

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Efficient Implementation Techniques

for Block-Level Cloud Storage Systems

A Dissertation Presented

by

Dilip Nijagal Simha

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2014

Stony Brook University

The Graduate School

Dilip Nijagal Simha

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Dr. Tzi-cker Chiueh – Dissertation Advisor
Professor, Department of Computer Science

Dr. Erez Zadok – Chairperson of Defense
Associate Professor, Department of Computer Science

Dr. Donald E. Porter
Assistant Professor, Department of Computer Science

Dr. Marcos K. Aguilera
Senior Researcher, Microsoft Research, Silicon Valley

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Efficient Implementation Techniques for
Block-Level Cloud Storage Systems

by

Dilip Nijagal Simha

Doctor of Philosophy

in

Computer Science

Stony Brook University

2014

A fundamental building block for an IaaS (Infrastructure-as-a-
Service) cloud service such as Amazon’s EC2 is a storage virtu-
alization system that provides block-level storage services to indi-
vidual virtual machines over the network. This dissertation ad-
dresses four major problems in such a block-level cloud storage
system, in the context of an end-to-end IaaS solution called ITRI
Cloud OS. First, to effectively eliminate redundancies in stored
data blocks, we propose a scalable block-level deduplication en-
gine called Sungem, which uses both sampling and prefetching to
minimize the performance overhead of fingerprint accesses, and
features a storage block garbage collection algorithm whose run-
time overhead is proportional only to the size of the delta between
consecutive backup operations. Second, to efficiently flush meta-
data updates associated with large-scale block-level storage man-
agement, we developed a novel storage system architecture called
BOSC (Batching mOdifications with Sequential Commit), which
uses largely sequential writes to commit updates to disk and is

iii

thus able to sustain high-throughput and low-latency metadata
updates that are largely random. Third, as part of the BOSC ar-
chitecture, we invented a high-throughput low-latency disk logging
system called Beluga, which fashions a carefully tuned disk write
pipeline and makes it possible to provide, on an array of three
commodity 7200 RPM SATA disks, close to 5 million fine-grained
(64-byte) disk logging operations per second, which is close to the
maximum possible bandwidth on a commodity disk, while keeping
the latency of each logging operation under 1 msec. Finally, we
devised a set of techniques for supporting software-defined storage
service on a distributed and replicated storage architecture. Specif-
ically, we developed a distributed storage QoS guarantee system
called Cheetah, which is able to provide a bandwidth guarantee
to each virtual disk attached to a virtual machine, while ensuring
the loads on the distributed storage nodes be balanced, and the
locality of the access stream associated with each virtual disk be
preserved as much as possible.

iv

Dedicated to:

Dad, Mom, Kruthi,
Smitha, Anand, Samarth and Diya.

v

Contents

List of Figures xi

List of Tables xiv

Acknowledgements xvi

1 Introduction 1
1.1 Cloud Storage . 1

1.1.1 Generic Challenges in Cloud Storage System 3
1.1.2 Challenges in Block-Level Cloud Storage System 4
1.1.3 Challenges in Cloud Storage’s Back-End Management . 5

1.2 SDDS System Architecture . 7
1.2.1 Block Address Namespace 8
1.2.2 Data Path Management 10
1.2.3 Comprehensive Data Protection 10
1.2.4 Dirty Block Tracker . 12

1.3 Challenges Addressed by this Dissertation 12
1.3.1 What this Dissertation is Not About 15

1.4 Research Contributions . 16
1.5 Dissertation Outline . 18

2 Related Work 20
2.1 Cloud Storage . 20
2.2 Deduplication Techniques . 24

2.2.1 Content-Addressable Storage 24
2.2.2 Timing of Backup . 25
2.2.3 Data Comparison Techniques 26
2.2.4 Granularity of Deduplication 26
2.2.5 Positioning of Deduplication 28
2.2.6 Variable Segment vs Fixed Segment 30
2.2.7 Faster Index Lookup Strategies 32

vi

2.2.8 Medium of Backup Storage 35
2.2.9 Deduplication Trace Workload Analysis 36

2.3 Garbage Collection Techniques for Deduplication Storage Systems 37
2.3.1 Mark and Sweep . 37
2.3.2 Reference Count based 38
2.3.3 Expiry Time based . 39
2.3.4 Summary of GC comparisons 40

2.4 Fast Random Updates to On-Disk Data Structures 40
2.5 Fast Disk Logging . 42
2.6 QoS for Distributed Storage Systems 45

2.6.1 Description of QoS specification in Service Level Agree-
ments . 46

2.6.2 Granularity of QoS Enforcements 46
2.6.3 Location of Collecting Statistics 47
2.6.4 Performance Isolation 49
2.6.5 Provisioning Hardware Resources 50
2.6.6 Load Balancing . 50
2.6.7 Extending QoS Ideas From Non-Storage Systems . . . 52

3 Scalable Deduplication and Garbage Collection 54
3.1 Introduction . 54
3.2 Our Approach . 57

3.2.1 System Architecture 57
3.2.2 Fingerprint Segmentation and Placement 58
3.2.3 Variable Fingerprint Sampling 59

3.3 Scalable Garbage Collection 60
3.3.1 Hybrid GC: Our Approach 61
3.3.2 Batched Updates to P-Array 62

3.4 Parallelization Techniques for Deduplication and Garbage Col-
lection . 63
3.4.1 Distributed Deduplication Algorithm Design 64
3.4.2 Distributed GC Design 65

3.5 Performance Evaluation . 67
3.5.1 Evaluation Methodology 67
3.5.2 Overall Performance 69
3.5.3 Effectiveness of Sampled Fingerprint Index 72
3.5.4 Content Proximity-Based Fingerprint Placement 73
3.5.5 Garbage Collection Overhead 75
3.5.6 Effectiveness of Container Cache 76
3.5.7 Impact of Controlling Stored Segment Formation . . . 76
3.5.8 Parallel Deduplication tradeoffs 77

vii

3.6 Summary . 78

4 A Trace-based Study for Deduplication Algorithm Design 80
4.1 Trace Collection and Conversion 81

4.1.1 Trace Collection . 81
4.1.2 Trace Conversion . 82
4.1.3 Trace Processing . 83

4.2 General Duplicity Pattern . 85
4.3 Trace-based Deduplication Design Tradeoff Analysis 88

4.3.1 Sampling of Stored Segments 89
4.3.2 Placement of Stored Fingerprint Segments 89
4.3.3 Garbage Collection of Fingerprints 93

4.4 Impact of Deduplication Granularity 94
4.5 To BF or Not to BF . 96
4.6 Summary . 97

5 An Update-Aware Storage System for Low-Locality Update-
Intensive Workloads 99
5.1 Update-Aware Disk Access Interface 102

5.1.1 Caveats with Call-back Function 103
5.2 BOSC Architecture . 104

5.2.1 Low-Latency Disk Logging 104
5.2.2 Sequential Commit of Aggregated Updates 105
5.2.3 Recovery Processing 107
5.2.4 Extensions . 108

5.3 Applications of BOSC . 111
5.3.1 BOSC-Based B+ Tree 111
5.3.2 Hash Table . 113

5.4 Performance Evaluation . 113
5.4.1 Evaluation Methodology 113
5.4.2 Logging disk, Data disk combinations 114
5.4.3 Overall Performance Improvement on B+ Tree 116
5.4.4 Overall performance improvement on Hash Table . . . 123
5.4.5 Application of BOSC to Mariner 125

5.5 Summary . 126

6 High Throughput Low Latency Disk Logging 128
6.1 Vanilla Disk Logging . 130
6.2 Toy-Train Disk Logging . 132

6.2.1 Conceptual Model . 132
6.2.2 Application Programming Interface 133

viii

6.2.3 Streamlined Disk Write Pipeline 134
6.2.4 Dense-Mode Logging 137
6.2.5 Sparse-Mode Logging 140

6.3 Performance Evaluation . 143
6.3.1 Methodology . 143
6.3.2 Dense-Mode Logging 144
6.3.3 Sparse-Mode Logging 151
6.3.4 Comparison with SSD-based Logging 153

6.4 Summary . 154

7 Quality of Service Guarantee for Software-Defined Distributed
Storage Systems 155
7.1 SDDS System Architecture in the Context of Managing QoS

Functionality . 155
7.1.1 System Model . 157
7.1.2 Service Model . 157

7.2 Cheetah’s Objectives, Challenges & Solution 158
7.2.1 Design Objectives . 158
7.2.2 Technical Challenges 158
7.2.3 Solution Overview . 163

7.3 Quantification of Physical Disk Resource Requirements 164
7.4 Read Load Balancing . 167

7.4.1 RLB Algorithm . 169
7.4.2 RLB Integration with Cheetah 171

7.5 Flow Control . 173
7.6 CFVC: A QoS Aware Disk Scheduler 176

7.6.1 CFVC Scheduler Algorithm 176
7.6.2 Implementation Challenges Integrating CFVC Scheduler

into Cheetah . 180
7.7 Putting it All Together . 184
7.8 Evaluation Methodology . 185

7.8.1 Current Prototype . 185
7.8.2 DA Simulator for RLB Evaluation 188
7.8.3 Synthetic Trace Generation 195

7.9 Performance Evaluation of the Automated PB Extraction Process196
7.9.1 Effect of Workload Locality on PB using Real-World I/O

Trace . 196
7.9.2 Effect of Workload Locality on PB using Synthetic Work-

load . 198
7.9.3 Effectiveness of PB Extraction Process on a Shared DA 200

7.10 Evaluation of the Effectiveness of Bandwidth Decomposition . 202

ix

7.10.1 Variable VD-DA Mappings 202
7.10.2 Variations in Read/Write Ratio 205
7.10.3 Variations in Sequential Locality 205
7.10.4 Short Term Variations in Workload Locality 208
7.10.5 Centralized RLB Scheduler’s Processing Time 209

7.11 Performance Evaluation of Per-VD Scheduler 209
7.12 Summary . 212

8 Conclusion and Future Directions 214
8.1 Conclusion . 214
8.2 Future Directions . 216
8.3 Final Words . 219

Bibliography 220

x

List of Figures

1.1 SDDS Architecture . 7
1.2 Addressing namespace in DISCO 9

2.1 Sampling and Prefetching in dedupe 32

3.1 Sungem Architecture . 57
3.2 Metadata Updates in Garbage Collection 62
3.3 Sungem’s deduplication throughput and ratio 70
3.4 Reference count distribution in Sungem’s trace 71
3.5 Sungem’s SFI effectiveness . 72
3.6 Sungem’s container cache effectiveness 77
3.7 Distributed Sungem performance 78

4.1 Dedupe trace conversion scheme 82
4.2 Sungem’s TP vs CP visual comparison 91
4.3 Histogram showing the temporal distance between the matched blocks 93
4.4 Retention Period vs Duplicity in detailed trace 93

5.1 BOSC Architecture . 104
5.2 BOSC2 extension with swapping disks 109
5.3 Insertion and read throughput for various logging disk/data disk

variations . 114
5.4 BOSC vs vanilla comparison for random insert workload in B+

tree . 116
5.5 BOSC vs vanilla comparison for random update workload in

B+ tree . 117
5.6 Effectiveness of BOSC-based B+ tree in-memory queue and low

latency logging . 119
5.7 BOSC-based B+ tree sensitivity study with variations in leaf

node size . 120
5.8 BOSC-based B+ tree sensitivity study with variations in record

size . 121

xi

5.9 BOSC-based B+ tree sensitivity study with variations in both
leaf node size and record size 122

5.10 BOSC-based B+ tree sensitivity study with variations in index
size . 123

5.11 BOSC-based B+ tree sensitivity study with variations in in-
memory queue size . 124

5.12 BOSC vs vanilla comparison for random insert workload in hash
table . 125

5.13 BOSC vs vanilla comparison for random update workload in
hash table . 126

5.14 Disk write logging performance of Mariner with and without
BOSC comparison . 127

6.1 Beluga Architecture . 136
6.2 Sparse mode Beluga logging example 142
6.3 Adaptive Batch Size Selection in Beluga 149
6.4 Beluga sensitivity study: Variations in NCQ length 150

7.1 Detailed overview of the components of a VDC 156
7.2 Illustration of DRUT computation on a DA shared by multiple VDs 164
7.3 Illustration of a scenario where a naive greedy RLB algorithm fails

to load balance the DAs . 167
7.4 Illustration of RLB management 170
7.5 Illustration of Flow Control management 175
7.6 Illustration of short term unfairness problem in a typical VC

disk scheduler algorithm . 180
7.7 Simulation setup for evaluating the effectiveness of PB extraction . 186
7.8 Charts with load distribution for uneven VD-DA mappings . . 202
7.9 Figure comparing RLB, RR and RND schedulers for random

mappings between 100VDs and 40 DAs 204
7.10 Figure comparing RLB, RR and RND schedulers for random

mappings between 200VDs and 70 DAs 204
7.11 Figure comparing RLB, RR and RND schedulers for random

mappings between 600VDs and 200 DAs 204
7.12 Figure comparing RLB, RR and RND schedulers for random

mappings between 800VDs and 250 DAs 204
7.13 Comparsion of RR, RND and RLB schedulers for read/write

variations . 206
7.14 Charts with load distribution for variations in sequential locality

in input workload . 207

xii

7.15 Charts with load distribution for short term variations in input
workload . 208

7.16 Charts comparing locality unaware vs locality aware RLB for a
low locality workload . 210

7.17 Charts comparing locality unaware vs locality aware RLB for a
high locality workload . 210

xiii

List of Tables

2.1 GC comparison analysis . 37
2.2 White-box vs Black-box stats collection techniques 47

3.1 Sungem’s real-world trace composition 68
3.2 Sungem’s TP vs CP comparison 74
3.3 Sungem’s GC performance . 75
3.4 Sungem’s GC detailed performance 76
3.5 Sungem’s K-factor effectiveness 77

4.1 File-grouping classification in detailed real-world dedupe trace 85
4.2 Block distribution in detailed dedupe trace 86
4.3 Duplicity of blocks internal and external to a file 87
4.4 Duplicity vs File Size analysis 88
4.5 Size distribution of recurring stored fingerprint segments 90
4.6 Sungem’s TP vs CP comparison on the detailed trace 90
4.7 Impact of deduplication granularity on duplicity 94
4.8 Impact of deduplication granularity on duplicity for each file type 95
4.9 Performance impact of RBF in Sungem 97

5.1 BOSC-based B+ tree sensitivity study with read query latency 122

6.1 Latency and throughput of file-based and device-based (Raw)
disk logging . 131

6.2 Beluga performance with variations in batch size 145
6.3 Detailed breakdown of the time each logging operation spends in the

disk write pipeline as the batch size is varied 147
6.4 Effect of record size on Beluga’s performance 147
6.5 Beluga’s performance at various offsets on disk 148
6.6 Beluga with multiple disks . 149
6.7 Performance of sparse mode Beluga 151
6.8 Detailed performance evaluation of sparse mode Beluga 153
6.9 Performance of SSD logging 153

xiv

7.1 Table showing the correctness of simulated DA 194
7.2 Table showing the correctness of simulated DA using negative

result . 194
7.3 Variations in PB with workload locality in a real-world trace . 197
7.4 Variations in PB with workload locality in a real-world trace,

when request generation rate is doubled 197
7.5 Variations in physical bandwidth with request generation rate

using synthetic workload . 198
7.6 Variations in physical bandwidth with workload locality in a

synthetic trace . 199
7.7 Variations in physical bandwidth with read/write ratio in a syn-

thetic trace . 200
7.8 Table showing the effectiveness of PB extraction process on a

shared DA . 200
7.9 Table showing the effectiveness of PB extraction process on a

shared overloaded DA . 201
7.10 Table showing the time taken by centralized RLB scheduler for

varying number of VD-DA configurations 209

xv

Acknowledgements

Thank you, God, for instilling the belief in me to take up this challenging
journey, tolerance to endure it, and rewarding me in time.

I would like to extend my sincere gratitude to my advisor, professor Tzi-
cker Chiueh, who has been extremely supportive throughout my five years of
graduate studies, on academic as well as non-academic matters. It is my priv-
ilege to be technically trained by him because his discipline and commitment
towards top notch System’s research is unparalleled. The amount of flexibility,
trust and challenges he entrusts in a graduate student is commendable. De-
spite his busy schedule, he has always been there for me, guiding me, involving
me in intellectually stimulating discussions and incessantly pushing me to take
that extra leap towards reaching my goals. There has never been an occasion
when a discussion with him has not yielded a positive result. He has always
been and will continue to be my role model. I wish to thank him for aligning
my career in a path filled with challenging opportunities, by continuing to
contribute aggressively towards System’s research.

I thank Dr. Don Porter for advising me on several issues including on
structuring presentations, tips on writing techniques and improving my dis-
sertation. He has always been extremely kind, cooperative and approachable.
I thank my other committee members Dr. Erez Zadok and Dr. Marcos Aguil-
era for agreeing to be part of the dissertation committee.

I thank all my colleagues and superiors at the CCMA division of ITRI,
Taiwan, for all the professional and friendly warmth that they have extended
during all my internships. My special thanks to Sandy, Christine and all the
staff members for helping me focus on my research work without worrying
about food and language in an environment that is completely alien to my
way of living. It is because of all their love and affection that kept me visiting
Taiwan for more than one internship. I also wish to thank ITRI for funding
my research and conference trips.

I thank all my PhD colleagues Maohua, Steve, William and Yifeng for all
the discussions related to solving research problems, finding jobs and Asian
political matters! I thank my MS colleagues Ganesh, Pallav and Dileep who

xvi

contributed to various project discussions, implementations and performance
evaluations.

My dad, Madhava Murthy and mom, Geetha Murthy, deserve a special
thanks for always being there for me. It is not possible to express with simple
words their efforts towards my progress in graduate school, for they have been
the back-bone of this exciting journey. When I had to leave them alone and
come to US, they never held me back. Rather, they motivated me to never give-
up my ambitions until it is complete and have never left me worry for financial
or emotional issues. During those times when I faced rejects after rejects to
all my paper submissions, they never doubted me, but kept motivating me to
push even harder. I thank you dad and mom, and I promise to be always there
for you.

My brother-in-law, Anand, was instrumental in instilling in me the passion
for Computer Science. If not for my sister, Smitha’s constant prodding to not
lose hope after my lackluster GRE score, I would have probably cut short my
PhD ambitions. Thanks to Anand, Smitha and their kids Samarth and Diya
for all the healthy distractions, emotional and financial support.

My wife, Kruthi, deserves a special thanks. She accepted a marriage pro-
posal from a PhD candidate, who then didn’t have a house to stay, a stable job
and a salary to maintain a family, and who promised her nothing but eternal
love. I am very glad that I am that PhD candidate and am short of words to
describe the amount of sacrifice that she has put up. She gave up her flourish-
ing law career in India and worked relentlessly on building her career revolving
around mine. She was content with infrequent nearby outings, cost conscious
shopping, and never complained about failing to keep up to my promises. Al-
though, she didn’t understand the technicalities in my projects, she was a
patient listener, and has been the best critic of my presentations and writing
skills. Thank you, Kruthi for this wonderful support and unconditional love.

A special thanks to my in-laws for sharing Kruthi with me, and for believing
in me and my abilities to pursue my career in research. Thanks for all your
prayers, blessings and encouragement.

Thanks to all my friends, relatives, well-wishers and in particular to all my
2010 batch MS graduate colleagues who have been extremely supportive and
never made me miss home.

Last but not the least, I sincerely thank my first, truly inspiring guru
(teacher), late Mr. Gopalakrishna, who is fondly remembered as GK sir. It
was his effervescence and never give-up attitude that inspired me to dream
and chase my dreams with relentless hard work. I owe you a lot and will do
my bit to repay it by following your steps in sharing knowledge for the needy
and the greedy.

xvii

Chapter 1

Introduction

1.1 Cloud Storage

A traditional standalone storage system uses directly attached storage (DAS)
devices to offer storage related services to the applications generating I/O re-
quests. The storage related services range from handling regular read/write
I/Os to managing sophisticated quality of service (QoS) guarantees. These
storage services have been studied in depth in the literature for more than a
decade. With Big data [1] gaining importance in the recent years, the data
storage requirements have exploded much beyond the capabilities of a tradi-
tional standalone storage system. It is evident that there isn’t much a DAS
device can offer in the face of massive data workloads from big data like ap-
plications because of the physical scaling limitations. In order to extend the
storage capacities to large-scale, a popular approach is to move all the data
to the cloud and let the cloud storage service provider manage the data. The
cloud storage service provider manages a large scale data center that is op-
timized to support larger number of physical hardware resources. A tenant
who wishes to configure the data storage management for his applications,
purchases a variety of storage related services from such cloud storage service
providers.

A cloud storage service consists of a front-end that provides an access in-
terface to the tenants’ applications and a back-end that manages the hardware
resources that can collectively support the exposed interface. The access inter-
face corresponds to the granularity of storage that is supported by the back-
end. Based on the granularity of access to storage, cloud storage services can be
categorized as block-level, object-level, file-level or database-level, and depend-
ing on the specific access interface needed by an application, tenants choose
a cloud storage service accordingly. Commodity storage devices support the

1

block-level access granularity, and sophisticated software and hardware tech-
niques enable higher levels of access granularity. At block-level granularity,
each individual disk block can be individually accessed and different appli-
cations can configure different block sizes. With larger block sizes, the I/O
throughput is maximized because of two main reasons. First, the size of meta-
data is typically fixed, irrespective of the block’s size and hence a larger block
uses lesser metadata when compared to aggregate metadata used by smaller
blocks. Second, fewer network transfers are done for a larger block and that
saves the precious network bandwidth. Though each network transfer for a
larger block incurs higher bandwidth usage, there are various other factors
like TCP/IP metadata and flow control mechanisms, that incurs additional
latency for every network transfer, and such attributes can be amortized with
larger block sizes. However, too large a block size will result in lesser perfor-
mance of storage resources because only a fraction of the larger block can be
modified during every update operation. Therefore, applications need to make
an informed decision while configuring the block size. At object-level access
granularity, the cloud storage service handles applications with different block-
size requirements in a generic manner. Such a generic storage management
supports a large variety of applications with different I/O block sizes and the
object-level interface is oblivious to the type of data stored in the object. For
the very same reason, the object-level interface may not give optimal perfor-
mance because specific optimizations that could be possible with respect to
block size or block content are no longer possible. At file-level granularity, an
application need not worry about the low-level storage semantics, and instead
directly stores an entire file as it is on the cloud. The cloud storage service
attaches file-level semantics to every file, and extracts meaningful attributes
to support advanced storage functionalities like compression and deduplica-
tion. There are various distributed file systems [2, 3] that provide an efficient
file-system interface over the cloud. At an even higher granularity, an entire
database is managed on the cloud. With such a service, applications move their
entire storage stack to the cloud and completely outsource the data storage
management to the cloud storage service provider.

The back-end of a cloud storage service manages large-scale physical stor-
age resources and there are several ways to configure the back-end system. A
popular technique is to adopt either a network attached storage (NAS) config-
uration or a storage area network (SAN) configuration, that projects storage
devices spread over the local network as DAS devices to the back-end stor-
age system on the cloud-scale data center. While NAS storage is offered at
file-level granularity, typically over TCP/IP network, SAN storage is offered
at block-level granularity, typically over fiber optic network. Both NAS and

2

SAN technologies use enterprise quality hardware consisting of storage devices
like magnetic disks and SSDs, network switches, and a small CPU that runs
a minimal operating system to control the storage devices. An alternative
solution to expensive enterprise storage setup is to configure the storage disks
as just a bunch of disks (JBOD) into one physical storage unit and provision
a storage system with several such JBODs that effectively appear as just a
bunch of JBODs, which we term as JBOJBOD. A JBOD device groups to-
gether a bunch of disks and can be configured either to concatenate all its
disks to access them as a single huge volume or to access each disk individu-
ally. JBODs offer block-level access granularity. Unlike the popular redundant
array of inexpensive disks (RAID) technique, JBOD device doesn’t offer any
redundancy, and more importantly a JBOD device works with disks of any
type and size. JBOJBOD technique has picked up pace over the last few years
and has been successfully deployed today in companies like Facebook, Twitter,
Google, Amazon that use storage resources over gigantic scales in the range of
several peta bytes.

1.1.1 Generic Challenges in Cloud Storage System

A cloud storage service handles data workload from multiple tenants and each
tenant submits data workload that is generated from one or more of his appli-
cations. While a naive way to manage the cloud storage service’s back-end is to
allocate dedicated storage to each tenant’s application, an advanced technique
stores multiple tenants’ data in a shared hardware environment, such that the
sharing process is transparent to the applications. Though the naive solution
to use dedicated hardware is relatively easier to design and manage, it is quite
expensive. However, it is desirable in a few cases like when the tenant has a
secure application that cannot afford security breaches of any kind. In-spite
of the advancements in secure storage research [4, 5], providing high security
standards in a shared data environment, it is tough to prove absolute foolproof
security. There are other scenarios where-in an application has zero tolerance
to noisy neighbors, which is a standard term used to describe the case where
the performance of an application degrades due to large variations in data
workload from another application sharing the same hardware resources as
that of the affected application.

The main advantage of sharing the hardware resources among multiple
tenants is the cost benefit. Higher the amount of sharing, higher is the cost-
benefit. Typically, each tenant’s application generates data workloads at differ-
ent rates and in order to maximize the raw bandwidth of the physical storage,
data workload from multiple tenants’ applications can time-share the hardware
resources. If the applications sharing the hardware resources generate data at

3

disjoint intervals in time, then the I/O performance of each application is
completely independent of the data pattern in the workload of other applica-
tions. As an example, assume a tenant has two applications: web-server and
a log-server. The log-server records every web-service request processed by
the web-server and stores it in the cloud at periodic intervals. The web-server
is more dynamic in nature and submits requests to load/store data from/to
the cloud at more regular intervals. If the log-server is designed to submit
data to the cloud only when the web-server is inactive, these two applications
could easily share the same set of hardware resources without affecting each
other’s performance. If either the time-sharing is not designed efficiently, or if
an application generates data workload with unpredictable pattern, then the
sharing logic fails to guarantee assured performance to each application, unless
specific optimizations are designed to handle such fluctuations in data work-
load. Therefore, it is extremely challenging to design a cloud storage service
to efficiently utilize the hardware resources and simultaneously ensure high
cost benefit to tenants, while guaranteeing assured I/O performance to their
applications.

1.1.2 Challenges in Block-Level Cloud Storage System

Block-level access interface forms the back-bone of the cloud storage service,
and interfaces with higher-level access granularities are built on top of the
block-level interface using sophisticated software techniques. Therefore, it is
important to ensure optimal performance of all block-level functionalities, but
there are several challenges in designing a cloud-storage system at block-level
granularity, and a few important ones are described below. In a large-scale
cloud storage system, the number of available physical blocks range from few
millions to several billions. When an application requests for storage space, an
allocation agent in the storage system goes through the collection of available
blocks and allocates the necessary blocks to the requesting application. The
allocation policy has to be carefully designed to identify appropriate storage
devices in the entire storage system for each storage allocation request, while
ensuring minimal internal and external fragmentation in the storage space. Se-
lecting the appropriate devices depends on the specific I/O requirements from
the tenant’s application. For example, when an application demands large disk
I/O bandwidth, the allocation manager should allocate storage space, such
that the available disk bandwidth on the selected storage device is sufficient
to satisfy the requirements of the given application, otherwise the tenant’s ap-
plication will experience large unexpected latencies in the disk I/O operation,
leading to dissatisfaction and possible breach in quality of service agreements
with the cloud storage service provider.

4

Garbage collection is another important aspect in a large-scale storage sys-
tem. Disk blocks are shared either explicitly or implicitly within and across the
tenants’ applications for various reasons. While explicit sharing is requested
by the application, implicit sharing is performed by the storage system without
the knowledge of the tenant, so that redundancies in data could be eliminated
to save the previous storage space. The storage system also replicates the disk
blocks for managing advanced quality of service features like high availabil-
ity. All such data sharing patterns necessitate metadata management for each
physical block and hence the garbage collection policy needs sophisticated data
structures to efficiently identify and collect unused blocks in the entire storage
system. For a peta-byte storage system, if each metadata is say 20 bytes long,
and each physical block is of 8KB, then the metadata index is of 2.5 TB in
size. Since the metadata is very important and has to be persistently stored
on disk, careful design is necessary to not let the disk I/O operations on the
metadata index bottleneck the garbage collection process. Additionally, the
data workload on garbage collection system consists of updates to metadata
index, with very low locality, and storage systems typically handle random
updates poorly with very low throughput and high latency. Therefore, it is
very important to handle random disk I/O operations efficiently.

The block-level storage system needs a mapping service that translates log-
ical block addresses in the tenant’s applications to the corresponding physical
block addresses in the cloud storage system. The mapping service cannot in-
tervene in every disk I/O operation as it incurs additional latency. Therefore,
efficient caching mechanisms are necessary to ensure that the tenants’ applica-
tions involve the mapping service only occasionally. Additionally, the mapping
service needs to maintain persistent data structures to remember the mapping
information and to maintain the garbage collection in logical address space.
The mapping service faces similar issues like the that of the garbage collection
system described above, due to the need to maintain persistent metadata.

1.1.3 Challenges in Cloud Storage’s Back-End Manage-
ment

One of the most important aspects of the back-end management in a cloud-
scale storage system is to ensure automatic scalability with minimal to none
manual intervention. The back-end system should be able to add/remove var-
ious storage components at run-time without disrupting any running disk I/O
activity in the entire storage system. Another important aspect of the back-
end management is to ensure high availability. The back-end management
should provision state-of-the-art technologies to provide software and hard-

5

ware support in maintaining zero tolerance to data loss. On a cloud-scale
storage system, thousands of storage components fail or crash at any point
in time and the back-end management has to maintain adequate backups and
ensure quick restoration of the failed components. We prefer to focus on JBOJ-
BOD rather than NAS/SAN approach in the back-end because of the following
reasons:

• JBOJBOD setup avoids expensive hardware resources like RAID con-
trollers and enterprise-class network switches, and hence the cost factor
is significantly high, especially on a large scale storage system in the
range of several peta bytes.

• Though JBOJBOD lacks the high-end hardware support made available
in an enterprise storage setup, the lack of such features could be made-up
using sophisticated software techniques like high availability and software
RAID to name a few.

• JBOJBOD setup is very flexible in adding/removing individual disks, to
either handle scalability or to replace failed disks. A JBOD device sup-
ports disks of different types and sizes, and that offers a huge advantage
in a large scale setup, where disks fail at unpredictable times, and the
replacement disks are often non-identical to the failed disks.

• A JBOJBOD setup consists of multiple JBOD servers, where each JBOD
server is a simple X86 system consisting of a commodity CPU and a set of
JBOD arrays attached directly to the CPU. Unlike a NAS/SAN device,
JBOD server doesn’t appear like a black-box, and hence it is possible
to install and run custom-built software on the JBOD server, where the
software could be used to either collect some statistics as close to the disk
I/O level and/or provide additional functionalities like software RAID.

While it is imperative to ensure flexibility in scaling the hardware resources
of a storage system, it is equally important to ensure good overall perfor-
mance through efficient software techniques. From the software perspective,
it is highly desirable to have an efficient software defined distributed storage
(SDDS) system that offers storage virtualization by decoupling the hardware
functionalities of JBOJBOD from user visibility. The SDDS system is expected
to provide automatic management of scalability, reliability, persistency, and
other distributed storage related functionalities without letting the user ap-
plications worry about the detailed technicalities of the underlying hardware.
However, an SDDS system faces several challenges in providing these storage
functionalities, and the challenges are better explained when the architecture
of the SDDS system is clearly defined in the following section.

6

Figure 1.1: Overview of SDDS architecture consisting of Compute Nodes, Service
Nodes and Storage Nodes

1.2 SDDS System Architecture

The SDDS system segregates the hardware resources into 3 parts: compute
nodes (CN), service nodes and storage nodes (SN) as shown in figure 1.1. CNs
represent a large set of physical machines, each of which hosts several virtual
machines (VM). Tenants who wish to run their applications, can do so, by
configuring a virtual datacenter (VDC) with sufficient CPU, storage, memory,
networking and other necessary hardware resources. A VDC consists of one
or more VMs that are spread across various physical machines. Each VM can
again be configured with specific hardware resources similar to that of a VDC,
subject to conditions that the sum total of hardware resources on every VM
in a VDC doesn’t exceed the hardware resources reserved by that VDC. The
SDDS system is responsible for managing all the storage related requirements
of the VDCs. The SDDS system provides virtual disks (VD) in each VM to
allow tenants’ applications to manage the storage requirements in a VM, such
that the VD appears exactly like a physical disk to the tenants’ applications.
The SDDS system is responsible for managing storage virtualization between
virtual disks and physical disks located in the JBOJBOD system.

7

The SNs represent the JBOJBOD system and consists of a large number of
commodity JBOD servers that aren’t arranged in any specific order. Each SN
is essentially a commodity JBOD server consisting of a x86 CPU and a set of
disk arrays (DA), where each DA consists of a set of hard disks. A DA is just a
bunch of disks that makes each disk to be accessible independently. Depending
on the specific needs of the tenants, a DA could either be configured with a
specific software RAID level setting or be left alone as individual disks.

The service nodes represent a set of physical machines that collectively run
applications to manage data flow between the CNs and SNs, and also pro-
vide high availability and reliability to the data stored on SNs. The service
nodes only help maintain metadata corresponding to the data flow between
CNs and SNs, and doesn’t actively interfere during the actual data flow. Ser-
vice nodes are simple x86 servers and we inter-changeably address the service
nodes as name nodes (NN) because of the similar functionalities provided by a
”name node” in the popular Hadoop [3] literature. The NNs provide two ba-
sic functionalities, namely, distributed primary storage (DMS) and distributed
secondary storage (DSS). DMS provides iSCSI like block-level storage service
to VMs, and DSS helps in backing-up data from primary storage to secondary
storage at periodical intervals. Since DMS and DSS operate on a common set
of data for majority of its operations, NN integrates DMS and DSS to avoid
expensive synchronization delays in handling the common data set, and we
refer to the combination as DISCO, which stands for ”Distributed Integrated
Storage with Comprehensive data prOtection”. The following subsections give
an overview of the services offered by DISCO.

1.2.1 Block Address Namespace

There are three levels of addressing namespaces in DISCO, namely, logical ad-
dress, physical address and real address as illustrated in figure 1.2. Blocks in
the logical address namespace correspond to the offsets in the VD, as seen by
a tenant’s application. It is of the form 〈V olumeID,LogicalBlockID〉, where
VolumeID corresponds to the unique volume (interchangeably addressed as
VD) mounted in its VM, and LogicalBlockID corresponds to the disk block
offset in the volume corresponding to VolumeID. When an application on a
VM modifies data in its VD, the DMS allocates new blocks similar to a log
structured file system, in order to optimize the write throughput of the storage
system. The unused blocks cannot be garbage collected immediately because
it could potentially be still in active usage due to the following two reasons:
a) volume cloning technique in DSS avoids redundant copy of duplicate blocks
by increasing reference count of the corresponding duplicate blocks, and b)
deduplication technique (discussed in chapter 3) decreases the reference count

8

Figure 1.2: Overview of three level addressing namespace in DISCO

of those blocks that had a valid reference in the previous snapshot and are no
longer referenced in the current snapshot, and increases the reference count
of those blocks that serve as duplicates to some block in the input work-
load. Hence it is necessary to maintain an additional addressing namespace
to map every block in logical address namespace to a block in physical ad-
dress namespace on a M:1 mapping. To ensure high availability, one of the
techniques adopted by DSS is to ensure every block in the physical address
namespace is replicated on different SNs. The replication functionality neces-
sitates an additional addressing namespace so that every block in the physical
address namespace is mapped to multiple blocks in the real address names-
pace. Blocks in the real address namespace are the disk blocks located in DAs,
within their respective SNs, at the lowest addressable I/O granularity. It is
of the form 〈StorageNodeID,DiskArrayID,RealBlockID,Offset〉, where
StorageNodeID uniquely addresses each SN, DiskArrayID uniquely addresses a
DA within the SN, RealBlockID uniquely addresses the disk block offset within
the DA and the Offset uniquely addresses the exact byte location within the
disk block. Figure 1.2 shows an example that maps different blocks in each
addressing namespace.

9

1.2.2 Data Path Management

When a tenant’s application submits a disk I/O to a VD mounted in its VM,
a virtual device driver located in the hypervisor of the CN captures the I/O
requests. The virtual device driver is a small DISCO client program that
maintains a cache of mappings between the blocks in logical address space to
target blocks in real address space. For an incoming I/O request, if the DISCO
client program finds a matching cache entry, it uses the corresponding real ad-
dresses, or if it doesn’t find a matching cache entry, it requests the DISCO
server program on NN to fetch the corresponding real addresses. The DISCO
server program maintains the mappings between logical address to physical
address and between physical address to real addresses, for all blocks in the
SDDS system, in a persistent manner. For a read I/O request, the DISCO
server program either returns an existing mapping entry between the logical
to real addresses for the given block, or returns an error status indicating the
address was never used before. For a write I/O request, the DISCO server pro-
gram always creates a new physical address and corresponding real addresses,
and returns the real addresses to the DISCO client program. DISCO imple-
ments several optimizations like prefetching and efficient caching techniques
to decrease the DISCO server’s interference in the data path.

Once the DISCO client program has all the real addresses for a given block,
it forwards the I/O request to either all the real addresses in case of a write I/O
request. or to a single real address in case of a read I/O request. For read I/O
requests, the DISCO client program employs an intelligent read load balanc-
ing algorithm (discussed in Chapter 7) to select the least loaded DA among
the available options. When a SN receives a disk I/O request, it forwards
the request to the corresponding disk scheduler for that DA. Once the disk
scheduler processes the I/O request, I/O acknowledgement is returned to the
corresponding CN. The DISCO client program then forwards the acknowledge-
ment to the corresponding VD, which is then forwarded to the corresponding
tenant’s application.

1.2.3 Comprehensive Data Protection

DISCO provides comprehensive data protection over the entire SDDS system
at various granularities as described below:

• To protect against disk failures, DISCO uses software RAID with either
RAID5 or RAID10 configuration in each DA.

• To protect against disk controller failure, entire DA failure, or networking
switch/router failure, DISCO distributes a disk block across the SNs us-

10

ing one of the standard replication strategies like N-way replication, par-
ity based replication, or erasure codes. With N-way replication, DISCO
distributes the data blocks to N DAs, such that all the N DAs belong
to N different SNs. Parity based replication is similar to RAID5, where
DISCO distributes the data and parity blocks over 4 DAs, such that all
4 DAs belongs to different SNs. RAID5 is just an example, but any of
the parity based RAID settings could be employed. With erasure codes,
DISCO recodes the data block with K fixed-size sub-blocks. into N sub-
blocks, such that N > K and rebuilds the original data block using any
M of the N sub-blocks. These are the three most popular configurations
found in commercial cloud storage products these days. For simplic-
ity, in this entire dissertation we use N-way replication as the default
replication policy to explain various concepts in the SDDS architecture.

• To protect against large-scale failures like multiple SNs failing due to
fire accidents or similar incidents, for every volume that a tenant prefers
to backup, DISCO takes snapshots of the entire volume at periodic in-
tervals. DISCO stores the backup data using secondary storage that is
maintained at a safer archival location, locally within the cloud data cen-
ter. Typically, the amount of data modified between successive snapshots
are very low and hence as a default policy, DISCO takes incremental
snapshots on a daily basis. However, large number of incremental snap-
shots are disadvantageous for two reasons: 1) Time taken to rebuild a
volume is quite high if DISCO has to traverse large number of incremen-
tal snapshots in order to find the right state of a disk block. 2) If data is
corrupted even on one of the many incremental snapshots, DISCO can-
not rebuild the volume successfully. For these two reasons, DISCO uses
weekly full-backup snapshots in addition to daily incremental-backup
snapshots. DISCO uses state-of-the-art deduplication techniques 3 to
reduce the amount of data copy during these backup operations.

• To protect against catastrophic failures resulting in entire data center
failure, DISCO provides wide area data backup (WADB), that is similar
to the local backup, except that the backup is stored remotely from the
data center, at a different geographical location.

• To protect against NN failures, DISCO configures NNs in a master-slave
fashion. The master NN logs every incoming request to a logging system
and processes all incoming requests locally. The slave NN processes the
logged requests asynchronously in the background. The logging system
maintains all data persistently and in the event the master NN fails,

11

DISCO uses various optimizations to quickly make the slave NN assume
the role of the master.

1.2.4 Dirty Block Tracker

To support incremental backups, DMS uses a dirty block tracker program to
keep track of all the modified physical blocks since the previous incremen-
tal/full backup. Since DMS records all updates to a physical block on a DA,
a single instance of the dirty block tracker program in the DMS is sufficient
to accurately track all the physical block-level modifications. The dirty block
tracker maintains a list of logical addresses and their corresponding physi-
cal addresses, for each dirty physical-block in every volume. DSS uses this
dirty-block list during the backup operation to run deduplication and garbage
collection programs, which are explained in detail in chapter 3.

1.3 Challenges Addressed by this Dissertation

In this dissertation, we address a few important challenges in a block-level
cloud storage system and in this section we briefly summarize them as de-
scribed below.

DISCO adopts block-level offline deduplication technique to avoid redun-
dant data copy in the incremental backup operation, which backs-up primary
storage data to an archival storage. Typical deduplication techniques often
bottleneck on disk I/Os, due to the inability to scale main-memory (RAM)
resources in proportion to the size of the disk storage space. In a large-scale
storage system, disk storage space ranges in the scale of several peta bytes
and available RAM resources are typically in the range of few gigabytes. A
deduplication system typically maintains an index to lookup for possible du-
plicates, and due to the mismatch in RAM memory space and disk storage
space, most of the lookups result in an expensive disk I/O. For example, on
a peta-byte size storage system, if each entry in the index structure occupies
16 bytes to store the hash value and the corresponding physical address of a
8KB block, then the total size of the index is 2TB. This clearly doesn’t fit
in the main memory. Fortunately, only a few entries in the index participate
actively in the deduplication process. Therefore, it is very important to en-
sure that the index structure either doesn’t store unwanted entries or replaces
unwanted entries with useful entries in a very efficient manner. It is a touch
challenge, to accurately identify and eliminate unwanted entries in the index,
and simultaneously ensure that such a technique doesn’t significantly reduce
the chances of finding a duplicate in the incoming workload. Various solutions

12

are proposed in previous research efforts, to maintain the most useful part of
the index in memory and store the rest of the index on disk. However, the
incoming workload has no disk access locality, because the fingerprinting tech-
nique induces high degree of randomness. Hence, even if the index structure
is intelligently managed to resolve most of the lookup queries in-memory, the
occasional disk I/O lookups result in completely random disk I/O, and are suf-
ficient to bottleneck the entire deduplication system, if intelligent prefetching
techniques are not used while loading fingerprints from disk into main memory.
We built Sungem to specifically handle these challenges.

A physical block in the storage system is referenced by multiple blocks
due to various events like deduplication, snapshot creation, snapshot deletion
and volume cloning. Therefore, it is quite tricky to identify as to when a
physical block is free of all references, and when can it be garbage collected,
so that the physical block could be made available in the free storage space. A
garbage collector either needs to inspect every physical block after each of the
events that could possibly modify the reference to a physical block, or should
scan the entire storage system at periodic intervals to identify unused block.
Either of these approaches are time-consuming and impractical on a cloud-
scale storage system. In order to ensure scalability in the range of peta-bytes,
the most important challenge for the garbage collector is to spend its efforts
in proportion to the size of the modifications in any event. For example, if
an incremental backup snapshot is to be performed on a 1TB disk volume,
it is generally expected that around 5% of the disk volume is modified with
respect to its previous incremental snapshot. Therefore, it makes sense for
the garbage collector to work on just the 50GB of modified data, rather than
the entire 1TB data. Unfortunately, the current techniques using mark-and-
sweep, reference-counting, expiration-time based approaches do not scale well
as expected, and hence consume large number of physical resources to do
unnecessary additional work. In this work, we integrate the first truly scalable
garbage collector with Sungem, that scales perfectly in proportion to the size
of the modified data, rather than that of the entire volume.

A deduplication system has several tunables, that when accurately fine-
tuned, identifies maximum duplicates in the incoming workload, while simul-
taneously ensuring high throughput. However, fine-tuning requires specific
hints about the nature of the workload. Assuming that the workload on a
given storage system doesn’t deviate drastically, with a detailed understanding
of the different data sharing patterns, one could fine-tune their deduplication
algorithm accordingly. For example, if certain file types doesn’t yield large
number of duplicates, then such files can be possibly avoided in the dedu-
plication workload. As another example, a bloom filter incurs multiple hash

13

lookups compared to a single hash lookup in the fingerprint index. Hence,
it is interesting to know if bloom-filter improves or degrades the throughput
of a deduplication system. It is possible to answer such questions only if we
understand about how frequently does a data block recur in the workload and
how many fingerprint comparisons are avoided when a BF is used. In this
work, we did a thorough analysis of a real-world data workload, and with a
detailed characterization and analysis of the workload, we demonstrated how
Sungem could be fine-tuned to extract better overall performance.

A disk update request retrieves a disk block, modifies it and writes the
resulting block back to the disk. A workload consisting predominantly of such
disk update requests, with large working set and low locality, is quite com-
mon in a large-scale storage system. Such a workload poses two important
challenges that are not convincingly handled by any known storage system,
till today. First, a standard technique to mitigate the random disk I/Os in a
workload is to buffer the requests in memory and later asynchronously commit
the buffered requests to disk in a sequential manner. However, when multiple
applications submit update requests, a generic buffering technique is incapable
of applying the updates at commit-time, because the update logic is different
for each application and the application context is missing at the time of the
committing the updates to disk. Second, apart from the low locality aspect
of the workload, a disk update request is also challenging because it is fun-
damentally a disk read followed by a disk write. With the primary motive of
delivering high throughput for a workload, a typical storage system services the
disk write requests asynchronously using standard buffering techniques, but in
order to minimize the response time for disk read requests, it services the disk
read requests, as synchronously as possible. Traditional storage systems can-
not distinguish between standalone disk reads and disk reads associated with
disk updates, and hence the disk updates are treated synchronously, leading
to slow disk I/O throughput. In this work, we propose a new storage system
architecture called BOSC, to effectively address these two specific issues.

Storage systems use large number of in-memory data structures and hence
in order to ensure data persistency, it is a common practice to use disk logging
techniques. Since an update to the in-memory data structure doesn’t receive
completion acknowledgement until the request is logged in the disk-logging
system, it is not only sufficient to ensure high throughput in the disk logging
system, but it is also necessary to bound the average latency of each request
to a very low value. Typically, the size of each update request is in the order
of a few bytes and most often it is lesser than the size of a sector on disk.
Traditional disk logging techniques often fail to successfully handle such a
workload and hence use expensive hardware like NVRAM, to protect the data

14

from memory crash. In this work, we propose a novel disk logging architecture,
Beluga, that efficiently manages a high throughput, low latency disk logging
system using commodity SATA disks.

Tenants wish to bind performance of VDs with quality of service (QoS)
specifications, so that they get a consistent storage performance in a shared
data environment, like a cloud storage system. But a QoS specification re-
quires tenants to precisely configure various parameters like bandwidth and
latency, which the tenants often find it difficult to precisely define. Even if
the tenants are able to define their performance requirements, guaranteeing
QoS specifications on an SDDS system is extremely challenging because of the
following reasons: First, it is difficult to map application level requirements
(ex. 1000 objects / second) to system level requirements (ex. 100 Mega Bytes
/ second) due to multiple unpredictable factors in the input workload, like I/O
request size, workload locality and read/write type of the I/O request. Second,
it is difficult to accurately predict the performance of any given I/O request
within a single storage device due to sophisticated techniques like NCQ and
zoning used in the modern-day hard disks. Third, due to N-way replication,
a stream of disk I/Os from a VD are split into multiple sub-streams targeted
to different DAs. Thousands of VDs and DAs are present in an SDDS system
and an overloaded DA leads to failure in ensuring QoS guarantees. Therefore,
it is extremely challenging to balance the loads across all DAs. Fourth, in a
massively interconnected SDDS system, it is difficult to accurately identify,
isolate and fix the components(VDs, SNs or DAs) that fail to enforce the QoS
guarantees. We therefore built a QoS model called Cheetah, that uses some
novel techniques to enable the SDDS system to provide storage virtualization
with accurate QoS guarantees.

1.3.1 What this Dissertation is Not About

In the above sections we gave a high level overview of the cloud storage system
and described several challenges in its design and implementation. A cloud
storage system consists of several critical components and each pose unique
and interesting challenges, and clearly there is no one solution that fits into
all the requirements. It is very easy to lose focus on the specific issues that
we address in this dissertation and hence the readers are advised that this
dissertation is not about building a complete cloud storage system. It neither
proposes a complete solution to build an SDDS system nor implements the
DISCO functionality. The SDDS and DISCO systems described above are
used as an umbrella project to highlight the specific research contributions
we make in this dissertation. In this dissertation, we have identified a select

15

few important issues in a cloud storage system and have proposed few novel
solutions to resolve them.

Another important aspect is with the use of hardware resources. Our main
intention is to use commodity hardware resources and build state-of-the-art
software techniques to address few important research problems that we de-
scribe in the next section. Therefore, we deliberately avoid using expensive
hardware like flash-based SSDs and NVRAM, which is in most of the times
a work-around to temporarily fix an issue, rather than solving the underlying
fundamental problem. However, we do analyze the relative merits and de-
merits with such hardware resources whenever we propose to use alternative
inexpensive hardware resources. In most of the cases, we use commodity CPUs
and 7200 RPM Sata disks in our evaluations to ensure that our proposed re-
search contributions are easily adopted by any storage system using existing
inexpensive hardware. Our hope is that our proposed research contributions
are useful in designing and implementing a cloud storage system efficiently,
such that, in the future, more and more data is moved to the cloud without
worrying about typical performance issues that we have already addressed.

1.4 Research Contributions

In this dissertation, we propose several solutions and their implementation
techniques, that effectively addresses a few challenging issues as described in
the previous Section 1.3. In the process, we make the following novel research
contributions:

Deduplication:

• A scalable block-level offline deduplication engine, that delivers con-
sistent high throughput across all ranges of deduplication ratios and
improves the deduplication throughput by up to 40% without sac-
rificing the deduplication ratio, when compared with the state-of-
the-art sparse-indexing scheme [6] running with the same amount
of RAM, for incremental backup operations,

• The first known garbage collection algorithm whose book-keeping
operations are distributed over individual backup operations and
which is scalable in the sense that its bookkeeping overhead for each
backup operation is proportional to the change to a disk volume
between consecutive backups rather than the volume itself,

16

• A study of two parallelization strategies for data deduplication and
garbage collection, in terms of the trade-off between communica-
tions overhead and amount of redundant disk I/O,

Trace Analysis:

• A novel user-level dirty-block tracker, which uses the standard file
system API to collect file-level changes and derives an incremental
block-level backup trace from these changes,

• An in-depth characterization and analysis of a real-world trace that
provides unique insights to the dynamics and caveats of modern
deduplication algorithms, including the relative merits and demerits
of applying a bloom filter to disk data deduplication.

Random Updates to On-Disk Data Structures:

• A new disk access interface that supports disk update as a first-
class primitive and enables the specification of application-specific
callback functions to be invoked by the underlying storage system,

• A highly efficient storage system architecture that effectively com-
mits pending update requests in a batched fashion and drastically
improves the physical disk access efficiency by using mostly sequen-
tial disk I/O to bring in the requests’ target disk blocks,

• A complete prototype implementation of the BOSC architecture
and a comprehensive evaluation of this prototype by measuring and
analyzing the performance results taken on a BOSC-based B+ tree,
BOSC-based hash table, and a couple of real-world data workloads,

• An empirical demonstration of the efficiency of BOSC, to show
that the update request throughput of a BOSC-based B+ tree im-
plementation is more than an order of magnitude faster than that
of a vanilla B+ tree built on top of the conventional disk access
interface.

Fast Logging:

• A logging API that supports fine-grained logging (i.e. logging pay-
load size is smaller than a disk sector) with minimum metadata
manipulation and data copying,

17

• A streamlined disk write pipeline that moves fixed-sized disk write
requests across various pipeline stages in data path of a disk block
request, at a constant rate, while minimizing the pipeline cycle time,

• A low-power sparse-mode logging scheme that achieves low logging
latency without requiring disk head position prediction,

• A comprehensive evaluation of a fully operational Beluga proto-
type that uses three commodity 7200 RPM SATA disks, to deliver
1.2 million 256-byte logging operations, while keeping each logging
operation’s end-to-end latency below 1 msec.

Cloud Storage QoS:

• A mechanism to provide storage virtualization at both VD and
VDC level of granularity.

• A QoS extraction algorithm that quantizes the abstract user-level
QoS requirements into system-level QoS specifications that are eas-
ier to comprehend and enforce on the storage devices,

• A decomposing algorithm that effectively decomposes the QoS spec-
ification into the corresponding QoS specifications for the replica
DAs of that VD or VDC,

• A read load balancing algorithm that periodically computes a load
distribution map using a piecemeal multiple iteration technique.
The distribution map helps the VDs to distribute their workload
among the replica DAs, such that none of the DAs in the SDDS
system are overloaded,

• A flow control algorithm that regulates the data flow between CNs
to SNs in either QoS aware or QoS unaware manner, and

• A mechanism to effectively isolate the performances of each VD and
VDC.

1.5 Dissertation Outline

In Chapter 2, we perform an in-depth survey of previous research efforts re-
lated to each focussed research component in this dissertation. We describe
such previous research efforts with a primary motive to highlight the salient
features in such works, and then we show that a few key issues that we have
proposed in this dissertation, are neither proposed previously nor is it trivial

18

to extend such research works to address it in a convincing manner. In Chap-
ter 3, we discuss the architecture of our deduplication system, Sungem, and
prove its correctness and efficiency through detailed evaluations. In Chapter 4,
we characterize and analyze a deduplication trace workload with the primary
motive to fine-tune the deduplication system. We do an in-depth analysis to
explore various data sharing patterns at both block-level and file-level gran-
ularity. In Chapter 5, we describe a new storage system interface, BOSC,
that empowers on-disk data structures to efficiently handle update-intensive
random disk I/O workloads and prove its correctness and efficiency through
detailed evaluations. In Chapter 6, we describe the architecture of a fast disk
logging system, Beluga, and show how it can be applied to various compo-
nents in DISCO, along with detailed evaluations to prove its correctness and
efficiency. In Chapter 7, we propose several novel techniques to ensure strict
adherence to QoS guarantees on the SDDS system, while ensuring maximal
hardware resource usage and minimal manual intervention. Finally in Chap-
ter 8, we summarize all our proposed techniques.

19

Chapter 2

Related Work

2.1 Cloud Storage

Standalone storage systems have been studied over the past several decades
and most of the research contributions on standalone storage systems have
been successfully applied to cloud storage, as well. However, cloud storage
imposes some unique challenges that have gathered lot of interest and attention
in the last few years, leading to quite a few interesting research works. Since
this dissertation doesn’t focus on building a cloud storage system as such, in
this section of the survey we give a high-level overview of the design approaches
employed by various cloud storage systems.

Cloud Storage techniques differ in several ways depending on the granular-
ity of storage, type of storage devices, disaster recovery mechanisms, and other
specific user requirements. Based on the access granularity, the front-end in-
terface of a cloud storage system corresponds to either block-level, object-level,
file-level, relational database-level or a key/value store.

With a block-level or object-level access interface, applications outsource
just the data storage management to cloud storage systems and the applica-
tions focus on transactional-level semantics that are necessary to manage their
data. With file-level and other higher levels of access granularity, applications
outsource not just the data storage management but also the additional data
processing work associated with the data. Such additional data processing
tasks include but not limited to the management of file-system, database,
transaction-level atomicity, workload partitioning, identifying and removing
data redundancies, and these requirements vary for each application.

Amazon’s EBS [7] offers data storage at block-level granularity using typ-
ical block-level read/write interface in the front-end. The back-end configu-
ration is not explicitly described through publicly available documents. EBS

20

uses fixed availability-zones to ensure data reliability, where each availability-
zone is preconfigured with specific high availability features depending on the
geographical location of the data center. Applications requiring additional
durability guarantees should do so on their own, and one such possible option
is to take snapshots of the entire volume at periodic intervals and store them
either on some secondary storage or on a different location on the EBS itself.

Amazon’s S3 [8] stores data at object-level granularity, and one of the
biggest advantages with such an interface is that the objects are unstructured
and could be of any shape and size. It is widely deployed in large number
of cloud storage applications because of the generic nature of the object-level
interface.

Ceph [9] provides a distributed object storage platform and one of its
novel features is to decentralize the data placement process. In traditional
distributed storage systems, when an application requests for storage space
reservation and requests for the replicas to be placed in a specific manner,
the cloud storage system typically chooses a set of least loaded storage servers
that satisfy the given constraints. For example, tenants could request the
cloud storage system to place X number of replicas on different disks, but on
the same rack, Y number of replicas on different racks but on the same storage
node, Z number of replicas on different storage nodes but in the same data
center. Since the cloud storage system selects one or more storage servers
dynamically, it maintains a metadata index that remembers the mapping of
logical data block to the corresponding physical disk block located on some
storage server. Such metadata indices are usually built upon variants of hash
tables or trees, which are persistent on-disk data structures. A representa-
tive sample of the index is cached in main memory for quick lookup. Such a
metadata index poses several challenges and a few important of them are, a)
All data traffic is routed through a set of metadata servers and hence forms a
bottleneck in the data access path, leading to single point of failure b) In or-
der to avoid data corruption due to system crash, the metadata index should
be logged and that results in expensive hardware to maintain log data and
also additional latency in each I/O request. Ceph proposes to avoid metadata
index issues completely, by algorithmically deciding the data placement. The
data placement logic uses a pseudo-random algorithm that first satisfies the
replica placement constraints specified by the tenant and then randomly picks
the target locations in the storage cluster allocated to the tenant. However,
the tradeoff with such a solution is the lack of flexibility in load balancing the
storage system. In spite of sophisticated techniques that predict data work-
load patterns in advance, it is impossible to make accurate predictions due
to high degree of volatility in the data workload. On a storage system that

21

maintains metadata index, a load balancing algorithm redirects data requests
to least loaded servers and ensures overall balance in the CPU, networking and
disk bandwidth consumption in the entire cloud storage system. Though Ceph
argues that the randomized data placement strategy eventually assures a bal-
anced system, short term fluctuations in workload patterns are predominant
in a storage system and Ceph falls short of handling them. GlusterFS [10],
Sheepdog [11] and RUSH [12] provide similar algorithmic placement strategies.

Hadoop Distributed File System (HDFS) [3] is primarily designed to pro-
vide a truly distributed storage environment that scales infinitely in propor-
tion to the incoming workload. HDFS is the file-system component of a more
generic framework called Hadoop [13], and Hadoop is a family of distributed
storage protocols that includes functionalities for logging, synchronization, etc.
While the front-end of HDFS supports file-level interface, its back-end is a clus-
ter of commodity servers, which are designed for a shared-nothing architecture.
The commodity servers are inexpensive systems that perform computation as
well as store data locally on that server. HDFS is designed as a shared-
nothing architecture because the primary motive is to partition the incoming
workload into several sub-workloads and distribute each sub-workload to dif-
ferent servers in the cluster, using map-reduce [14] functionality. Each server
is expected to quickly perform the required computations using directly at-
tached disks and return the results to the map-reduce processes. The directly
attached storage devices are typically configured using JBODs and the high
availability functionalities are typically provided by replicating the data locally
within the server using sophisticated software techniques. In some cases, data
is also backed-up to secondary storage devices over SAN. HDFS is popular
due to its flexibility to run on commodity low-cost hardware without sac-
rificing on throughput, reliability and availability. However the limitation of
binding to specific hardware devices makes HDFS less appealing to be adapted
as a generic distributed file system. To be specific, using NAS/SAN devices
for primary storage on the computing servers introduces high latencies that
are often unacceptable to applications. Another limitation is with centrally
managed metadata server, which brings in single point of failure.

Isilon’s OneFS [15] is a commercial operating system that is built specifi-
cally to offer file-level distributed storage services. One of its advantages is that
it can be positioned together with HDFS to enable applications to share data
between the computing servers as well as enable usage of enterprise storage
products using NAS/SAN technologies [16].

Amazon’s RDS [17], provides an entire relational database system (RDBMS)
as a service where tenants could adopt a preconfigured database that runs pop-
ular RDBMS solutions like Oracle, MySQL and PostgreSQL. A huge advantage

22

with such a solution is that majority of the administration tasks involved in
maintaining a database are handled by the cloud storage system. RDBMS so-
lutions are not easy to scale and if the tenants’ requirements are not too strict
to match that of a RDBMS solution, then NoSQL solutions are also available
on the cloud. Amazon’s SimpleDB [18] and Dynamo [19] provides a NoSQL
database, which is a simple key value store. They provide seamless scalability,
reliability and flexible consistency models that a tenant can pick depending
on the specific needs of his applications.

Microsoft’s Azure Cloud Storage: [20] offers multiple front-end interfaces
through blobs at object-level, tables at RDBMS-level and Message Queues.
The front-end interface is provided using the popular HTTP(s) service, where
a tenant submits cloud storage requests using web URLs. Back-end is orga-
nized as a cluster of storage servers, and each storage server holds peta-byte
scale data using multiple racks of hard disks. The storage servers provide fault
tolerance through erasure coding and uses two types of replication. On every
write at block level granularity, within a storage cluster, data is replicated
synchronously to different disks, racks, nodes depending on the high avail-
ability configuration, and across the storage clusters, data is asynchronously
replicated to two different geographic locations, but the granularity of these
replicas are chosen to be much higher to ensure optimal WAN bandwidth
usage.

Based on the type of storage devices, all-flash storage systems [21, 22] han-
dle disk-intensive data workloads with better throughput in terms of input-
output operations per second (IOPS), compared to storage systems using tapes
or magnetic disks [23, 24]. But, such significant speed improvements come at
the expense of higher cost. However, with recent trends in large-scale manu-
facturing and consumption of flash-based SSDs, the cost differences between
SSDs and magnetic disks are expected to diminish further in the future. As of
today, the per-byte cost advantage with magnetic disks is much higher than
for SSDs, but cost alone is not the differentiating factor in deciding between
an all-flash storage system and a magnetic disk storage system. SSDs have a
definite shelf life that limits the number of writes that each cell in a flash-based
SSD can hold. To increase the capacity of a single-level cell (SLC) flash-based
SSD, multi-level cell (MLC) flash-based SSDs pack data more densely in each
cell and hence the per-byte cost of MLC technology is much lesser than that of
a SLC. Additionally, the dense packing of multi-level cells further decreases the
shelf life of an SSD. The per-cell write count diminishes from 100K in SLCs
to 10K in MLCs [25]. Magnetic disks on the other hand, do not have any
advertised shelf-life [26]. Therefore all-flash storage systems are advantageous
when a tenant can afford an expensive storage solution and if his application

23

generates read I/O heavy data workload. SSDs not only deteriorate faster
with write I/O heavy data workload, but over time, they also perform poorly
with random write I/Os due to the erase-before-write requirement of a SSD.
Hybrid storage solutions utilize a combination of magnetic disks and SSDs to
reduce the number of writes to an SSD while ensuring majority of the reads
are handled by the SSDs [27].

Cloud storage solutions could also be categorized depending on the way the
storage devices are connected in the back-end. Some popular technologies in-
clude direct attached storage (DAS), network attached storage (NAS), storage
area network (SAN) and just a bunch of disks (JBOD). These terminologies
are studied in depth over the last several years [28], but JBOD technique
is becoming more popular of late, due to its simplistic architecture. Open
Vault [29] proposes JBOD array architecture that customizes the JBOD array
with minimal processing and other hardware resources, that are just sufficient
to manage the data storage. By removing unwanted electronic components in
a storage server, Open Vault’s design reduces energy footprint, while reducing
the overall cost of ownership of the storage server. This open source archi-
tecture is adopted by companies like Facebook and Rackspace, and a similar
JBOD array architecture is deployed in ITRI’s container computer [30] which
is the framework that we have adopted in this dissertation, as well.

2.2 Deduplication Techniques

Deduplication is a technique to remove redundant data in a data workload, and
there are various deduplication techniques that are used in different contexts
of a storage system. In this section of the survey, we give a brief overview of
the different classifications of deduplication techniques, discuss some salient
features in few important and interesting approaches, and then compare them
with our proposed deduplication system called Sungem, which is discussed in
greater detail in Chapter 3.

2.2.1 Content-Addressable Storage

Content-addressable storage systems (CAS) [31–34] locate data blocks based
on the contents of a data block, rather than the logical block number of the
data block. Venti [31] pioneered CAS technology and it stores data based on
the fingerprint value of a data block. A fingerprint is created by hashing the
contents of the data block using standard cryptographic hashes of typically 20
bytes size [35], and the fingerprints are then used for determining the location
of the data block. Since the probability of hash collision with a 20 byte fin-

24

gerprint is equivalent to the probability of data corruption of a data block on
disk [31], it suffices if we consider a data block as duplicate even if only its
fingerprints match.

A duplicate block is automatically filtered out in Venti, because when an
incoming block hashes to the same location as that of its duplicate block,
Venti simply uses that location for storing the given block. Venti is designed
for a stand-alone storage system and more importantly it is best suited for
permanently storing snapshots with indefinite retention period. For incremen-
tal snapshots with definite retention period, Venti cannot be used because of
its inability to delete a block. HYDRAstor [32] is designed as a distributed
backup CAS system with fault tolerance. The Foundation [34] leverages com-
modity USB external hard drives to archive digital files in a similar fashion to
Venti.

2.2.2 Timing of Backup

In the context of data backup systems, deduplication techniques can be cate-
gorized according to whether they are designed to handle outputs from a full
backup operation or from an incremental backup operation. A full backup
operation takes a snapshot of the entire storage volume and then dedupli-
cates while copying the snapshot data to the back-up storage. However, an
incremental backup operation feeds on the list of changed blocks between con-
secutive snapshots and then deduplicates while copying the snapshot data
to the back-up storage. The amount of data modification between two con-
secutive full backup operations is expected to be a small percentage of the
volume’s size, and hence the snapshots of consecutive full backup operations
are expected to overlap significantly. As a result, the number of duplicates in
a full backup snapshot are typically very high. Therefore, deduplication tech-
niques vary significantly depending on whether the input workload is from an
incremental backup or full backup operation.

As a default policy, DISCO performs weekly full-backups and daily incre-
mental backups for all virtual disks (VD). Since a full backup has lot of dupli-
cates, it is relatively simpler to identify duplicates in a full-backup. However,
in an incremental backup, due to lesser number of duplicates and lower data
locality, a deduplication system is presented with tougher challenges. There-
fore, DISCO primarily targets Sungem for incremental backups, but also uses
Sungem for full-backups to ensure code reusability and easier deduplication
system management across all data backup workloads.

25

2.2.3 Data Comparison Techniques

When a deduplication system receives an object to be deduplicated, it has to
determine if it has already seen a similar copy of the object and accordingly
reply to the caller whether the object is unique or not. The object under
query could be of any size, depending on the granularity of the storage system,
and hence the deduplication system has to compare every byte of the given
object with every byte in all the possible duplicate object candidates that
are recognized by the deduplication algorithm. This is the only way, that a
deduplication system can ascertain with 100% confidence if the given object is
unique or not. However, such a technique has several problems like, a) It is very
expensive to perform large number of byte-by-byte comparisons, especially for
large size objects. b) The deduplication system receives large-scale workload
and if every comparison involves a disk I/O followed by a large number of
byte-by-byte comparisons, the time taken for deduplication far exceeds the
window for backup time.

Therefore, in order to avoid the expensive byte-by-byte comparison with
all the blocks in the backup archive, fingerprints of the data objects are used
for comparison. Since a fingerprint is typically of 20 byte size, a 20 byte com-
parison is definitely much better than a byte-by-byte comparison on several
kilo-bytes to mega-bytes of the object size. Though the probability of col-
lision in a 20-byte fingerprint is expected to be very low, there is still some
infinitesimal chance of a collision. When such a collision happens, there is
data loss because of incorrect identification of a duplicate. Therefore, some
deduplication systems that have zero tolerance to data loss, adopt fingerprint
comparisons to identify possible duplicates in the first stage, and then in order
to confirm duplicates with 100% assurance, in the second stage, they perform
byte-by-byte comparison between the given object and the duplicate candidate
object.

2.2.4 Granularity of Deduplication

Based on the granularity of the basic unit of duplicate matching, deduplication
techniques could be applied at either file-level, block-level or byte-level. There
is no obvious advantage in picking one of these granularities over the other,
because it’s a tradeoff which depends on the context where deduplication is
applied and the operational costs involved.

File-level deduplication [36] techniques use an entire file as the basic unit of
deduplication. Files are compared against each other using their fingerprints.
When the fingerprints match, the file is marked as duplicate and the associated
disk blocks are garbage collected to later release them to the free space, and

26

all future accesses to the given file are redirected to the duplicate file. The
file-system needs to carefully manage the metadata of both the duplicate files
because security related information should not be violated at any cost and the
file owner should not be aware that his file is being deduplicated. At file-level
granularity, though the design is simplistic, the need to modify the file-system
in the operating system’s kernel, makes it difficult to port the deduplication
solution to multiple operating systems. File-level deduplication is not a good
fit in systems where files are often modified, rather than being shared without
any modification. Even if there is a single byte change between any two files,
the two files look completely different and separate copies of the two files are
stored in a file-level deduplication solution.

Block level deduplication [32, 34, 37, 38] uses disk blocks as the basic unit
of deduplication. Typically, block-level deduplication techniques are applied
below the block layer of an operating system, just before a disk block is sub-
mitted to a disk. Since this doesn’t involve any modification to the operating
system, it is easily portable across different operating systems. This approach
works very well in cases where file modifications are very common. When two
or more large files, differ in only a few bytes and share most of the other data,
only the modified blocks are stored in the deduplication engine’s database as
a new copy, and the rest of the blocks in the files are marked as duplicates.
Hence the probability of finding duplicates at block-level is higher than that at
file level granularity. But due to the higher number of fingerprint comparisons
at block-level, the CPU usage increases accordingly.

Byte level deduplication [39] identifies duplicates at byte level and iden-
tifies the maximum possible duplicates compared to block-level and file-level
deduplication techniques. Unlike those techniques, a byte-level comparison is
much simpler because the maximum possible values of a byte are limited to
(28 = 256) values and hence a table with counters could be used to match
an incoming byte to affirmatively identify a duplicate. However, the biggest
disadvantage with this approach is the high CPU consumption. If a large file
of several megabytes in size is given for deduplication, a file-level deduplica-
tion technique confirms if its a duplicate or not within just one lookup into its
database and possibly does a byte-by-byte comparison of all the bytes in its
representative fingerprint.

DISCO architecture is better suited for block-level deduplication, and since
block-level deduplication solution is portable and results in higher savings
in storage space, in this dissertation we discuss block-level deduplication in
Chapter 3. We also analyze various tradeoffs between file-level deduplication
and block-level deduplication in Chapter 4.

27

2.2.5 Positioning of Deduplication

Primary Memory vs Secondary Memory Deduplication

Data deduplication techniques could either be applied to the disk blocks on
secondary storage or to the operating system (OS) pages on primary memory
(RAM). In a virtualized system, multiple guest OS instances run on a host OS
and if multiple guest OS’s are identical, then most of the OS related data stay
unmodified for long time. Since host OS allocates physical memory for guest
OS’s, common data pages on guest OS’s can be shared, making redundant
memory available in the free memory pool. RedHat unofficially reported that
using linux kernel same page merging, also called as kernel shared memory
(KSM), KVM can run as many as 52 Windows XP VM’s with 1 GB of RAM
each on a server with just 16GB of RAM. KVM scans parts of memory and
calculates a hash of entire OS page. It then tries to match identical pages using
these hash values. Since most of the OS libraries are unchanged, most of the
OS memory is shared. The duplicate pages are marked as free and shared page
is write protected with a copy on write flag, so that any future modification
to that page, will result in a new page to the host which modified it. Primary
memory deduplication competes for CPU with user applications and hence it’s
usage should be moderated based on user application load. Hence not all pages
are scanned for duplicates in OS kernel. For example on a linux kernel, only
those marked with madvise system call are considered for scanning. Another
interesting candidate for primary memory deduplication are zero pages, since
they avoid any comparisons, and help share memory among different guest
operating systems in a virtualized environment.

Secondary memory deduplication is applied to disk blocks that are stored
on storage devices. The latency restrictions are slightly relaxed compared to
the primary primary deduplication technique. These are further classified into
on-line and off-line deduplication techniques.

In-line vs Post-process Deduplication

In in-line deduplication, duplicates are eliminated before data is copied from
primary storage to backup storage. Since this involves duplicate identification
in real-time, it needs to be extremely fast. Usual practice is to store fingerprints
of the unique objects in an fingerprint index (FI) and use it to compare against
incoming fingerprints for deduplication checks. In order to handle large-scale
data volumes, the size of such an FI cannot fit in main-memory. For example,
a 2 peta-byte data volume with 8KB block size and 20 byte fingerprint size
needs a maximum of 5 Tera Bytes FI. Since this FI cannot fit in main-memory,
it has to be stored on a persistent storage device like a flash-based SSD or

28

magnetic disk. But it is impractical to involve a disk lookup operation on
the FI for every disk write I/O operation handled by the inline deduplication
system. Therefore FI management is the most critical aspect of designing any
deduplication system. Zhu et al. [37] propose to use an in-memory bloom
filter to process a large majority (99%) of the incoming fingerprints without
involving expensive disk I/Os. Only when the bloom filter fails to identify the
unique fingerprints, a disk I/O is performed to search for possible duplicates
on disk. They also propose some intelligent prefetching techniques to amortize
the occasional disk I/Os and these are discussed in detail in a later section.
ChunkStash [40] proposes to use flash-based SSDs instead of magnetic disks,
to store the part of FI that cannot fit in main memory. Since the I/O latency
of a flash-based SSD is closer to that of DRAM than to that of a hard disk,
the overall throughput of a deduplication process improves when compared
to a deduplication system using magnetic disk-based FI. However, flash-based
SSDs suffer from several drawbacks, as discussed in earlier sections.

The advantage with inline deduplication is that there is lesser stress on
disk controllers as the data storage needs correlate directly with the observed
deduplication efficiency. But since this happens at real time, it shares CPU and
memory resources with user applications. Hence inline deduplication technique
continuously monitors the system load to decide the aggression factor of the
deduplication operations.

Post-process deduplication, also typically referred to as off-line dedupli-
cation, is performed outside the active disk I/O path, by an asynchronous
process, after the data is stored on the disk. Even though this doesn’t have
the run time requirements like that of the in-line deduplication, it still needs
to complete within a short span of time. Since the deduplication operation
has a lower priority than the real-time disk I/O activity on primary storage,
the timing window of the backup operation is generally chosen such that there
is none to limited disk I/O usage on the primary storage. Compared to in-line
deduplication, post-process deduplication requires larger primary storage, be-
cause duplicate data is removed only after its first saved to the disk. Though
the eventual disk space usage is similar in either of the approaches, the disk
storage capacity in post-process deduplication cannot be based on the actual
unique data on the system. Post-process deduplication solutions [41–43] are
most benefited on live storage systems, where the primary concern is, to pro-
vide low-latency access to live data, than to bother about the temporary higher
storage space utilization. On the the other hand, in-line deduplication systems
are most benefited by backup systems where the primary focus is, on backup
throughput and disk space utilization, than on the latency of individual backup
requests.

29

Source vs Target Deduplication

To ensure high availability, data is typically backed-up to a secondary storage
on a remote location. Data deduplication can be applied before transferring
the data over the network, which is called source deduplication, or can be ap-
plied at the remote location after transferring the data, which is called target
deduplication. In a cloud-scale storage server, multiple storage clusters backup
data to a backup server, that is either positioned on a different storage cluster
within the same data center or on a storage cluster positioned at a geograph-
ically different location. In either cases, backup process involves moving data
over the network.

In source deduplication, duplicates are eliminated within each storage clus-
ter and only the unique data is sent over the network to be stored in the
backup-server. This saves the precious network bandwidth but utilizes more
resources at source node, often competing for resources with other client ap-
plications. In target deduplication, all the backup data is transferred over the
network to the backup server, where duplicates are identified and removed.
This consumes more network bandwidth because redundant duplicate data
is transferred over the network. However, the chances of finding duplicates
are higher in target deduplication, compared to source deduplication, because
multiple storage nodes backup their data to the backup-server and hence a
larger set of data is available for comparisons. A combination of both these
approaches [44] can be used, provided there is enough time and resource to
allocate for the deduplication operation.

DISCO uses a variant of the target deduplication. Instead of sending the
entire data to the backup-server, only the representative fingerprints are first
transferred to the backup-server, where Sungem is installed. Upon dedupli-
cation, if a fingerprint is identified as unique, then DISCO transfers the cor-
responding data block to the backup-server. If a fingerprint is identified as a
duplicate, then Sungem returns the block-id of the duplicate block and DISCO
updates its metadata accordingly to redirect all future disk I/O accesses on
the given disk block to the duplicate disk block. DISCO also this information
to perform post-process deduplication on primary storage.

2.2.6 Variable Segment vs Fixed Segment

When a deduplication system receives a stream of incoming data objects from
an incremental data backup, to be deduplicated, a naive method is to process
each object to find its duplicate. Such a naive method is very time consuming
and more importantly it is not very common to have every block in a file
to be modified during an incremental snapshot. Therefore it is advantageous

30

to group together consecutive objects in the incoming stream in a content
dependent manner and then lookup for a duplicate of only the first object in
the group. Deciding on the size of a group is not straightforward because it
is a tradeoff between CPU usage and finding more duplicates. A larger group
size reduces the number of fingerprint comparisons at the expense of lowering
the probability of finding duplicates. The grouping technique is commonly
referred to as chunking and chunking could be done either with fixed size or
variable size.

In fixed size chunking technique, a fixed number of fingerprints are chunked
into a segment and the deduplication system is presented with a stream of
such segments. Fixed size chunking is easier to implement, and is best suited
to applications where file-level deduplication is beneficial, because in such a
workload, file-level modifications are expected to be minimal and hence most
of the fixed-size segments are identical. Foundation [34] and rsync [45] use
fixed size chunking technique because of its simplicity.

If the modifications to a data object result in even a slight shift of data
in the segment, a fixed-size chunking technique that uses only the head of the
segment for locating the duplicates, fails to identify the whole segment as a
duplicate. Variable-size chunking technique partitions the incoming stream of
objects at multiple anchor points, in such a way that the segment size is shrunk
or expanded to match the duplicate segments. Variable size chunking is most
efficiently implemented using Rabin fingerprinting algorithm [46] based sliding
window hashes to identify segment boundaries. It is employed by several dedu-
plication systems [32, 37, 38, 47]. Bimodal Chunking [48] further optimizes
variable length chunking. It uses smaller chunks in limited regions of transi-
tion from duplicate to non-duplicate data, and elsewhere it uses larger chunks.
Variable-size chunking is more sophisticated because of the way it manages
multiple anchor points to identify appropriate segment sizes and hence iden-
tifies more duplicates than a fixed-size chunking technique. However, for the
very same reason the variable-size chunking technique is time-consuming and
results in increased consumption of CPU cycles.

Sungem uses a fixed-size chunking technique to partition the incoming
stream of fingerprints into segments of 256 fingerprints, and uses a novel sam-
pling technique to sample the segments stored in its database at various anchor
points, so that even if a fixed size incoming segment contains a sequence of
duplicate fingerprints at some offset within the segment, the sampled FI suc-
cessfully identifies the duplicates with the same accuracy of a variable size
chunking technique. Therefore, Sungem does chunking as fast as fixed size
chunking and identifies duplicates as high as a variable size chunking tech-
nique.

31

Figure 2.1: Fingerprint sampling and prefetching used in modern disk data dedu-
plication

2.2.7 Faster Index Lookup Strategies

On a large-scale storage system, as discussed earlier in Section 2.2.5, if the FI
has to hold fingerprints for all blocks in the storage system, then FI has to
be stored on disk, because such a large size FI cannot fit completely in main
memory. Additionally, there is hardly any spatial locality among neighboring
fingerprints in the input workload because fingerprints are generated by cryp-
tographic hash functions, whose primary motive is to ensure good randomness.
As a result, in the worst-case, every look-up into the FI could result in at least
one disk I/O, and that drastically slows down the deduplication performance,
and hence affects the data backup process. Therefore, index lookup manage-
ment is critical to the deduplication system and many previous research efforts
have focussed primarily on optimizing the index-lookup operation. Such op-
timization techniques can be broadly classified as prefetching and sampling.
Prefetching is a technique used to load a group of fingerprints before-hand, in
anticipation that they would be used very soon in the future. Sampling is a
technique used to filter out unwanted entries in FI and store only the necessary
fingerprints that are expected to be referred more than once. The decision to
choose what is necessary and unwanted, is very critical to the performance of
the deduplication system. Though, one wants to identify them accurately, its
impossible realistically and hence the onus is to minimize the negative impact
of the sampling heuristics on the deduplication performance. The sampling
and prefetching scheme is illustrated in figure 2.1. It can be seen that the sam-
pled fingerprint index table holds only a few important fingerprints. When an

32

incoming stream of fingerprints in the range 〈F1 − F50〉 is queried, only F1
is found in the sampled FI. Instead of loading just F1, the prefetching scheme
loads the entire set of fingerprints in the range 〈F1−F100〉 to cache memory.
Such a prefetching scheme, helps find duplicates for the fingerprints 〈F2−F50〉
without incurring additional disk I/Os.

As discussed previously, Venti [31] pioneered CAS technique and proposes
to use fingerprints of a data block as the target location of that block on the
disk. The focus is more on ensuring write-once-read-many property, rather
than to optimize the deduplication property. Venti has a slow disk I/O per-
formance because fingerprint values of adjacent data blocks in the incoming
workload have no correlation with each other, because of which the locality
in the disk I/O is very low. Though, Venti proposes to use a combination of
block cache, index cache and disk striping to improve the write throughput,
even after using 8 high end Cheetah SCSI disks for striping, the final write
throughput is a mere 6.5 MB/Sec. The disk I/O throughput is so low because
of the low locality and low cache hit ratio. Therefore, it suggests that caching
will only marginally improve the random disk I/O throughput, and that could
have serious consequences on a large-scale storage system.

Zhu et al. [37] propose an in-line deduplication technique for a disk-to-disk
(D2D) [49] data backup system. In order to avoid disk I/O lookups for every
FI lookup, they propose three novel techniques; (1) a bloom filter [50] based
summary vector, (2) stream-informed segment layout (3) locality-preserved
caching. The bloom filter avoids FI lookup for most(99%) of the incoming
fingerprints that are guaranteed to not have a duplicate. Since a bloom-filter
can have false positives, those fingerprints for which the bloom-filter responds
positively, FI is looked up to find a matching duplicate fingerprint. When a
disk I/O is used to lookup a fingerprint stored on the disk, rather than load-
ing in just the required fingerprint, the entire container holding the required
fingerprint is prefetched in the anticipation that the neighboring fingerprints
in the container could be referenced soon. Containers are just an abstraction
of the basic unit of I/O operation and they are much larger than a usual disk
block, because they are designed to correlate the average segment size. The
prefetching advantage is made possible by placing together all the fingerprints
in the same segment in the incoming workload, into a single container, and
this technique is referred to as stream-informed segment layout. This tech-
niques helped achieve over 100 MBPS throughput and more importantly it
demonstrated that disk I/Os could be effectively avoided in the index lookup
operation.

The sparse indexing scheme [6] addresses the FI disk bottleneck issue by
using sampling the FI to reduce the memory footprint of the FI. The incoming

33

stream of data objects are first partitioned using fixed-size chunking and then
again partitions with variable-size chunking technique to aggregate a set of
chunks into segments. A sparse-index is used to identify which stored-segments
contain maximum number of hits to the chunk hashes in the given segment, and
identifies such stored-segments as champions. Each champion stored-segment
is loaded from disk and the corresponding chunks are compared to identify
the duplicates. The stored-segments are organized in a manner similar to Zhu
et al. [37]. This scheme allows the storage system to decide on a tradeoff
between the probability of finding a duplicate and the amount of sampling. If
more samples are used, more duplicates could be found and if lesser samples
are used, the chances of missing a duplicate is higher. However, this scheme
enforces a fixed sampling rate for all the chunks without differentiating them
based on the usefulness or stability of a segment.

ChunkStash [40] proposes a flash-based FI lookup to ensure high through-
put deduplication systems that cannot afford even a disk lookup for 1% of
the cases that Zhu et al. [37] suggests to lookup in a disk. Since flash-based
SSDs can support faster lookups than a magnetic disk, the entire FI is main-
tained on the flash-based SSDs. Random write I/Os to flash-based SSDs are
known to be slow due to erase-cycles issue that we discussed previously. So
they propose to overcome it by converting random updates into log structured
append operations and then asynchronously commit the data using a sequen-
tial sweep on the disk. Their evaluations show that using flash disks with
several gigabytes, 200 MB/sec throughput is achieved. Flash-based SSDs are
still quite expensive and for the marginal improvements in throughput, it is
hard to adopt such a solution.

Fanglu et al [51] suggest progressive sampled indexing. Typically blocks
are grouped together into segments and the fingerprint lookup index is sam-
pled to make sure only important fingerprints are represented to cover maxi-
mum stored segments and also ensure that entire index fits in main memory.
However, they suggest a sampling scheme based on amount of free memory
available at the time of sampling rather than using the total main memory ca-
pacity. Such a progressive sampling scheme dynamically changes the sampling
rate and yields better deduplication rate.

Extreme-Bin [36] deduplicates data based on files in a distributed storage
system. Fingerprint Index (FI) is distributed to multiple nodes. Each input
file has a sampled fingerprint to route it to a distributed node, and a duplicate
block in the input file is detected by consulting the block’s fingerprint with
the distributed FI. Besides a sampled fingerprint, each file has a whole-file
fingerprint. A match of the whole-file fingerprint indicates that the whole file
is a duplicate without comparing individual fingerprints in the file.

34

Our proposed deduplication system, Sungem, uses three novel techniques
to reduce the disk I/O bottleneck problem. First, Sungem adopts the benefits
of variable sampling technique into FI, by sampling the FI at various anchor
points. Second, to make the most of the memory space reserved for storing
fingerprints, Sungem varies the sampling rates for fingerprint sequences based
on their stability. Third, Sungem uses temporal locality rather than the spa-
tial locality to store a segment in a container. In other words, Sungem puts
related fingerprint sequences, rather than fingerprints from the same backup
stream, into the same container in order to increase the fingerprint prefetch-
ing efficiency. With these techniques, Sungem is able to produce an order of
magnitude higher throughput than any other deduplication system discussed
in the literature, while using only a few commodity, inexpensive SATA disks.

2.2.8 Medium of Backup Storage

Disk I/Os are one of the major controlling factors that decide the overall
performance of a deduplication solution. Hence the deduplication techniques
customize their algorithms to extract maximum performance from the under-
lying storage devices, which could be either a tape library, magnetic disk or a
flash-based SSD.

Zhu et al. [37] argues on the relative merits of a disk based solution, when
compared to a tape based solution. It’s argued that sequential data transfer
rates on tapes are better than that on disks, but the disadvantage of tapes
is with the requirement of manual intervention, which is expensive and error
prone. Critical restore operations can fail because of mishandling of tape
cartridges, and moreover, random access operations are predominant in restore
operations. So tape is not suitable, as it’s poor random access performance
would seriously bottleneck the entire deduplication operation.

Cost-per-byte is not a major differentiating factor between a tape and a
disk, but tape is preferred in cases where data needs to be backed up for a long
time. Though disks do not have any advertised shelf-life, they are believed to
have a shorter life-time than a tape, and hence disks need to be rotated, which
results in higher maintenance cost on the disk. Some backup solutions [52]
adopt a combination of disk and tape, to ensure faster recovery operations
using disk and inexpensive archival storage using tapes. Contrasting to the ex-
pectations, Gartner research [53] reveals that tapes have a surprisingly higher
failure rate. It is claimed that typically, only 70% of the times, tapes are ac-
cessed from archival storage, and among them, an astonishing 10%-50% of the
tape restores fail. Even though, disks are expected to have a higher failure rate
than tapes, disks can be made more resilient using high availability techniques
like RAID.

35

There is another interesting technique called virtual tape library (VTL),
which virtualizes disk storage as tape libraries, allowing easier integration of
VTL with existing backup software, recovery processes and policies. The ben-
efits of such virtualization techniques include storage consolidation and faster
data restore processes. TLFS [54] demonstrates the use of VTL in a file system
and compares it with disk and tape storage solutions.

2.2.9 Deduplication Trace Workload Analysis

In the past several years, many characterization studies on local file system [59–
61] and network file systems [62, 63] have been done, which are mostly focussed
on file access patterns and file characteristics spread over large periods in time.
Results of the analysis are used to design modern file systems and can also
help in collecting detailed workload statistics that are targeted explicitly for
deduplication workloads.

Primary data workload characterization done by Microsoft [64] uses large
scale datasets covering wide range of access types and characterizes the work-
load based on typical components used in an online deduplication system. In
online deduplication, the onus is on minimum usage of hardware resources
and hence the workload characterization is focussed heavily to optimize the
disk, memory and CPU resource usage. Since a backup data has large number
of whole file duplicates, it differs very much from a primary data workload
and hence the characterization of such workloads differs very much from the
primary data workload.

Studies on backup data characterization vary from smaller dataset analy-
sis [65] to very large data sets analysis [66, 67], but they all focus on identifying
file system trends related to backup storage. They highlight the core differ-
ences between backup and primary data workloads and characterize the backup
workload to show the specific qualities in a backup workload that helps design
better deduplication technologies. Specifically, [65] addresses typical bottle-
necks in deduplicating a full backup and their work is closest to our work,
yet differs significantly because of two reasons. First, the characterizations
used in their paper are well understood today and a more detailed analysis is
required to target todays deduplication techniques. Second, In our work, we
thoroughly analyze various duplicity patterns in the workload and to the best
of our knowledge, this has never been discussed before in this literature.

36

2.3 Garbage Collection Techniques for Dedu-

plication Storage Systems

To simplify the comparison study between various garbage collection (GC)
algorithms, let us use a reference backup system with the following config-
urations and assumptions. The reference backup system has 1PB worth of
physical blocks with 8KB block size and supports four 32TB VDs, each of
which is fully utilized. Assume one backup is taken for each VD every day and
each backup snapshot is kept for 32 days and then discarded. Also assume that
every block gets accessed 64 times before it’s evicted. Though the last assump-
tion is somewhat arbitrary, we made them up only to quantitatively compare
the relative performance of the GC algorithms we consider below. In order to
represent an incremental backup snapshot, the backup system maintains a log-
ical to physical translation (L2P) map, where the logical addresses correspond
to the logical disk blocks in the VD and the physical addresses correspond
to the target location of those disk blocks on the respective storage devices.
In addition, the garbage collector maintains a physical block array (P-array)
that maintains metadata for each physical block in the entire storage system.
Therefore, at any point in time, there are totally 128 backup snapshots in this
system and the percentage of change between consecutive incremental backup
snapshots of a VD is assumed to be 5% of the VD’s size.

GC Schemes Lookup cost

Mark and Sweep 512 Billion
Ref Count 16 Billion

Expiry Time 8 Billion
Hybrid RC/ET 0.4 Billion

Table 2.1: Comparison of the lookup cost overheads for four GC algorithms
using a reference data backup system whose detailed configuration is described
in the text.

2.3.1 Mark and Sweep

A naive mark and sweep approach [68] scans the L2P maps of all active backup
snapshots for all VDs, and marks only those physical blocks that are actively
referenced. Upon completion of the mark phase, the sweep phase begins
wherein all the non-marked blocks are garbage collected. For the reference
backup system, one needs to lookup 128 ∗ 32TB

8KB
= 512 Billion L2P map entries

37

in a largely sequential fashion. The P-array needs to accommodate 1PB
8KB

= 16T
entries, where each entry is represented by a 1-bit flag to mark the presence
of a physical block. Therefore, the total storage space required by P-array is
16T
8

= 2TBytes. Clearly the main memory cannot completely accommodate
either of these structures and hence a large majority of the entries have to
be stored on the disk. Such a naive mark and sweep GC algorithm has the
following major drawbacks:

1. Even though the accesses to both the L2P map and P-array are largely
sequential, since both these structures are stored mostly on disk, the
large number of disk access requests result in very low overall throughput
of the GC process.

2. For the overall duration of the mark and sweep phases, the entire VD
has to be frozen, or else a block referenced during an ongoing mark phase
could potentially miss being captured and the sweep phase could garbage
collect such an active block, leading to data corruption.

While 1) results in large delays, 2) leads to long pause times, either of which
hurts the overall GC performance. Hence the naive mark and sweep approach
is impractical for a large scale storage system.

HYDRAstor [32] employs a variation of the mark and sweep GC technique,
where instead of freezing the entire system from doing any I/O activity on any
of the VDs, all the VDs are marked read-only. However, the mark phase can
still be prohibitively long if the VDs are dominated by write I/Os. Fanglu et
al. [69] propose group mark and sweep (GMS) mechanism, whose key idea is
to avoid touching every file in the mark phase and every container in the sweep
phase to make GC scalable and fast. However, the GMS technique operates at
the file-system level to track modified files and hence groups a set of modified
files to perform mark and sweep on selected areas in the storage system.

2.3.2 Reference Count based

The simplest example of the local metadata bookkeeping approach is reference
counting [70–72], which maintains a reference count for each physical block to
record the number of backup snapshots that point to it. When a backup
snapshot of a VD is taken, the reference count of every physical block the
snapshot references is incremented. When a backup snapshot of a VD is
retired, the reference count of every physical block the snapshot references is
decremented. When a physical block’s reference count reaches 0, it is collected
and put in the free pool. Assuming each P-array entry keeps a 2-byte reference
count, the number of lookups in the P-array is 32TB

8KB
∗ 1

64
∗ 128 ∗ 2 = 16Billion,

38

where a factor of 2 is multiplied because reference count of every block is
updated both at creation and deletion times of a snapshot, and the factor 1

64

refers to the assumed degree of reuse for every fetched block. We account for
all 128 snapshots because we are comparing with mark and sweep approach
which can be scheduled to run after aggregating multiple snapshot creation
and deletion events. Although the number of lookups are much lesser than
the mark and sweep approach, updating 16 billion entries with random locality
disk IO accesses will obviously cause the system to bottleneck.

2.3.3 Expiry Time based

The retention period of a VD is configured at the time when the backup snap-
shot is created, and since its known beforehand, it is possible to determine
the last moment at which a backup snapshot continues to reference a physical
block. Suppose a backup snapshot is created at time T and its retention period
is R, then this snapshot will not reference any of the physical blocks it refer-
ences after T +R. Assume we maintain an expiration time for every physical
block, which indicates the time after which the block can be freed. When a
backup snapshot of a VD is taken, the expiration time of every physical block
the backup snapshot references is set to the larger of the current expiration
time and the current time plus the snapshot’s retention period. With this ar-
rangement, no additional actions need to be taken when a backup snapshot of
a VD is retired. To reclaim garbage blocks, one scans the P-array, each entry
of which in this case maintains a 2-byte expiration time, and those physical
blocks whose expiration time is less than the current time are garbage blocks.

Unlike reference-count based garbage collectors, expiration-time based garbage
collectors [73], cannot immediately reclaim a physical block that is no longer
referenced by any logical block, but instead have to wait to garbage collect,
until the expiration time of a block expires. As a result, a key advantage of the
expiration time-based scheme over the reference count-based scheme is that no
actions need to be taken at the time when a backup snapshot is retired. An
asynchronous scanning process can be scheduled at any time after a snapshot
expires to reclaim all the expired blocks. Therefore, for the reference backup
system, the total number of lookups in the P-array, required to create and
retire backup snapshots at the end of each day is 32TB

8KB
∗ 1

64
∗ 128 = 8 Billion.

The factors in this equation are very similar to those in the reference counting
approach except that we no longer need to account for any action when the
snapshot is retired. Hence the number of lookups in the expiry time based
approach is half of that in the reference count approach. However, a limita-
tion of this scheme is that the retention period of a backup snapshot cannot
be modified after the snapshot is taken.

39

2.3.4 Summary of GC comparisons

Table 2.1 shows a detailed comparison among the four GC algorithms discussed
in this section. In the first approach, batched GC algorithms such as mark and
sweep run periodically, require system pause, touch a fixed amount of metadata
in each activation that is independent of the interval time between successive
mark and sweep invocations, and incur largely sequential disk accesses for
a huge number of P-array and L2P map accesses. In the second approach,
incremental GC algorithms such as reference count and expiration time, run
incrementally, do not require system pause, touch an amount of metadata
within a time interval that grows with the interval’s length, and incur largely
random disk accesses.

Consequently, we propose a hybrid approach, where Sungem takes the
second approach, which incurs run-time performance overhead due to meta-
data bookkeeping. To minimize this metadata bookkeeping overhead, Sungem
adopts the BOSC (Batched mOdifications with Sequential Commit) mecha-
nism [74] (explained in detail in Chapter 5) to modify the on-disk P-array.
The main advantage of the proposed hybrid GC algorithm is that the number
of P-array entries that the GC needs to modify is proportional to the number
of modified blocks in a input snapshot. Therefore, for the reference backup
system, the total number of lookups in the P-array required to manage the
snapshots in a given day are: 32TB

8KB
∗ 1

64
∗ 128 ∗ 0.05 = 0.4 Billion. The major

factor in this equation that brings down the lookup count is the operation over
5% delta list change instead of the complete list of blocks in a snapshot. The
total amount of metadata that the proposed hybrid GC algorithm needs to
touch is proportional to the amount of block-level change, and hence it can
be easily shown that its total metadata update overhead is no worse than any
known mark and sweep variants. Therefore, the proposed hybrid GC algo-
rithm is the first known GC algorithm that is both incremental, in terms of
not requiring system pause, and minimal, in terms of total metadata update
overhead.

2.4 Fast Random Updates to On-Disk Data

Structures

A common approach to improving the performance of small disk writes is to
temporarily buffer the disk writes to a fast storage medium like NVRAM, and
then asynchronously submit the buffered writes to data disks. Such a buffering
technique provides two benefits: scheduling disk writes more flexibly and com-
bining multiple writes with the same target. However, NVRAM is expensive,

40

and for workloads with poor locality, high update rate and large working set
such as TPC-C [75], a small amount of NVRAM can only mask the delay for
a finite number of disk writes, because eventually the sustained write perfor-
mance is bottlenecked by the speed at which writes are propagated to disks.
Write-only disk cache [76] mitigates the performance problem due to buffer
flushing by injecting disk writes between consecutive disk reads. However, a
single buffer page is still required to hold the result of each disk read and
the read operations can still exhibit poor performance if the input workload
has poor data locality. In contrast, BOSC’s low-latency logging technique can
accommodate a much larger number of disk writes, its use of sequential disk
I/O to commit pending updates greatly improves the sustained disk update
throughput and it does not rely on NVRAM to ensure data durability.

There has been a long line of research on efficient file system metadata up-
date techniques that ensure metadata consistency with minimal performance
overhead. HyLog [77] further reduces the performance overhead associated
with LFS’s cleaning [78], by treating hot and cold pages separately. The soft
update technique [79, 80] avoids synchronous metadata writes by exploiting
dependencies among metadata updates and makes it possible to aggregate up-
dates as much as possible to improve the disk I/O efficiency. One problem with
soft updates is that it is metadata-specific and thus needs to be tailored to
each type of file system. Also, the above metadata update techniques focused
mainly on the latency but not the throughput of metadata updates.

Efficient file system metadata update techniques that ensure metadata con-
sistency with minimal performance overhead have received significant atten-
tion in the last two decades. WAL (Write-Ahead Logging) [81, 82] and shadow
paging [77, 78, 83–85] group related metadata updates and commit them atom-
ically to ensure metadata consistency. Performance benefits of WAL mainly
come from sequential disk writes and group commit.

Much work [86–90] has been done to optimize the disk I/O performance
for inserting and querying index data structures. One particularly interesting
line of research in this area is the cache-oblivious data structures and algo-
rithms [91–94]. Take a binary tree B of height H for example. This tree is
abstracted into a 2-level abstract tree AB, whose root corresponds to the first
H
2

levels of B, and each of whose leaf nodes corresponds to a H
2

-level subtree of
B. Each node in AB is then recursively abstracted in the same way until the
size of each final abstract tree node is smaller than a pre-defined threshold T .
This linearization strategy for tree data structures, known as the van Emde
Boas scheme, substantially reduces the number of disk accesses required in the
tree look-up process if T is smaller than the cache line (page) size. The per-
formance improvement of cache-oblivious data structures mainly comes from

41

the fact that they put portions of a tree that are likely to be accessed to-
gether during the look-up process in the same units which are transferred in
the memory hierarchy. With this set-up, when a transfer unit is fetched into
the main memory, it is expected to service multiple accesses to the unit before
it is evicted.

There have been several research efforts on the bulk update problem, which
attempts to speed up index updates in the presence of a continuous stream of
inputs to a database, which require real-time updates to its indexes. Arge et
al. [95, 96] proposes a bulk update mechanism for dynamic R-trees, whereas
Procopiuc et al. [97] describes a scalable bulk update algorithm for kd-trees.
The basic idea behind these schemes is to hold the inserted input records in
the internal nodes as long as possible and copy them sequentially to grow the
tree when the internal nodes are filled up. In the buffer tree technique [91],
incoming updates to a B+ tree are written to the smallest B+ tree that can fit
into the main memory. Merging is implemented as a background operation to
take advantage of large sequential writes. However, read query performance
again is sacrificed because multiple B+ trees have to be queried before the final
result can be computed. Graefe [98] proposes a novel technique to improve
the de-fragmentation and reorganization performance of B+ tree. The idea is
to use a logical pointer called fence instead of a physical pointer to sibling B+

tree leaf nodes, to limit the performance overhead of migrating B+ tree leaf
nodes. However, this scheme optimizes the performance of insert operations
but not update in-place operations, because the latter needs to fetch target
leaf nodes before modifying them.

HDFS [3] uses append-only writing to mitigate random writes, but that
comes at the expense of low locality in reads. Its optimized for batch processing
systems like MapReduce [14]. HBASE [13] is built over HDFS to improve upon
real-time read/write accesses.

BOSC is different from these database-index optimization schemes in three
ways. First, BOSC is application-independent and requires only minor modi-
fications to the database indexes built on top of it. Second, BOSC speeds up
the disk access performance through request batching and sequential commit,
without requiring any additional data structure copying. Third, BOSC can
handle arbitrary index modifications, i.e., insert, delete and in-place update,
but most bulk update schemes are optimized for streaming inserts.

2.5 Fast Disk Logging

Applications that do intensive data write operations often bottleneck on slow
I/O bandwidth. A typical solution is to do delayed writing like Aries [105],

42

which involves logging followed by an asynchronous write. The bottleneck
now shifts to the logging operation and if the logging record size is small,
the underlying storage has to manage high throughput with low latency even
in cases of small random logging updates. Much research has been done on
improving the logging interface, like the append-only logging technique [106],
and in this section of the survey we will discuss a few important research works
that highlight the core issues in an efficient logging system.

The idea of writing data to disk at the position where disk head happens
to be, can be traced back to as late as Trail [107]. Though Trail aims at
the problem of minimizing seek delay and rotational latency, it’s not trivial to
implement it these days. It involves having accurate control over disk geometry
details like rotational latency, seek latency, number of sectors in each track,
zone coding, bad sectors mapping and other finer details. It’s much tougher
to implement this idea these days because of the advanced disk compaction
techniques and more importantly disk manufacturers no longer supply the
inner details of disk layout due to complicated disk management techniques
and also due to competitive market. Multiple prior research efforts [108–
111], similar to trail have been proposed, that target specific workloads using
accurate disk geometry predictions. Lumb et al. [112] propose the idea of
setting NCQ length to 2 and then utilize the disk seek and rotational latency to
do some useful background work. Beluga also uses limited command queueing
technique but also builds a sophisticated pipeline exploiting disk subsystem to
the fullest extent. Yet another strikingly differentiating feature is in the added
burden of these Trail like approaches, to maintain a map of used and free blocks
on disk, in order to place the incoming data accurately on an unoccupied block,
and at the same time avoid track switch delay. Beluga avoids these by sweeping
through the disk sequentially, without leaving behind any holes in the process.
As a result, Beluga doesn’t need to maintain any mapping information of the
used and freed blocks.

Gallagher et al. [113] propose to skip N number of blocks depending on
the observed latencies at each portion of the hard disk and hence makes it
extremely hardware dependent. Moreover, adopting this technique on modern
disks with advanced NCQ capabilities is very time consuming. More impor-
tantly, they propose a model to avoid disk rotational latency by idling during
the time the disk head skips the requested number of blocks. Our approach
totally eliminates any sort of latency and achieves the best possible theoretical
latency because the disk head never moves without doing any useful work.

The complexity of modern disk drives as elucidated by Gim et al. [114], an
in-depth explanation of the Linux kernel storage subsystem in the book [115]
gave us a good understanding of the complex sector layout schemes and the

43

difficulties associated with the accurate estimation of the modern day hard
disk geometry.

Logging disk Array [116] uses the RAID technology to handle small writes
problem and NVRAM buffer to provide persistency to the cache. The buffer
is flushed periodically to disk(Raid-5) when sufficient data is built up. Since
RAID uses stripe size as the basic unit of data transfer to disk, NVRAM buffer
is structured to hold data in multiples of the stripe size. This idea helps ag-
gregate smaller writes and then write it at one shot to disk in units of stripe
size so that no additional overhead is incurred in the transfer process. Though
latency in writing to NVRAM buffer is very low(in order of microseconds),
flushing NVRAM buffer to disk is not a trivial task. Though optimal size is
chosen in units of stripe size, there are various other factors which determine
whether the disk is utilized to the best extent. That’s where Beluga intends
to break down the performance metrics and show how tuning certain param-
eters can help achieve best results. Another important factor to note is that
NVRAM is a costly hardware resource, which can be avoided if the inexpen-
sive SATA disks can be carefully tuned to yield same or even better results. In
many situations, writing to NVRAM can yield very slow response times [117].

Log structured file system(LFS) [118] is another major solution to handle
small buffer size writes. The entire file system is organized as a sequential log,
which converts writes from user application as append to the underlying log
structure in the File System. But logging operations require persistent write
to disk and hence synchronous writes are required, which obviously yields a
very low performance on a naively implemented LFS. Advanced LFS tech-
niques like [119–124] use NVRAM or flash to make LFS handle synchronous
writes efficiently, but both NVRAM and flash are costly hardware alterna-
tives. Though flash based disks provide very high throughput and very low
latency, erase cycles are very slow and hence flash disks’ performance goes
down when its utilization factor goes up. Also, the basic block size of flash
ranges from kilobytes to megabytes and is much higher than the sector size
of typical magnetic hard disks. The erase operation in flash devices requires
the block size to be of bigger size to get optimal results. However, having a
bigger block size increases the latency of smaller requests, which need to be
aggregated to form a bigger block size. Flash logging [125] technique uses an
array of USB flash devices to provide a fast logging infrastructure. The work
proposes to use commodity USB devices as an alternative to expensive SSD
based logging systems. The author discards modern day magnetic disks as
ill suited for small sequential writes based on a naive logging implementation
on SAS disks. Beluga’s evaluations convincingly show how commodity hard

44

drives can be used to extract comparable performance as that of the expensive
flash based devices.

Phase Change Memory(PCM) [126] is a faster alternative to flash based
disks but because of its smaller density and higher cost, it’s not easy to be
adopted in near future. Mohan et al. [127] propose to use PCM as the first
choice for logging, since the speed of PCM is up to four orders of magnitude
faster than that of flash based disks [126, 128], thereby guaranteeing very high
throughputs and very low latencies.

Dynamo [129] and Cassandra [130] performs in-memory logging and the
logging system is spread across multiple systems so that even if one system
crashes data can be recovered from other machines. Various techniques are
used to isolate catastrophic failures to ensure high reliability. With the increas-
ing technological advances in network speed, data can be transferred across
systems in a very short time thereby providing low latencies. However this
comes at the expense of expensive RAMs and high end networking hardware.
Azure [20] and HDFS [3] uses journalling and append-only logging to maintain
data persistency.

Dual actuator [131] proposes to reduce synchronous write seek time using
an accurate disk head prediction technique, It uses an additional hardware
actuator and a set of disk heads to service read I/O requests. While one disk
head actuator is dedicated for servicing disk write I/Os, another disk head
actuator is dedicated for servicing read disk I/Os. However the author makes
an assumption that disk head prediction techniques can be easily adopted, but
unfortunately it is no longer easy with modern disk drives. Additionally, this
technique requires additional hardware and hence is not applicable to existing
storage devices. However, Sungem is able to achieve near zero seek times,
without any additional hardware alteration and without the need to predict
the disk head position.

2.6 QoS for Distributed Storage Systems

QoS aware storage virtualization techniques have been an active field of re-
search for the past several years. The evolving nature of the storage sys-
tems from directly attached storage systems to clustered storage systems have
opened numerous challenges in enforcing QoS guarantees. In this section of the
survey, we highlight a few important research works that address the QoS chal-
lenges in a distributed storage system, and we compare them to our proposed
QoS model of Cheetah.

45

2.6.1 Description of QoS specification in Service Level
Agreements

QoS specifications can be described in a service level agreement (SLA) in
several different ways, depending on the requirements of the application and
the functionalities provided by the storage system. The requirements of an
application is in terms of latency, throughput, availability and other similar
attributes. Wilkes [133] gives an exhaustive overview of different types of QoS
specifications on traditional storage systems and hence we do not repeat them
in this survey. With a distributed storage model, availability and replication
factors play a major role in controlling the overall performance of the stor-
age system. Therefore, QoS specifications are getting more complicated, by
including advanced and abstract requirements like consistency. Pileus [134]
gives a good overview of different consistency-based service level agreements
for a cloud-storage system. Though these QoS specifications give a tight con-
trol over the performance of the storage system, tenants hardly get it right.
The QoS specifications are all based on the characteristics of the physical
hardware, like ”minimum bandwidth of 1000 IOPS, with average I/O request
size of 8KB”, etc. But we believe that tenants would benefit the best if the
QoS specifications are all based on just the characteristics in the tenant’s ap-
plications, like ”minimum processing rate of 1000 objects/second, where an
object could be of any size”. The storage system should ideally be able to au-
tomatically convert application-level QoS requirements into system-level QoS
requirements with a high level of accuracy. Stonehenge [135–137] provides
QoS guarantees at virtual disk granularity and the underlying hardware is a
set of directly attached disk arrays. QoS guarantees are made on multiple
dimensions, availability, bandwidth, capacity, delay and elasticity, where all
these attributes are derived from the application-level requirements. We built
Cheetah to extend the QoS specification model in Stonehenge, into a more
generalized and distributed storage framework of DISCO.

2.6.2 Granularity of QoS Enforcements

In a virtualized system, QoS guarantees can be done at different levels of
granularity. At VD-level of granularity [136], each VD is guaranteed with a
performance objective. At VM-level of granularity [138, 139], each VM is guar-
anteed with a performance objective and all the hardware resources allocated
to the VM collaboratively share the VM’s QoS reservations. At VDC-level of
granularity [140], a group of VMs and VDs that belong to a single application,
will need to collaboratively share the physical hardware resources and hence
the QoS guarantees have to be decomposed accordingly to each VM and VD in

46

the VDC. Gulati et al. [140] define a software system called software resource
pool (SRP) that groups related VMs and provides QoS guarantees both at
VM and SRP level of granularity using hierarchical resource allocation. QoS
guarantees are made to ensure minimum and maximum throughput, and pro-
portional shares to prioritize VMs when capacity is constrained. QoS settings
are decomposed to all the VMs in proportion to their shares and it done us-
ing a resource pool tree that helps provision resources at run time in a very
efficient manner. Depending on the average latency observed for disk access
requests on a host, length of the disk queue is controlled and hence the storage
nodes are ensured to be not overloaded. VMware’s storage DRS [141] provides
QoS guarantees at data store cluster granularity, where data store cluster is
a group of disk arrays called data stores. Tenants specify space and latency
requirements for the entire cluster

2.6.3 Location of Collecting Statistics

In order to enforce the QoS specifications, it is necessary to measure accurate
statistics of the input workload and the performance of the storage devices.
In a small-scale storage system, it is relatively straightforward to measure the
input workload information by directly measuring it on the source nodes(which
are typically VMs or hypervisors corresponding to the given VMs). However,
in a cloud-scale clustered storage system, VDs are spread across physically
different machines, and hence it is a challenging task to co-ordinate between
the source nodes at real-time.

Action Black-box White-box
Location of stats collection Source Node Storage Node
Accuracy of stats collection Estimation Exact

Adaptation to hardware changes No effect Complicated
Flexibility in QoS Management Generic view of storage Extract specifics of hardware

Table 2.2: Comparison of white-box vs black-box stats collection techniques in a
cloud-storage system

In order to extract the performance statistics from each storage device,
there are two well-known techniques, namely, white-box and black-box, whose
relative advantages and disadvantages are compared in table 2.2. In black-box
technique, the storage nodes do not give any detailed information about its
structure or the nature of devices within the storage node. A storage node
could be a disk array holding 5 magnetic disks, 10 SSD disks, the disks might

47

be of different size, speed, and the disks might be interconnected with ei-
ther PCI cards, ethernet or fiber optics. A white-box technique [142] allows
the QoS system to collect performance measurements from within the storage
nodes, which ensures in capturing highly accurate load information. This en-
sures more visibility of what’s inside each storage node, which could consist
of multiple DAs, and thus could leverage this visibility to distinguish between
volumes with high access locality and volumes with low access locality and
treat them differently. On the other hand, in a black-box technique, the per-
formance numbers have to be collected from the source nodes using end-to-end
I/O latency of every I/O request. PARDA [143] proposes a black-box based
estimation technique that can isolate the network I/O latency factor from the
observed I/O latency, and helps estimate the input workload locality through
the measured I/O latency. Though, a black-box technique loses on accuracy,
its advantageous from the aspect of adapting to hardware changes, because the
black-box technique anyway doesn’t know about what’s behind a storage node.
A white-box technique has to understand the changes in hardware structure
and extract useful information before the modified storage node starts accept-
ing I/O requests. However, it is not a strict requirement because a white-box
technique can tradeoff on the amount of dependency on hardware devices and
might even be designed to be invariant to the hardware changes. Cheetah is
designed on this model because it is an important requirement, especially in
a cloud-storage environment involving large variations in physical hardware
resources. Both these approaches claim to be flexible in managing the QoS
management policies in their own right. While a black-box technique claims
to be flexible because of its generic view of storage nodes, especially making
the best use of a NAS/SAN environment, a white-box technique claims to be
flexible because it can make informed decisions on load balancing, flow control
and other important QoS functionalities using the specific details and exclusive
control over storage nodes modeled on a JBOBOD architecture.

A challenging task in both the black-box and white-box techniques is in a
clustered storage system, when the workload on a storage node is submitted
from different source nodes. In order to make better routing decisions, it is nec-
essary to combine the workload locality information from the source nodes and
load information on storage nodes, while minimizing the network bandwidth
consumption. While, it is challenging for a black-box technique to gather load
information of a storage node that is shared by multiple source nodes, it is
challenging for a white-box technique to gather workload information from the
source nodes. BASIL [144] uses black-box technique and suggests to aggre-
gate the load information collected on different VDs, by communicating with
all such source nodes spread across several physical systems. However, such a

48

technique will lead to increased network bandwidth consumption and BASIL
doesn’t provide convincing results to justify such an aggregation policy. In
Cheetah, we use a white-box technique and collect all measurements on the
storage nodes only. A central controller is used to periodically aggregate the
input workload information of the VDs and the load information of the DAs
to determine ideal load balancing weight distribution. Since a cloud storage
system is expected to have more number of source nodes than the storage
nodes, Cheetah measures accurate performance numbers and also minimizes
the network bandwidth consumption to a great extent, when compared to a
black-box technique.

2.6.4 Performance Isolation

An important feature of all storage QoS systems is in ensuring performance
isolation. Argon [145] and Fahrrad [146] uses time sliced allocation of disk
accesses to avoid interference between two workloads to a great extent. Fa-
cade [147] uses a combination of earliest deadline first (EDF) [148] disk schedul-
ing algorithm and an ad-hoc disk queue size manipulation technique to control
the disk utilization efficiency. Pisces [142] provides performance isolation by
using a combination of few novel techniques. First, it distributes a tenant’s
share across storage nodes, using a weighted allocation algorithm that consid-
ers both the workload locality and the load on storage nodes. Second, it uses
a variant of weighted fair queuing [149] algorithm within each storage node to
ensure performance isolation and fairness between the workloads that share
the same storage node. Virtual Clock (VC) based schedulers like CVC [136]
and CFVC [135] ensure better control over raw disk bandwidth utilization be-
cause of the intelligent techniques to identify and distribute slack in inactive
workloads to active demanding workloads. Cheetah adopts CFVC scheduler
in each DA to ensure maximum raw disk bandwidth utilization while ensuring
performance isolation between different workloads on the DA. Though, Chee-
tah’s higher level ideology is similar to that of Pisces [142] in ensuring fairness
and performance isolation for all the I/O workloads, Cheetah differs in the way
the load balancing is done and also differs in the QoS aware disk I/O sched-
uler used within a storage node. Throttling-based mechanisms [150] rely on
delivering consistent I/O bandwidth for each I/O workload by using feedback-
based mechanisms that throttles the data flow rate to control the latency of
each I/O request in the data workload. By maintaining a consistent disk I/O
throughput performance isolation is guaranteed, but it is quite a challenge to
accurately control the latency of an I/O request in a large-scale distributed
storage system. Variations of token-bucket approaches [151–153] propose to
throttle the bandwidth and bursts in the incoming workload by assigning fixed

49

quotas or tokens to each workload. By strictly tokenizing different workloads
that share a storage resource, performance isolation is guaranteed at all times
but it comes at the cost of under utilization of hardware resources.

2.6.5 Provisioning Hardware Resources

Provisioning of hardware resources is a critical task in a virtualized storage
system because it is extremely challenging to strike the right balance between
cost factor to provision additional hardware resources and the accuracy with
which QoS guarantees are enforced. Minerva [154] models the requirements of
an automated storage system as a detailed input specification, indicating per-
formance requirements, workload statistics and storage device capabilities, as
a constraint-based optimization problem, to provision the hardware resources
automatically. Hippodrome [155] iterates multiple times over the process of
characterizing the workload and creating a new provisioning solution until
all the workload requirements are handled. BASIL [144] uses IO latency as
the primary metric to characterize both the input workload and storage nodes,
and provides optimal strategies to place the VDs on appropriate storage nodes.
Stonehenge [137] uses 2 metrics: Pusage and Pservice to handle admission con-
trol management. Pusage metric measures the aggregate disk bandwidth used
and Pservice metric measures the ratio of actual to worst case delay expected.
Based on their observations, the pservice metric is shown to be directly pro-
portional to the number of virtual disks on the server and hence for a new
input workload, Stonehenge does’t profile the new application for a long time
to understand it’s disk IO patterns, rather it uses the pservice metric to esti-
mate the hardware resource requirements and automatically provisions them
accordingly.

2.6.6 Load Balancing

I/O workloads exhibit different kinds of fluctuations in the workload locality.
A short term fluctuation is a small period(less than a second) of bursts in the
workload and is usually absorbed either by the software disk schedulers located
on the DA or by the hardware disk schedulers used by the disk controllers. A
long term fluctuation is an overall change in the workload locality pattern as a
result of some permanent changes in the workload, and such fluctuations typ-
ically last for several hours before returning to the expected locality pattern
or can even be a permanent deviation from the expected workload locality.
Therefore, in the event of such long-term fluctuations in the workload, either
the tenant reconfigures the QoS specifications or the system automatically

50

adds or removes hardware resources, such that the QoS specifications are en-
forced accurately. However, there are mid term fluctuations too, that exhibit
variations in the workload locality in the order of few minutes, and it is these
type of workloads that pose serious challenges in enforcing the QoS guarantees
because it is not sure whether to reconfigure the system settings or to wait
until the fluctuations disappear.

In VMware’s storage DRS [141], when a VM is seen to overload its storage
node, the VM is isolated and migrated to a least loaded storage node within
its cluster, where a cluster is a hard partition of a set of storage nodes. In
BASIL [144], when a storage node is overloaded, VDs are migrated to different
storage nodes using a pair-wise assignment algorithm. By pairing VDs of min-
imum and maximum loads, the pair of VDs are expected to balance the overall
load in the system. Its a common practice to migrate VDs from overloaded
DAs to new or least loaded DAs [155–157], but the cost of data migration can
be prohibitively long. Therefore, BASIL suggests to use Storage VMotion to
show that data migration from one store to another store can be automated
and need not block the VMs. They use workload characterization to under-
stand the load pattern to manage the data transfer. HP’s AutoRaid [157]
maintains a hierarchical storage system that has RAID1 setup on the higher
layer to ensure higher throughput and lower latency and in the lower layer of
the storage system, it has a RAID5 setup to provide additional redundancy.
The data migration between RAID1 and RAID5 layers are done automatically
in the background, transparent to the user applications.

A disadvantage with the data migration technique is the need for migrat-
ing the entire VD to a different storage node. The cost of migration can
prohibitively bottleneck any I/O accesses to the affected storage nodes and
may not benefit for workloads with frequent short-term fluctuations. Hence
the load balancing feature through data migration is more of a reaction to an
imbalanced load rather than a proactive measure like ours where best effort is
made to balance the loads uniformly across all the DAs.

In Azure [20], storage system consists of multiple clusters of storage nodes
and load balancing is done only within a cluster of storage nodes. Each read
request is associated with a strict deadline timestamp and if the deadline
cannot be met, the storage cluster returns the query to the source node that
submitted the I/O request. The source node increases the deadline timestamp
and again submits the data until the data is successfully processed by the
storage cluster. Since Azure uses erasure coding to replicate data for high
availability, a data object is striped and replicated across several storage nodes.
To handle a read I/O request, it has an option to either read all the various
data fragments corresponding to the data object from a set of storage nodes or

51

to reconstruct the data object based on analytical methods, from a different
set of storage nodes. The decision to reconstruct or not, is made dynamically
depending on the real-time load on the storage nodes.

Zoolander [158] replicates data for providing high availability and to en-
sure predictable performance guarantees. When there is contention for data
access, which is reflected in the slow I/O latency of the data workload, the
entire storage node is replicated to distribute the load and bring down the I/O
latency. Though it enforces performance guarantee, it comes at the cost of
increased hardware utilization.

Pisces [142] proposes an unique approach to load balancing the storage
nodes using reciprocal swaps. The crux of the algorithm is the give-and-take
policy: if a tenant t takes some share of the storage node N from a tenant u on
N, t must give an equivalent share back to u on another storage node M. This
might not be feasible on a large-scale storage system where t and u might not
share more than one storage nodes at all, and its an additional constraint to
the admission control algorithm. Even otherwise, if you take some share from
one tenant and give it to another tenant, the reciprocal swap procedure has to
continue until there is an equilibrium in the entire storage system, which might
necessitate reversing some actions. In order to avoid such a scenario, Cheetah
uses a multiple iterative procedure to minimize the possibility of overloading
a storage node.

2.6.7 Extending QoS Ideas From Non-Storage Systems

Paragon [159] uses collaborative filtering techniques to identify how well an
incoming application will run on different types of platforms. Rather than
profiling the applications to understand their workload behavior, some key
components of an application are matched with a database consisting of of-
fline profiled applications that are run on different types of platforms. Storage
virtualization introduces totally different kind of requirements than server vir-
tualization, and the idea of adopting robust analytical methods to characterize
the input workload rather than profiling it at run time, is difficult to extend
to storage virtualization because of too many unpredictable variables in esti-
mating the behavior of an I/O request on a storage device.

QoS management in networking systems has been studied for a long time
and though they cannot be adopted straight away on storage systems, the
fundamental ideas can be borrowed as there are some similarities between net-
working and storage domains. For example, to mitigate congestion in a high
speed switch, it is a common technique to build a crossbar to connect input
ports to output ports and then transfer the cells in input queue through the
connection established between input and output ports. In order to quickly es-

52

tablish a pair of input and output port such that the input port has atleast one
queued cell to transmit, parallel iterative matching (PIM) [160] technique uses
multiple iterations to pair an unmatched input with an unmatched output. To
keep the number of iterations down and to identify the pairs at run time with
very low latency, randomness and parallelism is used to good effect. Though
the random mapping technique in PIM helps reduce the number of iterations,
it is relatively time consuming and more importantly it can cause unfairness
leading to large average latency in the network. iSLIP [161] algorithm replaces
the random mapping with weighted round robin (WRR) [162] technique and
shows that without compromising on the overall performance, overall fairness
is ensured. The fundamental technique underlying PIM and iSLIP is to divide
the input-output mapping process into multiple iterations, where each itera-
tion maps one input to one output. This technique is adopted into Cheetah’s
load balancing algorithm and is explained in detail in Section 7.4. Gopalan et
al. [163] leverage the networking concepts of managing run-time packet delay
distribution into storage domain and support long term storage bandwidth
guarantee for tenants.

53

Chapter 3

Scalable Deduplication and
Garbage Collection

3.1 Introduction

To ensure data protection in the SDDS system, DISCO backs-up the data
from VDs to a safe archival storage. The data backup operation is expensive
because it incurs additional disk storage overhead in the archival storage and
consumes a high number of CPU cycles to manage the backup operation.
Therefore, the SDDS system allows tenants to configure the periodicity of the
backup operation, for each VD the tenant uses for his storage. As explained in
section 1.2.3, DSS performs several incremental backups and full-backups, for
every VD in the SDDS system, depending on how a tenant configures to handle
the backup operation for each of his VDs. Since the number of duplicates
in a full-backup operation are pretty high, the challenges in deduplicating a
full-backup data is not as challenging as to deduplicate data in an incremental
backup. Therefore in this work, we focus primarily on the incremental backup.

Due to increased data sharing in the backups [164], data deduplication has
become a key functionality requirement [32, 34, 37] in a backup operation. The
two key metrics for assessing the performance of a data deduplication tech-
nology are data deduplication ratio or duplicity, expressed as the percentage
of duplicate blocks in the backup VD before deduplication, and data dedu-
plication throughput, expressed as the number of backup data blocks that a
data deduplication engine processes per second, to determine whether it is a
duplicate or not.

To find duplicates, it is simply impractical to do a byte-by-byte compari-
son with all the blocks in the backup archive. Hence a well known technique
of fingerprinting [31] is used, where a block’s contents are cryptographically

54

hashed into a fingerprint of typically 20 bytes size [35], and the fingerprints are
then used for duplicate comparisons. In the DISCO setup, DSS initiates the
incremental backup operation for each VD at pre-configured periodic inter-
vals. A backup client which is a part of DMS, employs block change tracking
(BCT) [165] technology to keep track of all changes to a VD in a delta list, and
at backup time, transmits the delta list to the backup server which is a part of
DSS. For each modified disk block in the delta list, the backup server fetches
the corresponding fingerprint values from their corresponding SNs and creates
a stream of fingerprints to be passed on to the deduplication engine. The
deduplication engine which is a component of the DSS could either be located
on the same physical machine as the backup server or could be located on a
dedicated standalone system. For each fingerprint in the fingerprint stream,
the data deduplication engine replies to the backup server if it is a duplicate of
some existing fingerprint in its database or not. Though the chances of finger-
print collisions are rare and known to be lesser than the probability of a hard
disk failure [31], there is still an element of risk where a valid user data could
be freed, leading to data corruption and data loss. In order to eliminate the
risk factor, for all the identified duplicate fingerprints, a separate background
thread fetches the real data blocks corresponding to the identified duplicates
from the corresponding SNs, and it does a byte-by-byte comparison to confirm
the duplicates. The confirmed duplicate blocks are then garbage collected and
released to the available storage space.

For every disk block stored in the repository, the deduplication engine
needs to organize the fingerprints into an index structure to determine whether
an incoming disk block is a duplicate or not. So fundamentally the data
deduplication problem is one of index look-up, where the index is too large
to fit into memory. Worse yet, there is no spatial locality among neighboring
fingerprint values because fingerprints are generated by cryptographic hash
functions. As a result, in the worst case, every look-up into the fingerprint
index could result in at least one disk I/O, which drastically slows down the
data backup process.

Several solutions to the performance problem associated with fingerprint
index look-up have been proposed and they are all based on the following
assumptions:

• Data being shared among users, e.g., a PowerPoint file or a photo image
file, is typically larger than a single disk block.

• A data sharing unit typically spans a consecutive sequence of logical
blocks in a VD.

55

Taken together, they suggest that when multiple instances of a data sharing
unit are backed up, multiple identical sequences of logical blocks are likely to
appear in the backup streams. There are two ways to exploit the fact that
identical sequences of logical disk blocks are repeated multiple times. First,
the fingerprints of the blocks in a recurring sequence are stored in a container,
and the entire container is fetched into memory whenever any fingerprint of
an incoming block in a backup stream matches a fingerprint in the recurring
sequence. This technique, used in Data Domain [37], essentially corresponds
to prefetching, because fingerprints associated with a basic data sharing unit
are likely to be accessed together, and thus should be brought into memory
via one disk I/O operation to amortize the disk access overhead. Second,
instead of storing every fingerprint in the fingerprint index, it is sufficient to
put into the fingerprint index only one of the fingerprint values associated with
a data sharing unit, because it takes only one fingerprint match to bring in the
remaining fingerprints in the same data sharing unit. This technique, known
as sparse indexing [6], corresponds to sampling of the fingerprint index, and
is able to significantly reduce the fingerprint index size and thus increase the
probability of looking up the fingerprint index without incurring disk I/O.

We built a data deduplication and garbage collection engine called Sungem [166]
that is designed to remove duplicate blocks in incremental data backup streams.
Sungem features three novel techniques to maximize the deduplication through-
put without compromising the deduplication ratio. First, Sungem puts related
fingerprint sequences, rather than fingerprints from the same backup stream,
into the same container in order to increase the fingerprint prefetching effi-
ciency. Second, to make the most of the memory space reserved for storing
fingerprints, Sungem varies the sampling rates for fingerprint sequences based
on their stability. Third, Sungem combines reference count and expiration
time in a unique way to arrive at the first known incremental garbage collec-
tion algorithm whose bookkeeping overhead is proportional to the size of a
VD’s incremental backup snapshot rather than its full backup snapshot. We
evaluated the Sungem prototype using a real-world data backup trace, and
showed that the average throughput of Sungem is more than 200,000 finger-
print lookups per second on a standard X86 server, including the garbage
collection cost.

56

Figure 3.1: Abstract view of the proposed data deduplication engine

3.2 Our Approach

3.2.1 System Architecture

Figure 3.1 shows the high-level data flow of the incremental data backup sys-
tem in DSS, that uses Sungem as the deduplication engine. To backup mul-
tiple VDs, fingerprint stream for each of them is prepared individually. Upon
preparing a fingerprint stream, the DSS partitions it into fixed-size input seg-
ments, where each segment corresponds to a sequence of blocks with contiguous
logical block numbers. For each input segment, Sungem first looks it up in the
sampled fingerprint index (SFI), which contains sampled fingerprints from pre-
viously seen fingerprint segments and the IDs of the on-disk containers to which
these sampled fingerprints belong. For every fingerprint in an input segment
that hits in the SFI, Sungem brings its corresponding container into mem-
ory to determine if the input segment indeed contains any duplicate instances
of any previously seen fingerprint sequence. To speed up container fetching,
Sungem uses a memory-resident container cache to hold containers recently
fetched from the on-disk container store, which are organized in an LRU or-
der. For every input fingerprint, Sungem either declares it as a duplicate and
returns the physical block number of the physical block in the repository that
already has the same fingerprint, or declares it is not a duplicate. DSS uses
the outputs from Sungem to create the underlying representation for a backup
snapshot.

57

3.2.2 Fingerprint Segmentation and Placement

Intuitively, a Sungem segment is meant to capture the notion of a data shar-
ing unit. From an input fingerprint stream, Sungem first partitions it into
multiple fixed-size input segments, where each segment corresponds to a se-
quence of fingerprints whose associated blocks have consecutive logical block
numbers. Each input segment formed this way could contain zero, one, or
multiple stored segments, which are segments that were previously seen and
already stored in the repository. To identify the stored segments contained
in an input segment, Sungem queries the SFI with every fingerprint in the
input segment. If a SFI query results in a hit, the SFI returns one or multiple
〈containerID, segmentID〉 pairs, each of which corresponds to a potential
stored segment that contains the query fingerprint.

After going through every fingerprint in an input segment, Sungem brings
into memory all the containers indicated in the responses of the SFI hits. Each
container contains a per-container fingerprint index that maps a fingerprint
into an offset inside the container that holds information about the finger-
print’s associated disk block, e.g., its physical block number. In addition,
each container contains a segment index, which maps a fingerprint’s offset in-
side a container to all the stored segments in which the fingerprint participates.
Sungem keeps containers in an on-disk container store, and uses an in-memory
container cache to keep containers that were recently fetched from the disk so
as to reduce the disk access cost associated with fetching containers.

For each hit fingerprint, Sungem fetches the associated container from disk,
consults with the container’s fingerprint index to obtain the offset location
of the hit fingerprint, uses this offset information to identify all stored seg-
ments in this container that include the hit fingerprint, and finally performs
fingerprint-by-fingerprint comparison between each such stored segment and
the input segment, anchored at the hit fingerprint. After this process, each fin-
gerprint in the input segment either matches some fingerprint in some stored
fingerprint, or does not match any previously seen fingerprint. Each maximal-
length sequence of fingerprints that matches some stored fingerprint form a
matched subsegment, which could be identical to, a subset of or a superset of
an existing stored segment. Every matched subsegment that is not identical to
any existing stored segment forms a new stored segment, and Sungem places
it in the same container as the first fingerprint of this subsegment. Note that a
new stored segment derived from a matched subsegment could match partially
multiple existent stored segments, but Sungem places it in the same container
as the first matched stored segment. When a new stored segment is a superset
of an existing stored segment, Sungem is putting related stored segments in
the same container. The fingerprints in the input segment that do not match

58

any stored fingerprint form a new stored segment, and Sungem places it in
the default container, which holds newly discovered stored segments from an
input backup stream that are not related to any existing stored segments. If
none of the fingerprints in an input segment hits in the SFI, the entire input
segment forms a new stored segment and is stored in the default container.
As an input backup stream’s default container grows in size and becomes X%
full, where X is the fill-up threshold, Sungem allocates and switches to a brand
new default container, so that the old default container can hold future stored
segments that share common fingerprints with its stored segments.

In previous designs [6, 37], stored segments are assigned to the same con-
tainer because they appear temporally close to each other. In Sungem, stored
segments are assigned to the same container either because they appear tem-
porally close to each other or because they share common fingerprints. The
rationale of putting fingerprint-sharing stored segments in the same container
is to bring in as many potentially matching stored segments in one container
access as possible. For example, a popular image may be used in three dif-
ferent PowerPoint slides, each of which in turn may be included in many
PowerPoint files. Sungem’s segment-to-container assignment scheme enables
the fingerprint sequences associated with the three PowerPoint slides to form
stored segments that are put into the same container. Whenever a fingerprint
corresponding to a block in the popular image appears in an input backup
stream, Sungem could bring in the stored segments corresponding to the three
PowerPoint slides by fetching a single container.

To avoid proliferation of stored segments, each stored fingerprint is allowed
to participate in up to K stored segments. More precisely, for each fingerprint,
Sungem only records the most recently appearing stored segments in which the
fingerprint is in, because these segments are more likely to match future input
segments.

3.2.3 Variable Fingerprint Sampling

When a new stored segment is formed, Sungem uses a fixed sampling rate to
pick representative fingerprints from the stored segment and inserts them into
the SFI. Ideally, the sampling rate should be high enough to capture most data
sharing units, but low enough to keep SFI’s memory space efficiently utilized.
Sungem employs a variable fingerprint sampling scheme to achieve the best of
both worlds.

Fingerprints sampled from the same stored segment and inserted into the
SFI are treated as a single entity and called a fingerprint group. The last access
time of a fingerprint group is the last time any of its fingerprints matches a
fingerprint in a new input segment. The fingerprint groups in the SFI are

59

organized into a LRU list based on their last access time. When the SFI
needs to evict fingerprints, it down-samples the fingerprint groups in the tail
of the LRU list to 1 per group, and keeps on doing this until it exhausts all
fingerprint groups above a certain age; after that it starts removing entire
fingerprint groups to free up space.

When a fingerprint group’s fingerprints have matched fingerprints in more
than a certain number of new input segments since its formation, it becomes
a stable fingerprint group, and the associated stored segment is considered a
well-defined deduplication target. Sungem reduces the number of represen-
tative samples in a stable fingerprint group to one per group, because one
fingerprint sample is sufficient to capture future instances of the associated
stored segment.

The above two optimizations allows Sungem to apply a high sampling
rate to new stored segments while effectively reclaiming memory space from
older stored segments. If a stored segment later proves itself to be a useful
deduplication target, Sungem reduces its sampling rate to one per segment. If
a stored segment turns out to be a not-so-useful deduplication target, Sungem
also reduces its sampling rate to one per segment.

3.3 Scalable Garbage Collection

In a data backup system like DISCO that supports data deduplication, a phys-
ical block may be referenced by multiple backup snapshots. Because a backup
snapshot typically has a finite retention period, the number of references to
a physical block varies over time. When a physical block is no longer refer-
enced by any backup snapshot, it should be reclaimed and reused. There are
two general approaches to identifying physical blocks in a data backup sys-
tem that are no longer needed. The first approach is global mark and sweep,
which freezes all active backup snapshot representations, scans each of them,
marks those physical blocks that are referenced by these snapshots, and finally
sweeps all the physical blocks in the entire storage system to garbage collect
those physical blocks that are not marked in the mark phase. The second
approach is local metadata bookkeeping, which maintains certain metadata for
each physical block, and locally updates a physical block’s metadata when-
ever it is referenced by a new backup snapshot or de-referenced by an expired
backup snapshot. The first approach does not incur any run-time performance
overhead but may require an extended pause time, which is proportional to the
storage system size, and thus is not appropriate for petabyte-scale data backup
systems. But, a number of commercial products have adopted modified mark
and sweep approaches that minimize the pause time to a great extent, and

60

seems to be reasonably effective. However it is still batch-oriented rather than
incremental as in the case of our algorithm. Consequently, Sungem takes the
second approach, which incurs run-time performance overhead due to meta-
data bookkeeping. How to minimize this metadata bookkeeping overhead is
an important design consideration of Sungem’s garbage collection (GC) algo-
rithm. A detailed comparison of these approaches is described in Section 2.3.

DISCO maintains a backup snapshot table for every VD that it needs to
backup. The backup snapshot table consists of several columns where the first
column represents the logical addresses of the blocks in the VD, and the second
column represents the corresponding physical addresses of the blocks in that
VD’s second snapshot, and so on. Since a large majority of the blocks remain
unmodified between successive snapshots of a VD, the table is optimized to
record entries only for those logical blocks that are modified in a particular
snapshot with respect to the previous snapshot of the given VD. Effectively,
we can assume that every incremental backup snapshot is represented by a
logical-to-physical (L2P) map, which maps logical addresses in the incremental
backup snapshot to their corresponding physical addresses. For a full backup
snapshot, the L2P map contains mapping for all the active referenced blocks
in the VD. In addition, the garbage collector maintains a physical block array
(P-array) that maintains metadata for each physical block in the entire SDDS
system.

3.3.1 Hybrid GC: Our Approach

The main weakness with the reference count-based [70–72] and expiration time-
based [73] garbage collection scheme is that their performance overhead at
backup time is proportional to the full size of the VD being backed up, rather
than the size of the backup snapshot which corresponds to changes to the
VD. The performance overhead is much smaller if incremental backups are
taken. We propose a hybrid garbage collection algorithm, specifically targetted
for incremental backup systems. It maintains both a reference count and
an expiration time for each physical block, and its performance overhead at
backup time is proportional to the size of an incremental backup snapshot
rather than the snapshot’s underlying VD.

An incremental backup snapshot consists of a set of entries each of which
corresponds to a logical block that has been modified since the last backup.
Each incremental backup snapshot entry thus consists of a logical block num-
ber (LBN), a before image physical block number (BPBN) that points to the
physical block to which the logical block LBN was mapped in the last backup,
and a current image physical block number (CPBN) that points to the phys-
ical block to which the logical block LBN is currently mapped. At backup

61

!
!

GC Disk 1 GC Disk 2

Metadata P-Array

GC Thread 1
Update

Bucket N
GC Thread 2

Update
Bucket K

"! #! "! "! "! "! "! "! #! #! #! "!

Fast Logging
Disk

BOSC
Logging

Incoming Fingerprints from Sungem to be updated in GC
Database

Figure 3.2: Figure indicating metadata updates in garbage collection at backup
time

time, given an entry 〈LBN, BPBN, CPBN〉, the reference count of BPBN is
decremented, the reference count of CPBN is incremented, and the expiration
time of BPBN is set to the maximum of its current value and the current time
plus the retention period of the VD being backed up. With this design, when
the reference count of BPBN reaches zero, the physical block BPBN together
with its expected expiration time is put into a recycle list. At garbage collec-
tion time, the physical blocks in the recycle list are scanned and those whose
expiration time is less than the current time are garbage blocks.

In general, a VD has a current image and multiple backup snapshots. The
reference count of a physical block in this algorithm keeps track of the number
of current images, but not their associated backup snapshots, that currently
point to it. The expiration time of a physical block records the time after which
no backup snapshot will reference it. If there is at least one current image
pointing to a physical block, this physical block cannot be a garbage block and
its expiration time could be ignored. Whenever a logical block in a current
image is modified, the current image no longer points to the physical block
associated with the logical block before the modification, and the expiration
time of this before-image physical block is updated to incorporate the retention
time requirement of the current image’s associated VD.

3.3.2 Batched Updates to P-Array

Hybrid GC algorithm implementation poses two major challenges. First, its
accesses to the P-array, which is too large to fit into main memory, are largely

62

random and therefore could incur significant disk I/O overhead. Second, after
a physical block is chosen to be recycled, the physical block’s fingerprint needs
to be removed from the rest of the deduplication engine, including the SFI,
and the container holding the fingerprint. This fingerprint-removing overhead
is a significant part of the garbage collection process regardless of the actual
algorithm used to determine which physical blocks are recyclable.

To address the first problem, Sungem adopts the BOSC (Batched mOdifi-
cations with Sequential Commit) mechanism [74] (explained in detail in Chap-
ter 5) to modify the on-disk P-array. More specifically, Sungem partitions the
P-array into a set of chunks, and allocates a per-chunk queue for each such
chunk. Each update to the P-array is put into the per-chunk queue associ-
ated with the P-array entry to be updated. Multiple background threads are
used to sequentially scan the on-disk P-array, by fetching to memory each
chunk whose per-chunk queue is non-empty, committing all updates in the
chunk’s per-chunk queue to the chunk, and writing the chunk back to disk.
Using BOSC, Sungem requires mostly sequential disk accesses to update the
P-array. Figure 3.2 gives an overview of the garbage collection setup.

To address the second problem, Sungem uses a lazy update approach to
removing a recycled block’s fingerprint from the deduplication engine. If the
container holding the recycled block’s fingerprint is memory-resident, Sungem
deletes it immediately; otherwise Sungem marks the container as stale in a
stale-container list, and queues the fingerprint to be deleted in the corre-
sponding stale container entry in the stale-container list. When a container is
brought into memory because of some HIT fingerprint processing, the stale-
container list is first searched and if its found, the fingerprints in its queue are
permanently deleted from that container. However, Sungem deletes the recy-
cled block’s fingerprint from the SFI immediately, because the SFI is always
memory-resident. When a chunk of the P-array is brought in, the garbage
collector scans the entries in the chunk to identify those whose reference count
is zero and whose expiration time has expired, and puts them in the free list.
This mechanism piggy-backs garbage collection with P-array accesses and thus
reduces the garbage collection overhead to the minimum.

3.4 Parallelization Techniques for Deduplica-

tion and Garbage Collection

Historically, the size of a VD has increased from a few kilo bytes to several
giga bytes over the last few years and continuing with this trend, the amount
of data required to backup a VD is expected to increase, as well. However, the

63

duration of the backup process cannot increase at the same rate for obvious
reasons. Hence the only way a backup operation can process large amounts of
data without increasing the duration of the backup process is to increase the
backup throughput using efficient parallelization techniques.

The sequential version of Sungem processes each input segment using the
following steps:

1. Look up every fingerprint in the SFI,

2. Fetch into memory all containers referenced by all the hit responses from
the SFI,

3. Perform fingerprint-by-fingerprint comparison between the input seg-
ment and all relevant stored segments in the fetched containers,

4. Identify new stored segments,

5. Put the new stored segments into proper containers,

6. Sample the new stored segment, and

7. Insert the sampled fingerprints into the SFI.

A simple strategy for K-way parallel data deduplication is to partition the
fingerprint space into K portions, for example using a modulo K function,
and assign each fingerprint in an input segment to one of the K nodes using
the same partitioning function, where each node runs the sequential version of
Sungem. This strategy is fully parallelized and relatively simple to implement,
but it has a major flaw: the fingerprints associated with each data sharing
unit are likely to form K stored segments. This means the total number of
stored segments is increased by a factor of K, and more seriously the number
of container-related disk I/Os required by processing of an input segment is
also increased by a factor of K. Because the most likely bottleneck of a
data deduplication engine is disk accesses associated with container fetches,
a parallelization strategy that significantly increases the number of required
disk I/Os is unacceptable.

3.4.1 Distributed Deduplication Algorithm Design

To overcome the limitation of the simple parallelization strategy discussed
above, Sungem uses the following parallelization strategy, which requires a
master node and K slave nodes. Given an input segment, the master node
broadcasts it to all K slave nodes, each of which looks up every fingerprint in

64

its share (e.g. using some variants of modulo K partitioning function on the
physical block address-space) in its local SFI, and returns to the master node
those fingerprints that hit in its SFI and the associated hit responses. Due to
the modulo K partitioning scheme, a slave node containing a SFI entry for
a fingerprint need not hold the container storing that fingerprint. Hence the
SFI entry is modified to hold additional information regarding the target slave
node address where the container storing the given fingerprint is stored. Lets
say the number of slave nodes that are addressed in the positive hit responses
are K2, where K2 is independent of K. The master node again broadcasts the
accumulated hit responses to the K2 slave nodes, each of which then fetches
containers that are referenced in the hit responses and stored in its local disks,
performs fingerprint-by-fingerprint comparison, and returns to the master node
the hit/miss status of the input fingerprints it processes. The master node
completes stored segment processing, and broadcasts to all the K slave nodes
informing about the new stored segments and their associated containers. Each
of the K slave nodes update their corresponding SFI accordingly.

With reference to the sequence of steps in the sequential version of Sungem
described above, in Sungem’s parallelization strategy, all K slave nodes are in-
volved in step 1 and 7, only K2 slave nodes are involved in steps 1, 2, 3, 5 and
7, and only the master node is involved in steps 4 and 6. Though the finger-
prints are processed largely in a partitioned fashion, the processing at Steps
1, 2, 3, 5 and 7 are data-driven, i.e., whichever nodes hold the needed stored
segment perform the associated computation. This strategy forms a single
stored segment for each data sharing unit and stores it in only one of the K2
slave nodes. In order to scale-up the system to match higher demands in either
deduplication throughput or the size of the storage system, this parallelization
strategy could be further developed using minor changes to incorporate mul-
tiple master nodes. Additionally, this parallelization strategy doesn’t increase
the disk I/O activity compared to the sequential version, because it uses the
same number of container-related disk I/Os for each input segment as the
sequential version. However, the parallel version incurs additional inter-node
communications cost, and may result in potential load imbalance.

3.4.2 Distributed GC Design

Similar to the K-way parallelization scheme mentioned above, the distributed
GC partitions the P-array into equal-sized K portions using the same mod-
ulo function that the SFI uses to partition the physical address-space. In the
last step of the K-way parallelization scheme, after each of the K slave nodes
update their respective SFI, each of those slave nodes also update their local
P-array. This parallelized GC operation is similar to the standalone GC al-

65

gorithm described previously except for the management of stale containers
described in Section 3.3.2. When a fingerprint is marked to be recycled, since
both the GC and SFI are partitioned on a common key (physical block num-
ber), the fingerprint is removed locally in that slave node’s SFI However, the
lazy approach scheme in the distributed GC can neither delete the fingerprint
directly from the in-memory container structure nor queue the fingerprints
in the stale-container list to lazily delete that fingerprint from its container,
because the slave node holding the metadata of the given block need not es-
sentially hold the container storing the fingerprint of that block. Therefore
each slave node aggregates a list of fingerprints to be recycled and forwards
such a list to the master node, and waits for acknowledgement from the mas-
ter node. The master node broadcasts the list to K slave nodes and returns
the acknowledgement that it receives from those slave node to the slave node
that generated the list. When a slave node receives a request from the master
node to delete a list of fingerprints, it can either delete the fingerprint from
the in-memory container or queue the fingerprint in the stale-container list
to lazily delete it at a later time when the container is brought into memory.
However, this could cause a potential race condition which is better explained
in the following example scenario. A stored fingerprint F1 is referenced as a
duplicate by some incoming fingerprint F2, and immediate to that action the
block corresponding to F1 is marked to be recycled on some other slave node.
Since the slave nodes aren’t synced, it is quite possible for the GC to recycle
the block corresponding to F1 and then get a request to increment the refer-
ence count on that block because it was referenced by F2. This could lead to
data corruption if the block corresponding to F2 is already recycled presuming
F1 to serve as a duplicate to F2. To be theoretically correct in fixing such a
race condition, the slave nodes could be synced for every GC operation, but its
impractical, because the throughput of the entire deduplication process would
then drop down drastically.

A simple alternate solution that the distributed GC adopts, is to maintain
a timestamp in each stored fingerprint in a container, that indicates the time
at which that stored fingerprint was last referenced as a duplicate. When a
slave node receives a request from master node to delete the fingerprint, it
would do so only if the corresponding container is present in memory, and the
timestamp in the stored fingerprint is larger than a threshold T. Only if both
these conditions satisfy, the fingerprint is deleted and recorded as ”deleted”
in the acknowledgement, otherwise the fingerprint is marked as ”not deleted”
in acknowledgement. The threshold T is chosen large enough to ensure that
the fingerprint is successfully recycled in the GC, since it was last referenced
as a duplicate to any other fingerprint. When a slave node receives the ac-

66

knowledgement from the master node indicating the status of whether the
fingerprints in the recycle list are deleted or not, the slave node proceeds to
recycle only those fingerprints that are successfully acknowledged as ”deleted”
and ignores the ”not deleted” fingerprints. The ignored fingerprints if are
not referenced as duplicates by any fingerprint, but are still marked as ”not
deleted” in the acknowledgement, will eventually be garbage collected when-
ever the container holding that fingerprint is fetched into memory.

3.5 Performance Evaluation

3.5.1 Evaluation Methodology

We have implemented Sungem in Java and successfully integrated it with DSS.
To evaluate the effectiveness of the design decisions and the implementation
efficiency of this prototype, we collected a real-world backup trace from a
production environment, and used it in a trace-driven evaluation study.

Two evaluation metrics were used. The first metric is the data deduplica-
tion ratio, which is expressed as the percentage of duplicate fingerprints over
the input fingerprints before deduplication. The second metric is the data
deduplication throughput, which is measured in terms of the number of fin-
gerprints that can be processed per second, including the overheads of both
deduplication and garbage collection.

Trace Collection and Analysis

To derive a real-world trace of incremental data backup streams, we wrote
a user-level tool that tracks and records changed files in a file system on a
Windows machine within a period of time, and deployed this tool on 23 desktop
machines of a research laboratory to collect the set of changed files every day on
each machine for 10 weeks. Each of these 23 machines was used predominantly
by a single user. We will refer to the resulting changed file trace as userTrace
in the following discussion. At the beginning of the trace collection period, the
user-level tool traversed a file system, and for each file recorded into a database
its last modify time and a 64-byte MD5 fingerprint for every 4KB block in it.
At the end of every day, this tool traversed the file system, and compared the
current modification time of each traversed file with its previously recorded
modification time if it existed. If the previous modification time of a traversed
file did not exist, the file was newly created. If the current and previous
modification times of a traversed file were different, the file had been modified.
In either case, the tool further computed a 64-byte MD5 fingerprint for every

67

File Conjectured Contribution
Type Append Behavior Percentage (%)

VM-related Files Append 35.1

Multimedia Files Overwrite 21.6

System Files Overwrite 21.9

User Documents Overwrite 11.5

Installation Media Overwrite 5.1

Log Files Append 1.6

Mails Overwrite 1.6

Database Files Overwrite 1.6

Table 3.1: The set of file types appearing in the collected userTrace, their conjec-
tured append behaviors, and their contribution percentages in terms of size.

4KB block in that file, and recorded into database its last modification time
and all fingerprints computed this way.

Our tool tracks the file-level changes between consecutive versions of a file
by comparing their constituent fingerprint sequences. It assumes that when
a file is modified, the entire file is over-written. However, in some cases,
modifications to a file could be in the form of appends. Because we had no
way of knowing how applications actually modified files, we relied on the file
type information to infer whether a file was overwritten or appended at the
block level when its file-level change indicated an append-like pattern.

Table 3.1 shows the list of file types appearing in the raw collected trace,
their contribution percentage in terms of size and our conjectures of whether
they were overwritten or appended at the block level. VM-related files include
files that support virtual machines, e.g., vmdk, vmem and vdi files. Multi-
media files include all audio and video files. System files include files in the
system directory, including Windows and ”Program Files” directories. User
documents include Microsoft Office files, pictures, and development files. In-
stallation media refer to those files that are meant to install programs, e.g.,
iso and msi files. Log files include system log files and application log files.
Mails include files that are updated by Microsoft outlook, including files with
the suffix pst and ost. Database files cover all database files used by either
applications or the operating system. Eventually we decided to remove VM
image-related files because we believe these files are relatively rare in a typical
office environment. After all necessary pre-processing, we produced a trace of
daily fingerprint streams, which was initially 10.8GB in size, and eventually
grew to 43.7GB at the end of the trace collection period. From the collected
trace, the size of the average daily increment change is about 1.5% of all the

68

files on these 23 machines taken together. However, in this trace when a file
is modified, the delta consists of not only the changed data but the entire file
data. Hence the deduplication ratio is much higher than a typical block level
incremental snapshot.

To measure some precise characteristics of Sungem we use another trace
which is created based on the idea proposed by Fanglu et al. [69] as follows:
Create a vm image called vmImageBase using Vmplayer and use Windows
7 as the guest OS. To vmImageBase add language packs and some huge
windows applications to generate another image vmImageModified. The
measured deduplication ratio in these traces are 20% in each trace. But when
they are passed as input one after the other, deduplication ratio is around 34%.
Meaning, around 14% of duplicates were found in modified vm image with
respect to original vm image. But with this trace, the amount of data available
is too short to test various features of a deduplication engine. Hence we use
this trace sparingly only when the amount of input data doesn’t influence the
analysis. Lets call this trace as V mTrace.

While analyzing the userTrace, we noticed several interesting data shar-
ing patterns that eventually helped make better design decisions in Sungem.
Interestingly, the finer details of the trace analysis not only helped fine-tune
Sungem but also looked promising to be applied to any generic deduplication
algorithm. Towards that goal, we collected yet another trace using more ma-
chines, more users and collected lot more information from the user machines
over an even larger period of time, to do a deeper analysis of the trace work-
load. With such a detailed trace analysis we proposed several guidelines to
help design any generic deduplication algorithm and are discussed in greater
detail in Chapter 4. The core characteristics of the trace workload that we
wish to exploit and demonstrate in this evaluation study do not differ much
between the userTrace, and the bigger and latest trace that we just described.
Hence we just use userTrace and V mTrace in this evaluation study.

The hardware testbed used in the evaluation of the Sungem prototype
consists of two quad-core 3.4GHz Intel Core i-7 processor, 14GB of RAM, five
7200-RPM WD Caviar blue hard disks of 1TB each, one for the system disk,
two for storing the GC metadata P-array on a striped software RAID with a
64-Kbyte stripe unit size, and the remaining two for storing the deduplication
fingerprints on a striped software RAID.

3.5.2 Overall Performance

We fed into the Sungem prototype with the userTrace spanning 6 days that
consists of more than 2 billion fingerprints, measured the deduplication through-
puts and ratios, and observed that Sungem was able to consistently deliver

69

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200
 50

 60

 70

 80

 90

 100

D
e-

du
pl

ic
at

io
n

T
hr

ou
gh

pu
t (

K
ilo

 F
in

ge
rp

rin
ts

/s
ec

)

D
ed

up
lic

at
io

n
R

at
io

 (
P

er
ce

nt
ag

e)

Input Fingerprint Count (Unit: Million fingerprints)

Deduplication Throughput
Deduplication Ratio

Figure 3.3: The deduplication throughput and deduplication ratio of the Sungem
prototype over an input trace of 2 billion fingerprints

throughput above 200K fingerprints/second while maintaining a very high
deduplication throughput of 90% as shown in Figure 3.3. The throughput
of Sungem is usually around 250K fingerprints/second but the average comes
down because of occasional long pauses caused by Java garbage collector. Java
garbage collector maintains separate heap pools for short lived objects and long
lived objects, which are called young generation and old generation, respec-
tively. Applying the ”Young Objects Die Young” assumption, Java garbage
collector attempts to reclaim free memory in the young generation objects
more frequently than that in the old generation ones. Efficient java programs
tend to keep their objects short-lived. The Sungem prototype embraces this
rule too, but at times when the container cache cannot capture the working
set, more disk I/Os occur, making some objects long-lived and thereby pulling
down the overall deduplication throughput. The dips in the deduplication
throughput curve in Figure 3.3 arise precisely because Sungem’s working set
at that instant exceeds the container cache. When a fingerprint segment hits
an existing fingerprint segment, Sungem actually needs to do more work be-
cause it needs to bring in a container and performs fingerprint-by-fingerprint
comparisons. When a fingerprint segment does not match any existing fin-
gerprint segment, its fingerprints are filtered out by SFI and all subsequent
steps in Sungem are skipped. Therefore, when the deduplication ratio of an
input trace at an instant is higher, its deduplication throughput at that in-
stant should be slower because of additional work. However, the correlation
between deduplication ratio and deduplication throughput is not particularly
strong in Figure 3.3 for two reasons. First, pauses caused by Java garbage
collector have a non-trivial impact on the deduplication throughput and can
happen any time. Second, Sungem effectively cuts down the disk access cost

70

Figure 3.4: The distribution of reference counts in the input trace. The X-axis is
the physical block number (PBN) of each physical block in the backup system and
The Y-axis shows how many times a physical block is referenced by different logical
blocks.

of containers when incoming fingerprints hit in the SFI and thus reduces the
total overhead in the fingerprint hit case.

We also compared Sungem’s deduplication ratio with that from the base-
line deduplication implementation, which uses a simple hash table to detect
duplicates for fingerprints in an input backup stream. In all cases, the ab-
solute difference in deduplication ratio is around 5%. This result shows that
Sungem did not sacrifice deduplication ratio so as to deliver high deduplication
throughput.

If an input backup trace contains only a small number of distinct finger-
prints, the throughput of the deduplication engine is naturally high because of
high access locality for fingerprints. To demonstrate this is not the case for the
input backup trace used in this study, for each input block to the deduplication
engine, we either increment its reference count or increment the reference count
of its duplicate stored copy. Figure 3.4 shows that the reference count of each
physical block in the backup system after Sungem traverses the userTrace
trace is no more than 100 and that the number of unique fingerprints in the
input trace is huge. Besides, we also measured the disk activity during the
test run and found that the disk was heavily used at all times. The above two
evidences prove that the high deduplication throughput of Sungem in Fig-
ure 3.3 is not because the working set of the input trace is small. As another
measure, we tweaked the userTrace to produce synthetic traces with dedupli-
cation ratios ranging from 0.08% to 95% and Sungem delivered a consistent
high throughput above 200K fingerprints/second for all the cases.

71

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 10 50 250

D
e-

du
pl

ic
at

io
n

R
at

io
 (

%
)

SFI Size (Kilo Fingerprints)

Fixed SR(SR = 10)
Variable SR(SR = 10, Stable Hit Count=1)
Variable SR(SR = 10, Stable Hit Count=2)
Variable SR(SR = 10, Stable Hit Count=5)

Fixed SR(SR = 256)

Figure 3.5: Impact of the size of Sampled Fingerprint Index (SFI) on the dedupli-
cation ratio

3.5.3 Effectiveness of Sampled Fingerprint Index

With vmTrace, we varied the sampling rate (SR) and SFI size and measured
the deduplication ratio for the following 5 configurations:

1. Fixed SR of 10, i.e., one out of every 10 fingerprints in each stored
fingerprint segment is inserted into the SFI.

2. Fixed SR of 256 (each input segment has 256 fingerprints), meaning at
all time only 1 fingerprint of each stored fingerprint segment is inserted
into the SFI.

3. Variable SR configurations start with an SR of 10 and then switch to an
SR of 256 when the number of hits reaches the stable hit count, which
is set to 1, 2 or 5. Stable hit count corresponds to the number of hits
a stored fingerprint segment needs to experience before it is considered
stable and and every sample except one is removed from the SFI.

These five configurations correspond to five different ways of using the
memory space allocated to the SFI. Figure 3.5 shows the deduplication ratios
of the five configurations when run against the vmTrace trace with varying
SFI size. We have tried the same experimental set-up using the userTrace
trace, and the results are similar to those in vmTrace. When SFI size is
250K, fingerprints in the SFI are rarely replaced and the more space-consuming
configurations produce better deduplication ratio results. For example, fixed
SR of 10 is better than fixed SR of 256, and variable SR with a stable hit
count of 5 is better than variable SR with a stable hit count of 1. On the
other hand, when SFI size is 2K, fingerprints are replaced so frequently that
the least space-consuming configuration wins out, i.e., fixed SR of 256.

72

When SFI size is 10K, fixed SR of 256 is better than all other configurations
by a large margin, because the SFI space is too small to hold all the relevant
fingerprints in other configurations. However, when SFI size is 50K, number
of replacements in SFI were neither too less nor too small and that reflects
the desirable scenario in a real world setup. In that case, variable SR with a
stable hit count of 1 actually produces higher deduplication ratio than fixed
SR of 256, because the former makes the most efficient utilization of the SFI
space.

Fixed SR of 256 works surprisingly well across all SFI sizes tested. This
suggests that most stored fingerprint segments in Sungem that see repetitions
could be successfully located when only one of their fingerprints is put into
the SFI.

3.5.4 Content Proximity-Based Fingerprint Placement

Sungem strives to place fingerprint segments that share common fingerprints
in the same container, and thus uses a content proximity-based (CP) approach
to determine which container a stored fingerprint segment should be stored. In
contrast, other deduplication systems [6, 37] use a temporal proximity-based
(TP) approach in that they place stored fingerprint segments that are tempo-
rally close in their creation time into the same container. The TP approach to
fingerprint segment placement is similar to a write-optimized file system, e.g.
log-structured file system, because new stored fingerprint segments are simply
appended to the default container until it becomes full. The CP approach to
fingerprint segment placement is similar to a read-optimized file system, e.g.,
UFS, because it tries to place in the same container stored fingerprint segments
that are likely to be referenced together when checking an input fingerprint
segment against the fingerprint database. Therefore, we expect the TP ap-
proach to incur fewer disk write I/Os (for persisting containers) but more read
disk I/Os (for determining if an input fingerprint hits the fingerprint database)
than the CP approach. The fill-up threshold in the CP approach specifies the
degree of fullness (in terms of percentage) of the default container before it is
considered filled up. The residual capacity of a container in the CP approach
is reserved for accommodating future stored fingerprint segments that share
common fingerprints with those fingerprint segments already in the container.
The TP approach actually corresponds to the CP approach with the fill-up
threshold set to 100.

Table 3.2 shows a deduplication ratio and throughput comparison among
variations of the CP scheme, each corresponding to a distinct fill-up threshold,
when the input load is a 3-day trace consisting of 473 million fingerprints and
the container cache size is 5000 containers. Surprisingly, the TP scheme beats

73

Fill-up Dedup Dedup Container Container Per-Segment
Threshold Ratio Throughput Read Count Write Count Comparions

70% 93.11% 282.9K 1.238 0.0743 755
80% 93.17% 290.7K 1.248 0.0739 814
90% 93.14% 288.9K 1.259 0.0733 809
95% 93.16% 287.2K 1.267 0.0733 807
100% 93.26% 295.8K 1.264 0.0732 601

Table 3.2: Deduplication ratio and throughput (fingerprint look-ups per sec) com-
parison among variations of the content proximity-based fingerprint segment place-
ment approach, each corresponding to a distinct fill-up threshold, when the container
cache size is 5000 containers. The TP approach corresponds to the CP approach
with the fill-up threshold set to 100%.

all CP variants with different fill-up thresholds in terms of deduplication ratio
and throughput. To understand why, we also measured the average number
of distinct container reads and writes when processing a 256-fingerprint input
fingerprint segment. As expected, the average number of container reads per
input segment increases with the fill-up threshold, but the average number
of container writes per input segment decreases with the fill-up threshold.
However, the differences are too small to matter. Therefore, the deduplication
throughputs across all fill-up thresholds are quite comparable.

Even though the CP variants with less than 100% fill-up thresholds offer
the flexibility of clustering related stored segments, the TP scheme could pro-
vide the same clustering benefit if the consecutive temporal distance between
instances of the same fingerprint sequence is smaller than the container size.
However, in the input trace we used, the average temporal distance between
consecutive instances of the same fingerprint sequence is actually much larger
than the container size. Because the TP scheme tends to fill up a container
before switching to a new container, it uses fewer containers and thus incurs
a proportionally smaller number of container accesses. In addition, the aver-
age number of fingerprint comparisons per input segment required by the TP
scheme is noticeably smaller than that required by the CP variants, as shown
in the last column of Table 3.2, because the TP scheme is more capable of
homing in to the matching stored segments without wasting unnecessary ef-
forts exploring related candidate stored segments. Finally, the target scenarios
that the CP scheme is optimized for, i.e., multiple existing stored segments
that repeatedly appear together, simply is not very common. The above three
reasons combined make the TP scheme the most performant under the input
trace used in this study.

74

3.5.5 Garbage Collection Overhead

Effectiveness of our hybrid Garbage Collection scheme can be demonstrated
by comparing it with a vanilla p-array update implementation, which buffers
p-array update requests in a queue, and uses a background thread to commit
them on a first come first serve basis. In Table 3.3, the throughput of the
data deduplication engine without any p-array updates (the last column) sets
an upper bound because it corresponds to a zero-cost p-array update scheme.
When the BOSC-based p-array update scheme uses a single commit thread, the
end-to-end throughput of the deduplication engine is decreased to 19% of the
upper bound. By increasing the number of commit threads to 4 and therefore
the disk I/O concurrency, it increases the end-to-end throughput to 97% of the
upper bound. The number of commit threads represent a tradeoff between disk
access locality and disk I/O concurrency. Empirically, the optimal number of
commit threads for our experiment set-up seems to be 4. However, regardless
of the number of commit threads used, the end-to-end throughput of the data
deduplication engine using the vanilla p-array update scheme never exceeds
5% of the upper bound.

Commit dedup- dedup- dedup-
Threads lication + lication + lication +

vanilla BOSC-based without
GC GC GC

1 5879 54047 287204
2 6003 268218 287204
4 9858 277670 287204
10 8121 269272 287204

Table 3.3: End-to-end throughputs(fingerprints processed/second) of a data dedu-
plication engine with multiple garbage collector configurations.

To directly assess the effectiveness of the proposed garbage collector, we
measured the performance overhead of bookkeeping the reference count and
expiration time data structures in the P-array for a series of daily incremental
backup runs, each of which uses a delta list of fingerprints as input, and the
results are shown in Table 3.4. The ”No. of Records” column shows the num-
ber of records in the delta list of each day. The ”No. of Entries” column shows
the number of P-array entries that need to be modified. The ”No. of Pages”
column shows the number of P-array pages that are to be modified, where
each page is 128KB. The ”Bookkeeping Throughput” column is calculated by
dividing the number of P-array pages to be modified by the bookkeeping time.

75

Day in No. of No. of No. of Bookkeeping Bookkeeping
Trace Records Entries Pages Time Throughput

1st 126 M 345 M 185282 71 s 334 MBps
2nd 345 M 917 M 799090 429 s 238 MBps
3rd 344 M 921 M 628042 1017 s 79 MBps
4th 317 M 852 M 597386 1089 s 71 MBps

Table 3.4: The number of P-array entries modified as a result of the delta list of
each day of the input backup trace and the associated bookkeeping time required
to put these modifications to disk, when the number of bookkeeping threads is 10

The fact that the number of P-array entries modified is indeed proportional
to the number of records in the delta list shows that the proposed hybrid
garbage collection algorithm is indeed scalable. The bookkeeping throughput
decreases over time because there are more physical blocks in the data backup
system as time goes by and the locality of the updates to the P-array become
worse. However, the fact that the bookkeeping throughput remains relatively
high demonstrates the effectiveness of the BOSC scheme in turning the random
updates to the P-array into largely sequential disk reads and writes.

3.5.6 Effectiveness of Container Cache

Deduplication throughput is heavily influenced by the container cache size be-
cause large container cache could capture the working set of containers when
processing input fingerprints and reduce the number of container-related disk
I/Os. Figure 3.6 shows that for the given workload, the deduplication through-
put is poor when the container cache size is below 3000, because the container
cache cannot capture the active working set. However, as the container cache
grows beyond 3000 containers, the deduplication throughput shoots up and
stays flat even when the container cache grows to 5000. This suggests that for
the given workload, a cache of 3000 containers is sufficient.

3.5.7 Impact of Controlling Stored Segment Formation

As explained in subsection 3.2.2, the K-factor controls the number of segments
in which a fingerprint can participate and acts as a tradeoff between deduplica-
tion throughput and ratio. Higher K value allows Sungem to identify the best
stored segment of maximal length and thereby reduces any additional work
required to deduplicate the remaining fingerprints. But at the same time, it
also requires extra effort in going over all possible matching stored segments

76

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000

D
e

-d
u

p
lic

a
tio

n
 T

h
ro

u
g

h
p

u
t
(K

ilo
 F

in
g

e
rp

ri
n

ts
/s

e
c)

Container Cache Size (Unit: Kilo Fingerprints)

Figure 3.6: Impact of the container cache size on Sungem’s deduplication through-
put

to find the best match. From Table 3.5, K value of 4 gives the best possible
throughput and hardly sacrifices on the deduplication ratio.

K-factor Throughput Ratio
1 233 90.90
2 282 92.68
4 287 93.20
5 280 93.21
10 20 93.26

Table 3.5: Impact of K-factor variations on Sungem’s deduplication throughput and
ratio. Throughput is measured in Kilo fingerprints/second and Ratio as a percent-
age of Duplicate fingerprints/Input Fingerprints. Settings include cache size=5000,
fillup-threshold=95%

3.5.8 Parallel Deduplication tradeoffs

Section 3.4 explains two different parallel versions of Sungem which performs
better than the other depending on the type of input workload. To induce disk
boundedness or cpu boundedness into Sungem, we will vary the container cache
size and then show the difference in deduplicate throughput of the parallel
model against a standalone model.

Figure 3.7 shows how the deduplication throughput of Standalone dedu-
plication drops when container cache size is brought down. With userTrace

77

 50

 100

 150

 200

 250

 300

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
e

-d
u

p
lic

a
tio

n
 T

h
ro

u
g

h
p

u
t
(K

ilo
 F

in
g

e
rp

ri
n

ts
/s

e
c)

Container Cache Size (Unit: Kilo Fingerprints)

Standalone Throughput
Distributed Throughput

Figure 3.7: Deduplication throughput comparison between Parallel and Standalone
Deduplication

workload, with cache size less than 500, the system is disk bound because
the rate at which containers get evicted from cache is higher than the rate
at which they can be stored on disk. When the system is disk bound, stan-
dalone deduplication is bottlenecked in loading and storing containers, thereby
bringing down the throughput to below 100K fingerprints/second. Hence par-
allelizing using naive parallel design will not improve the performance as it
will only cause more disk I/O’s and deteriorate the performance. But the
performance of the parallel design with two slave nodes and one master node
doesn’t deteriorate because when one slave node is bottlenecked by disk I/O,
the other slave node continues to utilize the CPU efficiently. Both slave nodes
are bottlenecked by disk I/O when cache size is seriously low but that’s not
the point we are trying to prove. We see that when cache size is more than
3000, the working set of containers are cached appropriately and hence stan-
dalone deduplication drives a high deduplication throughput of more than
250K fingerprints/second. The experiment demonstrates the effectiveness of
different parallelizing strategies under different conditions. However due to
practical limitations, we couldn’t test this with a large scale setup consisting
of hundreds of slave nodes and this is an important part of our future work.

3.6 Summary

DISCO performs incremental backup operations at periodic intervals and to
minimize the data transfer between the primary storage to backup server,
DISCO uses block-level deduplication. Typical deduplication techniques bot-

78

tleneck on disk I/Os involved in various components of the deduplication sys-
tem, and the most important of them are, a) looking up in the fingerprint
index, b) loading and storing containers that contain the possible duplicate
fingerprints, c) updating metadata of each disk block after identifying the
duplicates. We, therefore built Sungem to minimize disk I/Os in the entire
deduplication process, and is designed specifically to work efficiently with in-
cremental backup operations. In particular, the following contributions are
made:

• An integrated deduplication engine design that combines variable-rate
fingerprint sampling and content-based fingerprint-to-container assign-
ment to make the best use of the given memory space and raw disk
bandwidth,

• A scalable deduplication engine that delivers consistent high through-
put across all ranges of dedupe ratios and improves the deduplication
throughput by up to 40% without sacrificing the deduplication ratio,
when compared with the state-of-the-art sparse-indexing scheme [6] run-
ning with the same amount of RAM, for incremental backup operations,

• The first known garbage collection algorithm whose bookkeeping op-
erations are distributed over individual backup operations and which is
scalable in the sense that its bookkeeping overhead for each backup oper-
ation is proportional to the change to a VD between consecutive backups
rather than the VD itself, and

• A comprehensive evaluation of the deduplication and garbage collection
engine with a real-world daily backup trace spanning 10 weeks.

• A study of two parallelization strategies for data deduplication/garbage
collection, in terms of the trade-off between communications overhead
and amount of redundant disk I/O.

79

Chapter 4

A Trace-based Study for
Deduplication Algorithm Design

Modern data deduplication algorithms are all built on a set of common funda-
mental techniques based on sampling and prefetching, which were discussed in
Chapter 3 in great detail using Sungem. For an incremental backup, its safe to
assume a duplicity of 50%. It means there is a good probability of an incom-
ing data block for not being a duplicate and hence the majority of fingerprint
database look-ups result in a miss, i.e., doing all the work of duplicate check
for nothing. Therefore, an important design issue in building modern dedupli-
cation engines is how to identify and ignore non-recurring stored fingerprint
segments. It would be ideal if a deduplication engine is able to recognize non-
recurring fingerprint segments as they appear, and avoid putting them into the
in-memory index and fingerprint containers. The next best thing is to quickly
recognize them after they are put into the in-memory index and fingerprint
containers, and remove them from these data structures. How to identify un-
productive stored fingerprint segments and recycle the storage space allocated
to them has never received its due attention.

To explore the design trade-offs in deduplication engine design, we took a
trace-based approach, in which we collected backup traces and analyzed the
detailed behaviors of the deduplication engine when fed with these backup
traces. With a good understanding of the real-world trace workload, we fine-
tuned Sungem to extract better deduplication throughput and deduplication
ratio. However, we also noticed several interesting data sharing patterns in the
real-world trace that looked promising to optimize any generic deduplication
algorithm and not just the Sungem. Towards that goal, we collected yet an-
other real-world trace using more machines, more users and collected lot more
information from the user machines over an even larger period of time, and
did a thorough classification and analysis of the data sharing patterns, which

80

provides interesting insights to how users share data among them. Finally, to
simplify the task of collecting incremental block-level backup traces, we de-
vised a novel trace conversion scheme that is capable of converting file-level
changes to block-level changes, and eliminates the need for a kernel-level dirty
block tracking agent. This scheme greatly simplifies the backup trace collec-
tion task of this work. Throughout this chapter, we refer to a deduplication
system in general unless explicitly addressed for Sungem.

4.1 Trace Collection and Conversion

Modern block-level data backup systems are incremental in nature and capture
the delta between consecutive backups of a disk volume by installing a dirty
block tracker in the backup client, which could be a file server, a database
server or an end user machine. Our goal is to record an incremental block-
level backup trace for the local data volumes of a set of end user machines
over a period of time. One way to collect such data backup traces is to install
a kernel-level dirty block tracker on every end user machine to be monitored.
However, this approach is too intrusive and its performance overhead is too
high to be considered a feasible option. Instead, we resort to an approximation
approach that is capable of deriving a block-level trace from file-level changes.

4.1.1 Trace Collection

We wrote a user-level trace collection program that periodically scans spe-
cific directories at a specific time every day to detect files that are modified
since the previous scan. This program was written in Java so that it is easily
portable across end user machines that run Linux, Windows and Mac OS.
For every directory scanned, the trace collector maintains a timestamp and
uses it to detect those files whose last modified timestamp is more recent than
their parent directory’s modified timestamp. For every modified file, the trace
collector records a 64-byte SHA-512 hash value for each block in the file, the
file length, the file type, the encrypted file name, the encrypted machine name
and the encrypted user ID. Some of the recorded information were encrypted
to preserve user privacy. To facilitate easier analysis of the trace data and
to isolate data corruption, data and metadata were stored separately for each
machine and for each day in a dedicated storage server which held all the trace
data safely in a RAID disk array. The trace collector was installed on around
90 desktop machines, which are used predominantly by software engineers in a
research organization, and 260 GB worth of raw trace data were collected over
a period of 8 months. 78 of these 90 machines run Windows, 11 Linux and 1

81

Figure 4.1: Three types of updates to an existing file to form a new file

MacOS. Users were given the option to select the location on their machine
for trace collector to scan, so that they could exclude some folders contain-
ing private data. On rare occasions, the trace collector scanned directories in
parallel to user activity and hence as expected the data collected was out of
sync with the metadata and hence such data were discarded. The discarded
data accounted to less than 1 GB of data which corresponded to 0.79% of the
overall data. During the 8-month period, some machines were shut down, and
new machines were added. Typically on Windows machines the C: directory
was excluded and on Linux machines only the /home directory was included.
Majority of the machines were configured either for Linux or Windows only
and only a few had dual boot options but were never exercised during the
trace collection period.

4.1.2 Trace Conversion

The trace collector records file-level changes, but our goal is to capture block-
level changes and turn these changes into an incremental backup trace via a
trace converter. Instead of treating every block in a modified file as a dirty
block appearing in an incremental backup trace, the trace converter classifies
updates to a file into the following three types, as shown in Figure 4.1:

• Appended write: If theN+1-th version of a file is equal to a concatenation
of the N -th version with an additional sequence of K blocks in the end,
then the trace converter considers only the additional K blocks as dirty
blocks, because it assumes these blocks are appended to the N -th version
to form the N + 1-th version.

• Isolated update: If the N+1-th version of a file is not an extension of the
N -th version through appends, the trace converter considers every block
in the N+1-th version as a dirty block, except those blocks in the N+1-
th version that are identical to their counterparts in the N -th version
in terms of both their content and their offset within the file, because it
assumes the updates to the N -th version are isolated block-level updates,
rather than whole file overwrites.

82

• Full dirty write: If the N +1-th version of a file results from pre-pending
a piece of new data to its N -th version, because the two versions do
not have the same content at any given offset, the trace collector counts
every block in the N + 1-th version as a dirty block.

The raw input trace (preprocessed file level trace) consists of 24.1 million
files and 3.97 billion blocks, of which 18.3 million files are unique and the
remaining 5.8 million files are versions (modifications) of some existing files,
according to their file names. Appended write files account for just 69 files
with 340K blocks in them, of which 159K blocks represent common blocks
between consecutive file versions, and thus are filtered out from the resulting
incremental block-level backup trace. Interestingly 4.1 million files match per-
fectly with their previous versions and consist of 65.5 million blocks. These
files were considered modified by our trace collector simply because of changes
to their file metadata such as read/write permission and last modified time. In
addition to perfectly matched files, there are 363K files that share at least one
common block with their previous versions and consist of 2.7 billion blocks,
among which 2.48 billion blocks are found to be identical to their counter-
parts in their previous versions and thus are also excluded from the resulting
block-level trace.

Once dirty blocks are identified, the trace converter assigns a logical block
number (LBN) to every block of every modified file. To facilitate the process
of locating the file that contains a given block, the trace converter assigns a
continuous range of LBNs to the blocks that belong to versions of the same file.
This way, given a LBN, one could locate the containing file with a table look-
up. To achieve this, the trace converter first went through the raw input trace
to derive the maximum file size for every file appearing in the trace, and then
assigned every file a range of LBNs equal to its maximum file size. This two-
phase approach to LBN assignment greatly decreases the amount of disk access
overhead that would have been required to implement one LBN range per file
given the raw input trace is 260 GB in size. As a result, using a commodity
desktop machine, we could complete the two-phase trace conversion process
within a few minutes. The eventual output of the trace converter is a block-
level backup trace that consists of entries each of which is of the form <LBN,
fingerprint> and corresponds to a modified block.

4.1.3 Trace Processing

Given a block-level backup trace, we need to first establish the ground truth
for how the fingerprints in the trace match one another. Towards this goal,
we built a vanilla deduplication engine called Baseline, which processes the

83

input trace in two phases. In the first phase, Baseline partitions entries in
the input trace into buckets, each of which is stored as a file, then applies a
hash function to the fingerprint of every trace entry, and finally assigns a trace
entry to a bucket if the hash value of its fingerprint falls into the bucket’s
associated range. This partitioning ensures all duplicates are assigned to the
same bucket. Each bucket’s size is set to be slightly smaller than the available
main memory. In the second phase, Baseline processes each bucket one by one,
and when processing a bucket, it reads in trace entries in the bucket and builds
a fingerprint database for these entries on the fly to perform duplicate check.
Because the way the bucket size is chosen, the resulting fingerprint database
is guaranteed to fit within main memory and the associated duplicate checks
proceed without incurring any additional disk I/O beyond reading the input
trace entries. As a result, Baseline is able to complete the duplicate checks
for the 260-GB trace, orders of magnitude faster than any naive method. A
given input trace entry may match multiple previous trace entries and Baseline
prioritizes the matched duplicates in the following order:

1. Choose the duplicate with the same file ID as the input trace entry’s file
ID.

2. Choose the duplicate that belongs to a file that contains a match to any
of the last 256 entries in the original input trace.

3. Choose the duplicate whose creation timestamp is closest to the creation
timestamp of the input trace entry.

Priority 1 corresponds to the scenario where a match is found within a file
or with one of its versions. Priority 2 corresponds to the scenario where any
of the last 256 matches in the original input trace (first phase) fetched in a file
and that file contained a match for the given input trace entry. There is a good
chance that the file is cached and available for subsequent matching and hence
Baseline prioritizes such a match over a random match. Number 256 is just
a heuristic and has no particular resemblance to anything in the algorithm
or the trace. Priority 3 corresponds to the scenario where a match is seen
in recent past and hence is cached for subsequent matching. When an input
trace entry in the second phase matches an existing entry in the fingerprint
database, the match result is recorded in an entry of a match table. Every
match table entry contains the following information about both the matched
and input trace entries, the file ID, file length, machine ID and OS type.

84

File Type Extensions
VM related vmdk, vdi, vmem, img, vmss, iso, vhd

Image JPG, gif, bmp, tiff, png, IMD,
psd, psp, gis

Compress zip, tar, gz, rar, 7z, cab, tgz,
bz2, jar, cfs

Database sql, dat, MYD, sdf, db
Audio Video avi, mov, mpg, mpeg, mp3, wmv, wav,

mp4, idx, flv, mts, flac, wmdb, mkv
Document txt, rtf, doc, xls, pdf, ppt, html, xml
Program c, cpp, java, php, js, svn
System rpm, dmg, exe, dll, msi, ipsw,

so, ipa, hdmp
Outlook ost, pst, oab

Log log
Others remaining file types

Table 4.1: Each file type corresponds to a class of files that share some common
semantic property and encompass a set of file name extensions.

4.2 General Duplicity Pattern

We first categorize files in the input trace into the file types listed in Table 4.1
according to their file name extensions. Files that do not belong to any listed
file type are labeled as Others.

Each row in Table 4.2 shows that, for a particular file type, the percentage
of blocks in the input trace that belong to that file type, the percentage of
blocks in that file type that turn out to be a duplicate, and the ratio between
the second and third columns. The Input Block % column represents the dedu-
plication cost because every block costs something to store and to check for
duplicity, and the Overall Duplicity % column represents the deduplication
gain. The fourth column thus indicates how worthwhile it is to include a par-
ticular file type in deduplication check. The higher a file type’s cost ratio, the
less desirable it is to include the file type into deduplication. According to this
metric, program file type is the most promising candidate for deduplication,
whereas audio video file type is the least desirable.

VM related files make up a large majority of the input blocks (38.97%)
and an even larger majority among the duplicated blocks (51.41%). This is
expected because these type of files are much larger in size and the majority of
their blocks are shared unmodified. Although program files contribute to only

85

File Input Overall Cost
Type Block % Duplicity % Ratio

VM related 38.97 51.41 0.76
Image 2.76 2.42 1.14

Compress 11.79 10.23 1.15
Database 6.9 9.56 0.72

Audio Video 4.7 1.57 2.99
Document 1.31 0.91 1.44
Program 1.49 2.46 0.60
System 4.09 3.43 1.19
Outlook 2.84 1.96 1.45

Log 1.28 0.84 1.53
Others 23.88 15.21 1.57

Table 4.2: Percentages of blocks and duplicated blocks that belong to a variety of
file types

1.49% of all input blocks and 2.46% of all duplicate blocks, a large majority
(84.69%) of the blocks in program files are duplicates, and at the file level,
the duplicity percentage for program files is even higher, at 86.65% (explained
later in Table 4.8).

Though files tagged as Others were regarded as inconsequential because
of their low representation in the input workload, collectively they contribute
to a majority of the duplicates. Even upon filtering out VM related files,
their representation stayed below 1% of the overall input workload and hence
they continue to be tagged as ”Others”. Also since their characteristics are
inconsequential from deduplication point of view, we will continue to ignore
their results.

In Table 4.3, the second column shows the percentage of blocks that match
blocks of the same type and the third column shows shows the percentage of
blocks that match blocks of any type. The fact that the difference between
these two columns is generally small suggests that most of the duplicates
are found in files of the same type, except for program files. Only 3.97%
of the duplicates have their source and target from different file types. A
deduplication engine could take advantage of this fact to avoid unnecessary
fingerprint comparisons by organizing fingerprints into separate indexes, one
for each major file type.

In Table 4.4, each row corresponds to blocks belonging to files of different
file size ranges and shows in the second column, the percentage of blocks in
the input trace, in the third column, the duplicity as a percentage of all the

86

File Duplicity % with Duplicity % with
Type same Target File Type any Target File Type

VM related 64.07 67.53
Image 40.38 44.84

Compress 41.37 44.41
Database 67.37 70.94

Audio Video 15.44 17.10
Documents 28.77 35.61
Program 47.23 84.69
System 34.73 42.90
Outlook 34.90 35.42

Log 32.70 33.42
Others 29.24 32.61
Overall 47.21 51.18

Table 4.3: Percentage of duplicates whose source and target are of the same or
different file types

duplicate blocks, and in the fourth column, the duplicity as a percentage of
duplicate blocks that belong to files local to the same row.

Though large (>100KB size) files account for 45.29% of the input blocks,
only 8.15% of the blocks in large files are duplicates, but these duplicated
blocks still represent a fair share (20.39%) of all the duplicated blocks found.
On the other hand, small files (1-50 bytes) account for just 6.92% of the input
blocks, and yet they contribute to 19.56% of the duplicated blocks and 51.18%
of the blocks in small files are duplicates.

Finally, the following duplicity patterns also seem to be interesting and
noteworthy:

• 15.08% of the duplicate blocks are found within the same file and 4.15%
of the duplicate blocks are found in different versions of the same files.

• 12.19% of the duplicate blocks belong to identical files residing on the
same user machine. These duplicate blocks account for 48.89% of their
associated files.

• 8.59% of the duplicate blocks belong to identical files residing on differ-
ent user machines. These duplicate blocks account for 36.79% of their
associated files.

87

File Size Input Overall Local %
Range (B) Block % Duplicity % Duplicity

1-50 6.92 19.56 51.18
50-100 1.28 2.6 37.19
100-500 5.57 8 26.22
500-1000 3.15 3.85 22.11
1000-5000 10.34 11.16 19.53
5000-10000 3.43 4.34 22.87
10000-20000 3.28 5.15 28.46
20000-50000 7.45 7.6 18.46
50000-100000 13.29 17.25 23.5
>100000 45.29 20.39 8.15

Table 4.4: Percentage of duplicates found in files of different size

4.3 Trace-based Deduplication Design Trade-

off Analysis

In this section, we explore the performance impacts of different design choices
for deduplication algorithms based on our analysis of the duplicity patterns
in the input trace. Specifically, we analyze the following three deduplication
algorithm issues: the sampling mechanism for picking and placing representa-
tives of stored segments in the sampled fingerprint index (SFI), the assignment
scheme for choosing containers to hold newly formed stored segments, and the
reclamation strategy for recycling space held by stored fingerprint segments.
In order to explain some concepts, we refer to Sungem but it should be noted
that the reasoning should be similar to any generic deduplication algorithm.
Unlike the multi-threaded implementation of Sungem in Chapter 3, Sungem is
configured here to be single-threaded in all the evaluations used in this trace
analysis because of the following reasons: a) the focus is on understanding
the design tradeoffs rather than the absolute performance numbers, b) It is
possible to measure accurate statistics in a single threaded application c) It is
possible to isolate and reason with high accuracy on every important observa-
tion in the performance results.

88

4.3.1 Sampling of Stored Segments

Sungem provides two levels of indexing: SFI relates an input fingerprint to
containers that hold fingerprint segments containing the input fingerprint, and
within each such container a segment index relates the input fingerprint to
those fingerprint segments containing it. Therefore, fingerprints in SFI are like
anchors, which point to possible stored fingerprint segments that may match
some fingerprint sequence in the input segment. Therefore, it is desirable to
put into SFI anchors for as many different stored segments as possible. This
argues for coarse sampling for each stored fingerprint segment. On the other
hand, if a stored segment is under-sampled, e.g. one in every five fingerprints
is put into SFI, a subsequent instance of a fingerprint sequence of length of
4 or less of the stored segment may go undetected, none of its fingerprints is
chosen as an anchor.

The current design of Sungem is to start by inserting every fingerprint in
a new stored segment into SFI, and after a stored segment sees some number
of repetitions, the number of representatives for that stored segment in SFI is
reduced to one. This sampling strategy is conservative at the beginning and
becomes aggressive for fingerprint sequences that prove to be recurring.The
only room for further improvement is to choose the starting rate slightly more
aggressively. For example, when a new stored segment is a superset or subset
of existing stored segments, it is not necessary to insert each of its fingerprints
into SFI. Perhaps for the part that overlaps with existing stored segments, its
fingerprint samples currently in SFI should be sufficient.

Table 4.5 shows the size distribution of recurring stored segments, i.e., those
fingerprint segments that see at least one repeating instance, given the input
segment length is 256. The average recurring stored segment size is 63.03.
Because the percentage of recurring stored segments that are smaller than or
equal to 8 is relatively small, it seems that the starting sampling rate could
be set to sample one every eight consecutive fingerprints without noticeably
degrading the deduplication ratio.

4.3.2 Placement of Stored Fingerprint Segments

When a stored fingerprint segment is formed, it needs to be placed in a con-
tainer. There are at least two approaches to determine the target container to
which a newly formed stored segment should be assigned as shown in figure 4.2.

The content proximity-based (CP) approach places a newly formed store
segment in the same container as the first fingerprint of the preceding hit
fingerprint sequence if it is a miss fingerprint sequence, or as the first fingerprint
of the residing hit fingerprint sequence if it is a match fingerprint sequence.

89

Size Range %age Distribution
1 - 1 3.647
2 - 2 0.008
3 - 4 0.010
5 - 8 0.011
9 - 16 24.284
17 - 32 24.156
33 - 64 18.332
65 - 128 14.119
129 - 256 15.431

Table 4.5: Size distribution of recurring stored fingerprint segments

Fill-up Dedup Dedup Container Container Per-Segment
Threshold Ratio Throughput Read Count Write Count Comparions

30% 52% 65K 0.77 0.55 200
40% 52% 73K 0.77 0.56 200
50% 52% 83K 0.77 0.56 199
60% 52% 88K 0.77 0.56 198
70% 52% 87K 0.78 0.57 195
80% 52% 86K 0.78 0.57 193
90% 52% 90K 0.78 0.57 193
95% 52% 94K 0.78 0.57 190
100% 52% 102K 0.80 0.57 171

Table 4.6: Deduplication Ratio and Throughput (fingerprint look-ups per sec) com-
parison among variations of the content proximity-based fingerprint segment place-
ment approach, each corresponding to a distinct fill-up threshold, when the container
cache size is 5000 containers. The TP approach corresponds to the CP approach
with the fill-up threshold set to 100%.

In contrast, other deduplication systems [6, 37] use a temporal proximity-
based (TP) approach in that they always place stored fingerprint segments that
are created around the same time into the same container. The TP approach to
fingerprint segment placement is similar to a write-optimized file system, e.g.
log-structured file system, because new stored fingerprint segments are sim-
ply appended to the default container until the container becomes full. The
CP approach to fingerprint segment placement is similar to a read-optimized
file system, e.g., Unix fast file system (FFS), because it tries to place in the
same container stored fingerprint segments that are likely to be referenced
together when checking an input fingerprint segment against the fingerprint
database. Therefore, we expect the TP approach to incur fewer disk write

90

Figure 4.2: Comparison between TP and CP fingerprint placement strategies

I/Os (for persisting containers) but more read disk I/Os (for determining if
an input fingerprint hits the fingerprint database) than the CP approach. The
fill-up threshold in the CP approach specifies the degree of fullness (in terms
of percentage) of the default container before it is considered filled up. The
residual capacity of a container in the CP approach is reserved for accommo-
dating future stored fingerprint segments that share common fingerprints with
those fingerprint segments already in the container. The TP approach actually
corresponds to the CP approach with the fill-up threshold set to 100.

Although the CP approach puts related stored segments in the same con-
tainer to reduce the number of containers required to process an input segment,
the fact that its containers are mostly less than full means in general it needs
more containers to hold the same amount of data than the TP approach. The
trade-off between leaving space in each container to cluster related stored seg-
ments into the same container and wasting space in each container and thus
requiring more containers is very complex. However, by measuring the av-
erage number of containers read and written and the number of fingerprint
comparisons when processing each input segment, it is still possible to ana-
lyze the relative merits of TP and CP under a real-world incremental backup
trace. Table 4.6 shows the deduplication ratio and deduplication throughput

91

comparison among variations of the CP scheme, each corresponding to a dis-
tinct fill-up threshold, when the input load is a 6-day trace consisting of 196
million fingerprints and the container cache size is 5000 containers. Surpris-
ingly, the TP scheme beats all CP variants with different fill-up thresholds
in terms of deduplication throughput. To understand why, we also measured
the average number of distinct container reads and writes when processing a
256-fingerprint input fingerprint segment. As expected, the average number
of container reads per input segment increases with the fill-up threshold, but
surprisingly the average number of container writes per input segment also
increases with the fill-up threshold. A detailed observation showed that on
an average only 1.85 number of stored segments are matched for every input
segment. As a result, the TP variant isn’t affected by the marginal increase
in the number of container reads and more importantly, both the TP and CP
variants do not differ much in the number of container writes. In the TP ap-
proach, the container writes are always applied either to non-full containers
or to new containers, both of which are always present in memory. Whereas,
in the CP approach, the container writes could happen on any non-full con-
tainer that has matching fingerprints. Among the different variants, though
the differences in container writes per input segment are too small to matter,
TP approach performs better than CP variants because the container writes
result in random disk IO for CP approach compared to sequential writes in
TP approach.

Even though the CP variants with less than 100% fill-up thresholds offer
the flexibility of clustering related stored segments, the TP scheme could pro-
vide the same clustering benefit if the consecutive temporal distance between
instances of the same fingerprint sequence is smaller than the container size.
However, in the input trace we used, the average temporal distance between
consecutive instances of the same fingerprint sequence is actually much larger
than the container size. Because the TP scheme tends to fill up a container
before switching to a new container, it uses fewer containers and thus incurs
a proportionally smaller number of container accesses. In addition, the aver-
age number of fingerprint comparisons per input segment required by the TP
scheme is noticeably smaller than that required by the CP variants, as shown
in the last column of Table 4.6, because the TP scheme is more capable of
homing in to the matching stored segments without wasting unnecessary ef-
forts exploring related candidate stored segments. Finally, the target scenarios
that the CP scheme is optimized for, i.e., multiple existing stored segments
that repeatedly appear together, simply is not very common. The above men-
tioned reasons combined make the TP scheme the most performant under the
input trace used in this study.

92

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 50 100 150 200 250

B
lo

ck
 C

ou
nt

Temporal distance in units of days

Temporal distance curve

Figure 4.3: Histogram showing the temporal distance between the matched blocks

 30

 35

 40

 45

 50

 55

 60

 0 10 30 250

D
up

lic
ity

Retention Period in units of days

Retention period curve

Figure 4.4: Figure showing the variation in duplicity as retention period of the
fingerprints in the lookup database is varied

4.3.3 Garbage Collection of Fingerprints

The value of fingerprints has a limited shelf time because files that are shared
among users over a period of time eventually fade away. Accordingly, as time
goes over, the utility of fingerprints for deduplication purpose diminishes and
the system should reclaim the resources allocated to them. To get a better un-
derstanding of the useful time spans of fingerprints, we measured the temporal
distance between the source fingerprint and the target fingerprint of every du-
plicate found by Baseline and Figure 4.3 shows the resulting histogram, where
the X axis is temporal distance in terms of day, and the Y axis is the count
of duplicates with a specific temporal distance. There are huge spikes when
the temporal distance is small, indicating that the temporal distance between
the source and target of a duplicate mostly lies between 0 to 30 days, with a
significant percentage of duplicates having a temporal distance of 0, i.e., the
source and target fingerprints appearing on the same day.

A simple fingerprint garbage collection policy is to throw away fingerprints
that are older than a certain age. This could potentially improve the dedu-
plication throughput because more relevant data can be kept in memory, but

93

Dedup- All VM Outlook Log
lication related

Granularity Files Files Files Files
Full File 18.1 8.1 5.5 20.9

1K blocks 37.1 41.2 6.3 21.1
128 Blocks 40.2 45.9 6.6 31.9
64 Blocks 41.3 47.5 13.7 32.8
32 Blocks 42.3 49.6 15.3 33.4
16 Blocks 43.7 52.6 16.2 33.6
8 Blocks 45.1 55.7 16.7 33.8
4 Blocks 46.9 59.4 17.0 34.0
1 Block 51.2 67.5 35.4 34.0

Table 4.7: Variations in block duplicity across different deduplication granularities
for all file types, VM related, Outlook and Log files

hurts the deduplication ratio because duplicates with older sources won’t be
found.

Figure 4.4 shows how the duplicity % varies when fingerprints older than
a certain age are excluded from deduplicate checks, and demonstrates con-
vincingly that a drop in duplicity percentage is relatively insignificant when
fingerprints beyond a certain temporal distance are deleted from containers to
recycle the space allocated to them.

Another interesting related observation from the duplicates found by Base-
line is that 60% of the files exhibit 1-1 sharing pattern, meaning the blocks
in the given two files do not serve as duplicates to any other files. If such
file pairs could somehow be identified at run time, their resources in SFI and
containers can also be recycled early on.

4.4 Impact of Deduplication Granularity

It is well known that file-level deduplication incurs less checking overhead
but produces lower deduplication ratio than block-level deduplication. In this
section, we compare file-level with block-level deduplication for different file
types using our backup trace.

Table 4.8 shows for each file type its file-level file duplicity, which is the
percentage of files that are duplicates, file-level block duplicity, which is the
percentage of blocks that are duplicates and belong to a duplicated file, block-
level block duplicity, which is the percentage of blocks that are duplicates,

94

File File level File Level Block Level % difference Average File
Type File Duplicity Block Duplicity Block Duplicity Block Duplicity Length

VM related 24.09 8.13 67.53 87.95 270.9K
Image 65.09 34.59 44.84 22.86 15.41

Compressed 67.97 17.61 44.41 60.34 1732.94
Database 12.93 41.91 70.94 40.92 1021.65

Audio Video 6.70 11.68 17.10 31.67 1388.28
Documents 48.88 24.11 35.61 32.29 19.98
Program 86.65 75.00 84.69 11.44 7.08
System 62.33 34.95 42.90 18.53 653.58
Outlook 81.90 5.52 35.42 84.41 1179.58

Log 10.93 20.90 33.42 37.46 249.66
Others 51.32 19.17 32.61 41.22 22.29
Overall 58.15 18.10 51.18 64.64 61.31

Table 4.8: The file-level duplicity, block-level duplicity and average file length in
units of blocks for each file type

the percentage difference between block-level block duplicity and file-level block
duplicity, and the average file length.

Intuitively, if files of a file type are rarely modified and/or relatively small,
the percentage difference between its block-level block duplicity and file-level
block duplicity should be small. Program files are one such example, because
they generally are used as components of a big software project and hence
remain unchanged. Because their average file length is just 7.08 blocks, a
small number of file modifications do not hurt their overall block duplicity
that much. In the end, their percentage drop in block duplicity is the low-
est (11.44%). We originally expected that in a research lab where the backup
trace was collected, modifications to Audio Video files should be small and the
percentage difference between file-level block duplicity and block-level block
duplicity should be negligible. Surprisingly for Audio Video files, the percent-
age drop in block duplicity is noticeable, at 31.67%, because the average file
size is large at 1388.28 blocks and any change to an Audio Video file costs
dearly in file-level block duplicity. VM related files are large and expected to
experience frequent modifications because of VM image rebuild. Consequently,
its percentage drop from file-level block duplicity to block-level block duplicity
is the highest, at 87.95%. Document files also experience relatively frequent
modifications, but their average file size is just 19.98 blocks. So the drop in
block duplicity is smaller than VM related files, at 32.29%.

We varied the deduplication granularity from one disk block, two disk
blocks, all the way to 1000 disk blocks, and measured their corresponding
block duplicity, i.e., the percentage of disk blocks that are duplicates and
belong to a duplicate chunk.

95

Table 4.7 shows that the average block duplicity drop for all file types
decreases from 18.1% when a file-sized deduplication chunk is used to 51.2%
when a block-sized deduplication chunk is used. In addition, it also shows
the block duplicity variation across different deduplication granularities for
VM related, Outlook, and Log files. As expected, some file types prefer smaller
deduplication chunk size, for example, VM related and Outlook, but some file
type prefers larger deduplication chunk size, for example, Log files.

4.5 To BF or Not to BF

Bloom filter (BF) [172] is a well-known approximate data structure that is
specifically designed to facilitate the processing of set membership queries. If
a BF answers ”no” to a set-membership query, it is guaranteed that the query
element is definitely not in the set. However, if a BF answers ”yes” to a set-
membership query, the query element may or may not be in the set. Existing
deduplication systems apply a BF to filter out early on fingerprints that are
not in the fingerprint database. Sungem supports a Refreshable Bloom Filter
(RBF) that allows portions of a Bloom filter to be deleted in an FIFO order,
and thus is able to accommodate an indefinitely long stream of fingerprints.

Figures 4.3 and 4.4 suggest that stored fingerprints become less and less
useful over time and therefore should be removed from the fingerprint database
and the BF as they grow older. Accordingly, an RBF is designed to support
this kind of use case, and consists of a chain of M standard BFs each of size
S
M

. Given a query element X, an RBF tests X against every constituent BF,
and declares a miss only when all of them report a miss. Initially all BFs
in an RBF are empty. As new fingerprints fill up a BF, e.g., when its false
positive rate exceeds a certain threshold, a new BF is allocated to hold more
fingerprints, until all BFs in the RBF are used up. At that point, the oldest
BF is cleared so that it can be used to hold future new fingerprints. Essentially
this implements a coarse-grained FIFO replacement policy. To avoid throwing
away relevant fingerprints in the oldest BF, whenever all the BFs in an RBF
are in use and a new fingerprint hits in the oldest BF, the RBF inserts it in
the youngest BF. This last optimization allows old but useful fingerprints to
continue to stay in an RBF.

Table 4.9 shows that turning on RBF on the current Sungem prototype,
which already uses SFI for initial filtering, has no effect on Sungem’s dedu-
plication ratio but actually slows down the deduplication engine. There are
several reasons for this result. First of all, in general RBF cannot conclude
a positive fingerprint match without consulting auxiliary on-disk data struc-
tures. When an input fingerprint hits in the SFI, this fingerprint is definitely

96

RBF Dedup- Dedup- Fingerprint
lication lication

status Ratio Throughput Comparisons
RBF Off 50% 102K 171
RBF On 50% 98K 168

Table 4.9: Sungem’s de-duplication throughput and ratio when RBF is turned on
and off.

in the fingerprint database. So SFI guarantees zero false positive rate. In
contrast, RBF has non-zero false positive rate. To avoid data loss, zero false
positive rate is more important to a deduplication system than zero false neg-
ative rate. To avoid false positive, every RBF hit must be followed up with
a lookup with an on-disk data structure to determine if the input fingerprint
indeed matches some entry in the fingerprint database. Therefore, it is more
expensive to ascertain a fingerprint database hit with RBF than with SFI,
which does not require disk access.

Second, in the current Sungem prototype, RBF look-up is more expensive
than SFI look-up, because the former involves multiple hash table look-ups
(about 1.5 µs), whereas the latter involves only one hash table look-up (about
0.5 µs). That is, it is also more expensive for RBF to conclude a fingerprint
database miss than SFI. Against the input backup trace, RBF and SFI provide
comparable negative filtering, i.e., whenever an input fingerprint misses in the
RBF, it also tends to miss in the SFI as well. Finally, against the input backup
trace, only 44% of the responses from the RBF are ”no match.” Because
the ”no match” response percentage is not particularly high, the number of
fingerprint comparisons that RBF saves (171 − 168 = 3) is not significant
enough to justify its higher look-up overhead.

4.6 Summary

There have been several analysis studies of real-world backup traces [60, 66],
as well as evaluation studies of specific disk data deduplication systems [64,
65, 67]. This work takes an algorithm design-driven approach to analyzing real
backup traces, and focuses on measuring characteristics of backup traces that
could reveal the pros and cons of specific deduplication algorithm decisions.
Through this approach, we have uncovered several important design dimen-
sions of deduplication algorithms that have not received much attention in the
literature. Specifically, this work makes the following research contributions:

97

• Develop a novel user-level dirty block tracer that is able to collect file-
level changes and convert these file-level changes to block-level changes
without installing any kernel agent,

• Give the average percentage of duplicate blocks in a file of a certain file
type and a certain file size range, and the probability of a pair of duplicate
blocks that belong to files of the same name, files with different names
but on the same machine, and files with different names and on different
machines,

• Show the design tradeoffs for the sampling strategies for fingerprint seg-
ments to reduce fingerprint index size, the clustering schemes of related
fingerprint segments into containers to improve prefetching effectiveness,
and when stored fingerprint segments are retired,

• Quantify the impact of deduplication granularity, and

• Demonstrate that a variant of Bloom filter called RBF is actually harmful
when implemented on top of a sampling fingerprint index.

98

Chapter 5

An Update-Aware Storage
System for Low-Locality
Update-Intensive Workloads

A low locality disk access workload predominantly consists of random disk
I/O requests with a large working set. A well-known technique to boost the
performance of workloads dominated by low-locality disk writes is to structure
the storage system as a log and convert each disk write into an append to
the log. However, such techniques carry hidden performance overheads in the
form of metadata look-up and garbage collection. For workloads dominated by
low-locality disk reads, no generally effective performance-boosting solution is
available, unless the storage system uses expensive hardware devices like flash-
based disks. Though, storage systems using flash-based disks typically handle
the random read I/O requests quite well, they are known to perform poorly
over a workload dominated with random write I/O requests [173].

A disk update request retrieves a disk block, modifies it and writes the
resulting block back to the disk. A workload consisting predominantly of such
disk update requests, with large working set and low locality, poses severe
challenges to traditional storage techniques described above. Such workloads
are commonly seen in many real-world applications like user-generated con-
tent management and online transaction processing (OLTP) applications. In
DISCO, there are quite a number of components that generate such random
disk update workloads. 1) The garbage collector (GC) component in DSS
(described earlier in Chapter 3) maintains a metadata-index for all the physi-
cal blocks in the storage system, and its incoming workload arrives at a very
high rate and consists of a large number of disk update requests with very
low locality, where each request intends to update portions of the metadata
corresponding to some physical block. 2) DMS maintains various disk-based

99

mapping tables to map large number of blocks in different address-spaces, and
its workload consists of a large number of requests that either read an existing
entry, write a new entry, or modify an existing entry in the mapping-table. The
read/write/modify requests in the workload have very low locality of reference
and hence the workload has a large working set.

Traditional storage systems do not perform well under these workloads and
thus require higher storage stack layers to carefully schedule incoming disk re-
quests to mitigate the performance penalty associated with such workloads.
Even storage systems using flash-based disks perform poorly in the face of
these workloads, sometimes faring even worse when compared with magnetic
disks. A large body of previous research efforts on disk buffering [174, 175],
caching [176–178] and scheduling [179, 180] have attempted to solve this prob-
lem, but they are generally ineffective because low access locality leads to
excessive random disk I/Os.

Apart from the low locality aspect of the workload, a disk update request
is not only challenging but is also interesting because it is fundamentally a
disk read followed by a disk write. With the primary motive of delivering high
throughput for a workload, a typical storage system services the disk write
requests asynchronously using standard buffering techniques, but in order to
minimize the response time for disk read requests, it services the disk read
requests as synchronously as possible. On the surface it appears that there
is not much one could do to boost the performance of workloads dominated
by low-locality disk updates, but it is interesting if the storage system can
distinguish between standalone disk reads and disk reads associated with disk
updates. Concretely, for a disk update request, it’s OK to service the update’s
leading disk read access asynchronously, like its following disk write access,
because a disk update is considered completed only after its following disk
write is completed. Unfortunately, typical storage systems do not provide
such an explicit update-aware disk access interface similar to the traditional
read/write interfaces.

Traditional storage systems support a disk access interface for higher-layer
systems software, such as a file system or a DBMS, to read or write data stored
on disks. The granularity of disk reads and writes ranges from disk blocks [181,
182] to more sophisticated constructs such as objects [183, 184]. Regardless
of access granularity, these simple read/write interfaces are not adequate for
low-locality update-intensive workloads for two reasons. First, there is no
update-aware interface to optimally handle the disk-update requests for the
reasons mentioned above. Second and more importantly, to optimally handle
the disk IO requests that modify the contents of a disk block, the storage
system aggregates the requests synchronously into memory and marks that

100

disk block as dirty. In the background, the storage system sequentially scans
the disk, fetches the dirty blocks into memory, applies all the modifications
to that disk block and writes the disk block back to the disk. This is very
similar to the strategy employed in InnoDB [185] which is a standard storage
engine used in most of the MySQL applications. However, this approach fails
in certain conditions. When an application issuing disk IO requests requires
an ordered collection of data in the disk blocks, it is not straightforward for the
storage system to aggregate and apply the modification requests in background
because at the time of aggregation, it is not possible to determine the position
of modified data on the disk. It is also not possible to determine the position of
the modified data within the disk IO block at the time of background commit,
because the storage system is generic and oblivious to the applications data
placement strategy, and therefore relies on application processes to perform
these updates.

To remove the above two problems, we propose a new disk access interface
that allows applications of a storage system (a) to explicitly declare a disk
access request as an update request to a disk block, in addition to the standard
read or write request and (b) to associate with an update request a callback
function that performs the actual update on its target disk block. With disk
update requests explicitly labeled, a storage system can now aggregate them,
including the implicit reads contained within, in the same way as it handles
the disk write requests. With access to application-specific disk block update
functions, a storage system can directly apply proper updates to each disk
block retrieved on behalf of the processes issuing the disk update requests,
thus gaining much more flexibility in disk access scheduling.

The update-aware disk access interface enables a new storage system archi-
tecture called BOSC (Batching mOdifications with Sequential Commit) [74],
which sits between storage applications, e.g., a DBMS process or file system,
and hardware storage devices. BOSC is specifically optimized for low-locality
update-intensive workloads. In BOSC, incoming disk update requests targeted
at a disk block are queued in the in-memory queue associated with the disk
block; in the background, BOSC sequentially scans the disk(s) to bring in disk
blocks whose associated queue is not empty. When a disk block is fetched into
memory, BOSC applies all of its pending updates to it in one shot.

BOSC treats each disk update request as an atomic operation and treats
them as if they are disk write requests. Under low-locality update-intensive
workloads, the resulting throughput improves by an impressive one to two or-
ders of magnitude. In addition, combined with a high throughput low-latency
logging technique, BOSC is able to achieve this throughput improvement while

101

delivering the same durability guarantee and latency as if each disk update re-
quest is serviced synchronously.

5.1 Update-Aware Disk Access Interface

The conventional disk access interface provides the following two APIs for
applications (including file system and DBMS) to read and write disk blocks,
respectively.

• read(target block addr, dest buf addr)

• write(target block addr, src buf addr)

Under this interface, existing storage systems optimize disk write accesses
by delaying and/or scheduling them to maximize their throughput and opti-
mizes disk read accesses by servicing them as soon as possible to minimize
their latency.

A disk update involves a disk read of the target disk block and then a
disk write of the same block after the block is brought into memory and
modified. If a storage system could treat each disk update as an atomic
operation, theoretically it can delay and schedule the disk reads associated
with disk updates in the same way as it does with disk writes. However, to
atomically service a disk update request, the storage system must be able to
perform the request’s intended update operation without involving the appli-
cation process issuing the disk update request. To allow an application run-
ning on a storage system to explicitly declare a disk access request as a disk
update request and supply the necessary information for the storage system
to service it atomically, we propose an update-aware disk access primitive
specific for disk updates, modify(target block addr, ptr modification,

ptr commit function), which specifies the target disk block to be modified,
a pointer to an application-specific data structure that includes all the infor-
mation required by the requested modification and a pointer to an application-
specific call-back function that commits the actual modification to disk. This
primitive is sufficiently general to accommodate disk update requests from such
common storage applications as database index managers, including creating
a new index entry, updating an existing index entry and deleting an existing
index entry.

In the proposed disk update primitive, the application-specific part of
each disk update request, i.e., the internal organization of the data structure
pointed to by ptr modification and the internal logic of the function pointed
by ptr commit function, is fully encapsulated. A storage system implement-
ing the proposed interface carries out the requested modification of each disk

102

update request by blindly invoking the specified function on the specified data
structure, without requiring any knowledge about the data structure and func-
tion. Even the developers of BOSC’s modify API do not need to know anything
about BOSC’s internals except following the guideline below when writing a
call-back function: ”It does not contain any calls to the modify API”. In fact,
such a storage system does not even need to differentiate among create, up-
date, or delete operations. As a result, the update-aware disk access interface
provides the underlying storage system the same flexibility of scheduling disk
block create, disk block update and disk block delete requests as disk block
write requests and thus the corresponding performance boost.

5.1.1 Caveats with Call-back Function

In the general case, running the call back functions in BOSC entails some secu-
rity risks like a buggy or malicious program that mismanages system resources.
However, these risks are reasonably low for our two target use cases.

1. When BOSC is used as a user-level library that allows a user-level ap-
plication (e.g. DBMS) to directly manage a disk or disk partition, the
background thread that invokes the call-back function runs at the user
level and thus can at most compromise the user-level application itself.

2. When BOSC runs as a kernel module, only trusted software compo-
nents such as file systems are allowed to use the BOSC interface and the
call-back functions they registered with BOSC are all kernel code. So,
practically speaking, the fact that the background thread invokes these
call-back functions in the kernel context does not really introduce any
additional safety risks.

If an application calling an update function needs to receive the function’s
return code in order to proceed, it is NOT appropriate to implement such
an update function on top of BOSC, because this use pattern is similar to a
read function. In our experiences, there are many applications like garbage
collection and continuous data protection systems (CDP), that do not need
the called update function to return results.

All the inputs that a call-back function in BOSC needs to run are ei-
ther logged and put in the per-block queue, or available on the corresponding
fetched disk block. At recovery time, the per-block queues at the time of crash
are reconstructed and therefore, the call-back function for a given fetched disk
block must be able to run after recovery. Here the assumption is that the
registered function pointer remains valid across a system crash, which is the
case because function pointers are virtual addresses. We also assume that

103

application binaries are not modified across a system crash and call-backed
functions are all statically linked.

Sequential I/O
Thread

Block Interface

...
...

...

Disk Queue
BOSC

Data Logging Data Commit

Modify Read

Low−Latency Disk
Logging

Access Interface
Update−Aware Disk

Logging Disk Blocks

Data Disk Blocks

Index Data Structure

1 M
1 N

1 1 N

Figure 5.1: BOSC associates with each disk block an in-memory update request
queue. When BOSC receives a disk update request, it logs the request to disk,
queues the request in the target block’s associated update request queue, and per-
forms the update operation only when the target disk block is brought into memory.
BOSC brings disk blocks into memory sequentially according to their logical block
addresses.

5.2 BOSC Architecture

Figure 5.1 shows how BOSC leverages the update-aware disk access interface
to aggregate disk update requests and reduce the overall physical disk I/O
overhead. BOSC applies a space-efficient low-latency disk logging technique
to log each incoming disk update request, queues it in an in-memory per-
block request queue, commits updates to disk asynchronously using mostly
sequential disk I/O and recovers from failures efficiently.

5.2.1 Low-Latency Disk Logging

Logging a disk update request to disk synchronously and then performing
whatever operations triggered by the update asynchronously is a well-known
technique. BOSC adopts this technique to service disk updates asynchronously
and achieves high sustained disk update throughput, while delivering the same

104

durability guarantee as synchronous disk updates. Because the end-to-end
throughput of BOSC is bounded by its synchronous disk logging performance,
BOSC adopts a high throughput low-latency disk logging technique called
Beluga [186]. The key idea in this low-latency disk logging technique is to
write an incoming disk block to where the disk head happens to be rather
than moving the disk head to the target location specified by the disk block.
More importantly, Beluga doesnt predict the disk head position using static
disk profiling techniques, rather the data is written continuously so that control
over disk head is never lost. Since logging operations need data persistency
and do not care about the exact positioning of the data on disk, Beluga is
given the freedom to choose the target location of the request. Once the data
is logged to disk, it’s location on disk is updated accordingly in the metadata
of the log request. Since Beluga requires continuous submission of data to
the log disk and if the incoming request rate from BOSC happens to be lower
than the logging rate, Beluga fills in dummy requests. Beluga uses multiple
logging disks in case the incoming request rate from BOSC is higher than
the logging rate of a single disk. Beluga maintains a management header for
each log record and it is application-independent. The actual contents of the
log records are opaque to Beluga. The management header contains the log
record size, a valid bit, the associated log device descriptor and a per-device
sequence ID. The per-device sequence ID is monotonically non-decreasing and
it uniquely identifies the latest committed log record.

An important advantage with Beluga is the non-requirement of garbage
collection. For example, a 500GB log device could hold the payloads of up to
1 billion 512-byte logging operations without over-writing any old log records,
which is large enough to allow Beluga to simply wrap around a log device when
it reaches the devices end. In case BOSC needs longer retention period for its
log records, atleast two disk arrays should be provisioned, so that while Beluga
is logging on one disk array, one can archive logging records in the other log
disk to another medium. Beluga is explained in greater detail in chapter 6.

5.2.2 Sequential Commit of Aggregated Updates

In addition to log disks, BOSC maintains a set of data disks to store appli-
cation data, and a set of in-memory disk update request arrays, one for each
data disk. For each data disk containing N data disk blocks, its corresponding
in-memory disk update request array contains N slots and each slot contains
a per-block disk update request queue associated with the corresponding data
disk block. Upon receiving a disk update request, BOSC first checks if the tar-
get disk block is memory-resident; if it is, BOSC performs the update against
the block immediately, otherwise BOSC appends the update request to the

105

per-block disk update request queue associated with the request’s target disk
block and logs the update request to Beluga; finally, BOSC returns control
to the caller. Because of BOSC’s low-latency disk logging, the perceived de-
lay of each disk update request is relatively small, typically smaller than one
msec. For each of its data disks, BOSC maintains two background threads,
disk I/O thread and update thread. An update thread is woken up whenever
its corresponding disk I/O thread fetches some data to be processed. The
update thread applies any pending updates to the buffer fetched by the disk
IO thread, by dequeuing and calling the callback ptr for every request in the
corresponding per-block disk update request queue. Upon successfully com-
pleting the pending updates, the update thread notifies the corresponding disk
I/O thread accordingly. A disk I/O thread constantly sweeps the data disk
from the beginning to the end in a sequential manner. During every sweep,
if a block’s corresponding per-block disk update request queue is non-empty,
the disk I/O thread reads that block into a buffer stored in main memory
and passes the buffer to its corresponding update thread. Once the update
thread notifies its corresponding disk I/O thread of a successful update, the
disk I/O thread submits the updated in-memory data block to the data disk.
To further minimize the disk access overhead in this read-modify-write loop
of commit processing, instead of processing one disk block at a time, the disk
I/O thread physically reads and writes a continuous run of disk blocks and
commits pending updates on a run-by-run basis.

A disk block run corresponds to a contiguous sequence of disk blocks, such
that the number of disk blocks in the sequence is no greater than a threshold
(currently set to 32 blocks) and the percentage of non-empty per-block disk
update request queues corresponding to the disk blocks in the sequence, is
above another threshold (currently set to 0.5). These two thresholds are just
heuristics based on our experiences. On order to minimize the synchronization
overhead, the disk block runs must not only be disjoint, but even the first and
last disk block in it must have a non-empty per-block disk update request
queue. As the disk I/O thread reads a disk block run R2 from the data disk,
the update thread applies pending updates to another disk block run R1 that
has previously been brought into memory from that data disk. By the time
the disk I/O thread finishes reading R2, if the update thread has completed
applying all the pending updates to R1, then the disk I/O thread proceeds
to submit R1 to disk. By pipelining the processing of runs, BOSC is able to
completely eliminate any unnecessary disk seek delays, and reduce the number
of disk rotations, in processing a run, to two.

106

5.2.3 Recovery Processing

In case of a system crash, Beluga doesn’t initiate recovery procedure because
Beluga is indifferent to the payload of the logging records and hence the onus
of handling recovery procedure is on BOSC. After a system crash, when BOSC
boots up, it first fetches a chunk of records that were logged the latest. BOSC
periodically logs a special metadata log record to indicate the youngest record
that’s committed to data disk. So BOSC just needs to request Beluga to
fetch in a chunk of records that were last written to log disk and scan them
to discover uncommitted disk update requests. BOSC then reconstructs the
in-memory per-block disk update request queues that exist immediately before
the crash and resumes its normal processing. This is similar to the idea em-
ployed in Aries [105] with some optimizations as described below. Note that
BOSC chooses not to commit all uncommitted disk update requests to disk at
recovery time. Instead, it merely aims to reconstruct the in-memory per-block
update request queues and relies on BOSC’s normal sequential commit mech-
anism to write them to disk. More concretely, BOSC’s recovery procedure
consists of the following steps:

1. Requests Beluga to search the log for the log record with the largest
sequence ID,

2. Determining the replay window in the log that contains log records re-
quired for the reconstruction of per-disk-block update request queues
and

3. Parsing the log records in the replay window to reconstruct the per-block
request queues.

To speed up Step (1), Beluga performs a binary search (rather than a
sequential scan) of the tracks of the log disk array to track down the youngest
log record, which is the last one to be inserted before the crash and thus
corresponds to the end of the replay window. The binary search works because
the disk logging proceeds one track by one track in a FIFO fashion.

Finding the beginning of the replay window is trivial because it actually
corresponds to the youngest log record, because all update requests associated
with log records before the largest sequence ID by definition have already
been committed to disk. In Step (3), the log records in the replay window
are traversed backwards from the end to the beginning. By exploiting the
information in special metadata record, BOSC can avoid inserting a significant
percentage of the log records in the replay window into per-block disk update
request queues.

107

5.2.4 Extensions

A straightforward way for a BOSC application like a database index manager
to query if a record of a certain qualification exists in a disk block is to explicitly
read in the block and scan it for records with the target qualification. However,
if the desired record already exists in the disk block’s pending update request
queue, this approach may bring the target block into memory unnecessarily.
To eliminate this unnecessary disk I/O, BOSC provides a query API that al-
lows an application to query a specific disk block: query(target block addr,

ptr query, ptr query function), where target block addr is the target
disk block’s ID, ptr query is a pointer to a data structure containing the
query’s parameters and ptr query function is a pointer to an application-
specific call-back function that BOSC invokes to search the target disk block’s
memory-resident update requests queue and/or the target disk block itself if
BOSC needs to fetch it into memory. When a disk block is read into memory
because it is a target of a read request, BOSC applies all the block’s pending
updates to it before returning the block to the application issuing the read
request. This API allows BOSC to double each in-memory per-block request
queue as a cache for the associated disk block.

BOSC treats every disk update request it receives from an application as
an independent I/O transaction and is able to guarantee their durability across
system failures by synchronous logging and recovery. When a system recovers
from a crash, BOSC’s recovery manager first restores the side effects of all
the disk update requests that BOSC considers already committed and then
invokes the application’s recovery logic. However, BOSC’s I/O transaction is
not equivalent to an application-level transaction. If a disk update request U
is contained in an application-level transaction that the application’s recovery
manager thinks should be aborted, it should explicitly issue a compensating
update request to undo U. Further, when a transaction calling a BOSC update
function is committed after the called BOSC update function is acknowledged,
it is OK for the transaction to release all the locks and consider everything is
done, even though the actual updates underlying the BOSC update function
happen much later. The reason is that BOSC’s recovery mechanism guarantees
that all acknowledged updates eventually happen.

The current BOSC design is mainly for directly attached disks. To general-
ize the BOSC idea to a network storage server requires leveraging the security
mechanisms developed in the Active Disk [187] project.

108

B1	
11	

B2	
11	

B3	
01	

B4	
10	

T1

T2

disk1	 disk2	

disk2	 disk1	

fast-‐
disk	 regular

-‐disk	

Swap
regular
-‐disk	

fast-‐
disk	

Sequen8al	
I/O	 thread	

Timeline

Write I/O

Read I/O

Write I/O

BOSC2
disk1	

pending
counter	
disk2	

pending
counter	

Figure 5.2: BOSC2 extension with swapping disks, where B1-B4 are in-memory
representation of read/write I/O requests and each of these blocks are associated
with a 2-bit flag to indicate which of disk1(bit1) or disk2(bit2) has already processed
the given I/O request.

BOSC2: Extending BOSC to Handle Low-Locality Read Workload

When a workload is dominated with low locality, read and update disk re-
quests, the overall performance of any traditional storage system will defi-
nitely deteriorate. Since standalone read disk requests typically need to be
synchronously serviced, it appears that there isn’t much one can do to effi-
ciently handle such a workload. Though BOSC doesn’t deteriorate the perfor-
mance of standalone read disk requests (shown later in the evaluation section),
it neither improves its performance, because frequent standalone random read
disk requests prohibit the sequential sweeps of the background disk I/O thread.
However, the BOSC technique could be adopted in a new storage system where
the update and write I/O requests are handled differently from the standalone
read disk requests, and such a system could possibly avoid the ill-effects of the
standalone read disk requests.

We propose a new BOSC-based storage system, BOSC2, which in its sim-
plest setup, uses two data disks, disk1 and disk2, as shown in Figure 5.2.
BOSC2 marks one of the data disks as fast-disk and the other data disk as
regular-disk. BOSC2 submits the read disk requests to only the disk marked as
regular-disk, and submits the write and update disk requests to both the data
disks. Since BOSC technique delivers a very high performance in the absence
of read disk requests, the fast-disk is expected to deliver a faster throughput
than the regular-disk. Since only the write and update disk requests modify
the content on the data disks, BOSC2 intends to keep disk1 and disk2 with
identical data at all times. When a workload consists of large number of low

109

locality read disk requests, the difference in throughputs between the two data
disks results in a temporary mismatch between the contents of the two data
disks, and when the amount of mismatch is beyond a threshold, the markings
on the data disks are swapped.

In order to effectively implement the above mentioned proposal, BOSC2
uses the same techniques as BOSC except for a few changes described be-
low. BOSC2 uses the same in-memory queues as BOSC’s and it is common
to both the data disks. Additionally, BOSC2 uses a counter for each data
disk to indicate the number of outstanding I/Os on that disk. BOSC2 also
modifies the metadata for each request in the per-block disk update request
queue to have an additional field for reference count of one byte. The reference
count is initially set to 0 to indicate that it is not committed on either of the
disks. The first bit in reference count is set if the request is committed to
disk1 and the second bit in reference count is set if the request is committed
to disk2. Only when both the first and second bits in reference count are set,
BOSC2 removes that request from the in-memory queue. Note that disk1 and
disk2 are permanently marked and only the fast-disk and regular-disk mark-
ings are temporary. BOSC2 swaps the fast-disk and regular-disk markings on
the data disks, when the number of outstanding I/O requests on the regular-
disk exceeds beyond a threshold. This threshold factor depends upon multiple
factors like the size of the in-memory queue, the raw transfer throughput of
the data disk and the percentage of read requests in the input workload. By
swapping the markings, BOSC2 allows the previously marked slow through-
put regular-disk to now exclude the read disk requests and hence clears its
outstanding I/Os in the in-memory queue at a faster rate. On rare occasions,
if the percentage of low-locality read disk requests in the input workload is too
high, swapping operation happens too frequently and the overall performance
of BOSC2 throttles down to an extremely slow throughput which would be
similar to what we observe on a traditional storage system.

Swapping operation thus guarantees equilibrium between the disks, thereby
ensuring bounded memory requirements for in-memory queue under the as-
sumption that the percentage of read disk requests in the input workload
are below a certain threshold. The requirement for two disk I/Os in BOSC2
against one disk I/O in BOSC, shouldn’t slow down the overall performance
by a large margin because disk I/Os on both the data disks happen in paral-
lel. BOSC2 services the read disk requests either by looking up the in-memory
queues or by fetching from the regular-disk. Upon swap operation, the newly
marked regular-disk will have the required data either on its disk or in the
in-memory queue waiting to be committed to the disk. Either ways, BOSC2
returns the latest available data for every read disk request. Thus the proposed

110

technique ensures that BOSC2 delivers a consistent high throughput that is
largely unaffected by the presence of read, write or update disk requests in the
input workload.

5.3 Applications of BOSC

To demonstrate usefulness of BOSC across wide range of storage systems,
BOSC is applied to B+ tree and hash table because these two are amongst
the most used data structures in many storage systems. We also demonstrate
the application of BOSC in two real world applications:

Metadata management in a deduplication system’s garbage collector:
Garbage collection system in DSS shows orders of magnitude improve-
ment when BOSC mechanism is applied to handle update I/O requests
in its reference count array. These along with more details were discussed
in detail in Chapter 3.

Index management in a continuous data protection (CDP) system:
We built a CDP system called Mariner [188] that logs every block-level
disk write request on a storage system to a protected storage server and
creates a new version for a logical disk block whenever it is over-written.
Mariner maintains a map between each logical block number and its
physical block numbers, each corresponding to a distinct version. Upon
receiving a block-level disk write request, Mariner logs the write request’s
payload to create a new version and inserts a new entry into the map.
For larger indices, most of the map lookup and update operations require
disk IO access, and since most of these IO operations result in random
disk IOs, BOSC technique is applied to extract maximum performance
from Mariner. DISCO adopts Mariner to build its snapshot table (dis-
cussed in Section 1.2.3), but since a CDP is a generic technique referred
in the literature, we will address a generic CDP system in this work.
Section 5.4.5 gives a detailed overview of the performance evaluation on
Mariner.

5.3.1 BOSC-Based B+ Tree

We have successfully ported B+ tree index implementation from TPIE [189,
190] to the BOSC storage system prototype. TPIE is a software environment
written in C++ that is designed specifically to minimize the disk I/O cost in
very large data sets.

111

The BOSC-based B+ tree assumes all internal tree nodes and a small subset
of leaf nodes are memory-resident. To service a modification query that inserts,
deletes, or updates an index record, the BOSC-based B+ tree first traverses the
internal nodes to identify the leaf node containing the target index record, then
constructs a disk update request record and finally calls BOSC’s disk update
API using the target leaf node’s disk block address, the associated update
request record and the corresponding commit function as input arguments.
Upon receiving such a disk update request, BOSC logs the request to the
log disks first, commits the update to the target leaf node immediately if it
is currently cached in memory, and queues the update request record in the
corresponding in-memory request queue associated with the target leaf node
otherwise.

To ensure atomicity, the BOSC-based B+ tree acquires a lock on a leaf
node before modifying it and releases the lock after BOSC logs the associated
disk update request and queues it in the associated request queue. It is safe to
release the lock associated with the target leaf node of a modification query be-
fore physically committing the requested modification to disk, because BOSC
guarantees the effects of a modification query’s associated disk update request
be visible to all subsequent queries that access the same leaf node, even in the
presence of power failures.

An implicit assumption underlying the design of BOSC is that each disk
update request modifies only its target disk block. However, this assumption
does not always hold for B+ tree, because a modification to a tree node,
e.g., an insertion of a new index record, may trigger a restructuring of the
tree and thus modifications to other tree nodes. If a disk update request that
triggers additional disk updates is not processed immediately at the time when
it is queued but deferred until the time when it is committed to disk, a disk
block’s in-memory request queue may grow unbounded, because the triggered
restructuring may be recursive. This makes the update commit processing
time of a disk block less predictable and increases the response time of read
query requests because servicing read query requests requires scanning of per-
block update request queues.

To mitigate the performance overhead due to disk update requests that
trigger additional disk updates, the BOSC-based B+ tree maintains a count
for the effective number of index records in each leaf node, including the pend-
ing delete and insert operations and proactively triggers the split of a leaf or
internal node when the effective number of records in a tree node exceeds a
threshold, say 70%. If the leaf node to be split does not have any index records
on disk, all the node’s index records are in the associated update request queue
and the BOSC-based B+ tree performs the split without incurring any disk

112

accesses. If the leaf node to be split has some index records on disk, the BOSC-
based B+ tree defers the split operation until the time when these records are
brought into memory by the background BOSC thread.

5.3.2 Hash Table

We implemented two persistent Hash Table implementations: One is the
vanilla implementation based on the conventional disk read/write interface
and the other is built on top of BOSC. The vanilla implementation is a tra-
ditional disk based hash table implementation where for every hash key, the
corresponding bucket is a file stored on disk. For every disk write request corre-
sponding bucket is fetched into memory and updated with the given record and
then written back to disk. The BOSC based implementation synchronously
buffers the disk write requests in an in-memory queue along with logging to
disk and a separate background thread sequentially handles each bucket file on
disk. The naive callback function simply writes the record to bucket without
any fuss.

5.4 Performance Evaluation

5.4.1 Evaluation Methodology

We have built a complete Linux-based BOSC prototype. This prototype sup-
ports the update-aware disk access interface as well as sequential commit of
aggregated disk updates. On top of this BOSC prototype, we built a BOSC-
based B+ tree implementation, which is derived from TPIE and took about 2
man weeks.

To evaluate the efficiency of the BOSC-based B+ tree, we used the follow-
ing two synthetic workloads: (1) random insert workload, (2) random update
workload. In the random insert workload, records with randomly generated
key values, which fall between 0 and the pre-defined index size, are inserted
into an initialized index. The random update workload updates random ex-
isting records that are inserted by the random insert workload.

The evaluation testbed for the BOSC prototype is a Dell PowerEdge 600SC
machine with an Intel 2.4GHz CPU, 512KB L2 cache, 4GB memory, a 400MHz
front-side bus, two Gigabit Ethernet interfaces and five 7200-RPM IBM Deskstar
DTLA-307030 disks, four of which store the B+ tree index records and one of
which is dedicated to low-latency logging.

To be realistic, the initial B+ tree must contain a substantial number of
index records, on the order of tens of gigabytes of data. If we were to measure

113

the throughput of the BOSC-based B+ tree implementation against an initially
empty B+ tree, then the measurement results for initial inserts/updates would
be biased as they don’t include such critical components as lock acquisition
and tree traversal. However, it takes several hours to generate a properly
initialized multi-gigabyte B+ tree and we need dozens of initialized B+ trees,
each with a different node or record size, in the entire evaluation study. So
a fast B+ tree initialization method is needed. The major bottleneck in the
B+ tree initialization process is the disk I/Os required to put leaf node data
on disk. Because the actual contents of the leaf nodes are immaterial to our
evaluation study, we could completely skip these disk I/Os in the initialization
process and focus only on the creation of internal tree nodes. Therefore, when
a B+ tree is initialized this way, only its internal nodes are properly set up and
its leaf nodes are only allocated on disk but not actually initialized. During
the experiment run, whenever a leaf node is brought into memory for the first
time, its content is filled with proper values at that point. The values filled are
calculated on the fly, because the structure of the initialized B+ tree and the
key values in it are pre-determined. This B+ tree initialization method proves
invaluable to our evaluation study, because it saves us hundreds of hours, e.g.,
the time to initialize a 64-Gbyte B+ tree is reduced from 36 hours to under
50 seconds.

5.4.2 Logging disk, Data disk combinations

We measured both the insert throughput and read throughput to get an overall
measure of BOSC performance. We see that the performance is maximum for
the case of 1 Logging disk and 4 Data disks as shown in figure 5.3.

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150

In
se

rt
Th

ro
ug

hp
ut

 (r
ec

or
ds

/s
ec

on
d)

R
ea

d
Th

ro
ug

hp
ut

 (r
ec

or
ds

/s
ec

on
d)

Ratio of Logging disks : Data disks

Logging disk, data disk variations in BUSC

Insert throughput
Read throughput

Figure 5.3: Insertion and read throughput for various logging disk/data disk
variations

114

With the increase in data disks, insert throughput increases because when
we have more data disks we can do more data splicing and when I/O thread
commits records to disk, disk I/O happens on multiple data disks in parallel. In
case of adding more logging disks, we can bring more parallelism and increase
the logging throughput. But we already have a very fast logging operation
that can log with a latency of under 1 ms. The main bottleneck in BOSC is
I/O, which commits records to disk. Hence with a fixed amount of resources,
it’s preferable to dedicate more disks to data disks than to logging disks. But
on comparison between 2 logging disks, 3 data disks vs 3 logging disks, 2 data
disks: We see that latter has a better throughput in spite of lower number
of data disks. This is an anomaly, because the low read throughput gives
more time for IO thread to commit more records to disk. Hence by the time
read thread finishes and insertion thread starts, the per-block queue is almost
empty and hence the insertion thread doesn’t block for want of memory and
hence insert throughput looks to be high.

We also see that read throughput drops with the decrease in data disks.
There is only a slight drop in read performance and this is because of the
drop in cache hit percentage. We measure the cache hit percentage as the
number of times we find a record in per-block-queue in memory out of total
number of read requests issued. It is not straightforward to reason out the
read performance or drop in cache hits, because we cannot predict when the
I/O thread commits the records in per block queue. TPCC trace might want
to fetch some records and the I/O thread could have already committed that
record to disk. So this can happen even if the I/O thread is slow or fast. But
overall, we can guarantee that BOSC read performance does not deteriorate
very much compared to vanilla B+ tree. For the last 2 cases, read throughput
is very low because number of data disks are very low. When number of
data disks are very low, insertion thread operates very slowly and hence the
entire B+ tree operation proceeds very slowly. It’s observed that cache hit
percentage is 0.11% when data disks are too low. The ratio is around 0.4%
for the other cases. In another set of experiments, we will see how these
cache hit percentages keep changing with memory size. In a normal case, read
throughput should be around 50 records/second, but in the case of more log
disks and less data disks, we see that read throughput decreases to as low as
28-30 records/second. That’s because, cache hit ratio is very bad and also
read thread is in contention with IO thread, which is processing records very
slowly. Note that IO thread and read thread will frequently run in contention
for global B+ tree lock and hence lock contention increases a lot in the case
of slow read thread processing.

115

5.4.3 Overall Performance Improvement on B+ Tree

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200 400 600 800 1000 1200 1400 1600

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Buffer Memory (Unit:MB)

B+ Tree Using BOSC
Original B+ Tree

Figure 5.4: BOSC vs. Vanilla for Random insert workload. Comparison
between the record insert throughput of a BOSC-based B+ tree implemen-
tation and a vanilla B+ tree implementation based on the conventional disk
read/write interface under the random insert workload, when the total amount
of buffer memory is varied from 256 MB to 1.5 GB. The leaf block size is 64
KB, the record size is 64 B and the initial index size is 16 GB.

Figures 5.4 & 5.5 show the throughputs of a vanilla B+ tree implemen-
tation on a conventional disk read/write interface (with 5 data disks) and a
BOSC-based B+ tree implementation under the random insert and random
update workload respectively. The throughput of the vanilla B+ tree imple-
mentation increases only slightly with the buffer memory because the poor
locality in the random insert workload does not offer much room for leaf node
caching to be effective. In contrast, the throughput of the B+ tree implemen-
tation keeps improving with the increase in buffer memory size because more
pending insertion requests can be accumulated in each sequential commit cy-
cle. This improvement saturates at 1024 MB because the given buffer memory
exceeds the product of the new record insertion rate and the sequential com-
mit cycle length. When the buffer memory size is 1024 MB, the sustained
throughput of the BOSC-based B+ tree implementation under the random in-
sert workload reaches around 6410 requests/second, which is 20 times higher
than that of the vanilla B+ tree implementation using the conventional disk
read/write interface (311 records/second). When buffer memory is not the
performance bottleneck, the throughput of the BOSC-based B+ tree imple-
mentation is mainly bound by the physical disk I/O efficiency in the sequential
commit process.

116

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200 400 600 800 1000 1200 1400 1600

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Buffer Memory (Unit:MB)

B+ Tree Using BOSC
Original B+ Tree

Figure 5.5: BOSC vs. Vanilla for Random update workload. Comparison
between the record update throughput of a BOSC-based B+ tree imple-
mentation and a vanilla B+ tree implementation based on the conventional
disk read/write interface under the random update workload, when the total
amount of buffer memory is varied from 256 MB to 1.5 GB. The leaf block
size is 64 KB, the record size is 64 B and the initial index size is 16 GB.

The performance of the BOSC-based B+ tree implementation under the
random update workload is almost the same as that under the random in-
sert workload, because in both workloads the accesses to the index pages are
random and consequently their performance is bottlenecked by disk I/O. Fig-
ure 5.5 shows that the throughput improvement of the BOSC-based B+ tree
implementation over the vanilla B+ tree implementation is the same as in Fig-
ure 5.4 These two results conclusively demonstrates BOSC is as efficient for
an update-in-place workload as for an insert-only workload. In contrast, most
previous B+ tree optimizations [90, 93, 96] are only applicable to insert-only
workloads.

The two key performance-boosting features of BOSC are low-latency log-
ging and asynchronous sequential commit using multiple request queues. A
simpler alternative to BOSC’s low-latency logging is logging by appending to
the end of a file. A simpler alternative to asynchronous sequential commit
is to queue all update requests in a single queue and batch-commit the head
N requests in the queue according to their target disk block addresses. To
evaluate the performance contribution of each of these two features, we com-
pare the throughputs of the following four B+ tree variants. The first variant,
called One-Queue-Append, appends each incoming update request to the end
of a log file and inserts it into a single FIFO queue. The second variant, called
One-Queue-Trail, uses low-latency logging to log each incoming update request
and inserts it into a single FIFO queue. The third variant, called Multi-Queue-

117

Append, appends each incoming update request to the end of a log file and
inserts it into the per-block queue associated with its target block. The fourth
variant is BOSC, which uses low-latency logging to log each incoming update
request and inserts it into the per-block queue associated with its target block.

To demonstrate the performance benefits of BOSC under more realistic
workloads, we collected a trace of access requests to the index engine of the
MySQL DBMS under the TPC-C workload [191], where the number of ware-
houses is set to 20, 40, 60 and 80. Each trace entry includes the type (e.g.
read, update, delete and insert) and the key/data information of each request
issued to the index engine. For each warehouse number, we ran the TPC-C
workload for three hours to generate an index of the size 16 GB, 32 GB, 48
GB and 64 GB, respectively and collected the corresponding access request
trace. For each index access trace collected, we replayed the first half to create
an initial image of the database index and then replayed the second half and
measured the throughput of the input requests in the second half of the trace.

Figure 5.6 compares the throughputs of these four B+ tree implementa-
tion variants under four different TPC-C traces. Across all warehouse pa-
rameters, as expected the BOSC-based B+ tree implementation tops the four
variants with the best throughput. For example, when the warehouse number
is 80, the throughput of the BOSC-based B+ tree is 6058 requests/second, as
compared to 20 requests/second for the One-Queue-Trail scheme and 2386 re-
quests/second for the Multi-Queue-Append scheme. The performance gain of
BOSC over the Multi-Queue-Append scheme comes from low-latency logging,
which maximizes logging efficiency and thus the overall update throughput.
The fact that the BOSC-based B+ tree implementation is more than 2.5 times
faster than the Multi-Queue-Append variant (the Y axis is in log scale) shows
the importance of lower logging latency. The BOSC-based B+ tree imple-
mentation is more than 300 times faster than the One-Queue-Trail variant,
which shows the importance of sequential commit as enabled by multiple re-
quest queues is much more than low-latency logging. There is no noticeable
performance difference between the One-Queue-Trail variant and the One-
Queue-Append variant because both are bottlenecked by the excessive disk
access overhead associated with committing pending updates to disk.

Larger warehouse number corresponds to larger database index size and
lower access locality. The fact that the throughput of the BOSC-based B+ tree
implementation remains largely independent of the warehouse number suggests
that BOSC enables a B+ tree implementation to exhibit good throughput
without relying on the input workload’s locality characteristics. Overall, under
the TPC-C workload, the BOSC-based B+ tree implementation is 300 times

118

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (U

ni
t:R

eq
ue

st
s

P
er

 S
ec

on
d)

Number of Warehouses

One-Queue-Append
One-Queue-Trail

Multi-Queue-Append
BOSC

Figure 5.6: Throughput comparison among the BOSC-based B+ tree implemen-
tation, the B+ tree implementation with multiple request queues and append-only
logging, the B+ tree implementation with one request queue and append-only log-
ging and the B+ tree implementation with one request queue and low-latency logging
under the four index access traces collected by running the TPC-C workload with
different warehouse numbers against MySQL. The Y axis is in log scale. The leaf
node size is 64 KB and the buffer memory is 1 GB.

faster than that of the vanilla B+ tree implementation when there are 80
warehouses and is 180 times faster when there are 20 warehouses.

Sensitivity Study

In this section, we evaluate the impacts of the leaf node size, the index record
size, the total index size and the buffer memory size on the performance of
the BOSC-based B+ tree implementation. Each experiment run starts with a
fixed-sized initial B+ tree and continues with index record insertions/updates
until the first sequential commit cycle is completed. At that point, we measured
the total number of insertions/updates and the elapsed time.

In evaluating the impact of different parameters on the insert/update rate,
there are 3 factors to consider: (1) the disk I/O efficiency, which reflects how
effectively the background commit thread removes unnecessary disk access
overhead, (2) the degree of batching, which determines how many requests
over which each disk I/O operation’s cost is amortized, and (3) the CPU
overhead associated with traversing from the B+ tree’s root to the target leaf
node of a given insert/update request and queuing pending requests.

The throughputs of the BOSC-based B+ tree under the random insertion,
sequential insertion and clustered insertion workload when the leaf node size
varies are shown in Figure 5.7. The throughput performance of the BOSC-
based B+ tree index under the sequential insert workload is much higher than

119

 0

 5000

 10000

 15000

 20000

 25000

 16 64 256 1024

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Leaf Block Size (Unit:KB)

Random Workload
Sequential Workload

Clustered Workload(Cluster Length: 32)

Figure 5.7: Effect of leaf node size variation on the throughput of a BOSC-based B+

tree implementation under the sequential insertion, clustered insertion and random
insertion workload. Leaf node size is varied from 16 KB to 1024 KB. The X axis
is in log-scale. The Y axis is the number of new records inserted per second. The
memory allocated for all per-block request queues is 1 GB, the record size is 64 B
and the initial index size is 64GB.

that under the random insert workload for two reasons. First, the average
number of pending requests in each queue at the time of commit is higher under
the sequential insert workload than that under the random insert workload.
Second, the CPU overhead of processing insert/update requests is lower under
the sequential insert workload than that under the random insert workload
because of fewer L2 cache misses. For the random insert workload, it takes
around 140 micro-seconds to complete an insertion request, whereas it takes
only 67 micro-seconds for the sequential insert workload.

As the size of the test B+ tree index’s leaf block is increased, more index
records can be packed into each leaf block, the degree of batching in terms of
number of pending requests per disk block fetched is increased and so is the
throughput of the BOSC-based B+ tree index, as shown in Figure 5.7. This
effect is more pronounced under the clustered and sequential insert workload
than under the random insert workload, because there is not much batching
in the random insert workload anyway.

Figure 5.8 shows that as the size of the test B+ tree’s index record is in-
creased, fewer index records can fit within each leaf block and the degree of
batching in terms of number of pending requests per disk block is decreased.
The throughput degradation for the clustered insert and random insert work-
load is directly correlated with the decrease in the degree of batching, but that
for the sequential insert workload is mainly due to additional L2 cache misses
during insert request processing.

120

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800 900 1000 1100

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Record Size (Unit:B)

Random Workload
Sequential Workload

Clustered Workload(Cluster Length: 32)

Figure 5.8: Effect of index record size variation on the throughput of a BOSC-
based B+ tree implementation under the sequential insertion, clustered insertion
and random insertion workload. Index record size is varied from 64 B to 1024 B.

If both leaf block size and index record size are increased while keeping
their ratio constant, the number of index records per leaf block remains the
same, but the degree of batching in terms of number of pending requests per
fixed-sized disk I/O is still decreased, e.g., the effective number of pending
requests committed per 100-KB disk I/O decreases as the leaf block size is
increased from 8KB to 64KB, and so is the throughput of the BOSC-based
B+ tree index, as shown in Figure 5.9.

As the total B+ tree index size is increased, the average number of pending
requests accumulated in each per-block queue within one sequential commit
cycle becomes smaller, the degree of batching at the time of commit is thus
decreased and so is the throughput of the BOSC-based B+ tree index, as
shown in Figure 5.10. The throughput impact of the index size is less obvious
under the sequential insert workload because the degree of batching remains
largely constant regardless of the index size. Figure 5.10 also shows that the
performance of the BOSC-based B+ tree implementation under the random
update workload is almost the same as that under the random insert workload,
because in both cases accesses to the index pages are random and consequently
their performance is bottlenecked by disk I/O.

As the buffer memory for per-block request queues is increased, the number
of pending requests at the time of commit is increased, the degree of batching
is increased and the overall throughput under the random insert and clustered
insert workload are increased as shown in Figure 5.11. The performance impact
of buffer memory size is minimal for the sequential insert workload because its
degree of batching is already quite high and largely unaffected by the buffer
memory size.

121

 0

 5000

 10000

 15000

 20000

 25000

 64 256 512 1024

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Record Size (Unit:B)

Random Workload
Sequential Workload

Clustered Workload(Cluster Length: 32)

Figure 5.9: Effect of varying both the index record size and leaf block size on the
throughput of a BOSC-based B+ tree implementation under the sequential insertion,
clustered insertion and random insertion workload. The index record size is varied
from 64 B to 1 KB and the leaf node size also varies proportionally so that the ratio
between the two is fixed.

Read Query Latency

Although BOSC is designed to optimize the throughput of low-locality update-
intensive workloads, it does not degrade the latency of read accesses to database
indexes built on top it. This is unusual, because many previously proposed
B+ tree implementations optimized for the same workload tend to trade better
update throughput for longer read latency.

Index Point Query Range Query
Structure (Unit: msec) (Unit: msec)

With Without With Without
BOSC BOSC BOSC BOSC

B+ Tree 10.20 10.19 15.75 15.76

Table 5.1: The average latency of Point and Range queries for the B+ tree imple-
mentations with and without BOSC. The leaf block size for all index structures is
4 KB and the buffer memory is 256 MB.

Table 5.1 shows the average latency of 100 Point and Range queries against
a pre-populated B+ tree using the B+ tree implementations with and without
BOSC. For point queries, the key values are generated randomly from the
underlying key space. For range queries, the starting key values are generated
randomly from the key space and the maximum range size is fixed at 1,000.

122

 0

 5000

 10000

 15000

 20000

 25000

 16 32 48 64 80 96 112 128

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Index Size (Unit:GB)

Random Insert Workload
Random Update Workload
Sequential Insert Workload

Clustered Insert Workload(Cluster Length: 32)

Figure 5.10: Effect of index size variation on the throughput of a BOSC-based
B+ tree implementation under the sequential insertion, clustered insertion, random
insertion and random update workload. The initial index size is varied from 16 GB
to 128 GB.

There is no statistically significant difference between the average read query
latency of the BOSC-based B+ tree implementation and that of the vanilla B+

tree implementation, even though the read-path processing in BOSC requires
an additional step of searching the target block’s in-memory request queue.
BOSC’s caching has little effect on it’s read performance because the locality
in the input workload is relatively low, as evidenced by the relatively large
average latency. This result demonstrates that the update/insert performance
gain of BOSC does not come at the expense of read performance degradation,
which is often the case for other B+ tree optimizations [90, 93, 96].

5.4.4 Overall performance improvement on Hash Table

We applied the same random insert and update workload used in the evalu-
ation of B+ tree implementations to evaluate two persistent Hash Table im-
plementations: One is the vanilla implementation based on the conventional
disk read/write interface and the other is built on top of BOSC. Each index
record inserted is 16 bytes long and includes an 8-byte key. The hash table
used in this experiment occupies a 20-GB disk partition and is initialized with
a sequential insert workload whose key value starts with 0 and is increased
with an increment of 1,000,000 until 10 Gbytes worth of records are inserted.
Each experiment run consists of insertions of new records into an empty hash
table until 8 Gbytes worth of new records are inserted.

Given a fixed amount of buffer memory, we used the memory to cache the
hash table’s data pages in the case of the vanilla hash table implementation

123

 0

 5000

 10000

 15000

 20000

 25000

 200 400 600 800 1000 1200 1400 1600

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Buffer Memory (Unit:MB)

Random Workload
Sequential Workload

Clustered Workload(Cluster Length: 32)

Figure 5.11: Effect of buffer memory size variation on the throughput of a BOSC-
based B+ tree implementation under the sequential insertion, clustered insertion
and random insertion workload. The BOSC’s buffer memory is varied from 512 MB
to 1536 MB.

and to hold per-block request queues in the case of the BOSC-based hash table
implementation. We used the random insert workload and set the scan size
to 256 KB. Figure 5.12 shows that the throughput of the vanilla hash table
implementation increases slightly with the buffer memory size because larger
buffer memory size improves the buffer cache hit ratio of disk accesses. In
contrast, the throughput of the BOSC-based hash table implementation with
a disk I/O unit size of 256 KB improves dramatically with the increase in
the buffer memory size until 960 MB, at which point the number of pending
insertion requests it can batch per disk I/O unit levels off.

When the buffer memory size is smaller than 64 MB, the average queue
length of the BOSC-based hash table implementation is 1 and so the perfor-
mance gain of BOSC originates mainly from sequential disk I/O. When the
buffer memory size is 960 MB, the throughput of the BOSC-based hash ta-
ble implementation under the random insert workload reaches around 23006
requests/second, which is more than 50 times higher than the vanilla hash ta-
ble implementation (445 records/second). Under the random insert workload,
when the buffer memory size is 960 MB, the average amount of time required
to read and write a disk I/O unit is 16.4 msec and the number of insertion re-
quests committed per 4-KB page is 6, therefore the update throughput should
be 6∗256KB/4KB

16.4·10−3second
= 23414 requests/second, which approximately matches the

empirical throughput measurement.
Figure 5.13 shows the throughput improvement of the BOSC-based hash

table implementation over the vanilla hash table implementation under the
random update workload is identical to that under the random insert work-

124

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Buffer Memory (Unit:MB)

Hash Table Using BOSC
Original Hash Table

Figure 5.12: Comparison between the record insertion throughput of a BOSC-
based Hash Table implementation and a vanilla Hash Table implementation based
on the conventional disk read/write interface under the random query workload
when the total amount of buffer memory is varied from 1 MB to 2 GB. Both X and
Y axes are log-scale. The scan size is 256 KB.

load. This once again demonstrates that BOSC is as effective in improving the
performance of update-in-place workloads as in improving the performance of
insert-only workloads.

5.4.5 Application of BOSC to Mariner

To measure the overall disk write logging throughput of Mariner, we ran a
kernel thread inside Mariner that constantly generates new 4KB block ver-
sions, with their logical block numbers uniformly and randomly distributed
in [0, 241]. During the experiment run, there are totally 20 GB worth of new
block versions logged and 935 MB (20GB ∗ 24

512
) worth of indexed map entries

inserted. The buffer memory for BOSC’s per-block update request queuing is
set to 64 MB and the leaf page cache for TPIE is also set to 64 MB.

The disk write logging performance of Mariner when the indexed map is
not updated at all is mainly determined by the overhead of logging new block
versions and thus represents its performance upper bound.

As shown in Figure 5.14, compared with the upper bound, the throughput
degradation due to the indexed map update is up to 95% when the indexed
map is implemented as a vanilla B+ tree (i.e. TPIE) is up to 80% when the
indexed map is implemented as a B+ tree using file-level append-only logging
and per-block request queuing and is no more than 15% when the indexed
map is implemented as a BOSC-based B+ tree. This result demonstrates that
the BOSC-based B+ tree implementation successfully removes indexed map

125

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Th
ro

ug
hp

ut
 (U

ni
t:R

ec
or

ds
 P

er
 S

ec
on

d)

Buffer Memory (Unit:MB)

Hash Table Using BOSC
Original Hash Table

Figure 5.13: Comparison between the record update throughput of a BOSC-based
Hash Table implementation and a vanilla Hash Table implementation based on the
conventional disk read/write interface under the random query workload when the
total amount of buffer memory is varied from 1 MB to 2 GB. Both X and Y axes
are log-scale. The scan size is 256 KB. Note that unlikes Figure 5.12, the input
workload consists of update operations.

update as a performance bottleneck of Mariner. Across these three variants
the throughput degradation decreases with the increase in the inter-request
interval, because the additional indexed map update overhead becomes less
significant when the input load is less demanding. In terms of absolute per-
formance, the disk write logging throughput of the Mariner version using a
BOSC-based B+ tree is more than 45 times higher than that of the Mariner
version using a TPIE-based B+ tree and is more than 3 times better than
that of the Mariner version using a BOSC-based B+ tree without low-latency
logging.

5.5 Summary

Update-itensive random disk I/O workloads are very common in a storage sys-
tem like DISCO. With a conventional disk access interface, the performance
of the entire storage system drops down drastically. Currently no good solu-
tion can effectively handle such workloads without resorting to special caching
hardware such as battery-backed DRAM. We propose a novel disk access inter-
face called BOSC, that describes a simple but effective solution to the random
update disk I/O problem. BOSC provides a new disk access interface to the
storage system, and an efficient batched processing strategy that converts the
random updates to mostly sequential disk I/Os.

126

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500

Th
ro

ug
hp

ut
 (U

ni
t:

IO
P

S
)

Inter-Request Interval (Unit: us)

Without index updating
With BOSC index updating

With append-only logging and per-block queue
With TPIE index updating

Figure 5.14: The block-level logging throughputs of four Mariner variants: The first
variant does not update any index; the second variant updates the map index using
a BOSC-based B+ tree; the third variant updates the map index using a B+ tree
that uses append-only logging and multiple per-block queues; The fourth variant
updates the map index using a vanilla B+ tree.

We have successfully built a BOSC prototype that embodies these two
ideas and demonstrated how BOSC eliminates the disk bottleneck issue in
Sungem’s garbage collector and improves the overall performance of DISCO’s
backup operation. We also empirically demonstrated the efficiency of BOSC by
showing that the update request throughput of BOSC-based B+ tree and hash
table implementations are more than an order of magnitude faster than that
of their vanilla versions built on top of the conventional disk access interface.
In summary, the specific research contributions of this work include:

• A new disk access interface that supports disk update as a first-class
primitive and enables the specification of application-specific callback
functions to be invoked by the underlying storage system,

• A highly efficient storage system architecture that effectively commits
pending update requests in a batched fashion and drastically improves
the physical disk access efficiency by using mostly sequential disk I/O
to bring in the requests’ target disk blocks, while ensuring the same
durability guarantee as servicing the update requests synchronously.

127

Chapter 6

High Throughput Low Latency
Disk Logging

A well-known technique to enhance the throughput of write-intensive disk-
based data processing systems is to synchronously log the incoming updates
to disk and asynchronously commit them to their corresponding disk locations
in a way that is optimized for the commit performance. We saw in Chapter 5
how the BOSC-based storage system is designed to efficiently adopt such a
technique. The user-perceived response time of an update request to such sys-
tems is determined by the latency of the request’s associated logging operation,
because the update request is generally considered done when its logging step
is completed.

An ideal disk logging system is one that provides high throughput and
low latency for logging operations with small payloads, e.g. 64 or 128 bytes.
Small-payload logging operations are important because many applications
only need to log the information associated with high-level operations, such
as an update to a record in a B-tree page or a hash table bucket, and the size
of this information is typically small. Low logging latency is also crucial, be-
cause it directly impacts the user-perceived response time and because many
applications are designed to be latency-bound, i.e., they cannot produce more
requests unless previously submitted requests are completed. Such applica-
tions are very common in online transaction processing (OLTP) systems. We
even saw in Chapter 5, with examples of various applications that exhibit such
a workload, and all these applications require a fast logging system. There are
several components in DISCO, that benefits the most with such a fast disk
logging system. DMS maintains a set of disk-based mapping tables to trans-
late addresses between the three addressing namespaces in DISCO (discussed
in Section 1.2.1) and the size of each entry is typically less than 128 bytes.
The requests in the input workload to these mapping tables have extremely

128

low locality and require very low latency processing because these requests
correspond to real-time disk access requests on the VDs. Therefore, in order
to ensure good overall performance of the SDDS system, the DMS has to pro-
cess such a low locality workload with high throughput and low latency, which
in turn requires the disk logging system to address these needs. As another
example, the P-array in garbage collection (GC) component of Sungem (dis-
cussed in Section 3.3.2) maintains a large disk-based metadata index to store
metadata for each physical block in the entire storage system. Once again the
input workload has extremely low locality and is update-intensive, and hence
GC uses BOSC technique to process such a workload, which in-turn requires
a high throughput low latency disk logging system.

Because logging involves append operations and thus sequential accesses,
the conventional wisdom is that optimizing the performance of logging oper-
ations is relatively straightforward. However, our research suggests that it is
actually not at all trivial to achieve both high throughput and low latency for
logging operations, especially for fine-grained ones and has identified three key
challenges. First, there is a mismatch between fine-grained logging and mod-
ern file systems. More concretely, because most modern file systems use 4KB
block as the basic unit of reading and writing, logging a 64-byte or 128-byte
record to a log file may require a read of the log file’s last block and a write of
the same block after appending the log record to it. Second, there are multiple
steps on the data path from the system call interface to the disk platter that
a logging operation’s payload needs to traverse, and some of these steps incur
a per-operation overhead. Therefore, it is essential that consecutive logging
operation requests be properly merged so as to effectively amortize these per-
operation overheads and still rein in the average logging latency. Third, to
make the best of the raw data transfer capability of modern disks, it is ab-
solutely crucial to transform high-level logging operation requests to low-level
disk access requests in such a way that the logging disks see an un-interrupted
stream of disk write requests with consecutive target addresses. Without such
careful planning and scheduling, the logging disks may end up sitting idle most
of the time.

Rising to these challenges, we devise a novel disk logging system archi-
tecture called Beluga, which features a floating logging operation API that
allows an application to perform a logging operation without specifying the
target address of the operation’s payload, and a highly streamlined disk write
pipeline that aggregates logging operation requests optimally and moves ag-
gregated operations through the pipeline in such a way that makes full use
of the disk’s raw data transfer capability. Empirical measurements on a fully
operational 3-disk Beluga prototype show that it can achieve 1.2 million 256-

129

byte logging operations per second, with each logging operation’s latency kept
below 1 msec. Moreover, even when logging operation requests arrive sparsely,
Beluga is still able to achieve sub-msec logging operation latency. To the best
of our knowledge, this is the best disk logging performance ever reported in
the literature.

Beluga is designed as a building block for constructing high-level logging
and recovery subsystems, and provides the following service abstraction to
its applications such as BOSC-based storage system, file system or DBMS:
a cyclic persistent log device which is large enough (tens of gigabytes) that
FIFO-based garbage collection works adequately. That is, by the time Beluga
reaches the end of an application’s log device, the log records in the beginning
of the log device are no longer needed and therefore Beluga could wrap around
and continue logging from the beginning. In terms of functionalities, at run
time, Beluga synchronously writes the payload of each logging operation to
disk and at recovery time, Beluga retrieves the active portion of a recover-
ing application’s log device and returns them to the application. However,
Beluga cannot interpret the payloads of retrieved log records because the size
and structure of each application-specific log record is completely opaque to
Beluga. Instead, it is the application’s recovery subsystem that performs such
interpretation on the log records returned by Beluga. Similarly, a Beluga ap-
plication needs to decide what information to log, e.g. metadata updates or
checkpoint summary and then utilizes Beluga’s service to log them to disk. In
summary, Beluga writes log records to disk and reads them back at recovery
time; how the log records are composed and how they should be interpreted
are up to the applications using Beluga.

Although solid-state disk (SSD) is a promising technology for disk-intensive
workloads, it is not necessarily a better fit than hard disks (HDD) for logging
operations for the following reasons. First, because mainstream SSDs start
to use multi-level cells, the per-cell write count limit is reduced to 10000,
which may not fare well with the write-intensive nature of logging operations.
Second, HDDs command a significant per-byte cost advantage over SSDs and
make it more feasible to trade space for performance by giving abundant space
to each log device so as to reduce the garbage collection overhead to the min-
imum. Through this research, we demonstrate that HDD-based disk logging
is still among the most cost-competitive choice for logging applications.

6.1 Vanilla Disk Logging

Our first attempt was to write a user-level Linux application that synchronously
appends the payload of every incoming logging operation request to a log file.

130

File/Raw Threads Latency Throughput
File 1 14.149 25.3
File 8 14.125 25.3
Raw 1 8.308 119.8
Raw 8 8.312 119.8

Table 6.1: Latency and throughput of file-based and device-based (Raw) disk log-
ging. The logging operation request size is 512 bytes. Throughput is measured in
terms of number of logging operations per second and latency in milliseconds.

As shown in Table 6.1, where the logging payload size is 512 bytes, the aver-
age logging latency of this disk logger is 14.1 msec and its logging throughput
on a single disk is lower than 30 logging operations per second even with 8
threads issuing logging operation requests concurrently. A closer investiga-
tion reveals that file-based logging entails several drawbacks. First, file system
caching introduces latency penalty due to extra data copying. This problem
could be lessened by specifying the O DIRECT option while opening the log file,
which bypasses file system caching altogether. Second, each logging operation
is embodied by a file write system call, which could trigger multiple disk I/Os
because of accesses to file system metadata. Our measurement suggests that
on average 5.2 disk I/Os are triggered by each file-based logging operation.
Third, because the basic data read/write unit of the file systems is 4KB and
caching is disabled for reasons mentioned above, a file system write operation
may require a read of the disk block containing the write operation’s target
address range before the write if the logging operation payload is smaller than
4KB.

Our next attempt was to implement the logger as a Linux application
that synchronously appends the payload of every incoming logging operation
request to a raw device. This device-based logging design removes the first
two problems of file-based logging by construction. The average number of
disk I/Os per device-based logging operation is exactly 1. It also mitigates
the third problem by using 512 bytes as its minimum data read/write unit.
But, if the logging operation request size is smaller than 512 bytes, either
an additional read is still needed or one disk sector is used in each logging
operation. As shown in Table 6.1, device-based disk logging increases the
logging throughput on a single disk to 120 logging operations per second when
8 threads are used. However, the average logging latency is still quite high, 8.3
msec. This high latency mainly comes from the fact that consecutive logging
operations are issued synchronously. More concretely, the N + 1-th logging
operation is issued only after the N -th logging operation is completed. This

131

means that by the time the disk I/O for the N+1-th logging operation reaches
the disk, it misses its target sector and needs to wait for a full rotation, which
is roughly 8.3 msec for a 7200 RPM disk drive.

Both device-based and file-based logging are based on top of Linux’s block
I/O layer, which abstracts the physical block I/O devices and presents a unified
interface to high-level software. The block I/O layer maintains a request queue
for each device to hold incoming block I/O requests destined to that device and
whenever possible merges every incoming request with some existing requests
already in the queue if their target address ranges are adjacent to each other.
In addition, the block I/O layer also re-orders requests in the queue to either
improve the device’s throughput or deliver differentiated quality of service
(QoS) to different processes.

6.2 Toy-Train Disk Logging

Beluga is a highly efficient disk logging system designed to address all the
deficiencies described earlier and has successfully been implemented in the
Linux kernel 2.6.39.1.

6.2.1 Conceptual Model

Our objective is to translate the raw data transfer bandwidth of modern disks
into high throughput and low latency for logging operations. Towards this
goal, we develop a toy-train disk logging technique, which constantly submits
new disk write requests with consecutive target disk addresses to the logging
disk so as to keep the disk fully occupied, even in the absence of application-
level logging operation requests. This disk logging model makes it possible for
the disk I/O software to have a tight grip of the disk head position without
requiring intimate knowledge of the disk internals as in such previous efforts as
Trail [107]. The proposed disk write pipeline is analogous to a toy train moving
constantly around a closed circuit with two stations, with cargo uploaded in
one station and offloaded in another. Even when no cargo is aboard, the
train is still running around the circuit at full speed. In addition, this train
actually never stops, because it can upload and offload cargo on the fly without
slowing down. Since Beluga builds such a tightly controlled pipeline, it needs
a dedicated logging disk without sharing it with other data workloads.

The throughput and latency performance of the proposed toy-train disk
logging mechanism is excellent when the input load is dense (input logging
request queue is full all the time) and sparse (input logging request queue is
empty most of the time). However, when the input load is sparse, Beluga

132

raises two concerns. First, Beluga’s constant disk writing model increases the
wear of disk platters. Second, Beluga’s constant disk writing model increases
the power consumption of logging disks. The first concern turns out to be a
non-issue because of the huge capacity of modern disks. For example, given a
2-TB disk, if Beluga is able to write 100MB/sec, it means a given disk sector
is overwritten once every 20000 (2TB/(100MB/sec)) seconds, or fewer than 5
times per day, or fewer than 2000 times per year, or fewer than 10000 times
per 5 years, a disk’s typical expected life time. Therefore, the level of wear
induced by Beluga is well within the wear limit of modern hard disks.

The power consumption concern, however, is justified, because a disk’s
power consumption differs significantly when the disk head is idle and when
it performs a read/write operation [192]. To reduce the additional power
consumption when the input load is sparse, we develop a low-power version of
Beluga, whose details are explained in Section 6.2.5.

6.2.2 Application Programming Interface

Beluga is designed to be a server’s disk logging subsystem that supports log-
ging operations from applications running on the same server. Its application
programming interface (API) consists of the following three functions:

• log open(log name) takes a character string as input and returns a de-
scriptor to a new log device, allows an application to give its log a sym-
bolic name and associates the log’s name with a log device’s descriptor
that later is used in logging operations.

• log write(device descriptor, buffer ptr, length) appends the byte
sequence defined by buffer ptr and length to the end of the log device
denoted by device descriptor.

• log read(device descriptor, buffer ptr, length) allows an appli-
cation to read backwards from the end of the log file denoted by device descriptor

argument a byte sequence of size length to the buffer area pointed to
by buffer ptr.

To minimize data copying overhead for fine-grained (smaller than 512
bytes) disk logging, Beluga bypasses the file system and raw device access inter-
faces available in Linux and uses the ioctl interface to implement log read()

and log write(). More concretely, the payload of a logging or log write op-
eration is passed directly to a Beluga kernel module above Linux’s block I/O
subsystem after entering the kernel. Upon receiving a logging operation’s pay-
load, Beluga prepends a management header to it, inserts the result into an

133

accumulation queue and later on at an appropriate moment submits the accu-
mulated result as a single disk write request to Linux’s block I/O subsystem.
The per-log-record management header is application-independent and con-
tains the log record size, a valid bit, the associated log device descriptor and
a per-device sequence ID. The valid bit holds 0 if a record is dummy or 1 if
its issued from an user application. The actual contents of the log records are
opaque to Beluga. With this arrangement, Beluga could combine the payloads
of logging operations to different logging devices, each potentially using a dif-
ferent log record size, into a single physical disk write request and submits it
to Linux’s block I/O layer.

Beluga multiplexes multiple log devices, each associated with a different
application, onto a physical disk, possibly in an interleaved fashion. When a
server equipped with a Beluga disk logging subsystem fails and restarts, for
each log device Beluga first identifies the youngest log record by performing
a binary search of the underlying logging disk(s) based on the per-log-record
management headers and then waits for the applications’ recovery components
to read back their respective log devices for further recovery processing. Beluga
itself does not interpret log records and therefore is not involved in application-
level recovery processing other than retrieving the requested log records.

Beluga assumes that the log device of each logging application is provi-
sioned with sufficient storage space that the application could simply treat
its log device as a cyclic FIFO buffer without applying any garbage collection
mechanism. For example, a 500GB log device could hold the payloads of up to
1 billion 512-byte logging operations without overwriting any old log records,
which is large enough to allow Beluga to simply wrap around a log device
when it reaches the device’s end. To accommodate applications that need
longer retention period for their log records, one needs to provision atleast two
disk arrays, so that while Beluga is logging on one disk array, one can archive
logging records in the other disk array to another medium.

6.2.3 Streamlined Disk Write Pipeline

A major optimization goal of the Beluga project is to convert as much as
possible a disk’s raw data transfer rate into a proportionally high I/O rate,
e.g., turning a byte rate of 100Mbytes/sec into an I/O rate of 100000 1KB-
writes per second. The key to enable such efficient conversion is to feed the
disk with write requests with consecutive start addresses in such a way that
the on-disk controller constantly puts data onto the disk platters nonstop.
Only disk drives that support command queuing could service one request
after another without gap between them. Most modern SATA drives come
with an efficient command queuing implementation called Native Command

134

Queuing (NCQ) [193]. NCQ provides three optimization mechanisms. First,
it queues disk access commands in the disk drive and makes it possible for the
on-disk controller to immediately service the next command in the queue when
the previous command is completed. Second, NCQ batches and/or schedules
queued commands to reduce the number of commands that need to be serviced
and the disk access overhead. Third, NCQ also supports interrupt coalescing,
which aggregates multiple completion interrupts and signals the host once for
them to reduce the total interrupt processing overhead.

The keys to maximize the logging operation rate are (a) properly batch-
ing incoming logging operation requests to balance between latency and data
transport efficiency and (b) constantly moving data to the disk platter. To em-
body these two ideas, we devise a four-stage pipeline to process fixed-sized disk
write requests, as shown in Figure 6.1. In the first stage (Accumulate), high-
level logging operations are inserted in the aggregate queue and aggregated
into low-level disk write requests. In the second stage (Submit), aggregated
disk write requests are copied from the host memory to the on-disk queue
managed by NCQ. In the third stage (Transfer), the payload of a queued disk
write request is transferred to its associated location on the disk platter. In
the fourth stage (Complete), the disk delivers a completion interrupt to the
host for every completed disk write request, which in turn triggers additional
processing on the host to complete each high-level logging operation associ-
ated with the completed disk write request. In this pipeline design, the on-disk
controller takes care of the second half of the Submit stage, the Transfer stage
and the first half of the Complete stage and the rest is fully controlled by the
host software. Because the on-disk controller is opaque to the host software,
the cycle time of this pipeline is mainly determined by the Transfer stage.
Of course, the time taken by the Transfer stage depends on the size of the
disk write request’s payload. So a major design issue here is to determine
the optimal disk write request size so that the four stages in this pipeline are
balanced.

When the payload of the N -th disk write request is fully transferred to
the disk platter, the on-disk controller starts the transfer of the N + 1-th
request’s payload to the disk platter and sends a completion interrupt to the
host, which arranges a DMA to move the payload of the N + 2-th request’s
payload into the disk. If the N + 2-th request’s payload does not reach the
disk in time, i.e., before the transfer of the N + 1-request’s payload is done,
the on-disk controller won’t be able to transfer the N + 2-th request’s payload
immediately after completing the transfer of the N + 1-th request’s payload,
thus wasting a full rotation delay. Careful selection of optimal disk request
size avoids such a scenario and ensures smooth transitions in the pipeline.

135

AGGREGATE QUEUE
	

USER

KERNEL

PER DEVICE KERNEL REQUEST
QUEUE

ACCUMULATE

SUBMIT

SOFTWARE

HARDWARE

NCQ

TRANSFER COMPLETE

BOTTOM HALF

INTERRUPT

INCOMING LOGGING REQUESTS

Figure 6.1: The proposed four-stage disk write pipeline includes Accumulate, Sub-
mit, Transfer and Complete and the queues involved are aggregate queue, per-device
kernel request queue in the block I/O layer and on-disk NCQ queue.

136

To avoid such waste, one must minimize the critical path, which includes
the interrupt generation on the disk, the interrupt processing on the host
and the payload DMA. To minimize the interrupt generation time, NCQ’s
interrupt coalescing must be disabled. To minimize the impact of the interrupt
processing time, the host software must be able to schedule the payload DMA
as soon as possible after receiving the hardware interrupt. Although the raw
data rate of modern PCIe bus (Gen2 or Gen3) is higher than that of the
disk transfer bandwidth, the granularity of each disk write request must be
sufficiently high to amortize the non-trivial fixed overhead that each PCIe bus
transaction incurs. We discuss the optimal granularity or batch size for disk
write requests in the Performance Evaluation section.

Because NCQ itself could also batch and schedule disk write requests in
the on-disk queue, it could potentially increase the time taken by the Transfer
stage by batching adjacent requests, or destroy the sequentiality of requests
serviced consecutively because of its rotation delay-aware scheduling. Suppose
there are five 64-KB disk write requests in the on-disk queue. It is possible that
NCQ’s scheduling logic may choose to service the fifth request after servicing
the first request because the fifth request is closer to the first request than the
second request. However, doing so seriously disrupts the pipeline. Therefore,
among the three optimization mechanisms that NCQ provides, Beluga only
wants its command queuing mechanism, and has to do away with the other
two mechanisms.

6.2.4 Dense-Mode Logging

In the process of designing Beluga, we distinguish between dense-mode logging,
in which high-level logging operations arrive at the logging subsystem at a rate
equal to its maximum throughput and sparse-mode logging, in which high-level
logging operations arrive at the logging subsystem slower than its maximum
throughput. The design goal for dense-mode logging is both high logging
throughput and low logging latency, whereas the design goal for sparse-mode
logging is low logging latency only.

When Beluga receives high-level logging operations, it queues them in its
buffer area and batches them into low-level aggregated disk write requests
of optimal batch size. The optimal batch size for a disk write pipeline on a
server depends on its PCIe bus and disk interface (SATA, SAS or SCSI), which
affect the Submit stage time and the RPM rating of the disk, which affects
the Transfer stage time. In fact, because the Transfer stage time for a disk
write request of a certain size may vary depending on where its target address
lies on the disk surface, the optimal batch size of a disk write pipeline changes
as the pipeline traverses different parts of the disk surface. More specifically,

137

because outermost tracks (closer to track 0) have higher sector density than
innermost tracks, the former’s data transfer rate is higher than the latter’s.
Therefore, the optimal batch size is expected to increase as the target addresses
of the disk write requests issued by Beluga increase. Then when a completion
interrupt arrives, Beluga dispatches an aggregated disk write request to Linux’s
block I/O subsystem. To prevent the merging and scheduling functionalities
of Linux’s block I/O subsystem from getting in the way, Beluga turns on the
no-merge option and chooses the Noop I/O scheduler. Essentially, Beluga
does its own buffering and batching according to the streamlined disk write
pipeline design and uses Linux’s block I/O subsystem as a dumb pipe to push
the aggregated disk write requests through to the disks.

To turn off the scheduling functionalities of NCQ, Beluga sets the NCQ
queue length to 2, so that the on-disk controller does not have more than one
choice at a time.

An implementation challenge for dense-mode logging is how to shorten the
critical path described earlier, more specifically, how to quickly transfer the
payload of the disk write request that is the next to be dispatched to the
disk. The Linux kernel uses a separate kernel thread to dispatch the next disk
write request and transfer its payload to the on-disk queue. This implementa-
tion introduces additional delay because after a completion interrupt arrives
at the host, control goes through the interrupt handler, the OS’s scheduler,
the software interrupt logic, possibly other kernel threads and eventually the
request-dispatching kernel thread. To remove these delays in this implemen-
tation, we attempted to modify the Linux kernel so that it dispatches the
next disk write request from the aggregate queue directly in the context of the
completion interrupt handler, thus more tightly tying a completion interrupt
with the payload movement it triggers. While conceptually straightforward,
it requires a non-trivial modification because in Linux, functions that could
potentially block, such as submit bio, are not supposed to be called from an
atomic context, because such an execution context does not persist and thus is
not supposed to block. Eventually we decided to stay with the original kernel
thread-based implementation.

In Beluga, the target logical block address of an aggregated disk write
request is determined only at the point when it is dispatched. Late address
binding is necessary especially when multiple physical disks are used in a Bel-
uga based disk logging system, where the relative timing for request completion
among these disks could vary due to run-time conditions and thus is not fully
deterministic. Accordingly, the target logical block address of each high-level
logging operation is also determined only when its associated aggregated disk
write request is dispatched.

138

After a disk write request is completed, Beluga demultiplexes this comple-
tion signal to the logging operations that compose the disk write request by
invoking their corresponding post-completion request completion logic. The
latency of a logging operation is the time interval between when the logging
operation enters Beluga’s buffer and when the post-completion processing of
the logging operation is finished.

To jump-start the proposed streamlined disk write pipeline, Beluga first
issues back to back two disk write requests to the disk to fill up the Transfer
and Submit stage and then holds off the third disk write request until the
completion interrupt of the first disk write request arrives. After that, a new
aggregated disk write request is fed to the pipeline only after an existing disk
write request exits the pipeline.

It is straightforward to generalize the above design to multiple logging
disks, because Linux allocates a separate per-device request queue for each
individual disk. However, the Accumulate stage is centralized and Beluga’s
accumulation buffer is shared by the logging disks. That is, Beluga aggregates
incoming high-level logging operations into low-level disk write requests for all
logging disks and as soon as a completion interrupt from a logging disk comes,
it dispatches an aggregated disk write request to that particular logging disk.
To avoid contention among logging disks, the logging disks are jump-started
in a staggered fashion to prevent unwanted synchronization among them.

The optimal batch size for a disk write pipeline on a server depends on its
PCIe bus and disk interface (SATA, SAS or SCSI), which affect the Submit
stage time and the RPM rating of the disk, which affects the Transfer stage
time. In fact, because the Transfer stage time for a disk write request of
a certain size may vary depending on where its target address lies on the
disk surface, the optimal batch size of a disk write pipeline changes as the
pipeline traverses different parts of the disk surface. More specifically, because
outermost tracks (closer to track 0) have higher sector density than innermost
tracks, the former’s data transfer rate is higher than the latter’s. Therefore,
the optimal batch size is expected to increase as the target addresses of the
disk write requests issued by Beluga increase.

In summary, for dense-mode logging, Beluga accumulates user-level logging
operation requests, aggregates them into physical disk write requests, feeds
them into a streamlined disk write pipeline and delivers a completion response
to each user-level logging operation when its payload reaches the disk. This
streamlined disk write pipeline is novel because it is designed to move fixed-
sized data payload in a lock-step fashion, similar to a CPU pipeline, so as to
fully exploit the disk’s raw data transfer capability and effectively convert its
data transfer rate (Mbytes/sec) into the commensurate I/O rate (IOs/sec).

139

6.2.5 Sparse-Mode Logging

An implicit assumption underlying the design of the streamlined disk write
pipeline is that there is an infinite stream of disk write requests that are waiting
to fill the pipeline. This assumption is valid for dense-node logging, but does
not hold for sparse-mode logging. More concretely, if a logging operation
request appears after a period of inactivity, this logging operation request
enters the disk write pipeline alone and therefore cannot benefit from any disk
head position information that may be gleaned from neighboring requests, as
is the case in dense-mode logging. As a consequence, the average latency of
such logging operation requests may be high, because it is difficult to ensure
that the target address assigned to a sparse-mode logging operation request is
close to the disk head position at the time when the request is submitted.

One way to reduce the latency of sparse-mode logging operations is to
constantly predict the disk head position [107], and use this prediction to derive
a better target logical block address for each sparse-mode logging operation.
However, as modern disks become more and more complicated, this approach
becomes less and less effective, because the internal control mechanisms inside
disk drives, such as NCQ, on-disk caching, interrupt coalescing, etc., tend to
obscure disk head movement and thus get in the way of disk head position
prediction.

In contrast, Beluga leverages its dense-mode logging architecture to imple-
ment sparse-mode logging. More concretely, Beluga constantly maintains a
dummy aggregated disk write request in its buffer and dispatches this request
to the disk write pipeline when it runs out of application-level logging oper-
ations. However, whenever Beluga occasionally receives an application-level
logging operation request, it aggregates this application-level logging opera-
tion request to the dummy disk write request currently being formed. When
the next disk completion interrupt comes, Beluga dispatches this disk write
request as usual. That is, Beluga keeps the disk write pipeline constantly
busy either with real disk write requests accumulated from application-level
logging operation requests (dense-mode logging), or with dummy disk write
requests (sparse-mode logging), some of which may contain high-level logging
operations issued by applications.

The key advantage of this design is that it is self-adaptive to the timing
variations of the disk write pipeline. That is, because the disk write pipeline
is driven by events such as request completion interrupts rather than by a
hardware clock, the timing experienced by each disk write request may vary.
However, by keeping the disk write pipeline full with dummy write requests, all
the timing variations due to firmware, software or hardware are automatically
accounted for and thus removed from the implementation complexity of sparse-

140

mode disk logging. The main drawback of this design is the additional power
consumption associated with dummy disk write requests.

The original Beluga’s design (called full Beluga) continuously dispatches
disk write request of size S whose target addresses are S apart, where S
corresponds to the batch size. There are two possible approaches to reducing
the power consumption of this design. The first approach is to submit the
same sequence of disk write requests in the same way as in full Beluga but
decrease the size of each submitted disk write request to one disk sector (512
bytes), when there are no pending logging operation requests. This way, the
number of bytes written to disk could be reduced by one to two orders of
magnitude when there are no pending logging operation requests. The second
approach is to issue only 1

N
of the disk write requests in full Beluga, employ

the issue times and completion interrupt times of these disk write requests
to estimate the issue times of the skipped N−1

N
disk write requests had they

been dispatched in full Beluga, and use the estimated issue time for logging
operation requests that arrive sparsely. This way, the number of bytes written
to disk is reduced by a factor of N when there are no pending logging operation
requests.

Unfortunately neither approach works as expected because some modern
disks implement a request merging optimization: When a disk write request
R arrives at a disk’s NCQ queue and cannot be merged with any existing
disk write request, the on-disk controller tries to merge R with some future
requests by deferring servicing R for approximately 1 msec after it arrives,
even if the disk head passes R’s target address within this 1-msec interval.
This optimization gets in the way of the above two approaches because none
of the disk write requests issued in these two designs are mergeable with any
existing disk write request. In addition, the on-disk controller also implements
a request scheduling mechanism, which makes it difficult to predict the actual
service order of disk write requests even when their target addresses are sorted.

To get around the request merging mechanism, the target address of each
submitted disk write request is set at 1 msec away from the disk head position
at the time when it arrives on the disk. This prevents each submitted disk
write request from experiencing a full rotation delay. To get around the on-disk
request scheduler, we limit the effective number of active requests in the NCQ
queue to 4 and ensure that they are sufficiently far apart. Taking into account
these design constraints, we come up with a low-power version of Beluga as
follows. A sequence of sentinel disk write requests are dispatched to the logging
disk regardless of whether applications issue any logging operation requests.
When the N -th sentinel request is completed, low-power Beluga issues the N+
2-th sentinel request. The distance between the target addresses of consecutive

141

250	 500	 750	 1000	 1250	

400	 650	

D	

M

a	b	

Figure 6.2: An example sentinel disk write request schedule for low-power Beluga
when the inter-sentinel-request distance is 250 sectors and the margin is 100 sectors.
Logging operation requests issued by applications during an interval are aggregated
into a disk write request that is merged with the corresponding sentinel request.

sentinel requests is D sectors, where the time it takes for the disk head to pass
D sectors is at least 1 msec. Suppose the target address of a sentinel request
is Sector T , then all application-issued logging operation requests that arrive
between the time when the disk head passes Sector T −M −D and the time
when the disk head passes Sector T −M are aggregated into one disk write
request that is to be merged with this sentinel request. The interval marked
by these two time points is the feasible interval associated with this sentinel
request. M is an empirical safety margin in the following sense: If a new
request is to be merged with an existing sentinel request without disrupting
the service order, the new request must arrive at the disk at least M sectors
before the disk head passes the existing request’s target address. The size of
each sentinel request is 4KB because this is the minimum size for a request to
be mergeable. This low-power Beluga design not only dispatches fewer disk
write requests than full Beluga, but also keeps each request smaller than those
in full Beluga.

Figure 6.2 shows an example schedule of sentinel requests in low-power
Beluga, where D is 250 and M is 100. The target addresses of the sentinel
requests are Sector 250, 500, 750, 1000, 1250, 1500, etc. The sentinel request
with the target address Sector 750 is dispatched when the request with the
target address Sector 250 is completed, or about 500 sectors before it is ser-
viced. It takes more than 1 msec for the disk head to fly over 500 sectors.
In addition, at most two sentinel requests are in the on-disk queue at a time.
For this sentinel request (spanning Sector 750 to 757), all application-issued
logging operation requests that arrive between the time when the disk head
passes Sector 400 and the time when the disk head passes Sector 650 are ag-
gregated into one disk write request whose target address is Sector 758 and
submitted to the disk when the disk head passes Sector 650. If there are no
application-issued logging operation requests, the number of bytes written in

142

low- power Beluga is 8 sectors every 250 sectors, or roughly 1
30

of that of full
Beluga.

6.3 Performance Evaluation

We have successfully built a Linux-based Beluga prototype and carried out a
detailed performance evaluation of this prototype using a Dell Machine with a
1.8GHz Dual-Core processor, 2 GB Memory and three 1 TB WD Caviar Black
7200RPM SATA hard disks and a Gen2 PCIe bus.

6.3.1 Methodology

A sequence of logging operation requests were fed to the Beluga prototype and
the average logging latency and overall logging throughput were measured.
The latency of each logging operation request is the time when it enters the
logging subsystem and when the logging subsystem returns a completion re-
sponse for it. Throughput is defined as the total number of logging operations
completed, i.e., its payload is written to disk, per second. We used an open-
source tool on Linux called blktrace to take these measurements. Blktrace is a
block-layer I/O tracing tool that provides detailed information on where the
time is spent on the data path from the entry point to the block I/O layer
until data is written to the disk and a completion interrupt is delivered.

To measure the maximum throughput of Beluga, we develop a kernel-level
logging operation traffic generator that minimizes the overhead of creating
application-level logging operation requests. The kernel level log generator
(KLG) is installed as a loadable kernel module. Its preferred over a real-world
user-level application because the logging workload from KLG is the most
demanding and could best stress Beluga.

We modify the kernel scheduler so that immediately after the main thread
of Beluga sets up a DMA to move logging operation payloads to the disk, it
calls KLG, which generates logging operation requests according to the elapsed
time since it was invoked and the input traffic load and put them in the input
queue. The Beluga thread then moves as many requests in the input queue
to its aggregate queue as possible, whenever it has a chance to visit the in-
put queue. Moreover, to minimize the interference between the KLG and the
logging subsystem, we bind the KLG to a specific set of CPU cores, which
are disjoint from those on which Beluga runs. The Beluga prototype has been
stress tested with continuous input logging operations to cover all disk blocks
on the log disk multiple times. However, in each experiment run, we issued 60
seconds worth of logging operations. Its also stress tested to ensure other sys-

143

tem activities don’t disturb Beluga’s tightly controlled pipeline. We ran several
memory intensive and disk I/O intensive programs in parallel and observed
that Beluga’s performance remained unaffected to a large extent. Different
runs correspond to different combinations of batch size, logging operation re-
quest size and inter-operation interval. Although Beluga aggregates logging
operations into disk write requests, the average logging latency is the end-to-
end delay experienced by each logging operation and the logging throughput
corresponds to the number of logging operations completed per second.

6.3.2 Dense-Mode Logging

Overall Performance

The most important parameter in the proposed disk write pipeline is the batch
size, or the granularity of the fixed-sized disk write requests that are moved
through the pipeline. When the batch size is too small, the time to submit a
disk write request from host memory to on-disk queue is longer than the time
required to transfer it from on-disk queue to the disk platter, because of the
non-trivial per-transaction overhead and as a result, by the time the disk write
request reaches the disk, the immediately previous disk write request is already
done and it misses its target sector and is thus delayed by a full rotation cycle.
When the batch size is too high, each logging operation request experiences a
higher queuing delay in the accumulation queue and the transfer time is also
higher; consequently the average logging latency is higher.

Table 6.2 shows the average logging latency and logging throughput for
an input sequence of 10 million 256-byte logging operations under different
batch size. When the batch size is 16KB, the Submit stage time is longer than
the Transfer stage time and almost every disk write request experiences a full
rotation cycle time. When the transfer delay of a disk write request is increased
to a full rotation delay, the aggregation delay of the logging operations in the
following disk write request is also increased on average by half of the transfer
delay. As a result, the average logging latency is quite high, 12.7 msec, and
the logging throughput is accordingly low, 15044 operations per second, the
inverse of which corresponds to the average data transfer delay.

As the batch size is increased from 16KB to 24KB and 28 KB, the prob-
ability of an aggregated disk write request experiences a full rotation delay
decreases but is still non-zero. As a consequence, the average logging latency
also decreases and the logging throughput increases. When the batch size
reaches 32KB and beyond, the Submit stage time is always smaller than the
Transfer stage time and none of the disk write requests experience a full ro-
tation delay. The effective pipeline cycle time is the maximum of these two

144

stage times. After the batch size grows larger than 32KB, the average logging
latency is worsened, because the initial aggregation delay is higher and the
pipeline cycle time is increased, which leads to longer end-to-end pipeline la-
tency. However, the logging throughput improves with the batch size, because
the fixed overhead associated with the Submit, Transfer and Complete stage
is more efficiently amortized. Because the design goal of Beluga is both low
logging latency and high logging throughput, the ideal batch size is the small-
est batch size that enables the Submit stage time is smaller than the Transfer
stage time and the default batch size used in the current Beluga prototype is
32KB.

Batch Size Latency(µsec) Throughput(OPs/sec)
16 KB 12753 15044
24 KB 3087 108471
28 KB 2832 118157
32 KB 938 404228
40 KB 1108 428005
48 KB 1327 429665
56 KB 1536 433331
64 KB 1755 433990

Table 6.2: Average latency and throughput of 256-byte logging operations on the
Beluga prototype when the batch size is varied from 16KB to 64KB

To examine where each logging operation spends its time in the Beluga
prototype, we used blktrace, which is an analysis and instrumentation tool for
Linux’s block I/O layer. Blktrace breaks the data path from Linux’s block
I/O layer down into stages and give timing measurements(in µsec) for each of
them. The following are definitions of a set of terms used in our analysis:

• Aggregation Delay: the amount of time a logging operation stays in the
aggregate queue.

• Q2D: Time required for an aggregated request to be inserted into and
to stay in the per-device queue.

• D2C: Time between when a disk write request is issued to a disk and
when it is completed, as indicated by a completion interrupt delivered
to the block I/O layer.

• Q2Q: Time between two consecutive aggregate disk write requests that
are inserted into the block I/O layer’s request queue.

145

Table 6.3 shows the detailed breakdown of the time a logging operation
spends in the disk write pipeline when the batch size is varied. Because Beluga
aggregates logging operation requests into disk write requests, the latency
experienced by a logging operation request includes the time it spends in the
aggregate queue (Aggregate Delay) and the latency experienced by the disk
write request to which it belongs (Q2D + D2C). D2C includes the Submit
stage time and the Transfer stage time. The Submit stage time includes the
completion interrupt processing time, which is about 100 µsec and the data
transfer time on the PCIe bus. Because Beluga disables the merging, sorting
and the scheduling mechanisms in Linux’s block I/O layer, Q2D is very small,
less than 2 µsec. Q2Q corresponds to the cycle time of the disk write pipeline
and its inverse corresponds to the pipeline’s throughput.

When the batch size is 16KB, D2C is 8500 µsec, which suggests that every
aggregated disk write request misses its target sector when it arrives at the
disk and experiences a full rotation delay, about 8.3msec for a 7200RPM disk
drive, because the Submit stage time is higher than the disk data transfer
time of 16KB, about 160 µsec. Moreover, the Aggregation Delay is 4251 µsec,
which is higher than expected and is a collateral damage of the longer disk
data transfer time. When the batch size is 28KB, D2C is decreased to 1786
µsec, which suggests that still a certain percentage of disk write requests miss
their target sector and experience a full rotation delay and the Aggregation
Delay is decreased accordingly to 944 µsec.

When the batch size is 32KB, D2C is 523 µsec, the Aggregation Delay
is 313 µsec and none of the disk write requests experience a full rotation
delay. Because Q2Q or the pipeline cycle time is 316 µsec, the throughput
of this configuration is 3158 32KB disk write requests per second or 404228
256-byte logging operations per second, as shown in Table 6.2 . Because the
Transfer stage time is larger than the Submit stage time, the Transfer stage
time is the pipeline cycle time. Therefore, within DC2, 316 µsec is due to data
transfer (Q2Q), 100 µsec is due to interrupt processing and the remaining time
(107µsec) is due to data transfer on the PCIe bus. Because there is noticeable
difference between the Transfer stage time and the Submit stage time, the
optimal batch size, which corresponds to the case when the Transfer stage
time is the same as the Submit stage time, lies somewhere between 28KB and
32KB. Nonetheless with the batch size of 32 KB, Beluga delivers an average
logging latency of under 1 millisecond and a logging throughput of 404K 256-
byte logging operations, which exceeds 100 Mbytes/sec and is pretty close to
the raw disk data transfer capability.

When the batch size is 40KB, the pipeline cycle time is increased to 373
µsec, but the throughput is also increased to 428K logging operations per

146

second, because a 40KB aggregated disk write request contains more logging
operations than that in a 32KB aggregated disk write request. Unfortunately,
the average logging latency is also increased to 1108 µsec, partly because the
Aggregation Delay is increased to 369 µsec.

Batch Aggregation Q2D D2C Overall
Size Delay (µsec) (µsec) Latency

(µsec (µsec
16 KB 4251 1.871 8500 12753
24 KB 1029 1.638 2056 3087
28 KB 943 1.625 1887 2832
32 KB 313 1.719 623 938
40 KB 369 1.829 737 1108
48 KB 442 1.688 883 1327
56 KB 512 1.904 1022 1536
64 KB 585 1.768 1168 1755

Table 6.3: Detailed breakdown of the time each logging operation spends in the
disk write pipeline as the batch size is varied

Logging Operation Latency Throughput
Size (µsec) (OPs/sec)
512 B 959 193275
256 B 938 404228
128 B 986 849461
64 B 1011 1639408

Table 6.4: The average logging latency and logging throughput for a sequence of
logging operations when the logging operation request size is varied from 64 bytes
to 512 bytes

Table 6.4 shows the impact of the log operation size on the average logging
latency and throughput of Beluga. Smaller logging operation request size only
increases the overhead of aggregating logging operation requests into disk write
requests, but has no effect on the disk write pipeline. This is why the average
logging latency remains largely the same when the logging operation request
size is varied from 64 bytes to 512 bytes. The logging throughput, on the other
hand, is inversely proportional to the logging operation request size, because
the disk write pipeline’s throughput also stays the same.

147

Adaptive Batch Size Selection

Starting Optimal Batch Latency Throughput
Offset (GB) size (KBytes) (µsec) (OPs/sec)

900 24 1183 241158
750 24 981 290390
500 28 932 356791
0 32 938 404228

Table 6.5: The impact of the starting disk offset used in the logging experiment on
the optimal batch size for the disk write pipeline when the logging operation request
size is 256 bytes

For results reported in previous subsections, we started each experiment
run at the 0th sector of the disk. Table 6.5 shows the latency and throughput
of 256-byte logging operations on the Beluga prototype when their log records
are written to different parts of the disk using different batch size. As the
starting disk offset of an experiment run increases, the raw data transfer rate
during the experiment run lowers, the Transfer stage time becomes longer and
thus is more likely to be larger than the Submit stage time and the optimal
batch size, i.e., the minimum batch size whose corresponding average logging
latency is smaller than 1 msec, thus also decreases. For example, the optimal
batch sizes when the starting disk offset is 0, 500GB and 750GB are 32KB,
28KB and 24KB, respectively. These batch size choices enable Beluga to keep
the average logging latency under 1 msec. However, when the starting disk
offset is 900GB, the average logging latency jumps above 1 msec regardless of
the batch size because the lower disk data transfer rate at the center of the
disk sets a lower bound on the latency.

Because the optimal batch size for different parts of a modern disk is differ-
ent, Beluga includes an adaptive batch size selection mechanism that chooses
the optimal batch size according to the current disk head position. This mech-
anism requires the log disks to be pre-calibrated so as to extract the optimal
batch size for each disk region. Figure 6.3 shows that Beluga’s adaptive batch
size selection mechanism is able to keep the average logging latency below 1
msec throughout the entire disk, whereas using a fixed batch size (in this case
32KB) could lead to an increase in the average logging latency by more than
70%, when the disk heads reach the center of the disk platters.

148

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 350 500 650 800 900
A

ve
ra

ge
 L

at
en

cy
 (m

ic
ro

 s
ec

on
ds

)

Offset on Hard Drive (Giga Bytes)

Adaptive Batch Size
Fixed Batch Size

Figure 6.3: The average logging latency of the Beluga prototype when data is
written at different offsets on disk and the logging operation request size is 256
bytes

Logging Latency Throughput
Disks (µsec) (OPs/sec))

1 938 404228
2 934 810250
3 950 1192554

Table 6.6: The average logging latency and throughput of the Beluga prototype
when the number of disks increases from 1 to 3 and the logging operation request
size is 256 bytes

Sensitivity Study

The design of Beluga is linearly scalable with respect to the number of disks
it uses, because each disk is equipped with a per-device request queue and
an on-disk queue. However, all the disks in the Beluga system share a global
aggregate queue, from which Beluga issues aggregated disk write requests to
individual disks upon receiving completion interrupts. Until the Beluga system
hits the write request issue rate limit, its logging throughput should scale
linearly with the number of disks in it, as shown in Table 6.6, which also
shows that the average logging latency is largely unaffected when the number
of disks is increased from 1 to 3. With just three 7200 RPM SATA disks, the
Beluga prototype is able to achieve a total logging throughput of 1.2 million
256-byte logging operations per second and keep the average logging latency
under 1 msec. We believe this is the best logging performance ever reported
on commodity-grade disks. The immediate bottleneck to scale up the Beluga
prototype with even more disks is the interrupt processing overhead. Using a

149

 900
 1500

 10000

 100000
 150000

 1 2 3 4 10 20 31

 14000

 200000

 400000

A
ve

ra
ge

 L
at

en
cy

 (m
ic

ro
 s

ec
on

ds
)

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

re
co

rd
s/

se
co

nd
)

NCQ Size

Latency
Throughput

Figure 6.4: The average logging latency and throughput of the Beluga prototype
when NCQ queue length is varied and the logging operation request size is 256 bytes

polling architecture rather than an interrupt-driven architecture is a possible
solution to remove this bottleneck.

NCQ plays a key role in the design of the proposed streamlined disk write
pipeline. However, the NCQ queue length is set to 2 by default, because we
want to prevent NCQ’s merging and scheduling functionalities from disrupt-
ing the carefully arranged timing for disk write payload movement. Figure 6.4
shows the average logging latency and throughput for 256-byte logging oper-
ations on the Beluga prototype when the NCQ queue size is varied. When
the NCQ queue length is 1, the logging latency is very high, approximately
17msec, because there is only one disk write request in the disk at a time and
it is not possible for the on-disk controller to service the next write request
immediately after serving the current write request. That is, the N + 1-th
request can be issued from the aggregate queue to the disk only after the com-
pletion interrupt for the N -th request is raised and thus has to experience at
least one full rotation delay.

When the NCQ queue length is 2, the on-disk controller could service
consecutive disk write requests back to back and the disk’s raw data transfer
capability is fully exploited. When the NCQ queue length is greater than 2,
the on-disk controller still could service consecutive disk write requests back to
back, but each disk write request’s latency increases because it needs to wait
longer in the NCQ queue. That is, when the NCQ queue length is 2, a disk
write request is expected to be serviced soon after it arrives at the NCQ queue;
however, when the NCQ queue length is 3, a disk write request is expected
to wait for one full data transfer time before it is serviced. Moreover, the
larger the NCQ queue length, the longer the average logging latency. As for
the logging throughput, it remains the same as the NCQ queue length grows

150

to 2 and beyond, because disk write requests are serviced one after another
non-stop.

6.3.3 Sparse-Mode Logging

To test the effectiveness of using full Beluga to support sparse-mode logging, we
varied the inter-logging-operation interval and measured the average logging
latency, which remains virtually constant at 938 µsec, as the inter-logging-
operation interval increases from 10 µsec to 0.1 second. This shows that full
Beluga is indeed capable of servicing sparse logging operation requests with
low latency.

Distance Average Re-ordering
(sectors) (µsec) (%)

220 8395.4 18.46
230 6835.3 16.16
240 4776.9 10.36
250 2737.3 4.62
260 2033.8 2.39
270 1324.3 0.15
280 1320.3 0.004
290 1362.7 0.001
300 1411.8 0.002

Table 6.7: The impact of inter-sentinel-request distance on the latency of sparse
logging operation requests that are dispatched immediately after one sentinel request
is completed and are merged with the next sentinel request

Low-power Beluga is characterized by two configuration parameters, the
target address distance (D) between consecutive sentinel requests and the
safety margin (M) for merging with an existing sentinel request. We conducted
a series of experiments to determine the proper value of D. In each run, we
dispatched a series of sentinel requests whose target addresses are spaced by D
sectors and a sparse logging operation request immediately after every sentinel
request is completed, which is to be merged with the next sentinel request.
Table 6.7 shows the impact of D on the average latency of these sparse logging
operation requests. When D is smaller than 270, the average latency is above
2 msec and the root cause is the sentinel requests are serviced out of order
when the inter-sentinel-request distance is too small. For example, when D
is 220, 18.46% of the sentinel requests are serviced out of order and, together

151

with the sparse logging operation requests that merge with them, experience
a full rotation delay. The request re-ordering percentage comes down to with
1% only when D is increased to 270.

Because smaller D values lead to substantial request re-ordering, we ex-
plored the matching M value only for D = 260, D = 270, D = 280, D = 290
and D = 300. For each candidate D value, we tried 10 possible M values and
picked the M value that results in the minimum average latency. Given a M
value, between the i-th and i+1-th sentinel request, we issued a sparse logging
operation request at the time when the disk head passes the sector that is M
sectors ahead of the target address of the i+1-th sentinel request, measured its
latency and computed the average of these latency measurements. When M
is too large, dispatched sparse logging operation requests have to wait in the
NCQ queue longer. When M is too small, dispatched sparse logging operation
requests may cause re-ordering of sentinel requests already in the NCQ queue.
Table 6.8 shows the best M value for each candidate D value. The best M
value seems to be lie between 125 and 140. The Average column represents the
average latency of sparse logging operation requests when they are dispatched
to disk at the end of the feasible interval of their associated sentinel requests
(Point b in Figure 6.2). In contrast, in Table 6.7 the sparse logging operation
requests are dispatched to disk at the completion of the sentinel request that
precedes their associated sentinel requests (Point a in Figure 6.2). That’s why
the Average numbers in these two tables are different.

Because sparse logging operation requests could arrive at any point of a
feasible interval, they would experience a variable amount of waiting time
before being dispatched to disk at the end of the feasible interval they fall
in. The E2E Average column shows the end-to-end average latency of a sparse
logging operation request, which includes this waiting time. As D increases, on
the one hand the probability of request re-ordering and the associated latency
penalty decreases, but on the other hand the size of the feasible interval and
the average waiting time also increases. So the optimal D corresponds to
a balanced trade-off between these two factors. In our testbed, the best-
performing configuration is when the inter-sentinel-request distance (D) is
290 and the safety margin (M) is 125 and its end-to-end average latency for
sparse logging operation requests is 1315.5 µsec. Although the average latency
of low-power Beluga is even worse than the worst-case latency of full Beluga
((938 µsec), the number of bytes written in low-power Beluga when there are
no application-issued logging operation requests is only 8 sectors (4KB) every
290 sectors, or a factor of 1

36
smaller than full Beluga.

152

Distance Margin Average E2E Average
(sectors) (sectors) (µsec) (µsec)

260 140 1548 2089.7
270 125 768.2 1320.7
280 135 770.2 1353.5
290 125 711.3 1315.5
300 135 747.9 1372.9

Table 6.8: The average latency for sparse logging operation requests that are dis-
patched at the end of the feasible interval of the sentinel requests with which they
are to merge, under different inter-sentinel-request intervals and their associated
margins

Logging Operation Request Size Latency
512 bytes 1.2 msec
2K bytes 1.34 msec
4K bytes 1.35 msec

Table 6.9: The average logging latency of 1 million logging operations against an
SSD-backed device when the logging operation request size is 512 bytes, 2KB and
4KB

6.3.4 Comparison with SSD-based Logging

To compare the performance of the Beluga prototype with logging using SSDs.
We measured the average latency of 1 million logging operations against an
SSD-based device with the on-disk cache turned off. The SSD used in this test
is a 64-Gbyte SSD based on JMicron JM612F flash controller and Samsung’s
SLC flash memory chips. The result, shown in Table 6.9, shows that the Beluga
prototype’s average logging latency is actually slightly better than that of SSD-
based logging. Of course, the device-based logging implementation on SSD is
not as extensively optimized. Actually we believe the streamlined disk write
pipeline described in this work is equally effective for SSDs. Nonetheless, this
result demonstrates that with proper structuring and tuning, hard disk-based
logging could be as performant as SSD-based logging. In fact, for MLC SSDs,
which has limited write count (around 10000), a high-performance low-latency
hard disk logging technique such as Beluga may be a useful complement to
handle sequential logging workloads.

153

6.4 Summary

The disk access pattern of logging is arguably the most straightforward because
it is sequential in nature and yet, it is surprisingly difficult to achieve both
high logging throughput and low logging latency, especially for fine-grained
logging operations. The main reason is that modern I/O stacks and disk drives
incorporate redundant request merging and scheduling functionalities that may
get in each other’s way. Moreover, although careful control of disk access
timing is crucial in delivering high disk I/O performance, there is typically
little coordination between the I/O stack and the underlying disks. As a
consequence, the latency and throughput of vanilla file-based or device-based
logging implementations are far away from the optimum. Incorporating our
understanding of the root cause behind the observed performance problems,
we devised a novel logging system architecture called Beluga, which features
the following innovations:

• A logging API that supports fine-grained logging (i.e. logging payload
size is smaller than a disk sector) with minimum metadata manipulation
and data copying,

• A streamlined disk write pipeline that moves fixed-sized disk write re-
quests at a constant rate while minimizing the pipeline cycle time and

• A low-power sparse-mode logging scheme that achieves low logging la-
tency without requiring disk head position prediction.

Measurements on a fully operational Beluga prototype that embodies all
three innovations demonstrate that using three commodity disks, the Beluga
architecture can deliver close to 1.2 million 256-byte logging operations while
keeping each logging operation’s end-to-end latency below 1 msec. We believe
this is the best empirical disk logging performance ever reported in the open
literature. With such a high performing disk logging solution, DISCO is able
to successfully integrate Beluga with its various data structures, to ensure
better disk I/O responsiveness and guaranteed data persistency.

154

Chapter 7

Quality of Service Guarantee for
Software-Defined Distributed
Storage Systems

7.1 SDDS System Architecture in the Con-

text of Managing QoS Functionality

A cloud storage system manages the storage requirements of the tenants’ appli-
cations, enabling the tenants to not worry about managing their application’s
storage resources. Though a tenant greatly benefits by such a flexibility, the
advantages of a cloud storage system are negated if the tenant doesn’t receive
satisfactory performance. For example, a cloud storage system could have a
large-scale array of highly advanced flash-based SSDs, that can process I/O
requests at a very high rate of 10000 I/O operations per second (IOPS). If a
tenant has a real-time application that requires I/O requests to be processed
no later than 1 ms, then though, on an average a large majority of the appli-
cation’s I/O requests are processed well within the latency requirement, since
the cloud storage system isn’t configured to handle strict latency requirement,
some of the application’s I/O requests could fail to be processed within 1 ms.
Hence the tenant’s application fails and the tenant is simply unhappy with the
performance offered by the cloud storage system. Therefore it is an usual prac-
tice to bind performance with quality of service (QoS). QoS in a storage system
can be specified by various metrics like bandwidth, in terms of either mega
bytes per second (MBPS) or IOPS; latency, in terms of maximum time(micro
seconds) to process an I/O request; and so on. Tenants specify these vari-
ous QoS metrics using service level agreements (SLA) with the cloud storage
service provider, at the time of purchasing their storage services. The cloud

155

Figure 7.1: Detailed overview of the components of a VDC

storage service provider either accepts or rejects the SLAs, depending on the
feasibility of guaranteeing the QoS requirements. Since the most important
aspect of a cloud storage system is to offer efficient software services over the
physical hardware resources, to ensure satisfactory storage performance, the
cloud storage system is commonly referred to as software defined distributed
storage (SDDS) system.

There are various challenges in designing QoS for a SDDS system, and
in this work we propose a QoS model called Cheetah, that uses some novel
techniques to enable the SDDS system to provide storage virtualization with
accurate QoS guarantees. The challenges, design objectives and the novel
techniques involved with Cheetah are better conveyed once the SDDS sys-
tem’s architecture is clearly defined. Section 1.2 defines the SDDS system’s
architecture at a much higher level and is targeted specifically to introduce
the context where several pieces of this dissertation fit in together. In the
following subsections, we describe the system model and service model of the
SDDS system architecture in greater detail that helps understand the chal-
lenges involved in designing QoS features in the SDDS system.

156

7.1.1 System Model

As explained in Section 1.2, the SDDS system segregates the hardware re-
sources into three parts: compute nodes (CN), service nodes and storage
nodes (SN). A SN is essentially a commodity JBOD server, consisting of a
x86 CPU and a bunch of disks that are organized into one or more sets of
disk arrays (DA). A DA is just a logical collection of disks that are grouped
together using software RAID techniques. All the SNs are arranged without
any specific order, and the entire storage system appears as just a bunch of
JBODS, which we refer to as JBOJBOD. A CN is essentially a x86 server that
supports hardware assisted virtualization, and hosts several virtual machines
(VM). The SDDS system provisions virtual disks (VD) in each VM, to allow
tenants’ applications to manage the storage requirements in a VM, such that a
VD appears exactly like a physical disk to the tenants’ applications. Multiple
VDs can be mounted on a VM, where a VD can be a real VD like C: drive
on Windows, /home directory on Unix, or a logical VD created using LVM
tools on Unix. VDs are stored in entirety on any one DA. A virtual datacenter
(VDC) consists of one or more VMs that are spread across various physical
machines and the VDs in a VDC can be spread across several DAs, and across
several SNs.

In order to support high availability, as explained in Section 1.2.3, DISCO
adopts N-way replication as a default policy. With N-way replication, a disk
access I/O stream from a VD is split into multiple sub streams. A write
I/O request from a VD is submitted to all the N corresponding replica DAs
located on N different SNs. A read I/O request is submitted to only one of the
N corresponding replica DAs. Therefore, a DA receives multiple disk access
I/O streams from different VDs.

7.1.2 Service Model

Cheetah is designed to support multi-dimensional storage virtualization by en-
forcing QoS guarantees on different aspects of the storage performance. The
QoS specifications are specified as a tuple: 〈A,B,C,D,E〉, where A is avail-
ability (e.g., mean time to failure is three years, or N replicas), B is bandwidth
(e.g. minimum = 250MBPS or 2500 IOPS of 1KB average request size, max-
imum = 500MBPS or 5000 IOPS of 1KB average request size), C is capacity
(e.g. 10 TB), D is delay (e.g. worst-case delay = 20 msec) and E corresponds
to elasticity with which bandwidth and/or delay metrics are guaranteed. Elas-
ticity is expressed as the percentage of bandwidth and/or latency that has to
be guaranteed.

157

Cheetah provides two levels of QoS granularity:

VD-level Granularity A VD is characterized with personalized QoS spec-
ifications, but if there exists a VDC that contains the given VD, then
that VDC has no additional QoS specifications.

VDC-level Granularity A VDC is characterized with personalized QoS spec-
ifications, but the VDs contained in that VDC do not have any additional
QoS specifications, instead all such VDs collectively share the QoS spec-
ifications of its corresponding VDC.

Though, ensuring multi-dimensional storage virtualization is the eventual
goal for Cheetah, in this dissertation we focus only on enforcing a compre-
hensive VD and VDC level bandwidth guarantee. For the sake of simplicity
and clarity in conveying our ideas, we also restrict high availability support to
3-way replication, but it should be noted that our proposed techniques in this
dissertation can be trivially extended to support any of the other options like
the generic N-way replication, parity based replication or erasure codes.

7.2 Cheetah’s Objectives, Challenges & Solu-

tion

7.2.1 Design Objectives

The core design objectives for Cheetah are:

• To strictly enforce bandwidth guarantee for each VD/VDC on a dis-
tributed storage system supporting inter-storage-node data redundancy,
thereby ensuring performance isolation among the VDs/VDCs that share
a DA,

• To deliver bandwidth guarantees with minimal QoS overhead, while max-
imizing physical resource utilization efficiency of a distributed storage
system.

7.2.2 Technical Challenges

The fundamental requirement for enforcing bandwidth guarantee in the SDDS
system is to first collect the bandwidth requirement from the tenants at the
time of creating a VD/VDC. In order to ensure strict enforcement of the band-
width guarantee, tenants are required to precisely configure the physical-level
bandwidth requirement. However, even when the tenants have the knowledge

158

of the best of the technically mastered system administrators, they fail to
ascertain the exact physical-level bandwidth specification, because physical-
level bandwidth depends upon a lot of intrinsic factors of an application’s
data workload like read/write type, request size and sequential locality, and
hence the physical-level bandwidth is very different from its corresponding
application-level bandwidth. Unfortunately, QoS solutions offered today force
the tenants to configure their QoS specification using physical-level bandwidth
requirements. Since such a QoS configuration isn’t proven to correspond ac-
curately to the application’s requirements, even if the SDDS system enforces
physical-level bandwidth guarantees accurately at all times, the application
performance might not be upto acceptable limits, as expected by the tenant.
The SDDS system might enforce the physical-level bandwidth guarantee at
all times, but the tenants are forced to accept one of the following options,
a) pay a nominal fees to the service provider, but the application perfor-
mance could deteriorate beyond acceptable limits, b) pay exorbitant fees to
the service provider to maintain redundant hardware resources which are used
only occasionally, and application performance stays within acceptable lim-
its. Although both the options ensure 100% adherence to the physical-level
bandwidth guarantee, it is not in the best interest of the tenant because while
a) leads to deteriorated application performance, b) results in an expensive
solution. Tenants’ applications have a very simple QoS requirement, which is
to ensure good performance. But unfortunately the precise meaning attached
to the goodness factor is only qualitative. Tenants desire an SDDS system
that can ensure both the optimal usage of hardware resources which brings
down the total cost, and an efficient mapping between the physical-level band-
width requirement and the goodness factor associated with an application’s
performance. Given the current day technologies, such a solution is a far cry
from reality. Fortunately, most of the times, tenants do have a way to specify
application-level bandwidth requirements, and hence there is a great need for
an efficient tool that can automatically translate application-level bandwidth
requirements into physical-level bandwidth requirements.

Physical-level bandwidth specification of a VD/VDC is the key factor that
controls the accuracy with which the SDDS system enforces QoS guarantees
to that VD/VDC and hence it is very important for the SDDS system to
capture a comprehensive view of the data locality information of a VD/VDC’s
disk I/O workload while extracting the physical-level bandwidth requirement.
Physical-level bandwidth requirement can be expressed in several different
ways, like MBPS, IOPS, or disk resource usage time (DRUT). In order to
express physical-level bandwidth requirement in terms of IOPS, it is sufficient
to measure the average number of I/O requests in a VD/VDC’s workload

159

that are processed by the corresponding DAs over a small window in time.
Though, IOPS captures the sequential/random locality and read/write type
of I/O requests in the workload, IOPS alone isn’t sufficient to capture the
overall locality of the data workload, because it varies considerably for I/O
requests of different sizes. For example, a disk with a rating of 200 IOPS and
I/O request size of 4 MB will perform better than a disk with 1000 IOPS and
I/O request size of 4 KB. Expressing physical-level bandwidth requirement in
terms of MBPS solves this problem, because it considers the number of bytes
rather than the number of I/O requests that are processed by the DAs in a
small window in time. However, both these techniques give no guarantee on
the individual latency of an I/O request, though they do guarantee on the
average I/O latency over a longer term. A third alternative is to measure,
DRUT, which is the amount of time that a DA is actively used to service the
I/O requests from different VD’s that share that DA. Since DRUT captures
the I/O latency of every I/O request in the incoming disk access workload
on a DA, it effectively captures the read/write ratio, disk access locality and
the I/O request size in the data workload. However, expressing physical-
level bandwidth specification using any of these approaches involve significant
challenges in a distributed storage environment.

Due to 3-way replication technique adopted by the SDDS system, a stream
of disk I/Os from a VD is split into multiple sub-streams targeted to three
different DAs located on three different SNs. Therefore, to capture the data
locality in a VD’s workload, one option is to collect the disk I/O statistics
before the disk I/O stream is split into multiple sub-streams. Though, it is
relatively straightforward to collect the disk I/O statistics at the source itself, it
is impossible to extract accurate locality information in the workload because
the main component of the disk I/O statistics is the end-to-end I/O latency
of the I/O requests in the workload and the observed I/O latency includes
disk I/O latency on the target DA in addition to the network latency associ-
ated with communication between a CN and its corresponding SN. Estimation
techniques have been proposed by earlier research works [143] to approximate
the I/O locality in the workload, but because it isn’t completely accurate, ei-
ther the QoS specifications aren’t enforced strictly or the hardware resources
aren’t utilized optimally. Another option is to collect disk I/O statistics on the
destination DAs itself. Though NAS/SAN systems project the storage system
like a black-box and makes it impossible to install any customized software on
the storage system to collect disk I/O statistics, the JBOJBOD setup makes
it possible to collect disk I/O statistics directly inside each SN, on the corre-
sponding DAs. Though, disk I/O latency and other attributes of a disk I/O
request can be captured accurately at the destination DA, it is extremely chal-

160

lenging to correlate the disk I/O statistics from each sub-stream and capture
the data locality of a VD’s workload, at real-time.

The above mentioned problem is magnified when thousands of VDs and
DAs are involved. In such a setup, it is also challenging to identify overloaded
servers and to distribute the load evenly among all the DAs. Typical load bal-
ancing techniques [144] migrate some workloads from a overloaded DA to an
under-loaded DA, until the over-loaded DA is no longer over-loaded, but mi-
gration is a very expensive operation, as it involves moving the entire workload
between two DAs. An alternate solution is to exploit the nature of read-write
disk I/Os in an SDDS system with inter-storage-node data redundancy. Due
to strict consistency requirement of the SDDS system, there isn’t any flexi-
bility to re-route a write I/O request because a write I/O request has to be
submitted to all replicas synchronously. However, a read I/O request can be
submitted to only the least loaded DA among the replicas, and hence the se-
lection policy to choose a least loaded DA serves as a control knob to balance
the load across the DAs. However in a large-scale distributed setup like SDDS
system, it is not straight-forward to choose a least loaded DA at real-time. If
a VD’s scheduler routes its read I/O requests using localized decisions within
that VD, then it is possible that multiple VDs that share a DA, can each make
best localized decisions within the VD, yet they might result in a mixture of
few overloaded and underloaded DAs. Therefore, at all points in time, every
VD’s scheduler has to guarantee to submit its read I/O requests to the least
loaded DA among its replicas, such that every VD shares the same view of the
overall load on any DA. However there are multiple challenges in ensuring such
a guarantee. First, every VD needs an accurate mechanism to understand the
load on all its replicated DAs before submitting its read I/O request to the
least loaded DA. It is impractical to get such information before submitting
every read I/O request because the DAs are remotely located from the VDs
and hence could incur large latencies. Second, a DA services requests from
multiple VDs that are located on different CNs, and hence its impractical for
a VD to communicate with all such VDs before making every routing decision.
Third, the latency associated with a given read I/O request includes network
latency and the I/O latency experienced on the DA. Both these latencies are
subject to large variations due to multiple factors like request size, locality,
read/write type and request rate in the input workload. Its difficult to isolate
these components of an I/O latency and hence a VD with localized scheduler
finds it difficult to analyze the load on a DA. Therefore, due to lack of co-
ordination between the VDs and lack of centralized management, read load
balancing is a challenging problem in the SDDS system.

161

The read load balancing issue mentioned above is further complicated, be-
cause it is not sufficient if the read I/O requests in a VD are distributed to
globally balance the load on all the DAs in the SDDS system. It is equally im-
portant to maximize the data access locality in a VD’s data workload, when-
ever possible. Therefore, the local load balancer on a VD has to carefully
ensure long-term global load balance on all the DAs, while simultaneously
ensuring short-term gains in maximizing data access locality.

It is incorrect to assume uniform data locality in a disk I/O workload at
all points in time. In the event of bursts or short-term fluctuations in either
the workload locality or the rate of data flow in a workload, the SNs should
adopt suitable flow control mechanisms to instruct the storage clients (CNs) to
throttle the data flow rate between the given VD and DA. In a SDDS system
with different QoS priorities assigned to each VD, the flow control mechanism
has to assign the data flow rate to VDs in proportion to their bandwidth guar-
antees, but that requires accurate measurement of the instantaneous residual
bandwidth of a DA and its a key challenge to the flow control management in
a distributed storage system.

While read load balancing and flow control techniques avoid overloaded
DAs, care should be taken to ensure that the DAs are not under-utilized too.
On a DA, I/O requests from different VDs arrive at unpredictable intervals
in time. The latency of an I/O request directly depends upon the latency of
the previously processed I/O request on a disk. If consecutive requests sub-
mitted to a disk from different VDs are located on different tracks, then the
last issued I/O request incurs a rotational and/or seek-latency. It is quite pos-
sible that if both the VDs have workloads with high sequential locality, then
neither of them would experience the additional latency. We refer to such an
undesirable latency as storage virtualization tax and it is quite tricky to decide
as to which VD should be accountable for the storage virtualization tax. In
spite of advanced caching and NCQ techniques on modern disk drives, and
best attempt to ensure performance isolation between the VDs that share a
common DA, it is impossible to ensure absolute performance isolation because
of the constraint to prioritize QoS enforcement. Its a common approach to
use redundant hardware resources to make-up for the storage virtualization
tax as a result of performance interference between the VDs, but if hardware
resources are to be used optimally, the storage virtualization tax should be
shared among the DAs in a fair manner. Therefore it is a challenging task
to assign this virtualization tax to the workloads in proportion to the amount
of noise they make, while simultaneously ensuring short-term high disk band-
width utilization and long-term enforcement of bandwidth guarantee.

162

7.2.3 Solution Overview

In this work, we propose Cheetah to accept the QoS specifications as 〈B,E〉,
where B is the application-level bandwidth requirement and E is the elasticity
with which application-level bandwidth is guaranteed. In order to help a
tenant convert his application-level bandwidth requirement into physical-level
bandwidth requirement, Cheetah provides a tool that automatically extracts
this information from a small sample of the application’s workload. Since some
tenants might pre deterministically expect a variation in the workload pattern,
Cheetah enables such tenants to control the bandwidth component of their
specification by using the elasticity metric. As an example, a tenant planning
to provision the SDDS system for a mail server, could either configure E >
100%, say 200%, to indicate that the application is expected to issue twice the
number of emails that are present in the sample workload, or he can configure
E < 100%, say 30%, to indicate that its sufficient to guarantee only 30% of
the application-level bandwidth that is present in the sample workload.

We describe in section 7.3, how Cheetah analyzes a small representative
sample of the tenants’ application’s I/O workload and automatically extracts
vital information concerning the data locality in the workload. It quantizes
the abstract application-level bandwidth requirement into physical-level band-
width specification, that is easier to comprehend and enforce on the storage
devices. Once Cheetah admits a VD/VDC along with its bandwidth reser-
vation, it decomposes the per-VD and per-VDC level QoS reservations into
that of the corresponding DAs. In section 7.4, we describe how Cheetah uses
a centralized read load balancer to periodically collect load information from
each DA and then adopts a novel piecemeal iterative load-sensitive VD-DA
weighted assignment algorithm to determine the distribution pattern of read
I/O requests on each VD, such that none of the DAs are overloaded in the
entire storage system. The centralized read load balancer doesn’t bottleneck
the data flow path, because it runs only in the background at periodic inter-
vals, to suggest distribution of read I/O requests to each VD. Each VD still
makes a localized decision to distribute the read I/O requests by considering
caching and locality in the input workload over the short-term, and uses the
hints from centralized controller to decide on the loading factor of a DA, over
the long term. In Section 7.5, we describe how Cheetah computes the data
flow rate between VDs and DAs in proportion to the corresponding QoS prior-
ities on the VDs. The flow control algorithm is efficiently managed using the
accurate representation of physical-level bandwidth specification and resid-
ual bandwidth information on each DA. In case of short-term fluctuations,
VDs regulate the data flow rate based on the suggested flow control hints
from the corresponding DAs. Finally, in section 7.6, we describe how Cheetah

163

R1
R2

Arrival time

T1 T2

R3

R4

R1
R3

R4

R2

Finish time

Disk 1 Disk 2

T3 T4 T6 T7 T9
T8

T5

R5 R5

T10

Disk 1

Figure 7.2: Illustration of DRUT computation on a DA shared by multiple VDs

uses a QoS aware disk I/O scheduling algorithm, CFVC [135], in each DA to
process disk I/O requests from several VDs/VDCs, while ensuring maximum
disk bandwidth utilization on the DA, and fairness and performance isolation
among the VDs/VDCs that share the DA.

7.3 Quantification of Physical Disk Resource

Requirements

In order to convert application-level bandwidth requirement into physical-level
bandwidth requirement for a VD, Cheetah analyzes a sample of VD’s work-
load for a small time window of T seconds, on a set of dedicated DAs that are
specifically meant for sampling purposes. These dedicated set of DAs are used
to analyze the sample workload and during this stage, each VD is considered
one at a time, because the DA is still not in a position to efficiently handle
workloads from multiple VDs simultaneously. To comprehensively capture the
locality information of the VD’s workload, Cheetah expresses physical-level
bandwidth in terms of DRUT. To measure the DRUT capacity of a VD, Chee-
tah measures the I/O latency of every disk access request on the DA and
aggregates all such latencies to compute the total I/O time. Due to advanced
NCQ and caching techniques on the DA, some I/O requests are overlapped
and hence Cheetah identifies and filters out the overlapped portions of the I/O
latencies from the total I/O time to calculate the total effective duration for
which the DA is actively used to service the requests from the given VD, which
is the DRUT capacity of that VD. Since DRUT measures the effective disk
usage time, it inherently captures all the core variables of a data workload
like read/write ratio, request size and the amount of randomness (locality),
which is why Cheetah prefers to express the physical-level bandwidth require-
ment of a VD in terms of DRUT rather than IOPS, MBPS or other similar

164

terminologies. Later, in the performance evaluation section 7.9.1, we show the
DRUT capacity for several real-world applications like web-search engines and
online transaction processing systems, and show that the DRUT metric indeed
captures all the important locality information in the I/O workload.

Figure 7.2 illustrates how Cheetah computes the DRUT capacity of a VD
in a DA. The DA receives I/O requests R1, R2, R3, R4 and R5 from VD1
at times T1, T2, T3, T4 and T5 respectively. In this example, we assume
the DA is configured with RAID0 setup with 2 disks and we also assume that
the incoming requests are sequential in nature. Therefore, alternate requests
are serviced by the same disk in the DA. Due to advanced disk scheduling
techniques, requests are merged and reordered as shown in the figure. R3 and
R5 are merged together and hence their interrupts are coalesced. Similarly
R2 and R4 are processed together by the DA, and R1 is processed alone and
could not be merged with R3 and R5 because it probably arrived a bit earlier
than the threshold time for merging on disk 1 on the DA. Cheetah computes
the average I/O latency for each group of I/O requests that are processed
together at the same time (whose interrupts are coalesced). The I/O latency
for R1, and the average I/O latency for the group of R3 and R6 are aggregated
together to compute the DRUT capacity for disk 1. Similarly the average I/O
latency for the group of R2 and R4 are aggregated together to compute the
DRUT capacity for disk 2. Cheetah computes the average I/O latency for a
group of requests in a very careful manner, such that the latency should not
overlap in time. Therefore, for the group of R3 and R5, Cheetah computes the
difference between T10 (the time at which last request in the group received
its interrupt acknowledgement) and T6(the time at which the first request in
the group began to be processed), and assigns the average of this difference as
the I/O latency for each of the requests R3 and R5. If T3 happens to appear
after T6, then the start time of the group is considered to be T3. Cheetah
aggregates the average I/O latency for each I/O request in a VD on every disk
in the DA to determine the DRUT capacity for each disk in the DA. Cheetah
again aggregates the DRUT capacities on each disk for a VD to determine
the overall DRUT capacity for a VD on that DA. It should be noted that the
average I/O latency associated with each I/O request in a VD is used only for
DRUT computation and it doesn’t correspond to the actual end-to-end I/O
latency of the request on its DA.

It is extremely hard for Cheetah to measure the DRUT capacity of a DA
configured with a checksum-based RAID setup because it is quite tricky to
identify and associate the latency of an I/O request that corresponds to the
checksum. We discuss this problem in greater detail in Section 7.6.2, and in

165

this work we restrict the DA to a software RAID0 or similar stripe-based RAID
setup.

During the sampling phase of T seconds, Cheetah computes the DRUT
capacity of the given VD and uses it to compute the physical-level bandwidth
factor (PBF), PBF = DRUT/T . Since the I/O latency is measured on the
DA, it doesn’t take into account the network latency and other queuing la-
tencies involved at other components in the entire SDDS system, and hence
the I/O latency effectively captures the core characteristics of the workload in
terms of read/write ratio, I/O request size and locality (randomness). The cal-
culated PBF corresponds to a factor of DA’s raw disk bandwidth (RB) thats
actively used, and RB is calculated as the maximum disk I/O bandwidth avail-
able on the DA when the workload consists of only write I/O requests with
100% sequential locality. RB is measured in units of MBPS.The physical-level
bandwidth (PB) corresponding to the application-level bandwidth (AB) is cal-
culated using the formula, PB = E ∗ PBF ∗ RB, where E is the elasticity
configured by the tenant in the QoS specification. The rationale behind includ-
ing E factor in this formula is because of the following implicit assumptions:
a) the core characteristics of the sample workload will continue to approx-
imately remain the same as in the application’s real-time workload, except
for the arrival rate of the I/O requests, and b) the number of I/O requests
are proportional to the number of application requests. The PB value thus
calculated, effectively represents the sample workload in its entirety and the
entire process is completely automated without requiring the tenants to ex-
plicitly specify PB requirements. This PB value by itself doesn’t make much
sense but when its incorporated into a QoS aware disk I/O scheduler, the re-
quests from different VDs can be processed on a DA with different priorities
that are in accordance with the bandwidth guarantees configured in the QoS
specification for the respective VDs.

The above mentioned PB extraction procedure focusses only on VD-level
QoS granularity, but it is trivial to extend it to VDC-level granularity. At
VDC granularity, a tenant’s application is spread across multiple VDs located
on physically isolated CNs. Given a VDC, the tenant’s application workload
is sampled on all the VDs belonging to the VDC as previously explained, but
with just a minor exception. The CFVC scheduler in each DA would maintain
a queue for each VDC rather than for each VD. Therefore, Cheetah aggregates
a set of PB values from all the DAs that hold the VDs belonging to the given
VDC and uses the aggregated PB value as the physical-level bandwidth to be
guaranteed for that VDC. Since the CFVC scheduler in a DA aggregates the
I/O requests from all VDs belonging to a VDC, temporary fluctuations in one
of the VDs of a VDC is efficiently absorbed in the corresponding DA. However,

166

VD1	 (100)	 VD2	 (80)	 VD3	 (70)	 VD4	 (60)	

DA1	
100	

DA4	
100	

DA5	
100	

DA2	
100	

DA4	
100	

DA5	
100	

DA3	
100	

DA4	
100	

DA5	
100	

DA1	
0	

DA2	
20	

DA3	
30	

Figure 7.3: Illustration of a scenario where a naive greedy RLB algorithm fails to
load balance the DAs

if the VDs are located in different DAs, Cheetah needs to build additional non-
trivial optimizations, like coordinating between such DAs at real-time, in order
to handle such short term fluctuations in the workload, and we reserve it to
future work.

7.4 Read Load Balancing

Cheetah uses a centralized read load balancer (RLB) that gathers input work-
load information of every VD, and the overall disk resource utilization infor-
mation of every DA, to generate a map of weighted routes between a VD and
its corresponding replica DAs. Each VD periodically queries the RLB to use
the route map to identify the optimal routes, such that no DA is overloaded.
The input workload information of a VD can represent the workload’s overall
I/O latency, where the overall I/O latency is defined as the sum of disk I/O
latencies experienced by the I/O requests in that VD’s workload. Both read
and write I/O requests are considered while gathering a VD’s load on a DA
because even though RLB technique is employed to route read I/O requests,
the load on a DA is determined by the load exerted by all types of I/O requests
on the DA.

In design, RLB collects the load information of every VD and distributes
the load in each VD to its corresponding set of N replicated DAs, such that
the overall load across all DAs are uniformly distributed. In other words,
the RLB scheduler assigns an optimal weight to each route between the VDs
and their corresponding DAs, and a local scheduler in each VD routes its I/O
requests to target DAs in proportion to the weights thus obtained. Weights
on each route depend both on the locality of the workload in the VDs and

167

on the load on target DAs. Unfortunately the task of finding an optimal
weight assignment to each route between x VDs and y DAs in the overall
system is quite complicated and since the RLB scheduler works in the scale
of hundreds to thousands of DAs and VDs, the time required to find optimal
weight assignment is critical to the overall performance of Cheetah. If RLB
were to apply a greedy approximation algorithm, it would order the VDs in
the descending order of the workload’s overall latency, and for each VD, the
input workload would be split into multiple parts such that each part would
be assigned to each of its replicated DAs in proportion to the load on that DA.
Since the algorithm begins with the VD with highest load, DAs are expected
to be assigned with heavy loads initially and later on with lighter loads. Such
an assignment works on the best effort basis to load balance the DAs, but
it is quite possible for a VD to face a situation wherein it has to select a
least loaded DA such that the selected DA is already overloaded due to some
earlier assignments. Ideally, using a dynamic programming solution at such
a stage would lead to backtracking the assignment process until atleast one
of the target DAs for a VD is not overloaded. But due to time constraints
on the RLB to find a weight distribution solution at real-time, the greedy
algorithm would be forced to select an overloaded DA as the least loaded DA
among the possible alternatives for a VD, and hence such an unbalanced load
distribution forces Cheetah to fail in ensuring the QoS guarantees. Figure 7.3
illustrates the load balancing problem using 4 VDs and 5 DAs. The naive
greedy approximation algorithm maps VD1 to DA1, VD2 to DA2 and VD3
to DA3, but when it comes to VD4 with a load of 60 units, none of its replica
DAs (DA1, DA2 and DA3) have enough capacity to hold its load. Therefore,
VD4 is forcefully assigned to the least loaded DA (DA3) among the available
options, and clearly DA3 will fail to serve the collective load of 130 units using
its capacity of 100 units.

This optimal weight assignment problem is similar to the problem that
appears in network switch scheduling, where the switch needs to find a way to
maximally pair a set of input ports with a set of output ports. Fortunately, in
the network switch scheduling literature, PIM [160] and iSLIP [161] suggest a
greedy approximation algorithm using multiple iteration technique to answer
this issue with a practically efficient solution. Cheetah adopts this multiple
iteration technique to enable RLB to split the input workload into a number
of load units that are much greater than the number of replica choices avail-
able for a VD and then iterates multiple times to distribute the load units
among target DAs. Since the load assignment for a VD is done over multiple
smaller installments, the proposed greedy algorithm significantly reduces the
probability of selecting an overloaded DA as the least loaded DA option for

168

any VD. However, the multiple iteration technique doesn’t completely avoid
the possibility of having an unbalanced load distribution. The size of the load
unit in each VD is critical to this entire load balancing operation. While a
large load unit increases the possibility of imbalanced DAs, a smaller load unit
decreases the possibility of imbalanced DAs at the expense of increased com-
putation time, running over large number of iterations. Hence RLB computes
the size of the load unit to be the mean of the disk channel utilization time of
every VDs workload.

Cheetah collects the input workload information from the DAs rather than
the VDs because of two reasons. First, the number of VDs far exceed the num-
ber of DAs and hence gathering statistical information from each DA helps
save the network bandwidth. Second, the disk channel utilization time in-
formation measured on a DA implicitly covers the important variables like
locality in the workload, I/O request size, read/write type and request rate,
that would otherwise pose severe challenges if these variables were to be ex-
tracted individually based on the end-to-end latency as observed from a VD.

7.4.1 RLB Algorithm

RLB requires the following input information: a) Input workload information
of all VDs in terms of disk resource utilization time of the VDs workload, b)
Capacity of each DA, in terms of maximum IOPS supported by the DA and
c) Average I/O latency of the requests processed by every DA. The capacity
of a DA is computed as the number of fixed-sized sequentially processed I/O
requests per second and its just a relative measure to fairly identify DAs with
different processing capacities. The average I/O latency of a DA is computed
by taking the average of the latencies of I/O requests from all VDs that are
processed by that DA.

RLB splits the overall load on each VD into multiple fixed size load units,
such that ith VD has Ki load units. As the output of the RLB algorithm,
RLB assigns each VD with a local weight to each of its replicated DAs, and it
is these local weights that the a VD uses as a heuristic to distribute its read
I/O requests among its replicated DAs. Therefore RLB maintains a counter
to record local weight for each replica DA of a VD. Additionally, RLB also
maintains a global counter for each DA to record the global load on that DA
as a result of the load assignments for a VD-DA pair.

Load units are assigned from VDs to their target replica DAs using the
following algorithm:

1. Sort the x VDs in descending order of Ki values to produce a sequence
VD1, VD2, ... V Dx

169

Figure 7.4: Illustration of RLB management. All x VDs are arranged in decreasing
order of their Ki values. Number of replicas are shown to be 3. For every load unit,
it’s corresponding 3 replica DAs out of the overall y DAs are identified and arranged
in increasing order of their load factor. In every iteration, one load unit is assigned
to the least loaded DA (lowest load factor).

2. For the first VD in the ordered list, select the target DA as the DA with
least load factor among the VD’s replica DAs. Assign a load unit from
the VD to that target DA by incrementing the local weight for the target
DA in that VD by one, and also increment the global load counter for
that DA by a value equalling to the average I/O latency on that DA.
A DA is said to have the least load factor if it has the least ratio of
global load counter
Total Capacity

among all the replica DAs corresponding to that VD.

3. Insert the previously selected VD in its correct place in the ordered list.
If the VD doesn’t contain any more load units, then remove it from the
list.

4. Continue the steps 2 and 3 until the list is empty.

Figure 7.4 illustrates the above algorithm. The key ideas in this greedy
heuristic algorithm are: a) to do each VD’s load assignment to its replica
DAs in multiple smaller installments so as to prevent the greedy assignment
from making too big a mistake, b) to allow each VD a number of shots in
assigning its load units to its DAs, where the number of shots is proportional
to its load, c) to assign the load units to DAs in sequence starting from most
loaded VDs till the least loaded VDs, where assigning a load unit to a DA is

170

equivalent to submitting a group of read I/O requests to that DA. Since each
DA is shared by different set of VDs, the average I/O latency experienced by
a group of read I/O requests is different on each replica DA. Therefore in step
2, upon selecting the DA with least load factor among the replica DAs, the
global weight for that DA is incremented by a factor equalling to the average
I/O latency observed on that DA, rather than by a fixed global value shared
among all he DAs. The least loaded DA selection process involves the capacity
of a DA, because in a distributed storage system it is quite common to see
DAs with a different capacity and it is necessary to assign more load to DAs
with higher capacity.

7.4.2 RLB Integration with Cheetah

RLB algorithm is integrated into Cheetah as follows:

1. For every sampling window of T minutes, each DA gathers the follow-
ing information about the processed I/O requests for each of its VD, a)
cumulative I/O latency b) total number of requests. The sampling win-
dow size should be chosen large enough to capture a consistent overall
workload pattern in each VD and through our empirical observations we
suggest a value between 1 to 3 minutes for the sampling window T.

2. At the end of the sampling window time, each DA submits to RLB the
average I/O latency, total request count for each of its VD and the total
capacity of that DA in terms of maximum IOPS.

3. RLB waits for a small predetermined time after the sampling window,
to ensure all DAs have submitted their observed results and then runs
the RLB algorithm to calculate local weights for all the replica DAs in
each VD.

4. Each CN queries RLB at periodic intervals to collect the DA load dis-
tribution map for each of its VDs.

5. Each VD uses this load distribution map to accordingly distribute the
read I/O requests among its replicated DAs.

Steps 1-4 described above, contribute to generating a load distribution map
that is then passed on to each VD to use as a heuristic to make efficient read
I/O request routing decisions as described in step 5. While, steps 1-4 make a
best effort to ensure that the overall storage system is uniformly loaded, step 5
ultimately decides the optimal route for each read I/O request in a VD. Thus,
in step 5, the local scheduler that makes decisions to route the read requests is

171

very critical to the entire load balancing process. A naive local scheduler that
blindly distributes the read I/O requests in strict accordance to the heuristics
in load distribution map will ensure uniform load distribution on all the DAs
in the system, but it might not be in the best interest of the system’s overall
performance. There are a couple of important points that deserve a detailed
analysis. First, the latency aspect of the QoS guarantee is not addressed in
this work. In order to ensure latency guarantees in the QoS, the local scheduler
in a VD needs to route every read I/O request to the best replica DA that
helps deliver lowest I/O latency and selecting such a DA could temporarily
violate the ideal load distribution heuristics suggested by the RLB algorithm.
There could be several reasons for such a routing decision and one of them is to
optimally utilize the DA cache using the locality information in the incoming
workload on a VD. Second, it is not in the best interest to ensure uniform load
on all the DAs at all times. Sometimes it is beneficial to overload a DA and
under load another DA by redirecting a majority of the requests from a VD
to a single DA, because each DA could then have lesser INTER-VD seeks to
do. In the QoS aware disk I/O scheduler in a DA, it is clear that whenever
a request has to be handled from a different VD, a large seek is performed
and that results in a very high I/O latency. The above two points require
additional research to guarantee optimal overall system performance and hence
we leave these two concerns for future research. However, in this dissertation,
we build a simple local scheduler in each VD that incorporates both the VD’s
workload locality and the RLB weight distribution map. The local scheduler
keeps a LRU cache of the logical block addresses (LBA) of X read I/O requests
along with the target DAs to which those requests were submitted. Assuming
that a DA can use its disk cache better when the incoming I/O requests are
sequentially located, the local scheduler on a VD chooses a replica DA to
submit a read I/O request, R1, using the following 2 steps:

1. Identify an I/O request, R2, whose LBA is closest to R1 and if the
difference between the LBAs of R2 and R1 is less than T sectors, then
choose the target candidate DA as the DA corresponding to R2. T
is chosen such that there is a high probability of processing R1 from
disk cache on the target DA or atleast if R2 and R1 are located on the
same or adjacent tracks on the disk. Since it is extremely difficult and
undesirable to expose disk level semantics to each VD, based on empirical
observations, T can be roughly approximated to a value around 20K.

2. If the candidate DA chosen in step 1) doesn’t violate the RLB weight
distribution, then that DA is chosen to submit R1, but if it does violate,
then a DA that doesn’t violate the RLB weight distribution is chosen to
submit R1.

172

Therefore, the local scheduler on the VD makes locality-aware decisions
while distributing the read I/O requests, and hence ensures uniform load bal-
ancing on the DAs, together with minimal I/O latency for each I/O request
and effective DA bandwidth utilization.

7.5 Flow Control

The bandwidth guarantee enforced by Cheetah only ensures the minimum level
of service for each VD/VDC, but on a distributed storage system shared by
multiple tenants, it is quite natural to see some VDs generating more workload
that seeks a higher share of the DA than what it had requested for in its QoS
specification. If the DA does not have spare bandwidth, then such a workload
overloads the DA and can potentially bring down the performance of the entire
DA. Though the CFVC scheduler in the DA ensures fairness and performance
isolation to a fair degree, it is beyond the control of any disk scheduler to stop
a workload from generating more requests. Since the hardware resources on a
SN are limited, it is essential to regulate the data flow between CNs and SNs,
so that a CN never overloads any SN. When a SN suggests some data flow rate
to a CN, the CN has to again adopt another flow control algorithm to regulate
the data flow from multiple VDs that send their data to multiple DAs on the
given SN. Otherwise, a single VD that misuses its share, will negatively impact
other VDs on that CN that share the same SN. Therefore, Cheetah proposes to
regulate the data flow rate directly between DAs and VDs. An SN computes
the ideal data flow rate for each of its DAs and forwards the flow control
suggestions to the corresponding CNs that hold the corresponding VDs.

To handle flow control management between VDs and DAs, it is neces-
sary to accurately measure the residual bandwidth on each DA in the storage
system and only then the SNs can suggest a suitable data flow rate to the
corresponding VDs. However, due to advanced caching and NCQ techniques
on modern disk drives, it is extremely challenging to measure the DRUT ca-
pacity of a VD, which was described in greater detail earlier in Section 7.3.
Given the DRUT capacity for each VD on a DA, Cheetah uses the following
flow control algorithm on each of the DAs:

1. Measures the total disk time usage Y, and the disk time usage Yi and
the incoming I/O rate Zi of each V Di that imposes load on that DA,
and

173

2. Sends to V Di an advised I/O rate, which is equal to(
Yi
Y
∗ Ylimit ∗

1

Yi
∗ Zi

)
=

(
Ylimit

Y
∗ Zi

)
Ylimit is each DA’s maximum allowed disk time usage. If Y exceeds Ylimit,
flow control is triggered. The advised I/O rate given by a DA to a VD
sets an upper bound on the I/O rate of that VD to that DA.

Ylimit is configured as a percentage of the time period for which the statisti-
cal measurements are made on the DA. Very low value of Ylimit results in under
utilization of disk resources and a very high value results in overloaded condi-
tions, that seriously disrupts the overall performance of the system. Therefore,
as a safe heuristic, Cheetah configures Ylimit as 70% of the total observation
time. In the formula used in step 2, when Y exceeds Ylimit, for each V Di, Zi

should be lowered by a factor:

required disk usage time

observed disk usage time

where, required disk usage time should be a factor of Ylimit rather than Y, and
hence the factor

(
Yi

Y
∗ Ylimit

)
.

In the above mentioned flow control algorithm, all VDs are treated equally
and hence is QoS unaware. The required disk usage time component in the
above mentioned QoS unaware flow control algorithm, should ideally involve
QoS reservations and hence Cheetah proposes the following QoS aware flow
control algorithm, and does the following on each DA:

• Measures the advised I/O rate to be(
QoSi

QoSsum

∗ Ylimit ∗
1

Yi
∗ Zi

)
QoSi is the bandwidth requirement of V Di on the DA and QoSsum is
the sum of all QoS requirements on that DA.

In case of high fluctuations in input workload pattern, the observed disk
usage time gives a tighter control over the flow control regulation rather than
the QoS aware formula, and hence Cheetah computes the final advised I/O
rate as the minimum of,[(

QoSi

QoSsum

∗ Ylimit ∗
1

Yi
∗ Zi

)
,

(
Ylimit

Y
∗ Zi

)]

174

DA	
PB	 :	 100	

R1 / 80

R2 / 50

R3 / 30

VD1	 40

VD2	 20

VD3	 10

Guaranteed
PB

Generated Rate/ Expected PB

Advised Flow Control Rate

Regulated Rate: FC1

Regulated Rate : FC2

Regulated Rate: FC3

Figure 7.5: Illustration of flow control management on a DA shared by 3 VDs. PB
is in units of MBPS

Figure 7.5 illustrates an example of flow control management on a DA
shared by 3 VDs. The PB guarantee for VD1, VD2 and VD3 are 40 MBPS,
20 MBPS and 10 MBPS respectively. The DA with 100 MBPS PB capacity
is ideally configured to be 70% utilized and is reflected by the sum of the
guaranteed bandwidth for each VD on the DA, which is 70 MBPS. Lets assume
VD1, VD2 and VD3 generates its requests at a rate of R1, R2 and R3 I/O
requests/second respectively. R1, R2 and R3 corresponds to hypothetical PB
value of 80 MBPS, 50 MBPS and 30 MBPS respectively. The expected PB
bandwidth is shown to give a better clarity on the load exerted by each VD
on the DA. Since the sum of the expected PB values from all the VDs (160
MBPS) is higher than the desired PB utilization capacity of the DA (70% of
100 MBPS), the CFVC scheduler on the DA proportionally allocates the DA
bandwidth to each of the VDs and hence VD1, VD2 and VD3 receives a PB
share of 57, 29 and 14 MBPS respectively. Cheetah then triggers flow control
mechanism to regulate the data flow from each VD to the DA. In the QoS
unaware technique, each VD is asked to reduce its request generation rate by
a factor equivalent to Ri

R1+R2+R3
, where Ri corresponds to R1, R2 or R3 for

VD1, VD2 or VD3 respectively. However, the request generation rate by itself
doesn’t represent the entire workload on a VD. Hence Cheetah uses the DRUT
capacity of a VD to determine the factor by which the VDs request generation
rate should be reduced. The DRUT capacity of a VD effectively captures

175

all the necessary locality information of a VD’s workload and corresponds to
the PB value allocated by the CFVC scheduler. Similarly, in the QoS aware
technique, Cheetah uses the guaranteed PB value to determine the factor by
which the request generation rate of a VD should be reduced.

7.6 CFVC: A QoS Aware Disk Scheduler

Each DA receives disk access requests from different VDs and for each VD,
Cheetah is responsible for ensuring strict adherence to the QoS guarantees
made to that VD. On a DA, the disk I/O requests from different VDs have
no common locality and they arrive at totally unpredictable intervals. Hence
it is a non-trivial task to schedule the I/O requests from different VDs in
the right order such that the following constraints are met successfully: a)
PB value for each VD is honored, b) the raw disk bandwidth of each DA is
optimally used, and c) the performance of each VD is isolated, such that a
noisy VD generating excessive workload doesn’t disturb the performance of a
well behaved VD that generates workload in accordance to expected limits.
These I/O scheduling restrictions are similar to those of a disk scheduler in a
directly attached disk, where the VDs correspond to different processes with
different priorities. Such disk scheduling algorithms are well studied in the
literature and hence we wish to adopt a well proven QoS aware disk I/O
scheduler into Cheetah and provision each DA locally with such a QoS aware
disk I/O scheduler.

While scheduling algorithms like SCAN [194], CSCAN [195] and weighted
round robin [162] do not bound the worst case latency, fair queuing (FQ) [196],
weighted fair queuing (WFQ) [197], virtual clock (VC) [198] and CSCAN based
virtual clock (CVC) [136] algorithms do not ensure fairness in a short term
period. CSCAN based Fair Virtual Clock (CFVC) [135] scheduler not only
promises to ensure short term fairness, but also provides performance isolation
as well as other features supported in a standard VC scheduler. Therefore
Cheetah adopts CFVC disk scheduler in every DA.

7.6.1 CFVC Scheduler Algorithm

CFVC scheduler maintains two queues to aggregate disk access requests from
all the VDs and periodically dispatches a request to the DA by picking the
best candidate from one of the queues. The two queues are, utilization queue
in which the requests are ordered in standard CSCAN order [195], and QoS
queue in which the requests are ordered by their finish time as determined
by the virtual disk switching overhead (VDSO) algorithm. The CSCAN and

176

VDSO algorithms are described shortly. For each incoming disk access request
in a DA, the CFVC scheduler calculates the finish time and inserts it in both
the queues according to the order maintained in the respective queues. Si-
multaneously in the dequeue process, the CFVC scheduler checks if servicing
the head request in the utilization queue will violate the finish time of the
head request in the QoS queue and dispatches the head request in utilization
queue if it won’t; otherwise dispatches the head request from QoS queue. By
giving first priority to utilization queue, maximum disk bandwidth efficiency
is extracted from the DA and by ensuring the finish times in QoS queue are
not violated, fairness is guaranteed among all the VDs.

CSCAN algorithm orders the requests in utilization queue in increasing
order of logical block addresses within a DA. Once the disk head reaches the
end of the DA (largest logical block address in the queue), it makes a big jump
to the start of the DA and because it continually sweeps across the DA, seek
latency and rotational latencies are avoided to the maximum possible extent,
thereby guaranteeing maximum possible raw disk bandwidth in DA.

VDSO algorithm computes the finish time for each disk access request
using the following formula:

FT (rij) = max(AT (rij), FT (ri−1
j)) +

L(rij) + V DSOj ∗Braw

Bj

(7.1)

Where, jth VD’s bandwidth is Bj and its ith request is rij. L() denotes
the length of the request’s length. Arrival time (AT) is the current wall clock
time on the SN server at which a request arrives on the SN. Finish time (FT)
is also based on current wall clock time on SN server and it is guaranteed by
CFVC scheduler to submit the request to disk within it’s finish time. Braw

indicates the raw transfer bandwidth of the DA and that corresponds to the
100% sequential bandwidth as explained in section 7.3. V DSOj represents
the per disk access overhead associated with the jth VD and is calculated as
described in the following algorithm:

177

Algorithm 1 Algorithm to calculate VDSO
INPUT:
VD of current request: N;
Current request’s disk service time: svr;
Target VD of previous request: prevVD;
Difference in LBN of current request and the previous request on the same
VD: LBNGap;
Average Inherent Disk Access Overhead of all VDs, where for nth VD it is:
AIAOHn;

OUTPUT:
Virtual Disk Switching Overhead: VDSO;
Inherent Disk Access Overhead of all VDs, where for nth VD it is: IAOHn;

CONSTANTS:
Disk Cache Access Overhead: DCAOH;
LBN gap threshold: LBNGapThreshold;

1: loop
2: if svr <= DCAOH then
3: ignore svr;
4: else
5: if N = prevVD then
6: charge svr to IOAHn;
7: else
8: if LBNGap <= LBNGapThreshold then
9: charge svr to VDSO;

10: else
11: charge AIAOHn to IOAHn;
12: charge svr − AIAOHn to VDSO;
13: end if
14: end if
15: Assign N to prevVD;
16: end if
17: end loop

When multiple VDs are hosted on a single DA, the overhead associated
with moving the disk head to handle requests from one VD to another, is the
storage virtualization tax and the VDSO algorithm described in 1 distributes
this tax to all the VDs in an efficient way, ensuring overall fairness among the

178

VDs and maximum raw disk access efficiency in the DA. Inherent access over-
head (IAOH) is the overhead associated with a virtual disk when two requests
belonging to the same VD incurs disk head movement. This corresponds to
the disk access overhead of a VD if it were to be hosted on a dedicated DA.
The average inherent disk access overhead (AIAOH), is IAOH divided by the
number of requests contributing to the calculation of IOAH. In order to mea-
sure the disk service time of a request, a dedicated DA is used for the sampling
purpose. For each request, the service time, svr, taken to process it on the
DA is measured and used to distribute it to VDSO according to the above
algorithm. DCAOH is used as a measure to find if a request could hit in a
cache or not. As a close approximation, it is set to the average of the disk
service time on a DA, excluding the data transfer time to process a large num-
ber of sequential requests. The resulting VDSO from the algorithm represents
the overall storage virtualization tax and should be distributed to all VDs in
proportion of their IAOHs. Hence on a DA with N VDs, VDSO for each VD
is calculated as:

V DSOi = V DSO ∗ IAOHi∑n
j=1 IAOHj

In order to statistically compute VDSO for each VD, a sample of the work-
load requests are considered periodically and the corresponding VDSOs are
extracted. By periodically sampling the workload, any major changes in the
workload pattern is absorbed in the VDSO factor and hence results in a fair
and efficient scheduling policy.

The resulting FT in equation 7.1, ensures that for a VD with higher band-
width reservation Bj, the difference in FTs for consecutive disk access requests
is smaller and hence the scheduler will service more number of requests for the
VD as expected. However, it may so happen that some of the VDs in a DA
are temporarily inactive (backlogged) and one active VD generates requests
higher than its reserved bandwidth. The slack in bandwidth from backlogged
VDs is efficiently distributed to the active VD and when the backlogged VDs
turn active, the previously active VD is paused and the backlogged VDs are
serviced until the overall disk channel usage time is balanced for all the VDs in
proportion to their bandwidth reservations. However, a typical VC scheduler
like this suffers from a short term unfairness problem. During the period when
an active VD is paused to serve requests from backlogged VDs, the requests in
paused active VD experiences large delays and the delay time is proportional
to the amount of slack previously utilized by that VD. Though this technique
ensures overall fairness among all VDS by pausing the over serviced VD until
the backlogged VDs are given a fair amount of disk channel time, the large
delays experienced by requests in over serviced VDs poses an ugly situation,

179

Figure 7.6: Illustration of short term unfairness problem in a typical VC disk
scheduler algorithm. FT1, FT2, FT3 corresponds to finish times of backlogged VDs
VD1, VD2 and VD3 respectively. FT4 corresponds to finish time of active, over
used VD4. VD4 has used slacks from bandwidths of VD1, VD2 and VD3 due to
their temporary inactiveness and hence its finish time is much ahead of the current
system time. CFVC algorithm pushes the current system time by delta so that
requests from VD4 doesn’t wait for long to be processed.

especially for real time systems. Figure 7.6 gives an illustration of the short
term unfairness problem.

The short term unfairness issue is as a result of using wall clock time in
calculating arrival time (AT) in equation 7.1. If the current time is pushed
ahead by a marginal amount ”delta”, then for some ”alpha” number of re-
quests, the max(...) component in the equation 7.1 results in AT rather than
its FT. That ensures those ”alpha” number of requests are processed much
earlier compared to the situation when ”delta” is 0. Thus by controlling delta,
the worst case latency can be controlled at the expense of being biased towards
the over used VD, where the amount of bias directly corresponds to ”alpha”,
which in turn is controlled by ”delta”.

7.6.2 Implementation Challenges Integrating CFVC Sched-
uler into Cheetah

Cheetah uses a separate CFVC scheduler for each DA inside each SN. Each
SN has a receiver thread that receives incoming I/O requests on a dedicated
TCP/IP socket and depending on the target DA, the SN receiver thread for-
wards the I/O request to a dedicated DA receiver thread for the target DA.
The DA receiver thread inserts the received I/O request into a dual FIFO
queue maintained by the CFVC scheduler on that DA. Each DA also has a set

180

of submit threads in the DA and each of these submit threads independently
dequeue a request from the dual FIFO queue and submits the I/O request to
the target disk in the DA. There are atleast as many DA submit threads, as
the sum of the NCQ values on every disk in the DA, because only when multi-
ple threads submit I/O requests in parallel, NCQ advantages on the disk drive
are utilized to the fullest extent. Upon processing the I/O request, the DA
submit thread forwards the acknowledgement received from the disk drive to a
dedicated DA acknowledgement thread, and then returns to dequeue the next
available request in the dual queue. Each DA has a dedicated acknowledge-
ment thread that forwards the acknowledgement of the processed I/O request
to the appropriate VD using TCP/IP socket interface. The number of threads
in this implementation could be reduced if asynchronous I/O operations are
used. However, we reserve it for future work and use the above mentioned
implementation because the DA threads are majorly I/O bound and even the
performance evaluations didn’t suggest any noticeable bottlenecks.

There are a number of challenges in implementing the above CFVC design
on a DA. First, in order to exploit parallelization in the DA, software RAID
configurations with striping functionality like RAID0, RAID5 or RAID10 is
chosen. It is necessary to choose a stripe size that maximizes both the disk
I/O bandwidth utilization and parallelization opportunity in the DA. Second,
the DA submit threads have to identify the target disk for every I/O request.
Third, in order to determine the VDSO and IAOH attributes of an I/O request
in the CFVC algorithm, the DA submit threads have to determine the accurate
I/O latency for each I/O request. Fourth, accurately identify the I/O latency
corresponding to checksums in RAID5 type of setting and make it accountable
in the CFVC algorithm.

When the stripe size is configured to be lesser than the I/O request size,
the RAID array stripes each incoming I/O request into multiple fragments
and submits them to the corresponding disks in that DA. Since this results
in locking all three disks at the same time, it minimizes the parallelization
opportunities that could simultaneously submit I/Os to individual disks drives.
When the stripe size is configured to be a multiple of the I/O request size,
each I/O request results in internal fragmentation and hence leads to wastage
of disk I/O bandwidth. Therefore, it is ideal to configure the stripe size to
exactly match the I/O request size.

The CFVC algorithm can ensure absolute performance isolation and high
disk bandwidth utilization, only if the I/O latency information is measured
accurately for each VD that shares the DA. Due to caching, native command
queuing (NCQ), reordering, merging, interrupt coalescing and other such ad-
vanced features in modern disk drives, adjacent I/O requests on a DA are

181

grouped and acknowledged from the disk drive in one shot and hence it is
not straight-forward to isolate I/O requests from different VDs in the merged
group and calculate the latency of each I/O request. For example, suppose a
DA takes 2 ms to process request R1 from VD1 and 3 ms to process request R2
from VD2, when R1 and R2 are submitted independently at different points
in time. Now if R1 and R2 are submitted one after the other with a very short
time interval, the DA might process R1 in 2 ms and then process R2 in 3 ms,
and then return the acknowledgement for both R1 and R2 at the same time.
Such a scenario would make R1’s I/O latency(5 ms), which is much larger than
its expected latency(2 ms). With such a naive latency measurement technique,
the effect of R2’s locality is incorporated into R1’s I/O latency measurement,
and hence the CFVC algorithm will fail to deliver accurate performance re-
sults. Therefore, Cheetah identifies the overall latency of each such merged
group of I/O requests and associates the average I/O latency of that group
as the I/O latency of every I/O request in that group. The I/O requests can
potentially belong to any VD and hence Cheetah correctly associates the I/O
latency of each I/O request to its corresponding VD and ensures accurate
measurement of the attributes in CFVC algorithm. In order to accurately
identify the boundaries of such a group, Cheetah measures the time interval
between consecutive interrupts from a given disk and if the interval is lesser
than or equal to the theoretically calculated time taken to transfer the data
to disk platter, it is definite that the given I/O request is aggregated with its
previous request. However, if the inter-interrupt time interval is greater than
the time taken to transfer the data to disk platter, it is not completely true
that the I/O requests are not merged, but it is an extremely unlikely scenario
and hence it is OK to consider them as not merged.

One might argue that all the above mentioned disk optimizations should be
possible only if the consecutive I/O requests are from a single VD and hence it
should not be a problem to consider a group of requests from the same VD as
one unit. But it is not completely true because it is not a good idea to assume
that multiple VDs sharing the same DA, do not interleave the disk space. For
example, a DA shared by 10 VDs might be organized such that, each VD
occupies 100 MB of interleaved disk space. Cheetah intends to distance itself
from the structure and organization of a DA, because a deeper dependency to
a DA will only make Cheetah more vulnerable to frequent software patches,
as and when the hardware resources or the mapping structure of the DA is
changed.

Since a DA consists of just a bunch of hard disks which can be configured
in many ways, software RAID configurations with striping capability are typ-
ically preferred due to the possibility of exploiting I/O parallelism in the DA.

182

With any stripe-based RAID-level configuration, it is possible to determinis-
tically ascertain the target disk drive in a DA using simple modulo arithmetic
on the I/O request’s logical block address (LBA). However, checksum-based
RAID configurations like RAID5, incurs additional I/O latency associated
with checksum management and it is important to associate such additional
I/O latency experienced due to checksum handling, to the corresponding I/O
requests. Unfortunately, since checksums are generated by the software RAID
controller, it is not clear as to when and how the disk drives aggregate the
checksum disk I/O requests, and as a result, it is extremely difficult to segre-
gate the checksum latency component of the measured I/O latency. For exam-
ple, lets consider a case where a VD submits write I/O requests 〈R1−R100〉 on
a 4 disk DA arranged in RAID5 manner. Since the checksum uses XOR logic,
the RAID controller generates 4 I/O requests for R1, two read I/O requests
to fetch R1’s data block and the checksum block associated with R1, and two
write I/O requests to submit R1’s data and checksum blocks. Similarly, every
I/O request in the VD’s workload generates 4 I/O requests and each disk in
the DA buffers, re-orders, merges and coalesces requests independently. Lets
say, R1’s data block read request is merged with R5 and R12’s checksum read
requests and R16’s data block write request. The RAID controller will not re-
turn the acknowledgement for R1, until all four disk I/Os associated with R1
are completed. Hence, by the time the RAID controller returns acknowledge-
ment to R1, several requests are merged with R1 and hence the I/O latency
of R1 is distributed among all such merged requests.

A similar problem exists when the DA is provisioned with hardware RAID
controllers. Even when the stripe size in a hardware RAID5 setup is chosen to
be 1

N
times the size of an I/O request, where N is the number of disk drives in

a DA, the individual disks drives are not necessarily synchronized. As a result,
the hardware RAID controller stripes every I/O request into N-1 fragments and
submits each fragment and the checksum to the corresponding disk drives, but
since the disk drives are not usually synchronized, the RAID controller waits
until all disk drives successfully process the requests. This waiting time is
unpredictable again because of advanced disk optimization techniques and the
presence of multiple I/O requests submitted in parallel to the same DA. Only
advanced, expensive hardware RAID controllers ensure disk synchronization,
but even then it is difficult to segregate the effect of additional I/O latency
due to checksums from the measured I/O latency. Therefore, Cheetah doesn’t
use checksum-based RAID settings, rather it uses either RAID0 or RAID10
configuration.

183

7.7 Putting it All Together

This section gives a consolidated overview of how Cheetah uses all the above
mentioned novel techniques to enforce accurate QoS guarantees. For the sake
of clarity, we will focus on VD-level QoS granularity. When a tenant wishes
to create a VD to handle his application’s disk I/O workload, he describes
the QoS specification as 〈B,E〉 and submits a sample disk I/O workload of
his application. Cheetah uses a set of dedicated spare DAs to analyze the
sample workload. When the sample workload submits a disk I/O request
to its VD, the local disk I/O scheduler in the corresponding CN’s DISCO
client submits the request to either all the N replica DAs, in case of a write
I/O request, or submits the request to one of the replica DAs in a round robin
order, in case of a read I/O request. The CFVC disk I/O scheduler on each DA
individually measures the latency of each disk I/O request and at the end of the
sampling stage, each of those DAs report the PB value for the VD on that DA.
Thus Cheetah decomposes the AB value into PB value for each VD-DA pair.
Cheetah uses a naive admission control algorithm (not described in this work)
to select a set of N DAs that can accommodate the given VD’s PB requirement.
If the QoS specification is too high to be accommodated, Cheetah reports
suitable failure status to the tenant’s application and aborts the VD creation
process. If the QoS specification is acceptable, Cheetah reports the replica
DAs to DISCO client and DISCO server to register the VD-DA mapping for
future disk I/O accesses to that VD.

For the real-time disk I/O workload generated from the VD, the local
disk I/O scheduler for that VD uses a locality-aware scheduling algorithm,
to identify target DAs for the read I/O requests in that workload using hints
from RLB to ensure that none of the target DAs are overloaded. The read I/O
request is then submitted to the target DA. A write I/O request is submitted
to all N replica DAs. The DISCO client in the CN, periodically collects load
information of the replica DAs from the RLB for all the VDs in that CN, and
the local disk I/O scheduler uses this load information to distribute the read
I/O requests from each VD.

When the CFVC scheduler on a DA receives a disk I/O request, it inserts
the request into the dual queue. The CFVC scheduler processes the I/O
request accordingly and upon the I/O completion, it measures and collects
the I/O latency of that request. The DA sends suitable acknowledgement
to the corresponding VD. Every DA periodically computes the average I/O
latency of all the I/O requests processed on that DA and sends to RLB the
computed average I/O latency for each VD that submits its workload to that
DA, capacity of that DA which is expressed as the maximum IOPS supported
by that DA and the number of I/O requests processed by that DA.

184

When the RLB receives requests from a CN querying for load distribution
maps for each of its VDs. It looks up its hash table to aggregate the load infor-
mation for each VD-DA pair in the request and returns it to the querying CN.
When the RLB receives requests from a DA to submit the load information, it
registers the collected statistics accordingly. Periodically, the RLB schedules
its algorithm to first identify the load units for every VD and then to distribute
the load units evenly to all the corresponding DAs using the proposed RLB
scheduling algorithm. RLB stores the load distribution weights in a hash table
to quickly access them when the corresponding VD queries for it.

7.8 Evaluation Methodology

In this work, we evaluate the correctness and effectiveness of PB extraction
mechanism and RLB algorithm. Though it is advantageous to perform the
evaluations in a real physical environment consisting of distributed storage
system with SDDS capabilities, it is not always possible to arrange such a
massive setup for research purposes. More importantly, it is difficult to iso-
late undesirable side-effects and focus only on the required components in a
massively interconnected SDDS system. Therefore, in this work, we use a
smaller prototype and an effective simulated environment that captures all
the required elements from a real physical environment that are necessary to
stress the evaluation of the proposed models.

7.8.1 Current Prototype

In order to prove the effectiveness of PB extraction process, it is necessary to
prove that the variations in PB are correlated with the variations in the input
workload locality. For the purpose of this evaluation study, the VDs and CNs
in the SDDS system do not necessarily have to be real physical systems, but
they are necessary to be involved because the number of buffering components
and networking interconnects on the data path between a VD and the target
disk in the DA plays an important role in the PB extraction process. Therefore,
we simulate them with software artifacts, using simple threads and processes,
which is described in detail in Figure 7.7.

VDs and CNs are separate software processes and a set of VDs are manually
mapped to a CN, such that VDs communicate to their corresponding CNs
through TCP/IP socket interface. Each VD has two threads, a submit thread
to submit an I/O request to its replica DAs through their corresponding CNs,
and a receiver thread to receive acknowledgements from its CN to indicate
the completion status of an I/O request submitted to a DA through that

185

VD1	 VD2	 VDn	

Storage Node Y
Input	 Queue	

Per	 DA	 Queue	

C
F
V
C	

C
S
C
A
N	

DA1	 DAk	

Per	 DA	 Queue	

C
F
V
C	

C
S
C
A
N	

Output	 Queue	

Client Node X

VD1
Queue	

SN1
Queue	

SNm
Queue	

VD2

Queue	

VDn
Queue	

Input	 Queue	 Output	 Queue	

LAN

LAN

Figure 7.7: Simulation setup for evaluating the effectiveness of PB extraction

CN. A VD’s submit thread generates requests based on the pre-configured
workload setting for that VD. The submit thread also increments a pending
request counter to indicate that an acknowledgement is due for the submitted
I/O request. Upon a successful TCP/IP transfer the submit thread returns
to submit the next request without waiting for the actual I/O completion
acknowledgement from the DA, through its corresponding CN.

Each CN process is modeled on the structure of a host operating system
in a virtualized system and it contains an input queue, to which multiple VDs
submit their I/O requests using TCP/IP socket interface. A dedicated thread
in the CN process dequeues from the input queue and inserts it into a FIFO
queue corresponding to the VD thats submitted the request. A dedicated per-
VD thread dequeues from its FIFO queue, makes the scheduling decision to
choose target DAs and forwards the request to the corresponding SN’s FIFO
queue. A dedicated per-SN thread dequeues the requests from its FIFO queue
and transfers the request to the appropriate SN using TCP/IP socket interface.

A SN is a dedicated JBOD storage server, which is a simple x86 system that
receives incoming I/O requests on a TCP/IP socket interface and forwards the
incoming I/O requests to the corresponding DAs input queue. Each DA is a
real physical entity and is represented by a set of dedicated threads on its SN.
Each DA has a receiver thread that dequeues from its per-DA incoming FIFO
queue, sets a timestamp in the request’s payload data to indicate the arrival
time on the DA and then inserts the request into the dual queue maintained

186

by the CFVC scheduler. Each DA also has a set of dedicated CFVC threads
for each disk drive in the DA and each of these CFVC threads independently
dequeue a request from the dual queue and synchronously submits the I/O
request to the target disk in the DA. There are as many dedicated CFVC
threads for each disk in the DA as the value of the NCQ on that disk because
only when multiple CFVC threads submit I/O requests in parallel, NCQ ad-
vantages on the disk drive are utilized to the fullest extent. With a Raid0
configuration, for any given I/O request, it is possible to deterministically as-
certain the target disk drive in a DA using simple modulo arithmetic on the
I/O request’s logical block address (LBA). Upon successful completion of an
I/O request, an interrupt is raised by the disk drive controller to notify the
corresponding CFVC thread of the I/O completion status. The CFVC thread
prepares an acknowledgment request and inserts it into the appropriate out-
put queue on its SN. Each SN has a dedicated acknowledgement thread that
dequeues from its output queue and forwards the acknowledgement request to
the corresponding CNs.

Each CN has a dedicated receiving thread that receives acknowledgements
from the SNs and forwards the requests to the corresponding VDs. The VD
receiver thread listens on a dedicated TCP/IP socket and upon receiving an
acknowledgement from a DA, through its CN, if the acknowledgement indi-
cates successful I/O transfer, it decrements the pending request counter. Until
the number of pending I/O requests in a VD stays below a threshold C, the
VD doesn’t send any I/O requests but sleeps for a small time period T. The
thresholds T (100 ms) and C (10K) are chosen based on simple heuristics to
ensure the CPU and Memory resources on the evaluation system are not over
burdened.

To demonstrate the effectiveness of the PB extraction process, it is suffi-
cient if a single DA is shown to effectively process I/O requests from a bunch
of VDs hosted on a single CN, where the VDs are configured to generate a
variety of workload patterns. Hence, the VDs and the corresponding CNs are
simulated on a single X86 system with 8 core 2.68GHz processor and 16GB
RAM, running 64 bit linux kernel 3.2. Since a DA is just a bunch of disks that
are flexible to be configured in different ways, for our experiments we chose
to use a software RAID0 configuration using four physical 7200 RPM SATA
disks. All the four disks were configured with NCQ value of 31 and the noop
disk scheduler was used to avoid undesirable latencies in the linux kernel block
layer.

187

RLB Evaluation Prototype

The presence of CNs and SNs are not strictly necessary to prove the efficiency
of RLB algorithm and therefore for RLB evaluation, we have simulated just
the VDs and DAs using simple processes and threads, as thats sufficient to
stress the RLB algorithm. Each VD process has a dedicated submit thread
that submits an I/O request to a DA by inserting the request into a FIFO
queue corresponding to the DA. The submit thread then returns to submit
its next request without waiting for any acknowledgement. Unlike the above
prototype, a real physical DA is not necessary for RLB evaluation. We built a
simulated DA that simulates the I/O latency for every I/O request by sleeping
for a corresponding amount of time. We describe this simulated DA in greater
detail in the next section. The DA simulator processes the I/O requests from
the FIFO queue and upon completion, it records the necessary statistics and
proceeds with the next request in the FIFO queue. The VDs and the disk
simulator collectively use a single X86 system with 8 core 2.68GHz processor
and 16GB RAM.

7.8.2 DA Simulator for RLB Evaluation

In order to evaluate RLB algorithms’s effectiveness in a cloud-scale storage
system, it is necessary to involve several VDs and DAs. However, due to
cost restrictions, it is not always possible to evaluate RLB in a real phys-
ical environment. It is a challenging task to design a simulated environ-
ment and prove its correctness and effectiveness through convincing empir-
ical evaluations. Though it is straightforward to simulate the VDs using
software threads and processes(as described in the previous section), simu-
lating a DA requires accurate prediction of the I/O latency of a disk access
request, which is acknowledged to be a challenging task in multiple prior re-
search works [107, 186, 199–202]. Fortunately, for RLB evaluation, an accurate
estimation of the I/O latency is not a strict requirement. It is sufficient if the
estimated I/O latency is a good approximate that varies according to the vari-
ations in the input workload presented to a DA. Therefore, we built a disk
array simulator that calculates the approximate I/O latency of each disk ac-
cess request which is represented in the form 〈r/w, disk offset, size〉, where
r/w flag indicates whether the request is of read or write type, disk offset in-
dicates the LBA of the I/O request in the DA and size indicates the size in
kilo bytes of the I/O request.

Since a DA is just a bunch of disks that are flexible to be configured in
different ways, for our experiments we chose to use a software RAID0 setup.
With a Raid0 configuration, for any given I/O request, it is possible to de-

188

terministically ascertain the target disk drive in a DA using simple module
arithmetic. When a VD submits an I/O request to a DA, that request is in-
serted into a FIFO queue corresponding to the particular disk drive inside the
DA and the VD thread returns to submit its next request without waiting for
any acknowledgement. Each DA has a dedicated thread for each disk drive
in the DA and each of these threads independently dequeue from its local
FIFO queue and sleeps for a time interval that is estimated to be the I/O
latency experienced by that request on a hypothetical physical disk drive. In
this simulation, if the requests were to be processed using a dual queue, large
number of threads would have been necessary to submit multiple I/O requests
in parallel, so that NCQ in the disk drive is utilized to the best possible ex-
tent. Using a single FIFO queue in the simulation helps reduce the number of
threads to a great extent, but in order to match the I/O latency on a physical
drive, the simulated DA uses intelligent techniques to simulate the merging
and reordering operations of a NCQ on a physical drive.

The CFVC scheduler on a physical DA maintains a dual queue consisting
of a CSCAN queue and a CFVC queue. In order to simultaneously ensure
maximal bandwidth utilization and minimum worst case latency on a DA, the
CFVC scheduler makes its best effort to process the I/O requests in sequen-
tial order of the LBAs using the CSCAN queue, unless there exists a request
in the CFVC queue that exceeds its waiting time beyond a threshold time
T1, because of which the CFVC queue is given higher priority and all such
delayed request are processed out of order. If multiple VDs submit I/O re-
quests simultaneously, then its likely that a group of requests from a particular
VD exceed their waiting time beyond the threshold time T1. As a result the
CFVC scheduler processes such requests out of order using the CFVC queue,
but since these group of requests are also present in the same sequential LBA
order in the CSCAN queue, the large seek latency incurred to process the first
request in the group is amortized with the rest of the requests in the group.
Threshold T1 is directly proportional to the worst case latency, but it is dif-
ficult to control in the simulated DA because requests are processed strictly
in FIFO order. However, based on our observations on a physical DA over
different set of experiments, the average size of a group of requests from a VD
that are processed together on a DA is approximately around 5. Since this
group size is just a heuristic based on actual observations on a physical DA,
the estimated I/O latency on the simulated DA doesn’t correlate accurately
with the actual I/O latency, but it does correlate according to the changes in
the workload on a DA.

The simulated DA calculates the I/O latency as the sum of transfer latency,
rotational latency and seek latency. Transfer latency is the easiest of the three

189

as its independent of the workload variations. Assuming that a 7200 RPM
disk is expected to support approximately 100 MBPS sequential bandwidth,
the transfer latency is calculated as follows:

Transfer Latency = (IO request size in KB/102400 KBPS)∗ 106µseconds

Seek latency and rotational latency are inter-dependent because of the
merging and reordering effects in the simulated DA. The average rotational
latency on a 7200 RPM disk is expected to be 4ms, but for a merged request
there is no rotational latency. For all practical purposes, we assume a maxi-
mum of 10 VDs shared by a DA and hence each VD occupies 100 GB range on
a 1 TB disk. Since in the simulated DA setup, each disk has its own dedicated
scheduler thread, having multiple disks in a DA doesn’t stress any component
of RLB but only adds to higher CPU contention. Hence the simulated DA
uses just one virtual disk with a capacity of 1TB. We conducted various exper-
iments to estimate the I/O latency for 2 cases: 1) process consecutive random
I/O requests from the same VD and 2) process consecutive random I/O re-
quests that are from different VDs. Case 1 corresponding to intra-VD latency,
resulted in an average I/O latency of 4.3ms. Case 2 corresponding to inter-VD
latency, was surprising because irrespective of the difference in offsets between
requests from two VDs, the average I/O latency was approximately 15 ms.
This is possible due to advanced mechanical techniques in modern disk drives,
and hence subtracting an approximate 4.3ms rotational latency and 0.625ms
transfer latency for a 64KB I/O request, from the observed 15ms average I/O
latency, the average seek latency can be approximated to be 10ms.

Since the simulated DA processes requests strictly in FIFO order (as de-
scribed in section 7.8.1), the order in which requests are processed on a CFVC
scheduler are completely different from the order in which requests are pro-
cessed from the FIFO queue in simulated DA and hence the finish time of a
request has no consequence to the latency estimation in simulated DA. The
pseudo code for simulated DA’s latency estimation algorithm is described in
Algorithm 2.

In Algorithm 2, the state variables are used to track the workload pat-
tern from every VD on a DA, and the Min Raw Band Latency is calculated
as the transfer latency for the size of a block, which is 64 KB in all our ex-
periments. The heuristics Max Merge Threshold Latency, Max Merge Count
and Max Merge Count High Rate are derived based on a trial and error ba-
sis. Using the observations of the I/O latency pattern on a physical DA with
CFVC scheduler, simulated DA is fine-tuned to ensure that the estimated I/O
latency doesn’t deviate beyond acceptable limits from the actual I/O latency

190

Algorithm 2 Pseudo algorithm to estimate seek and rotational latency for an I/O
request in DA simulator

INPUT:
The VD that submitted the given I/O request R: Cur VD;
The LBA of given I/O request R: Cur LBA;
The arrival time of given I/O request R in the DA’s FIFO queue: Cur AT;
OUTPUT:
The seek latency for given I/O request: Seek Lat;
The rotational latency for given I/O request: Rot Lat;
CONSTANTS:
INTER VD SEEK LATENCY = 10ms;
INTRA VD SEEK LATENCY = 4.3ms;
The minimum latency between requests that guarantee max utilization of raw
bandwidth: Min Raw Band Latency;
The maximum size of a single track: Max LBA Single Track=2MB;
The maximum latency to wait to merge requests in the hypothetical CFVC
scheduler: Max Merge Threshold Latency=100ms;
The maximum number of requests which can be processed sequentially in a
hypothetical CFVC scheduler: Max Merge Count=5;
The maximum number of requests which can be processed sequentially in
a hypothetical CFVC scheduler when requests occur with an inter arrival
latency lesser than Min Raw Band Latency : Max Merge Count High Rate
= 20;
STATE VARIABLES:
Merge Count for every VD i on the DA: Merge Counti;
The arrival time of previous I/O request processed for every VD i on the DA:
Prev ATi;
The LBA of previous I/O request processed for every VD i on the DA:
Prev LBAi;
The VD whose request was last processed on the DA: Prev VD;

1: Assign absolute difference of Cur LBA and Prev LBACur V D to LBA diff;
2: Assign the difference of Cur AT and Prev ATCur V D to AT diff;

191

3: if Cur VD == Prev VD then
4: if LBA diff <= Max LBA Single Track then
5: if AT diff <= Min Raw Band Latency then
6: Assign 0 to Rot Lat;
7: Increment Merge CountCur V D by 1;
8: else
9: if AT diff > Max Merge Threshold Latency then

10: Assign 0 to Merge CountCur V D;
11: Assign FULL ROT LATENCY to Rot Lat;
12: else
13: if Merge CountCur V D < Max Merge Count then
14: Increment Merge CountCur V D by 1;
15: Assign 0 to Rot Lat;
16: else
17: Assign 0 to Merge CountCur V D;
18: Assign FULL ROT LATENCY to Rot Lat;
19: end if
20: end if
21: end if
22: Assign 0 to Seek Lat;
23: else
24: Assign 0 to Merge CountCur V D;
25: Assign INTRA VD SEEK LATENCY to Seek Lat;
26: Assign FULL ROT LATENCY

2
to Rot Lat;

27: end if
28: end if

192

29: if Cur VD ! = Prev VD then
30: if LBA diff <= Max LBA Single Track then
31: if AT diff > Max Merge Threshold Latency then
32: Assign 0 to Merge Level;
33: else
34: if Merge CountCur V D < Max Merge Count then
35: Assign 2 to Merge Level;
36: else
37: if AT diff <= Min Raw Band Latency and

Merge CountCur V D < Max Merge Count High Rate then
38: Assign 2 to Merge Level;
39: else
40: Assign 0 to Merge Level;
41: end if
42: end if
43: end if
44: else
45: if AT diff <= Max Merge Threshold Latency then
46: Assign 1 to Merge Level;
47: else
48: Assign 0 to Merge Level;
49: end if
50: end if
51: if Merge Level == 2 then
52: Increment Merge CountCur V D by 1;
53: Assign 0 to Seek Lat;
54: Assign 0 to Rot Lat;
55: else if Merge level == 1 then
56: Increment Merge CountCur V D by 2;
57: Assign INTRA VD SEEK LATENCY to Seek Lat;
58: Assign FULL ROT LATENCY

2
to Rot Lat;

59: else
60: Assign 0 to Merge CountCur V D;
61: Assign INTER VD SEEK LATENCY to Seek Lat;
62: Assign FULL ROT LATENCY

2
to Rot Lat;

63: end if
64: end if

193

as observed on a physical DA. The following subsection demonstrates the cor-
rectness of this simulation algorithm by comparing it to the real DA.

Performance Evaluation of Simulated DA

Real DA Simulated DA

RGN OT RGN OT

50.54 50.49 49.37 48.16

1 1 1 0.98

1 1 1 0.98

1 1 1 0.98

Table 7.1: Table showing the correctness of simulated DA by comparing the perfor-
mance to real DA. Request generation rate (RGN) and Observed Throughput (OT)
are measured in units of MBPS

Real DA Simulated DA

RGN OT RGN OT

44.44 42.33 41.59 38.4

10 9.1 9.82 8.31

10 9.1 9.82 8.31

10 9.0 9.82 8.31

Table 7.2: Table showing the correctness of Simulated DA by comparing to Real
DA, using negative result. Request generation rate (RGN) and Observed Through-
put (OT) are measured in units of MBPS

Table 7.1 shows 4 VDs configured with 70% sequential locality, 70% read
I/O requests, three VDs generate requests at a rate of 1 MBPS and one VD
generates requests at a rate of 50 MBPS. While the real DA shows that the
observed throughput (OT) lags the request generation rate (RGN) by less
than 1%, the simulated DA lags by less than 2.5%. Such a close correlation
between the results from real DA and simulated DA suggests the effectiveness
of the simulation algorithm. However, to prove the correctness of the simula-
tion algorithm, we overloaded the DA as shown in Table 7.2. It can be seen
that in both the real DA and the simulated DA, the RGN for the first VD is
much lower than the actual generation rate of 50 MBPS because the four VDs
collectively overload both the real DA and simulated DA. Though, the drop
in OT when compared to RGN is around 8% on real DA, and around 15%

194

on the simulated DA, the fact that the simulated DA successfully recreated
the overloaded situation proves the correctness of the simulation algorithm.
Therefore, as expected the above two experiments show that though the sim-
ulation algorithm doesn’t accurately predict the I/O latency, it is well within
acceptable error rate, and hence is good enough to measure the effectiveness
of RLB algorithm.

7.8.3 Synthetic Trace Generation

Finding a publicly available real-world trace workload from standard applica-
tions like a web-server or an email server is extremely difficult. In order to
effectively evaluate the RLB algorithm, we need a massive setup with several
VDs and each VD should generate unique workload. Therefore, we devel-
oped a synthetic test suite that can generate workloads with the following
variables: percentage of read I/O requests, request generation rate in units
of KBPS, request size in units of KB, locality expressed as percentage of se-
quential requests, information of the target DA for the given VD in terms of
networking port number and starting offset for that VD on that DA. Each
VD has a dedicated thread that generates workload according to a preconfig-
ured setting using the variables mentioned above. VDs that share a DA are
mapped to unique portions of the disk and hence each VD needs to know the
starting offset for each of its replicated DAs. The request generation rate can
either follow a constant frequency distribution or can follow a Poisson distri-
bution. The percentage of sequentially located requests directly determines
the amount of randomness in the generated workload. It is possible to gen-
erate requests one by one, in strict adherence to the randomness factor, or in
clusters of group size ranging randomly between one to eight, which is most
typical in a real-world scenario. We choose the latter, and only the LBA of
the first request in the group is assigned either sequentially with respect to
the previously generated group, or randomly to a location on the DA that is
within the LBA range that the given VD is authorized to store data on that
DA.

In order to simulate a real-world trace, the read/write ratio, sequential
locality and the request generation rate should vary independent to each VD,
but should remain consistent within a VD. Therefore we pre-configure every
VD with the following default settings unless they are explicitly mentioned:
request size of 64 KB, request generation frequency follows Poisson distribu-
tion, loopback ethernet address is used for target DA, sequential locality of
70%, read/write ratio of 70% and the request generation rate is varied for each
VD. Since the sequential locality and read/write ratio is configured for 70%
and each VD follows a different random distribution, the workload patterns

195

in each VD are unrelated, but within a VD, the workload pattern varies in
an expected manner and therefore if the sampling duration is long enough,
Cheetah effectively captures the overall picture of the workload.

7.9 Performance Evaluation of the Automated

PB Extraction Process

There are two important issues in evaluating the PB extraction process. First,
it is necessary to demonstrate that the PB value indeed captures the over-
all characteristics of a VD’s I/O workload. Second, it is important to prove
the correctness of the PB extraction process. To handle the first issue, we
use standard real-world traces and synthetic workloads to show the variations
in PB value in different kinds of I/O workloads. The second issue is more
complicated because it is difficult to prove the correctness of the PB extrac-
tion process, as it is not clear as to what defines a correct PB value. Due to
advanced optimizations on modern disk drives, a DA can satisfactorily han-
dles multiple VD workloads, whose sum of PB values is greater than the raw
bandwidth capacity of the DA. The CFVC scheduler too contributes to these
optimizations by converting random I/O requests into mostly sequential I/O
requests, whenever possible. One possible way to demonstrate the correctness
of the PB extraction process is to show its effectiveness in a DA that processes
multiple VD workloads with different workload localities. Therefore, in this
evaluation study, rather than addressing the correctness of the PB extraction
process, we focus on proving its effectiveness.

7.9.1 Effect of Workload Locality on PB using Real-
World I/O Trace

We used the real-world traces from Umass [203] that provide five different
I/O traces, of which two traces are collected from online transaction process-
ing (OLTP) applications running at two large financial institutions and three
traces are collected from a popular web search engine. The OLTP traces pro-
vide a good mix of reads and writes, while the web search traces are read
heavy. The data locality in these traces are evenly spread out in the range of 0
to 2 TB. From the trace data, for each entry corresponding to an I/O request,
we only considered the LBA, read or write type, size of the I/O request and
the relative timestamp at which the I/O request appeared in the workload. We
used the prototype described in Section 7.8.1 to evaluate each of these traces
one at a time and extracted their PB value using a real physical DA. Cheetah

196

Workload RGN PB R/W

OLTP1 3.15 63 1.5

OLTP2 8.04 148 5.9

WebSearch1 13.46 96 909

WebSearch2 13.56 83 833

WebSearch3 8.09 69 714

Table 7.3: Table showing the effect of workload locality on PB value using 5 different
real-world traces. RGN and PB are measured in units of MBPS. Read / Write ratio
(R/W) is expressed as the ratio of number of reads to number of writes in the trace.

computes the PB value on the DA, after observing the data locality pattern
in the incoming I/O workload for a default sampling period of one minute.
The DA then uses the CFVC scheduler to process the I/O requests based on
the extracted PB value. Table 7.3 shows the variations in PB value for each
of these five real-world traces, when considered independently. Cheetah mea-
sures the request generation rate (RGN) and Read

Write
ratio within the VD, and

measures the PB on the DA.

Workload RGN PB R/W

OLTP1 8.08 101 1.5

OLTP2 16.30 204 5.9

WebSearch1 23.9 109 909

WebSearch2 21.5 107 833

WebSearch3 15.8 94 714

Table 7.4: Table showing the effect of workload locality on PB value using 5 different
real-world traces, when RGN is doubled. RGN and PB are measured in units of
MBPS. Read / Write ratio (R/W) is expressed as the ratio of number of reads to
number of writes in the trace.

The relative timestamp field in the trace data depicts the request arrival
distribution pattern and without loss of generality it is possible to uniformly
vary this RGN value to study the corresponding variations in PB value. Along
these lines, we halved the difference between successive I/O request’s times-
tamps in the hope of increasing RGN by a factor of two and Table 7.4 shows
the corresponding PB variations. It can be seen that RGN does increase by a
factor of two, but even though PB value increases, it doesn’t increase in propor-
tion to the increase in RGN value. The rate of change in PB value is higher
in OLTP trace, than in the web search trace because the web search trace
is predominantly occupied with read I/O requests and naturally has higher

197

chances of maximizing the caching opportunity in both the OS buffer cache
and the disk’s cache. However, the OLTP trace has a good number of write
I/O requests, which unfortunately cannot exploit any caching benefits because
all the caches on the write path are disabled for data consistency purposes.
In addition to these differences, the PB value also varies with the amount
of randomness in the trace data’s locality. It is quite possible for the web
search traces to have a large number of consecutive sequential I/O requests
and higher timestamp differences between them. Due to this, even though
the consecutive requests are sequential, they incur full rotational latency be-
cause the disk drives cannot wait in anticipation for merging and reordering
opportunity beyond a threshold time. When the RGN value is doubled, many
such requests could possibly be processed sequentially, leading to lesser disk
resource utilization time for the web search traces. Hence for these web search
traces, PB value increases sub-linearly when RGN is doubled.

7.9.2 Effect of Workload Locality on PB using Synthetic
Workload

With real-world traces, we observed few interesting patterns in workload lo-
cality that reflected in variations in PB value, but due to limited configurable
parameters in the real-world trace, it was not possible to comprehensively eval-
uate the PB extraction process. Therefore, in this section, we use synthetic
workloads to vary RGN, sequential locality and read/write ratio to get a de-
tailed understanding of the nature of variations in PB value in different types
of workload.

Effect of RGN on PB

RGN 390.31 314.34 204.15 101.28 50.16 9.98 1

PB 426 359 294 361 313 90 10

Table 7.5: Table showing the variations in PB with variations in RGN. All units
are in MBPS

Table 7.5 shows the variations in PB when requests are generated at dif-
ferent rates. All workloads are configured with 100% sequential locality and
100% write requests. The DA consists of four disks in RAID 0 configura-
tion. When a VD is configured to generate requests at a very high rate of 400
MBPS, though the DA is capable of handling the load, the loopback network
interface throttles the generated rate occasionally and hence we see the RGN

198

value of 390.31. This is inconsequential because the drop in throughput is
only marginal and doesn’t affect the results of the performance evaluation.
The table shows that as RGN drops, PB drops too, but the rate at which
PB drops is much slower than that of the RGN. The reason is because when
requests are generated at a slower rate, the inter-arrival I/O latency between
successive requests increases and hence the chances of merging and re-ordering
I/O requests on either the CFVC scheduler or on the NCQ of the disk drives
in the DA diminishes. It is also a likely possibility that when RGN decreases,
the chances of full rotational latency on the disk drives increase, similar to the
observations made on the real-world trace in the previous subsection. There-
fore, though the PB value decreases, it decreases at a slower rate compared to
that of RGN.

Effect of Sequential Locality on PB

Locality 100% 70% 10%

PB 313 342 374

Table 7.6: Table showing the variations in PB when workload locality is varied.
Locality is expressed as percentage of sequential requests in the workload and PB
is in units of MBPS

Table 7.6 shows the variations in PB value when the locality expressed as
the percentage of sequential requests in the workload, is varied between 100%
to 10%. RGN is fixed to 50 MBPS and 100% write requests throughout this
experiment. As expected, when the percentage of randomness in the input
workload increases, the average disk I/O latency increases and hence the PB
value increases. However, the rate at which PB increases is much slower than
the rate at which the sequential locality in the workload decreases. There are
a couple of reasons for such a behavior. First, the RGN value of 50 MBPS
is much lower than the full raw disk bandwidth and hence majority of the
requests experience full rotational latency even with 100% sequential locality.
Second, the CFVC scheduler has the ability to process the I/O requests as
sequentially as possible and hence amortizes the randomness factor to some
extent.

Effect of Read/Write Ratio on PB

Table 7.7 shows the variations in PB value when the read/write ratio expressed
as the percentage of reads in the overall workload, is varied between 100% to

199

R/W ratio 100% 50% 10% 0%

PB 381 347 336 313

Table 7.7: Table showing the variations in PB when read/write ratio is varied.
Read/Write ratio is expressed as the percentage of reads in the overall trace. PB is
in units of MBPS

0%. RGN is fixed to 50 MBPS and locality to 100% sequential throughout this
experiment. Surprisingly, when the percentage of read I/O requests decreases
in the workload, PB value decreases. This suggests that the read cache did
more harm than good and upon a deeper look into the experiment settings,
it becomes clear that the read cache and prefetching optimizations done by
the DA isn’t useful for a sequentially generated workload that doesn’t reuse
any data from cache. Though a real-world workload benefits from read cache,
this particular synthetic workload doesn’t benefit much and as a result, the
DA does redundant work in fetching additional data from disk for no benefit,
resulting in an increase in PB value. To cross check, we disabled all the
caches in the entire data path and repeated these experiments to find that the
PB value doesn’t vary beyond 1%. Therefore, this experiment suggests that
read/write ratio in the I/O workload has negligible effect on the PB value if
the read requests do not make use of the cache.

7.9.3 Effectiveness of PB Extraction Process on a Shared
DA

RGN 50.54 1 1 1

OT 50.49 1 1 1

PB 359 160 160 160

Table 7.8: Table showing the effectiveness of PB extraction process on a DA shared
by four VDs with different workload localities. OT, RGN and PB are all measured
in units of MBPS

The effectiveness of PB extraction process can be effectively demonstrated
when a DA is shared my multiple VDs with different workload localities. Ad-
ditionally, the CFVC scheduler calculates the finish time of an I/O request
based on the PB value of a VD, and hence an incorrect PB value will very
likely result in an VD receiving less than its expected bandwidth. Therefore,
the effectiveness of extracting PB from an application’s sample workload is

200

demonstrated when multiple VDs with different workload patterns simultane-
ously share a DA and yet each VD receives the expected bandwidth. Table 7.8
shows four VDs configured with the following settings: 70% sequential local-
ity, 70% read I/O requests. The statistics collected from CFVC scheduler for
each of the VDs are shown in each row separately. The experiment shows that
even when one of the VDs generates requests at a rate of 50 MBPS and the
other three VDs generate requests at a rate of 1 MBPS each, the OT values
as measured by each of the VDs individually, has less than 0.1% variations
from their corresponding RGN values. Such a close correlation between the
RGN and OT values suggests, both the accuracy in PB value extraction and
the implementation correctness of the CFVC scheduler.

RGN 44.44 10 10 10

OT 42.33 9.1 9.1 9

PB 356 205 206 206

Table 7.9: Table showing the effectiveness of PB extraction process on a overloaded
DA shared by four VDs with different workload localities. OT, RGN and PB are
all measured in units of MBPS.

Table 7.9 shows the result of overloading a DA with multiple workloads
that collectively generate more load that the DA can handle, and hence the
OT differs significantly from its RGN. The experiment setup is similar to the
previous experiment explained in table 7.8, except that the three VDs gener-
ating at a rate of 1 MBPS each are configured to generate the workload at a
rate of 10 MBPS each. Since the DA is 100% busy and is clearly overloaded,
the VD generating at a higher rate of 50 MBPS employs a naive congestion
control algorithm to block itself until the number of pending I/O requests are
not too high (we have heuristically chosen 10K as the threshold limit). As a
result the RGN value of that VD is just 44.44 MBPS and the OT is even lesser
at 42.33 MBPS. Though the PB value for each of the four VDs are accurately
determined, incorrect admission control policy and the absence of flow con-
trol policy led to an overloaded DA and eventually the bandwidth guarantee
cannot not be satisfied accurately. This experiment demonstrates that even in
an overloaded DA, due to effective PB extraction process, Cheetah allocates
proportional disk bandwidth to each of the VDs that share the overloaded DA.

201

	

Figure 7.8: Charts with load distribution for uneven VD-DA mappings

7.10 Evaluation of the Effectiveness of Band-

width Decomposition

In the following experiments, we demonstrate the RLB’s effectiveness by vary-
ing the workload locality and mapping between VDs and DAs in various ways.
All the figures below are represented with the following semantics. The Y-
axis shows the amount of idle time when the DA does no useful work and its
expressed as a percentage of the total observation time. Since the number of
DAs are too high, we highlight only the the DAs with minimum and maximum
idle time percentage. We also show the mean and standard deviation of the
idle time percentage over all the DAs, to better understand the effect of RLB
on all the DAs. On the Y-axis, a low value indicates an over-loaded DA and
a high value indicates an under-loaded DA. The X-axis represents the time in
terms of epochs, where each observation point corresponds to a single window
of time in which RLB collects DAs’ loads and capacities and calculates a dis-
tribution weight for all the VDs. Statistics were collected from every DA for
every 1 minute over a 20 minute period.

7.10.1 Variable VD-DA Mappings

Consider a setup, where for each VD, one of the replica DAs is dedicated only
to this VD and the other two replica DAs are shared by nine other VDs. On

202

such a setup, the RLB algorithm is stressed to a great extent because of the
obvious opportunity to load balance the DAs. To evaluate the effectiveness of
the RLB algorithm, we compare it with a round robin (RR) scheduler. The
RR scheduler always distributes the read load on each VD into equal portions
among all the replica DAs. All VDs were configured with the same workload
consisting of: 100 VDs, 120 DAs, 100% read request type, 100% sequential
locality, 64KB request size, 1280 requests/min. 100 DAs were marked as
Solo DAs and the remaining 20 Shared DAs were mapped with 10 VDs each.
Figure 7.8 shows 6 graphs to give a detailed analysis of the RLB’s effectiveness.
The graphs are primarily characterized as 3 graphs for RR on the top and 3
graphs for RLB on the bottom. The set of dedicated DAs that are mapped
with only a single VD are marked as Solo, and the remaining DAs that are
shared by 10 VDs are marked as Shared.

For the first two observation points until the RLB evaluates the distri-
bution pattern, local scheduler on each VD uses RR scheduling by default.
Later on, when the RLB collects the actual load on the DAs and the VDs use
this information to load balance their workload, we can see the differences in
performance between RLB and RR schedulers. When all the DAs are con-
sidered together, we see that for the RLB scheduler, the min and max curves
are very close to each other and hence the standard deviation of the idle time
percentage among all the DAs is almost 0. However, with a RR scheduler, the
mean, min and max curves are wide apart and hence the standard deviation
is noticeably high. When only the Solo DAs are considered for analysis, there
isn’t much to distinguish between the RLB and RR schedulers, because for
the Solo DAs there isn’t much variations in the workload. When only the
Shared DAs are considered for analysis, the RR scheduler overloads all such
Shared DAs and as a result the mean, min and max curves show that they
are all over-loaded, when compared to that of the RLB scheduler. Since the
RLB scheduler redirects the load from potentially overloaded Shared DAs to
the Solo DAs, none of the Shared DAs are overloaded in the RLB scheduler.

In the previous experiment, all the VDs were configured with identical
workloads and more importantly all the shared DAs were mapped with the
same set of VDs, which means given two shared DAs, they accommodated the
same set of ten VDs. Such a monotonous mapping was the reason why even a
RR scheduler could ensure evenly loaded shared DAs. In this experiment, we
stress the RLB scheduler by varying the request generation rate on each VD
and we further randomized the VD-DA mappings so that the load on each DA
is uneven and unpredictable. The request generation rate is chosen among the
set of 5 values starting from 256KBPS in intervals of 256 KBPS. The other
workload parameters were configured the same for all VDs, and consisted

203

	

Figure 7.9: Figure comparing RLB, RR and RND schedulers for random map-
pings between 100VDs and 40 DAs

	

Figure 7.10: Figure comparing RLB, RR and RND schedulers for random
mappings between 200VDs and 70 DAs

	

Figure 7.11: Figure comparing RLB, RR and RND schedulers for random
mappings between 600VDs and 200 DAs

	

Figure 7.12: Figure comparing RLB, RR and RND schedulers for random
mappings between 800VDs and 250 DAs

204

of 70% sequential locality, 70% read I/O requests, 64KB request size, Poisson
frequency distribution for request generation. We varied the VD-DA mappings
for 4 different values: 100VD-40DA, 200VD-70DA, 600VD-200DA and 800VD-
250DA. The mappings between VDs and DAs are completely randomized,
except for the fact that a VD is mapped to 3 different replica DAs. We further
compare RLB scheduler with not just the RR scheduler but also with a RND
scheduler that selects the replica DAs in a random order.

Figures 7.9 - 7.12 show 3 graphs each for RLB, RR and RND schedulers.
Both the RR and RND schedulers show identical results and that can be
attributed to two reasons: 1) Simulated DA aggregates the requests from
different VDs and processes them mostly sequentially. 2) RLB collects load
information from all the DAs not too frequently. For these two reasons, any
short term fluctuations in load distribution will have negligible impact on the
DA’s performance and hence even lesser impact on the RLB load distribu-
tion efficiency. When compared to RR or RND scheduler, the RLB scheduler
delivers an impressive performance with standard deviation lowered by ap-
proximately 44% and hence the mean, min and max curves for RLB scheduler
are much closer when compared to that of RR or RND scheduler.

7.10.2 Variations in Read/Write Ratio

The RLB scheduler doesn’t make any intelligent decision for write I/O re-
quests, but the presence of write I/O requests changes the load on the DAs
by a substantial margin because every write I/O request generated by a VD
results in three write I/O requests on three different DAs. In this experiment,
we use 31 DAs and 100 VDs and keep the rest of the setup similar to the pre-
vious experiment, except for the variations in read/write ratio. We vary the
read I/O percentage between 0 to 100 to study their effects on RLB scheduler.
Figure 7.13 shows 6 graphs with different read percentage variations. Upon
decreasing the percentage of reads from 100% to 0%, we see a gradual increase
in standard deviation, because a decrease in read I/O requests, decreases the
chances for RLB to balance the load distribution. Hence the DAs tend towards
unbalanced condition with the increase in write percentage.

7.10.3 Variations in Sequential Locality

RLB scheduler is expected to balance the DA loads without any dependency
on the locality in a VD’s workload. The experiment setup is similar to that in
the previous experiment, except that the read/write ratio is fixed at 70% and
the sequential locality is varied between 0 to 100. Figure 7.14 shows the load
distribution pattern for 6 different variations in sequential locality in the input

205

	

Figure 7.13: Charts with load distribution for variations in read/write ratio. Com-
parison between different read percentage variations and between RLB, RR and
RND schedulers

workload. Across all variations, the standard deviation is consistently between
4.16 to 7.75 and this low standard deviation suggests that the RLB algorithm
has very minimal interference from the locality in the input workload. One of
the primary reasons for the minor deviations in standard deviation is due to
the lack of a perfect DA simulator. However, the consistent expected results
across all the variations in sequential locality suggests that the DA simulation
indeed delivered a good approximation to the CFVC scheduler. The figure also
shows that as the sequential locality decreases from 100% to 0%, the mean of

206

!

Figure 7.14: Charts with load distribution for variations in sequential locality
in input workload

the disk idle time percentages among all the DAs also decreases. However, it
is interesting to note that even though the random content in the workload
increases by 50% between 100% and 50% sequential locality, the mean curve
doesn’t drop down drastically. The increased random locality is expected to
increase the average I/O latency of an I/O request substantially, but because
each I/O request occurs in group of sizes between 1-8, where the group size
is determined by a random variable, the random seeks of the head request
in a group are amortized with the other requests in the group. Further, the

207

DA simulator mimicking the CFVC scheduler, processes the I/O requests in
mostly sequential order and hence unless the degree of randomness is too
large, the DA idle time percentage doesn’t rapidly drop down with increase
in randomness in the input workload. The fact that the observed result is as
expected, suggests that the simulated DA does a very good approximation to
the hypothetical CFVC scheduler.

7.10.4 Short Term Variations in Workload Locality

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	

Pe
rc
en

ta
ge
	 o
f	 D

A
	 Id

le
	 T
im

e	

Timeline	

Short-‐term	 Workload	 Varia:ons	

Mean	

Min	

Max	

Standard	 Devia8on	

Figure 7.15: Charts with load distribution for short term variations in input
workload

In all the previous experiments, though we varied various attributes in the
input workload, the RLB algorithm was not tested with short term fluctuations
in the input workload. It is quite common to see such short term fluctuations
in a real-world workload. In this experiment, we keep read/write ratio to 70%,
sequential locality to 70%, and randomly assign RGN values to VDs between
256 KBPS to 1280 KBPS, as described in the previous experiments. After 10
minutes of generating the workload, during the mid-way of our evaluation time
window, we increase the RGN by a factor of 2 on all the VDs. Figure 7.15 show
that at around mid-way, during the 11th minute of the evaluation window, the
DAs are more overloaded due to the increased request generation rate and RLB
is able to quickly adapt to the modified workload pattern. It should be noted
that though each VD uses an independent random distribution to vary its
attributes, RLB is still able to continuously adapt to the changes in workload
pattern and ensure uniform load balancing on all the DAs. The standard
deviation increases marginally due to short term fluctuation because unlike

208

VD Count DA Count RLB Time(ms)

100 120 2.5

100 40 2.5

200 70 7.5

600 200 218

800 250 455

Table 7.10: Table showing the time taken by centralized RLB scheduler for varying
number of VD-DA configurations. Time is measured in units of milli seconds

the real DA, the simulated DA doesn’t use elasticity metric to control such
short term fluctuations.

7.10.5 Centralized RLB Scheduler’s Processing Time

Since the RLB scheduler uses a centralized approach, it is obvious that the
RLB scheduler’s computation time increases with the increase in number of
DAs and VDs, but it is important to ensure that the computation time doesn’t
increase beyond a threshold limit, for a practically large-size cloud storage sys-
tem. Table 7.10 shows the time taken by centralized RLB scheduler for various
VD-DA mapping combinations. We used a similar setup as described in exper-
iment 7.10.1. Even with 800 VDs and 250 DAs in the system, the time taken
by centralized RLB scheduler is 455 milli seconds, which is less than 1% of the
sampling time of 1 minute, for which the statistics are collected on each DA in
any given epoch. Therefore, this experiment convincingly demonstrates that
the piecemeal iterative procedure adopted by the centralized RLB scheduler
doesn’t affect the swiftness with which the RLB scheduler recomputes the load
distribution pattern in the event of load fluctuations in VDs’ workloads.

7.11 Performance Evaluation of Per-VD Sched-

uler

Cheetah is able to enforce accurate QoS guarantees while ensuring maximum
disk bandwidth utilization because the local scheduler on VD preserves the lo-
cality in the input workload and also uses the hints from the centralized RLB
scheduler to ensure uniform load balancing across all the DAs. Figure 7.16
shows that a locality unaware scheduler that blindly follows the load distribu-
tion pattern as suggested by the RLB scheduler, performs relatively poorer to
a local scheduler that uses both locality in the workload and the load distri-

209

	

Figure 7.16: Charts comparing locality unaware vs locality aware RLB for a
low locality workload consisting of 70% sequential locality and 70% read/write
ratio

	

Figure 7.17: Charts comparing locality unaware vs locality aware RLB for
a high locality workload consisting of 100% sequential locality and 100%
read/write ratio.

bution pattern suggested by the RLB scheduler. The experiment is configured
with 70% read/write ratio, 70% sequential locality and the rest of the setup is
similar to the experiment described in section 7.10.3. The mean curve indicates
that the average idle time of a DA increases from 52.5% in a locality unaware
scheduler to 61.2% in a locality aware scheduler. The 16.6% improvement in
the idle time percentage shows the effectiveness of the locality aware scheduler.
The improvement could be even better, if more intelligence is used to identify
locality in the input workload. The present version is configured to maintain
a LRU cache of 128 entries and every entry maintains the read I/O requests’s
offset in its DA along with the target DA from which it is was last referenced.
When the scheduler receives a read I/O request, it first looks into this cache to
pickup the best candidate DA, such that the candidate’s offset is the closest to
the given request and is within a threshold distance of T sectors. T is chosen
to be 100 in this experiment, using the heuristic that the chosen DA could
use its cache, NCQ and other advanced techniques, to process this request
faster than if it were to be processed by any other replica DA. Once the local

210

scheduler selects a candidate DA, it submits the given read I/O request to that
DA, as long as it doesn’t violate the RLB’s guided load distribution ratio over
a larger time interval. If it does violate, then the local scheduler picks up a
DA as per the RLB’s load distribution ratio. Since the local scheduler is able
to maintain the load distribution over a time interval that is neither too large
to induce load imbalance on the DAs, nor is too small to miss the locality in
the input workload, it is able to extract the maximum performance from the
storage system. We also measured the end-to-end average I/O latency on each
VD, and the locality aware version measured an impressive 11.866 ms against
14.956 ms in the locality unaware version. The reported latency is somewhat
artificial because it doesn’t take into account the network latency, which would
have been present in a real system. However, the network latency is common
to both the compared versions and more importantly the absolute latency is
not the selling point from this experiment. It is the 26% relative difference in
I/O latency between these two versions that makes the locality aware version
the clear winner.

When the locality in the input workload improves, the locality aware ver-
sion shows even better improvement in the overall performance compared to
a locality unaware version. Figure 7.17 shows the result when the VDs were
configured with 100% sequential locality, 100% read/write ratio and the rest
of the settings were kept similar to the previous experiment. Its interesting to
note that though the locality aware version has a higher standard deviation
of 5.0, when compared to 3.6 on the locality unaware version, the average DA
idle time for locality aware version is 79.6%, when compared to 65.5% on the
locality unaware version. The end-to-end average I/O latency on the VDs in
the locality aware version measured an impressive 8.12 ms against 14.29 ms
in the locality unaware version. Thus, on a worklod with high locality, the lo-
cality aware version performed much better than the locality unaware version
with 21.5% improvement in the DA idle time percentage and 76% drop in the
end-to-end I/O latency.

Locality-aware scheduler may exploit locality at the expense of load bal-
ance, and therefore may cause more load imbalance than the locality unaware
version, even though the total load is reduced, as evidenced by lower latency,
beause of locality exploitation. This experiment convincingly demonstrates
that the absolute load balance is not necessarily the most important goal;
being able to cut down the total load at the cost of some increase in load
imbalance may be even more worthwhile.

211

7.12 Summary

A cloud-scale distributed storage system shared by multiple tenants require
guaranteed storage performance in order to ensure fair allocation of storage
resources and performance isolation to each tenant. It is an usual practice to
use QoS specifications to control the performance guarantees of the storage
system. However, on a massively distributed storage system there are mul-
tiple challenges that not only make it difficult for the tenants to accurately
configure QoS specifications but also make it difficult for the SDDS system to
simultaneously enforce QoS guarantees and ensure maximum storage hardware
utilization. We propose a QoS model called Cheetah, that uses the following
novel techniques to solve the above mentioned challenges:

• Automatically convert application-level QoS specification to physical-
level QoS specification, by extracting all the necessary attributes from a
small sample of the input I/O workload without any manual intervention,

• Provide QoS guarantees at both VD and VDC level of granularity.

• Dynamically decompose a VD’s/VDC’s QoS specification into a set of
QoS specifications for each VD-DA pair, such that the locality in the
input workload is captured and none of the corresponding DAs are over-
loaded,

• Balance the load on all DAs by using a centralized RLB that uses a
piecemeal iterative load-sensitive VD-DA weighted assignment algorithm
to distribute the read I/O requests on each VD to least loaded DAs,
thereby decreasing the probability of overloading a DA,

• Use a locality aware scheduler in each VD that chooses the optimal
replica DA to submit a read I/O request, by adhering to both the locality
in the input workload and the RLB weight distribution pattern,

• Use a hybrid flow control algorithm that uses a combination of QoS
aware and QOS unaware techniques to regulate the flow of data between
VDs and DAs.

In addition to the above mentioned research contributions, this work also
demonstrates a solid implementation technique that overcomes the challenges
in managing the centralized RLB algorithm and adopts the CFVC scheduler
in a distributed storage setup. This work also convincingly demonstrates the
correctness and effectiveness of the various proposed techniques using sophisti-
cated simulations. Through comprehensive evaluations using both real-world

212

traces and synthetic workloads, we demonstrated the accuracy of PB extrac-
tion process and the effectiveness of centralized RLB technique.

213

Chapter 8

Conclusion and Future
Directions

8.1 Conclusion

In this dissertation, we proposed several novel techniques that are applied
across different components of a cloud storage system and in this section we
summarize a few of our important research contributions.

Deduplication techniques for large-scale data workloads typically struggle
to reduce CPU cycle utilization for disk block fingerprint comparisons and to
avoid disk I/O bottlenecks in various components of the deduplication pro-
cess. We built Sungem to use a novel sampling technique to design a highly
useful and representative cache of the disk block fingerprints maintained in the
main memory, that helps avoid disk I/O lookups for a large majority of the
requests. Unlike typical deduplication techniques that store fingerprints occur-
ring at the same time (temporal locality) in one place on the disk, Sungem uses
spatial locality to store disk block fingerprints on disk and hence reduces both
the number of fingerprint comparisons and the disk I/O lookups involved in
prefetching the fingerprints to the main memory cache. Sungem also provides
a large-scale storage block garbage collection solution, which to the best of
our knowledge, is the first known garbage collection algorithm which is truly
scalable in the sense that its bookkeeping overhead for each backup opera-
tion is proportional only to the size of the delta between consecutive backup
operations. Using the above mentioned novel techniques, Sungem integrates
deduplication and garbage collection solutions to process data at an extremely
high speed of 7 TB/hour, using commodity hardware infrastructure, and this
is atleast a 40% improvement over state-of-the-art sparse-indexing scheme [6]
running with the same amount of hardware resources, for incremental backup

214

operations. We demonstrated through comprehensive evaluations that Sungem
is able to deliver this high throughput consistently across different ranges of
deduplication ratios, proving that Sungem’s performance is invariant to the
number of duplicates in the data workload.

In the process of evaluating Sungem, we performed an in-depth character-
ization and analysis of a real-world trace that provides unique insights into
the dynamics and caveats of modern deduplication algorithms in general. We
applied the analysis to compare the relative merits and demerits of apply-
ing a bloom filter to disk data deduplication, and convincingly demonstrated
that though a bloom filter helps in negatively filtering the unwanted disk I/O
lookups in the process of locating duplicates for a disk block fingerprint, if its
used in conjunction to an efficiently cached in-memory fingerprint index, then
more often than not, the bloom filter hurts the deduplication systems perfor-
mance. In the trace analysis, we showed the effectiveness of applying dedupli-
cation solution at various levels of granularities, including blocks of different
sizes, and also demonstrated the advantages of empowering the deduplication
process to be aware of the type of files which constitute the data workload.

Sungem mitigates the random disk access overhead in its garbage collec-
tion process using a novel disk access interface called BOSC, that supports disk
update as a first-class primitive and enables the specification of application-
specific callback functions to be invoked by the underlying storage system.
Through comprehensive evaluations we showed that though the garbage col-
lection process receives low locality workload to be processed by on-disk data
structures, using BOSC, it completely amortizes the disk I/O activity using
batched sequential sweeps on the hard disks. We also used the most widely
used disk-based data structures, namely hash tables and B+ trees, to demon-
strate how easy it is to adopt BOSC interface and empirically demonstrated the
efficiency of BOSC, to show that the update request throughput of a BOSC-
based B+ tree implementation is more than an order of magnitude faster than
that of a vanilla B+ tree built on top of the conventional disk access interface.
Since B+ trees and hash tables are widely used as disk-based data structures
in several components of a cloud storage system, BOSC architecture can sig-
nificantly improve the overall performance of the cloud storage system.

Since BOSC aggregates I/O requests in memory to improve its batching
efficiency, we proposed to build Beluga to quickly log the data to a fast logging
disk and ensure data persistency in case of a system crash. Beluga, is a high
throughput, low latency, disk logging solution that delivers extremely high
throughput for fine-grained disk I/O requests and hence provides a first-class
performance similar to that of the popular but more expensive flash-based
SSDs. Beluga fashions a carefully tuned disk write pipeline and makes it pos-

215

sible to provide on an array of three commodity 7200 RPM SATA disks, close
to 5 million fine-grained (64-byte) disk logging operations per second, which
is the maximum possible bandwidth on a commodity disk, while keeping the
latency of each logging operation under 1 msec. Through Beluga, we con-
vincingly demonstrated that flash-based SSDs are not the only means for a
fast-logging disk solution. Since Beluga uses commodity SATA disks to de-
liver a performance as good as flash-based SSDs, we showed that the future
of SATA disks still look very promising, especially given its cost-per-byte ad-
vantage and more importantly its capacity to read/write data for a long time
without any short-range burn-out limits. We also proposed a energy saving
version of Beluga that can dynamically adapt itself to consume lesser energy
in proportion to the size of the incoming workload.

We carefully studied the most commonly faced difficulties of tenants of
a cloud storage system and proposed Cheetah to build a QoS specification
model that collects minimal information from the tenants about the specific
performance expectations and more importantly, the specifications are col-
lected completely in terms of what an application understands, unlike the ex-
isting approaches which forces the tenants to configure the QoS specifications
using complicated system internal semantics like IOPS and MBPS. Cheetah
enforces strict QoS guarantees using a combination of techniques like auto-
matic load balancing using RLB that distributes the load in each VD to its
replica DAs, while simultaneously preserving locality in the workload and also
avoiding overloading of any DAs; flow control mechanism that regulates short-
term bursts in data traffic between VDs and DAs, using a combination of
QoS aware and QoS unaware flow control algorithms; QoS aware disk sched-
uler that ensures performance isolation between the VDs and simultaneously
ensures optimal usage of hardware resources.

8.2 Future Directions

This dissertation addresses issues in several key components of a cloud storage
system and hence we see several potential areas that deserve further research
efforts in the line of our proposals made in this dissertation.

Sungem and most of the modern day deduplication solutions use fingerprint-
based duplicate detection strategies, and hence there is a possibility of data loss
because when two different data blocks falsely result in the same fingerprint
due to hash collisions, one of them is garbage collected. Though the proba-
bility of such an event is extremely low, it is not affordable in many use-cases
and hence an additional layer of duplicate check is employed to compare the
entire data block byte-by-byte before declaring a block as a duplicate. Such

216

a byte-by-byte comparison process not only increases the CPU computations
but also incurs disk bottleneck. It is interesting and challenging to tackle this
issue because there is hardly any locality in the pair of fingerprints that match
and hence the necessity to fetch in data blocks for further duplicate checks
incur expensive random seeks to disk. Even if this additional layer of check
is done lazily in the background, since any pair of potentially duplicate fin-
gerprints have hardly any locality between them, each duplicate check incurs
two random seeks on the disk and such a slow duplicate identification process
doesn’t scale well to cloud-scale storage systems.

Beluga demonstrates a state-of-the-art fast-logging technique that enables
directly attached commodity SATA disks to be used for high throughput low
latency disk logging applications. However, it is interesting to extend this
idea to network attached disks, which could enable multiple user applications
to use Beluga as a remote logging server that provides high throughput and
low latency for fine-grained disk logging requests, without getting bothered by
unpredictable network latencies. The main challenges are in ensuring micro
second latency accuracy and in building a predictable latency model over the
network.

In order to enable BOSC to handle large-scale random disk update work-
loads, one approach is adopt a distributed model in BOSC. For example, a
distributed B+ tree can split its internal nodes across several systems and
BOSC architecture could be used internally within each such system in the
distributed setup. An alternative approach is to use a centralized model,
wherein the application generating random disk update requests could use a
network attached storage server to satisfy large-scale storage requirements. In
such a scenario, BOSC architecture could be applied to synchronously process
data accesses across several disks in the remote storage server. However, in
both the approaches, a challenging issue is to handle the callback function,
since it has to be executed on a remote environment. A few challenging is-
sues with remote execution of a callback function are to convincingly ensure
safety of the user applications as well as that of the hardware resources from
malicious user applications, to handle abnormal application behaviors at a
remote location, to build a predictable latency model over the network, etc.
Some of the safety-related solutions could be leveraged from the Active Disk
[44] project, but it is interesting to convincingly resolve all these issues in a
remotely attached storage environment.

Another interesting direction of research using BOSC is to adopt it in
designing a generic file system. Few challenging issues are to handle multiple
locks, synchronize data and metadata accesses to each disk I/O request and
in providing security to callback functions in the context of a system call. It is

217

also interesting to handle read I/O workloads without disturbing the sequential
sweep pattern in the background BOSC threads. Specifically, it is interesting
to explore the relative merits and demerits of adopting a hierarchal storage
setup using flash-based SSDs against the BOSC2 setup thats described in
Section 5.2.4, or even to adopt a hybrid model that uses both these techniques.

BOSC and Beluga are heavily optimized for spinning disks, which are still
among the favorites for disk-based storage devices. However, flash-based SSDs,
shingled disks, phase change memory devices and a hybrid combination of
these devices are forming an active area of research, of late. These newer
technologies are fundamentally different in the way data is stored on disk
and hence the core techniques employed in BOSC and Beluga do not work
out-of-the-box with these newer technologies. Thankfully, manufacturers are
increasingly opening up the control over these newer device internals, and
its interesting to exploit such controls over the hardware to future-proof and
extend the novel ideas used in BOSC and Beluga.

Cheetah enforces QoS guarantees at both VD and VDC level of granular-
ity. However, when the VDs in the VDC do not share the same set of DAs,
it is interesting to enforce QoS guarantee at VDC level granularity. One op-
tion is to coordinate between the DAs that collectively handle the workload
from different VDs in the given VDC. But since such a coordination should
happen in real-time, it is a challenging and interesting problem that deserves
a worthwhile research effort. Another alternative is to group a set of DAs
as a cluster and limit the amount of coordination between the DAs. How-
ever, it is not trivial to enforce such a constraint without wasting the storage
hardware resources, given the highly volatile and complicated and shared disk
access patterns across multiple VDs and DAs. Admission control and con-
gestion control algorithms are also quite necessary to make Cheetah a viable
commercial product, but both these algorithms involve extremely challenging
and non-trivial issues.

Another very important direction of research work in Cheetah is to en-
force latency guarantee. Since the latency of a disk I/O request involves both
the network and disk latencies, it is extremely complicated and non-trivial
to simultaneously build an accurate latency prediction model in a distributed
storage setup and to avoid over provisioning of hardware resources just to
cover up for the lack of techniques to bound the I/O latency of a disk access
request.

We saw in Section 7.6.2 that hardware RAID controllers and checksum-
based software RAID configurations pose severe challenges in adopting the
CFVC scheduler. In order to ensure generic applicability of CFVC scheduler

218

across all types of DAs, it is necessary to fix the above mentioned incompatibil-
ity issue and thats another challenging research problem worthy of pursuing.

This dissertation focusses specifically on the block-level access interface of
a cloud storage system, though it is not a limitation to extend the proposed
ideas to other forms of access granularities like file-level, database-level and
key-value stores. As an example, key-value stores, which are one of the very
popular cloud storage system interfaces, can use Sungem and Cheetah with
trivial modifications. The content proximity technique in Sungem and various
characteristics of the data workload as analyzed in Chapter 4 suggest promising
performance improvements when used in key-value stores.

8.3 Final Words

Together, with all the above mentioned research contributions, we propose to
mitigate disk I/O bottlenecks in all the key components of a cloud storage sys-
tem and with the deployment of Cheetah, we envision a cloud storage system
which provides a perfectly virtualized disk access interface, providing 100%
satisfaction to all workloads, irrespective of the locality and other implied
constraints, while maximizing the utilization of hardware resources. Such a
cloud storage system with 100% performance guarantees when combined with
super fast internet speeds, can potentially handle real-time application’s I/O
workload, and that could open up a whole new research dimension into both
the server-side and consumer electronics market. Though, by no means is this
dissertation a one stop solution manual to all the issues in a cloud storage
setup, we wish that our novel research contributions go a long way in building
efficient cloud storage systems for the future.

219

Bibliography

[1] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard
Dobbs, Charles Roxburgh, and Angela H Byers. Big data: The next
frontier for innovation, competition, and productivity. 2011.

[2] John H Howard, Michael L Kazar, Sherri G Menees, David A Nichols,
Mahadev Satyanarayanan, Robert N Sidebotham, and Michael J West.
Scale and performance in a distributed file system. ACM Transactions
on Computer Systems (TOCS), 6(1):51–81, 1988.

[3] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Mass Storage Sys-
tems and Technologies (MSST), 2010 IEEE 26th Symposium on, pages
1–10. IEEE, 2010.

[4] Raluca Ada Popa, Jacob R Lorch, David Molnar, Helen J Wang, and
Li Zhuang. Enabling security in cloud storage slas with cloudproof. In
Proc. USENIX ATC, 2011.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, et al. A view of cloud computing. Communica-
tions of the ACM, 53(4):50–58, 2010.

[6] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar,
Greg Trezise, and Peter Camble. Sparse indexing: large scale, inline
deduplication using sampling and locality. In FAST ’09: Proceedings of
the 7th conference on File and storage technologies, pages 111–123, 2009.

[7] Jeff Barr, Attila Narin, and Jinesh Varia. Building fault-tolerant appli-
cations on aws. Amazon Web Services, 2011.

[8] Mayur R Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson
Garfinkel. Amazon s3 for science grids: a viable solution? In Pro-

220

ceedings of the 2008 international workshop on Data-aware distributed
computing, pages 55–64. ACM, 2008.

[9] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,
and Carlos Maltzahn. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 307–320, Berkeley, CA,
USA, 2006. USENIX Association. ISBN 1-931971-47-1. URL http:

//dl.acm.org/citation.cfm?id=1298455.1298485.

[10] 0. An introduction to gluster architecture. https://confluence.

oceanobservatories.org/download/attachments/30998760/An_

Introduction_To_Gluster_ArchitectureV7_110708.pdf, .

[11] Kazutaka Morita. Sheepdog: Distributed storage system for qemu/kvm.
LCA 2010 DS&R miniconf, 2010.

[12] RJ Honicky and Ethan L Miller. Replication under scalable hashing:
A family of algorithms for scalable decentralized data distribution. In
Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, page 96. IEEE, 2004.

[13] Tom White. Hadoop: The Definitive Guide: The Definitive Guide.
O’Reilly Media, 2009.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[15] EMC. EMC Isilon OneFS: A Technical Overview. EMC, 2013.

[16] EMC. Hadoop on emc isilon scale-out nas. http:

//www.emc.com/collateral/software/white-papers/

h10528-wp-hadoop-on-isilon.pdf, 2012.

[17] Jean-Pierre Le Goaller, Carlos Conde, and Shakil Langha. Rdbms in the
cloud: Oracle database on aws. 2013.

[18] Mocky Habeeb. A Developer’s Guide to Amazon SimpleDB. Addison-
Wesley Professional, 2010.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly

221

http://dl.acm.org/citation.cfm?id=1298455.1298485
http://dl.acm.org/citation.cfm?id=1298455.1298485
https://confluence.oceanobservatories.org/download/attachments/30998760/An_Introduction_To_Gluster_ArchitectureV7_110708.pdf
https://confluence.oceanobservatories.org/download/attachments/30998760/An_Introduction_To_Gluster_ArchitectureV7_110708.pdf
https://confluence.oceanobservatories.org/download/attachments/30998760/An_Introduction_To_Gluster_ArchitectureV7_110708.pdf
http://www.emc.com/collateral/software/white-papers/h10528-wp-hadoop-on-isilon.pdf
http://www.emc.com/collateral/software/white-papers/h10528-wp-hadoop-on-isilon.pdf
http://www.emc.com/collateral/software/white-papers/h10528-wp-hadoop-on-isilon.pdf

available key-value store. In ACM SIGOPS Operating Systems Review,
volume 41, pages 205–220. ACM, 2007.

[20] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq,
Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin Mc-
Nett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. Win-
dows azure storage: A highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 143–157, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.
2043571. URL http://doi.acm.org/10.1145/2043556.2043571.

[21] 0. Solidfire solution overview. http://bit.ly/OSaZoG, .

[22] 0. Pure storage flash array. http://www.purestorage.com/pdf/Pure_

Datasheet_FA400.pdf, .

[23] 0. Ibm storwize ovewview. http://www-03.ibm.com/systems/

storage/disk/storwize_v7000/overview.html, .

[24] 0. Vmware vsphere ovewview. http://www.vmware.com/products/

datacenter-virtualization/vsphere/overview.html, .

[25] Laura M. Grupp, John D. Davis, and Steven Swanson. The bleak future
of nand flash memory. In Proceedings of the 10th USENIX Conference on
File and Storage Technologies, FAST’12, pages 2–2, Berkeley, CA, USA,
2012. USENIX Association. URL http://dl.acm.org/citation.cfm?

id=2208461.2208463.

[26] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Fail-
ure trends in a large disk drive population. In Proceedings of the
5th USENIX Conference on File and Storage Technologies, FAST ’07,
pages 2–2, Berkeley, CA, USA, 2007. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1267903.1267905.

[27] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and
Ted Wobber. Extending ssd lifetimes with disk-based write caches.
In Proceedings of the 8th USENIX Conference on File and Storage
Technologies, FAST’10, pages 8–8, Berkeley, CA, USA, 2010. USENIX

222

http://doi.acm.org/10.1145/2043556.2043571
http://bit.ly/OSaZoG
http://www.purestorage.com/pdf/Pure_Datasheet_FA400.pdf
http://www.purestorage.com/pdf/Pure_Datasheet_FA400.pdf
http://www-03.ibm.com/systems/storage/disk/storwize_v7000/overview.html
http://www-03.ibm.com/systems/storage/disk/storwize_v7000/overview.html
http://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
http://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
http://dl.acm.org/citation.cfm?id=2208461.2208463
http://dl.acm.org/citation.cfm?id=2208461.2208463
http://dl.acm.org/citation.cfm?id=1267903.1267905

Association. URL http://dl.acm.org/citation.cfm?id=1855511.

1855519.

[28] David Sacks. Demystifying storage networking das, san, nas, nas gate-
ways, fibre channel, and iscsi. IBM Storage Networking, pages 3–11,
2001.

[29] 0. http://www.opencompute.org/wp/wp-content/uploads/2012/05/

Open-Vault-Storage-Specification-v0.5.pdf, .

[30] Chien-Yung Lee, Yu-Wei Lee, Cheng-Chun Tu, Pai-Wei Wang, Yu-
Cheng Wang, Chih-Yu Lin, and Tzi cker Chiueh. Autonomic fail-
over for a software-defined container computer network. In Presented
as part of the 10th International Conference on Autonomic Com-
puting, pages 225–234, Berkeley, CA, 2013. USENIX. ISBN 978-
1-931971-02-7. URL https://www.usenix.org/conference/icac13/

technical-sessions/presentation/lee.

[31] Sean Quinlan and Sean Dorward. Venti: A new approach to archival
data storage. In FAST ’02: Proceedings of the 1st USENIX Conference
on File and Storage Technologies, page 7, 2002.

[32] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wo-
jciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Un-
gureanu, and Michal Welnicki. Hydrastor: a scalable secondary storage.
In FAST ’09: Proceedings of the 7th conference on File and storage tech-
nologies, pages 197–210, 2009.

[33] EMC Corp. EMC Centera: Content Addressed Storage Sys-
tem. http://www.emc.com/collateral/hardware/data-sheet/

c931-emc-centera-cas-ds.pdf, 2008.

[34] Sean Rhea, Russ Cox, and Alex Pesterev. Fast, inexpensive content-
addressed storage in foundation. In ATC’08: USENIX 2008 Annual
Technical Conference on Annual Technical Conference, pages 143–156,
2008.

[35] PUB FIPS. 180-1. secure hash standard. National Institute of Standards
and Technology, 17, 1995.

[36] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, and Mark Lillib-
ridge. Extreme binning: Scalable, parallel deduplication for chunk-based

223

http://dl.acm.org/citation.cfm?id=1855511.1855519
http://dl.acm.org/citation.cfm?id=1855511.1855519
http://www.opencompute.org/wp/wp-content/uploads/2012/05/Open-Vault-Storage-Specification-v0.5.pdf
http://www.opencompute.org/wp/wp-content/uploads/2012/05/Open-Vault-Storage-Specification-v0.5.pdf
https://www.usenix.org/conference/icac13/technical-sessions/presentation/lee
https://www.usenix.org/conference/icac13/technical-sessions/presentation/lee
http://www.emc.com/collateral/hardware/data-sheet/c931-emc-centera-cas-ds.pdf
http://www.emc.com/collateral/hardware/data-sheet/c931-emc-centera-cas-ds.pdf

file backup. In MASCOTS’09: Proceedings of the the 17th IEEE Inter-
national Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, september 2009.

[37] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. In FAST’08: Proceedings
of the 6th USENIX Conference on File and Storage Technologies, pages
1–14, 2008.

[38] Lawrence L You, Kristal T Pollack, and Darrell DE Long. Deep store:
An archival storage system architecture. In Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on, pages 804–
815. IEEE, 2005.

[39] Exagrid. Comparing exagrids byte-level data de-duplication to block
level data de-duplication. http://www.bmrturkey.com/downloads/

exagrid/Data%20De-duplication%20Methodologies.pdf, 2010.

[40] Biplob Debnath, Sudipta Sengupta, and Jin Li. Chunkstash: speeding
up inline storage deduplication using flash memory. In Proceedings of
the 2010 USENIX conference on USENIX annual technical conference,
pages 16–16. USENIX Association, 2010.

[41] Austin Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li. De-
centralized deduplication in san cluster file systems. In ATC’09: 2009
USENIX Annual Technical Conference, pages 101–114, 2009.

[42] Atish Kathpal, Matthew John, and Gaurav Makkar. Distributed dupli-
cate detection in post-process data de-duplication. HiPC, 2011.

[43] William J. Bolosky, Scott Corbin, David Goebel, and John R. Douceur.
Single instance storage in windows 2000. In WSS’00: Proceedings of the
4th conference on USENIX Windows Systems Symposium, pages 2–2,
2000.

[44] NetApp. Open systems snapvault (ossv) best practices guide.
https://communities.netapp.com/servlet/JiveServlet/

previewBody/4791-102-2-13466/tr-3466.pdf.

[45] Andrew Tridgell, Paul Mackerras, et al. The rsync algorithm, 1996.

[46] Michael O Rabin. Fingerprinting by random polynomials. Center for
Research in Computing Techn., Aiken Computation Laboratory, Univ.,
1981.

224

http://www.bmrturkey.com/downloads/exagrid/Data%20De-duplication%20Methodologies.pdf
http://www.bmrturkey.com/downloads/exagrid/Data%20De-duplication%20Methodologies.pdf
https://communities.netapp.com/servlet/JiveServlet/previewBody/4791-102-2-13466/tr-3466.pdf
https://communities.netapp.com/servlet/JiveServlet/previewBody/4791-102-2-13466/tr-3466.pdf

[47] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-
bandwidth network file system. SIGOPS Oper. Syst. Rev., 35(5):174–
187, October 2001. ISSN 0163-5980. doi: 10.1145/502059.502052. URL
http://doi.acm.org/10.1145/502059.502052.

[48] Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content
defined chunking for backup streams. In FAST, pages 239–252, 2010.

[49] BTony Asaro and Heidi Biggar. Data de-duplication and disk-to-disk
backup systems: Technical and business considerations. The Enterprise
Strategy Group, 2007.

[50] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/362686.362692.

[51] Petros Efstathopoulos and Fanglu Guo. Rethinking deduplication scal-
ability. HotStorage 2010, 2010.

[52] P. Armangau and S.R. Dunham. Computer data storage backup with
tape overflow control of disk caching of backup data stream, April 15
2003. URL http://www.google.com/patents/US6549992. US Patent
6,549,992.

[53] Gartner. http://www.mainframezone.com/storage/backup-recovery-
business-continuity/tape-a-collapsing-star.

[54] Dan Feng, Lingfang Zeng, Fang Wang, and Peng Xia. Tlfs: High per-
formance tape library file system for data backup and archive. In Pro-
ceedings of 7th International Meeting on High Performance Computing
for Computational Science. Rio de Janeiro, Brazil: Springer, 2006.

[55] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Mar-
vin Theimer. Reclaiming space from duplicate files in a serverless dis-
tributed file system. In ICDCS ’02: Proceedings of the 22nd Interna-
tional Conference on Distributed Computing Systems (ICDCS’02), page
617, 2002. ISBN 0-7695-1585-1.

[56] Dirk Meister and André Brinkmann. Multi-level comparison of data
deduplication in a backup scenario. In SYSTOR ’09: Proceedings of
SYSTOR 2009: The Israeli Experimental Systems Conference, pages 1–
12, 2009. ISBN 978-1-60558-623-6. doi: http://doi.acm.org/10.1145/
1534530.1534541.

225

http://doi.acm.org/10.1145/502059.502052
http://www.google.com/patents/US6549992

[57] George Forman, Kave Eshghi, and Jaap Suermondt. Efficient detec-
tion of large-scale redundancy in enterprise file systems. ACM SIGOPS
Operating Systems Review, 43(1):84–91, 2009. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/1496909.1496926.

[58] Partho Nath, Bhuvan Urgaonkar, and Anand Sivasubramaniam. Evalu-
ating the usefulness of content addressable storage for high-performance
data intensive applications. In HPDC ’08: Proceedings of the 17th inter-
national symposium on High performance distributed computing, pages
35–44, 2008. ISBN 978-1-59593-997-5. doi: http://doi.acm.org/10.1145/
1383422.1383428.

[59] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R.
Lorch. A five-year study of file-system metadata. Trans. Storage, 3(3),
October 2007. ISSN 1553-3077. doi: 10.1145/1288783.1288788. URL
http://doi.acm.org/10.1145/1288783.1288788.

[60] John R. Douceur and William J. Bolosky. A large-scale study of file-
system contents. In Proceedings of the 1999 ACM SIGMETRICS in-
ternational conference on Measurement and modeling of computer sys-
tems, SIGMETRICS ’99, pages 59–70, New York, NY, USA, 1999.
ACM. ISBN 1-58113-083-X. doi: 10.1145/301453.301480. URL http:

//doi.acm.org/10.1145/301453.301480.

[61] Kylie M. Evans and Geoffrey H. Kuenning. A study of irregularities in
file-size distributions. In In International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS 02,
2002.

[62] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L.
Miller. Measurement and analysis of large-scale network file system work-
loads. In USENIX 2008 Annual Technical Conference on Annual Tech-
nical Conference, ATC’08, pages 213–226, Berkeley, CA, USA, 2008.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=

1404014.1404030.

[63] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and Margo Seltzer. Passive
nfs tracing of email and research workloads. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies, FAST ’03, pages
203–216, Berkeley, CA, USA, 2003. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1090694.1090716.

226

http://doi.acm.org/10.1145/1288783.1288788
http://doi.acm.org/10.1145/301453.301480
http://doi.acm.org/10.1145/301453.301480
http://dl.acm.org/citation.cfm?id=1404014.1404030
http://dl.acm.org/citation.cfm?id=1404014.1404030
http://dl.acm.org/citation.cfm?id=1090694.1090716
http://dl.acm.org/citation.cfm?id=1090694.1090716

[64] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Oltean, Jin Li, and
Sudipta Sengupta. Primary data deduplication-large scale study and sys-
tem design. In Proceedings of the 2012 USENIX conference on Annual
Technical Conference, USENIX ATC’12, pages 26–26, Berkeley, CA,
USA, 2012. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=2342821.2342847.

[65] Nohhyun Park and D.J. Lilja. Characterizing datasets for data dedupli-
cation in backup applications. In Workload Characterization (IISWC),
2010 IEEE International Symposium on, pages 1–10, 2010. doi: 10.
1109/IISWC.2010.5650369.

[66] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen
Smaldone, Mark Chamness, and Windsor Hsu. Characteristics of backup
workloads in production systems. In Proceedings of the 10th USENIX
conference on File and Storage Technologies, FAST’12, pages 4–4, Berke-
ley, CA, USA, 2012. USENIX Association. URL http://dl.acm.org/

citation.cfm?id=2208461.2208465.

[67] Dutch T. Meyer and William J. Bolosky. A study of practical deduplica-
tion. Trans. Storage, 7(4):14:1–14:20, February 2012. ISSN 1553-3077.
doi: 10.1145/2078861.2078864. URL http://doi.acm.org/10.1145/

2078861.2078864.

[68] Dominique Colnet, Philippe Coucaud, and Olivier Zendra. Compiler
support to customize the mark and sweep algorithm. In ISMM ’98:
Proceedings of the 1st international symposium on Memory management,
pages 154–165, 1998. ISBN 1-58113-114-3. doi: http://doi.acm.org/10.
1145/286860.286877.

[69] Fanglu Guo and Petros Efstathopoulos. Building a high-performance
deduplication system. In USENIXATC’11: Proceedings of the 2011
USENIX Conference on USENIX annual technical conference, 2011.

[70] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S
McKinley. Taking off the gloves with reference counting immix. In
Proceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & applications, pages
93–110. ACM, 2013.

[71] George E Collins. A method for overlapping and erasure of lists. Com-
munications of the ACM, 3(12):655–657, 1960.

227

http://dl.acm.org/citation.cfm?id=2342821.2342847
http://dl.acm.org/citation.cfm?id=2342821.2342847
http://dl.acm.org/citation.cfm?id=2208461.2208465
http://dl.acm.org/citation.cfm?id=2208461.2208465
http://doi.acm.org/10.1145/2078861.2078864
http://doi.acm.org/10.1145/2078861.2078864

[72] David F Bacon, Clement R Attanasio, VT Rajan, Stephen E Smith, and
HANB LEE. A pure reference counting garbage collector.

[73] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated failures. In
Proceedings of the 2Nd Conference on Symposium on Networked Sys-
tems Design & Implementation - Volume 2, NSDI’05, pages 143–158,
Berkeley, CA, USA, 2005. USENIX Association. URL http://dl.acm.

org/citation.cfm?id=1251203.1251214.

[74] Dilip Nijagal Simha, Maohua Lu, and Tzi-cker Chiueh. An update-
aware storage system for low-locality update-intensive workloads. In
Proceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’12, pages 375–386, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
0759-8. doi: 10.1145/2150976.2151016. URL http://doi.acm.org/10.

1145/2150976.2151016.

[75] Transaction Processing Performance Council. TPC Benchmark C Stan-
dard Specification, volume 1 and 2. Waterside Associates, Fremont, CA,
1.0.a edition, Aug, 1996.

[76] Cyril U. Orji and Jon A. Solworth. Write-Only Disk Cache Experiments
on Multiple Surface Disks. In ICCI ’92: Proceedings of the Fourth In-
ternational Conference on Computing and Information, pages 385–388,
Washington, DC, USA, 1992. IEEE Computer Society. ISBN 0-8186-
2812-X.

[77] Wenguang Wang, Yanping Zhao, and Rick Bunt. HyLog: A High Perfor-
mance Approach to Managing Disk Layout. In FAST ’04: Proceedings
of the 3rd USENIX Conference on File and Storage Technologies, pages
145–158, Berkeley, CA, USA, 2004. USENIX Association.

[78] Mendel Rosenblum and John K. Ousterhout. The Design and Imple-
mentation of a Log-Structured File System. ACM Transactions on
Computer Systems (TOCS), 10(1):26–52, 1992. ISSN 0734-2071. doi:
http://doi.acm.org/10.1145/146941.146943.

[79] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and
Yale N. Patt. Soft Updates: a Solution to the Metadata Update Problem
in File Systems. ACM Transactions on Computer Systems (TOCS), 18
(2):127–153, 2000. ISSN 0734-2071. doi: http://doi.acm.org/10.1145/
350853.350863.

228

http://dl.acm.org/citation.cfm?id=1251203.1251214
http://dl.acm.org/citation.cfm?id=1251203.1251214
http://doi.acm.org/10.1145/2150976.2151016
http://doi.acm.org/10.1145/2150976.2151016

[80] Marshall Kirk McKusick and Gregory R. Ganger. Soft Updates: a Tech-
nique for Eliminating Most Synchronous Writes in the Fast Filesystem.
In ATEC’99: Proceedings of the Annual Technical Conference on 1999
USENIX Annual Technical Conference, pages 24–24, Berkeley, CA, USA,
1999. USENIX Association.

[81] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason,
and R. N. Sidebotham. The Episode File System. In Proceedings of the
USENIX Winter 1992 Technical Conference, pages 43–60, San Fransisco,
CA, USA, 1992. USENIX Association.

[82] R. Hagmann. Reimplementing the Cedar File System using Logging and
Group Commit. In SOSP ’87: Proceedings of the 11th ACM Symposium
on Operating Systems Principles, pages 155–162, New York, NY, USA,
1987. ACM Press. ISBN 0-89791-242-X. doi: http://doi.acm.org/10.
1145/41457.37518.

[83] Michael Stonebraker. The Design of the POSTGRES Storage System.
In VLDB ’87: Proceedings of the 13th International Conference on Very
Large Data Bases, pages 289–300, San Francisco, CA, USA, 1987. Mor-
gan Kaufmann Publishers Inc. ISBN 0-934613-46-X.

[84] C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wilkes. Mime: A
High-Performance Parallel Storage Device with Strong Recovery Guar-
antees. Technical Report HPL-CSP-92-9 rev 1, HewlettPackard Labora-
tories Report, November 1992.

[85] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen,
James N. Gray, W. Frank King, Bruce G. Lindsay, Raymond Lorie,
James W. Mehl, Thomas G. Price, Franco Putzolu, Patricia Griffiths
Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger, Brad-
ford W. Wade, and Robert A. Yost. A History and Evaluation of System
R. Communications of the ACM, 24(10):632–646, 1981. ISSN 0001-0782.
doi: http://doi.acm.org/10.1145/358769.358784.

[86] Soumyadeb Mitra, Windsor W. Hsu, and Marianne Winslett. Trustwor-
thy Keyword Search for Regulatory-Compliant Records Retention. In
VLDB ’2006: Proceedings of the 32nd International Conference on Very
Large Data Bases, pages 1001–1012. VLDB Endowment, 2006.

[87] Berthier Ribeiro-Neto, Edleno S. Moura, Marden S. Neubert, and Nivio
Ziviani. Efficient Distributed Algorithms to Build Inverted Files. In

229

SIGIR ’99: Proceedings of the 22nd Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pages 105–112, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-
096-1. doi: http://doi.acm.org/10.1145/312624.312663.

[88] Jun Hirai, Sriram Raghavan, Hector Garcia-Molina, and Andreas
Paepcke. WebBase: a Repository of Web Pages. In Proceedings of the 9th
International World Wide Web Conference on Computer Networks : the
International Journal of Computer and Telecommunications Network-
ing, pages 277–293, Amsterdam, The Netherlands, 2000. North-Holland
Publishing Co. doi: http://dx.doi.org/10.1016/S1389-1286(00)00063-3.

[89] Sergey Melnik, Sriram Raghavan, Beverly Yang, and Hector Garcia-
Molina. Building a Distributed Full-Text Index for the Web. In WWW
’01: Proceedings of the 10th International Conference on World Wide
Web, pages 396–406, New York, NY, USA, 2001. ACM Press. ISBN
1-58113-348-0. doi: http://doi.acm.org/10.1145/371920.372095.

[90] Goetz Graefe. B-tree Indexes for High Update Rates. SIGMOD Rec.,
35(1):39–44, 2006. ISSN 0163-5808. doi: http://doi.acm.org/10.1145/
1121995.1122002.

[91] Laurynas Biveinis, Simonas Šaltenis, and Christian S. Jensen. Main-
memory operation buffering for efficient R-tree update. In VLDB 2007:
Proceedings of the 33rd International Conference on Very Large Data
Bases, pages 591–602. VLDB Endowment, 2007. ISBN 978-1-59593-649-
3.

[92] Michael A. Bender, Gerth Stolting Brodal, Rolf Fagerberg, Dongdong
Ge, Simai He, Haodong Hu, John Iacono, and Alejandro Lopez-Ortiz.
The cost of cache-oblivious searching. In Proceedings of FOCS 2003,
pages p. 271–282, 2003.

[93] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-
oblivious b-trees. In SIAM Journal of Computing, volume 35(2), pages
p. 341–358, 2005.

[94] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C.
Kuszmaul. Concurrent cache-oblivious b-trees. In Proceedings of SPAA
2005, pages p. 228–237, 2005.

[95] Lars Arge, Klaus Hinrichs, Jan Vahrenhold, and Jeffrey Scott Vitter.
Efficient bulk operations on dynamic r-trees. Algorithmica, 33(1):104–
128, 2002. URL citeseer.ist.psu.edu/arge99efficient.html.

230

citeseer.ist.psu.edu/arge99efficient.html

[96] Lars Arge. The buffer tree: A new technique for optimal i/o-algorithms
(extended abstract). In WADS ’95: Proceedings of the 4th International
Workshop on Algorithms and Data Structures, pages 334–345, London,
UK, 1995. Springer-Verlag. ISBN 3-540-60220-8.

[97] O. Procopiuc, P. Agarwal, L. Arge, and J. Vitter. Bkd-tree:
A dynamic scalable kd-tree, 2002. URL citeseer.ist.psu.edu/

procopiuc02bkdtree.html.

[98] Goetz Graefe. Write-optimized B-trees. In VLDB 2004: Proceedings of
the Thirtieth International Conference on Very Large Data Bases, pages
672–683. VLDB Endowment, 2004. ISBN 0-12-088469-0.

[99] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and
Jason Flinn. Rethink the Sync. In OSDI’2006: Proceedings of the 7th
conference on USENIX Symposium on Operating Systems Design and
Implementation, pages 1–14, Berkeley, CA, USA, 2006. USENIX Asso-
ciation.

[100] Maxim Lifantsev and Tzi-cker Chiueh. I/O-Conscious Data Preparation
for Large-Scale Web Search Engines. In VLDB ’2002: Proceedings of
the 32nd International Conference on Very Large Data Bases, pages
382–393, Hongkong, China, 2002. VLDB Endowment.

[101] Taher Haveliwala. Efficient Computation of PageRank. Technical Re-
port 1999-31, Stanford University, Stanford University, Feburary 1999.
URL citeseer.ist.psu.edu/haveliwala99efficient.html.

[102] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. I/O-Efficient Techniques
for Computing PageRank. In CIKM ’02: Proceedings of the 11th Inter-
national Conference on Information and Knowledge Management, pages
549–557, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-492-4.
doi: http://doi.acm.org/10.1145/584792.584882.

[103] Raymie Stata, Krishna Bharat, and Farzin Maghoul. The Term Vector
Database: Fast Access to Indexing Terms for Web Pages. In Proceedings
of the 9th International World Wide Web Conference on Computer Net-
works : the International Journal of Computer and Telecommunications
Networking, pages 247–255, Amsterdam, The Netherlands, 2000. North-
Holland Publishing Co. doi: http://dx.doi.org/10.1016/S1389-1286(00)
00046-3.

231

citeseer.ist.psu.edu/procopiuc02bkdtree.html
citeseer.ist.psu.edu/procopiuc02bkdtree.html
citeseer.ist.psu.edu/haveliwala99efficient.html

[104] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank Citation Ranking: Bringing Order to the Web. Technical
Report 1999-66, Stanford Digital Library Technologies Project, 1998.
URL citeseer.ist.psu.edu/page98pagerank.html.

[105] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Pe-
ter Schwarz. Aries: a transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM
Trans. Database Syst., 17(1):94–162, March 1992. ISSN 0362-5915. doi:
10.1145/128765.128770. URL http://doi.acm.org/10.1145/128765.

128770.

[106] Ross S. Finlayson and David R. Cheriton. Log files: An extended file
service exploiting write-once storage. In SOSP ’87 Proceedings of the
eleventh ACM Symposium on Operating systems principles, NY, USA,
1987. ISBN 0-89791-242-X.

[107] Tzi-cker Chiueh. Trail: a track-based logging disk architecture for zero-
overhead writes. In Computer Design: VLSI in Computers and Proces-
sors, 1993. ICCD ’93. Proceedings., 1993 IEEE International Conference
on, pages 339 – 343, 1993.

[108] Jimmy P. Strickland, Peter P. Uhrowczik, and Vern L. Watts. Ims/vs:
An evolving system. In IBM Systems Journal Volume 21, pages 490 –
510, 1982.

[109] HAGMANN R. Low latency logging. http://www.bitsavers.org/pdf/
xerox/parc/techReports/CSL-91-1_Low_Latency_Logging.pdf,
1991.

[110] Klaus Elhardt and Rudolf Bayer. A database cache for high performance
and fast restart in database systems. In ACM Transactions on Database
Systems (TODS), Volume 9 Issue 4, pages 503–525, 1984.

[111] Tzi-cker Chiueh and Lan Huang. Track-based disk logging. In in Proceed-
ings of International Conference on Dependable Systems and Networks,
pages 429–438, 2002.

[112] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger. Free-
block scheduling outside of disk firmware. In Proceedings of the 1st
USENIX conference on File and storage technologies, FAST’02, pages
20–20, Berkeley, CA, USA, 2002. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1973333.1973353.

232

citeseer.ist.psu.edu/page98pagerank.html
http://doi.acm.org/10.1145/128765.128770
http://doi.acm.org/10.1145/128765.128770
http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-91-1_Low_Latency_Logging.pdf
http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-91-1_Low_Latency_Logging.pdf
http://dl.acm.org/citation.cfm?id=1973333.1973353
http://dl.acm.org/citation.cfm?id=1973333.1973353

[113] Bill Gallagher, Dean Jacobs, and Anno Langen. A high-performance,
transactional filestore for application servers. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data, SIG-
MOD ’05, pages 868–872, New York, NY, USA, 2005. ACM. ISBN
1-59593-060-4. doi: 10.1145/1066157.1066269. URL http://doi.acm.

org/10.1145/1066157.1066269.

[114] Jongmin Gim and Youjip Won. Extract and infer quickly: Obtaining
sector geometry of modern hard disk drives. In ACM Transactions on
Storage (TOS), Volume 6 Issue 2, NY, USA, 2010.

[115] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers, Third Edition. O’Reilly Media, 2005.

[116] Ying Chen, Windsor W. Hsu, and Honesty C. Young. Logging raid an
approach to fast, reliable, and low-cost disk arrays. In Proceeding Euro-
Par ’00 Proceedings from the 6th International Euro-Par Conference on
Parallel Processing, pages 1302–1312, 2000.

[117] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety,
and Antony Rowstron. Everest: Scaling down peak loads through i/o
off-loading. In In Proceedings of OSDI, pages 15–28, 2008.

[118] Mendel Rosenblum and John K. Ousterhout. The design and implemen-
tation of a log-structured file system. In Journal ACM Transactions on
Computer Systems (TOCS),Volume 10 Issue 1, pages 26–52, 1992.

[119] Hui Dai, Michael Neufeld, and Richard Han. Elf: an efficient log-
structured flash file system for micro sensor nodes. In SenSys ’04 Pro-
ceedings of the 2nd international conference on Embedded networked sen-
sor systems, 2004.

[120] Y Hu and Q Yang. Dcd - disk caching disk: A new approach for boosting
i/o performance. In Proceedings of the 23rd International Symposium on
Computer Architecture, pages 169–178, 1996.

[121] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory based file
system. In USENIX Winter, pages 155–164, 1995.

[122] M. Wu and W. Zwaenepoel. envy: a non−volatile, main memory storage
system. In ASPLOS,, pages 86–97, 1994.

[123] F. Douglis, R. Caceres, M. Frans Kaashoek, K. Li, B. Marsh, and J. A.
Tauber. Storage alternatives for mobile computers. In In Proceedings of

233

http://doi.acm.org/10.1145/1066157.1066269
http://doi.acm.org/10.1145/1066157.1066269

the First Symposium on Operating Design and Implementation (OSDI),
1994.

[124] Sang-Won Lee and Bongki Moon. Design of flash-based dbms: An in-
page logging approach. In In Proceedings of the ACM SIGMOD, pages
55–66, Beijing, China, 2007.

[125] Shimin Chen. Flashlogging: exploiting flash devices for synchronous
logging performance. In SIGMOD ’09 Proceedings of the 35th SIGMOD
international conference on Management of data, NY, USA, 2009. ACM.
ISBN 978-1-60558-551-2.

[126] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Archi-
tecting phase change memory as a scalable dram alternative. In in Pro-
ceedings of ISCA09, pages 2–13, 2009.

[127] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. High per-
formance database logging using storage class memory. In IEEE 27th
International Conference on Data Engineering, pages 1221 – 1231, Han-
nover, Germany, 2011. icde. ISBN 978-1-4244-8959-6.

[128] R. Freitas and W. Wilcke. Storage-class memory: The next storage
system technology. In IBM Journal of Research and Development, Vol.
52, Issue 4, pages 439 – 447, 2008.

[129] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. In SOSP ’07 Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, NY, USA, 2007.
ACM. ISBN 978-1-59593-591-5.

[130] Avinash Lakshman and Prashant Malik. Cassandra - a decentralized
structured storage system. http://www.cs.cornell.edu/projects/

ladis2009/papers/lakshman-ladis2009.pdf, 2009.

[131] John A. Chandy. A dual actuator logging disk architecture. In Journal
of Systems Architecture: the EUROMICRO Journal, Volume 53 Issue
12, pages 913–926, 2007.

[132] Peter M Chen. Optimizing delay in delayed-write file systems. In In Pro-
ceedings of the 1994 International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM,
1994.

234

http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf

[133] John Wilkes. Traveling to rome: Qos specifications for automated stor-
age system management. In Quality of ServiceIWQoS 2001, pages 75–91.
Springer, 2001.

[134] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Ma-
hesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh.
Consistency-based service level agreements for cloud storage. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 309–324, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2388-8. doi: 10.1145/2517349.2522731. URL
http://doi.acm.org/10.1145/2517349.2522731.

[135] Peng Gang and Tzi-cker Chiueh. Availability and fairness support for
storage qos guarantee. In Distributed Computing Systems, 2008. ICDCS
’08. The 28th International Conference on, pages 589–596, 2008. doi:
10.1109/ICDCS.2008.107.

[136] Lan Huang, Gang Peng, and Tzi-cker Chiueh. Multi-dimensional storage
virtualization. SIGMETRICS Perform. Eval. Rev., 32(1):14–24, June
2004. ISSN 0163-5999. doi: 10.1145/1012888.1005692. URL http:

//doi.acm.org/10.1145/1012888.1005692.

[137] Lan Huang. Stonehenge: A high performance virtualized storage cluster
with qos guarantees. 2003.

[138] Ming Zhao and Renato J. Figueiredo. Experimental study of virtual ma-
chine migration in support of reservation of cluster resources. In Proceed-
ings of the 2Nd International Workshop on Virtualization Technology in
Distributed Computing, VTDC ’07, pages 5:1–5:8, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-897-8. doi: 10.1145/1408654.1408659.
URL http://doi.acm.org/10.1145/1408654.1408659.

[139] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: man-
aging performance interference effects for qos-aware clouds. In Proceed-
ings of the 5th European conference on Computer systems, pages 237–
250. ACM, 2010.

[140] Ajay Gulati, Ganesha Shanmuganathan, Xuechen Zhang, and Peter
Varman. Demand based hierarchical qos using storage resource pools.
In Proceedings of the 2012 USENIX conference on Annual Technical
Conference, USENIX ATC’12, pages 1–1, Berkeley, CA, USA, 2012.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=

2342821.2342822.

235

http://doi.acm.org/10.1145/2517349.2522731
http://doi.acm.org/10.1145/1012888.1005692
http://doi.acm.org/10.1145/1012888.1005692
http://doi.acm.org/10.1145/1408654.1408659
http://dl.acm.org/citation.cfm?id=2342821.2342822
http://dl.acm.org/citation.cfm?id=2342821.2342822

[141] VMware. Storage drs: Automated management of storage devices
in a virtualized datacenter. http://labs.vmware.com/academic/

publications/drs-vmtj-winter2012, 2012.

[142] David Shue, Michael J. Freedman, and Anees Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 349–362, Berkeley, CA, USA, 2012.
USENIX Association. ISBN 978-1-931971-96-6. URL http://dl.acm.

org/citation.cfm?id=2387880.2387914.

[143] Ajay Gulati, Irfan Ahmad, Carl A Waldspurger, et al. Parda: Propor-
tional allocation of resources for distributed storage access. In FAST,
volume 9, pages 85–98, 2009.

[144] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. Basil:
automated io load balancing across storage devices. In Proceedings of
the 8th USENIX conference on File and storage technologies, FAST’10,
pages 13–13, Berkeley, CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1855511.1855524.

[145] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R.
Ganger. Argon: performance insulation for shared storage servers. In
Proceedings of the 5th USENIX conference on File and Storage Technolo-
gies, FAST ’07, pages 5–5, Berkeley, CA, USA, 2007. USENIX Associa-
tion. URL http://dl.acm.org/citation.cfm?id=1267903.1267908.

[146] Anna Povzner, Tim Kaldewey, Scott Brandt, Richard Golding,
Theodore M. Wong, and Carlos Maltzahn. Efficient guaranteed disk
request scheduling with fahrrad. SIGOPS Oper. Syst. Rev., 42(4):13–
25, April 2008. ISSN 0163-5980. doi: 10.1145/1357010.1352595. URL
http://doi.acm.org/10.1145/1357010.1352595.

[147] Christopher R. Lumb, Arif Merchant, and Guillermo A. Alvarez.
Façade: Virtual storage devices with performance guarantees.
In Proceedings of the 2nd USENIX Conference on File and Storage Tech-
nologies, FAST ’03, pages 131–144, Berkeley, CA, USA, 2003. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1090694.

1090710.

[148] D. Ferrari and D.C. Verma. A scheme for real-time channel establishment
in wide-area networks. Selected Areas in Communications, IEEE Journal
on, 8(3):368–379, 1990. ISSN 0733-8716. doi: 10.1109/49.53013.

236

http://labs.vmware.com/academic/publications/drs-vmtj-winter2012
http://labs.vmware.com/academic/publications/drs-vmtj-winter2012
http://dl.acm.org/citation.cfm?id=2387880.2387914
http://dl.acm.org/citation.cfm?id=2387880.2387914
http://dl.acm.org/citation.cfm?id=1855511.1855524
http://dl.acm.org/citation.cfm?id=1267903.1267908
http://doi.acm.org/10.1145/1357010.1352595
http://dl.acm.org/citation.cfm?id=1090694.1090710
http://dl.acm.org/citation.cfm?id=1090694.1090710

[149] M. Shreedhar and George Varghese. Efficient fair queueing using deficit
round robin. In Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, SIG-
COMM ’95, pages 231–242, New York, NY, USA, 1995. ACM. ISBN
0-89791-711-1. doi: 10.1145/217382.217453. URL http://doi.acm.

org/10.1145/217382.217453.

[150] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Triage:
Performance differentiation for storage systems using adaptive con-
trol. Trans. Storage, 1(4):457–480, November 2005. ISSN 1553-3077.
doi: 10.1145/1111609.1111612. URL http://doi.acm.org/10.1145/

1111609.1111612.

[151] Theodore M Wong, Richard A Golding, Caixue Lin, and Ralph A Becker-
Szendy. Zygaria: Storage performance as a managed resource. In Real-
Time and Embedded Technology and Applications Symposium, 2006.
Proceedings of the 12th IEEE, pages 125–134. IEEE, 2006.

[152] Ajay Gulati, Arif Merchant, and Peter J Varman. pclock: an arrival
curve based approach for qos guarantees in shared storage systems. ACM
SIGMETRICS Performance Evaluation Review, 35(1):13–24, 2007.

[153] Jianyong Zhang, Anand Sivasubramaniam, Qian Wang, Alma Riska,
and Erik Riedel. Storage performance virtualization via throughput and
latency control. Trans. Storage, 2(3):283–308, August 2006. ISSN 1553-
3077. doi: 10.1145/1168910.1168913. URL http://doi.acm.org/10.

1145/1168910.1168913.

[154] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H.
Romer, Ralph Becker-Szendy, Richard Golding, Arif Merchant, Mirjana
Spasojevic, Alistair Veitch, and John Wilkes. Minerva: An automated
resource provisioning tool for large-scale storage systems. ACM Trans.
Comput. Syst., 19(4):483–518, November 2001. ISSN 0734-2071. doi:
10.1145/502912.502915. URL http://doi.acm.org/10.1145/502912.

502915.

[155] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence,
Mustafa Uysal, and Alistair Veitch. Hippodrome: Running circles
around storage administration. In Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies, FAST ’02, Berkeley, CA, USA,
2002. USENIX Association. URL http://dl.acm.org/citation.cfm?

id=1083323.1083341.

237

http://doi.acm.org/10.1145/217382.217453
http://doi.acm.org/10.1145/217382.217453
http://doi.acm.org/10.1145/1111609.1111612
http://doi.acm.org/10.1145/1111609.1111612
http://doi.acm.org/10.1145/1168910.1168913
http://doi.acm.org/10.1145/1168910.1168913
http://doi.acm.org/10.1145/502912.502915
http://doi.acm.org/10.1145/502912.502915
http://dl.acm.org/citation.cfm?id=1083323.1083341
http://dl.acm.org/citation.cfm?id=1083323.1083341

[156] Chenyang Lu, Guillermo A Alvarez, and John Wilkes. Aqueduct: On-
line data migration with performance guarantees. In FAST, volume 2,
page 21. Citeseer, 2002.

[157] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The hp
autoraid hierarchical storage system. ACM Transactions on Computer
Systems (TOCS), 14(1):108–136, 1996.

[158] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. Zoolan-
der: Efficiently meeting very strict, low-latency slos. In Proceed-
ings of the 10th International Conference on Autonomic Computing
(ICAC 13), pages 265–277, San Jose, CA, 2013. USENIX. ISBN 978-
1-931971-02-7. URL https://www.usenix.org/conference/icac13/

technical-sessions/presentation/stewart.

[159] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proceedings of the eigh-
teenth international conference on Architectural support for programming
languages and operating systems, ASPLOS ’13, pages 77–88, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-1870-9. doi: 10.1145/2451116.
2451125. URL http://doi.acm.org/10.1145/2451116.2451125.

[160] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P.
Thacker. High-speed switch scheduling for local-area networks. ACM
Trans. Comput. Syst., 11(4):319–352, November 1993. ISSN 0734-
2071. doi: 10.1145/161541.161736. URL http://doi.acm.org/10.

1145/161541.161736.

[161] Nick McKeown. The islip scheduling algorithm for input-queued
switches. IEEE/ACM Trans. Netw., 7(2):188–201, April 1999. ISSN
1063-6692. doi: 10.1109/90.769767. URL http://dx.doi.org/10.

1109/90.769767.

[162] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-
robin cell multiplexing in a general-purpose atm switch chip. Selected Ar-
eas in Communications, IEEE Journal on, 9(8):1265–1279, 1991. ISSN
0733-8716. doi: 10.1109/49.105173.

[163] Kartik Gopalan, Lan Huang, Gang Peng, Tzi-Cker Chiueh, and Yow-
Jian Lin. Statistical admission control using delay distribution measure-
ments. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMCCAP), 2(4):258–281, 2006.

238

https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
http://doi.acm.org/10.1145/2451116.2451125
http://doi.acm.org/10.1145/161541.161736
http://doi.acm.org/10.1145/161541.161736
http://dx.doi.org/10.1109/90.769767
http://dx.doi.org/10.1109/90.769767

[164] L. Dubois and R. Amatruda. IDC Backup and Recovery/Data Dedupli-
cation report. Technical Report, IDC and EMC, Feb 2010.

[165] Fanglu Guo and Tzi-cker Chiueh. DAFT: Disk Geometry-Aware File
System Traversal. In MASCOTS’09: Proceedings of the the 17th IEEE
International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, pages 56–68, 2009.

[166] Dilip Nijagal Simha, Maohua Lu, and Tzi-cker Chiueh. A scalable
deduplication and garbage collection engine for incremental backup.
In Proceedings of the 6th International Systems and Storage Confer-
ence, SYSTOR ’13, pages 16:1–16:12, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2116-7. doi: 10.1145/2485732.2485753. URL
http://doi.acm.org/10.1145/2485732.2485753.

[167] Jiansheng Wei, Hong Jiang, Ke Zhou, Dan Feng, and Hua Wang. Detect-
ing duplicates over sliding windows with ram-efficient detached counting
bloom filter arrays. In NAS: 6th IEEE International Conference on Net-
working, Architecture, and Storage, 2011.

[168] Guanlin Lu, Biplob Debnath, and David H.C. Du. A forest-structured
bloom filter with flash memory. In MSST: Storage Conference, 2011.

[169] Biplob Debnath, Sudipta Sengupta, Jin Li, David J. Lilja, and
David H.C. Du. Bloomflash: Bloom filter on flash-based storage. In
ICDCS: International Conference on Distributed Computing Systems,
2011.

[170] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary
cache: A scalable wide-area web cache sharing protocol. IEEE/ACM
Trans. Netw., 8(3):281–293, June 2000. ISSN 1063-6692. doi: 10.1109/
90.851975. URL http://dx.doi.org/10.1109/90.851975.

[171] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz.
Theory and practice of bloom filters for distributed systems. Communi-
cations Surveys and Tutorials, IEEE, 99:1 – 25, 2011. ISSN 1553-877X.
doi: 10.1109/SURV.2011.031611.00024.

[172] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970. ISSN 0001-0782. doi:
10.1145/362686.362692. URL http://doi.acm.org/10.1145/362686.

362692.

239

http://doi.acm.org/10.1145/2485732.2485753
http://dx.doi.org/10.1109/90.851975
http://doi.acm.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692

[173] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and
Young Ik Eom. Sfs: Random write considered harmful in solid state
drives. In Proceedings of the 10th USENIX Conference on File and
Storage Technologies, FAST’12, pages 12–12, Berkeley, CA, USA, 2012.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=

2208461.2208473.

[174] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and Berni
Schiefer. Empirical Evaluation of Multi-level Buffer Cache Collaboration
for Storage Systems. SIGMETRICS Perform. Eval. Rev., 33(1):145–
156, 2005. ISSN 0163-5999. doi: http://doi.acm.org/10.1145/1071690.
1064230.

[175] Lakshmi N. Bairavasundaram, Muthian Sivathanu, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. X-RAY: A Non-Invasive Ex-
clusive Caching Mechanism for RAIDs. In ISCA ’04: Proceedings of the
31st annual international symposium on Computer architecture, page
176, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-
7695-2143-6.

[176] Asit Dan and Don Towsley. An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes. SIGMETRICS Perform. Eval. Rev.,
18(1):143–152, 1990. ISSN 0163-5999. doi: http://doi.acm.org/10.1145/
98460.98525.

[177] Norman P. Jouppi. Cache Write Policies and Performance. In ISCA ’93:
Proceedings of the 20th annual international symposium on Computer
architecture, pages 191–201, New York, NY, USA, 1993. ACM Press.
ISBN 0-8186-3810-9. doi: http://doi.acm.org/10.1145/165123.165154.

[178] Li Ou Xubin Ben He, Martha J. Kosa, and Stephen L. Scott. A Uni-
fied Multiple-Level Cache for High Performance Storage Systems. In
MASCOTS ’05: Proceedings of the 13th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, pages 143–152, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2458-3. doi: http://dx.doi.org/10.1109/
MASCOT.2005.10.

[179] Christopher R. Lumb, Jiri Schindler, and Gregory R. Ganger. Freeblock
Scheduling Outside of Disk Firmware. In FAST ’02: Proceedings of the
Conference on File and Storage Technologies, pages 275–288, Berkeley,
CA, USA, 2002. USENIX Association. ISBN 1-880446-03-0.

240

http://dl.acm.org/citation.cfm?id=2208461.2208473
http://dl.acm.org/citation.cfm?id=2208461.2208473

[180] Chi Zhang, Xiang Yu, Arvind Krishnamurthy, and Randolph Y. Wang.
Configuring and Scheduling an Eager-Writing Disk Array for a Transac-
tion Processing Workload. In FAST ’02: Proceedings of the 1st USENIX
Conference on File and Storage Technologies, page 24, Berkeley, CA,
USA, 2002. USENIX Association.

[181] Chris Malakapalli and Vamsi Gunturu. Evaluation of SCSI over TCP/IP
and SCSI over Fibre Channel Connections. In HOTI ’01: Proceedings of
the The Ninth Symposium on High Performance Interconnects (HOTI
’01), page 87, Washington, DC, USA, 2001. IEEE Computer Society.
ISBN 0-7695-1357-3.

[182] Gordon F. Hughes and Joseph F. Murray. Reliability and Security of
RAID Storage Systems and D2D Archives using SATA Disk Drives.
Transactions on Storage, 1(1):95–107, 2005. ISSN 1553-3077. doi:
http://doi.acm.org/10.1145/1044956.1044961.

[183] Ananth Devulapalli, Dennis Dalessandro, Pete Wyckoff, and Nawab Ali.
Attribute Storage Design for Object-based Storage Devices. In MSST
’07: Proceedings of the 24th IEEE Conference on Mass Storage Systems
and Technologies, pages 263–268, Washington, DC, USA, 2007. IEEE
Computer Society. ISBN 0-7695-3025-7. doi: http://dx.doi.org/10.1109/
MSST.2007.4.

[184] V.; Yongdae Kim Kher. Decentralized Authentication Mechanisms for
Object-based Storage Devices. In SISW ’03: Proceedings of the Second
IEEE International Security in Storage Workshop, page 1, Washington,
DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-2059-6.

[185] InnoDB. The InnoDB Storage Engine. URL http://dev.mysql.com/

doc/refman/5.5/en/innodb-storage-engine.html.

[186] Dilip Nijagal Simha, Tzi-cker Chiueh, Ganesh Karuppur Rajagopalan,
and Pallav Bose. High-throughput low-latency fine-grained disk log-
ging. In Proceedings of the ACM SIGMETRICS/international confer-
ence on Measurement and modeling of computer systems, SIGMETRICS
’13, pages 255–266, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1900-3. doi: 10.1145/2465529.2465552. URL http://doi.acm.org/10.

1145/2465529.2465552.

[187] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle.
Active disks: Remote execution for network-attached storage. Technical
Report CMU-CS-97-198, Parallel Data Lab, Carnegie Mellon University,

241

http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://doi.acm.org/10.1145/2465529.2465552
http://doi.acm.org/10.1145/2465529.2465552

December 1997. URL "http://www.pdl.cmu.edu/PDL-FTP/Active/

activedisks01.pdf".

[188] Maohua Lu, Shibiao Lin, and Tzi-cker Chiueh. Efficient Logging and
Replication Techniques for Comprehensive Data Protection. In MSST
’07: Proceedings of the 24th IEEE Conference on Mass Storage Systems
and Technologies, pages 171–184, Washington, DC, USA, 2007. IEEE
Computer Society. ISBN 0-7695-3025-7. doi: http://dx.doi.org/10.1109/
MSST.2007.14.

[189] Darren Erik Vengroff and Jeffrey Scott Vitter. I/O-Efficient Algorithms
and Environments. ACM Computing Surveys (CSUR), 28(4):212, 1996.
ISSN 0360-0300. doi: http://doi.acm.org/10.1145/242224.242495.

[190] Lars Arge, Octavian Procopiuc, and Jeffrey Scott Vitter. Implementing
I/O-Efficient Data Structures Using TPIE. In ESA ’02: Proceedings
of the 10th Annual European Symposium on Algorithms, pages 88–100,
London, UK, 2002. Springer-Verlag. ISBN 3-540-44180-8.

[191] Open Source Development Labs (OSDL). Database Test Suite: DBT-
[1,2,3,4,5]. http://osdldbt.sourceforge.net/, 2003.

[192] Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian Jones. An
analysis of hard drive energy consumption. In Proceedings of 16th In-
ternational Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS 2008), pages 103 –
112, 2008.

[193] Seagate and Intel. Serial ata native command queuing.
www.seagate.com/content/pdf/whitepaper/D2c_tech_paper_

intc-stx_sata_ncq.pdf, 2003.

[194] E. Coffman, L. Klimko, and B. Ryan. Analysis of scanning policies for
reducing disk seek times. SIAM Journal on Computing, 1(3):269–279,
1972. doi: 10.1137/0201018. URL http://epubs.siam.org/doi/abs/

10.1137/0201018.

[195] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling re-
visited. In In Proceedings of the USENIX Winter Technical Conference
(USENIX Winter 90, pages 313–324, 1990.

[196] J. Nagle. On packet switches with infinite storage. Communications,
IEEE Transactions on, 35(4):435–438, 1987. ISSN 0090-6778. doi: 10.
1109/TCOM.1987.1096782.

242

"http://www.pdl.cmu.edu/PDL-FTP/Active/activedisks01.pdf"
"http://www.pdl.cmu.edu/PDL-FTP/Active/activedisks01.pdf"
www.seagate.com/content/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf
www.seagate.com/content/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf
http://epubs.siam.org/doi/abs/10.1137/0201018
http://epubs.siam.org/doi/abs/10.1137/0201018

[197] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. SIGCOMM Comput. Commun. Rev., 19(4):
1–12, August 1989. ISSN 0146-4833. doi: 10.1145/75247.75248. URL
http://doi.acm.org/10.1145/75247.75248.

[198] L. Zhang. Virtual clock: a new traffic control algorithm for packet
switching networks. In Proceedings of the ACM symposium on Commu-
nications architectures & protocols, SIGCOMM ’90, pages 19–29, New
York, NY, USA, 1990. ACM. ISBN 0-89791-405-8. doi: 10.1145/99508.
99525. URL http://doi.acm.org/10.1145/99508.99525.

[199] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R Ganger.
The disksim simulation environment version 4.0 reference manual (cmu-
pdl-08-101). Parallel Data Laboratory, page 26, 2008.

[200] Vasily Tarasov, Gyumin Sim, Anna Povzner, and Erez Zadok. Efficient
i/o scheduling with accurately estimated disk drive latencies. OSPERT,
2012:36, 2012.

[201] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind
Krishnamurthy, Randolph Y Wang, et al. Modeling hard-disk power
consumption. In FAST, volume 3, pages 217–230, 2003.

[202] Jiri Schindler Gregory and Gregory R Ganger. Automated disk drive
characterization. 1999.

[203] Ken Bates and Bruce McNutt. Umass storage trace repository. http:

//traces.cs.umass.edu/index.php/Storage/Storage, 2007.

243

http://doi.acm.org/10.1145/75247.75248
http://doi.acm.org/10.1145/99508.99525
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage

	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Introduction
	1.1 Cloud Storage
	1.1.1 Generic Challenges in Cloud Storage System
	1.1.2 Challenges in Block-Level Cloud Storage System
	1.1.3 Challenges in Cloud Storage's Back-End Management

	1.2 SDDS System Architecture
	1.2.1 Block Address Namespace
	1.2.2 Data Path Management
	1.2.3 Comprehensive Data Protection
	1.2.4 Dirty Block Tracker

	1.3 Challenges Addressed by this Dissertation
	1.3.1 What this Dissertation is Not About

	1.4 Research Contributions
	1.5 Dissertation Outline

	2 Related Work
	2.1 Cloud Storage
	2.2 Deduplication Techniques
	2.2.1 Content-Addressable Storage
	2.2.2 Timing of Backup
	2.2.3 Data Comparison Techniques
	2.2.4 Granularity of Deduplication
	2.2.5 Positioning of Deduplication
	2.2.6 Variable Segment vs Fixed Segment
	2.2.7 Faster Index Lookup Strategies
	2.2.8 Medium of Backup Storage
	2.2.9 Deduplication Trace Workload Analysis

	2.3 Garbage Collection Techniques for Deduplication Storage Systems
	2.3.1 Mark and Sweep
	2.3.2 Reference Count based
	2.3.3 Expiry Time based
	2.3.4 Summary of GC comparisons

	2.4 Fast Random Updates to On-Disk Data Structures
	2.5 Fast Disk Logging
	2.6 QoS for Distributed Storage Systems
	2.6.1 Description of QoS specification in Service Level Agreements
	2.6.2 Granularity of QoS Enforcements
	2.6.3 Location of Collecting Statistics
	2.6.4 Performance Isolation
	2.6.5 Provisioning Hardware Resources
	2.6.6 Load Balancing
	2.6.7 Extending QoS Ideas From Non-Storage Systems

	3 Scalable Deduplication and Garbage Collection
	3.1 Introduction
	3.2 Our Approach
	3.2.1 System Architecture
	3.2.2 Fingerprint Segmentation and Placement
	3.2.3 Variable Fingerprint Sampling

	3.3 Scalable Garbage Collection
	3.3.1 Hybrid GC: Our Approach
	3.3.2 Batched Updates to P-Array

	3.4 Parallelization Techniques for Deduplication and Garbage Collection
	3.4.1 Distributed Deduplication Algorithm Design
	3.4.2 Distributed GC Design

	3.5 Performance Evaluation
	3.5.1 Evaluation Methodology
	3.5.2 Overall Performance
	3.5.3 Effectiveness of Sampled Fingerprint Index
	3.5.4 Content Proximity-Based Fingerprint Placement
	3.5.5 Garbage Collection Overhead
	3.5.6 Effectiveness of Container Cache
	3.5.7 Impact of Controlling Stored Segment Formation
	3.5.8 Parallel Deduplication tradeoffs

	3.6 Summary

	4 A Trace-based Study for Deduplication Algorithm Design
	4.1 Trace Collection and Conversion
	4.1.1 Trace Collection
	4.1.2 Trace Conversion
	4.1.3 Trace Processing

	4.2 General Duplicity Pattern
	4.3 Trace-based Deduplication Design Tradeoff Analysis
	4.3.1 Sampling of Stored Segments
	4.3.2 Placement of Stored Fingerprint Segments
	4.3.3 Garbage Collection of Fingerprints

	4.4 Impact of Deduplication Granularity
	4.5 To BF or Not to BF
	4.6 Summary

	5 An Update-Aware Storage System for Low-Locality Update-Intensive Workloads
	5.1 Update-Aware Disk Access Interface
	5.1.1 Caveats with Call-back Function

	5.2 BOSC Architecture
	5.2.1 Low-Latency Disk Logging
	5.2.2 Sequential Commit of Aggregated Updates
	5.2.3 Recovery Processing
	5.2.4 Extensions

	5.3 Applications of BOSC
	5.3.1 BOSC-Based B+ Tree
	5.3.2 Hash Table

	5.4 Performance Evaluation
	5.4.1 Evaluation Methodology
	5.4.2 Logging disk, Data disk combinations
	5.4.3 Overall Performance Improvement on B+ Tree
	5.4.4 Overall performance improvement on Hash Table
	5.4.5 Application of BOSC to Mariner

	5.5 Summary

	6 High Throughput Low Latency Disk Logging
	6.1 Vanilla Disk Logging
	6.2 Toy-Train Disk Logging
	6.2.1 Conceptual Model
	6.2.2 Application Programming Interface
	6.2.3 Streamlined Disk Write Pipeline
	6.2.4 Dense-Mode Logging
	6.2.5 Sparse-Mode Logging

	6.3 Performance Evaluation
	6.3.1 Methodology
	6.3.2 Dense-Mode Logging
	6.3.3 Sparse-Mode Logging
	6.3.4 Comparison with SSD-based Logging

	6.4 Summary

	7 Quality of Service Guarantee for Software-Defined Distributed Storage Systems
	7.1 SDDS System Architecture in the Context of Managing QoS Functionality
	7.1.1 System Model
	7.1.2 Service Model

	7.2 Cheetah's Objectives, Challenges & Solution
	7.2.1 Design Objectives
	7.2.2 Technical Challenges
	7.2.3 Solution Overview

	7.3 Quantification of Physical Disk Resource Requirements
	7.4 Read Load Balancing
	7.4.1 RLB Algorithm
	7.4.2 RLB Integration with Cheetah

	7.5 Flow Control
	7.6 CFVC: A QoS Aware Disk Scheduler
	7.6.1 CFVC Scheduler Algorithm
	7.6.2 Implementation Challenges Integrating CFVC Scheduler into Cheetah

	7.7 Putting it All Together
	7.8 Evaluation Methodology
	7.8.1 Current Prototype
	7.8.2 DA Simulator for RLB Evaluation
	7.8.3 Synthetic Trace Generation

	7.9 Performance Evaluation of the Automated PB Extraction Process
	7.9.1 Effect of Workload Locality on PB using Real-World I/O Trace
	7.9.2 Effect of Workload Locality on PB using Synthetic Workload
	7.9.3 Effectiveness of PB Extraction Process on a Shared DA

	7.10 Evaluation of the Effectiveness of Bandwidth Decomposition
	7.10.1 Variable VD-DA Mappings
	7.10.2 Variations in Read/Write Ratio
	7.10.3 Variations in Sequential Locality
	7.10.4 Short Term Variations in Workload Locality
	7.10.5 Centralized RLB Scheduler's Processing Time

	7.11 Performance Evaluation of Per-VD Scheduler
	7.12 Summary

	8 Conclusion and Future Directions
	8.1 Conclusion
	8.2 Future Directions
	8.3 Final Words

	 Bibliography

