems are now amenable to

being formulated as centralized optimization problems. This thesis provides scalable and efficient

heuristics for middlebox resource management problems.

1.3 Outline
This thesis is organized as follows:

• Chapter 2 provides background on middleboxes, SDN, NFV and cellular networks.

• Chapter 3 presents SIMPLE, a system for efficient middlebox policy enforcement.

• Chapter 4 presents a framework to reason about designs in the NFV design space.

• Chapter 5 describes KLEIN, a NFV-based EPC design for cellular networks.

• I summarize the key contributions and the implications of the work presented here before

highlighting some potential avenues for future work in Chapter 5.

5

Chapter 2

Background

In this chapter, we give an overview and background of middleboxes. We also provide background

on two key paradigms that we use in this thesis: Software Defined Networking (SDN) and Network

Function Virtualization (NFV). We also provide background on cellular networks, as we consider

cellular networks as a use case in some of our studies.

2.1 Middleboxes
Network deployments evolve in response to changing application, workload, and policy require-

ments. In current networks, the de-facto approach to introduce new functionality is often through

the deployment of specialized network appliances or “middlebox”. A middlebox, also called a

network appliance or a network function is defined as:

“A middlebox is defined as any intermediary device performing functions other than the normal,

standard functions of an IP router on the datagram path between a source host and destination

host.” [20]

These middleboxes are deployed primarily for security and performance benefits. They are

also used for other purposes such as billing, asset tracking, usage monitoring, network address

translation, protocol conversion, etc. Some examples are firewalls, application firewalls, intru-

sion detection systems, intrusion prevention systems, proxies, caches, WAN optimizers, protocol

accelerators, application gateways and SSL offloaders.

6

The key difference between these middleboxes and traditional L3 routers/L2 switches is that

these middleboxes perform complex and varied operations on packets such as deep packet inspec-

tion. There are new categories of middleboxes on the market every year. These middleboxes are

often stateful (e.g., some maintain per-flow or per-session state [72, 118]. They remember fine-

grained data that is updated as frequently as every packet or every connection.

Today, these middleboxes are deployed in all types of networks, enterprise networks [128, 124,

97] as well as ISP [140, 136] networks. A survey [124] from a large enterprise network showed

that number of middleboxes were comparable to the number of routers. Another survey [128]

across 57 network operators showed that the number of middleboxes were roughly the same as

the number of L3 routers and L2 switches, and this was true for network deployments of different

sizes.

Several studies report on the rapid growth of middlebox market; the market for network security

appliances alone was estimated to be 6 billion dollars in 2010 and expected to rise to 10 billion in

2016 [43]. In other words, middleboxes are a critical part of today’s networks and it is reasonable

to expect that they will remain so for the foreseeable future.

2.2 Software Defined Networking
The Internet architecture today tightly couples the control logic and packet handling inside the indi-

vidual router and switches. As a result, each router and switch participates in distributed protocols

that define the control logic. For example, in IP networks, the path-computation logic is governed

by distributed protocols such as OSPF and EIGRP. The routing protocols dictate not only how the

routers learn about the topology, but also how they select paths. Similarly, in Ethernet networks,

the control logic to compute paths is embedded in the Spanning Tree protocol.

However, today’s networks are growing in size and there is increasing demand for supporting

diverse and rich services. There is a need for satisfying network-level objectives and capabilities

far more sophisticated than best-effort packet delivery. These ever-evolving requirements have

led to incremental changes in the control-plane protocols, as well as complex management-plane

software that tries to coax the control plane into satisfying the network objectives. The resulting

7

complexity is responsible for the increasing fragility of IP networks and the tremendous difficulties

facing people trying to understand and manage their networks [75].

This has motivated the idea to make the networks programmable and to decouple the control

logic from packet handling mechanisms to satisfy network-wide objectives. This has culminated

in what we now refer to as “Software Defined Networking (SDN)”. SDN simplifies the network

management by decoupling the control plane (e.g., an intended routing policy) from the data plane

(e.g., packet forwarding). The control logic is then realized through a logically centralized control

plane which has a network-wide view [104]. This logically centralized control plane is amenable

for realizing network-wide objectives such as traffic engineering, policy enforcement etc. In SDN,

the network elements such as router and switches are programmable, and the logically centralized

control plane can program these elements dynamically based on operator objectives and policies.

In SDN, there is a south bound API, which refers to how the control plane will interact with

the router and switches. OpenFlow [55] is the most well know protocol used for the controllers

to communicate with routers and switches. There are a large number of SDN controllers pro-

posed [33, 14, 16, 96, 77]. In SDN there is also a notion of north bound APIs, which define

how network applications are going to interact with the SDN control plane. Network applica-

tions can be written on top of the SDN controllers. Over the last few years, they have been a

large and diverse set of SDN-based network applications proposed, including from monitoring

and measurement [144, 107, 54, 143], middlebox management [116, 66, 72], security applica-

tions [65, 130, 103, 85, 114], virtualization [72, 118, 89, 129], flow scheduling and load balanc-

ing [135, 48, 82, 47], wide area management [87, 84, 80], managing wireless network [79, 78],

cloud management [117, 109], big data handling [62, 134] and optical networks [56, 61].

Many major industry players including (Google, AT&T, Verizon) have completely embraced

SDN [26, 41, 87]. For instance, AT&T, recently announced its target that by 2020, 75% its net-

work will be controlled by software, and in this effort it has reorganized nearly 130,000 of its

organization, including IT, network and operations staff, to focus on this new effort [10].

This is very interesting because the intellectual ideas proposed by SDN are not new. There has

been a lot of work in the last 20-25 years related to active networks and centralized control, where

8

some what similar ideas have been proposed [68]. However it seems now most of these ideas have

found compelling use cases which have driven the adoption of these technologies [68].

2.3 Network Function Virtualization
Network functions or middleboxes (e.g., firewalls, intrusion detection systems, application gate-

ways) have been traditionally implemented using specialized and proprietary hardware. While this

was necessary for performance in the past, it also leads to high cost and inflexibility as the in-

tended function is physically tied with the hardware platform that implements it. Today networks

are populated with a large and increasing variety of proprietary hardware appliances. To launch a

new network service or application often requires yet another variety of a middlebox, which means

finding space and power for the physical box; in addition managing these middleboxes is highly

complex [128, 92] and requires a great deal of expertise and labor [128]. Moreover, hardware-

based appliances rapidly reach end of life, which results in deploying these devices in repeated

cycles. Worse, hardware life cycles are becoming shorter as technology and services innovation

accelerates, making it costly and complicated to evolve the network. [25]. All these limitations

and inefficiences make both the capital and operating costs of networks high and also makes it

complex to manage these networks [128].

Network Functions Virtualization (NFV) aims to address these problems by decoupling the

software from the hardware, virtualizing and consolidating many network appliances onto indus-

try standard high volume servers. Network Functions Virtualisation is potentially applicable to

any data plane packet processing and control plane function in fixed and mobile network infras-

tructures [25].

There have been recently many efforts to decouple the middlebox software from the hardware.

These include designing software middleboxes as x86 middleboxes implemented in software [35,

111], new designs and pipelines for software middleboxes [124, 50, 95], as well as middleboxes

running inside VMs in data centers [101, 30, 86].

Inspired from these trends, leading vendors are responding by announcing new software ap-

pliance products [7, 13, 42]. Given these benefits, major service providers have deployed (or are

9

eNodeB

Mobile

Device

MME

HSS

EPC

IMS

Internet

RAN

NAT/ FW/

Proxies

Data Traffic

Voice Traffic

PCRF

S-GW

Control Traffic

PCRF

P-GW

P-GW

Figure 2.1: Typical LTE elements and architecture.

planning to deploy) data centers to have a distributed pool of hardware resources to offer services

to where and when the capacity is needed [26, 41]. One potential concern with NFV is data plane

performance; fortunately, several recent advances in networking, virtualization, and operating sys-

tems (e.g., SR/IOV, kernel bypass) have demonstrated the viability of line-rate packet processing

in software [121, 120, 113]. Thus, such performance concerns are increasingly becoming less of a

concern and with recent hardware support these concerns diminish further [7, 36].

2.4 Cellular Network Background
We describe the architecture of the cellular network in this section. Third Generation Partner-

ship Program (3GPP) is the program that standardizes systems, architectures and protocols related

to a large number of cellular technologies. We focus on 3GPP Long Term Evolution (LTE) for

ease of exposition; however, 3G and 2G also have very similar architectures, though the specific

components and their functions vary.

As depicted in Figure 2.1, the LTE cellular network consists of two main components: the

LTE Radio Access Network (RAN), and the evolved packet core (EPC). LTE RAN consists of the

eNodeB (enhanced NodeB), which communicates with mobile devices via the radio link and then

forwards packets to the eventual destination via the EPC. The eNodeB also performs radio resource

control and cooperates with the Mobility Management Entity (MME) for mobility management

(e.g., handover). To cover a large geographic footprint and to provide high quality service, a

10

typical cellular service provider employs tens of thousands of eNodeBs.

The main elements of the EPC consist of the MME, the serving gateway (S-GW), and the

Packet Data Network Gateway (P-GW). The MME is responsible for all control plane messaging

including user authentication via the Home Subscriber Server (HSS), session establishment and

release, and mobility management. The S-GW and P-GW are on the data path, and their main

function is packet routing/forwarding, traffic management and accounting, and policy enforcement.

The S/P-GW also act as anchor points in the cellular network with the S-GW being the anchor for

inter-eNodeB handover, and the P-GW acting as a gateway/anchor to external networks (e.g., the

Internet). The LTE standard allows for the specification and enforcement of dynamic policies (e.g.,

changing priority for a flow) within the cellular network. The Policy and Charging rules function

(PCRF) is the repository of such policies. Whenever a new flow starts, the PCRF is consulted to

identify policies that apply to the flow. The policy and charging enforcement function (PCEF),

which is typically built into the P-GW, is responsible for the enforcement of cellular policies.

Finally, most cellular EPCs also include middleboxes like NATs, firewalls and proxies that are

traversed before a packet reaches the Internet.

A typical cellular network has a few hundred of these EPC components. The data plane el-

ements are typically deployed in a small number of pre-provisioned data centers [141] while the

control plane elements are deployed closer to eNodeBs for efficiently handling latency sensitive

control plane traffic. When building out these data centers, the EPC is typically provisioned in

distinct units we call as ‘zones’. A zone typically consists of P-GWs, possibly S-GWs, and other

associated middleboxes (e.g., NAT, firewall) and network elements. When the traffic in existing

zones reaches a capacity threshold, a new zone is added.

The EPC is typically partitioned to handle different types (e.g., LTE VoIP or VoLTE, Internet

data, M2M, corporate VPN) of traffic. This partitioning is achieved through the use of access point

names (APN). A cellular provider can associate different traffic types to one or more APNs. A

set of APNs – depending on their traffic volume – is mapped to a zone. As a result, the P-GW

and other middleboxes and network elements in the zone are configured to serve a set of APNs.

Roughly, a zone serves as a basic provisioning unit in the data center while an APN serves as

11

a traffic classifier where its traffic is load-balanced across multiple zones (e.g., a zone serving a

metropolitan area).

Before a device can send or receive data, it has to first establish a GTP (GPRS Tunneling

Protocol) tunnel. The GTP tunnel, established between the eNodeB and the P-GW, provides log-

ical point-to-point connectivity per device as it moves around in the network. The GTP tunnel

comprises of two halves; one between eNodeB and S-GW and one between S-GW and P-GW.

While the latter is retained as long as the device is registered in the network, the former is torn

down whenever the device goes idle, and re-created whenever data is exchanged. When the device

moves from eNodeB to another, the tunnel between with eNodeB and the S-GW also moves. To

setup the tunnel, the device first identifies the APN to use and then the associated P-GW. It then

initiates establishment of a GTP tunnel. Similarly, it initiates tunnel creation when it wakes up and

has data to send. However, the network has to “page” the device whenever there is data for the

device and the device is idle. The device, when it receives a page, wakes up and reestablishes the

tunnel between the eNodeB and the S-GW.

To summarize, there are multiple services and devices that run inside a cellular core network

supporting not only LTE, but also 3G and 2G networks. Today, the platforms running these services

comprise of fixed hardware appliances that are statically provisioned and configured. Different

traffic types, however, may have different load patterns and peaks. Similarly, traffic at different

locations may behave differently. Finally, the traffic for one service, e.g., 3G, may reduce over

time and be replaced with another, e.g., LTE. Virtualizing the cellular network elements allows us

to consolidate these functions and dynamically scale and place these functions based on demands

across specific dimensions.

12

Chapter 3

SIMPLE: Simplifying Middlebox Policy

Enforcement Using SDN

3.1 Motivation and Contributions
Surveys show that middleboxes (e.g., firewalls, VPN gateways, proxies, intrusion detection and

prevention systems, WAN optimizers) play a critical role in many network settings [74, 92, 125,

128, 137]. Achieving the performance and security benefits that middleboxes offer, however, is

highly complex. This complexity stems from the need to carefully plan the network topology,

manually set up rules to route traffic through the desired sequence of middleboxes, and implement

safeguards for correct operation in the presence of failures and overload [74].

Software-Defined Networking (SDN) offers a promising alternative for middlebox policy en-

forcement by using logically centralized management, decoupling the data and control planes, and

providing the ability to programmatically configure forwarding rules [55]. Middleboxes, however,

introduce new dimensions for SDN that fall outside the purvey of traditional Layer 2/3 (L2/L3)

functions that SDN tackles today. This creates new opportunities as well as challenges for SDN

that we highlight next.

• Composition: Network policies typically require packets to go through a sequence of mid-

dleboxes (e.g., firewall+IDS+proxy). SDN can eliminate the need to manually plan mid-

13

dlebox placements or configure routes to enforce such policies. At the same time, using

flow-based forwarding rules that suffice for L2/L3 applications atop SDN can lead to ineffi-

cient use of the available switch TCAM (e.g., we might need several thousands of rules) and

also lead to incorrect forwarding decisions (e.g., when multiple middleboxes need to process

the same packet).

• Load balancing: Due to the complex packet processing that middleboxes run (e.g., deep

packet inspection), a key factor in middlebox deployments is to balance the processing load

to avoid overload [128]. SDN provides the flexibility to implement load balancing algorithms

in the network and avoids the need for operators to manually install traffic splitting rules

or use custom load balancing solutions [135]. Unfortunately, the limited TCAM space in

SDN switches makes the problem of generating such rules to balance middlebox load both

theoretically and practically intractable.

• Packet modifications: Middleboxes modify packet headers (e.g, NATs) and even change

session-level behaviors (e.g., WAN optimizers and proxies use persistent connections). To-

day, operators have to account for these effects via careful placement or manually reason

about the impact of these modifications on routing configurations. By taking a network-wide

view, SDN can eliminate errors from this tedious process. Due to the proprietary nature of

middleboxes, however, a SDN controller may have limited visibility to set up forwarding

rules that account for such transformations.

This work presents the design and implementation of SIMPLE,1 a SDN-based policy enforce-

ment layer for middlebox-specific traffic steering [92]. SIMPLE allows network operators to spec-

ify a logical middlebox routing policy and automatically translates this into forwarding rules that

take into account the physical topology, switch capacities, and middlebox resource constraints.

In designing SIMPLE, we take an explicit stance to work within the confines of existing SDN

capabilities (e.g., OpenFlow) and without modifying middlebox implementations.

Corresponding to the above challenges, there are three key components in SIMPLE’s design:

1SIMPLE =Software-defIned Middlebox PoLicy Enforcement

14

• Efficient data plane support for composition (§3.5): We use two key ideas: tunnels be-

tween switches and leverage SDN capabilities to add tags to packet headers that annotate

each packet with its processing state.

• Practical unified resource management (§3.7): We decompose the intractable optimiza-

tion into a hard offline component that accounts for the integer constraints introduced by

switch capacities and an efficient online component that balances middlebox load in re-

sponse to traffic changes.

• Learning middlebox modifications (§3.6): We exploit the reporting capabilities of SDN

switches to design lightweight flow correlation mechanisms that account for most common

middlebox-induced packet transformations.

We implement a proof-of-concept SIMPLE controller that extends POX [33] (§3.8). Using a

combination of live experiments on Emulab [138], large-scale emulations using Mininet [21], and

trace-driven simulations, we show that SIMPLE (§3.9):

• improves middlebox load balancing 6× compared to today’s deployments and achieves near-

optimal performance w.r.t. new middlebox architectures [124];

• takes ≈100 ms to bootstrap a network and to respond to network dynamics in a 11-node

topology;

• takes ≈1.3 s to rebalance the middlebox load and is 4 orders of magnitude faster than straw-

man optimization schemes.

3.2 Related Work

Middlebox policy enforcement: The work closest to SIMPLE is pLayer [92] which provides a

Layer-2 solution to route traffic through middleboxes. In [92], the authors propose a policy-aware

switching layer, a new layer-2 for data centers consisting of inter-connected policy-aware switches,

called pswitches. Unmodified middleboxes are placed off the network path by plugging them into

15

pswitches. Based on policies specified by administrators, pswitches explicitly forward different

types of traffic through different sequences of middleboxes. pLayer, however, does not address

the following issues that SIMPLE tackles: load balancing or routing with switch constraints, the

impact of middleboxes modifying headers, and possible routing loops. Another early effort Flow-

stream [76] envisions “virtual middleboxes” with an OpenFlow frontend for routing. It proposes

the implementation of network functionalities in virtualized machines/servers/routers run on top

of commodity PCs. The flow of traffic among these virtual network entities is controlled by a pro-

grammable network switch implementing Openflow. In some sense, FlowStream and pLayer were

ahead of their time; they preceded SDN/OpenFlow adoption and do not consider the constraints or

capabilities that they offer.

Concurrent effort by Jin et al., also highlights challenges related to routing loops and switch

constraints for middlebox steering in cellular networks [90]. While they employ a similar tag-based

solution for the loop problem, their solution to address switch constraints involves a separation of

edge vs. core functionality and the use of aggregation operators. SIMPLE focuses on balancing

the middlebox load and uses the offline-online decomposition to address the switch constraints.

Other works consider the problem of routing traffic to specific monitoring nodes [119] and

considers middlebox placement in conjunction with cloud applications [52, 98]. These do not

consider middlebox composition, switch constraints, or dynamic packet transformations.

Middleboxes + SDN: Recent work has proposed new software-based programmable middle-

boxes [50, 124]. The work in [50] presents xOMB , a programmable software middlebox architec-

ture based on commodity servers and operating systems. xOMB employs a general programmable

pipeline for network processing, composed of xOMB-provided and user defined C++ modules re-

sponsible for arbitrary parsing, transforming, and forwarding messages and streams. Modules can

store state and dynamically choose different processing paths within a pipeline based on message

content. CoMb [124], presents a new middlebox infrastructure design, where instead of specialized

middleboxes, the hardware and software is decoupled, and middlebox applications are run on top

of a consolidated hardware platform. CoMb [124] and xOMB [50] argue for extensible middle-

boxes that use commodity hardware similar to prior work on software routers [64, 95]. SIMPLE

16

does not attempt to provide these benefits. Because SIMPLE is agnostic to how middleboxes are

implemented, it can easily extend to such deployments. In fact, these may offer new dimensions

of flexibility to dynamically initiate new middlebox capabilities at desired locations.

Recent work has also suggested SDN-based new interfaces for manipulating middlebox state [71].

In [71], the authors propose a framework to realize software-defined middlebox networking. Sim-

ilar to the management of routers and switches in SDN, they propose APIs and interfaces for

managing middleboxes in SDN. These APIs consist of mechanisms whereby a centralized SDN

controller can manage middlebox state. SIMPLE can benefit from these, especially in the con-

text of dynamic transformations. Given the nature of the middlebox market, however, it is less

likely that these efforts will be adopted in the near term and SIMPLE offers a practical alternative

in the interim. There are also some efforts to standardize middlebox control interfaces such as

MIDCOM [132] and SIMCO [24].

Recent work has also considered offloading middlebox functions to service providers [73, 128].

The work in [73, 128] proposes mechanisms through which an entire enterprise network’s middle-

box processing can be moved to a cloud infrastructure.

Given the size of the middlebox market [44], the diversity of functions [125, 128]), the propri-

etary nature of middlebox implementations (e.g., specialized DPI hardware [31]), the above efforts

likely face significant barriers to adoption. Furthermore, there are large legacy deployments that

are unlikely to go away. Thus, while these forward-looking research efforts are valuable, they are

not immediately realizable. SIMPLE takes an explicit stance to work within the confines of ex-

isting middlebox implementations and SDN capabilities. Furthermore, the ideas in SIMPLE will

apply to service providers who provide the outsourced middlebox services [73, 128].

Policy management in SDN: SDN has traditionally focused on L2/L3 policies such as access

control, rate limiting, and routing [55, 96]. Recent work provides abstractions to compose dif-

ferent policy modules [105]. Pyretic [105] introduces new programming abstractions for building

applications out of multiple, independent modules that jointly manage network traffic. Comple-

mentary to these works, SIMPLE supports middlebox policies that defines the traversal of middle-

box chains.

17

In the data plane, prior work suggests methods to reduce the switch memory usage for flow-

based rules [108, 145]. vCRIB [108] proposes a virtualized Cloud Rule Information Base (vCRIB)

that provides operators or a network management system with the abstraction of an unbounded

prioritized list of rules. They jointly consider the resource, cost, and performance constraints in

the hypervisors and switches, and automatically installs rules at the right location to optimize

the packet processing performance while minimizing the resource usage and cost. DiFANE [145]

considers the problem of implementing a large number of high level policies inside a SDN network

in a scalable way. Instead of sending the first packet of new flow to an SDN controller, DiFANE

processes all the packets in the data-plane, by directing missed packets to intermediate switches.

While SIMPLE uses some of these ideas, it takes a unified view of both switch resource and

middlebox constraints.

3.3 Opportunities and Challenges
We begin by identifying key challenges in using SDN for middlebox-specific policy enforcement.

To make this discussion concrete, we use the example network in Figure 3.1 with 6 switches S1–

S6, 2 firewalls FW1 and FW2, 1 IDS, and 1 Proxy.

3.3.1 Middlebox composition

Typical middlebox policies require a packet (or session) to traverse a sequence of middleboxes.

(This is an instance of the broader concept of “service chaining”.) In our example, the administrator

wants to route all HTTP traffic through the policy chain Firewall-IDS-Proxy and the remaining

traffic through the chain Firewall-IDS. Note that many middleboxes are stateful and need to process

both directions of a session for correctness.

Opportunity: Today, middleboxes are placed at manually induced chokepoints and the routing

is carefully crafted to ensure stateful traversal. In contrast to this semi-manual and error-prone

process, SDN can programmatically ensure correctness of middlebox traversal. Furthermore, SDN

allows administrators to focus on what policy they need to realize without worrying about where

this is enforced. Consequently, SDN allows more flexibility to route around failures and middlebox

overload and incorporate off-path middlebox capabilities [73].

18

S1

S6

S2

S5
Src =
10.1.0/16

FW1
(0.5)

FW2
(0.5)

10.1/16, HTTP  *

Firewall IDS

Physical Sequence

FW1-IDS1-Proxy1 S1 S2 FW1 S2 S4 S5 IDS1 S5 S4 S2 Proxy1 S2 S4 S5 S6

FW2-IDS1-Proxy1 S1 S3 FW2 S3 S5 IDS1 S5 S4 S2 Proxy1 S2 S4 S5 S6

FW1-IDS1 S1 S2 FW1 S2 S4 S5 IDS1 S5 S6

FW2-IDS1 S1 S3 FW2 S3 S5 IDS1 S5 S6

S3 Dst = *

10.1/16, Rest *

Firewall IDS

Proxy
Policy Chains Proxy1

IDS1

S4

Figure 3.1: Example to illustrate the requirements that middlebox deployments place on
SDN. The table shows the different physical sequences of switches and middleboxes used to
implement the two logical policy chains: Firewall-IDS and Firewall-IDS-Proxy.

Challenge = Data plane mapping: Consider the physical sequence of middleboxes FW1-IDS1-

Proxy1 for HTTP traffic in the example. Let us zoom in on the three switches S2, S4, and S5

in Figure 3.2. Here, S5 sees the same packet thrice and needs to decide between three actions:

forward it to IDS1 (post-firewall), forward it back to S2 for Proxy1 (post-IDS), or send it to the

destination (post-proxy). It cannot, however, make this decision based only on the packet header

fields. The challenge here is that even though we have a valid composition of middlebox actions,

this may not be realizable because S5 will have an ambiguous forwarding decision. This suggests

that the use of simple flow-based rules (i.e., the IP 5-tuple) traditionally used for L2/L3 functions

will no longer suffice.

3.3.2 Middlebox resource management

Middleboxes involve complex processing to capture application-level semantics and/or use deep

packet inspection. Studies show that middlebox overload is a common cause of failures [74, 128],

and thus an important consideration is to balance the load across middleboxes. For example, in

Figure 3.1, we may want to divide the processing load equally between the two firewalls.

19

2 1

3

4

5
S2

S5

HTTP

S4

Proxy1 IDS1 FW1

Figure 3.2: Example of potential data plane ambiguity to implement the policy chain
Firewall-IDS-Proxy in our example topology. We annotate different instances of the same
packet arriving at the different switches on the arrows.

Opportunity: Today, operators need to statically set up traffic splitting rules or employ custom

load balancing solutions.2 In contrast, a SDN controller can use data plane forwarding rules to

flexibly implement load balancing policies and route traffic through specific physical sequences of

switches and middleboxes in response to network dynamics [135].

Challenge = Data plane constraints: SDN switches are limited by the number of forwarding

rules they can support; these rules are in TCAM and a switch can support a few thousand rules

(e.g., 1500 TCAM entries in 5406zl switch [60]). In a large enterprise network with O(100)

firewalls and O(100) IDSes [124], there are O(100× 100) possible combinations of the Firewall-

IDS sequence. Imagine a load balancing algorithm that splits the traffic uniformly across all such

combinations. Now, each such split needs to have forwarding rules to route the traffic to the correct

physical middleboxes. Thus, in the worst case, a switch in the middle of the network that lies on

paths between these firewalls and IDSes may need O(100 × 100) forwarding rules. This an order

of magnitude larger than today’s switch capabilities [60]. In practice, the problem can be even

worse—we will have several policy chains each with multiple middleboxes, e.g., each ingress-

egress pair may have a policy chain per application port (e.g., HTTP, NFS). This implies that we

cannot directly use existing middlebox load balancing algorithms as these do not take into account

switch constraints [124].
2Our conversations with network operators reveals that they often purchase a customized load balancer for each

type of middlebox!

20

3.3.3 Dynamic traffic transformation

Many middleboxes actively modify traffic headers and contents. For example, NATs rewrite the IP

addresses of individual packets to map internal and public IPs. Other middleboxes such as WAN

optimizers may spawn new connections and tunnel traffic over persistent connections.

In Figure 3.1, suppose there are two user groups accessing websites through Proxy1 in an en-

terprise: The employee user group from source subnet 10.1.1.0/24 should follow middlebox pol-

icy Proxy-Firewall; while the guest user group from subnet 10.1.2.0/24 should follow middlebox

policy Proxy-IDS. The proxy delivers the traffic from different websites to users in the two user

groups. Unfortunately, the traffic exiting the proxy may have different packet headers, sessions,

and payloads compared to the traffic entering it. Thus, it is challenging for the controller to install

rules at S2 to steer the appropriate traffic to the Firewall or IDS (depending on the original user

group).

Opportunity: In order to account for such dynamic packet transformations, operators today have

to resort to ad hoc measures: (1) placing middleboxes carefully (e.g., placing Firewall and IDS

after the proxy to ensure all traffic traverses all middleboxes); or (2) manually reason about the

correctness based on coarse models of middlebox behaviors. While these stop-gap measures may

work, they make the network brittle as it needlessly constrains legitimate traffic (e.g., if the choke-

point fails) and may also allow unwanted traffic to pass through (e.g., if we use wildcard rules).

Using a network-wide view, SDN can address these concerns by taking into account such dynamic

packet transformations.

Challenge = Controller visibility: Ideally, the SDN controller needs to be aware of the internal

processing logic of middleboxes in order to account for traffic modifications before installing for-

warding rules. This logic, however, may be proprietary to the middlebox vendors. Furthermore,

these transformations may occur on fine-grained timescales and depend on the specific packets

flowing through the middlebox. This entails the need to automatically adapt to such middlebox-

induced packet transformations.

In summary, we see that middleboxes introduce new opportunities for SDN to reduce the

complexity involved in carefully planning middlebox placements and semi-manually setting up

21

Existing

SDN switches

Admin

FW IDS Proxy
Extranet, Web

Intranet, NFS
WanOpt

Rule Generator

Resource Manager Dynamics Handler

Legacy

Middleboxes

Topology, Traffic Policy

Spec

Mbox, Switch

constraints

Flow Action Counter
… … …

Today’s SDN interfaces

(e.g., OpenFlow)

Flow Action Counter
… … …

Connection

Mappings

Middlebox

load balancing

e.g., first few

packets of new

flows

Figure 3.3: Overview of the SIMPLE approach for using SDN to manage middlebox deploy-
ments.

forwarding rules to implement the middlebox policies in an efficient load-balanced manner. At

the same time, however, there are new challenges for SDN—data plane support for composition,

managing both switch and middlebox resources efficiently, and incorporating middlebox-induced

dynamic transformations.

3.4 SIMPLE System Overview
Our goal in this work is to address the challenges from the previous section without modifying

middleboxes and working within the constraints of the existing SDN switches and today’s SDN

standards (i.e., OpenFlow). Our solution, called SIMPLE, is an SDN-based policy enforcement

layer that translates a high-level middlebox policy into an efficient and load balanced data plane

configuration that steers traffic through the desired sequence of middleboxes.

Figure 3.3 gives an overview of the SIMPLE architecture showing the inputs needed for various

components, the interactions between the modules, and the interfaces to the data plane. Note that

SIMPLE only needs to configure SDN-enabled switches; middleboxes do not need to be extended

22

to support new SDN-like capabilities. We begin by describing the high-level inputs to SIMPLE:

1. Processing policy: Building on the SDN philosophy of direct control, we want network

administrators to specify what processing logic needs to be implemented and not worry about

where this processing occurs or how the traffic needs to be routed. Building on previous

middlebox research [91, 92, 124], this policy is best expressed via a dataflow abstraction

as shown. Here, the operator specifies different policy classes (e.g., external web traffic or

internal NFS traffic) and the sequence of middlebox processing needed per class.

2. Topology and traffic: SIMPLE must ultimately translate the logical policy specification

to the physical topology. Thus, it needs a network map indicating where middleboxes are

located, the links between switches, and the link capacities. We also need an expected vol-

ume of traffic Tc traversing each policy class. Such inputs are typically already collected in

network management systems [69].

For simplifying our presentation, we assume that each middlebox is connected to the network

via an SDN-enabled switch as shown in Figure 3.1; our techniques also apply to deployments

where middleboxes act as a “bump-in-the-wire”. We use Mj and Sk to denote a specific

middlebox and switch respectively.

3. Resource constraints: There are two types of constrained resources: (1) packet processing

resources (e.g., CPU, memory, accelerators) for different middleboxes and (2) amount of

TCAM available for installing forwarding rules in the SDN switches. We associate each

switch Sk with flow table capacity TCAM k (number of rules) and each middlebox Mj with

a packet processing capacity ProcCapj .3

In addition, we need the per-packet processing cost across middleboxes and classes. For

generality, we assume that these costs vary across middlebox instances (e.g., they may have

specialized accelerators) and policy classes (e.g., HTTP vs NFS). Let Footprint c,j denote

the per-packet processing cost for a packet belonging to class c at the middlebox Mj .

3We can extend this to model each type of resource (CPU, memory) separately, but avoid doing so for brevity.

23

Corresponding to the three high-level challenges outlined in the previous section, we envision

three key modules in the SIMPLE controller as shown in Figure 3.3.

1. The ResMgr module takes as input the network’s traffic matrix, topology, and policy re-

quirements and outputs a set of middlebox processing assignments that implement the pol-

icy requirements. This module takes into account both middlebox and switch constraints in

order to optimally balance the load across middleboxes.

2. The DynHandler module automatically infers mappings between the incoming and out-

going connections of middleboxes that can modify packet/session headers. To this end, it

receives packets (from previously unseen connections) from switches that are directly at-

tached to the middleboxes. It uses a lightweight payload similarity algorithm to correlate the

incoming and outgoing connections and provides these mappings to the RuleGen module

described next.

3. The RuleGen module takes the output of the ResMgr (i.e., the processing responsibilities

of different middleboxes) and the connection mappings from the DynHandler and generates

data plane configurations to route the traffic through the appropriate sequence of middle-

boxes to their eventual destination. In addition, the RuleGen also ensures that middleboxes

with stateful session semantics receive both the forward and reverse directions of the session.

As we discussed, these configurations must make efficient use of the available TCAM space

and avoid the ambiguity that arises due to composition that we saw in Section 3.3.1 . Thus,

we need an efficient data plane design that supports these two key properties.

Conceptually, we envision the ResMgr and DynHandler running as controller applications

while the RuleGen can be viewed as an extension to the network operating system [77]. We en-

vision SIMPLE as a proactive controller for the common case of middleboxes that do not modify

packet headers to avoid the extra latency of per-flow setup. By construction, the DynHandler is a

reactive component as it needs to infer the connection mappings on the fly.

24

3.5 SIMPLE Data Plane Design
There are two high-level requirements for the SIMPLE data plane. First, as we saw in Figure 3.2, a

switch cannot rely on the flow 5-tuple for forwarding. Second, we need to ensure that the rules can

fit within the limited TCAM which will be especially critical for larger networks with middleboxes

distributed throughout the network. To address these problems, we present a data plane solution

that uses a combination of tags and tunnels. While the use of tagging or tunneling in a general

networking or SDN context is not new, our specific contribution here is in using these ideas in the

context of middlebox policy enforcement.

To simplify our discussion in this section, we start by assuming that middleboxes do not change

the IP 5-tuple. They may, however, arbitrarily change payloads and other fields (e.g., VLAN ids,

MPLS, ToS fields etc.). We relax this assumption in §3.6.

3.5.1 Unambiguous forwarding

Referring back to Figure 3.2, S5 needs to know if a packet has traversed the Firewall (send to

IDS), or traversed both Firewall and IDS (send to S2), or all three middleboxes (send to dst) to

know the next hop. That is, we need switches to identify the segment in the middlebox processing

chain that the packet is currently in; a segment is a sequence of switches starting at a middlebox

(or an ingress gateway) and terminating at the next middlebox in the logical chain. Intuitively, we

can track the segment by keeping per-packet state in the controller or in the switch. As neither

option is practical, we use a combination of topological context and packet tagging to encode this

processing state.

• Based on input port when there are no loops: The easy case is when the sequence of switches is

loop free; i.e., each directional link appears at most once in the sequence. In this case, a switch

can use the incoming interface to identify the logical segment. Consider the sequence FW1-IDS1

in Figure 3.4a, where the packet needs to traverse In–S2-FW1-S2-S4-S5-IDS1-S5–Out. In this

case, S2 forwards packets arriving on “In” to FW1 and packets arriving on the FW1 port to S4.

• Based on ProcState tags when there are loops: If there is a loop in the physical sequence, then the

combination of input interface and packet header fields cannot identify the middlebox segment.

25

To address this, we introduce a ProcState tag that encodes the packet’s processing state; ProcState

tags are embedded inside the packet header using either VLAN tags, MPLS labels, or unused

fields in the IP header depending on the fields supported in the SDN switches. The controller

installs tag addition rules at the first switch of each segment based on packet header fields and

input ports. Downstream switches use these tags in their forwarding action.

Figure 3.2 shows tag addition rules at S2: {HTTP, from FW1} → ProcState =FW; {HTTP,

from Proxy1}→ ProcState =Proxy. The forwarding rules at S5 are: {HTTP, ProcState =FW}→

forward to IDS1; and {HTTP, ProcState =Proxy} → forward to destination. The key idea here is

that S5 can use the ProcState tags to differentiate between the first instance of the packet arriving

in the second segment (send to IDS) and the fourth segment (send to destination).

3.5.2 Compact forwarding tables

In the simplest case, we use hop-by-hop forwarding rules at every switch along a physical sequence

as shown in Figure 3.4a. While this works for small topologies, it does not scale to large topologies

with many switches, multiple middlebox policy chains, and many possible physical instantiations

of a specific policy chain. To reduce the number of forwarding entries, we leverage the observa-

tion that switches in the middle of each segment of a physical sequence do not need fine-grained

forwarding rules. The only role they serve is to route the packet toward the switch connected to

the next middlebox in the sequence.

Building on this insight, we use inter-switch tunnels or SwitchTunnels between all pairs of

switches. Here, each switch maintains two forwarding tables: (1) a FwdTable specifying fine-

grained per-flow rules for middlebox traversal and (2) a TunnelTable indicating how to reach every

other switch in the network, similar to DiFane [145]. The TunnelTable is computed using tra-

ditional routing metrics by the SDN controller. The TunnelTable can be implemented in TCAM

using OpenFlow rules or in SRAM [145].4

With this in place, the ingress switch tunnels packets to the switch connected to the first middle-

box in the sequence. A switch in the middle of a segment uses its TunnelTable to forward packets

4DiFane maintains tunnel entries to each egress. SIMPLE needs entries to each egress and switches connected to
middleboxes.

26

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP In - - FW -

HTTP FW - - S4 -

S2

S4

S5

FW IDS Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP S2 - - S5 -

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP S4 - - IDS -

HTTP IDS - - Out -

Policy = Rest: FWIDS

In Out

(a) Hop-by-hop, No loop

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP In Nil - FW -

HTTP FW - - TunS5 FW

HTTP S4 IDS TunS2 Proxy -

HTTP Proxy - - TunS5 Proxy

S2

S4

S5

FW IDS

In

Switch
Tunnel

Fwd

TunS5 S5

TunS2 S2

Traffic In
Interface

Proc
State

Switch
Tunnel

Fwd Tag
Add

HTTP S4 FW TunS5 IDS -

HTTP IDS - - TunS2 IDS

HTTP S4 Proxy TunS5 Out -

Proxy

Policy = HTTP: FW IDS Proxy

Out

(b) Tunnel, Loop

Figure 3.4: Example of SIMPLE data plane configurations. The other cases: hop-by-hop
with loop and SwitchTunnels with no loop are similar and are not shown for brevity.

through the SwitchTunnel toward the next middlebox. Switches directly connected to middle-

boxes are responsible for forwarding packets to the middlebox and marking packets with the next

SwitchTunnel entry. Note that switches terminating a middlebox segment need fully descriptive

rules (similar to the hop-by-hop case) to forward traffic to/from the middlebox. We demonstrate

the practical benefits of using SwitchTunnels in §3.9.1.

Example: To see how this works, we revisit the example from §2 in Figure 3.4b. This scenario

uses SwitchTunnels in conjunction with ProcState because the sequence has a loop. We focus

first on the SwitchTunnels aspect. The key idea is that instead of rules specifying the next hop,

switches connected to middleboxes tunnel traffic to the switch attached to the next middlebox.

27

This is indicated by the TunS5 entries in the Fwd actions at S2 for traffic incoming from FW

and Proxy and the TunS2 entry at S5 for traffic incoming from IDS. Note that S4, a switch with no

middleboxes attached, does not need any fine-grained forwarding rules; it uses the SwitchTunnel to

look up its TunnelTable (shown in italics). S2 (and similarly S5) checks whether there are terminals

for the SwitchTunnel to see if they need to forward the packet to a locally attached middlebox.

The figure also shows the corresponding ProcState to distinguish different instances of the same

packet arriving at the same switch. Note that SwitchTunnels alone do not solve the ambiguity

problem caused by loops; we may have packets traversing the same tunnel twice and thus we

will still need ProcState tags. Again, the switches connected to the middleboxes (S2, S5) are

responsible for adding the ProcState and for checking these while making forwarding decisions to

the next middlebox in sequence.

3.6 SIMPLE Dynamics Handler
The key remaining issue in installing forwarding rules is that middleboxes may dynamically mod-

ify the incoming traffic—when middleboxes modify flows’ packet headers, the forwarding rules on

downstream switches must account for the new header fields. For example, when a NAT translates

the external address to the internal one, the controller must be aware of such translations and install

correct forwarding rules to direct traffic to the next middlebox or egress switch.

3.6.1 Design constraints

Table 3.1 summarizes the different types of middleboxes commonly used in enterprises today and

annotates them with key attributes: the type of traffic input they operate on, their actions, and the

timescales at which the dynamic traffic modifications occur. For example, an IP firewall checks

both the packet header information, and makes a decision on whether to drop the packet or forward

it, while a NAT checks the source and destination IP and port fields in the packet headers and

rewrites these fields. Note that vendors may differ in their logic for the same class of middlebox.

For example, different NAT implementations may either randomly or sequentially increase the port

number when a new host connects to it. In summary, we see that middleboxes operate at different

timescales, modify different packet headers, and operate at diverse granularities (e.g., packet vs.

28

flow vs. session).

Ideally, we would like fine-grained visibility into the processing logic and internal state of

each middlebox to account for such transformations. The longer-term option is standardized APIs

for middleboxes to export such information [66, 71]. Given the vast array of middleboxes [125],

large number of middlebox vendors [44], and the proprietary nature of these functions, achieving

standardized APIs and requiring vendors to expose internal states does not appear to be a viable

near-term solution.

Given the diverse and proprietary nature of this ecosystem and our explicit stance to avoid mod-

ifying middleboxes, we follow the following driving principle. Rather than model middleboxes or

ask network operators to specify the dynamic behaviors of middleboxes, we treat middleboxes

as blackboxes and try to automatically learn their relevant input-output behaviors. In this work,

we take a protocol-agnostic approach to see how much accuracy we can achieve with a general

framework. As we show later (§3.9.3), we get close to 95% matching accuracy with only a few

packets overhead. By adding protocol-specific state (e.g., HTTP state machines) or incorporating

middlebox-specific information, we can further improve this accuracy.

3.6.2 Idea: Flow correlation

The natural question is why do we think this is feasible? Note that we do not need visibility

into the internal proprietary logic of the middlebox. We only need to reason about the middlebox

behaviors pertinent to forwarding and policy enforcement. That is, we only need to identify how

the incoming and outgoing flows (or sessions) at the middlebox are correlated.5

Consider the following physical path traversed by a packet: Sk → Mj → Sk . With respect

to the middlebox, we have an incoming set of flows, Incoming(Sk → Mj) and an outgoing set,

Outgoing(Mj → Sk). Our goal is to identify which flow(s), F ∈ Incoming is (are) causally

related to some flow(s) in Outgoing .

In the simplest case, middleboxes (e.g., Firewall) do not change the packet headers and do not

multiplex/spawn flows. In this case, we can directly map the incoming and outgoing flows. (This

5We were inspired in part by the success of flow correlation techniques used in the security literature to detect step-
ping stones and information leakage [147]. Our problem is arguably simpler than the security setting: the middlebox
is a blackbox, not adversarial.

29

Middlebox Input Actions Timescale Info needed Approach
FlowMon Header No change – None –
IDS Header, Pay-

load
No change – None –

IP Firewall Header Drop? – None –
IPS Header, Pay-

load
Drop? – None –

Redundancy
eliminator

Payload Rewrite pay-
load

Per-packet None –

NAT Flow Rewrite
header

Per-flow Header map-
ping

Payload
Match

Load bal-
ancer

Flow Rewrite
headers &
reroute

Per-flow Session
mappings

Payload
Match

Proxy Session Map ses-
sions

Per-session Session
mappings

Similarity
Detector

WAN-Opt Session Map ses-
sions

Per-session Session
mappings

Similarity
Detector

Table 3.1: A taxonomy of the dynamic actions performed by different middleboxes that are
commonly used today [124] and the corresponding information that we need to infer at the
SDN controller.

30

is marked as None in the information needed column in Table 3.1).

Oher middleboxes (e.g., NAT) may change packet header fields, but do not change the packet

payloads and are also flow preserving. Consider a NAT that simply rewrites headers. In this case,

there is a one-to-one correspondence between the incoming and outgoing packets. Moreover, the

payloads of the packets are unmodified. Thus, we can simply do an exact payload match between

the incoming and outgoing packets to detect the flow correlations (labeled as payload match in the

table).

The more challenging case is when the middleboxes may create new sessions or merge exist-

ing sessions (e.g., proxy, WAN optimizer). For these middleboxes, we cannot directly match the

payloads of individual packets because one flow into a middlebox can be mapped to multiple flows

going out of the middlebox, and vice versa. In other words, we do not have a bijection between

Incoming and Outgoing any more. For example, the proxy may merge multiple users’ requests

to the same website into a single request, change the HTTP fields in a request header (e.g., using

HTTP protocol 1.1 instead of 1.0), prefetch contents, and serve requests from cached responses for

popular websites. We discuss our solution for this case next.

3.6.3 Similarity-based correlation

To make this discussion concrete, we focus on the proxy scenario as it is the most challenging

case—it changes headers, modifies payloads, and does not maintain a one-to-one correspondence

between incoming and outgoing flows.

In this case, we observe that even though the traffic is not identical after it traverses the middle-

box, the payloads will still have a significant amount of partial overlap. For example, in the case

of web content delivered through the proxy to the user, even though the initial HTTP preambles

may differ between the incoming and outgoing flows, the web page content will still match. Thus,

we leverage Rabin fingerprints [58, 115] to calculate the (partial) similarities across flows. Be-

cause middleboxes are typically session-oriented and only keep a limited amount of state on each

incoming flow, we only need to correlate this flow to the outgoing flows that appear within a small

time window. To this end, we leverage the switches to forward packets that do not match the flow

table rules to the SDN controller for further inspection.

31

Proxy

Correlate
flows

Install
rules

Collect
pkts

Time window T

cnn.com
User 1

User 2 F1: F1’:

F2’:

p1*

p2*

q2 q1 p2 p1

p3 p2 p1 p1* p3*

q2 q1

p2*

Figure 3.5: Similarity based correlation of incoming and outgoing flows through a middlebox.

Given these insights, the SIMPLE DynHandler runs a similarity-based correlation algorithm in

three steps (Figure 3.5):

(1) Collect packets: When a new flow (e.g., F1) arrives from the Internet to the middlebox, the

switch sends the first P packets of the new flow to the controller (e.g., p1 and p2 in Figure 3.5).

Similarly, we collect the first P packets for all the flows going out of the middlebox within a time

window W (e.g., the packets p1 ∗ and p2 ∗ for flow F1 ′ and packets q1 and q2 for flow F2). The

controller reconstructs the payload stream from the P packets collected for each flow [111]. W

here controls the search scope of flows that may be correlated and P controls the bandwidth and

processing overhead of the controller.

(2) Calculate payload similarity: As discussed earlier, the middlebox may modify or reorder part

of the stream, and thus we cannot directly compare payloads. We compute a similarity score which

calculates the amount of overlap between every pair of flows. Because dividing the data stream

into fixed size chunks is not robust (e.g., a middlebox may shift the content by adding or removing

some data), we leverage Rabin fingerprints [58] to divide the stream into shift-tolerant chunks. Let

32

the number of chunks from the two payload streams with the same hash value be N common . Then,

the similarity score for the pair of streams is N common/min(N1,N2), where N1, N2 are the number

of chunks for the two streams.

(3) Identify the most similar flows: We identify the flow going out of the middlebox that has the

highest similarity score with the new incoming flow. If there are multiple outgoing flows with

the same highest similarity, we identify all these flows as correlated with the incoming flow. For

example in Figure 3.5, we may find that F1 has higher similarity with F1 ′ than F2 ′.

Policy-specific optimizations: The two parameters W and P together determine the bandwidth

and computation overhead of the controller to run the correlation step. We can tune the bandwidth

and processing overhead of the DynHandler based on the middlebox policies the operators want

to enforce. For instance, we may want to achieve higher accuracy even at the expense of higher

overhead for security-sensitive policies. This is because different policies may require different

granularities of correlation accuracy. Let us consider two specific policies in our proxy example:

(1) Stateful access control: The operators may only allow incoming traffic from websites for which

users have initiated the visits and (2) User-specific policies: The operators may want traffic to/from

a subset of hosts to go through a IDS after the proxy. In case (2), we need to correlate the incoming

flow with the actual user, while in case (1), we only need to correlate the incoming flow with the

flows to any of the users. As a result, we need lower correlation accuracy for case (1), and thus can

reduce both the time window W and the number of packets P sent to the controller.

3.7 Resource Management
The key challenge in the ResMgr is the need to account for both the middlebox constraints and the

flow table capacity of SDN switches. This makes the problem significantly more challenging com-

pared to prior optimization models for middlebox load balancing (e.g., [83, 124]). Unfortunately,

this optimization problem is NP-hard and is practically inefficient to solve for realistic scenarios

(§3.9.2). Due to space constraints, we do not show the formal hardness reduction; at a high-level

the intractability is due to the integer constraints necessary to model the switch table sizes.

33

3.7.1 Offline-Online Decomposition

We address this challenge by decomposing the optimization into two parts: (1) an offline stage

where we tackle the switch constraints and (2) an online linear program formulation that only

deals with load balancing (see Figure 3.6). The offline pruning stage only needs to run when the

network topology, switches, middlebox placements, or the network policy changes. The online

load balancing stage runs more frequently when traffic patterns change on shorter timescales.

The intuition here is that the physical topology and middlebox placement are unlikely to change

on short timescales. Based on this, we run an offline pruning stage where given a set of logical

chains, we select a subset of the available physical sequences that will not violate the switch ca-

pacity constraints. In other words, there is sufficient switch capacity to install forwarding rules to

route traffic through all of these sequences simultaneously. In this step, we ensure that we have

sufficient degrees of freedom; e.g., each PolicyChainc will have a guaranteed minimum number

of distinct physical sequences and that no middlebox becomes a hotspot.

Given this pruned set, we formulate the load balancing problem as a simpler linear program.

While we do not prove the optimality of our decomposition, we can intuitively reason about the

effectiveness—with high Cov we can achieve a close-to-optimal solution as it yields sufficient

flexibility for load balancing. Our results (§3.9.2) show that we find near-optimal solutions (≥

99% of optimal) for realistic network topologies and configurations.

3.7.2 Offline ILP-based pruning

Modeling switch resource usage: For each chain PolicyChainc, we do a brute-force enumeration

of all possible physical middlebox sequences implementing it. In Figure 3.1, the set of all middle-

box sequences for the chain Firewall-IDS is {FW1-IDS1, FW2-IDS1}. Let PhysSeqc denote the

set of all physical sequences for PolicyChainc; PhysSeqc,q denotes one instance from this set. We

use Mj ∈ PhysSeqc,q to denote that the middlebox is part of this physical sequence.

The main idea here is that in order to route traffic through this sequence, we need to install for-

warding rules on switches on that route. Let Routec,q denote the switch-level route for PhysSeqc,q

and let Rulesk ,c,q denote the number of rules that will be required on switch Sk to route traffic

34

1

Policy
Spec

Network
Topology

Enumerate
Physical
Sequences

Pruning
(Sec 5.2)

Traffic
Matrix

LP with
PrunedSet
(Sec 5.3)

Mbox
Capacity

Rule
Model

Offline Pruning Online Load
Balancing

PrunedSet
with
coverage
K

Figure 3.6: High-level overview of the offline-online decomposition in the ResMgr.

through Routec,q . Now, the value of the Rulesk ,c,q depends on the type of forwarding scheme we

use. To see why, let us revisit the data plane solutions from §3.5.

1. Hop-by-hop: Here, Rulesk ,c,q is simply the number of times a switch appears in the physical

sequence, i.e., each switch needs a forwarding rule corresponding to every incoming interface

on this path.

2. Tunnel-based: In this case, switches in the middle of a tunnel segment do not need rules spe-

cific to PhysSeqc,q ; they use the TunnelTable independent of PhysSeqc,q . On the other hand,

switches attached to a middlebox need two non-tunnel rules to forward traffic to and from that

middlebox.6 Consider the physical sequence S1-S2-FW1-S2-S4-S5-IDS1-S5-S6. Here, S2 and

S5 need two rules to steer traffic in/out of the middleboxes but the remaining switches do not

need new rules.

Integer linear program (ILP) Formulation: There are two natural requirements: (1) The switch

constraints should not be violated given the pruned set of sequences, and (2) Each logical chain

should have enough physical sequences assigned to it, so that we retain sufficient freedom to

6As a special case, the ingress and egress switches will also need a non-tunnel rule to map the 5-tuple to a tunnel.

35

Minimize MaxMboxOccurs , subject to (3.1)

∀c :
∑
q

dc,q ≥ Cov (3.2)

∀k :
∑

c,q s.t.
Sk∈PhysSeqc,q

Rulesk ,c,q × dc,q ≤ TCAM k (3.3)

∀j : MboxUsed j =
∑

c,q s.t.Mj∈PhysSeqc,q

dc,q (3.4)

∀j : MaxMboxOccurs ≥ MboxUsed j (3.5)
∀c, q : dc,q ∈ {0, 1} (3.6)

Figure 3.7: Integer Linear Program (ILP) formulation for pruning the set of physical se-
quences to guarantee coverage for each logical chain while respecting switch TCAM con-
straints.

achieve near-optimal load balancing subsequently.

We model this problem as an ILP shown in Figure 3.7. We use binary indicator variables

dc,q (Eq (3.6)) to denote if a particular physical sequence has been chosen. To ensure we have

enough freedom to distribute the load for each chain, we define a target coverage level Cov such

that each PolicyChainc will have at least Cov distinct PhysSeqc,q assigned to it in Eq (3.2). We

constrain the total switch capacity used in Eq (3.3) to be less than the available TCAM space.

Here, the number of rules depends on whether a given sequence is “active” or not. (Note that this

conservatively assumes that there will be some traffic routed through this sequence and thus we

will need a forwarding rule.)

At the same time, we want to make sure that no middlebox becomes a hotspot; i.e., many

sequences rely on a specific middlebox. Thus, we model the number of chosen sequences in

which a middlebox occurs and also the maximum occurrences across all middleboxes in Eq (3.4)

and Eq (3.5) respectively. Our objective is to minimize the value of MaxMboxOccurs to avoid

hotspots. Since we do not know the optimal value of Cov , we use binary search to identify the

largest feasible value for Cov .

36

By construction, formulating and solving this problem as an exact ILP guarantees that if there

is a feasible solution, then we will find it. While solving an ILP might take a long time for a large

network, we note that this is an infrequent operation that only needs to be run when the topology

changes. Furthermore, we find that the time for pruning is only ≈ 1800 s even for a 250-node

topology (§3.9.2).

3.7.3 Online load balancing with LP

Having selected a set of feasible sequences in the pruning stage, we formulate the middlebox load

balancing problem as a linear program shown in Figure 3.8. The main control variable here is

fc,q , the fraction of traffic for PolicyChainc that is assigned to each (pruned) physical sequence

PhysSeqc,q .

First, we need to ensure that all traffic on all chains is assigned to some physical sequence; i.e.,

these fractions add up to 1 for each c (Eq (3.8)). Next, we model the load on each middlebox in

terms of the total volume of traffic and the per-class footprint across all physical sequences it is a

part of (Eq (3.9)). Note that we only consider the physical sequences that are part of the pruned set

generated from the previous section. Also note that the f variables are continuous variables in [0, 1]

unlike the d variables which were binary variables. We pick a specific load balancing objective to

minimize the maximum middlebox load across the network (Eq (3.10)). That said, this framework

is general enough to accommodate other load balancing goals as well. The ResMgr solves the LP

to obtain the optimal fc,q values and outputs these to RuleGen.

3.7.4 Extensions

Handling node and link failures: While we expect the topology to be largely stable, we may

have transient node and link failures. In such cases, the pruned set may no longer satisfy the

coverage requirement for each PolicyChainc. Fortunately, we can address this by precomputing

pruned sequences for different switch, middlebox, and link failure scenarios.

Handling policy changes: We also expect middlebox policy changes to occur at relatively coarse

timescales. The flexibility that SIMPLE enables, however, may introduce dynamic policy invo-

cation scenarios; e.g., route through a packet scrubber if we observe high load on a web server.

37

Minimize MaxMboxLoad (3.7)

∀c :
∑

q:PhysSeqc,q∈Pruned

fc,q = 1 (3.8)

∀j : Load j =

∑
c,q s.t.Mj∈PhysSeqc,q
PhysSeqc,q∈Pruned

fc,q × Tc × Footprint c,j

ProcCapj

(3.9)

∀j : MaxMboxLoad ≥ Load j (3.10)
∀c, q : fc,q ∈ [0, 1] (3.11)

Figure 3.8: Linear Program (LP) formulation for balancing load across middleboxes given a
pruned set.

Given that there are only a finite number of middlebox types and a few practical combinations, we

can precompute pruned sets for dynamic policy scenarios as well.

Other traffic engineering goals: The load balancing LP can be extended to incorporate other

traffic engineering goals as well. For example, given the traffic assignments, we can model the

load on each link and constrain it such that no link is more than 30% congested. We do not show

these extensions due to space constraints.

3.8 Implementation
In this section, we describe our SIMPLE prototype (using POX [33]) following the structure in

Figure 3.3.

RuleGen: For each class c, RuleGen identifies the ingress-egress prefixes and partitions the

traffic into smaller sub-prefix pairs in the ratio of the fc,q values [135]. It initially assumes that

the traffic is split uniformly across sub-prefixes; it uses the rule match counts from the switches to

rebalance the load if the traffic is skewed. To generate the rules, it makes two decisions. First, it

chooses a SwitchTunnel or hop-by-hop scheme based on network size. Second, for each sequence

PhysSeqc,q , it checks for loops to add ProcState tags. We currently use VLAN or ToS fields.

While we describe our design in the context of uni-directional flows for clarity, RuleGen ensures

correctness for stateful middleboxes by setting up forwarding rules for the reverse path as well.

38

Rule checking: We implement verification scripts that take the rules generated by the RuleGen

module to check for two properties: (1) Every packet that requires PolicyChain i goes through

some sequence that implements this chain; and (2) A packet should not traverse a middlebox if the

policy does not mandate it. For middleboxes that do not change packet header fields, our data plane

mapping guarantees the above two properties by construction. When middleboxes change packet

header fields, the controller can verify these properties by combining the header space analysis [93]

and the similarity-based correlation in the DynHandler. First, we understand how an incoming

flow F1 to a middlebox M1 maps to outgoing flow(s) F ∗1 . Next, we leverage the header space

analysis of rules at switches to understand the reachability of flows F ∗1 between two middleboxes

along the physical chain (say, between M1 and M2). By iterating across all the middleboxes, we

can understand the end-to-end reachability for different flows and verify if it matches operator’s

policies.

ResMgr: The ResMgr uses CPLEX for LP-based load balancing and the ILP-based pruning step.

We currently support all single link, switch, and middlebox failure scenarios. We also implement

an optimization to reuse the previously computed solution to bootstrap the solver instead of starting

from scratch.

DynHandler: We use existing SDN capabilities for the DynHandler. The SIMPLE controller

installs rules at switches connecting to the middleboxes to retrieve the first few packets for each

new flow. We use a custom implementation of the Rabin fingerprinting algorithm configured with

an expected chunk size of 16 bits. (We found that this offers the best tradeoff between overhead

and accuracy.) The DynHandler runs the correlation algorithm as described in §3.6 and provides

the mappings to the RuleGen. The new inferred rules that account for the packet transformations

are more specific than proactively installed rules (which use prefix aggregation). Note that these

rules are on-demand and transient (i.e., they expire) in that they only need to last for the duration

of a flow. We currently assume there is sufficient space to hold these dynamic rules.7

7For example, we can run the optimization step with an input parameter TCAM ′
k that is a small constant less than

the actual TCAM k to accommodate these dynamic rules.

39

3.9 Evaluation
We use a combination of emulation-based evaluation in Emulab and Mininet, and trace-driven

simulations. We do so to progressively increase the scale of our experiments to larger topologies

given the resource constraints (e.g., node availability, VM scalability) that arises in each setup.

Due to the lack of publicly available information on network topologies and middlebox-related

policy, we use network topologies from past work [131, 124] as starting points to create augmented

topologies with different middlebox placements. We assume a gravity-model traffic matrix for the

topologies except Figure 3.1. We use OpenvSwitch (v 1.7.1) [27] as the SDN switch and use

custom Click modules to act as middleboxes [95].

System Benchmarks

Setup: In each topology, every switch has a “host” connected to it and every switch has at most

one middlebox. Every pair of hosts has a policy chain of three (distinct) middleboxes. We use

iperf running on the hosts to emulate different traffic matrices and use different port number/host

addresses to distinguish traffic across chains. Each link has an emulated bandwidth of 100 Mbps.

Platform, Config Time to Install
Rules(s)

Overhead (B) Max MB Load
(KB/s)

Max Link Utiliza-
tion (KB/s)

Emulab, SIMPLE 0.041 5112 25.2 25.2
Mininet, SIMPLE 0.039 5112 25.2 25.2

Table 3.2: End-to-end metrics for the topology in Figure 3.1 on Emulab and Mininet. Having
confirmed that the results are similar, we use Mininet for larger-scale experiments.

Topology #Switches, #Hosts,
#Mboxes

#Rules Time (s) Overhead (KB)

Figure1 6, 2, 4 36 0.04 5
Internet2 11, 11, 10 1699 0.09 180
Geant 22, 20, 20 6964 0.19 820
Enterprise 23, 23, 20 6689 0.31 710

Table 3.3: Time and control traffic overhead to install forwarding rules in switches.

40

We focus on three key metrics here: the time to install rules, the total communication over-

head at the controller, and the maximum load on any middlebox or link in the network relative

to the optimal solution. We begin by running the topology from Figure 3.1 on different physical

machines on the Emulab testbed. We run the same setup on Mininet and check that the results are

quantitatively consistent between the two setups in Table 3.2. We also check on a per-node and

per-link basis that the loads observed are consistent between the two setups (not shown). Having

confirmed this, we run larger topologies such as Internet2, Geant, and Enterprise using Mininet.

Time to install rules: Table 3.3 shows the time taken by SIMPLE to proactively install the

forwarding rules for the four topologies in Mininet. The time to install is around 300 ms for the

23-node topology. The main bottleneck here is that the controller sends the rule tables to each

switch in sequence. We can reduce this to 20 ms overall with multiple parallel connections. These

are consistent with reported numbers in the literature [53, 122].

Controller’s communication overhead: The table also shows the controller’s communication

overhead in terms of Kilobytes of control traffic to/from the controller to install rules. Note that

there is no other control traffic (except for the DynHandler inference) during normal operation.

These numbers are consistent with the total number of rules that we need to install.

3.9.1 Benefits of SIMPLE

Next, we use Mininet-based emulations with larger topologies to highlight the benefits that SIM-

PLE enables for middlebox deployments. As a point of comparison, we use a hypothetical Optimal

system that uses the same logic as SIMPLE. The main difference is that instead of the optimiza-

tion, it uses an exact ILP to solve a joint optimization with both switch and middlebox constraints

without the pruning step (not shown).

Flexiblity in middlebox placement: We compare SIMPLE with today’s Ingress-based middle-

box deployments, where for each ingress-egress pair, the middleboxes closest to the ingress are

selected. Here, we assume that there are two types of middleboxes Firewall and IDS and that each

switch is attached to one instance of a Firewall and an IDS. As a point of reference, we consider a

emulated CoMb setup with “consolidated” middleboxes [124]. Specifically, we emulate a unified

41

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
id

dl
eb

ox
 L

oa
d

(K
B

/s
)

Middlebox Id

SIMPLE
Ingress

Figure 3.9: Load on all middleboxes for Internet2 topology.

Firewall+IDS middlebox with 2× capacity.

First, we look at the Internet2 topology and look at the per-middlebox loads in Figure 3.9. We

see that SIMPLE distributes the load more evenly and can reduce the maximum load by almost 5×.

Figure 3.10 shows the (normalized) maximum load across middleboxes with different configura-

tions. First, SIMPLE is 3–6× better than today’s ad hoc Ingress setup. Second, the performance

gap between CoMb and SIMPLE is negligible—SIMPLE can achieve the same load balancing

benefits as CoMb with unmodified middlebox deployments. It is worth noting that CoMb offers

other benefits via module reuse and hardware multiplexing that SIMPLE does not seek to provide.

The result here shows that the spatial distribution capabilities of SIMPLE and CoMb are similar.

Reacting to middlebox failure and traffic overload: We consider two dynamic scenarios in

the Internet2 topology: (1) one of the middleboxes fails and (2) there is traffic overload on some

of the chains. In both cases, we need to rebalance the load and we are interested in the time to

reconfigure the network. Figure 3.11 shows a breakdown of the time it takes to rerun the SIMPLE

LP,8 generate new rules, and install them. We see that the overall time to react is low (<150 ms)

and the overhead of the SIMPLE-specific logic is negligible compared to the time to install rules.

8We precompute pruned sets for single node failure scenarios.

42

 0

 1

 2

 3

 4

 5

 6

 7

 8

Internet2 Geant EnterpriseM
ax

im
um

 M
id

dl
eb

ox
 L

oa
d

(/o
pt

im
al

)

Topology

SIMPLE
Ingress

CoMb

Figure 3.10: Maximum middlebox load comparison across topologies with SIMPLE, CoMb,
today’s Ingress-based deployments relative to the optimal ILP-based configuration.

Need for SIMPLE dataplane: One natural question is whether the ProcState tags are actually

being used. Figure 3.12 shows that a non-trivial fraction of sequences selected by Optimal and

SIMPLE do require ProcState tags. While one could argue that more careful placement could

potentially eliminate the need for ProcState tags, we believe that we should not place the onus of

such manual planning on operators. Moreover, under failure or overload scenarios, it might be

necessary to use sequences with loops for correct policy traversal even with planned placements.

3.9.2 Scalability and optimality

Next, we focus on the scalability and optimality of the ResMgr using simulations on larger topolo-

gies. For brevity, we only show results assuming that each policy chain is of length 3. We vary two

key parameters: (1) the available TCAM size in the switches and (2) the number of policy chains

per ingress-egress pair.

Compute Time: Table 3.4 compares the time to generate the configurations along two dimen-

sions: the type of optimization (i.e., Optimal vs. SIMPLE) and the forwarding scheme (i.e., with

or without SwitchTunnels). SIMPLE lowers rule generation time by four orders of magnitude for

43

 0

 0.05

 0.1

 0.15

 0.2

Failure Overload

R
es

po
ns

e
Ti

m
e

(s
)

Rule Update
Optimization

Rule Generation

Figure 3.11: Response time in the case of a middlebox failure and traffic overload.

larger topologies. As a point to evaluate the scalability to very large topologies, we consider an

augmented AS3356 graph (labeled as AS3356-aug) where we add 4 more “access” switches to

every switch from the PoP-level topology. Even for this case, SIMPLE only takes≈1 second. This

is well within the typical timescales of traffic engineering decisions [69]. (The Optimal columns

are empty because we gave up after a day.)

Optimality gap: We evaluate the optimality gap for all topologies and observe that across diverse

configurations of switch capacity and the number of policy chains, SIMPLE is very close (99%) to

the optimal in terms of the middlebox load (not shown).

Benefit of SwitchTunnels: Figure 3.13 shows that with SwitchTunnels, the coverage for each

logical chain increases substantially. A coverage of 0 implies that there was no feasible solution.

For some configurations, we see that we find feasible solutions only with SwitchTunnels (e.g.,

AS1221 and AS3356). In addition, we observe a gain of up to 3× with SwitchTunnels. This

confirms the value of SwitchTunnels to better utilize the available switch capacity and to provide

more degrees of freedom for load balancing.

Scalability of pruning: While pruning does involve solving a large ILP, using CPLEX it only

takes ≈800 s and ≈1800 s to compute the pruned set for the two largest topologies AS3356 and

44

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Internet2 Geant Enterprise

Fr
ac

tio
n

of
 S

eq
. w

 L
oo

ps

Topology

Optimal
SIMPLE

Figure 3.12: Fraction of sequences with loops.

AS3356-aug respectively. Since this is an offline (and infrequent) step, this overhead is quite

acceptable. As we discussed, we reduce this by bootstrapping the solver to use solutions from

previous iterations. Using this optimization reduces the pruning time substantially from 1800 s to

110 s for AS3356-aug.

3.9.3 Accuracy of the DynHandler

Proxies create the most number of challenges in terms of dynamic behaviors—they create/multiplex

sessions and change packet contents. Thus, we focus on the accuracy of the DynHandler in infer-

ring correlations between responses from the web servers to a Squid proxy and from the Squid

instance to the individual users. To make the evaluation concrete, we consider two types of poli-

cies: user-specific policies (i.e., identify the specific user responsible for an incoming connection);

and stateful policies (i.e., check if there is some user who initiated the traffic).

We introduce two error metrics: (1) Missed policy rate: The fraction of Internet→Squid ses-

sions that we should apply a policy but we do not. In the stateful policy, it means that the session

is initiated by a user but we cannot find any user to match the session. The user-specific policy is

more complex because the proxy can multiplex sessions and thus an Internet→Squid session can

45

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1000 2000 3000 4000 5000 6000

M
in

 n
o
.
o
f
S

e
q
u
e
n
c
e
s
 P

e
r

P
o
lic

y
 C

h
a
in

Switch Capacity (#Rules)

AS3257
AS3257 w/ tunnels

AS1221
AS1221 w/ tunnels

AS3356
AS3356 w/ tunnels

Figure 3.13: Coverage vs. available switch capacity for selected topologies. We use 3 policy
chains per ingress-egress pair.

map to multiple users. Therefore, we define it as missed policy when we fail to find all the users

that match a session. (2) False policy rate: The fraction of Internet→Squid sessions that we should

not apply a policy but we incorrectly do. In the user-specific policy, it means that we identify the

wrong users that match a session (although we may identify some right users at the same time).

We consider 20 simultaneous user web browsing sessions to access popular top 100 US web-

sites [39]. To accurately emulate web page effects (e.g., Javascript, multiple connections etc), we

use Chrome configured with the Squid as an explicit proxy. In our experiment, we observe and

collect 394 sessions from Internet→Squid and 1328 sessions Squid→Users.

Obtaining the ground truth of mappings is itself a challenging problem given the complexity of

Squid actions. This becomes especially hard as many websites use third-party content (e.g., ana-

lytics javascripts or Facebook widgets). As a heuristic approximation, we instrument each browser

instance with unique (but fake) UserAgent strings to allow us to correlate the sessions. Unfortu-

nately, even this turns out to be insufficient because Squid may request the website for multiple

users and may prefetch a website and cache the content to serve future users. As such, we view the

46

Topology #Switches Time(s)
Opt Opt w/ SIMPLE SIMPLE

tunnel w/ tunnel
Internet2 11 0.3 0.3 0.01 0.01
Geant 22 2.29 1.99 0.09 0.14
Enterprise 23 1.76 2.46 0.01 0.01
AS1221 44 23394 91.7 0.04 0.29
AS1239 52 722.7 218.1 0.06 0.2
AS3356 63 122246 3239 0.22 0.48
AS3356-aug 252 - - 0.92 1.22

Table 3.4: Time to generate load balanced configurations subject to switch constraints.

error rates we report as conservative upperbounds on the true error rates of the DynHandler since

our ground truth is itself incomplete.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

or
 R

at
e

Time Window (sec)

False policy rate, User
Missed policy rate, User

Missed policy rate, Stateful

Figure 3.14: Accuracy of the SIMPLE DynHandler for two types of proxy-specific policies.

Figure 3.14 shows the error metrics for user-specific and stateful policies as a function of the

correlation window and using the first 5 packets. (The false policy rates for stateful policies are

zero and thus we do not show it.) We see that for the user-specific policy, at 500 ms the false policy

rate is 11.4% and the missed policy rate is 7.6%. If we only need to realize the stateful policy,

then we can use a smaller time window (e.g., W=200 ms) to achieve similar error rate. In both

47

cases, the bandwidth overhead from the switch to the controller is small; with a window of 500 ms

the overhead is 65KB on average (not shown). The processing overhead at the controller is also

relatively small, taking 150 ms for 1000 correlations.

3.10 Summary
Middleboxes represent, at the same time, an opportunity, a necessity, and a challenge for SDN.

They are an opportunity for SDN to demonstrate a practical use-case for L4–L7 functions that the

market views as important; they are a necessity given the industry concerns surrounding the ability

of SDN to integrate with existing network infrastructure; and they are a challenge as they introduce

aspects that fall outside the scope of traditional L2/L3 functions that motivated SDN.

This work was driven by the goal of realizing the benefits of SDN-style control for middlebox-

specific traffic steering without mandating any placement or implementation constraints on middle-

boxes and without changing current SDN standards. To this end, we address key system design and

algorithmic challenges that stem from the new requirements that middleboxes imposed—efficient

data plane support for composition, unified switch and middlebox resource management, and au-

tomatically dealing with dynamic packet modifications. While our goal is admittedly more modest

compared to ongoing and parallel work developing new visions for SDN or middleboxes, it is

arguably more timely, practical, and immediately deployable.

48

Chapter 4

A Framework to Evaluate the NFV Design

Space

Networks are today populated with a large and increasing variety of proprietary hardware appli-

ances. These include middlebox applications such as firewalls, intrusion detection systems, appli-

cation gateways, transcoders. Networks today incur high capital costs in deploying a broad range

of these expensive and inflexible hardware appliances. In addition, both volume and diversity

of traffic is increasing sharply. Networks also need to host a variety of new in-network services

to satisfy customer demands. This has motivated the case for network functions virtualization

(NFV) [25]. The motivation in NFV is accelerating the pace of innovation by reducing the cycles

to deploy new equipment, economies of scale provided by commodity hardware, resource multi-

plexing via virtualization, dynamic provisioning and elastic scaling, and the ability to experiment

with new services without significant upfront costs [25](see also Figure 4.1). The high-level idea

is that the various network functions (NFs) can be replaced by virtualized or software applications

on commodity hardware platforms.

As highlighted in an early whitepaper [25], this vision builds upon, and is complementary,

to existing work in the software-defined networking (SDN). The main differences are that: (a)

it broadens the scope of the data plane functions beyond OpenFlow-enabled switches; and (b) it

focuses more on the carriers and the services they would like to offer to their customers.

49

Today: Fixed function, proprietary hardware, at “chokepoints”

SGW

VVVV

PGW
IDS

NFV: Commodity hardware, virtualized, flexible

VVVV

“Cloud”

“Virtual appliances”

IMS

VVVV

Firewall

NAT

Figure 4.1: The current fixed and proprietary implementation of network functions vs the
NFV vision of elastic, cost effective, mix-match and potentially hybrid deployment of network
functions.

While the above long-term vision is appealing, it also leaves open several aspects of the design

space that operators would need to address in practice w.r.t.:

• the type of platforms (e.g., pure cloud, or fixed-but-flexible hardware infrastructure);

• the type of provisioning (i.e., where to place new flexible hardware or datacenters); and

• demand distribution (i.e., how to route user demands to different function instances to meet

logical policy requirements).

Given this broad design space, there are several possible NFV instantiations by combining

choices across the individual platform, provisioning, and distribution dimensions. For instance,

we can imagine a consolidated deployment where the network provider has a small number of

datacenters at which the network functions (NFs) can be run in a dynamic, elastic manner. At

the other extreme, we can imagine current deployments with specialized NF hardware. We can

also envision “nano-datacenter” like models with flexible NF hardware distributed throughout the

network [133]. These deployments will naturally have different provisioning, operational, and

performance characteristics.

50

Given this diverse and broad design space, network operators will need systematic decision

systems to help them evaluate the cost-benefit tradeoffs of different points in the design space.

We highlight some motivating scenarios in §4.1. We use cellular network as illustrative examples.

Furthermore, even before embarking on rearchitecting their network infrastructure [8], operators

need to first quantify the potential CAPEX and OPEX benefits that specific NFV strategies might

offer.

In this work attempt to shed light on these issues. To this end, we cast the NFV deployment

problem as a systematic optimization framework (§4.3). Our framework is general enough to

capture different points in the design space and also consider hybrid NFV different deployments

(e.g., some combination of pure cloud and fixed hardware). In order to estimate the potential

benefits of different NFV strategies, the operators provide as input historical traffic demands and

policy based service chaining requirements for different traffic patterns (§4.2). Our framework

will then output guidelines on the optimal provisioning strategy and the cost benefits it offers.

Operators can use such a framework for “what-if” analysis to evaluate the cost-benefit tradeoffs of

different deployment strategies.

We use cellular networks as a use case study to illustrate some of our findings. As illustrative

examples we show how operators can use our framework to evaluate the benefits of different NFV

designs (§4.4). For instance, we observe that using flexible hardware minimizes the deployment

cost in many scenarios. We also conduct a sensitivity analysis to evaluate the effects of changing

different input parameters on the optimal deployment strategy.

4.1 Motivation
We begin by outlining the NFV design space and then use motivating scenarios to highlight how

the optimal NFV strategy depends on the workload and cost factors.

4.1.1 Design Space of NFV

We identify three key dimensions for the design space:

• Platform type: Network functions (NFs) can be realized in many ways. Today, each NF is a

dedicated appliance (Single) providing a specialized capability. Going forward, one can imagine

51

Ingress

Egress 75	
 ms	
 50	
 ms	

20	
 ms	

20	
 ms	

Firewall PGW IMS

Video:	
 SGWàPGWàFirewall	

Demand=	
 1,1,10,1	

Delay	
 Constraint:	
 	
 <	
 150	
 ms	
 	

Voice:	
 SGWàPGWàIMS	

Demand	
 =	
 5,5,10,5	

Delay	
 Constraint:	
 	
 <	
 100	
 ms	

“Cloud”

“Dedicated”

“FlexHW”

SGW

VVVV
VVVV

VVVV

VVVV

Figure 4.2: Example to motivate the different design tradeoffs in provisioning.

a flexible commodity hardware (FlexHW) that can be repurposed to run different types of NFs on

demand [101, 124, 50]. Going one step further, we can imagine that the functions are themselves

outsourced to a Cloud service that can elastically scale resources for different NFs.1

• Provisioning and placement: A key operational decision is deciding how and where to provision

NF platforms. At one extreme, the provider can choose a single Cloud location. At the other

extreme we can envision a nano-datacenter model where every cell base station has an associated

mini-Cloud (e.g., [133]). We can also consider simple hybrids where each location has pre-

provisioned Single and FlexHW boxes and we have a few Cloud locations.

• Scaling and distribution strategies: Given a specific provisioning/placement strategy, another

aspect of the design space is how the available hardware resources (possibly elastic) are used to

serve the (varying) offered load. Again, we can envision several possible strategies here: optimal

load balancing, or routing to nearest available instance of a specific NF, or offloading to the cloud

beyond a threshold value of load.

52

Ingress

Egress1

10	
 ms	

10	
 ms	

50	
 ms	
 20	
 ms	

Voice:	
 SGWàPGWàIMS	

Delay	
 Constraint:	
 	
 <	
 100	
 ms	
 	

VVVV

PGWext

100	
 ms	
 50	
 ms	

Location1

Location2
Roaming:	
 SGW-­‐>PGWext	

Delay	
 Constraint:	
 	
 <	
 30	
 ms	
 	

Figure 4.3: Example to illustrate the different design tradeoffs in functional placement and
routing.

4.1.2 Motivating Scenarios

We use the simple scenarios in Figure 4.2 and Figure 4.3 to illustrate how different points in

the NFV design space may be optimal depending on the performance constraints, traffic patterns,

policy chains and CAPEX and OPEX.

Optimizing provisioning cost: Consider the single traffic class, Video, with traffic entering at

“Ingress” and exiting at “Egress” with the service chain SGW-PGW-FIREWALL. Suppose the

traffic volume for this traffic class across four time epochs is {1,1,10,1}. Assume that the (fixed)

cost per unit capacity for fixed in-network provisioning is 20. On the other hand, if we use Cloud

to dynamically provision the needed resource, assume the amortized cost per unit capacity provi-

sioned is 10. With fixed pre-provisioning we need to allocate for peak traffic and thus a capacity

of 10 units costing 200. But when outsourcing the processing to the cloud, the cost is only 130.

Thus, we decide to provision the entire service chain for Video in the Cloud.

Performance constraint: Now, assume that we add another traffic class, Voice, with the service
1Industry reports use the terms FlexHW and Cloud rather loosely. They are however quite distinct in their cost-

performance tradeoffs and thus one of our goals in formalizing the NFV problem space is to crystallize these loose
characterizations of NFV instantiations.

53

chain SGW-PGW-IMS. Assume that Voice has a performance constraint that the average latency

should be less than 100 ms. Then, we cannot use the Cloud for processing traffic belonging to

this class. Assume also that the traffic volume for Voice across the four time epochs is {5,5,10,5}.

Now, a hybrid solution where we provision a capacity of 10 units on fixed hardware and 10 units

on the Cloud dynamically only in epoch 3 will be the most cost effective. This solution has cost

300, while provisioning entirely on the Cloud costs 380 (if there are no performance constraints)

and provisioning entirely on a fixed hardware costs 400.

Functional placement and routing: To illustrate placement/routing issues consider the network

in Figure 4.3. We have two traffic classes Roaming and Voice. The traffic belonging to Roaming

requires processing SGW-PGWext, where PGWext is the PGW of the external network to which

the traffic belongs. On the other hand, Voice needs processing using the service chain SGW-PGW-

IMS. Assume that the carrier normally prefers to provision all resources in “Location 1” due to

cost or management issues. However, when the Roaming traffic enters the network, it must move

the related SGW processing to “Location 2” as going via “Location 1” violates the delay constraint

for Roaming. Assume also after a network upgrade the delay on the Location 1-PGWext link falls

to 5 ms. Then, the SGW processing can move back to Location 1. Moving the SGW processing

back and forth depending on traffic and network changes could be facilitated via use of FlexHW.

The above scenarios highlights the tradeoffs and considerations operators need to make. It

is important for operators to be able to analyze these tradeoffs before rolling out new NFV de-

ployments. However, given the size and complexity of modern cellular deployments, it may be

impractical for operators to manually evaluate the entire space of design options. Thus, our goal

is to develop a decision support framework that allows cellular operators to systematically ex-

plore different design options before deploying new hardware. For instance, they would like to

specify policy requirements (e.g., service chains for different user classes) and performance con-

straints (e.g., load, congestion, or latency) and use such a decision support system to choose the

right mix of platform, provisioning, and distribution strategies from the broader NFV design space

highlighted above.

54

4.2 Inputs and Requirements
We begin by describing the requirements and inputs that operators need to provide to our frame-

work. This data can be obtained from their network logs, policy configurations, and vendor-specific

benchmarks.

Traffic patterns: Cellular traffic is divided into different logical classes based on different

user/customer demands. For example, the classes may capture regular users vs. roaming cus-

tomers vs. machine-to-machine (M2M) traffic, with different requirements. We assume that the

operator has historical demand patterns, with |Tc,e | representing the volume of traffic for class c

observed in epoch e.

Processing requirements: Each class c is associated with a policy service chain or a sequence

of network functions (NF) that process traffic in c. Let SC c = NF1 ≺ NF2 ≺ . . . denote the

service chain for class c. These NFs could span cellular-, IP-, and application-level processing.

Let FP c,m,t denote the processing cost (e.g., CPU usage) per-packet in class c for running a NF

NFm on a specific type of NF platform t . For example, the per-packet CPU usage may differ

across virtualized vs. non-virtualized deployments.

Performance constraints: Performance constraints specify that traffic in class c should have

some pre-specified performance PC c [18]. As a simple starting point, we consider the end-to-end

latency for each class.

Cost factors: The provisioning costs associated with rolling out the NF platforms may depend

on the platform t (i.e., FlexHW or Cloud) and the location l (e.g., power, cooling costs). We

capture these costs as follows. First, we assume that there is a fixed cost of deploying an instance

of type t at location l ,Fixedl ,t ; e.g., this captures administrative and labor costs in rolling out new

deployments and the operational costs. For deployments like Cloud this may be zero as they may

use a pay-as-you-go model. Second, there is a hardware cost, Varl ,t , depending on the amount of

resource provisioned for this instance; e.g., based on the number of CPU cores or memory on the

hardware. Third, we have a elastic factor depending on the actual resources used, Elasl ,t ; e.g., this

can be linear in the amount of resources used for Cloud and zero for the others.

55

4.3 Provisioning Model
In this section, we describe a formal optimization framework that captures the cost of provisioning

the network to meet the time-varying processing and performance requirements, given the policy

constraints, platform costs, traffic demands, and network specifications. Network operators can use

this framework to (a) systematically quantify the potential benefits of NFV in their deployments

and (b) estimate the relative benefits offered by different points in the NFV design space.

4.3.1 Control Variables

As a starting point, we present a model where the operator is considering a set of possible platform

instances p to deploy. As discussed in the previous section, each p can be instantiated in many

ways (e.g., Single vs. Cloud) with varying cost-performance characteristics. We use t(p) and l (p)

to denote the type (e.g., Cloud or Single) and location of a specific NF platform instance p. Now,

there are two main types of control variables that we need to capture:

• Provisioning: The first decision is a binary decision if we want to deploy an instance at a specific

location. This is captured by a {0,1} variable Activep. If we choose to deploy, then we also need

to decide how much hardware resource to provision, captured by the variable Resp. For some

platform types, we also have an elastic option (e.g., FlexHW or Cloud), in this case we also use

dynamic provisioning decision variables, Resp,e .

• Load distribution: Given a provisioning strategy, we need to meet the processing requirements

and distribute the load across the various p instances. In general, each class may have different

chains and the required NFs can be instantiated at any set of instances capable of running these

NFs. We can also flexibly route traffic to balance the network and platform loads [116]. To

capture these considerations, we introduce flow variables, fc,e,pm ,p′
m′ , that represents the fraction

of traffic in class c in epoch e, routed from a NF instance pm to another NF instance p′m′ (similar

to Figure 4.4). Note that we can flexibly capture different routing strategies by scoping these

flow distribution variables differently. (Some of these variables will not appear if m or n do not

appear in SC c.)

56

Objective function: Our objective is to minimize the total provisioning cost. This has three com-

ponents: (1) fixed costs of instantiating platforms; (2) hardware costs for each “active” platform;

and (3) the dynamically provisioned compute resources per epoch. Eq (4.1) shows this total cost

in terms of the Activep, Resp, and Resp,e control variables:

∑
p

Fixedl(p),t(p) × Activep + Varl(p),t(p) ×Resp+

∑
p,e

Elasl(p),t(p) ×Resp,e (4.1)

As discussed earlier, these factors depend on the type of platform; e.g., Cloud may have

Fixedl(p),t(p) = Varl(p),t(p) = 0, but have Elasl(p),t(p) > 0, while other models have Elasl(p),t(p) =

0.

4.3.2 Formulation

Next, we describe how we capture the various processing and provisioning constraints.

Resources provisioned: First, we need to capture the amount of resources provisioned. We begin

by capturing the total compute load on a NF instance pm on the platform p during epoch e in

Eq (4.2):

∀e, p,m : LoadPerNF pm ,e =∑
c

∑
m ′ s.t m ′∈SC c

and m ′∈p′

FP c,m,t × fc,e,pm ,p′
m′ × |Tc,e | (4.2)

Then, in Eq (4.3), the total load on a platform p in an epoch e is simply the sum over all NF

functions that p can support:

∀e, p : Loadp,e =
∑
m∈p

LoadPerNF pm ,e (4.3)

Now, our provisioning strategy must ensure that each NF platform has sufficient resources to

cover the processing requirements per epoch and across all epochs. Thus, we have Eq (4.4) and

57

Eq (4.5):

∀e, p : Loadp,e = Resp,e (4.4)

∀e, p : Loadp,e ≤ Resp (4.5)

In addition, and depending on other capacity constraints (e.g., space, power, or available hard-

ware configurations), we may also have upper bounds on the total resources per-platform at each

location:

∀p : Resp ≤ Capp (4.6)

Fixed costs: Next, we need to model the fixed costs associated with the above provisioning

strategy. These fixed costs are incurred if the platform is being used in at least one of the epochs

with non-zero resources. Thus, we have the following relationship between the binary Activep

variables and the Resp variables:

∀p : Resp ≤ Capp × Activep (4.7)

Modeling traffic distribution: The above equations model the provisioning aspects, but do not

capture how the traffic processing is distributed across the platforms. In other words, we need to

model how the fc,e,pm ,p′
m′ variables are quantified. There are two key things we need to capture

here. First, we need to model the coverage constraint that for each c, the desired service chain

SC c has been assigned to some set of platform instances. Second, we also need to ensure that the

service chain is correctly applied in the intended sequence. Let SC c[j] denote the jth NF in the

chain SC c. Note that each SC c[j] may be realized using several candidate platform instances.

We model this using two sets of constraints. First, in Eq (4.8) we ensure that the entire fraction

of traffic is routed to the first hops.

∀c, e :
∑

pm:m=SC c[1]

fc,e,pm = 1 (4.8)

58

Video:	

SGW	
 	

à PGW	

à Firewall	

100	
 units	

“SGW” “PGW” “Firewall”

f1

f2

f3 f4

f5
f3	
 =	
 f4+f5	

f1+f2+f3	
 =	
 	

100	

f6

f7

f8

f9

f4+f7	
 =	
 	

f8+f9	

f10

f12

f11
f10+f11+f12	
 =	
 	

100	

VVVV

VVVV

VVVV VVVV VVVV

VVVV VVVV

Figure 4.4: Example to illustrate how flow conservation is modeled.

Second, we model flow conservation constraints that ensures that the traffic incoming into

one “stage” in the service chain is routed to the next “stage” in the desired sequence(e.g, see

Figure 4.4).2 Then, we have:

∀pm, c, e s.t m = SC c[j] & j > 1 :∑
p′
m′ :m

′=SC c[j−1]

fc,e,pm ,p′
m′ =

∑
p′
m′=SC c[j+1]

fc,e,pm ,p′
m′ (4.9)

Performance bounds: Now, given the flow distribution variables fc,e,pm ,p′
m′ , we can also model

the network-level performance that traffic for each class perceives. As a simple starting point, we

model the average latency and ensure that this is less the given threshold PC c . If Latpm ,p′
m′ is the

typical network latency on the path from pm to p′m ′ , then we can capture the performance bound as

shown below:

∀c, e :

|SC c|−1∑
j=1

∑
pm ,p′

m′ s.t
m=SC c[j]

m ′=SC c[j+1]

fc,e,pm ,p′
m′ × Latpm ,p′

m′ ≤ PC c (4.10)

2In this work, we are not we are not mandating a specific data plane implementation. We could use wildcard
rules [145] or tunnels [116].

59

4.4 Example Use Cases
Next, we highlight some illustrative use cases to validate how operators can use our framework to

evaluate NFV design tradeoffs.

Setup: Due to lack of publicly available information on cellular network topologies, we use

the PoP-level Internet2/Abilene topology.3 We currently use four traffic classes, each with three

different NFs. We assume there are a total of 8 different NFs [18]. We use a gravity model based

on city populations as a baseline traffic demand and simple randomized variability models. We

model the different provisioning problems as an integer linear program (ILP) and use CPLEX to

solve the problem.

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06

Low High

To
ta

l P
ro

vi
si

on
in

g
C

os
t

Traffic Variability

FlexHW
Single

Public Cloud
Hybrid

Figure 4.5: Total provisioning cost for different NFV models.

We instantiate the different platform types as follows:

• FlexHW assumes a commodity server is being used with standard virtualization technologies to

run different functions on a single platform;

3We have also experimented with other ISP topologies from RocketFuel.

60

 0

 50000

 100000

 150000

 200000

0.01X 0.1X 1X

P
ro

vi
si

on
in

g
C

os
t

Cloud Cost

FlexHW
Single

Public Cloud

Figure 4.6: Impact on total provisioning cost wit varying cloud cost.

• Single assumes specialized hardware for running single functions;

• Public Cloud outsource the processing to a public cloud provider; and

• A Hybrid deployment model which allows full flexibility to use any combination of the above

three deployment models.

Again, given the absence of accurate cost numbers for NFV platforms, we obtain ballpark

numbers for the different costs by the following strategy. Since the different platforms have fun-

damentally different cost/service models, we normalize the costs by computing the dollar cost in

provisioning/running the platform for unit traffic; e.g., dollars-per-Mbps. First, for Public Cloud,

we consider bandwidth costs in Amazon EC24, and we compute the normalized cost assuming a

monthly transfer volume of 500 TB. Second, for the FlexHW hardware we assume a typical com-

modity server of price $2,500 as representative for FlexHW. Third, for the Single devices, we use

numbers from published work and assume a specialized device at 20 Gbps capacity costs roughly

$80,000 [110] as representative for Single devices. Finally, for the setup and operational cost, we

4The CPU, memory costs were much lower than bandwidth costs

61

 0

 500000

 1e+06

 1.5e+06

 2e+06

1X 10X 50X 100X

P
ro

vi
si

on
in

g
C

os
t

Setup + OPEX

FlexHW
Single

Public Cloud

Figure 4.7: Impact on total provisioning cost with varying setup+OPEX cost.

use a common industry rule of thumb and model it to be twice the equipment cost [2].

Comparing different design options: To illustrate this point, Figure 4.5 shows that with the given

costs a deployment strategy using only FlexHW has the same provisioning cost as the Hybrid when

the traffic variability is low and very close to Hybrid when the variability is high.

Next, we show the impact of varying different input parameters like cloud cost, setup and op-

erational cost, and performance of each platform type. We consider a Hybrid deployment model

for these experiments with a random traffic matrix. Figure 4.6 shows that as the Cloud cost de-

creases, Cloud becomes a more viable option for processing of network functions, with a Cloud

cost of 0.01X, resulting in a Cloud only optimal strategy. Figure 4.7 shows that as the setup and

operational cost increases, there is less incentive in pre-provisioning resources inside the network.

Figure 4.8 shows that as the performance gap between virtual appliances and specialized hardware

increases, it maybe cost effective to use a combination of these two types of platforms. Note, for

Figure 4.8 we only consider a Hybrid model consisting of FlexHW and Single platforms.

62

 0

 50000

 100000

 150000

 200000

1 2 5 20

P
ro

vi
si

on
in

g
C

os
t

Performance Gap (Single/FlexHW)

FlexHW
Single

Figure 4.8: Impact on provisioning cost with varying resources.

4.5 Summary
This is a general framework that can be used by ISPs to make design decisions. It allows operators

to capture a variety of design dimensions such as type of platform, load distribution, resource

provisioning and placement. It also captures different processing and performance constraints that

the network operators may have to catpture. In addition to such a framework, any design option

will need real-time control capabilities to efficiently leverage the virtualization opportunities. To

realize these benefits a scalable control plane will be needed to manage virtualized functions across

all provisioned locations.5 In particular, prior control plane architectures have required significant

changes to the network; e.g., using SDN [116] or changes to middleboxes [72, 67, 124, 118], or

have argued for clean-slate cellular architectures [90]. A natural open question in this context is

whether we can design a practical and incrementally deployable control plane for cellular core

that can achieve NFV benefits working within the constraints of existing cellular data plane (e.g.,

5This is different from the control plane of the cellular protocols (Section 2.4); this pertains to the control of the
NFV functions themselves.

63

PMIP, GTP tunnels) and signaling (e.g., 3GPP) protocols, or if we need significant changes to

today’s cellular core architectures. We investigate this in the next chapter.

64

Chapter 5

KLEIN: A Minimally Disruptive Design for

an Elastic Cellular Core

5.1 Motivation and Contributions
Over the last few years, we have observed explosive growth in mobile Internet-connected devices,

spurred by the commoditization of smartphones, tablets, and other devices [45]. Reports suggest

that mobile traffic volumes are poised to surpass traditional fixed-line Internet usage for many

applications [23, 37, 32]. Furthermore, with the onset of Internet-of-Things deployments, analysts

predict orders of magnitude more devices connected via cellular networks with diverse application

demands.

This dramatic growth in volume and application diversity creates significant stresses on the cel-

lular core—the operator’s network between the radio access and the egress to the global Internet.

The cellular core is a critical piece of the infrastructure which provides key cellular-specific data

plane functions such as the Serving Gateway (S-GW) and Packet Data Network Gateway (P-GW)

and various IP- and application-layer middlebox services (e.g., firewalls, proxies, and transcoders).

Today, such functions are deployed using expensive and fixed function “big-iron” appliances [137].

These appliances are typically concentrated in a small number of datacenter sites in the operator’s

backbone and user traffic is routed to the nearest datacenter using standard cellular procedures;

65

e.g., using 3GPP standards [141].

Unfortunately, this current architecture results in fundamental sources of inelasticity, which

in turn hurts costs, application performance, and evolvability [126]. (We elaborate in §5.3). For

instance, the fixed capacity of the hardware forces operators to make provisioning decisions that

lead to both significant underutilization, and an inability to handle unanticipated changes in the

workload such as flash crowds, failures, and signaling storms (e.g., [46, 19]). This architecture

also creates inefficient tradeoffs between provisioning cost and latency considerations; i.e., con-

solidation lowers cost via statistical multiplexing but inflates paths vs. disaggregation to reduce

path lengths escalates costs as each site needs to be provisioned for peak loads.

Now, it is possible to address these sources of inelasticity using a clean-slate approach that fun-

damentally refactors how the cellular core is designed, provisioned, and managed. Indeed, several

recent efforts (e.g., [90, 106]) have demonstrated the promise of such clean-slate architectures that

argue for ubiquitous deployment of core functions and suggest that we need per-flow SDN-like

mechanisms, using new “smart” switches at every base station.

The driving question behind our work is to ask if a clean-slate redesign is fundamentally neces-

sary or if we can address these aforementioned limitations of cellular core networks in a minimally

disruptive manner.

To address this question, we use data from a large cellular carrier to quantitatively evaluate

three candidate cellular core designs: (1) TODAY’s fixed hardware approach using 3GPP compli-

ant routing; (2) A hypothetical INTERMEDIATE design that uses network functions virtualization

(NFV), requires no changes to existing cellular signaling and core routing, and performs dynamic

load distribution; and (3) A CLEANSLATE solution that uses NFV but is not constrained to be

3GPP compatible and can use fine-grained per-flow routing. Our analysis shows (perhaps surpris-

ingly) that the INTERMEDIATE design achieves close-to-optimal provisioning tradeoffs and load

balancing objectives relative to the CLEANSLATE approach.

We thus argue that this INTERMEDIATE design can serve as the basis for a minimally disruptive

design for future cellular core architectures that can address today’s cellular core limitations. In

particular, NFV is already a reality for carriers [9, 40, 8, 126], and there are many open-source and

66

commercial efforts to virtualize cellular core functions [17, 29, 28, 6, 3, 4].

Building on these insights, we design KLEIN,1 which provides a practical realization of this

above INTERMEDIATE design. Specifically, KLEIN extends existing cellular core in two minimally

disruptive ways: (1) use of virtualized EPC functions together with (standard) SDN mechanisms

for service chaining inside the datacenters and (2) a global resource management scheme for map-

ping devices’ traffic to different datacenter locations. KLEIN is 3GPP-compliant and requires no

changes to existing cellular signaling and core routing.

This work addresses two key challenges to translate the hypothetical INTERMEDIATE design

into reality. First, we design a responsive resource management layer that can handle billions

of devices and thousands of data centers. Second, we engineer backwards-compatible network

orchestration mechanisms to realize these dynamic resource management decisions.

We prototype KLEIN using the open source OpenAirInterface [28] platform. We use

Floodlight and custom controllers for the KLEIN control plane to manage the core network. We

validate KLEIN using a range of trace-driven and real testbed experiments. We find that: (a)

KLEIN is scalable, it takes less then 20s to reconfigure the load with 2000 data centers and 5

billion devices; (b) KLEIN is close to optimal, within 10% of an ideal CLEANSLATE for different

traffic mix and latency budgets; (c) KLEIN can improve end-application performance by a factor

of 5; and (d) SIMPLE can handle data center failures both rapidly and efficiently, taking less than

2.3s, and reducing the maximum data center load by a factor of 2.

Contributions and Roadmap: In summary, this work makes the following contributions:

• An empirical demonstration of key limitations of today’s cellular core with respect to cost-

performance tradeoffs (§5.3).

• A data-driven design space exploration (§5.4) that shows that it is indeed possible to address

these limitations with a minimally disruptive design.

• A practical architecture (§5.5), with a responsive and scalable resource management algo-

1The name is inspired by Yves Klein, a pioneering artist in the Minimal art movement, https://en.
wikipedia.org/wiki/Yves_Klein The name also means “small” or little in German which is indicative of
the change we mandate.

67

https://en.wikipedia.org/wiki/Yves_Klein
https://en.wikipedia.org/wiki/Yves_Klein

rithm that can handle billion of devices and thousand of sites (§5.6) and backwards compat-

ible orchestration mechanisms (§5.7).

• A proof-of-concept implementation (§5.8), to show the benefits of elastically scaling and

balancing load on virtualized EPC functions.

5.2 Related Work

SDN and NFV in Cellular Networks: Recent proposals on redesigning the cellular core using

SDN and NFV argue for a clean-slate approach [90, 106], with new cellular signaling protocols

and SDN-like routing.

SoftCell [90] proposes a clean-slate SDN based cellular core that can support fined-grained

policies for mobile devices in cellular core networks. To achieve this goal they propose a new

cellular core architecture, requiring smart access switches at each base station, SDN-based routing

over the core network, while using commodity switches and middleboxes in the core network. The

access switches perform fine-grained packet classification on traffic from UEs. SoftCell proposes

a logically centralized SDN controller responsible for managing the routing over the core network.

The main contribution is to propose a new data plane that can support a large number of policies

given this new architecture. SoftCell achieves this by compressing the switch forwarding tables

by aggregating them along different dimensions (e.g., service policy, base station, mobile device).

While such a proposal provides flexibility in service policy enforcement, it requires overhaul of

today’s cellular core infrastructure and is not compatible with existing cellular standards.

SoftMoW [106] also proposes a new architecture for the cellular core. The motivation is to

enable a highly distributed cellular core with distributed middleboxes and programmable switches.

They propose a hierarchical and reconfigurable control plane design. They also propose a new

cellular signaling control plane for the core network. They design a logically centralized controller

which manages routing and mobility of devices across the cellular network. Similar to SoftCell,

they require access switches at each base station that perform fine grained packet classification as

well as a new programmable data plane. Similar to SoftCell, SoftMoW requires a major overhaul

of today’s cellular core infrastructure as well as existing cellular signaling protocols mandated by

68

3GPP.

In this work, our focus is to explore practical cellular core designs that are minimally disruptive,

and can be deployed in the near future. In this respect, we designed KLEIN, a cellular core that

does not require any changes to routing over the core network, uses existing cellular signaling

protocols, NFV/SDN inside data centers and has a smart resource management layer. The core

contribution of our work is to design a scalable and responsive resource management layer that

uses backwards compatible network orchestration mechanisms.

Other proposals [51, 123, 112, 94, 59] consider virtualizing and decomposing core EPC func-

tions like S-GW and P-GW. The work in [51] analyze the EPC nodes and classify their functions

according to their impact on data-plane and control-plane processing. They investigate the current

OpenFlow implementation’s capability to realize basic core operations such as QoS, data classi-

fication, tunneling and charging. Their analysis shows that functions, which involve high data

packet processing such as tunneling, have more potential to be kept on the data-plane network

element. The work in [123] proposes decomposing the control and data-plane functionality inside

EPC functions. In their design, the S-GW and P-GW data-plane functionality is implemented in

OpenFlow switches, whereas the control plane functionality is move to a SDN controller. In [94],

the authors present a study on the evolution of cloud-based EPC, where all the control functions of

the SGW, PGW and MME are moved in the cloud. The data-plane is again shifted into the Open-

Flow switches, and these switches are extended to support GTP. The authors of [112] propose the

MobileFlow architecture for future carrier networks. In this architecture again, the EPC data and

control plane is split such that the data-plane can be programmed, and the control plane is central-

ized. The eNodeB also participates in this functional split, and the entire EPC and eNodeB control

plane is centralized. Such a proposal requires changes in the eNodeB, to transform the existing

deployed eNodeBs in the entire network. The work in [59] argues for overhaul of today’s cellular

core network such that all the EPC functionality is moved in the cloud and the backhaul consists

of only programmable SDN switches.

These proposals mainly focus on architecture and high level designs for the EPC. They do

not focus on the practical mechanisms which will be needed to decide the placement and load

69

distribution of virtualized core functions over a highly distributed cellular core network. This is a

challenging problem, and one of the main contributions of this work is a scalable and responsive

resource manager.

There have been other problems in the mobile networks arena that have been addressed using

SDN and NFV, such as heterogeneous wireless networks [49], SDN-based radio access network

designs SDN [79, 78].

Middlebox Management: There has been prior work which has focused on “middlebox” service

chaining and load balancing [116, 124, 148]. SIMPLE [116], discussed in the first half of this the-

sis addressed the problem of efficient policy enforcement using SDN. SIMPLE solves the problem

of load balancing subject to switch and middlebox capacity constraints. SIMPLE assumes that the

middlebox placements are known a priori. CoMb [124] proposes a new architecture for imple-

menting and managing middleboxes. In contrast to standalone, specialized middleboxes, CoMb

decouples the hardware and software, and enables software-based implementations of middlebox

applications to run on a consolidated hardware platform. CoMb consolidates the management of

different middlebox applications/devices into a single (logically) centralized controller that takes

a unified, network-wide view generating configurations and accounting for policy requirements

across all traffic, all applications, and all network locations. StEERING [148] also addresses the

problem service chaining given a large number of subscriber and applications. It uses multiple ta-

bles inside a switch to implement a large number of service policies. In this work, we consider the

problem of load distribution and network function placement over the entire core network consist-

ing of potentially hundreds of sites and mobile devices, using backwards compatible mechanisms.

This introduces unique challenges of scalability and practicality that we address in this work. Pro-

posal such as SIMPLE can be used to implement middlebox-specific policies inside a data center.

Other works [128, 73] provides mechanisms offloading traditional middlebox processing to the

cloud.

Middlebox and EPC State Management: Other proposals have also suggested NFV-like ideas

for traditional middleboxes [72, 118]. SplitMerge [118] characterizes the state of traditional mid-

dlebox such as load balancers, NATs etc. They propose mechanisms for transparently spliting state

70

between many replicas of middlebox function or merging it back into one, while ensuring the flows

are routed to the correct middlebox replica. OpenNF [72] proposes a control plane architecture that

provides efficient, coordinated control of both internal NF state and network forwarding state to al-

low quick, safe, and fine-grained reallocation of flows across NF instances in data center/enterprise

network. In [99], the authors describe the state maintained by different network functions in LTE

architecture, how this state is accessed, how different network functions could be refactored and

modularized. In KLEIN, we primarily use legacy cellular signalling protocols to migrate state of

EPC functions, and use OpenNF to migrate state of traditional middleboxes.

SDN Control Plane Design: There have been prior proposals for scalable control plane design

in different contexts [106, 90, 100, 65, 63, 142, 81]. The authors of SoftMoW [106] propose a

hierarchical and reconfigurable SDN control plane for managing the cellular core network. In

SoftCell [90], the authors propose a centralized controller, with local controller agents installed

at every access switch on each base station. The work in [100] also proposes a hierarchical SDN

control plane for wide area networks. In Bohatei [65] the authors propose a control plane for man-

aging DDoS attacks. The control plane consists of a global controller responsible for managing

load across data centers and local controller within each data center, responsible for orchestra-

tion within a data center. ElastiCon [63] proposes mechanisms for distributing the data-plane load

among different SDN controllers. Kandoo also addresses the problem of scalability in SDN con-

trollers. In Kandoo there two layers of controllers: (i) the bottom layer is a group of controllers

with no interconnection, and no knowledge of the network-wide state, and (ii) the top layer is a

logically centralized controller that maintains the network-wide state. Controllers at the bottom

layer run only local control applications (i.e., applications that can function using the state of a

single switch) near datapaths. These controllers handle most of the frequent events and effectively

shield the top layer. Beehive [142] provides a programming abstraction for writing distributed con-

trol applications in SDN. In KLEIN, our goal is to investigate how we can design a scalable and

responsive resource management layer for handling thousands of sites and billion of mobile de-

vices. We observe that simple two layer control plane designs do not scale. We design a three-level

control-plane hierarchy, motivated by the workload characteristics and deployments of cellular net-

71

��

����

����

����

����

��

� � � � � �� �� �� �� �� �� ��

�
��
�
��
��
��
��
��
��
�
��
��
��
��
��

���������

���
���

���
���

���
���

Figure 5.1: Load across different data centers over the course of a day.

works.

5.3 Limitations of Current Practises
In this section we analyze the practices of a nation-wide cellular carrier to manage it cellular core

network, which hosts a large number of middleboxes. Specifically, we analyze the impact of the

way network functions are provisioned and how traffic is routed to them. The motivation is to

understand the limitations of current practises. We first briefly describe the dataset used for the

analysis and then use it to highlight three key limitations with today’s cellular core network.

5.3.1 Data Set

Dataset description: We use load traces collected for several months during 2014-2015 at tens of

thousands of base stations of a large cellular provider in the US. The dataset gives a time series of

data traffic volumes at 5 minute intervals at each base station, for each ‘APN’, and ‘GW device’.

APN refers to one or more collection of services (e.g., Voice, Data, M2M). GW device refers to the

actual hardware appliance in the datacenter that runs an EPC data-path element (S-GW or P-GW)

that processes the corresponding data. For each device, we have the information about the corre-

72

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

��
��
���
��
��
��
��
��
��
��
��
��
�

��������������������������

Figure 5.2: Load distribution across data centers for each time interval.

sponding data center the GW is located in. The data set covers tens of data centers and hundreds

of APNs. No user data or any personal information that identifies individual users are collected.

Next, we focus on specific set of analysis on this data set to highlight specific limitations.

5.3.2 Load Balancing

The fixed nature of provisioning and static routing in the cellular core causes load imbalance, which

in turn could impact user-perceived application performance. Figure 5.1(a) shows the imbalance

in S/P-GW loads across data centers for one entire day. Since the data centers capacities vary, the

load of each data center is normalized by the peak load seen in that data center in the entire data

set. This quantity serves as proxy for the capacity.

For any given time interval, we observe difference in the utilization of the most utilized data

center and the least utilized data center. We observe this difference could be as high as 80%. Such

load imbalance is not an anomaly. Figure 5.2(b) shows the distribution of the difference between

maximum and minimum normalized data center loads. We observe that the difference is more than

50% for more than 60% of the times. Also, for about 15% of the time, load imbalance is more

than 70%. This means that one data center is maximally loaded while another is a lot of spare

73

��

����

��

����

��

�� ��� ��� ��� ��� ����

��
��
��
��
��
��
��
�
��
��
��
�

������������������������

���������������
���������������

Figure 5.3: Impact of EPC load on file download time.

capacity. Load imbalance could potentially increase overload and failure scenarios [128], affecting

the performance end-user applications. The ability to dynamically balance the load across data

centers can both potentially improve application performance as well as provide resource savings

for the network operators.

5.3.3 Impact on Applications

Load imbalance can potentially hurt application performance. To demonstrate this, we bench-

marked the impact of EPC load on file download times on a software EPC testbed (Phantom-

net [29]). Here, we increase the P-GW load by generating background traffic, and observe the

impact on downloading files of two different sizes (16 KB and 58 KB) over a TCP connection.

We observe in Figure 5.3(c) that when P-GW utilization is ≥ 80%, the file download time is more

than an order of magnitude higher as compared to the case when P-GW utilization is <70%. High

EPC load clearly hurts user-perceived performance. Extreme load imbalance demonstrated in Fig-

ure 5.1 means that such performance metrics would improve if flexible provisioning could be made

available.

74

��
��
��
��
��
���
���
���

��� ���� ����� ������

�
��
�
��
��
��
�

��
��
��
��
��
��
��
�
��
�

����������������������

Figure 5.4: Provisioning cost vs. number of data centers with static provisioning and routing.

5.3.4 Resource Provisioning

At the same time, today’s networks are over-provisioned. We compare sum of peak loads on in-

dividual S/P-GW devices with peak of sum loads on these devices. The ratio of sum of peak vs.

peak of sum is a good indicator of resource over-provisioning. We observe that the sum of peak

GW/DC load is about 1.7 times the corresponding peak aggregate load respectively. This means at

most only 60% of provisioned resources are utilized at any time. As the network functions are stat-

ically pre-provisioned, the operators have to provision the network resources taking into account

the peak load. They also over-provision the network to take into account future traffic growth and

potential failure scenarios. However, a more flexible implementation of network functions (e.g.,

implementing them as virtual appliances) can provide the operators the ability to dynamically place

and provision network functions. This can potentially provide resource savings, better application

performance as well as ability to quickly incorporate diverse services inside the networks.

75

5.3.5 Provisioning Cost vs. Wider Deployment

Today’s networks suffer from path inflation as all UE data traffic has to be routed to one of the few

large centralized data centers [141]. Wider deployment of processing sites can improve latency,2

but due to the fixed nature of mapping traffic to processing sites this can happen only at the expense

of higher provisioning cost. Figure 5.4 demonstrates this. The plot here assumes various number

of data centers. The locations of such data centers are assumed close to the eNodeBs they meant

to serve. This is done by a nearest-neighbor clustering of eNodeBs in the 2D space and locating

the data centers at the centroid of such clusters. We map the traffic to the nearest data center and

compute the sum of peak loads on the data centers as the provisioning cost. The plot shows that

in order to get an order of magnitude improvement in latency, for example, the cost will increase 5

fold (while from 10 to 500 data centers).

5.3.6 Summary

In summary, our data-driven analysis shows that:

• Load imbalance in cellular core network can be as high as 80%. This could impact application

performance by as much as 7 fold.

• At most only 60% of the core network compute resources are utilized at any time.

• For wider cellular core deployments e.g., 500 data centers, provisioning cost is 5× higher than

in the case of 10 data centers.

5.4 Design Space Exploration
The previous analysis shows the limitations in today’s cellular core. These can potentially be

addressed by a clean slate redesign - a generalization of recent work in [90, 106] - that distributes

the processing resources widely and performs a fine grained (such as per-flow in the ideal case)

dynamic mapping of traffic to such resources. While an approach like this could be optimal, this

also requires a fundamental redesign of the cellular core. In this section we demonstrate – using

a similar data-driven analysis as before – that such a disruptive redesign is unnecessary and an

2This can be done by expanding the use of small on path data centers e.g., central offices. (See Section 2.4).

76

Minimize
∑
d

Provd, subject to (5.1)

∀d, e : Loadd,e < Provd (5.2)

∀d, e : Loadd,e =
∑
a,d,e,i

fa,d,i,e × Ta,e,i × Fa (5.3)

∀a, d, e, i : fa,d,e,i ∈ [0, 1] (5.4)
∀d : Provd < Capd (5.5)

∀a, e, i : Ta,e,i =
∑
d,e

fa,d,e,i × Ta,e,i (5.6)

∀a, d, e, i : Latencyd,i × fa,d,e,i < Budgeta (5.7)

Figure 5.5: Linear Program (LP) formulation for CLEANSLATE.

intermediate 3GPP compatible design can be used to address these limitations.

5.4.1 Design space

We consider a broad design space characterized by four dimensions: (1) Implementation Plat-

forms: We could have each network function running on a fixed, hardware-based appliance or as a

virtualized/software appliance; (2) Routing granularity: packets can be routed across the cellular

core network e.g., per-flow (e.g., SDN-like) routing vs per-UE tunnels (conforming 3GPP); and (3)

Resource management: How the traffic from different UEs and APNs are allocated to the available

compute and network resources.

Given the dimensions of this design space, we consider three concrete instances.

• TODAY’s network deployment, where (1) fixed, hardware based appliances are used to im-

plement the EPC functions, (2) routing of flows is done at a per-UE granularity and (3) the

resource management is static and each UE is routed to the nearest data center.

• At the opposite extreme, we consider a CLEANSLATE approach, where (1) network func-

tions are virtualized, (2) fine-grained per-flow routing (which is in conflict with 3GPP con-

straints), and (3) dynamic resource management. This a logical extension of recent clean

slate designs [90, 106]; the key addition is that we assume some form of optimal resource

77

����

�����

��

�����

����

�����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��
��
��
��
��
��
��
��
��
���
��
��
�

���
��
��
��
��
��
��
��
��
��
��
��

���

����
����
����
����

Figure 5.6: The load balancing optimality gap between INTERMEDIATE and CLEANSLATE.

management scheme which these prior efforts largely ignore.

• Finally, we consider an intermediate approach that we call INTERMEDIATE. INTERMEDIATE

attempts to preserve the benefits of CLEANSLATE while also preserving full 3GPP compat-

ibility. Here, (1) the network functions are still virtualized; but (2) routing decisions are at a

per-UE granularity rather than the per-flow approach in CLEANSLATE; (3) dynamic resource

management is used to re-balance the load as necessary.

5.4.2 Methodology

In order to compare the three design points, we conduct a data-driven study, using same data as

in (Section 5.3). We devise linear programming based optimizations for modeling CLEANSLATE

and INTERMEDIATE designs to evaluate the provisioning and load balancing benefits. Below we

describe the simulation setup and optimizations.

Simulation Setup: We classify APNs into 3 different groups: Data, M2M, and Voice. For the first

class, we assume that the traffic can be further divided into latency-sensitive and latency-tolerant

applications. We vary the mix of latency sensitive data traffic and the delay budget for latency

78

��

��

��

��

��

���

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
�
��
�

����������������������

������ �����������
����������� �����������

������ ������
����������� ������

Figure 5.7: Reduction in provisioning cost with INTERMEDIATE and CLEANSLATE.

sensitive applications. The input to the simulations is the data traffic volume corresponding to

different traffic classes from the data set.

Optimizations: In the CLEANSLATE design, we assume that the traffic can be split from each

base station and application class, and routed to different data centers. We formulate CLEANSLATE

as a linear program, with the objective of minimizing the total resources provisioned in the core

network (Eq (1)). Provd corresponds to the capacity to be provisioned in a data center d . The key

decision variable in CLEANSLATE is a fractional variable fa,d,e,i which gives the fraction of traffic

from base station i and application a, that should be routed to the data center d, in a time epoch, e.

Figure 5.5 shows the LP. It includes the constraints that all the traffic should be served Eq (6), and

that the latency budget for each traffic class should satisfied Eq (7). Loadd,e is the load on a data

center d in an epoch e, Ta,e,i is the traffic volume from eNodeB i for traffic class a in epoch e, Capd

is the maximum capacity that can be allocated to data center d, Fa is the total resource footprint of

an application class a, Latencyd,i is the latency from the eNodeB i to data center d, and Budgeta

is the latency budget for application class a.

For INTERMEDIATE, we map each base-station’s load to a single data center. This is because of

the 3GPP constraint that at any time we can only have a single SGW attached to a UE. We model

79

INTERMEDIATE as an ILP with same objective with the objective of minimizing the total resources

provisioned in the core network (sum of resources provisioned in each data center. However, the

key decision variable in this case is a binary variable ba,d,e,i which gives mapping of traffic from

base station i, application a, that should be routed to the data center d, with the additional constraint

that all the traffic from a base station i is routed to the same data center.

We also consider a load balancing exercise, where we minimize the maximum data center

utilization for CLEANSLATE and INTERMEDIATE. The formulations are similar, except (1) the

objective is minimizing MaxDCUtil, where MaxDCUtil is the utilization of the most utilized

data center in the core network, (2) provisioned capacity, Provd at each data center d is fixed, and

(3) the key decision variables are not per-epoch: fa,d,i and ba,d,i.

5.4.3 Results

Load balancing: We first consider a load balancing objective, where we try to minimize the

maximum utilization of any data center for CLEANSLATE and INTERMEDIATE, and evaluate the

optimality gap: Intermediate
CleanSlate

. We vary the mix of traffic (delay sensitive and delay tolerant) and the

latency budgets of the applications. We consider 4 hours of peak load on a week day in November

and reconfigure the traffic routing every 5mins. We take the maximum load observed for each

data center over the 4 hour period for both CLEANSLATE and INTERMEDIATE. Figure 5.6 shows

the optimality gap with different delay budgets and traffic mix. The key takeaway is that for all

latency budgets, INTERMEDIATE performs close to the CLEANSLATE design. More concretely, we

observe an optimality gap of about 5-10%, if the latency budget is 10ms and fraction of latency-

sensitive traffic is less than 70%. For all other cases, the optimality gap is less than 5%, and it

converges to close to 0 if the fraction of latency sensitive traffic is 90% or more. The reason the

optimality gap is reducing as the fraction of latency-sensitive traffic increases is because then even

clean slate has very few opportunities for balancing load across sites. Since most traffic is latency

constrained, there are only a few sites where the traffic can be sent to.

Reduction in provisioning cost: Next, we consider a provisioning exercise to minimize the re-

sources needed to handle the time varying traffic patterns generated across a week. The metric of

interest here is the relative savings that INTERMEDIATE and CLEANSLATE provides vs. today’s de-

80

ployment model where all traffic is usually routed to the nearest data center: CostIntermediate/CleanSlate

CostToday
.

We observe that with increasing number of data centers, we can achieve similar benefits in resource

savings in Figure 5.7. We can save as much as 2 times more S/P-GW resources with INTERME-

DIATE and CLEANSLATE as compared to Today’s static architecture, and as 6 times more to-

tal resources, if we also consider other network functions.3. CLEANSLATE and INTERMEDIATE

achieves these benefits while satisfying the latency budgets for data traffic.

5.4.4 Summary

The data-driven simulations show that:

• INTERMEDIATE is within 10% of CLEANSLATE in terms of load balancing for a variety of traffic

mix and latency budgets.

• Both CLEANSLATE and INTERMEDIATE need 6× less resources as compared to Today for a

cellular core with 1000 data centers.

We argue that this INTERMEDIATE approach can form the basis of a minimally disruptive

cellular core. We show in the following sections how such an approach can be implemented using

only minimal changes in cellular infrastructure while assuring complete legacy compliance. This

makes it a very attractive option for the carriers.

5.5 System Overview and Challenges
The previous section showed that we can potentially address most of the limitations of the

cellular core today through a hypothetical INTERMEDIATE design, which is 3GPP compliant. In

this section, we give an overview of KLEIN, a practical instantiation of the INTERMEDIATE design.

We discuss our envisioned core network deployment, the challenges in realizing SIMPLE and

outline our key ideas to address these challenges.

3In the case of ”ALL NF” in Figure 5.7, we also took into account placement of middleboxes other than S/P-GW
(e.g., Firewalls, Transcoder etc.) by assuming hypothetical service chains for different traffic classes.

81

Resource Manager

Orchestration

eNodeB

Mobile

Device

MME

HSS

EPC

IMS

Internet

RAN

NAT/ FW/

Proxies

Data Traffic

Voice Traffic

PCRF

S-GW

Control Traffic

PCRF

P-GW

P-GW

Figure 1: Typical LTE elements and architecture.
handover). To cover a large geographic footprint and
to provide high quality service, a typical cellular service
provider employs tens of thousands of eNodeBs.

The main elements of the EPC consist of the MME,
the serving gateway (S-GW), and the Packet Data Net-
work Gateway (P-GW). The MME is responsible for all
control plane messaging including user authentication via
the Home Subscriber Server (HSS), session establish-
ment and release, and mobility management. The S-GW
and P-GW are on the data path, and their main function
is packet routing/forwarding, traffic management and ac-
counting, and policy enforcement. The S/P-GW also
act as anchor points in the cellular network with the S-
GW being the anchor for inter-eNodeB handover, and the
P-GW acting as a gateway/anchor to external networks
(e.g., the Internet). The LTE standard allows for the
specification and enforcement of dynamic policies (e.g.,
changing priority for a flow) within the cellular network.
The Policy and Charging rules function (PCRF) is the
repository of such policies. Whenever a new flow starts,
the PCRF is consulted to identify policies that apply to
the flow. The policy and charging enforcement function
(PCEF), which is typically built into the P-GW, is re-
sponsible for the enforcement of cellular policies. Fi-
nally, most cellular EPCs also include middleboxes like
NATs, firewalls and proxies that are traversed before a
packet reaches the Internet.

A typical cellular network has a few hundred of these
EPC components. The data plane elements are typically
deployed in a small number of pre-provisioned data cen-
ters [9] while the control plane elements are deployed
closer to eNodeBs for efficiently handling latency sensi-
tive control plane traffic. When building out these data
centers, the EPC is typically provisioned in distinct units
we call as ‘zones’. A zone typically consists of P-GWs,
possibly S-GWs, and other associated middleboxes (e.g.,
NAT, firewall) and network elements. When the traffic in
existing zones reaches a capacity threshold, a new zone
is added.

The EPC is typically partitioned to handle different
types (e.g., LTE VoIP or VoLTE, Internet data, M2M,
corporate VPN) of traffic. This partitioning is achieved
through the use of access point names (APN). A cellu-
lar provider can associate different traffic types to one or
more APNs. A set of APNs – depending on their traf-

fic volume – is mapped to a zone. As a result, the P-
GW and other middleboxes and network elements in the
zone are configured to serve a set of APNs. Roughly, a
zone serves as a basic provisioning unit in the data center
while an APN serves as a traffic classifier where its traf-
fic is load-balanced across multiple zones (e.g., a zone
serving a metropolitan area).

Before a UE can send or receive data, it has to first
establish a GTP (GPRS Tunneling Protocol) tunnel. The
GTP tunnel, established between the eNodeB and the P-
GW, provides logical point-to-point connectivity per UE
as it moves around in the network. The GTP tunnel com-
prises of two halves; one between eNodeB and S-GW
and one between S-GW and P-GW. While the latter is
retained as long as the UE is registered in the network,
the former is torn down whenever the UE goes idle, and
re-created whenever data is exchanged. When the UE
moves from one eNodeB to another, the tunnel between
the eNodeB and the S-GW also moves. To setup the
tunnel, the UE first identifies the APN to use and then
the associated P-GW. It then initiates establishment of a
GTP tunnel. Similarly, it initiates tunnel creation when it
wakes up and has data to send. However, the network has
to “page” the UE whenever there is data for the UE and
the UE is idle. The UE, when it receives a page, wakes
up and reestablishes the tunnel between the eNodeB and
the S-GW.

To summarize, there are multiple services and devices
that run inside a cellular core network supporting not
only LTE, but also 3G and 2G networks. Today, the plat-
forms running these services comprise of fixed hardware
appliances that are statically provisioned and configured.
Different traffic types, however, may have different load
patterns and peaks. Similarly, traffic at different loca-
tions may behave differently. Finally, the traffic for one
service, e.g., 3G, may reduce over time and be replaced
with another, e.g., LTE. Virtualizing the cellular network
elements allows us to consolidate these functions and dy-
namically scale and place these functions based on de-
mands across specific dimensions.

3 A Case for a Minimalistic Roadmap

We begin by identifying the key opportunities that could
be enabled by an elastic cellular core. We then discuss
clean slate proposals for realizing these opportunities.
The driving question that we ask in this section is whether
all the changes that clean slate designs argue for are nec-
cessary? We then consider a design point which requires
minimalistic changes to the existing cellular core, lever-
aging network function virtualization. We argue through
a quantitative and qualitative analysis how most of these
opportunities could potentially be achieved with a mini-
malist design.

2

MME# S/P'GW# VM

DC1
DC2

Monitored#
traffic#results#

Legacy#backbone#
routers#

Intra'dc#path#
setup#and#VM#
deployment#

Control#and#data##
traffic#placement#

New#Interfaces#

eNodeB#

RAN# EPC#

MME# S/P'GW# VM

MME# S/P'GW# VM

MME# S/P'GW# VM

MME# S/P'GW# VM

MME# S/P'GW# VM

DC3

Figure 5.8: KLEIN system overview.

5.5.1 Overview

We envision that the cellular carrier has deployed many data centers. We assume that the cellular

carrier can have both large data centers and small data centers. Large nation wide carriers already

have a few thousand central offices [16]. We assume data centers are connected from the base

station via traditional backbone routers and inter-connecting links. Each data center has commod-

ity hardware servers and runs virtualized EPC functions (e.g., MME, S/P-GW) and other network

functions (e.g., Firewall, NAT).

Our objective is to dynamically distribute the network load and provision virtualized network

functions over the provider’s available compute/network resources. This requires a resource man-

ager which deals with load distribution and placement of virtualized network functions. For achiev-

ing these we want to construct a backwards compatible network orchestration layer, which is com-

patible with existing 3GPP mechanisms and requires minimal changes to the existing core network.

As seen in Figure 5.8, KLEIN extends the existing cellular core in three simple ways: (1)

virtualized network functions instead of fixed hardware appliances, (2) resource manager, which

performs dynamic resource management, and (3) a backwards-compatible network orchestration

82

Number of UEs Number of data centers Computation Time
∼50,000 6 ∼20s
∼50,000 100 ∼500s
∼50,000 1000 >1 day

Table 5.1: Scalability with a 2-level resource management decomposition.

layer for implementing the output of the resource manager. We argue that each of these changes

is minimally disruptive. First, for (1), we observe that the use virtual functions is already on

several carrier roadmaps [9, 40, 8, 126]. Second, (2) is a “bolt-on” control component that does

not require any additional network infrastructure. Finally, for (3), we observe that in contrast with

CLEANSLATE, KLEIN does not require changes to the existing 3GPP mechanisms or core network

routing.

5.5.2 Challenges

(1) Responsive resource management: The two key challenges in designing a responsive and

scalable resource manager are:

• First, the problem size makes it difficult to develop a responsive and scalable resource man-

ager, for instance, a nation wide cellular carrier in the nearby future may have billions of

devices and few thousand data centers. Specifically, this entails solving a large optimiza-

tion problem, which can not scale to such input size even with state-of-the-art solvers. Even

a 2-level decomposition does not scale, as shown in Table 5.1. It takes >1 day for it to

reconfigure the load, even for a small input size of 50,000 UEs and 1000 data centers.

• Second, the resource manager has to instantiate both the cellular control and data plane func-

tions, which have inter-dependencies. As we described in §2, MME is the cellular control

function, and S/P-GW are data plane functions in EPC. The MME interacts with S/P-GW

during different events, e.g., a UE’s attachment to the network and eNodeB handover. 3GPP

provides guidelines for delay budgets for MME and S/P-GW [18]. The S/P-GW delay bud-

gets depends primarily on the requirements of the data traffic, whereas the delay budget for

MME depends on the device characteristics (e.g., mobile smartphone device vs stationary

83

M2M device). MME delay budgets are more stringent because the MME deals with all the

signaling traffic from the UE. If we assume that MME and S/P-GW can be placed in dif-

ferent data centers, we have three different types of delay budgets to consider, Budgetdatat ,a ,

BudgetUE−MME
t and BudgetMME−SGW

t , for device type t and application a, Modeling these

three constraints, yields a quadratic constraint, as we show later in §5.6.

(2) Network orchestration: The second key challenge is to implement the output of the re-

source manager, i.e., map a UE’s data and cellular control traffic to VMs. This has broadly three

challenges: 1) Backwards compatible wide-area orchestration to get the UE to the selected data

center, and 2) Intra-dc orchestration: to get the traffic through selected VMs, 3) Handling load

reconfiguration, because unlike today’s core network which is static, KLEIN derives its benefits

from dynamically reconfiguring the network load, which may require moving a UE’s traffic to a

different data center to re-balance the load on the network. This raises the question if KLEIN can

use existing orchestration and 3GPP mechanisms?

5.6 Resource Manager
The KLEIN resource management module distributes the network load across the datacenters,

while ensuring that the latency budgets for different applications are satisfied. The key challenge

here is achieving responsiveness at scale. In order to realize the benefits of the vision we out-

lined in §5.4, we need this module to rebalance the load and assign UEs to compute resources on

fine-grained timescales (tens of seconds). However, this is challenging because the underlying dis-

tribution problem entails solving a large-scale and non-linear optimization. To address this, we use

a combination of three key ideas: (1) solving the problem at an aggregate rather than UE granular-

ity; (2) decoupling the problem of placing control and data-plane functions; and (3) decomposing

the global optimization into a three-level hierarchy. As we will show this enables near optimal

performance at scale.

We begin by setting up the key requirements of the optimization problem and then present our

key ideas.

84

5.6.1 Problem Formulation

Provider Setup: We assume that the cellular core has been provisioned with a set of data centers

{Dd}d and high-capacity backbone switches and links. Traffic from the base stations will be

forwarded to one or more data centers. Each data center Dd has pre-provisioned capacity with

fixed number of servers and each server s has fixed number of VM slots. We assume that the

network is partitioned into regions – a collection of data centers in geograhpical proximity. This is

similar to the way the core network is partitioned today [57].

The cellular operator has historical traffic patterns and has rough estimates of traffic volumes

associated with end-user applications and cellular control traffic. Let, Datau,a,e represent the data

traffic associated with a UE u, an application a, in an epoch e and let Ctrlu,e , represents the control

signalling traffic associated with the UE u, in an epoch e. This information may be collected using

network monitorig data (e.g., NetFlow).

Processing requirements: Different applications and device types may require different process-

ing requirements. For instance a M2M device may be required to go through a specific chain of

service or NFs. Similarly video traffic may go through additional Transcoder middleboxes. For

each traffic class, c, consisting of a combination of device-type t and application a, there is a asso-

ciated policy service chain or a sequence of NFs and each device type t is also as associated with

a set of cellular control functions it needs.

Objective: The goal is to decide the assignment of data-plane and cellular control-plane traffic

to a data center, and provisioning of required EPC functions and middleboxes. There are a few

considerations in this assignment. First, we want traffic load across servers in the core network to

be balanced. Specifically, the utilization of data centers to be balanced. Second, we need to ensure

that each UE u meets it processing (e.g., service chains) and latency bounds on data and control

plane functions.

Formulation: We introduce three key decision variables: and (1) nd ,s
i denoting how many VMs

of type vi (can be MME, S/P-GW and other network functions) of NF i to run on server s of data

center d ; (2) DPu,s,d which denotes whether data-traffic for UE u is processed in server s in data

center d and (3) CPu,s,d which denotes whether cellular control traffic for UE u is processed at

85

server s in datacenter D .

Unfortunately, solving this problem is challenging on two key fronts. First, this is a large dis-

crete optimization problem where the problem size (million of UEs and potentially thousands of

data centers) makes it computationally intractable. Second, attempting to model constraints on the

latency budgets between data-plane and control-plane functions inevitably yields quadratic con-

straints as shown below which make the problem even harder to solve with off-the-shelf solvers.4

Specifically, Eq 5.8 highlights how modeling the latency between the SGW and MME introduces a

non-linear interaction between the CP and DP variables. Ld ,d ′ refers to the latency between data

center d and d ′.

∀u ∈ t :
∑

CPu,s,d × DPu,s′,d ′ × Ld ,d ′ ≤ BudgetMME−SGW
t (5.8)

5.6.2 Key Ideas

As we saw above, solving this problem is challenging because of the scale and the non-linear de-

pendencies across the decision variables. To address these issues, we introduce three key heuristcs:

• Aggregation: The first insight is that we do not need to solve the problem at a UE granularity.

We may be able to achieve near-optimal results by aggregating UEs into groups of UEs, and

make decisions at coarser aggregate granularities.

• Hierarchical decomposition: Secondly, we observe that in practice we do not always need to

solve the global optimization problem every few seconds. We can decompose the optimiza-

tion along the natural hierarchy of global, regional, and intra-datacenter local controllers.

For instance, the global controller need not assign the precise server inside the datacenter

or the specific datacenter and can instead delegate these to the regional and local controllers

respectively. Thus, higher levels which need a more global view solve simpler problems at

coarser timescales, while the lower levels which need to be more responsive to avoid perfor-

mance issues can run more rapid reconfigurations.

4Note that in section §5.4, we only modeled the data-plane latencies, hence there were no quadratic constraints.

86

Collapse(the(control(and(data(placement(problem(

Global(controller(

Regional(controllers(

Local(controllers(

Solve(the(control(func:on(placement(and(then(solve(the(data;plane(problem(

Control(and(data(func:on(placement(on(VMs(

Runs(an(ILP(

Runs(an(ILP(

Runs(a(greedy(algorithm(

Figure 5.9: Decomposition and decoupling in resource management.

• Decoupling control and data placement: The key reason for the quadratic constraint in

Eq 5.8 is that we were trying to solve the joint optimization of placing control and data

functions. We can break this nonlinearity in one of two ways: (1) We can choose the con-

trol function placement and then solve the data-plane problem, with additional contstraint

of BudgetMME−SGW
t or (2) constrain the control and data plane functions to be in the same

server (i.e., collapsing CP and DP). As we will see below, we find that approach (2) works

well in the global controller and apporoach (1) in the regional controllers.

5.6.3 Our Approach

Next, we describe how we synthesize the above three heuristics into a practical and scalable re-

source management solution.

Three level hierarchy: We decompose the optimization problem into three logical subproblems

following the natural structure of large cellular providers. Figure 5.9 shows this decompistion.

1. The global controller runs a Region Selection Problem (RSP) that assigns (aggregate) UE

groups to specific regions;

87

Algorithm 1 Local controller heuristic for SSP
B Input: IntraRackCost, InterRackCost, CPg,d, DPg,d, CFg, SCg,a, DFa,i, Datag,a, Ctrlg
B Output: nd,s

i

#Assignment of MME VMs to servers
foreach UE group g assigned to data center d

while all of Ctrlg not assigned
#Consider control traffic footprint CFg

do Assign vmme to the emptiest server
#Assignment of data plane NF VMs to servers
foreach UE group assigned to data center d

foreach application a
while all NF i in the service chain SCg,a not considered

do N ← vi
localize(N)

B function localize tries to assign all of its input VMs to the same server or rack
localize(N) {
assign all VMs in N to emptiest server

if failed
then assign all VMs to emptiest rack

if failed
then split VMs in N across rack

Update nd,s
i

}

88

Minimize MaxRegionUtil , subject to (5.9)

∀r : Capr =
∑
d∈r

Capd (5.10)

∀r : Loadr < Capr (5.11)

∀g : CFg =
∑
u

CFu (5.12)

∀r : Loadr =
∑
g,r

CPg,r × Ctrlg × CFg (5.13)

∀g, r : CPg,r ∈ {0, 1} (5.14)
∀r : MaxRegionload > Loadr (5.15)
∀r : FracRegionLoadr = Loadr/Capr (5.16)
∀r : MaxRegionUtil > FracRegionLoadr (5.17)

∀g :
∑
d

CPg,r × Ctrlg = Ctrlg (5.18)

∀g, r : Lg,r =

∑
u∈g

∑
d∈r Lu,d∑

u∈g
∑

d∈r(1)
(5.19)

∀g, r : Lg,r × CPg,r < BudgetUE−MME
g (5.20)

Figure 5.10: Global controller formulation for distributing load across regions.

2. The regional controller then runs the Data center Selection Problem (DSP) and further sub-

divides set of the (aggregate) UE groups assigned to it across the datacenters in its region;

3. The local or intra-datacenter controller runs a Server Selection Problem (SSP) which assigns

specific servers inside each selected data center (as given by DSP) to run the required VMs.

This decomposition enables us to scale as the individual RSP, DSP, SSP problems can be solved

respectively by the global, regional and local controllers. We also evaluated other degrees of

decomposition and found that for the workload characteristics, this 3-level decomposition was a

sweet spot between scalability and complexity; e.g., we tried a 2-level decomposition strategy and

earlier showed in §5.5 that it does not scale (Table 5.1). We describe the specific optimization

subproblem each tackles and the approach we use next.

Region Selection Problem: (RSP): In the first step, KLEIN global controller distributes traffic

89

Minimize MaxDCUtil , subject to (5.21)
∀d : Loadd < Capd (5.22)

∀d : Loadd =
∑
g,d

CPg,d × Ctrlg × CFd (5.23)

∀g, d : CPg,d ∈ {0, 1} (5.24)
∀d : MaxDCload > Loadd (5.25)
∀d : FracDCLoadd = Loadd/Capd (5.26)
∀d : MaxDCUtil > FracDCLoadd (5.27)

∀g :
∑
d

CPg,d × Ctrlg = Ctrlg (5.28)

∀g, d : Lg,d × CPg,d < BudgetUE−MME
g (5.29)

Figure 5.11: Regional controller formulation for control traffic placement (CP).

across region such that the load is balanced at a region-level granularity. The global controller takes

as input the Ctrlg and Datag values, as well the aggregate capacities of individual regions and

assigns each aggregate UE group, g to a specific region based. To break the non-linear/quadratic

dependency between the control and data-plane functions, the RSP simply assigns both to be in

the same region, collapsing the CP and DP. We can formulate the RSP as an ILP, and rerun this

ILP every after every 60 minutes periodically. We discuss the choice of this reconfiguration period

in §5.9.1 In case any region is overloaded, they can make a upcall to KLEIN’s global controller

to reconfigure the load. The RSP formulation in essence is similar to the ILP formulation described

in §5.4 for INTERMEDIATE, except that reconfiguration decisions are made for UE groups and

load is distributed across regions. We describe this formulation in detail in Figure 5.10. Note,

CFu refers to the control traffic footprint of a device, u, i.e., processing cost per packet (e.g., CPU

usage). Lu,d refers to the latency from a mobile device u to data center d.

Data center Selection Problem (DSP): Each regional controller then has the responsibility for

selecting the data center for every UE group g that has been assigned to it by the RSP. Specifically,

it has to choose a data-center for the control functions and another (possibly different) datacenter

for the data-functions. At this stage, the regional controllers seek to distribute load at an aggregate

datacenter granularity within the region. Now, the DSP runs a two-step procedure to break the

90

Minimize MaxDCUtil , subject to (5.30)
∀d : Loadd < Capd (5.31)

∀d : Loadd =
∑
g

∑
a

DPg,d ×Datag,a ×DFg,a (5.32)

∀g, d : DPg,d ∈ {0, 1} (5.33)
∀d : MaxDCload > Loadd (5.34)
∀d : FracDCLoadd = Loadd/Capd (5.35)
∀d : MaxDCUtil > FracDCLoadd (5.36)

∀g :
∑
d

DPg,d ×Datag,a = Datag,a (5.37)

∀g :
∑
d

DPg,d = 1 (5.38)

∀g, d : Lg,d ×DPg,d < BudgetData
g (5.39)

∀g, d : Ld,d′ ×DPg,d × CPg,d′ < BudgetMME−SGW
g (5.40)

Figure 5.12: Regional controller formulation for data traffic placement (DP).

quadratic dependency. First, it places the control functions and then runs a separate ILP for data

plane functions. The ILP is similar to the DSP problem, except that the load is distributed across

data centers, instead of regions. Figure 5.11 shows the control problem formulation and Figure 5.12

shows the data-plane formulation in detail. Note, Datag,a refers to the data traffic footprint of an

application, a, i.e., processing cost per packet (e.g., CPU usage). This procedure runs roughly

every 5 minutes. We discuss the choice of this reconfiguration period in §5.9.1. In case a data

center is overloaded, the local controller can make a upcall to KLEIN’s regional controller.

Server Selection Problem (SSP): Finally, each local controller within each datacenter has to

distribute load across servers and instantiate VMs. We use a simple greedy heuristc here, choosing

nodes with higher capacities and ensuring that NFs in the same chain are assigned to the same

server or the same rack similar to prior work [70, 65]. We describe this in detail in Algorithm 1.

Note, IntraRackCost refers to the latency between servers within the same rack, and InterRackCost

refers to the latency between two servers in different racks. SCg,a refers to the service chain

corresponding to a group of devices, g and an application, a.

91

MME#

eNodeB

Mobile

Device

MME

HSS

EPC

IMS

Internet

RAN

NAT/ FW/

Proxies

Data Traffic

Voice Traffic

PCRF

S-GW

Control Traffic

PCRF

P-GW

P-GW

Figure 1: Typical LTE elements and architecture.
handover). To cover a large geographic footprint and
to provide high quality service, a typical cellular service
provider employs tens of thousands of eNodeBs.

The main elements of the EPC consist of the MME,
the serving gateway (S-GW), and the Packet Data Net-
work Gateway (P-GW). The MME is responsible for all
control plane messaging including user authentication via
the Home Subscriber Server (HSS), session establish-
ment and release, and mobility management. The S-GW
and P-GW are on the data path, and their main function
is packet routing/forwarding, traffic management and ac-
counting, and policy enforcement. The S/P-GW also
act as anchor points in the cellular network with the S-
GW being the anchor for inter-eNodeB handover, and the
P-GW acting as a gateway/anchor to external networks
(e.g., the Internet). The LTE standard allows for the
specification and enforcement of dynamic policies (e.g.,
changing priority for a flow) within the cellular network.
The Policy and Charging rules function (PCRF) is the
repository of such policies. Whenever a new flow starts,
the PCRF is consulted to identify policies that apply to
the flow. The policy and charging enforcement function
(PCEF), which is typically built into the P-GW, is re-
sponsible for the enforcement of cellular policies. Fi-
nally, most cellular EPCs also include middleboxes like
NATs, firewalls and proxies that are traversed before a
packet reaches the Internet.

A typical cellular network has a few hundred of these
EPC components. The data plane elements are typically
deployed in a small number of pre-provisioned data cen-
ters [9] while the control plane elements are deployed
closer to eNodeBs for efficiently handling latency sensi-
tive control plane traffic. When building out these data
centers, the EPC is typically provisioned in distinct units
we call as ‘zones’. A zone typically consists of P-GWs,
possibly S-GWs, and other associated middleboxes (e.g.,
NAT, firewall) and network elements. When the traffic in
existing zones reaches a capacity threshold, a new zone
is added.

The EPC is typically partitioned to handle different
types (e.g., LTE VoIP or VoLTE, Internet data, M2M,
corporate VPN) of traffic. This partitioning is achieved
through the use of access point names (APN). A cellu-
lar provider can associate different traffic types to one or
more APNs. A set of APNs – depending on their traf-

fic volume – is mapped to a zone. As a result, the P-
GW and other middleboxes and network elements in the
zone are configured to serve a set of APNs. Roughly, a
zone serves as a basic provisioning unit in the data center
while an APN serves as a traffic classifier where its traf-
fic is load-balanced across multiple zones (e.g., a zone
serving a metropolitan area).

Before a UE can send or receive data, it has to first
establish a GTP (GPRS Tunneling Protocol) tunnel. The
GTP tunnel, established between the eNodeB and the P-
GW, provides logical point-to-point connectivity per UE
as it moves around in the network. The GTP tunnel com-
prises of two halves; one between eNodeB and S-GW
and one between S-GW and P-GW. While the latter is
retained as long as the UE is registered in the network,
the former is torn down whenever the UE goes idle, and
re-created whenever data is exchanged. When the UE
moves from one eNodeB to another, the tunnel between
the eNodeB and the S-GW also moves. To setup the
tunnel, the UE first identifies the APN to use and then
the associated P-GW. It then initiates establishment of a
GTP tunnel. Similarly, it initiates tunnel creation when it
wakes up and has data to send. However, the network has
to “page” the UE whenever there is data for the UE and
the UE is idle. The UE, when it receives a page, wakes
up and reestablishes the tunnel between the eNodeB and
the S-GW.

To summarize, there are multiple services and devices
that run inside a cellular core network supporting not
only LTE, but also 3G and 2G networks. Today, the plat-
forms running these services comprise of fixed hardware
appliances that are statically provisioned and configured.
Different traffic types, however, may have different load
patterns and peaks. Similarly, traffic at different loca-
tions may behave differently. Finally, the traffic for one
service, e.g., 3G, may reduce over time and be replaced
with another, e.g., LTE. Virtualizing the cellular network
elements allows us to consolidate these functions and dy-
namically scale and place these functions based on de-
mands across specific dimensions.

3 A Case for a Minimalistic Roadmap

We begin by identifying the key opportunities that could
be enabled by an elastic cellular core. We then discuss
clean slate proposals for realizing these opportunities.
The driving question that we ask in this section is whether
all the changes that clean slate designs argue for are nec-
cessary? We then consider a design point which requires
minimalistic changes to the existing cellular core, lever-
aging network function virtualization. We argue through
a quantitative and qualitative analysis how most of these
opportunities could potentially be achieved with a mini-
malist design.

2

KLEIN#regional#controller##

S-GW

DC1

MME

P-GWGTP#tunnel#for#data#
traffic#

Lookup<loca<on,APN>#
KLEIN#local#controller##

KLEIN#global#controller##

New$Interfaces$

DNS#resolver##
#

Figure 5.13: Network orchestration mechansims in a KLEIN based cellular core.

5.7 Network Orchestration
Given the output of KLEIN’s resource manager, UE’s data and cellular control traffic need to

be assigned to VMs. We discuss how this is done in two phases: (1) wide-area orchestration to

get the UE to the correct DC, (2) intra-DC orchestration to get the traffic through correct VMs.

Figure 5.13 provides an overview of these orchestration mechanisms. Below we describe these

mechanisms, and how KLEIN handles the reassignment of UEs.

5.7.1 Wide-area orchestration

In KLEIN, the cellular carrier’s wide area network– the backbone network connecting the base

stations and the data centers remains unmodified. We assume legacy routing, with carriers using

existing tunneling mechanisms such as GTP to connect base stations to data centers. Today, when

a UE attaches to an eNodeB, the eNodeB performs a DNS lookup to identify a MME to forward

the attach request to. In response to the attach request, the MME acts as a DNS resolver to help

select the S/P-GWs and set up the GTP tunnels.

In KLEIN, we enhance the attachment process slightly. In the initial MME selection DNS

query, the eNodeB now includes the device and subscriber identifier of the UE in addition to the

92

location information it sends today. This DNS query is serviced by the nearest MME using its DNS

resolver capabilities. It uses the device and subscriber identifier to map the UE into a KLEIN UE

group, and subsequently uses the mapping provided by the KLEIN controller to select an MME

for servicing the UE’s attach request and as its future home for control plane traffic. An attach

request is now sent by the eNodeB to the chosen home MME, which similarly identifies the UE’s

group from the device and subscriber information in request and selects a S/P-GW based on the

UE group to GW mapping provided by the KLEIN controllers.

This enhanced registration procedure requires the MME to maintain a connection with the

KLEIN’s controllers to obtain an up-to-date UE group to MME and S/P-GW mapping. Fortunately,

since MMEs use a standard DNS interface for server selection, such a connection requires minimal

integration on the KLEIN controller’s part.

5.7.2 Intra-datacenter orchestration

While the wide-area orchestration is responsible for choosing an MME, S-GW, and P-GW to route

the UE’s traffic. intra-DC orchestration is needed to implement the NF (middlebox) service chains

that traffic passes through after it leaves the P-GW. There are two main considerations here:

1. After it leaves the P-GW, the next VM a packet needs to be sent to depends on the service

chain associated with the traffic. We need to implement service chains corresponding to

different traffic classes (UE devices and applications). These NFs may include elements

such as NAT, firewalls, intrusion detection systems, TCP-termination proxies for improving

latency and throughput, content-caches, or media transcoders.

2. With elastic scaling, each service chain NF may be implemented as a collection of load-

balanced VMs and the number of such VMs may grow or shrink based on demand. This

requires a load balancing mechanism at the level of each server.

We borrow from prior work [65, 116, 102, 12] to solve (1) and (2). We use SDN inside data

centers to enforce service-chain policies by dynamically routing traffic to the desired sequence

of VMs. We apply service chain policies based on APN values. We use a tag-based approach

similar to [65, 116] to ensure that service chains can be correctly implemented. Each VM has a tag

93

value, and forwarding is done based on these tags. A service chain we assume is based on the UE

device-type and application.

To balance load across multiple instances of a network function, we cannot use a dedicated load

balancer, because it would itself become a bottleneck, since its on the path of every VM. We use

a distributed load balancer at the level of each server, similar to [65, 102] to balance load among

multiple instances of the same network functions in a server while handling scale-in and scale-out

of the NF VMs.

5.7.3 KLEIN’s reconfigurations

As KLEIN’s resource manager reconfigures traffic load, a UE’s processing may need to be migrated

to new EPC instances. 3GPP protocol’s mandate that MME selects the S/P-GW for a device. To

ensure backwards-compatibility KLEIN maintains an interface with MME instances and dynami-

cally updates in these MME instances mappings from UE to S/P-GW instances. We use standard

3GPP handover mechanisms to migrate a UE to a different MME/SGW instance [1, 15] and ex-

isting (but non-standardized) mechanisms for P-GW handover [5, 22]. To ensure that migrating

the P-GW and NAT associated with a UE to a new site does not change the IP address associated

with the UE’s sessions we assume, as is common practice in carriers today, that the data center

sites are connected over a layer 2 MPLS-based VPN. As has been demonstrated in previous work

[139, 88], IP session migration using L2VPNs can accommodate even demanding applications like

gaming.

Below we consider all the three possible types of reconfigurations by KLEIN and how they will

be handled by the network orchestration layer:

• Intra-DC: In KLEIN, a local controller may reconfigure the load to a different VM, in-

side the same data center. If a UE’s traffic is placed to a different MME instance, the local

controller triggers a MME handover from the old MME instance using standard 3GPP han-

dover procedures [1]. If the UE’s data traffic needs to be moved to another S/P-GW instance

within the same data center, the local controller initiates a standard 3GPP S-GW handover

that moves the UE session context from the old S/P-GW instance to the new S-GW instance.

These handovers are standard operating procedure for supporting mobility in existing 3GPP

94

networks, and are well supported by existing implementations. For an intra-DC handover, no

changes to the service chain are needed, because the distributed load balancer ensures ses-

sion affinity such that the new P-GW will continue to send a UE’s packets to the same next

hop VM in the chain. Typically, session affinity is implemented using a common flow-table

across the SDN switches implementing the load balancer [34].

• Intra-Region: In case the UE’s data or signalling traffic needs to be moved to another

data center, the same standard mechanisms for MME, S/P-GW handover as in the intra-DC

case are used. However, there are several important differences. First, in case of intra-DC

handovers, the new mapping is provided by the regional controller to the local controllers.

Second, when a P-GW or external facing NAT moves from one DC to another, we need to

ensure that the UE’s IP address does not change. This is achieved through the L2 MPLS-

VPNs as described above. And finally, any middlebox state also needs to be migrated from

the old DC to the new DC. This can be achieved by ensuring that the middleboxes support a

state-migration protocol such as OpenNF [72].

• Inter-Region: In case a UE’s traffic is moved to a data center in a different region, the global

controller passes UE remappings to the regional controller (old-new data center), which then

in turn passes it to the local controllers. The local controllers then trigger MME handover

or S-GW handover. In case of P-GW, it moves the instance to the new data center. Similar

considerations of middlebox state migration as in the intra-region case are involved in inter-

region transfers.

5.8 Implementation
In this section, we describe an implementation of KLEIN that we will use in the following sec-

tion for performance evaluation. The implementation consists of EPC, resource management and

orchestration layers and uses emulated UEs and eNodeBs.

EPC implementation: We use OpenAirInterface (OAI) version 0.1, an open source soft-

ware implementation of EPC functions (MME, S-GW, P-GW, HSS), and eNodeB and

95

����

��

���

����

��� ��� ��� ��� ��� ��� ��� ��� ���

�
��
��
���
��
��
��
��
��
��
��
��
�

�������������������������������

���
����
����

Figure 5.14: KLEIN’s responsiveness

UEs [28]. The UE and eNodeB behaviors are emulated; they are virtualized and run inside VMs.

The EPC functions are also run inside a VM. In OAI, the EPC functions, viz., MME, S-GW, and

P-GW, are tightly integrated and run inside the same VM. A key limitation of OAI is that the bind-

ing of UE to EPC is static. We extended OAI to enable dynamic remapping of the UE to a different

EPC instance. We made some simplifying assumptions to do this, such as copying all UE contexts

to all MMEs at the beginning. It is possible to do this for a small testbed and does not impact the

broad performance measures we are interested in here.

Resource management and orchestration layers: Each EPC instance is realized as a VM. Emu-

lated UEs and eNodeBs are also run inside VMs. In our testbed, we have a single UE per eNodeB

because of OAI constraints. We use OpenvSwitch [27] to emulate switches inside the DCs. We

developed custom implementations of the global and regional controllers using CPLEX to run

these algorithms. We use the Floodlight [14] SDN controller which installs rules inside SDN

switches to dynamically route traffic among the VMs.

5.9 Evaluation
In this section, we use a combination of real testbed and trace-driven simulations to demonstrate

the following benefits of KLEIN:

96

����

�����

��

�����

����

�����

����

��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��
��
��
��
��
�

��
��
��
��
���
��
��
��
�
��
��
��
��
��
��
��
��

��

����
����

Figure 5.15: KLEIN’s optimality

1. KLEIN is scalable and near-optimal. Our system takes less than 20s to reconfigure a network

with 2000 data centers and 5 billion devices and is within 10% of an ideal CLEANSLATE for a

range of workloads. (§ 5.9.1)

2. The KLEIN end-to-end prototype implementation delivers the promised benefits and accurately

mirrors the intended load distribution. (§ 5.9.2)

3. KLEIN offers new dimensions of elasticity and fault tolerance. It can handle data center failures

both rapidly and efficiently, taking less than 2.3s, and reducing the maximum load by a factor of

2. (§ 5.9.3)

Setup and methodology: Before going into the results, we describe the testbed and simulation

setups used for the experiments.

• Testbed: The testbed runs on Emulab [138]. The testbed uses upto 24 machine with 2.4 GHz 64-

bit Quad Core and 12GB of RAM. On each machine, we assigned equal ammount of resources

to each VM: 1 vCPU (virtual CPU) and 3GB of memory. Each VM runs Ubuntu 12.04 (Linux

kernel version 3.13.0-32-generic).

• Simulation setup: The large scale simulations using data set in §5.3.1 are run on a machine with

80 CPU cores and 500 GB of RAM, with each core being a Xeon E74850 running at 2 GHz.

97

��
����
��
����
��
����

�� ��� ��� ��� ��� ��� ���

��
��
��
��
��
��
��
�

��
��
��
��
���
��
��
��
�
�

���

Figure 5.16: Varying reconfiguration period
• Deployments: We consider different core network sizes, from 500 data centers to 2000 data

centers. The locations of such data centers are assumed close to the eNodeBs they meant to

serve. This is done by a nearest-neighbor clustering of eNodeBs in the 2D space and locating

the data centers at the centroid of such clusters.

• Traffic demands: We use the data set in §5.3.1 to get the traffic demands. In addition, we vary

the mix of traffic (latency sensitive and latency tolerant) and the delay budgets from different

traffic classes to consider a variety of traffic scenarios.

5.9.1 Scalability and Optimality

Scalability and responsiveness: Figure 5.14 shows the run time of KLEIN for different cellular

core network sizes and number of devices. A configuration (A,B) corresponds to a deployment of

B data centers, where we assumed A regions. The y-axis shows the total response time when both

the global and regional controllers have to reconfigure load. We observe that run time is less than

20s for a network with 2000 sites and 50 billion devices.5 In contrast with a 2-level decomposition

(as shown in Table 5.1) even with aggregation, it takes more than a day to reconfigure the load.

Optimality: Figure 5.15 shows for different traffic mix and delay budgets, how KLEIN’s heuris-

tics perform. The y-axis shows the load balancing optimality gap, (KLEIN/CleanSlate). The

CleanSlate solution optimally load balances the data and control plane functions without consider-

5Note for 50 billion devices, we use a total 50,000 aggregates of UEs.

98

��

���

����

����

����

������� ��������� ���������

�
��
�
��
��
��
��
��
���
�
��
��
�

����������

������
�����������������
���������������

Figure 5.17: KLEIN’s failure handling

ing any

BudgetMME−SGW
t constraints. We observe KLEIN’s remains within 10% of the optimal solution,

even for very stringent delay budget of 10 ms.

Varying reconfiguration period: Figure 5.16 shows the impact of reconfiguration period on the

effectiveness of KLEIN’s load balancing. The y-axis shows the load balancing gap, where we

compare against a base line where every 5 mins both the regional and global controller reconfigure

the load. We vary the global controller reconfiguration period, from 5 mins to 60 mins, while the

regional controllers constantly reconfigure the load every 5 mins. Even with global reconfiguration

at 60 min intervals, the gap is only 2.5%. We find that one effective strategy is where global

controller reconfigures the load periodically every 60 mins, while the regional controller performs

reconfigurations every 5mins.

5.9.2 End-to-End System Validation

We have validated our testbed demonstrating expected load balanced operation. Here, we consider

16 UEs attached to 16 base stations, and a total of 8 EPC instances. We use traffic data from

16 different base stations from the real data set, and scale their load to adjust to the capabilities

of the testbed. We then dynamically map a UE’s traffic to a specific EPC instance, based on the

99

��

����

��

����

��

����

������� ��������� ���������

��
���
��
��
��
��
��
��
�
��
��
��
�

����������

�����������������
���������������

Figure 5.18: KLEIN’s failure response

load on the network and using SDN Floodlight controller, to dynamically install forwarding rules

the switches. We consider three different traffic distributions which represent loads hour apart.

Figure 5.21 shows the gap between the observed load and the output from KLEIN. Figure 5.21

shows the gap between the observed load and the output from KLEIN optimization (Expected).

For all EPC instances, the observed load is within 5% of the expected load.

We also noted the number of control bytes exchanged when moving a UE to a different MME

and S-GW instance. This is roughly 6 KB for S-GW and 2 KB for MME. These are modest

numbers even when millions of UEs are moved.

5.9.3 New Opportunities

Elastic scaling: One of the new opportunities that KLEIN offers is the ability to dynamically

scale EPC functions. This is because in KLEIN, the EPC functions are virtualized and can be

instantiated based on demand. To illustrate this, we consider an elastic scaling experiment in our

testbed, where we assume three UEs attached to an EPC instance which experiences a spike in

load. The EPC instance is overloaded and we instantiate another EPC instance, and move some

traffic to this new instance. The Figure 5.20 shows the time series. The load is evenly distributed

and KLEIN avoids a potential overload scenario. We observe it takes in the order of a few ms to

100

�����

����

��

���

�� �� ���

�
��
�
��
��
��
��
��
��
��
��
��
��
���
�

�������������

�����
�����

Figure 5.19: Impact on end-application performance

exchange UE state between different EPC instances and be able to route data traffic to the new

EPC instance.

Failure handling: We consider a scenario where we fail individual data centers, and use KLEIN’s

dynamic remapping to reconfigure the load on the network. We compare it against a Static failure

management strategy, where in the case of a failure, the load is statically mapped to the nearest

data center. Figure 5.17 shows KLEIN avoids potential overload scenarios in the face of failure.

We consider 3 different core network deployments, consisting of 500, 1000 and 2000 data centers.

KLEIN can handle data center failures at two levels. It can perform (1) Regional recovery, where

the regional controller tries to redistribute the load within the same region and (2) Global recovery,

where the global controller redistributes the load across the cellular core. KLEIN can reduce max-

imum load on any data center in the cellular core by upto 100% as compared to a Static strategy.

As shown in Figure 5.18, a Global recovery takes KLEIN upto 2.3s and a Regional recovery upto

0.3s.

5.9.4 UE Migrations

When we rebalance the load across sites, it requires us to either move some already active UEs to

another site or assign new UEs to a site. In the former case, the following problem is created: every

101

��

��

��

��

��

���

���

���

�� ��� ��� ��� ��� ����

��
��
��
�
��
��

��������������

����
����

Figure 5.20: Handling traffic overload on an EPC instance by instantiating a new EPC in-
stance.

active UE that moves to a new site, needs its relevant state to be moved from the old site to the new

site, to ensure correct processing. We saw that using existing 3GPP protocols this state could be

migrated. We also observed through microbenchmarking experiments that the overhead of moving

this state is small. However, in case there are too many UEs that need to move simultaneously, we

can constrain the number of UE migrations. In our resource manager, we also consider constraining

the number of simultaneous UE migrations from one site to another site. We assume all the UEs

are active, and consider the following UE migration threshold: we constrain the percentage of

UEs that can move across consecutive load distribution configurations, e.g., only 10% UEs can be

moved in any load configuration. These constraints can be implemented by both the global as well

as the regional controllers. We also investigate how adding these UE migration constrains, affects

the optimality of our solution. Here the optimality gap, refers to the gap between a constrained and

unconstrained solution.

Figure 5.22 shows how these UE migration constrains impact the optimality of the load bal-

ancing solution with different number of UE groups: Group100, Group1000 and Group10000.

We observe in Figure 5.22 that if we have a UE migration threshold of 30%, the optimality gap

(the difference between the optimal and the considered solution) is close to 0, where if the UE

102

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ���� ����

�
��
�
��
��
��
��
��
��
��
��
��
��
��
� ��������

��������

Figure 5.21: Validation of KLEIN on EPC testbed

migration threshold is close to 0, the optimality gap can be as high as 20%.

5.10 Summary
Today the cellular core suffers from a range of limitations and inefficiencies. As operators are

rapidly improving the access bandwidth in (4G/LTE) networks, the core network remains the bot-

tleneck. As carriers are looking to redesign their networks, an important question is whether we

need to completely redesign the cellular core. Using a data-driven analysis we find that we can

near-optimally achieve the benefits of an optimal clean slate approach using SIMPLE, a minimally

disruptive redesign. The key observation is that by combining virtualized network functions with

a smart resource management layer and a more distributed cellular core, we can achieve almost

all of the promised elasticity benefits while working within the operational constraints of existing

3GPP standards.

103

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

O
pt

im
al

ity
 g

ap
 (%

)

UE migration threshold (%)

Group100
Group1000

Group10000

Figure 5.22: Varing UE migration threshold, and observing the impact on optimality gap.

104

Chapter 6

Conclusions and Future Work

The work in this dissertation was driven by finding a middle ground in designing management

frameworks for middleboxes that can address middlebox-specific challenges while being mini-

mally disruptive. Existing mechanisms for middlebox management are both inefficient and com-

plex, while clean slate proposals require completely rearchitecting how middleboxes are imple-

mented and managed. One of the main contributions of this dissertation is in showing in multiple

contexts that most of the challenges in middlebox management can be addressed by practical man-

agement frameworks while requiring minimal changes in middlebox implementations and routing

mechanisms. The key technical insights of this work are to show how several middlebox problems

can be formulated as system-wide resource management problems, and to propose scalable and

efficient heuristics for solving these otherwise hard optimization problems.

Next, I briefly summarize the main contributions of the work presented in this dissertation

before highlighting some potential avenues for future work

6.1 Contributions
Efficient Middlebox-Specific Policy Enforcement:

I designed SIMPLE, an efficient system for enforcing middlebox-specific policies [116]. Chapter

3 described how SIMPLE addresses the challenges of policy composition, resource management

and middlebox-induced dynamic modifications.

105

Efficient middlebox policy enforcement subject to SDN switch capacity constraints and mid-

dlebox capacity constraints is a hard problem. SIMPLE describes a scalable and efficient heuristic

for solving this problem by decomposing the original hard optimization problem into a offline

pruning stage and a fast online load balancing stage.

The other key challenge was to ensure correct policy enforcement. SIMPLE showed we can

encode middlebox state in the packet to address this problem.

Lastly, we addressed the challenge of handling dynamic traffic transformations while assuming

middleboxes to be black boxes. We designed a flow-correlation technique that can detect flow

transformations by middleboxes.

SIMPLE did not require any modifications to middleboxes or any visibility inside middlebox

implementations. It could readily work with existing middlebox deployments. At the same time,

SIMPLE’s load balancing algorithms are also enabler for NFV, to allow load distribution across

virtual middlebox applications.

Designing a Flexible Cellular Core:

In Chapter 4, we proposed a re-design of the cellular core, KLEIN, that uses NFV and smart

resource management. KLEIN confines largely to existing cellular signaling protocols and does

not require any changes to the way of routing is done over the cellular backbone network.

In designing KLEIN, I addressed challenges of designing a scalable resource manager that

could scale to thousands of sites and billions of devices. We leveraged the workload characteris-

tics and nature of cellular deployments to design a hierarchical management plane that is highly

responsive while offering a large number of benefits over the existing cellular core design.

6.2 Future Work

6.2.1 Customization and Modularization of EPC Network Functions

As the cellular architecture was originally designed to support voice communication seamlessly

even for highly mobile users, we posit that todays cellular architecture is ill-equipped to carry a

large number of end devices that carry increasingly heterogeneous forms of traffic. For example,

the Internet of Things drive is pushing new forms of end devices into the network, which are often

106

P"GW%S"GW%
VVVV

MME%

eNodeB%

RDC%
NDC%

Stateless%GWs%C"GW%
NDC%

Sta$onary)traffic) No)network0triggered)downlink)traffic)

Figure 6.1: Examples of functional customization.

called M2M (Machine-to-Machine) devices. These M2M devices usually require little human in-

tervention and show data communication characteristics different from smartphones (e.g., periodic

short data sessions). Further, a significant portion of M2M devices are stationary and need minimal

level of mobility/location management functions. However, even though they may need less func-

tionality, the current EPC architecture carries the same amount of control state for an M2M device

as a regular smartphone (e.g., GTP tunnel state, device location). While this renders the operators

cost of supporting an M2M device on par with a smartphone, the user may expect a much cheaper

charging model for M2M communications. In addition, a cellular provider will experience a huge

scalability issue as billions of M2M devices are added to the cellular network. One approach to

address this issue is to customize cellular core functions based on device/traffic types. Operators

may develop customized functional modules at a smaller ‘grain’ than is done in today’s network

and then chain these modules differently for different traffic types that need different treatments in

the control and data planes. This helps the network scale better by eliminating unnecessary system

processing and saving resources. Also, simplified and optimally located service chains can result in

performance gains. To illustrate potential benefits of functional customization, I here focus on two

types of M2M devices. Figure 6.1 illustrates the two scenarios as well as the regular smartphone

case for reference. Note, NDC refers to a National Data Center, and RDC refers to a Regional Data

Center.

Stationary devices: They do not strictly need the entire MME or S-GW functionalities, as there

are no needs for inter-eNodeB handovers and continuous location tracking and update. Here,

the MME related functionalities strictly needed are: device registration/authentication and ability

to lookup device location, providing much simpler MME design. Similarly, S-GW can also be

107

simplified as S-GW is involved in inter-eNodeB handovers. So instead of traditional full-fledged

MME, S-GW and P-GW, we only need a customized GW module (that runs P-GW and a subset

of MME and S-GW functions) that provides the minimum needed functionalities. Because the

service chain can be simplified, a unit GW module can process more sessions, allowing them to

scale much better.

Such a functional simplification can potentially improve the performance as well. To illustrate,

we have performed a back-of-an-envelope calculation based on detailed LTE call flows [38] and

propagation delay between eNodeB/MME/S-GW/P-GW of the cellular network under study. In

the cases we consider, we find that bearer setup delay for initial device attachment procedure can

be reduced by 70% and paging delay by 75%.

Devices with no network-triggered downlink traffic: Such devices always initiate communica-

tion (e.g., periodic transfer of update messages), and thus S-GW and P-GW do not strictly need to

maintain GTP tunnel states for incoming messages to these devices all the time. Instead, depend-

ing on the traffic pattern, stateless S-GW and P-GW can clear particular GTP tunnel states and

re-establish them when needed. Based on a recent study [127], compared to smartphones, M2M

devices are less active, and the median active times are about 30%. This means that even though

the devices are active for 30% time (or less), full-fledged S-GW and P-GW need to keep state for

100% of the time. We further perform a simple study using parameters such as the number of con-

current bearers S-GW/P-GW devices can support, session lengths and inter-arrival times of M2M

traffic [127]. Applying Little’s law, we estimate that each S-GW could support 0.5 million more

devices (roughly 30 times more than currently could be supported), if the state was maintained only

when the device was active. While these are back-of-the envelop calculations, they still illustrate

the significance of the potential.

Here the key questions to explore are how EPC functions can be customized? How can we

enable an architecture which can support highly customizable EPC stack? My work KLEIN in this

dissertation, can be enabler for this, as it supports dynamic resource management with virtualized

network functions in the EPC.

108

6.2.2 Efficient State Management

With dynamic resource management, a key challenge is we maybe required to move network func-

tion state. Some middleboxes maintain state (e.g., byte counters, socket context, device location),

hence moving this state is necessary to ensure correct processing of packets. For instance, EPC

functions such as MME maintain state related to device location and the device subscription at-

tributes. Recent proposals, OpenNF [72] and SplitMerge[118] propose mechanisms for migrating

middlebox state. However they focus on moving state within a data center and on traditional mid-

dleboxes like load balancer, IDS, NAT. In KLEIN, since we reconfigure the network load across

data centers, network functions state maybe required to move across data centers. In KLEIN, we

use existing cellular protocols for migrating state and the state is maintained inside individual EPC

functions. Moving state frequently between highly distributed network functions may not be an

efficient solution to address this problem.

A key question is what state should be maintained inside network functions and what state

should be moved to controllers? Whether we need new APIs for managing state? How can we

design more efficient mechanisms for moving state? One approach could be to investigate the

state that is common across network functions such as device-specific state: device location and

subscription state. To move this state to the data center’s local controller, and keep the middlebox-

specific state inside network functions. For moving state, we could imagine new APIs where

device-specific state is moved between controllers of different sites while network-function specific

state is moved between network functions and controllers.

109

Bibliography

[1] 3GPP Evolved Packet System (EPS); Evolved General Packet Radio Service (GPRS)
Tunneling Protocol for Control Plane (GTPv2-C). http://www.3gpp.org/
DynaReport/29274.htm/.

[2] A Simple Model for Determining True Total Cost of Ownership for Data Centers. http:
//tinyurl.com/kznlhn2.

[3] ADARA. http://www.adaranet.com/.

[4] Affirmed Networks. http://www.affirmednetworks.com/.

[5] Architectural EPC Extensions for Supporting Heterogeneous Mobility Schemes. Document
by MEVICO, January 2013. http://www.mevico.org/D22.pdf.

[6] ARICENT. https://www.aricent.com/.

[7] Aryaka WAN Optimization. http://www.aryaka.com.

[8] AT&T Domain 2.0 Vision White Paper. http://tinyurl.com/p4uv3s3.

[9] AT&T launches virtualized packet core in Europe. http://www.fiercewireless.
com/tech/story/att-launches-virtualized-packet-core-europe/
2015-10-06.

[10] AT&T shifts 130K employees to focus on software network-
ing transition. http://www.fiercetelecom.com/story/
att-shifts-130k-employees-focus-software-networking-transition/
2015-06-08.

110

http://www.3gpp.org/DynaReport/29274.htm/
http://www.3gpp.org/DynaReport/29274.htm/
http://tinyurl.com/kznlhn2
http://tinyurl.com/kznlhn2
http://www.adaranet.com/
http://www.affirmednetworks.com/
http://www.mevico.org/D22.pdf
https://www.aricent.com/
http://www.aryaka.com
http://tinyurl.com/p4uv3s3
http://www.fiercewireless.com/tech/story/att-launches-virtualized-packet-core-europe/2015-10-06
http://www.fiercewireless.com/tech/story/att-launches-virtualized-packet-core-europe/2015-10-06
http://www.fiercewireless.com/tech/story/att-launches-virtualized-packet-core-europe/2015-10-06
http://www.fiercetelecom.com/story/att-shifts-130k-employees-focus-software-networking-transition/2015-06-08
http://www.fiercetelecom.com/story/att-shifts-130k-employees-focus-software-networking-transition/2015-06-08
http://www.fiercetelecom.com/story/att-shifts-130k-employees-focus-software-networking-transition/2015-06-08

[11] BladeLogic Sets Standard for Data Center Automation and Provides Foundation for
Utility Computing with Operations Manager Version 5. Business Wire, Sept 15, 2003,
. http://findarticles.com/p/articles/mi_m0EIN/is_2003_Sept_15/
ai_107753392/pg_2.

[12] Contrail Architecture. http://www.juniper.net/us/en/local/pdf/
whitepapers/2000535-en.pdf.

[13] Embrane. http://www.embrane.com/.

[14] Floodlight Controller. http://www.projectfloodlight.org/floodlight/.

[15] General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Ra-
dio Access Network (E-UTRAN) access. http://www.3gpp.org/DynaReport/
23401.htm/.

[16] Introducing ONOS - a SDN network operating system for Service Providers.
http://onosproject.org/wp-content/uploads/2014/11/
Whitepaper-ONOS-final.pdf.

[17] LTE Connectem Inc. http://www.connectem.net/.

[18] LTE Design and Deployment Strategies. http://tinyurl.com/lj2erpg.

[19] Managing the Signaling Storm. http://goo.gl/lkTyb1.

[20] Middleboxes: Taxonomy and Issues. https://tools.ietf.org/html/rfc3234.

[21] Mininet. http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/
Mininet.

[22] Mobile Gateway Configuration Guide. Alcatel Lucent Technical Document, 2014. http:
//infoproducts.alcatel-lucent.com.

[23] Morgan Stanley Releases The Mobile Internet Report. http://www.
morganstanley.com/.

111

http://findarticles.com/p/articles/mi_ m0EIN/is_2003_Sept_15/ai_107753392/pg_2.
http://findarticles.com/p/articles/mi_ m0EIN/is_2003_Sept_15/ai_107753392/pg_2.
http://www.juniper.net/us/en/local/pdf/whitepapers/2000535-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000535-en.pdf
http://www.embrane.com/
http://www.projectfloodlight.org/floodlight/
http://www.3gpp.org/DynaReport/23401.htm/
http://www.3gpp.org/DynaReport/23401.htm/
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://www.connectem.net/
http://tinyurl.com/lj2erpg
http://goo.gl/lkTyb1
https://tools.ietf.org/html/rfc3234
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
http://infoproducts.alcatel-lucent.com
http://infoproducts.alcatel-lucent.com
http://www.morganstanley.com/
http://www.morganstanley.com/

[24] NEC’s Simple Middlebox Configuration (SIMCO) Protocol (RFC 4540).
https://tools.ietf.org/html/rfc4540.

[25] Network Functions Virtualisation. http://portal.etsi.org/nfv/nfv_white_
paper.pdf.

[26] ONS2014 Keynote: John Donovan, Senior EVP, AT&T Technology & Network Operations.
https://www.youtube.com/watch?v=tLshR-BkIas.

[27] Open vSwitch. http://openvswitch.org/.

[28] OpenAirInterface. http://www.openairinterface.org/.

[29] The OpenEPC Project. http://http://www.openepc.com/.

[30] OpenStack. https://www.openstack.org/.

[31] Palo Alto Networks. http://www.paloaltonetworks.com/.

[32] Percentage of all global web pages served to mobile phones from 2009 to 2015. http:
//www.statista.com/statistics.

[33] POX Controller. http://www.noxrepo.org/pox/about-pox/.

[34] Service Chain Load Balancing with OpenContrail. http://www.opencontrail.
org/service-chain-load-balancing-with-opencontrail/.

[35] Snort. https://www.snort.org/.

[36] Solarflare solution overview. http://www.solarflare.com/.

[37] State of the News Media 2015. http://www.journalism.org/2015/04/29/
state-of-the-news-media-2015/.

[38] The LTE Network Architecture. http://tinyurl.com/negszts.

112

http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://portal.etsi.org/nfv/nfv_white_paper.pdf
https://www.youtube.com/watch?v= tLshR- BkIas
http://openvswitch.org/
http://www.openairinterface.org/
http://http://www.openepc.com/
https://www.openstack.org/
http://www.paloaltonetworks.com/
http://www.statista.com/statistics
http://www.statista.com/statistics
http://www.noxrepo.org/pox/about-pox/
http://www.opencontrail.org/service-chain-load-balancing-with-opencontrail/
http://www.opencontrail.org/service-chain-load-balancing-with-opencontrail/
https://www.snort.org/
http://www.solarflare.com/
http://www.journalism.org/2015/04/29/state-of-the-news-media-2015/
http://www.journalism.org/2015/04/29/state-of-the-news-media-2015/
http://tinyurl.com/negszts

[39] Top million US websites. http://ak.quantcast.com/
quantcast-top-million.zip.

[40] vEPC in LTE networks: Time to move ahead. Blog, March 2015. https://techzine.
alcatel-lucent.com/vepc-lte-networks-time-move-ahead?s_cid=
smm15_tmc0481_bl.

[41] Verizon-Carrier Adoption of Software-defined Networking. https://www.youtube.
com/watch?v=WVczl03edi4.

[42] Vyatta Software Middlebox. http://www.vyatta.com.

[43] World Enterprise Network and Data Security Markets. http://www.abiresearch.
com/press/3591-Enterprise+Network+and+Data+Security+
Spending+Shows+Remarkable+Resilience.

[44] World Enterprise Network Security Markets. http://www.abiresearch.com/
research/product/1006059-world-enterprise-network-and-data-security/.

[45] The Zettabyte Era: Trends and Analysis. Cisco Technology White Pa-
per, May 2015. http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
VNI_Hyperconnectivity_WP.pdf.

[46] Omer Abdelrahman and Erol Gelenbe. Signalling storms in 3G Mobile Networks. In Proc.
ICC, 2014.

[47] S. Agarwal, M. Kodialam, and T.V. Lakshman. Traffic engineering in software defined
networks. In Proc. of INFOCOM, 2013.

[48] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and
Amin Vahdat. Hedera: Dynamic flow scheduling for data center networks. In Proc. of
NSDI, 2010.

[49] Hassan Ali-Ahmad, Claudio Cicconetti, Antonio de la Oliva, Martin Dräxler, Rohit Gupta,
Vincenzo Mancuso, Laurent Roullet, and Vincenzo Sciancalepore. CROWD: An SDN Ap-
proach for DenseNets. In Proc. of EWSDN, 2013.

113

http://ak.quantcast.com/quantcast-top-million.zip
http://ak.quantcast.com/quantcast-top-million.zip
https://techzine.alcatel-lucent.com/vepc-lte-networks-time-move-ahead?s_cid=smm15_tmc0481_bl
https://techzine.alcatel-lucent.com/vepc-lte-networks-time-move-ahead?s_cid=smm15_tmc0481_bl
https://techzine.alcatel-lucent.com/vepc-lte-networks-time-move-ahead?s_cid=smm15_tmc0481_bl
https:// www.youtube.com/watch?v=WVczl03edi4
https:// www.youtube.com/watch?v=WVczl03edi4
http://www.vyatta.com
http://www.abiresearch.com/press/ 3591-Enterprise+Network+and+Data+Security+ Spending+Shows+Remarkable+Resilience.
http://www.abiresearch.com/press/ 3591-Enterprise+Network+and+Data+Security+ Spending+Shows+Remarkable+Resilience.
http://www.abiresearch.com/press/ 3591-Enterprise+Network+and+Data+Security+ Spending+Shows+Remarkable+Resilience.
http://www.abiresearch.com/research/product/1006059-world-enterprise-network-and-data-security/
http://www.abiresearch.com/research/product/1006059-world-enterprise-network-and-data-security/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf

[50] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vahdat. xOMB:
Extensible Open Middleboxes with Commodity Servers. In Proc. of ANCS, 2012.

[51] Arsany Basta, Wolfgang Kellerer, Marco Hoffmann, Klaus Hoffmann, and Ernst-Dieter
Schmidt. A virtual SDN-enabled LTE EPC architecture: a case study for S-/P-Gateways
functions. In Proc. of SDN4FNS, 2013.

[52] Theophilus Benson, Aditya Akella, Anees Shaikh, and Sambit Sahu. CloudNaaS: A Cloud
Networking Platform for Enterprise Applications. In Proc. of SOCC, 2011.

[53] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. The Case for Fine-
Grained Traffic Engineering in Data Centers. In Proc. of INM/WREN, 2010.

[54] Rodrigo Braga, Braga, Edjard Mota, Mota, and Alexandre Passito, Passito. Lightweight
DDoS Flooding Attack Detection Using NOX/OpenFlow. In Proc. of LCN, 2010.

[55] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: Taking Control of the Enterprise. In Proc. of SIGCOMM, 2007.

[56] M. Channegowda, R. Nejabati, and D. Simeonidou. Software-defined optical networks
technology and infrastructure: Enabling software-defined optical network operations.
IEEE/OSA Journal of Optical Communications and Networking, 5(10):A274–A282, 2013.

[57] Junguk Cho, Binh Nguyen, Arijit Banerjee, Robert Ricci, Jacobus Van der Merwe, and Kirk
Webb. Smore: Software-defined networking mobile offloading architecture. In Proc. of
AllThingsCellular, 2014.

[58] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. The Rabin–Karp algorithm. Intro-
duction to Algorithms, 2001.

[59] J. Costa-Requena. SDN Intergation in LTE Mobile Backhaul Networks. In Proc. of ICOIN,
2014.

[60] Andrew R Curtis et al. DevoFlow: Scaling Flow Management for High-Performance Net-
works. In Proc. of SIGCOMM, 2011.

[61] N. Cvijetic, A. Tanaka, P.N. Ji, K. Sethuraman, S. Murakami, and Ting Wang. SDN and

114

OpenFlow for Dynamic Flex-Grid Optical Access and Aggregation Networks. Journal of
Lightwave Technology, 32(4):864–870, 2014.

[62] Anupam Das, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Curtis
Yu. Transparent and Flexible Network Management for Big Data Processing in the Cloud.
In Proc. of HotCloud, 2013.

[63] Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ramana Kompella.
ElastiCon: An Elastic Distributed Sdn Controller. In Proc. of ANCS, 2014.

[64] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gianluca
Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. Routebricks: Exploiting
parallelism to scale software routers. In Proc. of SOSP, 2009.

[65] Seyed K. Fayaz, Yoshiaki Tobioka, and Vyas Sekar. Flexible and Elastic DDoS Defense
Using Bohatei. In Proc. USENIX Security, 2015.

[66] Seyed Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeff Mogul. FlowTags: Enforcing
Network-Wide Policies in the Presence of Dynamic Middlebox Actions. In Proc. HotSDN,
2013.

[67] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C. Mogul. Enforcing
network-wide policies in the presence of dynamic middlebox actions using flowtags. In
Proc. of NSDI, 2014.

[68] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: An intellectual history
of programmable networks. SIGCOMM Computer Communication Review, 44(2), April
2014.

[69] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford, and
Fred True. Deriving Traffic Demands for Operational IP Networks: Methodology and Ex-
perience. IEEE/ACM Transactions on Networking, 9(3):265–280, 2001.

[70] Aaron Gember, Anand Krishnamurthy, Saul St. John, Robert Grandl, Xiaoyang Gao, Ashok
Anand, Thephilus Benson, Vyas Sekar, and Aditya Akella. Stratos: A Network-Aware
Orchestration Layer for Middleboxes in the Cloud. In Technical Report arXiv:1305.0209,
2013.

115

[71] Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella. Toward Software-
defined Middlebox Networking. In Proc. of HotNets, 2012.

[72] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl, Junaid
Khalid, Sourav Das, and Aditya Akella. OpenNF: Enabling Innovation in Network Function
Control. In Proc. of SIGCOMM, 2014.

[73] Glen Gibb, Hongyi Zeng, and Nick McKeown. Outsourcing Network Functionality. In
Proc. of HotSDN, 2012.

[74] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding Network Failures
in Data Centers: Measurement, Analysis, and Implications. In Proc. SIGCOMM, 2011.

[75] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford, Ge-
offrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A Clean Slate 4D Approach to Network
Control and Management. SIGCOMM Computer Communication Review, 2005.

[76] Adam Greenhalgh, Felipe Huici, Mickael Hoerdt, Panagiotis Papadimitriou, Mark Handley,
and Laurent Mathy. Flow Processing and the Rise of Commodity Network Hardware. In
Proc. of CCR, 2009.

[77] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McKeown,
and Scott Shenker. NOX: Towards an Operating System for Networks. In Proc. of CCR,
2008.

[78] Aditya Gudipati, Li Erran Li, and Sachin Katti. RadioVisor: A Slicing Plane for Radio
Access Networks. In Proc. of HotSDN, 2014.

[79] Aditya Gudipati, Daniel Perry, Li Erran Li, and Sachin Katti. SoftRAN: Software Defined
Radio Access Network. In Proc. of HotSDN, 2013.

[80] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P. Donovan, Brandon Schlinker,
Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan Katz-Bassett. SDX:
A Software Defined Internet Exchange. In Proc. of SIGCOMM, 2014.

[81] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A Framework for Efficient and Scal-
able Offloading of Control Applications. In Proc. of HotSDN, 2012.

116

[82] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet Sharma,
Sujata Banerjee, and Nick McKeown. ElasticTree: Saving Energy in Data Center Networks.
In Proc. of NSDI, 2010.

[83] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar. New Opportunities for Load Balanc-
ing in Network-wide Intrusion Detection Systems. In Proc. of CoNEXT, 2012.

[84] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri,
and Roger Wattenhofer. Achieving high utilization with software-driven wan. In Proc. of
SIGCOMM, 2013.

[85] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. FLOWGUARD: Building
Robust Firewalls for Software-defined Networks. In Proc. of HotSDN, 2014.

[86] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM: High Performance and
Flexible Networking Using Virtualization on Commodity Platforms. In Proc. of NSDI, 2014.

[87] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen
Stuart, and Amin Vahdat. B4: Experience with a Globally-deployed Software Defined Wan.
In Proc. of SIGCOMM, 2013.

[88] Virajith Jalaparti, Matthew Caesar, Seungjoon Lee, Jeffery Pang, and Jacobus Van der
Merwe. SMOG: A Cloud Platform for Seamless Wide Area Migration of Online Games. In
Proc. of NetGames, 2012.

[89] Hani Jamjoom, Dan Williams, and Upendra Sharma. Don’t call them middleboxes, call
them middlepipes. In Proc. of HotSDN, 2014.

[90] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. SoftCell: Scalable and Flex-
ible Core Network Architecture. In Proc. of CoNEXT, 2013.

[91] D. Joseph and I. Stoica. Modeling middleboxes. IEEE Network, 2008.

[92] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica. A Policy-aware Switching Layer for Data
Centers. In Proc.of SIGCOMM, 2008.

117

[93] Peyman Kazemian, George Varghese, and Nick McKeown. Header Space Analysis: Static
Checking for Networks. In Proc. of NSDI, 2012.

[94] James Kempf, Bengt Johansson, Sten Pettersson, Harald Luning, and Tord Nilsson. Moving
the Mobile Evolved Packet Core to the Cloud. In Proc. of WIMOB, 2012.

[95] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The
click modular router. ACM Transactions on Computer Systems, 18(3):263–297, 2000.

[96] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min
Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker.
Onix: A Distributed Control Platform for Large-scale Production Network. In Proc. of
OSDI, 2010.

[97] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. Netalyzr: Illumi-
nating the Edge Network. In Proc. of IMC, 2010.

[98] L.E. Li, V. Liaghat, Hongze Zhao, M. Hajiaghay, Dan Li, G. Wilfong, Y.R. Yang, and
Chuanxiong Guo. PACE: Policy-Aware Application Cloud Embedding. In Proc. of INFO-
COM, 2013.

[99] Heikki Lindholm, Lirim Osmani, Hannu Flinck, Sasu Tarkoma, and Ashwin Rao. State
Space Analysis to Refactor the Mobile Core. In Proc. of AllThingsCellular, 2015.

[100] James MacCauley, Aurojit Panda, Martin Casado, Teemu Koponen, and Scott Shenker. Ex-
tending SDN to Large-Scale Networks. Open Network Summit, Research Track, 2013.

[101] Joao Martins, Mohamed Ahmed, Costin Raiciu, and Felipe Huici. Enabling Fast, Dynamic
Network Processing with clickOS. In Proc. of HotSDN, 2013.

[102] H. Matsuba, K. Joshi, M. Hiltunen, and R. Schlichting. Airfoil: A topology aware dis-
tributed load balancing service. In Proc. of IEEE Cloud, 2015.

[103] Stephanos Matsumoto, Samuel Hitz, and Adrian Perrig. Fleet: Defending SDNs from Ma-
licious Administrators. In Proc. of HotSDN, 2014.

[104] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer

118

Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Computer Communication Review, 2008.

[105] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.
Composing Software-defined Networks. In Proc. of NSDI, 2013.

[106] Mehrdad Moradi, Wenfei Wu, Li Erran Li, and Zhuoqing Morley Mao. SoftMoW: Recursive
and Reconfigurable Cellular WAN Architecture. In Proc. of CoNEXT, 2014.

[107] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. DREAM: Dynamic
Resource Allocation for Software-defined Measurement. In Proc. of SIGCOMM, 2014.

[108] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan. vCRIB: Virtual-
ized Rule Management in the Cloud. In Proc. of HotCloud, 2012.

[109] Yukihiro Nakagawa, Kazuki Hyoudou, and Takeshi Shimizu. A Management Method of IP
Multicast in Overlay Networks Using Openflow. In Proc. of HotSDN, 2012.

[110] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg, David A.
Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon Kim, and
Naveen Karri. Ananta: Cloud Scale Load Balancing. In Proc. of SIGCOMM, 2013.

[111] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In Computer
Networks, 1999.

[112] K. Pentikousis, Yan Wang, and Weihua Hu. Mobileflow: Toward software-defined mobile
networks. In Proc. of WIMOB, 2013.

[113] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy,
Thomas Anderson, and Timothy Roscoe. Arrakis: The Operating System is the Control
Plane. In Proc. of OSDI, 2014.

[114] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and Guofei
Gu. A Security Enforcement Kernel for OpenFlow Networks. In Proc. of HotSDN, 2012.

[115] Himabindu Pucha, David G. Andersen, and Michael Kaminsky. Exploiting Similarity for
Multi-Source Downloads using File Handprints. In Proc. of NSDI, 2007.

119

[116] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan Yu.
Simple-fying middlebox policy enforcement using sdn. In Proc. of SIGCOMM, 2013.

[117] Ramya Raghavendra, Jorge Lobo, and Kang-Won Lee. Dynamic Graph Query Primitives
for SDN-based Cloudnetwork Management. In Proc. of HotSDN, 2012.

[118] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. Split/merge:
System support for elastic execution in virtual middleboxes. In Proc. of NSDI, 2013.

[119] Saqib Raza, Guanyao Huang, Chen-Nee Chuah, Srini Seetharaman, and Jatinder Pal Singh.
MeasuRouting: A Framework for Routing Assisted Traffic Monitoring. IEEE/ACM Trans-
actions on Networking, 20(1):45–56, 2012.

[120] L. Rizzo, M. Carbone, and G. Catalli. Transparent acceleration of software packet forward-
ing using netmap. In Proc. of INFOCOM, 2012.

[121] Luigi Rizzo and Giuseppe Lettieri. VALE, a Switched Ethernet for Virtual Machines. In
Proc. of CoNEXT, 2012.

[122] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and Andrew W. Moore.
OFLOPS: An Open Framework for Openflow Switch Evaluation. In Proc. of PAM, 2012.

[123] M.R. Sama, L.M. Contreras, J. Kaippallimalil, I. Akiyoshi, Haiyang Qian, and Hui Ni.
Software-Defined Control of the Virtualized Mobile Packet Core. In IEEE Communications
Magazine, 2015.

[124] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi. Design
and Implementation of a Consolidated Middlebox Architecture. In Proc. of NSDI, 2012.

[125] Vyas Sekar, Sylvia Ratnasamy, Michael K. Reiter, Norbert Egi, and Guangyu Shi. The
middlebox manifesto: Enabling innovation in middlebox deployment. In Proc. of HotNets,
2011.

[126] S.Elby. Carrier Vision of SDN and future applications to achieve a more agile mobile busi-
nesss. Keynote at the OpenFlow World Congress, 2012.

[127] Muhammad Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia Wang. A First

120

Look at Cellular Machine-to-machine Traffic: Large Scale Measurement and Characteriza-
tion. In Proc. of SIGMETRICS, 2012.

[128] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Vyas Sekar. Making Middleboxes Someone else’s Problem: Network Processing As a
Cloud Service. In Proc. of SIGCOMM, 2012.

[129] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick McK-
eown, and Guru Parulkar. Can the Production Network Be the Testbed? In Proc. of OSDI,
2010.

[130] Seungwon Shin, Phillip A. Porras, Vinod Yegneswaran, Martin W. Fong, Guofei Gu, and
Mabry Tyson. FRESCO: Modular Composable Security Services for Software-Defined Net-
works. In Proc. of NDSS, 2013.

[131] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp topologies with rocketfuel.
In Proc. of SIGCOMM, 2002.

[132] M. Stiemerling, J. Quittek, and T. Taylor. Middlebox Communication (MIDCOM) Protocol
Semantics (RFC 5189). https://tools.ietf.org/html/rfc3989.

[133] Vytautas Valancius, Nikolaos Laoutaris, Laurent Massoulié, Christophe Diot, and Pablo
Rodriguez. Greening the Internet with Nano Data Centers. In Proc. of CoNext, 2009.

[134] Guohui Wang, T.S. Eugene Ng, and Anees Shaikh. Programming Your Network at Run-time
for Big Data Applications. In Proc. of HotSDN, 2012.

[135] R Wang, D Butnariu, and J Rexford. Openflow-Based Server Load Balancing Gone Wild.
In Proc. of Hot-ICE, 2011.

[136] Zhaoguang Wang et al. An Untold Story of Middleboxes in Cellular Networks. In Proc.
SIGCOMM, 2011.

[137] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang. An Untold
Story of Middleboxes in Cellular Networks. In Proc. of SIGCOMM, 2011.

[138] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,

121

https://tools.ietf.org/html/rfc3989

Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental environment
for distributed systems and networks. SIGOPS Operating Systems Review, 36(SI):255–270,
2002.

[139] Timothy Wood, K. K. Ramakrishnan, Prashant Shenoy, and Jacobus van der Merwe. Cloud-
Net: Dynamic Pooling of Cloud Resources by Live WAN Migration of Virtual Machines.
In Proc. VEE, 2011.

[140] Tobias Flach Ethan Katz-Bassett David Choffnes Ramesh Govindan Xing Xu, Yurong Jiang.
Investigating Transparent Web Proxies in Cellular Networks. In Proc. of PAM, 2015.

[141] Qiang Xu, Junxian Huang, Zhaoguang Wang, Feng Qian, Alexandre Gerber, and Zhuo-
qing Morley Mao. Cellular Data Network Infrastructure Characterization and Implication
on Mobile Content Placement. In Proc. of SIGMETRICS, 2011.

[142] Soheil Hassas Yeganeh and Yashar Ganjali. Beehive: Towards a Simple Abstraction for
Scalable Software-Defined Networking. In Proc. of HotNets, 2014.

[143] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and Harsha V.
Madhyastha. FlowSense: Monitoring Network Utilization with Zero Measurement Cost. In
Proc. of PAM, 2013.

[144] Minlan Yu, Lavanya Jose, and Rui Miao. Software Defined Traffic Measurement with
OpenSketch. In Proc. of NSDI, 2013.

[145] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable Flow-based
Networking with DIFANE. In Proc. of SIGCOMM, 2010.

[146] Zafar Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan Yu. Practi-
cal and incremental convergence between SDN and Middleboxes. Open Network Summit,
Research Track, 2013.

[147] Y. Zhang and V. Paxson. Detecting Stepping Stones. In Proc. of SSYM, 2000.

[148] Ying Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Pat-
neyt, M. Shirazipour, R. Subrahmaniam, C. Truchan, and M. Tatipamula. StEERING: A
software-defined networking for inline service chaining. In Proc. of ICNP, 2013.

122

	Introduction
	Motivation
	Thesis Approach and Contributions
	Outline

	Background
	Middleboxes
	Software Defined Networking
	Network Function Virtualization
	Cellular Network Background

	SIMPLE: Simplifying Middlebox Policy Enforcement Using SDN
	Motivation and Contributions
	Related Work
	Opportunities and Challenges
	Middlebox composition
	Middlebox resource management
	Dynamic traffic transformation

	SIMPLE System Overview
	SIMPLE Data Plane Design
	Unambiguous forwarding
	Compact forwarding tables

	SIMPLE Dynamics Handler
	Design constraints
	Idea: Flow correlation
	Similarity-based correlation

	Resource Management
	Offline-Online Decomposition
	Offline ILP-based pruning
	Online load balancing with LP
	Extensions

	Implementation
	Evaluation
	Benefits of SIMPLE
	Scalability and optimality
	Accuracy of the DynHandler

	Summary

	A Framework to Evaluate the NFV Design Space
	Motivation
	Design Space of NFV
	Motivating Scenarios

	Inputs and Requirements
	Provisioning Model
	Control Variables
	Formulation

	Example Use Cases
	Summary

	KLEIN: A Minimally Disruptive Design for an Elastic Cellular Core
	Motivation and Contributions
	Related Work
	Limitations of Current Practises
	Data Set
	Load Balancing
	Impact on Applications
	Resource Provisioning
	Provisioning Cost vs. Wider Deployment
	Summary

	Design Space Exploration
	Design space
	Methodology
	Results
	Summary

	System Overview and Challenges
	Overview
	Challenges

	Resource Manager
	Problem Formulation
	Key Ideas
	Our Approach

	Network Orchestration
	Wide-area orchestration
	Intra-datacenter orchestration
	KLEIN's reconfigurations

	Implementation
	Evaluation
	Scalability and Optimality
	End-to-End System Validation
	New Opportunities
	UE Migrations

	Summary

	Conclusions and Future Work
	Contributions
	Future Work
	Customization and Modularization of EPC Network Functions
	Efficient State Management

	Bibliography

