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Abstract

Optimal Mass Transport theory has deep roots in pure matienaombining
complex analysis, Riemannian geometry and measure thdogge first raised the
classical Optimal Mass Transport Problem that concerresm@ting the optimal way,
with minimal transportation cost, to move a pile of soil frane place to another.
Kantorovich has proven the existence and uniqueness ofpitiema transport plan
based on linear program. Monge-Kantorovich optimizatias heen used in numer-
ous fields from physics, econometrics to computer scierdading computer vision,
medical imaging and statistics. However, it has one funceahelisadvantage that the
complexity isO(k?), which is unacceptable to computer vision and visualizaip-
plications since a high resolution 3D surface normallyudels up to hundreds of thou-
sands of vertices. In this dissertation, we introduce atjmaoptimal mass transport
map based on Brenier's approach, which reduces the cortypfexin O(k?) to O(k)
and improves the efficiency and applicability. And we use approach to address
three practical applications of computer vision, mediozging, and visualization.

Firstly, in computer vision, surface based 3D shape armalggpopular and criti-
cal. We proposed to use optimal mass transport map for sheghgses, focusing on
two important shape analysis applications including srfegistration and 3D shape
classification. For surface registration problem, one comignused approach is to use
conformal map to convert the shapes into some canonicaéspdihiough conformal
mappings have small angle distortions, they may introdaiggelarea distortions which
are likely to cause numerical instability thus resultinguies of shape analysis. This



work proposed to compose the conformal map with the optinedsniransport map
to get the unique area-preserving map, which is intrinsitheoRiemannian metric,
unique, and diffeomorphic. For 3D shape classificationystue presented a novel
Riemannian frameworlkZonformal Wasserstein Shape Spdmecombing conformal
geometry and Riemannian optimal mass transportation yhéorour work, all met-
ric surfaces with the spherical topology are mapped to tlitesphere by a conformal
mapping, which pushes the area element on the surface tbalplity measure on the
sphere. The Riemannian optimal mass transportation mevadmap from the shape
space of all topological spheres with metrics to the Wassierspace of the disk and
the pullback Wasserstein metric equips the shape spacaibmannian metric. We
validate our work by a real 3D classification problem of catezing human brains
with different intelligence quotient.

Secondly, in medical imaging, brain mapping transformsbitaén cortical surface
to canonical planar domains, which plays a fundamentalinofeorphological study.
Most existing brain mapping methods are based on anglerpnegenaps, which may
introduce large area distortions. Thus we proposed an aesening brain map-
ping method based on Monge-Brenier theory. The brain magpigitntrinsic to the
Riemannian metric, unique, and diffeomorphic. The comjiutds equivalent to con-
vex energy minimization and power Voronoi diagram congiomc Comparing to the
existing approaches based on Monge-Kantorovich theoeyptbposed one greatly
reduces the complexity (frork? unknowns tok ), and improves the simplicity and
efficiency. Experimental results on caudate nucleus seirfi@agpping and cortical sur-
face mapping demonstrate the efficacy and efficiency of tbpgaed method. Con-
ventional methods for caudate nucleus surface mapping nifégr Srom numerical
instability; in contrast, current method produces diffepphic mappings stably. In
the study of cortical surface classification for recogmitad Alzheimer’s Disease, the
proposed method outperforms some other morphometry &satur

Finally, in the visualization field, with the fast generatiof large and complicated
data nowadays, it is highly desirable to develop new franmksva@iming at gener-
ating a visualization of the entire data needed for navigatdetection, exploration
and a global understanding of selected objects or regioigtaest (ROIs). Angle-
preservation (conformal) mapping/surface flattening gmess local shapes, and thus
has been broadly used in many feature oriented applicaitiorisualization and med-
ical imaging. However, conformal method usually substdiytidistorts area, which
fails to display accurate size of area, including heighttini thickness or diameter
of ROIs. Unfortunately, these distorted area parametersexiremely important in
many medical image recognition and auto diagnosis apjaitat such as brain fold
detection or colon polyps detection and diagnosis. Thezefse proposed to use our
optimal mass transport map to address visualization agifgits that are beyond the
scope of conformal mapping.
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1 Introduction

Nowadays surface parameterization has been used for a argyof applications like

computer vision, medical imaging, computer graphics amsdalization. Computational
conformal geometry [56] has been employed to shape andlysis 25, 141] and sur-
face registration [140], medical imaging[1], wireless semnetworks [107], visualization
[85] and geometric modeling [47][66]. However, an accurabenetric parameterization is
impossible for general surfaces. The conformal mapping bngng huge area distortions
in certain surfaces, e.g. a slim surface of brain caudatéensc In turn, such distortions
usually introduce much difficulty for following shape ansily.

In medical imaging field, as the clinical questions of ing¢m@ove towards identifying
very early signs of diseases, the corresponding statistiifarences at the group level in-
variably become weaker and increasingly harder to idenfifgtable method to compute
some other mapping with alternative invariants may be kigllvantageous for visualiza-
tion and shape analysis in this research area.

In computer vision field, Studying the original surfaces Idooe extremely difficult
when shapes are irregular and very complex, such as humgmobddiman brain cortical
surfaces. One effective and common approach is to first peeaipe the original 3D do-
main to some classical parameter domains, such as plananensal domain, then register
or analyze 3D surfaces through these canonical space [11042]. This approach has
the advantage of converting complex shapes to simple oadsgcing the computational
complexity and improving the efficiency. Conformal geomdiased methods have been
frequently applied for shape parameterizations [25, 93,181, 132, 139, 69, 11]. Con-
formal mapping can keep angle unchanged and preserve lwgaés (conformal), but may
also produce huge area distortions. In Figure 13, the Artloadiodel is mapped onto the
planar unit disk. Frame (d) shows the image of a conformalpimap where the head area
shrunk exponentially to the height of the model and hard teebegnized. Other extruding
parts, such as hands with fingers shown in the zoom-in imageexponential area dis-
tortions may easily exceed machine precisions, leadingdblems and failures of surface
matching and registration. The conformal mapping in (dhggsorward the area element
on the Armadillo model to the planar disk. Then the uniquenogkmass transport map is
carried out from the disk with the push-forward measure jri¢dhe disk with Euclidean
measure. The composition of the conformal mapping and thienepmass transport map
is an area-preserving map from the surface to the Euclideskn @he mapping result is
shown in (c), where the head and figures occupy the same ad¢hese on the original
surface. Area-preserving mapping avoids the huge areartiist, thus is more robust and
intuitive for processing. Furthermore, this area-preisgrwnapping is intrinsic to the Rie-
mannian metric, unique, and diffeomorphic. Therefore, IMT map may help provide
practical solutions for general 3D shape analysis taskd) ag surface parameterization,
surface matching and comparison.

In the computer graphics and visualization areas, it isrdbka to develop new frame-



works aiming at generating a visualization of the entireadateded for navigation, de-
tection, exploration and a global understanding of seteotgects or regions of interest
(ROIs). Complex geometric structures are often betterahzed and analyzed by mapping
the surface properties, such as normal map, angle, or areasitnple canonical domain,
such as a rectangle or a sphere. Surface flattening anddextypping offer a good way
of visualizing a surface section by enabling the visualmabf all surface parts within a
single planar image.

In general, surface flattening and texture mapping unabdydatroduces distortions.
There are two types of distortions, angle distortion and aistortion. A mapping, which
is both angle preservation and area preservation, musbbeetsic. Therefore, the surface
must have zero Gaussian curvature everywhere, namely dogdatée surface or a ruled
surface. For general surfaces, one can only choose eitigés-preservation mapping or
area-preservation mapping, but never both of them simeitiasly.

Angle-preservation (conformal) mapping/surface flatigmpreserves local shapes, and
thus has been broadly used in many feature oriented apphesah visualization and med-
ical imaging. However, conformal method usually substdiytidistorts area, which fails
to display accurate size of area, including height, widtiickness or diameter of ROIs.
Unfortunately, these distorted area parameters are eglyemportant in many medical
image recognition and auto diagnosis applications, suchrais fold detection [38] or
colon polyps detection and diagnosis [62, 138]. Moreoves,well known that conformal
mapping induces severe area distortions for surfaces with tube shapes, such as the
elongated lion head model, as shown in Fig. 33. This disadgarderives from the funda-
mental obstacle of conformal mapping theory and we can rsyeavercome it. Imagine
acylinderr(6, z) = (cosf,sin 0, z), a conformal mapping (¢, z) = e *(cos 6, sin §) maps
it to the unit disk, the area distortion factor?* is exponential with respect to the height
and in practice easily exceeds the machine precision.

By comparison, area-preservation mapping can generatesge@nd information loss-
less mapping results, which is a key objective for many nedsaging applications, with
the ability to carry out measurements for detecting anat@hnormalities. For example,
in virtual colonoscopy, the physician may want to measute@mpare different sizes of
polyps, to determine disease conditions and cancer rig{s fospecial case of this prob-
lem also occurs in any application where volume or area nmeant is critical (e.g. brain
data in [38, 50, 150]). From human cognition perspectiveagreservation mapping and
flattening can also enhance the viewer’s ability to easibpgmize the component-aware
patches or long branch parts distribution of models, andeguently understand the local
feature with the knowledge of a global structure (Fig. 33hefefore, area-preservation
mapping has vast potentials to be applied to many relatecNeation and graphics appli-
cations.

In this dissertation, we first review the mathematical backgd of computational con-
formal geometry and optimal mass transport theory in Se@ioThen in Section 3, we
explain in details the computational algorithms. In saetdowe introduce the application

2



in medical imaging: Area preserving brain mapping. In sech, applications in computer
vision: Optimal mass transport for shape matching and cosgra In section 6, applica-
tions in visualization are introduced. Finally we conclulde dissertation with a sketch of

the future plan.



2 Theoretical Background

By Poincare uniformization theorem, all shapes can be cordtly deformed to one of
the three canonical spaces: the unit sphere, the Euclidaae pr the hyperbolic plane.
Generally speaking, such mapping will have distortionsseithe geometric structures of
a 3D surface and the plane usually have some differencesre Hre many metrics to
measure the distortion of a mapping between two surfacesseltwo are essential and
important: angle distortion and area distortion. A mappitngch preserves both angle and
area between two surfaces preserves the Gaussian curf@tjjrand is called a isometric
mapping. Conformal mapping, or angle preserving mappisdghe one that minimizes
angle distortion. It has many good properties and has begslyapplied in many research
and engineering areas [111, 25, 141, 140, 1]. However, cord@lomapping may introduce
large area distortions and may even cause numerical prgblémthese scenarios, area-
preserving mapping may be powerful.

In this section, we will briefly review the mathematical bgodund of conformal ge-
ometry and optimal mass transport theory. For more detaégefer readers to a classical
textbook [55] for conformal geometry, the seminal papef ph optimal transport map
with Kantorovich’s method, and [48] for more detailed p®of the proposed method.

2.1 Homotopy
2.1.1 Homotopy Group

Definition 2.1. (Homotopy). Two continuous mapf, f1 : M — N are said to be homo-
topic if there is a continuous map: M x I — N such that?’(-,0) = foandF(-,1) = f;.
The map F is called a homotopy[96][99][100] betweénand f,, denoted ag, = f;.

As shown in Figure 1. It is easy to verify that the relatigron the set of continuous
maps from)M to N is an equivalence relation. We can use the concept of hontatogps
to classify topological spaces.

Amapf :[0,1] — M from the unit interval to a topological space is called a path
M, if f andg are two paths in\/ with f(1) = ¢g(0). Then the product of andg is a path
f - g, which is defined as

frgt) = {f(%)’ 2

g(2t — 1), 1. @1

I/\ I/\
I/\ I/\

Definition 2.2. (Homotopic Paths)[14]. Two pathsf, g in M are said to be equivalent if
f andg are homotopic relative tq0, 1}, denoted ag = ¢

We denote the equivalence class of a pally [y]. The product of equivalence classes
of paths can be defined as

[fllgl = [f - 9] (2.2)
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Figure 1. Homotopyt is homotopy ta3, but not toy
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We can verify that the multiplication of equivalence classépaths is associative

(LAlgDln] = [11((g][A])- (2.3)

We sayf is a closed path (loop) basedwt f(0) = f(1) =p € M. We defines, : [ — M
as the constant path, i.e,(t) = p. Then we have

[f1les] = [f] = [en]lS]- (2.4)
Furthermore, the inverse of a path can be definefia&) = f(1 —¢). Then
I =[] = (1A (2.5)

Therefore, we have defined a group on the equivalence clags#ssed paths based at
p € M, which we denote it byr(M, p). This group is called theundamental groujpr the
homotopy grouf®5][100] of M.
Letp,q € M. If there is a pathy from p to ¢, then groupsr(M, p) andn (M, q) are
isomorphicu., : m(M,p) = (M, q),
uylgl =y g-77"). (2.6)

Therefore, we usually omit the base point for path connespedes.

2.1.2 Covering Spaces

Definition 2.3. (Covering Space)[65][83]. Let p : M — M be a continuous mag; is
onto and for allg € M, there is an open neighborhoadof ¢ such that

p 1 (U) = Uje U (2.7)



for some collectiofU;, j € J} of subsets of\/, satisfyingl/; U Uy, = 0 if j # k, and
with p|y, : U; — U a homeomorphism for eaghe J. : M — M is a covering.

Definition 2.4. (Lift). Suppose : N — N is a covering, and : M — N is a continuous
map. Then a lift off is a continuous map : M — N suchthapo f = f.

Globally, M and M have different topologies. i/ has simpler topology, thefi is
easier to study thagi. In general, the map may have different lifts.

Figure 2: A loop on the surface is lifted to a path on the ursakcovering

Definition 2.5. (Deck Transformation). Suppose : M — M is a covering. Then an
automorphisnr : M — M is called a deck transformation if

por—p. (2.8)



All of the deck transformation form a groupeck (M), the deck transformation group.
M is homeomorphic to the quotient space

M~y (2.9)
DeckM

Definition 2.6. (Fundamental Domain). A closed subséb € M is called a fundamental
domain of the Decl{/), if M is the union of conjugates @,
M= |J D (2.10)
T€Deck
and the intersection of any two conjugate has no interior.

Definition 2.7. (Universal Covering). Suppose : M — M is a covering. IfM is simply
connected7((M, q) = e), then the covering is a universal covering.(see figure 3)

Figure 2 and 3 show examples of universal covering space.

2.2 Homology and Cohomology

Homology is anther tool to study the topological propertita space by counting the num-
ber of holes. Generally speaking, (co)homology is the stufdyne relationship between
closed and exact (co)chains.

2.2.1 Simplicial Homology

A fundamental problem in topology is that of determining; fiwo spaces, whether they
are topologically equivalent. That is, we wish to know if @pace can be morphed into
the other without having to puncture it. The key idea of hamgglis to define invariants

(i.e., quantities that cannot change by continuous defbomgthat characterize topological
spaces.

Definition 2.8. (Simplicial Complex). A simplicial complexs a collectionC of simplices,
which satisfies the following two simple conditions:

e every face of each simplexinis in /C;

¢ the intersection of any two simpliceskhis either empty, or an entire common face.

A cyclg65] is simply a closed k-chain,e., a linear combination of k-simplices[65] so
that the boundary of this chain is the empty set. Any set dices is a closed chain; any
set of 1D loops are too. Equivalentlyfacycle is anyk-chain that belongs to Keik, by
definition.

With the concept ok-cycle, we can define equivalence classes in homology. We wil
say that &-cycle is homologous to anothkrcycle (i.e., in the same equivalence class than
the other) when these two chains differ by a boundary @f & 1)-chain (i.e., by an exact
chain). By definition, this exact chain is the imagef,, i.e., Imdy. ;.
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Figure 3: Universal covering of 3 canonical shapes: gents penus one and high genus
surface



2.2.2 Homology Groups

The homology groups[65]{*}x—o..» Of a chain complex based a@hare defined as the
following quotient spaces:

_ Ker g,
~Im Opt1

(o (2.11)

Here Kero, is the k-dimensional closed chain group and d&im; is the k-dimensional
boundary group. Twé-chainsc;, c; are homologous if they bound(& + 1)-chaincy 4,

c,lc — ci = Og11Cki1, asshowninFigure4 (2.12)
R Lo B S T . e NN |

Figure 4: Homology

2.2.3 Cohomology Groups

The definition of cohomology groups[65] is much more genérah homology groups.
The cohomology groups is defined by taking the formal definith the homology, replac-
ing all occurrences of chain by cochain,@by d, and reverse the direction of the operator
between spaces — this will also define equivalence clas$escdhomology groups of the
deRham complex for the coboundary operator are simply tb&éent spaces

Kerd
Im d

Note that the homology and cohomology groups are not onlyrthtaons, but they are also
isomorphic; therefore, the cardinalities of their basesemual.

(2.13)

*
k

2.3 Differential Forms

Euclidean spaceR” is endowed with a global coordinate systém, 22, --- . z") and is
the most general example of manifold.

A subsetM = M"™ € R™" is said to be am-dimensional submanifoldf R"*" if
locally M can be described by givingof the coordinate differentiably in terms of the

9



remaining ones. This means that giyea M, a neighborhood gf on M can be described
in some coordinate systefw,y) = (x',--- 2™, y',--- | y") of R"*" by r differentiable
functions

ya:fa(x17.-.’xn)’ a:17.-.7"

We say thatr!, - - - | 2" are local coordinates fav/ nearp.

In then dimensional case, for each pointe R" we need a linear transformatian, :
R" — R which takes an (infinitesimal) displacemekt; € R™ as input and returns an
(infinitesimal) scalaw,, (Az;) € R as output, representing the infinitesimal work required
to move fromz; to z;; (In other wordsw, is a linear functional on the space of tangent
vectors atr;, and is thus a cotangent vectongt The net work/. w required to move from
a to b along the path is approximated by

n—1

/w %/ Wy, (Az;) (2.14)
0 =0

The objectv, which continuously assignscatangent vectoto each point ink", is called

a l-form. There is in fact a duality between curves and formsl-#rm is also called a

covarient vectoor covector which means it is the dual concept of vector.

L(w1+w2) =Lw1 +sz. (2.15)

/71+W2 ©T Ll o /W - (2.16)

Next consider the integration on 2-dimensional sets. Rhilgj such integrals arise
when computing 8uxof some field (e.g. a magnetic field) across a surface; a mriéve
example would arise when computing the net amount of foregtea by a wind blowing
on a sail. If we have a parametrization of the surfacel0, 1]> — R", the surface can be
cut up into infinitesimal oriented squares with corners= ¢(ty,t2),x + Az == ¢(t; +
At,ty), 4+ Asx := P(ty, Lo+ Al), s+ A2+ Ao := @(t1+AL, to+At), whereA z, Agz €
R"™ are the infinitesimal vectors

_ 99
All' = atl

and

(tl,tQ)At7 AQ!E = g%(tl,tg)At (217)
2

We refer to this object as the infinitesimal parallelogranthwdimensionsA;z A Asx

with the base point. Now we can define some sort of functional at this base point

which should take the above infinitesimal parallelogram gatdrn an infinitesimal num-

berw,(Az A Asx), which physically should represent the amount of flux pasiinough

10



this parallelogram. With this intuition, we may require tthlhe map(A;z A Asx) —
w:(Arz A Agzx) bebilinear, thus we have the axioms

we(cArz A Agx) = cw,(A1x A Ag) (2.18)
wo (A1 4+ Az) A Do) = wo(Arz A Agz) + wa(Arz A Ao (2.19)
wWe (A1 A cAox) = cw, (A1 A Agx) (2.20)
we((Arz + &;E) A Do) = we(Ajz A Agz) + wx(A,:%’ A Aox) (2.21)

we(Az AN Azx) =0 (2.22)

Therefore, any continuous assignmentz — w, that obeys the above axioms is called a
2-form Itis not difficult to derive thaanti-symmetrigroperty

We (A1 A Do) = —w,(Agz A Ajx) (2.23)

More generally, one can define the concepkdbrms on an:-dimensional manifold for
any0 < k < n and integrate it against an orientedlimensional surface in that manifold.
The concept of derivation can be defined for differentiaihfsf134] that map &-form
to ak + 1-form, which is callecexterior differentiatior{44]. Using the exterior differenti-

ation the fundamental theorem of calculus can be geneddlirtheStokes’ theorem

/sd“:/as”‘ (2.24)

In the special case of Euclidean spdtg the differential operatiow — dw becomes the
gradientoperationf — V f whenw is 0-form, thecurl operationr — V x X whenw is a
1-form, thedivergenceoperationX — V - X whenw is a2-form.

Finally, we can introduce the differential form in the coeypbomain as

dz = dzx + idy (2.25)
dz = dr — idy (2.26)
0 1 0 .0
0 1 0 0
— = —(— 41— 2.2
7z~ 2lar Ty (2.28)

The discrete counterpart of the differential forms mergwmmbove is represented by
simplicial complexes[56][36]. Formally, &-simplexsy, is the non-degenerate convex hull
of k + 1 geometrically distinct pointsy, ... v, € R" with n > k, which is represented as

k k
op={z € R'z=> a'v;witha' >0and) o' =1}. (2.29)

=0 1=0

It can also be denoted by, = {vov; ... v }. The orientation of a simplex is determined
by if there is an even or odd permutation from one to another.
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Theboundary operatoon ak-simplex can be defined as

Hvpvy ... v} = Xk:(—l)j{vo,...,@,...vk} (2.30)
=0

wherev; indicates that, is missing from the sequence.

The boundary operator is a linear mapping from the spatesohplices to the space of
(k —1)-simplices, so it can simply be represented by a matrix ofedision| 1| x |KF|.

A k-cochainw is the dual of &-chain, that is to sayy is a linear mapping that takes
k-chains toR.

w:C—R
c — w(c), (2.31)

that is, ak-cochainw operates on &-chainc to give a scalar ink. Since a chain is a
linear combination of simplices, a cochain returns a lirganbination of the values of
that cochain on each simplex involved. In other wordk;@chain can be thought of as a
field that can be evaluated on edelsimplex of an oriented simplicial complé&. Recall
that ak-chain can be represented as a vect@f length equal to the number bfsimplices
in M. Similarly, one may represent by a vectorw, of the same size as,.. The linear
operationu(c) translates into an inner product - ¢;. A linear mapping from a chain to a
real number is what we called a cochain.

In sum, k-cochains are discrete analogs to differentiah®r For instance a-form
can be evaluated at each pointl-form can be evaluated on each curve-rm can be
evaluated on each surface, etc. Now if we restrict integmatio take place only on the
k-submanifold which is the sum of tlkesimplices in the triangulation, we getacochain;
thusk-cochains are a discretization bfforms. One can further map a continuduorm
to a k-cochain. To do this, first integrate thieform on eachk-simplex and assign the
resulting value to that simplex to obtainkacochain on thet-simplicial complex. This
k-cochain is a discrete representation of the origirdrm.

The operatod is called theadjointof the boundary operatar. if we denote the integral
sign as a pairingi.e., with the convention thaf w = [0, w], then applyingl on the left
hand side of this operator is equivalent to applyihgn the right hand{deo, w] = [0, w].
For this very reason] is sometimes called theoboundary operatorFinally, by linearity
of integration, we can write a more general expression ote&fatheorem, now extended
to arbitrary chains as follows:

dw:/ w:/ w = Ci/ w 2.32
/ZZ cio; 8(22 ci0;) ZZ ciOw; zz: Oo; ( )
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Figure 5: Riemannian manifold

2.4 Riemannian Geometry
2.4.1 Riemannian metric

A Riemannian metr{d@27] on a manifoldV/™ assigns, in a differentiable fashion, a positive
definite inner product, > in each tangent spacd;. If (,) is only nondegenerate (i.e.,
(u,v) = 0 for all v only if v = 0) rather than positive definite, then we shall call the
resulting structure o/™ a pseudo-Riemanniametric. A manifold with a Riemannian
metric is called a Riemannian manifold, which is shown inufeg5

In terms of coordinate basis = 0; := 9/dz", we then have the differentiable matrices
(the "metric tensor”)

gij(x) = (%, %) (2.33)

Using the Riemannian metric we can define measures on thdatthnFor example,
the First Fundamental Fornof a regular surfacé in R? that is parameterized asu, v)
can be defined as

ds® = (dr,dr) = (du dv) (?Ezzi ggzz» @z) (2.34)

where

E = {(ry,ru), F = (ry,ry),G = (ry, ) (2.35)
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We often use symb@ to denote the inner product matrix of the first fundamentahto
Therefore, we can also write

ds* = (dr,dr)y =Y gapda®dz’ (2.36)

2.4.2 Surface Uniformization Mapping

Conformal mapping between two surfaces preserves anglepoSe S, g;) and(.Ss, g»)
are two surfaces embeddedRA, g, andgs; are the Euclidean induced Riemannian metrics.
A mapping¢ : S; — S, is calledconformal if the pull back metric ofg, induced by
on S, differs fromg, by a positive scalar functionp*g, = e**g;, where) : S; — Ris a
scalar function, called theonformal factor

A circle domainon the complex plane is the unit disk with circular holes. @dinus
zero surfaces with boundaries can be conformally mappeddie comains:

Theorem 2.9.[Uniformization] Supposé is a genus zero Riemannian surface with bound-
aries, thenS can be conformally mapped onto a circle domain. All such @onél map-
pings differ by a Mbius transformation on the unit disk.

2.5 Conformal Structure and Conformal Mapping

o s

¢

Figure 6: Conformal structure.
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2.5.1 Hodge Duality

Recall that an (exteriop)-form is a covarianp-tensor that is antisymmetric ([44]). There-
fore, ap-form in n dimensional space has dimensi@r). Since

(0=

there is a one-to-one correspondence betwgewextor p-form) and(n — p)-vector (n —
p)-form) which forms a primal-dual pair.
In the vector case, thidodge star operatoof n vectorse;, , e, ... ¢;,_ is defined as

(e Neju Ao Nej, ) =6 Negy ... Neg,. (2.37)
we can write out this in another form as

e* (2.38)

Jednep = Chrkp

In the covector (form) case, df' is al-form, we look at its contravariant versioh and
to this vector we may associate the psetde- 1)-form i vol™. In this way we associate
to eachl-form a pseuddn — 1)-form. In general, we can associate-dorm o? = a a
pseuddn — p)-form x«, called the(Hodge-dual)of «,

Gy = Vg D0 e i, (2.39)

k1<...<kp

Heree is the permutation symbol.

In the discrete setting, using the Hodge Dual concept we efnaladual mesHhor each
k-cell. For example, in thé&® case, the dual O-cell associated with the triangular face is
the circumcenter of the triangle. The dual 1-cell assodiati¢gh one of the primal edges is
the line segment that joins the circumcenter of the triatgtlee circumcenter of that edge,
while the dual 2-cell associated with a primal vertex is eorwedge made of the convex
hull of the circumcenter of the triangle, the two centerdefadjacent edges, and the vertex
itself. An application of this primal-dual mesh is the cortgiion of Voronoi/Delaunay in
computational geometry [33]. Formallyschains and dualn — k)-chains are represented
by vectors of the same dimension. Similarly to the discreterer derivative (coboundary)
operator, we may use a matrix (this time of sjk&| x |K*|) to represent the Hodge star.
In other words, we can define the discrete Hodge star thrdugfotlowing simple rule:

Lot / w (2.40)
*0g

m ok | % ol

2.5.2 Harmonic Forms and Holomorphic Forms

After defining the Hodge star operator, we can now defineLdygace OperatorA on

forms:
p

p
AN\ = A\byA = dd + dd (2.41)
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Sinced*d* = 0, we haveA = (d + d*)%.
We say that a forma? is harmonicif Aa = 0, which is called harmonic forms. And
since

(Aa?,a?) = (dd*a + d*da, o) = (d* o, d* @) + (da, da) =|| da ||* + || o ||?, (2.42)
we have
Aa =0« da=0andd*a = 0. (2.43)

So harmonic forms on a closed manifold are both closed andsead.
Therefore, a harmonic 1-foran on a Riemann surface can be treated as a vector field
with zero circulation and divergence.

Definition 2.10. A functionf : (z,y) — (u,v) is holomorphic or complex analytic, if it
satisfies the following Cauchy-Riemann equation:

ou _ v
ox 3]
{ ou _ _y o (2.44)
dy ox
If f = wu+ v is holomorphic[54][74], then
8_{ =0 (2.45)
0z

Furthermore, it is easy to verify that bothandv are harmonic. We say thatandv are
conjugate ifu + iv satisfies the Cauchy-Riemann equation. If a holomorphictfan f is
bijective andf ! is holomorphic, thery is a conformal mapping.

2.5.3 Conformal Mapping

Supposé S, g;) and(.Ss, go) are two surfaces with Riemannian metrggsandg, respec-
tively. The local parameters &, are(x%, z%), the metric tensor has local representation

ko k glﬁ gfz ko k
o) = (40 9 )
921 Y22
A mappinge : (S1,g1) — (52, 82) has local representatiah: (z1,z3) — (2%, 23). The
Jacobian matrix of the mapping has the form

T T
Or; Oz,

Bx% 8:0%
1 1\ . Ozt 9xl 1 .1
Jd)(aﬁaxz) = ( 8:1:% 81;% ) (3717%)‘

Definition 2.11 (Pull Back Metric) Suppose : (S1,81) — (52, 2) is a diffeomorphism
between two Riemannian surfaces, the mappiimgluces a Riemannian metric 6f, with
local representation

¢*gr = J 82y,
which is called the pull back metric induced by
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Figure 7. A conformal mapping from a male facial surface dhtoplanar unit disk.

Definition 2.12 (Conformal Mapping) Suppose) : (S1,g1) — (52, 82) is a diffeomor-
phism between two Riemannian surfaces, if the pull backienattuced byy differs from
the original metricg; by a scalar function,

¢*g = eP'g, (2.46)
where) : S; — R is a function defined oA, then¢ is called a conformal mapping.

As shown in Fig. 7, a conformal mapping from a male facial acefonto the planar
unit disk is illustrated. We put checker board texture ondis&, and pull back the texture
onto the facial surface. As shown in the second frame, altiite angles of checkers are
well preserved. If we put circle packing texture on the deskd pull it back on the face
surface, all the circles are preserved, as demonstratéd third frame. This demonstrates
that a conformal mapping transforms infinitesimal circlegfinitesimal circles.

Theorem 2.13(Riemann Mapping) Suppose a Riemannian surfacg g) is simply con-
nected with a single boundary, then there exists a confomagdpinge : S — D from the
surface onto the planar unit disk, Furthermore, such mapping is unique upto &lius
transformation.

A Mobius transformatiom : D — D for the unit disk to itself has the form

n(z) =e 1— %2

Riemann mapping theorem implies the existence of isothiesotadinates.
Definition 2.14 (Isothermal CoordinatesBupposés, g) is a Riemannian surface, a local
coordinate systerfi;, x5) is called isothermal coordinates, if it is conformal, nagnel

g = 2o (g2 4 dg?).
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Under isothermal coordinates, t@aussian curvaturef the surface is given by

K(p) =~ DN0) = B\,

whereA is the Laplace-Beltrami operator

1
A=0]+05, Ay = —<A.

e2X

The geodesic curvature can be defined similarly. Under ésothl coordinates, the angle
between the x-axis and the tangent direction of the bounclamye isé(s), wheres is the
arc length parameten is the exterior normal to the boundary, then geodesic cureat

reads L o0
k p—

g e* On

Theorem 2.15(Gauss-Bonnet)The total curvature ofS, g) is a topological invariant,

/SKdA—i-/askgds:Qﬂx(S),

wherex(S) is the Euler characteristic number of the surface.

2.5.4 Ricci Flow

Riemann mapping can be computed using surface Ricci flovci Rosv deforms the Rie-

mannian metric proportional to the curvature, such thatctnature evolves according
to a heat diffusion process, and eventually becomes canstanywhere. Ricci flow is a
powerful tool to design Riemannian metrics by prescribesdatures.

Definition 2.16 (Surface Ricci Flow) Given the target curvatur& : S — R, the surface
Ricci flow is defined as

dgi;(p, t) .
— o = 2K () = K(p )9y (p. 1),
One can set the target curvature to be consdaﬁtQ’Xgé)S), whereA(0) is the total area

at the time0. During the flow, the curvature evolution equation is
8tK = Ag(t)K + 2K(K — p),
The convergence of surface Ricci flow has been proven,

Theorem 2.17(Hamilton and Chow) The normalized Ricci flow on a closed surface con-
verges to the metric with constant curvatyre

Furthermore, surface Ricci flow is conformal, the conforfaator evolves

IA(p,t) =2(p — K(p,1))\(p, 1),

where the initial condition is\(p, 0) = 0.
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2.6 Optimal Mass Transportation
2.6.1 Monge’s Problem

In the 18th century, Monge first raised a problem that min@sithe inter-domain trans-
portation cost while preserves measure quantities[24pp8seX andY are two metric
spaces with probability measurgsandv respectively. And supposg andY have equal

total measures.
o= f
X Y

AmapT : X — Y ismeasure preservinijfor any measurable sét C Y/, it satisfies
W(T1(B)) = v(B). (2.47)

Denote transportation cost for sending= X toy € Y by ¢(x,y), then the totatrans-
portation costis defined by

C(T) ::/Xc(x,T(x))d,u(x). (2.48)

Problem 2.18(Optimal Mass TransportGiven two metric spaces with probabilities mea-
sures(X, u), (Y, r) with the transportation cost function: X x Y — R, the problem
is to find the measure preserving map X — Y, satisfying condition Eqn. 2.47, which
minimizes the transportation cost Eqn. 2.48.

In the 1940s, Kantorovich introduced the relaxation of Meagroblem and solved it
using linear programming method [78].

At the end of 1980’s, Brenier [26] discovered the intrinsacinection between optimal
mass transport map and convex geometry.

2.6.2 Optimal Mass Transportation

Optimal mass transportation map is a special area-pregsemapping.

Definition 2.19 (Area-preserving Mapping)Supposeb : (51, 81) — (52, 82) is a diffeo-
morphism, the pull back metric induced byn S is ¢*gs, if

det(g1) = det(¢"g2), (2.49)

then¢ is an area-preserving mapping.

Convex Geometry Convex geometry studies convex polyhedra in EuclideanesRéc
The Minkowski theorem states that a convex polyhedron cafulbedetermined by its
face normals and face areas.
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Theorem 2.20(Minkowski [108]). Given k unit vectorsny, - - - , n, not contained in a
half-space irR™ and A, - - - , A, > 0, such that

k
Z Aznz = 0,
=1
then there exists a convex polytopewith facesF, - - - , Fj,, such that the normal té; is

n; and the area of'; is A;. P is unique up to translations.

Figure 8: A PL convex function induces a cell decompositiboEach cell is mapped to
a point.

Alexandrov generalized Minkowski’'s result to non-compaohvex polyhedra. As
shown in Fig.8, giverk planesr; : (z,p;) + h;, One can construct a piecewise linear
convex function

u(z) = mzax{<x,pi> + hili =1, k}, (2.50)

whose graph is an infinite convex polyhedron. The PL convagtfan produces a convex
cell decompositiof W; } of R™:

Wi = {a[(,pi) + hi > (z,p;) + hy, i} = {z[Vu(z) = p:}- (2.51)
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Alexandrov shows that the convex polyhedron is determinetthé face normal, or equiv-
alently the gradien{p;} and the projected are&; }.

Theorem 2.21(Alexandrov [9]) Given a compact convex domdinin R”, if py,- -, p
are distinct inR", A, ---, A, > 0 such that

k
> A = wol(),
i=1

then there exists a piecewise linear functioefxr) = max;{(z,p;) + h;} unique up to
translations, such that
Vol(W; N Q) = A;,

wherelV; is defined in Eqn. 3.20.

Definition 2.22 (Alexandrov map) We call the gradient map'u : + — Vu(x) the Alexan-
drov map, or briefly A-Map.

According to Monge-Brenier theory [27], the Alexandrov maghe unique Optimal
Mass Transport map that minimizes the following mass trarisgnergy

[ le = f(@)|da,
Q
among all mass preserving maps 2 — {p1,-- -, px}, such that

Vol(f~'(pi)) = Ai.

The computation of the Alexandrov map is equivalent to cotimguthe so-callegpower
diagramin computational geometry.

Power Diagram The power diagram is a generalization of Voronoi diagramgypdse
each poinp; has a weight,;, which may be positive or negative, thewer distancérom
a pointx € R? to p is defined as

1 1
Pow(z, p;) = in —pil* — ihi‘

Whenh; is positive, the intuitive meaning of the power distancens balf of the squared
distance fromr to the tangent point af to the circle centered at with radius\/h;. The
power diagramis the Voronoi diagram when we use power distance instedteagftandard
L, distance metric. It is again a partition of the Euclideamplanto polygonal cells,
although some sites may have empty power gelis}.

W; = {z|Pow(x,p;) < Pow(x,p,),Vj}
= {@(z, pi) + 1/2(hi = |pil?) > (z,p;) + 1/2(h; — |p;|*), ¥}
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Comparing this equation to Eqn.3.20, it is obvious that cotimg a power diagram is
equivalent to compute the Alexandrov map.
Traditionally, constructing a power diagram is converteddmputing the convex func-
tion in Eqn.3.18, which can be solved using convex hull atgors in timeO(n logn), such
as the divide-and-conquer algorithm [103] or the randothineremental algorithm [31].
Thepower Delaunay triangulatioon the pointsefp,, - - - , px } is the dual to the power
diagram. Two power cell8/; andV; are adjacent in the diagram, if and only if there is an
edge connecting; andp; in the dual triangulation.

Optimal Mass Transportation Map by Variational Principle ~ The computation of Alexan-
drov map is based on the following theorem.

Theorem 2.23(Generalized Alexandrov)Given a convex domai? C R”, with measure
densityp : @ — R, and a discrete point se® = {py,---,px} with discrete measures
w={p1, -}, such that

[ pto1ds =3

then there existsh = {h4, - - - , hy} unique upto translations, such that the convex function
u(z) = max;{(z,p;) + h;}, induces a cell decomposition Bf, R* = J*_, W;(h), and

the area of each cell
w;(h) :/ p(x)dx
W;(h)NQ

equals tou;. h is the unique global minimizer of the convex function
k h
E,(h) = thi - / W, (2.52)
i=1 0

where the differential forrw = 3% | w;(h)dh;.

The computation on 2D is based on power diagram and powegtrlation. Suppose,
two voroni cellsiV;(h), W;(h) are adjacent and they share a common eggeThe edge
e;; has a dual Delaunay edgg. The norm with respect tpis defined as

le|, = /ep(x)dx, (2.53)
and|e| is just the traditional Euclidean length. By direct compiata, we can show

Ow; _ Ow; e,

Therefore the differential 1-form = Zf’:l w;dh; is a closed 1-formdw = 0. By Brunn-
Minkowski inequality [9], the admissible space

H = {h|Vi,w;(h) > 0,> h; =0}
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is non-empty and convex. TherefoB(h) = [™w is well defined. The gradient df is
(wy,-- - ,wg), the Hessian matrix oF is as follows. The off diagonal element is given by

(92E (9w, . |€ij‘p

— = : 2.54
Because", w;(h) = const, therefore the diagonal element is given by
o ; 8—hj’ (2.55)

the negative Hessian matrix is diagonal dominantirde concave orH. ThereforeE, in
Eqn. 5.6 is positive definite, the desired solution is thejuaiglobal minimum.

An Alexandrov map can be obtained by optimizing the convesrgy £, (h)using
Newton’s method, where each iteration is to construct a paagram dynamically. Al-
gorithmically, each iteration in the optimization procés$o construct a power diagram,
which is classical in computational geometry and can beesblising mature, robust and
efficient software packages, such as [6].

2.6.3 Shape Distance

Given a Riemannian surfa¢s, g), we compute a Riemann mappiag (S, g) — (D, dzdz).
Assume the conformal factor functionis: S — R, such that

go ¢ l(2) = PP dzdz.

Suppose the total areazns
/ eQA(Z)dxdy =,
D

we can find the unique optimal transportation map (Alexandap) : (D, e**dzdz) —
(D, dwdw), T can be represented as a complex-valued function definedeamihdisk.

Definition 2.24(Shape Definition)Given two Riemannian surfaces, which are topological
disks, (51, g:1) and (S, g2), the Riemann mappings arg,, k£ = 1,2 respectively. Let
ne € Mob(D) be a Mbbius transformation, wheré/ob(D) is the Mobius transformation
group of the unit planar disk, then, o ¢, are still Riemann mappings. Each Riemann
mappingn;. o ¢, determines a unique optimal transportation maf¢., nx). Then the
distance between two surfaces is given by

d(S1,82) ==  min )/D|71(¢1,771) — 7o (o, 1) [Pdxdy.

n1,m2E€Mob(D

The following lemma shows that the Riemann mappiregd the optimal transportation
mapn encodes all the Riemannian metric information of the oagsurface.
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Lemma 2.1. Suppose a Riemannian surfgcg g) with total arear, which is a topological
disk, the Riemann mappingds: (S,g) — (D, dzdz), the conformal factor induced by
is)\: S — R, the optimal transportation map is: (D, e**?"(2)dzdz) — (D, dzdz), then
the Riemannian metric of the original surface is given by

go ¢ ' (2) = det(J,)dzdz.

Proof. Becausey : (S,g) — (D, dzdz) is conformal, according to Eqn. 2.46
god ' (2) = P B)dzdz,

Because) : (D, e**dzdz) — (D, dzdz) is an optimal transportation map, therefore it is
area-preserving. According to Eqn. 2.49,

e = det(J,).
Combine the above two equations, we get the formula in thenam O
The following theorem is classical in surface differengabmetry.

Theorem 2.25. Suppos€ S, g) is a closed Riemannian surface embedded iiRfrwith
isothermal coordinates, thefi is determined unique upto a rigid motion by the confor-
mal factor\ and mean curvature functiol defined on isothermal coordinates.dfhas
boundaries, thety is determined by\, /') and Dirichlet boundary condition.

We now give the proof for the main theorem.

Proof. Suppose two marked topological digk$, g1, po, p1) and(Ss, g2, qo, ¢1) are given.

We prove the first claim:

"= if there exists an isometry : S; — S5, such thatf (px) = qx, k = 0, 1, consider the
normalized Riemann mappings : 51 — D, ¢1(py) = 0 ando;(p1) = 1, ¢2 = Sy — D,
®2(qo) = 0 andes(qi) = 1, the composition

profop;t:D—D

is conformal, therefore a Modbius transformation, whicle§ and1, hence it is the iden-
tity, namely

f = ¢2_1 o ¢17
Supposes; = e ¢idzdz, andg, = e**? ¢t dzdz, therefore

frgy = 2R Mgy
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becausef is an isometry, thereforg; = \,. Therefore the measures on the disk induced
by ¢, and¢, are equal. According to the uniqueness of the optimal trarafpon map, we
obtainn; = n,.

'<—" Reversely, ifn; = n,, according to lemma 2.1y; = \,. Define the composition

f 8 — Sa f = ¢,' o ¢, becausep, and ¢, are conformal, sof is conformal,
f*gy = e*M=2)g, S0 f is an isometry.

We prove the second claim:

From the first claimy); = 7, is equivalent to\; = )., then according to theorem 2.25, the
claim holds. O

2.6.4 Wasserstein Metric Space

Supposé M, g) is a Riemannian manifold with a Riemannian megic

Definition 2.26 (Wasserstein Space)etP,(1/) denote the space of all probability mea-
suresy on M with finitep™™ moment, wherg > 1. Suppose there exists some paint M
that [, d(x, x¢)Pdu(z) < +o00, whered is the geodesic distance inducedday

Given two probability: andv in P, the Wasserstein distance between them is defined
as the transportation cost induced by the optimal massgoansap? : M — M,

Wy(p, v) == inf (/M d(a:,T(a:))pd,u(x))% .

Ty p=v
The following theorem plays a fundamental role for the cotrkeork

Theorem 2.27. The Wasserstein distan¢g, is a Riemannian metric of the Wasserstein
spacepP,(M).

Detailed proof can be found in [129].

2.6.5 Conformal Wasserstein Shape Space

Combing optimal transportation and conformal mapping tiesowe can construct a shape
space framework.

We consider all oriented metric surface¥, g) with the disk topology, namely/ is
of genus0 and with a single bounda§)/. There are two marker®,q) C M, pis an
interior point,q is a boundary point. We call\/, g, p, ¢) as amarked metric surfaceThe
set of all marked metric surfaces is denoted\dsM := {marked metric sur faces}.

Two marked metric surfaces are equivalent, if thereneranalized isometric diffeomor-
phisme : (M, g1,p1,q1) — (Mo, g2, p2, ¢2), SUCh that) preserves metrics*g, = g; and
preserves markers(p;) = ps, ¢(q1) = g2. The product of the normalized isometry diffeo-
morphism group and the scaling group is denote@ a5 := {normalized isometries}®
{scaling}.
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We define the shape space as
S :=M/G. (2.56)

Let (M,g,p,q) € Sis anormalized marked metric surface, such that its tots ar.
In the following discussion, we always omit the markérsq), and assume the total area
is 7. Then according to Riemann mapping theorem, there is a aragaformal mapping
¢ : M — D, whereD is the unit planar disk with Euclidean metida? + dy?, such that
#(p) = (0,0) and¢(q) = (1,0). Theng = e =) (dx? + dy?). ¢ push forward the area
element onM, g) to the disk as

H(Mg) = @Y da A dy. (2.57)

This gives an injective mapping: S — P,(D), ' : (M, g) — pg)- The Wasserstein
metric on the Wasserstein spaegD) is pulled back taS,

dS((Mb g1)> (M2> g2)) = WQ(M(ML&)’ U(M27g2))' (2-58)

We call the metric spacgS, ds) the conformal Wasserstein shape spades constructed
shape space enjoys humerous advantages such as thatrinsérgeometric structure and
does not have reparameterization ambiguity, etc.
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3 Computational Algorithms

3.1 Conformal Mapping

In discrete setting, the captured surfaces are represestédscrete polyhedral surfaces.
SupposesS is a topological surfacéy is a set of points orb, (S, V) is called amarked
surface T'is a triangulation of5, whose vertices are i, then(S, T') is called ariangular
mesh In the following discussion, we useé and F' to represent the edge and face sets. A
piecewise linear Riemannian metric (PL metric)(¢hV') is a flat cone metric, whose cone
points are in//, represented by edge lengths.

Definition 3.1 (Discrete Riemannian MetricA discrete metric on a triangular mesh, T')
is a function defined on the edgés £ — R, which satisfies the triangle inequality, on a
face(v;, v;, vy,

dij + djk: > d]m', de + d,‘j > djk'a d,k + dk'j > dz]

The discrete curvature is defined as angle deficit,

Definition 3.2 (Discrete Gauss CurvatureJhe discrete Gauss curvature function on a
mesh is defined on vertices,: V — R,

f2r =30, vgO(S, T, V)
K(“)_{ =0, vedS,T,V)

whered,’s are corner angles adjacent to the vertexandd(.S, T') represents the boundary
of the mesh.

Gauss-Bonnet theorem still holds on discrete surface,dtad Gauss curvature of a
meshM

S K () = 27x(5),

wherex(S) is the Euler characteristic number 8f
In practice, a choose a special triangulation accordingeatven discrete metric,

Definition 3.3 (Delaunay Triangulation)A closed discrete surfades, T') with a discrete
metricd, we say a triangulatiofi” is Delaunay, if for any edge;, v;| adjacent to two faces
[vi, v, v]) and v}, v;, vy,

0 +6" <,

whered)’ is the corner angle aty, in [v;, v;, v, 67" is the angle at; in [v;, v;, ).

Discrete Surface Yamabe flow We define the discrete conformal factor functionuas
V — R, and conformal structure coefficient on edgestl — R*.
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Definition 3.4 (Discrete Conformal Equivalencejwo discrete metricg andd’ on (S, V)
are discrete conformal if there exists a sequence of disongttrics! = dy, dy, ds, - - - ,d,, =
d on (S, V) and triangulationsr’, Ts, - - - , T,, of (S, V'),satisfying:
(a) eachT; is Delaunay ind;,
(b) if T; = T; 1, there exists a conformal factor, so thatit 7; is with end vertices and
V', then

diyi(e) = e"(”)di(e)e"(”/),

(c) if T; # T,41, then(S,d;) is isometric to(S, d; ;1) by an isometry homotopic to the
identity in(.S, V).

Each discrete conformal class of discrete metrics is calldidcrete Riemann surface

Definition 3.5 (Discrete Yamabe Flow with Surgery§iven a surfacé S, V) with a dis-
crete metricd, given a target curvature functioR : V — R, K (v;) € (—oo, 27), and the
total target curvature satsifies Gauss-Bonnet formula,diserete Yamabe flow is defined
as p

“;:’) = K(v) — K(vy), (3.1)
under the constraing_, . u(v;) = 0. During the flow, the triangulation oS, V) is
updated to be Delaunay with respectd@), for all timet.

The existence of the solution to the Yamabe flow is guarantgeatie following theo-
rem.

Theorem 3.6. Supposé S, V) is a closed connected surface athds any discrete metric
on(S,V). Then foranyk : V — (—o0, 27) satisfying Gauss-Bonnet formula, there exists
a discrete metrie/, unique up to scaling ofS, V), so thatd is discrete conformal td and
the discrete curvature af is K. Furthermore, thel can be obtained by discrete Yamabe
flow with surgery.

Furthermore, it has been show that Yamabe flow is the negatadient flow of the
following Yamabe energy,

(u17u27"'7un) -~
flug,ug, -+ uy,) = / > (K (v) — K(v;))du,. (3.2)

The gradient of Yambe energy&f (uy, - - - ,u,) = (K, — K1, Ko — Ko, - -+, K, — K,,)7.
The Yamabe energy is strictly concave in the subspage, u; = 0. The Hessian matrix
can be formulated explicitly. The cotangent edge weighefneéd as

iy { cot 0 + cot 07" [vg,v;] € O(S,T) [vs,v5] = [vs, vy, 0] N [V, 05, v (3.3)

cot 8 [vs,v,] € (S, T) [v;, ;] € O, vy, V]
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Algorithm 1 Discrete Surface Yamabe Flow
Require: The inputs include:
1. A triangular mesh:, embedded ifit3;
2. Atarget curvaturd(, 3" K; = 27y(X) and K; € (—oo, 27).
Ensure: A discrete metric conformal to the original one, which reed the target curva-
ture K.
1: Initialize the discrete conformal facter as0 and conformal structure coefficient
such that)(e) equals to the initial edge length ef
2: while max; |K; — K;| > threshold do
3: Compute the edge length fromandn
4:  Update the triangulation to be Delaunay using diagonal setggp for each pair of
adjacent faces
Compute the corner angd?ék from the edge length using cosine law
Compute the vertex curvatureé
Compute the Hessian matriX
Solve linear systemnif 6u = K — K
9: Update conformal factor < u — du
10: end while
11: Output the result circle packing metric.

The Hessain matri¥! = (h;;), where

—wi Vi~V LFE ]
>k Wik L=

In order to compute the conformal metric with prescribedsature, we can optimize the
Yamabe energy using Newton’s method.

3.2 Discrete Optimal Mass Transport
3.2.1 Kantorovich’s Approach.

The spaceX andY” are discretized to sample points,= {x1,zo, -+ , 2.}, Y = {y1, %2, -, Un},
the measures are dirac measures

H= Zﬂi5($ — 1),V = Z’/jé(y = Yj),
i=1 J=1
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the transport plam is represented as a matix;), such that

n n
DT =1 7 =175 >0
j=1 i=1

All such matrices form a convex polytope. The total trantgn cost is a linear function

C(r) = Z c(wi, yj)Tij

i.j
The optimal mass transport problem becomes a linear pragiagnproblem withn? un-
knownsr;;.
3.2.2 Brenier’s Approach.
Suppose: has compact support oXi, define

Q= supp p = {z € X|u(z) > 0},

assume? is a convex domain itX. The space” is discretized t&" = {y1,y2, -, yr}
with Dirac measure = °°_, v;6(y — y;).
We define aheight vectorh = (hy, hs,--- , h,) € R, consisting ofk real numbers.
For eachy; € Y, we construct a hyperplane defined &n
mi(h) : (2, y;) +h; = 0. (3.5)

Define a function
un () = max{(z, ) + hi}, (3.6)

thenuy () is a convex function. We denote its graph@&gh), which is an infinite con-
vex polyhedron with supporting planegh). The projection of7(h) induces a polygonal
partition of(2,

= LkJ Wi(h), (3.7)

i=1
where each cellV;(h) is the projection of a facet of the convex polyhedr@th) onto?,

Wi(h) = {2 € X|un(x) = (z,5;) + h;} N Q. (3.8)
The area o#V;(h) is given by

w;(h) = /W.(h) p(x)de. (3.9)

The convex functiom,;, on each cellV;(h) is alinear functiorr; (h), therefore, the gradient
map
graduy : Wi(h) = y;,i =1,2,-- | k. (3.10)

maps eachV;(h) to a single poin;.
The following theorem plays a fundamental role for discrgpéimal mass transport
theory,

30



Theorem 3.7. For any given measure, such that
Nz :/u,l/- >0,
= J o J

there must exist a height vecthrunique up to adding a constant vectet c, - - - , ¢), the
convex function Eqgn. 3.18 induces the cell decompositidn, &gn. 3.19, such that the
following area-preserving constrairdee satisfied for all cells,

/ =12 .. (3.11)
Wi (h)
Furthermore, the gradient mag-ad u;, optimizes the following transportation cost
C(T) == / & — T(2)[2p(z)da. (3.12)
Q

The existence and uniqueness was first proven by Alexandfjwfing a topological
method; the existence was also proven by Argmstrong [16]utliqueness and optimality
was proven by Brenier [28].

Recently, Gu et al. [48] gives a novel proof for the existead uniqueness based on
the variational principle. The deep insight of variatioframework provides us excellent
opportunities for numerical implementation. We will takesir approach and explore its
engineering applications in this work.

Define the admissible space of height vectors

k
Hy:= {h‘zhg:()and /Wz(h)lu>07vzzl’ ’k’}'

j=1

Then define the energy(h),

k
E(h) = /Quh(x),u(x)dx = vk (3.13)
=1
or equivalently
h k k
E(h) = /0 > wi(n)dn; = vih;i + C, (3.14)
=1 =1

whereC' is a constant. Consider the shape bounded by the gipl), the horizontal
plane{z,.; = 0} and the cylinder consisting of vertical lines througf, the volume of
the shape is given by the first term.

The gradient of the energy is given by

VE(h) = (wy(h) — vy, -, wi(h) — )", (3.15)

Suppose the celld’;(h) and1¥V;(h) intersects at an edgg; = W;(h) N W;(h) N Q, then
the Hessian off(h) is given by

omon, ) ot

PEM) [ O g e £ 0 (3.16)
0 otherwise
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We focus on the Brenier's approach. Supp@skas compact support oif, define
Q = supp u = {x € X|u(z) > 0}, assumd? is a convex domain iX’. The spacé” is
discretized td” = {y1,ys, - - - , y} With Dirac measure = ¥, v;6(y — ;).

We define aheight vectorh = (hy, hs, -+, h,) € R, consisting ofk real numbers.
For eachy; € Y, we construct a hyperplane defined &n

Define a function
un () = miac{ (, ) + hi}, (3.18)

thenuy, () is a convex function. We denote its graph®&gh), which is an infinite con-
vex polyhedron with supporting planegh). The projection of7(h) induces a polygonal
partition of (2,

Q= Jwin), (3.19)

=1
where each cellV;(h) is the projection of a facet of the convex polyhedr@th) onto
Q,
W;(h) = {z € X|un(z) = (z,y;) + h;} N Q. (3.20)

Note that, this partition is equivalent to a power diagraemated ag)(h), as explained in
[48]. The area ofV;(h) is given by
w;(h) = /Wi(h) p(x)de. (3.21)

The convex functionu, on each cellW;(h) is a linear functionr;(h), therefore, the
gradient map
graduy : Wi(h) - y;,i =1,2,-- | k. (3.22)

maps eachV;(h) to a single poiny;.
The following theorem plays a fundamental role for discrgpéimal mass transport
theory,

Theorem 3.8. Given a convex domaift C R", with measure density : (2 — R, and

a discrete point seY” = {y;, - - - , yx} With discrete measures = {vy,--- ,v;}. Suppose
Z?:1 vi = Jop,v; > 0.
Then there must exist a height vectoe {h,, - - - , hy} unique up to translations, such

that the convex function Eqn. 3.18 induces the cell decotpo®f Eqn. 3.19. And the
following area-preserving constrairdee satisfied for all cells,

/ pwle)de =v;,i=1,2,--- ,n. (3.23)
Wi(h)
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Furthermore, the gradient mag-ad u;, optimizes the following transportation cost

C(T) = /Q lz — T(z)u(z)dx. (3.24)

The existence and uniqueness was first proven by Alexandfjwfing a topological
method; the existence was also proven by Argmstrong [16]uthiqueness and optimality
was proven by Brenier [26]. Recently, Gu et al. [48] gives aehqroof for the exis-
tence and uniqueness based on the variational principliehvigads to the computational
algorithm directly.

Define the admissible space of height vectligs:= {h| >*_, h; = 0 and Jwimy 12>
0,vi=1,--- k, }. Then define the energy(h),

k
E(h) = /Quh(:v)u(:v)dx = > vl (3.25)
=1
or equivalently
h k k
B) = [ win)dn — 3 vihi +C, (3.26)
=1 =1

whereC' is a constant. Consider the shape bounded by the gipl, the horizontal
plane{zx,.; = 0} and the cylinder consisting of vertical lines througf, the volume of
the shape is given by the first term.

The gradient of the energy is given by

VE(h) = (wy(h) — vy, -, wi(h) — )", (3.27)

Suppose the celld’;(h) and1¥V;(h) intersects at an edgg; = W;(h) N W;(h) N Q, then
the Hessian of(h) is given by

0*E(h) {LﬁmmijmemeQ%w_ (3.28)

= lyj—vil
OhiOh; 0 otherwise

The following theorem lays down the theoretic foundatioomaf OMT map algorithm.

Theorem 3.9(Discrete Optimal Mass Transport [48]f €2 is convex, then the admissible
spaceH, is convex, so is the energy (Eqn. 3.25). Moreover, the ungdpigal minimum

h is an interior point ofH,. And the gradient map (Eqn. 3.22) induced by the minimum
hy is the unique optimal mass transport map, which minimizesdtal transportation cost
(Eqgn. 3.24).

The proof of Theorem 3.9 is reported in [48]. Due to the coitye{ the volume energy
Eqn. 3.25, With this theory, the global minimum can be ol®diefficiently using Newton’s
method. Comparing to Kantorovich's approach, where theeeOdn?) unknowns, this
approach has onl§(n) unknowns.
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3.2.3 Optimal Mass Transport Map (OMT-Map) Algorithm

Assume? is a convex planar domain with measure dengity? = {p1,--- , px} IS a point
set with measure = {vy, - -- , 1}, such thatf, u(z)dz = X% v;.

According to the discussion in previous section, the OMTpMan be obtained by
minimizing the convex energy in Eqn. 3.25. In practice, thergy can be optimized using
Newton’s method, which requires the computation of the g@ngradient using Eqgn. 3.27,
and the Hessian matrix using Eqn. 3.28. The method is stfargfard, but the initializa-
tion and the step length selection need to be specially adede

Initialization. By translating and scaling?’ could be inside&2, P C Q. At the
beginning, we set each power weightto be0, namelyh = 0, and compute the power
diagramD(P, h) and the Delaunay triangulatidfi( P, h). In this scenarioD(P, h) is a
conventional voronoi diagram.

Step Length Selection. Suppose at the-th step in the optimization, the power weight
vector ish*, and all Voronoi cell§V;(h*) are non-empty. Then the Hessian matfix in
Eqn. 3.28 is positive definite on the hyper-pldie >, h; = 0}. Atthek + 1-step, we set
the step length parametgras1, and update the power weight vector

h !t = h* — NH_'VE(h"). (3.29)
Then we compute the power diagrd P, h**1). If any Voronoi celliV;(h**1) disappears,
then the Hessian matri¥ ., ; will be degenerated. In this case, we shrink the step length
parameten to be half,\ «— 2\. Then we recomputk**! using the formula in Eqn. 3.29
and test again. We repeat this procedure, until all Voroetisén D (P, h**!) are non-
empty. Algorithm 2 gives the implementation details.

3.2.4 Area-preserving Parameterization for Topological bsks

The OMT-Map algorithm can be generalized to compute the-preserving mappings
between surfaces. Suppdseés simply connected surface with a single boundary, namely a
topological disk.S is with a Riemannian metrig. By scaling, the total area ¢f, g) equals

to 7. Then according to the Riemann mapping theorem, there isf@icoal mappingp :
(S,g) — (D, dzdz), such thag = ¢***)dzdz. Then we find a OMT-Map : (D, dzdz) —

(D, e**dzdz), then the composition™' o0 ¢ : (S, g) — (D, dzdz) gives the area-preserving
mapping.

(S, g) & (D, e**dzd?)

X
7log

(D, dzdz)
The smooth surfacéS, g) is approximated by a triangular mesl, with vertex setl” =
{v1,v9, -+, v }. The conformal mapping can be computed using discrete surface Ricci
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Algorithm 2 Optimal Mass Transport Map (OMT-Map)
Input: A convex planar domain with measuf®, 1); a planar point set with measure
(P,v),vi >0, [qu(z)de = SF_| 1v;; a threshold:.
Output: The unique discrete OMT-Map: (2, 1) — (P, v).

Scale and translate, such thatP? C €.
h « (0,0,---,0).
Compute the power diagram(h),
Compute the dual power Delaunay triangulatiofh) ,
Compute the cell areag(h) = (w;(h), -+, wg(h)).
repeat
ComputeV E(h) using Eqgn. 3.27.
Compute the Hessian matrix using Eqn. 3.28.
A1
h <+ h - H 'VE(h).
ComputeD(h), T'(h) andw(h)
while Jw;(h) == 0 do
h < h+ AH"'VE(h).
A<+ 1/2)
h <+ h— A H 'VE(h).
ComputeD(h), T'(h) andw(h).
end while
until [VE| < e.
return f:Q — P,W;(h) > p;,i=1,2--- k.

flow method [139]. Then each vertex< M is mapped to a planar poipt = ¢(v;). The
discrete measurg is given by

v, = — Z area([v;, v;, vg)), (3.30)
[vi,vj,v]€M

where[v;, v;, vi] is a face adjacent to, on the mesh. After normalization, the summation
of the discrete measureys,, v;, equals tor. Then the OMT-Map : (D, dzdy) — (P, v)
can be computed using Algorithm 4. The compositioh o ¢ is a discrete area-preserving
mapping, which maps each vertexon the mesh to the centroid of the corresponding cell
W; on the disk, such that the arealdf equals toy;. The implementation details can be
found in Algorithm 3. Figure 9 shows an examples.
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(a) left view

(c) Angle-Preserving (CFP) (d) Area-Preserving (APP)

Figure 9: Topological disk area-preserving parametadndor the gargoyle model.
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Algorithm 3 Topological Disk Area-preserving Parameterization

Input: A triangular meshV/ which is a topological disk; three vertic€s,, vi,v2} C
OM on the boundary.
Output: The area-preserving parameterizatjon M/ — D, which maps{vg, vy, v2} to
{1,1,—1} respectively.

1. ScaleM such that its total area equalsito

2. Compute the conformal parameterizatipn: M — D, such that the images of
{vo, v1, v} are{l, 1, —1} respectively.

3. For each vertex; € M, definep; = ¢(v;), v; to bel/3 of the total area of the faces
adjacent ta;. SetP = {p;}, v = (v;).

4. Compute the DOTM : D — (P, u) using Algorithm 4.

5. Construct the mapping ! o ¢ : M — D, which maps each vertex € M to the
centroid ofiV;(h) C D.

3.2.5 Area-preserving Parameterization for Topological $heres

Suppos€S, g) is a closed genus zero metric surface, namely a topologitedre, with

total areadw. Given three pointgpy, po, p3} C S, there is a unique conformal mapping

¢ : S — C, whereC is the augmented complex plafie {o0}, such that» maps the three

points to{0, 1, co} respectively, furthermore the original surface megyie e dzdz.
Consider the unit sphef embedded ifR3, it has the induced Euclidean mettic Let

v S? — C be the stereo-graphic projection, then

h— 4dzdz B 4dudv
(1 +z2)2’“ (1 u? +02)2
wherey is measure induced Ry, z = u + .
Let7 : ((C, #4%;) — (C,e*'dzdz)) be the optimal mass transport map, then the
compositiony~' o771 0 ¢ : (S, g) — (S? h) is an area-preserving mapping.

(5.8)—L°T°¢ (g
b W
¢ j‘/d e 71 ¢ 4dzdz
(€, e?dzdz) € )

The surface is approximated by a triangle méghthe conformal mapping : S —
C is obtained by two steps. First, the mesh is conformally redpie the unit sphere
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using spherical harmonic mapping method in [51]; secordé/unit sphere is conformally
mapped onto the augmented complex pléhasing the stereo-graphic projection. Then
the discrete point se® consistsp; = ¢(v;). The discrete measure for each vertex is
computed using the same formula as Eqn. 3.30.

The OMT-Mapr : (C, (fjng) — (P,v) can be carried out using the same Algorithm
4. The sharp distinction is that the domdinhere is infinite, the entire complex plane.
Some cells are unbounded, but still with finite areas undesgiherical measuye

In order to use Newton’s method for the optimization, forteeell, we need to compute
the spherical area and the spherical edge lengths. Comsiishiie polygon(- first, suppose
its edges ards, - - - , s, } the exterior angles arg, - - - ,0,,}. Because) is conformal,
so the exterior angles are well preserved on the sphere, arfdsegment is mapped to
curve segment, which is unnecessary to be a geodesic. AogdalGauss-Bonnet theo-
rem, [ KdA + 3 [, kyds + 32;0; = 2w, where K is the Gaussian curvatur, is the
geodesic curvature. Becausg ¢; = 27, K = +1, we obtainArea(G) = — X, [,. kyds.
where}’; [,. k,ds can be easily and efficiently computed by spherical geométoy an
infinite cell G, there are two infinite edges, which intersect atdbgoint. Suppose their
intersection angle between two raygighen the exterior angle ab is 7 — 6. The other
part of the computation is similar to the finite cell case. hplementation is quite similar
to Algorithm 3 except that we need to compute an additiorsksi-graphic projection/()
and consider infinite cellr when computing the cell areas(h).

3.2.6 Riemannian optimal mass transport map

This section gives the algorithmic implementation detéalsRiemannian optimal mass
transport map (OMT-Map) generation using geodesic powesa diagram.

Smooth metric surfaces can be approximated by piecewisarltniangle mesh. There
are many ways to discretize a smooth surface, such that ¢lcewpise linear metrics con-
verge to the smooth metric, eg, the sampling is uniform aedriangulation is geodesic
Delaunay. The geodesics on the triangle meshes can be mfficamputed using the
algorithms in [130].

First, we repeat subdividing the triangle mesh until the ©iz each triangle is small
enough to ensure the accuracy. Then from each pgimt the point setP, we compute
the geodesics to reach every other vertex on the subdividesthnthis gives the geodesic
distance from every vertex 9. Repeat this for all vertices iR.

Third, we find the optimal weight. We initialize all the weigho be zeros, then update
the weight using the formula

dh;
=V Wi(h)u(p) p

Details of the algorithm can be found in Alg. 4.

38



Algorithm 4 Riemannian Optimal Mass Transport Map
Input: A triangle mesh M, measure p and Dirac measure

{(p1, 1), (D2, v2), -+, (s i)} Jyg up)dp = S, vi; @ threshold,
Output: The unique discrete Optimal Mass Transport Map(M, ) — (P, v).

Subdivide)M for several levels, until each triangle size is small enough
forall p;, € P do
Compute the geodesic from to every other vertex on/,
end for
h < (0,0,---,0).
repeat
for all vertexv; on M do
Find the minimum weighted squared geodesic distance, éedmich Voronoi cell
v; belongs toy; € W;(h)

t = argminkdz(vj,pkz) + hy,

end for
forall p; € P do
Compute the current cell area = [y, 1) du,
end for
forall h; € hdo
Updateh;, h; = h; + 0(v; — w;)
end for
until |v; — w;| < e, Vi.
return Power geodesic Voronoi diagram.

3.2.7 Conformal Wasserstein Distance

The OMT-Map algorithm can also be generalized to comput&\thsserstein distance be-
tween surfaces. Given two topological disk surfa@des, g1, p1,q1) € S, (Ma, g2, p2, g2) €

S with total arear, wheres is the normalized marked metric space defined in Eqn. 2.56.
p1 andp, are correspondent interior markers, andand ¢, are correspondent boundary
markers. We first compute the conformal maps: M; — D; and¢, : My — Dy,
whereD; andD, are the unit planar disks with Euclidean metific> + dy?, such that
o(p1) = o(p2) = (0,0) andd(q1) = ¢(¢g2) = (1,0). Then we construct a convex planar
domain(€2, ) from Dy, wherey is computed by Egn. 2.57. And then we discrefizanto

a planar point set with measurg, ), wherer is computed by Eqn. 3.30. Using, ) and
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(P, v) as inputs of Algorithm 4, we compute the Optimal Mass Transpapf : ? — P,
W;(h) — p;, wherep;, € P,i = 1,2,--- k. Therefore, the Wasserstein distance between
M, and M, can be computed by

Wasserstein(u,v) = Z/ (z — pi)?p(r)dx (3.31)
=17 Wi

Algorithm 5 gives the implementation details.

Algorithm 5 Computing Wasserstein Distance
Input: Two topological disk surface6Mi, g1, p1, 1), (Ma, g2, p2,q2). p1 andp, are
correspondent interior markers, apdandg, are correspondent boundary markers.
Output: The Wasserstein distance betweédn and M.

1. Scale and normaliz&/; and M, such that the total area of each surface.is

2. Compute the conformal maps : M; — D andg, : My — Dy, wherel); andDD, are
the unit planar disks with Euclidean metric? + dy?, such that)(p;) = ¢(p2) = (0,0)
andé(q1) = ¢(g2) = (1,0).

3. Construct a convex planar domain, 1) from D;, wherey is computed by Eqn. 2.57.
4. DiscretizeD, into a planar point set with measuf®, ), wherev is computed by
Eqgn. 3.30.

5. With (Q, x) and (P,v) as inputs of Algorithm 4, we compute the Optimal Mass
Transport mag : Q@ — P, W;(h) — p;, wherep, € P,i =1,2,--- | k.

6. Wasserstein distance betwedh and M, can be computed by Eqn. 3.31.

3.2.8 Polar Factorization

Conformal parameterizations have no angle distortionshay may induce large area dis-
tortions. For cylindrical shapes, the area distortionstzaaxceptional large in terms of the
cylinder height. The huge area distortions cause severencahinstability and aliasing

in rendering. On the other hand, area-preserving paraizatiens has no area distortions,
but they may cause huge angle distortions. In digital gepnprbcessing, many geomet-
ric tasks boil down to solve geometric partial differengguations on the surface. The
geometric PDEs are converted to sparse linear systems kisiitg Element Method. The
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Figure 10: Polar factorization.

numerical stability of the linear systems heavily dependshe angle structure of the dis-
crete triangular mesh. If the triangulation has too manysbtingles, the linear system is
highly unstable, and the computational results are nclvidi

Therefore, the parameterization with a good balance betapgle distortion and area
distortion is highly preferred. The polar factorizationgg#neral surface mapping method
has great promise to tackle this challenging problem. Gavdiffeomorphismp, it can be
decomposed into the composition of two mappings

¢ =Vuos, (3.32)

wheres is area-preserving, is a convex function and the gradient nidp deforms the area
in the most economical way (an optimal mass transportatiap)mlhe convex function
and the optimal mass transportation m&p are solely determined by the source and the
target mass density functions. This gives a practical wayptdrol the area distortion.
Suppose the initial map is conformal, by varying the convex functien we can de-
form ¢ to s, namely we build a patl, in the mapping space, connecting the angle preserv-
ing mappingp; =  to the area preserving mappipg = s. By choosing the parameter
one can find the optimal parameterizatip) most appropriate for the application.
The mapping polar factorization can be treated as the géradran of matrix polar
decomposition and vector field Helmholtz decompositionpggise($2, 110) and (2, 1)
are subdomains in the Euclidean sp&e ¢ : Q, — €, is a diffeomorphism between
them. Then there is a convex functian 0, — R, whose gradient mapu : « — Vu(z)
maps from(), to 2,. Furthermore, there is a volume-preserving mapging, — o,
such thatp can be decomposed o= Vu o s. This decomposition is unique. As shown in
Fig.10, a conformal mapping in (c) is decomposed to an area preserving mapping from
(a) to (b) and a gradient map from (b) to (c).
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If the source domain coincides with the target domain, dshats?, then all the
volume-preserving diffeomorphisms form a Lie gra$if2), which is non-convex. Given
a diffeomorphismy : Q — Q with polar decompositiop = Vu o s, s is the uniqueL?
projection ontaS(Q2). Assumef2 has a volume form (measurg) theny induces a push
forward measure,. ., Vu is the unique optimal mass transportation map fi¢im.) to

(€2, pgp).
The following polar factorization theorem plays a fundamtaérole in the current project.

Theorem 3.10(Polar Factorization [26])Let (), and(2; be two convex subdomainsi®f,
with smooth boundaries, each with a positive density fongti, and ., respectively, with
the same total mas§, o = Jo, 1. Lety : (Qo, po) — (€21, p1) be an diffeomorphic
mapping, therp has a unique decomposition of the form

¢ = (Vu)os, (3.33)

whereu : Qy — R is a convex functions : (Qq, 110) — (0, 10) IS @n measure-preserving
mapping. This is called the polar factorizationfwvith respect tqu.

(QOMUO) g (Qbﬂl)

x v

(907 Mo)

This means a general diffeomorphism (Qq, 19) — (21, 1), Wherep; = @0 can
be decomposed to the composition of a measure preserving méy, 1.0) — (2o, fto)
and aL? optimal mass transportation ma&gu : (Qo, 110) — (21, 11). This decomposition
is unique. Furthermore, i, coincides with();, thens is the uniqueL? projection ofyp
in the space of all measure preserving mapping$X}f o). Namely,r minimizes thel.?
distance among all measure preserving mappings,

s =argmin, | |lp(@) = 7(2)|*no(e)dz. s = .
0

Given a diffeomorphismp : (€, 10) — (24, p11), such thatp,py = 4, there is
a unique polar factorizatiop = Vu o s, wheres : (Qq, o) — (0, po) IS measure
preserving,sy o = po; Vu : (Qo, o) — (91, 1) is anL? optimal mass transportation
map,u is a convex function: : 0y — R.

BecausevVu : (Qo, o) — (21, p1) is the unique optimal mass transportation map, then
Vu* = (Vu)™t 0 (Qq, 1) — (Q0, o) is the unique optimal transportation map as well.
So in our algorithm, we fist compute an optimal mass tranagiort (Vu)~! first. The
measure-preserving magan be computed direction by

s = (Vu)togp. (3.34)
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Algorithm 6 Polar Factorization of Mapping

Require: Convex domain$), and); in R?. A diffeomorphic mappinge : (Qo, 110) —
(1, 1), wherepgpio = fir.
Ensure: The polar factorizationp = Vu o s, wheres is an measure-preserving mapping,
u 1S a convex function defined dn,.
1: Compute the unique optimal mass transportation Nap (€2, 111) — (o, 110) USING
Alg.2. The convex functiom is the Legendre dual af, u = v*.
2: Compute the composition= Vv o ¢.

The algorithm is summarized in Alg.6.

One direct application of mapping polar factorization istmstruct a sequence of mesh
parameterizations with balanced angle vs area distorti@gppose M, g) is a metric
surface, for simplicity, we assum¥ is a topological disk. By scaling, the total area of
M is w. We would like to construct one parameter family of diffeaptuc mappings
¢ (M, g) — (D,dzdz), such thatp, is area preserving, ang is angle preserving. For
any0 <t < 1, ¢, is a diffeomorphism, with different level of angle and aréstaltions.

The following is the computational method. First, we appBcdete surface Ricci flow
algorithm to compute a Riemann mappingfrom the surface to the unit disk. Then we
compute the polar factorization of,

Y1 = Vu,; o ®o,

wherey is the area-preserving mapping,is the convex function.
Becausey; is conformal, the area elememnt has the formu, = e**dzdy. ¢, is area
preserving, the area elementis 1o = dxdy. We linearly interpolate:,, and .,
pe = (1= t)po + tu,

and compute the optimal mass transportaan : (D, x9) — (D, ), then we obtain the
mapping
¢ = Vg 0 .

Alternatively, when: = 0, Vu, is the identity map, therefore, = (z* + y?) on the
unit disk. Then we define; as the Minkowski sum ofl — t)u, andtu;,

= (1 —t)ug ® tuy.

In practice, the convex function is represented as uppeziepg of supporting planes,

wa(e) = mac{ () + b o(a) = max{ (i) — 3 (o),
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therefore

t—1
() = m?x{<pi,x) + T(pi,pi) + th;.

In Figure 11 and 12 we show the comparisons among conformp) @gtimal mass
transport map and polar factorization maps. For the potdofezation mapp,, we show a
sequence of maps whenr= 1.0, = 0.75,t = 0.5, ¢t = 0.25 andt = 0. The second column
shows the different parameterization results. We can sdenthent increases, polar fac-
torization map is closer to conformal map, and whelecreases, polar factorization map is
closer to Optimal mass transport mapping. The third colunthfaurth column illustrate
the histograms of angle distortion and area distortiorpeesvely. When' increases, the
angle distortion becomes smaller and area distortion besdarger. Whert decreases,
the angle distortion becomes larger and area distortionrbhes smaller. These quantita-
tive results show how the polar factorization map balanee/éen angle distortion and
area distortion, and demonstrate the flexibility, accuracgt numerical stability of polar
factorization map.
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4 Optimal Mass Transport for Shape Analysis

Surface based 3D shape analysis plays a fundamental rabenputer vision and medical
imaging. This work proposes to use optimal mass transpontabaps for shape analy-
sis, focusing on two important shape analysis applicatioasiding surface registration
and shape space. The computation of the optimal mass tramsap is based on Monge-
Brenier theory, in comparison to the conventional methasetdson Monge-Kantorovich
theory, this method significantly improves the efficiencyrbgucing computational com-
plexity from O(n?) to O(n). For surface registration problem, one commonly used ap-
proach is to use conformal map to convert the shapes into sananical space. Although
conformal mappings have small angle distortions, they magduce large area distortions
which are likely to cause numerical instability thus resigjtfailures of shape analysis. This
work proposes to compose the conformal map with the optinaslsntransportation map to
get the unique area-preserving map, which is intrinsic @Remannian metric, unique,
and diffeomorphic. For shape space study, this work intteda novel Riemannian frame-
work, Conformal Wasserstein Shape Spamgcombing conformal geometry and optimal
mass transportation theory. In our work, all metric suréawegth the disk topology are
mapped to the unit planar disk by a conformal mapping, whigshps the area element
on the surface to a probability measure on the disk. The @btinass transportation pro-
vides a map from the shape space of all topological disks mglrics to the Wasserstein
space of the disk and the pullback Wasserstein metric edqogshape space with a Rie-
mannian metric. We validate our work by numerous experisiand comparisons with
prior approaches and the experimental results demonshatefficiency and efficacy of
our proposed approach.

4.1 Overview

In recent decades, with the fast development of 3D scaneitigiblogies, there has been
much research into surface representations for 3D shapgseaComparing with other
approaches such as volume measurements [67], mathematicghology [64], medial
axis [22], surface based approach offers many advantagksling: (1) it offers an ac-
curate shape representation even for local subtle shapgesa(2) it can compute some
physically natural measurements, e.qg. elasticity and diéasion; (3) it has solid mathe-
matical foundations on which one can develop numericaflgieft algorithms and achieve
global shape analysis, even on shapes with complicatedogystructures. In computer
vision research, numerous surface based approaches havelmposed to solve various
shape analysis problems, such as surface matching [419286290, 112, 82], anatomical
morphometry analysis [119], 3D object recognition andknag [77, 132] and 3D shape
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(© (d)

Figure 13: Comparison of geometric mappings for Armadilidace model to a planar unit
disk: (a) Front view; (b) Back view; (c) Optimal mass trangpoap result; (d) Conformal
mapping result. The results show that conformal mappingrash more area distortions
on head and hands areas. The normal information on the algunfaces is preserved and
used for rendering. By the shading information on the plalmnain ((c) and (d)), the
correspondence is illustrated. The hand zoom-in image )o$t{dws that the conformal
map shrinks the fingers to very tiny areas which may cause ncahestability, while the
hand zoom-in image of (c) demonstrates the optimal massgaahmethod gives a good
one-to-one mapping result.

search engine [30]. Even so, a theoretically rigorous angamically efficient surface based
approach would be highly advantageous in this research fikdte we propose to apply the
Monge-Brenier optimal mass transportation theory for shemlysis, focusing on surface
registration and a generic shape space model, conformalefgsin shape space.

Optimal Mass Transport Monge raised the classic@ptimal Mass Transport Prob-
lemthat concerns determining the optimal way, with minimahgortation cost, to move
a pile of soil from one place to another [24].

Kantorovich [78] has proved the existence and uniquenetseaiptimal transport plan
based on linear program. Monge-Kantorovich optimizatias been used in numerous
fields from physics, econometrics to computer science tdiolyidata compression and
image processing [104]. Recently, researchers have eéatimat optimal transport could
provide a powerful tool in image processing, if one coulduasits high computational
cost [38, 126]. However, it has one fundamental disadvantiagt the number of variables
is O(k?), which is unacceptable to computer vision and medical imggpplications since
a high resolution 3D surface normally includes up to hunsliigdhousands of vertices.

An alternative Monge-Brenier optimization scheme canificantly reduce the number
of variables to be optimized. In late 1980’s, Brenier [28}eleped a different approach for
a special class of optimal transport problems, where thefgostion is quadratic distance.
Brenier’s theory shows that the optimal transport map igtlaglient map of a special con-
vex function. Assume the target domain is discretized samples, the Monge-Brenier’s
approach reduces the unknown variables fidtm?) to O(n), which greatly reduces the
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computation cost, and improves the efficiency. In our fraoréwwe take Monge-Brenier’s
approach. However, our work is based on the newly discovemadtional principle [48]
which is the underspinning of Monge-Brenier’'s approachr ftamework is general and
works with any valid measureg,andv, defined on two surfaces. Within the scope of this
paper, we only consider the area induced measures. As & reswill use the ternOMT-

Map and area-preserving majnterchangeably. Our parameter domains could be either
topological disk (including rectangles and any convex gfastomain) (Figure 13 and 14)

or topological sphere domains (Figure 15).

Surface Registration. Studying the original surfaces could be extremely diffigehen
shapes are irregular and very complex, such as human bodynwairhbrain cortical sur-
faces. One effective and common approach is to first parainetée original 3D domain
to some classical parameter domains, such as planar oncglgymain, then register or
analyze 3D surfaces through these canonical spaces [11Q42] This approach has
the advantage of converting complex shapes to simple oadsgcing the computational
complexity and improving the efficiency. Conformal geomdiased methods have been
frequently applied for shape parameterizations [25, 93,181, 132, 139, 69, 11]. Con-
formal mapping can keep angle unchanged and preserve lwgaés (conformal), but may
also produce huge area distortions. In Figure 13, the Ariloadiodel is mapped onto the
planar unit disk. Frame (d) shows the image of a conformalpimap where the head area
shrunk exponentially to the height of the model and hard teebegnized. Other extruding
parts, such as hands with fingers shown in the zoom-in imageexponential area dis-
tortions may easily exceed machine precisions, leadingdblems and failure of surface
matching and registration.

The conformal mapping in (d) pushes forward the area eleoretite Armadillo model
to the planar disk. Then the unique optimal transportatiap /s carried out from the disk
with the push-forward measure in (d) to the disk with Euclideneasure. The composi-
tion of the conformal mapping and the optimal transportatitap is an area-preserving
map from the surface to the Euclidean disk. The mappingtresshown in (c), where the
head and figures occupy the same areas as those on the osigifsele. Area-preserving
mapping avoids the huge area distortion, therefore is mamvast and intuitive for pro-
cessing. Furthermore, this area-preserving mappingrnisignt to the Riemannian metric,
unique, and diffeomorphic. Therefore, the OMT map may hefyvigle practical solutions
for general 3D shape analysis tasks, such as surface pararagbn, surface matching
and surface morphometry studies.

Conformal Wasserstein Shape Space. Shape space models provide suitable mathe-
matical and computational descriptions for both shapeessgrtation and comparisons [79]
and they were actively studied in computer vision field (agsged in [136]). With the pro-
posed optimal transport theory, here we present its apjgitéor modeling shape spaces
and measuring shape distances.

Let (M, g) be a Riemannian manifol® (M) is the space of all probability measures
defined on)M/. Given two measures, v € P(M), there is an optimal mass transportation
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map7T : M — M, the transportation cost df is defined as the Wasserstein distance
between. andv, denoted a8 (i, v). It can be shown that’ is a metric of the Wasserstein
spaceP, the pair(P(M), W) is called the Wasserstein metric space, which reflects the
Riemannian metric ofM/, g).

Consider a marked metric surface with the disk topolpogy ), with two markersp, ¢),
p & OM, g € OM, there is a unique conformal mappipg: s — D, ¢ mapsp andq to 0
and1 respectively. The corresponding conformal factor induogg is A : D — R. The
area element of is pushed forward to the disk, representedias) := ¢**(z, y)dz A dy.
Then we convert a marked metric surface to a probability oneds: (s, g) — ji(sg)-

All the marked metric surfaces with the disk topology quetite isometry group and
the scaling transformation group form the shape sgacéhe mappind’ : S — P(D) is
an injective mapping, the pull back metric inducedIbgives a Riemannian metric if.
We call this metric spaceS, I'*1V,) as theConformal Wasserstein Shape Space

The conformal Wasserstein shape space is a novel Riemafraimework to study
shape space. This framework has solid theoretic foundatnohefficient computational
algorithms. It may provide a metric space for shape compayishape clustering and
classification, shape retrieval and so on.

AdvantagesTo our knowledge, this work is the first one to take Monge-Bretheory
to study 3D shape analysis problems. It has the followingtsier

1. Theoretic soundnessAccording to convex geometry theorem developed by Bre-
nier [28] and earlier work by Alexandrov [10], the solutioxists and is unique. Fur-
thermore, the area of each cell equals to the prescribedureeasactly. When the
sampling density goes to infinity, the Alexandrov maps cogedo the continuous
area-preserving map.

2. Generality and efficiencyThe method is general for arbitrary dimension, which
has the potential to lead to high dimensional parametévizait For surface case,
it can handle both topological disks and topological sphened achieve bijective
surface mapping. Comparing to the conventional Monge-#tawich method, our
approach reduces the complexity franin?) to O(n). It is equivalent to a convex
optimization problem, which can be carried out using Nevgtomethod efficiently.
Since the computation is based on classical power diagfaenalgorithm can be
implemented using any existing numerical software pacleagdy.

3. Flexibility: Our algorithm can take different canonical space as thenpatexr do-
main.

4.2 Related Work

Optimal Mass Transport
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For optimal mass transport, some approaches based on M&argerovich theory have
been proposed. Zhu et al. [147] applied optimal mass trahmdflattening blood vessel
in an area preserving mapping for medical visualizatiorkef@t al. [59] proposed to use
optimal mass transport for image registration and warping,method is parameter free
and has the unique global optimum. Dominitz and Tannenb@&hdroposed to use op-
timal mass transport for texture mapping. The method fieststith an angle-preserving
mapping and then refines the mapping using the mass trarmpeddure derived via a
gradient flow. Rehman et al. [126] presented a method for 3&gemregistration based
on optimal mass transport problem. Meanwhile, they stiesgéct that the optimization
of OMT is computationally expensive and emphasize thatimigsortant to find efficient
numerical methods to solve this issue, and it is crucial terekthe results to 3D surfaces.

There are also some works based on Monge-Brenier theorypi@umwork [120, 144]
proposed an area-preserving mapping method for brain rotwgical study and visual-
ization, but they can only compute the maps from the unit diskain with Euclidean
measure to another disk with general measure. Merigot [8%]droposed a multi-scale
approach to solve optimal transport problem. de Goes €85].Have provided an optimal-
transport driven approach for 2D shape reconstruction anglification. Recently they
have presented a formulation of capacity-constrained nargessellation as an optimal
transport problem for image processing [34]. This methaatlpces high-quality blue
noise point sets with improved spectral and spatial proggertn summary, except our prior
work [120, 144], other Monge-Brenier theory based methoel®wall applied to 2D image
matching and registration. By contrast, our work is the fars¢ to apply Monge-Brenier
based optimal mass transport method to study 3D shape &nalys

Surface Registration

There is a vast literature on surface/image registratitmugh survey on deformable
medical image registration can be found in [115], which giaeigorous treatment for reg-
istration problem. Lef and7" be source and target images defined in an image dofhain
a transformation’ : (2 — Q2 is a diffeomorphism of the domain. Then [115] formulate the
registration as an optimization problem with the energyfdet (7, So W) +R (W), where
M measures the deformatioR, measures the regularity of the mappig The survey
covers methods which minimizing different energfes The elastic body models optimize
the elastic deformation energy; the viscous fluid modelsmiges the fluid dynamics en-
ergy; the diffusion model deforms the harmonic energy (meamé energy); the curvature
registration method optimizes the bending energy; the floiniffeomorphisms finds the
geodesic in the shape space. Some other energy terms inat@r e landmark constraints,
or the constraints for the mapping, such as the mapping dlb@libng to homeomorphism,
volume preserving or rigid motion group.

The survey does not cover methods based on optimal maspadrsaison or conformal
mapping. In contrast, our method is based on optimal tratefan and conformal map-
ping. Given two metric surfacds, g;) and(Ss, g»), which are topological disks, first we
map them to the planar didk by conformal mappingss; : Sp — D, the induced confor-
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mal factors ar@\,, £ = 1, 2. Then on the disk, there are two measuyrgs- e”k(mvy)dx/\dy.
We find an optimal transportation map (D, ;) — (ID, i), the compositionp, ' o 70 ¢y
gives the registration.

From differential geometry, any mapping between two s@gawill induce area distor-
tion and angle distortion. Unless the two surfaces are isomene of the two types of
distortions is unavoidable. Our registration goal is toimize both angle and area distor-
tions. Conformal mapping, has0 angle distortion; optimal mass transportation map
has0 measure distortion. The work of [38] shows that this type apping minimizes both
angle and area distortion.

In computer vision and medical imaging research, featundrfearks, such as sulci
lines on brain surfaces or extreme points on general swface usually required to guide
surface registration [122, 89, 146, 133, 87, 57]. Kurteklef8¥] proposes a constrained
optimization approach that simultaneously computes demsespondences and geodesics
between surfaces. In this work, if there are landmark cangs, after the optimal mass
transportation map, we add an harmonic mapo enforce the alignment of the landmarks.
Although it shares some similar motivation with other laratknconstrained surface reg-
istration work, our method has a few fundamental distimgiérom that of [87]. First,
our method is intrinsic while their method considers the eduing; second, our method
computes the registration directly while their method fitttssdeformation path; third, our
method can handle non-isotopic surfaces but their methoacta

Shape Space

A popular Riemannian framework for modeling shape spaaensdasure the similarity
between two shapes by the deformation between them. A dafmmprocess is a path in
the shape space, the length of path gives the amount of dafiorm Among all paths, the
one with the minimal length is the geodesic. The length ofgbedesic gives thdistance
between the shapes.

Shape spacks the space of orbits of theparameterization groupcting on the space
of immersions [117, 137, 116]. Namely, fix a smoeth 1 dimensional manifold/, letT"
be Lie group of all diffeomorophisms df/, which is the reparameterization group [118].
The shape space is the space of all smooth immersions qubyiéh denoted as-. Rie-
mannian metrics measure infinitesimal deformations. Garimmersionf : M — R",
and two deformation vector fields ofy .k : M — R, h,k € T¢(F), one design a
reparameterization invariant metric , such thath, k) ; = (h oy, k 0 y) yo,, ¥y € I', the
construction may involve the metric of the ambient spAtethe metric of the immersion
f, the covariant derivatives or differential operatorsfoand so on.

The reparameterization invariant metric constructed 0y [B] uses the volume form
and the mean curvature of the immersipnthe metric in [86] uses the area multiplica-
tion factor of f. [87] extends the work in [86] by adding landmark constminhstead of
considering the whole reparameterization graéymnly a subgroup fixing the landmarks
is applied. The infinitesimal generators of such subgroeganstructed using an elegant
technique based on spherical harmonics. [73] represeatsritbedding by its area el-
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ement and normal vectdr, n), the so-called square root normal fields (SRNF), and the
reparameterization invariant metric is built on SRNF.

Our conformal Wasserstein shape space shares some tbgmagierties with other
Riemannian shape space frameworks while it also has cdutadtamental differences.

e Definition of shape: these methods consider the extrinsioegitings/immersions;
our method only focuses on the intrinsic Riemannian metric.

e Reparameterization: these methods focus on designingarepéerization invariant
metrics; our method uses normalized conformal mappingghvisi unique, therefore
there is no reparameterization ambiguity.

e Definition of distance: these methods use the geodesicHgengt method uses the
cost of the optimal mass transportation map.

e Deformation: these methods give the deformation sequehskapes; our method
only gives the distance without deformation.

e Isotopy constraint: these methods assume there is a defomieom one shape to
the other, which requires two shapes are isotopic; our ndathimtrinsic, applicable
for non-isotopic shapes.

In practice, our method is numerically efficient and can deageneralized to high
dimensional data processing.

3D Shape Classification

Various shape classification and comparison methods wegoped in computer vi-
sion field. Ankerst et al. [12] introduced shape histograrcodeposing shells and sectors
around a models centroid. Osada et al. [101] proposed 3Degleppesentations by prob-
ability distributions of geometric properties computed points randomly sampled on an
objects surface. Laga et al. [88] represented 3D shapesh®&yispl wavelet transforms.
Unnikrishnan et al. [128] presented a multi-scale opesabor point clouds that captures
variation in shapes. Mahmoudi et al. [95] represented shBpeomputing the histogram
of pairwise diffusion distances between all points. Kur&tlkal. [86] provided a Rie-
mannian framework for computing geodesic paths which aponiant for comparing and
matching 3D shapes. Jermyn et al. [73] defined a generaletastric on the space of
parameter domains for shape comparisons and analysis.

Our shape classification method solely depends on Riemanme#rics and is invariant
under rigid motions and scalings, yet most conventionatigew methods depend on em-
beddings and thus not intrinsic; The statistical methodetdan histograms and pairwise
diffusion distances only measure the distance betweereshépt our method explicitly
gives the diffeomorphic map between shapes as a by-pro@inetgeodesic path methods
assume there is a deformation from one shape to the otheshwéxquires two shapes are
isotopic, however our method is intrinsic, applicable fonfisotopic shapes.
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Figure 14: Circle-packing texture mappings for conformeigmeterization (CFP) (a) and
area-preserving parameterization (APP) for the model afirmdn head, with the planar
unit square parameter domain (b). The mappings to the pasach@main results are also
shown in (c) and (d), respectively. (e) to (h) are the histogg of angle distortions and area
distortions, which demonstrate the accuracy of the Optiesds Transport map.
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Figure 15: Comparison of conformal parameterization (C&iiR) area-preserving param-
eterization (APP) of a Bimba sculpture model, shown in (aJ &), with the spherical
parameter domain. The normal information on the origindlees is preserved and used
for rendering.(g) to (j) are the histograms of angle disbmg and area distortions.
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4.3 Deformable Surface Matching Application

In this section, we apply Optimal Mass Transport Map for def@ble surface matching.
The approach is illustrated by the following commutativagiam:

S

51%52

b s

Dy, ——= Dy

where S; and S, are two given surfaces with deformation afid: S; — S5 is the
desired matching. We use Optimal Mass Transport Map to ctanpu S; — D; which
mapsS; onto the canonical domaif;. D; can be domains on plan@® or sphereR?.
We call them optimal mass transport parameter domains dfutfaces. Then a planar or
spherical mapping : D; — D, is constructed for matching. The desired map is induced
by f = ¢35 ogo¢y : S — S,. The OMP-map is intrinsic to the Riemannian metric,
unique, and diffeomorphic and useful to compugie®,. This framework converts a 3D
deformable surface matching problem to a 2D planar domatchiray problem, or a 3D
spherical matching problem, which are much easier thanhimagon the original surfaces.

Since our Optimal Mass Transport map converts the 3D sigfaceonvex planar do-
main, if the mapy is a diffeomorphism, the matchingis also a diffeomorphism. In our
framework, thay is diffeomorphism is guaranteed by the following theorem:

Theorem 4.1(Rado [109].) Let(S, ¢g) be a simply connected surfade be a convex planar
domain. f is a harmonic map such that the restriction©6n the boundary : S — 0D
is a homeomorphism, thehis a diffeomorphism.

4.3.1 Surface Matching by Euclidean Optimal Mass TransportMap

Here we use a simply connected surface with one boundaryasaample to show how the
OMT-Map algorithm can help compute surface matching. Hexehe algorithm is able
to be generalized to topological sphere surfaces.

For such surfaces, the conformal parameter domagan be chosen as the unit disk.
Given two 3D surface$; and S, with deformations between thenf,: S; — S is the
desired matching. Algorithm 7 show the algorithm details.

4.3.2 Experimental Results

Data source To validate the robustness and efficiency of our method, stedesurfaces
with large isometric deformations. We chose 7 models thaisometric deformations to
each other to study the accuracy and efficiency of our praposgthod. The original Ar-
madillo models, the same subject with different motions,astained from Aim@SHAPE
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Algorithm 7 Deformable surface registration.
Input: Triangular meshes of surfaces with a simple topology, ss@samply connected
domain with one boundary. A template surface as the targttcai
Output: Registered surfaces with a one-to-one correspondencedasimsurface to the
target surface.
1. Manually or automatically locate some correspondinguiieapoints ons; and.S, for
constraints.
2. Compute a constrained harmonic mapD,; — D-, such that align the correspond-
ing feature points specified in the first step.
3. The matching is given by = ¢, ' o go ¢ : Sy — So.

repository [2] (shown in Figure 16). They form 21 differemins of surfaces being matched
to each other.

Figure 17 shows an example surface matching result for Ailfoadodels with differ-
ent motions. (a) and (b) are the two models with isometrioeétions. We cut a hole at
the waist of the models so that they are topologically edentato a disk. (c) and (f) are
the optimal mass transport map results. Their mappingtseard matched using harmonic
maps with hard constraints (yellow stars). The coloredslinennecting color-encoded
circular dots on (a) and (b) show the registered correspareteby OMT map.
Performance Evaluation and Comparison. We compared our matching and registration
method with conventional conformal mapping method baseRicni flow theory [133],
where the source surface is conformally flattened to a pldisl, then the registration
is obtained by a constrained harmonic map between the diskhentarget surface. We
also compared our work with the Lipman and Funkhouser’s iM&kioting method [89].
The method first randomly samples a triplet on each of twoased, and uses Mobius
transformations defined by the triplets to map the origindieses into a complex domain,
and finally produces voting points to predict correspondsrizetween the surfaces. We
used some performance metrics which were used in priorcurégistration studies [102].
Diffeomorphism. One of the most important advantages of our registratiorhatkets
that, in practice it always generates the mapping betwedacas to be diffeomorphic,
even for long tube surfaces that may have numerical probbgmesnformal mapping, such
as the fingers of the Armadillo model show in Figure 13. Foheagistration, we compute
the Jacobian determinant and measure the area of flippezhsedtor conformal mapping
method, the average ratio from flipped area to the total dr2a Armadillo pairs i25.8%.
The average flipped area ratio for the Mobius voting metrsodl3%. In contrast, the
flipped area ratios for all registrations obtained by ourhrodtare exactly zero.

Curvature Difference Maps. Our method to evaluate registration accuracy is to compare
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Figure 16: 7 Armadillo models with isometric deformationiich form 21 matching pairs
in our experiments.

the alignment of curvature maps between the registered Is\dd¥®]. We calculated curva-
ture maps using an approximation of mean curvature, whitteigonvexity measure. We
guantified the effects of registration on curvature by cotimgLthe difference of curvature
maps from the registered surfaces. For each vertex on thet tsurface with curvature,
we find its correspondent point on the source surface withaturec,. Then compute the
curvature difference a&ax(%, %). In Figures 17 (e) shows the average histogram of the
curvature difference map of conformal mapping, Mobiusngimethod and our method
computed from all 21 pairs of surface matchings, respdgtivdne quantitative results in-
dicate that conformal mapping and the Mobius voting methdiuce less consistent and
less accurate correspondences than our method.
Local Area Distortion. Similarly, we evaluated the local area distortion inducgdHhe
registrations [102]. For each vertexon the target surface with its correspondent point
p on the source surface, we compute its Jacobian determiffaint[133], and represent
the local area distortion atasmaz(.J(v), J~'(v)). J can be approximated by the ratio
between the measurév)/u(p), whereu(v;) := £ 32, Area([vi, v;, vi]) andv;, v;, vi] is @
triangle face adjacent tq. Note that if the registration is not diffeomorphic, thedbarea
distortion may go tec. Therefore, we add a threshold to truncate large distastibrgures
17 (h) shows the average area distortion histogram of cordbmethod, Mobius voting
method and our method. It is obvious that our registratiomhiod produces much less
area distortions than the other two methods.From thesditptare empirical evaluations,
we observe that our method may outperform previous meth@@ls133] by registration
accuracy. Moreover, our method has the advantages that itasadle large area distortion,
and guarantees diffeomorphic mappings.

Figure 18 shows another example of registration.
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Figure 17: Surface registration results for Armadillo misdeith isometric deformations.
(a) and (b) are the two models respectively, (c) and (f) asedptimal mass transport
map results respectively, and (d) and (g) are the confornagl rasults respectively. Their
mapping results are registered using harmonic maps wiith ¢@mstraints (yellow stars).
The colored lines connecting color-encoded circular dot&@pand (b) show the registered
correspondences by OMT map. (e) shows the average histajthecurvature difference
map of conformal mapping, Mobius voting and our method,ZbrArmadillo pairs; (h)
shows the average area distortion histogram of conform#iaade Mobius voting and our
method, for 21 Armadillo pairs. It can be easily seen thataurent registration method
greatly reduces the curvature errors and local area dmtsrt
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Figure 18: Surface registration results for Gargoyle medel
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| Figure | # of Faces (a) # of Faces (b) Running Time(s)

19 84.7K 83.1K 180.2
20 84.7K 79.4K 220.4
24 77.4K 79.2K 107.9

Table 1: Running time of the Riemannian OMT Map between seda

4.4 Shape Classification Application

In this section, we showed the experimental results andegrtive efficiency and efficacy
of our method. We implemented our algorithms using C++ indimns platform. All the
3D shape surfaces in this paper are represented by triarggbes.

Running time summary Table 1 summarizes the running time of the Riemannian op-
timal mass transport (OMT) map between 3D surfaces. Thdtsesow that the time
mainly depends on the complexities of the models and thdagities between shapes.

4.4.1 Wasserstein Distance

In this section, we illustrated the results of Wasserstatadce by Alg. 5 between general
3D shapes. The models are obtained from Aim@ SHAPE repggRar Figure 19 shows
the computation of Wasserstein distance between a paimufasi3D shapes. (a) and
(b) are the original surfaces of two Gargoyle models respagt The two models have
very similar structures yet distinguish with some localatefations; (c) and (d) are the
spherical conformal mapping results of the two Gargoyle emdespectively. The colors
are encoded by the normal information on the original sea¢e) shows the Riemannian
optimal mass transport map result from (c) to (d), which pehithe Wasserstein distance
between (a) and (b). In Figure 20, a pair of dissimilar 3D s&isape. a Gargoyle model
and a Buddha model, are used for computing the Wassersgtande.

The Wasserstein distance between Figure 19 (a) and (b)is yet the Wasserstein
distance between Figure 20 (a) and (b)i85. The results showed that the Wasserstein
distance between similar shapes is significantly smal&er thssimilar pairs, which demon-
strated the potential for using Wasserstein distance ssif{a3D shapes.

4.4.2 3D Facial Expression Classification

Wasserstein distance is a Riemannian metric of the Wasseigtace. The Wasserstein
distance between two surfaces is a shape metric which casdaefar quantifying shape
differences. The computational algorithm can be found ig. 4. Figure 21 shows the
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(a) Gargoyle 1

&

(c) CFP Gargoyle1  (d) CFP Gargoyle 2

(e) Riemannian OMT Map

Figure 19: The computation of Wasserstein distance betweqsir of similar 3D shapes.

(a) and (b) are the original surface of two Gargoyle moded}.aqd (d) are the spherical

conformal parameterization (CFP) of (a) and (b), respelgtiv The colors are encoded
by the normal information on the original surfaces. (e) shdke Riemannian optimal

mass transport (OMT) map result from (c) to (d), which indutiee Wasserstein distance
between (a) and (b).
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(a) Gargoyle

&

(c) CFP Gargoyle (d) CFP Buddha

(e) Riemannian OMT Map

Figure 20: The computation of Wasserstein distance betagair of dissimilar 3D shapes,
i.e. a Gargoyle model and a Buddha model. (c) and (d) are tinerigal conformal param-
eterization (CFP) of (a) and (b), respectively. The coloesemcoded by the normal infor-
mation on the original surfaces. (e) shows the Riemannidmapmass transport (OMT)
map result from (c) to (d), which induces the Wassersteitadie between (a) and (b).
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visualization results of Wasserstein distance. (a) andr@E)wo face surfaces of different

facial expressions. (b) and (d) are the conformal mappisgltefor (a) and (c), respec-

tively. (e) shows the optimal mapping from (a) to (c), whickluces Wasserstein distance
by Eqn. 3.31. For better visualization of (e), we put stragyids on (c), and draw the de-

formed grids on (e). From the grids deformation, we can blesse how the surface around
the mouth and nose deforms when the facial expression chdrage calm to smile.

As noted earlier that Wasserstein distance can be useddotifung shape differences,
we applied Wasserstein distance for facial expressiossaring. Our experimental dataset
contains 10 people, each of which has 3 different facial egons—*sad”, “happy” and
“surprise” shown in Figure 22 row 1, 2, 3, respectively. The face surfaces are from
Binghamton University 3D Facial Expression Database [1B6t each pair of surfaces in
the dataset, we compute the Wasserstein distance. Therevabagsical multidimensional
scaling (MDS) [124] to embed all the 30 face surfaceRmbased on the Wasserstein
distance between each pair of faces. Figure 23 illustréieyisualization results of the
MDS embedding. For all the surfaces with “sad” expressiagsmark them as '+’ in blue
color, and “happy” as 'x’ in red color, and “surprise” as 'of green color. We can see that
almost all faces with the same expressions are clusteredhteg and faces with different
expressions are divided into different clusters.

The facial expression clusters verify the idea that physgaressions of emotions
can be systematically categorized and support the adofamal action coding system
(FACS) [40] in computer vision and animation research. Thgeeémental results also
demonstrated the feasibility and potential of comparing quantifying shape differences
by conformal Wasserstein distance. Whether or not Wasserdistance provides better
accuracy in facial expression clustering than those adfttl other shape distance requires
careful validation for each application. More importanthe anticipate that our approach
may serve as novel shape distance for shape analysis. Ire fu plan to exploit the
potential of proposed shape distance for more applicasool as face recognition.

4.4.3 Brain Classification by 1Q

There have been much research into the relation betweenrhimedligence and human
brain. Earlier works have studied some significant factohsas cortical surface area,
cortical thickness and cortical convolution [71, 92, 91¢ vRlidate the correctness of our
framework in real applications, we applied our method fa thassification problem of
brain cortical surfaces with different intelligence qewti (1Q), and compared with some
existing works.

Data preparation: The dataset used in our experiments is real brain data from a
medical center (due to the anonymity rule for review, we db disclose the name of
the organization for the moment), it include8 male and>0 female, with ages ranging
from 18 to 30 years. The brain cortical surfaces are recocd from MRI images by
FreeSurfer [4]. Among all the brain data, we used the leftisphere of the brain surface
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Figure 21: The computation of Wasserstein distance
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Figure 22: Face surfaces for expression clustering. Ther@ivgis “sad”, the second row
is “happy” and the third row is “surprise”.
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Figure 23: Multidimensional scaling embedding of the Westetn distance between each
pair of face surfaces in the dataset.
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for experiments.

The intelligence quotient (1Q) was evaluated by an onlinsio& of Ravens Advanced
Progressive Matrices (APM) [5]. The test consists36fquestions and the 1Q score is
calculated bYN,orrectanswers/ Niotar * 100. The 1Q among the data ranges frénto 100,
which are almost uniformly distributed. Figure 24 shows ¢benputation of Wasserstein
distance between two brain cortical surfaces. (a) showsample of a 20-year-old female,
with 1Q score88.89; (b) shows an example of a 21-year-old male, with IQ s&3r83.

Instead of claiming whether one human brain is intelligentat, in our experimental
settings we divided the 1Q into three classe$; B, and C, ranging fromA : [0, 33),

B :[33,67)andC : [67,100]. The data uniformly distributed in the three classes. Fohea
gender, we randomly choge examples from each class. Therefore, we created a training
set of 72 examples, which is uniformly distributed with respect tader and 1Q. And the
remaining examples are used as testing data.

For the classification experiments, we first computed tHehit-wise Wasserstein dis-
tance matrix based on our method. We indexed all the datas$ @ into: = 1,2, ..., 33,
data of class B inte = 34, 35, ..., 66 and data of class C into= 67, 68, ...100. Figure 25
shows the visualization of the Wasserstein distance matrcoded in a gray image. The
distance is normalized from to 1, where( indicates black and indicates white. The
entry of the matrix}\/; ; is the Wasserstein distance between brain datad brain data
j. Then we can clearly see that, mostly, two surfaces in theesaass induce smaller
Wasserstein distance, yet two surfaces in different ckasshice larger Wasserstein dis-
tance. The results further demonstrated the power of Watesedistance for measuring
shape similarities.

With the distance matrix, we classified the testing set byelesfdst Neighbors (k-NN)
classifier, wheré: is chosen to bé1 by running9-fold cross-validation (we chogefold
to make each fold has the same number of examples.). Theabdation curve is shown
in Figure 26. Table 3 shows the classification rate of our oeth78.57%.

To demonstrate the efficiency and advantages of our methdpompared our method
with existing popular method. Previous work [76] shows tbarttical surface area and
cortical surface mean curvature have significant cor@tatto human intelligence, since
they quantify the complexity of cortical foldings. Thus waeneputed the two cortical mea-
surements and used surface area, mean curvature, and thamaton of the two measure-
ments as three types of features for classification, relspéct We used LIBSVM [3] as
the classifier. Linear kernel and regularization paramétet 4.5 were chosen by cross
validation. Table 3 reports the classification rate of adl three comparison methods. The
results indicated that our method outperforms previouhous.
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(e) Riemannian OMT Map

Figure 24: The computation of Wasserstein distance betweeheft hemisphere brain
cortical surfaces. (a) shows an example of a 20-year-oldfiemvith 1Q scores8.89; (b)
shows an example of a 21-year-old male, with 1Q sd383. (c) and (d) are the spherical
conformal parameterization (CFP) of (a) and (b), respebtivie) shows the Riemannian
optimal mass transport (OMT) map result from (c) to (d), whicduces the Wasserstein
distance between (a) and (b).
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pikfig: o
it

Figure 25: Wasserstein distance matrix encoded in a gragemaéhe distance is normal-
ized fromO to 1, where0 indicates black and indicates white. The results show that,
mostly, two surfaces in the same class induce smaller Watsgedistance, yet two sur-
faces in different classes induce larger Wassersteinmiista
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Figure 26: Cross-validation curve. It shows the cross wadlish accuracy as functions of
the parametek in the k-NN classification. According to the experiments,chese: = 11.
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Method | CR |

Our method 78.57%

Surface Area 53.57%

Surface Mean Curvature 57.14%
Combination of Area and Curvature67.85%

Table 2: Classification rate (CR) of our method and previoeshwds based on cortical
surface area, cortical surface mean curvature and conndoinat previous two cortical
measurements. The results demonstrated the accuracy wiatod.

5 Area Preserving Brain Mapping

Brain mapping transforms the brain cortical surface to caa planar domains, which
plays a fundamental role in morphological study. Most exgsbrain mapping methods
are based on angle preserving maps, which may introduce kep distortions. This
work proposes an area preserving brain mapping method loasktbnge-Brenier theory.
The brain mapping is intrinsic to the Riemannian metricquei, and diffeomorphic. The
computation is equivalent to convex energy minimizatiod power Voronoi diagram con-
struction. Comparing to the existing approaches based amgklKantorovich theory, the
proposed one greatly reduces the complexity (frenunknowns ton ), and improves the
simplicity and efficiency.

Experimental results on caudate nucleus surface mappohgatical surface mapping
demonstrate the efficacy and efficiency of the proposed mdeti@onventional methods
for caudate nucleus surface mapping may suffer from numeinstability; in contrast,
current method produces diffeomorphic mappings stablythénstudy of cortical surface
classification for recognition of Alzheimer’s Disease, fireposed method outperforms
some other morphometry features.

5.1 Overview

Nowadays surface parameterization has been used for a argyof applications like
pattern recognition and medical imaging. Many prominemragches, such as conformal
mapping [53] and Ricci Flow [63] which have been employeditape analysis [111, 25]
and surface registration [140]. However, an accurate isocrgarameterization is impos-
sible for general surfaces.

The conformal mapping may bring huge area distortions itagesurfaces, e.g. a slim
surface of brain caudate nucleus. In turn, such distortisnglly introduce much difficulty
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(a) (b) (d)

Figure 27: Comparison of geometric mappings for a left baartical surface: (a) brain
cortical surface lateral view; (b) brain cortical surfacedial view; brains are color coded
according to functional area definition in [37]; (c) confahmapping result; (d) area pre-
serving mapping result. The results show that conformalpmgphas much more area
distortions on the areas close to the boundary while the@eserving mapping provides
a map which preserves the area everywhere.

for following shape analysis. As the clinical questions mierest move towards identi-
fying very early signs of diseases, the correspondingssizai differences at the group
level invariably become weaker and increasingly hardedemiify. A stable method to
compute some other mapping with alternative invariants beighly advantageous for
visualization and shape analysis in this research area.

In this work, we propose a novel method to compute area piegemapping between
surfaces. The mapping is diffeomorphic and unique undemabzation. Moreover, the
mapping is invariant under isometric transformations. A&ed our algorithm on corti-
cal and caudate nucleus surfaces extracted from 3D anatbbman magnetic resonance
imaging (MRI) scans. Figure 27 demonstrates the unique ptvet the area preserving
mapping provides for brain cortical surface visualizatidmen compared with its counter-
part conformal mapping result. On cortical surfaces, tlea @reserving may also provide
good visualization function to visualize those deeply édrsulci areas which otherwise
are usually visualized with big area distortions. In a dfasgion study, our algorithm
achieve®7.50% + 0.55% average recognition rate wift5% confidence interval in a brain
image dataset consisting of image$ohealthy control (CTL) subjects arid Alzheimer’s
Disease (AD) patients. We also show that this novel and fm@thod can outperform
two other morphometry features in the same dataset.
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5.1.1 Comparison

The area preserving mapping is basedaptimal Mass TransporfOMT) theory, which
has been applied for image registration and warping [60] 408 visualization [147]. Our
method has fundamental differences from these existingoalst

Monge considered the transportation cost for moving a gitkrofrom one spot to the
other, then formulated th@ptimal Mass Transpofproblem. Let(2,, C R™ be subdomains
in R™, with positive density functiong,, such that

uoda::/ prde.
951

Consider a diffeomorphisryi: Q, — 7, which ismass preservation

Qo

Mo = |<]f‘M1 of

whereJ; is the Jacobian of the mappirfg Themass transport coss

0@%=[¥M—f@Ww@Mﬂ

An optimal mass transport mapvhen it exists, minimizes the mass transport cost.
There are two different approaches to prove the existen¢beobptimal mass transport
map, i.e. Kantorovich’s and Brenier’s. Existing methodkfw Kantorovich’s approach [78],
our proposed method follows Brenier’s [27].

Kantorovich constructed a measurer, y) : €y x €; — R, which minimizes the cost

/ |z — y|2,u(x, y)dzdy, (5.1)
Q0><Q1
with the constraints

| ey = @), [ plzy)dz = m(y). (5.2)

1 0

In contrast, Brenier showed there exists a convex function(), — R, such that its
gradient mapvu gives the optimal mass transport map, and preserves the mass

po = det|H(u)|py o Vu.

Conventional methods discretize ea@h to n samples with discrete measures, and
model the measure to ann x n matrix with linear constraints Eqn.5.2, such as a doubly-
stochastic matrix (sum of each row and the sum of each coluqualéo one). The opti-
mization of energy Eqn.5.1 is converted to a linear programgmroblem withn? variables.

In our current method, we only discretize the target dorfigimo » points, then deter-
minen power weights for them, so that the power Voronoi diagranuasdl by the points
and their power weights gives the optimal mass transport reaghermore, the. power
weights can be obtained by optimizing a convex energy.

Comparing to Kantorovich’s approach, Brenier's approaah the following merits
from computational point of view:
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1. Complexity: Existing method hag unknowns, whereas ours has onlyariables.
2. Uniqueness: Due to the convexity of the energy, our meliasca unique solution.

3. Diffeomorphism: If the domains are convex, The optimappiag is guaranteed to
be diffeomorphic.

4. Efficiency: Due to the convexity of the energy, it can beroped using Newton’s
method.

5. Simplicity: The computational algorithm is mainly basad (power) Voronoi dia-
gram and Delaunay triangulation.

Furthermore, the obtained area preserving mapping betiweesurfaces is solely de-
termined by the surface Riemannian metric, thereforeirttrnsic.

5.1.2 Contributions

Our major contributions in this work include: a way to comgpatea preserving mapping
between surfaces based on Brenier's approach in Optimas Nlemsport theory. The

current approach produces the unique diffeomorphic mgpp@omparing to the exiting

method, the new method greatly reduces the complexity (ftdno ») and improves the

simplicity and efficiency.

Thus our method offers a stable way to calculate area priegemvapping i2D para-
metric coordinates. To the best of our knowledge, it is th& fivork to compute area
preserving mapping between surfaces based on Breniersagpin OMT and apply it to
map the profile of differences in surface morphology betwesadthy control subjects and
AD patients. Our experimental results show our work may [g®wovel ways for shape
analysis and improve the statistical detection power faecterg abnormalities in brain
surface morphology.

5.1.3 Related Works

Conformal mapping and quasi-isometric embedding has begled in computer vision
for modeling the 2D shape space or 3D shape analysis [112529Quasi-isometric brain
parameterization has been investigated in [42, 18, 39,.1€8nhformal brain mapping
methods have been well developed in the field, such as ciacldipg based method in [70],
finite element method [11, 75, 125], spherical harmonic maghod [52], holomorphic
differential method [131] and Ricci flow method [133].

Area preserving mapping has been applied for visualiziramdined vessels and in-
testinal tracts in [147], which combined Kantorovich’s eggch with conformal mapping.
Optimal mass transport mapping based on Kantorovich’scagmbr has been applied for
image registration in [60]. An improved multi-grid versiohOMT mapping is presented
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in [105]. Comparing to the existing method, our method isldasn Monge-Brenier theory
to compute the Optimal Transport mapping and achieves dee@eserving.

5.2 Theoretic Background

Optimal Transport Problem  Supposé? is a domain inR™ andu a Borel measure with
1(R™) being the total volume df. Consider transport mags: (2, dx) — (R", ) which
are measure preservirng; . = dx. The cost for the mapping is defined as

O(T) == / & — T(x)|%dz.
Q
In Brenier’s seminal work [27], he proved the following fuardental theorem,

Theorem 5.1(Brenier) Let(2 be an n-dimensional compact convex seRinhand ; any
Borel measure ofR", so thatu(R") is the volume of2. Then there exists a convex function
u on ¢, unique up to adding a constant, so that the gradient map

Vu: (Q,dz) — (R", u) (5.3)

is measure preserving ar’du minimizes the quadratic cogy, |+ — T'(z)|*dx among all
transport mapd’.

In the following, we call the convex functiom the Brenier potential and the gradient
mapVu the Brenier map

In the discrete setting for optimal transport problem, wetdhe measure with finite
support, i.eu = ¥, w;6,,, wherew; > 0 andd, is the Dirac measure. Then the discrete
Brenier theorem is as follows:

Corollary 5.1. Let ©2 be an n-dimensional compact convex sefRify point setP =
{p1,p2,--,pe} C R", with weightsw,, wy, -+ ,w > 0, so thatyF  w; = vol(Q).
Then there exists a piecewise linear convex funciiorf? — R, so that(2 is decomposed
to k convex setdl’, W, - - - | W, with the property that

1. ulw, is linear withVu|w, = p;,
2. Area(W;) = w; for all .

so thatVu is the solution to optimal transport problem f@rand{ (p,, w1), - - - , (pr, wi) }
with quadratic cost. The convex functians unique up to a constant.

Variational Principle for Finite Brenier Map  We have found a finite dimensional vari-
ational principle for constructing the finite Brenier map.

Fix a finite point setP = {py,pa, - - ,px}, the powers ar& = (hy, ho,-- -, hy), the
power diagram of (p;, h;)} in R™ partitions(2 to cells{W;, W,,--- W}, the areas are

74



w = (wy,wy, - -+ ,wg). Then the power diagram functieriz) is the Brenier potential, the
gradient map is the Brenier mapu : W; — p;, which minimizes the quadratic distance
costC(T) = [, |z — T(z)|*dz for all the maps with the measure preserving property

Vol(T ' (pi)) = Vol(Wy) = w;,i = 1,2, - , k.

Furthermore, we treat the areasas the function of the powetls then the mapping — w

is a diffeomorphism. LetlV := {w| >, w; = vol(2),w; > 0} be the space of all possible
area vectors, anf := {h|Y"; h; = 0,Vw,; > 0} be the space of all possible power vectors,
then

Theorem 5.2(Main Theorem) Let(2 be a convex domain iR". Fix the point sef”, given

a power vectoh € H, letw be the area vector associated to the convex cell decompositi
of 2 induced by the power diagram f¢tp;, i;) }, then the mappingy = ¢(h) : H — W

is a diffeomorphism.

Proof. We prove the theorem for dimensi@ which can be generalized to arbitrary di-
mension straightforwardly.

Let the power diagram fdi be Dy,, the dual Power Delaunay triangulation g Any
edgee € Dy, has a unique dual edges 7T3,. Suppose two Voronoi celld’; and1V; shares
an edge;;, the direct computation shows

(9w,» (9wj |élﬂ‘
pr— pr— . -4
8hj ﬁhz |6ij‘ >0 (5 )
and 5 5
w; . w;
oh; Z Oh;
J#Fe T

We construct a differential 1-form

k
W = Z wzdhl,
=1
From Eqn.5.4w is closeddw = 0. From Brunn-Minkowski theorem [10], we kno# is
a convex domain. Therefore,is an exact form. We then define an energy function

(5.5)

(h1,ha, hg) k
mm:/ S wih;. (5.6)
=1
The Hessian matrix of is given by
(92E (9wj
= 5.7
Oh;Oh;  Oh;’ (®.7)

From Eqgn.5.4 and Eqn.5.5, we know the negative of the Hessidiagonal dominant, so
the Hessian is negative definite, the enekgis concave. From the convexity éf and the
concavity of £/, we conclude the gradient mapping

h— VEMh)=w

is a diffeomorphism. O
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In practice, the target area vector is givenvy= (wy, wy, - - - , wy), then Brenier map
T can be computed as follows. Construct the energy

(h1,ho, hy) K

Blb) =" @iy — / S w;dhy, (5.8)

which is convex and can be minimized using Newton’s methawmFthe minimizerh,
we construct the power Voronoi diagraiy,, which partitions to convex polygonal cells
{Wy, Wy, -+ Wy}, and the power Voronoi diagram functiafiz). Thenu(z) is the Bre-
nier potential, and” = Vu(x) is the Brenier mapl’(W;) = p;.

Area Preserving Mapping for Surfaces Given a simply connected surfa¢g, g) with
total arear, fix an interior pointp, and a boundary poini;, then according to Riemann
mapping theorem, there is a unique conformal mapgingS — D, whereD is on the
complex plane, such thafp,) = 0 and¢(p;) = 1. Then the Riemannian metrgccan be
represented by = ¢**dzdz, wherez = x + iy is the complex parameter. The conformal
factor defines a measure on the complex disk- e***)dxzdy. Moreover there exists a
unique Briener mapping : (D, dzdy) — (D, ). Then the composition mapping! o ¢ :
(S,g) — (D, dzdz) is area preserving.

The Brenier map- conveys the intrinsic information about the Riemannianrimen
the surface, which can be formulated as follows:

Theorem 5.3. Supposé S;, g;) and(S,, g2) are simply connected oriented surfaces. Let
pk be an interior point onS,, andp? an boundary point orf,, £ = 1,2. There exists
an isometric mapping : (Si,g1) — (S2,82), So thatf(p}) = p?,i = 0,1. Let¢y :
(Sk, gx) — D be the normalized Riemann mapping, such thapt) = 0 and ¢, (p}) = 1,

A\ be the conformal factog, = e**vdzdz, 75, : (D, dzdy) — (D, i) be the Brenier map,
wherey;, = e***dxdy. Then

P20 f = 1,71 = To,

Proof. n := ¢y 0 f o ¢;' : D — D is a conformal mapping from the unit disk to itself.
Thereforen is a Mobius transformation,

0 7 — R0
Fromn(0) = 0, we obtainzy = 0. Fromn(1) = 1, we getd = 0. Son = id, ¢ 0 f = ¢.
Therefore, we ged; = Xy, SOu; = uo. Due to the uniqueness of the Brenizer map,
7+ (D, dzdy) — (D, ug) k = 1,2 should be identical. O

Namely, if the Brenier maps are identical, then the surfacessometric.
The mapping from the unit disk to itself can be uniquely deieed by its Beltrami

coefficient. Letr : D — D, then
or 0T

Hr = 5=/ 7>
0z' 0z
whereod; = 1/2(0, — 10,), 05 = 1/2(0, + i0y).
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Theorem 5.4(Measurable Riemann Mappingpuppose|||.. < 1, then there exists a
diffeomorphismr : D — D, whose Beltrami coefficient equals o 7 is unique up to a
Mobius transformation.

Therefore, in order to compare the Brenier maps, it is sefficand necessary to com-
pare their Beltrami coefficients.

5.3 Algorithms

Given a simply connected surfa¢g, g) with total arear, fix an interior pointp, and a
boundary poinfp;, then according to Riemann mapping theorem, there is a argqu-
formal mappingp : S — D, whereD is unit disk, such thab(p,) = 0 ando(p,) = 1.

The mappingp parameterizes the surface, such that the Riemannian ngetaa be rep-
resented byg = ¢**(dz? + dy?). The conformal factor defines a measure on the unit disk
p = e**dxdy. Then there exists a unique Brenier mapping(D, dzdy) — (D, ). The
composition mapping ! o ¢ : S — D is an area preserving mapping.

In practice, the surface is approximated by a triangle midsimormalized by a scaling
such that the total area s The conformal mapping : M — D can be achieved using
discrete Ricci flow method [133]. Then the measurean be defined on each vertexe
M, as .

() == 3 > Area([v;, vy, vk]),
ik
where[v;, v;, v;] is a triangle face adjacent to.

Then the sites ar® = {¢(v1), ¢(v2), -+, d(v,)}. The target area vector & =
{p(v1), p(vg), -+, u(v,)}, the power vectoh = (hy, hy, - - - ) can be obtained by optimiz-
ing the convex energy equation using Newton’s method.

Initially, we set all powers to be zeros and translate antéesBasuch thatP is con-
tained in the unit disk. Compute the power diagram, caleula¢ areas for each celi,.
Then compute the dual power Delaunay triangulation, compig lengths of edges in
the diagram and triangulation, form the Hessian matfixthen update the powér <
h + H~'(w — w). Repeat this procedure until the cell areas are close tathettareas.

Then the power diagram fdr(¢(v;), h;} partitionsD to convex polygonal cell§1V; },
the Brenier map is given by : W; — ¢(v;). Compute the centroid dfi;, denoted as
c¢;- The area preserving mapping is giventy o ¢(v;) = ¢;. The algorithm details are
illustrated in Alg.8.

5.4 Experimental Results

We applied our area preserving mapping method to variou®ameal surfaces extracted
from 3D MRI scans of the brain. The baseline T1 images areissdj@as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [72h the paper, the segmentations
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Algorithm 8 Area Preserving Mapping

Input: Input triangle mesi/, total arear and area difference threshaid.

Output: A unique diffeomorphic area preserving mappifg M — D, whereD is a
unit disk. The areav,; of each celllV; € D is close to the target areg.

1. Run conformal mapping by discrete Ricci flow method [133],M — D, whereD

is a unit disk. Assign each sitgv;) € D with powerh; = 0 and target area; = p(v;)
defined above. Translate and scale all sites so that thew &ne unit disk.

2. Compute the power diagram and calculate the ated each cellV;.

3. Compute the dual power Delaunay triangulation, and caenine lengths of edges in
the diagram and triangulation to form the Hessian mattfix

4. Update the powet < h + H (W — w).

5. Repeat step 2 through step 4, ufjtil; — w;|| of each cell is less thadw.

6. Compute the centroid of cdlV;, denoted as;. Then the area preserving mapping is
given byr—! o ¢(v;) = ¢;, wherer is the Brenier map : W, — ¢(v;).

are done with publicly available software FreeSurfer [42FBRST [114]. All surfaces are
represented as triangular meshes. All experiments aremgited on laptop computer of
Intel Core i7 CPU, M620 2.67GHz with 4GB memory.

5.4.1 Application of Caudate Surface Parameterization

We tested our algorithm on the left caudate nucleus surfélce.caudate nucleus is a nu-
cleus located within the basal ganglia of human brain. Ihigv@ortant part of the brain’s
learning and memory system, for which parametric shape modse developed for track-
ing shape differences or longitudinal atrophy in diseasash as Alzheimers Disease [94]
and Parkinsons disease [13], etc.

Figure 28 (a) shows the triangular mesh of a reconstructéd¢deidate surface seg-
mented by FIRST. The long and slim surface is challengingaimpmute its parametric
surface. For example, a conformal mapping on slim surfacllysintroduces area dis-
tortions at the exponential level and may cause big numepicdlems. In contrast, our
method evenly embeds the caudate surface to the parameinaina and keeps the area
element unchanged. For implementation, we cut a small hdleeabottom of (a) to get
an open boundary to make its topology consistent with a slidkigure 28 (b) shows that
most parts of conformal mapping result shrink towards timtezgwhile the area preserving
method shown in Figure 28 (c) gives a good mapping, keepmgdme area element, with-
out much numerical error. Figure 29 are the histograms @t digtortion of result surface
triangles to original surface triangles for conformal miagpand area preserving mapping,

78



respectively. It shows that conformal mapping cause uptdimes shrinkage, while area
preserving mapping almost keep the same area. In Figuree8put\circle textures on both
conformal mapping result and area preserving result, ggav direct visualization of our
method’s correctness. Although multi-subject studiescdearly necessary, this demon-
strates our area preserving method may potentially be usesiudy some morphometry
change to classify and compare different subcortical sirecsurfaces.

Figure 28: Comparison of geometric mappings for caudataseir (a) original caudate
surface represented by a triangular mesh; (b) conformapmgpesult; (c) area preserving
mapping result. The area preserving mapping method eveapsrthe surface to the unit
disk and eliminates the big distortions close to the upgeaitea in (a).

5.4.2 Application of Alzheimer’s Disease Diagnosis

For Alzheimer’s disease, structural MRl measurements aihbshrinkage are one of the
best established biomarkers of AD progression and patkiokgd early researches [121,
42] have demonstrated that surface-based brain mappingffesyadvantages over volume-
based brain mapping [15] to study structural features ahbgach as cortical gray matter
thickness, complexity, and patterns of brain change ower tlue to disease or developmen-
tal process. According to prior AD researches [45, 43], ttarbatrophy is an important
biomarker of AD. The atrophy may not only be area shrinkagé atso have anisotropic
directions. Therefore, a good shape signature contairts dreta and angle deformation
information may have a good potential to be a practical bitera
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Figure 29: Histogram of area distortion: (a) area distarbbconformal mapping; (b) area
distortion of area preserving mapping. The area presemiagping result shows a much
smaller area distortion.

(@) (b)

Figure 30: Circle packing of different geometric mappin@:circle packing of conformal
mapping. (b) circle packing of area preserving mapping. fémr@ameterizations are illus-
trated by the texture map of a uniformly distributed circégtprns on the caudate surface,
the circle texture is shown in the upper left corner. In (ag, tircles stay the circle but the
circle areas change dramatically on the upper tip area.)Irtl{b circles become ellipses
but the areas stay unchanged.
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In this work, we proposed to use Beltrami coefficients [4Ghpoted from area pre-
serving mapping result to conformal mapping result, as @elséggnature to analyze the
human brain cortical surfaces among AD patients and CTLesiibj This kind of signature
combines both area and angle information so that it may geowiore powerful statistical
ability in the AD diagnosis in the early stage.

Data Source Our data included baseline MRI images from 50 AD patients 30
healthy control (CTL) subjects (Age: ADi5.86 + 7.65; CTL: 74.56 4+ 4.16; MMSE
score: AD:22.96 + 2.15; CTL: 29.02 4 1.04). We used Freesurfer’s automated processing
pipeline [42] for automatic skull stripping, tissue cld&sition, cortical surface extrac-
tion, vertex correspondences across brain surfaces ahdatarcellations. According to
work [37], we labeled the functional areas of a left brainticat surface shown in Figure
31 (a) and (b).

Cortical Surface Parameterization Results Figure 31 (c)-(f) are the conformal mapping
results and area preserving mapping results of the lefhlm@itical surfaces of a healthy
control subject and an AD patient. On both surfaces, we cui@ &round the unlabeled
subcortical region [37]. After the cutting, the remainirgtecal surface becomes a genus
zero surface with one open boundary. Both algorithms coenputliffeomorphism map
between the cortical surface and a unit disk. The resulte shat the conformal mapping
results have much more area distortion on the areas clo$e tooundary while the area
preserving mapping provides a map which preserves the &escb individual functional
area. The area preserving mapping has a potential to bestelize certain sulci areas
which are deeply buried under gyri, and hence to provide Edo@a more accurate manual
landmark delineation operation.

Numerical Analysis of Signatures among Healthy Control Sufects and AD Patients
The Beltrami coefficient is a complex-valued function ddfiree surfaces with supreme
norm strictly less than 1. It measures the local conformdistortion of surface maps. We
tested the discrimination ability of our shape signatura@et of left and right brain sur-
faces of 50 CTL subjects and 50 AD patients. Previous worB]iridicated ten functional
areas having significant atrophy in AD group, such as Mid@eporal, Superior Tempo-
ral, etc. Among the 35 functional areas, we chose 3 regionsttmly, which are Middle
Temporal, Superior Temporal and Fusiform as shown in Figdréa) and (b). Figure 32
shows the average histograms of the norm of Beltrami coeffisiof 50 AD patients and
50 CTL subjects on these three functional areas. The hestegshow the norm of Bel-
trami coefficients of cortical surfaces of AD patients areiobsly larger than those of
healthy control subjects. It means that AD patients may karger conformality distortion
in both area and shrinkage directions because AD patientsaféer a more serious atro-
phy of brain structures which result from a combination dfire@al atrophy, cell loss and
impairments in myelin turnover and maintenance [43].
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Caudal Middle Frontal

Figure 31: (a) and (b) illustrate the functional areas orleftdrain cortex [37]. (a) Lateral
view. (b) Medial view. (c) and (e) are conformal mapping tesof a CTL subject and
an AD patient, respectively; (d) and (f) are area preservirapping results of a CTL
subject and an AD patient, respectively. The area presgmigpping may provide a better
visualization tool for tracking sulci landmark curves ontazal surfaces.

Classification among Healthy Control Subjects and AD Patiets We further hypoth-
esize that the our computed Beltrami coefficients may helly & detection. We per-
formed the classification between AD and CTL groups in theesurADNI dataset. For
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Figure 32: Histograms of Norm of Beltrami Coefficients: (apult of healthy control
subjects. (b) result of AD patients. The AD result demonsttaa stronger and more
anisotropic deformation due to a more serious atrophy ohlstauctures.

the classification experimer#)% of each category of both left and right brain cortical sur-
faces are set to be training samples and the rema2fivigas testing samples. To obtain fair
results, we randomly selected the training set each timeamgputed the average recog-
nition rate over 1000 times. We used Support Vector Mach8\a\) [3] as a classifier,
where the linear kernel function was employed, and we U$&VM and chos&’ = 5 by
running cross validation. Table 3 shows 95 percent confel@mterval for average recog-
nition rate of our method i87.50% + 0.55%. For comparisons, we also computed area
based method and volume based method. For area based me¢ghoamputed the surface
areas for the base domain and 3 regions mentioned above brheagsphere as a signa-
ture(Area) = (Ao, A1, As, A3); 95 percent confidence interval for the average recognition
rate is70.00% 4 0.73%. We also calculated the volume of each hemisphere as a signat
(Vol), 95 percent confidence interval for the average recognite is62.50% =+ 0.57%.
Although the above two methods are not popular signature&@ostudy in the literature
and a more careful study such as [32] is necessary, thesdwlfied illustrate the various
nature of our testing data and showed the potential of oyygeed shape signature.
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Method | Rate% |

Area 70.00% =+ 0.73%
\Volume 62.50% =+ 0.57%
Our method| 87.50% =+ 0.55%

Table 3: Average recognition rate] for applying different signatures among 50 healthy
control subjects and 50 AD patients. In the experiments, 8@% are used for training
and the remaining for testing. The experiments were regeater 1000 times and 95%
confidence intervals are reported here.

6 Optimal Mass Transport for Visualization

We propose a novel visualization framework using the optimeass transport technique,
based on Monge-Brenier theory. Our optimal transport mapageh is rigorous and solid
in theory, efficient and parallel in computation, yet gehéwa various applications. By
comparison with the conventional Monge-Kantorovich ajppig our method reduces the
number of variables fror®(n?) to O(n), and converts the optimal mass transport problem
to a convex optimization problem, which can now be efficigtrried out by Newton’s
method. Furthermore, our framework includes the area wieiglstrategy that enables
users to completely control and adjust the size of areayewere in an accurate and quan-
titative way. Therefore, our method significantly redudes ¢complexity of the problem,
and improves the efficiency, flexibility and scalability ohg visualization. Our frame-
work, through combining conformal mapping and optimal nteesssport mapping, serves
as a powerful tool for a broad range of applications in vigadilon and graphics, espe-
cially for medical imaging. We provide a variety of experimt& results to demonstrate the
efficiency, robustness and efficacy of our novel framework.

6.1 Overview

With the fast generation of large and complicated data naysdt is desirable to develop
new frameworks aiming at generating a visualization of th#re data needed for navi-
gation, detection, exploration and a global understandfreglected objects or regions of
interest (ROIs). Complex geometric structures are oftétebeisualized and analyzed by
mapping the surface properties, such as normal map, angheea, to a simple canonical
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domain, such as a rectangle or a sphere. Surface flattenthteature mapping offer a
good way of visualizing a surface section by enabling thealization of all surface parts
within a single planar image.

In general, surface flattening and texture mapping unabdydatroduces distortions.
There are two types of distortions, angle distortion and aistortion. A mapping, which
is both angle preservation and area preservation, musbbeeisic. Therefore, the surface
must have zero Gaussian curvature everywhere, namely dogdabée surface or a ruled
surface. For general surfaces, one can only choose eitigér-preservation mapping or
area-preservation mapping, but never both of them simeitiasly.

Angle-preservation (conformal) mapping/surface flatigmpreserves local shapes, and
thus has been broadly used in many feature oriented apphesah visualization and med-
ical imaging. However, conformal method usually substdiytidistorts area, which fails
to display accurate size of area, including height, widtiickness or diameter of ROIs.
Unfortunately, these distorted area parameters are eglyemportant in many medical
image recognition and auto diagnosis applications, sudhrais fold detection [38] or
colon polyps detection and diagnosis [62, 138]. Moreoves,well known that conformal
mapping induces severe area distortions for surfaces with tube shapes, such as the
elongated lion head model, as shown in Fig. 33. This disadgaderives from the funda-
mental obstacle of conformal mapping theory and we can redyeavercome it. Imagine
acylinderr (6, z) = (cos 6, sin 0, z), a conformal mapping (¢, z) = e *(cos 6, sin §) maps
it to the unit disk, the area distortion factor?* is exponential with respect to the height
and in practice easily exceeds the machine precision.

By comparison, area-preservation mapping can generatesde@nd information loss-
less mapping results, which is a key objective for many nednsaging applications, with
the ability to carry out measurements for detecting anat@hnormalities. For example,
in virtual colonoscopy, the physician may want to measute@mpare different sizes of
polyps, to determine disease conditions and cancer ris}s fospecial case of this prob-
lem also occurs in any application where volume or area nmea®nt is critical (e.g. brain
data in [38, 50, 150]). From human cognition perspectiveagreservation mapping and
flattening can also enhance the viewer’s ability to easibpgmize the component-aware
patches or long branch parts distribution of models, andeguently understand the local
feature with the knowledge of a global structure (Fig. 33hefefore, area-preservation
mapping has vast potentials to be applied to many relatecNeation and graphics appli-
cations.

To simultaneously tackle the above challenges, we develfattaning framework
which provides a global view of the surface with a minimum ocfaadistortions, while
still, at the same time, maximally preserving local andiafge features on the flattened
surface. In this work, we introduce our solution to this peob using the technique of
optimal mass transport (OMT), based on Monge-Brenier thg#t].
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Figure 33: Disadvantages of conformal mapping for eloryateapes. (a) Front view
and (b) back view of the elongated lion head surface modelfa&a flattening results
induced by (c) conformal mapping and by (d) our area-pregienw mapping. Conformal
mapping generates major area distortions for both the &oa &ind the vase regions, while
our method can preserve them accurately for clear view withasing any information
(highlighted by the red circles).

6.1.1 Related Work
We review research work on optimal mass transport that ast mtevant to our approach

targeting both algorithms and applications, and discussdmparisons.

Theoretic Development. In 1781, Monge [98] has formulated the OMT problem. In
the 1940’s, Kantorovich [78] has proved the existence aedutiiqueness of the optimal
transport plan. At the end of 1980’s, Briener has proved thatoptimal transport map
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is the gradient map of a convex function, when the transportaost is the quadratic of
the Euclidean distance. In the discrete case, Breniendtrissequivalent to the existence
and the uniqueness of the convex polyhedron with prescipibej@cted facet areas. This
has been first shown by Alexandroff [9] in 1920’s. Aurenhamifdg] has shown the
connection between Brenier's construction and power diagwhere the existence has
been proven. Recently, the connection between the disopgiteal transport map and the
discrete Monge-Ampere equation, which is based on vanatiapproach, has been given
by Gu et al. [49].

Monge-Kantorovich Approach. Most existing works are based on Monge-Kantorovich
approach. Bonnel et al. [23] have proposed a method forpatation between distri-
butions or functions based on advection instead of blenfiingendering purposes. This
method decomposes distributions or functions into sumadit basis functions (RBFs),
then solves a mass transport problem to pair the RBFs anckajairtial transport to obtain
the interpolated function. Rubner et al. [106] have proda@seontent based image retrieval
method using the earth mover distance as a metric for the OfdBlgm. However, it fails
to give a warped grid, an essential requirement for imagetragjon and image morphing.
Rehman et al. [126] have listed several advantages of the @kthod for multiresolution
2D/3D nonrigid registration. Meanwhile, they stress thet that the optimization of OMT
is computationally expensive and emphasize that it is ingmbtto find efficient numerical
methods to solve this issue.

The following techniques are based on Monge-Brenier's @ggr. Merigot [97] has
proposed a multiscale approach to solve the optimal trabhgpoblem. To solve an op-
timal transport problem between a measure with density a discrete measure this
method build a sequeneg = v, ..., v, of simplifications. Then, it first solves the easier
transport problem betwegnandv;, and use the solution of the problem to be the initial
guess for the optimal transport betwgeandy ;). This step is iterated until a solution to
the original OMT problem. The method is applied for compagtine Wasserstein distances
between probability distributions, and for image integtmn. de Goes et al. [35] have pro-
vided an optimal transport driven approach for 2D shapensicoction and simplification.
They have further presented a formulation of capacity camstd Voronoi tessellation as
an optimal transport problem for image processing [34] sThethod produces high qual-
ity blue noise point sets with improved spectral and spatiaperties. Compared to our
method, de Goes’s method only applies between 2D domaine wbr method maps a
3D surface to a 2D domain. Our method can further lead to a $aatable algorithm to
generate high quality blue noise point distributions oftaaby density functions.

Tannenbaum group has introduced this novel approach. TBeidaa is to construct an
initial mass preservation mapping, then deform the mapgiredy that the total transporta-
tion cost is reduced and the deformed mapping is still massgoving. Namely, it designs
a gradient flow in the space of all mass preservation mapgpages Haker et al. [61] have
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presented a method for image registration and warping baséide OMT. The method is
parameter free and has the unique global optimum. Howesdinear programming of the
optimal map can be solved with(n?) variables, which is prohibitively expensive when
is large. Zhu et al. [148] have combined conformal mappingd aea-preservation map-
ping for flattening branched physiological surfaces, sichessels. The optimal transport
map is carried using the minimal flow approach. Similar médthas been applied for image
morphing [149]. Rehman et al. [126] have applied the miningZlow approach for the
OMT with applications to non-rigid 3D image registrationhelimplementation also em-
ploys multi-grid and parallel methodologies on a consumaphics processing unit (GPU)
for fast computation. Although computing the optimal map haen shown to be compu-
tationally expensive in the past, we show that our approaarders of magnitude faster
than previous work. Dominitz and Tannenbaum [38] have pseddo use the OMT for
texture mapping. The method begins with an angle-preservatapping and then corrects
it using the mass transport procedure derived via a certasient flow. A multiresolution
scheme is incorporated into the flow to obtain fast convergen the optimal mapping.
Both methods require designing divergence free vectordfiedirive a diffeomorphic flow
to minimize the energy.

Comparison. Our method mainly follows the Monge-Brenier approach, Hase the
variational principle [49]. Comparing to the state-of-@u techniques, it has many merits
as follows:

e Comparing to the Monge-Kantorovich approaches [23, 78],1@& method only
requiresO(n) variables. In contrast, Kantorovich approach requirés?) variables.
Therefore, our method greatly reduces the storage contplexid it is thus much
more efficient.

e Comparing to the Monge-Brenier based approaches [34, 35,a87he existing
methods are for image processing tasks. Our method howevesds on surfaces.
Forimage processing, the samples are relatively unifonahtlaerefore, the computa-
tion is relatively stable. In our case, the sample pointparduced by the conformal
mapping, the sample density is highly non-uniform, and twss/entional methods
are very vulnerable and error-prone for the large arearists induced by the con-
formal mapping. Our experiments indicate that conventiorethods are not robust
enough. Therefore, we have specially designedstep length controalgorithm
(Section 4.2) to improve the robustness.

e Comparing to the minizing flow methods [38, 61, 149], the 8otuof latter is equiv-
alent to a gradient descend method for optimizing the tramapon cost. In contrast,
our method is equivalent to the Newton’s method to optimizeravex energy, which
has a higher order convergence rate. Therefore, our metshudrie efficient.
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6.2 Algorithm

This section gives the detailed algorithms for the optimakstransport map generation.
Fig. 34 shows the pipeline of our OMT based area-preservangdwork. The input sur-
face is approximated by a triangular megh with vertex setd/, face set/” and a con-
vex planar domaif?, represented as a convex polygon. Our goal is to computeean ar
preserving map from the mesH to the planar domaif. Our discrete algorithm is based
on the Monge-Briener theory and utilizes the variationalgple to solve the optimization
problem. For the input, aiming to get ROIs with arbitrarysbée.qg., irregular shape of the
brain folds), we utilize the saliency map [81] to for the R@Lekction. Once users specify
local area weighto; everywhere, the system will iteratively solve the OMT mag agfine
the area-preserving result that yields strict equality efghited sizes of area between the
input surface and flattened plane. The area weighting pdeamgis defined as weighted
areas in 2D or weighted volumes in 3D. After the generatiotnefOMT map (bijectively
area-preservation mapping), we directly apply the ROI g@ditexture mapping to obtain
the output.

Surface Saliency OMT 3
Model Mapping Mapping Sulnut
-
0]
@
(=1
o
Q
Q
-~
Area
Marked 5/ \veights
ROIs 8
Setting

Figure 34: The pipeline of our OMT based area-preservingéwork.

Merits of Saliency Map. The application of saliency map can (1) accurately detdxt ar
trary ROI shape to obtain the accurate area preservatiah{2rprovide hierarchical res-
olution of surface models, supporting the reduction ofnigias in the context area, while
preserving high resolution ones in ROIs, for the purposeast tomputation. Take the
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brain model as an example, instead of using the original insile 100K faces, with the
saliency guided ROI detection, we can significantly redbesfédce account to 10K or less
(data oriented).

6.2.1 Initialization

Our algorithm uses the conformal mapping result (anglegruasion) to set up the initial
position for each vertex;. We first normalize the mesh such that its total area equafeto
area of the planar domaifn. We then initialize a discrete conformal mapping M — D.
In our framework, we utilize the discrete Ricci flow metho®3] to achieve this step.
Then, after assigning each vertex a target asgave define for each vertex € V' the
Dirac measure associated with it, as one third of the to&a af faces adjacent to it,

p) =5 X Area(fus vy, o)
[vi,vj,0,]€F
where[v;, v;, v;| represents the triangle formed by vertiegs); andvy,.
We use the images of all the vertices as the sample pointseodiiit diskD, Y =
{é(v;)|v; € V'}, each sample(v;) is associated with the Dirac measu@;). By transla-
tion and scaling, we transforii to be contained bf).

6.2.2 Optimal Mass Transport Mapping

According to the Monge-Briener theory, we need to find thghierectoth = (hy, hy, - -+, hy,).
Fix a height vector, the support planes are givenltl) : (x,y;) + h;, the convex function

iS up(z) = max;(x,y;) + h;, and its graphG(h) can be computed as upper envelope of
the supporting plane;(h). The projection ofG(h) onto 2 forms a polygonal partition

Q =U; Wi(h).

In order to preserve the area of c8l}, we need to iteratively update the virtual variable
for each vertex with height vectdr = (hy, ho, - - - , h,,) (details in the paragraph Initial
Height Vector below). Thus, in each iteration, we first conepine power diagram, using
each vertex as a point and the weighted radius as the powéeidiagram. Then, in
step 3, we compute the dual triangulation of this calculg@aer diagram (details in the
paragraph Power Diagram below). We record every edge lengibih the power diagram
and its dual triangulation in this step to form the Hessiatrixaln step 4 (the last step of
each iteration), we use Newton’s method to solve the graeieergy equation (Eqn. 3.27)
and to update the height vectbruntil it satisfies that|w; — w;|| of each cell is less than
ow (details in the paragraph Hessian Matrix below). Finallg,wpdate the vertex position
as the center of the power Voronoi diagram to obtain the preserving parameterization
result.

Initial Height Vector. At the initial stage, we scale and transform a pointiséb ensure
they are contained ife, and then compute the Voronoi diagram with zero power wesight
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Algorithm 9 Area-Preservation Mapping

Input: Input triangular meslAZ, total arear and area difference threshaoid.

Output: A unique diffeomorphic area-preservation mappfngM — D, whereD is a
unit disk. The areav,; of each celllV; € D is close to the target areg.

1. Run conformal mapping by discrete Ricci flow method [133] M — D, where

D is a unit disk. Assign each sit&(v;) € D with zero power weight, and target area
w; = p(v;) defined above. Translate and scale all sites so that thew #ne unit disk.

2. Compute the power diagram and calculate the ated each cellV;.

3. Compute the dual power Delaunay triangulation, and caenine lengths of edges in
the diagram and triangulation to form the Hessian matrixhef¢onvex energy in Eqn.
3.24.

4. Update the powet < h + H (W — w).

5. Repeat step 2 through step 4, ufjtil; — w;|| of each cell is less thadw.

6. Compute the centroid of cdll;, denoted as;. Then the area-preservation mapping
is given byr ! o ¢(v;) = ¢;, wherer is the Brénier map : W, — ¢(v;).

or namely, with initial heights;; = —1/2||y;]|?, where||y;||* is the point position in the
planar domain. This guarantees that all the cells are ngrtyem

Power Diagram. The OMT based area-preserving computation for the pantiid? is
equivalent to the classical power diagram in computatigealmetry [49]. Given a point
setY = {y1,vy2,- -+ ,yn}, €ach pointy; associated with the weight; as its power, the
power distance from any pointto y; is defined as:

1
S Wy,
2

Then, the power diagram is the Voronoi diagram when we usedler distance instead
of the standard Euclidean distance.

In our method, the partition induced by the convex functigrin Eqn. 3.18 is equiva-
lent to the power diagram with the power weight:

1
Pow(z,y;) = §Hx —uill” —

w; = 2h; + (Yi, yi)-

Therefore, the computation can be carried out using povegrdm functionalities in stan-
dard computational geometry library, such as CGAL [7]. Theastruction of the power
Voronoi diagram and the power Delaunay triangulation dustitated in Fig. 35.

Hessian Matrix. In our algorithm, we represent the gradient of eneYgly/(h) in Eqn.
3.27 as the area changes of dagit — w), wherew andw as weighting values. Then,
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(a) (b)
Figure 35: Construction of (a) the power Voronoi diagram #oydthe power Delaunay
triangulation.

compute the dual triangulation and the cell areas to forngthdient, as in Egn. 3.27,
VE(h) = (Area(W;(h) N Q))

Following the theory proposed by Gu et al. [49], in order tonfothe Hessian as in
Eqn. 3.28, we compute all edge lengthsand the dual edge lengtlas from the power
diagram and its dual triangulation (Fig. 35). Then, we useftiowing matrix: H (h) =
(hij(h)), where

—leijl/leij| i # J,WinW;NQ#0
hij(h) = ¢ =Xy sihi =

0 otherwise,

h;; is the(i, j) entry of a matrix, { # j) is the off diagonal entry, and the diagonal entry is
defined as; = — >°;; hir (namely,h;; is equal to the sum of all off diagonal entries).
Then, we use Newton’s method to update the height vector

h « h+eH(h)"'VE(h),

wheree is the step length.

Step Length Control. During the computation, it is crucial to ensure that all tedsc
W;(h) N Q are non-empty. Suppose at stepll the cells are non-empty, then, we update
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hy <+ hy + eH(hy)'VE(hy). If some cells are empty in the power diagram induced
by h;. 1, we will return toh,, shrink the step lengthto be1/2¢, and try again. If some
cells are still degenerated, we shrink the step lengthtitedg, until all the power cells are
non-empty.

Following the implementation details listed in Alg. 9, wevhaested our algorithms
on different surface models (See Section 5). For practinpléementations, we may need
to deal with surface models with different topologies, sastthe earth and brain models
which are genus zero without any boundary, and map and gesg@sevhich are genus zero
with an open boundary. The basic idea is to make the topdadithe source domain and
the parameter domain consistent. For example, if we wantap angenus zero surface
without an open boundary, such as the brain surface, to aigkitparameter domain, we
cut a very small hole on the surface to get an open boundahesthte source domain and
parameter domain have the consistent topology.

(@) (b)
Figure 36: Surface flattening of a chest model using our preservation mapping for
direct display and accurate measurement. The yellow situighlight the corresponding
ROIs between (a) the 3D surface model and (b) the 2D flattgviante.

6.3 ROIs Guided Texture Mapping

After computing the bijective area-preservation surfa@pping between the 3D surface
model and the flattened 2D disk or rectangular parameter imorthee texture mapping is
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straightforward with the ROIs guided alignment. With redpge user predefined mapping
criteria (e.qg., fix the disk boundary or fix the four cornerngeiof a rectangular domain with
the alignment of ROISs), the bijective texture mapping be&mparameterizations and image
pixels is syntactically and semantically trivial. We ditlgacall texture mapping functions
provided by OpenGL with bilinear interpolation, which issfaand easy to implement.
Moreover, we consider model shape and rendering factoch, asidepth, view angle, and
camera position to obtain reality style visualization,exsglly for medical data. The pixel
color and alpha can be adjusted by the user defined transfetidas.

Our OMT-MAP algorithm can also fully control the local arezfdifferent regions of
the surface. By adjusting the measure vegtarur method can control the areas of different
local regions, magnifying regions of interest and shrigkimimportant ones. This allows
more parameter spaces to be allocated for regions withrrggrmmetric or textural features,
and improves the rendering quality and matching accuracy.

Figure 37 demonstrates this merit, where the buddha’s Hejaiid (d)) is magnified
by different zooming factors, and the complementary pashisink accordingly (e)-(h).
Basically, for vertices in the head region, we multiply thraeasures by the zooming factor,
and then normalize the total area to be invariant. The inapeg-driven mapping results
(e)-(h) show more details on the parameter domain than tgke-gumeserving result (b).
Such flexibility controls are particularly useful for vidization or a focused region of
interest shape analysis.

6.4 Medical Applications

We first test our method using various medical data. Our kighta-preserving results
can be obtained in an interactive-rate, even for varioggeland complicated datasets. For
every medical dataset acquired from CT or MRI, we start frasin@ the visualization
toolKit (VTK) [80] to convert a volume dataset to a triangtitem mesh as the input, with
filters to remove noise and aliasing. Then, we can utilizenoapping framework to achieve
various visualization results.

Easy and Accurate Area Measurement. Fig. 36 shows a major advantage of our area-
preservation mapping and flattening method. Our mappingédveork can bijectively
project the 3D surface model into a unit 2D disk, so the doctor directly and accu-
rately visualize and measure the size of the entire ROI arut repeatedly rotating and
scaling.

Saliency Feature Guided Area-preservation Mapping. We use saliency map [81] guided
area-preservation mapping for diverse computer aidecttiete(CAD) applications. Fig.
38 shows the design detail. After extracting the surfaceehfsxdm CT colon data (Fig.
38a), we use the electronic biopsy [68], working as salianap, for the polyp detection
(Fig. 38b). Our area-preservation flattening frameworkny/ @pplied in the detected
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Figure 37: Importance-driven parameterization of a Buddbdel.

ROIs, providing an area-preserving view of polyps for theusate measurement of the
diameter and the size of area (verified by the doctor markexkorement as ground truth
in the original 3D surface model). By comparison with the foomal mapping method,
our framework still preserves major shape characteristitee colon surface (e.g., colon
folds) without any obviously visual distortion (Fig. 38c).

Arbitrary Area Weighting Scheme. Flattening the brain surface with area preservation
is important to visualize and study neural activity or toadtdiseases/disfunctions [151].
For the easy recognition of different brain folds, we useo®lto mark different folds
as the ROIs (Fig. 27a and Fig. 27b). In contrast to the cordbrmapping result (Fig.
27c¢), Fig. 27d shows our area-preservation mapping resuiguhe MRI brain dataset,
which accurately displays accurate sizes of brain foldfieut severely compressing or
stretching. Moreover, users can set different weight caefits in ROIs to flexibly adjust
sizes of different ROI areas (default 1X: equal area).

6.5 Informatics Applications

With the general application property of parameterizatimial texture mapping, we can
easily apply our framework for various informatics applicas including earth map, city
map and graph.
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(b)

Figure 38: Saliency map guided area-preservation mapsiggla colon model. (a) A
colon surface, extracted from CT slices. (b) Possible polygtected using the saliency
map [81]. (c) Surface flattening results using (Left) ouraapeeservation mapping and
(Right) conformal mapping. By comparison, our result gates the accurate polyp size
for area measurement (verified by the doctor marked areaurezaent of the polyp as
ground truth) without any severe angle distortion.

Earth Map. The fundamental challenge for earth visualization liesapping the sphere
earth model to a planar domain with maximal information presd. Direct projection
only projects the half sphere, and then causes severe iafmmmlost (Fig. 39b). The
state-of-the-art method, such as conformal mapping (Fg),preserves the whole sphere
with angle preservation, but severely compresses soméneotd while inappropriately
enlarging others without any control. By comparison, outhrad (Fig. 39d) can keep the
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Figure 39: Different mapping results and comparisons uamgarth surface model. (a) A
3D earth model. (b) Direct projection mapping with largeormhation loss. (c) Conformal
mapping result is with large area distortions, while (d) aw@a-preservation mapping result
is with accurate area preservation and small angle distoftiighlighted by the red frames).

original areas for all major continents, providing the aete size and area impression for
users.

City Map. Our system also provides a direct multiresolution dispfapctioned as a
“magic-lens” to reveal additional details in the ROIs. Ouethrod makes the multiscale
alignment accurate but easy without the need of any predkfamelmark, due to the accu-
rate area preservation. As shown in Fig. 40, our method g&semultiresolution texture
mapping to reveal additional street information of the citgp. The result demonstrates
that our method can well magnify the ROI without causing aoyious distortion.

Network Graph. Our system can generate various visual displays for thehgvegual-
ization to satisfy diverse user requirements, due to thébliexveight settings. We show-
case its merit using a network visualization example fromAM&T graph library [8], as
shown in Fig. 41a. Each graph node stands for a network statibile each straight line
depicts direct connection between two neighbor nodes.4Aig.enlarges the radius of the
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Figure 40: Multiresolution view without any predefined lamarks. (a) The original New

York city (NYC) map. (b) NYC map with multiresolution texteiimages. The red frames
highlight the corresponding multiresolution texture magphe ROI. (c) Area manipulation

result with a detailed view to show additional street infatiman. The high resolution detail
view can be easily aligned/merged into the low scale mapaowithising any landmark due
to the accurate area preservation.

central core to increase the node separation, while cosipgesxterior nodes to further

reduce the potential attention. Fig. 41c shows anotherraerapulation style: compress-
ing central nodes while enlarging exterior nodes for furdeparation. There is no efficient
way to generate a similar result using either geometry nustife.g., conformal magnifier

[145]) or deformation methods (e.g., moving least squatd8]). Taking a close look at

Fig. 41d, the conformal magnifier fails to flexibly control gmafication ratios in both focus

and context regions. It excessively enlarges the central@®a, while compressing exte-
rior nodes without any control. By comparison, our systemeasily manipulate the size
of area everywhere to generate a user preferred view wittopppte node distributions.

Hierarchical Magnification. We can directly apply our mapping framework as a cas-
caded magnifier: applying the same magnifier repeatedly @prilor computing magnifi-
cation result to obtain exponentially increasing magniiftcaratios. Since our method can
accurately preserve the size of area by setting the targghtyeve can guarantee that the
final target region would be precise after each magnificghi@cess. Fig. 42 shows that
our hierarchical magnification can easily and accuratedghehe high magnification ratio.
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(d)
Figure 41: Mapping comparisons using the network graphO¢a@inal graph layout [8].
Magnification results with (b) the central nodes as the R@d, with (c) the surrounding
exterior nodes as the ROI, using our framework. (d) Magrificeresult using conformal
magnifier [145]. By comparison, our method has flexible a@arol to generate various
views.

7 Conclusion

In this dissertation, we introduce a practical optimal m@aaasport map based on Bre-
nier's approach, which reduces the complexity frénk?) to O(k) and improves the
efficiency and applicability. And we use our approach to addrdifferent problems in
various research areas. In medical imaging, we applied @tinod for brain cortical sur-
face mapping. Comparing to the traditional conformal basegping which introduces
large area distortions and may even cause numerical pmbbdem method minimizes the
area distortions and provides the flexibility for choosirggvireen area distortions and an-
gle distortions. We applied our method for cortical surfatzssification for recognition
of Alzheimer’s Disease, the proposed method outperformsesather morphometry fea-
tures. In computer vision, we propose to use optimal massptation maps for shape
analysis, focusing on two important shape analysis apgpicgsiincluding surface registra-
tion and shape space. The experimental results on 3D surfatehing and comparison
demonstrated the efficiency and efficacy of our approachisimalization area, our frame-
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(a) (b) (€)
Figure 42: Hierarchical magnification views of a simulatadial graph. Colors are used to
illustrate the node overlaps: from red (no overlap) to pai(phost overlaps). (a) Original
radial graph. (b) 2X and (c) 4X cascade magnification resuliee 4X magnification
result is generated using the 2X magnifier again on its priagmfied result. With the
increasing magnification ratio, the central nodes are gethfor a clear separation view,
while compressing the exterior nodes.

work combines conformal mapping and optimal mass transpagping, which serves as
a powerful tool for a broad range of applications in visuatia@n and graphics, especially
for medical imaging.

In the future, we will explore broader applications in corgrgraphics, wireless sen-
sor network and machine learning. The theoretical coresstrof the high dimensional
optimal mass transport has been proven, and has the poétentia applied in many re-
search areas including computational geometry and matdaneing. In future works, we
will generalize and implement the optimal mass transpog todigher dimensions.
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