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Abstract

Optimal Mass Transport theory has deep roots in pure mathematics, combining
complex analysis, Riemannian geometry and measure theory.Monge first raised the
classical Optimal Mass Transport Problem that concerns determining the optimal way,
with minimal transportation cost, to move a pile of soil fromone place to another.
Kantorovich has proven the existence and uniqueness of the optimal transport plan
based on linear program. Monge-Kantorovich optimization has been used in numer-
ous fields from physics, econometrics to computer science including computer vision,
medical imaging and statistics. However, it has one fundamental disadvantage that the
complexity isO(k2), which is unacceptable to computer vision and visualization ap-
plications since a high resolution 3D surface normally includes up to hundreds of thou-
sands of vertices. In this dissertation, we introduce a practical optimal mass transport
map based on Brenier’s approach, which reduces the complexity from O(k2) toO(k)

and improves the efficiency and applicability. And we use ourapproach to address
three practical applications of computer vision, medical imaging, and visualization.

Firstly, in computer vision, surface based 3D shape analysis is popular and criti-
cal. We proposed to use optimal mass transport map for shape analysis, focusing on
two important shape analysis applications including surface registration and 3D shape
classification. For surface registration problem, one commonly used approach is to use
conformal map to convert the shapes into some canonical space. Although conformal
mappings have small angle distortions, they may introduce large area distortions which
are likely to cause numerical instability thus resulting failures of shape analysis. This
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work proposed to compose the conformal map with the optimal mass transport map
to get the unique area-preserving map, which is intrinsic tothe Riemannian metric,
unique, and diffeomorphic. For 3D shape classification study, we presented a novel
Riemannian framework,Conformal Wasserstein Shape Space, by combing conformal
geometry and Riemannian optimal mass transportation theory. In our work, all met-
ric surfaces with the spherical topology are mapped to the unit sphere by a conformal
mapping, which pushes the area element on the surface to a probability measure on the
sphere. The Riemannian optimal mass transportation provides a map from the shape
space of all topological spheres with metrics to the Wasserstein space of the disk and
the pullback Wasserstein metric equips the shape space witha Riemannian metric. We
validate our work by a real 3D classification problem of categorizing human brains
with different intelligence quotient.

Secondly, in medical imaging, brain mapping transforms thebrain cortical surface
to canonical planar domains, which plays a fundamental rolein morphological study.
Most existing brain mapping methods are based on angle preserving maps, which may
introduce large area distortions. Thus we proposed an area preserving brain map-
ping method based on Monge-Brenier theory. The brain mapping is intrinsic to the
Riemannian metric, unique, and diffeomorphic. The computation is equivalent to con-
vex energy minimization and power Voronoi diagram construction. Comparing to the
existing approaches based on Monge-Kantorovich theory, the proposed one greatly
reduces the complexity (fromk2 unknowns tok ), and improves the simplicity and
efficiency. Experimental results on caudate nucleus surface mapping and cortical sur-
face mapping demonstrate the efficacy and efficiency of the proposed method. Con-
ventional methods for caudate nucleus surface mapping may suffer from numerical
instability; in contrast, current method produces diffeomorphic mappings stably. In
the study of cortical surface classification for recognition of Alzheimer’s Disease, the
proposed method outperforms some other morphometry features.

Finally, in the visualization field, with the fast generation of large and complicated
data nowadays, it is highly desirable to develop new frameworks aiming at gener-
ating a visualization of the entire data needed for navigation, detection, exploration
and a global understanding of selected objects or regions ofinterest (ROIs). Angle-
preservation (conformal) mapping/surface flattening preserves local shapes, and thus
has been broadly used in many feature oriented applicationsin visualization and med-
ical imaging. However, conformal method usually substantially distorts area, which
fails to display accurate size of area, including height, width, thickness or diameter
of ROIs. Unfortunately, these distorted area parameters are extremely important in
many medical image recognition and auto diagnosis applications, such as brain fold
detection or colon polyps detection and diagnosis. Therefore, we proposed to use our
optimal mass transport map to address visualization applications that are beyond the
scope of conformal mapping.
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1 Introduction

Nowadays surface parameterization has been used for a wide variety of applications like
computer vision, medical imaging, computer graphics and visualization. Computational
conformal geometry [56] has been employed to shape analysis[111, 25, 141] and sur-
face registration [140], medical imaging[1], wireless sensor networks [107], visualization
[85] and geometric modeling [47][66]. However, an accurateisometric parameterization is
impossible for general surfaces. The conformal mapping maybring huge area distortions
in certain surfaces, e.g. a slim surface of brain caudate nucleus. In turn, such distortions
usually introduce much difficulty for following shape analysis.

In medical imaging field, as the clinical questions of interest move towards identifying
very early signs of diseases, the corresponding statistical differences at the group level in-
variably become weaker and increasingly harder to identify. A stable method to compute
some other mapping with alternative invariants may be highly advantageous for visualiza-
tion and shape analysis in this research area.

In computer vision field, Studying the original surfaces could be extremely difficult
when shapes are irregular and very complex, such as human body or human brain cortical
surfaces. One effective and common approach is to first parameterize the original 3D do-
main to some classical parameter domains, such as planar or spherical domain, then register
or analyze 3D surfaces through these canonical space [110, 41, 142]. This approach has
the advantage of converting complex shapes to simple ones, reducing the computational
complexity and improving the efficiency. Conformal geometry based methods have been
frequently applied for shape parameterizations [25, 93, 51, 111, 132, 139, 69, 11]. Con-
formal mapping can keep angle unchanged and preserve local shapes (conformal), but may
also produce huge area distortions. In Figure 13, the Armadillo model is mapped onto the
planar unit disk. Frame (d) shows the image of a conformal mapping, where the head area
shrunk exponentially to the height of the model and hard to berecognized. Other extruding
parts, such as hands with fingers shown in the zoom-in image, the exponential area dis-
tortions may easily exceed machine precisions, leading to problems and failures of surface
matching and registration. The conformal mapping in (d) pushes forward the area element
on the Armadillo model to the planar disk. Then the unique optimal mass transport map is
carried out from the disk with the push-forward measure in (d) to the disk with Euclidean
measure. The composition of the conformal mapping and the optimal mass transport map
is an area-preserving map from the surface to the Euclidean disk. The mapping result is
shown in (c), where the head and figures occupy the same areas as those on the original
surface. Area-preserving mapping avoids the huge area distortion, thus is more robust and
intuitive for processing. Furthermore, this area-preserving mapping is intrinsic to the Rie-
mannian metric, unique, and diffeomorphic. Therefore, theOMT map may help provide
practical solutions for general 3D shape analysis tasks, such as surface parameterization,
surface matching and comparison.

In the computer graphics and visualization areas, it is desirable to develop new frame-
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works aiming at generating a visualization of the entire data needed for navigation, de-
tection, exploration and a global understanding of selected objects or regions of interest
(ROIs). Complex geometric structures are often better visualized and analyzed by mapping
the surface properties, such as normal map, angle, or area, to a simple canonical domain,
such as a rectangle or a sphere. Surface flattening and texture mapping offer a good way
of visualizing a surface section by enabling the visualization of all surface parts within a
single planar image.

In general, surface flattening and texture mapping unavoidably introduces distortions.
There are two types of distortions, angle distortion and area distortion. A mapping, which
is both angle preservation and area preservation, must be isometric. Therefore, the surface
must have zero Gaussian curvature everywhere, namely a developable surface or a ruled
surface. For general surfaces, one can only choose either angle-preservation mapping or
area-preservation mapping, but never both of them simultaneously.

Angle-preservation (conformal) mapping/surface flattening preserves local shapes, and
thus has been broadly used in many feature oriented applications in visualization and med-
ical imaging. However, conformal method usually substantially distorts area, which fails
to display accurate size of area, including height, width, thickness or diameter of ROIs.
Unfortunately, these distorted area parameters are extremely important in many medical
image recognition and auto diagnosis applications, such asbrain fold detection [38] or
colon polyps detection and diagnosis [62, 138]. Moreover, it is well known that conformal
mapping induces severe area distortions for surfaces with long tube shapes, such as the
elongated lion head model, as shown in Fig. 33. This disadvantage derives from the funda-
mental obstacle of conformal mapping theory and we can not easily overcome it. Imagine
a cylinderr(θ, z) = (cos θ, sin θ, z), a conformal mappingφ(θ, z) = e−z(cos θ, sin θ) maps
it to the unit disk, the area distortion factore−2z is exponential with respect to the heightz,
and in practice easily exceeds the machine precision.

By comparison, area-preservation mapping can generate accurate and information loss-
less mapping results, which is a key objective for many medical imaging applications, with
the ability to carry out measurements for detecting anatomic abnormalities. For example,
in virtual colonoscopy, the physician may want to measure and compare different sizes of
polyps, to determine disease conditions and cancer risks [58]. A special case of this prob-
lem also occurs in any application where volume or area measurement is critical (e.g. brain
data in [38, 50, 150]). From human cognition perspective, area-preservation mapping and
flattening can also enhance the viewer’s ability to easily recognize the component-aware
patches or long branch parts distribution of models, and consequently understand the local
feature with the knowledge of a global structure (Fig. 33). Therefore, area-preservation
mapping has vast potentials to be applied to many related visualization and graphics appli-
cations.

In this dissertation, we first review the mathematical background of computational con-
formal geometry and optimal mass transport theory in Section 2. Then in Section 3, we
explain in details the computational algorithms. In section 4, we introduce the application
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in medical imaging: Area preserving brain mapping. In section 5, applications in computer
vision: Optimal mass transport for shape matching and comparison. In section 6, applica-
tions in visualization are introduced. Finally we concludethe dissertation with a sketch of
the future plan.
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2 Theoretical Background

By Poincare uniformization theorem, all shapes can be conformally deformed to one of
the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane.
Generally speaking, such mapping will have distortions, since the geometric structures of
a 3D surface and the plane usually have some differences. There are many metrics to
measure the distortion of a mapping between two surfaces. These two are essential and
important: angle distortion and area distortion. A mappingwhich preserves both angle and
area between two surfaces preserves the Gaussian curvature[84], and is called a isometric
mapping. Conformal mapping, or angle preserving mapping, is the one that minimizes
angle distortion. It has many good properties and has been widely applied in many research
and engineering areas [111, 25, 141, 140, 1]. However, conformal mapping may introduce
large area distortions and may even cause numerical problems. In these scenarios, area-
preserving mapping may be powerful.

In this section, we will briefly review the mathematical background of conformal ge-
ometry and optimal mass transport theory. For more details,we refer readers to a classical
textbook [55] for conformal geometry, the seminal papers [78] on optimal transport map
with Kantorovich’s method, and [48] for more detailed proofs of the proposed method.

2.1 Homotopy

2.1.1 Homotopy Group

Definition 2.1. (Homotopy). Two continuous mapsf0, f1 : M → N are said to be homo-
topic if there is a continuous mapf :M × I → N such thatF (·, 0) = f0 andF (·, 1) = f1.
The map F is called a homotopy[96][99][100] betweenf0 andf1, denoted asf0 ∼= f1.

As shown in Figure 1. It is easy to verify that the relation∼= on the set of continuous
maps fromM toN is an equivalence relation. We can use the concept of homotopic maps
to classify topological spaces.

A mapf : [0, 1] → M from the unit interval to a topological space is called a pathin
M , if f andg are two paths inM with f(1) = g(0). Then the product off andg is a path
f · g, which is defined as

f · g(t) =



f(2t), 0 ≤ t ≤ 1

2
,

g(2t− 1), 1
2
≤ t ≤ 1.

(2.1)

Definition 2.2. (Homotopic Paths)[14]. Two pathsf , g in M are said to be equivalent if
f andg are homotopic relative to{0, 1}, denoted asf ∼= g

We denote the equivalence class of a pathγ by [γ]. The product of equivalence classes
of paths can be defined as

[f ][g] = [f · g] (2.2)
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Figure 1: Homotopy:α is homotopy toβ, but not toγ

We can verify that the multiplication of equivalence classes of paths is associative

([f ][g])[h] = [f ]([g][h]). (2.3)

We sayf is a closed path (loop) based atp if f(0) = f(1) = p ∈M . We defineεp : I →M

as the constant path, i.e.,εp(t) = p. Then we have

[f ][εp] = [f ] = [εp][f ]. (2.4)

Furthermore, the inverse of a path can be defined asf−1(t) = f(1− t). Then

[f ][f−1] = [εp] = [f−1][f ]. (2.5)

Therefore, we have defined a group on the equivalence classesof closed paths based at
p ∈ M , which we denote it byπ(M, p). This group is called thefundamental groupor the
homotopy group[65][100] ofM .

Let p, q ∈ M . If there is a pathγ from p to q, then groupsπ(M, p) andπ(M, q) are
isomorphic,uγ : π(M, p)→ π(M, q),

uγ[g] = [γ · g · γ−1]. (2.6)

Therefore, we usually omit the base point for path connectedspaces.

2.1.2 Covering Spaces

Definition 2.3. (Covering Space)[65][83]. Let p : M̃ → M be a continuous map,p is
onto and for allq ∈M , there is an open neighborhoodU of q such that

p−1(U) = ∪j∈JUj (2.7)
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for some collection{Uj , j ∈ J} of subsets ofM̃ , satisfyingUj ∪ Uk = ∅ if j 6= k, and
with p|Uj

: Uj → U a homeomorphism for eachj ∈ J . : M̃ →M is a covering.

Definition 2.4. (Lift). Supposep : Ñ → N is a covering, andf :M → N is a continuous
map. Then a lift off is a continuous map̃f :M → Ñ such thatp ◦ f̃ = f .

Globally, M̃ andM have different topologies. If̃M has simpler topology, theñf is
easier to study thanf . In general, the mapf may have different lifts.

Figure 2: A loop on the surface is lifted to a path on the universal covering

Definition 2.5. (Deck Transformation). Supposep : M̃ → M is a covering. Then an
automorphismτ : M̃ → M̃ is called a deck transformation if

p ◦ τ = p. (2.8)
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All of the deck transformation form a groupDeck(M̃), the deck transformation group.
M is homeomorphic to the quotient space

M̃

DeckM̃
∼=M (2.9)

Definition 2.6. (Fundamental Domain). A closed subsetD ∈ M̃ is called a fundamental
domain of the Deck(̃M ), if M̃ is the union of conjugates ofD,

M̃ =
⋃

τ∈Deck

τD (2.10)

and the intersection of any two conjugate has no interior.

Definition 2.7. (Universal Covering). Supposep : M̃ → M is a covering. IfM̃ is simply
connected (π(M̃, q̃) = e), then the covering is a universal covering.(see figure 3)

Figure 2 and 3 show examples of universal covering space.

2.2 Homology and Cohomology

Homology is anther tool to study the topological propertiesof a space by counting the num-
ber of holes. Generally speaking, (co)homology is the studyof the relationship between
closed and exact (co)chains.

2.2.1 Simplicial Homology

A fundamental problem in topology is that of determining, for two spaces, whether they
are topologically equivalent. That is, we wish to know if onespace can be morphed into
the other without having to puncture it. The key idea of homology is to define invariants
(i.e., quantities that cannot change by continuous deformation) that characterize topological
spaces.

Definition 2.8. (Simplicial Complex). A simplicial complexis a collectionK of simplices,
which satisfies the following two simple conditions:

• every face of each simplex inK is inK;

• the intersection of any two simplices inK is either empty, or an entire common face.

A cycle[65] is simply a closed k-chain,i.e., a linear combination of k-simplices[65] so
that the boundary of this chain is the empty set. Any set of vertices is a closed chain; any
set of 1D loops are too. Equivalently, ak-cycle is anyk-chain that belongs to Ker∂k, by
definition.

With the concept ofk-cycle, we can define equivalence classes in homology. We will
say that ak-cycle is homologous to anotherk-cycle (i.e., in the same equivalence class than
the other) when these two chains differ by a boundary of a(k + 1)-chain (i.e., by an exact
chain). By definition, this exact chain is the image of∂k+1, i.e., Im∂k+1.
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Figure 3: Universal covering of 3 canonical shapes: genus zero, genus one and high genus
surface
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2.2.2 Homology Groups

The homology groups[65]{Hk}k=0..n of a chain complex based on∂ are defined as the
following quotient spaces:

Hk =
Ker ∂k

Im ∂k+1
. (2.11)

Here Ker∂k is thek-dimensional closed chain group and Im∂k+1 is thek-dimensional
boundary group. Twok-chainsc1k, c

2
k are homologous if they bound a(k + 1)-chainck+1,

c1k − c2k = ∂k+1ck+1, asshowninF igure4 (2.12)

Figure 4: Homology

2.2.3 Cohomology Groups

The definition of cohomology groups[65] is much more generalthan homology groups.
The cohomology groups is defined by taking the formal definition in the homology, replac-
ing all occurrences of chain by cochain, of∂ by d, and reverse the direction of the operator
between spaces – this will also define equivalence classes. The cohomology groups of the
deRham complex for the coboundary operator are simply the quotient spaces

H∗
k =

Ker d
Im d

(2.13)

Note that the homology and cohomology groups are not only dual notions, but they are also
isomorphic; therefore, the cardinalities of their bases are equal.

2.3 Differential Forms

Euclidean space,Rn is endowed with a global coordinate system(x1, x2, · · · , xn) and is
the most general example of manifold.

A subsetM = Mn ∈ Rn+r is said to be ann-dimensional submanifoldof Rn+r if
locally M can be described by givingr of the coordinate differentiably in terms of then
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remaining ones. This means that givenp ∈M , a neighborhood ofp onM can be described
in some coordinate system(x, y) = (x1, · · · , xn, y1, · · · , yr) of Rn+r by r differentiable
functions

yα = fα(x1, · · · , xn), α = 1, · · · r

We say thatx1, · · · , xn are local coordinates forM nearp.
In then dimensional case, for each pointxi ∈ Rn we need a linear transformationωxi

:

Rn → R which takes an (infinitesimal) displacement∆xi ∈ Rn as input and returns an
(infinitesimal) scalarωxi

(∆xi) ∈ R as output, representing the infinitesimal work required
to move fromxi to xi+1 (In other words,ωxi

is a linear functional on the space of tangent
vectors atxi, and is thus a cotangent vector atxi). The net work

∫
γ ω required to move from

a to b along the pathγ is approximated by

∫

γ
ω ≈

∫ n−1

i=0
ωxi

(∆xi) (2.14)

The objectω, which continuously assigns acotangent vectorto each point inRn, is called
a 1-form. There is in fact a duality between curves and forms. A1-form is also called a
covarient vectoror covector, which means it is the dual concept of vector.

∫

γ
(ω1 + ω2) =

∫

γ
ω1 +

∫

γ
ω2. (2.15)

and
∫

γ1+γ2

ω =
∫

γ1

ω +
∫

γ2

ω. (2.16)

Next consider the integration on 2-dimensional sets. Physically, such integrals arise
when computing afluxof some field (e.g. a magnetic field) across a surface; a more intuitive
example would arise when computing the net amount of force exerted by a wind blowing
on a sail. If we have a parametrization of the surfaceφ : [0, 1]2 → Rn, the surface can be
cut up into infinitesimal oriented squares with cornersx := φ(t1, t2), x + ∆1x := φ(t1 +

∆t, t2), x+∆2x := φ(t1, t2+∆t), x+∆1x+∆2x := φ(t1+∆t, t2+∆t), where∆1x,∆2x ∈
Rn are the infinitesimal vectors

∆1x :=
∂φ

∂t1
(t1, t2)∆t; ∆2x :=

∂φ

∂t2
(t1, t2)∆t. (2.17)

We refer to this object as the infinitesimal parallelogram with dimensions∆1x ∧ ∆2x

with the base pointx. Now we can define some sort of functionalωx at this base point
which should take the above infinitesimal parallelogram andreturn an infinitesimal num-
berωx(∆1x∧∆2x), which physically should represent the amount of flux passing through
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this parallelogram. With this intuition, we may require that the map(∆1x ∧ ∆2x) 7→
ωx(∆1x ∧∆2x) bebilinear, thus we have the axioms

ωx(c∆1x ∧∆2x) = cωx(∆1x ∧∆2x) (2.18)

ωx((∆1x+ ∆̃1x) ∧∆2x) = ωx(∆1x ∧∆2x) + ωx(∆̃1x ∧∆2x) (2.19)

ωx(∆1x ∧ c∆2x) = cωx(∆1x ∧∆2x) (2.20)

ωx((∆1x+ ∆̃1x) ∧∆2x) = ωx(∆1x ∧∆2x) + ωx(∆̃1x ∧∆2x) (2.21)

ωx(∆x ∧∆x) = 0 (2.22)

Therefore, any continuous assignmentω : x 7→ ωx that obeys the above axioms is called a
2-form. It is not difficult to derive theanti-symmetricproperty

ωx(∆1x ∧∆2x) = −ωx(∆2x ∧∆1x) (2.23)

More generally, one can define the concept ofk-forms on ann-dimensional manifold for
any0 ≤ k ≤ n and integrate it against an orientedk-dimensional surface in that manifold.

The concept of derivation can be defined for differential forms[134] that map ak-form
to ak + 1-form, which is calledexterior differentiation[44]. Using the exterior differenti-
ation the fundamental theorem of calculus can be generalized to theStokes’ theorem

∫

S
dω =

∫

∂S
ω. (2.24)

In the special case of Euclidean spaceR3, the differential operationω 7→ dω becomes the
gradientoperationf 7→ ∇f whenω is 0-form, thecurl operationx 7→ ∇×X whenω is a
1-form, thedivergenceoperationX 7→ ∇ ·X whenω is a2-form.

Finally, we can introduce the differential form in the complex domain as

dz = dx+ idy (2.25)

dz = dx− idy (2.26)

∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
) (2.27)

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
) (2.28)

The discrete counterpart of the differential forms mentioned above is represented by
simplicial complexes[56][36]. Formally, ak-simplexσk is the non-degenerate convex hull
of k + 1 geometrically distinct pointsv0, . . . vk ∈ Rn with n ≥ k, which is represented as

σk = {x ∈ Rn|x =
k∑

i=0

αivi with αi ≥ 0 and
k∑

i=0

αi = 1}. (2.29)

It can also be denoted byσk = {v0v1 . . . vk}. The orientation of a simplex is determined
by if there is an even or odd permutation from one to another.
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Theboundary operatoron ak-simplex can be defined as

∂{v0v1 . . . vk} =
k∑

j=0

(−1)j{v0, . . . , v̂j , . . . vk} (2.30)

wherev̂j indicates thatvj is missing from the sequence.
The boundary operator is a linear mapping from the space ofk-simplices to the space of

(k− 1)-simplices, so it can simply be represented by a matrix of dimension|Kk−1| × |Kk|.
A k-cochainω is the dual of ak-chain, that is to say,ω is a linear mapping that takes

k-chains toR.

ω : C → R

c→ ω(c), (2.31)

that is, ak-cochainω operates on ak-chain c to give a scalar inR. Since a chain is a
linear combination of simplices, a cochain returns a linearcombination of the values of
that cochain on each simplex involved. In other words, ak-cochain can be thought of as a
field that can be evaluated on eachk-simplex of an oriented simplicial complexK. Recall
that ak-chain can be represented as a vectorck of length equal to the number ofk-simplices
inM. Similarly, one may representω by a vectorωk of the same size asck. The linear
operationω(c) translates into an inner productωk · ck. A linear mapping from a chain to a
real number is what we called a cochain.

In sum, k-cochains are discrete analogs to differential forms. For instance a0-form
can be evaluated at each point, a1-form can be evaluated on each curve, a2-form can be
evaluated on each surface, etc. Now if we restrict integration to take place only on the
k-submanifold which is the sum of thek-simplices in the triangulation, we get ak-cochain;
thusk-cochains are a discretization ofk-forms. One can further map a continuousk-form
to a k-cochain. To do this, first integrate thek-form on eachk-simplex and assign the
resulting value to that simplex to obtain ak-cochain on thek-simplicial complex. This
k-cochain is a discrete representation of the originalk-form.

The operatord is called theadjointof the boundary operator∂: if we denote the integral
sign as a pairing,i.e., with the convention that

∫
σ ω = [σ, ω], then applyingd on the left

hand side of this operator is equivalent to applying∂ on the right hand:[dσ, ω] = [σ, ∂ω].
For this very reason,d is sometimes called thecoboundary operator. Finally, by linearity
of integration, we can write a more general expression of Stokes’ theorem, now extended
to arbitrary chains as follows:

∫
∑

i
ciσi

dω =
∫

∂(
∑

i
ciσi)

ω =
∫
∑

i
ci∂ωi

ω =
∑

i

ci

∫

∂σi

ω (2.32)
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Figure 5: Riemannian manifold

2.4 Riemannian Geometry

2.4.1 Riemannian metric

A Riemannian metric[127] on a manifoldMn assigns, in a differentiable fashion, a positive
definite inner product<,> in each tangent spaceMn

p . If 〈, 〉 is only nondegenerate (i.e.,
〈u, v〉 = 0 for all v only if u = 0) rather than positive definite, then we shall call the
resulting structure onMn a pseudo-Riemannianmetric. A manifold with a Riemannian
metric is called a Riemannian manifold, which is shown in Figure 5

In terms of coordinate basisei = ∂i := ∂/∂xi, we then have the differentiable matrices
(the ”metric tensor”)

gij(x) = 〈
∂

∂xi
,
∂

∂xj
〉 (2.33)

Using the Riemannian metric we can define measures on the manifold. For example,
theFirst Fundamental Formof a regular surfaceS in R3 that is parameterized asr(u, v)
can be defined as

ds2 = 〈dr, dr〉 =
(
du dv

)(E(u, v) F (u, v)

F (u, v) G(u, v)

)(
du

dv

)
(2.34)

where

E = 〈ru, ru〉, F = 〈ru, rv〉, G = 〈rv, rv〉 (2.35)
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We often use symbolg to denote the inner product matrix of the first fundamental form.
Therefore, we can also write

ds2 ≡ 〈dr, dr〉g =
∑

gαβdx
αdxβ (2.36)

2.4.2 Surface Uniformization Mapping

Conformal mapping between two surfaces preserves angles. Suppose(S1, g1) and(S2, g2)

are two surfaces embedded inR3, g1 andg3 are the Euclidean induced Riemannian metrics.
A mappingφ : S1 → S2 is calledconformal, if the pull back metric ofg2 induced byφ
onS1 differs fromg1 by a positive scalar function:φ∗g2 = e2λg1, whereλ : S1 → R is a
scalar function, called theconformal factor.

A circle domainon the complex plane is the unit disk with circular holes. Allgenus
zero surfaces with boundaries can be conformally mapped to circle domains:

Theorem 2.9.[Uniformization] SupposeS is a genus zero Riemannian surface with bound-
aries, thenS can be conformally mapped onto a circle domain. All such conformal map-
pings differ by a M̈obius transformation on the unit disk.

2.5 Conformal Structure and Conformal Mapping

Figure 6: Conformal structure.
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2.5.1 Hodge Duality

Recall that an (exterior)p-form is a covariantp-tensor that is antisymmetric ([44]). There-
fore, ap-form in n dimensional space has dimension

(
n

p

)
. Since

(
n

k

)
=

(
n

n− k

)
,

there is a one-to-one correspondence between ap-vector (p-form) and(n−p)-vector ((n−
p)-form) which forms a primal-dual pair.

In the vector case, theHodge star operatorof n vectorsej1 , ej2, . . . ejn−p
is defined as

(ej1 ∧ ej2 ∧ . . . ∧ ejn−p
)⋆ = ek1 ∧ ek2 . . . ∧ ekp . (2.37)

we can write out this in another form as

e⋆j1...jn−p
= ek1...kp (2.38)

In the covector (form) case, ifα1 is a1-form, we look at its contravariant versionA, and
to this vector we may associate the pseudo(n − 1)-form iAvol

n. In this way we associate
to each1-form a pseudo(n − 1)-form. In general, we can associate ap-form αp = α a
pseudo(n− p)-form ⋆α, called the(Hodge-dual)of α,

α⋆
j1...jn−p

=
√
|g|

∑

k1<...<kp

αk1...kpǫk1...kpj1...jn−p
(2.39)

Hereǫ is the permutation symbol.
In the discrete setting, using the Hodge Dual concept we can define adual meshfor each

k-cell. For example, in theR3 case, the dual 0-cell associated with the triangular face is
the circumcenter of the triangle. The dual 1-cell associated with one of the primal edges is
the line segment that joins the circumcenter of the triangleto the circumcenter of that edge,
while the dual 2-cell associated with a primal vertex is corner wedge made of the convex
hull of the circumcenter of the triangle, the two centers of the adjacent edges, and the vertex
itself. An application of this primal-dual mesh is the computation of Voronoi/Delaunay in
computational geometry [33]. Formally,k-chains and dual(n− k)-chains are represented
by vectors of the same dimension. Similarly to the discrete exterior derivative (coboundary)
operator, we may use a matrix (this time of size|Kk| × |Kk|) to represent the Hodge star.
In other words, we can define the discrete Hodge star through the following simple rule:

1

|σk|
∫

σk

ω =
1

| ⋆ σk|
∫

⋆σk

⋆ω (2.40)

2.5.2 Harmonic Forms and Holomorphic Forms

After defining the Hodge star operator, we can now define theLapace Operator∆ on
forms:

∆ :
p∧
→

p∧
by∆ := dd∗ + d∗d (2.41)
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Sinced∗d∗ = 0, we have∆ = (d+ d∗)2.
We say that a formαp is harmonicif ∆α = 0, which is called harmonic forms. And

since

(∆αp, αp) = (dd∗α + d∗dα, α) = (d∗α, d∗α) + (dα, dα) =‖ dα ‖2 + ‖ d∗α ‖2, (2.42)

we have

∆α = 0⇔ dα = 0 andd∗α = 0. (2.43)

So harmonic forms on a closed manifold are both closed and coclosed.
Therefore, a harmonic 1-formdα on a Riemann surface can be treated as a vector field

with zero circulation and divergence.

Definition 2.10. A functionf : (x, y) → (u, v) is holomorphic or complex analytic, if it
satisfies the following Cauchy-Riemann equation:





∂u
∂x

= ∂v
∂y

∂u
∂y

= −∂v
∂x

(2.44)

If f = u+ iv is holomorphic[54][74], then

∂f

∂z
= 0 (2.45)

Furthermore, it is easy to verify that bothu andv are harmonic. We say thatu andv are
conjugate ifu+ iv satisfies the Cauchy-Riemann equation. If a holomorphic functionf is
bijective andf−1 is holomorphic, thenf is a conformal mapping.

2.5.3 Conformal Mapping

Suppose(S1, g1) and(S2, g2) are two surfaces with Riemannian metricsg1 andg2 respec-
tively. The local parameters ofSk are(xk1, x

k
2), the metric tensor has local representation

gk(x
k
1, x

k
2) =

(
gk11 gk12
gk21 gk22

)
(xk1, x

k
2).

A mappingφ : (S1, g1) → (S2, g2) has local representationφ : (x11, x
1
2) → (x21, x

2
2). The

Jacobian matrix of the mapping has the form

Jφ(x
1
1, x

1
2) :=




∂x2
1

∂x1
1

∂x2
1

∂x1
2

∂x2
2

∂x1
1

∂x2
2

∂x1
2


 (x11, x

1
2).

Definition 2.11 (Pull Back Metric). Supposeφ : (S1, g1) → (S2, g2) is a diffeomorphism
between two Riemannian surfaces, the mappingφ induces a Riemannian metric onS1, with
local representation

φ∗g2 = JT
φ g2Jφ,

which is called the pull back metric induced byφ.
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Figure 7: A conformal mapping from a male facial surface ontothe planar unit disk.

Definition 2.12 (Conformal Mapping). Supposeφ : (S1, g1) → (S2, g2) is a diffeomor-
phism between two Riemannian surfaces, if the pull back metric induced byφ differs from
the original metricg1 by a scalar function,

φ∗g2 = e2λg1, (2.46)

whereλ : S1 → R is a function defined onS1, thenφ is called a conformal mapping.

As shown in Fig. 7, a conformal mapping from a male facial surface onto the planar
unit disk is illustrated. We put checker board texture on thedisk, and pull back the texture
onto the facial surface. As shown in the second frame, all theright angles of checkers are
well preserved. If we put circle packing texture on the disk,and pull it back on the face
surface, all the circles are preserved, as demonstrated in the third frame. This demonstrates
that a conformal mapping transforms infinitesimal circles to infinitesimal circles.

Theorem 2.13(Riemann Mapping). Suppose a Riemannian surface(S, g) is simply con-
nected with a single boundary, then there exists a conformalmappingφ : S → D from the
surface onto the planar unit diskD, Furthermore, such mapping is unique upto a Möbius
transformation.

A Möbius transformationη : D→ D for the unit disk to itself has the form

η(z) = eiθ
z − z0
1− z̄0z

.

Riemann mapping theorem implies the existence of isothermal coordinates.

Definition 2.14(Isothermal Coordinates). Suppose(S, g) is a Riemannian surface, a local
coordinate system(x1, x2) is called isothermal coordinates, if it is conformal, namely

g = e2λ(x1,x2)(dx21 + dx22).
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Under isothermal coordinates, theGaussian curvatureof the surface is given by

K(p) = − 1

e2λ(p)
∆λ(p) = −∆gλ(p),

where∆ is the Laplace-Beltrami operator

∆ = ∂21 + ∂22 ,∆g =
1

e2λ
∆.

The geodesic curvature can be defined similarly. Under isothermal coordinates, the angle
between the x-axis and the tangent direction of the boundarycurve isθ(s), wheres is the
arc length parameter,n is the exterior normal to the boundary, then geodesic curvature
reads

kg = −
1

eλ
∂θ

∂n

Theorem 2.15(Gauss-Bonnet). The total curvature of(S, g) is a topological invariant,
∫

S
KdA+

∫

∂S
kgds = 2πχ(S),

whereχ(S) is the Euler characteristic number of the surface.

2.5.4 Ricci Flow

Riemann mapping can be computed using surface Ricci flow. Ricci flow deforms the Rie-
mannian metric proportional to the curvature, such that thecurvature evolves according
to a heat diffusion process, and eventually becomes constant everywhere. Ricci flow is a
powerful tool to design Riemannian metrics by prescribed curvatures.

Definition 2.16 (Surface Ricci Flow). Given the target curvaturēK : S → R, the surface
Ricci flow is defined as

dgij(p, t)

dt
= 2(K̄(p)−K(p, t))gij(p, t),

One can set the target curvature to be constantρ = 2πχ(S)
A(0)

, whereA(0) is the total area
at the time0. During the flow, the curvature evolution equation is

∂tK = ∆g(t)K + 2K(K − ρ),

The convergence of surface Ricci flow has been proven,

Theorem 2.17(Hamilton and Chow). The normalized Ricci flow on a closed surface con-
verges to the metric with constant curvatureρ.

Furthermore, surface Ricci flow is conformal, the conformalfactor evolves

∂tλ(p, t) = 2(ρ−K(p, t))λ(p, t),

where the initial condition isλ(p, 0) ≡ 0.
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2.6 Optimal Mass Transportation

2.6.1 Monge’s Problem

In the 18th century, Monge first raised a problem that minimizes the inter-domain trans-
portation cost while preserves measure quantities[24]. SupposeX andY are two metric
spaces with probability measuresµ andν respectively. And supposeX andY have equal
total measures. ∫

X
µ =

∫

Y
ν.

A mapT : X → Y is measure preservingif for any measurable setB ⊂ Y , it satisfies

µ(T−1(B)) = ν(B). (2.47)

Denote transportation cost for sendingx ∈ X to y ∈ Y by c(x, y), then the totaltrans-
portation costis defined by

C(T ) :=
∫

X
c(x, T (x))dµ(x). (2.48)

Problem 2.18(Optimal Mass Transport). Given two metric spaces with probabilities mea-
sures(X, µ), (Y, ν) with the transportation cost functionc : X × Y → R, the problem
is to find the measure preserving mapT : X → Y , satisfying condition Eqn. 2.47, which
minimizes the transportation cost Eqn. 2.48.

In the 1940s, Kantorovich introduced the relaxation of Monge’s problem and solved it
using linear programming method [78].

At the end of 1980’s, Brenier [26] discovered the intrinsic connection between optimal
mass transport map and convex geometry.

2.6.2 Optimal Mass Transportation

Optimal mass transportation map is a special area-preserving mapping.

Definition 2.19 (Area-preserving Mapping). Supposeφ : (S1, g1) → (S2, g2) is a diffeo-
morphism, the pull back metric induced byφ onS1 is φ∗g2, if

det(g1) = det(φ∗g2), (2.49)

thenφ is an area-preserving mapping.

Convex Geometry Convex geometry studies convex polyhedra in Euclidean space R
n.

The Minkowski theorem states that a convex polyhedron can befully determined by its
face normals and face areas.
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Theorem 2.20(Minkowski [108]). Given k unit vectorsn1, · · · ,nk not contained in a
half-space inRn andA1, · · · , Ak ≥ 0, such that

k∑

i=1

Aini = 0,

then there exists a convex polytopeP with facesF1, · · · , Fk, such that the normal toFi is
ni and the area ofFi isAi. P is unique up to translations.

u u∗

∇u

Wi
pi

�i
�∗
i

Ω, T
Ω
∗, T ∗

proj
proj∗

Figure 8: A PL convex function induces a cell decomposition of Ω. Each cell is mapped to
a point.

Alexandrov generalized Minkowski’s result to non-compactconvex polyhedra. As
shown in Fig.8, givenk planesπi : 〈x, pi〉 + hi, one can construct a piecewise linear
convex function

u(x) = max
i
{〈x, pi〉+ hi|i = 1, · · · , k}, (2.50)

whose graph is an infinite convex polyhedron. The PL convex function produces a convex
cell decomposition{Wi} of Rn:

Wi = {x|〈x, pi〉+ hi ≥ 〈x, pj〉+ hj , ∀j} = {x|∇u(x) = pi}. (2.51)
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Alexandrov shows that the convex polyhedron is determined by the face normal, or equiv-
alently the gradient{pi} and the projected area{Ai}.

Theorem 2.21(Alexandrov [9]). Given a compact convex domainΩ in Rn, if p1, · · · , pk
are distinct inRn,A1, · · · , Ak > 0 such that

k∑

i=1

Ai = vol(Ω),

then there exists a piecewise linear functionu(x) = maxi{〈x, pi〉 + hi} unique up to
translations, such that

V ol(Wi ∩ Ω) = Ai,

whereWi is defined in Eqn. 3.20.

Definition 2.22(Alexandrov map). We call the gradient map∇u : x→∇u(x) the Alexan-
drov map, or briefly A-Map.

According to Monge-Brenier theory [27], the Alexandrov mapis the unique Optimal
Mass Transport map that minimizes the following mass transport energy

∫

Ω
‖x− f(x)‖2dx,

among all mass preserving mapsf : Ω→ {p1, · · · , pk}, such that

V ol(f−1(pi)) = Ai.

The computation of the Alexandrov map is equivalent to computing the so-calledpower
diagramin computational geometry.

Power Diagram The power diagram is a generalization of Voronoi diagrams. Suppose
each pointpi has a weighthi, which may be positive or negative, thepower distancefrom
a pointx ∈ R2 to p is defined as

Pow(x, pi) =
1

2
‖x− pi‖2 −

1

2
hi.

Whenhi is positive, the intuitive meaning of the power distance is one half of the squared
distance fromx to the tangent point ofx to the circle centered atpi with radius

√
hi. The

power diagramis the Voronoi diagram when we use power distance instead of the standard
L2 distance metric. It is again a partition of the Euclidean plane into polygonal cells,
although some sites may have empty power cells{Wi}.

Wi = {x|Pow(x, pi) ≤ Pow(x, pj), ∀j}
= {x|〈x, pi〉+ 1/2(hi − |pi|2) ≥ 〈x, pj〉+ 1/2(hj − |pj|2), ∀j}
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Comparing this equation to Eqn.3.20, it is obvious that computing a power diagram is
equivalent to compute the Alexandrov map.

Traditionally, constructing a power diagram is converted to computing the convex func-
tion in Eqn.3.18, which can be solved using convex hull algorithms in timeO(n logn), such
as the divide-and-conquer algorithm [103] or the randomized incremental algorithm [31].

Thepower Delaunay triangulationon the point set{p1, · · · , pk} is the dual to the power
diagram. Two power cellsWi andWj are adjacent in the diagram, if and only if there is an
edge connectingpi andpj in the dual triangulation.

Optimal Mass Transportation Map by Variational Principle The computation of Alexan-
drov map is based on the following theorem.

Theorem 2.23(Generalized Alexandrov). Given a convex domainΩ ⊂ Rn, with measure
densityρ : Ω → R, and a discrete point setP = {p1, · · · , pk} with discrete measures
µ = {µ1, · · · , µk}, such that

∫

Ω
ρ(x)dx =

k∑

i=1

µi,

then there exists ah = {h1, · · · , hk} unique upto translations, such that the convex function
u(x) = maxi{〈x, pi〉 + hi}, induces a cell decomposition ofRn, Rn =

⋃k
i=1Wi(h), and

the area of each cell

wi(h) =
∫

Wi(h)∩Ω
ρ(x)dx

equals toµi. h is the unique global minimizer of the convex function

Eµ(h) =
k∑

i=1

µihi −
∫ h

0
ω, (2.52)

where the differential formω =
∑k

i=1wi(h)dhi.

The computation on 2D is based on power diagram and power triangulation. Suppose,
two voroni cellsWi(h),Wj(h) are adjacent and they share a common edgeeij . The edge
eij has a dual Delaunay edgeēij. The norm with respect toρ is defined as

|e|ρ =
∫

e
ρ(x)dx, (2.53)

and|e| is just the traditional Euclidean length. By direct computation, we can show

∂wi

∂hj
=
∂wj

∂hi
=
|eij|ρ
|ēij|

.

Therefore the differential 1-formω =
∑k

i=1widhi is a closed 1-form,dω = 0. By Brunn-
Minkowski inequality [9], the admissible space

H := {h|∀i, wi(h) > 0,
∑

i

hi = 0}
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is non-empty and convex. Therefore,E(h) =
∫ h ω is well defined. The gradient ofE is

(w1, · · · , wk), the Hessian matrix ofE is as follows. The off diagonal element is given by

∂2E

∂hi∂hj
=
∂wi

∂hj
=
|eij|ρ
|ēij|

. (2.54)

Because
∑

i wi(h) = const, therefore the diagonal element is given by

∂wi

∂hi
= −

∑

j 6=i

∂wi

∂hj
, (2.55)

the negative Hessian matrix is diagonal dominant, soE is concave onH. ThereforeEµ in
Eqn. 5.6 is positive definite, the desired solution is the unique global minimum.

An Alexandrov map can be obtained by optimizing the convex energy Eµ(h)using
Newton’s method, where each iteration is to construct a power diagram dynamically. Al-
gorithmically, each iteration in the optimization processis to construct a power diagram,
which is classical in computational geometry and can be solved using mature, robust and
efficient software packages, such as [6].

2.6.3 Shape Distance

Given a Riemannian surface(S, g), we compute a Riemann mappingφ : (S, g)→ (D, dzdz̄).
Assume the conformal factor function isλ : S → R, such that

g ◦ φ−1(z) = e2λ(z)dzdz̄.

Suppose the total area isπ, ∫

D

e2λ(z)dxdy = π,

we can find the unique optimal transportation map (Alexandovmap)τ : (D, e2λdzdz̄) →
(D, dwdw̄), τ can be represented as a complex-valued function defined on the unit disk.

Definition 2.24(Shape Definition). Given two Riemannian surfaces, which are topological
disks,(S1, g1) and (S2, g2), the Riemann mappings areφk, k = 1, 2 respectively. Let
ηk ∈ Mob(D) be a M̈obius transformation, whereMob(D) is the Mobius transformation
group of the unit planar disk, thenηk ◦ φk are still Riemann mappings. Each Riemann
mappingηk ◦ φk determines a unique optimal transportation mapτk(φk, ηk). Then the
distance between two surfaces is given by

d(S1, S2) := min
η1,η2∈Mob(D)

∫

D

|τ1(φ1, η1)− τ2(φ2, η2)|2dxdy.

The following lemma shows that the Riemann mappingφ and the optimal transportation
mapη encodes all the Riemannian metric information of the original surface.
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Lemma 2.1.Suppose a Riemannian surface(S, g) with total areaπ, which is a topological
disk, the Riemann mapping isφ : (S, g) → (D, dzdz̄), the conformal factor induced byφ
is λ : S → R, the optimal transportation map isη : (D, e2λ◦φ

−1(z)dzdz̄)→ (D, dzdz̄), then
the Riemannian metric of the original surface is given by

g ◦ φ−1(z) = det(Jη)dzdz̄.

Proof. Becauseφ : (S, g)→ (D, dzdz̄) is conformal, according to Eqn. 2.46

g ◦ φ−1(z) = e2λ◦φ
−1(z)dzdz̄,

Becauseη : (D, e2λdzdz̄) → (D, dzdz̄) is an optimal transportation map, therefore it is
area-preserving. According to Eqn. 2.49,

e2λ = det(Jη).

Combine the above two equations, we get the formula in the lemma.

The following theorem is classical in surface differentialgeometry.

Theorem 2.25.Suppose(S, g) is a closed Riemannian surface embedded in inR
3 with

isothermal coordinates, thenS is determined unique upto a rigid motion by the confor-
mal factorλ and mean curvature functionH defined on isothermal coordinates. IfS has
boundaries, thenS is determined by(λ,H) and Dirichlet boundary condition.

We now give the proof for the main theorem.

Proof. Suppose two marked topological disks(S1, g1, p0, p1) and(S2, g2, q0, q1) are given.

We prove the first claim:
’=⇒’ if there exists an isometryf : S1 → S2, such thatf(pk) = qk, k = 0, 1, consider the
normalized Riemann mappingsφ1 : S1 → D, φ1(p0) = 0 andφ1(p1) = 1, φ2 : S2 → D,
φ2(q0) = 0 andφ2(q1) = 1, the composition

φ2 ◦ f ◦ φ−1
1 : D→ D

is conformal, therefore a Möbius transformation, which fixes0 and1, hence it is the iden-
tity, namely

f = φ−1
2 ◦ φ1,

Supposeg1 = e2λ1φ∗
1dzdz̄, andg2 = e2λ2φ∗

1dzdz̄, therefore

f ∗g2 = e2(λ2−λ1)g1,
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becausef is an isometry, thereforeλ1 ≡ λ2. Therefore the measures on the disk induced
by φ1 andφ2 are equal. According to the uniqueness of the optimal transportation map, we
obtainη1 ≡ η2.
’⇐=’ Reversely, ifη1 ≡ η2, according to lemma 2.1,λ1 ≡ λ2. Define the composition
f : S1 → S2, f := φ−1

2 ◦ φ1, becauseφ1 and φ2 are conformal, sof is conformal,
f ∗g2 = e2(λ1−λ2)g1, sof is an isometry.
We prove the second claim:
From the first claim,η1 ≡ η2 is equivalent toλ1 ≡ λ2, then according to theorem 2.25, the
claim holds.

2.6.4 Wasserstein Metric Space

Suppose(M, g) is a Riemannian manifold with a Riemannian metricg.

Definition 2.26 (Wasserstein Space). LetPp(M) denote the space of all probability mea-
suresµ onM with finitepth moment, wherep ≥ 1. Suppose there exists some pointx0 ∈M
that

∫
M d(x, x0)

pdµ(x) < +∞, whered is the geodesic distance induced byg.

Given two probabilityµ andν in Pp, the Wasserstein distance between them is defined
as the transportation cost induced by the optimal mass transport mapT :M → M ,

Wp(µ, ν) := inf
T#µ=ν

(∫

M
d(x, T (x))pdµ(x)

) 1
p

.

The following theorem plays a fundamental role for the current work

Theorem 2.27.The Wasserstein distanceWp is a Riemannian metric of the Wasserstein
spacePp(M).

Detailed proof can be found in [129].

2.6.5 Conformal Wasserstein Shape Space

Combing optimal transportation and conformal mapping theories, we can construct a shape
space framework.

We consider all oriented metric surfaces(M, g) with the disk topology, namelyM is
of genus0 and with a single boundary∂M . There are two markers(p, q) ⊂ M , p is an
interior point,q is a boundary point. We call(M, g, p, q) as amarked metric surface. The
set of all marked metric surfaces is denoted asM,M := {marked metric surfaces}.

Two marked metric surfaces are equivalent, if there is anormalized isometric diffeomor-
phismφ : (M1, g1, p1, q1)→ (M2, g2, p2, q2), such thatφ preserves metricsφ∗g2 = g1 and
preserves markersφ(p1) = p2, φ(q1) = q2. The product of the normalized isometry diffeo-
morphism group and the scaling group is denoted asG,G := {normalized isometries}⊕
{scaling}.
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We define the shape space as
S :=M/G. (2.56)

Let (M, g, p, q) ∈ S is a normalized marked metric surface, such that its total area isπ.
In the following discussion, we always omit the markers(p, q), and assume the total area
is π. Then according to Riemann mapping theorem, there is a unique conformal mapping
φ : M → D, whereD is the unit planar disk with Euclidean metricdx2 + dy2, such that
φ(p) = (0, 0) andφ(q) = (1, 0). Theng = e2λ(x,y)(dx2 + dy2). φ push forward the area
element on(M, g) to the disk as

µ(M,g) := e2λ(x,y)dx ∧ dy. (2.57)

This gives an injective mappingΓ : S → P2(D), Γ : (M, g) 7→ µ(M,g). The Wasserstein
metric on the Wasserstein spaceP2(D) is pulled back toS,

dS((M1, g1), (M2, g2)) := W2(µ(M1,g1), µ(M2,g2)). (2.58)

We call the metric space(S, dS) theconformal Wasserstein shape space.The constructed
shape space enjoys numerous advantages such as that it is intrinsic geometric structure and
does not have reparameterization ambiguity, etc.
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3 Computational Algorithms

3.1 Conformal Mapping

In discrete setting, the captured surfaces are representedas discrete polyhedral surfaces.
SupposeS is a topological surface,V is a set of points onS, (S, V ) is called amarked
surface. T is a triangulation ofS, whose vertices are inV , then(S, T ) is called atriangular
mesh. In the following discussion, we useE andF to represent the edge and face sets. A
piecewise linear Riemannian metric (PL metric) on(S, V ) is a flat cone metric, whose cone
points are inV , represented by edge lengths.

Definition 3.1(Discrete Riemannian Metric). A discrete metric on a triangular mesh(S, T )
is a function defined on the edgesd : E → R+, which satisfies the triangle inequality, on a
face[vi, vj , vk],

dij + djk > dki, dki + dij > djk, dik + dkj > dij .

The discrete curvature is defined as angle deficit,

Definition 3.2 (Discrete Gauss Curvature). The discrete Gauss curvature function on a
mesh is defined on vertices,K : V → R,

K(v) =

{
2π −∑i θi v 6∈ ∂(S, T, V )

π −∑i θi v ∈ ∂(S, T, V )

whereθi’s are corner angles adjacent to the vertexv, and∂(S, T ) represents the boundary
of the mesh.

Gauss-Bonnet theorem still holds on discrete surface, the total Gauss curvature of a
meshM ∑

i

K(vi) = 2πχ(S),

whereχ(S) is the Euler characteristic number ofS.
In practice, a choose a special triangulation according to the given discrete metric,

Definition 3.3 (Delaunay Triangulation). A closed discrete surface(S, T ) with a discrete
metricd, we say a triangulationT is Delaunay, if for any edge[vi, vj] adjacent to two faces
[vi, vj , vk] and [vj, vi, vl],

θijk + θjil ≤ π,

whereθijk is the corner angle atvk in [vi, vj, vk], θ
ji
l is the angle atvl in [vj, vi, vl].

Discrete Surface Yamabe flow We define the discrete conformal factor function asu :

V → R, and conformal structure coefficient on edgesη : E → R+.
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Definition 3.4 (Discrete Conformal Equivalence). Two discrete metricsd andd′ on (S, V )

are discrete conformal if there exists a sequence of discrete metricsd = d1, d2, d3, · · · , dn =

d′ on (S, V ) and triangulationsT1, T2, · · · , Tn of (S, V ),satisfying:
(a) eachTi is Delaunay indi,
(b) if Ti = Ti+1, there exists a conformal factor, so that ife ∈ Ti is with end verticesv and
v′, then

di+1(e) = eu(v)di(e)e
u(v′),

(c) if Ti 6= Ti+1, then (S, di) is isometric to(S, di+1) by an isometry homotopic to the
identity in(S, V ).

Each discrete conformal class of discrete metrics is calledadiscrete Riemann surface.

Definition 3.5 (Discrete Yamabe Flow with Surgery). Given a surface(S, V ) with a dis-
crete metricd, given a target curvature function̄K : V → R, K̄(vi) ∈ (−∞, 2π), and the
total target curvature satsifies Gauss-Bonnet formula, thediscrete Yamabe flow is defined
as

du(vi)

dt
= K̄(vi)−K(vi), (3.1)

under the constraint
∑

vi∈V u(vi) = 0. During the flow, the triangulation on(S, V ) is
updated to be Delaunay with respect tod(t), for all time t.

The existence of the solution to the Yamabe flow is guaranteedby the following theo-
rem.

Theorem 3.6. Suppose(S, V ) is a closed connected surface andd is any discrete metric
on (S, V ). Then for anyK̄ : V → (−∞, 2π) satisfying Gauss-Bonnet formula, there exists
a discrete metric̄d, unique up to scaling on(S, V ), so thatd̄ is discrete conformal tod and
the discrete curvature of̄d is K̄. Furthermore, thēd can be obtained by discrete Yamabe
flow with surgery.

Furthermore, it has been show that Yamabe flow is the negativegradient flow of the
following Yamabe energy,

f(u1, u2, · · · , un) =
∫ (u1,u2,··· ,un) ∑

vi∈V

(K̄(vi)−K(vi))dui. (3.2)

The gradient of Yambe energy is∇f(u1, · · · , un) = (K̄1−K1, K̄2−K2, · · · , K̄n−Kn)
T .

The Yamabe energy is strictly concave in the subspace
∑

vi∈V ui = 0. The Hessian matrix
can be formulated explicitly. The cotangent edge weight is defined as

wij :=

{
cot θijk + cot θjil [vi, vj] 6∈ ∂(S, T ) [vi, vj] = [vi, vj, vk] ∩ [vj, vi, vl]

cot θijk [vi, vj] ∈ ∂(S, T ) [vi, vj] ∈ ∂[vi, vj , vk]
(3.3)

28



Algorithm 1 Discrete Surface Yamabe Flow

Require: The inputs include:
1. A triangular meshΣ, embedded inE3;
2. A target curvaturēK,

∑
K̄i = 2πχ(Σ) andK̄i ∈ (−∞, 2π).

Ensure: A discrete metric conformal to the original one, which realizes the target curva-
tureK̄.

1: Initialize the discrete conformal factoru as0 and conformal structure coefficientη,
such thatη(e) equals to the initial edge length ofe.

2: while maxi |K̄i −Ki| > threshold do
3: Compute the edge length fromγ andη
4: Update the triangulation to be Delaunay using diagonal edgeswap for each pair of

adjacent faces
5: Compute the corner angleθjki from the edge length using cosine law
6: Compute the vertex curvatureK
7: Compute the Hessian matrixH
8: Solve linear systemHδu = K̄ −K
9: Update conformal factoru← u− δu

10: end while
11: Output the result circle packing metric.

The Hessain matrixH = (hij), where

hij =





−wij vi ∼ vj i 6= j

0 vi 6∼ vj i 6= j
∑

k wik i = j

(3.4)

In order to compute the conformal metric with prescribed curvature, we can optimize the
Yamabe energy using Newton’s method.

3.2 Discrete Optimal Mass Transport

3.2.1 Kantorovich’s Approach.

The spaceX andY are discretized to sample points,X = {x1, x2, · · · , xn},Y = {y1, y2, · · · , yn},
the measures are dirac measures

µ =
n∑

i=1

µiδ(x− xi), ν =
n∑

j=1

νjδ(y − yj),

29



the transport planτ is represented as a matrix(τij), such that
n∑

j=1

τij = 1,
n∑

i=1

τij = 1, τij ≥ 0.

All such matrices form a convex polytope. The total transportation cost is a linear function

C(τ) =
∑

i,j

c(xi, yj)τij .

The optimal mass transport problem becomes a linear programming problem withn2 un-
knownsτij .

3.2.2 Brenier’s Approach.

Supposeµ has compact support onX, define

Ω = supp µ = {x ∈ X|µ(x) > 0},

assumeΩ is a convex domain inX. The spaceY is discretized toY = {y1, y2, · · · , yk}
with Dirac measureν =

∑k
j=1 νjδ(y − yj).

We define aheight vectorh = (h1, h2, · · · , hn) ∈ Rk, consisting ofk real numbers.
For eachyi ∈ Y , we construct a hyperplane defined onX,

πi(h) : 〈x, yi〉+ hi = 0. (3.5)

Define a function
uh(x) =

k
max
i=1
{〈x, yi〉+ hi}, (3.6)

thenuh(x) is a convex function. We denote its graph byG(h), which is an infinite con-
vex polyhedron with supporting planesπi(h). The projection ofG(h) induces a polygonal
partition ofΩ,

Ω =
k⋃

i=1

Wi(h), (3.7)

where each cellWi(h) is the projection of a facet of the convex polyhedronG(h) ontoΩ,

Wi(h) = {x ∈ X|uh(x) = 〈x, yi〉+ hi} ∩ Ω. (3.8)

The area ofWi(h) is given by

wi(h) =
∫

Wi(h)
µ(x)dx. (3.9)

The convex functionuh on each cellWi(h) is a linear functionπi(h), therefore, the gradient
map

grad uh : Wi(h)→ yi, i = 1, 2, · · · , k. (3.10)

maps eachWi(h) to a single pointyi.
The following theorem plays a fundamental role for discreteoptimal mass transport

theory,
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Theorem 3.7.For any given measureν, such that
n∑

j=1

νj =
∫

Ω
µ, νj > 0,

there must exist a height vectorh unique up to adding a constant vector(c, c, · · · , c), the
convex function Eqn. 3.18 induces the cell decomposition ofΩ, Eqn. 3.19, such that the
followingarea-preserving constraintsare satisfied for all cells,

∫

Wi(h)
= νi, i = 1, 2, · · · , n. (3.11)

Furthermore, the gradient mapgrad uh optimizes the following transportation cost

C(T ) :=
∫

Ω
|x− T (x)|2µ(x)dx. (3.12)

The existence and uniqueness was first proven by Alexandrov [10] using a topological
method; the existence was also proven by Argmstrong [16], the uniqueness and optimality
was proven by Brenier [28].

Recently, Gu et al. [48] gives a novel proof for the existenceand uniqueness based on
the variational principle. The deep insight of variationalframework provides us excellent
opportunities for numerical implementation. We will take their approach and explore its
engineering applications in this work.

Define the admissible space of height vectors

H0 := {h|
k∑

j=1

hj = 0 and
∫

Wi(h)
µ > 0, ∀i = 1, · · · , k, }.

Then define the energyE(h),

E(h) =
∫

Ω
uh(x)µ(x)dx−

k∑

i=1

νihi. (3.13)

or equivalently

E(h) =
∫ h

0

k∑

i=1

wi(η)dηi −
k∑

i=1

νihi + C, (3.14)

whereC is a constant. Consider the shape bounded by the graphG(h), the horizontal
plane{xn+1 = 0} and the cylinder consisting of vertical lines through∂Ω, the volume of
the shape is given by the first term.

The gradient of the energy is given by

∇E(h) = (w1(h)− ν1, · · · , wk(h)− νk)T , (3.15)

Suppose the cellsWi(h) andWj(h) intersects at an edgeeij = Wi(h) ∩Wj(h) ∩ Ω, then
the Hessian ofE(h) is given by

∂2E(h)

∂hi∂hj
=





∫
eij

µ(x)dx

|yj−yi|
Wi(h) ∩Wj(h) ∩ Ω 6= ∅

0 otherwise
(3.16)
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We focus on the Brenier’s approach. Supposeµ has compact support onX, define
Ω = supp µ = {x ∈ X|µ(x) > 0}, assumeΩ is a convex domain inX. The spaceY is
discretized toY = {y1, y2, · · · , yk} with Dirac measureν =

∑k
j=1 νjδ(y − yj).

We define aheight vectorh = (h1, h2, · · · , hn) ∈ Rk, consisting ofk real numbers.
For eachyi ∈ Y , we construct a hyperplane defined onX,

πi(h) : 〈x, yi〉+ hi = 0. (3.17)

Define a function
uh(x) =

k
max
i=1
{〈x, yi〉+ hi}, (3.18)

thenuh(x) is a convex function. We denote its graph byG(h), which is an infinite con-
vex polyhedron with supporting planesπi(h). The projection ofG(h) induces a polygonal
partition ofΩ,

Ω =
k⋃

i=1

Wi(h), (3.19)

where each cellWi(h) is the projection of a facet of the convex polyhedronG(h) onto
Ω,

Wi(h) = {x ∈ X|uh(x) = 〈x, yi〉+ hi} ∩ Ω. (3.20)

Note that, this partition is equivalent to a power diagram, denoted asD(h), as explained in
[48]. The area ofWi(h) is given by

wi(h) =
∫

Wi(h)
µ(x)dx. (3.21)

The convex functionuh on each cellWi(h) is a linear functionπi(h), therefore, the
gradient map

grad uh : Wi(h)→ yi, i = 1, 2, · · · , k. (3.22)

maps eachWi(h) to a single pointyi.
The following theorem plays a fundamental role for discreteoptimal mass transport

theory,

Theorem 3.8. Given a convex domainΩ ⊂ R
n, with measure densityµ : Ω → R, and

a discrete point setY = {y1, · · · , yk} with discrete measuresν = {ν1, · · · , νk}. Suppose
∑n

j=1 νj =
∫
Ω µ, νj > 0.

Then there must exist a height vectorh = {h1, · · · , hk} unique up to translations, such
that the convex function Eqn. 3.18 induces the cell decomposition of Eqn. 3.19. And the
followingarea-preserving constraintsare satisfied for all cells,

∫

Wi(h)
µ(x)dx = νi, i = 1, 2, · · · , n. (3.23)
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Furthermore, the gradient mapgrad uh optimizes the following transportation cost

C(T ) :=
∫

Ω
|x− T (x)|2µ(x)dx. (3.24)

The existence and uniqueness was first proven by Alexandrov [10] using a topological
method; the existence was also proven by Argmstrong [16], the uniqueness and optimality
was proven by Brenier [26]. Recently, Gu et al. [48] gives a novel proof for the exis-
tence and uniqueness based on the variational principle, which leads to the computational
algorithm directly.

Define the admissible space of height vectorsH0 := {h|∑k
j=1 hj = 0 and

∫
Wi(h)

µ >

0, ∀i = 1, · · · , k, }. Then define the energyE(h),

E(h) =
∫

Ω
uh(x)µ(x)dx−

k∑

i=1

νihi. (3.25)

or equivalently

E(h) =
∫ h

0

k∑

i=1

wi(η)dηi −
k∑

i=1

νihi + C, (3.26)

whereC is a constant. Consider the shape bounded by the graphG(h), the horizontal
plane{xn+1 = 0} and the cylinder consisting of vertical lines through∂Ω, the volume of
the shape is given by the first term.

The gradient of the energy is given by

∇E(h) = (w1(h)− ν1, · · · , wk(h)− νk)T , (3.27)

Suppose the cellsWi(h) andWj(h) intersects at an edgeeij = Wi(h) ∩Wj(h) ∩ Ω, then
the Hessian ofE(h) is given by

∂2E(h)

∂hi∂hj
=





∫
eij

µ(x)dx

|yj−yi|
Wi(h) ∩Wj(h) ∩ Ω 6= ∅

0 otherwise
. (3.28)

The following theorem lays down the theoretic foundation ofour OMT map algorithm.

Theorem 3.9(Discrete Optimal Mass Transport [48]). If Ω is convex, then the admissible
spaceH0 is convex, so is the energy (Eqn. 3.25). Moreover, the uniqueglobal minimum
h0 is an interior point ofH0. And the gradient map (Eqn. 3.22) induced by the minimum
h0 is the unique optimal mass transport map, which minimizes the total transportation cost
(Eqn. 3.24).

The proof of Theorem 3.9 is reported in [48]. Due to the convexity of the volume energy
Eqn. 3.25, With this theory, the global minimum can be obtained efficiently using Newton’s
method. Comparing to Kantorovich’s approach, where there are O(n2) unknowns, this
approach has onlyO(n) unknowns.
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3.2.3 Optimal Mass Transport Map (OMT-Map) Algorithm

AssumeΩ is a convex planar domain with measure densityµ, P = {p1, · · · , pk} is a point
set with measureν = {ν1, · · · , νk}, such that

∫
Ω µ(x)dx =

∑k
i=1 νi.

According to the discussion in previous section, the OMT-Map can be obtained by
minimizing the convex energy in Eqn. 3.25. In practice, the energy can be optimized using
Newton’s method, which requires the computation of the energy gradient using Eqn. 3.27,
and the Hessian matrix using Eqn. 3.28. The method is straightforward, but the initializa-
tion and the step length selection need to be specially addressed.

Initialization. By translating and scaling,P could be insideΩ, P ⊂ Ω. At the
beginning, we set each power weighthi to be0, namelyh = 0, and compute the power
diagramD(P,h) and the Delaunay triangulationT (P,h). In this scenario,D(P,h) is a
conventional voronoi diagram.

Step Length Selection.Suppose at thek-th step in the optimization, the power weight
vector ishk, and all Voronoi cellsWi(h

k) are non-empty. Then the Hessian matrixHk in
Eqn. 3.28 is positive definite on the hyper-plane{h|∑i hi = 0}. At thek + 1-step, we set
the step length parameterλ as1, and update the power weight vector

hk+1 = hk − λH−1
k ∇E(hk). (3.29)

Then we compute the power diagramD(P,hk+1). If any Voronoi cellWi(h
k+1) disappears,

then the Hessian matrixHk+1 will be degenerated. In this case, we shrink the step length
parameterλ to be half,λ ← 1

2
λ. Then we recomputehk+1 using the formula in Eqn. 3.29

and test again. We repeat this procedure, until all Voronoi cells in D(P,hk+1) are non-
empty. Algorithm 2 gives the implementation details.

3.2.4 Area-preserving Parameterization for Topological Disks

The OMT-Map algorithm can be generalized to compute the area-preserving mappings
between surfaces. SupposeS is simply connected surface with a single boundary, namely a
topological disk.S is with a Riemannian metricg. By scaling, the total area of(S, g) equals
to π. Then according to the Riemann mapping theorem, there is a conformal mappingφ :

(S, g)→ (D, dzdz̄), such thatg = e2λ(z)dzdz̄. Then we find a OMT-Mapτ : (D, dzdz̄)→
(D, e2λdzdz̄), then the compositionτ−1 ◦φ : (S, g)→ (D, dzdz̄) gives the area-preserving
mapping.

(S, g)
φ
> (D, e2λdzdz̄)

(D, dzdz̄)

τ−1

∨τ−1 ◦ φ >

The smooth surface(S, g) is approximated by a triangular meshM , with vertex setV =

{v1, v2, · · · , vk}. The conformal mappingφ can be computed using discrete surface Ricci
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Algorithm 2 Optimal Mass Transport Map (OMT-Map)

Input: A convex planar domain with measure(Ω, µ); a planar point set with measure
(P, ν), νi > 0,

∫
Ω u(x)dx =

∑k
i=1 νi; a thresholdǫ.

Output: The unique discrete OMT-Mapf : (Ω, µ)→ (P, ν).

Scale and translateP , such thatP ⊂ Ω.
h← (0, 0, · · · , 0).
Compute the power diagramD(h),
Compute the dual power Delaunay triangulationT (h) ,
Compute the cell areasw(h) = (w1(h), · · · , wk(h)).
repeat

Compute∇E(h) using Eqn. 3.27.
Compute the Hessian matrix using Eqn. 3.28.
λ← 1

h← h− λH−1∇E(h).
ComputeD(h), T (h) andw(h)

while ∃wi(h) == 0 do
h← h+ λH−1∇E(h).
λ← 1/2λ

h← h− λH−1∇E(h).
ComputeD(h), T (h) andw(h).

end while
until ‖∇E‖ < ǫ.
return f : Ω→ P ,Wi(h)→ pi,i = 1, 2, · · · , k.

flow method [139]. Then each vertexvi ∈ M is mapped to a planar pointpi = φ(vi). The
discrete measureνi is given by

νi =
1

3

∑

[vi,vj ,vk]∈M

area([vi, vj, vk]), (3.30)

where[vi, vj , vk] is a face adjacent tovi on the mesh. After normalization, the summation
of the discrete measures,

∑
i νi, equals toπ. Then the OMT-Mapτ : (D, dxdy) → (P, ν)

can be computed using Algorithm 4. The compositionτ−1 ◦φ is a discrete area-preserving
mapping, which maps each vertexvi on the mesh to the centroid of the corresponding cell
Wi on the disk, such that the area ofWi equals toνi. The implementation details can be
found in Algorithm 3. Figure 9 shows an examples.
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(a) left view (b) right view

(c) Angle-Preserving (CFP) (d) Area-Preserving (APP)

Figure 9: Topological disk area-preserving parameterization for the gargoyle model.
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Algorithm 3 Topological Disk Area-preserving Parameterization

Input: A triangular meshM which is a topological disk; three vertices{v0, v1, v2} ⊂
∂M on the boundary.
Output: The area-preserving parameterizationf : M → D, which maps{v0, v1, v2} to
{1, i,−1} respectively.

1. ScaleM such that its total area equals toπ.
2. Compute the conformal parameterizationϕ : M → D, such that the images of
{v0, v1, v2} are{1, i,−1} respectively.
3. For each vertexvi ∈ M , definepi = ϕ(vi), νi to be1/3 of the total area of the faces
adjacent tovi. SetP = {pi}, ν = (νi).
4. Compute the DOTMτ : D→ (P, µ) using Algorithm 4.
5. Construct the mappingτ−1 ◦ φ : M → D, which maps each vertexvi ∈ M to the
centroid ofWi(h) ⊂ D.

3.2.5 Area-preserving Parameterization for Topological Spheres

Suppose(S, g) is a closed genus zero metric surface, namely a topological sphere, with
total area4π. Given three points{p1, p2, p3} ⊂ S, there is a unique conformal mapping
φ : S → Ĉ, whereĈ is the augmented complex planeC∪{∞}, such thatφ maps the three
points to{0, 1,∞} respectively, furthermore the original surface metricg = e2λdzdz̄.

Consider the unit sphereS2 embedded inR3, it has the induced Euclidean metrich. Let
ψ : S2 → Ĉ be the stereo-graphic projection, then

h =
4dzdz̄

(1 + zz̄)2
, µ =

4dudv

(1 + u2 + v2)2

whereµ is measure induced byh, z = u+ iv.
Let τ : ((Ĉ, 4dzdz̄

(1+zz̄)2
) → (Ĉ, e2λdzdz̄)) be the optimal mass transport map, then the

compositionψ−1 ◦ τ−1 ◦ φ : (S, g)→ (S2,h) is an area-preserving mapping.

(S, g)
ψ−1 ◦ τ−1 ◦ φ

> (S2,h)

(Ĉ, e2λdzdz̄)

φ∨
τ−1

> (Ĉ,
4dzdz̄

(1 + zz̄)2
)

ψ∨

The surface is approximated by a triangle meshM , the conformal mappingφ : S →
Ĉ is obtained by two steps. First, the mesh is conformally mapped to the unit sphere
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using spherical harmonic mapping method in [51]; secondly,the unit sphere is conformally
mapped onto the augmented complex planeĈ using the stereo-graphic projection. Then
the discrete point setP consistspi = φ(vi). The discrete measureνi for each vertex is
computed using the same formula as Eqn. 3.30.

The OMT-Mapτ : (Ĉ, 4dzdz̄
(1+zz̄)2

) → (P, ν) can be carried out using the same Algorithm
4. The sharp distinction is that the domainΩ here is infinite, the entire complex plane.
Some cells are unbounded, but still with finite areas under the spherical measureµ.

In order to use Newton’s method for the optimization, for each cell, we need to compute
the spherical area and the spherical edge lengths. Considera finite polygonG first, suppose
its edges are{s1, · · · , sm} the exterior angles are{θ1, · · · , θm}. Becauseψ is conformal,
so the exterior angles are well preserved on the sphere, and each segment is mapped to
curve segment, which is unnecessary to be a geodesic. According to Gauss-Bonnet theo-
rem,

∫
GKdA +

∑
i

∫
si
kgds +

∑
j θj = 2π, whereK is the Gaussian curvature,kg is the

geodesic curvature. Because
∑

j θj = 2π, K = +1, we obtainArea(G) = −∑i

∫
si
kgds.

where
∑

i

∫
si
kgds can be easily and efficiently computed by spherical geometry. For an

infinite cellG, there are two infinite edges, which intersect at the∞ point. Suppose their
intersection angle between two rays isθ, then the exterior angle at∞ is π − θ. The other
part of the computation is similar to the finite cell case. Theimplementation is quite similar
to Algorithm 3 except that we need to compute an additional stereo-graphic projection (ψ)
and consider infinite cellG when computing the cell areasw(h).

3.2.6 Riemannian optimal mass transport map

This section gives the algorithmic implementation detailsfor Riemannian optimal mass
transport map (OMT-Map) generation using geodesic power Voronoi diagram.

Smooth metric surfaces can be approximated by piecewise linear triangle mesh. There
are many ways to discretize a smooth surface, such that the piecewise linear metrics con-
verge to the smooth metric, eg, the sampling is uniform and the triangulation is geodesic
Delaunay. The geodesics on the triangle meshes can be efficiently computed using the
algorithms in [130].

First, we repeat subdividing the triangle mesh until the size of each triangle is small
enough to ensure the accuracy. Then from each pointpi in the point setP , we compute
the geodesics to reach every other vertex on the subdivided mesh, this gives the geodesic
distance from every vertex topi. Repeat this for all vertices inP .

Third, we find the optimal weight. We initialize all the weights to be zeros, then update
the weight using the formula

dhi
dt

= νi −
∫

Wi(h)
µ(p)dp.

Details of the algorithm can be found in Alg. 4.

38



Algorithm 4 Riemannian Optimal Mass Transport Map

Input: A triangle mesh M , measure µ and Dirac measure
{(p1, ν1), (p2, ν2), · · · , (pk, νk)},

∫
M u(p)dp =

∑k
i=1 νi; a thresholdǫ.

Output: The unique discrete Optimal Mass Transport MapT : (M,µ)→ (P, ν).

SubdivideM for several levels, until each triangle size is small enough.
for all pi ∈ P do

Compute the geodesic frompi to every other vertex onM ,
end for
h← (0, 0, · · · , 0).
repeat

for all vertexvj onM do
Find the minimum weighted squared geodesic distance, decide which Voronoi cell
vi belongs to,vi ∈ Wt(h)

t = argminkd
2
g(vj, pk) + hk

end for
for all pi ∈ P do

Compute the current cell areawi =
∫
Wi(h)

dµ,
end for
for all hi ∈ h do

Updatehi, hi = hi + δ(νi − wi)

end for
until |νi − wi| < ǫ, ∀i.
return Power geodesic Voronoi diagram.

3.2.7 Conformal Wasserstein Distance

The OMT-Map algorithm can also be generalized to compute theWasserstein distance be-
tween surfaces. Given two topological disk surfaces(M1, g1, p1, q1) ∈ S, (M2, g2, p2, q2) ∈
S with total areaπ, whereS is the normalized marked metric space defined in Eqn. 2.56.
p1 andp2 are correspondent interior markers, andq1 andq2 are correspondent boundary
markers. We first compute the conformal mapsφ1 : M1 → D1 andφ2 : M2 → D2,
whereD1 andD2 are the unit planar disks with Euclidean metricdx2 + dy2, such that
φ(p1) = φ(p2) = (0, 0) andφ(q1) = φ(q2) = (1, 0). Then we construct a convex planar
domain(Ω, µ) fromD1, whereµ is computed by Eqn. 2.57. And then we discretizeD2 into
a planar point set with measure(P, ν), whereν is computed by Eqn. 3.30. Using(Ω, µ) and
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(P, ν) as inputs of Algorithm 4, we compute the Optimal Mass Transport mapf : Ω→ P ,
Wi(h) → pi, wherepi ∈ P, i = 1, 2, · · · , k. Therefore, the Wasserstein distance between
M1 andM2 can be computed by

Wasserstein(µ, ν) =
n∑

i=1

∫

Wi

(x− pi)2µ(x)dx (3.31)

Algorithm 5 gives the implementation details.

Algorithm 5 Computing Wasserstein Distance

Input: Two topological disk surfaces(M1, g1, p1, q1), (M2, g2, p2, q2). p1 and p2 are
correspondent interior markers, andq1 andq2 are correspondent boundary markers.
Output: The Wasserstein distance betweenM1 andM2.

1. Scale and normalizeM1 andM2 such that the total area of each surface isπ.
2. Compute the conformal mapsφ1 :M1 → D1 andφ2 :M2 → D2, whereD1 andD2 are
the unit planar disks with Euclidean metricdx2 + dy2, such thatφ(p1) = φ(p2) = (0, 0)

andφ(q1) = φ(q2) = (1, 0).
3. Construct a convex planar domain(Ω, µ) fromD1, whereµ is computed by Eqn. 2.57.
4. DiscretizeD2 into a planar point set with measure(P, ν), whereν is computed by
Eqn. 3.30.
5. With (Ω, µ) and (P, ν) as inputs of Algorithm 4, we compute the Optimal Mass
Transport mapf : Ω→ P ,Wi(h)→ pi, wherepi ∈ P, i = 1, 2, · · · , k.
6. Wasserstein distance betweenM1 andM2 can be computed by Eqn. 3.31.

3.2.8 Polar Factorization

Conformal parameterizations have no angle distortions, but they may induce large area dis-
tortions. For cylindrical shapes, the area distortions canbe exceptional large in terms of the
cylinder height. The huge area distortions cause severe numerical instability and aliasing
in rendering. On the other hand, area-preserving parameterizations has no area distortions,
but they may cause huge angle distortions. In digital geometry processing, many geomet-
ric tasks boil down to solve geometric partial differentialequations on the surface. The
geometric PDEs are converted to sparse linear systems usingFinite Element Method. The
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Figure 10: Polar factorization.

numerical stability of the linear systems heavily depends on the angle structure of the dis-
crete triangular mesh. If the triangulation has too many obtuse angles, the linear system is
highly unstable, and the computational results are not reliable.

Therefore, the parameterization with a good balance between angle distortion and area
distortion is highly preferred. The polar factorization ofgeneral surface mapping method
has great promise to tackle this challenging problem. Givena diffeomorphismϕ, it can be
decomposed into the composition of two mappings

ϕ = ∇u ◦ s, (3.32)

wheres is area-preserving,u is a convex function and the gradient map∇u deforms the area
in the most economical way (an optimal mass transportation map). The convex functionu
and the optimal mass transportation map∇u are solely determined by the source and the
target mass density functions. This gives a practical way tocontrol the area distortion.

Suppose the initial mapϕ is conformal, by varying the convex functionu, we can de-
formϕ to s, namely we build a pathϕt in the mapping space, connecting the angle preserv-
ing mappingϕ1 = ϕ to the area preserving mappingϕ0 = s. By choosing the parametert,
one can find the optimal parameterizationϕt, most appropriate for the application.

The mapping polar factorization can be treated as the generalization of matrix polar
decomposition and vector field Helmholtz decomposition. Suppose(Ω0, µ0) and(Ω1, µ1)

are subdomains in the Euclidean spaceRd, ϕ : Ω0 → Ω1 is a diffeomorphism between
them. Then there is a convex functionu : Ω0 → R, whose gradient map∇u : x 7→ ∇u(x)
maps fromΩ0 to Ω1. Furthermore, there is a volume-preserving mappings : Ω0 → Ω0,
such thatϕ can be decomposed toϕ = ∇u ◦ s. This decomposition is unique. As shown in
Fig.10, a conformal mappingϕ in (c) is decomposed to an area preserving mapping from
(a) to (b) and a gradient map from (b) to (c).
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If the source domain coincides with the target domain, denoted asΩ, then all the
volume-preserving diffeomorphisms form a Lie groupS(Ω), which is non-convex. Given
a diffeomorphismϕ : Ω → Ω with polar decompositionϕ = ∇u ◦ s, s is the uniqueL2

projection ontoS(Ω). AssumeΩ has a volume form (measure)µ, thenϕ induces a push
forward measureϕ#µ, ∇u is the unique optimal mass transportation map from(Ω, µ) to
(Ω, ϕ#µ).

The following polar factorization theorem plays a fundamental role in the current project.

Theorem 3.10(Polar Factorization [26]). LetΩ0 andΩ1 be two convex subdomains ofRn,
with smooth boundaries, each with a positive density function,µ0 andµ1 respectively, with
the same total mass

∫
Ω0
µ0 =

∫
Ω1
µ1. Let ϕ : (Ω0, µ0) → (Ω1, µ1) be an diffeomorphic

mapping, thenϕ has a unique decomposition of the form

ϕ = (∇u) ◦ s, (3.33)

whereu : Ω0 → R is a convex function,s : (Ω0, µ0) → (Ω0, µ0) is an measure-preserving
mapping. This is called the polar factorization ofϕ with respect toµ0.

(Ω0, µ0)
ϕ
> (Ω1, µ1)

(Ω0, µ0)

∇u
∧

s >

This means a general diffeomorphismϕ : (Ω0, µ0) → (Ω1, µ1), whereµ1 = ϕ#µ0 can
be decomposed to the composition of a measure preserving maps : (Ω0, µ0) → (Ω0, µ0)

and aL2 optimal mass transportation map∇u : (Ω0, µ0) → (Ω1, µ1). This decomposition
is unique. Furthermore, ifΩ0 coincides withΩ1, thens is the uniqueL2 projection ofϕ
in the space of all measure preserving mappings of(Ω0, µ0). Namely,τ minimizes theL2

distance among all measure preserving mappings,

s = argminτ

∫

Ω0

‖ϕ(x)− τ(x)‖2µ0(x)dx, τ#µ0 = µ0.

Given a diffeomorphismϕ : (Ω0, µ0) → (Ω1, µ1), such thatϕ#µ0 = µ1, there is
a unique polar factorizationϕ = ∇u ◦ s, wheres : (Ω0, µ0) → (Ω0, µ0) is measure
preserving,s#µ0 = µ0; ∇u : (Ω0, µ0) → (Ω1, µ1) is anL2 optimal mass transportation
map,u is a convex functionu : Ω0 → R.

Because∇u : (Ω0, µ0)→ (Ω1, µ1) is the unique optimal mass transportation map, then
∇u∗ = (∇u)−1 : (Ω1, µ1) → (Ω0, µ0) is the unique optimal transportation map as well.
So in our algorithm, we fist compute an optimal mass transportation (∇u)−1 first. The
measure-preserving maps can be computed direction by

s = (∇u)−1 ◦ ϕ. (3.34)
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Algorithm 6 Polar Factorization of Mapping

Require: Convex domainsΩ0 andΩ1 in Rd. A diffeomorphic mappingϕ : (Ω0, µ0) →
(Ω1, µ1), whereϕ#µ0 = µ1.

Ensure: The polar factorizationϕ = ∇u ◦ s, wheres is an measure-preserving mapping,
u is a convex function defined onΩ0.

1: Compute the unique optimal mass transportation map∇v : (Ω1, µ1)→ (Ω0, µ0) using
Alg.2. The convex functionu is the Legendre dual ofv, u = v∗.

2: Compute the compositions = ∇v ◦ ϕ.

The algorithm is summarized in Alg.6.
One direct application of mapping polar factorization is toconstruct a sequence of mesh

parameterizations with balanced angle vs area distortions. Suppose(M, g) is a metric
surface, for simplicity, we assumeM is a topological disk. By scaling, the total area of
M is π. We would like to construct one parameter family of diffeomorphic mappings
ϕt : (M, g) → (D, dzdz̄), such thatϕ0 is area preserving, andϕ1 is angle preserving. For
any0 < t < 1, ϕt is a diffeomorphism, with different level of angle and area distortions.

The following is the computational method. First, we apply discrete surface Ricci flow
algorithm to compute a Riemann mappingϕ1 from the surface to the unit disk. Then we
compute the polar factorization ofϕ1,

ϕ1 = ∇u1 ◦ ϕ0,

whereϕ0 is the area-preserving mapping,u1 is the convex function.
Becauseϕ1 is conformal, the area elementµ1 has the formµ1 = e2λdxdy. ϕ0 is area

preserving, the area elementµ0 is µ0 = dxdy. We linearly interpolateµ0 andµ1,

µt = (1− t)µ0 + tµ1,

and compute the optimal mass transportation∇ut : (D, µ0)→ (D, µ1), then we obtain the
mapping

ϕt := ∇ut ◦ ϕ0.

Alternatively, whent = 0, ∇u0 is the identity map, thereforeu0 = 1
2
(x2 + y2) on the

unit disk. Then we defineut as the Minkowski sum of(1− t)u0 andtu1,

ut := (1− t)u0 ⊕ tu1.

In practice, the convex function is represented as upper envelope of supporting planes,

u1(x) := max
i
{〈pi, x〉+ hi}, u0(x) := max

i
{〈pi, x〉 −

1

2
〈pi, pi〉},
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therefore

ut(x) = max
i
{〈pi, x〉+

t− 1

2
〈pi, pi〉+ thi.

In Figure 11 and 12 we show the comparisons among conformal map, Optimal mass
transport map and polar factorization maps. For the polar factorization mapφt, we show a
sequence of maps whent = 1.0, t = 0.75, t = 0.5, t = 0.25 andt = 0. The second column
shows the different parameterization results. We can see that whent increases, polar fac-
torization map is closer to conformal map, and whent decreases, polar factorization map is
closer to Optimal mass transport mapping. The third column and fourth column illustrate
the histograms of angle distortion and area distortion, respectively. Whent increases, the
angle distortion becomes smaller and area distortion becomes larger. Whent decreases,
the angle distortion becomes larger and area distortion becomes smaller. These quantita-
tive results show how the polar factorization map balances between angle distortion and
area distortion, and demonstrate the flexibility, accuracyand numerical stability of polar
factorization map.
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Figure 11: Comparisons among Conformal mapping, Optimal mass transport map and Po-
lar factorization mapping (PF map)ϕt under different degree of compositions, on Buddha
models.
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Figure 12: Comparisons among Conformal mapping, Optimal mass transport map and Po-
lar factorization mapping (PF map)ϕt under different degree of compositions, on Gargoyle
models.
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4 Optimal Mass Transport for Shape Analysis

Surface based 3D shape analysis plays a fundamental role in computer vision and medical
imaging. This work proposes to use optimal mass transportation maps for shape analy-
sis, focusing on two important shape analysis applicationsincluding surface registration
and shape space. The computation of the optimal mass transport map is based on Monge-
Brenier theory, in comparison to the conventional method based on Monge-Kantorovich
theory, this method significantly improves the efficiency byreducing computational com-
plexity from O(n2) to O(n). For surface registration problem, one commonly used ap-
proach is to use conformal map to convert the shapes into somecanonical space. Although
conformal mappings have small angle distortions, they may introduce large area distortions
which are likely to cause numerical instability thus resulting failures of shape analysis. This
work proposes to compose the conformal map with the optimal mass transportation map to
get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique,
and diffeomorphic. For shape space study, this work introduces a novel Riemannian frame-
work, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal
mass transportation theory. In our work, all metric surfaces with the disk topology are
mapped to the unit planar disk by a conformal mapping, which pushes the area element
on the surface to a probability measure on the disk. The optimal mass transportation pro-
vides a map from the shape space of all topological disks withmetrics to the Wasserstein
space of the disk and the pullback Wasserstein metric equipsthe shape space with a Rie-
mannian metric. We validate our work by numerous experiments and comparisons with
prior approaches and the experimental results demonstratethe efficiency and efficacy of
our proposed approach.

4.1 Overview

In recent decades, with the fast development of 3D scanning technologies, there has been
much research into surface representations for 3D shape analysis. Comparing with other
approaches such as volume measurements [67], mathematicalmorphology [64], medial
axis [22], surface based approach offers many advantages including: (1) it offers an ac-
curate shape representation even for local subtle shape changes; (2) it can compute some
physically natural measurements, e.g. elasticity and heatdiffusion; (3) it has solid mathe-
matical foundations on which one can develop numerically efficient algorithms and achieve
global shape analysis, even on shapes with complicated topology structures. In computer
vision research, numerous surface based approaches have been proposed to solve various
shape analysis problems, such as surface matching [41, 21, 29, 86, 90, 112, 82], anatomical
morphometry analysis [119], 3D object recognition and tracking [77, 132] and 3D shape
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Figure 13: Comparison of geometric mappings for Armadillo surface model to a planar unit
disk: (a) Front view; (b) Back view; (c) Optimal mass transport map result; (d) Conformal
mapping result. The results show that conformal mapping hasmuch more area distortions
on head and hands areas. The normal information on the original surfaces is preserved and
used for rendering. By the shading information on the planardomain ((c) and (d)), the
correspondence is illustrated. The hand zoom-in image of (d) shows that the conformal
map shrinks the fingers to very tiny areas which may cause numerical instability, while the
hand zoom-in image of (c) demonstrates the optimal mass transport method gives a good
one-to-one mapping result.

search engine [30]. Even so, a theoretically rigorous and numerically efficient surface based
approach would be highly advantageous in this research field. Here we propose to apply the
Monge-Brenier optimal mass transportation theory for shape analysis, focusing on surface
registration and a generic shape space model, conformal Wasserstein shape space.

Optimal Mass Transport Monge raised the classicalOptimal Mass Transport Prob-
lem that concerns determining the optimal way, with minimal transportation cost, to move
a pile of soil from one place to another [24].

Kantorovich [78] has proved the existence and uniqueness ofthe optimal transport plan
based on linear program. Monge-Kantorovich optimization has been used in numerous
fields from physics, econometrics to computer science including data compression and
image processing [104]. Recently, researchers have realized that optimal transport could
provide a powerful tool in image processing, if one could reduce its high computational
cost [38, 126]. However, it has one fundamental disadvantage that the number of variables
isO(k2), which is unacceptable to computer vision and medical imaging applications since
a high resolution 3D surface normally includes up to hundreds of thousands of vertices.

An alternative Monge-Brenier optimization scheme can significantly reduce the number
of variables to be optimized. In late 1980’s, Brenier [28] developed a different approach for
a special class of optimal transport problems, where the cost function is quadratic distance.
Brenier’s theory shows that the optimal transport map is thegradient map of a special con-
vex function. Assume the target domain is discretized ton samples, the Monge-Brenier’s
approach reduces the unknown variables fromO(n2) to O(n), which greatly reduces the
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computation cost, and improves the efficiency. In our framework, we take Monge-Brenier’s
approach. However, our work is based on the newly discoveredvariational principle [48]
which is the underspinning of Monge-Brenier’s approach. Our framework is general and
works with any valid measures,µ andν, defined on two surfaces. Within the scope of this
paper, we only consider the area induced measures. As a result, we will use the termOMT-
Map andarea-preserving mapinterchangeably. Our parameter domains could be either
topological disk (including rectangles and any convex planar domain) (Figure 13 and 14)
or topological sphere domains (Figure 15).

Surface Registration. Studying the original surfaces could be extremely difficultwhen
shapes are irregular and very complex, such as human body or human brain cortical sur-
faces. One effective and common approach is to first parameterize the original 3D domain
to some classical parameter domains, such as planar or spherical domain, then register or
analyze 3D surfaces through these canonical spaces [110, 41, 142]. This approach has
the advantage of converting complex shapes to simple ones, reducing the computational
complexity and improving the efficiency. Conformal geometry based methods have been
frequently applied for shape parameterizations [25, 93, 51, 111, 132, 139, 69, 11]. Con-
formal mapping can keep angle unchanged and preserve local shapes (conformal), but may
also produce huge area distortions. In Figure 13, the Armadillo model is mapped onto the
planar unit disk. Frame (d) shows the image of a conformal mapping, where the head area
shrunk exponentially to the height of the model and hard to berecognized. Other extruding
parts, such as hands with fingers shown in the zoom-in image, the exponential area dis-
tortions may easily exceed machine precisions, leading to problems and failure of surface
matching and registration.

The conformal mapping in (d) pushes forward the area elementon the Armadillo model
to the planar disk. Then the unique optimal transportation map is carried out from the disk
with the push-forward measure in (d) to the disk with Euclidean measure. The composi-
tion of the conformal mapping and the optimal transportation map is an area-preserving
map from the surface to the Euclidean disk. The mapping result is shown in (c), where the
head and figures occupy the same areas as those on the originalsurface. Area-preserving
mapping avoids the huge area distortion, therefore is more robust and intuitive for pro-
cessing. Furthermore, this area-preserving mapping is intrinsic to the Riemannian metric,
unique, and diffeomorphic. Therefore, the OMT map may help provide practical solutions
for general 3D shape analysis tasks, such as surface parameterization, surface matching
and surface morphometry studies.

Conformal Wasserstein Shape Space. Shape space models provide suitable mathe-
matical and computational descriptions for both shape representation and comparisons [79]
and they were actively studied in computer vision field (as reviewed in [136]). With the pro-
posed optimal transport theory, here we present its application for modeling shape spaces
and measuring shape distances.

Let (M, g) be a Riemannian manifold,P(M) is the space of all probability measures
defined onM . Given two measuresµ, ν ∈ P(M), there is an optimal mass transportation
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mapT : M → M , the transportation cost ofT is defined as the Wasserstein distance
betweenµ andν, denoted asW (µ, ν). It can be shown thatW is a metric of the Wasserstein
spaceP, the pair(P(M),W ) is called the Wasserstein metric space, which reflects the
Riemannian metric of(M, g).

Consider a marked metric surface with the disk topology(s, g), with two markers(p, q),
p 6∈ ∂M , q ∈ ∂M , there is a unique conformal mappingϕ : s → D, ϕ mapsp andq to 0

and1 respectively. The corresponding conformal factor inducedby ϕ is λ : D → R. The
area element ofs is pushed forward to the disk, represented asµ(s,g) := e2λ(x, y)dx ∧ dy.
Then we convert a marked metric surface to a probability measureΓ : (s, g) 7→ µ(s,g).

All the marked metric surfaces with the disk topology quotient the isometry group and
the scaling transformation group form the shape spaceS. The mappingΓ : S → P(D) is
an injective mapping, the pull back metric induced byΓ gives a Riemannian metric inS.
We call this metric space(S,Γ∗W2) as theConformal Wasserstein Shape Space.

The conformal Wasserstein shape space is a novel Riemannianframework to study
shape space. This framework has solid theoretic foundationand efficient computational
algorithms. It may provide a metric space for shape comparison, shape clustering and
classification, shape retrieval and so on.

AdvantagesTo our knowledge, this work is the first one to take Monge-Brenier theory
to study 3D shape analysis problems. It has the following merits:

1. Theoretic soundness:According to convex geometry theorem developed by Bre-
nier [28] and earlier work by Alexandrov [10], the solution exists and is unique. Fur-
thermore, the area of each cell equals to the prescribed measure exactly. When the
sampling density goes to infinity, the Alexandrov maps converge to the continuous
area-preserving map.

2. Generality and efficiency:The method is general for arbitrary dimension, which
has the potential to lead to high dimensional parameterizations. For surface case,
it can handle both topological disks and topological spheres and achieve bijective
surface mapping. Comparing to the conventional Monge-Kantorovich method, our
approach reduces the complexity fromO(n2) to O(n). It is equivalent to a convex
optimization problem, which can be carried out using Newton’s method efficiently.
Since the computation is based on classical power diagram, the algorithm can be
implemented using any existing numerical software packageeasily.

3. Flexibility: Our algorithm can take different canonical space as the parameter do-
main.

4.2 Related Work

Optimal Mass Transport

50



For optimal mass transport, some approaches based on Monge-Kantorovich theory have
been proposed. Zhu et al. [147] applied optimal mass transport for flattening blood vessel
in an area preserving mapping for medical visualization. Haker et al. [59] proposed to use
optimal mass transport for image registration and warping,the method is parameter free
and has the unique global optimum. Dominitz and Tannenbaum [38] proposed to use op-
timal mass transport for texture mapping. The method first starts with an angle-preserving
mapping and then refines the mapping using the mass transportprocedure derived via a
gradient flow. Rehman et al. [126] presented a method for 3D image registration based
on optimal mass transport problem. Meanwhile, they stress the fact that the optimization
of OMT is computationally expensive and emphasize that it isimportant to find efficient
numerical methods to solve this issue, and it is crucial to extend the results to 3D surfaces.

There are also some works based on Monge-Brenier theory. Ourprior work [120, 144]
proposed an area-preserving mapping method for brain morphological study and visual-
ization, but they can only compute the maps from the unit diskdomain with Euclidean
measure to another disk with general measure. Merigot [97] has proposed a multi-scale
approach to solve optimal transport problem. de Goes et al. [35] have provided an optimal-
transport driven approach for 2D shape reconstruction and simplification. Recently they
have presented a formulation of capacity-constrained Voronoi tessellation as an optimal
transport problem for image processing [34]. This method produces high-quality blue
noise point sets with improved spectral and spatial properties. In summary, except our prior
work [120, 144], other Monge-Brenier theory based methods were all applied to 2D image
matching and registration. By contrast, our work is the firstone to apply Monge-Brenier
based optimal mass transport method to study 3D shape analysis.

Surface Registration
There is a vast literature on surface/image registration, athorough survey on deformable

medical image registration can be found in [115], which gives a rigorous treatment for reg-
istration problem. LetS andT be source and target images defined in an image domainΩ,
a transformationW : Ω→ Ω is a diffeomorphism of the domain. Then [115] formulate the
registration as an optimization problem with the energy formM(T, S◦W )+R(W ), where
M measures the deformation,R measures the regularity of the mappingW . The survey
covers methods which minimizing different energiesM. The elastic body models optimize
the elastic deformation energy; the viscous fluid models minimizes the fluid dynamics en-
ergy; the diffusion model deforms the harmonic energy (membrane energy); the curvature
registration method optimizes the bending energy; the flowsof diffeomorphisms finds the
geodesic in the shape space. Some other energy terms incorporate the landmark constraints,
or the constraints for the mapping, such as the mapping should belong to homeomorphism,
volume preserving or rigid motion group.

The survey does not cover methods based on optimal mass transportation or conformal
mapping. In contrast, our method is based on optimal transportation and conformal map-
ping. Given two metric surfaces(S1, g1) and(S2, g2), which are topological disks, first we
map them to the planar diskD by conformal mappings,ϕk : Sk → D, the induced confor-
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mal factors areλk, k = 1, 2. Then on the disk, there are two measuresµk = e2λk(x,y)dx∧dy.
We find an optimal transportation mapτ : (D, µ1)→ (D, µ2), the compositionϕ−1

2 ◦ τ ◦ϕ1

gives the registration.
From differential geometry, any mapping between two surfaces will induce area distor-

tion and angle distortion. Unless the two surfaces are isometric, one of the two types of
distortions is unavoidable. Our registration goal is to minimize both angle and area distor-
tions. Conformal mappingϕk has0 angle distortion; optimal mass transportation mapτ

has0 measure distortion. The work of [38] shows that this type of mapping minimizes both
angle and area distortion.

In computer vision and medical imaging research, feature landmarks, such as sulci
lines on brain surfaces or extreme points on general surfaces, are usually required to guide
surface registration [122, 89, 146, 133, 87, 57]. Kurtek et al. [87] proposes a constrained
optimization approach that simultaneously computes densecorrespondences and geodesics
between surfaces. In this work, if there are landmark constraints, after the optimal mass
transportation mapτ , we add an harmonic mapη to enforce the alignment of the landmarks.
Although it shares some similar motivation with other landmark constrained surface reg-
istration work, our method has a few fundamental distinctions from that of [87]. First,
our method is intrinsic while their method considers the embedding; second, our method
computes the registration directly while their method findsthe deformation path; third, our
method can handle non-isotopic surfaces but their method can not.

Shape Space
A popular Riemannian framework for modeling shape space is to measure the similarity

between two shapes by the deformation between them. A deformation process is a path in
the shape space, the length of path gives the amount of deformation. Among all paths, the
one with the minimal length is the geodesic. The length of thegeodesic gives thedistance
between the shapes.

Shape spaceis the space of orbits of thereparameterization groupacting on the space
of immersions [117, 137, 116]. Namely, fix a smoothn− 1 dimensional manifoldM , letΓ
be Lie group of all diffeomorophisms ofM , which is the reparameterization group [118].
The shape space is the space of all smooth immersions quotient by Γ, denoted asF . Rie-
mannian metrics measure infinitesimal deformations. Givenan immersionf : M → Rn,
and two deformation vector fields onf , h, k : M → Rn, h, k ∈ Tf (F), one design a
reparameterization invariant metric〈, 〉f , such that〈h, k〉f = 〈h ◦ γ, k ◦ γ〉f◦γ , ∀γ ∈ Γ, the
construction may involve the metric of the ambient spaceR

n, the metric of the immersion
f , the covariant derivatives or differential operators onf and so on.

The reparameterization invariant metric constructed in [20, 19] uses the volume form
and the mean curvature of the immersionf , the metric in [86] uses the area multiplica-
tion factor off . [87] extends the work in [86] by adding landmark constraints. Instead of
considering the whole reparameterization groupΓ, only a subgroup fixing the landmarks
is applied. The infinitesimal generators of such subgroup are constructed using an elegant
technique based on spherical harmonics. [73] represents the embeddingf by its area el-
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ement and normal vector(r, n), the so-called square root normal fields (SRNF), and the
reparameterization invariant metric is built on SRNF.

Our conformal Wasserstein shape space shares some theoretic properties with other
Riemannian shape space frameworks while it also has certainfundamental differences.

• Definition of shape: these methods consider the extrinsic embeddings/immersions;
our method only focuses on the intrinsic Riemannian metric.

• Reparameterization: these methods focus on designing reparameterization invariant
metrics; our method uses normalized conformal mapping, which is unique, therefore
there is no reparameterization ambiguity.

• Definition of distance: these methods use the geodesic length; our method uses the
cost of the optimal mass transportation map.

• Deformation: these methods give the deformation sequence of shapes; our method
only gives the distance without deformation.

• Isotopy constraint: these methods assume there is a deformation from one shape to
the other, which requires two shapes are isotopic; our method is intrinsic, applicable
for non-isotopic shapes.

In practice, our method is numerically efficient and can alsobe generalized to high
dimensional data processing.

3D Shape Classification
Various shape classification and comparison methods were proposed in computer vi-

sion field. Ankerst et al. [12] introduced shape histogram decomposing shells and sectors
around a models centroid. Osada et al. [101] proposed 3D shape representations by prob-
ability distributions of geometric properties computed for points randomly sampled on an
objects surface. Laga et al. [88] represented 3D shapes by spherical wavelet transforms.
Unnikrishnan et al. [128] presented a multi-scale operators on point clouds that captures
variation in shapes. Mahmoudi et al. [95] represented shapes by computing the histogram
of pairwise diffusion distances between all points. Kurteket al. [86] provided a Rie-
mannian framework for computing geodesic paths which are important for comparing and
matching 3D shapes. Jermyn et al. [73] defined a general elastic metric on the space of
parameter domains for shape comparisons and analysis.

Our shape classification method solely depends on Riemannian metrics and is invariant
under rigid motions and scalings, yet most conventional geodesic methods depend on em-
beddings and thus not intrinsic; The statistical methods based on histograms and pairwise
diffusion distances only measure the distance between shapes, but our method explicitly
gives the diffeomorphic map between shapes as a by-product;The geodesic path methods
assume there is a deformation from one shape to the other, which requires two shapes are
isotopic, however our method is intrinsic, applicable for non-isotopic shapes.
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(a) texture mapping by CFP (b) texture mapping by APP

(c) angle-preserving (d) area-preserving

(e) angle distortion by CFP (f) angle distortion by APP

(g) area distortion by CFP (h) area distortion by APP

Figure 14: Circle-packing texture mappings for conformal parameterization (CFP) (a) and
area-preserving parameterization (APP) for the model of a human head, with the planar
unit square parameter domain (b). The mappings to the parameter domain results are also
shown in (c) and (d), respectively. (e) to (h) are the histograms of angle distortions and area
distortions, which demonstrate the accuracy of the OptimalMass Transport map.
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(a) front view (b) back view

(c) CFP front view (d) APP front view

(e) CFP back view (f) APP back view

(g) angle distortion by CFP (h) angle distortion by APP

(i) area distortion by CFP (j) area distortion by APP

Figure 15: Comparison of conformal parameterization (CFP)and area-preserving param-
eterization (APP) of a Bimba sculpture model, shown in (a) and (b), with the spherical
parameter domain. The normal information on the original surfaces is preserved and used
for rendering.(g) to (j) are the histograms of angle distortions and area distortions.
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4.3 Deformable Surface Matching Application

In this section, we apply Optimal Mass Transport Map for deformable surface matching.
The approach is illustrated by the following commutative diagram:

S1

f
> S2

D1

φ1
∨ g

> D2

φ2
∨

whereS1 andS2 are two given surfaces with deformation andf : S1 → S2 is the
desired matching. We use Optimal Mass Transport Map to computeφi : Si → Di which
mapsSi onto the canonical domainDi. Di can be domains on planeR2 or sphereR3.
We call them optimal mass transport parameter domains of thesurfaces. Then a planar or
spherical mappingg : D1 → D2 is constructed for matching. The desired map is induced
by f = φ−1

2 ◦ g ◦ φ1 : S1 → S2. The OMP-map is intrinsic to the Riemannian metric,
unique, and diffeomorphic and useful to computeφ1, φ2. This framework converts a 3D
deformable surface matching problem to a 2D planar domain matching problem, or a 3D
spherical matching problem, which are much easier than matching on the original surfaces.

Since our Optimal Mass Transport map converts the 3D surfaces to convex planar do-
main, if the mapg is a diffeomorphism, the matchingf is also a diffeomorphism. In our
framework, thatg is diffeomorphism is guaranteed by the following theorem:

Theorem 4.1(Rado [109].). Let(S, g) be a simply connected surface,D be a convex planar
domain.f is a harmonic map such that the restriction off on the boundaryf : ∂S → ∂D

is a homeomorphism, thenf is a diffeomorphism.

4.3.1 Surface Matching by Euclidean Optimal Mass TransportMap

Here we use a simply connected surface with one boundary as anexample to show how the
OMT-Map algorithm can help compute surface matching. However, the algorithm is able
to be generalized to topological sphere surfaces.

For such surfaces, the conformal parameter domainD can be chosen as the unit disk.
Given two 3D surfacesS1 andS2 with deformations between them,f : S1 → S2 is the
desired matching. Algorithm 7 show the algorithm details.

4.3.2 Experimental Results

Data source To validate the robustness and efficiency of our method, we tested surfaces
with large isometric deformations. We chose 7 models that are isometric deformations to
each other to study the accuracy and efficiency of our proposed method. The original Ar-
madillo models, the same subject with different motions, are obtained from Aim@SHAPE
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Algorithm 7 Deformable surface registration.

Input: Triangular meshes of surfaces with a simple topology, such as a simply connected
domain with one boundary. A template surface as the target surface.
Output: Registered surfaces with a one-to-one correspondence fromeach surface to the
target surface.
1. Manually or automatically locate some corresponding feature points onS1 andS2 for
constraints.
2. Compute a constrained harmonic mapg : D1 → D2, such thatg align the correspond-
ing feature points specified in the first step.
3. The matching is given byf = φ−1

2 ◦ g ◦ φ1 : S1 → S2.

repository [2] (shown in Figure 16). They form 21 different pairs of surfaces being matched
to each other.

Figure 17 shows an example surface matching result for Armadillo models with differ-
ent motions. (a) and (b) are the two models with isometric deformations. We cut a hole at
the waist of the models so that they are topologically equivalent to a disk. (c) and (f) are
the optimal mass transport map results. Their mapping results are matched using harmonic
maps with hard constraints (yellow stars). The colored lines connecting color-encoded
circular dots on (a) and (b) show the registered correspondences by OMT map.
Performance Evaluation and Comparison. We compared our matching and registration
method with conventional conformal mapping method based onRicci flow theory [133],
where the source surface is conformally flattened to a planardisk, then the registration
is obtained by a constrained harmonic map between the disk and the target surface. We
also compared our work with the Lipman and Funkhouser’s Möbius voting method [89].
The method first randomly samples a triplet on each of two surfaces, and uses Möbius
transformations defined by the triplets to map the original surfaces into a complex domain,
and finally produces voting points to predict correspondences between the surfaces. We
used some performance metrics which were used in prior surface registration studies [102].
Diffeomorphism. One of the most important advantages of our registration method is
that, in practice it always generates the mapping between surfaces to be diffeomorphic,
even for long tube surfaces that may have numerical problemsby conformal mapping, such
as the fingers of the Armadillo model show in Figure 13. For each registration, we compute
the Jacobian determinant and measure the area of flipped regions. For conformal mapping
method, the average ratio from flipped area to the total area of 21 Armadillo pairs is25.8%.
The average flipped area ratio for the Möbius voting method is 4.5%. In contrast, the
flipped area ratios for all registrations obtained by our method are exactly zero.
Curvature Difference Maps. Our method to evaluate registration accuracy is to compare
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Figure 16: 7 Armadillo models with isometric deformations,which form 21 matching pairs
in our experiments.

the alignment of curvature maps between the registered models [102]. We calculated curva-
ture maps using an approximation of mean curvature, which isthe convexity measure. We
quantified the effects of registration on curvature by computing the difference of curvature
maps from the registered surfaces. For each vertex on the target surface with curvaturec1,
we find its correspondent point on the source surface with curvaturec2. Then compute the
curvature difference asmax( |c1|

|c2|
, |c2|
|c1|

). In Figures 17 (e) shows the average histogram of the
curvature difference map of conformal mapping, Möbius voting method and our method
computed from all 21 pairs of surface matchings, respectively. The quantitative results in-
dicate that conformal mapping and the Möbius voting methodproduce less consistent and
less accurate correspondences than our method.
Local Area Distortion. Similarly, we evaluated the local area distortion induced by the
registrations [102]. For each vertexv on the target surface with its correspondent point
p on the source surface, we compute its Jacobian determinantJ(v) [133], and represent
the local area distortion atv asmax(J(v), J−1(v)). J can be approximated by the ratio
between the measureµ(v)/µ(p), whereµ(vi) := 1

3

∑
jkArea([vi, vj, vk]) and[vi, vj , vk] is a

triangle face adjacent tovi. Note that if the registration is not diffeomorphic, the local area
distortion may go to∞. Therefore, we add a threshold to truncate large distortions. Figures
17 (h) shows the average area distortion histogram of conformal method, Möbius voting
method and our method. It is obvious that our registration method produces much less
area distortions than the other two methods.From these quantitative empirical evaluations,
we observe that our method may outperform previous methods [89, 133] by registration
accuracy. Moreover, our method has the advantages that it can handle large area distortion,
and guarantees diffeomorphic mappings.

Figure 18 shows another example of registration.
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Figure 17: Surface registration results for Armadillo models with isometric deformations.
(a) and (b) are the two models respectively, (c) and (f) are the optimal mass transport
map results respectively, and (d) and (g) are the conformal map results respectively. Their
mapping results are registered using harmonic maps with hard constraints (yellow stars).
The colored lines connecting color-encoded circular dots on (a) and (b) show the registered
correspondences by OMT map. (e) shows the average histogramof the curvature difference
map of conformal mapping, Möbius voting and our method, for21 Armadillo pairs; (h)
shows the average area distortion histogram of conformal method, Möbius voting and our
method, for 21 Armadillo pairs. It can be easily seen that ourcurrent registration method
greatly reduces the curvature errors and local area distortions.
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Figure 18: Surface registration results for Gargoyle models.
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Figure # of Faces (a) # of Faces (b) Running Time(s)

19 84.7K 83.1K 180.2
20 84.7K 79.4K 220.4
24 77.4K 79.2K 107.9

Table 1: Running time of the Riemannian OMT Map between surfaces.

4.4 Shape Classification Application

In this section, we showed the experimental results and proved the efficiency and efficacy
of our method. We implemented our algorithms using C++ in Windows platform. All the
3D shape surfaces in this paper are represented by triangle meshes.

Running time summary Table 1 summarizes the running time of the Riemannian op-
timal mass transport (OMT) map between 3D surfaces. The results show that the time
mainly depends on the complexities of the models and the similarities between shapes.

4.4.1 Wasserstein Distance

In this section, we illustrated the results of Wasserstein distance by Alg. 5 between general
3D shapes. The models are obtained from Aim@SHAPE repository [2]. Figure 19 shows
the computation of Wasserstein distance between a pair of similar 3D shapes. (a) and
(b) are the original surfaces of two Gargoyle models respectively. The two models have
very similar structures yet distinguish with some local deformations; (c) and (d) are the
spherical conformal mapping results of the two Gargoyle models respectively. The colors
are encoded by the normal information on the original surfaces. (e) shows the Riemannian
optimal mass transport map result from (c) to (d), which induces the Wasserstein distance
between (a) and (b). In Figure 20, a pair of dissimilar 3D shapes, i.e. a Gargoyle model
and a Buddha model, are used for computing the Wasserstein distance.

The Wasserstein distance between Figure 19 (a) and (b) is0.42, yet the Wasserstein
distance between Figure 20 (a) and (b) is1.25. The results showed that the Wasserstein
distance between similar shapes is significantly smaller than dissimilar pairs, which demon-
strated the potential for using Wasserstein distance to classify 3D shapes.

4.4.2 3D Facial Expression Classification

Wasserstein distance is a Riemannian metric of the Wasserstein space. The Wasserstein
distance between two surfaces is a shape metric which can be used for quantifying shape
differences. The computational algorithm can be found in Alg. 5. Figure 21 shows the

61



(a) Gargoyle 1 (b) Gargoyle 2

(c) CFP Gargoyle 1 (d) CFP Gargoyle 2

(e) Riemannian OMT Map

Figure 19: The computation of Wasserstein distance betweena pair of similar 3D shapes.
(a) and (b) are the original surface of two Gargoyle models. (c) and (d) are the spherical
conformal parameterization (CFP) of (a) and (b), respectively. The colors are encoded
by the normal information on the original surfaces. (e) shows the Riemannian optimal
mass transport (OMT) map result from (c) to (d), which induces the Wasserstein distance
between (a) and (b).
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(a) Gargoyle (b) Buddha

(c) CFP Gargoyle (d) CFP Buddha

(e) Riemannian OMT Map

Figure 20: The computation of Wasserstein distance betweena pair of dissimilar 3D shapes,
i.e. a Gargoyle model and a Buddha model. (c) and (d) are the spherical conformal param-
eterization (CFP) of (a) and (b), respectively. The colors are encoded by the normal infor-
mation on the original surfaces. (e) shows the Riemannian optimal mass transport (OMT)
map result from (c) to (d), which induces the Wasserstein distance between (a) and (b).
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visualization results of Wasserstein distance. (a) and (c)are two face surfaces of different
facial expressions. (b) and (d) are the conformal mapping results for (a) and (c), respec-
tively. (e) shows the optimal mapping from (a) to (c), which induces Wasserstein distance
by Eqn. 3.31. For better visualization of (e), we put straight grids on (c), and draw the de-
formed grids on (e). From the grids deformation, we can clearly see how the surface around
the mouth and nose deforms when the facial expression changes from calm to smile.

As noted earlier that Wasserstein distance can be used for quantifying shape differences,
we applied Wasserstein distance for facial expressions clustering. Our experimental dataset
contains 10 people, each of which has 3 different facial expressions–“sad”, “happy” and
“surprise” shown in Figure 22 row 1, 2, 3, respectively. The 3D face surfaces are from
Binghamton University 3D Facial Expression Database [135]. For each pair of surfaces in
the dataset, we compute the Wasserstein distance. Then we use classical multidimensional
scaling (MDS) [124] to embed all the 30 face surfaces inR2 based on the Wasserstein
distance between each pair of faces. Figure 23 illustrates the visualization results of the
MDS embedding. For all the surfaces with “sad” expressions,we mark them as ’+’ in blue
color, and “happy” as ’x’ in red color, and “surprise” as ’o’ in green color. We can see that
almost all faces with the same expressions are clustered together, and faces with different
expressions are divided into different clusters.

The facial expression clusters verify the idea that physical expressions of emotions
can be systematically categorized and support the adoptionfacial action coding system
(FACS) [40] in computer vision and animation research. The experimental results also
demonstrated the feasibility and potential of comparing and quantifying shape differences
by conformal Wasserstein distance. Whether or not Wasserstein distance provides better
accuracy in facial expression clustering than those afforded by other shape distance requires
careful validation for each application. More importantly, we anticipate that our approach
may serve as novel shape distance for shape analysis. In future we plan to exploit the
potential of proposed shape distance for more applicationssuch as face recognition.

4.4.3 Brain Classification by IQ

There have been much research into the relation between human intelligence and human
brain. Earlier works have studied some significant factors such as cortical surface area,
cortical thickness and cortical convolution [71, 92, 91]. To validate the correctness of our
framework in real applications, we applied our method for the classification problem of
brain cortical surfaces with different intelligence quotient (IQ), and compared with some
existing works.

Data preparation: The dataset used in our experiments is real brain data from a
medical center (due to the anonymity rule for review, we do not disclose the name of
the organization for the moment), it includes50 male and50 female, with ages ranging
from 18 to 30 years. The brain cortical surfaces are reconstructed from MRI images by
FreeSurfer [4]. Among all the brain data, we used the left hemisphere of the brain surface
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(a) (b)

(c) (d)

(e)

Figure 21: The computation of Wasserstein distance
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Figure 22: Face surfaces for expression clustering. The first row is “sad”, the second row
is “happy” and the third row is “surprise”.

Figure 23: Multidimensional scaling embedding of the Wasserstein distance between each
pair of face surfaces in the dataset.
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for experiments.
The intelligence quotient (IQ) was evaluated by an online version of Ravens Advanced

Progressive Matrices (APM) [5]. The test consists of36 questions and the IQ score is
calculated byNcorrectAnswers/Ntotal ∗ 100. The IQ among the data ranges from0 to 100,
which are almost uniformly distributed. Figure 24 shows thecomputation of Wasserstein
distance between two brain cortical surfaces. (a) shows an example of a 20-year-old female,
with IQ score88.89; (b) shows an example of a 21-year-old male, with IQ score33.33.

Instead of claiming whether one human brain is intelligent or not, in our experimental
settings we divided the IQ into three classes:A, B, andC, ranging fromA : [0, 33),
B : [33, 67) andC : [67, 100]. The data uniformly distributed in the three classes. For each
gender, we randomly chose12 examples from each class. Therefore, we created a training
set of72 examples, which is uniformly distributed with respect to gender and IQ. And the
remaining examples are used as testing data.

For the classification experiments, we first computed the full pair-wise Wasserstein dis-
tance matrix based on our method. We indexed all the data of class A intoi = 1, 2, ..., 33,
data of class B intoi = 34, 35, ..., 66 and data of class C intoi = 67, 68, ...100. Figure 25
shows the visualization of the Wasserstein distance matrixencoded in a gray image. The
distance is normalized from0 to 1, where0 indicates black and1 indicates white. The
entry of the matrixMi,j is the Wasserstein distance between brain datai and brain data
j. Then we can clearly see that, mostly, two surfaces in the same class induce smaller
Wasserstein distance, yet two surfaces in different classes induce larger Wasserstein dis-
tance. The results further demonstrated the power of Wasserstein distance for measuring
shape similarities.

With the distance matrix, we classified the testing set by k-Nearest Neighbors (k-NN)
classifier, wherek is chosen to be11 by running9-fold cross-validation (we chose9-fold
to make each fold has the same number of examples.). The cross-validation curve is shown
in Figure 26. Table 3 shows the classification rate of our method is78.57%.

To demonstrate the efficiency and advantages of our method, we compared our method
with existing popular method. Previous work [76] shows thatcortical surface area and
cortical surface mean curvature have significant correlations to human intelligence, since
they quantify the complexity of cortical foldings. Thus we computed the two cortical mea-
surements and used surface area, mean curvature, and the combination of the two measure-
ments as three types of features for classification, respectively. We used LIBSVM [3] as
the classifier. Linear kernel and regularization parameterC = 4.5 were chosen by cross
validation. Table 3 reports the classification rate of all the three comparison methods. The
results indicated that our method outperforms previous methods.
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(a) Brain 1 (b) Brain 2

(c) CFP Brain 1 (d) CFP Brain 2

(e) Riemannian OMT Map

Figure 24: The computation of Wasserstein distance betweenthe left hemisphere brain
cortical surfaces. (a) shows an example of a 20-year-old female, with IQ score88.89; (b)
shows an example of a 21-year-old male, with IQ score33.33. (c) and (d) are the spherical
conformal parameterization (CFP) of (a) and (b), respectively. (e) shows the Riemannian
optimal mass transport (OMT) map result from (c) to (d), which induces the Wasserstein
distance between (a) and (b).
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Figure 25: Wasserstein distance matrix encoded in a gray image. The distance is normal-
ized from0 to 1, where0 indicates black and1 indicates white. The results show that,
mostly, two surfaces in the same class induce smaller Wasserstein distance, yet two sur-
faces in different classes induce larger Wasserstein distance

Figure 26: Cross-validation curve. It shows the cross validation accuracy as functions of
the parameterk in the k-NN classification. According to the experiments, wechosek = 11.
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Method CR

Our method 78.57%

Surface Area 53.57%

Surface Mean Curvature 57.14%

Combination of Area and Curvature67.85%

Table 2: Classification rate (CR) of our method and previous methods based on cortical
surface area, cortical surface mean curvature and combination of previous two cortical
measurements. The results demonstrated the accuracy of ourmethod.

5 Area Preserving Brain Mapping

Brain mapping transforms the brain cortical surface to canonical planar domains, which
plays a fundamental role in morphological study. Most existing brain mapping methods
are based on angle preserving maps, which may introduce large area distortions. This
work proposes an area preserving brain mapping method basedon Monge-Brenier theory.
The brain mapping is intrinsic to the Riemannian metric, unique, and diffeomorphic. The
computation is equivalent to convex energy minimization and power Voronoi diagram con-
struction. Comparing to the existing approaches based on Monge-Kantorovich theory, the
proposed one greatly reduces the complexity (fromn2 unknowns ton ), and improves the
simplicity and efficiency.

Experimental results on caudate nucleus surface mapping and cortical surface mapping
demonstrate the efficacy and efficiency of the proposed method. Conventional methods
for caudate nucleus surface mapping may suffer from numerical instability; in contrast,
current method produces diffeomorphic mappings stably. Inthe study of cortical surface
classification for recognition of Alzheimer’s Disease, theproposed method outperforms
some other morphometry features.

5.1 Overview

Nowadays surface parameterization has been used for a wide variety of applications like
pattern recognition and medical imaging. Many prominent approaches, such as conformal
mapping [53] and Ricci Flow [63] which have been employed to shape analysis [111, 25]
and surface registration [140]. However, an accurate isometric parameterization is impos-
sible for general surfaces.

The conformal mapping may bring huge area distortions in certain surfaces, e.g. a slim
surface of brain caudate nucleus. In turn, such distortionsusually introduce much difficulty
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Figure 27: Comparison of geometric mappings for a left braincortical surface: (a) brain
cortical surface lateral view; (b) brain cortical surface medial view; brains are color coded
according to functional area definition in [37]; (c) conformal mapping result; (d) area pre-
serving mapping result. The results show that conformal mapping has much more area
distortions on the areas close to the boundary while the areapreserving mapping provides
a map which preserves the area everywhere.

for following shape analysis. As the clinical questions of interest move towards identi-
fying very early signs of diseases, the corresponding statistical differences at the group
level invariably become weaker and increasingly harder to identify. A stable method to
compute some other mapping with alternative invariants maybe highly advantageous for
visualization and shape analysis in this research area.

In this work, we propose a novel method to compute area preserving mapping between
surfaces. The mapping is diffeomorphic and unique under normalization. Moreover, the
mapping is invariant under isometric transformations. We tested our algorithm on corti-
cal and caudate nucleus surfaces extracted from 3D anatomical brain magnetic resonance
imaging (MRI) scans. Figure 27 demonstrates the unique power that the area preserving
mapping provides for brain cortical surface visualizationwhen compared with its counter-
part conformal mapping result. On cortical surfaces, the area preserving may also provide
good visualization function to visualize those deeply buried sulci areas which otherwise
are usually visualized with big area distortions. In a classification study, our algorithm
achieved87.50%± 0.55% average recognition rate with95% confidence interval in a brain
image dataset consisting of images of50 healthy control (CTL) subjects and50Alzheimer’s
Disease (AD) patients. We also show that this novel and simple method can outperform
two other morphometry features in the same dataset.
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5.1.1 Comparison

The area preserving mapping is based onOptimal Mass Transport(OMT) theory, which
has been applied for image registration and warping [60, 105] and visualization [147]. Our
method has fundamental differences from these existing methods.

Monge considered the transportation cost for moving a pile of dirt from one spot to the
other, then formulated theOptimal Mass Transportproblem. LetΩk ⊂ Rn be subdomains
in Rn, with positive density functionsµk, such that

∫

Ω0

µ0dx =
∫

Ω1

µ1dx.

Consider a diffeomorphismf : Ω0 → Ω1, which ismass preservation

µ0 = |Jf |µ1 ◦ f

whereJf is the Jacobian of the mappingf . Themass transport costis

C(f) :=
∫

Ω0

|x− f(x)|2µ0(x)dx.

An optimal mass transport map, when it exists, minimizes the mass transport cost.
There are two different approaches to prove the existence ofthe optimal mass transport
map, i.e. Kantorovich’s and Brenier’s. Existing methods follow Kantorovich’s approach [78],
our proposed method follows Brenier’s [27].

Kantorovich constructed a measureµ(x, y) : Ω0 × Ω1 → R, which minimizes the cost
∫

Ω0×Ω1

|x− y|2µ(x, y)dxdy, (5.1)

with the constraints
∫

Ω1

µ(x, y)dy = µ0(x),
∫

Ω0

µ(x, y)dx = µ1(y). (5.2)

In contrast, Brenier showed there exists a convex functionu : Ω0 → R, such that its
gradient map∇u gives the optimal mass transport map, and preserves the mass:

µ0 = det|H(u)|µ1 ◦ ∇u.

Conventional methods discretize eachΩk to n samples with discrete measures, and
model the measureµ to ann× n matrix with linear constraints Eqn.5.2, such as a doubly-
stochastic matrix (sum of each row and the sum of each column equal to one). The opti-
mization of energy Eqn.5.1 is converted to a linear programming problem withn2 variables.

In our current method, we only discretize the target domainΩ1 to n points, then deter-
minen power weights for them, so that the power Voronoi diagram induced by the points
and their power weights gives the optimal mass transport map. Furthermore, then power
weights can be obtained by optimizing a convex energy.

Comparing to Kantorovich’s approach, Brenier’s approach has the following merits
from computational point of view:
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1. Complexity: Existing method hasn2 unknowns, whereas ours has onlyn variables.

2. Uniqueness: Due to the convexity of the energy, our methodhas a unique solution.

3. Diffeomorphism: If the domains are convex, The optimal mapping is guaranteed to
be diffeomorphic.

4. Efficiency: Due to the convexity of the energy, it can be optimized using Newton’s
method.

5. Simplicity: The computational algorithm is mainly basedon (power) Voronoi dia-
gram and Delaunay triangulation.

Furthermore, the obtained area preserving mapping betweentwo surfaces is solely de-
termined by the surface Riemannian metric, therefore it isintrinsic.

5.1.2 Contributions

Our major contributions in this work include: a way to compute area preserving mapping
between surfaces based on Brenier’s approach in Optimal Mass Transport theory. The
current approach produces the unique diffeomorphic mapping. Comparing to the exiting
method, the new method greatly reduces the complexity (fromn2 to n) and improves the
simplicity and efficiency.

Thus our method offers a stable way to calculate area preserving mapping in2D para-
metric coordinates. To the best of our knowledge, it is the first work to compute area
preserving mapping between surfaces based on Brenier’s approach in OMT and apply it to
map the profile of differences in surface morphology betweenhealthy control subjects and
AD patients. Our experimental results show our work may provide novel ways for shape
analysis and improve the statistical detection power for detecting abnormalities in brain
surface morphology.

5.1.3 Related Works

Conformal mapping and quasi-isometric embedding has been applied in computer vision
for modeling the 2D shape space or 3D shape analysis [111, 29,25]. Quasi-isometric brain
parameterization has been investigated in [42, 18, 39, 123]. Conformal brain mapping
methods have been well developed in the field, such as circle packing based method in [70],
finite element method [11, 75, 125], spherical harmonic map method [52], holomorphic
differential method [131] and Ricci flow method [133].

Area preserving mapping has been applied for visualizing branched vessels and in-
testinal tracts in [147], which combined Kantorovich’s approach with conformal mapping.
Optimal mass transport mapping based on Kantorovich’s approach has been applied for
image registration in [60]. An improved multi-grid versionof OMT mapping is presented

73



in [105]. Comparing to the existing method, our method is based on Monge-Brenier theory
to compute the Optimal Transport mapping and achieves the area preserving.

5.2 Theoretic Background

Optimal Transport Problem SupposeΩ is a domain inRn andµ a Borel measure with
µ(Rn) being the total volume ofΩ. Consider transport mapsT : (Ω, dx)→ (Rn, µ) which
are measure preserving,T ∗µ = dx. The cost for the mapping is defined as

C(T ) :=
∫

Ω
|x− T (x)|2dx.

In Brenier’s seminal work [27], he proved the following fundamental theorem,

Theorem 5.1(Brenier). LetΩ be an n-dimensional compact convex set inRn andµ any
Borel measure onRn, so thatµ(Rn) is the volume ofΩ. Then there exists a convex function
u onΩ, unique up to adding a constant, so that the gradient map

∇u : (Ω, dx)→ (Rn, µ) (5.3)

is measure preserving and∇u minimizes the quadratic cost
∫
Ω |x − T (x)|2dx among all

transport mapsT .

In the following, we call the convex functionu theBrenier potential, and the gradient
map∇u theBrenier map.

In the discrete setting for optimal transport problem, we take the measureµ with finite
support, i.e.µ =

∑k
i=1wiδpi, wherewi > 0 andδp is the Dirac measure. Then the discrete

Brenier theorem is as follows:

Corollary 5.1. Let Ω be an n-dimensional compact convex set inRn, point setP =

{p1, p2, · · · , pk} ⊂ Rn, with weightsw1, w2, · · · , wk > 0, so that
∑k

i=1wi = vol(Ω).
Then there exists a piecewise linear convex functionu : Ω → R, so thatΩ is decomposed
to k convex setsW1,W2, · · · ,Wk with the property that

1. u|Wi
is linear with∇u|Wi

= pi,

2. Area(Wi) = wi for all i.

so that∇u is the solution to optimal transport problem forΩ and{(p1, w1), · · · , (pk, wk)}
with quadratic cost. The convex functionu is unique up to a constant.

Variational Principle for Finite Brenier Map We have found a finite dimensional vari-
ational principle for constructing the finite Brenier map.

Fix a finite point setP = {p1, p2, · · · , pk}, the powers areh = (h1, h2, · · · , hk), the
power diagram of{(pi, hi)} in Rn partitionsΩ to cells{W1,W2, · · · ,Wk}, the areas are
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w = (w1, w2, · · · , wk). Then the power diagram functionu(x) is the Brenier potential, the
gradient map is the Brenier map∇u : Wi → pi, which minimizes the quadratic distance
costC(T ) =

∫
Ω |x− T (x)|2dx for all the maps with the measure preserving property

V ol(T−1(pi)) = V ol(Wi) = wi, i = 1, 2, · · · , k.
Furthermore, we treat the areasw as the function of the powersh, then the mappingh→ w

is a diffeomorphism. LetW := {w|∑i wi = vol(Ω), wi > 0} be the space of all possible
area vectors, andH := {h|∑i hi = 0, ∀wi > 0} be the space of all possible power vectors,
then

Theorem 5.2(Main Theorem). LetΩ be a convex domain inRn. Fix the point setP , given
a power vectorh ∈ H, letw be the area vector associated to the convex cell decomposition
of Ω induced by the power diagram for{(pi, hi)}, then the mappingw = φ(h) : H → W

is a diffeomorphism.

Proof. We prove the theorem for dimension2, which can be generalized to arbitrary di-
mension straightforwardly.

Let the power diagram forh beDh, the dual Power Delaunay triangulation beTh. Any
edgeē ∈ Dh has a unique dual edgee ∈ Th. Suppose two Voronoi cellsWi andWj shares
an edgēeij , the direct computation shows

∂wi

∂hj
=
∂wj

∂hi
=
|ēij|
|eij|

> 0. (5.4)

and
∂wi

∂hi
= −

∑

j 6=i

∂wi

∂hj
. (5.5)

We construct a differential 1-form

ω =
k∑

i=1

widhi,

From Eqn.5.4,ω is closed,dω = 0. From Brunn-Minkowski theorem [10], we knowH is
a convex domain. Therefore,ω is an exact form. We then define an energy function

E(h) :=
∫ (h1,h2,··· ,hk) k∑

i=1

wihi. (5.6)

The Hessian matrix ofE is given by

∂2E

∂hi∂hj
=
∂wj

∂hi
, (5.7)

From Eqn.5.4 and Eqn.5.5, we know the negative of the Hessianis diagonal dominant, so
the Hessian is negative definite, the energyE is concave. From the convexity ofH and the
concavity ofE, we conclude the gradient mapping

h→∇E(h) = w

is a diffeomorphism.
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In practice, the target area vector is given byw̄ = (w̄1, w̄2, · · · , w̄k), then Brenier map
T can be computed as follows. Construct the energy

Ē(h) =
k∑

i=1

w̄ihi −
∫ (h1,h2,··· ,hk) k∑

j=1

wjdhj, (5.8)

which is convex and can be minimized using Newton’s method. From the minimizerh,
we construct the power Voronoi diagramDh, which partitionsΩ to convex polygonal cells
{W1,W2, · · · ,Wk}, and the power Voronoi diagram functionu(x). Thenu(x) is the Bre-
nier potential, andT = ∇u(x) is the Brenier map,T (Wi) = pi.

Area Preserving Mapping for Surfaces Given a simply connected surface(S, g) with
total areaπ, fix an interior pointp0 and a boundary pointp1, then according to Riemann
mapping theorem, there is a unique conformal mappingφ : S → D, whereD is on the
complex plane, such thatφ(p0) = 0 andφ(p1) = 1. Then the Riemannian metricg can be
represented byg = e2λdzdz̄, wherez = x + iy is the complex parameter. The conformal
factor defines a measure on the complex diskµ = e2λ(z)dxdy. Moreover there exists a
unique Briener mappingτ : (D, dxdy)→ (D, µ). Then the composition mappingτ−1 ◦ φ :

(S, g)→ (D, dzdz̄) is area preserving.
The Brenier mapτ conveys the intrinsic information about the Riemannian metric on

the surface, which can be formulated as follows:

Theorem 5.3. Suppose(S1, g1) and (S2, g2) are simply connected oriented surfaces. Let
pk0 be an interior point onSk, andpk1 an boundary point onSk, k = 1, 2. There exists
an isometric mappingf : (S1, g1) → (S2, g2), so thatf(p1i ) = p2i , i = 0, 1. Let φk :

(Sk, gk)→ D be the normalized Riemann mapping, such thatφk(p
k
0) = 0 andφk(p

k
1) = 1,

λk be the conformal factor,gk = e2λkdzdz̄, τk : (D, dxdy)→ (D, µk) be the Brenier map,
whereµk = e2λkdxdy. Then

φ2 ◦ f = φ1, τ1 = τ2,

Proof. η := φ2 ◦ f ◦ φ−1
1 : D → D is a conformal mapping from the unit disk to itself.

Thereforeη is a Möbius transformation,

η(z) = eiθ
z − z0
1− z̄0z

.

Fromη(0) = 0, we obtainz0 = 0. Fromη(1) = 1, we getθ = 0. Soη = id, φ2 ◦ f = φ1.
Therefore, we getλ1 = λ2, soµ1 = µ2. Due to the uniqueness of the Brenizer map,
τk : (D, dxdy)→ (D, µk) k = 1, 2 should be identical.

Namely, if the Brenier maps are identical, then the surfacesare isometric.
The mapping from the unit disk to itself can be uniquely determined by its Beltrami

coefficient. Letτ : D→ D, then

µτ :=
∂τ

∂z̄
/
∂τ

∂z
,

where∂z̄ = 1/2(∂x − i∂y), ∂z̄ = 1/2(∂x + i∂y).
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Theorem 5.4(Measurable Riemann Mapping). Suppose‖µ‖∞ < 1, then there exists a
diffeomorphismτ : D → D, whose Beltrami coefficient equals toµ. τ is unique up to a
Möbius transformation.

Therefore, in order to compare the Brenier maps, it is sufficient and necessary to com-
pare their Beltrami coefficients.

5.3 Algorithms

Given a simply connected surface(S, g) with total areaπ, fix an interior pointp0 and a
boundary pointp1, then according to Riemann mapping theorem, there is a unique con-
formal mappingφ : S → D, whereD is unit disk, such thatφ(p0) = 0 andφ(p1) = 1.
The mappingφ parameterizes the surface, such that the Riemannian metricg can be rep-
resented byg = e2λ(dx2 + dy2). The conformal factor defines a measure on the unit disk
µ = e2λdxdy. Then there exists a unique Brenier mappingτ : (D, dxdy) → (D, µ). The
composition mappingτ−1 ◦ φ : S → D is an area preserving mapping.

In practice, the surface is approximated by a triangle meshM , normalized by a scaling
such that the total area isπ. The conformal mappingφ : M → D can be achieved using
discrete Ricci flow method [133]. Then the measureµ can be defined on each vertexvi ∈
M , as

µ(vi) :=
1

3

∑

jk

Area([vi, vj, vk]),

where[vi, vj, vk] is a triangle face adjacent tovi.
Then the sites areP = {φ(v1), φ(v2), · · · , φ(vn)}. The target area vector is̄w =

{µ(v1), µ(v2), · · · , µ(vn)}, the power vectorh = (h1, h2, · · · ) can be obtained by optimiz-
ing the convex energy equation using Newton’s method.

Initially, we set all powers to be zeros and translate and scale P , such thatP is con-
tained in the unit disk. Compute the power diagram, calculate the areas for each cellwi.
Then compute the dual power Delaunay triangulation, compute the lengths of edges in
the diagram and triangulation, form the Hessian matrixH, then update the powerh ←
h+H−1(w̄ −w). Repeat this procedure until the cell areas are close to the target areas.

Then the power diagram for{(φ(vi), hi} partitionsD to convex polygonal cells{Wi},
the Brenier map is given byτ : Wi → φ(vi). Compute the centroid ofWi, denoted as
ci. The area preserving mapping is given byτ−1 ◦ φ(vi) = ci. The algorithm details are
illustrated in Alg.8.

5.4 Experimental Results

We applied our area preserving mapping method to various anatomical surfaces extracted
from 3D MRI scans of the brain. The baseline T1 images are acquired as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [72].In the paper, the segmentations
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Algorithm 8 Area Preserving Mapping

Input: Input triangle meshM , total areaπ and area difference thresholdδw.
Output: A unique diffeomorphic area preserving mappingf : M → D, whereD is a
unit disk. The areawi of each cellWi ∈ D is close to the target areawi.
1. Run conformal mapping by discrete Ricci flow method [133],φ : M → D, whereD
is a unit disk. Assign each siteφ(vi) ∈ D with powerhi = 0 and target areawi = µ(vi)

defined above. Translate and scale all sites so that they are in the unit disk.
2. Compute the power diagram and calculate the areawi of each cellWi.
3. Compute the dual power Delaunay triangulation, and compute the lengths of edges in
the diagram and triangulation to form the Hessian matrixH.
4. Update the powerh← h+H−1(w̄ −w).
5. Repeat step 2 through step 4, until‖wi − wi‖ of each cell is less thanδw.
6. Compute the centroid of cellWi, denoted asci. Then the area preserving mapping is
given byτ−1 ◦ φ(vi) = ci, whereτ is the Brenier mapτ : Wi → φ(vi).

are done with publicly available software FreeSurfer [42] or FIRST [114]. All surfaces are
represented as triangular meshes. All experiments are implemented on laptop computer of
Intel Core i7 CPU, M620 2.67GHz with 4GB memory.

5.4.1 Application of Caudate Surface Parameterization

We tested our algorithm on the left caudate nucleus surface.The caudate nucleus is a nu-
cleus located within the basal ganglia of human brain. It is an important part of the brain’s
learning and memory system, for which parametric shape models were developed for track-
ing shape differences or longitudinal atrophy in diseases,such as Alzheimers Disease [94]
and Parkinsons disease [13], etc.

Figure 28 (a) shows the triangular mesh of a reconstructed left caudate surface seg-
mented by FIRST. The long and slim surface is challenging to compute its parametric
surface. For example, a conformal mapping on slim surface usually introduces area dis-
tortions at the exponential level and may cause big numerical problems. In contrast, our
method evenly embeds the caudate surface to the parametric domain and keeps the area
element unchanged. For implementation, we cut a small hole at the bottom of (a) to get
an open boundary to make its topology consistent with a disk’s. Figure 28 (b) shows that
most parts of conformal mapping result shrink towards the center, while the area preserving
method shown in Figure 28 (c) gives a good mapping, keeping the same area element, with-
out much numerical error. Figure 29 are the histograms of area distortion of result surface
triangles to original surface triangles for conformal mapping and area preserving mapping,
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respectively. It shows that conformal mapping cause up to220 times shrinkage, while area
preserving mapping almost keep the same area. In Figure 30, we put circle textures on both
conformal mapping result and area preserving result, it gives a direct visualization of our
method’s correctness. Although multi-subject studies areclearly necessary, this demon-
strates our area preserving method may potentially be useful to study some morphometry
change to classify and compare different subcortical structure surfaces.

(a) (b) (c)

Figure 28: Comparison of geometric mappings for caudate surface: (a) original caudate
surface represented by a triangular mesh; (b) conformal mapping result; (c) area preserving
mapping result. The area preserving mapping method evenly maps the surface to the unit
disk and eliminates the big distortions close to the upper tip area in (a).

5.4.2 Application of Alzheimer’s Disease Diagnosis

For Alzheimer’s disease, structural MRI measurements of brain shrinkage are one of the
best established biomarkers of AD progression and pathology. And early researches [121,
42] have demonstrated that surface-based brain mapping mayoffer advantages over volume-
based brain mapping [15] to study structural features of brain, such as cortical gray matter
thickness, complexity, and patterns of brain change over time due to disease or developmen-
tal process. According to prior AD researches [45, 43], the brain atrophy is an important
biomarker of AD. The atrophy may not only be area shrinkage, but also have anisotropic
directions. Therefore, a good shape signature contains both area and angle deformation
information may have a good potential to be a practical biomarker.
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Figure 29: Histogram of area distortion: (a) area distortion of conformal mapping; (b) area
distortion of area preserving mapping. The area preservingmapping result shows a much
smaller area distortion.

(a) (b)

Figure 30: Circle packing of different geometric mappings:(a) circle packing of conformal
mapping. (b) circle packing of area preserving mapping. Theparameterizations are illus-
trated by the texture map of a uniformly distributed circle patterns on the caudate surface,
the circle texture is shown in the upper left corner. In (a), the circles stay the circle but the
circle areas change dramatically on the upper tip area. In (b), the circles become ellipses
but the areas stay unchanged.
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In this work, we proposed to use Beltrami coefficients [46] computed from area pre-
serving mapping result to conformal mapping result, as a shape signature to analyze the
human brain cortical surfaces among AD patients and CTL subjects. This kind of signature
combines both area and angle information so that it may provide more powerful statistical
ability in the AD diagnosis in the early stage.

Data Source: Our data included baseline MRI images from 50 AD patients and 50
healthy control (CTL) subjects (Age: AD:75.86 ± 7.65; CTL: 74.56 ± 4.16; MMSE
score: AD:22.96± 2.15; CTL: 29.02± 1.04). We used Freesurfer’s automated processing
pipeline [42] for automatic skull stripping, tissue classification, cortical surface extrac-
tion, vertex correspondences across brain surfaces and cortical parcellations. According to
work [37], we labeled the functional areas of a left brain cortical surface shown in Figure
31 (a) and (b).

Cortical Surface Parameterization Results Figure 31 (c)-(f) are the conformal mapping
results and area preserving mapping results of the left brain cortical surfaces of a healthy
control subject and an AD patient. On both surfaces, we cut a hole around the unlabeled
subcortical region [37]. After the cutting, the remaining cortical surface becomes a genus
zero surface with one open boundary. Both algorithms compute a diffeomorphism map
between the cortical surface and a unit disk. The results show that the conformal mapping
results have much more area distortion on the areas close to the boundary while the area
preserving mapping provides a map which preserves the area of each individual functional
area. The area preserving mapping has a potential to better visualize certain sulci areas
which are deeply buried under gyri, and hence to provide a tool for a more accurate manual
landmark delineation operation.

Numerical Analysis of Signatures among Healthy Control Subjects and AD Patients
The Beltrami coefficient is a complex-valued function defined on surfaces with supreme
norm strictly less than 1. It measures the local conformality distortion of surface maps. We
tested the discrimination ability of our shape signature ona set of left and right brain sur-
faces of 50 CTL subjects and 50 AD patients. Previous work [113] indicated ten functional
areas having significant atrophy in AD group, such as Middle Temporal, Superior Tempo-
ral, etc. Among the 35 functional areas, we chose 3 regions for study, which are Middle
Temporal, Superior Temporal and Fusiform as shown in Figure31 (a) and (b). Figure 32
shows the average histograms of the norm of Beltrami coefficients of 50 AD patients and
50 CTL subjects on these three functional areas. The histograms show the norm of Bel-
trami coefficients of cortical surfaces of AD patients are obviously larger than those of
healthy control subjects. It means that AD patients may havelarger conformality distortion
in both area and shrinkage directions because AD patients may suffer a more serious atro-
phy of brain structures which result from a combination of neuronal atrophy, cell loss and
impairments in myelin turnover and maintenance [43].
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(a) (b)

(c) (d)

(e) (f)

Figure 31: (a) and (b) illustrate the functional areas on theleft brain cortex [37]. (a) Lateral
view. (b) Medial view. (c) and (e) are conformal mapping results of a CTL subject and
an AD patient, respectively; (d) and (f) are area preservingmapping results of a CTL
subject and an AD patient, respectively. The area preserving mapping may provide a better
visualization tool for tracking sulci landmark curves on cortical surfaces.

Classification among Healthy Control Subjects and AD Patients We further hypoth-
esize that the our computed Beltrami coefficients may help early AD detection. We per-
formed the classification between AD and CTL groups in the current ADNI dataset. For
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Figure 32: Histograms of Norm of Beltrami Coefficients: (a) result of healthy control
subjects. (b) result of AD patients. The AD result demonstrated a stronger and more
anisotropic deformation due to a more serious atrophy of brain structures.

the classification experiment,80% of each category of both left and right brain cortical sur-
faces are set to be training samples and the remaining20% as testing samples. To obtain fair
results, we randomly selected the training set each time andcomputed the average recog-
nition rate over 1000 times. We used Support Vector Machine (SVM) [3] as a classifier,
where the linear kernel function was employed, and we usedC-SVM and choseC = 5 by
running cross validation. Table 3 shows 95 percent confidence interval for average recog-
nition rate of our method is87.50% ± 0.55%. For comparisons, we also computed area
based method and volume based method. For area based method,we computed the surface
areas for the base domain and 3 regions mentioned above on each hemisphere as a signa-
ture(Area) = (A0, A1, A2, A3); 95 percent confidence interval for the average recognition
rate is70.00%± 0.73%. We also calculated the volume of each hemisphere as a signature
(Vol), 95 percent confidence interval for the average recognition rate is62.50% ± 0.57%.
Although the above two methods are not popular signatures for AD study in the literature
and a more careful study such as [32] is necessary, the results helped illustrate the various
nature of our testing data and showed the potential of our proposed shape signature.
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Method Rate%

Area 70.00%± 0.73%

Volume 62.50%± 0.57%

Our method 87.50%± 0.55%

Table 3: Average recognition rate(%) for applying different signatures among 50 healthy
control subjects and 50 AD patients. In the experiments, 80%data are used for training
and the remaining for testing. The experiments were repeated over 1000 times and 95%
confidence intervals are reported here.

6 Optimal Mass Transport for Visualization

We propose a novel visualization framework using the optimal mass transport technique,
based on Monge-Brenier theory. Our optimal transport map approach is rigorous and solid
in theory, efficient and parallel in computation, yet general for various applications. By
comparison with the conventional Monge-Kantorovich approach, our method reduces the
number of variables fromO(n2) toO(n), and converts the optimal mass transport problem
to a convex optimization problem, which can now be efficiently carried out by Newton’s
method. Furthermore, our framework includes the area weighting strategy that enables
users to completely control and adjust the size of areas everywhere in an accurate and quan-
titative way. Therefore, our method significantly reduces the complexity of the problem,
and improves the efficiency, flexibility and scalability during visualization. Our frame-
work, through combining conformal mapping and optimal masstransport mapping, serves
as a powerful tool for a broad range of applications in visualization and graphics, espe-
cially for medical imaging. We provide a variety of experimental results to demonstrate the
efficiency, robustness and efficacy of our novel framework.

6.1 Overview

With the fast generation of large and complicated data nowadays, it is desirable to develop
new frameworks aiming at generating a visualization of the entire data needed for navi-
gation, detection, exploration and a global understandingof selected objects or regions of
interest (ROIs). Complex geometric structures are often better visualized and analyzed by
mapping the surface properties, such as normal map, angle, or area, to a simple canonical
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domain, such as a rectangle or a sphere. Surface flattening and texture mapping offer a
good way of visualizing a surface section by enabling the visualization of all surface parts
within a single planar image.

In general, surface flattening and texture mapping unavoidably introduces distortions.
There are two types of distortions, angle distortion and area distortion. A mapping, which
is both angle preservation and area preservation, must be isometric. Therefore, the surface
must have zero Gaussian curvature everywhere, namely a developable surface or a ruled
surface. For general surfaces, one can only choose either angle-preservation mapping or
area-preservation mapping, but never both of them simultaneously.

Angle-preservation (conformal) mapping/surface flattening preserves local shapes, and
thus has been broadly used in many feature oriented applications in visualization and med-
ical imaging. However, conformal method usually substantially distorts area, which fails
to display accurate size of area, including height, width, thickness or diameter of ROIs.
Unfortunately, these distorted area parameters are extremely important in many medical
image recognition and auto diagnosis applications, such asbrain fold detection [38] or
colon polyps detection and diagnosis [62, 138]. Moreover, it is well known that conformal
mapping induces severe area distortions for surfaces with long tube shapes, such as the
elongated lion head model, as shown in Fig. 33. This disadvantage derives from the funda-
mental obstacle of conformal mapping theory and we can not easily overcome it. Imagine
a cylinderr(θ, z) = (cos θ, sin θ, z), a conformal mappingφ(θ, z) = e−z(cos θ, sin θ) maps
it to the unit disk, the area distortion factore−2z is exponential with respect to the heightz,
and in practice easily exceeds the machine precision.

By comparison, area-preservation mapping can generate accurate and information loss-
less mapping results, which is a key objective for many medical imaging applications, with
the ability to carry out measurements for detecting anatomic abnormalities. For example,
in virtual colonoscopy, the physician may want to measure and compare different sizes of
polyps, to determine disease conditions and cancer risks [58]. A special case of this prob-
lem also occurs in any application where volume or area measurement is critical (e.g. brain
data in [38, 50, 150]). From human cognition perspective, area-preservation mapping and
flattening can also enhance the viewer’s ability to easily recognize the component-aware
patches or long branch parts distribution of models, and consequently understand the local
feature with the knowledge of a global structure (Fig. 33). Therefore, area-preservation
mapping has vast potentials to be applied to many related visualization and graphics appli-
cations.

To simultaneously tackle the above challenges, we develop aflattening framework
which provides a global view of the surface with a minimum of area distortions, while
still, at the same time, maximally preserving local angle/shape features on the flattened
surface. In this work, we introduce our solution to this problem using the technique of
optimal mass transport (OMT), based on Monge-Brenier theory [24].
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(a) (b)

(c) (d)

Figure 33: Disadvantages of conformal mapping for elongated shapes. (a) Front view
and (b) back view of the elongated lion head surface model. Surface flattening results
induced by (c) conformal mapping and by (d) our area-preservation mapping. Conformal
mapping generates major area distortions for both the lion face and the vase regions, while
our method can preserve them accurately for clear view without losing any information
(highlighted by the red circles).

6.1.1 Related Work

We review research work on optimal mass transport that are most relevant to our approach
targeting both algorithms and applications, and discuss the comparisons.

Theoretic Development. In 1781, Monge [98] has formulated the OMT problem. In
the 1940’s, Kantorovich [78] has proved the existence and the uniqueness of the optimal
transport plan. At the end of 1980’s, Briener has proved thatthe optimal transport map
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is the gradient map of a convex function, when the transportation cost is the quadratic of
the Euclidean distance. In the discrete case, Brenier’s result is equivalent to the existence
and the uniqueness of the convex polyhedron with prescribedprojected facet areas. This
has been first shown by Alexandroff [9] in 1920’s. Aurenhammer [17] has shown the
connection between Brenier’s construction and power diagram, where the existence has
been proven. Recently, the connection between the discreteoptimal transport map and the
discrete Monge-Ampere equation, which is based on variational approach, has been given
by Gu et al. [49].

Monge-Kantorovich Approach. Most existing works are based on Monge-Kantorovich
approach. Bonnel et al. [23] have proposed a method for interpolation between distri-
butions or functions based on advection instead of blendingfor rendering purposes. This
method decomposes distributions or functions into sums of radial basis functions (RBFs),
then solves a mass transport problem to pair the RBFs and applies partial transport to obtain
the interpolated function. Rubner et al. [106] have proposed a content based image retrieval
method using the earth mover distance as a metric for the OMT problem. However, it fails
to give a warped grid, an essential requirement for image registration and image morphing.
Rehman et al. [126] have listed several advantages of the OMTmethod for multiresolution
2D/3D nonrigid registration. Meanwhile, they stress the fact that the optimization of OMT
is computationally expensive and emphasize that it is important to find efficient numerical
methods to solve this issue.

The following techniques are based on Monge-Brenier’s approach. Merigot [97] has
proposed a multiscale approach to solve the optimal transport problem. To solve an op-
timal transport problem between a measure with densityµ to a discrete measureν, this
method build a sequenceν0 = ν, . . . , νL of simplifications. Then, it first solves the easier
transport problem betweenµ andνL, and use the solution of the problem to be the initial
guess for the optimal transport betweenµ andν(L−1). This step is iterated until a solution to
the original OMT problem. The method is applied for computing the Wasserstein distances
between probability distributions, and for image interpolation. de Goes et al. [35] have pro-
vided an optimal transport driven approach for 2D shape reconstruction and simplification.
They have further presented a formulation of capacity constrained Voronoi tessellation as
an optimal transport problem for image processing [34]. This method produces high qual-
ity blue noise point sets with improved spectral and spatialproperties. Compared to our
method, de Goes’s method only applies between 2D domains while our method maps a
3D surface to a 2D domain. Our method can further lead to a fast, scalable algorithm to
generate high quality blue noise point distributions of arbitrary density functions.

Tannenbaum group has introduced this novel approach. The basic idea is to construct an
initial mass preservation mapping, then deform the mappingsuch that the total transporta-
tion cost is reduced and the deformed mapping is still mass preserving. Namely, it designs
a gradient flow in the space of all mass preservation mapping space. Haker et al. [61] have
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presented a method for image registration and warping basedon the OMT. The method is
parameter free and has the unique global optimum. However, its linear programming of the
optimal map can be solved withO(n2) variables, which is prohibitively expensive whenn
is large. Zhu et al. [148] have combined conformal mapping and area-preservation map-
ping for flattening branched physiological surfaces, such as vessels. The optimal transport
map is carried using the minimal flow approach. Similar method has been applied for image
morphing [149]. Rehman et al. [126] have applied the minimizing flow approach for the
OMT with applications to non-rigid 3D image registration. The implementation also em-
ploys multi-grid and parallel methodologies on a consumer graphics processing unit (GPU)
for fast computation. Although computing the optimal map has been shown to be compu-
tationally expensive in the past, we show that our approach is orders of magnitude faster
than previous work. Dominitz and Tannenbaum [38] have proposed to use the OMT for
texture mapping. The method begins with an angle-preservation mapping and then corrects
it using the mass transport procedure derived via a certain gradient flow. A multiresolution
scheme is incorporated into the flow to obtain fast convergence to the optimal mapping.
Both methods require designing divergence free vector fields to drive a diffeomorphic flow
to minimize the energy.

Comparison. Our method mainly follows the Monge-Brenier approach, based on the
variational principle [49]. Comparing to the state-of-the-art techniques, it has many merits
as follows:

• Comparing to the Monge-Kantorovich approaches [23, 78, 126], our method only
requiresO(n) variables. In contrast, Kantorovich approach requiresO(n2) variables.
Therefore, our method greatly reduces the storage complexity, and it is thus much
more efficient.

• Comparing to the Monge-Brenier based approaches [34, 35, 97], all the existing
methods are for image processing tasks. Our method however focuses on surfaces.
For image processing, the samples are relatively uniform, and therefore, the computa-
tion is relatively stable. In our case, the sample points areproduced by the conformal
mapping, the sample density is highly non-uniform, and thusconventional methods
are very vulnerable and error-prone for the large area distortions induced by the con-
formal mapping. Our experiments indicate that conventional methods are not robust
enough. Therefore, we have specially designed ourstep length controlalgorithm
(Section 4.2) to improve the robustness.

• Comparing to the minizing flow methods [38, 61, 149], the solution of latter is equiv-
alent to a gradient descend method for optimizing the transportation cost. In contrast,
our method is equivalent to the Newton’s method to optimize aconvex energy, which
has a higher order convergence rate. Therefore, our method is more efficient.
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6.2 Algorithm

This section gives the detailed algorithms for the optimal mass transport map generation.
Fig. 34 shows the pipeline of our OMT based area-preserving framework. The input sur-
face is approximated by a triangular meshM , with vertex setsV , face setF and a con-
vex planar domainΩ, represented as a convex polygon. Our goal is to compute an area-
preserving map from the meshM to the planar domainΩ. Our discrete algorithm is based
on the Monge-Briener theory and utilizes the variational principle to solve the optimization
problem. For the input, aiming to get ROIs with arbitrary shape (e.g., irregular shape of the
brain folds), we utilize the saliency map [81] to for the ROI detection. Once users specify
local area weightwi everywhere, the system will iteratively solve the OMT map and refine
the area-preserving result that yields strict equality of weighted sizes of area between the
input surface and flattened plane. The area weighting parameterwi is defined as weighted
areas in 2D or weighted volumes in 3D. After the generation ofthe OMT map (bijectively
area-preservation mapping), we directly apply the ROI guided texture mapping to obtain
the output.

Figure 34: The pipeline of our OMT based area-preserving framework.

Merits of Saliency Map. The application of saliency map can (1) accurately detect arbi-
trary ROI shape to obtain the accurate area preservation; and (2) provide hierarchical res-
olution of surface models, supporting the reduction of triangles in the context area, while
preserving high resolution ones in ROIs, for the purpose of fast computation. Take the
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brain model as an example, instead of using the original model with 100K faces, with the
saliency guided ROI detection, we can significantly reduce the face account to 10K or less
(data oriented).

6.2.1 Initialization

Our algorithm uses the conformal mapping result (angle preservation) to set up the initial
position for each vertexvi. We first normalize the mesh such that its total area equals tothe
area of the planar domainΩ. We then initialize a discrete conformal mappingφ :M → D.
In our framework, we utilize the discrete Ricci flow method [133] to achieve this step.
Then, after assigning each vertex a target areaw̄i, we define for each vertexvi ∈ V the
Dirac measure associated with it, as one third of the total area of faces adjacent to it,

µ(vi) =
1

3

∑

[vi,vj ,vk]∈F

Area([vi, vj , vk]),

where[vi, vj, vk] represents the triangle formed by verticesvi, vj andvk.
We use the images of all the vertices as the sample points of the unit diskD, Y =

{φ(vi)|vi ∈ V }, each sampleφ(vi) is associated with the Dirac measureµ(vi). By transla-
tion and scaling, we transformY to be contained byΩ.

6.2.2 Optimal Mass Transport Mapping

According to the Monge-Briener theory, we need to find the height vectorh = (h1, h2, · · · , hn).
Fix a height vector, the support planes are given byπi(h) : 〈x, yi〉+hi, the convex function
is uh(x) = maxi〈x, yi〉 + hi, and its graphG(h) can be computed as upper envelope of
the supporting planeπi(h). The projection ofG(h) ontoΩ forms a polygonal partition
Ω =

⋃
iWi(h).

In order to preserve the area of cellWi, we need to iteratively update the virtual variable
for each vertex with height vectorh = (h1, h2, · · · , hn) (details in the paragraph Initial
Height Vector below). Thus, in each iteration, we first compute the power diagram, using
each vertex as a point and the weighted radius as the power in the diagram. Then, in
step 3, we compute the dual triangulation of this calculatedpower diagram (details in the
paragraph Power Diagram below). We record every edge lengthin both the power diagram
and its dual triangulation in this step to form the Hessian matrix. In step 4 (the last step of
each iteration), we use Newton’s method to solve the gradient energy equation (Eqn. 3.27)
and to update the height vectorh until it satisfies that‖wi − wi‖ of each cell is less than
δw (details in the paragraph Hessian Matrix below). Finally, we update the vertex position
as the center of the power Voronoi diagram to obtain the area-preserving parameterization
result.

Initial Height Vector. At the initial stage, we scale and transform a point setY to ensure
they are contained inΩ, and then compute the Voronoi diagram with zero power weights,
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Algorithm 9 Area-Preservation Mapping

Input: Input triangular meshM , total areaπ and area difference thresholdδw.
Output: A unique diffeomorphic area-preservation mappingf : M → D, whereD is a
unit disk. The areawi of each cellWi ∈ D is close to the target areawi.
1. Run conformal mapping by discrete Ricci flow method [133]φ : M → D, where
D is a unit disk. Assign each siteφ(vi) ∈ D with zero power weight, and target area
wi = µ(vi) defined above. Translate and scale all sites so that they are in the unit disk.
2. Compute the power diagram and calculate the areawi of each cellWi.
3. Compute the dual power Delaunay triangulation, and compute the lengths of edges in
the diagram and triangulation to form the Hessian matrix of the convex energy in Eqn.
3.24 .
4. Update the powerh← h+H−1(w̄ −w).
5. Repeat step 2 through step 4, until‖wi − wi‖ of each cell is less thanδw.
6. Compute the centroid of cellWi, denoted asci. Then the area-preservation mapping
is given byτ−1 ◦ φ(vi) = ci, whereτ is the Brénier mapτ : Wi → φ(vi).

or namely, with initial heightshi = −1/2‖yi‖2, where‖yi‖2 is the point position in the
planar domain. This guarantees that all the cells are non-empty.

Power Diagram. The OMT based area-preserving computation for the partition of Ω is
equivalent to the classical power diagram in computationalgeometry [49]. Given a point
setY = {y1, y2, · · · , yn}, each pointyi associated with the weightwi as its power, the
power distance from any pointx to yi is defined as:

Pow(x, yi) =
1

2
‖x− yi‖2 −

1

2
wi,

Then, the power diagram is the Voronoi diagram when we use thepower distance instead
of the standard Euclidean distance.

In our method, the partition induced by the convex functionuh in Eqn. 3.18 is equiva-
lent to the power diagram with the power weight:

wi = 2hi + 〈yi, yi〉.

Therefore, the computation can be carried out using power diagram functionalities in stan-
dard computational geometry library, such as CGAL [7]. The construction of the power
Voronoi diagram and the power Delaunay triangulation are illustrated in Fig. 35.

Hessian Matrix. In our algorithm, we represent the gradient of energy∇E(h) in Eqn.
3.27 as the area changes of cell(w̄ − w), wherew̄ andw as weighting values. Then,
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(a) (b)
Figure 35: Construction of (a) the power Voronoi diagram and(b) the power Delaunay
triangulation.

compute the dual triangulation and the cell areas to form thegradient, as in Eqn. 3.27,

∇E(h) = (Area(Wi(h) ∩ Ω))

Following the theory proposed by Gu et al. [49], in order to form the Hessian as in
Eqn. 3.28, we compute all edge lengthseij and the dual edge lengths̄eij from the power
diagram and its dual triangulation (Fig. 35). Then, we use the following matrix:H(h) =

(hij(h)), where

hij(h) =





−|eij |/|ēij| i 6= j,Wi ∩Wj ∩ Ω 6= ∅
−∑k 6=i hik i = j

0 otherwise,

hij is the(i, j) entry of a matrix, (i 6= j) is the off diagonal entry, and the diagonal entry is
defined ashii = −

∑
k 6=i hik (namely,hii is equal to the sum of all off diagonal entries).

Then, we use Newton’s method to update the height vector

h← h+ ǫH(h)−1∇E(h),

whereǫ is the step length.

Step Length Control. During the computation, it is crucial to ensure that all the cells
Wi(h) ∩ Ω are non-empty. Suppose at stepk all the cells are non-empty, then, we update
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hk ← hk + ǫH(hk)
−1∇E(hk). If some cells are empty in the power diagram induced

by hk+1, we will return tohl, shrink the step lengthǫ to be1/2ǫ, and try again. If some
cells are still degenerated, we shrink the step length iteratively, until all the power cells are
non-empty.

Following the implementation details listed in Alg. 9, we have tested our algorithms
on different surface models (See Section 5). For practical implementations, we may need
to deal with surface models with different topologies, suchas the earth and brain models
which are genus zero without any boundary, and map and graph cases which are genus zero
with an open boundary. The basic idea is to make the topologies of the source domain and
the parameter domain consistent. For example, if we want to map a genus zero surface
without an open boundary, such as the brain surface, to a unitdisk parameter domain, we
cut a very small hole on the surface to get an open boundary so that the source domain and
parameter domain have the consistent topology.

(a) (b)
Figure 36: Surface flattening of a chest model using our area-preservation mapping for
direct display and accurate measurement. The yellow circles highlight the corresponding
ROIs between (a) the 3D surface model and (b) the 2D flatteningplane.

6.3 ROIs Guided Texture Mapping

After computing the bijective area-preservation surface mapping between the 3D surface
model and the flattened 2D disk or rectangular parameter domain, the texture mapping is
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straightforward with the ROIs guided alignment. With respect to user predefined mapping
criteria (e.g., fix the disk boundary or fix the four corner points of a rectangular domain with
the alignment of ROIs), the bijective texture mapping between parameterizations and image
pixels is syntactically and semantically trivial. We directly call texture mapping functions
provided by OpenGL with bilinear interpolation, which is fast and easy to implement.
Moreover, we consider model shape and rendering factors, such as depth, view angle, and
camera position to obtain reality style visualization, especially for medical data. The pixel
color and alpha can be adjusted by the user defined transfer functions.

Our OMT-MAP algorithm can also fully control the local areasof different regions of
the surface. By adjusting the measure vectorµ, our method can control the areas of different
local regions, magnifying regions of interest and shrinking unimportant ones. This allows
more parameter spaces to be allocated for regions with richer geometric or textural features,
and improves the rendering quality and matching accuracy.

Figure 37 demonstrates this merit, where the buddha’s head ((a) and (d)) is magnified
by different zooming factors, and the complementary part isshrunk accordingly (e)-(h).
Basically, for vertices in the head region, we multiply their measures by the zooming factor,
and then normalize the total area to be invariant. The importance-driven mapping results
(e)-(h) show more details on the parameter domain than the angle-preserving result (b).
Such flexibility controls are particularly useful for visualization or a focused region of
interest shape analysis.

6.4 Medical Applications

We first test our method using various medical data. Our highly area-preserving results
can be obtained in an interactive-rate, even for various large and complicated datasets. For
every medical dataset acquired from CT or MRI, we start from using the visualization
toolKit (VTK) [80] to convert a volume dataset to a triangulation mesh as the input, with
filters to remove noise and aliasing. Then, we can utilize ourmapping framework to achieve
various visualization results.

Easy and Accurate Area Measurement. Fig. 36 shows a major advantage of our area-
preservation mapping and flattening method. Our mapping framework can bijectively
project the 3D surface model into a unit 2D disk, so the doctorcan directly and accu-
rately visualize and measure the size of the entire ROI area without repeatedly rotating and
scaling.

Saliency Feature Guided Area-preservation Mapping. We use saliency map [81] guided
area-preservation mapping for diverse computer aided detection (CAD) applications. Fig.
38 shows the design detail. After extracting the surface model from CT colon data (Fig.
38a), we use the electronic biopsy [68], working as saliencymap, for the polyp detection
(Fig. 38b). Our area-preservation flattening framework is only applied in the detected
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Figure 37: Importance-driven parameterization of a Buddhamodel.

ROIs, providing an area-preserving view of polyps for the accurate measurement of the
diameter and the size of area (verified by the doctor marked measurement as ground truth
in the original 3D surface model). By comparison with the conformal mapping method,
our framework still preserves major shape characteristicsof the colon surface (e.g., colon
folds) without any obviously visual distortion (Fig. 38c).

Arbitrary Area Weighting Scheme. Flattening the brain surface with area preservation
is important to visualize and study neural activity or to detect diseases/disfunctions [151].
For the easy recognition of different brain folds, we use colors to mark different folds
as the ROIs (Fig. 27a and Fig. 27b). In contrast to the conformal mapping result (Fig.
27c), Fig. 27d shows our area-preservation mapping result using the MRI brain dataset,
which accurately displays accurate sizes of brain folds without severely compressing or
stretching. Moreover, users can set different weight coefficients in ROIs to flexibly adjust
sizes of different ROI areas (default 1X: equal area).

6.5 Informatics Applications

With the general application property of parameterizationand texture mapping, we can
easily apply our framework for various informatics applications including earth map, city
map and graph.
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(a)

(b)

(c)
Figure 38: Saliency map guided area-preservation mapping using a colon model. (a) A
colon surface, extracted from CT slices. (b) Possible polyps detected using the saliency
map [81]. (c) Surface flattening results using (Left) our area-preservation mapping and
(Right) conformal mapping. By comparison, our result generates the accurate polyp size
for area measurement (verified by the doctor marked area measurement of the polyp as
ground truth) without any severe angle distortion.

Earth Map. The fundamental challenge for earth visualization lies at mapping the sphere
earth model to a planar domain with maximal information preserved. Direct projection
only projects the half sphere, and then causes severe information lost (Fig. 39b). The
state-of-the-art method, such as conformal mapping (Fig. 39c), preserves the whole sphere
with angle preservation, but severely compresses some continents while inappropriately
enlarging others without any control. By comparison, our method (Fig. 39d) can keep the
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(a) (b)

(c) (d)

Figure 39: Different mapping results and comparisons usingan earth surface model. (a) A
3D earth model. (b) Direct projection mapping with large information loss. (c) Conformal
mapping result is with large area distortions, while (d) ourarea-preservation mapping result
is with accurate area preservation and small angle distortion (highlighted by the red frames).

original areas for all major continents, providing the accurate size and area impression for
users.

City Map. Our system also provides a direct multiresolution display,functioned as a
“magic-lens” to reveal additional details in the ROIs. Our method makes the multiscale
alignment accurate but easy without the need of any predefined landmark, due to the accu-
rate area preservation. As shown in Fig. 40, our method generates multiresolution texture
mapping to reveal additional street information of the citymap. The result demonstrates
that our method can well magnify the ROI without causing any obvious distortion.

Network Graph. Our system can generate various visual displays for the graph visual-
ization to satisfy diverse user requirements, due to the flexible weight settings. We show-
case its merit using a network visualization example from the AT&T graph library [8], as
shown in Fig. 41a. Each graph node stands for a network station, while each straight line
depicts direct connection between two neighbor nodes. Fig.41b enlarges the radius of the

97



Figure 40: Multiresolution view without any predefined landmarks. (a) The original New
York city (NYC) map. (b) NYC map with multiresolution texture images. The red frames
highlight the corresponding multiresolution texture mapsin the ROI. (c) Area manipulation
result with a detailed view to show additional street information. The high resolution detail
view can be easily aligned/merged into the low scale map without using any landmark due
to the accurate area preservation.

central core to increase the node separation, while compressing exterior nodes to further
reduce the potential attention. Fig. 41c shows another areamanipulation style: compress-
ing central nodes while enlarging exterior nodes for further separation. There is no efficient
way to generate a similar result using either geometry methods (e.g., conformal magnifier
[145]) or deformation methods (e.g., moving least squares [143]). Taking a close look at
Fig. 41d, the conformal magnifier fails to flexibly control magnification ratios in both focus
and context regions. It excessively enlarges the central core area, while compressing exte-
rior nodes without any control. By comparison, our system can easily manipulate the size
of area everywhere to generate a user preferred view with appropriate node distributions.

Hierarchical Magnification. We can directly apply our mapping framework as a cas-
caded magnifier: applying the same magnifier repeatedly on the prior computing magnifi-
cation result to obtain exponentially increasing magnification ratios. Since our method can
accurately preserve the size of area by setting the target weight, we can guarantee that the
final target region would be precise after each magnificationprocess. Fig. 42 shows that
our hierarchical magnification can easily and accurately reach the high magnification ratio.
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(a) (b)

(c) (d)
Figure 41: Mapping comparisons using the network graph. (a)Original graph layout [8].
Magnification results with (b) the central nodes as the ROI, and with (c) the surrounding
exterior nodes as the ROI, using our framework. (d) Magnification result using conformal
magnifier [145]. By comparison, our method has flexible area control to generate various
views.

7 Conclusion

In this dissertation, we introduce a practical optimal masstransport map based on Bre-
nier’s approach, which reduces the complexity fromO(k2) to O(k) and improves the
efficiency and applicability. And we use our approach to address different problems in
various research areas. In medical imaging, we applied our method for brain cortical sur-
face mapping. Comparing to the traditional conformal basedmapping which introduces
large area distortions and may even cause numerical problens, our method minimizes the
area distortions and provides the flexibility for choosing between area distortions and an-
gle distortions. We applied our method for cortical surfaceclassification for recognition
of Alzheimer’s Disease, the proposed method outperforms some other morphometry fea-
tures. In computer vision, we propose to use optimal mass transportation maps for shape
analysis, focusing on two important shape analysis applications including surface registra-
tion and shape space. The experimental results on 3D surfacematching and comparison
demonstrated the efficiency and efficacy of our approach. In visualization area, our frame-
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(a) (b) (c)

Figure 42: Hierarchical magnification views of a simulated radial graph. Colors are used to
illustrate the node overlaps: from red (no overlap) to purple (most overlaps). (a) Original
radial graph. (b) 2X and (c) 4X cascade magnification results. The 4X magnification
result is generated using the 2X magnifier again on its prior magnified result. With the
increasing magnification ratio, the central nodes are enlarged for a clear separation view,
while compressing the exterior nodes.

work combines conformal mapping and optimal mass transportmapping, which serves as
a powerful tool for a broad range of applications in visualization and graphics, especially
for medical imaging.

In the future, we will explore broader applications in computer graphics, wireless sen-
sor network and machine learning. The theoretical correctness of the high dimensional
optimal mass transport has been proven, and has the potential to be applied in many re-
search areas including computational geometry and machinelearning. In future works, we
will generalize and implement the optimal mass transport map to higher dimensions.
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