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Control Policies

by
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Doctor of Philosophy
in

Computer Science
Stony Brook University

2014

Advanced models of access control, such as role-based access control (RBAC) and attribute-
based access control (ABAC), offer important advantages over lower-level access control
policy representations, such as access control lists (ACLs). However, the effort required for
a large organization to migrate from ACLs to RBAC or ABAC can be a major obstacle to
adoption of RBAC or ABAC. Policy mining algorithms partially automate the construction
of advanced access control policies from ACL policies and possibly other information, such
as user and resource attributes. These algorithms can greatly reduce the cost of migration
to RBAC or ABAC. This dissertation presents several new policy mining algorithms.

First, this dissertation considers mining of role-based policies from ACL policies and
possibly other information. The dissertation presents new and flexible algorithms for this
problem. The algorithms can easily be used to optimize a variety of RBAC policy quality
metrics, including metrics based on policy size, metrics based on interpretability of the
roles with respect to user attribute data, and compound metrics that consider size and
interpretability. In experiments with publicly available access control policies, one of our
algorithms achieves significantly better results than previous work.

Next, this dissertation considers mining of parameterized role-based policies. Parame-
terization significantly enhances the scalability of RBAC, by allowing more concise policies.
This dissertation defines a parameterized RBAC (PRBAC) framework, in which users and
permissions have attributes that are implicit parameters of roles and can be used in role defi-
nitions. Algorithms are presented for mining PRBAC policies from ACLs and attribute data.
To the best of our knowledge, this is the first PRBAC policy mining algorithm. Evaluation
on three small but non-trivial case studies demonstrates the effectiveness of our algorithm.

Finally, this dissertation considers mining of attribute-based policies. ABAC allows poli-
cies to be written in a concise, flexible, and high-level way. Three versions of the ABAC
policy mining problem are considered, differing in the input: (1) mining ABAC policies
from ACLs and attribute data, (2) mining ABAC policies from RBAC policies and attribute
data, and (3) mining ABAC policies from operation logs and attribute data. Algorithms
are presented for all three versions of the problem. Extensions of the algorithms to identify
suspected noise in the input data are also described. To the best of our knowledge, these
are the first ABAC policy mining algorithms. Evaluations on sample policies and synthetic
policies demonstrate the effectiveness of our algorithms.
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Chapter 1

Introduction

1.1 Motivation

Access control addresses the challenges of protecting resources and data maintained by a
computer system against unauthorized accesses while ensuring their availability for autho-
rized accesses. A variety of access control models have been proposed in the literature
and applied to numerous application domains. Advanced models of access control, such as
role-based access control (RBAC), parameterized role-based access control (PRBAC), and
attribute-based access control (ABAC), offer important advantages, such as smaller policy
size and higher interpretability, over lower-level access control policy representations, such
as the widely used access control lists (ACLs).

However, the effort required for a large organization to migrate from ACLs to an advanced
access control model can be a major obstacle to adoption of an advanced access control
model. Policy mining algorithms partially automate the construction of advanced access
control policies from existing information, such as ACL policies, access logs, and user and
resource attributes. These algorithms can greatly reduce the cost of migration.

There are many interesting and practical problems in the research area of access control
policy mining. An access control policy mining problem can be characterized mainly using
four dimensions: the target policy language, the source of the user-permission data, the
availability of attribute information, and the presence of noise. We briefly discuss each of
these dimensions in turn.

The most popular target policy language in access control policy mining is RBAC. Mining
RBAC policies is also called “role mining.” PRBAC and ABAC are also attractive target
policy languages, because they are usually more concise and high-level than ACLs and RBAC.

The most commonly considered source of user-permission data is ACLs. When the target
language is ABAC, another potential source of user-permission data is an existing RBAC
policy. In some cases, user-permission data is not available as a declarative policy, for
example, if the policy is encoded in a program. In such cases, user-permission data may be
available from operation logs, also called “traces”, which record the history of users exercising
permissions. Algorithms to mine policies from logs must take into account that logs generally
provide incomplete information about permissions. An advantage of mining policies from
operation logs is that logs reflect the usage of entitlements, i.e. the frequencies of users

1



exercising permissions. This information can help guide policy mining. For example, users
with the same entitlements but different usage can be placed in different roles. A specific
example of this is that users who infrequently function as backup administrators, when the
primary administrators are unavailable, can be placed in a different role than the primary
administrators [MPC12a].

Attribute information usually consists of user attribute information (such as job title, de-
partment, and areas of expertise) and resource attribute information (such as location, owner,
and security level). Attribute information can be used to determine the interpretability of
RBAC policies and is essential for mining Parameterized RBAC policies and ABAC policies.

Another dimension is whether the given data is clean (i.e., accurate) or noisy (i.e., con-
tains errors). Noisy data is common in practice. For example, if a user changed job positions,
but the security administrator forgot to revoke the user’s permissions corresponding to his
old job position, then those permissions are considered to be noise. This dimension has less
impact on the design of policy mining algorithms than the other dimensions, but it is still
important.

Among these dimensions, the first dimension—target policy language—has, in our ex-
perience, the greatest impact on the design of the policy mining algorithm. Therefore, we
categorize policy mining problems based on the target policy language, and within each
category, we discuss variants of the problem based on the other dimensions.

RBAC Policy Mining In this category, we consider policy mining problems where the
target policy language is RBAC. In RBAC, permissions are assigned to roles instead of
directly assigned to users. Users acquire permissions through role membership. Therefore,
the management of user privileges is simplified primarily to the assignment of appropriate
roles to users. This is significantly easier than assigning permissions to users, especially when
adding a user to an organization or changing a user’s position within an organization. RBAC
dramatically decreases policy administration effort, by reducing the number of relationships
that need to be maintained. Suppose there are n users and m permissions. With direct
user-permission assignment (e.g., ACLs), O(n ∗m) relationships need to be maintained. If
the same user-permission assignment is expressed as an RBAC policy with k roles, then
O(k ∗ n+ k ∗m) relations need to be maintained. In a typical RBAC policy, the number of
roles is much smaller than the number of users or permissions, which implies O(k ∗n+k ∗m)
is much smaller than O(n ∗m).

Several versions of the RBAC policy mining problem have been proposed. In the most
studied version, user-permission data is available from ACLs, and attribute information is
unavailable. The problem usually involves finding an RBAC policy that is consistent with
(i.e., grants the same permissions as) given ACLs and minimizes some measure of policy size.
The policy size metric might be the number of roles, the number of edges (i.e., the sum of the
number of tuples in the user-role assignment and the permission-role assignment), or more
generally a linear combination of the sizes of the components of the RBAC policy. When
user and resource attribute data are unavailable to guide policy mining, minimizing policy
size is a reasonable criterion for finding good descriptive roles, because a major advantage
of RBAC is reduced management effort, and a small RBAC policy is easier to manage than
a large one.
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However, the resulting roles might be difficult for administrators to understand in or-
ganizational terms. In other words, the roles might have low interpretability, also called
“semantic meaning”. Interpretability is crucial, because typically, a role produced by a role
mining algorithm will be adopted by security administrators only if they can identify a rea-
sonable interpretation of the role, in which case the role is said to be “meaningful”. Indeed,
researchers at HP Labs wrote that “the biggest barrier we have encountered to getting the
results of role mining to be used in practice” is that “customers are unwilling to deploy roles
that they can’t understand.” [EHM+08].

Interpretability is addressed in another important version of the problem, in which user
attribute data is available, in addition to ACLs, and the goal is to find an RBAC policy that
is consistent with the ACLs, has small size, and has high interpretability with respect to the
attribute data. Informally, a role has high interpretability (i.e., is meaningful) if the role’s
membership (i.e., the set of users in the role) can be characterized accurately by an expression
involving user attributes. Similarly, if permissions have attributes, interpretability of the set
of permissions granted to each role can also be used to help identify meaningful roles.

Parameterized RBAC Policy Mining In this category, we consider policy mining prob-
lems where the target policy language is a form of Parameterized RBAC (PRBAC). Allowing
roles to have parameters significantly enhances the scalability of RBAC, by allowing much
more concise policies. For example, consider a policy for a university. To grant different per-
missions to users (e.g., faculty or students) in different classes or departments, in an RBAC
model without parameters, a separate role and corresponding permission assignments needs
to be created for each course or department, leading to a large and unwieldy policy. In
a parameterized RBAC model, this policy can be expressed using a few policy statements
parameterized by the class identifier or department name.

To the best of our knowledge, we are the first to study PRBAC policy mining. We
consider mining PRBAC policies from ACLs when user and resource attribute information
are available. The availability of user and resource attribute information is essential, because
user and resource attributes are used to parameterize roles. Similar as for RBAC policy
mining, the problem is to find a PRBAC policy that is consistent with given ACLs and has
small size. In our formulation of the problem, only parameterized roles whose members and
permissions can be characterized using attributes are considered, so explicit maximization
of interpretability is unnecessary.

ABAC Policy Mining In this category, we consider mining of ABAC policies. ABAC
allows policies to be written in a concise, flexible, high-level way. Compared to ACLs, RBAC,
and PRBAC, ABAC can reduce management effort and management errors by reducing the
number of relationships that need to be maintained. For example, consider the policy “A
user working on a project can read and request to work on a non-proprietary task whose
required areas of expertise are among his/her areas of expertise.” In ABAC, this policy
can be expressed with a single rule, regardless of the number of users, projects, and tasks.
With ACLs, a separate entry is needed for each combination of a user and a task for which
the user has permissions. In RBAC, this policy requires creation of a role for each task,
creation of user-role and permission-role assignments for each of those roles, and updates
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to those assignments when relevant attribute values change (e.g., a user gains an area of
expertise). In PRBAC, a separate role is still needed for each task, because use of attributes
as role parameters allows only equalities between user attributes and resource attributes to
be expressed; it does not allow set relationships, such as the subset relationship used in this
example, to be expressed. The ACL, RBAC, and PRBAC policies are significantly larger,
require significantly more management effort, and are more prone to management errors
than the ABAC policy.

Several ABAC frameworks have been proposed, varying in administrative model, flexi-
bility, and expressiveness. However, to be best of our knowledge, we are the first to study
ABAC policy mining. We consider three versions of the problem.

We first consider mining ABAC policies from ACLs and attribute data. The ABAC
policy language that we consider contains most of the common ABAC policy language con-
structs and is significantly more complex than policy languages (such as RBAC and PRBAC)
handled in previous work on security policy mining.

Second, we consider mining ABAC policies from RBAC policies and attribute data. In
addition to the usual requirement of minimizing policy size, we require that some aspects of
the structure of the RBAC policy be preserved in the ABAC policy, because the structure
of the RBAC policy may reflect expert design decisions by the policy author.

Third, we consider mining ABAC policies from operation logs and attribute data. The
major challenge for policy mining from operation logs is that logs provide only a lower bound
on the granted privileges, not an exact characterization of them. Therefore, the resulting
policy should be allowed to include overassignments, i.e., user-permission tuples that are not
reflected in the logs, in a reasonable way.

1.2 Research Contributions

This section summarizes our research contributions on each of the above problems.

RBAC Policy Mining In Chapter 2, we developed RBAC policy mining algorithms that
can easily be used to optimize a variety of policy quality metrics, including metrics based on
policy size, metrics based on interpretability of the roles with respect to user attribute data,
and compound metrics that consider size and interpretability.

All of the algorithms begin with a phase that constructs a set of candidate roles. We
consider two strategies for the second phase: start with an empty policy and repeatedly
add candidate roles, or start with the entire set of candidate roles and repeatedly remove
(eliminate) roles. In experiments with publicly available access control policies, we found
that the elimination approach produces better results, and that, for a previously proposed
policy quality metric that reflects size and interpretability, our elimination algorithm achieves
significantly better results than previous work that aims to optimize that metric, even though
our algorithm is not specifically tuned for that metric. We also investigated the effect of
varying the order in which roles are considered for removal in the elimination algorithm.
Due to the lack of publicly available real user attribute data, we developed an algorithm for
generating synthetic user attribute data, and we use it in our experiments.
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PRBAC Policy Mining In Chapter 3, we start our contributions on PRBAC policy
mining with the definition of an expressive PRBAC framework that supports a simple form of
ABAC. In our PRBAC framework, (1) users and permissions have attributes that are implicit
parameters of roles, (2) the set of users assigned to a role is specified by an expression over
user attributes, and (3) the set of permissions granted to a role is specified by an expression
over permission attributes. We make role parameters implicit, rather than explicit, because
it makes the framework and algorithms slightly simpler; our approach can easily be adapted
to handle roles with explicit parameters. Every user and permission has an “id” attribute
containing a unique name, so specifying the users and permissions associated with a role by
enumeration, as in traditional RBAC, is a simple case of (2) and (3), respectively.

We developed two algorithms for mining PRBAC policies from ACLs, user attributes,
and permission attributes. To the best of our knowledge, these are the first policy mining
algorithms for any parameterized RBAC framework. At a high level, both algorithms work
as follows. First, a conventional role mining algorithm is used to generate a set of candidate
roles; attributes and parameterization are not considered in this step. For a policy like the
example policy in Section 1.1, this step would produce a separate role granting appropriate
permissions to the users of each course or department. Second, the algorithm attempts to
form parameterized roles by merging sets of candidate roles from the first step; the resulting
parameterized roles are added to the set of candidate roles. Continuing the example, this
step would form a parameterized role from the set of roles containing the role for each course
or department. Third, the algorithm decides which of the candidate roles generated in the
first two steps to include in the final policy. Similar to our RBAC policy mining approaches,
we consider two strategies for this. The elimination strategy repeatedly removes low-quality
roles from the set of candidate roles, until no more roles can be removed without losing some
of the permissions granted in the given ACL policy. The selection strategy repeatedly selects
the highest-quality candidate role for inclusion in the PRBAC policy, until all permissions
granted in the given ACL policy are granted by the PRBAC policy. For each of these two
algorithms, we first present a simpler version that does not consider role hierarchy, and then
present a version that generates hierarchical policies.

To evaluate whether these algorithms can successfully generate meaningful parameterized
roles, we wrote three small but non-trivial PRBAC policies, generated ACL policies and
attribute data from them, ran our algorithms on the resulting ACL policies and attribute
data, and compared the mined PRBAC policies with the original policies. One of our
algorithms successfully reconstructs the original PRBAC policies for all three case studies.

ABAC Policy Mining In Chapter 4, we start our contributions on ABAC policy mining
with the definition of an expressive ABAC framework. Our ABAC framework is similar
to our PRBAC framework, but supports a richer form of ABAC. Most importantly, our
ABAC framework supports multi-valued (also called “set-valued”) attributes and allows
attributes to be compared using set membership, subset, and equality; in contrast, our
PRBAC framework does not support multi-valued attributes, and it allows attributes to be
compared using only equality. Multi-valued attributes and set relationships are very common
in real policies.

We developed three algorithms for mining ABAC policies, which differ in the source of
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user-permission data: ACLs, RBAC, and operation logs, respectively. To the best of our
knowledge, these are the first policy mining algorithms for any ABAC framework.

Our algorithm for mining ABAC policies from ACLs and attribute data works as follows.
It iterates over tuples in the given user-permission relation, uses selected tuples as seeds for
constructing candidate rules, and attempts to generalize each candidate rule to cover addi-
tional tuples in the user-permission relation by replacing conjuncts in attribute expressions
with constraints. After constructing candidate rules that together cover the entire user-
permission relation, it attempts to improve the policy by merging and simplifying candidate
rules. Finally, it selects the highest-quality candidate rules for inclusion in the generated
policy. It can be used to mine an ABAC policy from an RBAC policy and attribute data, by
expanding the RBAC policy into ACLs and then applying our algorithm. We also developed
an extension of the algorithm to identify suspected noise in the input.

To evaluate the effectiveness of our algorithm, we wrote relatively small but non-trivial
hand-written sample policies, created suitable attribute data for each of them, generated ACL
policies from the ABAC policies and attribute data, ran our algorithm on the resulting ACL
policies and attribute data, and compared the mined ABAC policies with the original policies.
With minor exceptions, our algorithm successfully “discovers” the original ABAC policies for
all case studies. The user can optionally supply some guidance to our algorithm, by indicating
that some attributes are important. In our case studies, appropriate guidance can easily be
determined based on the obvious importance of some attributes, or from examination of the
policy generated with no guidance. A little bit of guidance eliminates the minor exceptions,
leading to exact “discovery” of the original ABAC policies. To evaluate our algorithm on
larger attribute datasets and the effectiveness of our noise detection technique, we generated
synthetic attribute datasets of varying size for three of the case studies and synthetic policies
of varying size and structures.

In Chapter 5, we present our algorithm for mining an ABAC policy from an RBAC policy
and attribute data, which works as follows. First, it splits the roles in the given RBAC policy
so that each role’s assigned permissions are the Cartesian product of a set of resources and a
set of operations. Second, it constructs an ABAC policy rule corresponding to each role (the
splitting in the first step is necessary to ensure that each role can be translated into a single
rule). Finally, it attempts to improve the policy by merging and simplifying rules. Merging
is essential to produce a high-quality ABAC policy, because many roles can be expressed
concisely by a single rule, if relevant attribute data is available. For example, the department
chair roles for many departments can be expressed by a single rule if the relevant users and
resources have an attribute indicating their department. Simplification directly improves
policy quality, and it facilitates merging.

To evaluate the effectiveness of our algorithm at producing intuitive, high-level ABAC
policies from RBAC policies, we manually wrote case study policies in RBAC and ABAC,
applied our algorithm to the RBAC policy and accompanying attribute data, and compared
the generated ABAC policy to the manually written one. Our algorithm successfully gener-
ates ABAC policies identical or similar to the manually written ABAC policies. Similarly,
the user can optionally supply some guidance to our algorithm, by indicating that some
attributes are important. And with a little bit of guidance, our algorithm generates ABAC
policies identical or very similar to the manually written ones. In practice, the available
attribute data is often incomplete. To evaluate the effectiveness of our algorithm in such
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cases, we also performed experiments in which we omitted some relevant attribute data, and
demonstrated that our algorithm uses role membership information effectively as a substi-
tute for missing attribute data. To demonstrate the significance of preserving the structure
of the RBAC policy, we wrote variants of some RBAC policies, with the same semantics
(i.e., same user-permission relation) but different structure (i.e., different roles), and showed
that our algorithm generates a different ABAC policy with corresponding structure for each
variant.

In Chapter 6, we present our algorithm for mining an ABAC policy from logs and at-
tribute data. The main challenge is that logs generally provide incomplete information about
entitlements (i.e., granted permissions). Specifically, logs provide only a lower bound on the
entitlements. Therefore, the generated policy should be allowed to include over-assignments,
i.e., entitlements not reflected in the logs. We present an algorithm for mining ABAC poli-
cies from logs and attribute data. To the best of our knowledge, it is the first algorithm for
this problem. It is based on our algorithm for mining ABAC policies from ACLs. At a high
level, the algorithm works as follows. It iterates over tuples in the user-permission relation
extracted from the log, uses selected tuples as seeds for constructing candidate rules, and
attempts to generalize each candidate rule to cover additional tuples in the user-permission
relation by replacing conjuncts in attribute expressions with constraints. After constructing
candidate rules that together cover the entire user-permission relation, it attempts to improve
the policy by merging and simplifying candidate rules. Finally, it selects the highest-quality
candidate rules for inclusion in the generated policy.

We evaluated our algorithm on some relatively small but non-trivial handwritten case
studies and on synthetic ABAC policies. The results demonstrate our algorithm’s effective-
ness even when the log reflects only a fraction of the entitlements. Although the original
(desired) ABAC policy is not reconstructed perfectly from the log, the mined policy is suffi-
ciently similar to it that the mined policy would be very useful as a starting point for policy
administrators tasked with developing that ABAC policy.
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Chapter 2

Mining Meaningful Roles

In this chapter, we formally define the RBAC policy mining problem and then present several
RBAC policy mining algorithms that can easily be used to optimize a variety of RBAC policy
quality metrics, including metrics based on policy size, metrics based on interpretability of
the roles with respect to user attribute data, and compound metrics that consider size and
interpretability. We then evaluate the algorithms on publicly available access control policies
and synthetic attribute data, and show that our algorithms compare favorably with other
role mining algorithms. Finally, we discuss related work.

2.1 Problem Definition

This section defines the role mining problems that we consider. Our definitions are similar
to those in [MCL+10].

Policies and Policy Quality An ACL policy is a tuple 〈U, P,UP〉, where U is a set of
users, P is a set of permissions, and UP ⊆ U × P is the user-permission assignment.

An RBAC policy is a tuple 〈U, P,R,UA,PA,RH 〉, where R is a set of roles, UA ⊆ U ×R
is the user-role assignment, PA ⊆ R×P is the permission-role assignment, and RH ⊆ R×R
is the role inheritance relation. Specifically, 〈r, r′〉 ∈ RH means that r is senior to r′, hence
all permissions of r′ are also permissions of r, and all members of r are also members of r′.

An RBAC policy with direct assignment is a tuple 〈U, P,R,UA,PA,RH ,DA〉, which is
an RBAC policy extended with a direct user-permission assignment DA ⊆ U ×P . Allowing
direct assignment of permissions to users provides more flexibility to handle anomalous
permissions.

An RBAC policy is consistent with an ACL policy if UA◦PA = UP , where ◦ is composi-
tion of relations. An RBAC policy with direct assignment is consistent with an ACL policy
if (UA ◦ PA) ∪ DA = UP .

User-attribute data is a tuple 〈A, f〉, where A is a set of attributes, and f is a function
such that f(u, a) is the value of attribute a for user u. For simplicity, we assume that all
attribute values are natural numbers.

A policy quality metric is a function from RBAC policies (or RBAC policies with direct
assignment) to a totally-ordered set, such as the natural numbers. The ordering is chosen
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so that small values indicate high quality; this might seem counter-intuitive at first glance,
but it is natural for metrics such as policy size. We define two basic policy quality metrics
and then consider combinations of them.

Weighted Structural Complexity (WSC) is a generalization of policy size [MCL+10]. For
an RBAC policy π of the above form, we define weighted structural complexity by WSC(π) =
w1|R| + w2|UA| + w3|PA| + w4|RH |, where |s| is the size (cardinality) of set s, and the wi
are user-specified weights. For an RBAC policy with direct assignment, the definition is the
same except with an additional summand w5|DA|.

Interpretability is a policy quality metric measures how well the roles in the policy can
be characterized (interpreted) in terms of user attributes. Specifically, we quantify policy
interpretability as attribute mismatch, which measures how well the sets of members of the
roles can be characterized using expressions over user attributes. An attribute expression e
is a function from the set A of attributes to sets of values. A user u satisfies an attribute
expression e iff (∀a ∈ A. f(u, a) ∈ e(a)). For example, if A = {dept , level}, the function e
with e(dept) = {CS} and e(level) = {2, 3} is an attribute expression, which can be written
with syntactic sugar as dept ∈ {CS} ∧ level ∈ {2, 3}. We refer to the set e(a) as the
conjunct for attribute a. Let su(e) denote the set of users that satisfy e. For an attribute
expression e and a set U ′ of users, the mismatch of e and U ′, denoted mismatch(e, U ′), is
the size of the symmetric difference of su(e) and U ′, where the symmetric difference of sets
s1 and s2 is s1 	 s2 = (s1 \ s2) ∪ (s2 \ s1). The attribute mismatch of a role r, denoted
AM(r), is mine∈E mismatch(e, assignedU(r)), where E is the set of all attribute expressions,
and assignedU(r) = {u | 〈u, r〉 ∈ UA}. The attribute mismatch of an RBAC policy π (with
or without direct assignment) is AM(π) =

∑
r∈R AM(r). We define policy interpretability

INT as attribute mismatch, i.e., INT(π) = AM(π).
Compound policy quality metrics take multiple aspects of policy quality into account. One

approach is to combine multiple policy quality metrics using a weighted sum; however, the
choice of weights may be difficult or arbitrary. We combine metrics by Cartesian product,
with lexicographic ordering on the tuples. Let INT-WSC(π) = 〈INT(π),WSC(π)〉 and
WSC-INT(π) = 〈WSC(π), INT(π)〉.

Role Mining from ACLs The problem of role mining from ACLs is: given an ACL
policy πa and a policy quality metric Q, find an RBAC policy πr that is consistent with πa
and has the best quality, according to Q, among policies consistent with πa. The problem of
role mining with direct assignment from ACLs is the same except that πr is an RBAC policy
with direct assignment.

Role Mining from ACLs and User Attributes The problem of role mining from ACLs
and user attributes (with or without direct assignment) is the same as for role mining from
ACLs, except that the input also includes user-attribute data, which may be used in the
policy quality metric.

Our algorithms produce RBAC policies in which role membership is always defined by ex-
plicit user-role assignment, even when the current membership of a role can be characterized
exactly by an attribute expression. In practice, assigning users to roles fully automatically
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based on user attributes might be risky; requiring explicit user-role assignments by an ad-
ministrator is safer. The administrator’s effort can be reduced by an algorithm that suggests
appropriate roles for new users, based on their attributes. For example, we can compute
and store a best-fit attribute expression er for each role r, i.e., an attribute expression that
minimizes the attribute mismatch for r. When a new user u is added to the access control
system, the system suggests that u be made a member of the roles for which u satisfies the
best-fit attribute expression, and it presents these suggested roles for u in descending order
of the attribute mismatch. This allows good suggestions even in the presence of noise.

2.2 Algorithms

This section presents our role mining algorithms. In general, they compute only approximate
solutions to the role-mining problem: the generated RBAC policy is always consistent with
the given ACL policy, but it does not always have the best possible quality. This is a common
limitation of role mining algorithms, because computing an optimal solution is NP-hard for
policy quality metrics of interest [MCL+10].

2.2.1 Elimination Algorithm

Our elimination algorithm has three phases. Phase 1, role generation, generates a candidate
role hierarchy that contains all “interesting” candidate roles. Phase 2, role elimination,
removes roles from the candidate role hierarchy if the removal preserves consistency with the
given ACL policy and improves policy quality. Phase 3, role restoration, adds some removed
roles back to the policy, if this improves policy quality.

Phase 1: Role Generation Our algorithm for role generation is based closely on Com-
pleteMiner [VAW06], although for increased scalability, we could easily substitute FastMiner
[VAW06] or the FP-Tree approach [HPY00, MLL+09]. Roles are characterized primarily by
the set of permissions assigned to the role. An initial role has a set of permissions that
contains all permissions assigned to some user. A candidate role has a set of permissions
obtained by intersecting the permission sets of an arbitrary number of initial roles. As ar-
gued in [VAW06], in the absence of other information on which to base the construction
of candidate roles, this method generates all interesting candidate roles. Pseudo-code for
this construction appears in Figure 2.1. It is essentially the same as the pseudo-code for
CompleteMiner in [VAW06]. It uses the functions assignedP(r) = {p ∈ P | 〈r, p〉 ∈ PA} and
assignedU(r) = {u ∈ U | 〈u, r〉 ∈ UA}.

CompleteMiner does not produce a role hierarchy. Our algorithm computes a role in-
heritance relation with the maximum amount of inheritance: a candidate role rp inherits
from another role rc whenever the permissions of rp are a superset of the permissions of rc.
Furthermore, when that inheritance relation is introduced, the permissions inherited by rp
from rc are removed from the permissions explicitly assigned to rp by PA, and the mem-
bers inherited by rc from rp are removed from the members explicitly assigned to rc by UA.
Pseudo-code appears in Figure 2.2. It uses functions authP(r) = {p ∈ P | ∃r′ ∈ R. 〈r, r′〉 ∈
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// Create initial roles.
1: InitRole = ∅
2: permSets =

⋃
u∈U{p ∈ P | 〈u, p〉 ∈ UP}

3: for ps in permSets \ {∅}
4: r = new Role()
5: InitRole = InitRole ∪ {r}
6: PA = PA ∪ ({r} × ps)
7: end for

// Compute all intersections of initial roles.
8: R = ∅
9: for r in InitRole
10: InitRole = InitRole \ {r}
11: for r′ in InitRole
12: P = assignedP(r) ∩ assignedP(r′)
13: if ¬empty(P )∧ 6 ∃r′′ ∈ R. assignedP(r′′) = P
14: r′′ = new Role()
15: PA = PA ∪ ({r′′} × P )
16: R = R ∪ {r′′}
17: end if
18: end for
19: for r′ in R
20: P = assignedP(r) ∩ assignedP(r′)
21: if ¬empty(P )∧ 6 ∃r′′ ∈ R. assignedP(r′′) = P
22: r′′ = new Role()
23: PA = PA ∪ ({r′′} × P )
24: R = R ∪ {r′′}
25: end if
26: end for
27:end for
28:R = R ∪ InitRole

Figure 2.1: Role generation, step 1: compute candidate roles.

RH ∗ ∧ 〈r′, p〉 ∈ PA} and authU(r) = {u ∈ U | ∃r′ ∈ R. 〈r′, r〉 ∈ RH ∗ ∧ 〈u, r′〉 ∈ UA}, where
RH ∗ is the reflective transitive closure of RH .

A role hierarchy has full inheritance if every two roles that can be related by the in-
heritance relation are related by it, i.e., ∀r, r′ ∈ R. authP(r) ⊇ authP(r′) ∧ authU(r) ⊆
authU(r′)⇒ 〈r, r′〉 ∈ RH ∗. Guo et al. call this property completeness [GVA08].

All of our algorithms generate RBAC policies with full inheritance. Although relaxing
this requirement would allow our algorithms to achieve better policy quality in some cases,
we impose this requirement, because in the absence of other information, all of these possible
inheritance relationships are equally plausible, so removing any of them risks removing some
that are semantically meaningful and desirable.
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// Initialize variables. Assign users to roles.
1: UA = ∅; RH = ∅
2: for u in U
3: P = {p ∈ P | 〈u, p〉 ∈ UP}
4: for r in R
5: if authP(r) ⊆ P
6: UA = UA ∪ {〈u, r〉}
7: end if
8: end for
9: end for

// Add inheritance edges, and eliminate inherited permissions and members from
// UA and PA.

10:for r in R
11: parents = {r′ ∈ R | 〈r, r′〉 ∈ RH } // parents of r
12: for r′ in R \ {r}
13: if authP(r′) ⊆ authP(r) ∧ ∀r′′ ∈ parents . authP(r′) 6⊆ authP(r′′)
14: RH = RH ∪ {〈r, r′〉}
15: for 〈r, p〉 in PA
16: if p ∈ authP(r′)
17: PA = PA \ {〈r, p〉}
18: end if
19: end for
20: for 〈u, r′〉 in UA
21: if u ∈ assignedU(r)
22: UA = UA \ {〈u, r′〉}
23: end if
24: end for
25: for r′′ in parents
26: if authP(r′′) 6⊆ authP(r′)
27: RH = RH \ {〈r, r′′〉}
28: end if
29: end for
30: end if
31: end for
32:end for

Figure 2.2: Role generation, step 2: construct role hierarchy, based on R and PA from step
1.

Phase 2: Role Elimination Roughly, the role elimination phase removes roles from the
candidate role hierarchy if the removal preserves consistency with the given ACL policy
and improves policy quality. When a role r is removed, the role hierarchy is adjusted to
preserve inheritance relations between parents and children of r, and the user assignment
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and permission assignment are adjusted to explicitly assign to other roles the members and
permissions that they previously inherited from r.

The order in which roles are considered for removal is important, because it may lead
to different RBAC policies in the end. We control this ordering with a role quality metric
Qrole , which maps roles to an ordered set, with the interpretation that large values denote
high quality (note: this is opposite to the interpretation of the ordering for policy quality
metrics). Low-quality roles are considered for removal first. The algorithm is parameterized
by the choice of role quality metric. We consider three basic role quality metrics and then
consider combinations of them.

Clustered size measures how well user permissions are clustered in the role. A first
attempt at formulating such a metric might simply be the total number of UP pairs (i.e.,
elements of the UP relation) that are covered by the role, or, equivalently but with the
metric normalized to be in the range [0, 1], the fraction of all UP pairs covered by the role.
However, such a metric would give the same rating to a role r1 that covers one permission
for each of 10 users and a role r2 that covers 5 permissions for each of 2 users, even though
r2 is preferable; for example, if all of the users have exactly 5 permissions, then the two users
in r2 would not need to belong to any other roles, while all of the users in r1 would need to
belong to other roles as well. To take this into account, we define the clustered size metric
to be equal to the fraction of the permissions of the role’s members that are covered by this
role; formally,

assignedUP(r) = {〈u, p〉 ∈ UP | u ∈ assignedU(r)
∧ p ∈ assignedP(r)}

clsSz(r) = |assignedUP(r)| ÷ |{〈u, p〉 ∈ UP | u ∈ assignedU(r)}|

The numerator considers assigned users and permissions, instead of authorized users and
permissions, so that a role gets credit only for the UP pairs that it covers by itself, not for
UP pairs covered by its ancestors or descendants.

Attribute fitness measures how well the set of members of a role can be characterized
(interpreted) in terms of user attributes. It is based on attribute mismatch, defined in
Section 2.1, normalized to be in the range [0, 1] and subtracted from 1 so that higher values

of the metric indicate higher quality; formally, attrFit(r) = 1− AM(r)
|assignedU(r)| .

Redundancy measures how many other roles also cover the UP pairs covered by a role.
Removing a role with higher redundancy is less likely to prevent subsequent removal of other
roles, so we eliminate roles with higher redundancy first. Values of the redundancy metric
are pairs, with lexicographic order. The redundancy of role r is the negative of the minimum,
over UP pairs 〈u, p〉 covered by r, of the number of other removable roles that cover 〈u, p〉
(we take the negative so that roles with more redundancy have lower quality and hence get
considered for removed first).

authUP(r) = {〈u, p〉 ∈ UP | u ∈ authU(r) ∧ p ∈ authP(r)}
redun(〈u, p〉) = |{r ∈ R | 〈u, p〉 ∈ authUP(r) ∧ removable(r)}|
redun(r) = −min〈u,p〉∈authUP(r)(redun(〈u, p〉)

Compound role quality metrics can be formed in the same ways as compound policy
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1: π = policy produced by role
generation

2: q = Qpol(π)
3: workList = list containing

removable roles in π
4: changed = true
5: while ¬empty(workList) ∧ changed
6: sort workList in ascending

order by Qrole

7: changed = false
8: for r in workList
9: if ¬removable(r)
10: remove r from workList
11: else
12: π′ = removeRole(π, r)
13: q′ = Qpol(π

′)
14: if q′ < δq
15: π = π′

16: q = q′

17: changed = true
18: remove r from

workList
19: end if
20: end if
21: end for
22: end while

function removeRole(π, r)
23: 〈U, P,R,UA,PA,RH 〉 = π
24:R = R \ {r}
25: for 〈r1, r〉 in RH
26: RH = RH \ {〈r1, r〉}
27: for 〈r, r2〉 in RH
28: if 〈r1, r2〉 6∈ RH ∗

29: RH = RH ∪ {〈r1, r2〉}
30: end if
31: end for
32: for 〈r, p〉 in PA
33: if p 6∈ authP(r1)
34: PA = PA ∪ {〈r1, p〉}
35: end if
36: end for
37: end for
38: for 〈r, r2〉 in RH
39: RH = RH \ {〈r, r2〉}
40: for 〈r, u〉 in UA
41: if u 6∈ authU(r2)
42: UA = UA ∪ {〈r2, u〉}
43: end if
44: end for
45: end for
46: return 〈U, P,R,UA,PA,RH 〉

Figure 2.3: Role elimination.

quality metrics, e.g., max(clsSz, attrFit).
Our algorithm may remove a role even if the removal worsens policy quality slightly.

Specifically, we introduce a quality change tolerance δ, with δ ≥ 1, and we remove a role if
the quality Q′ of the RBAC policy resulting from the removal is related to the quality Q of
the current RBAC policy by Q′ < δQ (recall that, for policy quality metrics, smaller values
are better). Choosing δ > 1 partially compensates for the fact that a purely greedy approach
to policy quality improvement is not an optimal strategy.

Pseudo-code for role elimination appears in Figure 2.3. It is parameterized by a policy
quality metric Qpol , a role quality metric Qrole , and a quality change tolerance δ. A role is
removable if every UP -pair covered by r is covered by at least one other role currently in the
policy; formally,

removable(r) = ∀〈u, p〉 ∈ authUP(r). ∃r′ ∈ R.
r′ 6= r ∧ 〈u, p〉 ∈ authUP(r′)

A removable role can be removed while preserving consistency with the given ACL policy.
The removeRole function removes a role r, adjusts the role hierarchy to preserve inheritance
relations between parents and children of r, and adjusts the user assignment and permission
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assignment to explicitly assign to other roles the members and permissions that they pre-
viously inherited from r. The removability test in line 9 is necessary because a role that is
initially removable might become unremovable, due to other removals. The quality of each
role is computed only in line 6, immediately before sorting the worklist. Role quality metrics
may change as roles are removed and hence are re-computed each time line 6 is executed.

Phase 3: Role Restoration Phase 3 restores removed roles when this improves policy
quality. Specifically, it considers each removed role r, in the same order that the roles were
removed, and restores r if this improves the policy quality. Pseudo-code to restore a role
appears in Figure 2.4. It uses the relation ≺ defined by r ≺ r′ = authP(r) ⊂ authP(r′). It
makes r a child of roles r′ such that r ≺ r′ ∧ ¬∃r′′ ∈ R. r ≺ r′′ ≺ r′, makes r a parent of
roles r′ such that r′ ≺ r ∧ ¬∃r′′ ∈ R. r′ ≺ r′′ ≺ r, and adjusts the permission assignment,
user assignment, and inheritance relations of roles related to r to eliminate redundancy.

Direct User-Permission Assignment If direct user-permission assignment is allowed,
we add a final phase that replaces roles with direct assignment if that improves policy quality.
Pseudo-code appears in Figure 2.5; variable π initially contains the policy produced by phase
3, which contains no direct assignments, i.e., DA = ∅.

Determining Algorithm Parameters Different choices of role quality metric Qrole and
quality change tolerance δ may give the best results for different datasets, so we enclose the
algorithm in a loop that tries all combinations of the following values for those parameters and
returns the result from the best combination: Qrole in {〈redun, clsSz〉, 〈max(attrFit, clsSz), redun〉},
and δ in {1, 1.001, 1.002}. We also experimented with sum(clsSz, attrFit) for Qrole , and with
larger values for δ, but that did not improve the results.

2.2.2 Selection Algorithm

Our selection algorithm works in the opposite way as the elimination based algorithm. Specif-
ically, it starts with an empty policy and repeatedly adds candidate roles to the policy. The
selection algorithm is parameterized by a role quality metric. In phase 1, candidate roles
are generated as in the elimination algorithm (see Figure 2.1). In phase 2, candidate roles
are added to the RBAC policy in order of descending role quality, until the RBAC policy
is consistent with the given ACL policy. Phase 3 performs pruning: for each role r in the
policy in the reverse order that the roles were added, checks whether the role is removable,
and if so, whether removing it improves policy quality, and if so, removes it.

2.2.3 Complete Algorithm

Our complete algorithm has two phases. Phase 1 generates a hierarchical RBAC policy
in exactly the same way as the elimination algorithm. Phase 2 is role removal. While
the elimination algorithm heuristically takes a greedy approach to removals, the complete
algorithm considers all subsets of the set of removable roles, to find the set of removals that
produces the policy with the highest quality.
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function restoreRole(π, r)
1: 〈U, P,R,UA,PA,RH 〉 = π
2: for r′ in R
3: if r ≺ r′ ∧ ¬∃r′′ ∈ R. r ≺ r′′ ≺ r′

// make r a child of r′

4: assignedP(r′) = assignedP(r′) \ authP(r)
5: assignedU(r) = assignedU(r) \ authU(r′)
6: RH = RH ∪ {〈r′, r〉}
7: for r′′ in R such that 〈r′, r′′〉 ∈ RH // children of r′

8: if r′′ ≺ r
// remove r′′ as a child of r′. r′′ will be
// a child of r and a grandchild of r′

9: RH = RH \ {〈r′, r′′〉}
10: end if
11: end for
12: end if
13: if r′ ≺ r ∧ ¬∃r′′ ∈ R. r′ ≺ r′′ ≺ r

// make r a parent of r′

14: assignedP(r) = assignedP(r) \ authP(r′)
15: assignedU(r′) = assignedU(r′) \ authU(r)
16: RH = RH ∪ {〈r, r′〉}
17: for r′′ in R such that 〈r′′, r′〉 ∈ RH // parents of r′

18: if r ≺ r′′

// remove r′′ as a parent of r′. r′′ will be
// a parent of r and a grandparent of r′

19: RH = RH \ {〈r′′, r′〉}
20: end if
21: end for
22: end if
23: end for
24:R = R ∪ {r}
25: return 〈U, P,R,UA,PA,RH 〉

Figure 2.4: Restore role r to policy π.

1: for r in R
2: π1 = removeRole(r)
3: π2 = π1 with all UP pairs in the given ACL policy

that are not covered in π1 added to DA
4: if Qpol(π2) < δQpol(π)
5: π = π2

6: end if
7: end for

Figure 2.5: Create direct user-permission assignment.
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high-fit low-fit
Dataset |U | |P | |UP | Na AF Na AF
healthcare 46 46 1486 20 1 5 0.79
domino 79 231 730 20 1 12 0.48
emea 35 3046 7220 20 1 6 0.56
apj 2044 1146 6841 40 0.94 10 0.57
firewall-1 365 709 31951 40 0.997 15 0.58
firewall-2 325 590 36428 40 1 10 0.50
americas-small 3477 1587 105205 50 0.95 9 0.36

Figure 2.6: Information about datasets. Na is the number of attributes. AF is the attribute
fit.

To avoid explicitly storing the set of sets of removable roles that have been explored
so far, our role removal algorithm is expressed as a recursive search. Removal of one role
may prevent subsequent removal of another role, but removals commute in the sense that,
if it is possible to remove r1 and then remove r2, then it is also possible to remove r2

and then remove r1, and these two sequences of removals lead to the same policy. To
ensure that the algorithm does not unnecessarily explore the same removals in multiple
orders, we impose an arbitrary ordering on the removable roles, by storing them in a list
Rrmv , and the algorithm considers only sequences of removals consistent with that ordering;
in other words, it considers sequences of removals that correspond to subsequences (not
necessarily contiguous) of Rrmv . The algorithm is parameterized by a policy quality metric
Qpol . The algorithm is complete in the following sense: if Qpol is WSC, then the complete
algorithm computes a policy that minimizes WSC among policies consistent with the given
ACL policy; for other policy quality metrics Qpol , the complete algorithm computes a policy
that minimizes Qpol among policies that are consistent with the given ACL policy and have
full inheritance.

2.3 Datasets

We know of no publicly available real ACL policies with user attribute data, so we use
publicly available real ACL policies, described next, together with synthetic user attribute
data, generated as described below.

The ACL policies are listed in Figure 2.6. They originate from Hewlett-Packard (HP)
Labs [EHM+08]. The healthcare dataset was obtained by HP Labs from the U.S. Veteran’s
Administration, which has developed a comprehensive list of the healthcare permissions that
may be assigned to licensed or certified providers. The domino data is from a set of user and
access profiles for a Lotus Domino server. americas-small is a network access control policy
from Cisco firewalls used to manage external business partner’s access to HP’s network. apj
and emea are similar but smaller datasets. HP Labs produced the firewall-1 and firewall-2
datasets based on analysis of network connectivity permitted by Checkpoint firewall rules.

17



Generation of User Attribute Data Molloy et al. provide summary information about
non-public user attribute data and ACL policies from three customers [MLC11]; we exploit
this to make our synthetic attribute data have some approximately realistic characteristics.
Based on the information in the paper, we construct the following distributions: (a) for
each customer i, we fit an exponential distribution card i to the distribution of cardinalities
of user attributes for that customer. (b) for each attribute of each customer, we fit a
Zipf distribution to the distribution of values of that attribute (based on the information
in [MLC11, Figures 3-5]), to obtain a Zipf-distribution exponent for each attribute, and
then we fit a Weibull distribution zipfExp to the resulting distribution of Zipf-distribution
exponents. The individual Zipf-exponents obtained from our measurements of the charts in
[MLC11, Figures 3-5] have considerable uncertainty, due to the limited information in those
charts, but these uncertainties might average out to some extent, making the parameters of
the Weibull distribution zipfExp somewhat more robust.

Our algorithm for generating user attribute data is parameterized by an ACL policy and
the desired number Na of attributes. The algorithm has two phases. Phase 1 generates user
attribute data for each attribute separately, independent of the ACLs. Phase 2 modifies
the user attribute data to improve its fit with the ACLs. In more detail, phase 1 starts by
identifying the customer i in [MLC11] for which the number of users is closest to the number
|U | of users in the given ACL policy, and then, for each of the desired attributes, select a
cardinality ca from card i and a Zipf-exponent sa from zipfExp. Next, the value of attribute
a for each user is selected from a Zipf distribution with ca elements and exponent sa. We
take all attribute values to be natural numbers interpreted as ranks in the Zipf distribution
(0 is the most common value, 1 is the second most common value, etc.).

Phase 2 tries to reduce the attribute mismatch for each permission. Let Up denote the
set of users with permission p, i.e., Up = {u ∈ U | 〈u, p〉 ∈ UP}. For each permission p, we
first compute an attribute expression ep representing the least superset of Up expressible as
an attribute expression; ep is given by ep(a) = {f(u, a) | u ∈ Up}. ep may be a very loose
upper bound on Up, so we convert it to a lower bound on Up by repeatedly removing an
attribute value from a conjunct of ep until su(ep) ⊆ Up; in each iteration, we remove the
attribute value with the largest value of the metric m, where, for a value v in the conjunct
for attribute a

m(v, a) = |{u ∈ U | f(u, a) = v ∧ u 6∈ Up}|
− |{u ∈ U | f(u, a) = v ∧ u ∈ U(p)}|

Finally, we try to make the lower bound tighter as follows: for each user u in Up \ su(ep), for
each attribute a such that f(u, a) 6∈ ep(a), if adding f(u, a) to ep(a) preserves the fact that
su(ep) ⊆ Up, then add f(u, a) to ep(a), otherwise try to modify f so that f(u, a) ∈ ep(a), by
swapping the values of f(u, a) and f(u′, a) for some other user u′, provided the swap does not
affect whether u′ satisfies the attribute expressions already constructed for other permissions.
Note that swapping values of attributes between users preserves the distribution of values of
each attribute.

The attribute fit of the resulting attribute assignment is defined as
1 − 1

|UP |
∑
p∈P mismatch([[ep]], Up). For each dataset, we start with Na = 10, generate user

attribute data, and compute the attribute fit. If it is above 0.9, we stop, otherwise we
increment the number of attributes by 10 and try again, until the attribute fit is above 0.9.
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We call the resulting user attribute data the high-fit user attribute data.
In practice, the available user attribute data will often have a lower attribute fit than

0.6, e.g., because some relevant user attributes are unavailable. Therefore, we also produce
a version of the user attribute data with fewer attributes; specifically, we discard attributes
one at a time, until the attribute fit drops below 0.6 (except we use a higher threshold of 0.8
for healthcare, otherwise Na is very low). We call this the low-fit user attribute data.

Figure 2.6 contains information about the generated user attribute data. Generation of
user attribute data takes only a few minutes for small datasets, and it takes less than an
hour for the largest dataset.

2.4 Experimental Results

This section compares our algorithms with each other, compares the elimination algorithm
(which is best among our algorithms) with prior work, and explores the effects of different
policy quality metrics and role quality metrics.

Comparison of Elimination Algorithm with Hierarchical Miner and Graph Opti-
misation Figure 2.7 shows the WSC and interpretability (using the high-fit attribute data)
of policies produced by the elimination algorithm and Hierarchical Miner (HM) [MCL+10]
with policy quality metric WSC-INT and the WSC of policies produced Graph Optimisa-
tion (GO) [ZRE07] (modified slightly by Molloy et al. to use WSC as the policy quality
metric). The weight vector for WSC contains all ones except that the weight for direct
assignment is infinity (in other words, direct assignment is prohibited). In the comparison
of eight role mining algorithms in [MLL+09] and the comparison of four role mining algo-
rithms in [MCL+10], for this weight vector, the best WSC for every dataset is achieved
by either HM or GO. Figure 2.7 shows that the elimination algorithm achieves smaller or
equal WSC than HM and GO on every dataset, while simultaneously achieving good policy
interpretability (Figure 2.11 shows that the elimination algorithm simultaneously achieves
good results for both components of the policy quality metric). The WSC from HM and
GO are 2.7% worse and 14.0% worse, respectively, averaged over the datasets, compared to
the WSC from the elimination algorithm. The INT from HM is 46.3% worse, averaged over
the datasets, compared to the INT from the elimination algorithm; this is not surprising,
because HM does not consider user attributes or policy interpretability. The results for HM
are computed from policies produced by HM that Molloy sent to us. The results for GO
are from [MCL+10, Table VI] for all datasets except americas-small, which is not used in
[MCL+10]; the results for GO for americas-small are from [MLL+09, Table 4].

On a PC with an Intel Core 2 Quad 2.66 GHz CPU (the processor has 4 cores, but our
code is purely sequential), the elimination algorithm terminates in 30 seconds or less for all
datasets except americas-small, which takes about 3.5 minutes. Running times for HM and
GO are not reported in [ZRE07, MLL+09, MCL+10], and the implementations of HM and
GO described in those papers are not publicly available. We fit curves to a graph of running
time vs. |UP | for the datasets in Figure 2.6 and found that a quadratic function fits well.

Figure 2.8 shows the result of our elimination algorithm when allowing direct assignments,
with a WSC weight vector containing all ones. The results for HM are computed from
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Elimination HM GO
Dataset INT WSC INT WSC WSC
healthcare 14 144 16 149 168
domino 21 404 30 418 413
emea 32 3709 92 3795 3888
apj 392 4248 411 4282 4600
firewall-1 48 1385 59 1426 1543
firewall-2 7 945 7 945 960
americas-small 214 6330 324 6710 9721

Figure 2.7: Comparison of elimination algorithm with policy quality metric WSC-INT, Hi-
erarchical Miner, and Graph Optimisation, when direct user-permission assignment is pro-
hibited.

Elimination HM GO
Dataset INT WSC INT WSC WSC
healthcare 9 140 10 142 168
domino 7 371 9 379 413
emea 36 3644 39 3693 3888
apj 130 3827 164 3862 4600
firewall-1 17 1340 21 1349 1543
firewall-2 4 944 4 944 960
americas-small 182 6214 198 6468 9721

Figure 2.8: Comparison of elimination algorithm with policy quality metric WSC-INT, Hi-
erarchical Miner, and Graph Optimisation, when direct user-permission assignment is per-
mitted.

policies producd by HM that Molloy sent us. The results for GO are from [MCL+10, Table
VII] for all datasets except americas-small, which is not used in [MCL+10]; the results for
GO for americas-small are from [MLL+09, Table 4]. The original GO does not consider
direct assignment, but Molloy et al. extended GO to support it. Figure 2.8 shows that
the elimination algorithm achieves smaller WSC than HM and GO on every dataset, while
simultaneously achieving good policy interpretability. The WSC from HM and GO are 1.5%
worse and 18.8% worse, respectively, averaged over the datasets, compared to the WSC from
the elimination algorithm. The INT from HM is 15.2% worse, averaged over the datasets,
compared to the INT from the elimination algorithm.

Comparison of Elimination Algorithm with Attribute Miner Among prior work on
role mining that takes policy interpretability into account, the most closely related is Molloy
et al.’s work on Attribute Miner [MCL+10]. Figure 2.9 compares the elimination algorithm
(using the redundancy role quality metric and δ = 1.001) with Attribute Miner [MCL+10].
Molloy et al.’s implementation of Attribute Miner is not publicly available, so the results for
Attribute Miner are from our own implementation of it. Attribute Miner is designed to op-
timize the policy quality metric Weighted Structural Complexity with Attributes (WSCA)
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[MCL+10]. WSCA differs from WSC in how the size of the user-role assignment is mea-
sured. In WSC, it is simply |UA| or equivalently

∑
r∈R |U(r)|, where U(r) is the membership

(assigned users) of role r. In WSCA, if U(r) can be characterized exactly by an attribute
expression D(r), the size of D(r) (i.e., the number of conjuncts) is used instead of |U(r)|;
otherwise, the geometric mean of |U(r)| and |suB(r)| is used instead of |U(r)|, where B(r) is
the attribute expression that is the least upper bound for U(r). We have some reservations
about WSCA: (1) use of the geometric mean of |U(r)| and |suB(r)| seems unintuitive, since
it does not directly measure either the size or the interpretability of the role; (2) WSCA is
very sensitive to whether a role can be characterized exactly by an attribute expression—a
small change to the input data can significantly change the WSCA associated with a role,
because |D(r)| is often much smaller than |U(r)|; (3) as discussed at the end of Section
2.1, it might be safer to use attribute expressions to suggest role membership than to define
role membership. Nevertheless, we use WSCA for this comparison, because Attribute Miner
is designed to optimize WSCA and would probably fare poorly in a comparison based on
INT-WSC.

Attribute Miner, as described in [MCL+10] uses attribute expressions that are conjunc-
tions of positive literals over Boolean attributes. We implemented a generalized version of
Attribute Miner that uses attribute expressions of the form described in Section 2.1. This
involves straightforward changes to the code that computes least upper bounds and to the
definition of the size of an attribute expression, which is used in the definition of WSCA
[MCL+10, Definition 13] and in the definition of the cost of an attribute role [MCL+10, Table
III]. We define the size of an attribute expression e to be

∑
a∈A |e(a)|. Attribute Miner takes

user attribute data and a set of candidate roles as input; we generate the set of candidate
roles using Phase 1 of the elimination algorithm.

Figure 2.9 shows that the elimination algorithm achieves better WSCA than Attribute
Miner on every dataset. With the high-fit attribute data, Attribute Miner is 78% worse,
averaged over the datasets, i.e., the average of the ratios of the WSCA values obtained using
the two algorithms is 1.78; the median of the ratios is 1.38. With the low-fit attribute data
Attribute Miner is 57% worse, averaged over the datasets, i.e., the average of the ratios of
the WSCA values obtained using the two algorithms is 1.57; the median of the ratios is 1.36.

Comparison of Our Algorithms Figure 2.10 contains results for the elimination algo-
rithm with the redundancy role quality metric and the selection algorithm with role quality
metric max(attrFit, clsSz). We use INT-WSC as the policy quality metric for both algo-
rithms. The weight vector for WSC contains all ones except that the weight for direct as-
signment is infinity (in other words, direct assignment is prohibited). Figure 2.10 shows that
the elimination algorithm achieves the same or better results than the selection algorithm
on both components of the policy quality metric for every dataset. We ran the complete
algorithm on the smallest dataset, healthcare, with Qpol=WSC. The result has WSC = 141,
which is better than elimination algorithm (WSC = 144) and HM (WSC = 149). We started
to run the complete algorithm on the second smallest dataset, domino, but we aborted it
after 30 hours.
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Figure 2.9: Comparison of elimination algorithm and Attribute Miner (AM). Names of
datasets are abbreviated, e.g., fw1 abbreviates “firewall-1”. The upper and lower graphs use
the high-fit and low-fit user attribute data, respectively.
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Figure 2.10: Results for elimination algorithm and selection algorithm, with policy quality
metric INT-WSC. The clusters of points correspond, from left to right in the order they are
connected, to the datasets in the following order: firewall-2 healthcare, domino, firewall-1,
emea, americas-small, apj.

Effect of Policy Quality Metric in Elimination Algorithm Figure 2.11 compares
the quality of policies produced by the elimination algorithm with policy quality metrics
WSC-INT and INT-WSC, using the high-fit user attribute data. Recall that the elimination
algorithm tries multiple role quality metrics Qrole and quality change tolerances δ; the tables
also show the best combination of those parameters for each policy quality metric and each
dataset. Surprisingly, for all of these datasets, it makes little or no difference whether priority
is given to WSC or interpretability.
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WSC-INT INT-WSC
Dataset INT WSC Qrole δ INT WSC Qrole δ
healthcare 14 144 rdn 1.001 14 144 rdn 1.001
domino 21 404 max 1.001 21 404 max 1.001
emea 32 3709 max 1.000 32 3709 max 1.000
apj 392 4248 rdn 1.000 384 4331 rdn 1.002
firewall-1 48 1385 max 1.000 44 1419 max 1.003
firewall-2 7 945 max 1.000 7 945 max 1.000
amer-small 214 6330 max 1.000 180 6912 red 1.003

Figure 2.11: Comparison of two different policy quality metrics in elimination algorithm.
“rdn” and “max” denote 〈redun, clsSz〉 and 〈max(attrFit, clsSz), redun〉, respectively.

Effect of Role Quality Metric and Quality Change Tolerance in Elimination Al-
gorithm We compared the results of the elimination algorithm with policy quality metric
INT-WSC and four role quality metrics: redundancy, max(attrFit, clsSz), and the “reverse”
of each of these, obtained by taking the negative of the value. The reverse orders exemplify a
bad choice of role quality metric. We used δ = 1.0 and policy quality metric WSC-INT with
all four role quality metrics. Averaged over the datasets, using reverse-max(attrFit, clsSz)
instead of max(attrFit, clsSz) worsens policy interpretability by 5.0% and WSC by 0.9%,
and using reverse-redundancy instead of redundancy worsens policy interpretability by 3.9%
and WSC by 1.0%. This shows that the order in which roles are considered for removal has
a small but non-negligible effect.

We also compared the results of the elimination algorithm using all six combinations of
the two role quality metrics and three quality change tolerances specified in Section 2.2. We
found that the combination Qrole = redun and δ = 1.001 gives the best result or close to
it—within 2% for WSC and interpretability—for every dataset in our experiments.

2.5 Related Work

The literature on role mining is sizable, so we discuss only the most closely related work.
Vaidya et al.’s RoleMiner algorithm has two phases [VAW06]. Phase 1 produces a set of

candidate roles, each represented by a set of permissions. They give two algorithms for this:
CompleteMiner, which we adopt as the first step in Phase 1 of our elimination algorithm,
and FastMiner, which is similar to CompleteMiner but more scalable, because it considers
only pairwise intersections of initial roles. Phase 2 prioritizes the candidate roles produced
by Phase 1. The prioritized list of roles is the final result of the algorithm. The algorithm
does not attempt to determine which candidate roles to include in such an RBAC policy, to
produce a role inheritance relation, or to assign users to roles. In contrast, our algorithm
addresses these issues in order to produce an RBAC policy. Vaidya et al. also developed
algorithms for computing an RBAC policy with minimal |R| that is consistent with a given
ACL policy [VAG07]. Lu et al. [LVA08] present role mining algorithms that minimize either
|R| or |UA|+ |PA|. None of these papers considers more general policy size metrics (such as
WSC), role hierarchy, or interpretability of roles with respect to user attribute data.
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Zhang et al.’s Graph Optimisation (GO) algorithm starts with each user’s permission set
as a candidate role, and repeatedly splits or merges roles when the transformation improves
policy quality [ZRE07]. They do not consider interpretability of roles with respect to user
attribute data. The data in Figures 2.7 and 2.8 show that the elimination algorithm achieves
better WSC than GO does. The main reasons are: (1) GO performs role generation and
role selection in a single phase, considering new candidate roles lazily according to a greedy
heuristic, instead of eagerly generating all candidate roles in an initial phase; as a result,
GO is faster, but it might fail to consider some useful roles; (2) it appears from the paper
that GO does not explicitly control the order in which roles are considered for splitting and
merging; and (3) GO never tries to eliminate roles.

Ene et al.’s role mining algorithms aim to minimize either |R| or |UA|+ |PA| [EHM+08].
They do not consider policy interpretability with respect to user attribute data. Molloy et
al. generalized the algorithm that aims to minimize |UA|+ |PA| so that it aims to minimize
WSC instead, and they found that the modified algorithm performs well when the weight
vector corresponds to the algorithm’s original metric (i.e., when WSC equals |UA| + |PA|)
but performs worse than GO and HM with other weight vectors [MCL+10], including the
weight vectors used in our experiments.

Li et al.’s Dynamic Miner [LLM+07, MLL+09] has three phases. Phase 1 generates
a set of candidate roles. Phase 2 selects candidate roles to include in the RBAC policy,
adding them to the policy in descending order of the estimated decrease in WSC achieved by
adding the role (it is an estimate because the user-role assignment and role hierarchy are not
known yet). Phase 3 constructs the user-role assignment and role hierarchy. Our selection
algorithm is similar to Dynamic Miner, but more general, because it is parameterized by
the role quality metric that controls the order in which roles are considered for selection,
and, more importantly, it allows the role quality metric to take the role hierarchy and user-
role assignment into account, because they are computed during the role selection phase.
Molloy et al. found that Dynamic Miner generally produces worse WSC than HM and GO
[MLL+09]. This is consistent with our finding that the selection algorithm generally produces
worse results than the elimination algorithm.

Molloy et al.’s Hierarchical Miner (HM) has two phases. Phase 1 uses formal concept
analysis to create a candidate role hierarchy consistent with a given ACL policy; phase 1 of
the elimination algorithm is equivalent to phase 1 of HM. Phase 2 eliminates roles, removes
their inheritance edges, or replaces them with direct user-permission assignment when this
preserves consistency with the given ACL policy and lowers the WSC. The elimination
algorithm achieves slightly better results than HM in our experiments. We believe this is
mainly because the elimination algorithm uses a role quality metric to control the order in
which roles are considered; the order in which roles are considered in HM is not explicitly
controlled and depends on implementation details of a hashset library [Mol11]. The use of
a quality change tolerance and a role restoration phase also help the elimination algorithm
achieve better results. Although phase 1 of HM produces a candidate role hierarchy with
full inheritance, phase 2 of HM does not preserve this property; we plan to experiment with
allowing similar deviations from full inheritance in the elimination algorithm, which should
allow better results for policy quality. HM does not consider policy interpretability with
respect to user attribute data.
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Molloy et al.’s Attribute Miner (AM) has two phases. Phase 1 produces a set of can-
didate normal roles and a set of candidate attribute roles (i.e., roles whose membership is
defined by an attribute expression). Phase 2 greedily selects normal roles and attribute roles
for inclusion in the policy in descending order of the role’s benefit-to-cost ratio, which is an
estimate of the role’s effect on the policy’s WSCA. The elimination algorithm is more flexible
than AM, since it can easily be used with any policy quality metric, and it achieves signifi-
cantly better results than AM even for AM’s target policy quality metric, namely, WSCA.
We believe the main reason for this is that the elimination approach (i.e., repeatedly remove
roles) generally yields better results than the selection approach (i.e., repeatedly add roles),
as we saw in the comparison of the elimination algorithm with our selection algorithm in
Section 2.4, and as noted above in the discussion of Dynamic Miner.

Colantonio et al. propose two metrics to measure the interpretability of roles [CDPOV09].
Their approach relies on an activity tree, describing the hierarchical structure of business
activities (business processes), and an organization unit tree, describing the hierarchical
structure of the organization. It also assumes knowledge of which permissions are required
for each activity and of the assignment of users to organizational units. The activity-spread
of a role measures the dispersion within the activity tree of the activities enabled by the
role’s permissions. The organization-unit-spread of a role measures the “dispersion” within
the organization unit tree of the role’s members. Roles with low activity-spread and low
organization-unit-spread are considered to be more meaningful. These metrics are intuitively
appealing and could be combined with metrics based on user attributes in our algorithms
when the required information is available.

Colantonio et al. propose an approach to taking user attributes into account during
role mining [CDV12]. They first partition the set of users based on the values of selected
attributes, and then perform role mining separately for each set of users in the partition
(using the corresponding slice of the UP relation). Note that the role mining in the second
step does not explicitly consider user attributes. They propose metrics that are used to
select a set of attributes that provides the most meaningful partition of the users. Their
paper does not consider metrics to directly evaluate the interpretability of the resulting roles
or RBAC policies.
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Chapter 3

Mining Parameterized Role-Based
Policies

In this chapter, we first define an expressive parameterized RBAC (PRBAC) framework that
supports a simple form of ABAC. Next we present two algorithms for mining PRBAC policies
from ACLs, user attributes, and permission attributes. To the best of our knowledge, it is the
first policy mining algorithm for any parameterized RBAC framework or ABAC framework.
We then evaluate these algorithms on three small but non-trivial case studies. Finally we
discuss related work.

3.1 Parameterized RBAC (PRBAC)

PRBAC policies refer to attributes of users and permissions. User-attribute data is repre-
sented as a tuple 〈U,AU , fU〉, where U is a set of users, AU is a set of user attributes, and fU
is a function such that fU(u, a) is the value of attribute a for user u. There is a special user
attribute called uid that has a unique value for each user. This allows traditional identity-
based roles to be represented in the same way as other roles. Similarly, permission-attribute
data is represented as a tuple 〈P,AP , fP 〉, where P is a set of permissions, AP is a set of
permission attributes, and fP is a function such that fP (p, a) is the value of attribute a
for permission p. Informally, a permission may be regarded as involving a resource and an
operation, and a permission attribute may be an attribute of the resource or an attribute
(i.e., argument) of the operation. There is a special permission attribute called pid that has
a unique value for each permission. Let AttrVal be the set of all legal attribute values. We
assume AttrVal includes a special value “⊥” that indicates that the value of an attribute is
unknown.

Attribute expressions are used to express the sets of users and permissions associated
with roles. A conjunctive user-attribute expression ec is a function from user attributes
AU to Set(AttrVal \ {⊥}) ∪ {>}. The symbol > denotes the set of all legal values for an
attribute. We say that expression ec uses an attribute a if ec(a) 6= >. We refer to the
set ec(a) as the conjunct for attribute a. A user u satisfies expression ec, denoted u |= ec,
iff (∀a ∈ AU : fU(u, a) ∈ ec(a)). For example, if AU = {dept, level}, the function ec
with ec(dept) = {CS} and ec(level) = {undergrad, grad} is a conjunctive user-attribute
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expression, which we write with syntactic sugar as dept = CS ∧ level ∈ {undergrad, grad}
(note that, when ec(a) is a singleton set {v}, we may write the conjunct as a ∈ {v} or
a = v). An user-attribute expression is a set, representing a disjunction, of conjunctive
user-attribute expressions. A user u satisfies a user attribute expression e, denoted u |= e,
iff (∃ec ∈ e : u |= ec). The meaning of a user-attribute expression e, denoted [[e]]U is the set
of users that satisfy it: [[e]]U = {u ∈ U | u |= e}. We say that a user-attribute expression
e characterizes [[e]]U . We say that e uses an attribute a if some conjunctive user-attribute
expression in e uses a. The definitions of conjunctive permission-attribute expression and
permission-attribute expression are similar, except using the set AP of permission attributes
instead of the set AU of user attributes. The meaning of a permission-attribute expression
e, denoted [[e]]P is the set of permissions that satisfy it: [[e]]P = {p ∈ P | p |= e}.

Constraints are used to express parameterization. Traditional PRBAC frameworks use
explicit role parameters to indirectly express equalities between user attributes and permis-
sions attributes; in our framework, such equalities are expressed directly, as constraints. For
example, consider the policy that the chair of a department can update the course schedule
for the department. This can be expressed using explicit role parameters by introducing
a role chair(dept) and using a permission assignment rule such as PA(chair(dept), 〈write,
courseSchedule(dept)〉). In our framework, we would define a chair role with the chairs of
all departments as members, with permissions to write all course schedules, and with the
constraint that the user’s department equals the permission’s department. The constraint
ensures that each member of the role gets only the appropriate permissions. Informally,
attributes used in the constraint act as role parameters.

A constraint is a set of equalities of the form au = ap, where au is a user attribute and
ap is a permission attribute. User u and permission p satisfy constraint c, denoted u, p |= c,
if for each equality au = ap in c, fU(u, au) = fP (p, ap).

A core PRBAC policy is a tuple 〈U, P,R〉 where U is a set of users, P is a set of per-
missions, and R is a set of roles, each represented as a tuple 〈eu, ep, c〉, , where eu is a
user-attribute expression, ep is a permission-attribute expression, and c is a constraint. For
a role r = 〈eu, ep, c〉, let uae(r) = eu, pae(r) = ep, and con(r) = c.

For example, the role 〈uid = {Alice,Bob}, operation = write∧resource = courseSchedule,
dept = dept〉 has members Alice and Bob, has permissions to write course schedules for all
departments (because the department attribute of the course schedule is not restricted by the
permission-attribute expression), and has constraint dept = dept. If fU(Alice, dept) = CS
and fU(Bob, dept) = EE, the constraint ensures that Alice only gets permission to write the
CS course schedule, and Bob only gets permission to write the EE course schedule.

The user-permission assignment UPA(π) induced by a policy π is defined by

assignedU(r, U) = {u ∈ U | u |= uae(r)}
assignedP(r, P ) = {p ∈ P | p |= pae(r)}

assignedUP(r, U, P ) = {〈u, p〉 ∈ assignedU(r, U)×assignedP(r, P ) |
u, p |= con(r)}

UPA(〈U, P,R〉) =
⋃
r∈R assignedUP(r, U, P )

A hierarchical PRBAC policy is a tuple π = 〈U, P,R,RH 〉, where U , P , and R are the
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same as in a core PRBAC policy, and the role hierarchy RH is an acyclic transitive binary
relation on roles. A tuple 〈r, r′〉 in RH means that r is junior to r′ (or, equivalently, r′ is
senior to r). This means that r inherits members from r′, and r′ inherits permissions from
r. This is captured in the equations

ancestors(r, R,RH ) = {r′ ∈ R | 〈r, r′〉 ∈ RH }
descendants(r, R,RH ) = {r′ ∈ R | 〈r′, r〉 ∈ RH }

authU(r, U,R,RH ) = assignedU(r, U) ∪⋃
r′∈ancestors(r,R,RH )

assignedU(r′, U)

authP(r, P,R,RH ) = assignedP(r, P ) ∪⋃
r′∈descendants(r,R,RH )

assignedP(r′, P )

The user-permission assignment UPA(π) induced by a hierarchical PRBAC policy π is de-
fined by:

authUP(r, U, P,R,RH ) =
{〈u, p〉 ∈ authU(r, U,R,RH )× authP(r, P,R,RH ) |
u, p |= con(r)}

UPA(〈U, P,R,RH 〉) =
⋃
r∈R authUP(r, U, P,R,RH )

In the definition of authUP(r, U, P ), all authorized users and permissions of r, including the
inherited ones, are subject to the constraint associated with r. However, constraints are not
“inherited”; in particular, the constraint associated with a role r affects only r’s contribution
to the user-permission relation induced by the policy.

3.2 The Problem

A core PRBAC policy π = 〈U, P,R〉 is consistent with an ACL policy π′ = 〈U ′, P ′,UP ′〉 if
U = U ′, P = P ′, and UPA(π) = UP ′. A hierarchical PRBAC policy π = 〈U, P,R,RH 〉 is
consistent with an ACL policy π′ = 〈U ′, P ′,UP ′〉 if U = U ′, P = P ′, and UPA(π) = UP ′.

A policy quality metric is a function from PRBAC policies to a totally-ordered set, such
as the natural numbers. The ordering is chosen so that small values indicate high quality;
this might seem counter-intuitive at first glance but is natural for metrics based on policy
size.

The core PRBAC policy mining problem is: given an ACL policy π′ and policy quality
metric Qpol, find a core PRBAC policy π that is consistent with π′ and has the best quality,
according to Qpol, among policies consistent with π′. The hierarchical PRBAC policy mining
problem is the same except that π is a hierarchical PRBAC policy.

Our algorithms aim to optimize the policy’s weighted structural complexity (WSC), which
is a generalization of policy size [MCL+10]. The weighted structural complexity of a core
PRBAC policy is defined by

WSC(ec) =
∑

a∈domain(ec)

ec(a) = > ? 0 : |ec(a)|
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WSC(c) = |c|
WSC(〈eu, ep, c〉) = w1

∑
ec∈eu

WSC(ec) + w2

∑
ec∈ep

WSC(ec)

+ w3WSC(c)

WSC(〈U, P,R〉) =
∑
r∈R

WSC(r),

where |s| is the cardinality of set s, and the wi are user-specified weights. The weighted
structural complexity WSCH of a hierarchical PRBAC policy is defined in the same way,
except with an additional term w4|RH |, where the size of the role hierarchy RH is the
number of tuples in it.

3.3 Algorithms

This section presents our algorithms for the problems defined in Section 3.2.

3.3.1 Mining Core PRBAC Policies: Elimination Algorithm

Step 1: Generate Candidate Roles This step uses a traditional role mining algorithm
to generate a set Rcan of un-parameterized candidate roles without role hierarchy. Each
role r in Rcan is associated with a set assignedU(r) of assigned users and a set assignedP(r)
of assigned permissions. We use CompleteMiner [VAW06, VAWG10] to generate candidate
roles. Briefly, CompleteMiner generates a candidate role for every set of permissions that
can be obtained by intersecting the sets of permissions granted to some users by the ACL
policy. Note that CompleteMiner’s goal is to include every reasonable candidate role in its
output; CompleteMiner does not attempt to produce a minimum-sized policy.

We assume that no two candidate roles have exactly the same set of assigned users, and
that no two candidate roles have exactly the same set of assigned permissions. This is true
for the result of CompleteMiner and other standard role mining algorithms, because two
roles with the same set of users or permissions can easily be merged into a single role.

Step 2: Generate Attribute Expressions for Candidate Roles This step computes
minimum-sized attribute expressions that characterize the assigned users and assigned per-
missions of each candidate role, with preference given to (1) attribute expressions that do
not use uid or pid, since attribute-based policies are generally preferable to identity-based
policies, even when they have higher WSC, because attribute-based generalize better, and
(2) conjunctive attribute expressions, because they are simpler than attribute expressions
that use disjunction (in addition to conjunction).

Given a set s of users and the set U of all users, let minExpU(s, U) be a minimum-sized
user-attribute expression that characterizes s, subject to the preferences described above.
Given a set s of permissions and the set P of all permissions, let minExpP(s, P ) be a
minimum-sized permission-attribute expression that characterizes s, subject to the prefer-
ences described above. In both cases, at least one such attribute expression exists, because
attributes uid and pid are present and have a unique value for each user or permission,
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respectively. For each r ∈ Rcan , this step sets uae(r) = minExpU(assignedU(r), U) and
pae(r) = minExpP(assignedP(r), P ).

Our algorithm to compute minExpU(s, U) appears in Figure 3.1; the algorithm for
minExpP is the same, except that AU and fU are replaced with AP and fP , respectively. The
pseudocode for minExpU simply embodies the preferences described above. It uses an aux-
iliary function simplifyExp(e) that simplifies an attribute expression e by repeatedly looking
for pairs of conjunctions c1 and c2 in e that differ in the value of a single attribute a and
replacing c1 and c2 with a single conjunction c that agrees with c1 and c2 for all attributes
except a and that maps a to c1(a) ∪ c2(a).

The pseudocode for minExpU also uses an auxiliary function minConjExpU that com-
putes a minimum-sized conjunctive user-attribute expression that characterizes s, with pref-
erence given to attribute expressions that do not use uid. The first for-loop computes a
conjunctive user-attribute expression e that attempts to characterize s without using uid.
If this fails, then uid is needed to characterize s, and the algorithm returns a user-attribute
expression that uses only uid. Otherwise, the algorithm uses e as a starting point for compu-
tation of a minimum-sized user-attribute expression for s that does not use uid. How could
a smaller user attribute expression e′ for s differ from e? It cannot be that some conjunct of
e′ is a strict subset of the corresponding conjunct of e, because then some user in s will not
satisfy that conjunct. The only way that e′ could differ from e is by replacement of some
conjuncts with >. The second for-loop considers all expressions that differ from e in this
way.

Step 3: Generate Constraints for Candidate Roles We take con(r) to contain every
equality that holds between every assigned user and every assigned permission of r. In other
words, for each attribute au in AU and each attribute ap in AP , we add the equality au = ap
to con(r) iff ∀u ∈ assignedU(r). ∀p ∈ assignedP(r). u, p |= au = ap. This is the strictest
constraint that can be associated with r, because any stricter constraint would incorrectly
eliminate some user-permission pairs in assignedUP(r, U, P ). Using the strictest constraint
for each role facilitates merging of roles in the next step.

Step 4: Merge Candidate Roles This step creates additional candidate roles by merg-
ing sets of candidate roles. A set s of roles is mergeable if there exists a role r′ with the
same assigned users, same assigned permissions, and same or larger user-permission assign-
ment as the roles in s collectively, and assignedUP(r′, U, P ) ⊆ UP ′, i.e., if there exists r′

such that assignedU(r′) =
⋃
r∈s assignedU(r) and assignedP(r′) =

⋃
r∈s assignedP(r) and⋃

r∈s assignedUP(r, U, P ) ⊆ assignedUP(r′, U, P ) ⊆ UP ′. Assuming that all roles have dis-
tinct sets of assigned users and permissions (as mentioned in Step 1), s is mergeable only if
there exists a constraint that can be associated with r′ that prevents users assigned to one
of the roles in s from incorrectly gaining permissions assigned to one of the other roles in
s. Thus, to maximize the chance of a successful merge, we identify the strictest constraint
that can be associated with r′ and then check whether it prevents such gaining of permis-
sions. The constraint associated with r′ must not eliminate any user-permission assignment
associated with any role in s. From Step 3, for each role r, con(r) is the strictest constraint
that does not eliminate any user-permission assignment associated with r, so con(r′) must
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function minExpU(s, U):
// compute conjunctive and
// disjunctive user-attribute
// expressions for s, and then
// compare them.

1: ec = {minConjExpU(s, U)}
2: ed = simplifyExp(⋃

u∈s minConjExpU(u, U))
3: if ec does not use uid and ed

uses uid
4: return ec
5: end if
6: if ed does not use uid and ec

uses uid
7: return ed
8: end if
9: if WSC(ec) ≤WSC(ed)
10: return ec
11: else
12: return ed
13: end if

function minConjExpU(s, U):
// check whether uid is needed to
// characterize s in a conjunctive
// user-attribute expression.

14: for a in AU \ {uid}
15: e(a) =

⋃
u∈s fU(u, a)

16: if ⊥ ∈ e(a)
17: e(a) = >
18: end if
19: end for
20: e(uid) = >
21: if [[e]]U 6= s

// uid is necessary (and sufficient) to
// characterize s in a conjunctive
// user-attribute expression.

22: return f∅[uid 7→ ⋃
u∈s fU(u, uid)]

23: end if
// e characterizes s. check if there’s a
// smaller conjunctive user-attribute
// expression that characterizes s.

24: for each non-empty subset A of AU \ {uid}
25: e′ = e[a 7→ > for a in A]
26: if [[e′]]U = s
27: if WSC(e′) < WSC(e)
28: e = e′

29: end if
30: end if
31: end for
32: return e

Figure 3.1: Algorithm to compute minExpU(s), where s is a set of users, and U is the set
of all users. f [x 7→ y] denotes (a copy of) function f modified so that f(x) = y. f∅ denotes
the empty function, i.e., the function whose domain is the empty set.

be weaker (i.e., less strict) than or equal to con(r) for each r in s, so the strictest constraint
that can be associated with r′ is con(r′) =

⋂
r∈s con(r). If the role r′ with the assigned users,

assigned permissions, and constraint specified above satisfies assignedUP(r′, U, P ) ⊆ UP ′

(note that
⋃
r∈s assignedUP(r, U, P ) ⊆ assignedUP(r′, U, P ) holds by construction), then s

is mergeable, and we set uae(r′) = minExpU(assignedU(r′), U) and pae(r′) = minExpP(
assignedP(r′), P ) and then add r′ to Rcan (note that we leave the roles in s in Rcan); if not,
s is not mergeable. Let merge(s) denote the role r′ defined above.

A simple algorithm for this step attempts to merge every subset s of Rcan . We optimize
the algorithm by exploiting a monotonicity property of merge, namely: s ⊆ s′ implies
assignedUP(merge(s), U, P ) ⊆ UPA(merge(s′), U, P ). Thus, if UPA(merge(s)) 6⊆ UP ′, the
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1: R′ = Rcan

// Rmrg contains roles produced by merging.
2: Rmrg = {}

// for each r in R′, remove r from R′, then attempt to merge
// r′ with each remaining role in R′ and each role in Rmrg .

3: for each r in R′

4: R′ = R′ \ {r}
5: for each r′ in R′ ∪ Rmrg

6: r′′ = merge({r, r′})
7: if UPA(r′′) ⊆ UP ′

8: Rmrg = Rmrg ∪ {r′′}
9: end if
10: end for
11: end for
12: Rcan = Rcan ∪ Rmrg

Figure 3.2: Step 4 (Merge Candidate Roles) of elimination algorithm for core PRBAC policy
mining.

algorithm does not attempt to merge supersets s′ of s, because UPA(merge(s′)) 6⊆ UP ′ holds
and hence s′ is not mergeable. The algorithm also exploits the property merge(s ∪ {r}) =
merge({merge(s), r}), which implies that arbitrary merges can be realized by merging in one
role at a time. Pseudo-code for this step appears in Figure 3.2. The general structure of
the code is similar to CompleteMiner [VAW06, VAWG10]. Our implementation incorporates
another optimization, not shown in Figure 3.2. The order in which roles are merged does
not affect the result, so we extend the algorithm to avoid merging the same roles in different
orders. We define an arbitrary total order on roles. For each role r produced by merging,
let maxMerge(r) be the largest role used in the merges that produced r. In line 6, if r′ was
produced by merging, r is merged with r′ only if r > maxMerge(r′).

Step 5 (Optional): Eliminate Unnecessary Constraints For a role r, an equality
in con(r) is unnecessary if removing it from con(r) leaves assignedUP(r) unchanged. This
optional step removes each unnecessary equality from the constraint of each role in Rcan .

Informally, one cannot tell from the given input whether to include unnecessary con-
straints in the PRBAC policy, because they do not affect consistency with the given ACL
policy. Note that these “unnecessary” constraints may have been useful during merging,
because they may help to prevent user-permission assignments from growing when roles are
merged, but they provide no benefit after merging. The argument in favor of removing them
(after merging) is to reduce policy size and hence increase policy quality. The argument in
favor of keeping them is to be more conservative from the security perspective, specifically,
to minimize the risk that the policy grants to a new user a permission that the new user
should not have. This is related to how well the policy generalizes.

We consider this step as optional; in other words, the user decides whether unnecessary
constraints should be removed.
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Step 6: Eliminate Low-Quality Removable Candidate Roles This step eliminates
low-quality removable candidate roles; the remaining roles form the generated PRBAC policy.

A role quality metric is a function Q(r, U, P,R), where r is a new role whose quality is
returned, U and P are the sets of users and permissions, respectively, R is the set of existing
roles, and the range is a totally-ordered set. The ordering is chosen so that large values
indicate high quality (note: this is opposite to the interpretation of the ordering for policy
quality metrics).

Based on our goal of minimizing the generated policy’s WSC, we define a role quality
metric that assigns higher quality to roles with smaller WSC that cover more uncovered
user-permission pairs; “uncovered” means that the user-permission pairs are not covered
by roles in R. We capture this notion of quality using the ratio |uncovUP(r,U,P,R)|

WSC(r)
as the first

component of the role quality metric, where uncovUP(r, U, P,R) is the set of user-permission
pairs covered by r and not covered by roles in R. Among roles with the same value of this
ratio, we assign higher quality to roles that cover more user-permission pairs. We capture
this by using |uncovUP(r, U, P,R)| as the second component of the role quality metric, and
ordering values of the role quality metric lexicographically. In summary, the role quality
metric Q is defined as follows.

uncovUP(r, U, P,R) =
assignedUP(r, U, P ) \ ⋃

r′∈R assignedUP(r′, U, P )

Q(r, U, P,R) = 〈 |uncovUP(r,U,P,R)|
WSC(r)

, |uncovUP(r, U, P,R)|〉

A role r is removable, denoted removable(r, U, P,R), if every user-permission pair covered
by r is also covered by another role in R. Formally,

removable(r, U, P,R) =
assignedUP(r, U, P ) ⊆ ⋃

r′∈R\{r} assignedUP(r′, U, P )

Pseudo-code for step 6 appears in Figure 3.3. In each iteration, R contains roles currently
known to be in the result policy, and Rcan contains roles that might later get added to the
result policy. The algorithm evaluates removability of a role with respect to Rcan∪R (instead
of R), in order to minimize the set of roles considered unremovable; this leaves more roles
in Rcan , eligible for removal, and therefore leads to better policy quality. The algorithm
evaluates role quality with respect to R, because this provides a better estimate of the role’s
quality in the final policy.

3.3.2 Mining Core PRBAC Policies: Selection Algorithm

Steps 1–5 of the selection algorithm for mining core PRBAC policies are the same as in the
elimination algorithm for mining core PRBAC policies in Section 3.3.1. Step 6 is as follows.

Step 6: Select Roles This step selects candidate roles for inclusion in the generated
policy. It selects roles from highest quality to lowest, until every pair in the user-permission
relation in the given ACL policy is covered. It uses the same role quality metric as Step 6
of the elimination algorithm in Section 3.3.1. Pseudo-code for this step is as follows.
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1: R = ∅
2: while UPA(〈U, P,R〉) 6= UP

// move unremovable roles from candidates Rcan to result R.
3: Runrm = {r ∈ Rcan | ¬removable(r, U, P,Rcan ∪R)}
4: Rcan = Rcan \Runrm

5: R = R ∪Runrm

// discard the lowest-quality candidate role
6: if ¬empty(Rcan)
7: rmin = a role in Rcan with minimal quality, i.e.,
8: ∀r ∈ Rcan . Q(rmin, U, P,R) ≤ Q(r, U, P,R).
9: Rcan = Rcan \ {rmin}
10: end if
11: end while
12: return 〈U, P,R〉

Figure 3.3: Step 6 (Eliminate Low-Quality Removable Candidate Roles) of elimination al-
gorithm for core PRBAC policy mining.

1: R = ∅
2: while UPA(〈U, P,R〉) 6= UP
3: rmax = a role in Rcan with maximal quality, i.e.,
4: ∀r ∈ Rcan . Q(rmax, U, P,R) ≥ Q(r, U, P,R).
5: R = R ∪ {rmax}
6: Rcan = Rcan \ {rmax}
7: end while
8: return 〈U, P,R〉

3.3.3 Mining Hierarchical PRBAC Policies: Elimination Algo-
rithm

Steps 1–5 of this algorithm are the same as in the core PRBAC policy mining algorithm in
Section 3.3.1. The remaining steps are as follows.

Step 6: Compute Role Hierarchy This step computes all possible role hierarchy re-
lations between candidate roles. Let r1 ≺ r2 if r1 6= r2 ∧ assignedP(r1) ⊆ assignedP(r2) ∧
assignedU(r1) ⊇ assignedU(r2). Let RH all be the transitive reduction of ≺.

Step 7: Generate Result Policy This step starts by storing some current informa-
tion about each candidate role in auxiliary data structures. Specifically, let authU0(r) =
assignedU(r) and authP0(r) = assignedP(r) and authUP0(r) = assignedUP(r). Note that
the assigned users and permissions might change as we generate the hierarchical policy,
because some assigned users and permissions might become inherited instead. In con-
trast, the authorized users and permissions of each role r never change, always remaining
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equal to authU0(r) and authP0(r), respectively. Similarly, assignedUP(r) might change, but
authUP(r) always remains equal to authUP0(r).

Our algorithm always generates policies with full inheritance [XS12]. This implies that
a role hierarchy edge in RH all is included in the result policy whenever the roles that it
connects are included in the policy. Therefore, we associate with each candidate role the
cost (WSC) of the edges that will be added to the policy if that role is added. We define
a size metric on roles that reflects this: for a role r in Rcan , and a set R of roles that have
already been selected to be in the result policy,

sizeof(r, R,RH all) =
WSC(r) + w4

2
|{r′ ∈ R | 〈r, r′〉 ∈ RH all ∨ 〈r′, r〉 ∈ RH all}|

The coefficient w4

2
(recall that w4 is introduced in Section 3.2) reflects that half of the cost

of each inheritance relationship is attributed to each of the involved roles.
We define a role quality metric QH(r, R,RH ) similar to the metric in the non-hierarchical

case, except using sizeof instead of WSC and using authUP0(r) instead of assignedUP(r).

uncovUPH(r, R) = authUP0(r) \
⋃
r′∈R

authUP0(r′)

QH(r, R,RH ) =
|uncovUPH(r, R)|

sizeof(r,RH )

We define a function removable similar to the one in the non-hierarchical case, except
using authUP0(r) instead of assignedUP(r).

removableH(r, R) = authUP0(r) ⊆
⋃

r′∈R\{r}
authUP0(r′)

Pseudo-code for this step appears in Figure 3.5. It is similar to the pseudo-code in
Figure 3.3 for Step 6 of the elimination algorithm for mining core PRBAC policies. The
main difference is that this algorithm calls minExpU and minExpP to update uae(r) and
pae(r), respectively, after roles have been added to the set R of roles that will be included
in the generated policy. This reflects the fact that, in the presence of role hierarchy, we
are free to choose assignedU(r) in a way that minimizes the WSC of the policy, provided
authU(r, U,R,RH ) remains equal to authU0(r), and similarly for assignedP(r).

minExpUH(r, U,R,RH ) returns a minimum-sized user attribute expression for r that
excludes users that can be inherited from other roles in R along edges in RH if excluding
those users reduces WSC(uae(r)); this is legitimate, because the sets of users assigned to
and inherited by a role may overlap. Let inheritedU(r, R,RH ) denote the set of users that
r inherits, i.e.,

inheritedU(r, R,RH ) =
⋃

r′∈ancestors(r,R,RH )

authU0(r′).

Ideally, minExpUH(r, U,R,RH ) would find a subset s of inheritedU(r) that minimizes
WSC(minExpU(authU0(r) \ s)) and return minExpU(authU0(r) \ s). In practice, trying all
subsets s of inheritedU(r, R,RH ) would be too slow. An obvious heuristic approximation
is to try only the extrema—in other words, only s = ∅ and s = inheritedU(r, R,RH ).
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We adopt a heuristic approximation, shown in Figure 3.4 that is somewhat more thorough
and correspondingly more expensive: it is exponential in the number of attributes, but
polynomial in the number of users. Similar to our algorithm for minExpU in Figure 3.1, it
starts by constructing an upper-bound expression e (for authU0(r)) without using uid and
then considers the expressions obtained setting to > the conjuncts of e corresponding to
each subset of the attributes. However, instead of simply checking whether the resulting
expression now denotes a larger set or still denotes the same set (namely, authU0(r)) as
in Fig 3.1, it exploits the flexibility that the expression may characterize any set between
authU0(r)\inheritedU(r) and authU0(r), by removing values from conjuncts of e (in order to
make the denoted set smaller, partially counteracting the effect of setting some conjuncts to
>), provided the resulting expression still represents a superset of authU0(r)\ inheritedU(r),
and then checks whether the resulting expression characterizes a set in the required range. If
this fails to produce an expression representing a set in the required range, then an expression
using uid is constructed.

minExpPH(r, P,R,RH ) is defined similarly, except using inheritedP(r, R,RH ) instead of
inheritedU(r, R,RH ), where inheritedP(r, R,RH ) =

⋃
r′∈descendants(r,R,RH ) authP0(r′).

Because we minimize WSC(uae(r)) and WSC(pae(r)) instead of assignedU(r) and assignedP(r),
some inheritance relationships might become useless, if the users and permissions inherited
by a role r through those relationships are also in assignedU(r) and assignedP(r), respec-
tively. Such inheritance relationships could be eliminated without changing authUP(r). We
leave such relationships in the policy, because we want to generate policies with complete
inheritance, as mentioned above. To illustrate the benefits of this approach, consider a prob-
lem instance in which there are user attributes indicating which users are employees (e.g.,
isEmployee = true) and which users are faculty (e.g., position = faculty), and that all faculty
are employees. Suppose role mining produces roles corresponding to employee and faculty.
If the assigned users of the employee role are characterized by isEmployee = true, then users
in the faculty role are assigned users of the employee role, so an inheritance relationship
between these roles is useless and could be eliminated, but this inheritance relationship is
semantically meaningful and natural, so it is better to keep it in the policy.

3.3.4 Mining Hierarchical PRBAC Policies: Selection Algorithm

Steps 1–5 of this algorithm are the same as in the elimination algorithm for mining hierar-
chical PRBAC policies in Section 3.3.3. Step 6 is as follows.

Step 6: Select Roles Pseudo-code for this step appears in Figure 3.6. It is similar to the
pseudocode for Step 6 of the selection algorithm for mining core PRBAC policies in Section
3.3.2. The main differences are the addition of the for-loop to adjust the user-attribute
expressions and permission-attribute expressions of previously selected roles when another
role is selected, and the addition of the call to finalizePolicy at the end.

3.3.5 Complexity Analysis

This complexity analysis applies to all four of the above algorithms. The running time of
CompleteMiner in Step 1 is worst-case exponential in |P | but acceptable in practice, based
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function minExpUH(r, U,R,RH ):
// try to construct an expression representing a set
// in the required range, without using uid

1: for a in AU \ {uid}
2: e(a) =

⋃
u∈authU0(r) fU(u, a)

3: if ⊥ ∈ e(a)
4: e(a) = >
5: end if
6: end for
7: e(uid) = >
8: for each non-empty subset A of AU
9: e′ = e[a 7→ > for a in A]
10: // try to remove values from conjuncts of e′

11: for a in AU \ A
12: for v in e(a)
13: e′′ = e′[a 7→ e′(a) \ {v}]
14: if isInRange(e′′, r, R,RH )
15: e′ = e′′

16: end if
17: end for
18: end for
19: if isInRange(e′, r, R,RH ) ∧WSC(e′) < WSC(e)
20: e = e′

21: end if
22: end for
23: if isInRange(e, r, R,RH )
24: return e
25: end if

// uid is need to represent a set in the required range. Choose
// the smallest set in that range, to get the smallest expression.

26: return f∅[uid 7→ ⋃
u∈authU0(r)\inheritedU(r,R,RH ) fU(u, uid)]

// check whether [[e]]U is in the required range
function isInRange(e,r,R,RH):

27: return authU0(r) \ inheritedU(r, R,RH ) ⊆ [[e]]U ∧ [[e]]U ⊆ authU0(r)

Figure 3.4: Algorithm for minExpUH(r, U,R,RH ).

on our experience applying it to small inputs in this work and larger inputs in previous work
[XS12]. Let Rcan(i) denote the value of Rcan after Step i; note that |Rcan(i)| is worst-case
exponential in the size of the input policy. The running time of Step 2 is O(|Rcan(1)| ×
(2|AU |+ 2|AP |)). The running time of Step 3 is O(|Rcan(2)| × |AU | × |AP |). The running time
of Step 4 is O(2|Rcan (3)|), since every subset of Rcan(3) is explored in the worst case; however,
the optimizations in Step 4 greatly reduce the number of explored subsets in our case studies.
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1: R = ∅
2: while UPA(〈U, P,R,RH 〉) 6= UP

// move unremovable roles from candidates Rcan to result R.
3: Runrm = {r ∈ Rcan | ¬removableH(r, Rcan ∪R)}
4: Rcan = Rcan \Runrm

5: R = R ∪Runrm

// update uae and pae of candidate roles, based on updated R
6: for r in Rcan

7: uae(r) = minExpUH(r, R,RH all)
8: pae(r) = minExpPH(r, R,RH all)
9: end for

// discard the lowest-quality candidate role
10: if ¬empty(Rcan)
11: rmin = a role in Rcan with minimal quality, i.e.,
12: ∀r ∈ Rcan . QH(rmin, R,RH ) ≤ QH(r, R,RH ).
13: Rcan = Rcan \ {rmin}
14: remove tuples containing rmin from RH all

15: end if
16: end while
17: finalizePolicy(R,RH all)

function finalizePolicy(R,RH all):
// adjust uae and pae of roles in policy, based on final role hierarchy, to reduce WSC.

18: for r in R
19: uae(r) = minExpUH(r, R,RH all)
20: pae(r) = minExpPH(r, R,RH all)
21: end for
22: RH = {〈r, r′〉 ∈ RH all | r ∈ R ∧ r′ ∈ R}
23: return 〈U, P,R,RH 〉

Figure 3.5: Step 6 (Eliminate Low-Quality Removable Candidate Roles) of elimination al-
gorithm for hierarchical PRBAC policy mining.

Steps 5, 6, and 7 are polynomial in |Rcan(4)|, |Rcan(5)|, and |Rcan(6)|, respectively.

3.4 Case Studies

This section describes the PRBAC policies we developed as case studies to illustrate our
policy language and evaluate our algorithms.

The policies are written in a concrete syntax with the following kinds of statements.
uae(r, e) associates conjunctive user-attribute expression e with role r. pae(r, e) associates
conjunctive permission-attribute expression e with role r. The overall user attribute expres-
sion associated with role r is the disjunction of the expressions in the uae statements for r;
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1: R = ∅
2: while UPA(〈U, P,R,RH 〉) 6= UP

// select the highest quality candidate role
3: rmax = a role in Rcan with maximal quality, i.e.,
4: ∀r ∈ Rcan . QH(rmax, R,RH all) ≥ QH(r, R,RH all).
5: R = R ∪ {rmax}
6: Rcan = Rcan \ {rmax}

// update uae and pae of candidate roles, based on updated R
7: for r in Rcan

8: uae(r) = minExpUH(r, U,R,RH all)
9: pae(r) = minExpPH(r, U,R,RH all)
10: end for
11: end while
12: finalizePolicy(R,RH all)

Figure 3.6: Step 6 (Select Roles) of selection algorithm for hierarchical PRBAC policy min-
ing.

similarly for the permission-attribute expression. con(r, c) associates constraint c with role
r. rh(r, r′) means that r is junior to r′. userAttrib(u, a1 = v1, a2 = v2, . . .) means that,
for user u, attribute a1 has value v1, attribute a2 has value v2, etc.; uid = u is implicit.
permAttrib(p, a1 = v1, a2 = v2, . . .) is the analogous statement for permissions.

In each policy, we included only a few users in each “role instance”, e.g., two or three
users in each department. This provides sufficient data for the algorithm to discover the
patterns, i.e., the parameterization. Increasing the number of users in each role instance
only helps the algorithm, by providing stronger evidence for each pattern.

These case studies are small in size but non-trivial in structure. They includes roles with
membership specified using uid, roles with membership specified using other attributes,
roles with overlapping membership, roles with disjoint membership, roles with multiple pae
statements, roles with constraints with multiple conjuncts, linear role hierarchy, diamond-
shaped role hierarchy, etc.

University Case Study Our university case study controls access to gradebooks and
course schedules. The policy appears in Figure 3.7, except that most of the userAttrib and
permAttrib statements are omitted, to save space. For convenience, we give users names
such as csStu1 and eeStu1, instead of Alice and Bob. User attributes include: position (stu-
dent, faculty, or staff), dept (the user’s academic or administrative department), crsTaken
(course number of course being taken by a student; to keep the example small, we assume
the student is taking at most one course, and it is in the student’s department), crsTaught
(course number of course taught by a faculty or TA; same assumptions as for crsTaken).
Permission attributes include: resource (resource to which the operation is applied), op-
eration (requested operation), dept (department to which the resource belongs), crsNum
(number of the course that the resource is for), and student (student whose scores are read,
for operation=readScoreStudent). The conjunct crsTaken=crsNum in the constraint for the
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Student role ensures that students can apply the readScoreStudent operation only to courses
the student is taking. This is not essential, but it is natural and is advisable according to
the defense-in-depth principle.

// 1. Student Role
uae(Student, position=student)
// Student can read his own scores
// in gradebook for course he is
// taking.
pae(Student,

operation=readScoreStudent
and resource=gradebook)

con(Student, dept=dept and
crsTaken=crsNum and
uid=student)

// 2. Teaching Assistant (TA) Role
uae(TA, uid in {csStu2, eeStu2,

csStu3, eeStu3})
// TA can add and read scores for
// any student in gradebook for
// course he/she is teaching.
pae(TA, operation in {addScore,

readScore} and
resource=gradebook)

con(TA, dept=dept and
crsTaught=crsNum)

// 3. Instructor Role
uae(Instructor, uid in {csFac1,

csFac2, eeFac1, eeFac2})
// Instructor can change a score
// and assign a course grade in
// gradebook for course he/she
// is teaching.
pae(Instructor, operation in
{changeScore, assignGrade} and
resource=gradebook)

con(Instructor, dept=dept and

crsTaught=crsNum)
rh(TA, Instructor)

// 4. Department Chair Role
uae(Chair, uid in {csChair, eeChair})
// Chair can read and write course
// schedule for his/her department.
pae(Chair, operation in {read, write}

and resource=courseSchedule)
// Chair can assign grades for courses
// in his/her department.
pae(Chair, operation=assignGrade

and resource=gradebook)
con(Chair, dept=dept)

// 5. Registrar Role
uae(Registrar, dept=registrar)
// Staff in registrar’s office can modify
// course schedules for all departments.
pae(Registrar, operation=write and

resource=courseSchedule)

// User Attribute Data. The userAttrib
// statement for one user is shown here.
// The full policy contains 19 users.
userAttrib(csStu1, position=student,

dept=cs, crsTaken=101)

// Permission Attribute Data.
// The permAttrib statement for
// one permission is shown here.
// The full policy contains 26 permissions.
permAttrib(cs101addScore, dept=cs,

crsNum=101, operation=addScore,
resource=gradebook)

Figure 3.7: University case study

Healthcare Case Study Our healthcare case study controls access to items in electronic
health records. The policy appears in Figure 3.8, except that most of the userAttrib and
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permAttrib statements are omitted, to save space. User attributes include: position (doctor
or nurse; for other users, this attribute equals ⊥); ward (the ward a patient or nurse is in),
specialty (the medical specialty of a doctor), team (the medical team a doctor is in), and
agentFor (the patient for which a user is an agent). Permissions for access to a health record
have resource=HR (“HR” is short for “health record”). Other attributes of permissions for
health records include: operation (the requested operation), patient (the patient that the
HR is for), topic (the medical specialty to which the HR item is related), treatingTeam (the
team of doctors treating the patient the HR is for), and ward (the ward housing the patient
that the HR is for).

Engineering Department Case Study Our engineering department case study controls
access to project-related documents. It is based on the running example in [SBM99]. The
policy appears in Figure 3.9, except that most of the userAttrib and permAttrib statements
are omitted, to save space. The role hierarchy is a lattice: it has a diamond shape. User
attributes include: dept (the user’s department), project (the project the user is involved
in; to keep the example small, we assume the user is involved in at most one project, and
it is in the user’s department), and specialty (the user’s specialty, e.g., testing). Permission
attributes include: resource (resource to which the operation is applied), operation (requested
operation), dept (department to which the resource belongs), and project (project to which
the resource belongs).

3.5 Evaluation

This section describes an evaluation of the effectiveness of our algorithms, based on the case
studies in Section 3.4. For each case study, we generated an equivalent ACL policy and
an attribute data file from the PRBAC policy, ran our hierarchical PRBAC policy mining
algorithms on the resulting ACL policy and attribute data, and then compared the generated
PRBAC policy to the original PRBAC policy.

The same methodology could be applied starting with synthetic (i.e., pseudo-randomly
generated) PRBAC policies. We did not do this, for two reasons. First, it is difficult to
generate “realistic” synthetic policies, so effectiveness of our algorithm on synthetic poli-
cies might not be representative of its effectiveness on real policies. Second, it is difficult
to evaluate the effectiveness of our algorithms on synthetic policies: in case of differences
between the synthetic policy and the mined policy, there would be no basis for determining
which one is better (for example, the synthetic policy might be unnecessarily complicated,
and the mined policy might be better). We could determine which policy has lower WSC,
but minimizing WSC is just a heuristic aimed at helping the algorithm discover high-level
structure, and we do not know what the best high-level structure is for synthetic policies.
Ideally, we would evaluate the algorithms on access control policies in actual use, but we
do not know of any publicly available deployed access control policies with accompanying
attribute data.

In summary, for all three case studies, the selection algorithm for mining hierarchical
PRBAC policies, without optional Step 5 (Eliminate Unnecessary Constraints), successfully
reconstructs the original PRBAC policy from the ACLs and attribute data.
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// 1. Nurse Role
uae(Nurse, position=nurse)
// Nurse can read and add HR
// items with topic=general for
// patients in his/her ward.
pae(Nurse, resource=HR and

operation in {readItem, addItem}
and topic=general)

con(Nurse, ward=ward)

// 2. Doctor Role
uae(Doctor, position=doctor)
// Doctor can read and add HR
// items related to his specialty
// for patients being treated
// by his/her team.
pae(Doctor, resource=HR and

operation in {readItem, addItem})
con(Doctor, team=treatingTeam

and specialty=topic)

// 3. Patient Role
uae(Patient, uid in {oncPat1,

oncPat2, carPat1, carPat2})
// A patient can read and add items
// with topic=patientNote in his/her
// HR.
pae(Patient, resource=HR and

operation in
{readItem, addItem} and
topic=patientNote)

con(Patient, uid=patient)

// 4. Agent Role
uae(Agent, uid in {agent1, agent2})
// Agent can add an item with
// topic=agentNote in HR for
// patient whose agent he/she is.
pae(Agent, resource=HR and

operation=addItem and
topic=agentNote)

// Agent can read an item with topic
// patientNote or agentNote in HR for
// patient whose agent he/she is.
pae(Agent, resource=HR and

operation=readItem and
topic in {patientNote, agentNote})

con(Agent, agentFor=patient)

// User Attribute Data. The userAttrib
// statement for one user is shown here;
// the full policy contains 14 users.
userAttrib(oncNurse1, position=nurse,

ward=oncWard)

// Permission Attribute Data.
// The permAttrib statement for
// one permission is shown here;
// the full policy contains 24
// permissions.
permAttrib(rdOncItemOncPat1,

resource=HR, operation=readItem,
patient=oncPat1, topic=oncology,
treatingTeam=oncTeam1,
ward=oncWard)

Figure 3.8: Healthcare case study

We implemented the algorithms in Java and ran them on a laptop with an Intel Core
i3 2.13 GHz CPU. In our experiments, all weights wi in the definition of WSC are equal
to 1. Table 3.10 shows, for each case study, several size metrics and the running times of
both algorithms. The “|Rcan |” column contains the size of Rcan after Step 4. The “Time”
column contains the running times (in seconds) for the elimination and selection algorithms,
respectively, for mining hierarchical PRBAC policies and including the optional Step 5. We
also measured the running time of each step. In all cases except one, Step 4 is the most
expensive step; the one exception is the elimination algorithm on the university case study,
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// 1. Engineer Role
// In this example, all users are
// engineers.
uae(Engineer, true)
// Engineer can read the project
// plan and test plan for the project
// he/she is working on.
pae(Engineer, operation=read and

resource in {projectPlan,
testPlan})

con(Engineer, dept=dept and
project=project)

// 2. ProductionEngineer Role
uae(ProductionEngineer,

specialty=production)
// Production Engineer can write
// the project plan for the project
// he/she is working on.
pae(ProductionEngineer,

operation=write and
resource=projectPlan)

con(ProductionEngineer, dept=dept
and project=project)

rh(Engineer, ProductionEngineer)

// 3. QualityEngineer Role
uae(QualityEngineer,

specialty=testing)
// Quality Engineer can write the
// test plan for the project he/she

// is working on.
pae(QualityEngineer, operation=write

and resource=testPlan)
con(QualityEngineer, dept=dept

and project=project)
rh(Engineer, QualityEngineer)

// 4. ProjectLead Role
uae(ProjectLead, specialty=management)
// Project Lead can create a budget for
// the project he/she is leading.
pae(ProjectLead, operation=create

and resource=budget)
con(ProjectLead, dept=dept and

project=project)
rh(ProductionEngineer, ProjectLead)
rh(QualityEngineer, ProjectLead)

// User Attribute Data. The userAttrib
// statement for one user is shown here;
// the full policy contains 14 users.
userAttrib(qe1, dept=ads,

project=alpha, specialty=testing)

// Permission Attribute Data.
// The permAttrib statement for
// one permission is shown here;
// the full policy contains 10 permissions.
permAttrib(rpa1, dept=ads,

project=alpha, operation=read,
resource=projectPlan)

Figure 3.9: Engineering department case study

Case Study |U | |P | |UP | |AU | |AP | |Rcan | |R| Time
university 19 26 42 4 5 203 5 2.1 1.2
healthcare 14 24 42 5 6 42 4 .55 .43
eng. dept. 14 10 42 3 4 24 4 .21 .19

Figure 3.10: Running times and size metrics for case studies.
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for which Step 7 is the most expensive step.

Results of university case study We ran the elimination and selection algorithms on
ACLs and attribute data generated from the university case study. Without Step 5 (Elim-
inate Unnecessary Constraints), the selection algorithm reconstructs the original PRBAC
policy. The elimination algorithm does slightly worse, producing two roles, corresponding to
TAs for CS101 and CS601, instead of a single parameterized TA role. With Step 5 (Elimi-
nate Unnecessary Constraints), the output of the elimination algorithm stays the same, and
the output of the selection algorithm becomes the same as the output of the elimination
algorithm.

Results of healthcare case study We ran the elimination and selection algorithms on
ACLs and attribute data generated from the healthcare case study. Without Step 5 (Elim-
inate Unnecessary Constraints), both algorithms reconstruct the original PRBAC policy.
With Step 5 (Eliminate Unnecessary Constraints), the elimination algorithm still recon-
structs the original PRBAC policy, but the selection algorithm does slightly worse, producing
two roles, corresponding to cardiologists and oncologists, instead of a single parameterized
Doctor role.

Results of engineering department case study We ran the elimination and selec-
tion algorithms on ACLs and attribute data generated from the engineering department
case study. The selection algorithm reconstructs the original PRBAC policy. The elimi-
nation algorithm reconstructs the ProductionEngineer and ProjectLead roles, but each of
the other two roles in the resulting policy contain some general engineers and some quality
engineers. For both algorithms, the results are unaffected by Step 5 (Eliminate Unnecessary
Constraints).

Limitations Our algorithm does not reconstruct the original policy for some variants of
the health care case study, because CompleteMiner does not generate the candidate roles
that need to be merged to produce the original roles. For example, suppose we modify
the policy so that a patient’s agent has all permissions of that patient, plus some agent-
specific permissions. As a result, the agent’s permissions are a superset of the patient’s
permissions, and the roles generated by CompleteMiner all have the property that, if the
role contains the patient, then it also contains the agent. This prevents subsequent steps
of the algorithm from discovering a parameterized patient role, because different constraints
are needed for patients and agents, as one can see from the patient and Agent roles in Figure
3.8. To overcome this limitation, Step 1 should be extended to take attribute information
into account when generating candidate roles.

3.6 Related Work

We are not aware of any prior work on policy mining for PRBAC or ABAC. Our policy mining
algorithms build on two pieces of prior work on role mining for RBAC: Vaidya, Atluri, and
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Warner’s CompleteMiner algorithm for generating candidate roles [VAW06, VAWG10], and
Xu and Stoller’s elimination and selection algorithms for deciding which candidate roles to
include in the final policy [XS12]. The novel part of our algorithms are the middle steps, in
which constraint generation and role merging are used to discover parameterization.

Xu and Stoller’s elimination algorithm is partly inspired by Molloy et al.’s Hierarchi-
cal Miner algorithm for mining roles with semantic meaning based on user-attribute data
[MCL+10]. Colantonio et al. developed a different method for taking user-attribute data
into account during role mining; their method partitions the set of users based on the values
of selected attributes, and then performs role mining separately for each of the resulting sets
of users [CDV12].

We use role quality and policy quality metrics based on weighted structural complexity
[MCL+10]. Other role quality and policy quality metrics have been proposed. Colantonio
et al. proposed metrics that measure how well roles fit the hierarchical structures of an
organization and its business processes [CDPOV09]. These metrics could be incorporated
in our algorithm. Qi al. proposed a metric for optimality of role hierarchies and an effi-
cient heuristic algorithm for mining role hierarchies based on that metric [GVA08]. Their
work could be extended to accommodate parameters and combined with our approach to
discovering parameterized roles.

Several access control frameworks that support some form of parameterized roles have
been proposed. The earliest ones are by Giuri and Iglio [GI97] and Lupu and Sloman [LS97];
the role templates and policy templates, respectively, in these frameworks support parame-
terized roles. More recently, Ge and Osborn [GO04] and Li and Mao [LM07] proposed RBAC
frameworks with parameterized roles. The most visible difference between parameterization
in these frameworks and ours is that role parameters are explicit in these frameworks but
implicit in ours. However, this difference is more superficial than significant: our approach
to PRBAC policy mining can be adapted to PRBAC frameworks with explicit parameters.

45



Chapter 4

Mining Attribute-based Access
Control Policies from ACLs

In this chapter, we first define an expressive ABAC framework that contains all of the
common ABAC policy language constructs. Next we present an algorithm for mining ABAC
policies from ACLs, user attributes, and resource attributes. To the best of our knowledge, it
is the first policy mining algorithm for any ABAC framework. We also describe extensions of
the algorithm to identify suspected noise in the input data. We then evaluate our algorithm
on several manually written case studies and randomly generated synthetic policies of varying
size. We discuss related work at the end of this chapter.

4.1 ABAC policy language

This section presents our ABAC policy language. We do not consider policy administration,
since our goal is to mine a single ABAC policy from the current low-level policy. We present a
specific concrete policy language, rather than a flexible framework, to simplify the exposition
and evaluation of our policy mining algorithm, although our approach is general and can
be adapted to other ABAC policy languages. Our ABAC policy language contains all of
the common ABAC policy language constructs, except arithmetic inequalities and negation.
Extending our algorithm to handle those constructs is future work. The policy language
handled in this paper is already significantly more complex than policy languages handled
in previous work on security policy mining.

ABAC policies refer to attributes of users and resources. Given a set U of users and
a set Au of user attributes, user attribute data is represented by a function du such that
du(u, a) is the value of attribute a for user u. There is a distinguished user attribute uid
that has a unique value for each user. Similarly, given a set R of resources and a set Ar of
resource attributes, resource attribute data is represented by a function dr such that dr(r, a)
is the value of attribute a for resource r. There is a distinguished resource attribute rid
that has a unique value for each resource. We assume the set Au of user attributes can be
partitioned into a set Au,1 of single-valued user attributes which have atomic values, and a
set Au,m of multi-valued user attributes whose values are sets of atomic values. Similarly, we
assume the set Ar of resource attributes can be partitioned into a set Ar,1 of single-valued
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resource attributes and a set of Ar,m of multi-valued resource attributes. Let Vals be the set of
possible atomic values of attributes. We assume Vals includes a distinguished value ⊥ used
to indicate that an attribute’s value is unknown. The set of possible values of multi-valued
attributes is Valm = Set(Vals \ {⊥}) ∪ ⊥, where Set(S) is the powerset of set S.

Attribute expressions are used to express the sets of users and resources to which a rule
applies. A user-attribute expression (UAE) is a function e such that, for each user attribute
a, e(a) is either the special value >, indicating that e imposes no constraint on the value
of attribute a, or a set (interpreted as a disjunction) of possible values of a excluding ⊥ (in
other words, a subset of Vals \ {⊥} or Valm \ {⊥}, depending on whether a is single-valued
or multi-valued). We refer to the set e(a) as the conjunct for attribute a. We say that
expression e uses an attribute a if e(a) 6= >. Let attr(e) denote the set of attributes used
by e. Let attr1(e) and attrm(e) denote the sets of single-valued and multi-valued attributes,
respectively, used by e.

A user u satisfies a user-attribute expression e, denoted u |= e, iff (∀a ∈ Au,1. e(a) =
> ∨ ∃v ∈ e(a). du(u, a) = v) and (∀a ∈ Au,m. e(a) = > ∨ ∃v ∈ e(a). du(u, a) ⊇ v). For
multi-valued attributes, we use the condition du(u, a) ⊇ v instead of du(u, a) = v because
elements of a multi-valued user attribute typically represent some type of capabilities of a
user, so using ⊇ expresses that the user has the specified capabilities and possibly more.

For example, suppose Au,1 = {dept, position} and Au,m = {courses}. The function e1 with
e1(dept) = {CS} and e1(position) = {grad, undergrad} and e1(courses) = {{CS101,CS102}}
is a user-attribute expression satisfied by users in the CS department who are either graduate
or undergraduate students and whose courses include CS101 and CS102 (and possibly other
courses).

We introduce a concrete syntax for attribute expressions, for improved readability in
examples. We write a user attribute expression as a conjunction of the conjuncts not equal
to >. Suppose e(a) 6= >. Let v = e(a). When a is single-valued, we write the conjunct for a
as a ∈ v; as syntactic sugar, if v is a singleton set {s}, we may write the conjunct as a = s.
When a is multi-valued, we write the conjunct for a as a ⊇∈ v (indicating that a is a superset
of an element of v); as syntactic sugar, if v is a singleton set {s}, we may write the conjunct
as a ⊇ s. For example, the above expression e1 may be written as dept = CS ∧ position ∈
{undergrad, grad}∧courses ⊇ {CS101,CS102}. For an example that uses ⊇∈, the expression
e2 that is the same as e1 except with e2(courses) = {{CS101}, {CS102}} may be written as
dept = CS∧position ∈ {undergrad, grad}∧courses ⊇∈ {{CS101}, {CS102}}, and is satisfied
by graduate or undergraduate students in the CS department whose courses include either
CS101 or CS102.

The meaning of a user-attribute expression e, denoted [[e]]U , is the set of users in U that
satisfy it: [[e]]U = {u ∈ U | u |= e}. User attribute data is an implicit argument to [[e]]U . We
say that e characterizes the set [[e]]U .

A resource-attribute expression (RAE) is defined similarly, except using the set Ar of
resource attributes instead of the set Au of user attributes. The semantics of RAEs is defined
similarly to the semantics of UAEs, except simply using equality, not ⊇, in the condition for
multi-valued attributes in the definition of “satisfies”, because we do not interpret elements
of multi-valued resource attributes specially (e.g., as capabilities).

In ABAC policy rules, constraints are used to express relationships between users and
resources. An atomic constraint is a formula f of the form au,m ⊇ ar,m, au,m 3 ar,1, or
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au,1 = ar,1, where au,1 ∈ Au,1, au,m ∈ Au,m, ar,1 ∈ Ar,1, and ar,m ∈ Ar,m. The first two forms
express that user attributes contain specified values. This is a common type of constraint,
because user attributes typically represent some type of capabilities of a user. Other forms
of atomic constraint are possible (e.g., au,m ⊆ ar,m) but less common, so we leave them for
future work. Let uAttr(f) and rAttr(f) refer to the user attribute and resource attribute,
respectively, used in f . User u and resource r satisfy an atomic constraint f , denoted
〈u, r〉 |= f , if du(u, uAttr(f)) 6= ⊥ and dr(u, rAttr(f)) 6= ⊥ and formula f holds when the
values du(u, uAttr(f)) and dr(u, rAttr(f)) are substituted in it.

A constraint is a set (interpreted as a conjunction) of atomic constraints. User u and
resource r satisfy a constraint c, denoted 〈u, r〉 |= c, if they satisfy every atomic constraint
in c. In examples, we write constraints as conjunctions instead of sets. For example, the
constraint “specialties ⊇ topics ∧ teams 3 treatingTeam” is satisfied by user u and resource
r if the user’s specialties include all of the topics associated with the resource, and the set
of teams associated with the user contains the treatingTeam associated with the resource.

A user-permission tuple is a tuple 〈u, r, o〉 containing a user, a resource, and an operation.
This tuple means that user u has permission to perform operation o on resource r. A user-
permission relation is a set of such tuples.

A rule is a tuple 〈eu, er, O, c〉, where eu is a user-attribute expression, er is a resource-
attribute expression, O is a set of operations, and c is a constraint. For a rule ρ = 〈eu, er, O, c〉,
let uae(ρ) = eu, rae(ρ) = er, ops(ρ) = O, and con(ρ) = c. For example, the rule 〈true,
type=task ∧ proprietary=false, {read, request}, projects 3 project ∧ expertise ⊇ expertise〉
used in our project management case study can be interpreted as “A user working on a
project can read and request to work on a non-proprietary task whose required areas of
expertise are among his/her areas of expertise.” User u, resource r, and operation o satisfy
a rule ρ, denoted 〈u, r, o〉 |= ρ, if u |= uae(ρ) ∧ r |= rae(ρ) ∧ o ∈ ops(ρ) ∧ 〈u, r〉 |= con(ρ).

An ABAC policy is a tuple 〈U,R,Op, Au, Ar, du, dr,Rules〉, where U , R, Au, Ar, du, and
dr are as described above, Op is a set of operations, and Rules is a set of rules.

The user-permission relation induced by a rule ρ is [[ρ]] = {〈u, r, o〉 ∈ U×R×Op | 〈u, r, o〉 |=
ρ}. Note that U , R, du, and dr are implicit arguments to [[ρ]].

The user-permission relation induced by a policy π with the above form is [[π]] =
⋃
ρ∈Rules [[ρ]].

4.2 The ABAC Policy Mining Problem

An access control list (ACL) policy is a tuple 〈U,R,Op,UP0〉, where U is a set of users, R
is a set of resources, Op is a set of operations, and UP0 ⊆ U ×R×Op is a user-permission
relation, obtained from the union of the access control lists.

An ABAC policy π is consistent with an ACL policy 〈U, P,Op,UP0〉 if they have the
same sets of users, resource, and operations and [[π]] = UP0.

An ABAC policy consistent with a given ACL policy can be trivially constructed, by
creating a separate rule corresponding to each user-permission tuple in the ACL policy,
simply using uid and rid to identify the relevant user and resource. Of course, such an
ABAC policy is as verbose and hard to manage as the original ACL policy. This observation
forces us to ask: among ABAC policies semantically consistent with a given ACL policy π0,
which ones are preferable? We adopt two criteria.

48



One criterion is that policies that do not use the attributes uid and rid are preferable,
because policies that use uid and rid are partly identity-based, not entirely attribute-based.
Therefore, our definition of ABAC policy mining requires that these attributes are used only
if necessary, i.e., only if every ABAC policy semantically consistent with π0 contains rules
that use them.

The other criterion is to maximize a policy quality metric. A policy quality metric is a
function Qpol from ABAC policies to a totally-ordered set, such as the natural numbers. The
ordering is chosen so that small values indicate high quality; this is natural for metrics based
on policy size. For generality, we parameterize the policy mining problem by the policy
quality metric.

The ABAC policy mining problem is: given an ACL policy π0 = 〈U,R,Op,UP0〉, user
attributes Au, resource attributes Ar, user attribute data du, resource attribute data dr,
and a policy quality metric Qpol, find a set Rules of rules such that the ABAC policy
π = 〈U,R,Op, Au, Ar, du, dr,Rules〉 that (1) is consistent with π0, (2) uses uid only when
necessary, (3) uses rid only when necessary, and (4) has the best quality, according to Qpol,
among such policies.

The policy quality metric that our algorithm aims to optimize is weighted structural
complexity (WSC) [MCL+10], a generalization of policy size. This is consistent with usability
studies of access control rules, which conclude that more concise policies are more manageable
[BM13]. Informally, the WSC of an ABAC policy is a weighted sum of the number of elements
in the policy. Formally, the WSC of an ABAC policy π with rules Rules is WSC(π) =
WSC(Rules), defined by

WSC(e) =
∑

a∈attr1(e)

|e(a)|+
∑

a∈attrm(e),s∈e(a)

|s|

WSC(〈eu, er, O, c〉) = w1WSC(eu) + w2WSC(er)

+ w3|O|+ w4|c|
WSC(Rules) =

∑
ρ∈Rules

WSC(ρ),

where |s| is the cardinality of set s, and the wi are user-specified weights.

Computational Complexity We show that the ABAC policy mining problem is NP-
hard, by reducing the Edge Role Mining Problem (Edge RMP) [LVA08] to it. NP-hardness
of Edge RMP follows from Theorem 1 in [MCL+10]. The basic idea of the reduction is that
an Edge RMP instance IR is translated into an ABAC policy mining problem instance IA
with uid and rid as the only attributes. Given a solution πABAC to problem instance IA, the
solution to IR is constructed by interpreting each rule as a role. Details of the reduction
appear in Section A.1 in the Supplemental Material.

It is easy to show that a decision-problem version of ABAC policy mining is in NP. The
decision-problem version asks whether there exists an ABAC policy that meets conditions
(1)–(3) in the above definition of the ABAC policy mining problem and has WSC less than
or equal to a given value.
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4.3 Policy Mining Algorithm

Top-level pseudocode for our policy mining algorithm appears in Figure 4.1. Functions called
by the top-level pseudocode are described next. Function names hyperlink to pseudocode
for the function, if it is included in the paper, otherwise to a description of the function.
An example illustrating the processing of a user-permission tuple by our algorithm appears
in Section A.6 in the Supplemental Material. For efficiency, our algorithm incorporates
heuristics and is not guaranteed to generate a policy with minimal WSC.

The function addCandidateRule(su, sr, so, cc, uncovUP,Rules) in Figure 4.2 first calls
computeUAE to compute a user-attribute expression eu that characterizes su, then calls
computeRAE to compute a resource-attribute expression er that characterizes sr. It then
calls generalizeRule(ρ, cc, uncovUP,Rules) to generalize the rule ρ = 〈eu, er, so, ∅〉 to ρ′ and
adds ρ′ to candidate rule set Rules . The details of the functions called by addCandidateRule
are described next.

The function computeUAE(s, U) computes a user-attribute expression eu that charac-
terizes the set s of users. The conjunct for each attribute a contains the values of a for
users in s, unless one of those values is ⊥, in which case a is unused (i.e., the conjunct for
a is >). Furthermore, the conjunct for uid is removed if the resulting attribute expression
still characterizes s; this step is useful because policies that are not identity-based gener-
alize better. Similarly, computeRAE(s, R) computes a resource-attribute expression that
characterizes the set s of resources. The attribute expressions returned by computeUAE
and computeRAE might not be minimum-sized among expressions that characterize s: it is
possible that some conjuncts can be removed. We defer minimization of the attribute ex-
pressions until after the call to generalizeRule (described below), because minimizing them
before that would reduce opportunities to find relations between values of user attributes
and resource attributes in generalizeRule.

The function candidateConstraint(r, u) returns a set containing all the atomic constraints
that hold between resource r and user u. Pseudocode for candidateConstraint is straightfor-
ward and omitted.

A rule ρ′ is valid if [[ρ′]] ⊆ UP0.
The function generalizeRule(ρ, cc, uncovUP,Rules) in Figure 4.3 attempts to generalize

rule ρ by adding some of the atomic constraints f in cc to ρ and eliminating the conjuncts
of the user attribute expression and the resource attribute expression corresponding to the
attributes used in f , i.e., mapping those attributes to >. If the resulting rule is invalid,
the function attempts a more conservative generalization by eliminating only one of those
conjuncts, keeping the other. We call a rule obtained in this way a generalization of ρ. Such
a rule is more general than ρ in the sense that it refers to relationships instead of specific
values. Also, the user-permission relation induced by a generalization of ρ is a superset of
the user-permission relation induced by ρ.

If there are no valid generalizations of ρ, then generalizeRule(ρ, cc, uncovUP,Rules) sim-
ply returns ρ. If there is a valid generalization of ρ, generalizeRule(ρ, cc, uncovUP,Rules)
returns the generalization ρ′ of ρ with the best quality according to a given rule quality
metric. Note that ρ′ may cover tuples that are already covered (i.e., are in UP); in other
words, our algorithm can generate policies containing rules whose meanings overlap. A rule
quality metric is a function Qrul(ρ,UP) that maps a rule ρ to a totally-ordered set, with the

50



ordering chosen so that larger values indicate high quality. The second argument UP is a set
of user-permission tuples. Based on our primary goal of minimizing the generated policy’s
WSC, and a secondary preference for rules with more constraints, we define

Qrul(ρ,UP) = 〈|[[ρ]] ∩ UP |/WSC(ρ), |con(ρ)|〉.

The secondary preference for more constraints is a heuristic, based on the observation that
rules with more constraints tend to be more general than other rules with the same |[[ρ]] ∩
UP |/WSC(ρ) (such rules typically have more conjuncts) and hence lead to lower WSC. In
generalizeRule, uncovUP is the second argument to Qrul, so [[ρ]] ∩ UP is the set of user-
permission tuples in UP0 that are covered by ρ and not covered by rules already in the
policy. The loop over i near the end of the pseudocode for generalizeRule considers all
possibilities for the first atomic constraint in cc that gets added to the constraint of ρ. The
function calls itself recursively to determine the subsequent atomic constraints in c that get
added to the constraint.

The function mergeRules(Rules) in Figure 4.4 attempts to reduce the WSC of Rules by
removing redundant rules and merging pairs of rules. A rule ρ in Rules is redundant if Rules
contains another rule ρ′ such that [[ρ]] ⊆ [[ρ′]]. Informally, rules ρ1 and ρ2 are merged by
taking, for each attribute, the union of the conjuncts in ρ1 and ρ2 for that attribute. If the
resulting rule ρmerge is valid, ρmerge is added to Rules , and ρ1 and ρ2 and any other rules that
are now redundant are removed from Rules . mergeRules(Rules) updates its argument Rules
in place, and it returns a Boolean indicating whether any rules were merged.

The function simplifyRules(Rules) attempts to simplify all of the rules in Rules . It
updates its argument Rules in place, replacing rules in Rules with simplified versions when
simplification succeeds. It returns a Boolean indicating whether any rules were simplified.
It attempts to simplify each rule in the following ways. (1) It eliminates sets that are
supersets of other sets in conjuncts for multi-valued user attributes. The ⊇-based semantics
for such conjuncts implies that this does not change the meaning of the conjunct. For
example, a conjunct {{a}, {a, b}} is simplified to {{a}}. (2) It eliminates elements from
sets in conjuncts for multi-valued user attributes when this preserves validity of the rule;
note that this might increase but cannot decrease the meaning of a rule. For example, if
every user whose specialties include a also have specialty b, and a rule contains the conjunct
{{a, b}} for the specialties attribute, then b will be eliminated from that conjunct. (3) It
eliminates conjuncts from a rule when this preserves validity of the rule. Since removing
one conjunct might prevent removal of another conjunct, it searches for the set of conjuncts
to remove that maximizes the quality of the resulting rule, while preserving validity. The
user can specify a set of unremovable attributes, i.e., attributes for which simplifyRules
should not try to eliminate the conjunct, because eliminating it would increase the risk of
generating an overly general policy, i.e., a policy that might grant inappropriate permissions
when new users or new resources (hence new permissions) are added to the system. Our
experience suggests that appropriate unremovable attributes can be identified based on the
obvious importance of some attributes and by examination of the policy generated without
specification of unremovable attributes. (4) It eliminates atomic constraints from a rule
when this preserves validity of the rule. It searches for the set of atomic constraints to
remove that maximizes the quality of the resulting rule, while preserving validity. (5) It
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// Rules is the set of candidate rules
1: Rules = ∅

// uncovUP contains user-permission tuples in UP0

// that are not covered by Rules
2: uncovUP = UP0.copy()
3: while ¬uncovUP.empty()

// Select an uncovered user-permission tuple.
4: 〈u, r, o〉 = some tuple in uncovUP
5: cc = candidateConstraint(r, u)

// su contains users with permission 〈r, o〉 and
// that have the same candidate constraint for r as u

6: su = {u′ ∈ U | 〈u′, r, o〉 ∈ UP0

7: ∧ candidateConstraint(r, u′) = cc}
8: addCandidateRule(su, {r}, {o}, cc, uncovUP,Rules)

// so is set of operations that u can apply to r
9: so = {o′ ∈ Op | 〈u, r, o′〉 ∈ UP0}
10: addCandidateRule({u}, {r}, so, cc, uncovUP,Rules)
11: end while

// Repeatedly merge and simplify rules, until
// this has no effect

12: mergeRules(Rules)
13: while simplifyRules(Rules) && mergeRules(Rules)
14: skip
15: end while

// Select high quality rules into final result Rules ′.
16: Rules ′ = ∅
17: Repeatedly select the highest quality rules from

Rules to Rules ′ until
∑
ρ∈Rules′ [[ρ]] = UP0,

using UP0 \ [[Rules ′]] as second argument to Qrul

18: return Rules ′

Figure 4.1: Policy mining algorithm.

function addCandidateRule(su, sr, so, cc, uncovUP,Rules)
// Construct a rule ρ that covers user-permission
// tuples {〈u, r, o〉 | u ∈ su ∧ r ∈ sr ∧ o ∈ so}.

1: eu = computeUAE(su, U)
2: er = computeRAE(sr, R)
3: ρ = 〈eu, er, so, ∅〉
4: ρ′ = generalizeRule(ρ, cc, uncovUP,Rules)
5: Rules .add(ρ′)
6: uncovUP.removeAll([[ρ′]])

Figure 4.2: Compute a candidate rule ρ′ and add ρ′ to candidate rule set Rules
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function generalizeRule(ρ, cc, uncovUP,
Rules)

// ρbest is highest-quality generalization
// of ρ

1: ρbest = ρ
// cc′ contains formulas from cc that lead
// to valid generalizations of ρ.

2: cc′ = new Vector()
3: // gen[i] is a generalization of ρ

// using cc′[i]
4: gen = new Vector()

// find formulas in cc that lead to valid
// generalizations of ρ.

5: for f in cc
// try to generalize ρ by adding f
// and eliminating conjuncts for
// both attributes used in f .

6: ρ′ = 〈uae(ρ)[uAttr(f) 7→ >],
rae(ρ)[rAttr(f) 7→ >],
ops(ρ), con(ρ) ∪ {f}〉

// check if [[ρ′]] is a valid rule
7: if [[ρ′]] ⊆ UP0

8: cc′.add(f)
9: gen.add(ρ′)
10: else

// try to generalize ρ by adding f
// and eliminating conjunct for
// one user attribute used in f

11: ρ′ = 〈uae(ρ)[uAttr(f) 7→ >],
rae(ρ), ops(ρ), con(ρ) ∪ {f}〉

12: if [[ρ′]] ⊆ UP0

13: cc′.add(f)
14: gen.add(ρ′)
15: else

// try to generalize ρ by adding f and
// eliminating conjunct for one resource
// attribute used in f .

16: ρ′ = 〈uae(ρ), rae(ρ)[rAttr(f) 7→ >],
17: ops(ρ), con(ρ) ∪ {f}〉
18: if [[ρ′]] ⊆ UP0

19: cc′.add(f)
20: gen.add(ρ′)
21: end if
22: end if
23: end if
24: end for
25: for i = 1 to cc′.length
26: // try to further generalize gen[i]
27: ρ′′ = generalizeRule(gen[i], cc′[i+1 ..],
28: uncovUP,Rules)
29: if Qrul(ρ

′′, uncovUP) > Qrul(ρbest, uncovUP)
30: ρbest = ρ′′

31: end if
32: end for
33: return ρbest

Figure 4.3: Generalize rule ρ by adding some formulas from cc to its constraint and elimi-
nating conjuncts for attributes used in those formulas. f [x 7→ y] denotes a copy of function
f modified so that f(x) = y. a[i..] denotes the suffix of array a starting at index i.

eliminates overlapping values between rules. Specifically, a value v in the conjunct for a
user attribute a in a rule ρ is removed if there is another rule ρ′ in the policy such that
(i) attr(uae(ρ′)) ⊆ attr(uae(ρ)) and attr(rae(ρ′)) ⊆ attr(rae(ρ)), (ii) the conjunct of uae(ρ′)
for a contains v, (iii) each conjunct of uae(ρ′) or rae(ρ′) other than the conjunct for a is
either > or a superset of the corresponding conjunct of ρ, and (iv) con(ρ′) ⊆ con(ρ). The
condition for removal of a value in the conjunct for a resource attribute is analogous. If a
conjunct of uae(ρ) or rae(ρ) becomes empty, ρ is removed from the policy. For example, if
a policy contains the rules 〈dept ∈ {d1, d2} ∧ position = p1, type = t1, read, dept = dept〉
and 〈dept ∈ {d1} ∧ position = p1, type ∈ {t1, t2}, read, dept = dept〉, then d1 is eliminated
from the former rule. (6) It eliminates overlapping operations between rules. The details are
similar to those for elimination of overlapping values between rules. For example, if a policy
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function mergeRules(Rules)
1: // Remove redundant rules
2: rdtRules = {ρ ∈ Rules | ∃ ρ′ ∈ Rules \ {ρ}. [[ρ]] ⊆ [[ρ′]]}
3: Rules .removeAll(rdtRules)
4: // Merge rules
5: workSet = {(ρ1, ρ2) | ρ1 ∈ Rules ∧ ρ2 ∈ Rules

∧ ρ1 6= ρ2 ∧ con(ρ1) = con(ρ2)}
6: while not(workSet.empty())

// Remove an arbitrary element of the workset
7: (ρ1, ρ2) = workSet .remove()
8: ρmerge = 〈uae(ρ1) ∪ uae(ρ2), rae(ρ1) ∪ rae(ρ2),

ops(ρ1) ∪ ops(ρ2), con(ρ1)〉
9: if [[ρmerge]] ⊆ UP0

// The merged rule is valid. Add it to Rules ,
// and remove rules that became redundant.

10: rdtRules = {ρ ∈ Rules | [[ρ]] ⊆ [[ρmerge]]}
11: Rules .removeAll(rdtRules)
12: workSet .removeAll({(ρ1, ρ2) ∈ workSet |

ρ1 ∈ rdtRules ∨ ρ2 ∈ rdtRules})
13: workSet .addAll({(ρmerge, ρ) | ρ ∈ Rules

∧ con(ρ) = con(ρmerge)})
14: Rules .add(ρmerge)
15: end if
16: end while
17: return true if any rules were merged

Figure 4.4: Merge pairs of rules in Rules , when possible, to reduce the WSC of Rules . (a, b)
denotes an unordered pair with components a and b. The union e = e1 ∪ e2 of attribute
expressions e1 and e2 over the same set A of attributes is defined by: for all attributes a in
A, if e1(a) = > or e2(a) = > then e(a) = > otherwise e(a) = e1(a) ∪ e2(a).

contains the rules 〈dept = d1, type = t1, read, dept = dept〉 and 〈dept = d1 ∧ position =
p1, type = t1, {read,write}, dept = dept〉, then read is eliminated from the latter rule.

Asymptotic Running Time The algorithm’s overall running time is worst-case cubic
in |UP0|. A detailed analysis of the asymptotic running time appears in Section A.2 in
the Supplemental Material. In the experiments with case studies and synthetic policies
described in Section 4.4, the observed running time is roughly quadratic and roughly linear,
respectively, in |UP0|.

Attribute Selection Attribute data may contain attributes irrelevant to access con-
trol. This potentially hurts the effectiveness and performance of policy mining algorithms
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[FSBB09, NLC+09]. Therefore, before applying our algorithm to a dataset that might con-
tain irrelevant attributes, it is advisable to use the method in [FSBB09] or [MLQ+10] to
determine the relevance of each attribute to the user-permission assignment and then elimi-
nate attributes with low relevance.

Processing Order The order in which tuples and rules are processed can affect the mined
policy. The order in which our algorithm processes tuples and rules is described in Section
A.3 in the Supplemental Material.

Optimizations Our implementation incorporates a few optimizations not reflected in the
pseudocode. Details of these optimizations appear in Section A.4 in the Supplemental Mate-
rial. Briefly, the most important optimizations are calling mergeRules periodically (not only
after all of UP0 has been covered) and caching the meanings of rules and related values.

4.3.1 Noise Detection

In practice, the given user-permission relation often contains noise, consisting of over-assignments
and under-assignments. An over-assignment is when a permission is inappropriately granted
to a user. An under-assignment is when a user lacks a permission that he or she should be
granted. Noise incurs security risks and significant IT support effort [MLQ+10]. This section
describes extensions of our algorithm to handle noise. The extended algorithm detects and
reports suspected noise and generates an ABAC policy that is consistent with its notion
of the correct user-permission relation (i.e., with the suspected noise removed). The user
should examine the suspected noise and decide which parts of it are actual noise (i.e., errors
in the user-permission relation). If all of it is actual noise, then the policy already generated
is the desired one; otherwise, the user should remove the parts that are actual noise from
the user-permission relation to obtain a correct user-permission relation and then run the
algorithm without the noise detection extension on it to generate the desired ABAC policy.

Over-assignments are often the result of incomplete revocation of old permissions when
users change job functions [MLQ+10]. Therefore, over-assignments usually cannot be cap-
tured concisely using rules with attribute expressions that refer to the current attribute
information, so a candidate rule constructed from a user-permission tuple that is an over-
assignment is less likely to be generalized and merged with other rules, and that candidate
rule will end up as a low-quality rule in the generated policy. So, to detect over-assignments,
we introduce a rule quality threshold τ . The rule quality metric used here is the first com-
ponent of the metric used in the loop in Figure 4.1 that constructs Rules ′; thus, τ is a
threshold on the value of Qrul(ρ, uncovUP), and the rules with quality less than or equal to
τ form a suffix of the sequence of rules added to Rules ′. The extended algorithm reports as
suspected over-assignments the user-permission tuples covered in Rules ′ only by rules with
quality less than or equal to τ , and then it removes rules with quality less than or equal to
τ from Rules ′. Adjustment of τ is guided by the user. For example, the user might guess
a percentage of over-assignments (e.g., 3%) based on experience, and let the system adjust
τ until the number of reported over-assignments is that percentage of |UP0|. Note that
re-computing over-assignments after a change to τ does not require re-generating the policy.
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To detect under-assignments, we look for rules that are almost valid, i.e., rules that
would be valid if a relatively small number of tuples were added to UP0. A parameter α
quantifies the notion of “relatively small”. A rule is α almost valid if the fraction of invalid
user-permission tuples in [[ρ]] is at most α, i.e., |[[ρ]] \ UP0| ÷ |[[ρ]]| ≤ α. In places where
the policy mining algorithm checks whether a rule is valid, if the rule is α almost valid, the
algorithm treats it as if it were valid. The extended algorithm reports

⋃
ρ∈Rules′ [[ρ]] \ UP0

as the set of suspected under-assignments, and (as usual) it returns Rules ′ as the generated
policy. Adjustment of α is guided by the user, similarly as for the over-assignment threshold
τ .

4.4 Evaluation

The general methodology used for evaluation is described in Section 1.2. We applied this
methodology to sample policies and synthetic policies. Evaluation on policies (including
attribute data) from real organizations would be ideal, but we are not aware of any suitable
and publicly available policies from real organizations. Therefore, we developed sample
policies that, although not based directly on specific real-world case studies, are intended
to be similar to policies that might be found in the application domains for which they are
named. The sample policies are relatively small and intended to resemble interesting core
parts of full-scale policies in those application domains. Despite their modest size, they
are a significant test of the effectiveness of our algorithm, because they express non-trivial
policies and exercise all features of our policy language, including use of set membership and
superset relations in attribute expressions and constraints. The synthetic policies are used
primarily to assess the behavior of the algorithm as a function of parameters controlling
specific structural characteristics of the policies.

We implemented our policy mining algorithm in Java and ran experiments on a laptop
with a 2.5 GHz Intel Core i5 CPU. All of the code and data is available at
http://www.cs.sunysb.edu/~stoller/. In our experiments, the weights wi in the defini-
tion of WSC equal 1.

4.4.1 Evaluation on Sample Policies

We developed four sample policies, each consisting of rules and a manually written attribute
dataset containing a small number of instances of each type of user and resource. We
also generated synthetic attribute datasets for each sample policy. The sample policies are
described very briefly in this section. Details of the sample policies, including all policy
rules, some illustrative manually written attribute data, and a more detailed description of
the synthetic attribute data generation algorithm appear in Section A.5 in the Supplemental
Material.

Figure 4.5 provides information about their size. Although the sample policies are rela-
tively small when measured by a coarse metric such as number of rules, they are complex,
because each rule has a lot of structure. For example, the number of well-formed rules built
using the attributes and constants in each policy and that satisfy the strictest syntactic size
limits satisfied by rules in the sample policies (at most one conjunct in each UAE, at most
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Policy |Rules| |Au| |Ar| |Op| Type N |U | |R| |Vals| |UP | |̂[[ρ]]|
university 10 6 5 9 man 2 22 34 76 168 19

syn 10 479 997 1651 8374 837
syn 20 920 1918 3166 24077 2408

health care 9 6 7 3 man 2 21 16 55 51 6.7
syn 10 200 720 1386 1532 195
syn 20 400 1440 2758 3098 393

project mgmt 11 8 6 7 man 2 19 40 77 189 19
syn 10 100 200 543 960 96
syn 20 200 400 1064 1920 193

Figure 4.5: Sizes of the sample policies. “Type” indicates whether the attribute data in the
policy is manually written (“man”) or synthetic (“syn”). N is the number of departments
for the university and project management sample policies, and the number of wards for the

health care sample policy. |̂[[ρ]]| is the average number of user-permission tuples that satisfy
each rule. An empty cell indicates the same value as the cell above it.

two conjuncts in each RAE, at most two atomic constraints in each constraint, at most one
atomic value in each UAE conjunct, at most two atomic values in each RAE conjunct, etc.)
is more than 1012 for the sample policies with manually written attribute data and is much
higher for the sample policies with synthetic attribute data and the synthetic policies.

In summary, our algorithm is very effective for all three sample policies: there are only
small differences between the original and mined policies if no attributes are declared unre-
movable, and the original and mined policies are identical if the resource-type attribute is
declared unremovable.

University Sample Policy Our university sample policy controls access by students, in-
structors, teaching assistants, registrar officers, department chairs, and admissions officers to
applications (for admission), gradebooks, transcripts, and course schedules. If no attributes
are declared unremovable, the generated policy is the same as the original ABAC policy
except that the RAE conjunct “type=transcript” is replaced with the constraint “depart-
ment=department” in one rule. If resource type is declared unremovable, the generated
policy is identical to the original ABAC policy.

Health Care Sample Policy Our health care sample policy controls access by nurses,
doctors, patients, and agents (e.g., a patient’s spouse) to electronic health records (HRs)
and HR items (i.e., entries in health records). If no attributes are declared unremovable,
the generated policy is the same as the original ABAC policy except that the RAE conjunct
“type=HRitem” is eliminated from four rules; that conjunct is unnecessary, because those
rules also contain a conjunct for the “topic” attribute, and the “topic” attribute is used only
for resources with type=HRitem. If resource type is declared unremovable, the generated
policy is identical to the original ABAC policy.
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Project Management Sample Policy Our project management sample policy controls
access by department managers, project leaders, employees, contractors, auditors, accoun-
tants, and planners to budgets, schedules, and tasks associated with projects. If no attributes
are declared unremovable, the generated policy is the same as the original ABAC policy ex-
cept that the RAE conjunct “type=task” is eliminated from three rules; the explanation
is similar to the above explanation for the health care sample policy. If resource type is
declared unremovable, the generated policy is identical to the original ABAC policy.

Running Time on Synthetic Attribute Data We generated a series of pseudorandom
synthetic attribute datasets for the sample policies, parameterized by a number N , which
is the number of departments for the university and project management sample policies,
and the number of wards for the health care sample policy. The generated attribute data
for users and resources associated with each department or ward are similar to but more
numerous than the attribute data in the manually written datasets. Figure 4.5 contains
information about the sizes of the policies with synthetic attribute data, for selected values
of N . Policies for the largest shown value of N are generated as described in Section A.5
in the Supplemental Material; policies for smaller values of N are prefixes of them. Each
row contains the average over 20 synthetic policies with the specified N . For all sizes of
synthetic attribute data, the mined policies are the same as with the manually generated
attribute data. This reflects that larger attribute datasets are not necessarily harder to
mine from, if they represent more instances of the same rules; the complexity is primarily
in the structure of the rules. Figure 4.6 shows the algorithm’s running time as a function
of N . Each data point is an average of the running times on 20 policies with synthetic
attribute data. Error bars (too small to see in most cases) show 95% confidence intervals
using Student’s t-distribution. The running time is a roughly quadratic function of N for all
three sample policies, with different constant factors. Different constant factors are expected,
because policies are very complex structures, and N captures only one aspect of the size and
difficulty of the policy mining problem instance. For example, the constant factors are larger
for the university sample policy mainly because it has larger |UP |, as a function of N , than
the other sample policies. For example, Figure 4.5 shows that |UP | for the university sample
policy with N = 10 is larger than |UP | for the other sample policies with N = 20.

Benefit of Periodic Rule Merging Optimization It is not obvious a priori whether
the savings from periodic merging of rules outweighs the cost. In fact, the net benefit grows
with policy size. For example, for the university policy with synthetic attribute data, this
optimization provides a speedup of (67 sec)/(40 sec) = 1.7 for Ndept = 10 and a speedup of
(1012 sec)/(102 sec) = 9.9 for Ndept = 15.

4.4.2 Evaluation on Synthetic Policies

We also evaluated our algorithm on synthetic ABAC policies. On the positive side, synthetic
policies can be generated in all sizes and with varying structural characteristics. On the
other hand, even though our synthesis algorithm is designed to generate policies with some
realistic characteristics, the effectiveness and performance of our algorithm on synthetic
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Figure 4.6: Running time (log scale) of the algorithm on synthetic attribute datasets for
sample policies. The horizontal axis is Ndept for university and project management sample
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policies might not be representative of its effectiveness and performance on real policies.
For experiments with synthetic policies, we compare the syntactic similarity and WSC of
the synthetic ABAC policy and the mined ABAC policy. Syntactic similarity of policies
measures the syntactic similarity of rules in the policies. It ranges from 0 (completely
different) to 1 (identical). The detailed definition of syntactic similarity is in Section A.7 in
the Supplemental Material. We do not expect high syntactic similarity between the synthetic
and mined ABAC policies, because synthetic policies tend to be unnecessarily complicated,
and mined policies tend to be more concise. Thus, we consider the policy mining algorithm
to be effective if the mined ABAC policy Rulesmined is simpler (i.e., has lower WSC) than the
original synthetic ABAC policy Rulessyn. We compare them using the compression factor,
defined as WSC(Rulessyn)/WSC(Rulesmined). Thus, a compression factor above 1 is good,
and larger is better.

Synthetic Policy Generation Our policy synthesis algorithm first generates the rules
and then uses the rules to guide generation of the attribute data; this allows control of the
number of granted permissions. Our synthesis algorithm takes Nrule, the desired number of
rules, Nmin

cnj , the minimum number of conjuncts in each attribute expression, and Nmin
cns , the

minimum number of constraints in each rule, as inputs. The numbers of users and resources
are not specified directly but are proportional to the number of rules, since our algorithm
generates new users and resources to satisfy each generated rule, as sketched below. Rule
generation is based on several statistical distributions, which are either based loosely on our
sample policies or assumed to have a simple functional form (e.g., uniform distribution or
Zipf distribution). For example, the distribution of the number of conjuncts in each attribute
expression is based loosely on our sample policies and ranges from Nmin

cnj to Nmin
cnj + 3, the

distribution of the number of atomic constraints in each constraint is based loosely on our
sample policies and ranges from Nmin

cns to Nmin
cns + 2, and the distribution of attributes in

attribute expressions is assumed to be uniform (i.e., each attribute is equally likely to be
selected for use in each conjunct).

The numbers of user attributes and resource attributes are fixed at Nattr = 8 (this is

59



the maximum number of attributes relevant to access control for the datasets presented in
[MLC11]). Our synthesis algorithm adopts a simple type system, with 7 types, and with
at least one user attribute and one resource attribute of each type. For each type t, the
cardinality c(t) is selected from a uniform distribution on the interval [2, 10Nrule + 2], the
target ratio between the frequencies of the most and least frequent values of type t is chosen to
be 1, 10, or 100 with probability 0.2 0.7, and 0.1, respectively, and a skew s(t) is computed so
that the Zipf distribution with cardinality c(t) and skew s(t) has that frequency ratio. When
assigning a value to an attribute of type t, the value is selected from the Zipf distribution with
cardinality c(t) and skew s(t). Types are also used when generating constraints: constraints
relate attributes with the same type.

For each rule ρ, our algorithm ensures that there are at least Nurp = 16 user-resource pairs
〈u, r〉 such that 〈u, r, o〉 |= ρ for some operation o. The algorithm first checks how many pairs
of an existing user and an existing resource (which were generated for previous rules) satisfy
ρ or can be made to satisfy ρ by appropriate choice of values for attributes with unknown
values (i.e., ⊥). If the count is less than Nurp, the algorithm generates additional users and
resources that together satisfy ρ. With the resulting modest number of users and resources,
some conjuncts in the UAE and RAE are likely to be unnecessary (i.e., eliminating them
does not grant additional permissions to any existing user). In a real policy with sufficiently
large numbers of users and resources, all conjuncts are likely be to necessary. To emulate
this situation with a modest number of users, for each rule ρ, for each conjunct eu(au) in the
UAE eu in ρ, the algorithm generates a user u′ by copying an existing user u that (together
with some resource) satisfies ρ and then changing du(u′, au) to some value not in eu(au).
Similarly, the algorithm adds resources to increase the chance that conjuncts in resource
attribute expressions are necessary, and it adds users and resources to increase the chance
that constraints are necessary. The algorithm initially assigns values only to the attributes
needed to ensure that a user or resource satisfies the rule under consideration. To make
the attribute data more realistic, a final step of the algorithm assigns values to additional
attributes until the fraction of attribute values equal to ⊥ reaches a target fraction ν⊥ = 0.1.

Results for Varying Number of Conjuncts To explore the effect of varying the num-
ber of conjuncts, we generated synthetic policies with Nrule ranging from 10 to 50 in steps
of 20, with Nmin

cnj ranging from 4 to 0, and with Nmin
cns = 0. For each value of Nrule, synthetic

policies with smaller Nmin
cnj are obtained by removing conjuncts from synthetic policies with

larger Nmin
cnj . For each combination of parameter values (in these experiments and the exper-

iments with varying number of constraints and varying overlap between rules), we generate
50 synthetic policies and average the results. Some experimental results appear in Figure
4.1. For each value of Nrule, as the number of conjuncts decreases, |UP | increases (because
the numbers of users and resources satisfying each rule increase), the syntactic similarity
increases (because as there are fewer conjuncts in each rule in the synthetic policy, it is more
likely that the remaining conjuncts are important and will also appear in the mined policy),
and the compression factor decreases (because as the policies get more similar, the compres-
sion factor must get closer to 1). For example, for Nrule = 50, as Nmin

cnj decreases from 4 to 0,
average |UP | increases from 1975 to 11969, average syntactic similarity increases from 0.62
to 0.75, and average compression factor decreases from 1.75 to 0.84. The figure also shows
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the density of the policies, where the density of a policy is defined as |UP | ÷ (|U | × |P |),
where the set of granted permissions is P =

⋃
〈u,r,o〉∈UP{〈r, o〉}. The average densities all fall

within the range of densities seen in the 9 real-world datasets shown in [MLL+09, Table 1],
namely, 0.003 to 0.19. Density is a decreasing function of Nrule, because |UP |, |U |, and |P |
each grow roughly linearly as functions of Nrule. The standard deviations of some quantities
are relatively large in some cases, but, as the relatively small confidence intervals indicate,
this is due to the intrinsic variability of the synthetic policies generated by our algorithm,
not due to insufficient samples.

Results for Varying Number of Constraints To explore the effect of varying the
number of constraints, we generated synthetic policies with Nrule ranging from 10 to 50 in
steps of 20, with Nmin

cns ranging from 2 to 0, and with Nmin
cnj = 0. For each value of Nrule,

policies with smaller Nmin
cns are obtained by removing constraints from synthetic policies with

larger Nmin
cns . Some experimental results appear in Figure 4.2. For each value of Nrule, as the

number of constraints decreases, |UP | increases (because the numbers of users and resources
satisfying each rule increase), syntactic similarity decreases (because our algorithm gives
preference to constraints over conjuncts, so when Nmin

cns is small, the mined policy tends to
have more constraints and fewer conjuncts than the synthetic policy), and the compression
factor decreases (because the additional constraints in the mined policy cause each rule in
the mined policy to cover fewer user-permission tuples on average, increasing the number
of rules and hence the WSC). For example, for Nrule = 50, as Nmin

cns decreases from 2 to 0,
average |UP | increases from 3560 to 26472, average syntactic similarity decreases slightly
from 0.67 to 0.64, and average compression factor decreases from 1.29 to 0.96.

Results for Varying Overlap Between Rules We also explored the effect of varying
overlap between rules, to test our conjecture that policies with more overlap between rules are
harder to reconstruct through policy mining. The overlap between rules ρ1 and ρ2 is [[ρ1]] ∩
[[ρ2]]. To increase the average overlap between pairs of rules in a synthetic policy, we extended
the policy generation algorithm so that, after generating each rule ρ, with probability Pover

the algorithm generates another rule ρ′ obtained from ρ by randomly removing one conjunct
from uae(ρ) and adding one conjunct (generated in the usual way) to rae(ρ); typically, ρ
and ρ′ have a significant amount of overlap. We also add users and resources that together
satisfy ρ′, so that [[ρ′]] 6⊆ [[ρ]], otherwise ρ′ is redundant. This construction is based on a
pattern that occurs a few times in our sample policies. We generated synthetic policies
with 30 rules, using the extended algorithm described above. For each value of Nrule, we
generated synthetic policies with Pover ranging from 0 to 1 in steps of 0.25, and with Nmin

cnj

= 2 and Nmin
cns = 0. Some experimental results appear in Figure 4.3. For each value of

Nrule, as Pover increases, the syntactic similarity decreases (because our algorithm effectively
removes overlap, i.e., produces policies with relatively little overlap), and the compression
factor increases (because removal of more overlap makes the mined policy more concise).
For example, for Nrule = 50, as Pover increases from 0 to 1, the syntactic similarity decreases
slightly from 0.74 to 0.71, and the compression factor increases from 1.16 to 1.23.
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4.4.3 Generalization

A potential concern with optimization-based policy mining algorithms is that the mined
policies might overfit the given data and hence not be robust, i.e., not generalize well, in the
sense that the policy requires modifications to accommodate new users. To evaluate how well
policies generated by our algorithm generalize, we applied the following methodology, based
on [FSBB09]. The inputs to the methodology are an ABAC policy mining algorithm, an
ABAC policy π, and a fraction f (informally, f is the fraction of the data used for training);
the output is a fraction e called the generalization error of the policy mining algorithm on
policy π for fraction f . Given a set U ′ of users and a policy π, the associated resources for
U ′ are the resources r such that π grants some user in U ′ some permission on r. To compute
the generalization error, repeat the following procedure 10 times and average the results:
randomly select a subset U ′ of the user set U of π with |U ′|/|U | = f , randomly select a
subset R′ of the associated resources for U ′ with |R′|/|R| = f , generate an ACL policy πACL

containing only the permissions for users in U ′ for resources in R′, apply the policy mining
algorithm to πACL with the attribute data to generate an ABAC policy πgen, compute the
generalization error as the fraction of incorrectly assigned permissions for users not in U ′ and
resources not in R′, i.e., as |S	S ′|/|S|, where S = {〈u, r, o〉 ∈ [[π]] | u ∈ U \U ′∧ r ∈ R \R′},
S ′ = {〈u, r, o〉 ∈ [[π′]] | u ∈ U \ U ′ ∧ r ∈ R \R′}, and 	 is symmetric set difference.

We measured generalization error for f from 0.1 to 0.5 in steps of 0.05 for the university
(with Ndept = 40), health care (with Nward = 40), and project management (with Ndept = 40)
sample policies. For the university and health care sample policies, the generalization error
is zero in all these cases. For the project management sample policy, the generalization error
is 0.11 at f = 0.1, drops roughly linearly to zero at f = 0.35, and remains zero thereafter.
There are no other existing ABAC policy mining algorithms, so a direct comparison of
the generalization results from our algorithm with generalization results from algorithms
based on other approaches, e.g., probabilistic models, is not currently possible. Nevertheless,
these results are promising and suggest that policies generated by our algorithm generalize
reasonably well.

4.4.4 Noise

Permission Noise To evaluate the effectiveness of our noise detection techniques in the
presence of permission noise, we started with an ABAC policy, generated an ACL policy,
added noise, and applied our policy mining algorithm to the resulting policy. To add a
specified level ν of permission noise, measured as a percentage of |UP0|, we added ν|UP0|/6
under-assignments and 5ν|UP0|/6 over-assignments to the ACL policy generated from the
ABAC policy. This ratio is based on the ratio of Type I and Type II errors in [MLQ+10,
Table 1]. The over-assignments are user-permission tuples generated by selecting the user, re-
source, and operation from categorical distributions with approximately normally distributed
probabilities (“approximately” because the normal distribution is truncated on the sides to
have the appropriate finite domain); we adopted this approach from [MLQ+10]. The under-
assignments are removals of user-permission tuples generated in the same way. For each noise
level, we ran our policy mining algorithm with noise detection inside a loop that searched
for the best values of α (considering values between 0.01 and 0.09 in steps of .01) and τ
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(considering 0.08, values between 0.1 and 0.9 in steps of 0.1, and between 1 and 10 in steps
of 1), because we expect τ to depend on the noise level, and we want to simulate an experi-
enced administrator, so that the results reflect the capabilities and limitations of the noise
detection technique rather than the administrator. The best values of α and τ are the ones
that maximize the Jaccard similarity of the actual (injected) noise and the reported noise.
ROC curves that illustrate the trade-off between false positives and false negatives when
tuning the values of α and τ appear in Section A.8 in the Supplemental Material.

We started with the university (with Ndept = 4), health care (with Nward = 6), and
project management (with Ndept = 6) sample policies with synthetic attribute data (we also
did some experiments with larger policy instances and got similar results), and with synthetic
policies with Nrule = 20. Figure 4.7 shows the Jaccard similarity of the actual and reported
over-assignments and the Jaccard similarity of the actual and reported under-assignments.
Note that, for a policy mining algorithm without noise detection (hence the reported noise is
the empty set), these Jaccard similarities would be 0. Each data point is an average over 10
policies, and error bars (too small to see in some cases, and omitted when the standard de-
viation is 0) show 95% confidence intervals using Student’s t-distribution. Over-assignment
detection is accurate, with average Jaccard similarity always 0.94 or higher (in our exper-
iments). Under-assignment detection is very good for university and project management,
with average Jaccard similarity always 0.93 or higher, but less accurate for health care and
synthetic policies, with average Jaccard similarity always 0.63 or higher. Intuitively, detect-
ing over-assignments is somewhat easier, because it is unlikely that there are high-quality
rules that cover the over-assignments, so we mostly get rules that do not over-assign and
hence the over-assignments get classified correctly. However, under-assignments are more
likely to affect the generated rules, leading to mis-classification of under-assignments. As a
function of noise level in the considered range, the Jaccard similarities are flat in some cases
and generally trend slightly downward in other cases. Figure 4.8 shows the semantic simi-
larity of the original and mined policies. Note that, for a policy mining algorithm without
noise detection, the semantic similarity would equal 1−ν. With our algorithm, the semantic
similarity is always significantly better than this. The average semantic similarity is always
0.98 or higher, even for ν = 0.12. The similarities are generally lower for synthetic policies
than sample policies, as expected, because synthetic policies are not reconstructed as well
even in the absence of noise.

Permission Noise and Attribute Noise To evaluate the effectiveness of our noise de-
tection techniques in the presence of permission noise and attribute noise, we performed
experiments in which, for a given noise level ν, we added ν|UP0|/7 under-assignments,
5ν|UP0|/7 over-assignments, and ν|UP0|/7 permission errors due to attribute errors to the
ACL policy generated from the ABAC policy (in other words, we add attribute errors un-
til ν|UP0|/7 user-permission tuples have been added or removed due to attribute errors;
this way, attribute errors are measured on the same scale as under-assignments and over-
assignments). The attribute errors are divided equally between missing values (i.e., replace
a non-bottom value with bottom) and incorrect values (i.e., replace a non-bottom value with
another non-bottom value). Our current techniques do not attempt to distinguish permission
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noise from attribute noise (this is a topic for future research); policy analysts are respon-
sible for determining whether a reported suspected error is due to an incorrect permission,
an incorrect or missing attribute value, or a false alarm. Since our techniques report only
suspected under-assignments and suspected over-assignments, when comparing actual noise
to reported noise, permission changes due to attribute noise (i.e., changes in the set of user-
permission tuples that satisfy the original policy rules) are included in the actual noise. We
started with the same policies as above. Graphs of Jaccard similarity of actual and reported
noise, and syntactic similarity of original and mined policies, appear in Section A.9 in the
Supplemental Material. The results are similar to those without attribute noise, except with
slightly lower similarities for the same fraction of permission errors. This shows that our
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approach to noise detection remains appropriate in the presence of combined attribute noise
and permission noise.

4.4.5 Comparison with Inductive Logic Programming

We implemented a translation from ABAC policy mining to Inductive Logic Programming
(ILP) and applied Progol [MB00, MF01], a well-known ILP system developed by Stephen
Muggleton, to translations of our sample policies and synthetic policies. Details of the
translation appear in Section A.10 in the Supplemental Material. Progol mostly succeeds
in reconstructing the policies for university and project management, except it fails to learn
rules with conjuncts or operation sets containing multiple constants, instead producing mul-
tiple rules. In addition, Progol fails to reconstruct two rules in the health care sample policy.
Due to Progol’s failure to learn rules with conjuncts or operation sets containing multiple
constants, we generated a new set of 20 synthetic policies with at most 1 constant per con-
junct and 1 operation per rule. On these policies with Nrule = 5, our algorithm achieves a
compression factor of 1.92, compared to 1.67 for Progol.

Progol is much slower than our algorithm. For the university (with Ndept = 10), health
care (with Nward = 20), and project management (with Ndept = 20) sample policies, Progol
is 302, 375, and 369 times slower than our algorithm, respectively. For synthetic policies
with Nrule = 5, Progol is 2.74 times slower than our algorithm; for synthetic policies with
Nrule = 10, we stopped Progol after several hours.

4.5 Related Work

To the best of our knowledge, the algorithm in this paper is the first policy mining algorithm
for any ABAC framework. Existing algorithms for access control policy mining produce
role-based policies; this includes algorithms that use attribute data, e.g., [MCL+10, CDV12,
XS12]. Algorithms for mining meaningful RBAC policies from ACLs and user attribute
data [MCL+10, XS12] attempt to produce RBAC policies that are small (i.e., have low
WSC) and contain roles that are meaningful in the sense that the role’s user membership
is close to the meaning of some user attribute expression. User names (i.e., values of uid)
are used in role membership definitions and hence are not used in attribute expressions,
so some sets of users cannot be characterized exactly by a user attribute expression. The
resulting role-based policies are often much larger than attribute-based policies, due to the
lack of parameterization; for example, they require separate roles for each department in an
organization, in cases where a single rule suffices in an attribute-based policy. Furthermore,
algorithms for mining meaningful roles does not consider resource attributes (or permission
attributes), constraints, or set relationships.

Xu and Stoller’s work on mining parameterized RBAC (PRBAC) policies [XS13b] is more
closely related. Their PRBAC framework supports a simple form of ABAC, because users
and permissions have attributes that are implicit parameters of roles, the set of users assigned
to a role is specified by an expression over user attributes, and the set of permissions granted
to a role is specified by an expression over permission attributes. Our work differs from
theirs in both the policy framework and the algorithm. Regarding the policy framework, our
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ABAC framework supports a richer form of ABAC than their PRBAC framework does. Most
importantly, our framework supports multi-valued (also called “set-valued”) attributes and
allows attributes to be compared using set membership, subset, and equality; their PRBAC
framework does not support multi-valued attributes, and it allows attributes to be compared
using only equality. Multi-valued attributes are very important in real policies. Due to the
lack of multi-valued attributes, the sample policies in [XS13b] contain artificial limitations,
e.g., a faculty teaches only one course, and a doctor is a member of only one medical team.
Our extensions of their case studies do not have these limitations. In our sample policies, a
faculty may teach multiple courses, a doctor may be a member of multiple medical teams,
etc. Our algorithm works in a different, and more efficient, way than theirs. Our algorithm
directly constructs rules to include in the output. Their algorithm constructs a large set of
candidate roles and then determines which roles to include in the output, possibly discarding
many candidates (more than 90% for their sample policies).

Ni et al. investigated the use of machine learning algorithms for security policy mining
[NLC+09]. Specifically, they use supervised machine learning algorithms to learn classifiers
that associate permissions with roles, given as input the permissions, the roles, attribute data
for the permissions, and (as training data) the role-permission assignment. The resulting
classifier—a support vector machine (SVM)—can be used to automate assignment of new
permissions to roles. They also consider a similar scenario in which a supervised machine
learning algorithm is used to learn classifiers that associate users with roles, given as input the
users, the roles, user attribute data, and the user-role assignment. The resulting classifiers
are analogous to attribute expressions, but there are many differences between their work
and ours. The largest difference is that their approach needs to be given the roles and the
role-permission or user-role assignment as training data; in contrast, our algorithm does not
require any part of the desired high-level policy to be given as input. Also, their work does
not consider anything analogous to constraints, but it could be extended to do so. Exploring
ABAC policy mining algorithms based on machine learning algorithms is a direction for
future work.

Lim et al. investigated the use of evolutionary algorithms to learn and evolve security
policies policies [Lim10]. They consider several problems, including difficult problems related
to risk-based policies, but not general ABAC policy mining. In the facet of their work most
similar to ABAC policy mining, they showed that genetic programming can learn the access
condition in the Bell-LaPadula multi-level security model for mandatory access control. The
learned predicate was sometimes syntactically more complex than, but logically equivalent
to, the desired predicate.

Association rule mining has been studied extensively. Seminal work includes Agrawal
et al.’s algorithm for mining propositional rules [AS94]. Association rule mining algorithms
are not well suited to ABAC policy mining, because they are designed to find rules that
are probabilistic in nature [AS94] and are supported by statistically strong evidence. They
are not designed to produce a set of rules that are strictly satisfied, that completely cover
the input data, and are minimum-sized among such sets of rules. Consequently, unlike our
algorithm, they do not give preference to smaller rules or rules with less overlap (to reduce
overall policy size).

Bauer et al. use association rule mining to detect policy errors [BGR08]. They apply
propositional association rule mining to access logs to learn rules expressing that a user
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who exercised certain permissions is likely to exercise another permission. A suspected
misconfiguration exists if a user who exercised the former permissions does not have the
latter permission. Our under-assignment detection follows a similar principle. Bauer et al.
do not consider attribute data or generate entire policies.

Inductive logic programming (ILP) is a form of machine learning in which concepts are
learned from examples and expressed as logic programs. ABAC policies can be represented
as logic programs, so ABAC policy mining can be seen as a special case of ILP. However,
ILP systems are not ideally suited to ABAC policy mining. ILP is a more difficult problem,
which involves learning incompletely specified relations from a limited number of positive
and negative examples, exploiting background knowledge, etc. ILP algorithms are corre-
spondingly more complicated and less scalable, and focus more on how much to generalize
from the given examples than on optimization of logic program size. For example, Progol (cf.
Section 4.4.5) uses a compression (rule size) metric to guide construction of each rule but
does not attempt to achieve good compression for the learned rules collectively; in particu-
lar, it does not perform steps analogous to merging rules, eliminating overlap between rules,
and selecting the highest-quality candidate rules for the final solution. As the experiments
in Section 4.4.5 demonstrate, Progol is slower and generally produces policies with higher
WSC, compared to our algorithm.
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Chapter 5

Mining Attribute-Based Access
Control Policies from Role-Based
Policies

In this chapter, we first formally define the problem of mining ABAC policies from RBAC
policies and attribute data. An important feature of our problem definition is that it requires
that some aspects of the structure of the RBAC policy be preserved in the ABAC policy.
We then present an algorithm specifically designed to mine an ABAC policy from an RBAC
policy and attribute data. To demonstrate the effectiveness of our algorithm, we also evaluate
our algorithm on several manually written case studies. To show the significance of preserving
the structure of the RBAC policy, we conduct experiments on variants of our case studies
that have the same semantics (i.e., same user-permission relation) but different structure
(i.e., different roles). Finally, we discuss related work.

5.1 Problem Definition

An RBAC policy πRBAC is semantically consistent with an ABAC policy π if [[πRBAC]] = [[π]].
Our goal is to mine an ABAC policy that is semantically consistent with the given RBAC

policy and preserves the structure of the RBAC policy. A first thought is to require a 1-to-1
correspondence between roles and rules; in other words, for each role r, the mined policy
contains a rule that covers the same user-permission tuples. However, this requirement is
too strict, for two reasons. First, some roles cannot be expressed as a single rule, because
the set of permissions granted by a rule must be expressible as the Cartesian product of a
set of resources and a set of operations, while the set of permissions granted by a role can
be arbitrary (although, in practice, it is often expressible as a Cartesian product). Second,
it is often desirable to express multiple related roles by a single rule; for example, a set of
roles, each granting certain permissions to staff in a particular department, can be expressed
more concisely by a single rule that uses a constraint to ensure that each user is granted
permissions appropriate to his or her department. Therefore, we relax this requirement in
two ways. First, we split the given roles, so that each role’s set of assigned permissions
is the Cartesian product of a set of resources and a set of operations, and we require a
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correspondence between the resulting split roles and the mined rules. Second, we allow
multiple roles to correspond to a single rule.

Given a set P of permissions, we want to express P as a sum (union) of Cartesian prod-
ucts. Let ops(P ) be the set of operations that appear in P . Let resources(o, P ) be the
set of resources associated with o in P , i.e., {s ∈ Res | 〈s, o〉 ∈ P}. Define two opera-
tions to be equivalent if they are associated with the same resources in P , i.e., o ≡P o′ iff
resources(o, P ) = resources(o′, P ). Let S be a partition of ops(P ) containing the equiva-
lence classes of O with respect to ≡P . Define SOP(P ) =

⋃
O∈S{〈resources(O), O〉}, where

resources(O) is the set of resources associated with any operation in O (by definition, all
operations in O are associated with the same resources). Note that P =

⋃
〈R,O〉∈SOP(P ) R×O.

Given an RBAC policy πRBAC = 〈U,Res ,Op,Roles ,UA,PA,RH 〉, the sum-of-products
policy SOP(πRBAC) is 〈U,Res ,Op,Roles ′,UA′,PA′,RH ′〉, where

Roles ′ =
⋃

r∈Roles

⋃
{R,O}∈SOP(assignedP(r))

{〈r, R,O〉}

UA′ =
⋃

〈r,R,O〉∈Roles′
assignedU(r)× {〈r, R,O〉}

PA′ =
⋃

〈r,R,O〉∈Roles′
{〈r, R,O〉} × (R×O)

RH ′ = {〈〈r, R,O〉, 〈r′, R′, O′〉〉 ∈ Roles ′×Roles ′ |
〈r, r′〉 ∈ RH }

Note that we use tuples of the form 〈r, R, o〉 as role names in the sum-of-products policy.
Note that [[πRBAC]] = [[SOP(πRBAC)]]. For a role r in a sum-of-products RBAC policy, let
asgndRes(r) =

⋃
〈r,o〉∈assignedP(r){r} and asgndOp(r) =

⋃
〈r,o〉∈assignedP(r){o}.

Given an RBAC policy πRBAC = 〈U,Res ,Op,Roles ,UA,PA,RH 〉 and an ABAC policy
π = 〈U,Res ,Op, Au, Ar, du, dr,Rules〉, a structural correspondence between πRBAC and π is
an onto function κ from the roles in SOP(πRBAC) whose authUP is non-empty to the rules
in π such that, for each rule ρ, [[ρ]] =

⋃
r∈κ−1(ρ) authUP(r), where κ−1 is the inverse of κ, i.e.,

κ−1(ρ) is the set of roles that map to rule ρ.
An ABAC policy is structurally consistent with an RBAC policy if there exists a structural

correspondence between them.
Among ABAC policies semantically and structurally consistent with a given RBAC policy

πRBAC, which ones are preferable? One criterion is that policies that do not use the attributes
uid and rid are preferable, because policies that use uid and rid are partly identity-based, not
entirely attribute-based. Thus, an initial idea is to require that each of these attributes be
used in the ABAC policy only if necessary, i.e., only if every ABAC policy that is semantically
and structurally consistent with πRBAC contains rules that use that attribute.

We refine this initial idea as follows. According to this initial idea, uid is used only
when the information available from other attributes is insufficient to “explain” parts of
the permission assignment, i.e., insufficient to characterize the sets of users that appear
in the RBAC policy. In practice, this is likely to occur fairly often, because the available
attribute information is often incomplete. However, rules that use uid to enumerate sets of
users by their user identifiers are likely to be lower-level and harder to understand than the
corresponding parts of the original RBAC policy. Therefore, we prohibit use of uid in the
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ABAC policy, introduce a user attribute that expresses role membership, and allow this new
user attribute to be used (instead of uid) when necessary to achieve semantic and structural
consistency with the RBAC policy.

A policy quality metric is a function from ABAC policies to a totally-ordered set, such as
the natural numbers. The ordering is chosen so that small values indicate high quality; this
might seem counter-intuitive at first glance but is natural for metrics based on policy size.

The ABAC-from-RBAC policy mining problem is: given an RBAC policy πRBAC =
〈U,Res ,Op,Roles ,UA,PA,RH 〉, attribute data 〈Au, Ar, du, dr〉, and a policy quality met-
ric Qpol, find a set Rules of rules such that the ABAC policy π = 〈U,Res ,Op, Au ∪
{roles}, Ar, d

′
u, dr,Rules〉 (1) is semantically and structurally consistent with πRBAC, (2) does

not use uid, (3) uses roles and rid only when necessary, and (4) has the best quality, accord-
ing to Qpol, among policies that satisfy conditions (1) through (3). Here, d′u is du extended
with a user attribute named roles defined by: d′u(u, roles) = {r ∈ Roles ′ | u ∈ authU(r)}.
For simplicity, we assume Au does not contain an attribute named roles.

For the policy quality metric, we use weighted structural complexity (WSC) [MCL+10], a
generalization of policy size. The WSC of an ABAC policy is the WSC of the set Rules of
rules in the policy, defined by

WSC(e) =
∑

a∈attr1(e)

|e(a)|+
∑

a∈attrm(e),s∈e(a)

|s|

WSC(〈eu, ep, O, c〉) = w1WSC(eu) + w2WSC(ep) + w3|O|+ w4|c|
WSC(Rules) =

∑
ρ∈Rules

WSC(ρ)

where |s| is the cardinality of set s, and the wi are user-specified weights. In the experiments
in Section 5.3, all weights equal 1.

5.2 Policy Mining Algorithm

Let the inputs to the algorithm be denoted as in the problem statement. Let π′RBAC =
〈U,Op, R,Roles ′,UA′,PA′,RH ′〉 be the sum-of-products policy for πRBAC. Top-level pseudo-
code for our policy mining algorithm appears in Figure 5.1. It calls several functions, de-
scribed next.

The function computeUAE(s, U) in Figure 5.1 computes a user-attribute expression eu

that characterizes the set s of users. Preference is given to attribute expressions that do
not use uid, as discussed in Section 3.2. After constructing a candidate expression e, it calls
elimRedundantSets(e), which is also defined in Figure 5.1. elimRedundantSets(e) attempts
to lower the WSC of e by examining the conjunct for each multi-valued user attribute,
and removing each set that is a superset of another set in the same conjunct; this leaves the
meaning of the rule unchanged, because ⊇ is used in the condition for multi-valued attributes
in the semantics of user attribute expressions. For uniformity with other functions described
below, elimRedundantSets(e) returns false. The expression eu returned by computeUAE
might not be minimum-sized among expressions that characterize s: it is possible that some
attributes mapped to a set of values by eu can instead be mapped to >.
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// Rules is the set of rules
1: Rules = ∅
// κ is the structural correspondence
2: κ = ∅
3: for r in Roles ′

4: if authUP(r).empty()
5: continue
6: end if

// create a rule corresponding to r
7: eu = computeUAE(authU(r))
8: er = computeRAE(asgndRes(r))
9: O = asgndOp(r)
10: cc =

⋂
u∈authU(r),s∈asgndRes(r)

candidateConstraint(u, s)
11: ρ = 〈eu, er, O, cc〉
12: Rules .add(ρ)
13: κ.add(〈r, ρ〉)
14: end for
// Rules is semantically and structurally
// consistent with πRBAC. Try to improve
// its quality, by repeatedly merging and
// simplifying rules, until this has no
// effect.
15: mergeRules(Rules , κ)
16: while simplifyRules(Rules , κ)
17: if not mergeRules(Rules , κ)
18: break
19: end if
20: end while
21: useRoleAttribute(Rules , κ)
22: return 〈Rules , κ〉

function computeUAE(s)
// Try to characterize s without using
// uid. Use all other attributes which
// have known values for all users in s.
1: e = (λ a ∈ Au.

a=uid ∨ (∃u ∈ s. du(u, a) = ⊥)
? > :

⋃
u∈s du(u, a))

2: if [[e]]U 6= s
// uid is needed to characterize s

3: e(uid) =
⋃
u∈s du(u, uid)

4: end if
5: elimRedundantSets(e)
6: return e

function elimRedundantSets(e)
1: for a in attrm(e)
2: for s in e(a)
3: if (∃s′ ∈ e(a). s′ ⊂ s)
4: e(a).remove(s)
5: end if
6: end for
7: end for
8: return false

Figure 5.1: Left: Top-level pseudocode for policy mining algorithm. Right: computeUAE(s)
computes a user-attribute expression that characterizes set s of users.

The function computeRAE is defined in the same way as computeUAE, except using
resource attributes instead of user attributes, and the call to elimRedundantSets is omitted.

The function candidateConstraint(u, s) returns a set containing all the atomic constraints
that hold between user u and resource s.

The function mergeRules(Rules , κ) in Figure 5.2 attempts to reduce the WSC of Rules ,
while preserving semantic and structural consistency, by removing redundant rules and merg-
ing pairs of rules. A rule ρ is subsumed by a role ρ′ if [[ρ]] ⊆ [[ρ′]]. A rule in Rules is redundant
if it subsumed by another rule in Rules . Informally, rules ρ1 and ρ2 are merged by taking,
for each attribute, the union of the conjuncts in ρ1 and ρ2 for that attribute. If adding the

74



resulting rule ρmerge and removing rules subsumed by ρmerge (including ρ1 and ρ2) preserves
structural consistency, then these changes are made to Rules , and the structural correspon-
dence f is updated accordingly. mergeRules(Rules , κ) updates Rules and κ in place, and it
returns a Boolean indicating whether any rules were merged.

The function simplifyRules(Rules , κ) attempts to simplify all of the rules in Rules . It
updates its arguments Rules and κ in place, replacing rules in Rules with simplified versions
when simplification succeeds. It returns a Boolean indicating whether any rules were simpli-
fied. It attempts to simplify each rule in several ways, which are embodied in the following
simplification functions that it calls. Generally, each of these simplification functions return
a Boolean indicating whether changes were made; this information is used in the top-level
pseudocode in Figure 5.1 to determine whether another iteration of merging and simplifica-
tion is necessary. The function elimRedundantSets is described above. It returns false, even
if some redundant sets were eliminated, because elimination of redundant sets does not affect
the meaning or mergeability of rules, so it should not trigger another iteration of merging and
simplification. The function elimConjuncts(ρ,Rules , κ,UP) attempts to increase the quality
of rule ρ by eliminating some conjuncts. It calls the function elimConjunctsHelper(ρ,A,
Rules ,UP), which considers all rules that differ from ρ by mapping a subset A′ of the
tagged attributes in A to > instead of to a set of values. For each of the resulting rules ρ′,
elimConjunctsHelper checks whether ρ′ can replace the rules that it subsumes, i.e., whether
ρ′ has exactly the same meaning as the set of rules it subsumes. Among the resulting rules
that satisfy this condition, elimConjunctsHelper returns one with the highest quality. A
tagged attribute is a pair of the form 〈"user", a〉 with a ∈ Au or 〈"res", a〉 with a ∈ Ar. The
set Aunrm in function elimConjuncts is a set of unremovable tagged attributes; it is a parame-
ter of the algorithm, specifying attributes that should not be eliminated, because eliminating
them increases the risk of generating an overly general policy, i.e., a policy that might grant
inappropriate permissions when new users or new resources (hence new permissions) are
added to the system. We use a combinatorial algorithm for elimConjuncts that evaluates all
combinations of conjuncts that can be eliminated, because elimination of one conjunct might
prevent elimination of another conjunct. This algorithm makes elimConjuncts worst-case ex-
ponential in the numbers of user attributes and resource attributes that can be eliminated
while preserving validity of the rule; in practice the number of such attributes is small, and
elimConjuncts is fast. The function elimConstraints(ρ,Rules , κ,UP) attempts to improve
the quality of ρ by removing unnecessary atomic constraints from ρ’s constraint. An atomic
constraint is unnecessary in a rule ρ if removing it from ρ’s constraint leaves ρ valid. The
loop over i in elimConstraintsHelper considers all possibilities for the first atomic constraint
in cc that gets removed from the constraint of ρ. The function calls itself recursively to
determine the subsequent atomic constraints in cc that get removed from the constraint.
The function elimElements(ρ,Rules , κ) attempts to decrease the WSC of rule ρ by removing
elements from sets in conjuncts for multi-valued user attributes, if removal of those elements
produces a rule ρ′ that can replace the rules it subsumes; note that, because ⊆ is used in
the semantics of user attribute expressions, the set of user-permission pairs that satisfy a
rule is unchanged or increased (never decreased) by such removals. It would be reasonable
to use a combinatorial algorithm for elimElements, in the same style as elimConjuncts and
elimConstraints, because elimination of one set element can prevent elimination of another.
We decided to use a simple linear algorithm for this function, for simplicity and because it
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function mergeRules(Rules , κ)
// remove redundant rules
1: for ρ in Rules
2: if ∃ρ′ ∈ Rules \ {ρ}. [[ρ]] ⊆ [[ρ′]]
3: Rules .remove(ρ)
4: for each r in κ−1(ρ)
5: κ(r) = ρ′

6: end for
7: end if
8: end for
// merge rules
9: merged = false
10: workSet = {(ρ1, ρ2) | ρ1 ∈ Rules

∧ ρ2 ∈ Rules
∧ ρ1 6= ρ2

∧ con(ρ1) = con(ρ2)}
11: while not(workSet.empty())

// remove an arbitrary element
// of the workset

12: (ρ1, ρ2) = workSet .remove()
13: ρmerge = 〈uae(ρ1) ∪ uae(ρ2),

rae(ρ1) ∪ rae(ρ2),
ops(ρ1) ∪ ops(ρ2), con(ρ1)〉

14: subsumed = findSubsumed(ρ,Rules)
15: if [[ρmerge]] =

⋃
ρ∈subsumed [[ρ]]

16: merged = true
17: replaceRules(subsumed , ρmerge,Rules , κ)
18: remove pairs in workSet that contain
19: an element of subsumed
20: workSet .addAll({(ρmerge, ρ) |

ρ ∈ Rules
∧ρ 6= ρmerge

∧ con(ρ) = con(ρmerge)})
21: end if
22: end while
23: return merged

// find rules in Rules subsumed by ρ
function findSubsumed(ρ,Rules)
1: subsumed = {ρ1, ρ2}
2: for ρ in Rules \ {ρ1, ρ2}
3: if [[ρ]] ⊆ [[ρmerge]]
4: subsumed .add(ρ)
5: end if
6: end for
7: return subsumed

// replace the rules in S with ρ;
// update Rules and κ accordingly.
function replaceRules(S, ρ,Rules , κ)
1: for ρ in subsumed
2: Rules .remove(ρ)
3: for each r in κ−1(ρ)
4: κ(r) = ρmerge

5: end for
6: end for
7: Rules .add(ρmerge)

Figure 5.2: Merge pairs of rules in Rules , when possible, to reduce the WSC of Rules . (a, b)
denotes an unordered pair with components a and b. The union e = e1 ∪ e2 of attribute
expressions e1 and e2 over the same set A of attributes is defined by: for all attributes a in
A, if e1(a) = > or e2(a) = > then e(a) = > otherwise e(a) = e1(a) ∪ e2(a).
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is likely to give the same results, because elimElements usually eliminates only 0 or 1 set el-
ements per rule in our experiments. Pseudocode for simplification-related functions appears
in Figures 5.3–5.4.

The function useRoleAttribute(Rules , κ) in Figure 5.4 replaces uses of “uid” with uses
of the user attribute “roles”, whose values are defined as described in the policy mining
problem definition.

Iteration Order In the iterations over Rules in mergeRules and simplifyRules, the or-
der in which rules are processed is deterministic in our implementation, because Rules is
implemented as an arraylist, loops iterate over the rules in the order they appear in the
arraylist, and newly generated rules are added at the end of the arraylist. In the first loop
in mergeRules, if multiple rules ρ′ subsume ρ, we choose the first such rule in Rules as the
witness for the existential quantifier.

5.3 Evaluation

We evaluated our algorithm on manually written case studies. Experiments with a real
RBAC policy and real attribute data would be better, but unfortunately, we do not have
access to such information. The policies are small but non-trivial and realistic.

Due to space limitations, only brief descriptions of the case studies are included here.
Full details, including all input files and output files, are available at
http://www.cs.stonybrook.edu/~stoller/abac-from-rbac/. The ABAC policies for the
case studies are similar to those in [XS13a].

5.3.1 Experiments with Full Attribute Data

These experiments demonstrate that, when all relevant attribute data is available, our al-
gorithm successfully produces an intuitive high-level ABAC policy from an RBAC policy.
We manually wrote semantically consistent case study policies in RBAC and ABAC, applied
our algorithm to the RBAC policy and accompanying attribute data, and compared the
generated ABAC policy with the manually written one.

University Case Study Our university case study is a policy that controls access to
applications (for admission), gradebooks, transcripts, and course schedules. There are roles
for students in each course, TAs of each course, instructor of each course, chairman of each
department, registrar staff, admissions staff, and applicants for admission. The permission
assignment allows a student to read his/her transcript, an instructor to assign grades for
courses he/she teaches, etc. In the attribute data, user attributes include position (applicant,
student, faculty, or staff), department, set of courses taken (for students), set of courses
taught or TA-ed, and whether the user is department chair. Resource attributes include
resource type (application, gradebook, roster, or transcript), course (for gradebooks and
rosters), student (for transcripts and applications), and department. With no guidance (i.e.,
no attributes are declared unremovable), the generated ABAC policy is almost identical to
the manually written ABAC policy, with a 1-to-1 correspondence between rules in the two
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function simplifyRules(Rules , κ)
1: changed = false
2: for ρ in Rules
3: changed =

changed
∨ elimRedundantSets(uae(ρ))
∨ elimElements(ρ, κ)
∨ elimConjuncts(ρ,Rules , κ,UP0)

4: end for
5: for ρ in Rules
6: changed =

changed
∨ elimConstraints(ρ,Rules , κ,UP0)

7: end for
8: return changed

function elimConjuncts(ρ,Rules , κ,UP)
1: A = {"user"} × (.uae(ρ))

∪ {"res"} × (.rae(ρ))
2: A = A \ Aunrm

3: ρ1 = elimConjunctsHelper(ρ,A,Rules ,
UP)

4: if ρ1 6= ρ
5: replaceRules(findSubsumed(ρ1,Rules),

ρ1,Rules , κ)
6: return true
7: else
8: return false
9: end if

function elimConjunctsHelper(ρ,A,Rules ,UP)
1: ρbest = ρ
// discard tagged attributes ta in A such that
// elimination of the conjunct for ta makes ρ
// invalid.
2: for ta in A
3: ρ′ = elimAttribute(ρ, ta)
4: if not [[ρ′]] ⊆ UP0

5: A.remove(ta)
6: end if
7: end for
// we treat the set A as an array.
8: for i = 1 to A.length
9: ρ1 = elimAttribute(ρ,A[i])
10: ρ2 = elimConjunctsHelper(ρ1,

A[i+1 .. A.length],Rules ,UP)
11: if [[ρ2]] =

⋃
ρ′∈findSubsumed(ρ2,Rules) [[ρ′]]

∧Qrul(ρ2,UP) > Qrul(ρbest,UP)
12: ρbest = ρ2

13: end if
14: end for
15: return ρbest

function elimAttribute(〈eu, er, O, c〉, ta)
1: match ta with
2: 〈"user", a〉 → return 〈eu[a 7→ >], er, O, c〉
3: 〈"res", a〉 → return 〈eu, er[a 7→ >], O, c〉
4: end match

Figure 5.3: Functions used to simplify rules.

policies, and all corresponding rules being identical except for one rule, which has small
differences. If resource type is specified as an unremovable attribute, the generated policy is
identical to the manually written ABAC policy.

Health Care Case Study Our health care case study is a policy that controls access
to electronic health records (HRs) and HR items (i.e., entries in health records). There
are roles for nurses in each ward (e.g., oncology ward), each medical team, each medical
specialty on each medical team (e.g., oncologists on team 1), each patient, and agents for
each patient. The permission assignment allows a nurse to add note items in health records
for patients in the ward he/she works in, a patient and his/her agents to read note items in
the patient’s medical record, members of a medical team to read items appropriate to their
medical specialty in health records of patients treated by that team, etc. In the attribute
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function elimConstraints(ρ,Rules , κ,UP)
1: ρ1 = elimConstraintsHelper(ρ, con(ρ),

Rules ,UP)
2: if ρ1 6= ρ
3: replaceRules(findSubsumed(ρ1,Rules),

ρ1,Rules , κ)
4: return true
5: else
6: return false
7: end if

function elimConstraintsHelper(ρ, cc,
Rules ,UP)

1: ρbest = ρ
// discard formulas that, when removed
// from ρ, produce invalid rules
2: for f in cc
3: ρ′ = 〈uae(ρ), rae(ρ), ops(ρ), con(ρ) \ {f}〉
4: if [[ρ′]] 6⊆ UP0

5: remove f from cc
6: end if
7: end for
// we treat the set cc as an array.
8: for i=1 to cc.length
9: ρ1 = 〈uae(ρ), rae(ρ), ops(ρ),

con(ρ) \ {cc[i]}〉
10: ρ2 = elimConstraintsHelper(ρ1,

cc[i+1 .. cc.length],Rules ,UP)
11: if [[ρ2]] =

⋃
ρ′∈findSubsumed(ρ2,Rules) [[ρ′]]

∧Qrul(ρ2,UP) > Qrul(ρbest,UP)
12: ρbest = ρ2

13: end if
14: end for
15: return ρbest

function elimElements(ρ,Rules , κ)
1: changed = false
2: eu = uae(ρ)
3: for a in Au,m

4: for s in eu(a)
5: for v in s

// try to remove v from s
6: ρ1 = copy of ρ with v

removed from s
7: subsumed = findSubsumed(

ρ1,Rules)
8: if [[ρ1]] =

⋃
ρ′∈subsumed [[ρ′]]

9: replaceRules(subsumed ,
ρ1,Rules , κ)

10: changed = true
11: end if
12: end for
13: end for
14: end for
15: return changed

function useRoleAttribute(Rules , κ)
1: for ρ in Rules
2: if uae(ρ)(uid) 6= >
3: s = {{r} | r ∈ κ−1(ρ)}
4: ρ = 〈uae(ρ)[uid→ >, roles→ s],

rae(ρ), con(ρ)〉
5: end if
6: end for

Figure 5.4: Functions used to simplify rules (continued) and function useRoleAttribute.

data, user attributes include position (doctor or nurse; for other users, this attribute equals
⊥), the user’s medical specialties, teams the user is a member of, ward, and patients for
which the user is an agent. Resource attributes include resource type (HR or HR item), the
patient that the HR or HR item is for, medical teams treating that patient, ward housing that
patient, author, and topics. With no guidance (i.e., no attributes are declared unremovable),
the generated ABAC policy is very similar to the manually written ABAC policy, with a
1-to-1 correspondence between rules in the two policies, and with small differences between
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some corresponding rules. If resource type is specified as an unremovable attribute, the only
remaining difference is that one rule in generated policy has an additional conjunct that
reduces overlap with another rule.

Project Management Case Study Our project management case study is a policy
that controls access to budgets, schedules, and tasks associated with projects. There are
roles for the manager of each department; for the accountants, auditors, planners, leaders,
designers, and coders working on each project; and for the designers and coders assigned
to each task. The roles also distinguish employees from non-employees (contractors). Role
hierarchy is used to combine the roles for users of each specialty working on a project into a
role for all users working on the project. The permission assignment allows a user working
on a project to read the project schedule, a user working on a task to update the status of
the task, a non-employee working on a project to read information about non-proprietary
tasks in that project that match his/her technical expertise, etc. In the attribute data,
user attributes include the set of projects the user is working on, the projects led by the
user, the user’s administrative roles (e.g., accountant, auditor), the user’s areas of technical
expertise, tasks assigned to the user, department, and whether the user is an employee.
Resource attributes include resource type (task, schedule, or budget), project, department,
areas of technical expertise required to work on the task, and whether the task involves
proprietary information. With no guidance (i.e., no attributes are declared unremovable),
the generated ABAC policy is very similar to the manually written ABAC policy, with a
1-to-1 correspondence between rules in the two policies, and with small differences between
some corresponding rules. If resource type is specified as an unremovable attribute, the only
remaining difference is that one rule in generated policy has an additional conjunct that
reduces overlap with another rule.

5.3.2 Experiments with Incomplete Attribute Data

These experiments demonstrate that, when some relevant attribute information is unavail-
able, our algorithm successfully produces an intuitive high-level ABAC policy that uses the
available attribute data and uses role membership information as a substitute for missing
attribute data.

For the health care case study, we deleted the user attribute data specifying which users
are agents for which patients; this data seems less essential to the hospital’s IT system, and
hence more likely to be unavailable, than employee-related user attribute data. With this
input, the generated ABAC policy is mostly identical to the ABAC policy generated with
full attribute data (as described above): rules unrelated to agents are unaffected, while rules
granting permissions to agents are replaced with similar rules that use agent roles instead of
the “agent for” attribute. The number of agent-related rules increases, because a separate
rule is needed for each patient’s agents.

For the university case study, we deleted the user attribute data specifying whether a user
is a department chair. As expected, only the rule granting permissions to department chairs
is affected, and the only change in that rule is replacement of the conjunct “isChair=true”
in the user attribute expression with the conjunct ”role supseteqln {{eeChair}, {csChair}}”.
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πR1 :
UA(csStudent, {. . .})
UA(eeStudent, {. . .})
RH(student, csStudent)
RH(student, eeStudent)
PA(csStudent, {<csServer, runApp>})
PA(eeStudent, {<eeServer, runApp>})
PA(student, {<univServer, runApp>})

πR2 :
UA(csStudent, {. . .})
UA(eeStudent, {. . .})
PA(csStudent, { <univServer, runApp>,

<csServer, runApp>})
PA(eeStudent, { <univServer, runApp>,

<eeServer, runApp>})

πA1 :
rule(dept=cs; type=csServer; {runApp}; )
rule(dept=ee; type=eeServer; {runApp}; )
rule(dept in {cs, ee}; type=univServer;
{runApp}; )

πA2 :
rule(dept in {cs}; type in {univServer,

csServer}; {runApp}; )
rule(dept in {ee}; type in {univServer,

eeServer}; {runApp}; )

Figure 5.5: Department/university server example.

5.3.3 Experiments with Varying Policy Structure

These experiments demonstrate how the structure of the RBAC policy propagates into the
structure of the generated ABAC policy. As a small initial example, consider the RBAC
policies πR1 and πR2 in Figure 5.5, which control students’ permission to run some application
on departmental and university servers (any other appropriate operation, e.g., upload a file,
could be used instead). These policies have the same user-permission relation but different
structure. πR2 has lower WSC than πR1, but πR1 might be preferable for other reasons, for
example, if rules that grant permissions on university servers are administered by the IT
Department, and rules that grant permissions on a departmental server is administered by
the owning department. Assuming suitable attribute data (a user attribute “dept” indicating
the user’s department, etc.), our algorithm applied to πR1 produces the ABAC policy πA1,
which has the same structure as πR1 and hence can be administered in the same way. In
contrast, our algorithm applied to πR2 produces the ABAC policy πA2, which has lower WSC
than πA1 but cannot be administered in the same way as πA1.

For a second example, consider the fragment of the university case study that grants
permissions on gradebooks to the staff for each course, i.e., the instructor and TAs. Figures
5.6 and 5.7 show two ways of expressing these permissions in RBAC (PA statements for
only one representative course are shown) and the corresponding ABAC rules generated
by our algorithm. Informally, in Figure 5.6, the roles (and hence the rules) are organized
by operation, while the roles in Figure 5.7 are organized by the user’s position (instructor
or TA). The algorithm in [XS13a], applied to the ACL expansion of either RBAC policy,
produces the rules in Figure 5.6, which have lower WSC.

5.4 Related Work

To the best of our knowledge, this paper presents the first algorithm specifically designed
to mine ABAC policies from RBAC policies and attribute data, and the only prior work
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PA(cs101Staff, { <cs101gradebook, addScore>, <cs101gradebook, readScore>})
PA(cs101Instructor, { <cs101gradebook, changeScore>,

<cs101gradebook, assignGrade>})

// a user (instructor or TA) can add scores and read scores in gradebooks
// for taught courses
rule(; type=gradebook; {addScore, readScore}; crsTaught 3 crs)
// the instructor for a course can change scores and assign grades in the
// course’s gradebook.
rule(position=faculty; type=gradebook; {changeScore, assignGrade};

crsTaught 3 crs)

Figure 5.6: Gradebook permissions in university case study, version 1.

PA(cs101TA, { <cs101gradebook, addScore>, <cs101gradebook, readScore>})
PA(cs101Instructor, { <cs101gradebook, addScore>, <cs101gradebook, readScore>,

<cs101gradebook, changeScore>, <cs101gradebook, assignGrade>})

// a TA can add scores and read scores in gradebooks for taught courses
rule(position=student; type=gradebook; {addScore, readScore}; crsTaught 3 crs)
// the instructor for a course can change scores and assign grades in the
// course’s gradebook.
rule( position=faculty; type=gradebook; {addScore, readScore, changeScore

, assignGrade}; crsTaught 3 crs)

Figure 5.7: Gradebook permissions in university case study, version 2.

on mining ABAC policies is the algorithm of Xu and Stoller [XS13a] that mines ABAC
policies from ACLs and attribute data. There are significant differences in the workings
of the algorithm, including (1) the algorithm in this paper constructs rules corresponding
to roles, while the algorithm in [XS13a] constructs rules corresponding to user-permission
tuples and then attempts to generalize the resulting rules, and (2) all of the rules constructed
by the algorithm in this paper either get merged with other rules or included in the output,
while the algorithm in [XS13a] contains with a selection phase that may discard many of the
constructed rules. Despite these differences, the algorithm in this paper builds on the work
in [XS13a]; specifically, the functions computeUAE, computeRAE, and elimRedundantSets
are the same as in [XS13a], and the functions mergeRules, simplifyRules and the “elim”
functions called by simplifyRules are similar to the corresponding functions in [XS13a] but
with important changes in (1) the condition used to decide when to perform a merge or
elimination operation and (2) the code used to update the ABAC policy after a merge or
elimination operation. The algorithm in [XS13a] can be used to mine ABAC policies from
RBAC policies (and attribute data), by expanding RBAC policies into ACLs. However, that
approach has significant disadvantages compared to the algorithm presented in this paper,
mainly (1) the generated ABAC policy is less likely to have the desired structure, because the
structure of the RBAC policy is not used to guide the structure of the ABAC policy, and (2)
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role membership information is not used to substitute for unavailable attribute information,
leading to lower-level policies that use user identity instead of role membership information
where the available attribute information is insufficient.

The next most closely related work is Xu and Stoller’s algorithm for mining parame-
terized RBAC (PRBAC) policies from ACLs and attribute data [XS13b]. In their PRBAC
framework, users and permissions have attributes that are implicit parameters of roles, the
set of users assigned to a role is specified by an expression over user attributes, and the set of
permissions granted to a role is specified by an expression over permission attributes. Thus,
their PRBAC framework supports a simple form of ABAC, but quite limited compared to
our ABAC framework. Most importantly, our framework supports multi-valued (also called
“set-valued”) attributes and allows attributes to be compared using set membership, sub-
set, and equality; their PRBAC framework does not support multi-valued attributes, and it
allows attributes to be compared using only equality. The differences in input policy lan-
guage (ACL vs. RBAC) and output policy language (PRBAC vs. ABAC) naturally lead to
significant differences between the algorithms.

Less closely related work includes policy mining algorithms that take attribute data
into account when mining RBAC policies (without parameters) from ACLs, e.g., [MCL+10,
CDV12, XS12].
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Chapter 6

Mining Attribute-Based Access
Control Policies from Logs

In previous chapters, we assume that the entire user-permission relation is available in some
form (such as ACLs or RBAC). However, an ACL policy or RBAC policy might not be
available, e.g., if the current access control policy is encoded in a program or is not enforced
by a computerized access control mechanism. An alternative source of information about the
current access control policy is operation logs, or “logs” for short. Many software systems
produce logs, e.g., for auditing, accounting, and accountability purposes. Molloy, Park, and
Chari proposed the idea of mining policies from logs and developed algorithms for mining
RBAC policies from logs [MPC12b]. This paper presents an algorithm for mining ABAC
policies from logs and attribute data.

6.1 Problem Definition

An operation log entry e is a tuple 〈u, r, o, t〉 where u ∈ U is a user, r ∈ R is a re-
source, o ∈ Op is an operation, and t is a timestamp. An operation log is a sequence
of operation log entries. The user-permission relation induced by an operation log L is
UP(L) = {〈u, r, o〉 | ∃t. 〈u, r, o, t〉 ∈ L}.

The input to the ABAC-from-logs policy mining problem is a tuple I = 〈U,R,Op, Au,
Ar, du, dr, L〉, where U is a set of users, R is a set of resources, Op is a set of operations, Au is a
set of user attributes, Ar is a set of resource attributes, du is user attribute data, dr is resource
attribute data, and L is an operation log, such that the users, resources, and operations that
appear in L are subsets of U , R, and Op, respectively. The goal of the problem is to find a
set of rules Rules such that the ABAC policy π = 〈U,R,Op, Au, Ar, du, dr,Rules〉 maximizes
a suitable policy quality metric.

The policy quality metric should reflect the size and meaning of the policy. Size is mea-
sured by weighted structural complexity (WSC) [MCL+10], and smaller policies are considered
to have higher quality. This is consistent with usability studies of access control rules, which
conclude that more concise policies are more manageable. Informally, the WSC of an ABAC
policy is a weighted sum of the number of elements in the policy. Specifically, the WSC of an
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attribute expression is the number of atomic values that appear in it, the WSC of an opera-
tion set is the number of operations in it, the WSC of a constraint is the number of atomic
constraints in it, and the WSC of a rule is a weighted sum of the WSCs of its components,
namely, WSC(〈eu, er, O, c〉) = w1WSC(eu) + w2WSC(er) + w3WSC(O) + w4WSC(c), where
the wi are user-specified weights. The WSC of a set of rules is the sum of the WSCs of its
members.

The meaning [[π]] of the ABAC policy is taken into account by considering the differ-
ences from UP(L), which consist of over-assignments and under-assignments. The over-
assignments are [[π]] \ UP(L). The under-assignments are UP(L) \ [[π]]. Since logs provide
only a lower-bound on the actual user-permission relation (a.k.a entitlements), it is necessary
to allow some over-assignments, but not too many. Allowing under-assignments is beneficial
if the logs might contain noise, in the form of log entries representing uses of permissions that
should not be granted, because it reduces the amount of such noise that gets propagated into
the mined policy; consideration of noise is left for future work. We define a policy quality
metric that is a weighted sum of these aspects:

Qpol(π, L) = WSC(π) + wo |[[π]] \ UP(L)| / |U | (6.1)

where the policy over-assignment weight wo is a user-specified weight for over-assignments,
and for a set S of user-permission tuples, the frequency-weighted size of S with respect to
log L is |S|L =

∑
〈u,r,o〉∈S freq(〈u, r, o〉, L), where the relative frequency of a user-permission

tuple in a log is given by the frequency function freq(〈u, r, o〉, L) = |{e ∈ L | userPerm(e) =
〈u, r, o〉}| / |L|, where the user-permission part of a log entry is given by userPerm(〈u, r, o, t〉) =
〈u, r, o〉.

For simplicity, our presentation of the problem and algorithm assume that attribute data
does not change during the time covered by the log. Accommodating changes to attribute
data is not difficult. It mainly requires re-defining the notions of policy quality and rule
quality (introduced in Section 6.2) to be based on the set of log entries covered by a rule,
denoted [[ρ]]LE, rather than [[ρ]]. The definition of [[ρ]]LE is similar to the definition of [[ρ]],
except that, when determining whether a log entry is in [[ρ]]LE, the attribute data in effect
at the time of the log entry is used.

6.2 Algorithm

Our algorithm is based on the algorithm for mining ABAC policies from ACLs and attribute
data in [XS13a]. Our algorithm does not take the order of log entries into account, so the
log can be summarized by the user-permission relation UP0 induced by the log and the
frequency function freq, described in the penultimate paragraph of Section 3.2.

Top-level pseudocode appears in Figure 6.1. We refer to tuples selected in the first state-
ment of the first while loop as seeds. The top-level pseudocode is explained by embedded
comments. It calls several functions, described next. Function names hyperlink to pseu-
docode for the function, if it is included in the paper, otherwise to the description of the
function.

The function addCandidateRule(su, sr, so, cc, uncovUP,Rules) in Figure 6.2 first calls
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computeUAE to compute a user-attribute expression eu that characterizes su, and computeRAE
to compute a resource-attribute expression er that characterizes sr. It then calls
generalizeRule(ρ, cc, uncovUP,Rules) to generalize rule ρ = 〈eu, er, so, ∅〉 to ρ′ and adds ρ′

to candidate rule set Rules . The details of the functions called by addCandidateRule are
described next.

The function computeUAE(s, U) computes a user-attribute expression eu that character-
izes the set s of users. Preference is given to attribute expressions that do not use uid, since
attribute-based policies are generally preferable to identity-based policies, even when they
have higher WSC, because attribute-based generalize better. Similarly, computeRAE(s, R)
computes a resource-attribute expression that characterizes the set s of resources. Pseu-
docode for computeUAE and computeRAE are omitted. The function candidateConstraint(r, u)
returns a set containing all of the atomic constraints that hold between resource r and user
u. Pseudocode for candidateConstraint is straightforward and omitted.

The function generalizeRule(ρ, cc, uncovUP,Rules) in Figure 6.3 attempts to generalize
rule ρ by adding some of the atomic constraints in cc to ρ and eliminating the conjuncts
of the user attribute expression and/or the resource attribute expression corresponding to
the attributes used in those constraints, i.e., mapping those attributes to >. We call a rule
obtained in this way a generalization of ρ. Such a rule is more general than ρ in the sense
that it refers to relationships instead of specific values. Also, the user-permission relation
induced by a generalization of ρ is a superset of the user-permission relation induced by ρ.
generalizeRule(ρ, cc, uncovUP,Rules) returns the generalization ρ′ of ρ with the best quality
according to a given rule quality metric. Note that ρ′ may cover tuples that are already
covered (i.e., are in UP); in other words, our algorithm can generate policies containing
rules whose meanings overlap.

A rule quality metric is a function Qrul(ρ,UP) that maps a rule ρ to a totally-ordered set,
with the ordering chosen so that larger values indicate high quality. The second argument
UP is a set of user-permission tuples. Our rule quality metric assigns higher quality to
rules that cover more currently uncovered user-permission tuples and have smaller size, with
an additional term that imposes a penalty for over-assignments, measured as a fraction of
the number of user-permission tuples covered by the rule, and with a weight specified by a
parameter w′o, called the rule over-assignment weight.

Qrul(ρ,UP) =
|[[ρ]] ∩ UP |
|ρ|

× (1− w′o × |[[ρ]] \ UP(L)|
|[[ρ]]|

).

In generalizeRule, uncovUP is the second argument to Qrul, so [[ρ]] ∩ UP is the set of user-
permission tuples in UP0 that are covered by ρ and not covered by rules already in the policy.
The loop over i near the end of the pseudocode for generalizeRule considers all possibilities
for the first atomic constraint in cc that gets added to the constraint of ρ. The function calls
itself recursively to determine the subsequent atomic constraints in c that get added to the
constraint.

We also developed a frequency-sensitive variant of this rule quality metric. Let Qfreq
rul

denote the frequency-weighted variant of Qrul, obtained by weighting each user-permission
tuple by its relative frequency (i.e., fraction of occurrences) in the log, similar to the definition
of λ-distance in [MPC12b]. Specifically, the definition of Qfreq

rul is obtained from the definition
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of Qrul by replacing |[[ρ]] ∩ UP | with |[[ρ]] ∩ UP |L (recall that | · |L is defined in Section 3.2).
We also developed a rule quality metric QILP

rul based closely on the theory quality metric
for inductive logic programming described in [Mug95]. Details of the definition appear in
Appendix B.1.

The function mergeRules(Rules) in Figure 6.3 attempts to improve the quality of Rules
by removing redundant rules and merging pairs of rules. A rule ρ in Rules is redundant if
Rules contains another rule ρ′ such that every user-permission tuple in UP0 that is in [[ρ]] is
also in [[ρ′]]. Informally, rules ρ1 and ρ2 are merged by taking, for each attribute, the union of
the conjuncts in ρ1 and ρ2 for that attribute. If adding the resulting rule ρmerge to the policy
and removing rules (including ρ1 and ρ2) that become redundant improves policy quality
and ρmerge does not have over-assignments, then ρmerge is added to Rules , and the redundant
rules are removed from Rules . As optimizations (in the implementation, not reflected in the
pseudocode), meanings of rules are cached, and policy quality is computed incrementally.
mergeRules(Rules) updates its argument Rules in place, and it returns a Boolean indicating
whether any rules were merged.

The function simplifyRules(Rules) attempts to simplify all of the rules in Rules . It
updates its argument Rules in place, replacing rules in Rules with simplified versions when
simplification succeeds. It returns a Boolean indicating whether any rules were simplified.
It attempts to simplify each rule in several ways, including elimination of subsumed sets in
conjuncts for multi-valued attributes, elimination of conjuncts, elimination of constraints,
elimination of elements of sets in conjuncts for multi-valued user attributes, and elimination
of overlap between rules. The detailed definition is similar to the one in [XS13a] and is
omitted to save space.

6.2.1 Example

We illustrate the algorithm on a small fragment of our university case study (cf. Section
6.4.1). The fragment contains a single rule

ρ0 = 〈true, type ∈ {gradebook}, {addScore, readScore}, crsTaught 3 crs〉

and all of the attribute data from the full case study, except attribute data for gradebooks
for courses other than cs601. We consider an operation log L containing three entries:

{〈csFac2, cs601gradebook, addScore, t1〉, 〈csFac2, cs601gradebook, readScore, t2〉, 〈csStu3,
cs601gradebook, addScore, t3〉}

User csFac2 is a faculty in the computer science department who is teaching cs601; attributes
are position = faculty, dept = cs, and crsTaught = {cs601}. csStu3 is a CS student who
is a TA of cs601; attributes are position = student, dept = cs, and crsTaught = {cs601}.
cs601gradebook is a resource with attributes type = gradebook, dept = cs, and crs = cs601.

Our algorithm selects user-permission tuple 〈csFac2, cs601gradebook, addScore〉 as the
first seed, and calls function candidateConstraint to compute the set of atomic constraints
that hold between csFac2 and cs601gradebook; the result is cc = {dept = dept, crsTaught 3
crs}. addCandidateRule is called twice to compute candidate rules. The first call to
addCandidateRule calls computeUAE to compute a UAE eu that characterizes the set su
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// Rules is the set of candidate rules
Rules = ∅
// uncovUP contains user-permission tuples
// in UP0 that are not covered by Rules
uncovUP = UP0.copy()
while ¬uncovUP.empty()

// Select an uncovered tuple as a “seed”.
〈u, r, o〉 = some tuple in uncovUP
cc = candidateConstraint(r, u)
// su contains users with permission 〈r, o〉
// and that have the same candidate
// constraint for r as u
su = {u′ ∈ U | 〈u′, r, o〉 ∈ UP0

∧ candidateConstraint(r, u′) = cc}
addCandidateRule(su, {r}, {o}, cc, uncovUP,Rules)
// so is set of operations that u can apply to r
so = {o′ ∈ Op | 〈u, r, o′〉 ∈ UP0}
addCandidateRule({u}, {r}, so, cc, uncovUP,Rules)

end while

// Repeatedly merge and simplify
// rules, until this has no effect
mergeRules(Rules)
while simplifyRules(Rules)

&& mergeRules(Rules)
skip

end while
// Select high quality rules into Rules ′.
Rules ′ = ∅
Repeatedly move highest-quality rule
from Rules to Rules ′ until∑
ρ∈Rules′ [[ρ]] ⊇ UP0, using

UP0 \ [[Rules ′]] as second argument to
Qrul, and discarding a rule if it does
not cover any tuples in UP0 currently
uncovered by Rules ′.
return Rules ′

Figure 6.1: Policy mining algorithm. The pseudocode starts in column 1 and continues in
column 2.

function addCandidateRule(su, sr, so, cc, uncovUP,Rules)
// Construct a rule ρ that covers user-perm. tuples {〈u, r, o〉 | u ∈ su ∧ r ∈ sr ∧ o ∈ so}.
eu = computeUAE(su, U); er = computeRAE(sr, R); ρ = 〈eu, er, so, ∅〉
ρ′ = generalizeRule(ρ, cc, uncovUP,Rules); Rules .add(ρ′); uncovUP.removeAll([[ρ′]])

Figure 6.2: Compute a candidate rule ρ′ and add ρ′ to candidate rule set Rules

containing users with permission 〈addScore, cs601gradebook〉 and with the same candidate
constraint as csFac2 for cs601gradebook; the result is eu = (position ∈ {faculty, student} ∧
dept ∈ {cs} ∧ crsTaught ⊇ {{cs601}}). addCandidateRule also calls computeRAE to
compute a resource-attribute expression that characterizes {cs601gradebook}; the result
is er = (crs ∈ {cs601} ∧ dept ∈ {cs} ∧ type ∈ {gradebook}). The set of operations con-
sidered in this call to addCandidateRule is simply so = {addScore}. addCandidateRule
then calls generalizeRule, which generates a candidate rule ρ1 which initially has eu, er

and so in the first three components, and then atomic constraints in cc are added to ρ1,
and conjuncts in eu and er for attributes used in cc are eliminated; the result is ρ1 =
〈position ∈ {faculty, student}, type ∈ {gradebook}, {addScore}, dept = dept ∧ crsTaught 3 crs〉,
which also covers the third log entry. Similarly, the second call to addCandidateRule gener-
ates a candidate rule ρ2 = 〈position ∈ {faculty}, type ∈ {gradebook}, {addScore, readScore},
dept = dept ∧ crsTaught 3 crs〉, which also covers the second log entry.

All of UP(L) is covered, so our algorithm calls mergeRules, which attempts to merge
ρ1 and ρ2 into rule ρ3 = 〈position ∈ {faculty, student}, type ∈ {gradebook}, {addScore,
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function generalizeRule(ρ, cc, uncovUP,
Rules)

// ρbest is best generalization of ρ
ρbest = ρ
// gen[i][j] is a generalization of ρ using
// cc′[i]
gen = new Rule[cc.length][3]
for i = 1 to cc.length
f = cc[i]
// generalize by adding f and eliminating
// conjuncts for both attributes used in f .
gen[i][1] = 〈uae(ρ)[uAttr(f) 7→ >],

rae(ρ)[rAttr(f) 7→ >],
ops(ρ), con(ρ) ∪ {f}〉

// generalize by adding f and eliminating
// conjunct for user attribute used in f
gen[i][2] = 〈uae(ρ)[uAttr(f) 7→ >], rae(ρ),

ops(ρ), con(ρ) ∪ {f}〉
// generalize by adding f and eliminating
// conjunct for resource attrib. used in f .
gen[i][3] = 〈uae(ρ), rae(ρ)[rAttr(f) 7→ >],

ops(ρ), con(ρ) ∪ {f}〉
end for
for i = 1 to cc.length and j = 1 to 3

// try to further generalize gen[i]
ρ′′ = generalizeRule(gen[i][j], cc[i+1 ..],

uncovUP,Rules)
if Qrul(ρ

′′, uncovUP) > Qrul(ρbest,
uncovUP)

ρbest = ρ′′

end if
end for
return ρbest

function mergeRules(Rules)
// Remove redundant rules
redun = {ρ ∈ Rules | ∃ ρ′ ∈ Rules \ {ρ}.

[[ρ]] ∩ UP0 ⊆ [[ρ′]] ∩ UP0}
Rules .removeAll(redun)
// Merge rules
workSet = {(ρ1, ρ2) | ρ1 ∈ Rules ∧ ρ2 ∈ Rules

∧ ρ1 6= ρ2 ∧ con(ρ1) = con(ρ2)}
while not(workSet.empty())

(ρ1, ρ2) = workSet .remove()
ρmerge = 〈uae(ρ1) ∪ uae(ρ2),

rae(ρ1) ∪ rae(ρ2),
ops(ρ1) ∪ ops(ρ2), con(ρ1)〉

// Find rules that become redundant
// if merged rule ρmerge is added
redun = {ρ ∈ Rules | [[ρ]] ⊆ [[ρmerge]]}
// Add the merged rule and remove redun-
// dant rules if this improves policy quality
// and the merged rule does not have
// over-assignments.
if (Qpol(Rules ∪ {ρmerge} \ redun) < Qpol(Rules)
∧ [[ρmerge]] ⊆ UP0)

Rules .removeAll(redun)
workSet .removeAll({(ρ1, ρ2) ∈ workSet |

ρ1 ∈ redun ∨ ρ2 ∈ redun})
workSet .addAll({(ρmerge, ρ) | ρ ∈ Rules

∧ con(ρ) = con(ρmerge)})
Rules .add(ρmerge)

end if
end while
return true if any rules were merged

Figure 6.3: Left: Generalize rule ρ by adding some formulas from cc to its constraint and
eliminating conjuncts for attributes used in those formulas. f [x 7→ y] denotes a copy of
function f modified so that f(x) = y. a[i..] denotes the suffix of array a starting at index
i. Right: Merge pairs of rules in Rules , when possible, to reduce the WSC of Rules . (a, b)
denotes an unordered pair with components a and b. The union e = e1 ∪ e2 of attribute
expressions e1 and e2 over the same set A of attributes is defined by: for all attributes a in
A, if e1(a) = > or e2(a) = > then e(a) = > otherwise e(a) = e1(a) ∪ e2(a).
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readScore}, dept = dept ∧ crsTaught 3 crs〉. ρ3 is discarded because it introduces an over-
assignment while ρ1 and ρ2 do not. Next, simplifyRules is called, which first simplifies ρ1

and ρ2 to ρ′1 and ρ′2, respectively, and then eliminates ρ′1 because it covers a subset of the
tuples covered by ρ′2. The final result is ρ′2, which is identical to the rule ρ0 in the original
policy.

6.3 Algorithm Based on Generative Model

Another approach to this problem is to apply a machine learning algorithm that uses a
statistical approach, based upon a generative model, to find the policy that is most likely to
generate the behavior (usage of permissions) observed in the logs. This approach is inspired
by Molloy et al.’s work on mining RBAC policies and simple ABAC policies from logs
[MPC12a], using Rosen-Zvi et al.’s algorithm for learning author-topic models [RZCG+10].

The author-topic model (ATM) is a probabilistic generative model for collections of dis-
crete data, such as documents [RZCG+10]. ATM assumes the following process to generate
a document d: for each word w in d, an author a is randomly chosen, and then a topic t
is chosen from a multinomial distribution over topics specific to the author a, and then the
word w is chosen from a multinomial distribution over words specific to the selected topic t.
The inputs to the ATM algorithm are a set of authors, a set of documents, a function giving
the set of authors of each document, and the number of topics. The ATM algorithm finds
a probability distribution relating authors to topics (i.e., how likely each author is to write
about each topic) and a probability distribution relating topics to words (i.e., how likely each
word is to be used in text on each topic), such that the process described above, with these
probability distributions, is likely to generate the given documents.

Molloy et al. use ATM to mine meaningful roles from logs and user attribute data.
They employ the following correspondence [MPC12a]: authors correspond to a restricted
form of user attribute expressions (specifically, user attribute expressions with at most three
conjuncts of the form “attribute=value”), topics correspond to roles, words correspond to
permissions, and documents correspond to users (i.e., for each user u, there is a document
containing the permissions from the log entries for user u). For the document corresponding
to user u, the set of authors is the set of user attribute expressions (UAEs) satisfied by u.
With this correspondence, the ATM finds a probability distribution φ1 relating UAEs to
roles (i.e., φ1(e, r) is the probability that users satisfying UAE e are members of role r) and
a probability distribution φ2 relating roles to permissions (i.e., φ2(r, p) is the probability that
role r has permission p). For each user u, the probability distributions φ1(e, r) for each UAE
e satisfied by u are averaged. Together, the results form a probability distribution φ̂1 relating
users to roles (i.e., φ̂1(u, r) is the probability that user u is a member of role r). Finally,
the probability distributions φ̂1 and φ2 are discretized to obtain a user-role assignment and
a role-permission assignment.

To adapt this approach to mine ABAC policies from logs and attribute data, a new corre-
spondence between the components of the author-topic model and components of the access
control model is needed, to accommodate the following differences between our problem and
theirs: the goal is to generate an ABAC policy, not a meaningful RBAC policy; resource
attribute data, as well as user attribute data, is available; attributes can be multi-valued, and
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set relations can be used in attribute expressions; and constraints relating user attributes
and resource attributes are allowed.

We propose the following correspondence. The basic idea is to modify the correspondence
in [MPC12a] so that resources are treated the same way as users, because in our framework,
users and resources both have attributes. Another reason that users and resources need to
be treated together is the presence of constraints: users and resources must be associated
with rules in a coordinated way, not independently. Thus, resources are tupled with users,
instead of being tupled with operations to form permissions. Authors correspond to tuples
〈uae, rae, con〉, where uae is a user attribute expression with at most bu conjuncts, rae is
a resource attribute expression with at most br conjuncts, and con is a constraint with at
most bc atomic constraints. Furthermore, (1) each conjunct in uae or rae may contain only
one value, specifically, one atomic value or one set of size at most bs, depending on whether
the attribute is single-valued or multi-valued, and (2) each user attribute and each resource
attribute appear in at most one atomic constraints in con. Disjunction (i.e., conjuncts with
multiple values) is introduced later, by “merging” sets of rules, as described below. In
experiments, we take bu = 2, br = 2, bc = 2, and bs = 1; these are the smallest values
sufficient to express our case study policies. Topics correspond to rules. Words correspond
to operations. Documents correspond to user-resource pairs; the document corresponding to
a user-resource pair 〈u, r〉 is the sequence of operations performed (according to the log) by
user u on resource r. For the document corresponding to 〈u, r〉, the set of authors is the set
of 〈uae, rae, con〉 tuples such that u |= uae ∧ r |= rae ∧ u, r |= con.

The results of the ATM learning algorithm are a set of k topics, and two families of
probability distributions θ and φ. For each author a, θa is a probability distribution over
topics, such that θa,t is the probability that author a will select to write about topic t. For
each topic t, φt is a probability distribution over words, such that φt,w is the probability
that an author writing on topic t will use word w. A discretization algorithm, taken from
Algorithm 1 in [MPC12a], is used to obtain an ABAC policy from the topics and probability
distributions. The details of discretization algorithm, written in our notation, appear in
Figure 6.4. The inputs are: the input I to the policy mining problem defined in Section 3.2,
the families of probability distributions θ and φ described above, the maximum number of
iterations maxIter , the author set A, the word set W , the number of topics k. The integer
array AT used in the algorithm defines the discretized author-topic assignment; specifically,
author a is associated with the AT [a] topics that have the largest probability according to
θa. Similarly, the array TW defines the discretized topic-word assignment; specifically, topic
t is is associated with the TW [t] words that have the largest probability according to φt. A
set of rules is constructed from AT and TW by the constructABACRules function defined
in Figure 6.5. For each topic t, and for each author 〈uae, rae, con〉 that is associated with t
by AT , the rule 〈uae, rae, O, con〉 is included in the rule set, where O is the set of words that
are associated with t by TW .

To reduce the policy’s WSC and improve its quality, constructABACRules invokes a vari-
ant of the mergeRules function defined in Figure 5.2. This variant, called mergeRulesGen, is
obtained from mergeRules by replacing the validity test [[ρmerge]] ⊆ UP0 (which is inappro-
priate here because over-assignments are allowed) with a test that merging does not change
the meaning of the policy, namely, [[ρmerge]] ⊆ [[Rules ]].

The discretization algorithm aims to find values for AT and TW that maximize a policy
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quality metric. We use the policy quality metric defined in equation 6.1 in Section 3.2. The
algorithm is based on annealing. The algorithm begins with a random initialization of AT
and TW , and iteratively updates them until the updates converge or the maximum number
of iteration is reached. In each iteration, the algorithm first tries to update each AT [a] with
a new value that differs from the current value by at most ε, where ε is a parameter of the
annealing process. If the updated value results in an ABAC policy with a higher quality,
then the new value is accepted (by storing it in ATtmp [a] and later assigning it to AT [a]).
Otherwise, the new value is accepted with a probability drawn from the probability distri-
bution Pr[exp((Q(π, L) - Q(π′, L)))/T )/Z], where Z is a normalization factor, and T is the
temperature. The initial temperature T0 is relatively high, and the temperature is decreased
with rate γ in each iteration, where T0 and γ are parameters to the annealing process. TW
is updated similarly. All accepted updates are applied to AT and TW simultaneously at the
end of each iteration, by the assignment AT = ATtmp and a similar assignment for TW . This
algorithm is greedy in the sense that it considers only associations in which some number
of the highest-ranked topics or words are associated with an author or topic, respectively;
consequently, it might be unable to produce an optimal discretization in some cases.

Recall that the ATM algorithm takes the number k of topics (i.e., the desired number of
rules in the policy) as an input. In general, k is not known in advance. A simple approach to
determine a reasonable value of k is to start with a low estimate and iteratively increase it,
re-running the entire algorithm each time, until the improvement in policy quality falls below
a threshold. Developing an incremental version of the ATM algorithm would be difficult, so
the policy mining algorithm would executed from scratch each time, making this approach
inefficient. It might be possible to develop a more efficient search strategy for finding the
smallest value of k that, when incremented, produces a below-threshold improvement in
policy quality.

6.4 Evaluation Methodology

We evaluate our policy mining algorithms on synthetic operation logs generated from ABAC
policies (some handwritten and some synthetic) and probability distributions characterizing
the frequency of actions. This allows us to evaluate the effectiveness of our algorithm by
comparing the mined policies with the original ABAC policies. We are eager to also evaluate
our algorithm on actual operation logs and actual attribute data, when we are able to obtain
them.

6.4.1 ABAC Policies

Case Studies We developed four case studies for use in evaluation of our algorithm,
described briefly here. Details of the case studies, including all policy rules, various size
metrics (number of users, number of resources, etc.), and some illustrative attribute data,
appear in [XS13a].

Our university case study is a policy that controls access by students, instructors, teaching
assistants, registrar officers, department chairs, and admissions officers to applications (for
admission), gradebooks, transcripts, and course schedules. Our health care case study is a
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function Discretization(I, θ, φ,maxIter , A,W, k)
1: AT = new Vector(), TW = new Vector()
2: for a = 1 to |A|
3: AT [a] = randomInt(0, k)
4: end for
5: for t = 1 to k
6: TW [t] = randomInt(0, |W |)
7: end for
8: Rules = constructABACRules(θ, φ, AT, TW,A)
9: π = I[8→ Rules ]
10:T = T0

11:i = 0
12:while i ≤ maxIter
13: ATtmp = AT.copy()
14: for a = 1 to |A|
15: AT ′ = AT.copy()
16: AT ′[a] = randomInt(max(0, AT [a]− ε),min(k,AT [a] + ε))
17: Rules ′ = constructABACRules(θ, φ, AT ′, TW,A)
18: π′ = I[8→ Rules ′]
19: if Q(π′, πin.L) < Q(π, πin.L)
20: ATtmp [a] = AT ′[a]
21: else
22: if random(0, 1) ≤ Pr[exp((Q(π′, L)−Q(π, L)))/T )/Z]
23: ATtmp [a] = AT ′[a]
24: end if
25: end if
26: end for
27: /* Perform a similar updating process for TW */
28: Rules = constructABACRules(θ, φ, ATtmp , TWtmp , A)
29: π = I[8→ Rules ]
30: if AT = ATtmp and TW = TWtmp

31: break
32: end if
33: AT = ATtmp ; TW = TWtmp

34: T = γT
35: i = i+ 1
36:end while
37:return π

Figure 6.4: Discretization algorithm. random(x, y) returns a random number in the range
[x, y). randomInt(i, j) returns a random integer in the range [i, j]. t[i→ v] denotes the tuple
obtained from tuple t by changing the value of the i’th component to v.
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function constructABACRules(θ, φ, AT, TW,A)
1: Rules = new Set()
2: for a in A
3: T = the set containing the topics corresponding to
4: the AT [a] largest values of θa
5: for t in T
6: O = the set containing the words corresponding to
7: the TW [t] largest values of φt
8: 〈uae, rae, con〉 = a
9: ρ = 〈uae, rae, O, con〉
10: Rules .add(ρ)
11: end for
12:end for
13:mergeRulesGen(Rules)
14:return Rules

Figure 6.5: Construct an ABAC policy based on an author-topic assignment and a topic-word
assignment.

policy that controls access by nurses, doctors, patients, and agents (e.g., a patient’s spouse)
to electronic health records (HRs) and HR items (i.e., entries in health records). Our project
management case study is a policy that controls access by department managers, project
leaders, employees, contractors, auditors, accountants, and planners to budgets, schedules,
and tasks associated with projects. Our online video case study is a policy that controls
access to videos by users of an online video service.

The number of rules in the case studies is relatively small (10± 1 for the first three case
studies, and 6 for online video), but they express non-trivial policies and exercise all the
features of our policy language, including use of set membership and superset relations in
attribute expressions and constraints. The manually written attribute dataset for each case
study contains a small number of instances of each type of user and resource.

For the first three case studies, we generated a series of synthetic attribute datasets,
parameterized by a number N , which is the number of departments for the university and
project management case studies, and the number of wards for the health care case study.
The generated attribute data for users and resources associated with each department or
ward are similar to but more numerous than the attribute data in the manually written
datasets. We did not bother creating synthetic data for the online video case study, because
the rules are simpler.

Synthetic Policies We generated synthetic policies using the algorithm proposed by Xu
and Stoller [XS13a]. Briefly, the policy synthesis algorithm first generates the rules and then
uses the rules to guide generation of the attribute data; this allows control of the number
of granted permissions. The algorithm takes Nrule, the desired number of rules, as an input.
The numbers of users and resources are proportional to the number of rules. Generation of
rules and attribute data is based on several probability distributions, which are based loosely
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on the case studies or assumed to have a simple functional form (e.g., uniform distribution).

6.4.2 Log Generation

The inputs to the algorithm are an ABAC policy π, the desired completeness of the log, and
several probability distributions. The completeness of a log, relative to an ABAC policy,
is the fraction of user-permission tuples in the meaning of the policy that appear in at
least one entry in the log. A straightforward log generation algorithm would generate each
log entry by first selecting an ABAC rule, according to a probability distribution on rules,
and then selecting a user-permission tuple that satisfies the rule, according to probability
distributions on users, resources, and operations. This process would be repeated until the
specified completeness is reached. This algorithm is inefficient when high completeness is
desired. Therefore, we adopt a different approach that takes advantage of the fact that
our policy mining algorithm is insensitive to the order of log entries and depends only on
the frequency of each user-permission tuple in the log. In particular, instead of generating
logs (which would contain many entries for popular user-permission tuples), our algorithm
directly generates a log summary, which is a set of user-permission tuples with associated
frequencies (equivalently, a set of user-permission tuples and a frequency function).

Probability Distributions An important characteristic of the probability distributions
used in synthetic log and log summary generation is the ratio between the most frequent (i.e.,
most likely) and least frequent items of each type (rule, user, etc.). For case studies with
manually written attribute data, we manually created probability distributions in which this
ratio ranges from about 3 to 6. For case studies with synthetic data and synthetic policies,
we generated probability distributions in which this ratio is 25 for rules, 25 for resources,
3 for users, and 3 for operations (the ratio for operations has little impact, because it is
relevant only when multiple operations appear in the same rule, which is uncommon).

6.4.3 Metrics

For each case study and each associated attribute dataset (manually written or synthetic),
we generate a synthetic operation log using the algorithm in Section 6.4.2 and then run our
ABAC policy mining algorithms. We evaluate the effectiveness of each algorithm by com-
paring the generated ABAC policy to the original ABAC policy, using the metrics described
below.

Syntactic Similarity Jaccard similarity of sets is J(S1, S2) = |S1∩S2| / |S1∪S2|. Syntactic
similarity of UAEs is defined by suae(e, e

′) = |Au|−1 ∑
a∈Au

J(e(a), e′(a)). Syntactic similarity
of RAEs is defined by srae(e, e

′) = |Ar|−1 ∑
a∈Ar

J(e(a), e′(a)). The syntactic similarity of
rules 〈eu, er, O, c〉 and 〈e′u, e′r, O′, c′〉 is the average of the similarities of their components,
specifically, the average of suae(eu, e

′
u), srae(er, e

′
r), J(O,O′), and J(c, c′). The syntactic sim-

ilarity of rule sets Rules and Rules ′ is the average, over rules ρ in Rules , of the syntactic
similarity between ρ and the most similar rule in Rules ′. The syntactic similarity of policies
π and π′ is the maximum of the syntactic similarities of the sets of rules in the policies,
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considered in both orders (this makes the relation symmetric). Syntactic similarity ranges
from 0 (completely different) to 1 (identical).

Semantic Similarity Semantic similarity measures the similarity of the entitlements
granted by two policies. The semantic similarity of policies π and π′ is defined by J([[π]], [[π′]]).
Semantic similarity ranges from 0 (completely different) to 1 (identical).

Fractions of Under-Assignments and Over-Assignments To characterize the se-
mantic differences between an original ABAC policy π0 and a mined policy π in a way
that distinguishes under-assignments and over-assignments, we compute the fraction of
over-assignments and the fraction of under-assignments, defined by |[[π]] \ [[π0]]| / |[[π]]| and
|[[π0]] \ [[π]]| / |[[π]]|, respectively.

6.5 Experimental Results

This section presents experimental results using an implementation of our algorithm in Java.
The implementation, case studies, and synthetic policies used in the experiments are available
at http://www.cs.stonybrook.edu/~stoller/.

Over-Assignment Weight The optimal choice for the over-assignment weights wo and
w′o in the policy quality and rule quality metrics, respectively, depends on the log com-
pleteness. When log completeness is higher, fewer over-assignments are desired, and larger
over-assignments weights give better results. In experiments, we take wo = 50c − 15 and
w′o = wo/10, where c is log completeness. In a production setting, the exact log completeness
would be unknown, but a rough estimate suffices, because our algorithm’s results are robust
to error in this estimate. For example, for case studies with manually written attribute data,
when the actual log completeness is 80%, and the estimated completeness used to compute
wo varies from 70% to 90%, the semantic similarity of the original and mined policies varies
by 0.04, 0.02, and 0 for university, healthcare, and project management, respectively.

Experimental Results Figure 6.6 shows results from our algorithm. In each graph,
curves are shown for the university, healthcare, and project management case studies with
synthetic attribute data with N equal to 6, 10, and 10, respectively (average over results
for 10 synthetic datasets, with 1 synthetic log per synthetic dataset), the online video case
study with manually written attribute data (average over results for 10 synthetic logs), and
synthetic policies with Nrule = 20 (average over results for 10 synthetic policies, with 1
synthetic log per policy). Error bars show standard deviation. Running time is at most 12
sec for each problem instance in our experiments.

For log completeness 100%, all four case study policies are reconstructed exactly, and
the semantics of synthetic policies is reconstructed almost exactly: the semantic similarity
is 0.99. This is a non-trivial result, especially for the case studies: an algorithm could easily
generate a policy with over-assignments or more complex rules. As expected, the results get
worse as log completeness decreases. When evaluating the results, it is important to consider

96

http://www.cs.stonybrook.edu/~stoller/


what levels of log completeness are likely to be encountered in practice. One datapoint comes
from Molloy et al.’s work on role mining from real logs [MPC12b]. For the experiments in
[MPC12b, Tables 4 and 6], the actual policy is not known, but their algorithm produces
policies with 0.52% or fewer over-assignments relative to UP(L), and they interpret this as
a good result, suggesting that they consider the log completeness to be near 99%. Based on
this, we consider our experiments with log completeness below 90% to be severe stress tests,
and results for log completeness 90% and higher to be more representative of typical results
in practice.

Syntactic similarity for all four case studies is above 0.91 for log completeness 60% or
higher, and is above 0.94 for log completeness 70% or higher. Syntactic similarity is lower
for synthetic policies, but this is actually a good result. The synthetic policies tend to be
unnecessarily complicated, and the mined policies are better in the sense that they have
lower WSC. For example, for 100% log completeness, the mined policies have 0.99 semantic
similarity to the synthetic policies (i.e., the meaning is almost the same), but the mined
policies are simpler, with WSC 17% less than the original synthetic policies.

Semantic similarity is above 0.85 for log completeness 60% or higher, and above 0.94
for log completeness 80% or higher. These results are quite good, in the sense that our
algorithm compensates for most of the log incompleteness. For example, at log completeness
0.6, for policies generated by a policy mining algorithm that produces policies granting
exactly the entitlements reflected in the log, the semantic similarity would be 0.6. With our
algorithm, the semantic similarity, averaged over the 5 examples, is 0.95. Thus, in this case,
our algorithm compensates for 35/40 = 87.5% of the incompleteness.

The fractions of over-assignments are below 0.03 for log completeness 60% or higher.
The fractions of under-assignments are below 0.05 for log completeness 60% or higher for
the case studies and are below 0.05 for log completeness 80% or higher for synthetic policies.
The graphs also show that the semantic differences are due more to under-assignments than
over-assignments; this is desirable from a security perspective.

Comparison of Rule Quality Metrics The above experiments use the first rule quality
metric, Qrul, in Section 6.2. We also performed experiments using Qfreq

rul and QILP
rul on case

studies with manually written attribute data and synthetic policies. Qrul is moderately better
overall than Qfreq

rul and significantly better overall than QILP
rul .

Comparison with Inductive Logic Programming To translate ABAC policy min-
ing from logs to Progol [MF01], we used the translation of ABAC policy mining from
ACLs to Progol in [XS13a, Sections 5.5, 16], except negative examples corresponding to
absent user-permission tuples are omitted from the generated program, and the statement
set(posonly)? is included, telling Progol to use its algorithm for learning from positive ex-
amples. For the four case studies with manually written attribute data (in contrast, Figure
6.6 uses synthetic attribute for three of the case studies), for log completeness 100%, semantic
similarity of the original and Progol-mined policies ranges from 0.37 for project management
and healthcare to 0.93 for online video, while our algorithm exactly reconstructs all four
policies.
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Figure 6.6: Top: Syntactic similarity and semantic similarity of original and mined ABAC
policies, as a function of log completeness. Bottom: Fractions of over-assignments and
under-assignments in mined ABAC policy, as a function of log completeness.

6.6 Related Work

We are not aware of prior work on ABAC mining from logs. We discuss prior work on related
problems.

Our policy mining algorithm is based on our algorithm for ABAC policy mining from
ACLs [XS13a]. The main differences are described in Section 4.

Association rule mining is another possible basis for ABAC policy mining. However,
association rule mining algorithms are not well suited to ABAC policy mining, because they
are designed to find rules that are probabilistic in nature and are supported by statistically
strong evidence. They are not designed to produce a set of rules that completely cover
the input data and are minimum-sized among such sets of rules. Consequently, unlike our
algorithm, they do not give preference to smaller rules or rules with less overlap.

Ni et al. investigated the use of machine learning algorithms for security policy mining
[NLC+09]. In the most closely related part of their work, a supervised machine learning
algorithm is used to learn classifiers (analogous to attribute expressions) that associate users
with roles, given as input the users, the roles, user attribute data, and the user-role assign-
ment. Perhaps the largest difference between their work and ABAC policy mining is that
their approach needs to be given the roles and the role-permission or user-role assignment
as training data; in contrast, ABAC policy mining algorithms do not require any part of the
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desired high-level policy to be given as input. Also, their work does not consider anything
analogous to constraints.

Gal-Oz et al. [GOGY+11] mine roles from logs that record sets of permissions exer-
cised together in one high-level operation. Their algorithm introduces roles whose sets of
assigned permissions are the sets of permissions in the log. Their algorithm introduces over-
assignments by removing roles with few users or whose permission set occurs few times in
the log and re-assigning their members to roles with more permissions. Their algorithm does
not use attribute data.

Molloy et al. apply a machine learning algorithm that uses a statistical approach, based
upon a generative model, to find the RBAC policy that is most likely to generate the behavior
(usage of permissions) observed in the logs [MPC12b]. They give an algorithm, based on
Rosen-Zvi et al.’s algorithm for learning Author-Topic Models (ATMs), to mine meaningful
roles from logs and attribute data, i.e., roles such that the user-role assignment is statistically
correlated with user attributes. Their approach can be adapted to ABAC policy mining from
logs, but its scalability in this context is questionable, because the adapted algorithm would
enumerate and then rank all tuples containing a UAE, RAE and constraint (i.e., all tuples
with the components of a candidate rule other than the operation set), and the number of
such tuples is very large. In contrast, our algorithm never enumerates such candidates.

Zhang et al. use machine learning algorithms to improve the quality of a given role
hierarchy based on users’ access patterns as reflected in operation logs [ZGL+11, ZCG+13].
These papers do not consider improvement or mining of ABAC policies.
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Chapter 7

Future Work

Access control is a cornerstone of computer security. Access control policies are critical
to the security of many IT systems. Higher-level access control policy frameworks, such
as RBAC and ABAC, promise long-term cost savings through reduced management effort,
compared to lower-level policy frameworks such as ACLs, but manual development of an
initial policy can be difficult [BM13] and expensive [HFK+13]. Policy mining algorithms
promise to drastically reduce the cost of migrating to a higher-level policy framework, by
partially automating that process.

In this dissertation, we first developed RBAC policy mining algorithms that can easily be
used to optimize a variety of policy quality metrics, including metrics based on policy size,
metrics based on interpretability of the roles with respect to user attribute data, and com-
pound metrics that consider size and interpretability. We then defined an expressive PRBAC
framework, which supports a simple form of ABAC, and developed two algorithms for mining
PRBAC policies from ACLs, user attribute data, and permission attribute data. Finally, we
defined an expressive ABAC framework and developed three algorithms for mining ABAC
policies, which differ in the source of user-permission data: ACLs, RBAC policies, and op-
eration logs, respectively. To the best of our knowledge, these are the first policy mining
algorithms for any PRBAC or ABAC frameworks.

The rest of this section describes some directions for future work on policy mining.

Mining RBAC Policies One direction for future work is to consider other metrics for
policy interpretability, e.g., metrics that consider heterogeneity of users in different roles as
well homogeneity of users in the same role [SR05]. Another direction is to improve scalability.
One possible approach is divide-and-conquer, by decomposing a role mining problem into
smaller sub-problems, solving them separately, and then combining the results. The main
challenge is to develop a way to decompose the problem that minimizes the resulting loss in
the quality of the final policy. This approach has been explored by Verde et al. [VVAC12].
While their method already gives good results, improvements might be possible by extending
their method to take attribute information into account in all steps; their current method
uses attribute information only in the first step.

Mining ABAC Policies from ACLs While we have developed the first ABAC policy
mining algorithm, we regard this as opening, not closing, the doors for further work in this
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area. There are many directions for future work.
One direction is to extend our policy language and policy mining algorithm to support

additional forms of attribute expressions and constraints, including more flexible use of set
relations, and additional data types and primitive relations on those data types, e.g., trees
and the sub-tree relation, and sequences and the prefix relation.

Another direction is to extend the language and algorithm to support predicates on
multiple attributes. Currently, each conjunct of an attribute expression involves at most
one user attribute or resource attribute. Extending the language and algorithm to support
predicates on multiple attributes would allow some policies to be expressed more concisely
and will bring the ABAC policy language closer to Datalog. It might be possible to adapt
techniques from inductive logic programming for this purpose.

Another useful extension to the language and algorithm would be support for negation
in attribute expressions and constraints, and support for deny rules. Deny rules are used
to override authorizations granted by permission rules. These features are similar, because
they are both used to make policies more concise in cases where the complement of a set can
be expressed more concisely than the set itself. They are supported in some widely deployed
ABAC frameworks, notably XACML [XAC], so support for them is of practical significance.

Another direction for future work is to consider policy evolution. Given an ABAC policy
and desired changes to the entitlements, the problem is to find a new ABAC policy with
good quality according to a specified policy quality metric (e.g., based on policy size) and
with minimum distance from (i.e., minimum differences from) the given policy according to
a specified distance metric. Policy evolution has been considered in the context of RBAC
[VAGA08, Lim10] but not ABAC. Our ABAC policy mining algorithm could be adapted to
this problem by modifying the policy quality and rule quality metrics appropriately.

Context-dependent policies, such as temporal policies, spatial (a.k.a. location-aware)
policies, and purpose-based policies, are increasingly important, in part due to the growing
use of mobile computers (tablets, etc.). This suggests developing techniques for mining
context-dependent ABAC policies from ACLs or logs. Mining of temporal roles from a user-
permission matrix with temporal constraints is studied in [MSAV13]. It might be possible
to adapt their approach to mining ABAC policies from ACLs with temporal constraints.
Mining context-dependent ABAC policies from logs is more difficult, because the context
constraints are not given explicitly; instead, they must be inferred from usage patterns in
the logs. When mining spatial policies, an additional challenge is that locations may be
hierarchically structured (e.g., rooms within suites within buildings within campuses).

Mining ABAC Policies from RBAC Policies One direction for future work is to
modify the problem definition and algorithm to allow a loosening of the correspondence
between roles and rules; this might be a desirable trade-off when it allows a significant
improvement in the WSC of the policy. Other directions for future work include extending
the policy language and policy mining algorithm to support the ABAC policy language
features mentioned as extensions for mining ABAC from ACLs.

ABAC Policy Mining from Logs One direction for future work is to consider changes to
attribute data. For example, the log might contain entries representing updates to attribute
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data. This makes the analysis sensitive to the order of log entries; our current algorithm is
insensitive to the order of log entries. Another direction is to explore policy quality metrics
that explicitly assign higher quality to policies with rules that apply to groups of users with
similar usage frequencies for the permissions granted by the rule. Our current algorithm does
not do this explicitly, although it does this implicitly to some extent when using a rule quality
metric that assigns higher quality to rules that grant more frequently used permissions; also,
it may do this implicitly to some extent if users with similar usage frequencies for permissions
have similar attributes.
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Appendix A

Supplemental Material on ABAC
Mining from ACLs

A.1 Proof of NP-Hardness

This section shows that the ABAC policy mining problem is NP-hard, by reducing the Edge
Role Mining Problem (Edge RMP) [LVA08] to it.

An RBAC policy is a tuple πRBAC = 〈U, P,R,UA,PA〉, where R is a set of roles, UA ⊆
U × R is the user-role assignment, and PA ⊆ R × P is role-permission assignment. The
number of edges in an RBAC policy πRBAC with this form is |UA|+|PA|. The user-permission
assignment induced by an RBAC policy with the above form is [[πRBAC]] = UA ◦ PA, where
◦ denotes relational composition.

The Edge Role Mining Problem (Edge RMP) is [LVA08]: Given an ACL policy 〈U, P,UP〉,
where U is a set of users, P is a set of permissions, and UP ⊆ U × P is a user-permission
relation, find an RBAC policy πRBAC = 〈U, P,R,UA,PA〉 such that [[πRBAC]] = UP and
πRBAC has minimum number of edges among RBAC policies satisfying this condition. NP-
hardness of Edge RMP follows from Theorem 1 in [MCL+10], since Edge RMP corresponds to
the Weighted Structural Complexity Optimization (WSCO) Problem with wr = 0, wu = 1,
wp = 1, wh =∞, and wd =∞.

Given an Edge RMP problem instance 〈U, P,UP〉, consider the ABAC policy mining
problem instance with ACL policy π0 = 〈U ∪ {u0}, P ∪ {r0}, {op0},UP0〉, where u0 is a new
user and r0 is a new resource, UP0 = {〈u, r, op0〉 | 〈u, r〉 ∈ UP}, user attributes Au = {uid},
resource attributes Ar = {rid}, user attribute data du defined by du(u, uid) = u, resource
attribute data dr defined by dr(r, rid) = r, and policy quality metric Qpol defined by WSC
with w1 = 1, w2 = 1, w3 = 0, and w4 = 1. Without loss of generality, we assume U ∩P = ∅;
this should always hold, because in RBAC, users are identified by names that are atomic
values, and permissions are resource-operation pairs; if for some reason this assumption
doesn’t hold, we can safely rename users or permissions to satisfy this assumption, because
RBAC semantics is insensitive to equalities between users and permissions.

A solution to the given Edge-RMP problem instance can be constructed trivially from
a solution πABAC to the above ABAC policy mining instance by interpreting each rule as
a role. Note that rules in πABAC do not contain any constraints, because uid and rid are
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the only attributes, and U ∩ P = ∅ ensures that constraints relating uid and rid are useless
(consequently, any non-zero value for w4 suffices). The presence of the “dummy” user u0

and “dummy” resource r0 ensure that the UAE and RAE in every rule in πABAC contains
a conjunct for uid or rid, respectively, because no correct rule can apply to all users or all
resources. These observations, and the above choice of weights, implies that the WSC of
a rule ρ in πRBAC equals the number of users that satisfy ρ plus the number of resources
(i.e., permissions) that satisfy ρ. Thus, WSC(πRBAC) equals the number of edges in the
corresponding RBAC policy, and an ABAC policy with minimum WSC corresponds to an
RBAC policy with minimum number of edges.

A.2 Asymptotic Running Time

This section analyzes the asymptotic running time of our algorithm. We first analyze the
main loop in Figure 5.1, i.e., the while loop in lines 3–11. First consider the cost of one
iteration. The running time of candidateConstraint in line 5 is O(|Au| × |Ar|). The running
time of line 6 is O(|Ur,o| × |Au| × |Ar|), where Ur,o = {u′ ∈ U | 〈u′, r, o〉 ∈ uncovUP}; this
running time is achieved by incrementally maintaining an auxiliary map that maps each
pair 〈r, o〉 in R × Op to Ur,o. The running time of function generalizeRule in line 4 in
Figure 6.2 is O(|2|cc||). Other steps in the main loop are either constant time or linear, i.e.,
O(|Au|+ |Ar|+ |UP0|). Now consider the number of iterations of the main loop. The number
of iterations is |Rules1|, where Rules1 is the set of rules generated by the main loop. In the
worst case, the rule generated in each iteration covers one user-permission tuple, and |Rules1|
is as large as |UP0|. Typically, rules generalize to cover many user-permission tuples, and
|Rules1| is much smaller than |UP0|.

The running time of function mergeRules is O(|Rules1|3). The running time of function
simplifyRules is based on the running times of the five “elim” functions that it calls. Let lcu,m

(mnemonic for “largest conjunct”) denote the maximum number of sets in a conjunct for a
multi-valued user attribute in the rules in Rules1, i.e., ∀a ∈ Au,m. ∀ρ ∈ Rules1. |uae(ρ)(a)| ≤
lcu,m. The value of lcu,m is at most |Valm| but typically small (one or a few). The running
time of function elimRedundantSets is O(|Au| × lc2

u,m × |Vals|). Checking validity of a rule
ρ takes time linear in |[[ρ]]|. Let lm (mnemonic for “largest meaning”) denote the maximum
value of |[[ρ]]| among all rules ρ passed as the first argument in a call to elimConstraints,
elimConjuncts, or elimElements. The value of lm is at most |UP0| but typically much
smaller. The running time of function elimConstraints is O((2|cc|)× lm). The running time
of function elimConjuncts is O((2|Au| + 2|Ar|)× lm). The exponential factors in the running
time of elimConstraints and elimConjuncts are small in practice, as discussed above; note
that the factor of lm represents the cost of checking validity of a rule. The running time
of elimElements is O(|Au| × lm). Let le (mnemonic for “largest expressions”) denote the
maximum of WSC(uae(ρ)) + WSC(rae(ρ)) among rules ρ contained in any set Rules passed
as the first argument in a call to simplifyRules. The running time of elimOverlapVal is
O(|Rules1|×(|Au|+|Ar|)×le). The running time of elimOverlapOp is O(|Rules1|×|Op|×le).
The factor le in the running times of elimOverlapVal and elimOverlapOp represents the cost
of subset checking. The number of iterations of the while loop in line 13–15 is |Rules1| in
the worst case. The overall running time of the algorithm is worst-case cubic in |UP0|.
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A.3 Processing Order

This section describes the order in which tuples and rules are processed by our algorithm.
When selecting an element of uncovUP in line 4 of the top-level pseudocode in Figure 5.1,

the algorithm selects the user-permission tuple with the highest (according to lexicographic
order) value for the following quality metric Qup, which maps user-permission tuples to
triples. Informally, the first two components of Qup(〈u, r, o〉) are the frequency of permission
p and user u, respectively, i.e., their numbers of occurrences in UP0, and the third component
is the string representation of 〈u, r, o〉 (a deterministic although somewhat arbitrary tie-
breaker when the first two components of the metric are equal).

freq(〈r, o〉) = |{〈u′, r′, o′〉 ∈ UP0 | r′ = r ∧ o′ = o}|
freq(u) = |{〈u′, r′, o′〉 ∈ UP0 | u′ = u}|

Qup(〈u, r, o〉) = 〈freq(〈r, o〉), freq(u), toString(〈u, r, o〉)〉

In the iterations over Rules in mergeRules and simplifyRules, the order in which rules are
processed is deterministic in our implementation, because Rules is implemented as a linked
list, loops iterate over the rules in the order they appear in the list, and newly generated
rules are added at the beginning of the list. In mergeRules, the workset is a priority queue
sorted in descending lexicographic order of rule pair quality, where the quality of a rule pair
〈ρ1, ρ2〉 is 〈max(Qrul(ρ1), Qrul(ρ2)),min(Qrul(ρ1), Qrul(ρ2))〉.

A.4 Optimizations

Periodic Merging of Rules. Our algorithm processes UP0 in batches of 1000 tuples, and
calls mergeRules after processing each batch. Specifically, 1000 tuples are selected at random
from uncovUP, they are processed in the order described in Section A.3, mergeRules(Rules)
is called, and then another batch of tuples is processed.

This heuristic optimization is motivated by the observation that merging sometimes
has the side-effect of generalization, i.e., the merged rule may cover more tuples than the
rules being merged. Merging earlier (compared to waiting until uncovUP is empty) allows
additional tuples covered by merged rules to be removed from uncovUP before those tuples
are processed by the loop over uncovUP in the top-level pseudocode in Figure 5.1. Without
this heuristic optimization, those tuples would be processed by the loop over uncovUP,
additional rules would be generated from them, and those rules would probably later get
merged with other rules, leading to the same policy.

Caching To compute [[ρ]] for a rule ρ, our algorithm first computes [[uae(ρ)]] and [[rae(ρ)]].
As an optimization, our implementation caches [[ρ]], [[uae(ρ)]], and [[rae(ρ)]] for each rule ρ.
Each of these values is stored after the first time it is computed. Subsequently, when one
of these values is needed, it is recomputed only if some component of ρ, uae(ρ) or rae(ρ),
respectively, has changed. In our experiments, this optimization improves the running time
by a factor of approximately 8 to 10.
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Early Stopping. In the algorithm without noise detection, in mergeRules, when checking
validity of ρmerge, our algorithm does not compute [[ρmerge]] completely and then test [[ρmerge]] ⊆
UP0. Instead, as it computes [[ρmerge]], it immediately checks whether each element is in UP0,
and if not, it does not bother to compute the rest of [[ρmerge]]. In the algorithm with noise
detection, that validity test is replaced with the test |[[ρmerge]] \ UP0| ÷ |[[ρmerge]]| ≤ α. We
incrementally compute the ratio on the left while computing [[ρmerge]], and if the ratio exceeds
2α, we stop computing [[ρmerge]], under the assumption that ρmerge would probably fail the
test if we continued. This heuristic decreases the running time significantly. It can affect the
result, but it had no effect on the result for the problem instances on which we evaluated it.

A.5 Details of Sample Policies

This section describes the ABAC policies we developed as case studies to illustrate our
policy language and evaluate our policy mining algorithm. The number of rules in these
case studies is relatively small, but they express non-trivial policies and exercise all the
features of our policy language, including use of set membership and superset relations in
attribute expressions and constraints. The policy rules and illustrative user attribute data
and resource attribute data for all case studies appear in the supplemental material.

The figures in this section contain all rules and some illustrative attribute data for each
case study. The policies are written in a concrete syntax with the following kinds of state-
ments. userAttrib(uid , a1 = v1, a2 = v2, . . .) provides user attribute data for a user whose
“uid” attribute equals uid and whose attributes a1, a2, . . . equal v1, v2, . . ., respectively. The
resourceAttrib statement is similar. The statement rule(uae; pae; ops; con) defines a rule;
the four components of this statement correspond directly to the four components of a rule as
defined in Section 4.1. In the attribute expressions and constraints, conjuncts are separated
by commas. In constraints, the superset relation “⊇” is denoted by “>”, and the contains
relation “3” is denoted by “]”.

University Case Study Our university case study is a policy that controls access by
students, instructors, teaching assistants, registrar officers, department chairs, and admis-
sions officers to applications (for admission), gradebooks, transcripts, and course schedules.
The policy appears in Figure A.1, except that most of the userAttrib and resourceAttrib
statements are omitted, to save space. User attributes include position (applicant, student,
faculty, or staff), department (the user’s department), crsTaken (set of courses taken by a
student), crsTaught (set of courses for which the user is the instructor (if the user is a faculty)
or the TA (if the user is a student), and isChair (true if the user is the chair of his/her de-
partment). Resource attributes include type (application, gradebook, roster, or transcript),
crs (the course a gradebook or roster is for, for those resource types), student (the student
whose transcript or application this is, for type=transcript or type=application), and de-
partment (the department the course is in, for type ∈ {gradebook, roster}; the student’s
major department, for type=transcript).

The manually written attribute dataset for this case study contains a few instances of each
type of user and resource: two academic departments, a few faculty, a few gradebooks, several
students, etc. We generated a series of synthetic datasets, parameterized by the number of

107



academic departments. The generated userAttrib and resourceAttrib statements for the users
and resources associated with each department are similar to but more numerous than the
userAttrib and resourceAttrib statements in the manually written dataset; for example, the
synthetic datasets contain 20 students, 5 faculty, and 10 courses per academic department.

// Rules for Gradebooks
// 1. A user can read his/her own
// scores in gradebooks for
// courses he/she has taken.
rule(; type=gradebook;

readMyScores; crsTaken ] crs)

// 2. A user (the instructor or TA)
// can add scores and read scores in
// the gradebook for courses
// he/she is teaching.
rule(; type=gradebook; {addScore,

readScore}; crsTaught ] crs)

// 3. The instructor for a course
// (i.e., a faculty teaching the course)
// can change scores and assign
// grades in the gradebook for that
// course.
rule(position=faculty;

type=gradebook; {changeScore,
assignGrade}; crsTaught ] crs)

// Rules for Rosters
// 4. A user in registrar’s office can
// read and modify all rosters.
rule(department=registrar;

type=roster; {read, write}; )

// 5. The instructor for a course
// (i.e., a faculty teaching the course)
// can read the course roster.
rule(position=faculty; type=roster;

{read}; crsTaught ] crs)

// Rules for Transcripts

// 6. A user can read his/her own
// transcript.
rule(; type=transcript; {read};

uid=student)

// 7. The chair of a department can
// read the transcripts of all students in
// that department.
rule(isChair=true; type=transcript;

{read}; department=department)

// 8. A user in the registrar’s office can
// read every student’s transcript.
rule(department=registrar;

type=transcript;{read}; )

// Rules for applications and admissions
// 9. A user can check the status of
// his/her own application.
rule(; type=application; {checkStatus};

uid=student)

// 10. A user in the admissions office can
// read, and update the status of, every
// application.
rule(department=admissions;

type=application;{read, setStatus}; )

// An illustrative user attribute statement.
userAttrib(csStu2, position=student,

department=cs, crsTaken={cs601},
crsTaught={cs101 cs602})

// An illustrative resource attribute statement.
resourceAttrib(cs101gradebook,

department=cs, crs=cs101,
type=gradebook)

Figure A.1: University case study.

108



Health Care Case Study Our health care case study is a policy that controls access by
nurses, doctors, patients, and agents (e.g., a patient’s spouse) to electronic health records
(HRs) and HR items (i.e., entries in health records). The policy appears in Figure A.2, except
that most of the userAttrib and resourceAttrib statements are omitted, to save space.User
attributes include position (doctor or nurse; for other users, this attribute equals ⊥), spe-
cialties (the medical areas that a doctor specializes in), teams (the medical teams a doctor
is a member of), ward (the ward a nurse works in or a patient is being treated in), and
agentFor (the patients for which a user is an agent). Resource attributes include type (HR
for a health record, or HRitem for a health record item), patient (the patient that the HR
or HR item is for), treatingTeam (the medical team treating the aforementioned patient),
ward (the ward in which the aforementioned patient is being treated), author (author of the
HR item, for type=HRitem), and topics (medical areas to which the HR item is relevant,
for type=HRitem).

The manually written attribute dataset for this case study contains a small number of
instances of each type of user and resource: a few nurses, doctors, patients, and agents, two
wards, and a few items in each patient’s health record. We generated a series of synthetic
datasets, parameterized by the number of wards. The generated userAttrib and resourceAt-
trib statements for the users and resources associated with each ward are similar to but
more numerous than the userAttrib and resourceAttrib statements in the manually written
dataset; for example, the synthetic datasets contain 10 patients and 4 nurses per ward.

Project Management Case Study Our project management case study is a policy that
controls access by department managers, project leaders, employees, contractors, auditors,
accountants, and planners to budgets, schedules, and tasks associated with projects. The pol-
icy appears in Figure A.3, except that most of the userAttrib and resourceAttrib statements
are omitted, to save space. User attributes include projects (projects the user is working
on), projectsLed (projects led by the user), adminRoles (the user’s administrative roles, e.g.,
accountant, auditor, planner, manager), expertise (the user’s areas of technical expertise,
e.g., design, coding), tasks (tasks assigned to the user), department (department that the
user is in), and isEmployee (true if the user is an employee, false if the user is a contrac-
tor). Resource attributes include type (task, schedule, or budget), project (project that the
task, schedule, or budget is for), department (department that the aforementioned project
is in), expertise (areas of technical expertise required to work on the task, for type=task)
and proprietary (true if the task involves proprietary information, which is accessible only
to employees, not contractors).

The manually written attribute dataset for this case study contains a small number of
instances of each type of user (managers, accountants, coders, etc.) and each type of resource
(two departments, two projects per department, three tasks per project, etc.). We generated
a series of synthetic datasets, parameterized by the number of departments. The generated
userAttrib and resourceAttrib statements for the users and resources associated with each
department are similar to the userAttrib and resourceAttrib statements in the manually
written dataset.
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// Rules for Health Records
// 1. A nurse can add an item in
// a HR for a patient in the ward
// in which he/she works.
rule(position=nurse; type=HR;
{addItem}; ward=ward)

// 2. A user can add an item in a
// HR for a patient treated by one
// of the teams of which he/she is
// a member.
rule(; type=HR; {addItem};

teams ] treatingTeam)

// 3. A user can add an item with
// topic ”note” in his/her own HR.
rule(; type=HR; {addNote};

uid=patient)

// 4. A user can add an item with
// topic ”note” in the HR of a
// patient for which he/she is an
// agent.
rule(; type=HR; {addNote};

agentFor ] patient)

// Rules for Health Record Items
// 5. The author of an item can
// read it.
rule(; type=HRitem; {read};

uid=author)

// 6. A nurse can read an item with

// topic ”nursing” in a HR for a patient
// in the ward in which he/she works.
rule(position=nurse; type=HRitem,

topics supseteqIn {{nursing}};
{read}; ward=ward)

// 7. A user can read an item in a HR for
// a patient treated by one of the teams of
// which he/she is a member, if the topics of
// the item are among his/her specialties.
rule(; type=HRitem; {read};

specialties > topics, teams ] treatingTeam)

// 8. A user can read an item with topic
// ”note” in his/her own HR.
rule(; type=HRitem, topics supseteqIn {{note}};

{read}; uid=patient)

// 9. An agent can read an item with topic
// ”note” in the HR of a patient for which
// he/she is an agent.
rule(; type=HRitem, topics supseteqIn {{note}};

{read}; agentFor ] patient)

// An illustrative user attribute statement.
userAttrib(oncDoc1, position=doctor,

specialties={oncology},
teams={oncTeam1, oncTeam2})

// An illustrative resource attribute statement.
resourceAttrib(oncPat1nursingItem,

type=HRitem, author=oncNurse2,
patient=oncPat1, topics={nursing},
ward=oncWard, treatingTeam=oncTeam1)

Figure A.2: Health care case study.

Online Video Case Study Our online video case study is a policy that controls access
to videos by users of an online video service. The policy appears in Figure A.4, except that
most of the userAttrib and resourceAttrib statements are omitted, to save space. It is based
on the policy in [YT05], where it is presented as an example of a policy that can be ex-
pressed concisely using ABAC but cannot be expressed concisely using RBAC. We modified
the policy to use age groups instead of numeric ages. The policy has a more combinatorial
character than our other case studies, since permissions depend on combinations of values
of multiple user and resource attributes, but not on constraints relating the values of those

110



// 1. The manager of a department
// can read and approve the budget
// for a project in the department.
rule(adminRoles supseteqIn
{{manager}}; type=budget;
{read approve};
department=department)

// 2. A project leader can read and
// write the project schedule and
// budget.
rule( ; type in {schedule, budget};
{read, write};
projectsLed ] project)

// 3. A user working on a project
// can read the project schedule.
rule( ; type=schedule; {read};

projects ] project)
// A user can update the status of
// tasks assigned to him/her.
rule( ; type=task; {setStatus};

tasks ] rid)

// 4. A user working on a project
// can read and request to work on
// a non-proprietary task whose
// required areas of expertise are
// amonghis/her areas of expertise.
rule( ; type=task, proprietary=false;
{read request}; projects ] project,
expertise > expertise)

// 5. An employee working on a
// project can read and request to
// work on any task whose required
// areas of expertise are among
// his/her areas of expertise.
rule(isEmployee=True; type=task;
{read request}; projects ] project,

expertise > expertise)

// 6. An auditor assigned to a project can
// read the budget.
rule(adminRoles supseteqIn {{auditor}};

type=budget; {read}; projects ] project)

// 7. An accountant assigned to a project
// can read and write the budget.
rule(adminRoles supseteqIn {{accountant}};

type=budget; {read, write};
projects ] project)

// 8. An accountant assigned to a project
// can update the cost of tasks.
rule(adminRoles supseteqIn {{accountant}};

type=task; {setCost};
projects ] project)

// 9. A planner assigned to a project
// can update the schedule.
rule(adminRoles supseteqIn {{planner}};

type=schedule; {write};
projects ] project)

// 10. A planner assigned to a project
// can update the schedule (e.g., start
// date, end date) of tasks.
rule(adminRoles supseteqIn {{planner}};

type=task; {setSchedule};
projects ] project)

// An illustrative user attribute statement.
userAttrib(des11, expertise={design},

projects={proj11}, isEmployee=True,
tasks={proj11task1a, proj11task1propa})

// An illustrative resource attribute statement.
resourceAttrib(proj11task1a, type=task,

project=proj11,department=dept1,
expertise={design}, proprietary=false)

Figure A.3: Project management case study.
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// Rules that apply to premium
// members.
// 1. Premium members of all
// ages can view movies rated G.
rule(memberType=premium;

rating in=G; {view}; )

// 2. Premium teens can view
// movies rated PG.
rule(memberType=premium,

ageGroup=teen;
rating=PG; {view}; )

// 3. Premium adults can view
// movies with all ratings.
rule(memberType=premium,

ageGroup=adult; ; {view}; )

// Rules that apply to all member
// types. These rules correspond
// 1-to-1 with the above rules,

// transformed by dropping the
// restriction to premium members
// and adding the restriction to old videos.
// 4. Members of all ages can
// view old movies rated G.
rule(; videoType=old, rating=G; {view}; )

// 5. Teens can view old movies rated PG.
rule(ageGroup=teen; videoType=old,

rating=PG; {view}; )
// 6. Adults can view old movies with all
// ratings.
rule(ageGroup=adult; videoType=old;

{view}; )

// An illustrative user attribute statement.
userAttrib(child1r, ageGroup=child,

memberType=regular)
// An illustrative resource attribute statement.
resourceAttrib(TheLionKing, rating=G,

videoType=old)

Figure A.4: Online video case study.

attributes. User attributes include ageGroup (child, teen, or adult) and memberType (reg-
ular or premium). Every resource is a video. Resource attributes include rating (G, PG-13,
or R) and videoType (old or new).

A.6 Example: Processing of a user-permission tuple

Figure A.5 illustrates the processing of the user-permission tuple t = 〈csFac2, addScore, cs601gradebook〉
selected as a seed (i.e., selected in line 4 of Figure 5.1), in a smaller version of the university
sample policy containing only one rule, namely, the second rule in Figure A.1. Attribute
data for user csFac2 and resource cs601gradebook appear in Figure A.1.

The edge from t to cc labeled “candidateConstraint” represents the call to candidateConstraint,
which returns the set of atomic constraints that hold between csFac2 and cs601gradebook;
these constraints are shown in the box labeled cc. The two boxes labeled “addCandidateRule”
represent the two calls to addCandidateRule. Internal details are shown for the first call
but elided for the second call. The edges from t to eu and from t to er represent the
calls in addCandidateRule to computeUAE and computeRAE, respectively. The call to
computeUAE returns a user-attribute expression eu that characterizes the set su containing
users u′ with permission 〈addScore, cs601gradebook〉 and such that candidateConstraint(
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Figure A.5: Diagram representing the processing of one user-permission tuple selected as a
seed, in the university sample policy. Rules are depicted as rectangles with four compart-
ments, corresponding to the four components of a rule tuple.

cs601gradebook, u′) = cc. The call to computeRAE returns a resource-attribute expres-
sion that characterizes {cs601gradebook}. The set of operations considered in this call to
addCandidateRule is simply so = {addScore}. The call to generalizeRule generates a can-
didate rule ρ1 by assigning eu, er and so to the first three components of ρ1, and adding the
two atomic constraints in cc to ρ1 and eliminating the conjuncts in eu and er corresponding
to the attributes mentioned in cc. Similarly, the second call to addCandidateRule generates
another candidate rule ρ2. The call to mergeRules merges ρ1 and ρ2 to form ρ3, which is
simplified by the call to simplifyRules to produce a simplified rule ρ4, which is added to
candidate rule set Rules ′.

A.7 Syntactic Similarity

Syntactic similarity of policies measures the syntactic similarity of rules in the policies. The
syntactic similarity of rules ρ and ρ′, denoted ssyn(ρ, ρ′), is defined by

suae(e, e
′) = |Au|−1

∑
a∈Au

J(e(a), e′(a))
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srae(e, e
′) = |Ar|−1

∑
a∈Ar

J(e(a), e′(a))

ssyn(ρ, ρ′) = mean(suae(uae(ρ), uae(ρ′)), srae(rae(ρ), rae(ρ′)),
J(ops(ρ), ops(ρ′)), J(con(ρ), con(ρ′)))

where the Jaccard similarity of two sets is J(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|.
The syntactic similarity of rule sets Rules and Rules ′ is the average, over rules ρ in Rules ,

of the syntactic similarity between ρ and the most similar rule in Rules ′. The syntactic
similarity of policies is the maximum of the syntactic similarity of the sets of rules in the
policies, considered in both orders (this makes the relation symmetric).

ssyn(Rules ,Rules ′) = |Rules|−1 ×∑
ρ∈Rules max({ssyn(ρ, ρ′) | ρ′ ∈ Rules ′}))

ssyn(π, π′) = max(ssyn(rules(π), rules(π′)),
ssyn(rules(π′), rules(π)))

A.8 ROC Curves for Noise Detection Parameters

When tuning the parameters α and τ used in noise detection (see Section 4.3.1), there
is a trade-off between true positives and false positives. To illustrate the trade-off, the
Receiver Operating Characteristic (ROC) curve in Figure A.6 shows the dependence of the
true positive rate (TPR) and false positive rate (FPR) for under-assignments on α and
τ for synthetic policies with 20 rules and 6% noise, split between under-assignments and
over-assignments as described in Section 4.4.4. Figure A.7 shows the TPR and FPR for
over-assignments. Each data point is an average over 10 synthetic policies. In each of these
two sets of experiments, true positives are reported noise (of the specified type, i.e., over-
assignments or under-assignments) or that are also actual noise; false negatives are actual
noise that are not reported; false positives are reported noise that are not actual noise; and
true negatives are user-permission tuples that are not actual noise and are not reported as
noise.

Generally, we can see from the ROC curves that, with appropriate parameter values, it
is possible to achieve very high TPR and FPR simultaneously, so there is not a significant
inherent trade-off between them.

From the ROC curve for under-assignments, we see that the value of τ does not affect
computation of under-assignments, as expected, because detection of under-assignments is
performed before detection of over-assignments (the former is done when each rule is gener-
ated, and the latter is done at the end). We see from the diagonal portion of the curve in
the upper left that, when choosing the value of α, there is a trade-off between the TPR and
FPR, i.e., having a few false negatives and a few false positives.

From the ROC curve for over-assignments, we see that the value of α affects the rules
that are generated, and hence it affects the computation of over-assignments based on those
rules at the end of the rule generation process. For α = 0.01, when choosing τ , there is some
trade-off between the TPR and FPR. For α ≥ 0.02, the FPR equals 0 independent of τ , so
there is no trade-off: the best values of τ are the ones with the highest TPR.
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Figure A.6: ROC curve showing shows the dependence of the true positive rate (TPR) and
false positive rate (FPR) for under-assignments on α and τ .

0.08,0.1

0.3

0.4

0.5

0.6

0.7 0.8,0.9
1 2 3,4 5 6 7,8 9 10

0.2

0.6

0.7,0.8,0.9

1,2,3 4,5,6,7,8,9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

alpha = 0.01
alpha = 0.02
alpha = 0.03
alpha = 0.04
alpha = 0.05
alpha = 0.06
alpha = 0.07
alpha = 0.08
alpha = 0.09

Figure A.7: ROC curve showing shows the dependence of the true positive rate (TPR) and
false positive rate (FPR) for over-assignments on α and τ .

A.9 Graphs of Results from Experiments with Permis-

sion Noise and Attribute Noise

For the experiments with permission noise and attribute noise described in Section 4.4.4,
Figure A.8 shows the Jaccard similarity of the actual and reported over-assignments and the
Jaccard similarity of the actual and reported under-assignments, and Figure A.9 shows the
semantic similarity of the original and mined policies. Each data point is an average over 10
policies. Error bars show 95% confidence intervals using Student’s t-distribution.

A.10 Translation to Inductive Logic Programming

This section describes our translation from the ABAC policy mining problem to inductive
logic programming (ILP) as embodied in Progol [MB00, MF01]. Given an ACL policy
and attribute data, we generate a Progol input file, which contains type definitions, mode
declarations, background knowledge, and examples.
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Type Declarations Type definitions define categories of objects. The types user, resource,
operation, and attribValAtomic (corresponding to Vals) are defined by a statement for
each constant of that type; for example, for each user u, we generate the statement user(u).
The type attribValSet (corresponding to Valm) is defined by the rules

attribValSet([]).

attribValSet([V|Vs]) :- attribValAtomic(V),

attribValSet(Vs).

For each attribute a, we define a type containing the constants that appear in values of that
attribute in the attribute data; for example, for each value d of the “department” attribute,
we generate the statement departmentType(d).

Mode Declarations Mode declarations restrict the form of rules that Progol considers,
by limiting how each predicate may be used in learned rules. Each head mode declaration
modeh(. . .) describes a way in which a predicate may be used in the head (conclusion) of a
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learned rule. Each body mode declaration modeb(. . .) describes a way in which a predicate
may be used in the body (premises) of a learned rule. Each mode declaration has two
arguments. The second argument specifies, for each argument a of the predicate, the type of
a and whether a may be instantiated with an input variable (indicated by “+”), an output
variable (indicated by “-”), or a constant (indicated by “#”). The first argument, called the
recall, is an integer or *, which bounds the number of values of the output arguments for
which the predicate can hold for given values of the input arguments and constant arguments;
“*” indicates no bound. The specification of predicate arguments as inputs and outputs also
limits how variables may appear in learned rules. In a learned rule h :- b1, . . . , bn, every
variable of input type in each premise bi must appear either with input type in h or with
output type in some premise bj with j < i.

We generate only one head mode declaration:

modeh(1, up(+user, +resource, #operation))

This tells Progol to learn rules that define the user-permission predicate up.
For each single-valued user attribute a, we generate a body mode declaration modeb(1,

aU(+user, #aType)). For example, the mode declaration for a user attribute named “de-
partment” is modeb(1, departmentU(+user, #departmentType)). We append “U” to the
attribute name to prevent naming conflicts in case there is a resource attribute with the
same name. Mode declarations for multi-valued user attributes are defined similarly, except
with “*” instead of 1 as the recall. Mode declarations for resource attributes are defined
similarly, except with R instead of U appended to the attribute name. We tried a variant
translation in which we generated a second body mode declaration for each attribute, using
-aType instead of #aType, but this led to worse results.

We also generate mode declarations for predicates used to express constraints. For each
single-valued user attribute a and single-valued resource attribute ā, we generate a mode dec-
laration modeb(1, aU equals āR(+user,+resource)); the predicate aU equals āR is used
to express atomic constraints of the form a = ā. The mode declarations for the predicates
used to express the other two forms of atomic constraints are similar, using user and resource
attributes with appropriate cardinality, and with “contains” (for 3) or “superset” (for ⊇)
instead of “equals” in the name of the predicate.

Background Knowledge The attribute data is expressed as background knowledge. For
each user u and each single-valued user attribute a, we generate a statement aU(u, v) where
v = du(u, a). For each user u and each multi-valued user attribute a, we generate a statement
aU(u, v) for each v ∈ du(u, a). Background knowledge statements for resource attribute data
are defined similarly.

Definitions of the predicates used to express constraints are also included in the back-
ground knowledge. For each equality predicate a equals ā mentioned in the mode declara-
tions, we generate a statement aU equals āR(U,R) :- aU(U,X), āR(R,X). The definitions
of the predicates used to express the other two forms of constraints are

aU contains āR(U,R) :- aU(U,X), āR(R,X).
aU superset āR(U,R) :- setof(X, aU(U,X), SU),

setof(Y, āR(R,Y), SR),
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superset(SU,SR),

not(SR==[]).
superset(Y,[A|X]) :- element(A,Y),

superset(Y,X).

superset(Y,[]).

The premise not(SR==[]) in the definition of aU superset āR is needed to handle cases
where the value of ā is ⊥. The predicates setof and element are built-in predicates in
Progol.

Examples A positive example is an instantiation of a predicate to be learned for which
the predicate holds. A negative example is an instantiation of a predicate to be learned for
which the predicate does not hold. For each 〈u, r, o〉 ∈ U × R × Op, if 〈u, r, o〉 ∈ UP0, then
we generate a positive example up(u, r, o), otherwise we generate a negative example :-

up(u, r, o) (the leading “:-” indicates that the example is negative). The negative examples
are necessary because, without them, Progol may produce rules that hold for instantiations
of up not mentioned in the positive examples.
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Appendix B

Supplemental Material on ABAC
Mining from Logs

B.1 Rule Quality Metric Based On Inductive Logic

Programming

We review the theory quality metric used in Progol [MB00, MF01], a well-known ILP system,
and then describe our design of a rule quality metric based on it. Progol’s IPL algorithm
works as follows. At the outermost level, Progol uses a loop that repeatedly generalizes an
example to a hypothesized rule and then removes examples which are redundant relative to
(i.e., covered by) the new rule, until no examples remain to be generalised. When generalizing
an example, Progol uses a metric, called a compression metric, to guide construction of the
hypotheses. When mining ABAC policies from operation logs, user-permissions tuples in
UP(L) are positive examples, and no negative examples are available. Thus, this corresponds
to the case of learning from only positive data. When learning from only positive data,
Progol’s compression metric pcomp is defined as follows [Mug95].

fm(H) = c× 2−|H|(1− g(H))m (B.1)

pcomp(H,E) = log2

fm(H)

fm(E)
(B.2)

= |E| − |H| −m(log2(1− g(E))
− log2(1− g(H)))

≈ |E| − |H|+m log2(1− g(H))

where E is the set of positive examples, H is the entire theory (i.e., ABAC policy, in our
context) being generated, including the part not generated yet, m = |E|, |H| is the size
of H, measured as the number of bits needed to encode H, and c is a constant chosen so
that

∑
H∈H fm(H) = 1, where H is the set of all candidate theories (note that f , like pcomp

is a function of H and E, since m = |E|, but we adopt Muggleton’s notation of fm(H)
instead of using the more straightforward notation f(H,E)). Let X be the set of all possible
well-formed examples (in our context, X is the set of all user-permission tuples). g(H) (the
”generality” of H) is the probability that an element of X, randomly selected following a
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uniform distribution, satisfies H. fm and pcomp can be regarded as policy quality metrics.
The term 2−|H| in the definition of fm causes policies with smaller size to have higher quality,
and the term (1 − g(H))m causes policies with larger meaning to have higher quality. In
[Mug95], fm is used to guide the search for rules. Using pcomp to guide the search would have
the same effect, because in the definition of pcomp in equation (B.2), fm(E) is a constant, and

log2
fm(H)
fm(E)

is a monotonic function of fm(H), so maximizing fm is equivalent to maximizing
pcomp.

A difficulty with using fm to guide generation of a rule to add to a partly generated
theory is that the entire theory H is not yet known. To overcome this difficulty, the quality
of the entire theory is estimated by extrapolation. Let Ci denote the i’th rule added to the
theory, and let Hi = {C1, . . . , Ci}. Let n denote the number of rules in the entire theory
being generated (of course, n is not known until the algorithm terminates). When generating
Ci, the policy quality fm(Hn) is estimated as follows.

c× 2−(m
p
×|Ci|) × (1− m

p
∗ (g(Hi)− g(Hi−1)))m (B.3)

where p is the number of examples in E that are implied by Ci and not by Hi−1.
Now we describe how to modify our policy mining algorithm to use fm as a rule quality

metric. In the loop in the top-level pseudocode in Figure 5.1 that builds the set Rules of
candidate rules, rule quality is computed using equation B.3 with Hi−1 = Rules and Ci = ρ.
Specifically, in the definition of generalizeRule in 6.3, Qrul(ρ, uncovUP) is replaced with fm
computed using equation B.3 with Hi−1 = Rules and Ci = ρ. This closely corresponds to
the usage in Progol, although it is slightly different, because some of the candidate rules in
Rules will not be included in the final set of rules Rules ′.

In the loop in the top-level pseudocode in Figure 5.1 that builds the set Rules ′ of fi-
nal rules, we take the same approach, except using Rules ′ instead of Rules . Specifically,
Qrul(ρ, uncovUP) is replaced with fm computed using equation B.3 with Hi−1 = Rules ′ and
Ci = ρ.

To compute rule quality after building the set Rules of candidate rules and before building
the set Rules ′ of final rules, the algorithm is modifying a set of rules, not extending a set
of rules, so fm can be evaluated using equation B.1, with Rules as an estimate of the entire
policy H. Specifically, in the calls to elimConjuncts and elimConstraints from simplifyRules,
Qrul(ρ

′′,UP0) is replaced with fm computed using equation B.1 with H = Rules\ρ∪{ρ′′}, and
Qrul(ρbest,UP0) is replaced with fm computed using equation B.1 with H = Rules\ρ∪{ρbest}.
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