

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Multi-dimensional Workload Analysis and Synthesis
for Modern Storage Systems

A Dissertation Presented

by

Vasily Tarasov

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2013

Stony Brook University
The Graduate School

Vasily Tarasov

We, the dissertation committee for the above candidate for the Doctor of Philosophy degree,
hereby recommend acceptance of this dissertation.

Dr. Erez Zadok—Dissertation Adviser
Associate Professor, Department of Computer Science

Dr. Donald Porter—Chairperson of Defense
Assistant Professor, Department of Computer Science

Dr. Michael Ferdman
Assistant Professor, Department of Computer Science

Dr. Geoffrey Kuenning
Professor, Harvey Mudd College, Department of Computer Science

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Multi-dimensional Workload Analysis and Synthesis for Modern Storage Systems

by

Vasily Tarasov

Doctor of Philosophy
in

Computer Science

Stony Brook University

2013

Modern computer systems produce and process an overwhelming amount of data at an increas-
ing rates. The performance of storage hardware components, however, cannot keep up with the
required speed at a practical cost. To mitigate this discrepancy, storage vendors incorporate many
workload-driven optimizations in their products. Emerging applications cause workload patterns
to change rapidly and significantly. One of the prominent examples is a rapid shift towards vir-
tualized environments. Virtual machines mix I/O streams from different applications and perturb
applications’ access patterns. In addition, modern users demand more convenience features, such
as deduplication, snapshotting, and encryption. Stringent performance requirements, changing I/O
patterns, and the growing feature list increase the complexity of storage systems. The complexity
of design, in turn, makes the evaluation of the storage systems a difficult task.

Storage community needs practical evaluation tools and techniques to resolve this task timely
and efficiently. This thesis first explores the complexity of evaluating storage systems. Second, the
thesis proposes a Multi-Dimensional Histogram (MDH) workload analysis as a basis for designing
a variety of evaluation tools. I/O traces are good sources of information about real-world workloads
but are inflexible in representing more than the exact system conditions at the point the traces were
captured. We demonstrate how MDH techniques can accurately convert I/O traces to workload
models. Historically, most I/O optimizations focused on the metadata: e.g., I/O access patterns,
arrival times, read/write sizes. Increasingly, storage systems must also consider the data and not
just the metadata. For example, deduplication systems eliminate duplicates in the data to increase
logical storage capacity. We use MDH techniques to generate realistic datasets for deduplication
systems. The shift from physical to virtual clients drastically changes the I/O workloads seen by
Network Attached Storage (NAS). Using MDH techniques we study workload changes caused by
virtualization and synthesize a set of versatile NAS benchmarks.

It is our thesis that MDH techniques are powerful for both workload analysis and synthesis.
MDH analysis bridges the gap between the complexity of storage systems and the availability of
practical evaluations tools.

iii

Contents

List of Figures vi

List of Tables viii

Acknowledgments ix

1 Introduction 1
1.1 Complexities in Evaluating Storage Systems . 2
1.2 Performance of Deduplication Systems . 3
1.3 Virtualized Workloads . 3

2 Complexities of Evaluating Storage Systems 5
2.1 Current State of File System Performance Benchmarking 5
2.2 File System Dimensions . 6
2.3 A Case Study . 9

2.3.1 Throughput . 9
2.3.2 Latency . 11

2.4 Trace replay . 12
2.5 Approaches to Trace Replay . 13
2.6 Trace Replay Problems . 15
2.7 Experimental Verification . 17
2.8 Related Work . 18
2.9 Conclusions . 19

3 Trace to Workload Model Conversion 21
3.1 Introduction . 21
3.2 Design . 22
3.3 Mathematical Approximations . 25

3.3.1 Filebench Custom Variables . 26
3.3.2 Mersenne Twister Pseudo Random Number Generator 27
3.3.3 Approximation Algorithm . 27

3.4 Implementation . 28
3.5 Evaluation . 28

3.5.1 Approximation . 31
3.6 Related Work . 33

iv

3.7 Conclusions . 33

4 Realistic Dataset Generation 34
4.1 Introduction . 34
4.2 Previous Datasets . 35
4.3 Emulation Framework . 36

4.3.1 Generation Methods . 36
4.3.2 Fstree Objects . 37
4.3.3 Fstree Action Modules . 38
4.3.4 Usage Example . 39

4.4 Datasets Analyzed . 40
4.5 Module Implementations . 40

4.5.1 Space Characteristics . 41
4.5.2 Markov & Distribution (M&D) Model . 42

4.6 Evaluation . 47
4.7 Related Work . 51
4.8 Conclusions . 52

5 NAS Workloads in Virtualized Setups 53
5.1 Introduction . 53
5.2 Background . 55

5.2.1 Data Access Options for VMs . 55
5.2.2 VM-NAS I/O Stack . 56
5.2.3 VM-NAS Benchmarking Setup . 57

5.3 NAS Workload Changes . 58
5.4 VM-NAS Workload Characterization . 61

5.4.1 Experimental Configuration . 61
5.4.2 Application-Level Benchmarks . 62
5.4.3 Characterization . 63

5.5 New NAS Benchmarks . 66
5.5.1 Trace-to-Model Conversion . 66
5.5.2 Evaluation . 68

5.6 Related Work . 69
5.7 Conclusions . 70

6 Conclusion 71
6.1 Future Work . 72

Bibliography 74

v

List of Figures

2.1 Ext2 throughput for various file sizes . 9
2.2 Ext2, Ext3, and XFS throughput by time . 10
2.3 Ext2 read latency histograms for various file sizes 11
2.4 Latency histograms by time . 12
2.5 The problems of commonly used replay approaches 13
2.6 Request dependencies . 15
2.7 Completion-time-based replay . 15
2.8 Queue length for plain replay . 18

3.1 Workload representation using a feature matrix 23
3.2 Overall trace-to-model system design . 24
3.3 Approximation of an empirical distribution . 26
3.4 Reads and writes per second . 29
3.5 Disk power consumption . 29
3.6 Memory and CPU usage . 29
3.7 Root mean square and maximum relative distances of accuracy parameters 30
3.8 Model accuracy depending on chunk size . 32
3.9 Model size and error depending on the target error 32

4.1 Action modules and their relationships . 37
4.2 Content and metadata characteristics of file systems 41
4.3 Classification of files . 42
4.4 Markov model for handling file states . 43
4.5 Emulated parameters for Kernels real and synthesized datasets 46
4.6 Emulated parameters for CentOS real and synthesized datasets 47
4.7 Emulated parameters for Homes real and synthesized datasets 47
4.8 The process of dataset formation . 47
4.9 Emulated parameters for MacOS real and synthesized datasets 48
4.10 Emulated parameters for System Logs real and synthesized datasets 48
4.11 Emulated parameters for Sources real and synthesized datasets 49
4.12 File size, type, and directory depth distributions 50

5.1 VM data-access methods . 55
5.2 VM-NAS I/O Stack . 57
5.3 Physical and Virtualized NAS architectures . 59
5.4 Read/Write ratios for different workloads . 64

vi

5.5 Characteristics of a virtualized File-server workload 65
5.6 Characteristics of a virtualized Web-server workload 65
5.7 Characteristics of a virtualized Database-server workload 65
5.8 Characteristics of a virtualized Mail-server workload 65
5.9 Root mean square and maximum relative distances of response parameters 68
5.10 Response parameter errors depending on the number of VMs deployed 69

vii

List of Tables

2.1 Benchmarks summary . 8
2.2 Postmark vs. replay results . 19

3.1 High-level characteristics of the used traces . 28

4.1 Summary of analyzed datasets . 39
4.2 Probabilities of file state transitions for different datasets 43
4.3 Probabilities of the change patterns for different datasets 45
4.4 Relative error of emulated parameters . 49
4.5 Times to mutate and generate data sets . 50

5.1 The differences between virtualized and physical workloads 54
5.2 I/O workload changes between physical and virtualized NAS architectures 60
5.3 Virtual machine configuration parameters . 62
5.4 High-level workload characterization for new NAS benchmarks 63

viii

Acknowledgments
This work would not be possible without many people that helped me on the thorny path of

a Ph.D. student. First, I would like to thank all master students that spent uncountable number
of hours on helping me with every aspect of the work: Binesh Andrews, Sujay Godbole, Deepak
Jain, Mandar Joshi, Atul Karmarkar, Rachita Kothiyal, Santhosh Kumar, Ravikant Malpani, Sonam
Mandal, Amar Mundrakit, Karthikeyani Palanisami, Priya Sehgal, Gyumin Sim, and Sagar Trehan.
I especially would like to thank Santhosh Kumar and Amar Mundrakit who were involved in
Trace2Model and Deduplication projects.

I also would like to thank truly exceptional students from Harvey Mudd College: Will Buik,
Garry Lent, Jack Ma, and Megan O’Keefe. I’m very thankful to Will Buik and Jack Ma who—
instead of relishing in sunny California—spent their 2011 summer in FSL working closely with
me. I hope they enjoyed their experience in the lab as much as I enjoyed working with them.
Without all these undergraduate students’ help, this work would have been much harder.

I deeply thank Nikolay Joukov who graciously agreed to mentor an inexperienced student
during his first internship at IBM T.J. Watson Research Center. Next two internships I spent at
IBM Research—Almaden. Dean Hildebrand, Anna Povzner, and Renu Tewari are the people to
thank there. I’m especially thankful to Dean, my mentor, who was always open for a discussion
and did every single thing for a productive internship. Thanks to his efforts, a very successful
collaboration between IBM Almaden’s storage group and the FSL continued beyond that summer.
I also should thank Dean and Renu for supporting me as a nominee for IBM Ph.D. Fellowship. This
not only made me a proud holder a fellow title, by also eased the financial part of my everyday life.

Philip Shilane from EMC was helping us to understand many deduplication nuances. He gave
us an access to the real-world datasets, which allowed us to complete the deduplication part of this
thesis. His wise reasoning can be found in many places throughout the thesis.

I would like to thank three persons from academia. First, I thank Margo Seltzer from Harvard
University who was working with us on the file system benchmarking project. Her passion about
a thorough understanding of storage systems performance is infectious. Second, Geoff Kuenning
from Harvey Mudd College contributed a lot to this thesis. Being a collaborator in most of my
projects, he was a faultless gauge of what should be kept and what should be left out when it
comes to deciding which research directions to pursue in a limited time. I adore his deep love of
English language and I am sure that I made him suffer multiple times when he was revising (and
often completely rewriting) my drafts. Finally, there is not enough space in this section to express
all the thanks to my adviser—Erez Zadok. I was a lucky beggar when he, somewhat accidentally,
agreed to be my adviser. Rarely there are advisers that are so deeply involved in the projects,
guide students trough the years so professionally, demonstrate proper research techniques, and
mercilessly exterminate inefficient practices.

Finally, I want to thank my friends in and outside the lab. Especially Pradeep Shetty, a Master
student who has already graduated, and Zhichao Li and Ming Chen, Ph.D. students who still have
the graduation path in front of them. My friends—Tatsiana Mironava, Yury Puzis, and Eugene
Borodin are the people that made my leisure fun. Thanks to them, I was rarely bored these years.

No good research is possible without financial support. In addition to the aforementioned
two IBM Ph.D. Fellowships, this work was supported in part by NSF awards CCF-0937833 and
CCF-0937854, an IBM Faculty award, and a NetApp Faculty award.

ix

Chapter 1

Introduction

Modern computer systems produce and process an overwhelming amount of data at an extremely
high rates. According to International Data Corporation (IDC), the amount of stored digital in-
formation in 2011 was over 1.8 zettabytes and the number of files was over 500 quadrillion
(500× 1015) [44]. During 2011–2016 these numbers are projected to double every year [44].

The performance of storage hardware components, however, does not keep up with the required
capacity and speed at a practical cost. In fact, Hard Disk Drives (HDDs) have a low purchase price
but their random access performance is often unacceptable. In addition, HDDs consume a lot of
energy (6–10 watts per spindle), which increases HDDs’ cost of ownership. Flash-based Solid
State Drives (SSDs) have a high read performance and consume significantly less energy than
HDDs but have a number of other limitations. First, though becoming less expensive, SSDs still
cost significantly more than HDDs. Second, SSDs deliver significantly higher throughput than
HDDs for read-intensive workloads but not for write-intensive workloads [93]. Third, wear-out
effects in Flash memory necessitate a high degree of redundancy and complex firmware in SSD
setups, which increases SSDs’ cost. Fourth, automatic garbage collection, defragmentation, and
I/O parallelization makes SSD performance unpredictable. Finally, current and theoretical peaks
of memory density (in gigabytes per square inch) for SSDs is significantly lower than for HDDs.
Consequently, scaling performance and capacity by purchasing more HDDs or replacing HDDs by
SSDs is not a cost-effective approach.

Applying workload-based optimizations is a popular way to mitigate the widening gap be-
tween the storage performance and user requirements. Currently vendors improve throughput and
latency by applying various workload-driven optimizations such as complex caching algorithms,
readahead, and automatic tiering. We have little doubt that the demand for workload-aware systems
will only grow.

In addition to the amount of data and its access rate, the way users access the data changes
as well. The number and diversity of user applications increase. Emerging applications cause
workload patterns to change rapidly and significantly. One prominent example is a shift towards
virtualized environments, which causes a single storage system to serve data to many different
clients (so called storage consolidation). As a result, I/O streams from multiple applications mix,
perturbing I/O workload on the servers. Big data processing is another example of emerging ap-
plications that exhibit unique workload characteristics [28].

Therefore, the problem of efficient characterization of storage workloads is increasingly im-
portant. Engineers and researchers can timely design efficient storage solutions only with reliable

1

knowledge of the present-day workloads and an accurate prediction of the future workloads. Fur-
thermore, the problem of evaluating and comparing storage systems that incorporate workload-
driven optimizations grows too; only tools and techniques that accurately preserve and synthesize
realistic workload properties can evaluate the performance of such systems fairly.

Another complexity of modern storage systems comes from the high number of features that
present-day users demand. Deduplication, compression, snapshotting, encryption, and other fea-
tures have become almost mandatory in any modern storage array. However, these features come
at a price: the performance of a feature-rich array can vary significantly depending on the features
enabled and the workloads in use. For instance, a storage stack that supports deduplication can
both improve and degrade system performance depending on the number of duplicate objects in
the dataset. To mitigate such negative impacts, many deduplication systems implement various op-
timizations, e.g., a bounded hash index search against a subset of all data. In this case, performance
depends on both duplicates count and spacial and temporal access locality. A proper evaluation of
the trade-offs caused by different storage features requires tools that can generate workloads with
realistic characteristics.

Evaluating even simple storage systems is hard. In this thesis, Chapter 2 describes the difficul-
ties in the two accepted ways of evaluating storage systems: using synthetic benchmarks and trace
replay. As the complexity of storage systems grows due to inclusion of workload-driven optimiza-
tions, the appearance of new features, and the diversification of user applications, new tools and
techniques are needed for efficient workload analysis and synthesis. Chapter 3 demonstrates the
basics of the Multi-Dimensional Histogram (MDH) technique by applying MDH to convert I/O
traces to workload models. In Chapter 4 and Chapter 5 we apply MDH to evaluate deduplication
systems and Network Attached Storage (NAS) serving the data to a set of virtual machines. We
then conclude and present future work in Chapter 6. It is our thesis that MDH-based techniques
are powerful for both workload analysis and synthesis. MDH bridges the widening gap between
the complexity of storage systems and the availability of practical evaluation tools. The rest of this
chapter summarizes the problems addressed in the thesis and describes our main contributions.

1.1 Complexities in Evaluating Storage Systems
Researchers traditionally evaluate storage systems using synthetic benchmarks and trace replay.
The quality of file system benchmarking has not improved in over a decade of intense research
spanning hundreds of publications. Researchers repeatedly use a wide range of poorly designed
benchmarks, and in most cases, develop their own adhoc benchmarks. In addition to lax statistical
rigor, the storage community lacks a definition of what we want to benchmark in a file system. In
Chapter 2 we review a wide range of evaluation tools and techniques, and propose several dimen-
sions of file system benchmarking. We experimentally show that even the simplest of benchmarks
and conventional trace replay tools can be fragile, producing drastically different performance re-
sults even when the workloads and operating environments are almost identical. It is our hope
that Chapter 2 will spur a more serious debate in the community, leading to more actions that can
improve how we evaluate our file and storage systems. We argue that the MDH technique and a
set of associated tools can significantly improve storage benchmarking discipline.

Tracing production systems is a traditional approach to understanding real-world workloads.
The collected traces are then analyzed, relevant workload properties are extracted, and correspond-

2

ing optimizations are developed. Trace analysis is the best option for studying representative
workloads. Unfortunately, another common use of traces—replay—has a lot of difficulties. Traces
tend to be large, hard to use and share, and inflexible in representing more than the exact system
conditions at the point the traces were captured. Often, however, researchers are not interested
in the precise details stored in a bulky trace, but rather in some statistical properties found in the
traces—properties that affect their system’s behavior under load.

Chapter 3 applies the MDH technique for converting I/O traces to workload models. We de-
signed and built a system that (1) extracts many desired properties from a large block I/O trace, (2)
builds a statistical model of the trace’s salient characteristics, (3) converts the model into a concise
description in the language of one or more synthetic load generators, and (4) can accurately replay
the models in these load generators. Our system is modular and extensible. We experimented with
several traces of varying types and sizes. Our concise models are 4–6% of the original trace size,
and our modeling and replay accuracy are over 90%. We further evaluate the impact of approxi-
mations on MDH model size and accuracy.

1.2 Performance of Deduplication Systems
Historically, most I/O optimizations focused on the metadata: e.g., I/O access patterns such as
random or sequential, arrival times, read/write sizes. Increasingly, storage systems also consider
the content and not just the metadata. Deduplication is a popular component of modern storage
systems, with a wide range of approaches. Unlike traditional storage systems, deduplication per-
formance depends on the data’s content as well as access patterns. Most datasets that were used
to evaluate deduplication systems are either unrepresentative, or unavailable due to privacy issues,
preventing an easy and fair comparison of competing algorithms. Understanding how both content
and metadata evolve is critical to the realistic evaluation of deduplication systems.

In Chapter 4 we present an MDH-based model of file system changes based on properties mea-
sured on terabytes of real, diverse storage systems. Our model plugs into a generic framework for
emulating file system changes. Building on observations from specific environments, our model
can generate an initial file system followed by ongoing modifications that emulate the distribution
of duplicates and file sizes, realistic changes to existing files, and file system growth. The frame-
work is modular and makes it easy for other researchers to add modules specific to their environ-
ments. The models used to generate content are based on observations of many real-world datasets
collected by a major storage manufacturer. In our experiments the system was able to generate a
4TB dataset within 13 hours on a machine with a single disk drive. The relative error of emulated
parameters depends on the model size, but remains within 15% of real-world observations.

1.3 Virtualized Workloads
Network Attached Storage (NAS) and Virtual Machines (VMs) provide high manageability, scal-
ability, and facilitate resource consolidation. As a result, NAS and VMs became popular in many
data centers. Virtualization solutions typically encapsulate guest file systems in virtual disk images
and multiplex request streams from different VMs. Consequently, NAS servers see drastically dif-
ferent workloads from virtualized clients than from the physical clients. Unfortunately, current

3

NAS workload generators and benchmarks produce workloads typical to physical machines. Con-
sequently, the usage of current benchmarks for virtual setups requires a complex setup of hypervi-
sors, VMs, and applications to produce realistic workloads.

Chapter 5 makes two contributions. First, we studied the extent to which virtualization is
changing existing NAS workloads. We observed significant changes, including the disappearance
of file system metadata operations at the NAS layer, changed I/O sizes, and increased randomness.
Second, using MDH-based techniques, we created a set of versatile NAS benchmarks to synthesize
virtualized workloads. New NAS benchmarks generate accurate virtualized workloads without the
effort and limitations associated with setting up a full virtualized environment. The experiments
show that the relative error of the virtualized benchmarks averages to less than 10% across 11
parameters.

4

Chapter 2

Complexities of Evaluating Storage Systems

In this chapter we describe the challenges of evaluating storage systems effectively. First, in
Sections 2.1–2.3 we describe the problems of evaluating file systems with synthetic benchmarks.
Then, in Sections 2.4–2.7 we cover the difficulties of using trace replay approach. Finally, we
cover related work for this chapter in Section 2.8 and conclude in Section 2.9.

2.1 Current State of File System Performance Benchmarking
Each year, the research community publishes up to several dozens of papers proposing new or
improved file and storage system solutions. Practically every such paper includes an evaluation
demonstrating how good the proposed approach is on some set of benchmarks. In many cases,
the benchmarks are fairly well-known and widely accepted; researchers present means, standard
deviations, and other metrics to suggest some element of statistical rigor. It would seem then that
the world of file system benchmarking is in good order, and we should all continue along with our
current methodology.

We observe not.
We claim that file system benchmarking is actually full of incomplete and misleading results

that make it virtually impossible to understand the strengths and weaknesses of a given design. In
Section 2.3, we demonstrate the fragility that results when using a common file system benchmark
(Filebench [39]) to answer a simple question, “How good is the random read performance of Linux
file systems?” This seemingly trivial example highlights how hard it is to answer even simple
questions and also how, as a community, we have come to rely on a set of common benchmarks,
without really asking ourselves what we need to evaluate.

The fundamental problems are twofold. First, accuracy of published results is questionable
even in the sciences [97] where the community welcomes the confirmation of earlier results by
other researchers. Evaluating computer systems is an experimental discipline but confirming the
results of existing studies is not a part of computer science culture. So, the accuracy and validity
of results may be even worse in our field [119, 123]. Second, we are asking an ill-defined question
when we ask, “Which file system is better.” We limit our discussion here to the second point.

What does it mean for one file system to be better than another? Many might immediately
focus on performance, “I want the file system that is faster!” But faster under what conditions?
One system might be faster for accessing many small files, while another is faster for accessing a

5

single large file. One system might perform better than another when the data starts on disk (e.g.,
its on-disk layout is superior). One system might perform better on metadata operations, while
another handles data better. Given the multi-dimensional aspect of the question, we argue that the
answer can never be a single number or the result of a single benchmark. Of course, we all know
that and consequently every paper presents multiple benchmark results. But how many of those
give the reader any help in interpreting the results to apply them to any question other than the
narrow question being asked in that paper?

The benchmarks we choose should measure the aspect of the system on which the research
in a paper focuses. That means that we need to understand precisely what information any given
benchmark reveals. For example, many file system papers use a Linux kernel build as an evaluation
metric [5, 75, 123, 147]. However, on practically all modern systems, a kernel build is a CPU bound
process, so what does it mean to use it as a file system benchmark? The kernel build does create
a large number of files, so perhaps it is a reasonable metadata benchmark? Perhaps it provides a
good indication of small-file performance? But it means nothing about the effect of file system disk
layout if the workload is CPU bound. The reality is that kernel compilation frequently reveals little
about the performance of a file system, yet many researchers use compilation-based benchmarks
nonetheless.

We claim that file systems are multi-dimensional systems, and we should evaluate them as
such. File systems are a form of “middleware” because file systems have multiple storage layers
above and below, and it is the interaction of all of those layers with the file system that really affects
its behavior. To evaluate a file system properly we first need to agree on the different dimensions,
then agree on how best to measure those different dimensions and finally agree on how to combine
the results from the multiple dimensions.

In Section 2.2 we review and propose several file system evaluation criteria (i.e., a specifica-
tion of the various dimensions) and then examine commonly used benchmarks relative to those
dimensions. In Section 2.3 we examine 1–2 small pieces of these dimensions to demonstrate the
challenges that must be addressed.

2.2 File System Dimensions
A file system abstracts some hardware device to provide a richer interface than that of reading and
writing blocks. It is sometimes useful to begin with a characterization of the I/O devices on which
a file system is implemented. Such benchmarks should report bandwidth and latency when reading
from and writing to the disk in various-sized increments. IOmeter [100] is an example of such a
benchmark; we will call these I/O benchmarks.

Next, we might want to evaluate the efficacy of a file system’s on-disk layout. These should
again evaluate read and write performance as a function of (file) size, but should also evaluate
the efficacy of the on-disk metadata organization. These benchmarks can be challenging to write:
applications can rarely control how a file system caches and prefetches data or metadata, yet such
behavior will affect results dramatically. So, when we ask about a system’s on-disk metadata
layout, do we want to incorporate its strategies for prefetching? They may be tightly coupled. For
example, consider a system that groups the metadata of “related files” together so that whenever
you access one object, the metadata for the other objects’ metadata is brought into memory. Does
this reflect a good on-disk layout policy or good prefetching? Can you even distinguish them?

6

Does it matter? There exist several benchmarks (e.g., Filebench [39], IOzone [24]) that incorporate
tests like this; we will refer to these benchmarks as on-disk benchmarks. Depending on how it is
configured, the Bonnie and Bonnie++ benchmarking suites [21, 30] can measure either I/O or
on-disk performance.

Perhaps we are concerned about the performance of metadata operations. The Postmark bench-
mark [68] is designed to incorporate metadata operations, but does not actually provide metadata
performance in isolation; similarly, many Filebench workloads can exercise metadata operations
but not in isolation.

As mentioned above, on-disk metadata benchmarks can become caching or in-memory bench-
marks when file systems group metadata together. On-disk metadata benchmarks can also become
in-memory benchmarks when the benchmarks sweep small file sizes or report “warm-cache” re-
sults. We claim that we are rarely interested in pure in-memory execution, which is predominantly
a function of the memory system, but rather in the efficacy of a given caching approach; does
the file system pre-fetch entire files, blocks, or large extents? How are elements evicted from the
cache? To the best of our knowledge, none of the existing benchmarks consider these questions.

Finally, we may be interested in studying a file system’s ability to scale with increasing load.
This was the original intent behind the Andrew File System benchmark [57], and while sometimes
used to that end, this benchmark, and its successor, the Linux kernel compile are more frequently
cited as a good benchmark for general file system performance.

We surveyed the 2009 and 2010 publications in file systems from the USENIX FAST, OSDI,
ATC, HotStorage, ACM SOSP, and IEEE MSST conferences. We recorded what benchmarks were
used and what each benchmark measures. We reviewed 100 papers, 68 from 2010 and 32 from
2009, eliminating 13 papers that had no evaluation component relative to the discussion. For the
rest, we counted how many papers used each benchmark. Table 2.1 shows all the benchmarks that
we encountered and reports how many times each was used in each of the past two years. The
table also contains similar statistics from our previous study for 1999–2007 years. We were disap-
pointed to see how little consistency there was between papers. Adhoc testing—making one’s own
benchmark—was, by far, the most common choice. While several papers used micro-benchmarks
for random read/write, sequential read/write and create/delete operations, the benchmarks were all
custom generated. We found this surprising in light of the numerous existing tests that can generate
micro-benchmark workloads.

Some of the adhoc benchmarks are the result of new functionality: three papers provided adhoc
deduplication benchmarks, because no standard benchmarks exist. There were two papers on sys-
tems designed for streaming, and both of those used custom workloads. However, in other cases,
it is completely unclear why researchers are developing custom benchmarks for OLTP or paral-
lel benchmarking. Some communities are particularly enamored of trace-based evaluations (e.g.,
MSST). However, almost none of those traces are widely available: of the 14 “standard” traces,
only 2 (the Harvard traces and the NetApp CIFS traces) are widely available. When researchers
go to the effort to make traces, it would benefit the community to make them widely available by
depositing them with Storage Networking Industry Association (SNIA).

In summary, there is little standardization in benchmark usage. This makes it difficult for future
researchers to know what tests to run or to make comparisons between different papers.

7

Benchmark Benchmark Type Used in papers
I/O On-disk Caching Metadata Scaling 1999–2007 2009–2010

IOmeter [61] • 2 3
Filebench [39] • ◦ ◦ ◦ • 3 5
IOzone [24] ◦ ◦ • 0 4
Bonnie [21] ◦ ◦ 2 0
Postmark [68] ◦ ◦ ◦ • 30 17
Linux compile ◦ ◦ ◦ 6 3
Compile other ◦ ◦ ◦ 38 14
DBench [125] ◦ ◦ ◦ 1 1
SPECsfs [115] ◦ ◦ ◦ • 7 1
Sort [105] ◦ ◦ • 0 5
IOR [86] ◦ ◦ • 0 1
Production ? ? ? ? 2 2
Adhoc ? ? ? ? ? 237 67
Custom trace ? ? ? ? 7 18
Standard trace ? ? ? ? 14 17
BLAST [87] ◦ ◦ 0 2
FFSB [107] ◦ ◦ ◦ • 0 1
Fio [40] ◦ ◦ ◦ • 0 1
Andrew [57] ◦ ◦ ◦ 15 1

Table 2.1: Benchmarks Summary. “•” indicates the benchmark can be used for evaluating the
corresponding file system dimension; “◦” is the same but the benchmark does not isolate a corre-
sponding dimension; “?” is used for traces and production workloads. Researchers often pick the
benchmark without taking the important information above into account.

8

2.3 A Case Study
We performed a simple evaluation of Ext2 using Filebench 1.4.8 [39]. We picked Filebench be-
cause of its flexibility and widespread usage. E.g., in FAST 2013 six out of ten papers that per-
formed file system benchmarking used Filebench. Nevertheless, the problems outlined by this
study are common to all other benchmarks we surveyed. The range of the workloads that Filebench
can generate is broad, but we deliberately chose a simple, well-defined workload: one thread ran-
domly reading from a single file. It is remarkable that even such a simple workload can demon-
strate the multi-dimensional nature of file system performance. More complex workloads and file
systems will exploit even more dimensions and consequently will require more attention during
evaluation. Ext2 is a relatively simple file system, compared to, say, Btrfs; more complex file
systems should demonstrate more intricate performance curves along performance dimensions.

In our experiments we measured the throughput and latency of the random read operation. We
used an Intel Xeon 2.8GHz machine with a single SATA Maxtor 7L250S0 disk drive as a testbed.
We artificially decreased the RAM to 512MB to reduce the warmup phase of the experiments.
This is a common and valid practice in the systems with Uniform Memory Access architectures.
Section 2.3.1 describes our observations related to the throughput, and Section 2.3.2 highlights the
latency results.

2.3.1 Throughput

 0

 2000

 4000

 6000

 8000

 10000

64m
128m

192m
256m

320m
384m

448m
512m

576m
640m

704m
768m

832m
896m

960m
1024m

 0

 5

 10

 15

 20

 25

 30

 35

 40

P
e
rf

o
rm

a
n
c
e
 (

o
p
s
/s

e
c
)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

%
 o

f
m

e
a
n
)

File size

9682 9653 9679 9700 9543 9715

1019
465

288 252 222 205 183 182 166 162

Figure 2.1: Ext2 throughput and its relative standard devi-
ation under random read workload for various file sizes.

In our first experiment we increased
the file size from 64MB to 1024MB
in steps of 64MB. For each file size
we ran the benchmark 10 times. The
duration of the run was 20 min-
utes. We ensured that it is was
enough to achieve steady-state re-
sults. Figure 2.1 shows the through-
put and its relative standard devia-
tion for this experiment. The sudden
drop in performance between 384MB
and 448MB is readily apparent. The
OS consumes some of the 512 MB
of RAM and the drop in performance
corresponds to the point when the file
size exceeds the amount of memory available for the page cache.

So, what should a careful researcher report for the random read performance of Ext2? For file
sizes less than 384MB, the workload mostly exercises the memory subsystem; for file sizes greater
than 448MB, the workload exercises the disk system and the page replacement algorithm. This
suggests that researchers should either publish results that span a wide range of datasets or make
explicit both the memory- and I/O-bound performance.

It was surprising, at first, that such a sudden performance drop happens within a narrow range
of only 64MB. We ran extra experiments for file sizes between 384MB and 448MB and observed
that performance drops within an even narrower region—less than 6MB in size. This happens

9

because even a single read operation that induces I/O lasts longer than thousands of in-memory
reads. This problem becomes worse in recent years as the gap between I/O and memory/CPU
speeds widens. More modern file systems rely on multiple cache levels (using Flash memory or
network). In this case the performance curve will have multiple distinctive steps.

Only few megabytes of RAM available for data caching can impact system performance dras-
tically. Figure 2.1 also shows the relative standard deviation for the throughput. The standard
deviation is not constant across the file sizes. In the I/O-bound range, the standard deviation is up
to 5 times greater than it is in the memory-bound range. This is unsurprising given the variability
of disk access times compared to the relative stability of memory performance. We observed that
in the transition region, where we move from being memory-bound to being disk-bound, the rel-
ative standard deviation increases by up to 35% (not visible on the figure because it only depicts
data points with a 64MB step). Just a few megabytes more (or less) available in the cache affect
the throughput dramatically in this boundary region. It is difficult to control the availability of just
a few megabytes from one benchmark run to another. As a result, throughput benchmarks are very
fragile: just a tiny variation in the amount of available cache space can produce a large variation in
performance.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

P
e
rf

o
rm

a
n
c
e
 (

o
p
s
/s

e
c
)

Time (sec)

Ext2
Ext3
XFS

Figure 2.2: Ext2, Ext3, and XFS throughput by time.
Higher value on the Y axis means better performance.

We reported only the steady-state
performance in the above discussion;
is it correct to do so? We think not. In
the next experiment we recorded the
throughput of Ext2, Ext3, and XFS
every 10 seconds. We used a 410MB
file, because it is the largest file that
fits in the page cache. Figure 2.2 de-
picts the results of this experiment.
In the beginning of the experiment no
file blocks are cached in memory. As
a result all read operations go to the
disk, directly limiting the throughput
of all the systems to that of the disk.
At the end of the experiment, the file
is completely in the page cache and all the systems run at memory speed. However, the perfor-
mance of these file systems differs significantly between 4 and 13 minutes.

What should the careful researcher do? It is clear that the interesting region is in the transition
from disk-bound to memory-bound. Reporting results at either extreme will lead to the conclu-
sion that the systems behave identically. Depending on where in the transition range a researcher
records performance, the results can show differences ranging anywhere from a few percentage
points to nearly an order of magnitude! Only the entire graph provides a fair and accurate char-
acterization of the file system performance across this (time) dimension. Such graphs span both
memory-bound to I/O bound dimensions, as well as a cache warm-up period. Self-scaling bench-
marks [27] can collect data for such graphs.

10

2.3.2 Latency

 0

 20

 40

 60

 80

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

16ns 256 ns 4us 66us 1ms 17ms 268ms

%
 o

f
o

p
e

ra
ti
o

n
s

Latency (ns) (log)

(a) 64MB file

 0

 20

 40

 60

 80

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

16ns 256 ns 4us 66us 1ms 17ms 268ms

%
 o

f
o

p
e

ra
ti
o

n
s

Latency (ns) (log)

(b) 1024MB file

 0

 20

 40

 60

 80

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

16ns 256 ns 4us 66us 1ms 17ms 268ms

%
 o

f
o

p
e

ra
ti
o

n
s

Latency (ns) (log)

(c) 25GB file

Figure 2.3: Ext2 read latency histograms for various file
sizes. Further to the left along the X axis is better.

File system benchmarks, including
Filebench, often report an average la-
tency for I/O operations. However,
average latency is not a good met-
ric to evaluate user satisfaction when
a latency-sensitive application is in
question. We modified Filebench to
collect latency histograms [66] for
the operations it performs. We ran
the same workload as described in
the previous section for four differ-
ent file sizes spanning a wide range:
64MB, 1024MB, and 25GB. Fig-
ure 2.3 presents the corresponding
histograms. Notice that the X axes
are logarithmic and that the units
are in nanoseconds (above) and log2

bucket number (below). The Y axis
units are the percentage of the total
number of operations performed.

For a 64MB file (Figure 2.3(a))
we see a distinctive peak around 4
microseconds. The file fits com-
pletely in memory, so only in-
memory operations contribute to the
latency. When the file size is
1024MB we observe two peaks on
the histogram (Figure 2.3(b)). The second peak on the histogram corresponds to the read calls
that miss in the cache and go to disk. The peaks are almost equal in height because 1024MB is
twice the size of RAM and, consequently, half of the random reads hit in the cache (left peak),
while the other half go to disk (right peak). Right peak is slightly more massive in our results be-
cause 1024MB is actually more than twice of the RAM available for caching. Finally, for a file that
is significantly larger than RAM—25G in our experiments—the left peak becomes invisibly small
because the vast majority of the reads end up as I/O requests to the disk ((Figure 2.3(c)). Clearly,
the working set size impacts reported latency significantly, spanning over 3 orders of magnitude.

In another experiment, we collected latency histograms periodically over the course of the
benchmark. In this case we used a 256MB file that was located on Ext2. Figure 2.4 contains a
3D representation of the results. As the benchmark progresses, the peak corresponding to disk
reads (located near the 223 ns) fades away and is replaced by the peak corresponding to reads
from the page cache (around 211ns). Again, depending on exactly when measurements are taken,
even a careful researcher might draw any of a number of conclusions about Ext2’s performance—
anywhere from concluding that Ext2 is very good, to Ext2 being bad, and everywhere in between.

11

0
20

40
60

80
100

120
140

160
180

200
220

240
260

280

Time in seconds
 0

 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 22
 24

 26
 28

 30

Latency (ns) (logscale)

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
o
p
e
ra

ti
o
n
s

Figure 2.4: Latency histograms by time (Ext2, 256MB
file). Closer to the bottom of the Latency axis is better.

Worse, during most of the bench-
mark’s run, it is bi-modal: trying to
achieve stable results with small stan-
dard deviations is nearly impossible.

In summary, single number bench-
marks rarely tell the complete story.
We need to get away from the
marketing-driven single-number mind-
set to a multi-dimensional continuum
mindset.

2.4 Trace replay
I/O tracing is a popular tool in sys-
tems research; it is often used for
workload characterization and modeling, downtime prediction, capacity planning, performance
analysis, and device modeling. In this section we focus on trace replay: the re-execution of a
trace to evaluate a system’s performance. Trace replay is similar to an I/O benchmark, but there
is a fundamental difference between running a benchmark and replaying a trace. First, researchers
implicitly understand that a benchmark generates an artificial workload, even if it was designed to
emulate reality [68]. In contrast, traces are usually thought to be inherently realistic, since traces
often record a complex workload generated by multiple real applications and users. Therefore, the
expectation is that the results of a trace replay will more closely represent the performance of a
production system.

Second, benchmarks generally measure the peak performance of a system, whereas traces often
capture its typical performance. This is because most production systems are designed to handle
peak loads, and are thus underutilized most of the time [13]. A typical trace consists of 1) workload
valleys, when utilization is low 2) workload plateaus, when the system is loaded, and 3) interme-
diate states. We use the word plateau instead of peak to emphasize that a system can be heavily
loaded for extended periods of time. So if a trace is replayed by issuing the requests exactly at
the times specified in the trace records (plain replay), peak performance will not be measured over
its entire duration. Furthermore, traces are typically replayed on a newly designed and more pow-
erful system than the one on which the traces were originally collected. In this case, plain trace
replay will always keep the system underutilized. So traces need to be scaled up, yet there is no
clear understanding of what that means. Section 2.5 discusses in detail the current approaches for
replaying the traces and the issue of scaling replays. In particular, straightforward approaches to
scaling result in distorted queue lengths, which can have severe performance anomalies. The two
properties that differentiate trace replay from benchmarks—the expectation of accurate, realistic
results and the need to scale traces—are in conflict; the results of a replay may be accurate on the
original system, but by definition a scaled-up trace offers a different load than what was seen on
the traced system.

Third, traces are often captured at a single layer in a system (e.g., system call, NFS, block-
level, device), but the connection to the original workload is tenuous (with the possible exception

12

T0 T1 T3 T4 T5 T6

t 0 t 1 t 2 t 3
t 4 t 5 t 6

t i Ti

t 0 t 1
t s

t 0 t 2

t 3

t 4

t 5

t 6

T2

t 1

t 0 t 2t 1 t 4t 3 t 5 t 6 t

Ti
t i= /2

Original trace:

T

t

Plain replay: =
length
Queue

t

Infinitely accelerated replay: = = =...

T

Queue
length

Queue
length

Queue
length

Potenital block

Always block

s − max. queue size

s − max. queue size

s − max. queue size

s − max. queue size

Max. queue length

t

t

t

System idles

Constant accelerated replay:

Figure 2.5: The problems of commonly used replay approaches. Capital “T” denotes a trace’s
original timeline, and a small “t” is a timeline during the replay on a different (presumably more
powerful) system. On the right is the stylized length of an internal queue during the replay. The
horizontal line “s” represents the maximum queue supported by a device.

of system-call traces). Thus, there is a tension between the need to trace at appropriate levels,
which is usually driven by issues of system design and practicality, and the need to accurately
record the original workload.

The fourth and final problem is that even when multiple layers are studied, most traces do not
clearly identify inter-layer relationships. For example, it is not easy to distinguish whether an I/O
request was caused by an incoming HTTP packet or generated due to the specifics of an implemen-
tation, e.g., periodic log file updates [29]. In fact, even if one attempts to record such relationships,
it can be very difficult to extract the necessary information from the operating system’s internal
data structures. For example, a dirty page may have been touched by two different processes, and
its eventual flush to disk may be a result of memory pressure from a third. It is unclear, when trying
to characterize a workload, which of these events is the “true” cause of the disk write.

Despite these limitations, researchers often treat trace replay as a valid way to generate accurate
and realistic I/O workloads. In fact, the research community believes so much in trace replays that
it sometimes seems that there is a de facto expectation that a good paper must use trace replay in
its evaluation. We show in this section that there are many limitations and complexities in the trace
replay methodology.

2.5 Approaches to Trace Replay
The first challenge in generating an accurate I/O workload is to select an appropriate trace replay
method that enables traces collected on one system to be representative on a completely different
system. This section discusses the most common replay approaches and shows limits of existing

13

approaches in their ability to scale the trace. We begin by discussing the three most common replay
methods: plain, accelerated, and infinitely accelerated. We then present less popular but possibly
more accurate methods.

Plain replay. The most straightforward way to do replay is to issue requests at the exact times
specified in the trace. In Figure 2.5, we denote this method by ti = Ti, where Ti is a relative trace
time and ti is a relative replay time of request i. Modern systems can service multiple requests
in parallel by queueing them and then dispatching requests as soon as the corresponding device
is free; the graph on the right side of Figure 2.5 schematically represents the length of the queue
during trace collection. The horizontal line shows the maximum queue length, s. When the queue
becomes full, no more requests can be accepted, and the submitter, e.g., the trace replayer or
benchmark, is blocked. As we will see later, this blocking behavior is of special importance in
trace replay.

Plain replay preserves idle periods and consequently is useful in evaluating certain types of
power-efficient systems which often switch to low power usage modes during light loads, e.g., by
spinning disks down. Sometimes plain replay also allows programmers to test systems for bugs
that are triggered by some non-trivial sequence of events observed in a real system.

When plain trace replay is used on a system more powerful than the one where the trace was
collected—a common occurrence—then the queue is typically shorter; it never reaches maximum
size and will empty more easily, meaning that the system is idling more (Figure 2.5). Clearly, such
a replay does not stress the system and cannot be used to measure peak performance. The latency
distribution measured by such replay can be used to evaluate typical, but not maximum, latencies,
since the internal queue is short.

Constant acceleration. One approach to scaling a trace is to issue all requests N times earlier
than the times recorded in the trace (Figure 2.5). N is called the acceleration factor in this case.
Under accelerated replay, the internal queue length for an evaluated system may be longer than for
the traced system; from time to time it can reach the maximum so that the submitter is blocked, as
depicted in Figure 2.5. There is no general recipe for selecting the acceleration factor. Different
researchers select this parameter differently, usually without justifying the selection [149]. How-
ever, the choice of this factor can result in quite different performance numbers. More thorough
evaluation of appropriate acceleration factors is beyond the scope of this thesis.

Infinite acceleration. To stress a system to its limit, the acceleration factor N can be set to in-
finity, as shown in the last timeline in Figure 2.5. In this case, all workload valleys are converted
to plateaus, the internal queue is always full, and the replayer is always blocked. As soon as an
opening appears in the queue, a request is added to it and the submitter is blocked again on submis-
sion of the next request. Keeping the queue full at all times gives the system more opportunity to
perform on-line optimizations, such as request reordering and merging. This method is clearly ap-
propriate for evaluating system’s peak performance. But keeping the I/O queues full is not typical
to the real systems.

Dependency-based. Often, the upper layers in real systems submit new requests only after get-
ting the response from some previously submitted requests. Previously considered replay ap-

14

proaches completely neglect such dependencies. These changes in the workload can significantly
skew the results of a trace-based evaluation. For example, Figure 2.6 shows the situation when the
upper layers submit request R1 only after R0 is completed. When R1 is finished, both R2 and R3

can be issued, but not R5. If dependency information is available, accelerated replay can take it
into account to improve realism of the upper layers’ behavior.

R
0R

2

R
5

R
3

R
1

R
67

R

Figure 2.6: Request dependencies.

The remaining question is when
to issue independent requests, i.e.,
those that do not depend on other re-
quests, such as R0 and R6 in Fig-
ure 2.6. Possible but not ideal solu-
tions are to submit independent re-
quests at the times specified in the
trace, or as fast as possible, or with
some acceleration factor.

Completion-time-based. Although
dependency information is missing
from almost all captured traces, the request completion time is sometimes present.
This gives us an opportunity to approximate dependencies based on that information.

T
0

T
1

R
0

R
1

R
2

1

c

2
T

c

TT
c

0
T2

Figure 2.7: Completion-time-based replay.

The general idea is to submit ev-
ery request as soon as possible, but
only if all requests that had previ-
ously completed in the original trace
have also completed during the re-
play. Figure 2.7 depicts an example
for three requests. Ti is the recorded
submission for the i-th request and
T c

i is the time it completed. When
replaying, R0 is submitted first, then
R1 immediately after that, because in the original trace R1 was submitted before R0 had completed.
However, R2 is not submitted until R0 completes, just as in the original trace. Note that such an
approximation can add extra dependencies that were not present in the original workload, and that
the replay can be done with either constant or infinite acceleration.

2.6 Trace Replay Problems
Several fundamental issues prevent trace replay from accurately representing the original work-
load. They require close attention from the community before we can expect realism from a trace
replay. Solving these issues would require more complete trace capture tools, better replay tools,
and a much larger set of modern traces in standard formats disseminated to the community (e.g.,
via SNIA’s growing Trace Repository [113]).

Lack of dependencies. Only a few currently available traces contain explicit information about
the dependencies between requests, which drastically complicates many operations on the traces.

15

Some attempts have been made to extract dependencies from existing traces, but extraction is a
difficult problem that can be addressed only with limited accuracy [149]. Detecting dependencies
while collecting a trace may be more feasible. For example, one can put trace points at several
layers in the I/O stack and detect when a single request at an upper layer induces a sequence of
dependent requests at a lower one.

Think time. The time between the response from a lower layer and the submission of the next
(dependent) request is called think time; this often corresponds to an application’s computation
between I/O operations, and clearly affects performance. If the completion time for each request
is available in the trace, then it is possible to estimate think time. But it is unclear whether it
is possible to scale the think time to other systems with different CPU and memory resources,
especially when think time depends on other resources such as the network. Collecting information
on the sources of think time would improve our understanding of the original workload, enabling
more accurate replay. Reproducing proper think time also allows researchers to properly factor in
the degradation of storage.

I/O stack. Any change in the configuration of the layers in the I/O stack influences the work-
load. For example, even if a file system level workload is the same, a block-level trace collected
under Reiserfs is significantly different from the block-level trace collected under XFS. In fact,
Reiserfs puts small files in the end of the allocated blocks (tail packing), which decreases the total
number of I/O operations for many common workloads. Most traces omit information about the
configuration of the I/O layers; we think that it should be a duty of tracing software to collect the
layer configuration [11]. When realistic performance needs to be measured with high accuracy,
then top-level traces (e.g., system calls) should be replayed.

Sometimes, the behavior of the upper layers depends on the lower layers. E.g., CFQ I/O
scheduler in Linux detects flash vs. rotational block device and applies very different scheduling
properties. In such cases it is questionable whether trace replay at an intermediate level is even
feasible.

In addition, it is often difficult (and at times impossible) to generate intermediate-layer events
with exactly the same properties without bypassing the upper layers. E.g., it is not trivial for the
user-space block-level replayer to submit Linux’s bio structures with exactly same field values as
bios were submitted by a file system in the real setup. Experiment 1 in Section 2.7 demonstrates
this problem in detail. A clear interface between layers, accessible to the replayer, can help mitigate
this issue.

Replay duration. Many available traces cover multiple days, weeks, or even months. Most
researchers do not have the luxury of replaying the trace for such a long time. On the other hand,
replaying only a small sub-period of the trace might not evaluate the system properly, since it may
be unrepresentative of a longer-term workload. Two possible alternatives are to select only relevant
sub-periods of the trace (e.g, workload plateaus) or to randomly sample a large trace.

Workload variability. As was mentioned in Section 2.5, the workload can vary significantly
within a trace: sometimes a system is highly utilized, but often it is not. Non-temporal work-
load properties, such as the I/O size distribution, can be quite different in plateaus and valleys.

16

For example, lightweight scrubbing software might run during the night and use larger I/O sizes
compared to daily OLTP applications. Accelerated replay methods convert all workload valleys
to plateaus, but it may not be appropriate to evaluate a system based on the valley workload. One
might consider looking only at peaks if we are interested in the peak performance, but that ap-
proach might misjudge systems that favor peak workloads and exhibit bad performance for the
valleys. We speculate, that if a trace is to be replayed in an accelerated fashion, its peaks and
valleys should be separated and replayed separately. However, the evaluation of this conjecture is
beyond the scope of this thesis.

Scaling across other parameters. Traces often need to be scaled across dimensions other than
time. If a block trace contains an offset field, its value is clearly limited by the size of the traced
block device. How should the offset be scaled up for use on larger disks? Should the I/O size also
be scaled, or not? These questions have no easy answers, and few studies have explored spatial
scaling [149].

Mmap-based accesses. Modern applications use mmap heavily to improve performance [51].
This can significantly distort the results of system call traces because mmap events show up as
simple memory reads/writes. Unless the OS is modified to sample memory accesses for the pur-
pose of tracing (e.g., using the accessed and dirty bits in the page table), only page faults can be
recorded [67]. We prepared and successfully used Linux kernel patches that allow the tracer to
capture mmap-based accesses. However, this is not the focus of this thesis.

2.7 Experimental Verification
To demonstrate the significance of the aforementioned problems, we designed several simple ex-
periments that highlight them. The experiments are not meant to be complete, but rather are de-
signed to illustrate that the community’s expectations of trace replay realism are not always valid.

For our experiments we needed a reproducible workload generator; we used the Postmark
benchmark [68] since it is widely employed by many researchers. Real workloads are more com-
plex than what Postmark generates, so we expect our conclusions to hold even more strongly for
production traces. The configuration for Postmark was selected so that we stress both the file
system cache and disk I/O; it runs for at least 50 minutes on the slowest machine we tested. We
used four consecutive generations of Dell servers: SC1425 (vintage 2004), SC1850 (2005), 1800
(2006), and R710 (2009). We installed the same CentOS 6.0 distribution on all machines and
updated the Linux kernel to version 3.2.1. We ran Postmark and recorded a block trace on the old-
est machine (SC1425). We then replayed the collected trace on all four machines using different
replay approaches.

Experiment 1. The tool most commonly used for block trace replay on Linux is btreplay, which
is part of the blktrace package [22]. When we used it for plain replay on the SC1425, the de-
vice I/O queue length was never as high as during the original Postmark run (Figure 2.8). As
it turned out, when asynchronous I/O is used on a block device directly (the mode that is used
by btreplay) all requests have the SYNC flag set. On the other hand, most requests that passed

17

through the file system layer during the original Postmark run did not have this flag. Depend-
ing on the SYNC flag, the Linux I/O scheduler and drivers apply different policies to requests,
which results in different queue lengths. We implemented a patch for the Linux kernel and btre-
play to set the value of the flag as seen in the original trace and the accuracy improved signifi-
cantly (see Figure 2.8). This experiment demonstrates that in many cases it is difficult to generate
events with the required properties at an intermediate layer unless the upper layers are bypassed.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50

Q
u
e
u
e
 l
e
n
g
th

 (
re

q
u
e
s
ts

)

Time (minutes)

Postmark run
Original plain replay
Patched plain replay
Infinite acceleration

Figure 2.8: Queue length for plain replay.

Figure 2.8 also shows the queue
length for infinitely accelerated re-
play. As can be seen, the average
queue length is much higher in this
case, which gives a system unreal-
istic opportunities for on-line opti-
mizations.

Experiment 2. In the second ex-
periment we compared the through-
put reported by Postmark on each of
the four machines with an infinitely
accelerated replay of a trace collected
on the SC1425. We expect that
the more powerful a machine is, the
higher are the performance numbers
reported by Postmark and infinitely accelerated replay. Moreover, relative performance improve-
ment (compared to the machine where the trace was collected) should be the same for both Post-
mark and trace replay. The first two columns of Table 2.2 show the throughput in operations
per second for both Postmark (PM) and the replay. The next two columns present the same in-
formation, normalized to the performance of the SC1425. E.g., for SC1850, relative Postmark
performance was 63/42 = 1.5, while relative replay performance was 3, 741/1, 812 = 2. The
expectation is that the normalized throughput of the Postmark run should roughly match that of the
replay, meaning that replay gives an accurate estimate of an application’s performance. The last
column in Table 2.2 shows the relative error between the normalized performances. We can see
that the error is significant and is not even in a predictable direction. Interestingly, the Dell 1800
exhibited lower performance than the SC1425, which is related to the fact that write caching was
disabled on the Dell 1800’s controller. Because Postmark spends most of its time on I/O in this
case, block-level replay accurately reflects the throughput of the application.

2.8 Related Work
Problems with synthetic I/O benchmarks. In 1994, Tang et al. criticized several file system
benchmarks in widespread use at that time [119]. Surprisingly, some of these benchmarks are still
in use today. In addition, plenty of new benchmarks have been developed, but quantity does not
always mean quality. Traeger and Zadok examined 415 file system benchmarks from over 100
papers spanning nine years and found that in many cases benchmarks do not provide adequate

18

Host PM Replay PM Replay error
(ops/sec) (ops/sec) (factor) (factor) (%)

SC1425 42 1,812 1 1 -
SC1850 63 3,741 1.5 2 +33%
1800 16 690 0.4 0.4 <1%
R710 280 6,801 6.6 3.7 –44%

Table 2.2: Postmark (PM) vs. Replay Results.

evaluation of file system performance [123]. Table 2.1 (presented later in Section 2.2) includes
results from that past study. We omit discussing those papers here again, but note that the quality
of file system benchmarking does not appear to have improved since that study was published in
2008. In fact, this topic was discussed at a BoF [145] at FAST 2011, yet despite these efforts, the
state of file system benchmarking remains quite poor. We believe that the main reason for that is
the lack of motivation to perform quality benchmarking. In fact, to get a paper accepted it is more
important to present exciting results than validate them and cover a broad spectrum of workloads
and environments.

Problems of Traces. Many studies have focused on flexible trace collection with minimal in-
terference [8, 11, 72, 91]. Other researchers have proposed trace-replaying frameworks for dif-
ferent layers in the I/O stack [10, 67, 149, 149]. Since a trace contains information about the
workload applied to the system, a number of papers focused on trace-driven workload character-
ization [70, 77, 101]. N. Yadwadkar proposed to identify an application based on its trace [142].
Many studies developed workload models to generate synthetic workloads with nearly identical
characteristics [18, 36, 79, 121]. The body of research related to traces is large, yet we are not
aware of any papers that have questioned the realism of trace replay. There were, however, several
studies that show similar problems in synthetic benchmarks [95, 120].

2.9 Conclusions
Storage stack is a complex piece of software with many layers, all affecting its overall performance.
Benchmarking such systems is far more complex than any single tool, technique, or number can
represent. Performing versatile and robust system evaluation makes our lives more difficult, but it
will greatly enhance the utility of our work.

We believe that researchers should define precisely what dimension(s) of file system behavior
researchers evaluate. We think that a file system benchmark should be a suite of nano-benchmarks
where each individual test measures a particular aspect of file system performance and measures
it well. Next, the community should avoid single-number reporting. Storage performance is ex-
tremely sensitive to minute changes in the environment. In the interest of full disclosure, re-
searchers should report a range of values that span multiple dimensions (e.g., timeline, working-
set size, etc.). We propose that at a minimum, an encompassing benchmark should include in-
memory, disk layout, cache warm-up/eviction, and metadata operations performance evaluation
components.

19

For many years, trace replay has been thought to be a “gold standard” in performance evalu-
ation. However, our experiments have shown that it is difficult to replay a trace accurately even
on the system where it was collected. Replaying on systems with different characteristics is sure
to introduce anomalies that make performance measurements questionable at best. As a result,
investigators need to be aware of these pitfalls and should select their replay techniques carefully.
At the same time, further research is needed to develop methods and tools for scaling traces and
ensuring the validity of replay-based conclusions.

Our community needs to buy in to doing a better job. We need to reach agreement on what di-
mensions to measure, how to measure them, and how to report the results of those measurements.
Until we do so, our studies are destined to provide incomparable point answers to subtle and com-
plex questions. It is our hope for this community to begin discussing these issues and eventually
settle on a small subset of recommended benchmarks, tools, and techniques for future researchers
to use—perhaps even form a TPC-like group.

In this thesis we propose and evaluate Multi-Dimensional Histogram technique (MDH) as a
basis for benchmarking storage systems. We believe that MDH is flexible and powerful enough to
be used by the whole storage community.

20

Chapter 3

Trace to Workload Model Conversion

3.1 Introduction
As discussed in the previous chapter, I/O tracing is an effective way to collect information about
real-world workloads. The information contained in a trace allows a workload to be characterized
using factors such as the exact size and offset of each I/O request, read/write ratio, ordering of
requests. By replaying a trace, users can evaluate real-world system behavior, optimize a system
based on that behavior, and compare the performance of different systems [69, 71, 77, 101].

Despite the benefits of traces, they are hard to use in practice. A trace collected on one system
cannot easily be scaled to match the characteristics of another. It is difficult to modify traces
systematically, e.g., by changing one workload parameter but leaving all others constant. Traces
are hard to describe and compare in terms that are easily understood by system implementors.
Large trace files can affect the system’s behavior during replay by polluting the page cache or
causing an I/O bottleneck [67]. Lastly, large traces are time-consuming to distribute and difficult
and to work with (some modern traces are several terabytes in size [8]).

In this thesis we observe that in many cases replaying the exact trace is not required. Instead, it
is often sufficient to use a synthetic workload generator that accurately reproduces certain specific
properties. For example, a particular system might be more sensitive to the read-write ratio than to
operation size. In this situation one does not really need to replay the trace precisely; a synthetic
workload that emulates that read-write ratio would suffice. Of course, this example is simplistic,
and in many cases one would be interested in more complex combinations of the workload pa-
rameters. However, the general idea that only some properties of the trace affect system behavior
remains valid.

Because many systems are sensitive to only few parameters, researchers have developed many
benchmarks and synthetic workload generators, such as IOzone [24], Filebench [39], and Iome-
ter [100], which avoid many of the deficiencies of traces. But it can be difficult to configure a
workload generator so that it produces a realistic workload; simple ones are not sufficiently flexi-
ble, while powerful ones like Filebench offer so many options that it can be daunting to select the
correct settings.

In this work we fill the gap between traces and benchmarks by applying MDH technique to
convert I/O traces into the benchmarks. We focus in this chapter on block traces because of their
relative simplicity. Next two chapters extend MDH technique to file system and NFS traces.

21

Our system creates a universal representation of the trace, expressed as a multi-dimensional
matrix in which each dimension represents the statistical distribution of a trace parameter or a
function. Each parameter is chosen to represent a specific workload property. We implemented the
most commonly used properties, such as I/O size, inter-arrival time, seek distance, and read-write
ratio. End users can add new features as desired. Multi-dimensional histograms extracted from
the traces allow researchers to understand the workloads quickly and facilitate the scaling of the
workloads across parameters.

For each benchmark, a small plugin converts the universal trace matrix into the specific bench-
mark’s language. To create an accurate plugin for a specific benchmark the researcher should be
an expert in the benchmark’s language. In this chapter, we present an implementation of Filebench
plugin and evaluate its accuracy.

Many workloads vary significantly during the tracing period. To address this issue, our system
supports trace chunking across time. Within each chunk, we consider the workload to be stable and
uniform and express it as a separate matrix. For chunks with similar matrices (and consequently
similar workloads) we store only one matrix. This significantly reduce the size of the model for
workloads with a high degree self-similarity [47].

We evaluated the accuracy of our system by generating models from several publicly available
traces. We first replayed each trace on a test system, observing throughput; latency; I/O queue
length and utilization; power consumption; request sizes; CPU and memory usage; and the num-
bers of interrupts and context switches. Then we emulated the trace by running benchmarks on
the same system, collected the same measurements, and compared the results. We computed the
error of workload emulation as a Root Mean Square (RMS) and maximum distances between the
measurements.

Our RMS error was less than 10% on average, and the maximum error was 15% across all ex-
periments. Users can control the error by varying several parameters. E.g., the smaller is the initial
chunk size and the lower is the matrix similarity threshold the lower is the error of a model. The
speed of conversion depends on the number of dimensions in the matrix, the chunking algorithm,
and the complexity of the benchmark plugin. For a basic set of metrics, we converted a 1.4GB
trace to the Filebench language in only 30s. The resulting trace description was 60MB, or 23.3×
smaller.

Notice that traces are still extremely valuable to detect and extract properties. We are not trying
to replace the traces, we are adding a powerful tool to the storage evaluation toolbox. Conversion of
I/O traces to benchmarks solves several problems highlighted in Chapter 2. First, resulting bench-
marks are provably representative of a specific workload in the original trace. Second, the model
allows the researcher to quickly grasp which mode of the system does the workload stress: e.g.,
sequential or random throughput, or in-RAM or out-of-RAM performance. Finally, modification
of a histogram (e.g., for workload scaling or testing what-if scenarios) is much easier operation
than modifying large trace files.

3.2 Design
Our five design goals, in decreasing priority, are:

1. Accuracy: Ensure that trace replay and trace emulation yield matching evaluation results.

22

2. Flexibility: First, leverage existing powerful workload generators, rather than creating new
ones. Therefore, traces should be translated into models that can be accurately described
using the capabilities of existing benchmarks. Second, allow users to choose anything from
accurate yet bulky models to smaller but less precise ones.

3. Extensibility: Allow the model to include additional properties chosen by the user.

4. Conciseness: The resulting model should be much smaller than the original trace. An out-
come of this is less cumbersome storage and transferring of traces, elimination of bottlenecks
during replay. It will also make easier to compare and understand workloads in traces.

5. Speed: The time to translate large traces should be reasonable even on a modest machine.

Inter−arrival

distance

10

60

0

1

4

0

2

8

(logscale, KB)

I/O Size

(KB)

4 8 12 16
2

1O
pe

ra
tio

n
(r
/w

)

38

38

14 15

100 791

100 791

50

12

499

27

32

12

412

198

000

95

99

Figure 3.1: Workload representation using a feature matrix.

Feature Extraction. The first
step in our model-building pro-
cess is to extract important fea-
tures from the trace. We first
discuss how we extract parame-
ters from workloads whose sta-
tistical characteristics do not
change over time, i.e., stationary
workloads. Then we describe
how to emulate a non-stationary
workload.

Each block trace record has
a set of fields to describe the
parameters of a given request.
Fields may include the opera-
tion type, offset or block num-
ber, I/O size, timestamp. Our
translator is field-oblivious: it
considers every parameter as a
number. We designate these
parameters as an n-dimensional
vector ~p = (p1, p2, ..., pn).

We define a feature function vector on ~p:

~f = (f1(~p, s1), f2(~p, s2), ..., fm(~p, sm)) = ~f(~p, sf)

Each feature function represents an analysis of some property of the trace; si represents private
state data for the i-th feature function, which lets us define features across multiple trace entries
and parameters. Stateless feature functions ignore si.

For example, assume that p1 and p2 represent the I/O size and offset fields, respectively. We
can then define the simple feature functions f1—just the I/O size itself—and f2—the logarithmic
inter-arrival distance (offset difference between two consecutive requests):

f1 = f1(~p, s1) = p1

23

Filebench plugin

IOzone plugin

FIO plugin

Workload description

in corresponding

language− trace

− feature functions vector

Deduplicator

1

4

2 3

65

........
threshholds

Translator

1 2 3 4 5 6

merged

{p}

f

matrix granularity

chunking resolution

metrics

comparison

Feature Matrices

1
2

3

Universal Workload
Representation Benchmark Plugins

Figure 3.2: Overall trace-to-model system design.

f2 = f2(~p, s2) = log(p2 − s2.prev offset)

In our translator, the user first chooses a set of m feature functions. Evaluating these functions
on a single trace record results in a vector that represents a point in an m-dimensional feature space.
The translator divides the feature space into buckets of user-specified size, and collects a histogram
of feature occurrences in a multi-dimensional matrix—the feature matrix—that explicitly captures
the relevant statistics of the workload, and implicitly records their correlations.

For example, using the two feature functions above, plus a third that encodes the operation (0
for reads, 1 for writes), the resulting feature matrix might look like the one in Figure 3.1. In this
case, the trace held 52 requests of size less than 4KB and inter-arrival distance less than 1KB; of
those, 38 were reads and 14 were writes.

By choosing a set of feature functions, users can adjust the workload representation to capture
any important trace features. By selecting an appropriate bucket granularity, users can control the
accuracy of the representation, trading off precision for computational complexity in the translator
and matrix size. Stage 1 in Figure 3.2 shows the translator’s role in the overall design.

Once the feature matrix has been created, the translator can perform a number of additional op-
erations on it: projection, summation along dimensions, computation of conditional probabilities,
and normalization. These operations can be used by the benchmark plugins (described below) to
calculate parameters. For example, using the matrix in Figure 3.1, a plugin might first sum across
the distance-vs.-size plane to calculate the total numbers of reads and writes, normalize these to
find P(read), and then generate benchmark code to conditionalize I/O size on the operation type.

Clearly, the choice of feature functions affects the quality of the emulation; currently the in-
vestigator must do this based on the insight into the particular system of interest, e.g., whether
it has been optimized for certain workloads that can be reflected in an appropriate feature func-
tion. We have implemented a library of over a dozen standard feature functions based on those
commonly found in the literature [36, 38, 78, 84], including operation type, I/O size, offset distri-
bution, inter-arrival distance, inter-arrival time, process identifier, etc. New feature functions can
easily be added as needed to capture specialized system characteristics.

Benchmark Plugins. Once a feature matrix has been constructed from trace, it is possible to use
it directly as input to a workload generator. However, our goal in this thesis is not to create yet
another generator. Instead, we believe that it is best to build on the work of others by using existing
workload generators and benchmarks. This approach allows us to easily reuse all the extensive
facilities that these benchmarks provide. Many existing benchmarks offer a way to configure the
generated workload; some offer command-line configuration parameters (e.g., IOzone [24] and
Iometer [100]) while others offer a more extensive language for that purpose (e.g., Filebench [39]).

24

Most existing benchmarks use statistical models to generate a workload. Some of them use
average parameter values; others use more complex distributions. In all cases, our feature matrices
contain all the information needed to control the models used by these benchmarks. A simple
plugin translates the feature matrix into a specific benchmark’s parameters or language. For some
benchmarks, the expressiveness of the parameters might limit the achievable accuracy, but even
then the plugin will help choose the best settings to emulate the original trace’s workload. Stage 3
in Figure 3.2 demonstrates the role of the benchmark plugins in the overall design.

Our t2m converter is flexible enough to perform conversion to any language. For our inves-
tigations, we have implemented plugins for Filebench and IOzone. We chose Filebench for its
flexibility, and IOzone because it is more suitable for micro-benchmarking. We found that it was
easy to add a plugin for a new benchmark, since only a single function has to be registered with the
translator. The size of the function depends on the number of feature functions and the complexity
of the target benchmark. For feature functions in our library, the plugins never exceeded 300 lines
of code.

Chunking. Many real-world traces are non-stationary: their statistical characteristics vary over
time. This is especially true for traces that cover several hours, days, or weeks. However, most
workload generators apply a stationary load, and cannot vary it over time. We address this issue
with trace chunking: splitting a trace into chunks by time, such that the statistics of any given chunk
are relatively stable. Finding chunk boundaries is difficult, so we first use a constant user-defined
chunk size, measured in seconds. For each chunk, we compute a feature matrix independently;
this results in a sequence of matrices. We then convert these fixed chunks into variable-sized
ones by feeding the matrices to a deduplicator that merges adjacent similar matrices (Stage 2
in Figure 3.2). This optimization works well because many traces remain stable for extended
periods before shifting to a different workload mode. We normalize the matrices before comparing
them, so that the absolute number of requests in a chunk does not affect the comparison. We
use the maximum distance between matrix cells as a metric of similarity. When two matrices are
found to be similar, we average their values and use the result to represent the workloads in the
corresponding time chunks.

Besides detecting varying workload phases, the deduplication process also reduces the model
size. To achieve even further compression, we support all-ways deduplication: every chunk in a
trace is deduplicated against every other chunk (not just adjacent ones).

Along with the matrices, we generate a time-to-matrices map that serves as an additional input
to the benchmark plugins. If the target benchmark is unable to support a multi-phase workload,
the plugin generates multiple invocations with appropriate parameters.

In the example in Figure 3.2, we set the trace duration to 60s and the initial chunk size to 10s,
so the translator generated six matrices. After all-ways deduplication, only two remained.

3.3 Mathematical Approximations
Multi-Dimensional Histogram technique (MDH) is based on empirical distributions collected from
real traces. In other words, MDH collects the absolute or relative numbers of trace features in
the appropriate histogram buckets. As a result, MDH needs to maintain the information about
every non-empty bucket, which sometimes makes the size of the model large. Large models are

25

hard to understand and analyze, occupy a lot of space, and are more difficult to replay without
impacting the system under evaluation. In this section, we describe how empirical distributions
can potentially be approximated with mathematical functions to reduce the size of the model [124].

Empirical
Approximation

Figure 3.3: Approximation of an empirical distribution.

Figure 3.3 demonstrates an ex-
ample of such approximation for a
single-dimensional histogram. In-
stead of storing the value of every
point in a histogram, the formula
can be defined using a limited set
of parameters that characterize the
complete distribution. The usage
of mathematical functions decreases
the size of the model and allows us
to describe workloads in a concise
way. Also, formulas, being continu-
ous mathematical objects can be pro-
cessed using powerful calculus meth-
ods, e.g., differentiation and integra-
tion. In the future, these methods can help to obtain new workload characteristics that were harder
to identify earlier using the discrete methods.

The downside of using mathematical functions instead of empirical distributions is decreased
accuracy of the workload model. We evaluate the impact of approximation on model accuracy
and size in Section 3.5.1. In the following sections we describe the details of our approximation
procedure.

3.3.1 Filebench Custom Variables
To synthesize workloads using mathematical functions, corresponding workload generator should
be able to generate random values with the required mathematical distributions. We used Filebench
as a workload generator. Almost any parameter in Filebench’s workload description (e.g., I/O
size) can be assigned to a random variable. Doing that instructs Filebench to generate a new
parameter value every time the parameter is used. Currently Filebench supports only empirical,
uniform, and gamma random variables. In our experience, real-world distributions are diverse and
complex, so we needed to extend the list of distributions supported by Filebench. Since we do not
know a priori which functions approximate real-world empirical distributions the best, we need
a convenient way for adding new distributions. We enhanced Filebench by adding a support for
arbitrary mathematical distributions via the new type of variables—custom variables. We use the
term custom instead of random, because custom variables, unlike random variables, might not be
stationary. I.e., custom variable distribution might change over time. In future, this property can be
used to avoid trace chunking and approximate temporal changes in a workload using mathematical
functions.

To achieve high extensibility we added the notion of custom variable plugins to Filebench.
Each plugin implements a single distribution for a custom variable. Plugins are distributed as
dynamically linked objects that implement a simple API described below. In the beginning of
execution, Filebench looks for plugins in a predefined directory and loads all of them in memory.

26

Workload model description can then define custom variables of corresponding type and assign
parameters to custom variables.

Each plugin implements a simple API required by Filebench. The two main functions are
cvar alloc handle() and cvar next value(). Filebench calls the former one upon the defi-
nition of a new custom variable, and the latter one every time a new value of the variable is needed.
A user can easily implement libraries with desired custom variable behavior and immediately use
it in Filebench’s workload description. To the best of our knowledge, there is no other benchmark
with such a high degree of flexibility.

3.3.2 Mersenne Twister Pseudo Random Number Generator
Using the newly designed custom variable API we implemented nine plugins that provide the
following statistical distributions: 1) empirical; 2) exponential; 3) erlang (or gamma); 4) normal;
5) lognormal; 6) polynomial; 7) triangular; 8) uniform, and 9) weibull.

Our plugins use mtwist library—Geoff Kuenning’s implementation of Mersenne Twister Pseudo
Random Number Generator (PRNG) algorithm [76]. First, mtwist already supports all of the distri-
butions listed above (except the polynomial one). Second, Mersenne Twister algorithm and mtwist
implementation specifically is significantly faster than other PRNGs. In our experiments, Linux’s
/dev/urandom file was able to generate 1.25 million 64-bit random numbers per second, libc’s
random() function about 145 million numbers per second, and mtwist about 170 million numbers
per second. Having a fast random number generator is crucial when evaluating high-speed storage.
In fact, generator’s execution time can contribute a lot to the relatively short I/O request latencies
of fast storage. In addition to being fast, the quality of random numbers generated by Mersenne
Twister algorithm is known to be very high [89].

3.3.3 Approximation Algorithm
MDH technique initially converts an I/O trace to empirical distribution. Next, we approximate
the distribution by a mathematical formula using Levenberg–Marquardt Algorithm (LMA) [88].
Given a target parameterized formula, LMA finds the parameters’ values that minimize the least
square distance between the empirical distribution and the formula. Target formula can be any
function e.g., polynomial, trigonometric, or exponential one.

According to the Teylor’s theorem, any function can be approximated with a required accuracy
by a polynomial of an appropriate length [53]. As a result, polynomial approximation is a widely
used and accepted way to approximate functions [124]. In this study we used GNU Scientific
Library to approximate empirical distributions with polynomial curves [45].

Our approximation engine takes two parameters as an input: 1) empirical MDH; and 2) target
approximation error. The output of the engine is the smallest polynomial P that approximates
given MDH with the target approximation error. If the amount of space for storing P is larger
than the size of original MDH than the approximation is not effective for reducing the model size.
However, if the size of P is smaller than the model size of MDH then the model size reduces.
Section 3.5.1 evaluates the impact of this approximation procedure on model size and accuracy.

27

Characteristic Finance1 MS-WBS
Duration 12 hours 1.5 hours
Reads/Writes (106) 1.2/4.1 0.7/0.6
Avg I/O size 3.5KB 20KB
Seq. Requests 11 % 47%

Table 3.1: High-level characteristics of the used traces.

3.4 Implementation
Traces from different sources often have different formats. We wanted our translator to be efficient
and portable. We chose the efficient and flexible DataSeries format [9]—recommended by the
Storage Networking Industry Association (SNIA)—and we selected SNIA’s draft block-trace se-
mantics [114]. We wrote converters to allow experimentation with existing traces in other formats.
We also created a block-trace replayer for DataSeries, which supports several commonly used re-
play modes. In total we wrote about 3,700 LoC: 1,500 in the translator, 800 in the converters,
1,000 in the DataSeries replayer, and 400 in the Filebench and IOzone plugins.

3.5 Evaluation
System Response. To evaluate a system empirically researchers measure the system’s response
to an applied workload. Performance is often characterized by throughput, latency, CPU utiliza-
tion, I/O queue length, and memory usage [123, 140]. Power consumption characterizes energy
efficiency [83, 110], and the wear or error rates of flash devices can be tracked to evaluate reliabil-
ity [32, 102].

If all response metrics are similar between trace replay and trace modeling then the trace is
modeled properly. To evaluate the accuracy of our trace extraction and modeling system, we
surveyed papers in Usenix FAST conferences from 2008–2011 and noted that the frequently used
metrics fell into four categories: (1) throughput and latency; (2) I/O utilization and average I/O
queue length; (3) CPU utilization and memory usage; and (4) power consumption. Most of the
surveyed papers included 1–2 of these metrics, but in our study we evaluate all four types to
ensure a comprehensive comparison. Our system is modular and easily extensible to emulate any
additional metrics one desires.

During all runs we collected the accuracy parameters specified above using the iostat, vmstat,
and wattsup tools; we plotted graphs showing the value of each accuracy parameter versus time for
both replay and emulation. We include the graphs for several representative accuracy parameters
and average and maximum emulation error for all parameters.

To evaluate the accuracy, conversion speed, and compression of our system, we used multiple
micro-benchmarks and a variety of real traces. We present evaluation results based on two traces
in this thesis: Finance1 [126] and MS-WBS [70]. The Finance1 trace captures the activity of
several OLTP applications running at two large financial institutions. The MS-WBS traces were
collected from daily builds of the Microsoft Windows Server operating system. The high-level
characteristics of the traces are presented in Table 3.1.

28

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160

R
e
q
u
e
s
ts

/s
e
c

Time (100 sec)

read-replay write-replay read-emul write-emul

Figure 3.4: Reads and writes per second, Setup P, Fin1
trace.

It is fair to assume that the ac-
curacy of our translator might de-
pend on the system under evaluation.
In our experiments we used a spec-
trum of block devices: various disk
drives, flash drives, RAIDs, and even
virtual block devices. We present
results from two extremes of the
spectrum. In the first experimental
setup—Setup P—we used a Physical
machine with an external SCSI Sea-
gate Cheetah 300GB disk drive con-
nected through an Adaptec 39320
controller. The fact that the drive
was powered externally allowed us to
measure its power consumption us-
ing a WattsUp meter [136].

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

P
o

w
e

r
(W

a
tt

)

Time (Seconds)

Replay

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

P
o

w
e

r
(W

a
tt

)

Time (Seconds)

Emulation

Figure 3.5: Disk power consumption, Setup P, MS-WBS
trace.

The second experimental setup
(Setup V) is an enterprise-class sys-
tem that has a Virtual machine run-
ning under the VMware ESX 4.1 Hy-
pervisor. The VM accesses its virtual
disks on an NFS server backed by a
GPFS parallel file system [58, 109].
The VM runs CentOS 6.0; the ESX
and GPFS servers are IBM System
x3650’s, with GPFS using a DS4700
storage controller. Accuracy metrics
were recorded at the NFS/GPFS server.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450
 0

 20

 40

 60

 80

 100

M
e

m
o

ry
 (

M
B

)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Time (10 sec)

mem-emulation
mem-replay

cpu-emulation
cpu-replay

Figure 3.6: Memory and CPU usage, Setup P, Fin1 trace.

On both setups, we first replayed
traces and then emulated them using
Filebench. In all experiments we set
the chunk size to 20s and enabled all
feature functions. We chose the ma-
trix granularity for each dimension
experimentally, by decreasing it until
the accuracy began to drop.

Figure 3.4 depicts how the through-
put for both reads and writes changes
with time for the Finance1 trace.
The replay was performed with in-
finite acceleration, as if we evaluate
system’s peak performance; it took
about 5 hours to complete on Setup P. The trace emulation line closely follows the replay line;
the Root Mean Square (RMS) distance is lower than 6% and the maximum distance is below 15%.

29

In the beginning of the run, read throughput was 4 times higher then later in the trace. By in-
specting the model we found that the workload exhibits high sequentiality in the beginning of the
trace. After startup, the read throughput falls to 50–100 ops/s, which is reasonable for an OLTP-
like workload and our hardware. The write performance is 2–2.5 times higher than for read, due
to the controller’s write-back cache that makes writes more sequential.

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

Pow
er

E
rr

o
r

(%
)

RMS
Maximum

(a) Setup P, Fin1 trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

Pow
er

E
rr

o
r

(%
)

RMS
Maximum

(b) Setup P, MS-WBS trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(c) Setup V, Fin1 trace

 0
 2
 4
 6
 8

 10
 12
 14
 16

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(d) Setup V, MS-WBS trace

Figure 3.7: Root Mean Square (RMS) and maximum rel-
ative distances of accuracy parameters for two traces and
two systems.

Figure 3.5 depicts disk-drive
power consumption in Setup P dur-
ing a 10-minute non-accelerated re-
play and emulation of the MS-WBS
trace. In the first 5 minutes trace ac-
tivity was low, resulting in low power
usage. Later, a burst of random disk
requests increased power consump-
tion by almost 40%. The emulation
line deviates from the replay line by
an average of 6%.

In Setup V, the GPFS server was
caching requests coming from a vir-
tual machine. As a result, the run
time of the Fin1 trace was only 75
minutes. The memory and CPU con-
sumption of the GPFS server during
this time are shown in Figure 3.6.
Memory usage rises steadily, increas-
ing by about 500MB by the end of
the run, which is the working-set
size of the Fin1 trace. Discrepan-
cies between replay and emulation
are within 10%, but there are visible
deviations at times when the mem-
ory usage steps up. We attribute
this to the complexity of the GPFS’s
cache policy, which is affected by a
workload parameter that we did not
emulate. CPU utilization remained
steadily about 10% for both replay
and emulation.

Figure 3.7 summarizes the errors
for all parameters, for both setups
and traces. The maximum emulation
error was below 15% and RMS dis-
tance was 10% on average. Although the maximum discrepancy might seem high, Figure 3.4
shows sufficient behavioral accuracy.

The selection of feature matrix dimensions is vital for achieving high accuracy. If a system is
sensitive to a workload property that is missing in the feature matrix, accuracy can suffer. For ex-

30

ample, disk- and SSD-based storage systems may have radically different queuing and prefetching
policies. To ensure high-fidelity replays across both types of systems, the feature matrix should
capture the impact of appropriate parameters.

The chunk size and matrix granularity also affect the model’s accuracy. Our general strategy is
to select these parameters liberally at first (e.g., 100s chunk size and 1MB granularity for I/O size)
and then gradually and repeatedly restrict them (e.g., 10s chunk size, 1KB I/O size) as needed until
the desired accuracy is achieved. One can always be guaranteed to get high enough accuracy if
sufficiently small numbers are used.

Conversion Speed and Model Size. The speed of conversion and the size of the resulting model
depend on the trace length and the translator parameters. On our 2.5GHz server, traces were
converted at about 50MB/s, which is close to the throughput of the 7200RPM disk drive. The
resulting model without deduplication was of approximately 10–15% size of the original trace.
Deduplication removed over 60% of the chunks in both the Fin1 and MS-WBS traces, resulting
in a final model size reduction of 94–96%. All sizes were measured after compressing both traces
and models using bzip2.

In addition to the general purpose bzip2 compressor, we used Tcgen 2.0—a tool to automat-
ically generate lossless trace compressors [23]. This tool generates a compressor given a user
specified trace format. The compressor then uses a set of predictors, similar to the ones used in
CPU branching engines, to compress the trace. Tcgen compressed our traces 5–6 times better
than bzip2. This is a significant improvement for lossless compression. Notice, that Tcgen was
originally developed to compress CPU traces. We believe that in future it can be optimized for
compressing I/O traces but this is beyond the scope of this thesis. The trace-to-model conversion
technique proposed in this thesis achieves 3–5× higher compression ratio, allows to trade model
accuracy for its size, and generates the models suitable for workload analysis and processing.

The size of an MDH model depends on the number of features that a user defines. Moreover,
in the worst case adding each new dimension can multiply the size of the matrix. However, for the
practical number of dimensions and real workloads, the size of the model was always significantly
smaller than the trace size. The reason for that is twofold. First, the matrix is sparse and as a
result adding a new dimension does not cause the number of points in the histogram to multiply.
Second, deduplication removes over 60% of the duplicated chunks because traces exhibit a lot of
self-similarity [47].

3.5.1 Approximation
In this section we evaluate how various approximations impact trace-to-model conversion accuracy
and the resulting model size.

Converter parameters. Our trace-to-model converter takes several parameters as an input: ini-
tial chunk size, similarity metric and threshold, matrix granularity. The qualitative impact of these
parameters on the system is intuitively clear. The smaller is the initial chunk size, the higher is the
accuracy of the model and the larger is the model size. The lower is the similarity threshold, the
fewer chunks are deduplicated and the larger is the model. The smaller is matrix granularity, the

31

higher is the accuracy of the model. We quantitatively evaluated the initial chunk size impact on
the model accuracy.

 1

 10

 100

 1000

 1 10 100 1000 10000 100000
M

od
el

 E
rr

or
 (

%
)

Chunk Size (seconds)

Finance1
MS-WBS

Figure 3.8: Model accuracy depending on chunk size.

Figure 3.8 depicts the depen-
dency between the chunk size and the
resulting accuracy. Chunk size 1 cor-
responds to the case when only sin-
gle request resides in a chunk. Con-
sequently, the model error is low—
below 6%. As the chunk size in-
creases the error grows. Interest-
ingly, chunks of size 80 seconds
show similar accuracy to the 20 sec-
ond chunks. It means that sometimes
larger chunks can be used to reduce
the size of a model without jeopar-
dizing the accuracy. In our experi-
ments, 80 second chunks were pro-
ducing models of about 1.5× smaller than the 20 second chunks.

As the chunk size increases beyond 80 seconds, however, the error increases significantly—up
to 336% when the whole trace is represented by a single chunk (the right most point on the graph).
Notice, that for both Finance1 and MS-WBS traces the graphs are similar and therefore identical
initial chunking size can be used.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 20

 40

 60

 80

 100

 120

M
od

el
 E

rr
or

 (
%

)

M
od

el
 S

iz
e

(%
)

Target Approximation Error (%)

Error
Model Size

Figure 3.9: Model size (green line, right Y axis) and error
(red line, right Y axis) depending on the target error. 0%
target error corresponds to no approximation.

Mathematical Approximations. To
evaluate how helpful is polyno-
mial approximation for reducing the
model size we designed the follow-
ing experiment. We were varying
the approximation target error from 0
(no approximation, empirical distri-
bution used for all chunks) to 100%
target error. For every target error we
measured the size of a model and its
accuracy. Figure 3.9 presents the re-
sults of this experiment. Between 0%
and 10% target error the model’s size
and error remain the same, indicat-
ing that no polynomials smaller than
empirical distribution can be found.
As the target error is relaxed beyond
10%, the model size starts to slowly decrease, getting to 88% in the end of the graph. However,
the model error grows much faster (almost linearly) with the target error.

This experiment demonstrates that real-world distributions are more complex than what poly-
nomial functions can represent. In future, other target functions can be experimented with. All

32

required infrastructure for this, as explained in Section 3.3.3, is in place.

3.6 Related Work
Many studies have focused on accurate trace collection with minimum interference [8, 11, 72, 91,
96]. Other researchers have proposed trace-replaying frameworks at different layers in the storage
stack [10, 67, 149, 149, 150]. Since a trace contains information about the workload applied to the
system, a number of works focused on trace-driven workload characterization [70, 71, 77, 101].
N. Yadwadkar proposed to identify an application based on its trace [142].

After a workload is characterized, a few researchers have suggested a workload model that
allows them to generate synthetic workloads with identical characteristics [18, 41, 42, 46, 55, 56,
134, 135, 146]. These works address only one or two workload properties, whereas we present
a general framework for any number of properties. Also, we chunk data and generate workload
expressions for the languages of already existing benchmarks.

The two projects most closely related to ours are Distiller [79] and Chen’s Workload Ana-
lyzer [29]. Distiller’s main goal is to identify important workload properties. We can use this
information to properly define dimensions for our feature matrix. Distiller uses only latency as
an accuracy parameter, focuses on disk-array-based systems, does not perform chunking, and im-
plements only one workload generator. Chen uses machine learning techniques to identify the
dependencies between workload features. However, the authors do not emulate traces based on the
extracted information.

3.7 Conclusions
We have created a system that extracts flexible workload models from large I/O traces. Through
the novel use of chunking, we support traces with time-varying statistical properties. In addition,
trace extraction is tunable, allowing model accuracy and size to be traded off against creation time.
Existing I/O benchmarks can readily use the generated model by implementing a plugin. Our
evaluation with Filebench and several block traces demonstrated that the accuracy of generated
models approaches 95%, while the model size is less than 6% of the original trace size. Such
concise models allow easy comparison, scaling and other modifications.

33

Chapter 4

Realistic Dataset Generation

4.1 Introduction
The amount of data that enterprises need to store increases faster than prices drop, causing busi-
nesses to spend more on storage [19]. One way to reduce costs is deduplication, in which repeated
data is replaced by references to a unique copy; this approach is effective in cases where data is
highly redundant [65, 92, 103]. For example, typical backups contain copies of the same files
captured at different times, resulting in deduplication ratios as high as 95% [48]. Likewise, virtu-
alized environments often store similar virtual machines [65]. Deduplication can be useful even
in primary storage [92], because users often share similar data such as common project files or
recordings of popular songs.

The significant space savings offered by deduplication have made it an almost mandatory part
of the modern enterprise storage stack [31, 98]. But there are many variations in how deduplication
is implemented and which optimizations are applied. Because of this variety and the large number
of recently published papers in the area, it is important for community to accurately compare the
performance of deduplication systems.

The standard approach to deduplication is to divide the data into chunks, hash them, and look
up the result in an index. Hashing is straightforward; chunking is well understood but sensitive to
parameter settings. The indexing step is the most challenging because of the immense number of
chunks found in real systems.

Three primary evaluation criteria for deduplication systems are (1) space savings, (2) perfor-
mance (throughput and latency), and (3) resource usage (disk, CPU, and memory). All three
metrics are affected by the data used for the evaluation and the specific hardware configuration.
Although previous storage systems could be evaluated based only on the I/O operations issued,
deduplication systems need the actual content (or a realistic re-creation) to exercise caching and
index structures.

Datasets used in deduplication research can be roughly classified into two categories. (1) Real
data from customers or users, which has the advantage of representing actual workloads [33, 92].
However, most such data is restricted and has not been released for comparative studies. (2) Data
derived from publicly available releases of software sources or binaries [62, 141]. But such data
cannot be considered as representative of the general user population. As a result, neither academia
nor industry have wide access to representative datasets for unbiased comparison of dedup systems.

34

Using MDH technique we created a framework for controllable data generation, suitable for
evaluating deduplication systems. Our dataset generator operates at the file-system level, a com-
mon denominator in most deduplication systems: even block- and network-level deduplicators
often process file-system data. Our generator produces an initial file system image or uses an ex-
isting file system as a starting point. It then mutates the file system according to a mutation profile,
which internally contains a multi-dimensional histogram. To create profiles, we analyzed data and
metadata changes in several public and private datasets: home directories, system logs, email and
Web servers, and a version control repository. The total size of our datasets approaches 10TB; the
sum of observation periods exceeds one year, with the longest single dataset exceeding 6 months’
worth of recordings.

Our framework is versatile, modular, and efficient. We use an in-memory file system tree that
can be populated and mutated using a series of composable modules. Researchers can easily cus-
tomize modules to emulate file system changes that the researchers observe. After all appropriate
mutations are done, the in-memory tree can be quickly written to disk. For example, we generated
a 4TB file system on a machine with a single drive in only 13 hours, 12 of which were spent writing
data to the drive.

4.2 Previous Datasets
To quantify the lack of readily available and representative datasets, we surveyed 33 deduplica-
tion papers published in major conferences in 2000–2011: ten papers were in Usenix ATC, ten
in Usenix FAST, four in SYSTOR, two in IEEE MSST, and the remaining seven elsewhere. We
classified 120 datasets used in these papers as: (1) Private datasets accessible only to particular
authors; (2) Public datasets which are hard or impossible to reproduce (e.g., CNN web-site snap-
shots on certain dates); (3) Artificially synthesized datasets; and (4) Public datasets that are easily
reproducible by anyone.

We found that 29 papers (89%) used at least one private dataset for evaluation. The remaining
four papers (11%) used artificially synthesized datasets, but details of the synthesis were omitted.
This makes it nearly impossible to fairly compare many papers among the 33 surveyed (assuming
that the authors do not have access to the same private datasets). Across all datasets, 64 (53%) were
private, 17 (14%) were public but hard to reproduce, and 11 (9%) were synthetic datasets without
generation details. In total, 76% of the datasets were unusable for cross-system evaluation. Of
the 28 datasets (24%) we characterized as public, twenty were smaller than 1GB in logical size,
much too small to evaluate any real deduplication system. The remaining eight datasets contained
various operating system distributions in different formats: installed, ISO, or VM images.

Clearly, the few publicly available datasets do not adequately represent the entirety of real-
world information. But releasing large real datasets is challenging for privacy reasons, and the
sheer size of such datasets makes them unwieldy to distribute. Some researchers have suggested
releasing hashes of files or file data rather than the data itself, to reduce the overall size of the
released information and to avoid leaking private information. Unfortunately, hashes alone are in-
sufficient: much effort goes into chunking algorithms, and there is no clear winning deduplication
strategy because it often depends on the input data and workload being deduplicated.

35

4.3 Emulation Framework
In this section we first explain the generic approach we took for dataset generation and justify why
it reflects many real-world situations. We then present the main components of our framework and
their interactions. For the rest of the chapter, we use the term metadata to refer to the file system
name-space (file names, types, sizes, directory depths, etc.), while content refers to the actual data
within the files.

4.3.1 Generation Methods
Real-life file systems evolve over time as users and applications create, delete, copy, modify, and
back up files. This activity produces several kinds of correlated information. Examples include
1) Identical downloaded files; 2) Users making copies by hand; 3) Source-control systems mak-
ing copies; 4) Copies edited and modified by users and applications; 5) Full and partial backups
repeatedly preserving the same files; and 6) Applications creating standard headers, footers, and
templates.

To emulate real-world activity, one must account for all these sources of duplication. One
option would be to carefully construct a statistical model that generates duplicate content. But it
is difficult to build a statistics-driven system that can produce correlated output of the type needed
for this project. We considered directly generating a file system containing duplicate content, but
rejected the approach as impractical and non-scalable.

Instead, we emulate the evolution of real file systems. We begin with a simulated initial snap-
shot of the file system at a given time. (We use the term “snapshot” to refer to the complete state
of a file system; our usage is distinct from the copy-on-write snapshotting technology available
in some systems.) The initial snapshot can be based on a live file system or can be artificially
generated by a system such as Impressions [2]. In either case, we evolve the snapshot over time
by applying mutations that simulate the activities that generate both unique and duplicate content.
Because our evolution is based on the way real users and applications change file systems, our
approach is able to generate file systems and backup streams that accurately simulate real-world
conditions, while offering the researcher the flexibility to tune various parameters to match a given
situation.

Our mutation process can operate on file systems in two dimensions: space and time. The
“space” dimension is equivalent to a single snapshot, and is useful to emulate deduplication in pri-
mary storage (e.g., if two users each have an identical copy of the same file). “Time” is equivalent
to backup workloads, which are very common in deduplication systems, because snapshots are
taken within some pre-defined interval (e.g., one day). Virtualized environments exhibit both di-
mensions, since users often create multiple virtual machines (VMs) with identical file systems that
diverge over time because the VMs are used for different purposes. Our system lets researchers
create mutators for representative VM user classes and generate appropriately evolved file systems.

Our system’s ability to support logical changes in both space and time lets it evaluate dedupli-
cation for all major use cases: primary storage, backup, and virtualized environments.

36

fs−scan

fs−profile
fs−impressions

fs−populate

fs−mutate

fs−mutate

......
fstree

Conveyor

......

DataCreation of initial fstree object
Generation

Mutation

profile

profile

empty

profile

full inc

tar−like
backup

file

fs−createfs−mutate

fstree

fstree

fstree

Generation using profile

Generation from
an existing file system

content
profile

profile
meta/some/fs/

/synth/fs/

/some/fs/

Figure 4.1: Action modules and their relationships. Double-boxed rectangles represent action
modules and rectangles with rounded corners designate fstrees and other inputs and outputs. Left
side of the figure describes the ways to create initial fstree object. Central part presents the mutation
conveyor. Finally, the right side depicts several methods for writing out the final dataset.

4.3.2 Fstree Objects
Deduplication is usually applied to large datasets with hundreds of GB per snapshot and dozens of
snapshots. Generating and repeatedly mutating a large file system would be unacceptably slow, so
our framework performs most of its work without I/O. Output happens only at the end of the cycle
when the actual file system is created.

To avoid excess I/O, we use a small in-memory representation—an fstree—that stores only
the information needed for file system generation. This idea is borrowed from the design of
Filebench [39]. The fstree contains pointers to directory and file objects. Each directory tracks
its parent and a list of its files and sub-directories. The file object does not store the file’s complete
content; instead, we keep a list of its logical chunks, each of which has an identifier that corre-
sponds to (but is not identical to) its deduplication hash. We later use the identifier to generate
unique content for the chunk. If two chunks have same id means that the data in this chunk is the
same. We use only 4 bytes for a chunk identifier, allowing up to 232 unique chunks. Assuming a
50% deduplication ratio and a 4KB average chunk size, this can represent 32TB of storage. Note
that a single fstree normally represents a single snapshot, so 32TB is enough for most modern
datasets. For larger datasets, the identifier field can easily be expanded.

To save memory, we do not track per-object user or group IDs, permissions, or other properties.
If this information is needed in a certain model (e.g., if some users modify their files more often
than others), all objects have a variable-sized private section that can store any information required
by a particular emulation model.

The total size of the fstree depends on the number of files, directories, and logical chunks. File,
directory, and chunk objects are 29, 36, and 20 bytes, respectively. Representing a 2TB file system
in which the average file was 16KB and the average directory held ten files would require 9GB
of RAM. A server with 64GB could thus generate realistic 14TB file systems. Note that this is
the size of a single snapshot, and in many deduplication studies one wants to look at 2–3 months
worth of daily backups. In this case, one would write a snapshot after each fstree mutation and then

37

continue with the same in-memory fstree. In such a scenario, our system is capable of producing
datasets of much larger sizes; e.g., for 90 full backups we could generate 1.2PB of test data.

Our experience has shown that it is often useful to save fstree objects (the object, not the full file
system) to persistent storage. This allows us to reuse an fstree in different ways, e.g., representing
the behavior of different users in a multi-tenant cloud environment. We designed the fstree so that
it can be efficiently serialized to or from disk using only a single sequential I/O. Thus it takes less
than two minutes to save or load a 9GB fstree on a modern 100MB/sec disk drive. Using a disk
array can make this even faster.

4.3.3 Fstree Action Modules
An fstree represents a static image of a file system tree—a snapshot. Our framework defines
several operations on fstrees, which are implemented by pluggable action modules; Figure 4.1
demonstrates their relationships. Double-boxed rectangles represent action modules; rounded ones
designate inputs and outputs.

FS-SCAN. One way to obtain an initial fstree object (to be synthetically modified later) is to scan
an existing file system. The FS-SCAN module does this: it scans content and metadata, creates file,
directory, and chunk objects, and populates per-file chunk lists. Different implementations of this
module can collect different levels of detail about a file system, such as recognizing or ignoring
symlinks, hardlinks, or sparse files, storing or skipping file permissions, using different chunking
algorithms.

FS-PROFILE, FS-IMPRESSIONS, and FS-POPULATE. Often, an initial file system is not avail-
able, or cannot be released even in the form of an fstree due to sensitive data. FS-PROFILE, FS-
IMPRESSIONS, and FS-POPULATE address this problem. FS-PROFILE is similar to FS-SCAN, but
does not collect such detailed information, instead gathering only a statistical profile. The specific
information collected depends on the implementation, but we assume it does not reveal sensitive
data. We distinguish sub-parts: the meta profile, which contains statistics about the metadata, and
the content profile.

Several existing tools can generate a static file system image based on a metadata profile [2, 39],
and any of these can be reused by our system. A popular option is Impressions [2], which we
modified to produce an fstree object instead of a file system image (FS-IMPRESSIONS). This fstree
object is empty, meaning it contains no information about file contents. FS-POPULATE fills an
empty fstree by creating chunks based on the content profile. Our current implementation takes
the distribution of duplicates as a parameter; more sophisticated versions are not the focus of this
thesis and are left for the future work. The left part of Figure 4.1 depicts the two current options
for creating initial fstrees. This study focuses on the mutation module (below).

FS-MUTATE. FS-MUTATE is a key component of our approach. It mutates the fstree according
to the changes observed in a real environment. Usually it iterates over all files and directories in
the fstree and deletes, creates, or modifies them. A single mutation can represent weekly, daily, or
hourly changes; updates produced by one or more users; etc. FS-MUTATE modules can be chained
as shown in Figure 4.1 to represent multiple changes corresponding to different users, different

38

Total Total files Snapshots Avg. snapshot Avg. number of files
Name size (GB) (thousands) & period size (GB) in a snapshot (thousands)
Kernels 13 903 40 0.3 23
CentOS 36 1,559 8 4.5 195
Home 3,482 15,352 15 weekly 227 1,023
MacOS 4,080 83,220 71 daily 59 1,173
System Logs 626 2,672 8 weekly 78 334
Sources 1,331 1,112 8 weekly 162 139

Table 4.1: Summary of analyzed datasets.

times, etc. Usually, a mutation module is controlled by a parameterized profile based on real-
world observations. The profile can also be chosen to allow micro-benchmarking, such as varying
the percentage of unique chunks to observe changes in deduplication behavior. In addition, if a
profile characterizes the changes between an empty file system and a populated one, FS-MUTATE

can be used to generate an initial file system snapshot.

FS-CREATE. After all mutations are performed, FS-CREATE generates a final dataset in the form
needed by a particular deduplication system. In the most common case, FS-CREATE produces a
file system by walking through all objects, creating the corresponding directories and files, and
generating file contents based on the chunk identifiers. Content generation is implementation-
specific; for example, contents might depend on the file type or on an entropy level. The important
property to preserve is that the same chunk identifiers result in the same content, and different
chunk identifiers produce different content. FS-CREATE could also generate tar-like files for input
to a backup system, which can be significantly faster than creating a complete file system because
it can use sequential writes. FS-CREATE could also generate only the files that have changed since
the previous snapshot, emulating data coming from an incremental backup.

4.3.4 Usage Example
To benchmark a deduplication system using our framework, a user needs to complete the following
steps. First, the initial fstree object is either obtained from a dataset distributor or by scanning a
local file system. Dataset distributor is an entity that owns the original datasets and distributes them
in the form of fstree objects and mutation modules. Second, the user obtains FS-MUTATE module
implementation (in the form of executable) from the distributor. Third, the user runs FS-MUTATE

module against the initial and subsequent fstree objects (mutation conveyor on Figure 4.1). The
length of conveyor and its structure depends on the specifics of the dataset against which the
deduplication system is evaluated (e.g., depending on the backup policy). Fourth, the actual data
is generated in a desired format using FS-CREATE module. Finally, resulting dataset is fed to the
deduplication system to measure its performance.

39

4.4 Datasets Analyzed
To create a specific implementation of the framework modules, we analyzed file system changes
in six different datasets; in each case, we used FS-SCAN to collect hashes and file system tree
characteristics. We chose two commonly used public datasets, two collected locally, and two
originally presented by Dong et al. [33].

Table 4.1 describes important characteristics of our six datasets: total size, number of files,
and per-snapshot averages. Our largest dataset, MacOS, is 4TB in size and has 83 million files
spanning 71 days of snapshots.

Kernels: Unpacked Linux kernel sources from version 2.6.0 to version 2.6.39.

CentOS: Complete installations of eight different releases of the CentOS Linux distribution from
version 5.0 to 5.7.

Home: Weekly snapshots of students’ home directories from a shared file system. The files con-
sisted of source code, binaries, office documents, virtual machine images, and miscellaneous
files.

MacOS: A Mac OS X Enterprise Server that hosts various services for our research group: email,
mailing lists, Web-servers, wiki, Bugzilla, CUPS server, and an RT trouble-ticketing server.

System Logs: Weekly unpacked backups of a server’s /var directory, mostly consisting of emails
stored by a list server.

Sources: Weekly unpacked backups of source code and change logs from a Perforce version con-
trol repository.

Of course, different environments can produce significantly different datasets. For that reason,
our design is flexible, and our prototype modules are parameterized by profiles that describe the
characteristics of a particular dataset’s changes. If necessary, other researchers can use our profile
collector to gather appropriate distributions, or implement a different FS-MUTATE model to express
the changes observed in a specific environment.

4.5 Module Implementations
There are many ways to implement our framework’s modules. Each corresponds to a model that
describes a dataset’s behavior in a certain environment. An ideal model should capture the char-
acteristics that most affect the behavior of a deduplication system. In this section we first ex-
plore the space of parameters that can affect the performance of a deduplication system, and then
present a model for emulating our datasets’ behavior. Our implementation can be downloaded
from https://avatar.fsl.cs.sunysb.edu/groups/deduplicationpublic/.

40

https://avatar.fsl.cs.sunysb.edu/groups/deduplicationpublic/

4.5.1 Space Characteristics

Run
lengthdistribution

EntropyDuplicates
distribution

Total number
of chunks

Content Characterization

File
Types distribution

File size Directory depth
distribution

Symlinks,
hardlinks,
sparse files

Owner,
permissions

Meta−data Characterization

Change
type

Unique chunks
count

Figure 4.2: Content and metadata characteristics of file sys-
tems that are relevant to deduplication system performance.

Both content and metadata charac-
teristics are important for accurate
evaluation of deduplication systems.
Figure 4.2 shows a rough classifica-
tion of relevant dataset characteris-
tics. Previous research has primar-
ily focused on characterizing static
file system snapshots [2]. Instead,
we are interested in characterizing
the file system’s dynamic properties
(both content and metadata). Ex-
tending the analysis to multiple snap-
shots can give us information about
file deletions, creations, and modifications. This in turn will reflect on the properties of static
snapshots.

Any deduplication solution divides a dataset into chunks of fixed or variable size, indexes their
hashes, and compares new incoming chunks against the index. If a new hash is already present,
the duplicate chunk is discarded and a mapping that allows the required data to be located later is
updated.

Therefore, the total number of chunks and the number of unique chunks in a dataset affects
the system’s performance. The performance of some data structures used in deduplication systems
also depends on the distribution of duplicates, including the percentage of chunks with a certain
number of duplicates and even the ordering of duplicates. E.g., it is faster to keep the index of
hashes in RAM, but for large datasets a RAM index may be economically infeasible. Thus, many
deduplication systems use sophisticated index caches and Bloom filters [148] to reduce RAM costs,
complicating performance analysis.

For many systems, it is also important to capture the entropy distribution inside the chunks,
because most deduplication systems support local chunk compression to further reduce space.
Compression can be enabled or disabled depending on the data type [73].

A deduplication system’s performance depends not only on content, but also on the file system’s
metadata. When one measures the performance of a conventional file system (without deduplica-
tion), the file size distribution and directory depth strongly impact the results [3]. Deduplication
is sometimes an addition to existing conventional storage, in which case file sizes and directory
depth will also affect the overall system performance.

The run lengths of unique or duplicated chunks can also be relevant. If unique chunks follow
each other closely (in space and time), the storage system’s I/O queues can fill up and throughput
can drop. Run lengths depend on the ways files are modified: pure extension, as in log files; simple
insertion, as for some text files; or complete rewrites, as in many binary files. Run lengths can also
be indirectly affected by file size distributions, because it often happens that only a few files in
the dataset change from one backup to another, and the distance between changed chunks within a
backup stream depends on the sizes of the unchanged files.

Content-aware deduplication systems sometimes use the file header to detect file types and
improve chunking; others use file owners or permissions to adjust their deduplication algorithms.

41

Finally, symlinks, hardlinks, and sparse files are a rudimentary form of deduplication, and their
presence in a dataset can affect deduplication ratios.

Dependencies. An additional issue is that many of the parameters mentioned above depend on
each other, so considering their statistical distributions independently is not possible. For example,
imagine that emulating the changes to a specific snapshot requires removing N files. We also
want the total number of chunks to be realistic, so we need to remove files of an appropriate size.
Moreover, the distribution of duplicates needs to be preserved, so the files that are removed should
contain the appropriate number of unique and duplicated chunks. Preserving such dependencies is
important, and our FS-MUTATE implementation (presented next) allows that.

4.5.2 Markov & Distribution (M&D) Model

Fnew F1 F0

F0 F1

F1F0

F
10F

0F

F
1

F

F

FF

mod

del

unmod new

time

deleted

=

= \

\

Fmod Funmod
=

− initial snapshot

F

− later snapshot

Figure 4.3: Classification of files. F0 and F1 are files from
two subsequent snapshots.

We call our model M&D because it is
based on two abstractions: a Markov
model for classifying file changes,
and a multi-dimensional histogram
representing statistical dependencies
between file characteristics.

Markov model. Suppose we have
two snapshots of a file system taken
at two points in time: F0 and F1. We
classify files in F0 and F1 into four
sets: 1) Fdel: files that exist in F0,
but are missing in F1. 2) Fnew: files
that exist in F1, but are missing in
F0. 3) Fmod: files that exist in both F0

and F1, but were modified. 4) Funmod:
files in F0 and F1 that were not modified. The relationship between these sets is depicted in Fig-
ure 4.3. In our study, we identify files by their full pathname, i.e., a file in the second snapshot with
the same pathname as one in the first is assumed to be a later version of the same file.

Analysis of our datasets showed that the file sets defined above remain relatively stable. Files
that were unmodified between snapshots F0 → F1 tended to remain unmodified between snapshots
F1 → F2. However, files still migrate between sets, with different rates for different datasets. To
capture such behavior we use the Markov model depicted in Figure 4.4. Each file in the fstree has
a state assigned to it in accordance with the classification defined earlier. In the fstree representing
the first snapshot, all files have the New state. Then, during mutation, the file states change with
precalculated probabilities that have been extracted by looking at a window of three real snapshots,
covering two file transitions: between the first and second snapshots and between the second and
third ones. This is the minimum required to allow us to calculate conditional probabilities for the
Markov model. For example, if some file is modified between snapshots F0 → F1 and is also
modified in F1 → F2, then this is a Modified→Modified (MM) transition. Counting the number of

42

Dataset N NM NU ND MU MD MM UM UD UU DN D
Kernels 5 32 65 3 49 3 48 17 3 80 1 3
CentOS 13 4 22 74 43 2 55 4 1 95 1 10
Home 4 2 78 20 54 10 36 0.14 0.35 99.51 6 0.50
MacOS 0.1 11 78 11 37.46 0.03 62.51 0.05 0.03 99.92 1 0.03
System Logs 2 9 90 1 44.40 0.18 55.42 0.03 0.01 99.06 4 0.02
Sources 0.2 7 88 5 58.76 0.04 41.20 0.07 0 99.93 0 0.01

Table 4.2: Probabilities (in percents) of file state transitions for different datasets. N: new file ap-
pearance. D: file deletion.
NM: New→Modified transition. NU: New→Unmodified transition. ND: New→Deleted transi-
tion, etc.

MM transitions among the total number of state transitions allows us to compute the corresponding
probability; we did this for each possible transition.

Unmodif.

P(MM)

P(NM)

P(MU)

P(NU)

P(UU)

New

Modif.

Deleted

P(UD)

P(UM)

P(MD)

P(DN)

P(ND)

P(N) P(D)

Figure 4.4: Markov model for handling file states. State
transitions are denoted by the first letters of the source
and destination states. For example, NM denotes a
New→Modified transition and P(NM) is the transition’s
probability.

Some transitions, such as Deleted→New
(DN), may seem counterintuitive.
However, some files are recreated af-
ter being deleted, producing nonzero
probabilities for this transition. Simi-
larly, if a file is renamed or moved, it
will be counted as two transitions: a
removal and a creation. In this case,
we allocate duplicated chunks to the
new file in a later stage.

The Markov model allows us to
accurately capture the rates of file ap-
pearance, deletion, and modification
in the trace. Table 4.2 presents the
average transition probabilities ob-
served for our datasets. As men-
tioned earlier, in all datasets files of-
ten remain Unchanged, and thus the
probabilities of UU transitions are
high. The chances for a changed file to be re-modified are around 50% for many of our datasets.
The probabilities for many other transitions vary significantly across different datasets.

Multi-dimensional histogram. When we analyzed real snapshots, we collected three multi-
dimensional file histograms: Mdel(p1, ..., pndel), Mnew(p1, ..., pnnew), and Mmod(p1, ..., pnmod) for
deleted, new, and modified files, respectively. The parameters of these histograms (p1, ..., pn)
represent the characteristics of the files that were deleted, created, or modified. As described in
Section 4.5.1, many factors affect deduplication. In this work, we selected several that we deemed
most relevant for a generic deduplication system. However, the organization of our FS-MUTATE

module allows the list of emulated characteristics to be easily extended.
All three histograms include these parameters:

43

depth: directory depth of a file;

ext: file extension;

size: file size (in chunks):

uniq: the number of chunks in a file that are not present in the previous snapshot (i.e., unique
chunks);

dup1: the number of chunks in a file that have only one duplicate in the entire previous snapshot;
and

dup2: the number of chunks in a file that occur exactly twice in the entire previous snapshot.

We consider only the chunks that occur up to 3 times in a snapshot because in all our snapshots
these chunks constituted more than 96% of all chunks.

During mutation, we use the histogram of new files:

Mnew(depth, ext, size, uniq, dup1, dup2)

to create the required number of files with the appropriate properties. E.g., if Mnew(2, “.c”, 7, 3, 1, 1)
equals four, then FS-MUTATE creates four files with a “.c” extension at directory depth two. The
size of the created files is seven chunks, of which three are unique, one has a single duplicate,
and one has two duplicates across the entire snapshot. The hashes for the remaining two chunks
are selected using a per-snapshot (not per-file) distribution of duplicates, which is collected during
analysis along with Mnew. Recall that FS-MUTATE does not generate the content of the chunks, but
only their hashes. Later, during on-disk snapshot creation, FS-CREATE will generate the content
based on the hashes.

When selecting files for deletion, FS-MUTATE uses the deleted-files histogram:

Mdel(depth, ext, size, uniq, dup1, dup2, state)

This contains an additional parameter—state—that allows us to elegantly incorporate a Markov
model in the histogram. The value of this parameter can be one of the Markov states New, Modi-
fied, Unmodified, or Deleted; we maintain the state of each file within the fstree. A file is created
in the New state; later, if FS-MUTATE modifies it, its state is changed to Modified; otherwise it
becomes Unmodified. When FS-MUTATE selects files for deletion, it limits its search to files in the
state given by the corresponding Mdel entry. For example, if Mdel(2, “.c”, 7, 3, 1, 1, “Modified”)
equals one, then FS-MUTATE tries to delete a single file in the Modified state (all other parameters
should match as well).

To select files for modification, FS-MUTATE uses the Mmod distribution, which has the same
parameters as Mdel. But unlike deleted files, FS-MUTATE needs to decide how to change the files.
For every entry in Mmod, we keep a list of change descriptors, each of which contains the file’s
characteristics after modification:

1. File size (in chunks);

2. The number of unique chunks (here and in the two items below, duplicates are counted
against the entire snapshot);

44

Dataset B E M BE BM ME BEM
Kernels 52 8 7 14 5 3 11
CentOS 69 3 2 8 2 1 15
Home 38 3 8 10 11 1 29
MacOS 53 21 1 12 1 1 11
Sys. Logs 42 34 5 6 0 1 10
Sources 20 6 41 7 7 1 18

Table 4.3: Probabilities of the change patterns for different datasets (in percents).

3. The number of chunks with one duplicate;

4. The number of chunks with two duplicates; and

5. Change pattern.

All parameters except the last are self-explanatory. The change pattern encodes the way a file
was modified. We currently support the following three options: B—the file was modified in the
beginning (this usually corresponds to prepend); E—the file was modified at the end (corresponds
to file extension or truncation); and M—the file was modified somewhere in the middle, which
corresponds to the case when neither the first nor the last chunk were modified, but others have
changed. We also support combinations of these patterns: BE, BM, EM, and BEM. To recognize
the change pattern during analysis, we sample the corresponding chunks in the old and new files.
Table 4.3 presents the average change patterns for different datasets. For all datasets the number of
files modified in the beginning is high. This is a consequence of chunk-based analysis: files that are
smaller than the chunk size contain a single chunk. Therefore, wherever small files are modified,
the first (and only) chunk differs in two subsequent versions, which our analysis identifies as a
change in the file’s beginning. For the System Logs dataset, the number of files modified at the
end is high because logs are usually appended. In the Sources dataset many files are modified in
the middle, which corresponds to small patches in the code.

We collect change descriptors and the Mmod distribution during the analysis phase. During
mutation, when a file is selected for modification using Mmod, one of the aforementioned change
descriptors is selected randomly and the appropriate changes are applied.

It is possible that the number of files that satisfy the distribution parameters is larger than the
number that need to be deleted or modified. In this case, FS-MUTATE randomly selects files to
operate on. If not enough files with the required properties are in the fstree, then FS-MUTATE tries
to find the best match based on a simple heuristic: the file that matches most of the properties.
Other definitions of best match are possible, and we plan to experiment with this parameter in the
future.

Multi-dimensional histograms capture not only the statistical frequency of various parameters,
but also their interdependencies. By adding more distribution dimensions, one can easily emulate
other parameters.

Analysis. To create profiles for our datasets, we first scanned them using the FS-SCAN module
mentioned previously. We use variable chunking with an 8KB average size; variable chunking
is needed to properly detect the type of file change, since prepended data causes fixed-chunking

45

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 5 10 15 20 25 30 35 40

F
ile

s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(a) Total number of files
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1 5 10 15 20 25 30 35 40

C
h
u
n
k
s
 (

in
 1

0
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(b) Total number of chunks

 0

 50

 100

 150

 200

 250

1 5 10 15 20 25 30 35 40

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(c) Number of unique chunks
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 5 10 15 20 25 30 35 40

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(d) Number of chunks with 1 duplicate

 0

 10

 20

 30

 40

 50

 60

1 5 10 15 20 25 30 35 40

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(e) Number of chunks with 2 duplicates

Figure 4.5: Emulated parameters for Kernels real and synthesized datasets as the number of snap-
shots in them increases.

systems to see a change in every chunk. We chose 8KB as a compromise between accuracy (smaller
sizes are more accurate) and the speed of the analysis, mutation, and file system creation steps.

The information collected by FS-SCAN was loaded into a database; we then used SQL queries to
extract distributions. The analysis of our smallest dataset (Kernels) took less than 2 hours, whereas
the largest dataset (MacOS) took about 45 hours of wall-clock time on a single workstation. This
analysis can be sped up by parallelizing it. However, since it needs to be done only once to extract
a profile, a moderately lengthy computation is acceptable. Mutation and generation of a file system
run much faster and are evaluated in Section 4.6. The size of the resulting profiles varied from 8KB
to 300KB depending on the number of changes in the dataset.

Chunk generation. Our FS-CREATE implementation generates chunk content by maintaining a
randomly generated buffer. Before writing a chunk to the disk, this buffer is XORed with the chunk
ID to ensure that each ID produces a unique chunk and that duplicates have the same content. We
currently do not preserve the chunk’s entropy because our scan tool does not yet collect this data.
FS-SCAN collects the size of every chunk, which is kept in the in-memory fstree object for use
by FS-CREATE. New chunks in mutated snapshots have their size set by FS-MUTATE according
to a per-snapshot chunk-size distribution. However, deduplication systems can use any chunk size
that is larger than or equal to the one that FS-SCAN uses. In fact, sequences of identical chunks
may appear in several subsequent snapshots. As these sequences of chunks are relatively long, any
chunking algorithm can detect an appropriate number of identical chunks across several snapshots.

Security guarantees. The FS-SCAN tool uses 48-bit fingerprints, which are prefixes of 16 byte
MD5 hashes; this provides a good level of security, although we may be open to dictionary attacks.
Stronger anonymization forms can be easily added in the future work.

46

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8

F
ile

s
 (

in
 1

0
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(a) Total number of files
 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 1

0
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(b) Total number of chunks

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(c) Number of unique chunks
 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(d) Number of chunks with 1 duplicate

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(e) Number of chunks with 2 duplicates

Figure 4.6: Emulated parameters for CentOS real and synthesized datasets as the number of snap-
shots in them increases.

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(a) Number of unique chunks
 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(b) Number of chunks with 1 duplicate

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(c) Number of chunks with 2 duplicates

Figure 4.7: Emulated parameters for Homes real and synthesized datasets as the number of snap-
shots in them increases.

4.6 Evaluation

...fstreefstree fstree
mutate mutate

create

create
create

Dataset

Figure 4.8: The process of dataset formation.

We collected profiles for the datasets
described in Section 4.4 and gener-
ated the same number of synthetic
snapshots as the real datasets had,
chaining different invocations of FS-
MUTATE so that the output of one
mutation served as input to the next.
All synthesized snapshots together
form a synthetic dataset that corresponds to the whole real dataset (Figure 4.8). We generated

47

 1

 10

 100

 1000

 10000

1 10 20 30 40 50 60 70

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(a) Number of unique chunks
 1

 10

 100

 1000

 10000

1 10 20 30 40 50 60 70

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(b) Number of chunks with 1 duplicate

 1

 10

 100

 1000

 10000

1 10 20 30 40 50 60 70

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(c) Number of chunks with 2 duplicates

Figure 4.9: Emulated parameters for MacOS real and synthesized datasets as the number of snap-
shots in them increases.

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(a) Number of unique chunks
 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(b) Number of chunks with 1 duplicate

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
)

Real
Synthesized

(c) Number of chunks with 2 duplicates

Figure 4.10: Emulated parameters for System Logs real and synthesized datasets as the number of
snapshots in them increases.

the initial fstree object by running FS-SCAN on the real file system. Each time a new snapshot was
added, we measured the total files, total chunks, numbers of unique chunks and those that had one
and two duplicates, directory depth, file size and file type distributions.

First, we evaluated the parameters that FS-MUTATE emulates. Figures 4.5–4.11 contain the
graphs for the real and synthesized Kernels, CentOS, Homes, MacOS, System Logs, and Sources
datasets, in order. The Y axis scale is linear for the Kernels and Sources datasets (Figures 4.5–4.6)
and logarithmic for the others (Figures 4.7–4.11). We present file and chunk count graphs only for
the Kernels and CentOS datasets. The relative error of these two parameters is less than 1% for
all datasets, and the graphs look very similar: monotonic close-to-linear growth. The file count is
insensitive to modification operations because files are not created or removed, which explains its
high accuracy. The total chunk count is maintained because we carefully preserve file size during
creation, modification, and deletion.

For all datasets the trends observed in the real data are closely followed by the synthesized data.
However, certain discrepancies exist. Some of the steps in our FS-MUTATE module are random;
e.g., the files deleted or modified are not precisely the same ones as in the real snapshot, but instead
ones with similar properties. This means that our synthetic snapshots might not have the same files

48

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(a) Number of unique chunks
 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(b) Number of chunks with 1 duplicate

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8

C
h
u
n
k
s
 (

in
 t
h
o
u
s
a
n
d
s
) Real

Synthesized

(c) Number of chunks with 2 duplicates

Figure 4.11: Emulated parameters for Sources real and synthesized datasets as the number of
snapshots in them increases.

Dataset Files Chunks Unique 1 Dup. 2 Dup.
chunks chunks chunks

Kernels < 1 < 1 4 9 5
CentOS 6 2 9 7 11
Home < 1 < 1 12 13 14
MacOS < 1 < 1 4 9 4
Sys. Logs < 1 < 1 6 15 15
Sources < 1 < 1 10 8 13

Table 4.4: Relative error of emulated parameters after the final run for different datasets (in per-
cents).

that would exist in the real snapshot. As a result, FS-MUTATE cannot find some files during the
following mutations and so the best-match strategy is used, contributing to the instantaneous error
of our method. However, because our random actions are controlled by the real statistics, the
deviation is limited in the long run.

The graphs for unique chunks have an initial peak because there is only one snapshot at first,
and there are not many duplicates in a single snapshot. As expected, this peak moves to the right
in the graphs for chunks with one and two duplicates.

The Homes dataset has a second peak in all graphs around 10–12 snapshots (Figure 4.7). This
point corresponds to two missing weekly snapshots. The first was missed due to a power outage;
the second was missed because our scan did not recover properly from the power outage. As a
result, the 10th snapshot contributes many more unique chunks in the dataset than the others.

The MacOS dataset contains daily, not weekly snapshots. Daily changes in the system are more
sporadic than weekly ones: one day users and applications add a lot of new data, the next many
files are copied, etc. Figure 4.9 therefore contains many small variations.

Table 4.4 shows the relative error for emulated parameters at the end of each run. Maximum
deviation did not exceed 15% and averaged 6% for all parameters and datasets. We also analyzed
the file size, type, and directory depth distributions in the final dataset. Figure 4.12 demonstrates
these for several representative datasets. In all cases the error was fairly low, within 2%.

49

Dataset Total Snap- Mutat. Creat. Total
size (GB) shots time time time

Kernels 13 40 30 sec 6 sec 5 min
CentOS 36 8 3 min 95 sec 13 min
Home 3,482 15 44 min 38 min 10 hr
MacOS 4,080 71 49 min 10 min 13 hr
Sys. Logs 626 8 14 min 4 hr 32 hr
Sources 1,331 8 21 min 4 hr 32 hr

Table 4.5: Times to mutate and generate data sets.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100

N
u
m

 F
ile

s

File Size (In Number of Chunks)

Real
Synthesized

(a) File size distribution (System Logs)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18

N
u
m

 F
ile

s
 (

In
 T

h
o
u
s
a
n
d
s
)

Depth in File System Tree

Real
Synthesized

(b) Directory depth distribution (Homes)

 10

 100

 1000

 10000

 100000

c h (null)

S txt
xm

l
dts

ihex
gitign

boot

N
u

m
b

e
r

o
f

fi
le

s

Real
Synthesized

(c) File type distribution (Kernels)

Figure 4.12: File size, type, and directory depth distribu-
tions for different real and synthesized dataset.

The snapshots in our datasets
change a lot. For example, the
deduplication ratio is less than 5 in
our Kernels dataset, even though the
number of snapshots is 40. We
expect the accuracy of our system
to be higher for the datasets that
change slower; for instance, datasets
with identical snapshots are emulated
without any error.

Performance. We measured the
time of every mutation and creation
operation in the experiments above.
The Kernels, CentOS, Home, and
MacOS experiments were conducted
on a machine with an Intel Xeon
X5680 3.3GHz CPU and 64GB of
RAM. The snapshots were written to
a single Seagate Savvio 15K RPM
disk drive. For some datasets the
disk drive could not hold all the snap-
shots, so we removed them after run-
ning FS-SCAN for accuracy analysis.
Due to privacy constraints the Sys-
tem Logs and Sources experiments
were run on a different machine with an AMD Opteron 2216 2.4GHz CPU, 32GB of RAM, and
a Seagate Barracuda 7,200 RPM disk drive. Unfortunately, we had to share the second machine
with a long-running job that periodically performed random disk reads.

Table 4.5 shows the total mutation time for all snapshots, the time to write a single snapshot to
the disk, and the total time to perform all mutations plus write the whole dataset to the disk. The
creation time includes the time to write to disk. For convenience the table also contains dataset
sizes and snapshot counts.

Even for the largest dataset, we completed all mutations within one hour; dataset size is the

50

major factor in mutation time. Creation time is mostly limited by the underlying system’s perfor-
mance: the creation throughput of the Home and MacOS datasets is almost twice that of Kernels
and CentOS, because the average file size is 2–10× larger for the former datasets, exploiting the
high sequential drive throughput. The creation time was significantly increased on the second sys-
tem because of a slower disk drive (7,200RPM vs. 15KRPM) and the interfering job, contributing
to the 32-hour run time.

For the datasets that can fit in RAM—CentOS and Kernels—we performed an additional FS-
CREATE run so that it creates data on tmpfs. The throughput in both cases approached 1GB/sec,
indicating that our chunk generation algorithm does not incur much overhead.

4.7 Related Work
A number of studies have characterized file system workloads using I/O traces [77, 82, 101, 106]
that contain information about all I/O requests observed during a certain period. The duration of a
full trace is usually limited to several days, which makes it hard to analyze long-term file system
changes. Trace-based studies typically focus on the dynamic properties of the workload, such as
I/O size, read-to-write ratio, etc., rather than file content as is needed for deduplication studies.

Many papers have used snapshots to characterize various file system properties [3, 15, 108,
132]. With the exception of Agrawal et al.’s study [3], discussed below, the papers examine only
a single snapshot, so only static properties can be extracted and analyzed. Because conventional
file systems are sensitive to metadata characteristics, snapshot-based studies focus on size distribu-
tions, directory depths or widths, and file types (derived from extensions). File and block lifetimes
are analyzed based on timestamps [3, 15, 132]. Authors often discuss the correlation between file
properties, e.g., size and type [15, 108]. Several studies have proposed high-level explanations
for file size distributions and designed models for synthesizing specific distributions [35, 108].
Downey and Mitzenmacher explain a file size distribution in World Wide Web and present mod-
els for generating appropriate files [35, 94] Vogels and Douceur et al. performed the analysis for
Windows snapshots [34, 132].

Less attention has been given to the analysis of long-term file system changes. Agrawal et al.
examined the trends in file system characteristics from 2000–2004 [3]. The authors presented only
metadata evolution: file count, size, type, age, and directory width and depth.

Some researchers have worked on artificial file system aging [2, 112] to emulate the fragmen-
tation encountered in real long-lived file systems. Our mutation module modifies the file system in
RAM and thus does not emulate file system fragmentation. Modeling fragmentation can be added
in the future if it proves to impact deduplication systems’ performance significantly.

A number of newer studies characterized deduplication ratios for various datasets. Meyer and
Bolosky studied content and metadata in primary storage [92]. The authors collected file system
content from over 800 computers and analyzed the deduplication ratios of different algorithms:
whole-file, fixed chunking, and variable chunking. Several researchers characterized deduplication
in backup storage [90, 103, 133] and for virtual machine disk images [65, 85]. Chamness presented
a model for storage-capacity planning that accounts for the number of duplicates in backups [26].
None of these projects attempted to synthesize datasets with realistic properties.

File system benchmarks usually create a test file system from scratch. For example, in Filebench [39]
one can specify file size and directory depth distributions for the creation phase, but the data writ-

51

ten is either all zeros or random. Agrawal et al. presented a more detailed attempt to approximate
the distributions encountered in real-world file systems [2]. Again, no attention was given in their
study to generating duplicated content.

4.8 Conclusions
Researchers and companies evaluate deduplication with a variety of datasets that in most cases are
private, unrepresentative, or small in size. As a result, the community lacks the resources needed
for fair and versatile comparison. Our work has two key contributions.

First, we designed and implemented a generic framework that can emulate the formation of
datasets in different scenarios. By implementing new mutation modules, organizations can expose
the behavior of their internal datasets without releasing the actual data. Other groups can then
regenerate comparable data and evaluate different deduplication solutions. Our framework is also
suitable for controllable micro-benchmarking of deduplication solutions. It can generate arbitrarily
large datasets while still preserving the original’s relevant properties.

Second, we presented a specific implementation of the mutation module that emulates the
behavior of several real-world datasets. To capture the metadata and content characteristics of the
datasets, we used a hybrid Markov and Multi-Dimensional Histogram (MDH) model that has a low
error rate—less than 15% during 8 to 71 mutations for all datasets. We release the datasets, tools
and some of profiles described in this study so that organizations can perform comparable studies of
deduplication systems. They can be downloaded from https://avatar.fsl.cs.sunysb.
edu/groups/deduplicationpublic/. These powerful tools will help both industry and
research to make intelligent decisions when selecting the right deduplication solutions for their
specific environments.

52

https://avatar.fsl.cs.sunysb.edu/groups/deduplicationpublic/
https://avatar.fsl.cs.sunysb.edu/groups/deduplicationpublic/

Chapter 5

NAS Workloads in Virtualized Setups

5.1 Introduction
By the end of 2012 almost half of all applications running on x86 servers will be virtualized; in
2014 this number is projected to be close to 70% [16, 17]. Virtualization, if applied properly, can
significantly improve system utilization, reduce management costs, and increase system reliability
and scalability. With all the benefits of virtualization, managing the growth and scalability of
storage is emerging as a major challenge.

In recent years, growth in network-based storage has outpaced that of direct-attached disks;
by 2014 more than 90% of enterprise storage capacity is expected to be served by Network At-
tached Storage (NAS) and Storage Area Networks (SAN) [143]. Network-based storage can im-
prove availability and scalability by providing shared access to large amounts of data. Within the
network-based storage market, NAS capacity is predicted to increase at an annual growth rate of
60%, as compared to only 22% for SAN [128]. This faster NAS growth is explained in part by
its lower cost and its convenient file system interface, which is richer, easier to manage, and more
flexible than the block-level SAN interface.

The rapid expansion of virtualization and NAS has lead to explosive growth in the number of
virtual disk images being stored on NAS servers. Encapsulating file systems in virtual disk image
files simplifies the implementation of VM migration, cloning, and snapshotting—the features that
naturally map to existing NAS functions. In addition, non-virtualized hosts can co-exist with
virtualized hosts that use the same NAS interface, which permits a gradual migration of services
from physical to virtual machines.

Storage performance plays a crucial role when administrators select the best NAS for their
environment. One traditional way to evaluate NAS performance is to run a file system benchmark,
such as SPECsfs2008 [116]. Vendors periodically submit the results of SPECsfs2008 to SPEC;
the most recent submission was in November 2012. Because widely publicized benchmarks such
as SPECsfs2008 figure so prominently in configuration and purchase decisions, it is essential to
ensure that the workloads the benchmarks generate represent what is observed in real data centers.

This chapter makes two contributions: an analysis of changing virtualized NAS workloads,
and the design and implementation of a system to generate realistic virtualized NAS workloads.
We first demonstrate that the workloads generated by many current file system benchmarks do
not represent the actual workloads produced by VMs. This in turn leads to a situation where

53

NFS Physical clients Virtualized
procedures SPECsfs2008 Filebench clients
Data 28% 36% 99%
Metadata 72% 64% <1%

Table 5.1: The striking differences between virtualized and physical workloads for two bench-
marks: SPECsfs2008 and Filebench (Web-server profile). Data operations include READ and
WRITE. All other operations (e.g., CREATE, GETATTR, READDIR) are characterized as metadata.

the performance results of a benchmark deviate significantly from the performance observed in
real-world deployments. Although benchmarks are never perfect models of real workloads, the
introduction of VMs has exacerbated the problem significantly. Consider just one example, the
percentage of data and metadata operations generated by physical and virtualized clients. Table 5.1
presents the results for the SPECsfs2008 and Filebench web-server benchmarks that attempt to
provide a “realistic” mix of metadata and data operations. We see that metadata procedures, which
dominated in physical workloads, are almost non-existent when VMs are utilized. The reason
is that, VMs store their guest file system inside large disk image files, mainly for convenience.
Consequently, all metadata operations (and indeed all data operations) from the applications are
converted into simple reads and writes to the image file.

Metadata-to-data conversion is just one example of the way workloads shift when virtual ma-
chines are introduced. In this study we examine, by collecting and analyzing a set of I/O traces
generated by current benchmarks, how NAS workloads change when used in virtualized environ-
ments. We then leverage multi-dimensional trace analysis techniques from Chapter 3 to convert
these traces to benchmarks.

Previously, most file system benchmarks used simplistic in-file access patterns: either sequen-
tial or random. With the emergence of large disk-image files that have complex internal structure,
more accurate characterization of in-file access patterns becomes more important [51]. The tech-
niques we use are well suited for creating benchmarks with such in-file workloads.

Our new virtual benchmarks are flexible and configurable, and support single- and multi-VM
workloads. With multi-VM workloads, the emulated VMs can all run the same or different appli-
cation workloads (a common feature of resource consolidation). Further, users do not need to go
through a complex deployment process, such as hypervisor setup and per-VM OS and application
installation, but can instead just run our benchmarks. Our benchmarks are invaluable for admin-
istrators that do not have access to the production environment when evaluating new or existing
NAS servers for prospective virtualized clients. Finally, some benchmarks such as SPECsfs cannot
be usefully run inside a VM because the benchmarks will continue to generate a physical workload
to the NAS server; this means that new benchmarks can be the only viable evaluation option. Our
benchmarks are capable of simulating a high load (i.e., many VMs) using only modest resources.
Our experiments demonstrate that the accuracy of our benchmarks remains within 10% across 11
important parameters.

54

5.2 Background
In this section, we present several common data access methods for virtualized applications, de-
scribe in depth the changes in the virtualized NAS I/O stack (VM-NAS), and then explain the
challenges in benchmarking NAS systems in virtualized environments.

5.2.1 Data Access Options for VMs

Emulated

Disk

Disk image file on NAS

VM

Guest OS

Local On−disk
File System File System

1a

1c

1d

2

Hypervisor

1b

Files on NAS

in this paper
Case analyzed

Disk image file on DAS

Disk image file on SAN

Pass−through to DAS or SANI/O Controller

Emulated

Driver for

I/O Controller

Network−based

Figure 5.1: VM data-access methods. Cases 1a–1d corre-
spond to the emulated-block-device architecture. Case 2
corresponds to the use of guest network file system clients.

Many applications are designed to
access data using a conventional
POSIX file system interface. The
methods that are currently used to
provide this type of access in a VM
can be classified into two categories:
(1) emulated block devices (typically
managed in the guest by a local file
system); and (2) guest network file
system clients.

Figure 5.1 illustrates both ap-
proaches. With an emulated block
device, the hypervisor emulates an
I/O controller with a connected disk
drive. Emulation is completely trans-
parent to the guest OS, and the virtual
I/O controller and disk drives appear
as physical devices to the OS. The
guest OS typically formats the disk
drive with a local file system or uses
it as a raw block device. When an
emulated block device is backed by
file-based storage, we call the back-
ing files disk image files.

Emulated Block Devices

Figure 5.1 shows several options for implementing the back end of an emulated block device:

1a. A file located on a local file system that is deployed on Direct Attached Storage (DAS). This
approach is used, for example, by home and office installations of VMware Workstation [117] or
Oracle VirtualBox [129]. Such systems often keep their disk images on local file systems (e.g.,
Ext3, NTFS). Although this architecture works for small deployments, it is rarely used in large
enterprises where scalability, manageability, and high availability are critical.

1b. A disk image file is stored on a (possibly clustered) file system deployed over a Storage Area
Network (SAN) (e.g., VMware’s VMFS file system [131]). A SAN offers low-latency shared ac-

55

cess to the available block devices, which allows high-performance clustered file systems to be
deployed on top of the SAN. This architecture simplifies VM migration and offers higher scalabil-
ity than DAS, but SAN hardware is more expensive and complex to administer.

1c. A disk image file stored on Network Attached Storage (NAS). In this architecture, which we
call VM-NAS, the host’s hypervisor passes I/O requests from the virtual machine to an NFS or SMB
client, which in turn then accesses a disk image file stored on an external file server. The hypervisor
is completely unaware of the storage architecture behind the NAS interface. NAS provides the
scalability, reliability, and data mobility needed for efficient VM management. Typically, NAS
solutions are cheaper than SANs due to their use of IP networks, and are simpler to configure and
manage. These properties have increased the use of NAS in virtual environments and encouraged
several companies to create solutions for disk image files management at the NAS [12, 111, 122].

1d. Pass-through to DAS or SAN. In this case, virtual disks are backed up by a real block device
(not a file), which can be on a SAN or DAS. This approach is less flexible than disk image files,
but can offer lower overhead because one level of indirection—the host file system—is eliminated.

Network Clients in the Guest

The other approach for providing storage to a virtual machine is to let a network-based file system
(e.g., NFS) provide access to the data directly from the guest (case 2 in Figure 5.1). This model
avoids the need for disk image files, so no block-device emulation is needed. This eliminates em-
ulation overheads, but lacks many of the benefits associated with virtualization, such as consistent
snapshots, thin provisioning, cloning, disaster recovery. Also, not every guest OS supports every
NAS protocol, which fetters the ability of a hypervisor and its storage system to support all guest
OS types. Further, cloud management architectures such as VMware’s vCloud and OpenStack do
not support this design [99, 127].

5.2.2 VM-NAS I/O Stack
In this study we focus on the VM-NAS architecture, where VM disks are emulated by disk image
files stored on NAS (case 1c in Section 5.2.1 and in Figure 5.1). To the best of our knowledge,
even though this architecture is becoming popular in virtual data centers [128, 143], there has been
no study of the significant transformations in typical NAS I/O workloads caused by server virtual-
ization. This study is a first step towards a better understanding of NAS workloads in virtualized
environments and the development of suitable benchmarks for NAS to be used in industry and
academia.

When VMs and NAS are used together, the corresponding I/O stack becomes deeper and more
complex, as seen in Figure 5.2. When passing through the layers I/O requests significantly change
their properties. At the top of the stack, applications access data using system calls such as create,
read, write, and unlink. These system calls invoke the underlying guest file system, which in
turn converts application calls into I/O requests to the block layer. The file system maintains
data and metadata layouts, manages concurrent accesses, and often caches and prefetches data to
improve application performance. All of these features change the pattern of application requests.

56

The guest OS’s block layer receives requests from the file system and reorders and merges them
to increase performance, provide process fairness, and prioritize requests. The I/O controller driver,
located beneath the generic block layer, imposes extra limitations on the requests in accordance
with the virtual device’s capabilities (e.g., trims requests to the maximum supported size and limits
the NCQ queue length [144]).

File System
NAS

Benchmark

File System
Benchmark

Applications

On−Disk File System

Block Layer

Driver

Controller Emulator

NFS Clientv
is

o
r

H
y
p
er

−
V

M
 G

u
es

t

Network

NFS Server

On−Disk File System

Block Layer

Driver

S
to

ra
g

e
A

p
p

li
an

ce

Figure 5.2: VM-NAS I/O Stack: VMs access and store vir-
tual disk images on NAS.

After that, requests cross the
software-hardware boundary for the
first time (here, the hardware is
emulated). The hypervisor’s emu-
lated controller translates the guest’s
block-layer requests into reads and
writes to the corresponding disk im-
age files. Various request transforma-
tions can be done by the hypervisor
to optimize performance and provide
fair access to the data from multiple
VMs [50].

The hypervisor contains its own
network file system client (e.g.,
NFS), which can cache data, limit
read and write sizes, and perform
other request transformations. In this
study we focus on NFSv3 because it
is one of the most widely used pro-
tocols. However, our methodology is
easily extensible to SMB or NFSv4.
In the case of NFSv3, both the client
and the server can limit read- and
write-transfer sizes and modify write-synchronization properties. Because the hypervisor and its
NFS client significantly change I/O requests, it is not sufficient to collect data at the block layer of
the guest OS; we collect our traces at the entrance to the NFS server.

After the request is sent over a network to the NAS server, the same layers that appear in the
guest OS are repeated in the server. By this time, however, the original requests have already un-
dergone significant changes performed by the upper layers, so the optimizations applied by similar
layers at the server can be considerably different. Moreover, many NAS servers (e.g., NetApp [54])
run a proprietary OS that uses specialized request-handling algorithms, additionally complicating
the overall system behavior. This complex behavior has a direct effect on measurement techniques,
as we discuss next in Section 5.2.3.

5.2.3 VM-NAS Benchmarking Setup
Regular file system benchmarks usually operate at the application layer and generate workloads
typical to one or a set of applications (Figure 5.2). In non-virtualized deployments these bench-
marks can be used without any changes to evaluate the performance of a NAS server, simply by
running the benchmark on a NAS client. In virtualized deployments, however, I/O requests can

57

change significantly before reaching the NAS server due to the deep and diverse I/O stack described
above. Therefore, benchmarking these environments is not straightforward.

One approach to benchmarking in a VM-NAS setup is to deploy the entire virtualization in-
frastructure and then run regular file system benchmarks inside the VMs. In this case, requests
submitted by application-level benchmarks will naturally undergo the appropriate changes while
passing through the virtualized I/O stack. However, this method requires a cumbersome setup of
hypervisors, VMs, and applications. Every change to the test configuration, such as an increase
in the number of VMs or a change of a guest OS, requires a significant amount of work. More-
over, the approach limits evaluation to the available test hardware, which may not be sufficient to
run hypervisors with the hundreds of VMs that may be required to exercise the limits of the NAS
server.

To avoid these limitations and regain the flexibility of standard benchmarks, we have created
virtualized benchmarks by extracting the workload characteristics after the requests from the orig-
inal physical benchmarks have passed though the virtualization and NFS layers. The generated
benchmarks can then run directly against the NAS server without having to deploy a complex in-
frastructure. Therefore, the benchmarking procedure remains the same as before—easy, flexible,
and accessible.

One approach to generating virtualized benchmarks would be to emulate the changes applied to
each request as it goes down the layers. However, doing so would require a thorough study of the
request-handling logic in the guest OSes and hypervisors, with further verification through multi-
layer trace collection. Although this approach might be feasible, it is time-consuming, especially
because it must be repeated for many different OSes and hypervisors. Therefore, in this work
we chose to study the workload characteristics at a single layer, namely where requests enter the
NAS server. We collected traces at this layer and then characterized selected workload properties.
The information from a single layer is enough to create the corresponding NAS benchmarks by
reproducing the extracted workload features. Workload characterization and the benchmarks that
we create are tightly coupled with the configuration of the upper layers: application, guest OS,
local file system, and hypervisor. We leave the inference of parameters that account for the greatest
changes to the I/O workload for future work.

5.3 NAS Workload Changes
In this section we detail seven categories of NAS workload changes caused by virtualization.
Specifically, we compare the two cases where a NAS server is accessed by a (1) physical; or
(2) a virtualized client, and describe the differences in the I/O workload. These changes are the
result of migrating an application from a physical server, which is configured to use an NFS client
for direct data access, to a VM that stores data in a disk image file that the hypervisor accesses from
an NFS server. Figure 5.3 demonstrates the difference in the two setups, and Table 5.2 summarizes
the changes we observed in the I/O workload. The changes are listed from the most noticeable and
significant to the least. Here, we discuss the changes qualitatively; quantitative observations are
presented in Section 5.4.

First, and unsurprisingly, the number and size of files stored in NAS change from many rel-
atively small files to a few (usually just one) large file(s) per VM—the disk image file(s). For
example, the default Filebench file server workload defines 10,000 files with an average size of

58

128KB, which are spread over 500 directories. However, when Filebench is executed in a VM,
there is only one large disk image file. (Disk image files are usually sized to the space require-
ments of a particular application; in our setup the disk image file size was set to the default 16GB
for the Linux VM, and to 50GB for the Windows VM, because the benchmark we used in Windows
required at least 50GB.) For the same reason, directory depth decreases and becomes fairly consis-
tent: VMware ESX typically has a flat namespace; each VM has one directory with the disk image
files stored inside it. Back-end file systems used in NAS are often optimized for common file sizes
and directory depths [4, 82, 92, 106], so this workload change can significantly affect their per-
formance. For example, to improve write performance for small files, one popular technique is to
store data in the inode [43], a feature that would be wasted on virtualized clients. Further, disk im-
age files in NAS environments are typically sparse, with large portions of the files unallocated, i.e.,
the physical file size can be much smaller than its logical size. In fact, VMware’s vSphere—the
main tool for managing the VMs in VMware-based infrastructures—supports only the creation of
sparse disk images over NFS. A major implication of this change is that back-end file systems for
NAS can lower their focus on optimizing, for example, file append operations, and instead focus
on improving the performance of block allocation within a file.

The second change caused by the move to virtualization is that all file system metadata oper-
ations become data operations. For example, with a physical client there is a one-to-one mapping
between file creation and a CREATE over the wire. However, when the application creates a file in
a VM, the NAS server receives a series of writes to a corresponding disk image: one to a directory
block, one to an inode block, and possibly one or more to data blocks. Similarly, when an applica-
tion accesses files and traverses the directory tree, physical clients send many LOOKUP procedures
to a NAS server. The same application behavior in a VM produces a sequence of READs to the disk
image. Current NAS benchmarks generate a high number of metadata operations (e.g., 72% for
SPECsfs2008), and will bias the evaluation of a NAS that serves virtualized clients. While it may
appear that removing all metadata operations implies that application benchmarks can generally
be replaced with random I/O benchmarks, such as IOzone [24], this is insufficient.

As shown in Section 5.5, the VM-NAS I/O stack generates a range of I/O sizes, jump distances,

NFS/CIFS

Back−end: GPFS/WAFL/ZFS

Front−end: NFS/CIFS

NAS Appliance

App App...
Operating System

Physical Clients

(a) Physical

Virtual Machine

App App...
Operating System

Virtual Machine

App App...
Operating System

Hypervisor

...

NFS/CIFS

Back−end: GPFS/WAFL/ZFS

Front−end: NFS/CIFS

NAS Appliance

Virtualized Clients

(b) Virtualized

Figure 5.3: Physical and Virtualized NAS architectures. With physical clients, applications use a
NAS client to access the NAS appliance directly. With virtualized clients, applications access the
NAS appliance via a virtualized block device.

59

Workload Property Physical NAS Clients Virtual NAS Clients
1 File and directory count Many files and directories Single file per VM

Directory tree depth Often deeply nested directories Shallow and uniform
File size Lean towards many small files Multi-gigabyte sparse disk image files

2 Metadata operations Many (72% in SPECsfs2008) Almost none
3 I/O synchronization Asynchronous and synchronous All writes are synchronous
4 In-file randomness Workload-dependent Increased randomness due to guest file sys-

tem encapsulation
Cross-file randomness Workload-dependent Cross-file access replaced by in-file access

due to disk image files
5 I/O Sizes Workload-dependent Increased or decreased due to guest file sys-

tem fragmentation and I/O stack limitations
6 Read-modify-write Infrequent More frequent due to block layer in guest file

system
7 Think time Workload-dependent Increased because of virtualization over-

heads

Table 5.2: Summary of key I/O workload changes between Physical and Virtualized NAS archi-
tectures.

and request offsets that cannot be modeled with a simple distribution (uniform or otherwise).
Third, all write requests that come to the NAS server are synchronous. For NFS, this means that

the stable attribute is set on each and every write, which is typically not true for physical clients.
The block layers of many OSes expect that when the hardware reports a write completion, the data
has been saved to persistent storage. Similarly, the NFS protocol’s stable attribute specifies that
the NFS server cannot reply to a WRITE until the data is persistent. So the hypervisor satisfies the
guest OS’s expectation by always setting this attribute on WRITE requests. Since many modern
NAS servers try to improve performance by gathering write requests into larger chunks in RAM,
setting the stable attribute invalidates this important optimization for virtualized clients.

Fourth, in-file randomness increases significantly with virtualized clients. On a physical client,
access patterns (whether sequential or random) are distinct on a per-file basis. However, in vir-
tualized clients, both sequential and random operations are blended into a single disk image file.
This causes the NAS server to receive what appears to be many more random reads and writes to
that file. Furthermore, guest file system fragmentation increases image file randomness. On the
other hand, cross-file randomness decreases, as each disk image file is typically accessed by only
a single VM; i.e., it can be easier to predict which files will be accessed next based on files’ status,
and to differentiate files by how actively the files are used (running VMs, stopped ones, etc.).

Fifth, the I/O sizes of original requests can both decrease and increase while passing through
the virtualization layers. Guest file systems perform reads and writes in units of their block size,
often 4KB. So, when reading a file of, say, 6KB size, the NAS server observes two 4KB reads for
a total of 8KB, while a physical client would request only 6KB (25% less). Since many modern
systems operate with a lot of small files [92], this difference can have a significant impact on
bandwidth. Similarly, when reading 2KB of data from two consecutive data blocks in a file (1KB
in each block), the NAS server may observe two 4KB reads for a total of 8KB (one for each
block), while a physical NAS client may send only a single 2KB request. A NAS server designed

60

for a virtualized environment could optimize its block-allocation and fragmentation-prevention
strategies to take advantage of this observation.

Interestingly, I/O sizes can also decrease because guest file systems sometimes split large files
into blocks that might not be adjacent. This is especially true for aged file systems with higher
fragmentation [112]. Consequently, whereas a physical client might pass an application’s 1MB
read directly to the NAS, a virtualized client can sometimes submit several smaller reads scattered
across the (aged) disk image. An emulated disk controller driver can also reduce the size of an I/O
request. For example, we observed that the Linux IDE driver has a maximum I/O size of 128KB,
which means that any application requests larger than this value will be split into smaller chunks.
Note that such workload changes happen even in a physical machine as requests flow from a file
system to a physical disk. However, in a VM-NAS setup, the transformed requests hit not a real
disk, but a file on NAS, and as a result the NAS experiences a different workload.

The sixth change is that when an application writes to part of a block, the guest file system
must perform a read-modify-write (RMW) to first read in valid data prior to updating and writing
it back to the NAS server. Consequently, virtualized clients often cause RMWs to appear on the
wire [52], requiring two block-sized round trips for every update. With physical clients, the RMW
is generally performed at the NAS server, avoiding the need to first send valid data back to the
NAS client.

Seventh, the think time between I/O requests can increase due to varying virtualization over-
head. It has been shown that for a single VM and modern hardware, the overhead of virtualization
is small [7]. However, as the number of VMs increases, the contention for computational resources
grows, which can cause a significant increase in the request inter-arrival times. Longer think times
can prevent a NAS device from filling the underlying hardware I/O queues and achieving peak
throughput.

In summary, both static and dynamic properties of NAS workloads change when virtualized
clients are introduced into the infrastructure. The changes are sufficiently significant that direct
comparison of certain workload properties between virtual and physical clients becomes problem-
atic. For example, cross-file randomness has a rather different meaning in the virtual client, where
the number of files is usually one per VM. Therefore, in the rest of the chapter we focus solely on
characterizing workloads from virtualized clients, without trying to compare them directly against
the physical clients. However, where possible, we refer to the original workload properties.

5.4 VM-NAS Workload Characterization
In this section we describe our experimental setup and then present and characterize a set of four
different application-level benchmarks.

5.4.1 Experimental Configuration
Every layer in the VM-NAS I/O stack can be configured in several ways: different guest OSes
can be installed, various virtualization solutions can be used, etc. The way in which the I/O stack
is assembled and configured can significantly change the resulting workload. In the current work
we did not try to evaluate every possible configuration, but rather selected several representative
setups to demonstrate the utility of our techniques. The methodology we have developed is simple

61

Parameter RHEL 6.2 Win 2008 R2 SP1
No. of CPUs 1
Memory 1GB 2GB
Host Controller Paravirtual LSI Logic Parallel
Disk Drive Size 16GB 50GB
Disk Image Format Thick flat VMDK
Guest File System Ext3 NTFS
Guest I/O Scheduler CFQ n/a

Table 5.3: Virtual Machine configuration parameters.

and accessible enough to evaluate many other configurations. Table 5.3 presents the key configu-
ration options and parameters we used in our experiments. Since our final goal is to create NAS
benchmarks, we only care about the settings of the layers above the NAS server; we treat the NAS
itself as a black box.

We used two physical machines in our experimental setup. The first acted as a NAS server,
while the second represented a typical virtualized client (see Figure 5.3). The hypervisor was
installed on a Dell PowerEdge R710 node with an Intel Xeon E5530 2.4GHz 4-core CPU and 24GB
of RAM. We used local disk drives in this machine for the hypervisor installation—VMware ESXi
5.0.0 build 62386. We used two guest OSes in the virtual setup: Red Hat Enterprise Linux 6.2
(RHEL 6.2) and Windows 2008 R2 SP1. We stored the OS’s VM disk images on the local, directly
attached disk drives. We conducted our experiments with a separate virtual disk in every VM, with
the corresponding disk images being stored on the NAS. We pre-allocated all of the disk images
(thick provisioning) to avoid performance anomalies across runs related to thin provisioning (e.g.,
delayed block allocations). The RHEL 6.2 distribution comes with a paravirtualized driver for
VMware’s emulated controller, so we used this controller for the Linux VM. We left the default
format and mount options for guest file systems unchanged.

The machine designated as the NAS server was a Dell PowerEdge 1800 with six 250GB Max-
tor 7L250S0 disk drives connected through a Dell CERC SATA 1.5/6ch controller, intended to be
used as a storage server in enterprise environments. The machine is equipped with an Intel Xeon
2.80GHz Irwindale single-core CPU and 512MB of memory. The NAS server consisted of both
the Linux NFS server and IBM’s General Parallel File System (GPFS) version 3.5 [109]. GPFS
is a scalable clustered file system that enables a scale-out, highly-available NAS solution and is
used in both virtual and non-virtual environments. Our workload characterization and benchmark
synthesis techniques treat NAS servers as a black box and are valid regardless of its underlying
hardware and software. Since our ultimate goal is to create benchmarks capable of stressing any
NAS, we did not characterize NAS-specific characteristics such as request latencies. Our bench-
marks, however, let us manually configure the think time. By decreasing think time (along with
increasing the number of VMs), a user can scale the load to the processing power of a NAS to
accurately measure its peak performance.

5.4.2 Application-Level Benchmarks
In the Linux VM we used Filebench [39] to generate file system workloads. Filebench can emulate
the I/O patterns of several enterprise applications; we used the File-, Web-, and Database-server

62

Workload Dataset size Files R/W/M ratio I/O Size
File-server 2.0GB 20,000 1/2/3 WF
Web-server 1.6GB 100,000 10/1/0 WF
DB-server 2.0GB 10 10/1/0 2KB
Mail-server 24.0GB 120 1/2/0 32KB

Table 5.4: High-level workload characterization for our benchmarks. R/W/M is the Read/Write/-
Modify ratio. WF (Whole-File) means the workload only reads or writes complete files. The
mail-server workload is based on JetStress, for which R/W/M ratios and I/O sizes were estimated
based on [64].

workloads. We scaled up the datasets of these workloads so that the datasets were larger than the
amount of RAM in the VM (see Table 5.4).

Because Filebench does not support Windows, in our Windows VM we used JetStress 2010 [63],
a disk-subsystem benchmark that generates a Microsoft Exchange Mail-server workload. It em-
ulates accesses to the Exchange database by a specific number of users, with a corresponding
number of log file updates. Complete workload configurations (physical and virtualized), along
with all the software we developed as part of this project are available from https://avatar.
fsl.cs.sunysb.edu/groups/t2mpublic/.

Although SPECsfs is a widely used NAS benchmark [116], we could not use it in our evaluation
because it incorporates its own NFS client, which makes it impossible to run against a regular
POSIX interface. We hope that the workload analysis and proposed benchmarks presented in this
study can be used by SPEC for designing future SPECsfs synthetic workloads.

VMware’s VMmark is a benchmark often associated with testing VMs [130]. However, this
benchmark is designed to evaluate the performance of a hypervisor machine, not the underlying
storage system. For example, VMmark is sensitive to how fast a hypervisor’s CPU is and how well
it supports virtualization features (such as AMD-V and Intel VT [1, 60]). However, these details
of hypervisor configuration should not have a large effect on NAS benchmark results. Although
VMmark also indirectly benchmarks the I/O subsystem, it is hard to distinguish how much the
I/O component contributes to the overall system performance. Moreover, VMmark requires the
installation of several hypervisors and additional software (e.g., Microsoft Exchange) to generate
the load. Our goal is complementary: to design a realistic benchmark for the NAS that serves as
the backend storage for a hypervisor like VMware.

Our goal in this project was to transform some of the already existing benchmarks to their vir-
tualized counterparts. As such, we did not replay any real-world traces in the VMs. Both Filebench
and JetStress generate workloads whose statistical characteristics remain the same over time (i.e.,
stationary workloads). Consequently, new virtualized benchmarks also exhibit this property.

5.4.3 Characterization
We executed all benchmarks for 10 minutes (excluding the preparation phase) and collected NFS
traces at the NAS server. We repeated every run 3 times and verified the consistency of the re-
sults. The traces were collected using the GPFS mmtrace facility [59] and then converted to the
DataSeries format [9] for efficient analysis.

We developed a set of tools for extracting various workload characteristics. There is always a

63

https://avatar.fsl.cs.sunysb.edu/groups/t2mpublic/
https://avatar.fsl.cs.sunysb.edu/groups/t2mpublic/

nearly infinite number of characteristics that can be extracted from a trace, but a NAS benchmark
needs to reproduce only those that significantly impact the performance of NAS servers. Since
there is no complete list of workload characteristics that impact NAS, in the future we plan to
conduct a systematic study of NASes to create such a list. For this study, we selected characteristics
that clearly affect most NASes: (1) read/write ratio; (2) I/O size; (3) jump (seek) distance; and
(4) offset popularity.

As we mentioned earlier, the workloads produced by VMs contain no metadata operations.
Thus, we only characterize the ratio of data operations—READs to WRITEs. The jump distance of
a request is defined as the difference in offsets (block addresses) between it and the immediately
preceding request (accounting for I/O size as well). We do not take the operation type into account
when calculating the jump distance. The offset popularity is a histogram of the number of accesses
to each block within the disk image file; we report this as the number of blocks that were accessed
once, twice, etc. We present the offset popularity and I/O size distributions on a per-operation
basis. Figure 5.4 depicts the read/write ratios and Figures 5.5–5.8 present I/O size, jump distance,
and offset popularity distributions for all workloads. For jump distance we show a CDF because it
is the clearest way to present this parameter.

 0

 20

 40

 60

 80

 100

File-server Web-server Database-server Mail-server (Win)

%
 o

f
re

q
u
e
s
ts

Workload

read
write

Figure 5.4: Read/Write ratios for different workloads.

Read/Write ratio. Read/write ra-
tios vary significantly across the an-
alyzed workloads. The File-server
workload generates approximately
the same number of reads and writes,
although the original workload had
twice as many writes (Table 5.4). We
attribute this difference to the high
number of metadata operations (e.g.,
LOOKUPs and STATs) that were trans-
lated to reads by the I/O stack. The
Web-server and the Database-server are read-intensive workloads, which is true for both original
and virtualized workloads. The corresponding original workloads do not contain many metadata
operations, and therefore the read/write ratio remained unchanged (unlike the File-server work-
load). The Mail-server workload, on the other hand, is write-intensive: about 70% of all operations
are writes, which is close to the original benchmark where two thirds of all operations are writes.
As with the Web-server and Database-server workloads, the lack of metadata operations kept the
read/write ratio unchanged,

I/O size distribution. The I/O sizes for all workloads vary from 512B to 64KB; the latter limit
is imposed by the RHEL 6.2 NFS server, which sets 64KB as the default maximum NFS read
and write size. All requests smaller than 4KB correspond to 0 on the bar graphs. There are few
writes smaller than 4KB for the File-server and Web-server workloads, but for the Database- and
Mail-server (JetStress) workloads the corresponding percentages are 80% and 40%, respectively.
Such small writes are typical for databases (Microsoft Exchange emulated by JetStress also uses a
database) for two reasons. First, the Database-server workload writes 2KB at a time using direct
I/O. In this case, the OS page cache is bypassed during write handling, and consequently the I/O

64

 0

 10

 20

 30

 40

 50

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

%
 o

f
re

q
u
e
s
ts

I/O Size (KB)

read
write

(a) I/O Size

 0

 20

 40

 60

 80

 100

-15 -10 -5 0 5 10 15

%
 o

f
re

q
u
e
s
ts

Jump distance (GB)

(b) Jump distance

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 29 65

%
 o

f
o
ff
s
e
ts

Number of requests

read
write

(c) Offset popularity

Figure 5.5: Characteristics of a virtualized File-server workload.

 0

 10

 20

 30

 40

 50

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

%
 o

f
re

q
u
e
s
ts

I/O Size (KB)

read
write

(a) I/O Size

 0

 20

 40

 60

 80

 100

-15 -10 -5 0 5 10 15

%
 o

f
re

q
u
e
s
ts

Jump distance (GB)

(b) Jump distance

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 60

%
 o

f
o
ff
s
e
ts

Number of requests

read
write

(c) Offset popularity

Figure 5.6: Characteristics of a virtualized Web-server workload.

 0
 20
 40
 60
 80

 100

0 4 8 64

%
 o

f
re

q
u
e
s
ts

I/O Size (KB)

read
write

(a) I/O Size

 0

 20

 40

 60

 80

 100

-15 -10 -5 0 5 10 15

%
 o

f
re

q
u
e
s
ts

Jump distance (GB)

(b) Jump distance

 0
 20
 40
 60
 80

 100

1 49812

%
 o

f
o
ff
s
e
ts

Number of requests

read
write

(c) Offset popularity

Figure 5.7: Characteristics of a virtualized Database-server workload.

 0
 20
 40
 60
 80

 100

0 32 64 Rest

%
 o

f
re

q
u
e
s
ts

I/O Size (KB)

read
write

(a) I/O Size

 0

 20

 40

 60

 80

 100

-40 -20 0 20 40

%
 o

f
re

q
u
e
s
ts

Jump distance (GB)

(b) Jump distance

 0
 20
 40
 60
 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 R

%
 o

f
o
ff
s
e
ts

Number of requests

read
write

(c) Offset popularity

Figure 5.8: Characteristics of a virtualized Mail-server workload.

size is not increased to 4KB (the page size) when it reaches the block layer. The block layer
cannot then merge requests, due to their randomness. Second, databases often perform operations
synchronously by using the fsync and sync calls. This causes the guest file system to atomically
update its metadata, which can only be achieved by writing a single sector (512B) to the virtual
disk drive (and hence over NFS).

For the File-server and Web-server workloads, most of the writes happen in 4KB and 64KB
I/O sizes. The 4KB read size is dominant in all workloads because this is the guest file system
block size. However, many of the File-server’s reads were merged into larger requests by the
I/O scheduler and then later split into 64KB sizes by the NFS client. This happens because the
average file size for the File-server is 128KB, so whole-file reads can be merged. For the Web-
server workload, the average file size is only 16KB, so there are no 64KB reads at all. For the same
reason, the Web-server workload exhibits many reads around 16KB (some files are slightly smaller,
others are slightly larger, in accordance with Filebench’s gamma distribution [137]). Interestingly,
for the Mail-server workload, many requests have non-common I/O sizes. (We define an I/O size as
non-common if fewer than 1% of such requests have such I/O size.) We grouped all non-common
I/O sizes in the bucket called “Rest” in the histogram. This illustrates that approximately 15% of
all requests have non-common I/O sizes for the Mail-server workload.

65

Jump distance. The CDF jump distance distribution graphs show that many workloads demon-
strate a significant level of sequentiality, which is especially true for the File-server workload: more
than 60% of requests are sequential. Another 30% of the requests in the File-server workload rep-
resent comparatively short jumps: less than 2GB, the size of the dataset for this workload; these
are jumps between different files in the active dataset. The remaining 10% of the jumps come from
metadata updates and queries, and are spread across the entire disk. The Web-server workload
exhibits similar behavior except that the active dataset is larger—about 5–10GB. The cause of this
is a larger number of files in the workload (compared to File-server) and the allocation policy of
Ext3 that tries to spread many files across different block groups.

For the Database-server workload there are almost no sequential accesses. Over 60% of the
jumps are within 2GB because that is the dataset size. Interestingly, about 40% of the requests have
fairly long jumps that are caused by frequent file system synchronization, which leads to metadata
updates at the beginning of the disk.

In the Mail-server workload approximately 40% of the requests are sequential, and the rest are
spread across the 50GB disk image file. A slight bend around 24GB corresponds to the active
dataset size. Also, note that the Mail-server workload uses the NTFS file system, which uses a
different allocation policy than Ext3; this explains the difference in the shape of the Mail-server
curve from other workloads.

Offset popularity. In all workloads, most of the offsets were accessed only once. The absolute
numbers on these graphs depend on the run time, e.g., when one runs a benchmark longer, then the
chance of accessing the same offset increases. However, the shape of the curve remains the same
as time progresses (although it shifts to the right). For the Database workload, 40% of all blocks
were updated several thousand times. We attribute this to the repeated updates of the same file
system metadata structures due to frequent file system synchronization. The Mail-server workload
demonstrates a high number of overwrites (about 50%). These overwrites are caused by Microsoft
Exchange overwriting the log file multiple times. With Mail-server, “R” on the X axes designates
the “Rest” of the values, because there were too many to list. We therefore grouped all of the
values that contributed less than 1% into the R bucket.

5.5 New NAS Benchmarks
This section describes our methodology for the creation of new NAS benchmarks for virtualized
environments and then evaluates their accuracy.

5.5.1 Trace-to-Model Conversion
Our NAS benchmarks generate workloads with characteristics that closely follow the statisti-
cal distributions presented in Section 5.4.3. We decided not to write a new benchmarking tool,
but rather exploit Filebench’s ability to express I/O workloads with its Workload Modeling Lan-
guage (WML) [138], which allows one to flexibly define processes and performed I/O operations.
Filebench interprets WML and translates its instructions to corresponding POSIX system calls.
Our use of Filebench will facilitate the adoption of our new virtualized benchmarks: existing
Filebench users can easily run new WML configurations.

66

We extended the WML language to support two virtualization terms: hypervisor and vm (vir-
tual machine). We call the extended version WML-V (by analogy with AMD-V). WML-V is
backwards compatible with the original WML, so users can merge virtualized and non-virtualized
configurations to simultaneously emulate the workloads generated by both physical and virtual
clients.

For each analyzed workload—File-server, Web-server, Database-server and Mail-server—we
created a corresponding WML-V configuration file. By modifying these files, a user can adjust the
workloads to reflect a desired benchmarking scenario, e.g., defining the number of VMs and the
workloads each VM runs.

Listing 5.1 presents an abridged example of a WML-V configuration file that defines a single
hypervisor, which runs 5 Database VMs and 2 Web-server VMs. Flowops are Filebench’s defined
I/O operations, which are mapped to POSIX calls, such as open, create, read, write, and
delete. In the VM case, we only use read and write flowops, since metadata operations do not
appear in the virtualized workloads. For every defined VM, Filebench will pre-allocate a disk
image file of a user-defined size—16GB in the example listing.

1 HYPERVISOR name="physical-host1" {
2 VM name="dbserver-vm",dsize=16gb,instances=5 {
3 flowop1, ...
4 }
5 VM name="websever-vm",dsize=16gb,instances=2 {
6 flowop1, ...
7 }
8 }

Listing 5.1: An abridged WML-V workload description that defines 7 VMs: 5 run database work-
loads and 2 generate Web-server workloads.

Filebench allows one to define random variables with desired empirical distributions; various
flowop attributes can then be assigned to these random variables. We used this ability to define
read and write I/O-size distributions and jump distances. We achieved the required read/write
ratios by putting an appropriate number of read and write flowops within the VM definition. The
generation of a workload with user-defined jump distances and offset popularity distributions is a
complex problem [80] that Filebench does not solve; in this work, we do not attempt to emulate
this parameter. However, as we show in the following section, this does not significantly affect the
accuracy of our benchmarks.

Ideally, we would like Filebench to translate flowops directly to NFS procedures. However,
this would require us to implement an NFS client within Filebench (which is an ongoing effort
within the Filebench community). To work around this limitation, we mount NFS with the sync
flag and open the disk image files with the O DIRECT flag, ensuring that I/O requests bypass the
Linux page cache. These settings also ensure that (1) no additional read requests are performed
to the NFS server (readahead); (2) that all write requests are immediately sent to the NFS server
without modification; and (3) that replies are returned only after the data is on disk. This behavior
was validated with extensive testing. This approach works well in this scenario because we do
not need to generate metadata procedures on the wire; that would be difficult to achieve using this
method because a 1:1 mapping of metadata operations does not exist between system calls and
NFS procedures.

Our enhanced Filebench reports aggregate operations per second for all VMs and individually
for each VM. Operations in the case of virtualized benchmarks are different from the original

67

 0

 2

 4

 6

 8

 10

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(a) File-server

 0

 2

 4

 6

 8

 10

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(b) Web-server

 0

 2

 4

 6

 8

 10

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(c) Database-server

 0

 2

 4

 6

 8

 10

R
eads/Sec

W
rites/Sec

Latency

I/O
 U

til

Q
ueue Len

R
eqSize

C
PU

M
em

ory

Interrupts

C
ontSw

itch

W
aitProc

E
rr

o
r

(%
)

RMS
Maximum

(d) Mail-server (Windows, JetStress)

Figure 5.9: Root Mean Square (RMS) and maximum relative distances of response parameters for
all workloads.

non-virtualized equivalent: our benchmarks report the number of reads and writes per second;
application-level benchmarks, however, report application-level operations (e.g., the number of
HTTP requests serviced by a Web-server). Nevertheless, the numbers reported by our benchmarks
can be directly used to compare the performance of different NAS servers under a configured
workload.

None of our original benchmarks, except the database workload, emulated think time, because
our test was designed as an I/O benchmark. For the database benchmark we defined think time
as originally defined in Filebench—200,000 loop iterations. Think time in all workloads can be
adjusted by trivial changes to the workload description.

5.5.2 Evaluation
To evaluate the accuracy of our benchmarks we observed how the NAS server responds to the virtu-
alized benchmarks as compared to the original benchmarks when executed in a VM. We monitored
11 parameters that represent the response of a NAS and are easy to extract through the Linux /proc
interface: (1) Reads/second from the underlying block device; (2) Writes/second; (3) Request la-
tency; (4) I/O utilization; (5) I/O queue length; (6) Request size; (7) CPU utilization; (8) Memory
usage; (9) Interrupt count; (10) Context-switch count; and (11) Number of processes in the wait
state. We call these NAS response parameters.

We sampled the response parameters every 30 seconds during a 10-minute run and calculated
the relative difference between each pair of parameters. Figure 5.9 presents maximum and Root
Mean Square (RMS) difference we observed for four workloads. In these experiments a single
VM with an appropriate workload was used. The maximum relative error of our benchmarks is
always less than 10%, and the RMS distance is within 7% across all parameters. Certain response
parameters show especially high accuracy; for example, the RMS distance for request size is within
4%. Here, the accuracy is high because our benchmarks directly emulate I/O size distribution.
Errors in CPU and memory utilization were less than 5%, because the NAS in our experiments did
not perform many CPU-intensive tasks.

68

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8

E
rr

o
r

(%
)

Number of VMs

Reads/Sec
Writes/Sec
Latency
I/O utilization
Queue length
Request Size
CPU Utilization
Memory
Interrupts
Context Switches
Waiting Processes

(a) RMS distance

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8

E
rr

o
r

(%
)

Number of VMs

Reads/Sec
Writes/Sec
Latency
I/O utilization
Queue length
Request Size
CPU Utilization
Memory
Interrupts
Context Switches
Waiting Processes

(b) Maximum

Figure 5.10: Response parameter errors depending on the number of VMs deployed. The first four
VMs (1–4) execute four different workloads we analyzed. The next four VMs (5–8) are repeated
in the same order.

Scalability with Multiple Virtual Machines. The benefit of our benchmarks is that a user can
define many VMs with different workloads and measure NAS performance against this specific
workload configuration. To verify that the accuracy of our benchmarks does not decrease as we
emulate more VMs, we conducted a multi-VM experiment. We first ran one VM with a File-
server in it, then added a second VM with a Web-server workload, then a third VM executing
the Database-server workload, and finally a fourth VM running JetStress. After that we added
another four VMs with the same four workloads in the same order. In total we had 8 different
configurations ranging from 1 to 8 VMs; this setup was designed to heavily stress the NAS under
several, different, concurrently running workloads. We then emulated the same 8 configurations
using our benchmarks and again monitored the response parameters. Figures 5.10(a) and 5.10(b)
depict RMS and maximum relative errors, respectively, depending on the number of VMs.

When a single VM is emulated, our benchmarks show the best accuracy. Beyond one VM, the
RMS error increased by about 3–5%, but still remained within 10%. For four parameters—latency,
writes/sec, interrupts and context switches count—the maximum error observed during the whole
run was the highest among other parameters—in the 10–13% range.

In summary, our benchmarks show a high accuracy for both single- and multi-VM experiments,
even under heavy stress.

5.6 Related Work
Storage performance in virtualized environments is an active research area. Le et al. studied the
storage performance implications of combining different guest and host file systems [81]. Boutcher
et al. examined how the selection of guest OS and host I/O schedulers impacts the performance of
a virtual machine [20]. Both of these works focused on the performance aspects of the problem,
not workload characterization or generation; also, the authors used direct-attached storage, which
is simpler but less common in modern enterprise data centers.

Hildebrand et al. discussed the implications of using the VM-NAS architecture with enterprise
storage servers [52]. That work focused on the performance implications of the VM-NAS I/O stack
without thoroughly investigating the changes to the I/O workload. Gulati et al. characterized the
SAN workloads produced by VMs for several enterprise applications [49]. Our techniques can also
be used to generate new benchmarks for SAN-based deployments, but we selected to investigate
VM-NAS setups first, for two reasons. First, NAS servers are becoming a more popular solution
for hosting VM disk images. Second, the degree of workload change in such deployments is

69

higher: NAS servers use more complex network file-system protocols whereas SANs and DAS use
a simpler block-based protocol.

Ahmad et al. studied performance overheads caused by I/O stack virtualization in ESX with
a SAN [7]. That study did not focus on workload characterization but rather tried to validate
that modern VMs introduce low overhead compared to physical nodes. Later, the same authors
proposed a low-overhead method for on-line workload characterization in ESX [6]. However, their
tool characterizes traces collected at the virtual SCSI layer and consequently does not account for
any transformations that may occur in ESX and its NFS client. In contrast, we collect the trace at
the NAS layer after all request transformations, allowing us to create more accurate benchmarks.

Casale et al. proposed a model for predicting storage performance when multiple VMs use
shared storage [25, 74]. Practical benchmarks like ours are complementary to that work and allow
one to verify such predictions in real life. Ben-Yehuda et al. analyzed performance bottlenecks
when several VMs are used to provide different functionalities on a storage controller [14]. The
authors focused on lowering network overhead via intelligent polling and other techniques.

Trace-driven performance evaluation and workload characterization have been the basis of
many studies [37, 70, 77, 101]. Our trace-characterizing techniques and benchmark-synthesis
techniques are based on multi-dimensional workload analysis. Chen et al. used multi-dimensional
trace analysis to infer behavior of enterprise storage systems [29]. Tarasov et al. proposed a tech-
nique for automated translation of block-I/O traces to workload models [121]. Yadawakar et al.
proposed to discover applications based on multi-dimensional characteristics of NFS traces [142].

In summary, to the best of our knowledge, there have been no earlier studies that systematically
analyzed virtualized NAS workloads. Moreover, we are the first to present new NAS benchmarks
that accurately generate virtualized I/O workloads.

5.7 Conclusions
We have studied the transformation of existing NAS I/O workloads due to server virtualization.
Such transformations were known to occur but have not been studied in depth to date. Our analysis
revealed several significant I/O workload changes due to the use of disk images and the placement
of the guest block layer above the NAS file client. We observed and quantified significant changes
such as the disappearance of file system metadata operations at the NAS layer, changes in I/O sizes,
changes in file counts and directory depths, asynchrony changes, increased randomness within
files, and more.

Based on these observations from real-world workloads, we developed new benchmarks that
accurately represent NAS workloads in virtualized data centers—and yet these benchmarks can be
run directly against the NAS without requiring a complex virtualization environment configured
with VMs and applications. Our new virtualized benchmarks represent four workloads, two guest
operating systems, and up to eight virtual machines. Our evaluation reveals that the relative error
of these new benchmarks across more than 11 parameters is less than 10% on average. In addition
to providing a directly usable measurement tool, we hope that our work will provide guidance to
future NAS standards, such as SPEC, in devising benchmarks that are better suited to virtualized
environments.

70

Chapter 6

Conclusion

Workloads play a crucial role in designing and optimizing modern storage systems. In fact, when
designing a system the majority of decisions—starting from the selection of a file system block size
and ending with the deduplication algorithm—are based on the properties of the target workload.

As the gap between the performance of storage components and the amount of stored data
widens the need for workload-based optimizations will only increase. Practical and efficient tools
for characterizing real workloads and their synthesis are needed to address this issue.

In this thesis we demonstrated the problems of evaluating complex storage systems and pro-
posed Multi-Dimensional Histogram (MDH) technique for analyzing workloads and system be-
haviors. Using three examples we showed the effectiveness of MDH technique in evaluating a
variety of workload-driven optimizations.

First, we applied MDH technique for converting I/O traces to workload models. Our workload
model consists of a sequence of MDHs that preserve important workload features. To address the
variability of workload properties in the trace, we perform trace chunking. Further, we eliminate
chunks that exhibit similar workload properties to reduce the trace model’s size. Our evaluation
demonstrates that the accuracy of generated models approaches 95%, while the model size is less
than 6% of the original trace size. Such concise models enable easy comparison, scaling, and other
modifications.

Second, we used MDH to generate realistic datasets suitable for evaluating deduplication sys-
tems. Our generic framework emulates file system data and metadata changes, which we call
mutations. Our implementation of the mutation module for the framework captures the statistics
of changes observed across several real datasets using MDH and a Markov Model. The model
demonstrates low error rate—less than 15% for 71 mutations across all datasets.

Third, we characterized how the workloads experienced by NAS servers change when the
servers are accessed by virtualized clients. We observed and quantified significant changes such
as the disappearance of file system metadata operations at the NAS layer, changes in I/O sizes,
changes in file counts and directory depths, asynchrony changes, increased randomness within
files, and more. Using MDH technique we created a set of versatile benchmarks that generate
virtualized workloads without deploying complex infrastructure. Our evaluation reveals that the
relative error of these new benchmarks across more than 11 parameters is less than 10% on average.

MDH-based techniques are versatile and powerful for workload analysis and synthesis. It is
our hope that the contributions presented here will benefit research and engineering communities.

71

6.1 Future Work
We see at least three promising research directions related to MDH. First, workload models created
using MDH, unlike workload traces and snapshots, are mathematical objects. Investigating the
operations on these objects is an interesting research thrust. Especially appealing looks the study
of tools and techniques that can scale the MDH along one or several dimensions. This will allow
performance engineers to sensibly adjust workload features to match new expected workloads.
Other tools can combine two or more workload models so that the resulting model represents
several consolidated applications. In addition, tools for comparing various MDHs are of significant
interest. They form the basis for identifying the classes of similar real world workloads.

Second, our experience asserts that visualizing MDH for further analysis is a complex but
extremely useful task. Observing workload changes in the traces and performing human-assisted
chunking are some of the important use cases for MDH visualization. It is for the future researchers
to apply existing techniques on visualizing multi-dimensional space to MDH in the context of
storage evaluation [139].

Third, when many MDHs are collected from different environments, clustering techniques can
be applied to detect similar workloads. This will allow to identify workload classes common in the
real world and guide the development of the future systems.

In addition to the three generic MDH research directions mentioned above, there are studies
specific to three application areas presented in this thesis. They are described below.

Trace to Workload Model Conversion. We used block traces when building our trace to model
converter. As file system interface remains popular in the modern deployments, supporting the file
system traces is a valuable feature. File system traces contain an operation field (READ, WRITE,
STAT, CREATE, etc.) and the arguments of the operation depend on the specific operation. Studying
such type of traces can introduce certain changes to the MDH technique and should be thoroughly
evaluated.

Analysis of the traces collected from multiple layers in the I/O stack allows to find important
correlations between I/O layers and create more accurate workload models. Because MDH is a
universal technique we believe it is the right choice to be applied across many layers.

Our current chunking method is simple and investigating alternative chunking techniques is
an interesting research direction. In fact, Talwadker and Voruganti have recently presented an
alternative chunking technique that avoids fixed chunking during the initial stage in the trace to
model conversion [118].

In this work we used existing benchmarks to generate workloads. However, creating a new
benchmark that takes MDH as an input allows more accurate workload generation. Such a bench-
mark will not have the limitations caused by the low expressiveness of the existing benchmarks.

Realistic Dataset Generation. Our specific implementation of the framework modules might
not model all parameters that potentially impact the behavior of existing deduplication systems.
We believe that a study similar to Park et al. [104] should be conducted to create a complete list of
the dataset properties that impact deduplication systems.

Although we can generate an initial file system snapshot using a specially collected profile for
FS-MUTATE, such approach can be limiting. In future, an extensive study on how to create initial

72

fstree objects can be performed.
Many deduplication systems perform local chunk compression to achieve even higher aggre-

gate compression. Developing a method for generating chunks with a realistic compression ratio
is consequently a useful extension.

It is also interesting to investigate whether one can use extended traces of user and application
I/O activity to emulate file system evolution more accurately. Our system is mostly suitable for
evaluating backup deduplications systems but inline deduplication systems require emulating dy-
namic properties of the traces. We believe that MDH suits well for solving this problem because it
preserves dependencies between the dimensions.

NAS Workloads in Virtualized Setups. The number of NAS benchmarks should be extended
by analyzing actual applications and application traces, including typical VM operations such as
booting, updating, and snapshotting—and examine root and I/O swap partition access patterns. We
also believe that exploring more VM configuration options such as additional guest file systems
(and their age), hypervisors, and NAS protocols is an important research direction.

Once a larger body of virtual NAS benchmarks exists, the research community will be able
to study the I/O workload’s sensitivity to each configuration parameter as well as investigate the
impact of extracting and reproducing additional trace characteristics in the generated benchmarks.

At the moment, benchmark creation requires manual analysis for every application the need
to be emulated. In the future, one can investigate the feasibility of automatic transformation of
physical workloads to virtual workloads via a multi-level trace analysis of the VM-NAS I/O stack.

73

Bibliography

[1] Advanced Micro Devices, Inc. Industry leading virtualization platform efficiency, 2008.
www.amd.com/virtualization. §5.4.2

[2] N. Agrawal, A. C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau. Generating realistic impres-
sions for file-system benchmarking. In Proceedings of the Seventh USENIX Conference on
File and Storage Technologies (FAST ’09), pages 125–138, San Francisco, CA, February
2009. USENIX Association. §4.3.1, §4.3.3, §4.5.1, §4.7

[3] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-year study of file-system
metadata. In Proceedings of the Fifth USENIX Conference on File and Storage Technologies
(FAST ’07), pages 31–45, San Jose, CA, February 2007. USENIX Association. §4.5.1, §4.7

[4] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-year study of file-system
metadata. In Proceedings of the Fifth USENIX Conference on File and Storage Technologies
(FAST ’07), pages 3–3, San Jose, CA, February 2007. USENIX Association. §5.3

[5] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D. Andersen, M. Burrows,
T. Mann, and C. A. Thekkath. Block-level security for network-attached disks. In Proceed-
ings of the USENIX Conference on File and Storage Technologies (FAST), pages 159–174,
San Francisco, CA, March 2003. USENIX Association. §2.1

[6] I. Ahmad. Easy and efficient disk I/O workload characterization in VMware ESX server.
In Proceedings of IEEE International Symposium on Workload Characterization (IISWC),
2007. §5.6

[7] I. Ahmad, J. M. Anderson, A. M. Holler, R. Kambo, and V. Makhija. An analysis of disk
performance in VMware ESX server virtual machines. In Proceedings of IEEE International
Symposium on Workload Characterization (IISWC), 2003. §5.3, §5.6

[8] E. Anderson. Capture, conversion, and analysis of an intense NFS workload. In Proceedings
of the Seventh USENIX Conference on File and Storage Technologies (FAST ’09), pages
139–152, San Francisco, CA, February 2009. USENIX Association. §2.8, §3.1, §3.6

[9] E. Anderson, M. Arlitt, C. Morrey, and A. Veitch. DataSeries: an efficient, flexible, data
format for structured serial data. ACM SIGOPS Operating Systems Review, 43(1), January
2009. §3.4, §5.4.3

74

www.amd.com/virtualization

[10] E. Anderson, M. Kallahalla, M. Uysal, and R. Swaminathan. Buttress: A toolkit for flexible
and high fidelity I/O benchmarking. In Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), pages 45–58, San Francisco, CA, March/April 2004.
USENIX Association. §2.8, §3.6

[11] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: a file system to trace them all. In Proceed-
ings of the USENIX Conference on File and Storage Technologies (FAST), pages 129–143,
San Francisco, CA, March/April 2004. USENIX Association. §2.6, §2.8, §3.6

[12] Atlantis Computing. www.atlantiscomputing.com/. §5.2.1

[13] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing. Computer,
40:33–37, December 2007. §2.4

[14] M. Ben-Yehuda, M. Factor, E. Rom, A. Traeger, E. Borovik, and B. Yassour. Adding ad-
vanced storage controller functionality via low-overhead virtualization. In Proceedings of
the Tenth USENIX Conference on File and Storage Technologies (FAST ’12), San Jose, CA,
February 2012. USENIX Association. §5.6

[15] J. M. Bennett, M. A. Bauer, and D. Kinchlea. Characteristics of files in NFS environments.
ACM SIGSMALL/PC Notes, 18(3-4):18–25, 1992. §4.7

[16] Thomas Bittman. Virtual machines and market share through 2012. Gartner, October 2009.
ID Number: G00170437. §5.1

[17] Thomas Bittman. Q&A: six misconceptions about server virtualization. Gartner, July 2010.
ID Number: G00201551. §5.1

[18] P. Bodik, A. Fox, M. Franklin, M. Jordan, and D. Patterson. Characterizing, modeling,
and generating workload spikes for stateful services. In Proceedings of the First ACM
Symposium on Cloud Computing (SOCC), pages 241–252, 2010. §2.8, §3.6

[19] R. E. Bohn and J. E. Short. How much information? 2009 report on ameri-
can consumers. http://hmi.ucsd.edu/pdf/HMI_2009_ConsumerReport_
Dec9_2009.pdf, December 2009. §4.1

[20] D. Boutcher and A. Chandra. Does virtualization make disk scheduling passé? In Proceed-
ings of the 1st USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
’09), October 2009. §5.6

[21] T. Bray. The Bonnie home page. www.textuality.com/bonnie, 1996. §2.2

[22] Alan D. Brunelle. Blktrace user guide, February 2007. §2.7

[23] M. Burtscher. Tcgen 2.0: a tool to automatically generate lossless trace compressors. ACM
SIGARCH Computer Architecture News, 34:1–8, 2006. §3.5

[24] D. Capps. IOzone file system benchmark. www.iozone.org. §2.2, §3.1, §3.2, §5.3

75

www.atlantiscomputing.com/
http://hmi.ucsd.edu/pdf/HMI_2009_ConsumerReport_Dec9_2009.pdf
http://hmi.ucsd.edu/pdf/HMI_2009_ConsumerReport_Dec9_2009.pdf
www.textuality.com/bonnie
www.iozone.org

[25] G. Casale, S. Kraft, and D. Krishnamurthy. A model of storage I/O performance interfer-
ence in virtualized systems. In Proceedings of the International Workshop on Data Center
Performance (DCPerf), 2011. §5.6

[26] M. Chamness. Capacity forecasting in a backup storage environment. In Proceedings of
USENIX Large Installation System Administration Conference (LISA), 2011. §4.7

[27] P. M. Chen and D. A. Patterson. A new approach to I/O performance evaluation - self-scaling
I/O benchmarks, predicted I/O performance. In Proceedings of the 1993 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, pages 1–12,
Seattle, WA, May 1993. ACM SIGOPS. §2.3.1

[28] Y. Chen, S. Alspaugh, and R. Katz. Interactive query processing in big data systems: A
cross-industry study of mapreduce workloads. In Proceedings of the 38th International
Conference on Very Large Data Bases (VLDB ’12), Istanbul, Turkey, August 2012. Morgan
Kaufmann. §1

[29] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz. Design implications for enterprise storage
systems via multi-dimensional trace analysis. In Proceedings of the 23rd ACM Symposium
on Operating System Principles (SOSP ’11), Cascais, Portugal, October 2011. ACM Press.
§2.4, §3.6, §5.6

[30] R. Coker. The Bonnie++ home page. www.coker.com.au/bonnie++, 2001. §2.2

[31] EMC Corporation. EMC Centra: content addressed storage systems. Product description
guide, 2004. §4.1

[32] A. Coskun, R. Strong, D. Tullsen, and T. S. Rosing. Evaluating the impact of job scheduling
and power management on processor lifetime for chip multiprocessors. In Proceedings
of the 2009 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, 2009. §3.5

[33] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and P. Shilane. Tradeoffs in Scalable
Data Routing for Deduplication Clusters. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), San Jose, CA, February 2011. USENIX Association.
§4.1, §4.4

[34] J. Douceur and W. Bolosky. A large-scale study of file-system contents. In Proceedings
of the 1999 International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS 1999). ACM, 1999. §4.7

[35] A. B. Downey. The structural cause of file size distributions. In Proceedings of IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer Telecommu-
nications Systems (MASCOTS), 2001. §4.7

[36] M. Ebling and M. Satyanarayanan. SynRGen: An extensible file reference generator. In
Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, Nashville, TN, May 1994. ACM. §2.8, §3.2

76

www.coker.com.au/bonnie++

[37] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Everything you always wanted to know
about NFS trace analysis, but were afraid to ask. Technical Report TR-06-02, Harvard
University, Cambridge, MA, June 2002. §5.6

[38] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS tracing of email and research
workloads. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), San Francisco, CA, March 2003. USENIX Association. §3.2

[39] Filebench. http://filebench.sf.net. §2.1, §2.2, §2.3, §3.1, §3.2, §4.3.2, §4.3.3,
§4.7, §5.4.2

[40] fio—flexible I/O tester. http://freshmeat.net/projects/fio/. §2.2

[41] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson. Statistics-driven workload model-
ing for the cloud. In Proceedings of the International Workshop on Information and Software
as Services (WISS), 2010. §3.6

[42] G. Ganger. Generating representative synthetic workloads: an unsolved problem. In Pro-
ceedings of Computer Measurement Group Conference (CMG), 1995. §3.6

[43] G. R. Ganger and M. F. Kaashoek. Embedded inodes and explicit grouping: exploiting disk
bandwidth for small files. In Proceedings of the Annual USENIX Technical Conference,
Anaheim, CA, January 1997. USENIX Association. §5.3

[44] John Gantz and David Reinsel. Extracting value from chaos. IDC 1142, June 2011. §1

[45] GNU. GSL - GNU Scientific Library, 2013. http://www.gnu.org/software/
gsl/. §3.3.3

[46] M. Gomez and V. Santonja. A new approach in the modeling and generation of synthetic
workloads. In Proceedings of the 8th Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2000. §3.6

[47] S. Gribble, G. Manku, D. Roselli, E. Brewer, T. Gibson, and E. Miller. Self-similarity in
File Systems. In Proceedings of ACM SIGMetrics/Performance, 1998. §3.1, §3.5

[48] Advanced Storage Products Group. Identifying the hidden risk of data deduplication: how
the HYDRAstor solution proactively solves the problem. Technical Report WP103-3 0709,
NEC Corporation of America, 2009. §4.1

[49] A. Gulati, C. Kumar, and I. Ahmad. Storage workload characterization and consolidation in
virtualized environments. In Proceedings of 2nd International Workshop on Virtualization
Performance: Analysis, Characterization, and Tools (VPACT), 2009. §5.6

[50] A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman. Demand based hierarchical QoS
using storage resource pools. In Proceedings of the Annual USENIX Technical Conference,
Boston, MA, June 2012. USENIX Association. §5.2.2

77

http://filebench.sf.net
http://freshmeat.net/projects/fio/
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

[51] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. A file
is not a file: understanding the I/O behavior of Apple desktop applications. In Proceedings
of the 23rd ACM Symposium on Operating System Principles (SOSP ’11), Cascais, Portugal,
October 2011. ACM Press. §2.6, §5.1

[52] D. Hildebrand, A. Povzner, R. Tewari, and V. Tarasov. Revisiting the storage stack in vir-
tualized NAS environments. In Proceedings of the Workshop on I/O Virtualization (WIOV),
2011. §5.3, §5.6

[53] E. Hille and R. Phillips. Functional analysis and semi-groups. AMS Colloquium Publica-
tions, 31:300–327, 1957. §3.3.3

[54] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS file server appliance. In
Proceedings of the USENIX Winter Technical Conference, pages 235–245, San Francisco,
CA, January 1994. USENIX Association. §5.2.2

[55] B. Hong and T. Madhyastha. The relevance of long-range dependence in disk traffic and
implications for trace synthesis. In Proceedings of the 22nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST), 2005. §3.6

[56] B. Hong, T. Madhyastha, and B. Zhang. Cluster-based input/output trace analysis. In Pro-
ceedings of 24th IEEE International Performance, Computing, and Communications Con-
ference (IPCCC), 2005. §3.6

[57] J. H. Howard. An Overview of the Andrew File System. In Proceedings of the Winter
USENIX Technical Conference, February 1988. §2.2

[58] IBM. IBM scale out metwork attached storage. www.ibm.com/systems/storage/
network/sonas/. §3.5

[59] IBM. General Parallel File System problem determination guide. Technical Report
GA22-7969-02, IBM, December 2004. http://pic.dhe.ibm.com/infocenter/
db2luw/v9r8/index.jsp?topic=%2Fcom.ibm.db2.luw.sd.doc%2Fdoc%
2Ft0056934.html. §5.4.3

[60] Intel Corporation. Intel virtualization technology (Intel VT), 2008. www.intel.com/
technology/virtualization/. §5.4.2

[61] Iometer. http://iometer.sourceforge.net, August 2003. §2.2

[62] N. Jain, M. Dahlin, and R. Tewari. TAPER: tiered approach for eliminating redundancy
in replica synchronization. In Proceedings of the USENIX Conference on File and Stor-
age Technologies (FAST), pages 281–294, San Francisco, CA, December 2005. USENIX
Association. §4.1

[63] Microsoft Exchange Server JetStress 2010. www.microsoft.com/en-us/
download/details.aspx?id=4167. §5.4.2

78

www.ibm.com/systems/storage/network/sonas/
www.ibm.com/systems/storage/network/sonas/
http://pic.dhe.ibm.com/infocenter/db2luw/v9r8/index.jsp?topic=%2Fcom.ibm.db2.luw.sd.doc%2Fdoc%2Ft0056934.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r8/index.jsp?topic=%2Fcom.ibm.db2.luw.sd.doc%2Fdoc%2Ft0056934.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r8/index.jsp?topic=%2Fcom.ibm.db2.luw.sd.doc%2Fdoc%2Ft0056934.html
www.intel.com/technology/virtualization/
www.intel.com/technology/virtualization/
http://iometer.sourceforge.net
www.microsoft.com/en-us/download/details.aspx?id=4167
www.microsoft.com/en-us/download/details.aspx?id=4167

[64] Understanding database and log performance factors. http://technet.microsoft.
com/en-us/library/ee832791.aspx. §5.4

[65] K. Jin and E. Miller. The effectiveness of deduplication on virtual machine disk images. In
Proceedings of the Second ACM Israeli Experimental Systems Conference (SYSTOR ’09),
Haifa, Israel, May 2009. ACM. §4.1, §4.7

[66] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok. Operating System Profiling via
Latency Analysis. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 2006), pages 89–102, Seattle, WA, November 2006. ACM SIGOPS.
§2.3.2

[67] N. Joukov, T. Wong, and E. Zadok. Accurate and efficient replaying of file system traces.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST), pages
337–350, San Francisco, CA, December 2005. USENIX Association. §2.6, §2.8, §3.1, §3.6

[68] J. Katcher. PostMark: a new filesystem benchmark. Technical Report TR3022, Network
Appliance, 1997. www.netapp.com/tech_library/3022.html. §2.2, §2.4, §2.7

[69] S. Kavalanekar, D. Narayanan, S. Sankar, E. Thereska, K. Vaid, and B. Worthington. Mea-
suring database performance in online services: a trace-based approach. In Proceedings
of TPC Technology Conference on Performance Evaluation and Benchmarking (TPC TC),
2009. §3.1

[70] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda. Characterization of storage
workload traces from production windows servers. In Proceedings of IEEE International
Symposium on Workload Characterization (IISWC), 2008. §2.8, §3.5, §3.6, §5.6

[71] T. Kimbrel, A. Tomkins, R. Patterson, B. Bershad, P. Cao, E. Felten, G. Gibson, A. Karlin,
and K. Li. A trace-driven comparison of algorithms for parallel prefetching and caching. In
Proceedings of the Second Symposium on Operating Systems Design and Implementation
(OSDI 1996), pages 19–34, Seattle, WA, October 1996. §3.1, §3.6

[72] A. Konwinski, J. Bent, J. Nunez, and M. Quist. Towards an I/O tracing framework taxon-
omy. In In Proceedings of the International Workshop on Petascale Data Storage (PDSW),
2007. §2.8, §3.6

[73] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energy and Performance Evaluation of
Lossless File Data Compression on Server Systems. In Proceedings of the Second ACM
Israeli Experimental Systems Conference (SYSTOR ’09), Haifa, Israel, May 2009. ACM.
§4.5.1

[74] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick. Performance models of
storage contention in cloud environments. Software and Systems Modeling, 12(2), March
2012. §5.6

[75] T. M. Kroeger and D. D. E. Long. Design and implementation of a predictive file prefetching
algorithm. In Proceedings of the Annual USENIX Technical Conference (ATC), pages 105–
118, Boston, MA, June 2001. USENIX Association. §2.1

79

http://technet.microsoft.com/en-us/library/ee832791.aspx
http://technet.microsoft.com/en-us/library/ee832791.aspx
www.netapp.com/tech_library/3022.html

[76] G. Kuenning. Mersenne Twist Pseudorandom Number Generator Package, 2010. http:
//lasr.cs.ucla.edu/geoff/mtwist.html. §3.3.2

[77] G. H. Kuenning, G. J. Popek, and P. Reiher. An analysis of trace data for predictive file
caching in mobile computing. In Proceedings of the Summer 1994 USENIX Conference,
pages 291–303, June 1994. §2.8, §3.1, §3.6, §4.7, §5.6

[78] Z. Kurmas. Generating and Analyzing Synthetic Workloads using Iterative Distillation. PhD
thesis, Georgia Institute of Technology, 2004. §3.2

[79] Z. Kurmas, K. Keeton, and K. Mackenzie. Synthesizing representative I/O workloads using
iterative distillation. In Proceedings of IEEE/ACM International Symposium on Model-
ing, Analysis and Simulation of Computer Telecommunications Systems (MASCOTS), 2003.
§2.8, §3.6

[80] Z. Kurmas, J. Zito, L. Trevino, and R. Lush. Generating a jump distance based synthetic
disk access pattern. In Proceedings of the International IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2006. §5.5.1

[81] D. Le, H. Huang, and H. Wang. Understanding performance implications of nested file sys-
tems in a virtualized environment. In Proceedings of the Tenth USENIX Conference on File
and Storage Technologies (FAST ’12), San Jose, CA, February 2012. USENIX Association.
§5.6

[82] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. Measurement and analysis of
large-scale network file system workloads. In Proceedings of the USENIX Annual Technical
Conference (ATC ’08), pages 213–226, Berkeley, CA, 2008. USENIX Association. §4.7,
§5.3

[83] T. Li and L. K. John. Run-time modeling and estimation of operating system power con-
sumption. In Proceedings of the 2003 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 160–171, 2003. §3.5

[84] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner: Mining block correlations in stor-
age systems. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), pages 173–186, San Francisco, CA, March/April 2004. USENIX Association. §3.2

[85] A. Liguori and E. Hensbergen. Experiences with content addressable storage and virtual
disks. In Proceedings of the Workshop on I/O Virtualization (WIOV ’08), 2008. §4.7

[86] LLNL. LLNL IOR: I/O Performance Benchmark. https://asc.llnl.gov/
sequoia/benchmarks/#ior. §2.2

[87] Wei Lu, Jared Jackson, and Roger Barga. Azureblast: a case study of developing science ap-
plications on the cloud. In Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC ’10, pages 413–420, New York, NY, USA,
2010. ACM. §2.2

80

http://lasr.cs.ucla.edu/geoff/mtwist.html
http://lasr.cs.ucla.edu/geoff/mtwist.html
https://asc.llnl.gov/sequoia/benchmarks/#ior
https://asc.llnl.gov/sequoia/benchmarks/#ior

[88] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal
of the Society for Industrial and Applied Mathematics, pages 431–441, 1963. §3.3.3

[89] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer
Simulation (TOMACS), pages 3–30, 1998. §3.3.2

[90] D. Meister and A. Brinkmann. Multi-level comparison of data deduplication in a backup
scenario. In Proceedings of the Second ACM Israeli Experimental Systems Conference
(SYSTOR ’09), Haifa, Israel, May 2009. ACM. §4.7

[91] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez, J. Hendricks, G. R. Ganger, and
D. O’Hallaron. //TRACE: parallel trace replay with approximate causal events. In Proceed-
ings of the Fifth USENIX Conference on File and Storage Technologies (FAST ’07), pages
153–167, San Jose, CA, February 2007. USENIX Association. §2.8, §3.6

[92] D. Meyer and W. Bolosky. A study of practical deduplication. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), pages 1–1, San Jose, CA, February
2011. USENIX Association. §4.1, §4.1, §4.7, §5.3, §5.3

[93] Changwoo Mina, Kangnyeon Kimb, Hyunjin Choc, Sang-Won Leed, and Young Ik Eome.
SFS: Random Write Considered Harmful in Solid State Drives. In Proceedings of the Tenth
USENIX Conference on File and Storage Technologies (FAST ’12), San Jose, CA, February
2012. USENIX Association. §1

[94] M. Mitzenmacher. Dynamic models for file sizes and double Pareto distributions. Internet
Mathematics, 1, January 2002. §4.7

[95] J. Mogul. Brittle metrics in operating systems research. In Proceedings of the IEEE Work-
shop on Hot Topics in Operating Systems (HOTOS), pages 90–95, Rio Rica, AZ, March
1999. ACM. §2.8

[96] R. Moore. A universal dynamic trace for Linux and other operating systems. In Proceedings
of the 2001 USENIX Annual Technical Conference (ATC), June 2001. §3.6

[97] Omar Al-Ubaydli Neal S. Young, John P. A. Ionnadis. Why current publication prac-
tices may distort science. PLoS Med, 5, October 2008. www.plosmedicine.org/
article/info:doi/10.1371/journal.pmed.0050201. §2.1

[98] NetApp. NetApp deduplication for FAS. Deployment and implementation, 4th revision.
Technical Report TR-3505, NetApp, 2008. §4.1

[99] OpenStack Foundation. www.openstack.org/. §5.2.1

[100] OSDL. Iometer project. www.iometer.org. §2.2, §3.1, §3.2

[101] J. Ousterhout, H. Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson. A trace-driven
analysis of the UNIX 4.2 BSD file system. In Proceedings of the Tenth ACM Symposium
on Operating System Principles (SOSP), pages 15–24, Orcas Island, WA, December 1985.
ACM. §2.8, §3.1, §3.6, §4.7, §5.6

81

www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0050201
www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0050201
www.openstack.org/
www.iometer.org

[102] Y. Pan, G. Dong, and T. Zhang. Exploiting Memory Device Wear-Out Dynamics to Improve
NAND Flash Memory System Performance. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), 2011. §3.5

[103] N. Park and D. Lilja. Characterizing datasets for data deduplication in backup applica-
tions. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC), 2010. §4.1, §4.7

[104] N. Park, W. Xiao, K. Choi, and D. J. Lilja. A statistical evaluation of the impact of param-
eter selection on storage system benchmark. In Proceedings of the 7th IEEE International
Workshop on Storage Network Architecture and Parallel I/Os (SNAPI), 2011. §6.1

[105] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort: A Balanced Energy-
Efficiency Benchmark. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), Beijing, China, June 2007. §2.2

[106] D. Roselli, J. R. Lorch, and T. E. Anderson. A comparison of file system workloads. In
Proceedings of the Annual USENIX Technical Conference, pages 41–54, San Diego, CA,
June 2000. USENIX Association. §4.7, §5.3

[107] J. Santos and S. Rao. http://sourceforge.net/projects/ffsb/. §2.2

[108] M. Satyanarayanan. A study of file sizes and functional lifetimes. In Proceedings of the 8th
ACM Symposium on Operating System Principles (SOSP ’81), pages 15–24. ACM Press,
1981. §4.7

[109] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters.
In Proceedings of the First USENIX Conference on File and Storage Technologies (FAST
’02), pages 231–244, Monterey, CA, January 2002. USENIX Association. §3.5, §5.4.1

[110] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating Ferformance and Energy in File System
Server Workloads. In Proceedings of the USENIX Conference on File and Storage Tech-
nologies (FAST), pages 253–266, San Jose, CA, February 2010. USENIX Association. §3.5

[111] Simplivity. www.simplivity.com/. §5.2.1

[112] K. A. Smith and M. I. Seltzer. File system aging—increasing the relevance of file system
benchmarks. In Proceedings of the 1997 International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 1997), pages 203–213. ACM, 1997. §4.7,
§5.3

[113] SNIA. SNIA - storage networking industry association: IOTTA repository, 2007. http:
//iotta.snia.org. §2.6

[114] Storage Networking Industry Association (SNIA). Block I/O trace common
semantics (working draft). www.snia.org/sites/default/files/
BlockIOSemantics-v1.0r11.pdf, February 2010. §3.4

[115] SPEC. SPEC SFS97 (2.0) benchmark. www.spec.org/osg/sfs97, June 2001. §2.2

82

http://sourceforge.net/projects/ffsb/
www.simplivity.com/
http://iotta.snia.org
http://iotta.snia.org
www.snia.org/sites/default/files/BlockIOSemantics-v1.0r11.pdf
www.snia.org/sites/default/files/BlockIOSemantics-v1.0r11.pdf
www.spec.org/osg/sfs97

[116] SPEC. SPECsfs2008. www.spec.org/sfs2008, July 2008. §5.1, §5.4.2

[117] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing I/O devices on VMware work-
stations hosted virtual machine monitor. In Proceedings of the Annual USENIX Technical
Conference (ATC), Boston, MA, June 2001. USENIX Association. §5.2.1

[118] Rukma Talwadker and Kaladhar Voruganti. Paragone: Whats next in block I/O trace mod-
eling. In Proceedings of the International IEEE Symposium on Mass Storage Systems and
Technologies (MSST), Incline Village, Nevada, May 2010. IEEE. §6.1

[119] D. Tang and M. Seltzer. Lies, damned lies, and file system benchmarks. Technical Report
TR-34-94, Harvard University, December 1994. In VINO: The 1994 Fall Harvest. §2.1,
§2.8

[120] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer. Benchmarking File System Benchmark-
ing: It *IS* Rocket Science. In Proceedings of HotOS XIII:The 13th USENIX Workshop on
Hot Topics in Operating Systems, Napa, CA, May 2011. §2.8

[121] V. Tarasov, K. S. Kumar, J. Ma, D. Hildebrand, A. Povzner, G. Kuenning, and E. Zadok.
Extracting flexible, replayable models from large block traces. In Proceedings of the Tenth
USENIX Conference on File and Storage Technologies (FAST ’12), San Jose, CA, February
2012. USENIX Association. §2.8, §5.6

[122] Tintri. www.tintri.com/. §5.2.1

[123] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A Nine Year Study of File System and
Storage Benchmarking. ACM Transactions on Storage (TOS), 4(2):25–80, May 2008. §2.1,
§2.8, §3.5

[124] Lloyd N. Trefethen. Approximation Theory and Approximation Practice. Society for Indus-
trial and Applied Mathematics, 2012. §3.3, §3.3.3

[125] A. Tridgell. dbench-3.03 README. http://samba.org/ftp/tridge/dbench/
README, 1999. §2.2

[126] UMass trace repository. http://traces.cs.umass.edu. §3.5

[127] VMware vCloud. http://vcloud.vmware.com/. §5.2.1

[128] Richard Villars and Noemi Greyzdorf. Worldwide file-based storage 2010–2014 forecast
update. IDC, December 2010. IDC #226267. §5.1, §5.2.2

[129] VirtualBox. https://www.virtualbox.org/. §5.2.1

[130] VMMark. www.vmware.com/go/vmmark. §5.4.2

[131] VMware, Inc. VMware Virtual Machine File System: Technical Overview and Best Prac-
tices, 2007. www.vmware.com/pdf/vmfs-best-practices-wp.pdf. §5.2.1

83

www.spec.org/sfs2008
www.tintri.com/
http://samba.org/ftp/tridge/dbench/README
http://samba.org/ftp/tridge/dbench/README
http://traces.cs.umass.edu
http://vcloud.vmware.com/
https://www.virtualbox.org/
www.vmware.com/go/vmmark
www.vmware.com/pdf/vmfs-best-practices-wp.pdf

[132] W. Vogels. File system usage in Windows NT 4.0. In Proceedings of the 17th ACM Sym-
posium on Operating Systems Principles, pages 93–109, Charleston, SC, December 1999.
ACM. §4.7

[133] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness, and W. Hsu. Char-
acteristics of backup workloads in production systems. In Proceedings of the Tenth USENIX
Conference on File and Storage Technologies (FAST ’12), San Jose, CA, February 2012.
USENIX Association. §4.7

[134] M. Wang, A. Ailamaki, and C. Faloutsos. Capturing the spatio-temporal behavior of real
traffic data. In Proceedings of Performance, 2002. §3.6

[135] M. Wang, T. Madhyastha, N. Chan, and S. Papadimitriou. Data mining meets performance
evaluation: fast algorithms for modeling burst traffic. In Proceedings of 16th International
Conference on Data Engineering (ICDE), 2002. §3.6

[136] Watts up? PRO ES Power Meter. www.wattsupmeters.com/secure/products.
php. §3.5

[137] A. W. Wilson. Operation and implementation of random variables in Filebench. §5.4.3

[138] Filebench Workload Model Language (WML). http://sourceforge.net/
apps/mediawiki/filebench/index.php?title=Filebench_Workload_
Language. §5.5.1

[139] Pak Chung Wong and Daniel Bergeron. 30 years of multidimensional multivariate visual-
ization. Scientific Visualization, Overviews, Methodologies, and Techniques. Washington,
DC, USA: IEEE Computer Society, pages 3–33, 1997. §6.1

[140] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao. WorkOut: I/O workload outsourcing
for boosting RAID reconstruction performance. In Proceedings of the Seventh USENIX
Conference on File and Storage Technologies (FAST ’09), pages 239–252, San Francisco,
CA, February 2009. USENIX Association. §3.5

[141] W. Xia, H. Jiang, D. Feng, and Y. Hua. SiLo: A similarity-locality based near-exact dedupli-
cation scheme with low RAM overhead and high throughput. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2011. §4.1

[142] N. Yadwadkar, C. Bhattacharyya, and K. Gopinath. Discovery of application workloads
from network file traces. In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), pages 1–14, San Jose, CA, February 2010. USENIX Association.
§2.8, §3.6, §5.6

[143] Natalya Yezhkova, Liz Conner, Richard L. Villars, and Benjamin Woo. Worldwide enter-
prise storage systems 2010–2014 forecast: recovery, efficiency, and digitization shaping
customer requirements for storage systems. IDC, May 2010. IDC #223234. §5.1, §5.2.2

[144] Y. Yu, D. Shin, H. Eom, and H. Yeom. NCQ vs I/O scheduler: preventing unexpected
misbehaviors. ACM Transaction on Storage, 6(1), March 2010. §5.2.2

84

www.wattsupmeters.com/secure/products.php
www.wattsupmeters.com/secure/products.php
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench_Workload_Language
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench_Workload_Language
http://sourceforge.net/apps/mediawiki/filebench/index.php?title=Filebench_Workload_Language

[145] Erez Zadok and Geoff Kuenning. Benchmarking and Tracing: New Horizons. https:
//www.usenix.org/legacy/events/fast11/bofs.html#zadok, February
2011. §2.8

[146] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Y. Zhang, and S. Nagar. Synthesizing
representative I/O workloads for TPC-H. In Proceedings of International Sypmposium on
High Performance Computer Architecture (HPCA), 2004. §3.6

[147] Z. Zhang and K. Ghose. yFS: A journaling file system design for handling large data sets
with reduced seeking. In Proceedings of the USENIX Conference on File and Storage Tech-
nologies (FAST), pages 59–72, San Francisco, CA, March 2003. USENIX Association. §2.1

[148] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the Data Domain Dedu-
plication File System. In Proceedings of the Sixth USENIX Conference on File and Storage
Technologies (FAST ’08), San Jose, California, USA, 2008. §4.5.1

[149] N. Zhu, J. Chen, and T. Chiueh. TBBT: scalable and accurate trace replay for file server
evaluation. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), pages 323–336, San Francisco, CA, December 2005. USENIX Association. §2.5,
§2.6, §2.6, §2.8, §3.6

[150] N. Zhu, J. Chen, T. Chiueh, and D. Ellard. An NFS trace player for file system evaluation.
Technical Report TR-14-03, Harvard University, December 2003. §3.6

85

https://www.usenix.org/legacy/events/fast11/bofs.html#zadok
https://www.usenix.org/legacy/events/fast11/bofs.html#zadok

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Complexities in Evaluating Storage Systems
	Performance of Deduplication Systems
	Virtualized Workloads

	Complexities of Evaluating Storage Systems
	Current State of File System Performance Benchmarking
	File System Dimensions
	A Case Study
	Throughput
	Latency

	Trace replay
	Approaches to Trace Replay
	Trace Replay Problems
	Experimental Verification
	Related Work
	Conclusions

	Trace to Workload Model Conversion
	Introduction
	Design
	Mathematical Approximations
	Filebench Custom Variables
	Mersenne Twister Pseudo Random Number Generator
	Approximation Algorithm

	Implementation
	Evaluation
	Approximation

	Related Work
	Conclusions

	Realistic Dataset Generation
	Introduction
	Previous Datasets
	Emulation Framework
	Generation Methods
	Fstree Objects
	Fstree Action Modules
	Usage Example

	Datasets Analyzed
	Module Implementations
	Space Characteristics
	Markov & Distribution (M&D) Model

	Evaluation
	Related Work
	Conclusions

	NAS Workloads in Virtualized Setups
	Introduction
	Background
	Data Access Options for VMs
	VM-NAS I/O Stack
	VM-NAS Benchmarking Setup

	NAS Workload Changes
	VM-NAS Workload Characterization
	Experimental Configuration
	Application-Level Benchmarks
	Characterization

	New NAS Benchmarks
	Trace-to-Model Conversion
	Evaluation

	Related Work
	Conclusions

	Conclusion
	Future Work

	Bibliography

