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Abstract

Conformal geometry has deep roots in pure mathematics, combining complex
analysis, Riemann surface theory, algebraic geometry, differential geometry and alge-
braic topology. Computational conformal geometry plays an important role in digital
geometry processing. Recently, theory of discrete conformal geometry and algorithms
of computational conformal geometry have been developed[50]. A series of practi-
cal algorithms are presented to compute conformal mapping, which has been broadly
applied in a lot of practical fields, including computer graphics, medical imaging,
wireless sensor networks, visualization, and so on. In this thesis proposal, we address
three applications of computational conformal geometry in medical imaging, wireless
sensor networks and computer graphics respectively.

Firstly, automatic computation of surface correspondence via harmonicmap is an
active research field in computer vision. It may help document and understand phys-
ical and biological phenomena and also has broad applications in biometrics, medi-
cal imaging and motion capture. Although numerous studies have been devoted to
harmonic map research, limited progress has been made to compute a diffeomorphic
harmonic map on general topology surfaces with landmark constraints. This work
conquer this problem by changing the Riemannian metric on the target surface to a hy-
perbolic metric, so that the harmonic mapping is guaranteed to be a diffeomorphism
under landmark constraints. The computational algorithms are based on the Ricci
flow and nonlinear heat diffusion methods. The approach is general and robust. We
apply our algorithm to study constrained surface registration problem which applied
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to both medical and computer vision applications. Experimental results demonstrate
that, by changing the Riemannian metric, the registrations are always diffeomorphic,
and achieve relative high performance when evaluated with some popular surface reg-
istration evaluation standards.

Secondly, in a wireless sensor network, random walk on a graph is a Markov chain
and thus is memoryless as the next node to visit depends only on the current node and
not on the sequence of events that preceded it. With these properties, random walk and
its many variations have been used in network routing to randomize the traffic pattern
and hide the location of the data sources. We show a myth in common understanding
of the memoryless property of a random walk applied for protecting source location
privacy in a wireless sensor network. In particular, if one monitors only the network
boundary and records the first boundary node hit by a random walk, this distribution
can be related to the location of the source node. For the scenario of a single data
source, a very simple algorithm which integrates along the network boundary would
reveal the location of the source. We also develop a generic algorithm to reconstruct
the source locations for various sources that have simple descriptions (e.g., k source
locations, sources on a line segment, sources in a disk). This represents a new type of
traffic analysis attack for invading sensor data location privacy and essentially re-opens
the problem for further examination.

Finally, in medical imaging, we propose a new colon flattening algorithm that is ef-
ficient, shape-preserving, and robust to topological noise. Unlike previous approaches,
which require a mandatory topological denoising to remove fake handles, our algo-
rithm directly flattens the colon surface without any denoising. In our method, we
replace the original Euclidean metric of the colon surface with a heat diffusion metric
that is insensitive to topological noise. Using this heat diffusion metric, we then solve
a Laplacian equation followed by an integration step to compute the final flattening.
We demonstrate that our method is shape-preserving and the shape of the polyps are
well preserved. The flattened colon also provides an efficient way to enhance the nav-
igation and inspection in virtual colonoscopy. We further show how the existing colon
registration pipeline is made more robust by using our colon flattening. We have tested
our method on several colon wall surfaces and the experimental results demonstrate
the robustness and the efficiency of our method.
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of (c),(d) after converted on Klein disk. (g),(h) show the final registration
result by color mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

28 Experimental results for human face registration and tracking. . . . . . . . 57
29 Flipped area percentage for human face registration. . . . . . . . . . . . . . 58
30 Landmark curves on human cortical surface [103]. . . . . . . . . . . . . . 59
31 First row: source brain surface from front, back and bottom view. Second

rows: target brain model. The color on the models shows the correspon-
dence between source and target; the colored balls on the models show the
detailed correspondence, as the balls with the same color are correspondent
to each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

32 Curvature map difference of previous method (top row) and our method
(bottom row). Color goes from green to red while the curvature difference
increasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

33 Average Curvature Map Difference. . . . . . . . . . . . . . . . . . . . . . 61
34 Average Area Distortion. Color goes from green to red while area distor-

tion increasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
35 Average Area Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
36 The first hit distribution ω′

x and ω′
o for random walk inside a unit disk starting at x and o

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
37 The probability for a Brownian motion starting from x ∈ R and exiting from an interval

I[a, b] on the boundary ∂R is the same as the probability of a Brownian motion starting

from f(x) ∈ R′ and exiting from an interval I[f(a), f(b)] on the boundary ∂R′. . . . . 67
38 (a) shows the edge weight. (b) shows that the vertex position function is

harmonic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
39 Left: Distance from Center VS. Errorave under TM Model. Right: Nmsg

VS. Errorave/Errormax under TM Model. . . . . . . . . . . . . . . . . . 77

x



40 Distance from Center VS. Errorave under UDG Model. Right: Nmsg VS.
Errorave/Errormax under UDG Model. . . . . . . . . . . . . . . . . . . . 78

41 Left: Nmsg VS. Errorave/Errormax under TM Model. Right: Nmsg VS.
Errorave/Errormax under UDG Model. . . . . . . . . . . . . . . . . . . . 78

42 Left: Nmsg VS. Errorave/Errormax under TM Model. Right: under UDG
Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

43 Left: Nmsg VS. Errorave/Errormax under TM Model. Right: under UDG
Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

44 Left: First Hit Distribution. Right: First Hit Distribution on parameter
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

45 Left: Ndomain VS. Errorave under TM. Right: Ndomain VS. Errorave un-
der UDG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

46 Nmsg VS. Errorave for two sources. . . . . . . . . . . . . . . . . . . . . . 82
47 (a) A 3D colon model with topological noise, such as handles. A handle

is shown in a close-up view. (b) The flattening of the 3D colon in (a)
to a 2D rectangle using our method with heat diffusion Riemannian metric
(flattening of only the transverse segment of the colon is shown). A colonic
polyp (protrusion on colon wall) that is adjacent to a fold is shown in a
close-up view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

48 Comparison between geodesic distance and HDD using a hand model with
(a) thumb and index finger touching, and (b) thumb and index finger de-
tached by manually cutting at the location indicated by the red arrow. With
points p and q as epicenters, color encoded (c) geodesic distance function
of (a); (d) geodesic distance function of (b); (e) HDD function of (a); (f)
HDD function of (b). When the topology changes in (b), (d) changes dras-
tically (the geodesic path between p and q in white also changes), while (f)
is not affected and is consistent. . . . . . . . . . . . . . . . . . . . . . . . 92

49 The flattening of (a) human face surface with outer boundary γ0 and inner
boundaries γ1, γ2, γ3 using our algorithm. (b) Checker board mapping of
(a), showing that angles are well preserved. (c) Slit map showing the flat-
tening of (a). Level set visualization of: (d) exact harmonic 1-form, df1
with respect to γ1; (e) Hodge star of (d), ∗(df1); (f) holomorphic 1-form, η1
by combining (d) and (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

50 Comparison of our flattening algorithm using the original Euclidean metric
and heat diffusion metric. (a) Teapot patch with handle; (b) Teapot patch
with handle cut along a loop, shown in red; (c) Conformal module of (a)
using Euclidean metric; (d) Conformal module of (b) using Euclidean met-
ric; (e) Conformal module of (a) using heat diffusion metric; (f) Conformal
module of (b) using heat diffusion metric. . . . . . . . . . . . . . . . . . . 98

51 The flattening of the ascending segment of a colon using (a) Ricci flow, and
(b) our method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



52 Comparison of the running times of our colon flattening approach with the
colon flattening using the Ricci Flow method. . . . . . . . . . . . . . . . . 101

53 Handles detected by computing the Gaussian curvature for each vertex.
Red areas indicate handles detected (one shown in close-up view) and the
green area shows the zero Gaussian curvature region. . . . . . . . . . . . . 102

54 A flattened image for a whole colon dataset is shown in three images. The
rectum of the colon is on the left of (a) and the colon stretches to the cecum,
which is on the right of (c). The colonic polyps and the haustral folds are
well preserved. Three polyps, 1 and 2 in (a) and 3 in (c) are shown within
the yellow circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

55 Close up view of the polyps (bumps on the colon wall). (a) Polyp 1 in
Fig. 54(a); (b) Polyp 2 in Fig. 54(a); (c) Polyp 3 in Fig. 54(c), which is
hidden behind a colonic fold indicated by the red arrow. . . . . . . . . . . . 106

56 Registered flattened views of the ascending colon segments with handles of
(a) supine and (b) prone colon surfaces. Two polyps found on (a) (shown
in yellow circles) can be located on (b) (shown in yellow circles) at nearly
the same position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xii



Acknowledgements

I’d like to thank my parents for their support and suffer of missing. I’d like to thank my
advisor professor Xianfeng Gu, for his patience advising, precious help on both academy
and personal life. I learned a lot of great ideas as well as wisdoms about life. A young
PhD need a great advisor to get mature, and I’m lucky enough to get one. I’d like to thank
professor Jie Gao, for her generous help and guide to her research field; I’d like to thank
professor Yalin Wang, for his kindly help on the collaboration works; I’d like to thank
professor Wei Zeng for her advising and help on my early years of research; I’d like to
thank all of my labmates for their accompany; I’d like to thank all my lovely friends for
their help, spiritually and materially. I could not make it without you.

xiii



Publications

Published:

• Rui Shi, Wei Zeng, Zhengyu Su, Hanna Damasio, Zhonglin Lu, Yalin Wang, Shing-
Tung Yau, Xianfeng Gu: Hyperbolic Harmonic Mapping for Constrained Brain Sur-
face Registration. CVPR 2013: 2531-2538

• Rui Shi, Mayank Goswami, Jie Gao, Xianfeng Gu: Is random walk truly memoryless
- Traffic analysis and source location privacy under random walks. INFOCOM 2013:
3021-3029

• Rui Shi, Wei Zeng, Zhengyu Su, Yalin Wang, Hanna Damasio, Zhonglin Lu, Shing-
Tung Yau, Xianfeng Gu: Hyperbolic Harmonic Brain Surface Registration with
Curvature-Based Landmark Matching. IPMI 2013: 159-170

• Rui Shi, Wei Zeng, Jerome Zhengrong Liang, Xianfeng David Gu: Efficient Topo-
logical Cleaning for Visual Colon Surface Flattening. Abdominal Imaging 2012:
20-29

• Rui Shi; Hongbin Zhu; Gu, D.X.; Liang, J.Z.: Efficient colon wall flattening by im-
proved conformal mapping methodologies for computed tomography colonography,
NSS/MIC 2011 IEEE

• Wei Zeng, Rui Shi, Yalin Wang, Shing-Tung Yau, Xianfeng Gu: Teichmller Shape
Descriptor and Its Application to Alzheimer’s Disease Study. International Journal
of Computer Vision 105(2): 155-170 (2013)

• Krishna Chaitanya Gurijala, Rui Shi, Wei Zeng, Xianfeng Gu, Arie E. Kaufman:
Colon Flattening Using Heat Diffusion Riemannian Metric. IEEE Trans. Vis. Com-
put. Graph. 19(12): 2848-2857 (2013)

• Zhengyu Su, Wei Zeng, Rui Shi, Yalin Wang, Jian Sun, Xianfeng Gu: Area Preserv-
ing Brain Mapping. CVPR 2013: 2235-2242

• Mingchen Gao, Rui Shi, Shaoting Zhang, Wei Zeng, Zhen Qian, Xianfeng David Gu,
Dimitris N. Metaxas, Leon Axel: High resolution cardiac shape registration using
Ricci flow. ISBI 2013: 488-491

• Hao Peng, Rui Shi, Shi-Qing Xin, Xianfeng Gu: Global Colon Geometric Structure
Analysis Based on Geodesics and Conformal Flattening. Abdominal Imaging 2013:
107-116

xiv



• Huafeng Wang, Lihong Li, Hao Han, Rui Shi, Bowen Song, Hao Peng, Yan Liu,
Xianfeng Gu, Yunhong Wang, Zhengrong Liang: A 2.5D Colon Wall Flattening
Model for CT-Based Virtual Colonoscopy. MLMI 2013: 203-210

• Wei Zeng, Rui Shi, Xianfeng David Gu: Global Surface Remeshing Using Symmet-
ric Delaunay Triangulation in Uniformization Spaces. ISVD 2011: 160-169

Submitted:

• Shi, Rui; Zeng, Wei; Su, Zhengyu; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin;
Yau, Shing-Tung; Gu, Xianfeng: Hyperbolic Harmonic Mapping for Surface Regis-
tration. Submitted to IEEE TPAMI

• Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng:
Optimal Mass Transport for Shape Analysis. Submitted to IEEE TPAMI

xv



1 Introduction

Computational conformal geometry [50] is an emerging inter-disciplinary field, which ap-
plies algebraic topology, differential geometry [32] and Riemann surface theories [34] in
many engineering fields such as geometric modeling [44][56], computer graphics [109],
computer vision [152], medical imaging[1], wireless sensor networks [112], visualization
[77], scientific computation and many other engineering fields.

Recently, with the rapid development of three dimensional digital scanning technol-
ogy, computer aided geometric design, bio-informatics and medical imaging, the needs for
effective methods for digital geometric processing become urgent.

The fundamental reason for conformal geometry to be so useful lies in the following
facts: Conformal geometry studies the conformal structure. All surfaces in daily life have
a natural conformal structure. Therefore, the conformal geometric algorithms are very
general. Conformal structure of a general surface is more flexible than Riemannian met-
ric structure and more rigid than topological structure. It can handles large deformations,
which Riemannian geometry can not efficiently handle; it preserves a lot of geometric
information during the deformation, whereas, topological methods lose too much informa-
tion. Conformal maps are easy to control. For example, the conformal maps between two
simply connected closed surfaces form a six dimensional space, therefore by fixing three
points, the mapping is uniquely determined. This fact makes conformal geometric method
very valuable for surface matching and comparison. Computational conformal geometry
builds a connection between pure mathematics and computational algorithms, and gives a
solution to the problem of mapping 3D surfaces to 2D ones, and minimizing the distor-
tion during the process. Computational conformal geometry also studies the relationship
between curvature and metric, which gives us insights about the conformal structure and
shape space of surfaces, and enables us to design metrics to satisfy specific requirements.
In such a way, applications of computational conformal geometry are extended to the fields
related to metric design.

In this proposal, we first review the mathematical background of computational con-
formal geometry in Section 2. Then in Section 3, we explain in details the computational
algorithms. In section 4, we introduce the application in computer vision: Hyperbolic Har-
monic Surface Registration. In section 5, applications in wireless sensor network: Traffic
Analysis and Source Location Privacy under Random Walks. In section 6, applications in
medical imaging: Colon Flattening Using Heat Diffusion Riemannian Metric. Finally we
conclude the proposal with a sketch of the future plan.
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2 Theoretical Background

Many applications require to process and map a 3D surface to a planar domain. Generally
speaking, such mapping will have distortions, since the geometric structures of a 3D sur-
face and the plane usually have some differences. There are many metrics to measure the
distortion of a mapping between two surfaces. These two are essential and important: angle
distortion and area distortion. A mapping which preserves both angle and area between two
surfaces preserves the Gaussian curvature [76], and is called a isometric mapping. Confor-
mal mapping, or angle preserving mapping, is the one that minimizes angle distortion. It
has many good properties and can be applied in many research and engineering areas.

Conformal geometry studies the conformal structure of general surfaces, and computa-
tional conformal geometry aims at using computational algorithms to calculate the confor-
mal structure, and the conformal mapping between surfaces. In order to understand those
algorithms, we first introduce many mathematical definitions and theorems, and study el-
ementary algebraic topology, differential geometry, and Riemann surface theories. In this
section, we will briefly review the mathematical background of conformal geometry, which
includes algebraic topology, differential geometry, Riemann Surface theory and surface
Ricci flow theory.

2.1 Algebraic Topology

Algebraic topology uses algebraic methods to study topological problems. Basically, spe-
cial groups are associated with a space, and the topological properties of the space are
reflected by the structures of the groups. A fundamental problem in topology is to de-
termine whether two spaces are topologically equivalent. That is, we wish to know if
one space can be morphed into the other without having to puncture it. The key idea of
homology and cohomology is to define invariants (i.e., quantities that cannot change by
continuous deformation) that characterize topological spaces. That is to say, they are tools
of defining proper equivalence classes. It is extremely difficult to find the invariants for
homeomorphism, but we are able to find other weaker ones, such as homotopy, homol-
ogy and cohomology groups. Compared to homopoty groups, homology and cohomology
groups contain less information, but are much easier to compute since they are abelian.

2.1.1 Homology Groups

In this part, we review the concept of simplicial complex, chain group and homology group.

Definition 2.1 (Simplex). Suppose k + 1 points {v0, v1, · · · , vk} are in general positions
in Rn, n ≥ k + 1, the standard simplex [v0, v1, · · · , vk] is the minimal convex set including
all of them,

σ = [v0, v1, · · · , vk] = {x ∈ Rn|x =
k∑

i=0

λivi,

k∑
i=0

λi = 1, λi ≥ 0},
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we call v0, v1, · · · , vk are the vertices of the simplex σ. Suppose τ ⊂ σ is also a simplex,
then we say τ is a facet of σ.

Definition 2.2 (Simplicial Complex). A simplicial conplex Σ is a union of simplices, such
that

1. If a simplex σ belongs to K, then all its facets also belong to Σ.

2. If σ1, σ2 ⊂ K, σ1 ∩ σ2 ̸= ∅, then the intersection of σ1 and σ2 is also a common face.

Definition 2.3 (Chain Group). A q-chain is a linear combination of all q-simplexes in M,∑
i

λiσi, λi ∈ Z.

The set Cq(M) of q-chains in M forms an abelian group with addition defined by∑
αjσj +

∑
βjσj =

∑
(αj + βj)σj.

The zero element is
∑

0σj and the inverse of
∑
αjσj is

∑
(−αj)σj . Cq(M) is called the

q-demensional chain group of M .

Definition 2.4 (Boundary Operator). The q-dimensional boundary operator is a homomor-
phism,

∂q : Cq → Cq−1,

such that
∂q[v0, v1, · · · , vq] =

∑
i

(−1)i[v0, v1, · · · , vi−1, vi+1, · · · , vq],

and
∂q

∑
i

αiσi =
∑
i

αi∂qσi, αi ∈ Z.

The central idea of homology is to study the difference between the closed curves and
the boundary curves. A cycle is simply a closed k-chain, i.e., a linear combination of k-
simplices so that the boundary of this chain is the empty set. Any set of vertices is a closed
chain; also are any set of one dimensional loops. Equivalently, a k-cycle is any k-chain that
belongs to ker ∂k, by definition.

With the concept of k-cycle, we can define equivalence classes in homology. We will
say that a k-cycle is homologous to another k-cycle (i.e., in the same equivalence class as
the other) when these two chains differ by a boundary of a (k + 1)-chain (i.e., by an exact
chain). By definition, this exact chain is the image of ∂k+1, i.e., img ∂k+1.

Definition 2.5 (Homology Groups). The homology groups {Hk}k=0..n of a chain complex
based on ∂ are defined as the following quotient spaces:

Hk =
ker ∂k

img ∂k+1

.

Here ker ∂k is the k-dimensional closed chain group and img ∂k+1 is the k-dimensional
boundary group.
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For surfaces S, the group bases of H1(S) are all the closed loops that cannot shrink to a
point without leaving the surface. In Figure 1, the homology group bases are {a1, b1, a2, b2}.

Figure 1: Homology group bases of a genus-2 surface.

Two k-chains c1k, c2k are homologous if they bound a (k + 1)-chain ck+1,

c1k − c2k = ∂k+1ck+1.

2.1.2 Cohomology Groups

Homology is more geometric and easier to be visualized or imaged, while cohomology is
more analytic and easier to compute and manipulate. There are many kinds of cohomology,
e.g., singular cohomology, de Rham cohomology, C̆ech cohomology, etc [55]. All of them
are the dual of homology in some way. Among them, de Rham cohomology is most widely
used. The de Rham cohomology groups are defined by taking the formal definition in
the homology, replacing all occurrences of chain by cochain, of ∂ by d, and reverse the
direction of the operator between spaces – this will also define equivalence classes. Here d
is the exterior differentiation operator which will be explained later in Section 2.2.1.

Definition 2.6 (de Rham Cohomology Group). Suppose M is a differential manifold. The
m-th de Rham cohomology is defined as

Hm(M) =
ker dm

img dm−1
.

From Theorem 2.9, we know Hm(M) is the dual space of Hm(M).
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2.1.3 Surface Topological Classification

Surface classification is the first step in calculating conformal structure, because different
algorithms apply to different topologies as stated in Section 3. Topology considers the
global properties of a space. We can imagine the surface is made of rubber. We can
stretch, compress but not tear the surface, and consider those preserved properties. Based
on homology and cohomology, we could classify the surfaces by their topologies.

Orientability: Intuitively, if a closed surface is embedded in R3, then it separates R3

into two parts. One is finite, called the interior; the other is infinite, called the exterior.
We say a surface is orientable, if we can differentiate its inside from its outside. The most
common non-orientable surface is the Möbius band, which is formed by joining the ends of
a rectangle with a twist (see Figure 2). Orientablility is an important topological property.
General surfaces are the boundary of volumes; therefore it naturally has two sides, inside
and outside. In the rest of the report, we mainly study the orientable surfaces embedded in
R3, and assume all the surfaces are of this kind.

Genus: The genus of a connected, orientable surface is an integer representing the
maximum number of cuttings along closed simple curves without rendering the resultant
manifold disconnected. It is equal to the number of handles on it, which is the major
topological invariant, and can be retrieved by calculating the homology group bases.

Boundary: Surfaces without boundaries are closed, which a surface with boundaries is
called an open surface. The number of boundaries is also a topological invariant.

Figure 2: A Möbius band is a non-orientable surface with one boundary
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Simple surfaces can be glued together to form a more complicated one. Basically, we
can remove a small topological disk from each surface, and glue the two left pieces along
their boundaries of the removed disks.

Definition 2.7 (Connected Sum). The connected sum S1#S2 is formed by deleting the
interior of disks Di ⊂ Si and attaching the resulting punctured surfaces Si − Di to each
other by a homeomorphism

h : ∂D1 → ∂D2,

where ∂Di represents the boundary of Di, so

S1#S2 = (S1 −D1) ∪h (S2 −D2).

All surfaces can be decomposed to the connected sum of simple surfaces. The building
blocks are tori for orientable surfaces, and the crosscaps for unorientable surfaces.

Theorem 2.8 (Classification Theorem for Surfaces). Any closed connected surface is home-
omorphic to exactly one of the following surfaces: a sphere, a finite connected sum of tori,
or a sphere with a finite number of disjoint discs removed and with crosscaps glued in their
place. The sphere and connected sums of tori are orientable surfaces, whereas surfaces
with crosscaps are unorientable.

2.2 Differential Geometry

Differential geometry is a mathematical discipline that uses the methods of differential and
integral calculus, as well as linear and multilinear algebra, to study problems in geome-
try [33]. The theory of plane and space curves of surfaces in the three-dimensional Eu-
clidean space formed the basis for its initial development in the eighteenth and nineteenth
century. Since the late nineteenth century, differential geometry has grown into a field
concerned more generally with geometric structures on differentiable manifolds. In this
introduction, we focus on Stokes Theorem, Hodge Theorem and Gauss-Bonnet Theorem.

2.2.1 Differential Forms

Differential forms are the first essential concept in differential geometry. There are many
ways to define differential forms and their integration on manifolds. We may refer to [122]
for a detailed introduction. Briefly speaking, a differential form of degree k, or (differential)
k-form, on a smooth manifold M is a smooth section of the kth exterior power of the
cotangent bundle of M . The set of all k-forms on M is a vector space commonly denoted
Ωk(M).

Differential forms of degree k are integrated over k dimensional chains. If k = 0, this
is just evaluation of functions at points. Other values of k = 1, 2, 3, · correspond to line
integrals, surface integrals, volume integrals etc.
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Let
ω =

∑
ai1,...,ik(x) dx

i1 ∧ · · · ∧ dxik

be a differential form and S a differentiable k-manifold over which we wish to integrate,
where S has the parameterization

S(u) = (x1(u), . . . , xn(u))

for u in the parameter domain D. Then defines the integral of the differential form over S
is defined [110] as∫

S

ω =

∫
D

∑
ai1,...,ik(S(u))

∂(xi1 , . . . , xik)

∂(u1, . . . , uk)
du1 . . . duk

where
∂(xi1 , . . . , xik)

∂(u1, . . . , uk)

is the determinant of the Jacobian. The Jacobian exists because S is differentiable.
The fundamental relationship between the exterior derivative and integration is given

by the following theorem.

Theorem 2.9 (Stokes Theorem). If ω is an (n− 1)-form with compact support on M , and
∂M denotes the boundary of M with its induced orientation, then∫

M

dω =

∮
∂M

ω.

2.2.2 Hodge Theorem

Definition 2.10 (Hodge Star Operator). The Hodge star operator * is a linear map *:
Ωk(M)→ Ωn−k(M), defined as

∗(dxi1 ∧ dxi2 ∧ dxik) = (−1)σdxik+1
∧ dxik+2

∧ dxin .

Here σ = (i1, i2, · · · , in) is a permutation of (1, 2, · · · , n).

Definition 2.11 (Codifferential Operator). The codifferential operator δ : Ωk(M)→ Ωn−k(M)

is defined as
δ = (−1)k+1+k(n−k)∗d∗.

Definition 2.12 (Laplace Operator). The Lapalce operator ∆ : Ωk(M) → Ωk(M) is de-
fined as

∆ = δd+ dδ.

If ω is a k-form, and ∆ω = 0, then ω is called a k-harmonic form. All of the k-harmonic
forms form a group, defined as Hk

∆(M).
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Theorem 2.13 (Hodge Decomposition Theorem).

Ωk(M) = E ⊕ E∗ ⊕H∆.

Here E = {dη|η ∈ Ωk−1(M)}, and E∗ = {∗dη|η ∈ Ωk−1(M)}

From Hodge theorem, we get each cohomologous class has a unique harmonic form as
its representative.

2.2.3 First Fundamental Form

A Riemannian metric on a manifold Mn assigns, in a differentiable fashion, a positive
definite inner product ⟨, ⟩ in each tangent space Mn

p . A manifold with a Riemannian metric
is called a Riemannian manifold.

In terms of coordinate basis ei = ∂i := ∂/∂xi, we then have the differentiable matrices
(the “metric tensor”)

gij(x) = ⟨
∂

∂xi
,
∂

∂xj
⟩.

Using the Riemannian metric we can define measures on the manifold. Suppose a
regular surface S in R3 is parameterized as r(u, v).

Definition 2.14 (First Fundamental Form). The first fundamental form is defined as

I = ds2 = ⟨dr, dr⟩ =
(
du dv

)(E(u, v) F (u, v)

F (u, v) G(u, v)

)(
du

dv

)
where

E = ⟨ru, ru⟩, F = ⟨ru, rv⟩, G = ⟨rv, rv⟩.

We often use symbol g to denote the inner product matrix of the first fundamental form.
Therefore, we can also write

ds2 ≡ ⟨dr, dr⟩g =
∑

gαβdx
αdxβ.

Considering the parametric surface n(u, v), we have

Definition 2.15 (Second fundamental Form). The second fundamental form is defined as

II = −⟨dr, dn⟩ =
(
du dv

)(L(u, v) M(u, v)

M(u, v) N(u, v)

)(
du

dv

)
where

L = −⟨ru, nu⟩,M = −⟨ru, nv⟩ = −⟨rv, nu⟩, N = −⟨rv, nv⟩.

Definition 2.16 (Gaussian Curvature). Gaussian curvature of a surface in R3 can be ex-
pressed as the ratio of the determinants of the second and first fundamental forms:

K =
det II

det I
=
LN −M2

EG− F 2
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Gauss’s Theorema Egregium shows Gaussian curvature is intrinsic.

Theorem 2.17 (Gauss’s Theorema Egregium). The Gaussian curvature is solely deter-
mined by the first fundamental form.

The following theorem [24] is fundamental for calculating conformal mappings.

Theorem 2.18 (Isothermal Coordinates). For any point on the surface, there exists a neigh-
borhood, which can be conformally mapped to a planar domain, namely, we can find (u, v)

coordinates for a neighborhood of the surface, the first fundamental form is

I = λ2(u, v)(du2 + dv2)

The Gauss-Bonnet theorem or Gauss-Bonnet formula below in differential geometry
is an important statement about surfaces which connects their geometry (in the sense of
curvature) to their topology (in the sense of the Euler characteristic). It is named after Carl
Friedrich Gauss who was aware of a version of the theorem but never published it, and
Pierre Ossian Bonnet who published a special case in 1848 [23].

Theorem 2.19 (Gauss-Bonnet Theorem). For a compact oriented surface M with Rieman-
nian metric g,

χ(M) =
1

2π

∫
M

Kdµ,

where K is the gaussian curvature of g, dµ is the area form with respect to g, and χ(M) is
the Euler characteristic of M .

The Euler characteristic of a closed orientable surface M can be calculated from its
genus g as

χ(M) = 2− 2g

2.3 Conformal Structure and Riemann Surface

Based on the concepts and theorems of differential geometry, in this part, we introduce
conformal structure and Riemann Surface theories, and uncover the relationship between
holomorphic functions and conformal mappings.

2.3.1 Conformal Structure

Computational conformal geometry is a branch of computer science that studies the con-
formal structure of surfaces, and conformal mappings between them. It introduces deep
and beautiful theory from pure continuous mathematics, and tries to find the discrete coun-
terparts of them, which can be applied in designing computational conformal geometry
algorithms. Here we introduce the basic concepts which are necessary in understanding the
whole literature.
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Figure 3: Conformal structure.

Definition 2.20 (Homeomorphism). Suppose M and N are two topological spaces. A
continuous map f : M → N is called a homeomorphism between M and N , if f is
invertible and f−1 : N →M is also continuous.

Definition 2.21 (n-Manifold). A n-manifold is a topological space Σ covered by a set of
open sets {Uα}. For each Uα there is a homeomorphism ϕα : Uα → Rn that maps Uα to the
Euclidean space Rn. (Uα, ϕα) is called a local chart of Σ, the set of all charts {(Uα, ϕα)}
form the atlas of Σ. Suppose Uα ∩ Uβ ̸= ϕ, then ϕαβ = ϕβ ◦ ϕ−1

α is a transition map.

Intuitively, a manifold is a topological space that is locally Euclidean (i.e., around every
point, there is a neighborhood that is topologically the same as the open unit ball in Rn).
See Figure 4 for a 2-manifold example.

Definition 2.22 ((X,G) Atlas). Suppose X is a topological space, G is a transformation
group of X . A manifold Σ with an atlas {(Uα, ϕα)} is an (X,G) atlas if ϕα(Uα) ⊂ X for
all ϕα(Uα) and ϕαβ ∈ G for all ϕαβ .

One manifold may have infinite (X,G) atlases, therefore the equivalence (or compati-
bility) has to be defined among these atlases.

Definition 2.23 (Equivalent (X,G) Atlas). . Two (X,G) atlases of σ are equivalent if their
union is still an (X,G) atlas of σ.

A geometric structure could be defined as the union of all equivalent atlases.
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Figure 4: A 2-manifold

Definition 2.24 ((X,G) Structure). An (X,G) structure of a manifold σ is an equivalent
class of its (X,G) atlas.

Intuitively,X is the local image of each chart of Σ, and chart transition functions belong
to group G.

Different domain X and different transformation group G will give us different geo-
metric structure (X,G). Given a geometric structure (X,G), there are certain manifolds
admitting such a structure.

Conformal structure is a special (X,G) structure where X is the complex plane C and
G is the conformal mapping (i.e. holomorphic functions) group.

Given a 2-manifold M with an atlas (Uα, ϕα), if all chart transition functions

ϕαβ : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

are conformal, then the atlas is called a conformal atlas, and M is called a conformal
manifold (see Figure 4).

Two conformal atlases are equivalent if their union is still an conformal atlas. All the
equivalent conformal atlases form a conformal structure of the manifold. According to
Riemann surface theory [105] , all oriented surfaces have conformal structure, regardless
of what topology the surface has.

In the literature of computer science community, there are fewer papers directly talking
about constructing conformal structure than some closely relevant problems, namely con-

11



formal mappings and conformal parameterizations. A conformal mapping for 2-manifolds
is a mapping from one 2-manifold M to another one M ′ such that it keeps the angle of in-
tersection of every pair of intersecting arcs on M unchanged after the mapping. Conformal
mappings are also called angle-preserving mappings. It can be defined more precisely in
the following way:

Definition 2.25 (Conformal Mapping). A mapping from one 2-manifold M to another one
M ′ is conformal if and only if it only scales the first fundamental form, i.e.,

I ′ = η(u1, u2)I

where η is a non-zero scalar function which is called the conformal factor and measures
the area distortion, I and I ′ are the first fundamental form coefficient matrix for M and M ′

respectively.

Given any two surfaces with similar topology it is possible to compute a one-to-one
and onto mapping between them. The problem of computing such a mapping is referred to
as parameterization. The image surface that the original surface is mapped to is typically
referred to as the parameter domain. Usually, the parameter domain is the Euclidean plain.
A conformal parameterizations of a 2-manifold is a special conformal mapping that maps
(part of) the given 2-manifold M into the planar domain R2. We can see that a conformal
structure requires any ϕαβ is conformal mapping (see Figure 4). On the other hand, confor-
mal parameterizations using one-form methods also provide a way to construct conformal
structure.

In the following subsections, we shall briefly review the theoretical base of conformal
geometry. We will first introduce homology and cohomology, which are the core con-
cepts of algebraic topology and the key to classify surfaces, or even higher dimensional
manifolds. Then we will discuss surface differential geometry, including exterior differen-
tial calculus, harmonic forms, Hodge theorem, first fundamental form and Gauss-Bonnet
theorem. These concepts and theorems are frequently used in describing computational
conformal geometry algorithms. Based on differential geometry knowledge, we will ex-
plain complex analysis and Riemann surface theories. That will lead us to holomorphic
one-forms, which play an essential role in one of the three categories of the algorithms to
calculate conformal mappings. Finally, we will survey harmonic maps and surface curva-
ture flow. These two techniques will give us the intuition of the other two categories of
algorithms.

2.3.2 Holomorphic Functions

We can introduce the differential form in the complex domain as

dz = dx+ idy

dz = dx− idy

12



∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
)

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
)

Then we can define holomorphic functions.

Definition 2.26 (Holomorphic Function). A function f : (x, y)→ (u, v) is holomorphic or
complex analytic, if it satisfies the following Cauchy-Riemann equation:

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x

If f = u+ iv is holomorphic, then

∂f

∂z
= 0

Furthermore, it is easy to verify that both u and v are harmonic. We say that u and v are
conjugate if u+ iv satisfies the Cauchy-Riemann equation. If a holomorphic function f is
bijective and f−1 is holomorphic, then f is biholomorphic, or a conformal mapping. There-
fore, conformal mappings between two planar domains can be represented as holomorphic
functions.

Recall that an atlas is a collection of local charts {(Uα, ϕα)}, the union of which cover
the surface. An atlas is a conformal atlas if all its transition functions are biholomorphic.
Two conformal atlases are equivalent if their union is still a conformal atlas. Each equiv-
alence class of conformal atlases is called a conformal structure of the surface. A surface
with a conformal structure is called a Riemann surface.

Definition 2.27 (Riemann Surface). A Riemann Surface represents a two dimensional man-
ifold M with an atlas {(Uα, zα)}, such that {(Uα)} is an open covering, M ⊂ ∪Uα;
zα : Uα → C is a homeomorphism from an open set Uα ⊂ M to an open set on C,
zα(Uα). If Uα ∩ Uβ ̸= ∅, then

zβ ◦ z−1
α : zα(Uα ∩ Uβ)→ zβ(Uα ∩ Uβ)

is biholomorphic, or a conformal mapping.

After defining the conformal mapping between two planar domains, we are ready to in-
vestigate and re-define the conformal mapping between two Riemann surfaces in a complex
analysis way.

Definition 2.28 (Conformal Mapping). Suppose (S1, A1) and (S2, A2) are two Riemann
surfaces, Ai’s are their conformal structures. Suppose (Uα, ϕα) is a local chart of A1,
(Vβ, ψβ) is a local chart of A2. ϕ : S1 → S2 is a conformal mapping if and only if

ψβ ◦ ϕ ◦ ϕ−1
α : ϕα(Uα)→ ψβ(Vβ)

is biholomorphic.
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As shown in Figure 5, let γ1, γ2 : [0, 1]→ S1 be two arbitrary curves on S1, intersecting
at the point p, the angle between the two tangent vectors dγ1

dt
(p) and dγ2

dt
(p) equal to θ.

Therefore ϕ ◦ γ1(t) and ϕ ◦ γ2(t) are two curves on S2, intersecting at ϕ(p). Then their
intersection angle also equals to θ. A conformal mapping preserves angles.

Figure 5: Conformal mappings preserve angles.

If a Riemann surface S has a Riemannian metric g, then we say its conformal structure
is compatible with the metric, if local representation of the metric on a chart (Uα, ϕα)

g = e2udzαdz̄α,

where zα is the local complex parameter. We also call such local complex parameter as
isothermal coordinates. The Laplace-Beltrami operator ∆ on an isothermal coordinates
has a simple representation

∆ =
1

e2u(xα,yα)
(
∂2

∂x2α
+

∂2

∂y2α
).

All metric surfaces are Riemann surfaces and with isothermal coordinates. Therefore
conformal geometric concepts and methods are general to all surfaces in real life.
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2.3.3 Holomorphic One Forms

We have defined harmonic functions and harmonic forms in the setting of Riemannian
manifolds. A harmonic form ω satisfies the following condition

dω = 0, δω = 0.

Now, we study harmonic forms on Riemann Surfaces.

Definition 2.29 (Holomorphic 1-form). A holomorphic 1-form is a pair of harmonic 1-
forms, the imaginary part is conjugate to the real part:

τ = ω +
√
−1∗ω.

On the conformal atlas, τ has local representation on (Uα, ϕα) with local parameter zα,

τ = fα(zα)dzα,

where fα is a holomorphic function. On another chart (Uβ, ϕβ) with local parameter zβ ,
τ = fβdzβ , such that

fα
dzα
dzβ

= fβ.

Hodge theorem claims that each cohomologous class has a unique harmonic 1-form.
Therefore the group of all harmonic 1-forms is isomorphic to the first cohomology group
H1(S,R). Also, the group of all holomorphic 1-forms is isomorphic to H1(S,R).

2.3.4 Riemann Mapping and Uniformization Theorem

In this part, we introduce two important theorem, which induces the existence of conformal
structures on surfaces.

Theorem 2.30 (Riemann Mapping). Suppose D ⊂ C is a simply connected domain on the
complex plane, the boundary ∂D has more than one point, z0 ∈ D is an arbitrary interior
point. Then there exists a unique holomorphic mapping θ : D → ∆ from D to the unist
disk ∆, such that θ(z0) = 0 and θ′(z0) > 0.

Simply speaking, this theorem says that a conformal mapping from a disk-like region
to a unit disk always exists.

Theorem 2.31 (Uniformization). A simply connected Riemann surface is conformally equiv-
alent to one of the following three canonical Riemann surfaces:

1. Exteded complex plane C = C ∪∞;

2. Complex plane C;

3. Unit disk ∆ = {z ∈ C||z| < 1}.

This theorem says that any Riemann surface has a natural Riemannian metric with
constant Gauss curvature, namely, spherical metric, Euclidean metric or hyperbolic metric
(see Figure 6). This also proves the fact stated in the introduction (Section 1).
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Spherical Euclidean Hyperbolic

Figure 6: Surface uniformization theorem.

2.4 Surface Curvature Flow

Definition 2.32 (Isothermal Coordinates[121]). Let S be a smooth surface with a Rieman-
nian metric g. Isothermal coordinates (u, v) for g satisfy

g = e2λ(u,v)(du2 + dv2).

Locally, isothermal coordinates always exist. The Gaussian curvature[108] of the sur-
face is given by

K(u, v) = −∆gλ, (2.1)

where ∆g = e−2λ(u,v)( ∂2

∂u2 +
∂2

∂v2
) is the Laplace-Beltrami operator induced by g. Although

the Gaussian curvature is intrinsic to the Riemannian metric, the total Gaussian curvature
is a topological invariant:

Theorem 2.33. The total Gaussian curvature of a closed metric surface is∫
S

KdA = 2πχ(S),

where χ(S) is the Euler number of the surface[32].
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Figure 7: Surface Ricci Flow.

Suppose g1 and g2 are two conformal Riemannian metrics on the smooth surface S,
such that

g2 = e2λg1.

Let the Gaussian curvatures of g1 and g2 be K1 and K2 respectively. Then they satisfy the
following Yamabe equation

K2 =
1

e2λ
(K1 −∆g1λ).

Suppose the metric g = (gij) in local coordinate. Hamilton introduced the Ricci flow
as

dgij
dt

= −Kgij.

For surface case, Ricci flow is equivalent to Yamabe flow[42][90]. During the flow, the
Gaussian curvature will evolve according to a heat diffusion process.

Theorem 2.34. Suppose S is a closed surface with a Riemannian metric. If the total area
is preserved, the surface Ricci flow will converge to a Riemannian metric of constant Gaus-
sian curvature[26][54].

This gives another approach to prove the Poincaré uniformization theorem. As shown
in Figure 6, all closed surfaces can be conformally deformed to one of the three canonical
spaces: the sphere S2, the Euclidean plane E2, or the hyperbolic space H2.
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3 Computational Algorithms

3.1 Algebraic Topology

Fundamental Group Generators The method of computing fundamental group gener-
ators is straightforward. Suppose the surface is represented as discrete triangle mesh M .

1. Choose a base vertex v0, use breadth first search based on Dijkstra’s method to com-
pute a spanning tree T of all vertices.

2. Compute the dual mesh M̄ of the original mesh. Compute the cut graph

G = {ē ̸∈ T |e ∈M}, (3.1)

where ē is the edge in M̄ dual to e.

3. Compute the weight of each edge ē ∈ G. Suppose the boundary vertices of e are
∂e = v2 − v1, then in the spanning tree T , there are unique paths from vk to the root
v0, denoted as γk, k = 1, 2. The weight of edge ē is defined as

w(ē) = l(γ1) + l(γ2) + l(e),

where l(γk) is the length of the path γk, l(e) is the length of the edge e.

4. Compute a maximal spanning tree TG of G using the above weight.

5. Remove TG from G, there will be 2g edges left

G− TG = {ē1, ē2, · · · , ē2g},

6. T ∪ ek includes a unique loop, use the same notation as γk, then {γ1, γ2, · · · , γ2g}
form a set of fundamental group generators.

Fuchs Group Generators For a genus one mesh, we have obtained the flat metric with
zero curvatures everywhere by running Ricci flow. We cut the mesh along the fundamental
group generators {a, b} obtained in the first step, the resulting mesh is fundamental domain
M̄ . Then we isometrically embed face by face onto the plane, until we flatten the whole
fundamental domain onto the plane. We denote the flattening mapping as ϕ : M̄ → R2.
There is a unique planar translation α, which maps ϕ(a) to ϕ(a−1). Similarly, there is a
unique planar translation β, which maps ϕ(b−1) to ϕ(b). Then {α, β} form the basis of the
Deck transformation group of the universal covering M̃ of M .

For a high genus mesh g > 1, the hyperbolic metric is obtained by Ricci flow. Then we
slice the surface open along the cut graph G (see formula 3.1) to get a fundamental domain
M̄ . Then we isometrically flatten face by face onto the Poincaré disk, to map the whole
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fundamental domain to the hyperbolic plane, ϕ : M̄ → H2. Let the fundamental group
generators are {a1, b1, a2, b2, · · · , ag, bg}, which are loops in the cut graph G, then these
loops and their inverses are boundary segments on M̄ . There exists a unique Möbius trans-
formation αk, which maps ϕ(ak) to ϕ(a−1

k ), and a unique βk, which maps ϕ(bk) to ϕ(b−1
k ).

These hyperbolic rigid motions {α1, β1, α2, β2, · · · , αg, βg} form a set of generators of the
Fuchs group.

Finite Portion of the Universal Covering Space For surfaces with genus greater than
zero, once the fundamental domain and the Deck transformation group generators have
been calculated, we can tessellate the canonical space.

For genus one case, the whole plane R2 can be tessellated by the fundamental domains,
translated by Deck transformations,

R2 =
∪

α∈Deck(M̃)

α ◦ ϕ(M̄).

We choose a small set of Deck transformations, Γ = {aibj}, where i, j are integers, −2 ≤
i, j ≤ 2. Then the finite portion is given by

M̃ :=
∪
α∈Γ

α ◦ ϕ(M̄).

For high genus surface, the whole hyperbolic plane H2 can be tessellated by the funda-
mental domains, transformed by Fuchs group elements,

H2 =
∪

α∈Fuchs(M)

α ◦ ϕ(M̄).

We select a small set of Fuchs transformations, Γ = {γi1γ
j
2}, where γ1, γ2 ∈ {αk, βk, k =

1, 2 · · · , g}, i, j are integers, −2 ≤ i, j ≤ 2. Then the finite portion of the universal cover-
ing space is given by

M̃ =
∪
α∈Γ

α ◦ ϕ(M̄).

According to surface uniformization theorem and the above steps of computation, any
arbitrary Riemann surface can be mapped to one of three canonical domains. As shown
in Figure 6, genus zero surfaces in the left are mapped to unit sphere, the universal cov-
ering space is the unit sphere itself. Genus one surfaces in the middle are mapped to a
parallelogram, the universal covering space is the whole plane; the rigid motions are Deck
transformations (i.e., translations). High genus surfaces in the right can be mapped to a
hyperbolic polygon, the universal covering space is the Poincaré disk; the rigid motions are
Fuchs transformations (i.e., Möbius transformations); the patches in different colors denote
different periods.
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3.2 Discrete Differential Geometry

Discrete exterior forms, and discrete exterior calculus are discrete versions of the concepts
of differential geometry. Here we list some important definitions and operators, which
can be directly applied in designing Computational Conformal Geometry algorithms. A
detailed introduction and proof of convergence to the smooth case can be found in [57].

Definition 3.1 (Cochain). k-cochain ω is the dual of a k-chain, that is to say, ω : C → R
is a linear mapping that takes k-chains to R.

A k-cochain ω operates on a k-chain c to give a scalar in R. Since a chain is a lin-
ear combination of simplices, a cochain returns a linear combination of the values of that
cochain on each simplex involved.

Definition 3.2 (Coboundary Operator). The operator d, or the coboundary operator can
be discretized using Theorem 2.9. d applies to an arbitrary form ω is evaluated on an
arbitrary simplex σ as follows: ∫

σ

dω =

∫
∂σ

ω.

Generally speaking,∫
∑

i ciσi

dω =

∫
∂(

∑
i ciσi)

ω =

∫
∑

i ci∂ωi

ω =
∑
i

ci

∫
∂σi

ω

Cochains and the coboundary operator are discrete analogs to differential forms and the
differential operator, respectively.

Definition 3.3 (Discrete Wedge Product). Suppose {d0, d1, d2} are the oriented edges of
a triangle T , their lengths are {l0, l1, l2}, and the area of T is s, then the discrete wedge
product ∧ is defined as

∫
T

ω ∧ τ =
1

6

ω(d0) ω(d1) ω(d2)

τ(d0) τ(d1) τ(d2)

1 1 1


Definition 3.4 (Discrete Star Wedge Product). The discrete star wedge product on meshes
is defined as ∫

T

ω∗ ∧ τ = UMV T ,

where

M =
1

24s

 −4l20 l20 + l21 − l22 l20 + l22 − l21
l21 + l20 − l22 −4l21 l21 + l22 − l20
l22 + l20 − l21 l22 + l21 − l20 −4l22


and

U = (ω(d0), ω(d1), ω(d2))V = (τ(d0), τ(d1), τ(d2)).
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Definition 3.5 (Discrete Hodge Star). Once we know a set of basis of Harmonic forms
{ω1, ω2, ω3, . . . , ω2g}, suppose ⋆ω =

∑2g
i=1 λiωi, we can found out λi’s by solving the fol-

lowing linear system ∫
M

ωi ∧ ⋆ω =

∫
ωi ⋆ ∧ω, i = 1, 2, . . . , 2g,

which reduces to solving a linear equation in the discrete setting,

WΛ = B.

Here W has entries wij =
∑

T∈M
∫
T
ωi ∧ ωj , Λ has entries λi, and B has entries bi =∑

T∈M
∫
T
ωi ⋆ ∧ω.

Definition 3.6 (Discrete Laplace Operator). Suppose M is a triangular mesh. The piece-
wise Laplacian is a linear operator acting on a 0-form on the mesh f (0-form) to get
another 0-form:

∆f(vi) =
∑

[vi,vj ]∈M

kij(f(vj)− f(vi)).

Here kij is calculated by cotangent formula: if eij is an interior edge adjacent to two faces,
and α, β are the angles against it, then kij = 1

2
(cotα + cot β); if it is a boundary edge,

then kij = 1
2
cotα (the definition of α is similar to the previous case).

Definition 3.7 (Discrete Gaussian Curvature). The discrete Gaussian curvature Ki on a
vertex vi ∈ Σ can be computed from the angle deficit,

Ki =

{
2π −

∑
fijk∈F θ

jk
i , vi ̸∈ ∂Σ

π −
∑

fijk∈F θ
jk
i , vi ∈ ∂Σ

where θjki represents the corner angle attached to vertex vi in the face fijk, and ∂Σ repre-
sents the boundary of the mesh. The discrete Gaussian curvatures are determined by the
discrete metrics.

Theorem 3.8 (Discrete Gauss-Bonnet Theorem). The Gauss-Bonnet theorem states that
the total curvature is a topological invariant. It still holds on meshes as follows.∑

vi∈V

Ki + λ
∑
fi∈F

Ai = 2πχ(M),

where Ai denotes the area of face fi, and λ represents the constant curvature for the back-
ground geometry; +1 for the spherical geometry, 0 for the Euclidean geometry, and−1 for
the hyperbolic geometry.
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3.3 Discrete Harmonic Mappings

Harmonic maps can be computed using heat flow method. For example, we want to com-
pute a harmonic map from a genus zero closed surface to the unit sphere ϕ : S → S2. We
can initialize the map by the canonical Gauss map, then minimize the harmonic energy by
the heat flow. First we compute the Laplacian of the map ∆ϕ : S → R3. Then we compute
the tangential component of the Laplacian. Suppose p ∈ S, then ϕ(p) ∈ S2.

∆⊥ϕ(p) =< ∆⊥ϕ(p), ϕ(p) > ϕ(p),

The tangential component of the laplacian is given by

∆∥ϕ(p) = ∆ϕ(p)−∆⊥ϕ(p).

The heat flow is defined as
dϕ(p, t)

dt
= −∆∥ϕ(p).

Because the harmonic map is not unique (they differ by a Möbius transformation on the
sphere), special normalization condition needs to be added during the flow. The following
is a common condition, ∫

S

ϕ(p)ds = 0.

For genus zero closed surface, harmonic maps are conformal.

Figure 8: Harmonic mapping.
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3.4 Discrete Holomorphic One Form

To calculate the discrete holomorphic one forms on surfaces, we need to consider homology
basis, cohomology basis, harmonic 1-form basis in order. The computational algorithm for
holomorphic 1-forms is as the following: first a cohomology group basis is constructed
using algebraic topological methods; then cohomology basis are diffused to be harmonic
forms using the heat flow method; finally the conjugate of harmonic forms are computed
to form the holomorphic 1-forms.

Figure 9: Computing homology group basis.

Homology Basis Given a surface S embedded in R3, we first compute its fundamental
group generators. We compute its CW-cell decomposition

S0 ⊂ S1 ⊂ S2 = S,

where Sk = Sk−1 ∪D1
k ∪D2

k · · · ∪Dn
k , where Di

k are k-dimensional cells (disks), such that
the boundaries of these cells are on Sk−1,

∂Di
k ⊂ Sk−1.

Then the fundamental group of S1 is isomorphic to the fundamental group of S. Then
we compute a spanning tree of S0 in S1, the complement of T in S1 are disconnected 1-
cells, denoted as e1, e2, · · · ek, then the union of T and ei has a unique loop γi. All such
loops {γ1, γ2, · · · , γ2g} form a basis for the fundamental group π1(S). These loops also
form the basis of the first homology basis H1(S,Z). Figure 3.4 shows the homology group
generators of a genus two surface.
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Cohomology Basis Let γk be a base loop for H1(S,Z), then we slice S along γk to get
an open surface Sk, such that the boundary of Sk is given by

∂Sk = γ+k − γ
−
k ,

γ+k , γ
−1
k are the two boundary loops on Sk. Then we randomly construct a function hk :

Sk → R, such that
hk(p) = 1,∀p ∈ γ+k ; hk(p) = 0,∀p ∈ γ−k ;

and hk(p) is random for all interior points on Sk. Then dhk is an exact 1-form on Sk.
Because of the consistency along the boundaries, dhk is also a closed 1-form on S. We
denote τk as dhk on S. Then {τ1, τ2, · · · , τ2g} form a basis for H1(S,R).

Figure 10: Computing harmonic 1-form group basis.

Figure 11: Computing harmonic 1-form group basis.
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Figure 12: Computing harmonic 1-form group basis.

Harmonic 1-form Basis According to Hodge theory, for each closed 1-form τk, there
exists a 0-form gk : S → R, such that τk + dgk is a harmonic 1-form. gk can be obtained
by solving the following equation

d ∗ (τk + dgk) = 0.

We denote the harmonic 1-form as ωk = τk + dgk. Figure 24 shows the harmonic group
generators of a genus two surface.

Holomorphic 1-form can be constructed by harmonic 1-form and its conjugate ωk +√
−1∗ωk. Then {ω1+

∗ω1, ω2+
∗ω2, · · · , ω2g +

∗ω2g} form a basis for holomorphic 1-form
group. Figure 3.4 shows the holomorphic 1-form group basis for the genus two surface.

With the basic definitions above, we are ready to introduce the algorithm of computing
conformal structure for surfaces[135][114]. Suppose S is a surface embedded in the Eu-
clidean space R3, as we have shown, its first fundamental form is called the Riemannian
metric, which is represented as a tensor g = (gij). A metric defines an inner product for
the tangent vectors. A tangent vector can be represented as TM = a(u, v) ∂

∂u
+ b(u, v) ∂

∂v
.

According to Riemann surface theory, conformal gradient fields ω +
√

(−1) ∗ ω have
the following properties:

• closedness ω and ∗ω are closed, meaning the curlix of ω and ∗ω are both zero.

• harmonity ω and ∗ω are harmonic, meaning that the Laplacian of both ω and ∗ω are
zero.

• duality The cohomology class of ω and ∗ω can be determined by the values of their
integration along the homology basis ei Ł.

• conjugacy ∗ω is orthogonal to ω everywhere.
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According to Hodge theory [137], given 2g real numbers c1, c2, . . . , c2g, there is a
unique real gradient field ω with the first three properties, because each cohomology class
has a unique harmonic gradient field ω. These properties for ω can be formulated as the
following equations: 

dω = 0

∆ω = 0∫
ei
ω = ci, i = 1, 2, ...2g

(3.2)

The equations
∫
ei
ω = ci, i = 1, 2, . . . , 2g restricts the cohomology class of ω. The conju-

gacy property can be formulated as

⋆ω = −→n × ω (3.3)

where −→n is the normal field on the surface, × is the cross product in R3. This equation
holds everywhere on the surface.

According to [48][46][66], The closedness property dω = 0 means the integration of ω
along any simple closed curve (which bounds a topological disk) is zero. Then for each face
[u, v, w], the equation for closedness can be approximated by the following linear equation:

ω(∂[u, v, w]) = ω[u, v] + ω[v, w] + ω[w, u] = 0 (3.4)

The harmonity property ∆w = 0 can be formulated using the well known cotangent
weighting coefficients. For any vertex u, the Laplacian of ω on u is zero, hence the equation
for harmonity can be formulated as:

∆ω(u) =
∑

[u,v]∈M

ku,vω[u, v] = 0 (3.5)

ku,v = −
1

2
(cotα + cot β) (3.6)

where α, β are the angles against the edge [u, v].
The duality property

∫
ei
ω = ci can be implemented simply by summing up all the

forms on the edge ei =
∑n

j=1[uj−1, uj] where u0 = un,∫
ei

ω =
n∑

j=1

ω[uj−1, uj] = cj. (3.7)

Once we have computed ω, we can compute ⋆ω by using the discrete Hodge star oper-
ator, which is defined as follows. Suppose {d0, d1, d2} are the oriented edges of a triangle
T , their lengths are {l0, l1, l2}, and the area of T is s, then the discrete wedge product ∧ is
defined as ∫

T

ω ∧ τ =
1

6

ω(d0) ω(d1) ω(d2)

τ(d0) τ(d1) τ(d2)

1 1 1

 (3.8)
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The star wedge product ⋆∧ of ∧ and τ on smooth surfaces is defined as follows:∫
M

ω∗ ∧ τ =

∫
M

ω ∧∗ τ =

∫
M

ω ×∗ τ · −→n , (3.9)

where ∗τ is obtained by rotating τ about the normal −→n on the tangent plane at each point
of M . The discrete star wedge product on meshes is defined as∫

T

ω∗ ∧ τ = UMV T , (3.10)

where

M =
1

24s

 −4l20 l20 + l21 − l22 l20 + l22 − l21
l21 + l20 − l22 −4l21 l21 + l22 − l20
l22 + l20 − l21 l22 + l21 − l20 −4l22

 (3.11)

and

U = (ω(d0), ω(d1), ω(d2)) (3.12)

V = (τ(d0), τ(d1), τ(d2)). (3.13)

Therefore, once we know a set of basis of Harmonic forms {ω1, ω2, ω3, . . . , ω2g}, sup-
pose ⋆ω =

∑2g
i=1 λiωi, we can found out λi’s by solving the following linear system∫

M

ωi ∧ ⋆ω =

∫
ωi ⋆ ∧ω, i = 1, 2, . . . , 2g, (3.14)

which reduces to solving a linear equation in the discrete setting,

WΛ = B. (3.15)

Here W has entries wij =
∑

T∈M
∫
T
ωi ∧ ωj , Λ has entries λi, and B has entries bi =∑

T∈M
∫
T
ωi ⋆ ∧ω.

Now we can summarize the discrete conformal mapping algorithm in algorithm 1:

3.5 Discrete Surface Ricci Flow

Background Geometry In engineering field, it is always assumed that a mesh Σ is em-
bedded in the three dimensional Euclidean space R3, and therefore each face is Euclidean.
In this case, we say the mesh is with Euclidean background geometry. The angles and edge
lengths of each face satisfy the Euclidean cosine law.

Similarly, we can assume that a mesh is embedded in the three dimensional sphere S3 or
hyperbolic space H3, then each face is a spherical or a hyperbolic triangle. We say the mesh
is with spherical or hyperbolic background geometry. The angles and the edge lengths of
each face satisfy the spherical or hyperbolic cosine law.
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Algorithm 1 Discrete Conformal Mapping Algorithm.
Input: Surfaces M .
Output: The conformal parameterization U of M .
1. Compute the Harmonic 1-Form basis for M by solving linear system 9.
2. Compute the Conjugate Harmonic 1-Form basis for M by solving linear system 22.
3. Combine the Harmonic 1-Form basis and Conjugate Harmonic 1-Form basis we get a
conformal structure U of surface M .

v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3

θ1

θ2 θ3

o

(a) (b)

Figure 13: Circle Packing Metric. (a) Flat circle packing metric (b) Circle packing metric
on a triangle.

Discrete Riemannian Metric A discrete Riemannian metric on a mesh Σ is a piecewise
constant metric with cone singularities. A metric on a mesh with Euclidean metric is a dis-
crete Euclidean metric with cone singularities. Each vertex is a cone singularity. Similarly,
a metric on a mesh with spherical background geometry is a discrete spherical metric with
cone singularities; a metric on a mesh with hyperbolic background geometry is a discrete
hyperbolic metric with cone singularities.

The edge lengths of a mesh Σ are sufficient to define a discrete Riemannian metric,

l : E → R+,

as long as, for each face fijk, the edge lengths satisfy the triangle inequality: lij + ljk > lki
for all the three background geometries, and another inequality: lij + ljk + lki < 2π for
spherical geometry.
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Circle Packing Metric The concept of the circle packing metric was introduced by
Thurston in [132] as shown in Figure 13. Let Γ be a function defined on the vertices,
Γ : V → R+, which assigns a radius γi to the vertex vi. Similarly, let Φ be a function
defined on the edges, Φ : E → [0, π

2
], which assigns an acute angle Φ(eij) to each edge eij

and is called a weight function on the edges. Geometrically, Φ(eij) is the intersection angle
of two circles centered at vi and vj . The pair of vertex radius function and edge weight
function on a mesh Σ, (Γ,Φ), is called a circle packing metric of Σ.

Figure 13 illustrates the circle packing metrics. Each vertex vi has a circle whose radius
is γi. For each edge eij , the intersection angle ϕij is defined by the two circles of vi and vj ,
which either intersect or are tangent. Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on
the same mesh are conformally equivalent if Φ1 ≡ Φ2.

Admissible Curvature Space A mesh Σ with edge weight Φ is called a weighted mesh,
which is denoted as (Σ,Φ). In the following, we want to clarify the spaces of all possible
circle packing metrics and all possible curvatures of a weighted mesh.

Let the vertex set be V = {v1, v2, · · · , vn}, and the radii be Γ = {γ1, γ2, · · · , γn}. Let
ui be

ui =


log γi E2

log tanh γi
2

H2

log tan γi
2

S2

where E2, H2, and S2 indicate the background geometry of the mesh. We represent a circle
packing metric on (Σ,Φ) by a vector u = (u1, u2, · · · , un)T . Similarly, we represent the
Gaussian curvatures at mesh vertices by the curvature vector k = (K1, K2, · · · , Kn)

T .
All the possible u’s form the admissible metric space, and all the possible k’s form the
admissible curvature space.

According to Theorem 3.8, the total curvature must be 2πχ(Σ), and therefore the cur-
vature space is n − 1 dimensional. We add one linear constraint to the metric vector u,∑
ui = 0, for the normalized metric. As a result, the metric space is also n − 1 dimen-

sional. If all the intersection angles are acute, then the edge lengths induced by a circle
packing satisfy the triangle inequality. There is no further constraint on u. Therefore, the
admissible metric space is simply Rn−1.

A curvature vector k is admissible if there exists a metric vector u, which induces k.
The admissible curvature space of a weighted mesh (Σ,Φ) is a convex polytope, specified
by the following theorem. The detailed proof can be found in [27].

The admissible curvature space for weighted meshes with hyperbolic or spherical back-
ground geometries is more complicated. We refer the readers to [91] for detailed discus-
sion.
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Ricci Flow Suppose (Σ,Φ) is a weighted mesh with an initial circle packing metric. The
discrete Ricci flow is defined as follows.

dui(t)

dt
= K̄i −Ki,

where k̄ = (K̄1, K̄2, · · · , K̄n)
T is the user defined target curvature. The discrete Ricci

flow has exactly the same form as the smooth Ricci flow, which deforms the circle packing
metric according to the Gaussian curvature.

The discrete Ricci flow can be formulated in the variational setting, namely, it is a
negative gradient flow of a special energy form. The energy is given by

f(u) =

∫ u

u0

n∑
i=1

(K̄i −Ki)dui

where u0 is an arbitrary initial metric. The energy is called the discrete Ricci energy.
Computing the desired metric with user-defined curvature k̄ is equivalent to minimizing

the discrete Ricci energy.For Euclidean or hyperbolic cases, the discrete Ricci energy was
first proved to be strictly convex in the seminal work in [30] for the Φ = 0 case, and
was generalized to all cases of Φ ≤ π/2 in [27]. The global minimum uniquely exists,
corresponding to the metric ū, which induces k̄. The discrete Ricci flow converges to this
global minimum. Although the spherical Ricci energy is not strictly convex, the desired
metric ū is still a critical point of the energy.

The energy can be optimized using Newton’s method. As shown in figure 13(b), for
each face fijk there exists a unique circle orthogonal to all three circles at the vertices,
whose center is o. The distance from the center to edge eij is denoted as dkij . The weight
for an edge eij adjacent to fijk and fjil is defined as

µij = dkij + dlij.

The Hessian matrix H = (hij) is given by the discrete Laplace form

hij =


0, [vi, vj] ̸∈ E
dij, i ̸= j∑

k dik, i = j

Figure 14 shows the result for computing the uniformization hyperbolic metric for a
genus two surface. The universal covering space of the surface with the uniformization
metric is isometrically embedded in the Poicaré disk.
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Algorithm 2 Discrete Hyperbolic Ricci Flow.
Input: Surface M with negative Euler number.
Output: The hyperbolic metric U of M .
1. Assign a circle at vertex vi with radius ri, compute the discrete conformal factor ui;
For each edge [vi, vj], two circles intersect at an angle ϕij , called edge weight.
2. The edge length lij of [vi, vj] is determined by the hyperbolic cosine law: coshlij =

coshricoshrj + sinhrisinhrjcosϕij

3. The angle θjki , related to each corner , is determined by the current edge lengths with
the inverse hyperbolic cosine law.
4. Compute the discrete Gaussian curvature Ki of each vertex vi:

Ki =

{
2π −

∑
fijk∈F θ

jk
i , interior vertex

π −
∑

fijk∈F θ
jk
i , boundary vertex

(3.16)

where θjki represents the corner angle attached to vertex vi in the face fijk
5. Update the radius ri of each vertex vi: ui = ui − ϵKi

6. Repeat the step 2 through 5, until ∥Ki∥ of all vertices are less than the user-specified
error tolerance.

4 Hyperbolic Harmonic Mapping for Constrained Surface
Registration

Automatic computation of surface correspondence via harmonic map is an active research
field in computer vision, computer graphics and computational geometry. It may help
document and understand physical and biological phenomena and also has broad applica-
tions in biometrics, medical imaging and motion capture. Although numerous studies have
been devoted to harmonic map research, limited progress has been made to compute a dif-
feomorphic harmonic map on general topology surfaces with landmark constraints. This
work conquer this problem by changing the Riemannian metric on the target surface to
a hyperbolic metric, so that the harmonic mapping is guaranteed to be a diffeomorphism
under landmark constraints. The computational algorithms are based on the Ricci flow and
nonlinear heat diffusion methods. The approach is general and robust. We apply our al-
gorithm to study constrained surface registration problem which applied to both medical
and computer vision applications. Experimental results demonstrate that, by changing the
Riemannian metric, the registrations are always diffeomorphic, and achieve relative high
performance when evaluated with some popular surface registration evaluation standards.
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Figure 14: Hyperbolic Ricci flow method to compute a conformal mapping for a genus two
surface.

4.1 Overview

Analysis and understanding of shapes is one of the most fundamental tasks in our interac-
tion with the surrounding world. There are two major problems in shape analysis research:
similarity and correspondence. Examples of similarity research include 3D face recogni-
tion [17], shape retrieval [19], etc. Among various correspondence research, automatic
computation of surface correspondence regulated by certain geometric or functional con-
straints is an important research field in computer vision and medical imaging. For exam-
ple, in human brain mapping research, since cytoarchitectural and functional parcellation
of the cortex is intimately related the folding of the cortex, it is important to ensure the
alignment of the major anatomic features, such as sucal landmarks.

Among various rigid and non-rigid surface registration approaches (e.g. [12, 17, 78]),
harmonic map is one of the most broadly applied methods [1, 154]. The advantages of har-
monic map computation are: (1) it is physically natural and can be computed efficiently;
(2) it measures the elastic energy of the deformation so it has clear physical interpretation;
(3) for a planar convex domain, it is diffeomorphism; (4) it can be computed by solving
an elliptic partial differential equation so its computation is numerically stable; (5) it con-
tinuously depends on the boundary condition so it can be controlled by adjusted boundary
conditions. In computer vision and medical imaging fields, surface harmonic map has been
used to compute spherical conformal mapping [45], image registration [68], high resolution
tracking of non-rigid motion [1], non-rigid surface registration [87], etc.
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However, the current state-of-the-art surface harmonic map research has some limita-
tions. For example, it usually only works with genus zero surfaces but does not work with
general topology surfaces. It is hard to add landmark curve information. A harmonic map
combined with landmark matching conditions usually does not guarantee diffeomorphism.
All these problems become obstacles to apply harmonic map to solve general non-rigid sur-
face matching problems. In contrast, in current work, we slice along the landmark curves
on general surfaces and assign a unique hyperbolic metric on the template surface, such
that all the boundaries become geodesics. Then by establishing harmonic mappings, the
obtained surface correspondences are guaranteed to be diffeomorphic.

In this work, we apply the proposed method to study human brain cortical surface regis-
tration problem. Early research [40, 131] has demonstrated that surface-based approaches
may offer advantages as a method to register brain images. The cortical surface registration
may help identify early disease imaging biomarkers, develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.

In order to overcome these difficulties, this work proposes a novel method to estab-
lish harmonic maps between surfaces with complicated topologies, incorporating landmark
curve constraints. We call our method as Hyperbolic Harmonic Map, which is based on the
following key ideas:

1. Metric Change In general, harmonic maps between two surfaces with negative Euler
numbers may not be diffeomorphic. According to Yau’s harmonic mapping theory,
if the Riemannian metric of the target surface induces negative Gaussian curvature
everywhere, then the harmonic map is unique and diffeomorphic. Therefore, we
deform the target surface metric to be hyperbolic based on our prior work of hyper-
bolic Ricci flow method [151], then the harmonic map obtained is guaranteed to be
diffeomorphic.

2. Topology Change If the landmark curve constraints are required, the source and the
target surfaces are sliced along these landmarks, such that the topologies of the sur-
faces are modified, the landmarks are converted to boundaries. Then the metric on
the target is Then the harmonic map is established between the modified surfaces
with Dirichlet boundary conditions. Then apply the above method to deform the
metric on the target, establish the harmonic map. The final registration is ensured to
be diffeomorhic and with the desired landmark alignment.

Furthermore, we apply the proposed method to study cortical, facial and general surface
registration problem.

In summary, the main contributions of the current work are as follows: 1. Introduce
a novel algorithm to compute harmonic mappings on hyperbolic metric using nonlinear
heat diffusion method and Ricci flow. 2. Develop a novel surface registration method
based on hyperbolic harmonic maps. The new method overcomes the shortcomings of
the conventional methods, such that the registration is guaranteed to be diffeomorphic. 3.
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Enforce the landmark constraints, by modifying the surface topologies. 4. Introduce a
novel general methodology to achieve special goals in geometric processing by changing
the surface Riemannian metrics.

4.2 Related Works

Shape matching and registration is a well-studied field with several recent books and sur-
veys [16, 70]. It is out of scope for the this article to cover all existing shape matching and
registration methods; we concentrate on inter-surface mapping based methods as well as
various class of dense mapping methods.

Iterative closest points(ICP) based methods: The ICP based methods nd surface cor-
respondences through an iterative procedure that starts with an initial correspondence and
then repeatedly improves it by computing an aligning transformation from the correspon-
dences and then updating the correspondences based on the transformation. These method
are most commonly used for aligning surfaces related by a rigid transformation [11], but has
also been used for moderate non-rigid deformations [4, 20, 104, 129, 43]. Unfortunately,
it does guarantee that the final map is smooth or bijective (two points on one surface may
map to the same point on another), and a good initial guess(which is sometimes difficult to
obtain) is required to succeed in most cases.

Dense mapping methods: These kind of methods represent a map between a pair of
shapes as a point-to-point correspondence. Since it is infeasible to optimize over such cor-
respondences directly, most methods aim to obtain a sparse set of point correspondences
and extend them to dense mappings [62, 153, 100, 73]. Because sparse point correspon-
dences are inherently discrete, common ways to enforce global consistency include preser-
vation of various quantities between pairs or sets of points, including geodesic distances
[16, 62], various spectral quantities [63, 94, 96, 119, 100], or a combination of multiple
geometric and topological tests [36, 6].

Inter-surface mapping: Given a set of correct sparse correspondences (defined by a user
or an algorithm), one can use a variety of methods to find a smooth map interpolating them.
A common approach is to map both surfaces to a canonical domain where sparse feature
points align and then interpolate the map in that domain [3]. For example, [107] used a
base coarse mesh (provided by a user) as such a domain. In their approach, the surface is
cut into triangular patches defined by three geodesic curves, such that each geodesic curve
is mapped to a triangle on a coarse base mesh. [117, 75] developed an automatic approach
for creating the base domain. Conformal geometric methods based on the Euclidean metric
have also been extensively studied [5, 151, 14, 145]. Wang et al. [141] studied brain mor-
phology with Teichmüller space coordinates where the hyperbolic conformal mapping was
computed with the Yamabe flow method. Zeng [151] proposed a general surface registra-
tion method via the Klein model in the hyperbolic geometry where they used the inversive
distance curvature flow method to compute the hyperbolic conformal mapping.

Overall, finding diffeomorphic mappings between surfaces is an important but difficult
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problem. In most cases, extra regulations, such as inverse consistency [120], have to be
enforced to ensure a diffeomorphism. Since the proposed work offers a harmonic map
based scheme for diffeomorphisms which guarantees a perfect landmark curve registration
via enforced boundary matching, the novelty of the proposed work is that it facilitates
diffeomorphic mapping between general surfaces with delineated landmark curves.

4.3 Theoretic Background

This section briefly covers the most relevant concepts and theorems, detailed treatments
can be found in [32, 116, 151].

4.3.1 Algebraic Topology

Fundamental Group Let S be a surface, q ∈ S is a base point. Consider all the loops
through q. Two loops are homotopic, if one can deform to the other without leaving S. The
product of two loops is the concatenation of them. All the homotopy classes of loops form
the fundamental group (homotopy group), denoted as π1(S, q). Fig. 15 frame (a) shows a
set of fundamental group generators.

a1

b1

a2

b2

q

a1

b1

a
−1

1

b
−1

1

a2

b2

a
−1

2

b
−1

2

(a) fundamental group basis (b) fundamental domain

Figure 15: Canonical fundamental group basis and a fundamental domain.

Universal Covering Space Consider the set of all the homotopic classes of paths on the
surface starting from p denoted as S̃, with an appropriate topology, S̃ forms a simply con-
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nected surface. The projection map p : S̃ → S maps each path to its end point, the
projection map is a local homeomorphism. The pair (S̃,p) is called the universal covering
space of S.

Let q ∈ S be a point on the base surface, its preimage of the projection p is a discrete
point set,

p−1(q) = {· · · , q̃0, q̃1, · · · }

which is called the orbit of q. Let D̃ ⊂ S̃, q ∈ S is an arbitrary point on the base surface S,
if D̃ is simply connected and intersects the orbit of q at once, then D̃ is called a fundamental
domain. Fig. 15 frame (b) shows a fundamental domain of a genus 2 surface. Fig. 16 show
a finite portion of the universal covering space of a genus 3 surface.

Figure 16: Finite portion of the universal covering space of a genus 3 surface.

Deck Transformation Let φ : S̃ → S̃ be a homeomorphism of the covering space S̃,
which is commutable with the projection map, namely p ◦ φ = p, then φ is called a Deck
transformation. All the deck transformations form a group, which is denoted as Deck(S̃).
Given a deck transformation φ, let q̃ ∈ p−1(q) be in the orbit of the base point q, then φ(q̃)
is also in the orbit of q. Choose arbitrarily a path γ̃ ⊂ S̃, connecting q̃ and φ(q̃), then the
projection of γ̃ is a loop on S. This process gives an isomorphism between the fundamental
group and the Deck transformation group, F : Deck(S) ∋ φ 7→ [p(γ̃)] ∈ π1(S, q) We
use αk and βk to denote the deck transformations, whose images under F are ak and bk
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respectively. Therefore, formaly, the Deck transformation group has the representation

Deck(S) = ⟨α1, β1, · · · , αg, βg|α1β1α
−1
1 β−1

1 · · · , αgβgα
−1
g β−1

g ⟩.

The transformations among the fundamental domains in Fig. 16 are Deck transformations.

Figure 17: Pants decomposition of a genus 3 surface.

Pants Decomposition Suppose surface S is with the Euler characteristic number χ(S) < 0.
The surface can be decomposed to |χ(S)| pairs of pants. One pair of pants is a genus 0

surface with 3 boundaries. The pants decomposition [38] can be computed straight for-
wardly. Whenever there is a non-trivial loop γ on the surface, which is not homotopic to the
boundary loops, the surface is sliced along γ. If the surface is divided to several connected-
components, repeat this procedure, until all components are pairs of pants. Figure 17 shows
one example of pants decomposition of a genus 3 surface.

4.3.2 Surface Differential Geometry

Isothermal Coordinates Suppose S is a surface embedded in R3 with a Riemannian metric
g induced from the Euclidean metric. Let u : S → R be a scalar function on S. It can be
verified that g̃ = e2λg is also a Riemannian metric on S and angles measured by g are equal
to those measured by g̃. Thus, g̃ is called a conformal deformation of g, or a conformal
metric.

Definition 4.1 (Isothermal Coordinates). Let S be a smooth surface with a Riemannian
metric g. Isothermal coordinates (x, y) for g satisfy g = e2λ(x,y)(dx2 + dy2).
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where λ is the conformal factor. Locally, isothermal coordinates always exist. An atlas
consisting of isothermal parameter charts is called a conformal atlas, or a conformal struc-
ture.

The Gaussian curvature[32] of the surface is given by

K(x, y) = −∆gλ, (4.1)

where ∆g = e−2λ(x,y)( ∂2

∂x2 +
∂2

∂y2
) is the Laplace-Beltrami operator induced by g. Although

the Gaussian curvature is intrinsic to the Riemannian metric, the total Gaussian curvature
is a topological invariant:

Theorem 4.2. The total Gaussian curvature of a closed metric surface is
∫
S
KdA =

2πχ(S), where χ(S) is the Euler number of the surface[32].

Harmonic Map For a surface S with a Riemannian metric g, one can choose its isothermal
coordinates (x, y) and have

g = σ(x, y)(dx2 + dy2) = σ(z)dzdz̄,

where the complex parameter z = x+ iy, dz = dx+ idy.
Given a mapping f : (M,gm) → (N,gn), z and w are local isothermal parameters on

M and N respectively; gm = σ(z)dzdz̄ and gn = ρ(w)dwdw̄. Then the mapping has local
representation w = f(z) or denoted as w(z). We also name M as the source surface and
N as the target surface.

Definition 4.3 (Harmonic Map). The harmonic energy of the mapping is defined as

E(f) =

∫
M

ρ(w(z))(|wz|2 + |wz̄|2)dxdy. (4.2)

where the complex differential operator is defined as

∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
),
∂

∂z̄
=

1

2
(
∂

∂x
+ i

∂

∂y
).

If f is a critical point of the harmonic energy, then f is called a harmonic map.

Harmonic energy depends on the Riemannian metric on the target surface, and the
conformal structure of the source surface. Namely, if the Riemannian metric on the source
surface is deformed conformally, the energy does not change. The necessary condition for
f to be a harmonic map is the following Euler-Lagrange equation

wzz̄ +
ρw
ρ
wzwz̄ ≡ 0. (4.3)

Harmonic maps can be defined on general surfaces. For surfaces with negative Euler
number, it induces negative Gaussian curvature. The following theorem [115] shows that
there is a special property with the induced hyperbolic harmonic map.
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Theorem 4.4 (Yau). Suppose f : (M,gm) → (N,gn) is a degree one harmonic map,
furthermore the Riemannian metric on N induces negative Gaussian curvature, then for
each homotopy class, the harmonic map is unique and diffeomorphic.

The theory on the existence, uniqueness and regularity of harmonic maps have been
thoroughly discussed in [115].

Klein-Poincaré Uniformization Theory Given a surface S with a Riemannian metric g,
there exist an infinite number of metrics conformal to g. The Klein-Poincaré uniformiza-
tion theorem states that, among all conformal metrics, there exists a unique representative,
which induces constant Gaussian curvature everywhere. Moreover, the constant will be
one of {+1, 0,−1}. Therefore, we can embed the universal covering space of any closed
surface using its uniformization metric onto one of the three canonical surfaces: the sphere
S2 for genus-0 surfaces with positive Euler numbers, the plane E2 for genus-1 surfaces
with zero Euler number, and the hyperbolic space H2 for high genus surfaces with negative
Euler numbers.
Surface Ricci Flow Surface uniformization metric can be computed using Ricci flow
method.

Definition 4.5 (Surface Ricci Flow). The normalized surface Ricci flow is defined as dg(t)
dt

=

2
(

2πχ(S)
A(0)

−K(t)
)
g(t) where χ(S) is the Eulder characteristic number of S, A(0) is the

total area of the surface at time 0, K(t) is the Gaussian curvature induced by g(t).

Theorem 4.6 (Hamilton). If χ(S) < 0, then the solution to the normalized Ricci flow
equation exists for all t > 0 and converges to a metric with constant curvature 2πχ(S)

A(0)
.

By running Ricci flow, a hyperbolic metric of the surface can be obtained, which in-
duces −1 Gaussian curvature everywhere.

4.3.3 Hyperbolic Geometry

Hyperbolic Plane and Fuchs Group The Poincaré’s disk model for the hyperbolic plane
H2 is the unit disk on the complex plane {z ∈ C| |z| < 1} with Riemannian metric (1 −
zz̄)−2dzdz̄. The hyperbolic distance between two points z1, z2 ∈ H2 is given by ρ(z1, z2) =
tanh−1

∣∣∣ z1−z2
1−z1z̄2

∣∣∣ . The geodesics (hyperbolic lines) are circular arcs perpendicular to the

unit circle. The hyperbolic rigid motions are Möbius transformations φ : z 7→ eiθ (z−z0)
(1−z̄0z)

.

Fig. 18 shows one example of Möbius transformation of the unit disk. The axis of ϕ is the
hyperbolic line through its fixed points: z1 = limn→∞ φn(z), z2 = limn→∞ φ−n(z). The
hyperbolic line through z1 and z2 is called the axis of the Möbius transformation. Given
two non-intersecting hyperbolic lines γ1 and γ2, there exists a unique hyperbolic line τ
orthogonal to both of them, and gives the shortest path connecting them. For each γk, there
is a unique reflection ϕk whose axis is γk, then the axis of ϕ2 ◦ ϕ−1

1 is τ .
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Figure 18: Möbius transformation.

Suppose S is with a hyperbolic metric, then its universal covering space S̃ can be iso-
metrically embedded onto the hyperbolic plane H2. A Fuchsian transformation ϕ is a
Möbius transformation, which preserves the projection ϕ ◦ p = p. All Fuchsian transfor-
mations form the Fuchs group, Fuchs(S), which is isomorphic to the fundamental group
π1(S, q).
Complex Cross Ratio Suppose z1, z2, z3, z4 are points in C ∪ {∞},

Definition 4.7 (Cross Ratio). The complex cross ratio is given by (z1, z2, z3, z4) :=
z1−z3
z1−z4

:
z2−z3
z2−z4

.

Complex cross ratio is invariant under Möbius transformations. Namely, if φ is a
Möbius transformation, then (φ(z1), φ(z2), φ(z3), φ(z4)) = (z1, z2, z3, z4).

Exponential Map Let z be a point on the Poincaré disk, the tangent space at z is denoted
as TzH2. Suppose v ∈ TzH2 is a tangent vector at z, there is a unique geodesic γ(t), such
that γ(0) = z, γ̇(0) = v, then the exponential map at z, exp(·, z) : TzH2 → H2 is

exp(v, z) := γ(1). (4.4)

The logarithm map is the inverse to the exponential map, the logarithm at the origin 0,
log(·, 0) : H2 → T0H2,

log(w, 0) := ρ(w, 0)
w

|w|
. (4.5)

where ρ(w, 0) is the hyperbolic distance between the origin and w. Fig. 19 illustrates
the exponential map on a Riemannian manifold.
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Figure 19: Exponential map.

Geodesic Mass Center Given a surface with a metric (S,g), fix a point p ∈ S, the expo-
nential map at p is diffeomorphic on a small disk at TpS. The supreme of the such a disk
radius is called the injective radius at p.

suppose Q = {q1, q2, · · · , qk} ⊂ S is a point set in a geodesic disk D(p, r), whose
radius r is smaller than the injective radius at p. The points are associated with the weights
Λ = {λ1, λ2, · · · , λk}, each λi ≥ 0, then the weighted geodesic mass center of (Q,Λ)
is defined as c(Q,Λ) := argminq

∑k
i=1 λjρ

2(q, qi). Then from Riemannian geometry, the
mass center exists and is unique.
Klein’s Model Another hyperbolic plane model is the Klein’s disk model, where the hy-
perbolic lines coincide with Euclidean lines. The conversion from Poincare’s disk model
to Klein disk model is given by

z → 2z

(1 + zz̄)
. (4.6)

Hyperbolic Pants Decomposition Suppose S has a hyperbolic metric, one can compute
a pants decomposition, such that all the cutting loops are geodesics. Furthermore, each
pair of hyperbolic pants can be further decomposed. Assume the pair of pants have three
geodesic boundaries {γi, γj, γk}. Let {τi, τj, τk} be the shortest geodesic paths connect-
ing each pair of them. The shortest paths divide the surface to two identical hyperbolic
hexagons with right inner angles. when mapped to the Klein’s model, the hyperbolic
hexagons coincide with convex Euclidean hexagons. Fig. 20 shows the decomposition
of a pair of hyperbolic pants.

4.4 Algorithms

In this section, we introduce our hyperbolic harmonic mapping method. For comparison
purpose, we will also briefly explain how to compute the constrained Euclidean harmonic
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Figure 20: A pair of hyperbolic pants is decomposed to two hyperbolic hexagons.

mapping with the same framework. Fig. 21 illustrates the major steps for us to compute
hyperbolic harmonic maps between surfaces.

4.4.1 Topology Optimization

In surface registration, sometimes one may define landmark curves and enforce the land-
mark curve matching to increase the global surface registration accuracy [130, 103] Since
harmonic map depends on boundary conditions, it is natural to model landmark as bound-
aries by cutting surfaces along landmark curves. Later, in our harmonic mapping, these
landmark curves are enforced to match as boundary conditions. We call this step as topol-
ogy optimization and used it in some of our previous works [145, 146].

4.4.2 Discrete Hyperbolic Ricci Flow

Let M be a two-dimensional mesh surface, we denote the set of vertices, edges and faces
by V,E, F respectively. Each face is a hyperbolic triangle, the edge lengths and corner
angles are related by the hyperbolic cosine law. Assume the angles in face vi, vj, vk are
θi, θj, θk, the edge lengths against them are li, lj, lk, then

cosh lk = cosh li cosh lj − sinh li sinh lj cos θk.

Furthermore, each vertex vi is associated with a hyperbolic circle with radius γi.

42



Algorithm 3 Surface Hyperbolic Harmonic Mapping Algorithm Pipeline.
1. Construct an initial mapping.
2 Topology optimization for landmark curve constraints.
3. Compute the hyperbolic metric using hyperbolic Ricci flow.
4. Hyperbolic pants decomposition, isometrically embed them to the Poincaré disk and
then map them to the Klein model.
5. Compute harmonic maps using Euclidean metrics between corresponding pairs of
pants, with consistent boundary constraints.
6. Use nonlinear heat diffusion to improve the mapping to a global hyperbolic harmonic
map on the Poincaré disk model.

A discrete metric is a function l : E → R+, such that triangle inequality holds on every
face, which represents the edge lengths. We set the target Gauss curvature for each interior
vertex to be -1, and for each boundary vertex to be zero. Then compute the hyperbolic
metrics of using discrete hyperbolic Ricci flow method [151]. The discrete hyperbolic
Ricci flow is defined as dui

dt
= −Ki, The detailed computational algorithm of hyperbolic

ricci flow can be found in [151].

4.4.3 Hyperbolic Pants Decomposition

Suppose the input surface S is with a hyperbolic metric g. The hyperbolic pants decompo-
sition is accomplished by divide-conquer method.

First, we compute the fundamental group generators of S using the method described
in [51], if the generators include a loop γ which is not an boundary loop, we slice S along
γ. If γ divides S to two connected components S1 and S2, we repeat the same procedure
on each component. Otherwise, we continue this process, until the surface is decomposed
to S = ∪kSk, where is Sk is a genus 0 surface with multiple boundaries.

Second, if a component Sk has 3 boundary loops, then it is a pair of pants. Otherwise
if Sk has more than 3 boundaries, ∂Sk = γ0 + γ1 + γ2 · · · , compute the product of γ0 and
γ1, γ = γ0 · γ1, slice Sk along γ, to get two connected components S1

k and S2
k , such that

the boundary of S1
k consists of γ0, γ1 and γ. Hence S1

k is a pair of pants. Continue the
procedure on S2

k . By repeating this process, eventually, all connected components are pairs
of pants. Namely, we have topologically decomposed S pairs of pants.

Third, for each cutting loop γ ⊂ S, we compute the unique hyperbolic geodesic homo-
topic to γ. We find all the triangular faces attaching to γ. For each vertex vi, we define its

43



Figure 21: Algorithm Pipeline (suppose we have 2 brain surfaces M and N as input): (a).
The input brain models M and N , with landmarks been cut open as boundaries. (b). Hy-
perbolic embedding ofM andN on the Poincaré disk. (c). DecomposeM andN into mul-
tiple pants, and each pant further decomposed to 2 hyperbolic hexagons. (d). Hyperbolic
hexagons on Poincaré disk become convex hexagons under Klein model, then a one-to-one
map between the correspondent parts of M and N can be obtained via the constrained Eu-
clidean harmonic map. Then we can apply our hyperbolic heat diffusion algorithm to get a
global hyperbolic harmonic diffeomorphism. (e). Color coded registration result of M and
N .

one-ring neighborhood as N(vi),

Ni =
∪

vj ,vk∈V

[vi, vj, vk].

Suppose the vertices on γ is sorted consecutively as {v0, v1, · · · , vn−1. We isometrically
embed Nk onto the hyperbolic disk H2, the embedding is denoted as τk. Suppose a face
f is shared by two neighborhoods Nk−1 and Nk, then there is a unique Möbius transfor-
mation φk, which maps τk−1(f) to τk(f). Then we can glue the embedding τk−1(Nk−1)

and τk(Nk). After embedding the neighborhood of the last vertex Nn−1, we can continue
embedding the neighborhood of the first vertex N0 again. Eventually, we flatten the neigh-
borhood of γ onto H2. The neighborhood of the starting vertex v0 has been isometrically
embedded twice, the two embedding differ by a Möbius transformation φ. Then φ is the
Fuchsian transformation in Fuch(S) corresponding to the homotopy class of γ in the fun-
damental group, [γ] ∈ π1(S, q). We can find the two fixed points of φ, the hyperbolic
line through the two fixed points is the unique geodesic homotopic to γ. By performing
this procedure, we can use hyperbolic lines to replace all the cutting loops in the pants
decomposition.
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Figure 22: Hyperbolic triangle and the hyperbolic circle packing.

Algorithm 4 Topological Pants Decomposition.
Input: Arbitrary surface S with B boundaries.
Output: Pants decomposition of S.
1. Ignore the boundaries and decompose the surface into genus zero patches with multi-
ple boundaries, then for each patch M perform the following steps.
2. Put all boundaries γi of M into a queue Q.
3. If Q has < 3 boundaries, end; else goto Step 2.
4. Compute a geodesic loop γ′ homotopic to γi · γj
5. γ′, γi and γj bound a pants patch, remove this pants patch from M . Remove γi and γj
from Q. Put γ′ into Q. Go to Step 1.

Algorithm 5 Hyperbolic Geodesic.
Input: A triangle mesh S with hyperbolic metric g, a loop γ
Output: The hyperbolic geodesic loop homotopic to γ.
1. Sort the vertices in the loop as {v0, v1, · · · , vn−1}.
2. Isometrically embed the one-ring neighborhood of each vk ∈ γ, Nk. The embedding
is denoted as τk : Nk → H2.
3. for each k = 0, 1, · · · , n− 1, find a face f ∈ Nk ∩Nk+1, find the Möbius transforma-
tion φk to map τk+1(f) to τk(f). Transform τk(Nk) by φk, this glues the embedding of
Nk+1 to the embedding of Nk.
4. The one-ring neighborhood N0 has two embedding, τ0 and τn. The composition
φ = τ−1

n ◦ τ0 is a Möbius transformation.
5. Compute the two fixed points of φ, φ∞(0) and φ−∞(0). The hyperbolic line through
these two points is the axis of φ, which is the desired geodesic.
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4.4.4 Constructing the Initial Mapping

This step has several stages: first each pair of pants are decomposed to two identical hy-
perbolic hexagons; second, then hyperbolic hexagons are isometrically embedded onto the
Poincaré disk, then converted to hexagons on Klein model; finally the hexagons on Klein
disk are treated as Euclidean polygons, the corresponding hexagons are registered using
Euclidean harmonic maps with consistent boundary constraints. The resultant piecewise
harmonic mapping is the initial mapping.

For the first stage, we use the method described in the theory section to find the short-
est path between two boundary loops. Assume a pair of hyperbolic pants M with three
geodesic boundaries {γi, γj, γk}. On the universal covering space M̃ , γi and γj are lifted to
hyperbolic lines, γ̃i and γ̃j respectively. There are reflections ϕ̃i and ϕ̃j , whose symmetry
axis are γ̃i and γ̃j . Then the axis of the Möbius transformation γ̃j ◦ γ̃−1

i corresponds to the
shortest geodesic path τk between γi and γj . By cutting τi,τj and τk we further decomposed
a pair of pants to two hyperbolic hexagons.

In the second stage, each hyperbolic hexagon on the Poincaré disk is transformed to a
convex hexagon in Klein’s disk using Eqn. 4.6. Then a planar harmonic map between two
corresponding planar hexagons is established by solving Laplace equation with Dirichlet
boundary conditions [1],

wzz̄ ≡ 0. (4.7)

Specifically, we use the cotangent formula [37, 45] to solve the Dirichlet problem.
Given a face [vi, vj, vk], the corner angle θijk at vk in [vi, vj, vk]the corner angle at vk is
denoted as θijk . The cotangent edge weight for an edge [vi, vj] is given by

kij :=

{
cot θijk + cot θjil [vi, vj] ⊂ [vi, vj, vk] ∩ [vj, vi, vl]

cot θijk [vi, vj] ⊂ [vi, vj, vk], [vi, vj] ⊂ ∂S

A Harmonic map minimizes the harmonic energy, by Finite Element Method, the harmonic
energy for a map f : S → E2 is given by E(f) = 1

2

∑
[vi,vj ]∈S kij |f(vi)− f(vj)|

2 .

From the optimality condition, one can get the discrete Laplace equation. Given a mapping
for each interior vertex vi ̸∈ ∂S,

∆f(vi) :=
∑

[vi,vj ]∈S

kij(f(vj)− f(vi)) = 0, (4.8)

where ∆ is the discrete Laplace-Beltrami operator. This is equivalent to the mean value
property of a harmonic map f : f(vi) coincides with the weighted mass center of its neigh-
bors,

f(vi) :=

∑
[vi,vj ]∈S kijf(vj)∑

[vi,vj ]∈S kij
, (4.9)

The right hand side is the weighted mass center.
The Dirichlet boundary condition is as follows. The mapping maps hexagon vertices

to vertices, boundary line segments to line segments. Restricted on one boundary line

46



segment, the mapping is a linear interpolation by arc length parameter. Because the edge
lengthes of the cut landmarks are the same (they were originally the set of edges), the
position constrain patterns are exactly the same for two adjacent patches which share this
landmark. By solving sparse linear system, we can get a piecewise harmonic mapping
between the surfaces.

It is well known that if the target mapping domain is convex, then planar harmonic
maps are diffeomorphic [116]. The consistent boundary conditions ensure that the har-
monic mappings between hexagons can be glued together to form a homeomorphic initial
mapping. The process is visualized in Figure 23.

Figure 23: Hyperbolic hexagon matching.

4.4.5 Non-linear Heat Diffusion

The goal of this step is to diffuse the initial mapping and achieve a global hyperbolic har-
monic map which is not restricted on every patch, as used in the prior step. Similar to
how the Eikonal equation is solved in fast marching algorithm [118, 136], here a nonlinear
heat diffusion method is proposed to compute the harmonic mapping, which is based on a
conformal atlas induced by the hyperbolic metric.
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Algorithm 6 Hyperbolic Hexagon Matching Algorithm.
Input: Two hyperbolic hexagons H1 and H2.
Output: A diffeomorphism maps H1 to H2.
1. Convert H1 and H2 from the Poincaré disk model to the Klein model, in which they
become convex polygons H ′

1 and H ′
2.

2. Set Dirichlet boundary condition by linearly interpolating the boundary line segments
using arc length parameters.
3. Compute a harmonic map between H ′

1 and H ′
2, then construct a mapping the between

original H1 and H2.

Hyperbolic Atlas Let (S,g) be a dense triangle mesh with hyperbolic metric g. Then for
each vertex vi ∈ S, the one ring neighboring faces form a neighborhood Ni, the union of
Ni’s cover the whole mesh, S ⊂

∪
vi∈S Ni. Isometrically embed Ni to the Poincaré’s disk

ϕi : Ni → H2, then {(Ni, ϕi)} form a conformal atlas. Furthermore, the chart transitions
are Möbius transformations. All the following computations are carried out on local charts
of the conformal atlas. The computational result is independent of the choice of local
parameters.

Suppose f : (S1,g1) → (S2,g2) is the initial map, g1 and g2 are hyperbolic metrics.
Compute the conformal atlases of S1 and S2. Choose local conformal parameters z and w
for S1 and S2, f has local representation f(z) = w, or simply w(z).

Map Representation Suppose v is a vertex on S1, with local representation z, its image
w(z) is inside a triangular face t(v) of S2. Suppose the three vertices of t(v) have local
representations wi, wj, wk, the we compute the complex cross ration

η(v) := (w(z), wi, wj, wk) .

The image of v is then represented by the pair [t(v), η(v)]. Note that, all the local coordi-
nates transitions in the conformal chart of S1 and S2 are Möbius transformations, and the
cross ration η is invariant under Möbius transformation, therefore, the representation of the
mapping f : v → [t(v), η(v)] is independent of the choice of local coordinates.

Hyperbolic Harmonic Map Let f : (S1,g1) → (S2,g2) be a mapping, the discrete
harmonic energy is similar to the Euclidean one 4.4.4,

E(f) =
1

2

∑
[vi,vj ]∈S1

kijρ
2(f(vi), f(vj)). (4.10)
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where ρ(f(vi), f(vj)) is the hyperbolic distance between f(vi) and f(vj). By definition,
if f is harmonic, then for an arbitrary vertex vi, fixing all the other vertices, the following
energy should be minimized:

min
f(vi)

∑
[vi,vj ]∈S1

kijρ
2(f(vi), f(vj)), (4.11)

therefore, the harmonic map f satisfies the mean value property: for each vertex vi, its
image coincides with the weighted geodesic mass center of the images of its neighbors.

Namely, let vi be a vertex, its one-ring neighbors are {vi1 , vi2 , · · · , vik}. Let Q(vi) =
{f(vi1), f(vi2), · · · , f(vik)}, and weights Λ(vi) = {ki,i1 , ki,i2 , · · · , ki,ik}, then f(vi) =

c(Q(vi),Λ(vi)), where the right hand side weighted geodesic mass center is defined in
Eqn.4.9.

Weighted Geodesic Mass Center Given a point set Q = {z1, z2, · · · , zk} and weights
Λ = {λ1, · · · , λk} on Poincaré’s disk, denote the weighted geodesic mass center c(Q,Λ)
as c. It can be computed by the following iterations.

At the initial step, set Q0 = Q, set c0 be a point in the convex hull of Q0. At the
n-th step, apply a Mobiüs transformation to Qn. φn(z) = z−cn

1−c̄nz
, Set zn+1

i = φn(z
n
i ),

Qn+1 = {zn+1
1 , zn+1

2 , · · · , zn+1
k }.

compute the logarithms of zn+1
i ’s using Eqn.4.5. In the tangent plane at the origin, com-

pute the Euclidean weighted mass center C :=
∑

i λi log z
n+1
i∑

i λi
. Compute the exponentional

map of C using Eqn.4.4, update the center cn+1 ← exp(C, 0). Repeat this procedure, then
the sequence {cn} converges, {zni } converges for all 1 ≤ i ≤ k. Then the limit c∞ is the
weighted geodesic mass center of the point set Q∞ with weights Λ. Detailed algorithm
description can be found in Alg.7.

Non-linear Heat Diffusion The initial map f : S1 → S2 can be diffused to be harmonic
using the non-linear heat diffusion process.

For each vertex vi, we compute the weighted geodesic mass center of the images of
its neighboring vertices c(Q(vi),Λ(vi)), then update the image of vi to be the mass center,
f(vi)← c(Q(vi),Λ(vi)).Update the images of all vertices on S1. Repeat this process, until
for each vertex, the geodesic distance between its image, and the weighted geodesic mass
center of the images of its neighbors is less than a given threshold.

4.4.6 Euclidean Harmonic Mapping with Hard Constraints

For comparison purpose, we also implement Euclidean harmonic mapping method with
hard constraints for landmark matching [144]. Basically, for genus zero surfaces with one
open boundary, we apply the Eqn. to map the surfaces to a unit disk.
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Algorithm 7 Weighted Geodesic Mass Center.
Input: A point set Q = {z1, z2, · · · , zk} on the Poincaré disk, the diameter of Q is less
than the injective radius of S; A weight set Λ = {λ1, λ2, · · · , λk}.
Output: The weighted geodesic mass center c(Q,Λ).
1. Initialize z0i ← zi, Q0 ← {z0i }, c0 ← 0.
repeat

2. Set φn ← (z − cn)/(1− c̄nz)
3. Set zn+1

i ← φn(z
n
i ), Qn+1 ← {zn+1

i }.
4. Compute the logarithm of zn+1

i using Eqn.4.5.
5. Compute the Euclidean weighted mass center in the tangent space at the origin
C ← (

∑
i λi log z

n+1
i )/(

∑
i λi).

6. Compute the exponential map of C using Eqn.4.4

cn+1 ← tanh |C| C
|C|

.

until ρ(cn, cn+1) < ε

7. Construct a Möbius transformation φ, mapping {zn1 , zn2 , zn3 } to {z1, z2, z3}.
8. Return the weighted geodesic mass center φ(cn).

To enforce landmark curve matching, first, we use the unit speed parameterizations to
build a one-to-one correspondence between a given landmark curves from different sur-
faces. Secondly, we select a surface and use its harmonic mapping image as the template
surface and move landmark curves from other surfaces to the template landmark positions
on the unit disk. We treat the landmark positions together with the boundary curves as the
hard constraints and build a linear system with Dirichlet boundary condition as shown in
Eqn. 6.13. After solving the linear system, we obtain the Euclidean harmonic map with
hard constraints. Because of the Euclidean harmonic map nature, the obtained mapping
is non-diffeomorphic. Fig 24 shows the Euclidean harmonic mapping pipeline for human
face registration and the non-diffeomorphic effects around the constrained regions.

4.5 Experimental Results

In this section, we will report our hyperbolic harmonic mapping experimental results. We
use a matching between the Eight and Amphora models to illustrate that our proposed
method works for high genus surface matching applications. Furthermore, we study facial
surface tracking and cortical surface registration applications. Extensive comparisons with
Euclidean harmonic mapping are done and the results demonstrate the benefits for us to
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Algorithm 8 Hyperbolic Heat Diffusion Algorithm.
Input: Two triangle meshes with hyperbolic metrics (S1,g1) and (S2,g2); an initial
mapping f : S1 → S2, represented as (t(vi), η(vi)), ∀vi ∈ S1. An error tolerance
threshold ε.
Output: Discrete hyperbolic harmonic map h : S1 → S2.
1. Construct a hyperbolic atlas of the target surface S2.
repeat

for each vertex vi ∈ S1 do
Collect all its neighboring vertices N(vi) = {vij} and neighboring edge weights
Γ(vi) = {ki,ij}.
3. Choose a local chart of S2, which covers the images of all neighboring vertices
in N(vi).
4. Convert the mapping representation of each vij ∈ N(vi), (t(vij), η(vij)) to local
coordinates wij . Let Q(vi) = {wij}.
5. Compute the weighted geodesic mass center c(Q(vi),Γ(vi)).
6. Update f(vi), f(vi) ← c(Q(vi),Γ(vi)). Convert f(vi) to the representation
(t(vi), η(vi)).

end for
until for all vi ∈ S1, ρ(f(vi), c(Q(vi),Λ(vi))) < ε.
8. Output the harmonic map f : S1 → S2, represented as (t(vi), η(vi)), ∀vi ∈ S1.

adopt hyperbolic harmonic mapping framework for surface registration research.

4.5.1 General Surface Registration

Our method is general and can handle general surface structure, i.e. surfaces with arbitrary
holes and open boundaries. Here we show how it works on closed surface matching prob-
lem. Fig. 26 (a) and (b) show two genus-two surface models, Eight model and Amphora
model. They are marked with a set of canonical fundamental group generators, which can
cut the surface into a topological disk with eight sides. (c) and (d) illustrate the embed-
ding of their fundamental domains to the Poincaré disk. Multiple fundamental domains are
shown and each color labels a complete fundamental domain. As the rigid translation on
the Poincaré disk, the Möbius transformation generates a new fundamental domain across
each edge. Cutting along the yellows lines on (e) and (f) may decompose them into to two
pairs of topological pant models. On each pair of pant model, it can be further cut into two
symmetric pieces, each of which is labeled with a unique color in (g) and (h). The initial
mapping is computed between these four pieces of two surfaces.
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Figure 24: Euclidean harmonic mapping. (a) and (b) are the input face models. The Eu-
clidean harmonic mapping method first map (a) to a rectangle, shown by (c), then map
(b) to (c) with the constrain curves shown by the white balls. (d) shows the result of this
constrained mapping, (e) shows that there are flipping at the constrained region.

Fig. 27 further illustrates the matching process. For each pair of pant surface (shown
in (a) and (b)), it may decompose two pieces and they are mapped to two hexagon models
on the Poincaré disk. (c) and (d) show two hexagons model on the Poincaré model. With
Eqn. 4.6, one may convert them to two convex hexagons on the Klein model ((e) and (f)).
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Note that the geodesics on the Poincaré model are arc while they are straight lines on
the Klein model. So the hexagons are convex on the Klein model. Initial mapping are
computed between the convex hexagons. Following that, non-linear heat diffusions are
computed throughout the entire surfaces and the final hyperbolic harmonic mapping results
are color coded in (g) and (h).

Running Time Analysis We implemented our algorithms using C++ on Windows plat-
form, with an Open source linear system solver UMFPACK [29]. All the experiments are
conducted on a laptop computer of Intel Core2 T6500 2.10GHz with 4GB memory. The
”Eight” model has about 1K vertices and the Amphora model has about 30K vertices. The
registration pipeline took about 16 seconds.

Comparison to Holomorphic 1-Form based Method Prior to hyperbolic Ricci flow
method, our prior work [49] proposed a holomorphic 1-form based method to compute
the global conformal parameterization of general surfaces. Later, a holomorphic flow
segmentation method was introduced in [143] to match general surfaces and this method
was adopted in multivariate tensor-based morphometry research to study lateral ventricular
morphometry [146]. Based on surface cohomology, the holomorphic flow segmentation
method computes a set of holomorphic 1-form basis functions which induces global sur-
face conformal parmeterizations on general surfaces. However, for high genus surfaces,
i.e. genus number is great than one, the global conformal parameterization results will
always have zero points, as shown in Fig. 25. The areas covered by the zero points are
mapped to a single point and create big distortions around zero point areas. As a result,
the surface matching results will always be inaccurate and create holes on the average sur-
face shapes. Benefited by surface hyperbolic Ricci flow and hyperbolic harmonic map, the
current method does not have any singularity point and one may achieve an exact diffeom-
rophic mapping between general surfaces.

4.5.2 Human Face Registration and Tracking

In this section we applied our algorithm to human face registration and tracking research.
We ran our algorithm on a face sequence of 100 frames, with each face model has about 36k
vertices. The Ricci Flow processing took 8 seconds for one frame averagely, the hyperbolic
heat diffusion took about 10 seconds averagely. In the current setting, it took about 18
seconds to register each adjacent mesh frames.

We performed our algorithm on human face registration and tracking problem and eval-
uate our method by comparing with the Euclidean harmonic mapping with hard constraints[103,
1], as detailed in Sec. 4.4.4. To process the face model, we cut out the eye regions along
the automatically identified eye contour curves [144]. We also cut the mouth open. Af-
ter the topology optimization, each facial surface has four open boundaries and they are
used as landmark constraints. The pants decomposition was shown in Fig 49 (a)-(d) shows
the tracking result. We applied the hyperbolic harmonic mapping algorithm to each pair
of adjacent meshes, with the mouth and eye boundaries as constraints, then put the same
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Figure 25: Zero point of Holomorphic 1-Form method on high genus surface.

registration mesh (as the green color) to each face to show the tracking result. The re-
sults demonstrated that our algorithm may well register surfaces with significant expression
changes. Fig 49 (e)-(g) show the pants decomposition of the face model. The following sec-
tions detail the performance comparison results between our algorithm and the Euclidean
harmonic mapping method.

Registration Flipping One of the most promising advantages of our registration algo-
rithm is that it guarantees the mapping between two surfaces to be diffeomorphic. We ran-
domly choose one face model as template and all others as source to do registration. For
each registration, we compute the Jacobian determinant and measure the area of flipped
regions. The ratio between flipped area to the total area is collected to form the histogram
shown in Fig.29. The conventional method (blue bars) produces a big flipped area ratio,
even as much as 9%. In contrast, the flipped area ratios for all registrations obtained by the
current method are exactly 0’s.

Curvature Distortion We first evaluated registration accuracy by comparing the align-
ment of curvature maps between the registered models [103]. In this work we calculated
curvature maps using an approximation of mean curvature, which is the convexity mea-
sure. We quantified the effects of registration on curvature by computing the difference
of curvature maps from the registered models. We assign each vertex the curvature differ-
ence between it’s own curvature and the curvature of it’s correspondent point on the target
surface, then build a color map. Fig 49 (h)-(j) show that our method produced much less
curvature distortion than the traditional harmonic method.
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Figure 26: (a),(b) show the input Eight and Amphora model, as well as their geodesic
homotopy basis. (c),(d) show their universal covering space on Poincaré’s disk. (e),(f)
show their pants decomposition, with each model been decomposed into 2 pants. (g),(h)
show the each pant can be further decomposed into 2 hyperbolic hexagons.
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Figure 27: (a),(b) show one of the hyperbolic hexagons of Eight and Amphora model.
(c),(d) show the image of (a),(b) on Poincaré’s disk. (e),(f) show the image of (c),(d) after
converted on Klein disk. (g),(h) show the final registration result by color mapping.

Area Distortion We also measured the local area distortion induced by the registration.
For each point p on the template surface, we compute its Jacobian determinant J(p), and
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Figure 28: Experimental results for human face registration and tracking.57



Figure 29: Flipped area percentage for human face registration.

represent the local area distortion function at p as max{J(p), J−1(p)}. J can be approxi-
mated by the ratio between the areas of a face and its image. Note that, if the registration
is not diffeomorphic, the local area distortion may go to∞. Therefore, we add a threshold
to truncate large distortions. Fig 49 (k)-(m) show that our method produced much less area
distortion than the traditional harmonic method.

Pixel Distortion Finally we evaluated the average registration accuracy using the pixel
distortion: we calculate the pixel color difference between every source-image vertices of
the face model, and compared to the traditional harmonic method. Fig Fig 49 (n)-(p) show
that our method produced much less pixel error.

4.5.3 Cortical surface registration

In this section we apply our method to brain cortical surface registration problem. Mor-
phometric and functional studies of human brain require that neuro-anatomical data from
a population to be normalized to a standard template, so brain cortical surface registra-
tion is often needed. Due to the anatomical fact, the registration mapping is required to
be smooth and bijective, namely, diffeomorphic. Since cytoarchitectural and functional
parcellation of the cortex is intimately related the folding of the cortex, it is also impor-
tant to ensure the alignment of the major anatomic features, such as sucal landmarks. We
performed our algorithm on cortical surface registration problem and again compared with
[103, 1]. We perform the experiments on 24 brain cortical surfaces reconstructed from MRI
images. Each cortical surface has about 150k vertices, 300k faces and used in some prior
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research [103]. On each cortical surfaces, a set of 26 landmark curves were manually drawn
and validated by neuroanatomists. Fig. 30 show the landmark curves and their labels. In our
current work, we selected 10 landmark curves, including Central Sulcus, Superior Frontal
Sulcus, Inferior Frontal Sulcus, Horizontal Branch of Sylvian Fissure, Cingulate Sulcus,
Supraorbital Sulcus, Sup. Temporal with Upper Branch, Inferior Temporal Sulcus, Lat-
eral Occipital Sulcus and the boundary of Unlabeled Subcortcial Region. The hyperbolic
Ricci flow takes about 120 seconds averagely, the hyperbolic heat diffusion takes about 100
seconds averagely. In the current setting, it takes about 90 seconds in average.

Figure 30: Landmark curves on human cortical surface [103].

Registration Visualization We show our visualized registration result of 2 brain models
in Figure 37, with one as target and the other one registered to it. We can see our algorithm
shows a reasonable good result.

Curvature Distortion We measure the curvature distortion according to the previous
section. We use all 24 data sets for the experiment. First, one data set is randomly chosen
as the template, then all others are registered to it. The average curvature difference map is
color encoded on the template, as shown in Fig.32. The histogram of the average curvature
difference map is also computed, as shown in Fig.33.

Area Distortion We measure the area distortion according to the previous section. We
compute the average of all local area distortion functions induced by the 23 registrations
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Figure 31: First row: source brain surface from front, back and bottom view. Second rows:
target brain model. The color on the models shows the correspondence between source and
target; the colored balls on the models show the detailed correspondence, as the balls with
the same color are correspondent to each other.

on the template surface. The average local area distortion function on the template is color
encoded as shown in Fig.34, the histogram is also computed in Fig.35.
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Figure 32: Curvature map difference of previous method (top row) and our method (bottom
row). Color goes from green to red while the curvature difference increasing.

Figure 33: Average Curvature Map Difference.
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Figure 34: Average Area Distortion. Color goes from green to red while area distortion
increasing.

Figure 35: Average Area Distortion.
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5 Traffic Analysis and Source Location Privacy under Ran-
dom Walks

Random walk on a graph is a Markov chain and thus is ‘memoryless’ as the next node to
visit depends only on the current node and not on the sequence of events that preceded
it. With these properties, random walk and its many variations have been used in network
routing to ‘randomize’ the traffic pattern and hide the location of the data sources. In
this work we show a myth in common understanding of the memoryless property of a
random walk applied for protecting source location privacy in a wireless sensor network.
In particular, if one monitors only the network boundary and records the first boundary
node hit by a random walk, this distribution can be related to the location of the source
node. For the scenario of a single data source, a very simple algorithm which says the
simple integration along the network boundary would reveal the location of the source. We
also develop a generic algorithm to reconstruct the source locations for various sources that
have simple descriptions (e.g., k source locations, sources on a line segment, sources in a
disk). This represents a new type of traffic analysis attack for invading sensor data location
privacy and essentially re-opens the problem for further examination.

5.1 Overview

Given a graph and a starting vertex, we choose a neighbor of the current node at random
and move to this neighbor and continue in this fashion. This sequence of nodes is called a
random walk on the graph. Random walk is a Markov chain such that the next node to visit
only depends on the current node and is independent of the history. This is often termed as
the “memoryless” property of a random walk, which makes it useful for many applications
in computer networking. Of particular interest to this work is the application of random
walk in wireless sensor network routing for preserving source location privacy.

Source Location Privacy: Wireless sensor networks find many useful civilian and mil-
itary applications. In many settings one would like to protect the privacy of sensor data,
defined in the general sense that sensor data and its contextual information are observable
by only those who are supposed to observe it [72]. Providing privacy in wireless sensor
network is challenging for a number of reasons. Besides that the sensor nodes are low cost
devices with limited computation and storage capacities, the fact that the sensor nodes use
wireless medium make it susceptible to attacks such as eavesdropping and traffic analy-
sis. In the literature, privacy threats in sensor networks are classified as content-oriented
privacy threats (i.e., the leaking of packet content to adversaries), that can be addressed by
security and encryption mechanisms, and contextual privacy issues (i.e., the leaking of con-
text information related to the measurement and transmission of the sensor data), of which
location of the data source is a major piece of information to be protected. In particular, an
adversary may be able to compromise private information of source locations without the
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ability of decrypting the transmitted data – by simply monitoring and analyzing the traffic
pattern in the air.

A classical model formed for protecting the source location privacy is the “Panda
Hunter Game” [72]. In the game, a large number of panda detecting sensors are placed
in a habitat to detect panda presence. Pandas here are analogs of generic assets to be mon-
itored by a sensor network. When a panda is observed, the nearby sensor node will report
such detection data periodically to the sink through multi-hop routing methods. The data
package could be encrypted such that the adversary cannot decipher the content of the
message and cannot derive the location of panda right away. However, an adversary, in this
case, the hunter, can monitor the traffic in the network and by timing analysis trace back
the routing path to the origin of the message, i.e., the location of the data source. Clearly,
simple routing schemes such as shortest path routing cannot provide data source privacy
against traffic analysis attacks.

Many schemes proposed in the literature for preserving source location privacy use
a common idea of introducing randomness in packet routing. The objective is to make
the traffic pattern look random and uncertain, and then counteract the adversarial traffic
analysis attacks. Many of them use random walk or variations of random walks as a major
component in the design. Phantom routing [72], for example, first uses random walk in the
network until the node is reasonably far from the source node and then uses (probabilistic)
flooding method to deliver it to the source. Although a short random walk may still have
the current node correlated with the origin, a long random walk will stop at a location that
is independent of the packet original. It is known that if the random walk is longer than
the mixing time, the random walk converges to its limiting distribution called the stationary
distribution [89]. This it is equivalent to selecting a node in the network randomly (from
the stationary distribution) and thus packet analysis afterwards will only trace back to this
random location, unrelated to the true data source.

Traffic Analysis on Random Walk: In this work we show that it is a myth in common
understanding that random walk automatically brings with it source location privacy. In
other words, we present a technique which allows certain traffic analysis to infer the source
location even for random walks that are as long as they want. Therefore our message is that
random walk should be used carefully in protecting source location privacy.

Network Model and Attack Model: We assume in this work a wireless sensor network
deployed in a planar domain R of interest for monitoring interesting events. The event
locations are of great importance for both the network owners and the adversary. When
an event is detected, the nearby sensor node becomes the data source and sends the report
periodically to a data sink (e.g., a base station or a mobile sink) in the network. We assume
that the message is delivered by using random walk, in which the next node to visit is
uniformly chosen from all neighbors of the current node. The random walk is sufficiently
long to ensure that the message will be delivered to the data sink with high probability.
A data source will generate data packets periodically and the delivery of these packets is
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completely independent of each other. That is, they follow different random walk paths.
The specific capabilities of the adversary is summarized below.

• Monitoring traffic on network boundary. We assume that the adversary can only
monitor network traffic along the network outer boundary. This is a reasonable as-
sumption in many settings when the domain of interest has restricted access to anyone
but the network owner. It is also a realistic model of many military applications. The
adversary places monitoring stations to monitor network traffic along the network
outer boundary. Each monitoring station listens to the traffic in the neighborhood of
a sensor node and record the signals delivered to/from the sensor node. We assume
that the positions of the monitoring stations, or equivalently the network boundary,
are known. The monitoring stations are also assumed to be perfectly synchronized.
The traffic data from the monitoring stations is collected and delivered to an offline
base station for further analysis. We remark that the assumption puts more restriction
to the adversary’s power than the Panda Hunter model, in which the adversary can
be anywhere inside the network and can move around as fast as possible.

• Packets are encrypted. We assume that the packets in the network are encrypted
using symmetric encryption between the data source and the data sink and that the
adversary does not have the key to decipher the content of the message. Similar to the
Panda Hunter problem, the data source issues data packets periodically. We assume
that the content of these data messages are different, i.e., with different time stamps.
The monitoring stations can compare the messages received by different boundary
nodes and conclude whether two messages received by two boundary nodes are the
same or not. We assume that the chained encryption scheme used in onion routing is
not feasible for sensor network, for two reasons. First the chained encryption requires
that the source knows the entire path taken by the message, which is not the case for
random walk. Second, chained encryption and decryption for each relay node is too
heavy for resource constrained sensor nodes.

• Non-malicious. The adversary does not interfere with the normal functioning of the
sensor networks. Otherwise it will be detected by intrusion detection schemes. The
adversary does not compromise any node and does not generate or alter traffic in the
network.

• Informed. We use the standard philosophy in security [134] that the adversary is
aware of the routing methods used by the system, in our case, the random walk
scheme.

• Centralized and powerful. The monitoring stations gather traffic received from the
network boundary and then deliver all the data to an offline central station for pro-
cessing. We assume the adversary has abundant computing resources and can per-
form complicated analysis.
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Traffic Analysis of Random Walk: We first consider a special case when the network
is in a domain of disk shape and sensors are uniformly distributed inside the disk. In this
case the random walk can be considered as a discrete approximation of the continuous
Brownian motion inside a disk. For each message issued by the data source, through com-
paring the messages gathered by the monitoring stations at the network boundary we can
conclude the node on the boundary that received the message for the first time. Now, since
the data source generates multiple data packets, we monitor the position of the first hit on
the boundary by different data packets. This constitutes a ‘first hit’ distribution (also called
the exit distribution) ω′

x on the boundary where x is the source location. If the data source
is at the center o of the disk, by symmetry the distribution ω′

x is a uniform distribution.
When the data source is not at the center of the disk, the distribution has a single peak at
the boundary intersected by the ray ox, and the closer the source to the boundary, the higher
the peak is. See Figure 36 for an example. Therefore by monitoring the traffic pattern on
the network boundary only, we obtain an observation of the first hit distribution px, through
examining which we can infer the source location.

Figure 36: The first hit distribution ω′
x and ω′

o for random walk inside a unit disk starting at x and o

respectively.

In general the network may not be of a disk shape thus the first hit distribution could
have a complicated correlation with the source location. For a bounded domain R in the
plane, the probability that a Brownian motion started inside a point z ∈ R hits a portion of
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the boundary is termed the harmonic measure [71] ωz. The first hit distribution observed
from the traffic pattern ω′

z is a Monte Carlo approximation of ωz. On simply connected
planar domains, there is a close connection between harmonic measure and the theory of
conformal maps. A conformal map is a continuous one-to-one map that preserves angles.
It is known that Brownian motions are conformally invariant [80]. What this means is that
under a conformal map, f : R → R′, the probability for a Brownian motion starting from
x ∈ R and exiting from an interval I[a, b] on the boundary ∂R is the same as the probability
of a Brownian motion starting from f(x) ∈ R′ and exiting from an interval I[f(a), f(b)]
on the boundary ∂R′. Now, since any simple planar domain can be mapped to a canonical
shape of a unit disk by a conformal mapping, one can obtain the harmonic measure for any
simply connected domain. In particular, take the example in Figure 36, we can apply a
Mobius transformation f from a disk to a disk such that the point x is now mapped to the
center of the disk. Therefore the distribution ωx can be immediately computed through f .

Figure 37: The probability for a Brownian motion starting from x ∈ R and exiting from an interval I[a, b]
on the boundary ∂R is the same as the probability of a Brownian motion starting from f(x) ∈ R′ and exiting
from an interval I[f(a), f(b)] on the boundary ∂R′.

The discussion above suggests that the exit distribution observed by the adversary along
the sensor network boundary can be used to infer the source locations. In this work we
present such traffic analysis algorithms. We present two algorithms specifically. The first
one is for recovery of a single data source. It is very simple, by integrating the position and
the harmonic measure along the domain boundary, i.e.,

∫
z∈∂R zdωx(z). To understand this,
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take a look at Figure 36. If the source is at o and we integrate the position by the harmonic
measure ωo (which is uniform) along the unit circle, by symmetry this integration gives us
the center of the disk. If the source is at x, the integration of the position by ωx must lie
on the line segment oy – again by axial symmetry of ωx with respect to oy. In fact, this
integration would give precisely the position of x. And this is true not only for the case
of a unit disk but for any planar domain. Since the first hit distribution observed from the
traffic pattern, ω′

x, would be a good approximation to the harmonic measure ωx. By using∫
z∈∂R zdω

′
x(z) we will get a very close approximation to x, as long as we have enough

samples to be statistically meaningful.
The second algorithm is a general method using maximum likelihood estimation and it

can be used for a general case when the data sources can be represented using low com-
plexity. A number of representative scenarios include multiple data sources, data sources
uniformly distributed on a line segment, as in the case of target tracking applications, or
data sources uniformly inside a small disk or square, as in the case when an event triggers
multiple sensors to report to the sink. The results and the algorithms can be extended to a
non-simple planar domain as well as a general non-planar terrain.

We presented an extensive list of simulations for different network shape and different
data source models as mentioned above. In particular, we presented the tradeoff between
the number of messages issued by the data source vs the accuracy of our prediction of the
source location.

Last we want to remark that we do not mean to claim that previous source location pri-
vacy preserving schemes using random walks are inadequate, but rather raise an alarm that
their effectiveness should be reconsidered carefully given the potential attack illustrated in
this work. At the end of the work we discuss variations of basic random walks and suggest
ideas to defeat this particular traffic analysis attack.

5.2 Related Work

Routing that preserves source anonymity has been a topic of study for a number of years.
For routing on the Internet, one would like to hide the sender’s identity, as phrased in
anonymous routing. The most popular schemes are Chaum’s mixes [22] and onion rout-
ing [126, 127]. In Chaum’s scheme, the idea is to send the message in an encrypted manner
to a central server called the anonymizer, which removes the source identity and then sends
the message to the receiver. Thus one cannot differentiate the sources of the messages
delivered by anonymizer. Onion routing uses encryption on source routing, such that the
source identifies the entire routing path to the destination and encrypt the messages in lay-
ers in the order of the nodes along the path. Each relay node descrypt the message using
its own private key, which reveals the next hop and sends the message. In this way each
node on the path is only aware of the immediate upstream and downstream node and is not
aware of the entire path, in particular the source identity. Both schemes cannot be applied
in sensor network setting since we cannot afford a central server, and public key encryption
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is too heavy for sensor nodes. In addition, encryption based security schemes only protect
the content of the messages but cannot deal with traffic analysis attacks.

Existing schemes for preserving source location privacy is summarized in a recent sur-
vey [83]. Among them, random walk is a commonly used component. Phantom rout-
ing [101, 72] first uses random walk to arrive at a node that is reasonably far away from
the source and then use probabilistic flooding to deliver the message to the destination.
Followup schemes such as in [147, 84, 92] use biased random walk in order to get farther
away from the data source, or introduce fake data sources to further confuse the traffic
pattern [72, 95]. In the next section we examine some of these variations and discuss the
performance of the traffic analysis attack for these cases.

5.3 Theoretic Background

5.3.1 Conformal Maps

Let C = {z : z = x+ iy; x, y ∈ R} denote the complex plane. The following material can
be found in [39, 2].

Definition 5.1. A holomorphic function f on a domainD ⊂ C is a complex valued function
defined on D such that the complex derivative of f exists everywhere inside D. This also
implies that f is infinitely differentiable, equal to its own Taylor series and preserves angles
at all points where the derivative of f is non-zero.

A holomorphic function which has a non-zero derivative everywhere is also called con-
formal.

Definition 5.2. A harmonic function f on a domain D ⊂ R2 is a twice continuously differ-
entiable real valued function such that ∂2f

∂x2 +
∂2f
∂y2

= 0.

Here are two useful properties:

• Let f(z) = f1(z) + if2(z) be holomorphic. Then f1 and f2 are harmonic.

• Mean Value Property Let u be holomorphic/harmonic on the unit disk D. Then,
u(0) =

∫
∂D u(e

iθ) dθ
2π
.

Mobius transforms and Riemann mapping:
Let D denote the unit disk centered at the origin in C. The group of Möbius transfor-

mations is the set of all conformal maps from D to itself. It is well-known that any such
map is of the form f(z) = eiθ z−z0

1−z̄0z
for some θ ∈ (0, 2π) and some z0 ∈ D.

Let Ω be a simply connected domain (a topological disk) in the plane, such that the
boundary ∂Ω is a smooth curve:

Theorem 5.3 (Riemann Mapping). Let Ω be as above. Then there exists a conformal map
f : D −→ Ω. Further, f is unique upto composition by a Möbius transformation.
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5.3.2 Harmonic Measure

Definition 5.4 (Harmonic Measure). [13][41] For any subset X of the boundary (X ⊂
∂Ω), the harmonic measure of X with respect to z is defined as ω(X,Ω, z) = 1

2π
|f−1(X)|.

Here |.| denotes the Euclidean length of an arc on the unit circle. Note that any two
conformal maps sending O to z only differ by a rotation, so this definition does not depend
on the f chosen. Using harmonic measure, one can extend the Mean-value property to
arbitrary domains. If u is a harmonic function on an arbitrary simply connected domain
Ω, z0 ∈ Ω is a base point and fz0 is a conformal map such that f(0) = z0, then u ◦ f is
harmonic on the disk, so that

u(z0) = (u ◦ f)(0) =
∫
S1

u(f(eiθ))
dθ

2π
=

∫
∂Ω

u(z)dωz0 (5.1)

where dωz0 is the harmonic measure with respect to z0.
The harmonic measure ω(X,Ω, z) is related to a Brownian Motion started in the domain

Ω frm the point z. We define Brownian Motion next.

5.3.3 Brownian Motion

Definition 5.5. A one-dimensional Brownian Motion [81] Wt intuitively is a scaling limit
of the random walk. In other words, it is a stochastic process indexed by time t > 0, which
has the following properties :

1. W0 = x; here x ∈ R is the starting point.

2. The process has independent increments, i.e. for any two disjoint intervals [s1, t1]

and [s2, t2], where si, ti > 0, the increment in one interval Wt1 −Ws1 is independent
of the increment in the other Wt2 −Ws2 .

3. Wt+h −Wt is Normally distributed with mean 0 and variance h.

4. Almost surely, the function t −→ Wt is continuous.

The case W0 = 0 is called Standard Brownian Motion. A two-dimensional Brownian
motion is a pair Bt = (W 1

t ,W
2
t ) of two independent one-dimensional Brownian Motions.

5.3.4 Harmonic Measure, Brownian Motion and Conformal Invariance

An important property of the Brownian motion is that it is invariant under conformal
changes, i.e. the image of a Brownian motion under a conformal map is again a Brow-
nian motion in the image of the domain [81]. The Brownian Motion can be viewed as the
limit, as t −→ 0 , of a walk which starts at 0, chooses a direction randomly, goes a distance
t in that direction, and continues this way at every point. The angle changes are preserved
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under conformal maps, therefore one should expect that the law of the trajectory should be
invariant.

Clearly, the same is true for harmonic measure. In other words, ω(X,Ω, z) = ω(f(X), f(Ω), f(z))

for any X ⊂ ∂Ω and f conformal.

5.3.5 Discrete Theory

In this section, we summarize the related theories of random walks on graphs.
Suppose G is a planar graph, embedded on the plane. Let V = {v1, v2, · · · , vn} be the

vertex set, (xk, yk) be the 2D position of vertex vk, E = {e1, e2, · · · , em} be the edge set.
For simplicity, we assume each face of G is a triangle.
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Figure 38: (a) shows the edge weight. (b) shows that the vertex position function is har-
monic.

The following edge weight definition is motivated by the relationship of random walk
and resistance of the triangulation as in an electrical network [15][35].

Definition 5.6 (Cotangent Edge Weight). [35, 15] Suppose edge [vi, vj] is adjacent to two
faces [vi, vj, vk] and [vj, vi, vl], then the weight on edge is given by wij =

1
2
(cot θk+cot θl).

The edge weight determines the transition probability for a random walk on graph.
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Definition 5.7 (Random Walk on Graph). Suppose X(t) is a random walk on the graph G
defined as follows: if at time t the walk is at vertex vi, then the probability of vj being the
next vertex is given by: Prob{X(t+ 1) = vj|X(t) = vi} = wij∑

k wik
.

When we choose a uniform sampling and all the triangles are equilateral triangles, all
the edge weights are close to 1. In this case the above definition becomes the same as the
random walk with uniform distribution on all neighbors. In our simulations we choose G
to be a Delaunay triangulation on a nice set of samples inside R.

Definition 5.8 (Discrete Harmonic Measure). Suppose G is a planar graph with triangular
faces. If the random walkX(t) starts from a vertex vi and exits at vk ∈ ∂G, then the discrete
harmonic measure is defined as the probability ωk(vi) := Prob{X ∼ vk|X(0) = vi}.

Here X ∼ p means that the random walk X exits the boundary ∂G via the point p.

Definition 5.9 (Discrete Laplace Operator). Let f : V → R be a function defined on the
vertices of the graphG. The discrete Laplace operator is defined as ∆f(vi) =

∑
j wij(f(vj)−

f(vi)).

Definition 5.10 (Discrete Harmonic Function). Let f : V → R be a function and ∆ be the
discrete Laplace operator. If ∆f equals to zero for all vertices, then f is called a discrete
harmonic function.

From definition, it is easy to show that discrete harmonic measures ωj : V → R,
∀vj ∈ ∂G are harmonic functions. By definition, expected position function is harmonic.
Figure 38 shows the vertex position function is also harmonic. Like smooth case, dis-
crete harmonic functions have mean-value property, which states the value at each vertex
is the average of the values in the neighborhood. Mean-value property implies maximal
value principle, which says the max and min value of a harmonic function must be on the
boundary of the graph.

Definition 5.11 (Discrete Dirichlet Problem). Suppose f : V → R is a function defined on
the graph, f is harmonic, and with boundary condition f |∂G = g,{

∆f(vi) = 0 ∀vi ̸∈ ∂G
f(vj) = g(vj) ∀vj ∈ ∂G.

(5.2)

Then from the maximum modulus principle, we can get the uniqueness of the solution
to the discrete Dirichlet problem. The solution to the Dirichlet problem can be explicitly
given using harmonic measure.

Theorem 5.12 (Harmonic Measure Boundary Integration). Suppose f : V → R is the
solution to the Dirichlet problem (Eqn.(5.2)). Then f(vi) =

∑
vj∈∂G g(vj)ωj(vi).
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Suppose a vertex v0 at (x0, y0) sends messages routed by random walks. Figure 38 (b)
shows the position function is harmonic. According to theorem 5.12, (x0, y0) =

∑
vk∈∂G(xk, yk)ωk(v0)..

This is a linear running time algorithm, given the harmonic measure ωk(v0) =Prob{X ∼
vk|X(0) = v0}. In our applications, we estimate the harmonic measure simply by the ratio
between the number of messages received at vk and the total number of messages.

The above definitions and theorems do not require the graph to be planar. In fact, these
concepts can be defined on triangular meshes in R3. But the 3D vertex position is not har-
monic. Similar to smooth case, one can apply conformal mapping [113][47] to flatten the
3D triangulation and use the same method to estimate the source position on the 2D image.
Because the Laplace matrix is solely determined by the connectivity of the graph and the
corner angles, roughly speaking, discrete conformal mapping preserve angles, therefore
conformal mapping preserves harmonic measures. Therefore, the harmonic measure can
be estimated using the random walks on the 3D mesh, and applied for boundary integration
to estimate the source location on the 2D image plane.

5.4 Algorithm: Traffic Analysis on Random Walks

5.4.1 Settings

We assume that a sensor network W is deployed densely in a geometric domain R. Packet
routing in the sensor network is done by random walk on the network. Suppose that a data
source at x generated N data messages, we record for each message the boundary node
that receives this message for the first time. This frequency count can be normalized as a
distribution ω′

x on the sensor network boundary. The input to the traffic analysis algorithm
for the adversary is the exit distribution ω′

x, together with the geometry of the sensor net-
work boundary R. The adversary has no knowledge of the sensor network in the interior of
R and would like to reconstruct the position x.

To reconstruct the source location, we assume that the sensor network is dense and thus
the random walk is a good approximation of Brownian motion in the continuous domain
R. Therefore, for each point x ∈ R, define by ωx the exit distribution of Brownian motion
starting from x. We will compare ω′

x to ωx to reconstruct the position of the source. Notice
that in this setting there are two relaxations: 1) the distribution ω′

x is obtained through
random walk on the (unknown) graph W ; 2) the distribution ω′

x is obtained through a
Monte Carlo method, i.e., based on the frequency count of N random walk samples. Thus
our prediction of the source location could be a bit off from the true source location. But if
random walks on the real sensor network are good approximations of the Brownian motion
in R, and that the number of samples, N , is not too small, the error in the prediction is
expected to be small. This is indeed confirmed by simulations in the next section.

We will present two algorithms. The first algorithm provided a closed-form solution by
simply integrating along the domain boundary R. It works for a single source on a topo-
logical disk domain or topological disk with multiple holes. The second algorithm is based
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on maximum likelihood method. Basically by comparing ω′ and ω (the exit distribution
of brownian motion), we find the source location y such that ω′

x and ωy are the most sim-
ilar. This is a generic framework for finding the locations of multiple data sources or any
sources that can be represented in a compact way.

5.4.2 ALG1: Integration Along Domain Boundary

Recall that if u is a harmonic function on the domain Ω, then its value at any point in
the interior can be recovered by its values on the boundary, as long as one knows the
harmonic measure of the boundary, i.e. u(z0) =

∫
∂Ω
u(z)dωz0 where dωz0 is the harmonic

measure with respect to z0. Clearly, the identity function u(z) = z is holomorphic (i.e.,
is differentiable in z), the real part and imaginary part are both harmonic. Hence we get
z0 =

∫
∂Ω
zdωz0 .

For the case of a single source at position z, our construction algorithm is to simply
multiply the coordinates of the location of a point p ∈ ∂R with its harmonic measure and
add the resultants over the entire boundary. This algorithm is a linear running time algo-
rithm with complexity dependent only on the length of the boundary ∂R. The algorithm
applies for all planar domains, including multiply connected ones.
Calculating harmonic measure Now we show how to efficiently compute ω(X,R, z),i.e.
for any point z and any subset X of the boundary of R, the probability that a random walk
started from z will first exit the boundary from X . We first handle the (highly symmetric)
case where the domain is the disk D; X then is a subset of the unit circle and the starting
point is the origin.

ω(X,D, 0) : This is the probability that a random walk started from the origin in the disk
exits the disk from the set X on the boundary. Clearly, this is uniform (by symmetry), and
hence ω(X,D, 0) = |X|

2ω
. In other words this probability is just the normalized Euclidean

arclength of X .
ω(X,D, z0) : To compute the harmonic measure for an arbitrary point z0 ∈ D, recall

from 5.3.1 that the (conformal) Möbius transformation g(z) = z−z0
1−z̄0z

maps the unit disk
to itself and sends the point z0 to the origin. Now, we use the property that the harmonic
measure is preserved under conformal maps to obtain

ω(X,D, z0) = ω(g(X),D, g(z0)) = ω(g(X),D, 0) =
|g(X)|
2ω

ω(X,R, z0) for arbitrary R Here we will describe how to find the harmonic measure for
an arbitrary planar domain R. The first method only works for simply connected domains
(domains with no holes) while the second works for both simply and multiply connected
domains.

Method 1: Using Riemann Mapping This method uses the conformal invariance we de-
scribed in Section 5.3.4. As above, let R be a simply connected domain, with boundary Γ

a Jordan curve. In almost all practical applications, one approximates R by a polygon, and
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Γ by a polygonal chain. The first step is to compute the Riemann mapping from D to R.
For accomplishing this task, various methods have been proposed [113][47].

So let us assume we have computed the Riemann mapping f : D −→ R. Notice
that f−1 : R −→ D is also conformal and once again, conformal invariance implies that
ω(X,R, z0) = ω(f−1(X),D, f−1(z0)) and we have shown how to compute ω(X,D, z) for
arbitrary X ⊂ ∂D and z ∈ D previously.

Method 2: Symm’s Method This method does not require one to explicitly compute the
Riemann Mapping from D to R, and holds for multi-holed domain. We refer the reader to
[13] for a short summary of this method.

Recall from 5.1 that for any holomorphic function u onR, we have the property u(z0) =∫
∂R
u(z)dωz0 . We can discretize the boundary of R into n intervals {Pj}nj=1, assume that

the harmonic measure is constant in each interval and look at the discrete counterpart to the
above equation:

u(z0) =
∑
j

∫
Pj

u(z)dωz0 =
∑
j

ωz0(Pj)

|Pj|

∫
Pj

u(z)dz

Now if we choose n independent harmonic functions {ui}ni=1, we get a system of n
equations in n unknowns and we can solve to find ωz0(Pj).

5.4.3 ALG2: Maximum Likelihood Method

To apply a maximum likelihood approach (MLE), we first need the exit distribution/harmonic
measure of a Brownian motion starting at a point z ∈ R, which can be computed using
methods in the section above. We then explain the application of MLE for different set-
tings.

Let f(.|θ) denote a family of distributions parameterized by θ. If one observes an i.i.d.
sample x1, x2, ...xn from one of the distributions in this family, the Maximum Likelihood
Method is a way to estimate the true parameter θ0 such that this sample is most likely to
come from f(.|θ0).

Since the observations are assumed to be identically and independently distributed, the
joint density function is

f(x1, x2, ...xn|θ) = f(x1|θ)f(x2|θ)...f(xn|θ)

One then forms the Likelihood Function

ℓ(θ|x1, x2, ...xn) = Πn
i=1f(xi|θ)

The maximum likelihood estimate (MLE) θ̂ is defined to be the value of θ which maximizes
the likelihood function, given the observed values xi, i.e.

θ̂ = argmax
θ

ℓ(θ|x1, x2, ...xn)
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For simplicity, the log-likelihood function ℓ̂ = log ℓ is also used, since log is a monotonic
transformation.

From now on, fz := f(x|z) will denote the density function for the harmonic measure.
Denote by Xz the exit position (the first hit position) of a random walk starting at z. It is a
random variable distributed with density fz; P(Xz ∈ A) =

∫
A
fz(x)dx for all A ⊂ ∂Ω.

• Single source. Suppose that x1x2, ...xN are the first hit positions on the boundary for
the N messages sent by an unknown source z0 ∈ R respectively. We know f(x|z)
from the previous section, form the likelihood function and maximize.

• k sources, k is known. This boils down to the single source problem for each of
the sources. Now let’s assume that the adversary cannot distinguish the data packets
from different sources. Let the unknown source locations be z1, ...zk. Then what we
observe is the random variable

Y = Xz1 +Xz2 + ...Xzk

Given the zi, the density of Y can be computed. Again one can form the likelihood
function and maximize, now with respect to the vector of zi. We also allow short-
lived fake message which is sent to a randomly selected neighbor by the relay node
after a real message is relayed. Our traffic analysis is not affected if the fake messages
are discarded and not relayed any further.

• Source moving on a line. Assuming that we have a mobile data source moving on
a line. The source sends packets periodically after distance ϵ. We are interested in
estimating the initial position z0 and the direction θ in which the source is travelling.
Let zi = z0 + iϵeiθ. Notice here we just need to estimate 3 real parameters, thus we
could expect to get good estimates with just a lot fewer data packets per source zi.

5.5 Experimental Results

We conducted extensive simulation tests to examine the performance of our algorithm to
find the source location, as well as how recovery accuracy is affected by different parame-
ters.

The simulations were done under different settings, namely a unit disk, a planar non-
disk domain, a planar domain with holes and a non-planar domain. Also for each type of
domain, we conducted simulations using both a triangle mesh (TM) and a unit disk graph
(UDG). In TM model, we calculated the transition probability for each node d by it’s neigh-
bors in the triangulations; for UDG model, we calculated the transition probability for d by
it’s neighbors in the unit disk graph. We scaled all planar domains inside a 2× 2 bounding
box, and scaled non planar domains inside a 2 × 2 × 2 bounding box. We use the term
Error to measure the distance between the true source location and the location predicted
by our algorithm. The Errorave and Errormax bellow, which represent the average and
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max value of Error, are respect to the bounding box unit above. In the following, Ndomain

represents the number of nodes inside domain R, Nmsg represents the number of messages
issued at each source node.
Unit Disk Domain Figure 39 right and figure 40 right show the relationship between Nmsg

with Errorave and Errormax under TM disk model and UDG disk model respectively.
This is obtained by fix Ndomain=1K, then randomly chose n=100 sources inside the R and
issued Nmsg numbers of random walks started from each of these chosen sources, then
calculated the Errorave and Errormax respectively. Beside this, we also examined how
the location of source (the distance r from disk center) affects Errorave. We uniformly
sampled 0 < r < 1 to get {r1, r2, ...rm}, for each ri we randomly chose ni=100 points
whose distance to center rni

satisfies ri − ε < rni
< ri − ε (here we used ε=0.05) as the

source to issue random walk for Nmsg=1000 times. Then we use our method to predict the
source location according to the boundary message distribution. Based on the real source
location and the one calculated by our method, we computed Errorave for each ri. Figure
39 left and figure 40 left show the relationship between ri and Errorave under TM model
and UDG model respectively. We can see that Errorave decreased while the real source
leaving the disk center.

Figure 39: Left: Distance from Center VS. Errorave under TM Model. Right: Nmsg VS.
Errorave/Errormax under TM Model.

Planar non-disk Domains We did the same kind of simulation on an irregular domain. We
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Figure 40: Distance from Center VS. Errorave under UDG Model. Right: Nmsg VS.
Errorave/Errormax under UDG Model.

evaluated how Nmsg affects Errorave and Errormax by fix Ndomain=1K. The results are
shown in figure 41. We can see that Errorave and Errormax decreased while we increased
Nmsg. We obtained Errorave around 0.04 and 0.08 under TM model and UDG model by
100 messages.

Figure 41: Left: Nmsg VS. Errorave/Errormax under TM Model. Right: Nmsg VS.
Errorave/Errormax under UDG Model.
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Planar Domain with Holes The same as above, we evaluated how Nmsg affects Errorave
and Errormax for a planar domain with holes. For a planar domain with holes, as long
as we can monitor the inside hole boundaries as well, we can just treat them as the same
as outer boundary in the calculation. The results are shown in figure 42. We obtained
Errorave around 0.04 and 0.07 under TM model and UDG model by 100 messages.

Figure 42: Left: Nmsg VS. Errorave/Errormax under TM Model. Right: under UDG
Model.

Non-planar Domain For a general non-planar domain, we first mapped it to the unit disk
using conformal mapping method in[47]. Since Brownian motion is invariant under con-
formal mapping, we used the same method to calculate source location in the parameter
domain, then mapped it back to the original surface. The simulation results are in figure
43. We obtained Errorave around 0.08 and 0.09 under TM model and UDG model by 100
messages.
Visualization of Exit Distribution Following we show the exit distribution along the do-
main boundary. We took the non-uniform planar domain, set an arbitrary source and visu-
alizes the exit distribution (figure 44 left) using small disks along the boundary with area
proportional to NO. of first hit. We also show the distribution on the parameter domain,
which is obtained by conformally mapping the non-uniform domain to a unit disk (figure
44 right). The distribution on the parameter domain gives strong evidence that conformal
mapping preserves Brownian motion. Namely the Brownian motion starting from source
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Figure 43: Left: Nmsg VS. Errorave/Errormax under TM Model. Right: under UDG
Model.

s on surface M is equivalent to the Brownian motion start from ϕ(s) on surface M̄ , if
ϕ :M → M̄ is a conformal mapping from M to M̄ .

Figure 44: Left: First Hit Distribution. Right: First Hit Distribution on parameter domain.
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Network Density Versus Average Error To examine how much the network density
Ndomain affects the average distance error Errorave by fix Nmsg, then varying Ndomain

and observe Errorave. The results are shown in Figure 45.

Figure 45: Left: Ndomain VS. Errorave under TM. Right: Ndomain VS. Errorave under
UDG.

Multiple Sources We uniformly discretized the unit square domain intoN×N grids(N=20
in our experiment), and assumed the possible location of a source is on the center of a grid.
For 2 sources case, there are N4/2 numbers of possible source location combinations. For
each possible pair (si, sj), we issued Nmsg = 2000 numbers of random walks from s1
and s1 , then stored a set of first hit distributions {Φij , 0 < i, j < N}. Then we randomly
picked sources pair (s1, s2) to issue N̄msg random walks and obtained a first hit distribution
Φtest. By comparing Φtest with Φij we got a p-value which stands for the probability that
Φtest and Φij are the same distribution. The i, j which gave the maximum p-value directly
points out the location of si and sj . In this experiment, we varied N̄msg and obtained a set
of Errorave, like in figure 46. We can see that Errorave decreased as we increased N̄msg.

5.6 Discussions

Length of Random walks Our traffic analysis scheme uses the exit distribution of random
walks on the network boundary. This means that the random walks should be long enough
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Figure 46: Nmsg VS. Errorave for two sources.

so that they hit the network boundary with good probability before they stop. We argue that
this is true as the random walks should be long enough to deliver the message to the data
sink. If the data sink is at an unknown location in the network, the random walk should be
long enough so that it visits every node in the network. This is termed as the cover time,
defined as the expected number of steps for a random walk to cover all the nodes in the
network [89]. For a 2D grid of n nodes the cover time is roughly in the order of Ω(n2).

To estimate the probability that a random walk of length h hits the network boundary,
we again consider a 2D grid of n nodes. Suppose Xi is the displacement vector of the i-
th step of the random walk. Xi is uniformly chosen from {(1, 0), (−1, 0), (0, 1), (0,−1)}.
The position of random walk after i steps starting from the center of the grid is simply
Pi = X1 +X2 + · · ·+Xi. By the central limit theorem, Pi is a Gaussian distribution with
mean (0, 0) and variance h/2I, where I is a 2× 2 identity matrix. Thus the probability that
Pi is outside a disk of radius r from the center is estimated as e−r2/h. Choose h to be O(n2)

and r to be
√
n, the probability above is 1 − 1/n. This means that the random walk of

length O(n2) has a high probability to hit the network boundary at least once. This means
that for a random walk to deliver the message to the sink, it must hit the boundary with high
probability. This assures that the traffic analysis along the boundary could be performed.
Directed or Biased random walk In a standard random walk, the next node to visit is
chosen uniformly randomly from all neighbors. This is the discrete analog of Brownian
motion which is isotropic. The first variation to it is to define a non-uniform probability
distribution on neighbors. In Phantom routing and a number of followup papers, a biased
random walk is often adopted in which the neighbor that is farther away from the data
source is chosen with higher probability, in order to quickly get to the regions far away
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from the data source. For example, in sector-based directed random walk [72], a random
walk from the west will be sent to a node to the east, chosen uniformly randomly. In
hop-based directed random walk [72, 92], a random walk chooses the next hop uniformly
randomly among only the nodes closer to the sink.

If the transition probability is non-uniform but determined (as in the two cases men-
tioned above), the harmonic measure as defined by the random walk will change. If the
transition probability is known to the adversary, we can still calculate the harmonic mea-
sure under this change. Using the same idea presented in the paper one can still infer the
source location. Therefore to make a biased random walk to be a countermeasure of the
traffic analysis, we need to make the transition probability to be unknown to the adversary.
One idea is to vary this transition probability randomly and periodically. However, in this
case one should be careful about the transition probability configuration to make sure that
the random walk is still ergodic1 – otherwise there is no guarantee that the random walk
covers the entire network and eventually delivers the message to the data sink.

1A random walk is ergodic when there is a unique stationary distribution. This requires the graph (implied
by the edges with non-zero transitional probability) to be connected and non-bipartite.
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6 Colon Flattening Using Heat Diffusion Riemannian Met-
ric

6.1 Overview

Figure 47: (a) A 3D colon model with topological noise, such as handles. A handle is
shown in a close-up view. (b) The flattening of the 3D colon in (a) to a 2D rectangle
using our method with heat diffusion Riemannian metric (flattening of only the transverse
segment of the colon is shown). A colonic polyp (protrusion on colon wall) that is adjacent
to a fold is shown in a close-up view.

Colorectal cancer is the second leading cause of cancer related mortality in the United
States [61]. Optical colonoscopy (OC), whereby precancerous polyps (protrusions/bumps
on the colon wall) can be located and removed, has been recommended for screening and
has greatly reduced the mortality from colorectal cancer [21]. Virtual colonoscopy (VC)
has been developed as viable non-invasive alternative to OC for screening purposes [58,
67]. VC is a non-invasive screening method, whereby a radiologist can explore a colon
surface in a way similar to that of a gastroenterologist performing an OC. The radiologist
is mainly interested in visualizing the inner surface of the colon where polyps might be
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detected. VC uses computed tomographic (CT) scan of a patient’s abdomen and provides
a virtual fly-through visualization system through the virtual colon reconstructed from the
CT scan [58]. VC has many advantages, including non-invasiveness, cheaper, faster, and
higher patient tolerability [58]. However, VC has a fundamental problem, which it shares
with OC. Due to the twisted nature of the colon and the numerous colonic haustral folds,
the navigation using the inner endoluminal view is very challenging and sizable sections
of the colon are not inspected, resulting in an incomplete examination. As a result, polyps
hidden behind folds and sharp bends are missed. An efficient supplemental or alternative
approach is flattening, where the colon is cut open and flattened onto a 2D plane. This
not only facilitates comprehensive inspection of the colon but also reduces the time for
inspection.

Several flattening techniques have been proposed for the colon surface, whereby the en-
tire colon can be mapped from the 3D domain to a 2D rectangular domain. The colon mesh
surface serves as the input. This mesh surface is extracted from the CT images by perform-
ing electronic cleaning, segmentation, and mesh extraction. However, the major problem
here is that the extracted colon surface includes topological noise, such as handles, as shown
in Fig. 47(a). A close-up view of a handle is also shown in Fig. 47(a). This topological
noise is due to two reasons. The first is due to artifacts present in the CT scan. The second
is due to the colon surface reconstruction method. Although many surface reconstruction
methods are capable of generating water-tight surfaces from the CT data, the resulting mod-
els may still exhibit topological errors in the form of small handles. These high-frequency
topological features unnecessarily increase the complexity of the colon model and make
it unsuitable for subsequent processing tasks, such as colon flattening, 3D navigation, and
polyp detection. Hence, in all previous methods for colon flattening, these unnecessary
noisy features were either removed manually or by some topological denoising techniques.
However, owing to the large surface of the colon, the use of these denoising methods is
time-consuming and incurs high computational overhead.

In order to address this problem, we have introduced a new colon flattening algorithm
using the heat diffusion metric, which is efficient, robust (insensitive to any topological
noise) and shape-preserving. In our method, we use the extracted colon mesh directly
without performing any topological denoising. To start, we compute the heat diffusion
distances (HDDs) for the entire colon mesh (with noise). This HDD is used as a metric for
the flattening. We compute this metric for an appropriate time step and replace the original
Euclidean metric of the colon surface with this new metric. In the next step, we solve a
Laplacian equation on the colon surface to obtain a harmonic form. By applying the Hodge
star operator on this harmonic form, we obtain another form that is perpendicular to the
harmonic form. Finally, we integrate these two metric forms on the colon surface to obtain
the flattened colon. We render the flattened colon image using direct volume rendering to
provide a view similar to that of the endoluminal view, as can be seen in Fig. 47(b). We
demonstrate how the existing colon registration pipeline is turned more robust by using our
method for colon flattening. Furthermore, we show that our method enhances the colon
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navigation by preserving the important features, such as the polyps and folds. In addition,
we also present an efficient handle detection and removal approach on the flattened colon
using our method.

Our method has the following advantages: 1. Robustness: Our method of using the
heat diffusion metric for flattening is insensitive to topological noise, such as fake handles.
As a result, by using our algorithm, the entire global shape is preserved after flattening
in spite of having many handles. On the contrary, other methods, such as the Ricci flow,
produce a highly distorted flattening result of the colon in the presence of noise. 2. Effi-
ciency: Our method is very efficient since we need to solve only one Laplacian equation
for the entire colon surface. On the other hand, other methods, such as the holomorphic 1-
form [59], require solving of 2g Poisson equations, where g is the number of handles on the
colon surface. In case of a large number of handles (which is typical), our method performs
far better than the other methods. 3. Shape preserving: Our method is shape preserving.
Even under the constraint of preserving the global shape, the local shape distortion is still
under control. The final result obtained by using our method on a colon surface with noise
is very similar to the one obtained by using other conformal based methods on the same
colon surface with noise removed. Therefore, our method exhibits a good trade off between
conformality and robustness.

The remainder of this work is organized as follows. Section 2 reviews the related liter-
ature and Section 3 provides the necessary theoretical background. The algorithm and its
analysis is provided in Section 4. Section 5 compares our method with other well-known
methods. Section 6 introduces a fast way to remove the handles on the flattened colon.
Section 7 contains implementation and experimental results. Section 8 demonstrates the
application of our colon flattening to polyp visualization and supine-prone colon registra-
tion. Section 9 contains concluding remarks and future work summary.

6.2 Related Work

Colon flattening is a method in which the entire inner surface of the colon is displayed as
a succinct 2D image and has been used successfully for several medical imaging applica-
tions. Initial attempts to flatten the colon surface include iterative methods based on electri-
cal field lines [7, 138, 139, 140], cartographic projection [102], and some others [8, 9, 85].
However, most of these methods deform the colon surface or do not preserve the local
shapes well. Conformal geometry, an approach where the local angles are preserved, has
been well established in the field of computer graphics, especially in the creation of tex-
ture maps [123]. Discrete Ricci flow is a more recent method of computing conformal
maps of structures [65] and is very useful in the construction of geometric structures [64]
and to obtain optimal surface parameterizations using inverse curvature maps [148]. Colon
flattening techniques have been proposed using conformal mapping [53] and holomorphic
1-form parameterization [59]. The conformally flattened colon was used in the detection of
colonic polyps [60] and supine-prone colon registration [150]. Further, surface parameteri-
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zation using harmonic functions has also been used in graphics [133] and medical imaging
of the brain [124] and blood vessels [156].

All the above methods require a mandatory pre-process of topological denoising be-
cause of the topological noise (fake handles), without which the flattening would be unsuc-
cessful. While some of these methods use colon surfaces that have been manually denoised,
the others utilize a topological denoising algorithm [52, 69, 155]. A fast topological de-
noising algorithm for conformal colon flattening has also been proposed [59]. Despite
these attempts, topological denoising is still a time consuming and tedious process. On the
other hand, our method does not require any topological denoising, as the heat diffusion
metric utilized by our method is insensitive to topological noise. In addition, we propose
an efficient way to detect and remove the handles on the flattened colon surface by using
our approach.

Topologically robust diffusion geometry [18] has been mainly used for analysis of non-
rigid shapes [10, 93, 97, 111] involving shape comparison, matching, and retrieval [99,
125]. The robust diffusion maps and diffusion distances [28, 79] have been proposed for
shape matching [18], histogram comparison [86] and comparison of flexible molecular
shapes [88]. However, it has never been used in a colon flattening pipeline. All the previous
attempts of colon flatttening only consider the Euclidean metric and this is the first time a
diffusion metric is used, by computing the HDD, thus making the colon flattening robust.

6.3 Theoretical Background

We present here brief theoretical fundamentals required to explain our colon flattening
algorithm and to compare our method with the existing methods for colon flattening.

6.3.1 Conformal Mapping

Let S be a surface embedded in R3 and g be a Riemannian metric tensor that defines the
inner products on tangent planes at every point on S. Let ḡ be another metric of S, such
that

ḡ = e2φg, (6.1)

where φ : S → R is a scalar function defined on S. Then, by means of direct com-
putation, it is easy to verify that ḡ preserves angles. Hence ḡ is said to be conformal
(angle-preserving) to the original metric g.

Given two surfaces with Riemannian metrics (S1,g1) and (S2,g2), consider a mapping
ϕ : (S1,g1)→ (S2,g2) between them. ϕ is said to be a conformal mapping if the pull back
metric induced by ϕ satisfies the following relation:

ϕ∗g2 = e2φg1. (6.2)

If a Riemannian surface (S,g) is orientable, then for every point p on the surface, there
exists a neighborhood U(p) and a local coordinate system (u, v) on U(p), such that the
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metric g can be represented as: g = e2φ(u,v)(du2 + dv2). Here the coordinates, (u, v)
are called as isothermal parameters or isothermal coordinates. According to [25], we can
cover the whole surface by a collection of isothermal coordinate charts. All isothermal
coordinate charts form a conformal structure of the surface. The surface with a conformal
structure is called a Riemann surface.

Theorem 6.1. All oriented metric surfaces are Riemann surfaces.

Conformal mapping, by definition is angle preserving. For example, if any two inter-
secting curves γ1 and γ2 are mapped to f(γ1) and f(γ2) by a conformal map f , then the
intersection angle between γ1 and γ2 equals to the intersection angle between f(γ1) and
f(γ2).

6.3.2 Hodge Theory

Let (x, y) be the isothermal (local) coordinates, then a differential 1-form denoted by ω has
the local representation: ω = f(x, y)dx + g(x, y)dy. Let d denote the exterior differential
operator. If f : S → R is a function defined on S, then the gradient of f , called the exact
1-form, is given by: df = fxdx + fydy. The exterior differential operator acting on ω is
given by:

dω = (gx − fy)dx ∧ dy. (6.3)

If dω = 0, then ω is called a closed 1-form. Exact 1-forms must be closed. The space of
all closed 1-forms is denoted as Ker d1 and the space of all exact 1-forms is denoted by
Img d0. Then, the first dimensional cohomology group H1(S,R) is given by:

H1(S,R) =
Ker d1

Img d0
(6.4)

Each element in H1(S,R) is a cohomological class. Two closed 1-forms are said to be in
the same class if they differ by an exact 1-form.

Under isothermal parameters, the Hodge star operator is defined as:

∗(fdx+ gdy) = −gdx+ fdy, ∗f = fdx ∧ dy, ∗(gdx ∧ dy) = g. (6.5)

The co-differential operator δ is defined as δ = ∗d∗. A differential 1-form ω is said to be
a harmonic 1-form, if dω = 0 and δω = 0. All harmonic 1-forms form a group which is
isomorphic to the first cohomology group based on the following Hodge theorem:

Theorem 6.2 (Hodge). Each cohomological class has a unique harmonic 1-form.

Current work focuses on genus zero surfaces with mutiple boundaries, ∂S = γ0, γ1 · · · γn.
Then, the first cohomology is n dimensional. One can choose n harmonic 1-forms {ωk}, 1 ≤
k ≤ n, forming the basis of H1(S,R) by:

∫
γj
ωi = δji , where δji is the Kronecker symbol.
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6.3.3 Holomorphic Differentials

Suppose ω is a harmonic 1-form, then its Hodge dual ∗ω is also a harmonic 1-form. The
pair, η = ω + i∗ω is called a holomorphic 1-form. On a Riemann surface, all the holomor-
phic 1-form form a group, which is isomorphic to the first cohomology group.

The holomorphic 1-form can be treated as the complex derivative of a conformal map
ϕ : S → C, and the conformal map ϕ can be recovered by integrating the holomorphic
1-form ϕ =

∫
η. In practice, from the harmonic 1-form basis {ωk}, we can construct the

holomorphic 1-form basis {ηk = ωk + i∗ωk}, k = 1, 2, · · · , n. Then we can construct any
holomorphic 1-form by linearly combining the basis, and obtain the conformal mapping by
integration.

6.3.4 Heat Diffusion Distance

The heat diffusion process on the surface is governed by a partial differential equation
defined as follows:

∂u(p, t)

∂t
= −∆gu(p, t), (6.6)

where u(p, t) is the temperature or heat at a point p ∈ S at time t and ∆g is the Laplace-
Beltrami Operator (LBO) defined as:

∆g = e−2φ(x,y)(
∂2

∂x2
+

∂2

∂y2
). (6.7)

where e−2φ(x,y) represents the area term. The solution to Eq. 6.6 with the initial condi-
tion, u(p, 0) = δ(p − q), is called the heat kernel and is denoted as Kg,t(p, q). Intuitively,
the heat kernel can be interpreted as the amount of heat transferred from a point p to a point
q in a given time t.

The LBO has an eigendecomposition of the form: ∆gΦk = λkΦk, k = 0, 1, 2, · · · ,
where 0 = λ0 < λ1 ≤ λ2 ≤ λ3 · · · are the eigenvalues and Φk : S → R are the corre-
sponding eigen functions. Then, the heat kernel is defined as:

Kg,t(p, q) =
∞∑
i=0

e−λitΦi(p)Φi(q) (6.8)

Using the definition of the heat kernel, the heat diffusion distance (HDD) at a time t is then
given by:

dg,t(p, q) = Kg,t(p, p) +Kg,t(q, q)− 2Kg,t(p, q) (6.9)

An equivalent spectral expression of the heat diffusion distance is:

d2g,t(p, q) =

∫
S

|Kg,t(p, r)−Kg,t(q, r)|2dr =
∞∑
i=1

e−2λit(Φi(p)− Φi(q))
2 (6.10)

where r is some point on the surface S. Eq. 6.10 shows that the diffusion distance is the
L2 distance between two probability distributions of Brownian motions (random walks),
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Kg,t(p, r) and Kg,t(q, r). Essentially, the mapping, p → (e−λ1tΦ1(p), e
−λ2tΦ2(p), · · · )

embeds the surface to an infinite dimensional functional space. The definition in Eq. 6.10
shows that the heat diffusion distance is the same as the classical Euclidean metric in this
functional space. Therefore, the heat diffusion distance is a Riemannian metric.

Theorem 6.3 (Lafon and Coifman). The heat diffusion distance defined in Eq. 6.10 is a
Riemannian metric.

6.4 Algorithm

With the theory described above, we are ready to introduce our flattening algorithm using
the heat diffusion metric. Let the original input surface with handles be approximated by a
triangular mesh M . This mesh M has a number of handles varying from tens to hundreds.
Let γ0 be the outer boundary and γk, 1 ≤ k ≤ n be n inner boundaries or holes (holes are
not handles) of M with topological noise. A larger value of n (greater number of holes)
indicates a more complicated topology of M . Let V be the vertex set and E be the edge
set of the mesh M . We denote vi as the ith vertex, [vi, vj] as the edge, [vi, vj, vk] as the
face, and θi as the corner angle at vertex vi. Let the functions on M be approximated by
the piecewise linear functions defined on the vertices, f(vi).

6.4.1 Heat Diffusion Metric

The heat diffusion distance (HDD) given by Eq. 6.10, introduced by Lafon et al. [28, 79],
is computed as an average of all paths connecting two points on the surface. The HDD
(diffusion process) can be obtained by the convolution of the signal and its heat kernel.
Consequently, the Laplacian surface smoothing is achieved by performing diffusion on the
surface that filters out the high frequency components. However, as the surface changes
during smoothing, the heat kernels are also evolving. The evaluation of HDD smooths out
the small perturbations (e.g., handles) on the surface and hence makes the HDD insensitive
to the topological noise. As a result, the flattening algorithm using the HDD is more robust.

Using the vertex positions, we compute the edge lengths directly as lij = |vi − vj|. We
call this set of edge lengths the induced Euclidean metric. We compute the heat diffusion
metric g by using the induced Euclidean metric. For every edge in the mesh we evaluate
a new edge length value (HDD) and we call this set of new edge lengths the heat diffusion
metric. For every face, [vi, vj, vk] of the mesh M , the corner angles are computed by
using the Euclidean cosine law as θi = cos−1((l2ij + l2ki − l2jk)/(2lijlki)). We evaluate the
cotangent edge weight for every edge in M by using this corner angle to obtain a weighted
adjacency matrix W := (wij), where wij is the cotangent edge weight of the edge [vi, vj].
The cotangent edge weight is defined as follows [106]:

Definition 6.1 (Cotangent Edge Weight). Suppose edge [vi, vj] is adjacent to two faces
[vi, vj, vk] and [vj, vi, vl], then the weight of the edge is given by: wij = (cot θk +cot θl)/2.
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In the next step, usingW and the function values at the vertices, the LBO at each vertex
is computed to obtain a Laplace-Beltrami matrix, L. In the discrete case, the LBO on a
vertex is defined as follows:

Definition 6.2 (Discrete Laplace-Beltrami Operator). Suppose edge [vi, vj] is adjacent to
two faces [vi, vj, vk] and [vj, vi, vl], then the Laplace-Beltrami Operator, ∆g on vertex vi is
given by ∆gf(vi) =

∑
[vi,vj ]∈E wij(f(vj)− f(vi)).

We perform eigendecomposition of L and compute the eigenvalues and their corre-
sponding eigen functions. Using these eigenvalues and eigen functions, we finally compute
the HDD lengths of every edge in M using Eq. 6.10. The set of all new edge lengths forms
the heat diffusion metric g.

The number of eigenvalues and the number of time steps used have an effect on the heat
diffusion metric. In our case, we have used the first 50 eigenvalues and the corresponding
eigen functions to calculate the HDD for the edges. Also, we choose the value of time step
t in Eq. 6.10 to be 8 for all our cases. These respective values have been chosen experi-
mentally by assessing the quality of the mesh that is obtained by replacing the edge lengths
with the HDD values. The quality of the mesh is assessed by measuring the “closeness”
of each of its faces to an equilateral triangle. For each face of the mesh we compute the
ratio of its circumradius to two times its inradius. For an equilateral triangle, this ratio is
equal to 1. The faces with ratio > 0.6 are considered as good quality faces and < 0.6 are
considered as bad quality faces. We obtain the histogram of the faces of the mesh based on
their ratio values. Two meshes are said to be of similar quality if they have a comparable
number of bad quality faces and also comparable histograms (using L2-norm comparison).
We have observed that by increasing the number of eigenvalues the quality of the obtained
mesh improves. However, the quality did not change much after 50 eigenvalues.

The value of the time step represents the length of the path over which the heat diffusion
metric is averaged. Each handle has two loops, the handle loop and the tunnel loop [31]. In
general, their lengths are about 8 edges. Hence, we chose the value of t to be 8 so that only
the handles are filtered out. If the value of t is too small, the heat diffusion metric becomes
close to the induced Euclidean metric. On the other hand, if the value of t is too large, the
heat diffusion metric will smooth out all the features on the surface that would make two
different surfaces yield the same result.

We articulate the difference between the HDD and the geodesic distance by means of a
simple experiment. For this, we consider a hand model as our input where the index finger
is touching the thumb as shown in Fig. 48(a). In Fig. 48(b) we detached the two fingers,
by manually cutting both the fingers at the location indicated by the red arrow, so that the
topology in the two hand models is totally different. In both models, we choose two points
p and q such that p is a point on the tip of the pinky finger and q is a point on the thumb
nail. By using these two points as epicenters, for any point x on the surface, we compute
the following distance function, f :

f(x) = d(p, x) + d(q, x)− d(p, q) (6.11)
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Figure 48: Comparison between geodesic distance and HDD using a hand model with (a)
thumb and index finger touching, and (b) thumb and index finger detached by manually
cutting at the location indicated by the red arrow. With points p and q as epicenters, color
encoded (c) geodesic distance function of (a); (d) geodesic distance function of (b); (e)
HDD function of (a); (f) HDD function of (b). When the topology changes in (b), (d)
changes drastically (the geodesic path between p and q in white also changes), while (f) is
not affected and is consistent.

Here, d can represent either the HDD or the geodesic distance. We evaluate f using
both HDD and geodesic distance values for both hand models and color encode f . The
color changes from blue to red with increasing f values. Figs. 48(c) and (d) show the color
encoded distance function using geodesic distance values for the hand models in Figs. 48(a)
and (b), respectively. It can be clearly seen that the distance function changes dramatically
when the topology changes. We can also see that the geodesic distance between the points
p and q, shown by a white path, has changed when the topology changed. On the other
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hand, Figs. 48(e) and (f) show the color encoded distance function using HDD values for
the hand models in Figs. 48(a) and (b), respectively. It can be seen that the results are more
consistent, showing that the topological changes do not affect the HDD function. This
experiment shows that HDD is more robust to topological noises, and hence a better choice
as compared to geodesic distance.

In fact, the HDD of an edge [p, q] and the original edge length are completely different.
Theoretically, the HDD dg,t(p, q) is related to all paths starting from p and ending at q with
length t. When t is large, the random paths cover large regions of the surface. Thus, HDD
is a global concept. In contrast, the edge length of [p, q] is local. In other words, the HDD is
inversely related to the connectivity of points p and q, by paths of length t, hence insensitive
to topological noises.

6.4.2 Conformal Flattening Algorithm Based on HDD

We map the surface M with the heat diffusion Riemannian metric g conformally onto C
which represents a (u, v)-planar domain. For this, we first replace all the edge lengths inM
with the edge lengths from the heat diffusion metric and denote the new mesh also by M .
Since M has n inner boundaries, the cohomology group and therefore its harmonic 1-form
basis are n dimensional (Theorem 3.2).

The first step of our algorithm is to compute the basis for exact harmonic 1-forms of
M . To compute the exact harmonic 1-forms, we first compute the harmonic functions,
fk : M → R by solving the following Dirichlet problem on M for each inner boundary
component γk: 

∆gfk ≡ 0

fk|γk = 1

fk|γi = 0, 0 ≤ i ≤ n, i ̸= k

(6.12)

The Laplace matrix ∆g in Eq. 6.12 is positive definite and thus, non-degenerate. The
stability of the Laplace matrix, measured by its condition number [74], depends on the
mesh triangulation quality. In our case, the triangles in the mesh are close to Delaunay
(Laplace matrix has a good condition number) and thus the linear system is stable. In the
discrete case, the harmonic function is defined as follows:

∆gf(vi) =
∑

[vi,vj ]∈E

wij(f(vj)− f(vi)) = 0. (6.13)

Eq. 6.13 is the discrete Laplacian equation. The discrete harmonic function satisfies the
mean value property where a function value at a vertex f(vi) is equal to the mean of the
function values of the neighboring vertices, f(vj)’s. Thus, Eq. 6.13 is equivalent to:

f(vi) =
∑

[vj ,vi]∈E

wij∑
k wik

f(vj), (6.14)

The discrete harmonic function fk on M is thus computed by using Eq. 6.14 and by
solving the linear system in Eq. 6.12. For solving the linear system we use the publicly
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available UMFPACK library. Once the harmonic function fk is obtained, the exact har-
monic 1-form dfk is computed as the gradient of the harmonic function as follows:

dfk([vi, vj]) = fk∂[vi, vj] = f(vj)− f(vi). (6.15)

The n-dimensional exact harmonic 1-form basis is represented by {df1, df2, · · · , dfn}.
The next step of our algorithm is to compute the holomorphic 1-form basis. For this we
compute the Hodge star of the exact harmonic 1-form ∗(dfk) using Eq. 6.5, which is called
the conjugate harmonic 1-form. The conjugate harmonic 1-form is also harmonic (Section
3.3). Intuitively, the exact harmonic 1-form and its conjugate harmonic 1-form are orthog-
onal everywhere. While using the Hodge star operator, in general, a regularization step
is performed based on Hodge decomposition to decompose ∗(dfk) into exact, coexact and
harmonic components [128]. The exact and coexact components are discarded and only the
harmonic component is retained. However, in our method, since we use a reasonably good
resolution mesh the Hodge star operator is accurate enough to avoid the regularization step.
Finally, by pairing each base exact harmonic 1-form with its conjugate, we obtain the set
of basis for the holomorphic 1-form on M as ηk = dfk + i∗(dfk). Then, the holomorphic
1-form basis is represented by {η1, η2, · · · , ηn}.

In the final step, using the holomorphic 1-form basis, we compute the induced confor-
mal mapping ϕ :M → C by integration that maps the surface M to a planar domain C. To
start with, for each of the inner boundaries γk, we find the corresponding shortest paths τk
connecting γk to the outer boundary γ0. We cut M along one of these τk’s to obtain a sim-
ply connected mesh M̄ . Then, we compute a unique holomorphic 1-form η =

∑n
k=1 λkηk,

λk ∈ R, as a linear combination of the holomorphic 1-form basis, such that it satisfies the
following topological condition:

Img

∫
γ0

η = 2π, Img

∫
γk

η = −2π, Img
∫
γi

η = 0, i ̸= 0, k (6.16)

where Img denotes the imaginary part. Here, λk’s are a set of unknowns which are
obtained by solving the linear system in Eq. 6.16. We then choose a base vertex p ∈ γ0.
For any vertex q ∈ M̄ , we choose an arbitrary integration path connecting p and q in M̄ .
Finally, the conformal mapping is obtained by integrating η over this path as follows:

ϕ(q) = exp(

∫ q

p

η) (6.17)

Eq. 6.17 maps the surface M to a 2D annulus. Note that several conformal maps are
possible by changing the topological conditions in Eq. 6.16. If we just compute the inte-
gral in Eq. 6.17 without the exponential, then the mapping computed will map M onto a
rectangle.

Since the mesh M̄ is simply connected and η is holomorphic, the integration result is
independent of the choice of the path and hence any arbitrary path can be chosen for inte-
gration to obtain the conformal mapping. In fact, the results after integration by choosing
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different paths are the same. In Eq. 6.17, we are effectively integrating dfk and ∗(dfk) to
obtain the conformal mapping of the mesh. Both the fields dfk and ∗(dfk) are harmonic
1-forms and since any harmonic 1-form is closed (Section 3.2), it implies that both these
fields are locally integrable. In our case, we assume that the fake handles on the surface are
tiny (which is typical), which implies that the corresponding tunnel and the handle loops
are short [31]. Hence, the integration of the conjugate harmonic 1-form ∗(dfk) (Hodge star
of exact harmonic 1-form dfk) is very close to zero. In practice, the harmonic 1-forms
corresponding to the tiny handles can be neglected. Since the complex derivative (η) in
Eq. 6.17 is a holomorphic 1-form, it is equivalent to saying that the mapping obtained by
integration satisfies the Cauchy-Riemann equation [82, 98] (Section 3.3). This proves that
our mapping is indeed conformal with respect to the given heat diffusion metric.

We summarize our conformal mapping algorithm in Algorithm 9. Our flattening al-
gorithm requires the input mesh to be a two dimensional manifold. In the entirety of our
algorithm, we assume that the handles on the mesh surface are tiny. If the handles are large,
then the harmonic 1-forms corresponding to the handles can no longer be ignored and it
in turn affects the integration for computing the conformal maps. Moreover, we assume
that the input mesh surface has good resolution so that the Hodge star regularization is
unnecessary.

Algorithm 9 Heat diffusion metric based discrete conformal mapping.
Input: Surfaces M , heat diffusion metric g.
Output: The conformal parameterization of M .
1. Replace the edge lengths in M with edge lengths from g.
2. Compute the harmonic function by solving the linear system 6.12.
3. Compute exact harmonic 1-form, df([vi, vj]) = f(vj)− f(vi) for each edge.
4. Compute the Hodge star of df by using Eq. 6.5.
5. Compute special holomorphic 1-form η satisfying the topological condition in
Eq. 6.16.
5. Integrate η to get the final 2D coordinate for each vertex, using Eq. 6.17.
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6.4.3 Generality of our Algorithm

As described above, our flattening algorithm is general and can handle flattening problems
with complicated topologies containing any number of inner boundaries or holes. We now
illustrate the different steps of our flattening algorithm using a genus zero surface with
an arbitrary number of holes. For this, we use a complicated topology of a human face
surface S with four boundary components, namely γ0 is the outer boundary and γ1, γ2
and γ3 are the inner boundaries. Thus, n = 3 in this case. We first evaluate the heat
diffusion Riemannian metric g for the face surface. Then, we compute the corresponding
exact harmonic 1-forms (df1, df2, df3), conjugate harmonic 1-forms (∗(df1), ∗(df2), ∗(df3))
using Hodge star, and holomorphic 1-forms (η1, η2, η3), as described earlier. All the 1-
forms can be visualized by using level sets. Figs. 49(d), (e) and (f) show the level set
visualization of the exact harmonic 1-form (df1), the conjugate harmonic 1-form (∗(df1)),
and the holomorphic 1-form (η1), respectively, with respect to the inner boundary γ1, that
is k = 1 in Eq. 6.12. Similar results can be obtained with respect to the inner boundaries
γ2 and γ3 as well.

Now, using the holomorphic 1-form basis, we construct a conformal mapping from
the input surface (S,g) to a planar annulus domain by integration using Eq. 6.17. This
integration is carried out along an arbitrary path using the special holomorphic 1-form
(linear combination of η1, η2 and η3) satisfying Eq. 6.16. This method is popularly known
as slit mapping [142, 149] where one of the inner boundaries of S is mapped to a circle
and all the remaining boundaries are mapped to the concentric circular slits. Fig. 49(c)
shows the flattening result of the face where γ0 is mapped to the outer radius, γ1 is mapped
to the inner radius, and γ2 and γ3 are mapped to the slits using our algorithm. To obtain
the flattening in Fig. 49(c), we cut the face along the shortest path connecting γ1 and γ0
and solve Eq. 6.16 also over γ1. Two additional slit map results are possible with respect
to the other two inner boundaries, γ2 and γ3. If we map a checker board pattern onto the
flat annulus in Fig. 49(c) and have it correspondingly mapped back onto Fig. 49(a), the
angles and shapes inside the checker board are preserved since our algorithm is conformal.
This fact is confirmed in Fig. 49(b), illustrating that our algorithm is indeed angle (shape)
preserving.

6.5 Experimental Results

6.5.1 Colon Flattening

The colon surface is a special case with a simple topology (cylindrical) having only two
boundary components, namely γ0 and γ1 (n = 1). Thus, the colon surface has only one
holomorphic 1-form base, η1. Then, the unique holomorphic 1-form η for integration is
obtained as η = λ1η1, satisfying the condition: Img

∫
γ0
η = 2π, Img

∫
γ1
η = −2π, which

is a simpler form of Eq. 6.16. Finally, a conformal mapping of the colon surface is obtained
by integration using Eq. 6.17. However, in the case of colon flattening, the common practice
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Figure 49: The flattening of (a) human face surface with outer boundary γ0 and inner
boundaries γ1, γ2, γ3 using our algorithm. (b) Checker board mapping of (a), showing that
angles are well preserved. (c) Slit map showing the flattening of (a). Level set visualization
of: (d) exact harmonic 1-form, df1 with respect to γ1; (e) Hodge star of (d), ∗(df1); (f)
holomorphic 1-form, η1 by combining (d) and (e).

is to map the colon onto a rectangle since it is the more intuitive way to visualize the colon
surface. Hence, we compute the logarithm of the integral in Eq. 6.17 which now maps
the colon to a rectangle instead of an annulus. In other words, we are effectively only
computing the integral part of Eq. 6.17 without the exponential. Thus, the colon surface
is conformally mapped to a planar rectangle to obtain a flattened rectangular map of the
colon surface. We chose conformal mapping for the colon flattening due to the following
main reason: In VC, after the colon surface is flattened, it is mandatory to preserve the
local shapes. Conformal maps, by definition, are angle preserving (local shape preserving)
(Section 3.1). Consequently, polyps can still be identified based on their circular shape on
the flattened colon image.
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Figure 50: Comparison of our flattening algorithm using the original Euclidean metric and
heat diffusion metric. (a) Teapot patch with handle; (b) Teapot patch with handle cut along
a loop, shown in red; (c) Conformal module of (a) using Euclidean metric; (d) Conformal
module of (b) using Euclidean metric; (e) Conformal module of (a) using heat diffusion
metric; (f) Conformal module of (b) using heat diffusion metric.

Our conformal flattening algorithm can be used either with the heat diffusion metric
or with the original Euclidean metric. We now show that our flattening algorithm is more
robust using the heat diffusion metric (obtained using the HDD) when compared to using
the original Euclidean metric. For this, we consider a patch of a teapot surface with the
handle and p0, p1, p2, p3 being four corners on the boundary as shown in Fig. 50(a). We now
manually cut the handle along a loop indicated by the red line in Fig. 50(b). We then use our
flattening algorithm to map both the teapots in Figs. 50(a) and (b) to a planar rectangle by
using the heat diffusion metric as well as the original Euclidean metric. The teapot handle is
collapsed onto the plane after flattening. Figs. 50(c) and (d) show the conformal flattening
results by using the original metric for Figs. 50(a) and (b), respectively. Figs. 50(e) and
(f) show the conformal flattening results by using the heat diffusion metric for Figs. 50(a)
and (b), respectively. When a surface is conformally mapped to a planar rectangle, the
ratio between the height and the width of the rectangle is called the conformal module of
the surface. It can be clearly seen that the conformal modules based on the original metric
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changed much, due to the cutting of the handle (change in topology) whereas the conformal
modules based on the heat diffusion metric are similar. These experimental results confirm
that the heat diffusion metric is preferrable for our flattening algorithm than the original
metric, due to its insensitivity to topological noise.

6.5.2 Comparison with Existing Methods

The current approach is much more efficient and robust to topological noise when com-
pared to previous methods. Here, we compare our method to the well known conventional
holomorphic 1-form method, the conventional topological denoising method, and the Ricci
flow method and show that ours fairs better for colon surfaces with noise.

Conventional Holomorphic 1-form Method: In the conventional holomorphic 1-form
method, the most time consuming part is solving the Poisson equations [59]. Every handle
on the mesh corresponds to two cohomological classes. Since the harmonic 1-forms are
computed for all the cohomological classes, if the colon surface has g handles, then the
Poisson equations in the conventional holomorphic 1-form method need to be solved 2g

times [59]. In practice, there may be more than a hundred fake handles and therefore the
computation is very time consuming. Hence, though theoretically this method can also
be used for flattening noisy colons, it is not efficient. On the contrary, in our method,
we need to solve only a single Laplace equation. This is because we only consider the
cohomological class corresponding to a cylinder and ignore all the other classes (the colon
is roughly cylindrical). Hence we compute only one harmonic 1-form, by solving only
one Laplace equation given by Eq. 6.12. Thus, our method is virtually independent of the
number of handles, thereby increasing the efficieny.

Conventional Topological Denoising: In the conventional topological denoising method,
initially, for each handle, two loops, namely the handle loop and the tunnel loop are com-
puted [31]. Then, the handle is cut along one of these loops, which are then filled with two
small disks to ultimately remove the handles. In this method, it is extremely challenging
and time consuming to compute the two loops for each handle since there might be hun-
dreds of handles. Moreover, the topological surgery on the meshes is also complicated. In
our method, by virtue of the metric used, all the fake handles present on the colon surface
are collapsed and flattened on the destination plane. Consequently, all the vertices near the
handles have non-zero curvatures. Thus, by simply evaluating the Gaussian curvature of
the vertices the handles can be easily located (handles occur at vertices with non-zero cur-
vatures). The handles can then be removed by removing the neighborhood of these vertices
with non-zero curvature and filling small disks into the holes. This provides a simpler and
more efficient way to remove handles compared to the traditional denoising method. We
provide more elaborate details of the handle detection and removal using our method in
Section 6.

Ricci Flow Method: The Ricci flow method deforms the Riemannian metric to the con-
stant curvature uniformization metric [65], which induces constant curvatures everywhere.

99



This constant is solely determined by the topology of the surface. The colon surface is
a topological cylinder. Hence, the uniformization metric induces zero Gaussian curvature
for the interior points, and a zero geodesic curvature along the boundaries. However, for
colon surfaces with topological noise (fake handles), the Ricci flow converges to a nega-
tive constant curvature metric and hence they cannot be flattened onto the Euclidean plane.
Therefore, the Ricci flow method is intrinsically vulnerable to topological noise. On the
contrary, our method is insensitive to topological noise and a robust flattening is achieved.

Figure 51: The flattening of the ascending segment of a colon using (a) Ricci flow, and (b)
our method.

For comparison, we show in Fig. 51 a flattened result of the ascending colon segment,
using both ours and the Ricci flow approach. Fig. 51(a) shows the flattening result of the
colon segment using the Ricci flow method and Fig. 51(b) shows the flattening result of
the colon segment using our method. It can be clearly seen that the Ricci flow flattening is
non-regular and the global shape is lost. This is because the Ricci flow method is sensitive
to noise, such as handles. On the other hand, the colon flattening using our approach is
regular and the entire global shape is preserved.
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Figure 52: Comparison of the running times of our colon flattening approach with the colon
flattening using the Ricci Flow method.

We compared our method with the Ricci flow approach, in terms of the colon flattening
running times. Table 52 shows the comparison results using different colon models and
segments. The first column shows the number and segment of the colon model used. 192
and 241 are model numbers of the colon, A represents the ascending segment of the colon
and T represents the transverse segment. The second column shows the number of faces
in the colon model. The third column gives the time taken (in sec) for flattening the colon
models using the Ricci flow method. Finally, the fourth column gives the time taken (in sec)
for flattening using our method. Table 52 shows that for all the colon models, our method
is an order of magnitude faster than the Ricci flow method. Note that the timing details
provided in Table 52 only show the time taken for flattening and do not include the time
taken for the metric evaluation. Since both methods use different metrics, for the sake of
comparison we only use the time taken for flattening. All the experiments were conducted
on a system equipped with an Intel(R) Xeon(R) CPU with a 1.87 GHz processor.

6.5.3 Handle Detection and Removal

Our method of colon flattening using the heat diffusion metric is insensitive to topological
noise and hence the flattening process does not require any denoising as a mandatory pre-
processing step. Nonetheless, it is important to remove these topological artifacts such as
the tiny handles, so that they do not obstruct any further processing of the data, that is, if
the user wants to perform any further simplification of the colon data for other applications.
In all the previous methods, the handles were detected and removed directly on the 3D
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model. Hence, only a limited visualization of the location of the handles was obtained. On
the contrary, in our method, we detect the handles on the flattened colon surface and thus
obtain a clear visualization of the handles. This helps us to know the location of the handles
better.

By using the heat diffusion metric, the region around the handles is smoothed while
flattening. As a result, a small overlapped region is formed at the location of the handles. In
other words, a non-zero curvature is formed for all the vertices in the regions with handles.
Thus, the problem of handle detection would simply boil down to the problem of finding
all the vertices with non-zero curvature. Therefore, we calculate the Gaussian curvature
for each vertex of the colon mesh. We then mark all the vertices which have a non-zero
Gaussian curvature. These vertices are nothing but the vertices around the handles. In this
way, all the handles can be detected in a fast and effective way.

Figure 53: Handles detected by computing the Gaussian curvature for each vertex. Red
areas indicate handles detected (one shown in close-up view) and the green area shows the
zero Gaussian curvature region.

Fig. 53 shows the result obtained by using our approach to detect handles for one third
segment of a flattened colon surface (starting from the cecum on the left). The green color
represents the regions with zero Gaussian curvature and the red color represents the regions
with non-zero Gaussian curvature. Hence, all the red regions on the colon surface in Fig. 53
show the handles detected using our approach. Fig. 53 also shows the close up view of a
red-colored region, which confirms that it indeed is a handle (flipped triangles). Once all
the handles have been detected, they can be easily removed. For this, we delete the faces
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around the vertices with non-zero Gaussian curvature (red regions representing handles)
and subsequently fill the resulting holes with small disks. Thus, all the handles are removed
to obtain a flattened colon surface free of topological noise.

(a)

(b)

(c)

Figure 54: A flattened image for a whole colon dataset is shown in three images. The
rectum of the colon is on the left of (a) and the colon stretches to the cecum, which is on
the right of (c). The colonic polyps and the haustral folds are well preserved. Three polyps,
1 and 2 in (a) and 3 in (c) are shown within the yellow circles.

We compared the speed of our approach of handle detection and removal with a previ-
ous approach [59]. Using our approach, the average time for the entire process of handle
detection and removal on the colon surfaces with around 55,000 faces was 2.8 secs. On
the other hand, the previous approach took an average of 800 secs to detect and remove all
the handles using the same colon surface. Thus, we have obtained more than two orders
of magnitude gain in speed using our approach of noise removal. In total, there were 43
handles on the colon surface shown in Fig. 53. We tried our approach on four other colon

103



surfaces and all the handles in all cases were detected proving the accuracy and efficiency of
our approach. We also verified the handle count obtained by our method with that obtained
by the previous method [59] and the value matched in all cases.

6.5.4 Implementation and Results

Flat Colon Rendering: The result of our method is a colon surface flattened onto a 2D
rectangle, which also results in polyps being flattened. The shape of the polyps is a good
clue for polyp detection and hence the rendering of the flattened colon image is crucial for
their detection. Volume rendering of flattened colons has been presented and suggested for
use in VC navigation [59]. We perform the volume rendering of the flattened colon in the
same way and obtain a high-quality image of the flattened colon. The volume rendered
flattening result of a colon mesh model using our method is shown in Fig. 54. Since the
colon is very long, we show the flattening result in three parts. The colon stretches from the
rectum which is on the left of Fig. 54(a) to the cecum which is on the right of Fig. 54(c).
We can clearly see how easy it is to examine the whole interior colon region using our
method. Moreover, important features such as the polyps and the haustral folds are clearly
visible and well preserved. We show the location of three polyps (1, 2 and 3) on the
flattened colon surface, marked in yellow circles in Figs. 54(a) and (c). The resolution of
the rendered image in Fig. 54 is 3000 × 200. The rendering was performed on a system
equipped with an Intel Xeon E5620 CPU and NVIDIA GeForce GTX 480 graphics board.

Polyp 1 is a large polyp of size 6.1×9.6 mm and can directly be inspected in Fig. 54(a).
However, polyp 2 of size 3.1×3.7 mm and polyp 3 of size 3.8×2.5 mm are relatively small
and hard to recognize. Therefore, in a clinical application, the resolution should be at least
four times higher than the one used in Fig. 54, such as shown in Fig. 55. The rendering
using the GPU provides a real-time high-quality zoom-in functionality, which allows the
physicians to interactively inspect suspicious regions. By having a flattened colon visual-
ization, we are providing a better means of navigation so that no area of the colon is missed.
This flattened colon visualization opens an additional option for the physician to improve
the colon surface exploration.

We have also shown our results to a radiologist who was involved with the early con-
ception of VC and has over ten years of experience in reading them. He noted that the
flat rendering was realistic, and that the anatomical features such as folds, and especially
significant polyps (≥6 mm in diameter) are well preserved and easily noticeable (he had
not been exposed to flattened rendering prior to viewing this work). In addition, we have
cross-verified the location of the polyps on the flattened colon by checking with the VC
and OC reports provided by the Walter Reed Army Medical Center. We plan to conduct in
the near future a more comprehensive study with radiologists.

Implementation The pipeline was implemented in C++ in a Windows environment. The
volumetric rendering was performed on the GPU using OpenGL and Cg. The colon data
used in this work come from volumes with an approximate size of 512 × 512 × 400 vox-
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els. Preprocessing of the volumes includes electronic cleansing, segmentation, triangular
mesh extraction, and skeleton extraction. The meshes obtained are very large (typically
over 1.5 million faces) and are simplified to approximately 5% of their original size. We
have successfully obtained flattening results for six different colon models. Apart from
the flattening of the whole colon, we have also segmented the colon into three segments,
namely ascending, transverse and descending segments. Thus, we have tested our colon
flattening approach successfully with a total of 24 cases, including the segments and the
whole colon surfaces. The whole process of colon flattening for an entire colon model with
around 55,000 faces took an average of 23.93 sec, not including the time taken for the pre-
processing of the colon. It took on average 12.38 sec to evaluate the heat diffusion metric
using 50 eigenvalues and eigen functions and an average time of 11.55 sec to obtain the
flattening using this heat diffusion metric.

6.5.5 Applications:

Our major focus is to achieve a robust colon flattening, thereby avoiding the time-consuming
topological denoising step. Since the shape information is preserved in the flattened colon,
we show its application for polyp visualization, especially in hidden regions such as behind
the folds. We also show how the supine and prone colon registration pipeline becomes more
robust by using our method. Polyp Visualization and Detection One of the important ap-
plications of colon flattening is to provide a better way for the physicians to visualize and
even detect the polyps. Specifically, polyps behind haustral folds are hidden and missed
during the VC fly through of a 3D model. The polyps are small protrusions or bumps on
the colonic wall. By using our method, all the shapes on the colon surface are preserved
even after flattening. Therefore, the polyps can be clearly seen as bumps and hence form an
effective means of polyp visualization. Furthermore, the volume rendering of the flattened
colon provides a realistic rendering of polyps. In addition, the physician can zoom-in at the
suspicious regions to confirm the location of the polyps. Thus, even relatively small polyps
can be seen, as shown by few examples in Fig. 55.

Fig. 55 shows a close up view of some of the polyps (protrusions) observed by navi-
gating along the flattened colon surface. Fig. 55(a) shows a close up view of polyp 1 in
Fig. 54(a), which is a large polyp. Fig. 55(b) shows a close up view of polyp 2 in Fig. 54(a)
which is a relatively small polyp. Fig. 55(c) shows a close up view of polyp 3 in Fig. 54(c)
that is hidden behind a fold (pointed to by the red arrow). It is difficult to find such polyps
during navigation using a conventional VC system. However, when a flattened colon is
available, even polyps hidden behind colonic folds can be observed, as seen in Fig. 55(c).
Another example of a close up view of a polyp is shown in Fig. 47(b). These close up views
help the physician to verify that the suspicious regions detected are indeed polyps and not
some leftover stool. The shape of polyps can be identified and their sizes can be measured.
Note that our technique does not provide an automatic method of polyp detection but rather
makes it easy to locate, confirm, and visualize polyps, especially in areas which are oth-
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Figure 55: Close up view of the polyps (bumps on the colon wall). (a) Polyp 1 in Fig. 54(a);
(b) Polyp 2 in Fig. 54(a); (c) Polyp 3 in Fig. 54(c), which is hidden behind a colonic fold
indicated by the red arrow.

erwise hard to navigate. By performing size and shape analysis on the flat colon, we can
detect the polyps automatically, which we plan to do in the future.

Colon Registration: Shape registration is very fundamental for shape analysis prob-
lems, especially for abnormality detection in medical applications. The colon deformation
and the diverse shapes of polyps make it difficult to distinguish polyps from other non-
threatening objects in the colon. Hence, for a VC procedure, CT scans of the abdomen are
commonly acquired with the patient in both supine (facing up) and prone (facing down) po-
sitions to improve the visualization of the colon wall, reduce false positives, and improve
sensitivity. Comparisons between the supine and prone colon surfaces can be facilitated by
computerized registration between these scans.

Registration of supine and prone colon surfaces using quasi-conformal mapping has
been described by Zeng et al. [150]. In their approach, a costly topological denoising step
is performed on both supine and prone colon surfaces before the start of the registration
pipeline. Using the same registration approach, we show the registration of noisy supine
and prone colon surfaces. We use our colon flattening approach to obtain the rectangular
maps of supine and prone colon surfaces with handles. By virtue of our method, the flatten-
ing is not affected by the handles. We then obtain the surface feature points on these supine
and prone flattened maps. Finally, using these feature points as constraints, we register the
supine to prone using quasi-conformal mapping steps [150]. Therefore, we improved the
robustness of the supine and prone colon registration algorithm [150] by directly registering
the supine and prone colon surfaces with handles, which otherwise was impossible without
denoising.

We have analytically evaluated the quality of the registration by a distance measurement
between corresponding features located on the registered colon surfaces [150]. Since our
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Figure 56: Registered flattened views of the ascending colon segments with handles of (a)
supine and (b) prone colon surfaces. Two polyps found on (a) (shown in yellow circles)
can be located on (b) (shown in yellow circles) at nearly the same position.

registration is in the 2D space using the flattened colon surfaces, a point in R3 on the
original colon surface corresponds to a point in R2 on the registered surface. For two
corresponding points (polyps or feature points used as constraints) on the supine and prone
flattened colons, we compute the L2 norm of their 2D coordinates with the width of the
flattened images fixed to a unit length of 1. We also compute the 3D distance error by
measuring the distance between the same two corresponding feature points on the supine
and prone original colon surfaces (see [150] for details of the evaluation procedure). We
have evaluated the registration using a total of 6 pairs on 2 datasets by considering 16
pairs of feature points. The average distance error is 0.0385 in R2 and 8.14 mm in R3,
which is comparable to the error values of Zeng et al. [150]. Fig. 56 provides a visual
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verification for supine-prone colon registration. Figs. 56(a) and (b) show the registered
flattened views of the ascending colon segments of supine and prone colon surfaces with
handles, respectively. Two polyps found on the flattened supine surface (yellow circles in
Fig. 56(a)) can be located on the flattened prone surface (yellow circles in Fig. 56(b)) at
nearly the same position. Moreover, the images of the registered segments in Fig. 56 show
very good alignment of the supine and prone colon structures and a good correspondence
between their features, such as folds and polyps.

7 Conclusion

In this dissertation, we reviewed the mathematical theories and algorithms of computational
conformal geometry, then explored its applications in computer vision, wireless sensor net-
work and medical imaging. One of the most powerful features of conformal geometry that
it can build intrinsic mapping between 3D surface to 2D plane, thus solve complicated 3D
problems by reduce the dimension of the problem. Another powerful feature is that confor-
mal geometry can be used to design surface metrics, which often make the problems much
easier under the new metric. In computer vision, we presented a method to changing the
Riemannian metric on the target surface to a hyperbolic metric, so that the harmonic map-
ping is guaranteed to be a diffeomorphism under landmark constraints. The computational
algorithms are based on the Ricci flow and nonlinear heat diffusion methods, it works for
general topology surfaces with landmark constraints. In wireless sensor network, we show
a myth in common understanding of the memoryless property of a random walk applied
for protecting source location privacy in a wireless sensor network. We also proposed a
simple algorithms to recover the location of the source in simple cases. We also develop a
generic algorithm to reconstruct the source locations for various sources that have simple
descriptions (e.g., k source locations, sources on a line segment, sources in a disk). This
represents a new type of traffic analysis attack for invading sensor data location privacy and
essentially re-opens the problem for further examination. In medical imaging, we proposes
a new colon flattening algorithm that is efficient, shape-preserving, and robust to topologi-
cal noise. Our method is shape-preserving and the shape of the polyps are well preserved.
The flattened colon also provides an efficient way to enhance the navigation and inspection
in virtual colonoscopy.

In this dissertation, we have demonstrated the power of computational conformal ge-
ometry, but the research on computational conformal geometry is far from complete. Hot
topics include finding optimal quasi-conformal and area-preservation mappings between
surfaces. In physical world, most surface deformations can be rigorously modeled as quasi-
conformal maps, this is of great importance in computer vision and medical imaging field.
The local deformation is characterized by a complex-value function, Beltrami coefficient,
which describes the deviation from conformality of the deformation at each point. Effective
algorithm to solve the quasi-conformal map from the Beltrami coefficient is under extensive
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research. Another emerging topic is the area-preservation mapping/fattening method using
the optimal mass transport technique, based on the Monge-Brenier theory. Area-preserving
mapping can serve as a powerful tool for a broad range of applications in visualization and
graphics, especially for medical imaging.
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