

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Synthetic Gene Design: Optimization

and Analysis

A Dissertation Presented

by

Rukhsana Yeasmin

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2015

Stony Brook University

The Graduate School

Rukhsana Yeasmin

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

Steven Skiena – Dissertation Advisor
Distinguished Teaching Professor, Department of Computer Science and

Engineering

I. V. Ramakrishnan – Chairperson of Defense
Professor, Department of Computer Science and Engineering

Rezaul A. Chowdhury
Assistant Professor, Department of Computer Science and Engineering

Bruce Futcher
Professor, Department of Molecular Genetics and Microbiology

Stony Brook University

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Synthetic Gene Design: Optimization and
Analysis

by

Rukhsana Yeasmin

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

With the advance of synthetic biology has come increased inter-
est in designing synthetic genes which optimize protein expres-
sion. We propose new algorithms for gene design under several
constraints. Our optimization criteria include finding minimum
energy and maximum energy RNA structures for a given gene se-
quence, optimizing the amount of tRNA auto-correlation in genes
and designing maximum and minimum auto-correlated sequences.

We also develop methods to analyze and interpret tiled microarray
genome expression data. Statistical analysis of the viral genome
expression data enables us to discover unknown facts about its life
cycle, its impact on the host cell shutoff mechanism. We work on
identifying novel housekeeping genes and differentially expressed
genes. We further seek to cluster genes at different experimental
conditions based on the expression changes across the array.

Ribosome profiling is a recently developed popular method, which
gives us a global picture of the active ribosomes inside a cell. Study

iii

of the ribosome profile data helps us interpret the overall trans-
lation mechanism and determine delays at different steps of the
translation process. We analyze ribosome footprint data to pre-
dict relative residency times of ribosome (RRT) at different codons
and show that RRT is correlated with the usage bias of the codons
based on experimental analysis of yeast. We extend our work to
predict the impact of codon-pair bias on translation process and
the effect of RNA secondary structure on ribosome footprint pile-
up. We also work on predicting tRNA auto-correlation effect on
the translation mechanism based on the analysis results obtained
from the ribosome profile data.

iv

Contents

List of Figures viii

List of Tables xi

Acknowledgements xiii

1 Introduction 1
1.1 Overview . 4

2 Designing RNA secondary structures in coding regions 6
2.1 Preliminaries . 8
2.2 Heuristics for inverse RNA folding 11

2.2.1 Structure maximization 11
2.2.2 Structure minimization 13
2.2.3 Algorithmic variants 14

2.3 Results and discussion . 15
2.3.1 Parameter optimization 17

2.4 Conclusion . 20
2.5 Acknowledgement . 21

3 Designing autocorrelated genes 23
3.1 Preliminaries . 26
3.2 Distance-incorporated codon autocorrelation 28

3.2.1 Parameter optimization 31
3.3 Evaluation . 32
3.4 Designing DICA optimized genes 33

3.4.1 Highly autocorrelated gene design 33
3.4.2 Anti-autocorrelated gene design 36
3.4.3 Merged search/ heuristics algorithms for gene design . 37
3.4.4 Algorithm validation through experiments 38

3.5 Results and discussion . 40

v

3.5.1 Data collection and processing 40
3.5.2 Freedom of design . 41

3.6 Conclusion . 41
3.7 Acknowledgement . 42

4 Statistical analysis of tiled microarray gene expression data 44
4.1 Data preparation and quality check 46
4.2 Data analysis across the arrays 48
4.3 Gammaherpesviral gene expression and virion composition are

broadly controlled by accelerated mRNA degradation 50
4.3.1 Expression of viral mRNAs are largely degraded during

host shutoff . 51
4.3.2 Escapee population is enriched with non-coding RNAs 52
4.3.3 Discussion . 52

5 Measurement of average decoding rates of the 61 sense codons
in vivo 55
5.1 Previous works . 58
5.2 Results . 59
5.3 Validation of ribosome residence time analysis 61

5.3.1 Ribosome residence time analysis of codons 62
5.3.2 RRT analysis of short footprints 65

5.4 Discussion . 66
5.5 Materials and methods . 71

5.5.1 Ribosome profiling . 71
5.5.2 Data analysis . 74

5.6 Author contributions . 78
5.7 Acknowledgments . 78

6 Statistical analysis of ribosome profile data 84
6.1 Codon-pair bias analysis . 85

6.1.1 Data collection . 86
6.1.2 Data analysis . 86
6.1.3 P-value computation 91

6.2 RNA secondary structure effect on ribosome profile data . . . 93
6.2.1 Data collection and preprocessing 94
6.2.2 Data analysis . 96

6.3 tRNA auto-correlation effect analysis 97
6.3.1 Compare average reads at tRNA repeat vs tRNA switch 101
6.3.2 tRNA repeat distance impact on auto-correlation . . . 103

6.4 Discussion . 104

vi

7 Conclusion 106

A Supplementary tables 110
A.1 Measurement of average decoding rates of the 61 sense codons

in vivo . 110
A.2 Codon pair bias effect analysis on ribosome profile data 110
A.3 Effect of RNA secondary structure on ribosome profile data . . 120

B Supplementary figures 123
B.1 Ribosomal pauses and other statistics per gene 123
B.2 RNA secondary structure effect on ribosome profile data . . . 123
B.3 Codon-pair bias analysis . 125

Bibliography 128

vii

List of Figures

2.1 Comparison plot of the strategies to get the min-structure En-
ergy of a RNA sequence . 10

2.2 Region break strategy overview 10
2.3 GFP RNA (jelly fish) min, wildtype and max energy folded

structures . 11
2.4 Max structure energy distribution for GFP and Polio virus RNA

based on CS codon distribution 16
2.5 Max structure energy distribution for GFP and Polio virus RNA

maintaining given codon constraints 17
2.6 Min structure energy distribution for GFP and Polio virus RNA

based on CS codon distribution 18
2.7 Min structure energy distribution for GFP RNA and Polio virus

RNA maintaining given codon constraints 19
2.8 Plot of initial and optimized energy curve of GFP RNA struc-

ture for different percentage of the wildtype and CS codon dis-
tribution . 20

2.9 Comparison plot of region break strategy for different parameter
values . 21

2.10 Comparison plot of the distribution of energy values of folded
Polio virus RNA for different iteration parameters 22

3.1 Comparison of different optimization functions to identify the
best differentiation between fast vs. slow genes 28

3.2 Comparison of exponential vs. TPIS scores for 200 fast and 200
slow genes . 32

3.3 Comparison of Optimal and Heuristic function scores with wild-
type (WT) scores for most and least autocorrelation 38

3.4 Distribution of DICA scores of 1000 randomly generated sam-
ples for two yeast genes YAL044C (or “GCV3”) and YAL046C 39

viii

3.5 Compare combined Optimal and Heuristics function scores for
5018 yeast genes with wildtype (WT) scores for most and least
autocorrelation function . 40

4.1 Microarray data quality control experiments 45
4.2 Hierarchical clustering of MHV68 viral ORFs based on the log

fold change in expression at different experimental conditions
using complete linkage method 46

4.3 Expression of the majority of viral mRNAs (MHV68) is damp-
ened during host shutoff . 54

5.1 Ribosome profiles of the TDH1 gene from two independent ex-
periments . 56

5.2 Validation for ribosome residence time analysis 57
5.3 Principle of ribosome residence time analysis 58
5.4 Ribosome residence times . 79
5.5 Correlation of ribosome residence times with codon properties 80
5.6 Analysis of ProPro dipeptides 81
5.7 RRT analysis of short footprints from anisomycin treatment . 82
5.8 Short footprints are amino-acid specific; Long footprints are

codon specific . 83

6.1 Data collection for codon pair bias analysis 86
6.2 Codon pair bias analysis . 87
6.3 Mean codon pair statistics of high vs low group: classic scoring

method . 88
6.4 Mean codon pair statistics of high vs low group: gap scoring

method . 88
6.5 Mean codon pair statistics of high vs low group: signal scoring

method . 89
6.6 Correlation plot for Saccharomyces cerevisiae RNA secondary

structure energy vs ribosome footprint pile-up normalized by
average reads per codon . 93

6.7 Correlation plot for Saccharomyces cerevisiae RNA secondary
structure energy vs reads per codon at the in silico random
data-set and wildtype mRNA-seq data-set 94

6.8 Reads at tRNA repeat vs tRNA switch 97
6.9 Reads at tRNA repeat vs tRNA switch for pairs of tRNAs with

highly abundant codons . 99
6.10 Reads at tRNA repeat vs tRNA switch for pairs of tRNAs with

moderately available codons 101

ix

6.11 Reads at tRNA repeat vs tRNA switch for pairs of tRNAs with
rare codons . 102

6.12 Triangles away from the matrix diagonal 103
6.13 Auto-correlation effect analysis at triangles away from the ma-

trix diagonal . 104

7.1 Laboratory synthesis of energy optimized/ de-optimized yeast
gene YOR202W . 109

B.1 Ribosomal pauses and statistics - YAL038W 124
B.2 Ribosomal pauses and statistics - YKL152C 125
B.3 Correlation plot for the inverted PARS scores of the Saccha-

romyces cerevisiae genes vs ribosome footprint pile-up normal-
ized by average reads per codon 126

B.4 Correlation plot for inverted PARS scores of the Saccharomyces
cerevisiae mRNA sequences vs reads per codon at the in silico
random data-set and wildtype mRNA-seq data-set 126

B.5 RRT statistics for codons in the high and low group separated
based on classic scoring method. 127

B.6 RRT statistics for codons in the high and low group separated
based on gap scoring method. 127

B.7 RRT statistics for codons in the high and low group separated
based on signal scoring method. 127

x

List of Tables

2.1 Summary of maximized and minimized sequence energies . . . 22

4.1 Top 7 candidate housekeeping genes 48
4.2 Statistics of two commonly used candidate housekeeping genes 48

5.1 Top ten RRT at position 8 in E. coli starved for Serine 61
5.2 Ribosome residence time at position 6 67
5.3 Ribosome residence time at position 5 68
5.4 Pairwise Spearman correlation between the RRT values at po-

sition 6 for 4 different data-sets 69
5.5 Top 10 RRTs at positions 3 through 6 of the anisomycin-generated

short footprints . 69

6.1 Mean RRT of codon pair groups, considering scoring methods:
classic, gap, signal. 92

6.2 Correlation table for Saccharomyces cerevisiae RNA secondary
structure energy vs ribosome profile data. 95

6.3 Average reads at ‘tRNA repeat’ vs ‘tRNA switch’ 98
6.4 Average reads at ‘tRNA repeat’ vs ‘tRNA switch’ for different

codon-usage groups. 100

A.1 Ribosome residence time analysis for all codons from the SC-lys
expt. 111

A.2 Ribosome residence time analysis from the YPD1 (WT) expt. 112
A.3 Ribosome residence time analysis from the YPD2 (whi3) expt. 113
A.4 Ribosome residence time analysis from the SC-his expt. 114
A.5 Ribosome residence time analysis from the Ingolia expt. 115
A.6 Ribosome residence time for short footprints (aniso2 dataset). 116
A.7 Ribosome residence time for short footprints (aniso1B dataset). 117
A.8 Ribosome residence time for short footprints (aniso1A dataset). 118
A.9 Weighted mean RRT of codon pair groups, considering scoring

methods: classic, gap, signal. 119

xi

A.10 Correlation table for Saccharomyces cerevisiae RNA secondary
structure energy vs randomly generated read data-set. 121

A.11 Correlation table for Saccharomyces cerevisiae RNA secondary
structure energy vs wildtype mRNA-seq data-set. 122

xii

Acknowledgements

First and foremost, I thank Almighty for giving me the endurance, patience
and perseverance to successfully complete my research work.

I would like to express my special appreciation and thanks to my advisor
Professor Dr. Steven Skiena, distinguished teaching professor at Stony Brook
University, who has been a tremendous mentor for me both on my research
as well as on my career. He has shown the attitude and the substance of a
genius. Without his supervision and constant help this dissertation would not
have been possible.

My dissertation committee guided me through all these years. I would like
to express the deepest appreciation to my committee chair Professor Dr. I. V.
Ramakrishnan and committee members, Professor Dr. Rezaul A. Chowdhury
and Professor Dr. Bruce Futcher for serving as my committee members even
at hardship. I also want to thank them for letting my defense be an enjoyable
moment, and for their brilliant comments and suggestions. Special thanks to
Professor Dr. Bruce Futcher for his active engagement in my research work.

My sincere thanks also goes to Professor Dr. Laurie Krug, for offering me
the summer internship opportunity in her group and leading me working on
very exciting projects. The lesson I learnt from her was invaluable. In addition,
I thank Britt Glaunsinger and her lab from the University of California at
Berkeley for their active collaboration.

I wish to acknowledge Justin Gardin and Alisa Yurovsky, who played the
role of valuable team members for a significant part of my research work and
have been amazing help for me. I want to thank Bruce Futcher Lab, for
providing me the biological data for several experiments, without which my
work would be incomplete. Also thanks to Jeffrey Chen and Jesmin Jahan
for their support and active involvement in part of my research work. I also
thank my fellow lab-members for their support and help, special thanks goes
to Yanqing Chen, Charles Ward and Rami Al-Rfou.

I thank Stony Brook University for providing me the opportunity to grow
as a research scientist. I also want to thank to National Science Foundation
and National Institutes of Health for their financial support granted for my

research work.
A special thanks to my family for their endless love and support. Words

cannot express how grateful I am to my husband, my parents, and all other
family members for all of the sacrifices they have made on my behalf. I would
also like to thank all of my friends who supported me to strive towards my
goal. I dedicate this dissertation to my mother, whose countless support and
sacrifices sustained me thus far.

Chapter 1

Introduction

With the increase in the volume and complexity of biological data, computa-
tion has become a critical part in biological research. Sophisticated algorithmic
and data analysis tools are essential for biologists to better understand com-
plex biological systems and functions of biological molecules. Computational
biology is the science of development and application of data-analytical and
theoretical methods, mathematical modeling and computational simulation
techniques to the study of biological, behavioral, and social systems [1].

Synthetic biology is an fundamental part of computational biology. It can
be described as engineering-related approach to design new biological systems
and functions not available in nature and to redesign existing biological parts
and systems to carry out new functions [2]. Structure of the living organ-
isms are determined by the genetic code they carry. Researchers work on
re-designing the genetic information in the organisms to control or manipulate
the features available in a particular organism on need basis, either transferring
useful features from one organism to another or to control harmful features in
an organism.

In this synthetic gene design process, RNA plays a critical role by inter-
acting with other cellular components. In the last few years, novel synthetic
RNA components (capable of regulating gene expression) have been designed
in vivo, which sets the stage for scalable and programmable cellular behavior
[3]. RNA acts as an intermediary in process of translating genetic information
from DNA to protein. Information is translated in the form of triplet codes.
RNA also acts as a catalyst in the cellular process and gene regulation. We
work on designing RNA sequences to either obtain a targeted RNA structure
or to maximize/ minimize the amount of protein production in a cell or to
design vaccines.

Microarray data analysis is a popular method to investigate and analyze
changes in the genomic expression. It helps researchers to assess the overall

1

state of a cell or organism. However the data generated from the experiments
are quite large in volume and requires specialized analysis methods. We have
worked on statistical analysis of tiled microarray data. We aim to study the
genomic expression changes at different experimental conditions. Through
careful analysis, we can determine host cell shutoff mechanisms influenced by
various viral life cycles.

Ribosome profiling is a recently developed method, which enables system-
atic monitoring of mRNA translation processes inside the cell. It gives us
a way to monitor and analyze molecular mechanism, that surpasses existing
approaches in speed and accuracy. We analyze high coverage ribosome profile
data, where we seek to determine the relative translation speeds of different
codons. We also analyze the impact of codon-pair bias on translation mecha-
nism. We further extend our study to correlate ribosome footprint data with
the secondary structure formed by the messenger RNA and analyze the effect
of tRNA auto-correlation in gene translation speed.

Our major contributions to our research work can be summarized as fol-
lows:

• Designing RNA secondary structures in coding regions

Structure of the RNA is the key to its functional role. Hence predict-
ing the correct folded RNA structure is of great value. Sophisticated
regulatory structures appear within highly-constrained coding regions of
genes. We study the extent to which such structures can be constructed.
While predicting the secondary structures of an RNA sequence is an
extensively studied problem in computational biology, the inverse prob-
lem, designing sequences based on a known structure is also important.
We have worked on a particular version of the inverse RNA folding prob-
lem, where the goal is to achieve a targeted energy level. For a particular
RNA structure, we designed sequences with the maximum and minimum
folding energy while maintaining desired codon distribution.

• Designing autocorrelated genes

Redundancy in the triplet code enables the same protein to be encoded
by many different RNA sequences. Codon order in the sequence plays a
major role in determining the folded RNA structure. Again, the choice
of codon order is significantly important in controlling the amount of
protein production, as the translation speed is largely controlled by the
codon order selection. Recent studies show that the degree of tRNA
auto-correlation in a coding sequence has important effects on transla-
tion speed. The tRNA pairing index (TPI) has been used widely to study
the phenomenon of autocorrelation in sequences. However TPI only

2

counts successive transitions of tRNA usage, without regard to how far
apart they occur in the sequence. We propose a new type of autocorre-
lation measure, DICA (Distance Incorporated Codon Auto-correlation),
which weighs positional distance between codons as well as the number
of transitions. We demonstrate that our DICA correlates better to the
expression level of a particular gene than TPI. Finally, we devise exact
and heuristic algorithms to find near optimally auto-correlated and anti
auto-correlated genes for the purposes of synthetic gene design.

• Statistical analysis of tiled microarray gene expression data

Microarray experiments provide genome-wide expression data. Sophisti-
cated analysis techniques are required to correctly interpret the experi-
ment results. We conducted experiments on Murine Gammaherpervirus
68 (MHV68) microarray data on different experimental conditions. We
performed clustering analysis on the array data to group genes based
on the levels of expressions at different experimental conditions. We
analyzed the data to predict differentially expressed genes and results
of the analysis outcome revealed important information regarding the
virus life cycle [4]. The data across the arrays were merged to find novel
housekeeping genes.

• Ribosome profile data analysis

Ribosome profiling is a recently established popular method which aids
in studying translation mechanism and in predicting the amount of pro-
tein production inside a cell. Researchers can identify the location of
translation start sites and can determine the speed and distribution of
the translating ribosomes by analyzing snapshots of footprinting data
[5].

Codon usage bias refers to the differences of occurrences of synonymous
codons coding for the same amino acid. Read sequences obtained from
the ribosome profiling can be used to verify the effect of codon usage
bias in the genome of a particular organism. It is assumed that optimal
codon usage helps to achieve faster translation rates and high accuracy
[6, 7, 8]. Hence, codon usage optimization is expected to be higher in
highly expressed genes. As Saccharomyces cerevisiae is a fast-growing
microorganism, ribosome footprint data analysis of this organism should
reflect the optimal codon composition. Statistical analysis of the ribo-
some footprint data from Saccharomyces cerevisiae reveals that, frequent
codons show lower ribosomal jam while rare codons show higher ribo-
some density.

3

Similar to but independent of codon usage bias, codon pair bias refers
to the variation in the frequency of occurrences of different synonymous
codon pairs. For example, in human genes the Ala-Glu codon pair GCC-
GAA is strongly under-represented, even though it contains the most
frequent Ala codon [9]. Similar to the codon usage bias, the effect of
codon pair bias can also be established through the ribosome footprint
data analysis.

Gene translation speed is partly regulated by the tRNA auto-correlation
effect [10]. We found in yeast, highly expressed genes have higher auto-
correlation scores [11]. However there is no direct measure of the extent
to which tRNA auto-correlation contributes to the translation speed. We
try to predict the effect of tRNA auto-correlation on ribosome residency
time.

Ribosome profile data shows the ribosome traffic snapshots inside the
cell at a particular time. If we track the number of footprints along any
mRNA sequence, we can see large variation in the number of footprints
generated at different positions. Several factors may contribute to the
formation of read pile-ups. One potential reason behind the pile-ups can
be the amount of secondary structure around a codon position. Several
studies revealed that, the amount of secondary structure at the 5’ end of a
coding sequence plays important role in controlling the amount of protein
production [8, 12, 13]. We try to correlate the number of footprints at
different codon positions with the amount of secondary structures.

1.1 Overview

• We have developed novel algorithms to design RNA sequences with max-
imum (least stable or minimum structured) and minimum (most stable
or maximum structured) folding energies. Chapter 2 describes our work
on designing RNA secondary structures in coding regions.

• In chapter 3, I have demonstrated our work for designing auto-correlated
genes. We have proposed a new distance incorporated measure of tRNA
auto-correlation and provided a comparative study of our method with
existing analysis method. Finally we have devised algorithms to design
maximum and minimum auto-correlated sequences.

• Chapter 4 describes our work on the statistical analysis of tiled microar-
ray data. Interesting observations regarding gammaherpesvirus life cycle
came out of the analysis. We analyzed the data to predict differentially

4

expressed genes from a given set of genes and to cluster similar genes
together. Through the analysis of the combined data-set, we worked on
finding novel housekeeping genes, which can be used as control genes at
later experiments.

• We developed a novel algorithmic procedure to determine the ribosome
residency times of the codons. Chapter 5 includes our work on ribosome
profile data analysis to measure the average decoding rates of individual
codons.

• In chapter 6, our work on statistical analysis of the ribosome profile
data has been described. In the previous chapter (chapter 5), role of
codon order on ribosome profile data have been demonstrated. In this
chapter, I have included statistical analysis of the data from different
perspectives. Here, we have focused on the impact of codon-pair bias, of
folded RNA secondary structure and tRNA auto-correlation effect.

5

Chapter 2

Designing RNA secondary
structures in coding regions1,2

The secondary structures formed by RNA molecules are critical to understand-
ing their molecular interactions and biological functions. Computationally
predicting the secondary structure of an RNA sequence is a classical problem
in computational biology, and has been extensively studied [15, 16, 17, 18].
Indeed programs such as Mfold [Mfo] and the Vienna RNA package [Vie] are
widely used tools throughout molecular biology. The inverse problem, that of
designing RNAs which fold into specific desired structures, is also important.
RNA structures (such as transfer RNAs) are critical to a host of biological
processes, motivating the need to design sequences to achieve desired shapes
and functions.

We consider a particular version of the inverse RNA folding problem for
gene coding sequences, where we seek to achieve a targeted energy level as
opposed to a particular structure/shape. Cohen and Skiena [19, 20] have
previously developed effective algorithms for designing optimal RNA sequences
which code for specified amino acid sequences while maximizing or (as desired)
minimizing the folding energy of the sequence. However, the gene sequences
produced by these algorithms tend to use extremely skewed distributions of
codons, because C-G bonds are roughly twice as stable as A-U bonds. The
optimized genes thus exhibit codon usage distributions very different from that
of the host organism, typically resulting in very poor expression.

Here, we study the algorithmic design of RNA sequences which code for a
specific amino acid sequence using a desired distribution of codons – maximiz-
ing or minimizing the folding energy of resulting RNA. Our work is motivated

1R. Yeasmin and S. Skiena. Designing RNA secondary structures in coding regions. ISBRA,
2012

2Direct excerpts from [14]

6

by designing genes to modulate gene expression. Recent studies [8, 13] have
shown that the amount of secondary structure on the 5’ end of the coding se-
quence plays a critical role in maximizing protein production from a given gene.
Typically synthetic genes are designed to match targeted codon distributions,
but these studies suggest that RNA secondary structure should be an impor-
tant part of the design considerations. Another study suggests that folding
energy is an important factor in determining translation efficiency [21]. Sec-
ondary structures also play important roles as signals in viral replication, and
hence designs minimizing the size of these structures have proven important
in our experience. Our group routinely designs and synthesizes virus-length
coding sequences for a few thousand dollars each [9, 22, 23].

Our major contributions in this work include:

• Optimizing RNA secondary structures under codon constraints – We
present what we believe to be the first algorithms for modulating (ei-
ther minimizing or maximizing) the RNA folding energy of a gene while
respecting codon constraints. As described above, the demand for such
tools is destined to grow as large-scale synthesis costs decline and turnaround
times improve. Indeed, with our collaborators we are planning to synthe-
size high/low secondary structure variants of particular genes to study
their effect on translation and replication.

• Improvements in unconstrained secondary structure optimization – We
demonstrate that our algorithms produce structures with equal or less
(greater for minimizing structures) energy on the codon distributions
employed by the previous best inverse design algorithms. In particular,
we have employed our optimization algorithms on codon distributions
resulting from designs produced by the Cohen-Skiena (CS) algorithms.
As validated by Mfold, we show that our algorithms design genes with
better energy than those produced by [19]. This is particularly impressive
as the Cohen-Skiena minimum-energy algorithm guarantees an optimal
solution, albeit under a simpler energy function. These results validate
the quality of our designs on wildtype codon distributions where direct
comparisons for optimality are unavailable.

• Fast estimation of folding energies following local modification – The
high O(n3) running time of traditional RNA folding algorithms limits
the number of iterations possible in search-based optimization strategies
like ours. We have investigated the tradeoff between the accurate but
slow computations of Mfold in quickly recalculating the energy change
resulting from small local changes in a given RNA sequence. We find that
we generally can reduce the number of calls of this expensive operation

7

(and hence the running time of our algorithms) by a factor of five with
little degradation in accuracy.

2.1 Preliminaries

Predicting RNA secondary structure is an important problem in computational
biology. Several groups implemented algorithms for accurate energy determi-
nation of the folded RNA structure. Michael Zuker’s Mfold/ UNAfold [Mfo]
and Ivo Hofacker’s Vienna RNA package named RNAfold [Vie] are among the
most popular.

Mfold [24] uses a nearest neighbor energy rule to determine the structure.
The program implements a dynamic programming (DP) technique where they
maintain a DP table to store the calculated substructure energies and the
optimal structure is obtained by backtracking. Dynamic programming based
methods can correctly predict about 73% of known base pairs on domain
of fewer than 700 nucleotides [25]. To calculate the structure energy, the
entire structure is divided in parts consisting of stacked pairs, hairpins, bulges,
internal loops and multi loops. There can also be single stranded bases. Total
structure energy is the sum of all substructure energies. By default energy
values are calculated at 37 ◦C. For a given RNA sequence S, Mfold program
predicts the non-crossing, minimal energy structure P for S in O(n3) time and
O(n2) space.

RNAfold [18] uses similar dynamic programming techniques to calculate
the minimum free energy structure. The parameters used in the program
are described in [25]. The Vienna RNA package uses three kinds of dynamic
programming algorithms for structure prediction: the minimum free energy
algorithm of Zuker and Stiegler [26] which yields a single optimal structure,
the partition function algorithm of McCaskill [27] which calculates base pair
probabilities in thermodynamic ensemble, and the suboptimal folding algo-
rithm of Wuchty et.al [28] which generates all suboptimal structures within
a given energy range of optimal energy. For secondary structure comparison,
the package uses string alignment or tree-editing [29] methods to measure dis-
tance or dissimilarities. Finally they use inverse folding algorithm to design
sequences with predefined structures, where they search for sequences fold-
ing into a predefined structure. In case of unsuccessful searches, a structure
distance to the target structure is provided.

Inverse RNA Folding was first introduced in [18, 30]. RNAinverse in the Vi-
enna RNA package [18] was developed to perform inverse RNA folding. Later
an extended Inverse RNA Folding problem was studied by Dromi, Avihoo and
Barash [31], where they added several non-structural constraints to the out-

8

put such as thermodynamic stability and mutational robustness. Dahiyat and
Mayo [32] worked on the Inverse Protein Folding problem where the goal is
to determine the primary sequence that folds into a given shape or structure.
When they worked on it, designing the three dimensional structure from the
sequence alone seemed difficult. However the inverse problem would be more
tractable as one could over-engineer the system to favor the desired folding
pattern.

INFO-RNA [33] is an web server for Inverse RNA Folding maintaining se-
quence constraints. They apply dynamic programming algorithm to find the
initial RNA sequence that satisfies given secondary structure. It is not guar-
anteed to fold to the target structure as it might have another minimum free
energy (mfe) structure. Thus the sequence is further processed by performing
stochastic local searches to minimize the structure distance between the mfe
structure of the obtained sequence and the given target structure. RNAex-
inv [34] is another software that performs extended Inverse RNA folding by
considering not only the desired structure while generating the sequence but
also other favorable attributes (i.e. thermodynamic stability and mutational
robustness).

Stochastic context-free grammars (SCFGs) are alternative probabilistic
methodologies for modeling RNA structure [35, 36]. Specific grammar rules are
used to induce a joint probability distribution over all possible RNA structures
and sequences. Parameters of SCFG models specify probability distributions
over possible transformations that may be applied to a nonterminal symbol.
These parameters do not have direct physical interpretations, they are learned
from collections of RNA sequences with known secondary structures, no ex-
ternal laboratory experiments are needed [37].

CONTRAfold [38] is another secondary structure prediction tool which is
based on a flexible probabilistic model called a conditional log-linear model
(CLLM). Like SCFGs, CLLMs use the computationally driven parameter
learning. However, unlike SCFGs they also have the generality to represent
complex scoring schemes, such as those used in energy based predictions i.e.
Mfold. CONTRAfold thus closes the gap between probabilistic and thermo-
dynamic models.

Recently studies are being performed on improved parameter sets. An-
dronescu et al. [39, 40] applied Constraint-Generation and Boltzman-likelihood
methods for better parameter estimation. Using these parameters they ob-
tained much better RNA structure prediction models. Zakov et al. [41] further
refined previous models by examining more types of structural elements and
a larger sequential context for these elements. Their study showed that use of
more detailed models with rich parameter sets improves prediction quality.

9

Figure 2.1: Comparison plot of min Structure Energy for region break, random
swap and the combined strategy for GFP RNA of yeast. Most of the energy
values for the distribution of the combined strategy (red) are higher than other
two strategies.

Figure 2.2: Region break strategy. Here, 1 shows internal swap of two codons
that code for amino acid A (allow swap only in codons internal to window), 2
shows external swap of two codons corresponding to A between two windows.

Cohen and Skiena worked on Inverse RNA folding, where they seek the
RNA sequence coding for a given protein P having minimum energy (most
stable structure) over all encodings of P [19, 20]. However, as they do not
pose any constraint on codon usage frequency, their designed sequences tend
to use extremely skewed codon distribution. We have worked on a similar
problem. However, while designing sequences we maintain the codon frequency
distribution used by the host organism.

10

Figure 2.3: GFP RNA (jelly fish) min, wildtype and max energy folded struc-
tures. Left: folded minimum structure/ maximum energy sequence (folding
energy = −112.37kcal/mol). Middle: folded wildtype sequence (folding energy
= −134.21kcal/mol). Right: folded maximum structure/ minimum energy se-
quence (folding energy = −243.56kcal/mol).

2.2 Heuristics for inverse RNA folding

We start with an initial wild type structure maintaining constraints imposed
by the codon constraint table. The initial RNA sequence is formed by arbi-
trarily positioning one of the several possible codons for each amino acid. Now
our goal is to find the RNA sequences with maximum and minimum energy
that code for the given amino acid sequence using this codon distribution.
According to Zuker and Stiegler [26], dinucleotide composition is a primary
contributor to folding free energy. Our main goal was to maximize (minimize)
the number of bonds to get the most (least) stable or the max (min) struc-
tured sequence. Here by most (least) stable, we mean the structure with the
minimum (maximum) energy.

2.2.1 Structure maximization

To maximize structure (minimize energy) we apply random swap approach,
where we repetitively check for codon swaps that improve the overall bond
energy. We continue until we enter a state where no more improvement is
possible. Here, we give the wildtype sequence to Mfold as input to find the

11

Algorithm 1 RNAfoldMaximizeStructure(Input: Amino Acid sequence,
Codon constraints; Output: Stable structure S1)

Construct initial wild type RNA sequence from the given amino acid se-
quence maintaining codon constraints
Call Mfold to find the current best structure S from the initial RNA sequence

while there is an improvement in the structure S do
if no improvement in the structure energy for a specific period of time
then

Perform random changes to the structure
else

if the structure has previously occurred then
Penalize the codons that have been changed in the previous step

end if
Find free codons for current RNA structure S
Change the whole structure by swapping two codons that correspond to
same amino acid whenever possible if the swap improves bond energy

end if
Call Mfold to find the best bonding S = S1 for the modified structure

end while

initial bonded structure. Next we build a free codon table that keeps track of
the codons that are not involved in bond formation. Hence we can replace the
codons that are involved in bond formation with any other free synonymous
codon listed in the free codon table, if the replacement improves the bond
energy. Alternately, we can replace two free codons without breaking any
existing bond.

Next, we start with a random position of the structure and check for each
codon of the mRNA sequence whether swapping it with any other codon from
the free codon table (which codes for the same amino acid as this one) improves
the bond energy. If there is an improvement in the bond structure, we swap this
codon with the free codon. We also maintain a neighbor list for each codon.
Initially we allowed options, where after a swap we do not allow neighbor
swap. That means, before swapping a codon we first check whether any of its
neighbors has already been swapped or not. The check is performed to keep
other parts of the structure relatively stable while changing one part. Later we
allowed neighbors to swap and figured out allowing neighbor swap gives more
freedom to find the structure with minimum energy. After checking the whole
sequence, we apply the new sequence again to the Mfold program. This way
we continue until we enter a state, where no more improvement is possible.

12

In this process sometimes we may stuck in a local minima (encounter the
same sequence repeatedly). To get out of the minima, we perform some arbi-
trary change to the structure without violating the constraints. We penalize
the codons that have been changed in the previous step so that they cannot
change their position in the next step. Moreover, if there is no improvement
in the structure energy for a specific number of iterations, we perform some
random codon swaps to get out of local minima.

In general we run 400 iterations and the complexity in each iteration is
dominated by the O(n3) running time of Mfold.

2.2.2 Structure minimization

Algorithm 2 RNAfoldMinimizeStructure(Input: Amino Acid sequence,
Codon constraints; Output: Stable structure S1)

Construct initial wild type RNA sequence from the given amino acid se-
quence
Call Mfold to find the current best structure S from the initial RNA sequence

while there is an improvement in the structure S do
if the structure has previously occurred then

Penalize the codons that have been changed in the previous step
end if
Apply random swap, or region break, or the combined strategy to change
the current structure
Call Mfold to find the best bonding S = S1 for the modified structure

end while

To find the RNA sequence with minimum structure (maximum energy),
we employed two different strategies:

• Region break: – Here we look for the strongest bonded parts (a fixed
percentage of the total number of codons) of the current folded RNA
sequence. Then we perform an internal swap of the codons corresponding
to the same amino acid in these regions. For each codon, we find out the
codon with maximum mismatch (based on three letters of the codon)
with current codon corresponding to same amino acid and perform the
swap. We repeat the process for all codons in those strongly bonded
regions.

13

• Random swap: – This process is quite similar to the structure maximiza-
tion process. However, here we swap two codons if the swap reduces the
structure stability or maximizes energy.

We tried each of these strategies separately and also in combination. After
each iteration we call Mfold for the modified structure. The combined strategy
performs better than the individual ones. Fig. 2.1 shows the comparison plot
of the distribution of energies for all of these strategies. From the figure, we
see though region break strategy achieves almost similar best result as the
combined strategy, the frequency of getting good results is smaller.

According to Doshi et al. [42], Mfold RNA secondary structure prediction
accuracy degrades as the contact distance between base-pairs increases. One
potential reason could be Mfold assumes much more long range base pairs
than it occurs in general. However, in our algorithm we are maximizing (or
minimizing) bonds in small local regions, so we generally avoid creating long
range stem loops.

2.2.3 Algorithmic variants

We experimented with several different algorithmic variants. To find the min-
imum and maximum energy sequences we considered two different variations:

• Random walk: – Always take the current changed structure even if it is
worse than the previous one.

• Gradient descent approach: – Before taking a bad move wait for few
iterations. If after the specified number of iterations still get a worse
structure, then take the best of all these bad moves as a sequence to
move forward. If any of these six moves were better than the previous
move but it was a duplicate one, in that case take the next good move
rather than taking the duplicate one.

The gradient descent approach performs better than the random walk ap-
proach, possibly because the random walk approach has greater chance of
allowing bad moves and trapping into local minima or maxima.

As mentioned before, for minimizing structures we used two strategies:
region break and random swap. In region break we had to consider several dif-
ferent criteria. We tried with several different region sizes which was specified
by window sizes (let W) and also varied the number of windows to consider
at the same time. Here we used a parameter Z to specify that we will break
Z% of the entire RNA sequence. Later we counted the number of windows it
will take to add up to Z% of the entire RNA length. Another issue is whether

14

while breaking regions we should allow codons to swap only in regions internal
to those windows or allow external swaps too. Initially we allow only internal
swaps. If a duplicate structure is encountered, we use external swaps for the
next step. Fig. 2.2 shows an example of region break strategy.

In random swap the first consideration is whether we should always start
with a fixed starting point or a random one. In case of fixed starting point,
we always check codons for swap from the beginning of the RNA sequence. In
random starting point, all codons of the sequence starting from a randomly
generated position are checked for swap in a circular manner. We found the
performance of random starting point is better than fixed starting point as
it allows more variations thus allowing a larger search space.The next issue
is whether we should swap codons only with free codons or allow arbitrary
swaps. For minimum energy structure, allowing swaps only with free codons
seems reasonable as swapping two bonded codons might cause reduction in the
stability of the bonded parts of the structure. For maximum energy structure
it could be a reasonable one, however its performance was not good. There
is a possibility that, arbitrary swap might give good result after searching for
long. Here one issue is the speed of merging to a good solution. Allowing free
codon swap gives good result even within a reasonably short time. Again in
this case we waited five steps to get a better move before accepting a bad one.

Later for minimizing structure we combined two strategies to allow more
variations while searching for the best structure. The performance of the com-
bined one was quite better than any single one for minimizing structure as
shown before in fig. 2.1. Here the question is whether we use two strategies in
an interleaving manner or continue with one until we encounter a duplicate.
There is no significant variation in the obtained results for any of these strate-
gies. However, rather than changing strategy every next move, sticking with
the current strategy until a duplicate structure is encountered seems reason-
able as changing strategy every next move might undo the good moves of the
previous step.

For structure maximization we used only the random swap one as breaking
regions arbitrarily to find the most stable structure does not seem reasonable.

2.3 Results and discussion

It is impossible to judge the quality of a heuristic without knowledge of the cor-
rect answer. The CS program produces a provably minimum energy sequence
for a model close to that of Mfold, but provides no constraint on codon usage.
We evaluate our heuristics starting from a random design using the same codon
distribution as optimized in the CS sequence. Thus if our program is doing a

15

Figure 2.4: Max structure energy distribution for GFP and Polio virus
RNA based on CS codon distribution; wildtype energy for GFP = −139.8
kcal/mol, for Poliovirus = −666.6 kcal/mol, CS opt energy for GFP =
−290.7 kcal/mol, for Poliovirus = −1056 kcal/mol; max structure energy
with CS distribution from our program is −291.3 kcal/mol for GFP and
−1080.6 kcal/mol for Polio virus; RED arrow indicates wildtype energy and
BLUE arrow indicates CS opt energy.

good job of optimization, it will produce similar energies to the optimal design.
We ran our algorithm for polio virus RNA with the same codon distribution as
obtained from Cohen and Skiena [19] for both minimization and maximization
program, starting with a wild type sequence based on that codon distribution.
Our algorithm found structures with better energy than that from CS algo-
rithm for both minimized and maximized structures. Later we checked for
GFP RNA sequence. We plotted the distribution of energy values for both
max and min sequence. In fig. 2.4, the left plot shows max energy distribution
for GFP RNA and the right one is for polio virus RNA based on CS codon
distribution. Fig. 2.5 shows results for the same amino acid sequences main-
taining given codon constraint. Fig. 2.6 and fig. 2.7 shows corresponding min
structure energy distribution. Here we see, for structure minimization, our
algorithm generates sequences with much higher energy than the sequences
obtained from the CS program. For structure maximization, we algorithm
either performs better or does as good as the CS program.

We performed experiment to compare the change in the structure energy
with the change of codon distribution from wildtype to CS. Fig. 2.8 shows
results from that study for both maximized and minimized structures gener-
ated randomly. Here at point 0 of X-axis, the structure follows wildtype codon
distribution; at 100, it completely follows CS codon distribution. We see from
fig. 2.8 that the trend of the energy plot is from lower to higher for minimized
structure and from higher to lower for maximized structure as the percentage
of CS codon distribution goes higher, as expected. We optimized the structures
using our program. As the figure shows, we always get much better structure

16

Figure 2.5: Max structure energy distribution for GFP and Polio virus RNA
maintaining given codon constraints; wildtype energy for GFP = −139.8
kcal/mol, for PolioV irus = −666.6 kcal/mol, CS opt Energy for GFP =
−290.7 kcal/mol, for PolioV irus = −1056 kcal/mol; max structure energy
from our program is −234 kcal/mol for GFP and −1003.2 kcal/mol for Polio
virus; RED arrow indicates wildtype energy and BLUE arrow indicates CS
opt energy.

than the initial random one. However, the gap between initial energy and
optimized energy decreases as we move toward CS codon distribution.

We conducted experiment on different RNA sequences (shown in table 2.1).
We see from the experimental results, our algorithm always generates se-
quences with maximum and minimum energies compared to that of wildtype
sequence energy. In most cases improvement toward minimum energy struc-
ture (max structure) is better than toward maximum energy structure (min
structure). Finding the least stable structure is harder. For polio virus, our
optimized max structure energy is −1003.2 kcal/mol and min structure en-
ergy is −604.9 kcal/mol, where initial wild type energy was around −666.68
kcal/mol. We checked the output from CS max and min program, where they
do not follow any codon constraint. The max structure energy for their pro-
gram was −1056 kcal/mol and min structure energy was −429.8 kcal/mol.
We ran our program with the same codon distribution as used by CS and
we obtained sequences with more optimized energies compared to the CS
algorithm generated sequences (max structure energy −1080.6 kcal/mol, min
structure energy −407.7 kcal/mol). This indicates our algorithm is generating
the optimal sequences.

2.3.1 Parameter optimization

We have several different parameters that we need to optimize.

• For RNA structure minimization, in region break strategy while we are

17

Figure 2.6: Min structure energy distribution for GFP and Polio virus
RNA based on CS codon distribution; wildtype energy for GFP = −139.8
kcal/mol, for Poliovirus = −666.6 kcal/mol, CS opt energy for GFP =
−100.7 kcal/mol, for Poliovirus = −429.8 kcal/mol; min structure energy
with CS distribution from our program is −83.84 kcal/mol for GFP and
−407.7 kcal/mol for Polio virus; RED arrow indicates wildtype energy and
BLUE arrow indicates CS opt energy.

evaluating energy to determine the most structured parts of the folded
RNA, we are moving a sliding window W around the RNA sequence,
calculating energy for that window. These windows may overlap. Let P
be the number of codons by which two windows overlap. Now we want
to break top Z% of the entire RNA structure. We tried to determine the
best values of W, P, and Z that fasten the RNA structure minimization
process. We checked for W = 10, 15, 20 with P = 5, 8, 10 and for different
Z values i.e. Z = 10, 15, 20, 25. We figured out, structure minimization
process is quite independent of these parameter values. However, Z =
15 might be a good choice to break the structure. Fig. 2.9 shows the
plot of the progress of structure minimization process for region break
strategy with different W and P values for Z = (10, 15) with the same
initial wildtype RNA sequence. For other sequences the effect of these
parameters are quite similar.

• Again, for structure maximization rather than calling Mfold every iter-
ation, we reduced the number of Mfold calls which is controlled by the
parameter X. For X = i we call Mfold every ith iteration. When X = 1,
Mfold is called every iteration. Here, the reason to reduce the number
of Mfold calls is to reduce the total running time of the algorithm, as
the overall runtime is dominated by the calls to Mfold. We tried for
X = 1, 2, 3, 4, 5, 10, 20. Experimental results show that up to X = 5
the algorithm’s output remains the same, i.e. even running Mfold only
every fifth iteration gave us the maximized structure. However, after

18

Figure 2.7: Min structure energy distribution for GFP RNA and Polio virus
RNA maintaining given codon constraints; wildtype energy for GFP = −139.8
kcal/mol, for PolioV irus = −666.6 kcal/mol, CS opt energy for GFP =
−100.7 kcal/mol, for PolioV irus = −429.8 kcal/mol; min structure energy
from our program is −116.9 kcal/mol for GFP and −604.9 kcal/mol for Polio
virus; RED arrow indicates wildtype energy and BLUE arrow indicates CS
opt energy.

that (e.g. X = 10, 20) algorithm’s performance degrades substantially.
Fig. 2.10 shows the comparison of the distribution of energy values for
different X values (left) and also the plot of the distribution of energy
values for different maximum number of iterations (right). We devel-
oped an algorithm to determine energy of the current structure based
on the information available in the ct file obtained from Mfold program.
Once we know the neighbors of each codon, after swaps at each iteration
we update the neighbors based on the swap. Next we calculate energy
from the updated structure information. As we are updating neighbor
information from the changed structure based on local swap decisions
without folding the structure, it might not predict the accurate struc-
ture energy. However, we figured out, the updated information is good
enough to continue changing the structure even without calling Mfold
up to five iterations.

• We checked whether optimizing the same initial wild type sequence for
longer is better than starting from several initial starting positions. Sup-
pose we want to make optimum use of total time T . We want to run the
algorithm in S steps with maximum iterations I at each step. Now, if
each iteration of the program takes t time, then we can run T

t
iterations

(say I = i) starting from a single step S = 1. Alternately, we can run
several steps S = s (s > 1) with the number of iterations i′, where i′ < i.
Here, i× t = s× i′ × t. For polio virus we found the algorithm finds the
best result with approximately around 400 iterations. After that there is

19

Figure 2.8: Plot of initial and optimized energy curve of GFP RNA struc-
ture for different percentage of the wildtype and CS codon distribution. Left
(structure minimization): the lower curve shows trend of initial energy val-
ues; the leftmost point (0% CS codon distribution) maintains wildtype codon
distribution, rightmost point maintains CS codon distribution, intermediate
points maintain different ratios of codon distributions from wildtype and CS
one. The upper plot shows corresponding optimized energies by RNAfoldMin-
imizeStructure Algorithm. Right (structure maximization): the upper curve is
for wildtype structure energy and lower curve indicates the trend of energy val-
ues after maximizing structures using RNAfoldMaximizeStructure algorithm.

no improvement in the output energy. Hence, we increased the number
of steps S keeping I fixed at 400 to get the optimized result. We see from
the right part of fig. 2.10, the difference in energy improvement from 100
to 200 iterations is much higher than that from 200 to 400 iterations.
Here, we note that the maximum number of iterations to converge to
an optimal solution is dependent on the length of the RNA sequence as
longer the sequence there are more options for codon swap. In general,
for a sequence shorter than polio virus RNA 400 iterations should be
sufficient to converge to the optimal solution. For a longer one it might
take more iterations to converge.

2.4 Conclusion

In this paper, we describe programs to find the minimum and maximum energy
structures of a given amino acid sequence with codon constraints. We used two
algorithmic variants: random walk and gradient descent approach. Simulated
annealing or the Metropolis algorithm [43] could be another approach, where
at every step we could take a backward move based on a probability value.
Our gradient descent approach is similar but we wait for several steps to find
a better move before taking a bad one as Mfold is slow.

20

Figure 2.9: Comparison plot of region break strategy for different W =
10, 15, 20 and P = 5, 8, 10 with Z = 10, 15, where W stands for sliding window
size, P is the number of overlapping codons between two windows, Z indicates
the percentage of the entire structure that will be broken each step. In the
figure we see, there is no significant difference in the energy optimization path
that was followed for different parameter values.

We checked for several different RNA sequences. In most cases improve-
ment toward minimum energy structure (max structure) is better than toward
maximum energy structure (min structure). Finding the least stable structure
is harder. For polio virus, our optimized max structure energy is −1003.2
kcal/mol and min structure energy is −604.9 kcal/mol, where initial wild
type energy was around −666.68 kcal/mol. We checked the output from CS
max and min program, where they do not follow any codon constraint. The
max structure energy for their program was −1056 kcal/mol and min struc-
ture energy was −429.8 kcal/mol. We ran our program with the same codon
distribution as used by CS and got max structure energy −1080.6 kcal/mol
and min structure energy −407.7 kcal/mol. This indicates our algorithm’s
performance is better than CS algorithm output, which is a clear indication
of obtaining optimized structures.

2.5 Acknowledgement

Our work is available at: http://www.algorithm.cs.sunysb.edu/RNAdesign.
We specially thank Yanqing Chen for assistance during the study. This work
was partially supported by NIH Grant AI075219 and NSF Grants DBI-1060572
and IIS-1017181.

21

Figure 2.10: Comparison plot of the distribution of energy values of folded
Polio virus RNA for different X (left); X = 1, 2, 3, 4, 5, 10, 20, and for different
number of maximum iteration limit (right); I = 100, 200, 400. From the left
figure, up to X = 5 (i.e. running Mfold every fifth iteration) performance of
the algorithm is close to that for X = 1 (i.e. running Mfold every iteration),
after that performance degrades. From the right one, energy optimization
improves significantly when maximum iteration limit (I) goes from 100 to
200. When moving from I = 200 to 400, improvement is not that much.

Table 2.1: Summary of maximized and minimized sequence energies

Sequence Length Initial dG dG(Max) dG(Min)

Banana Virus1 405 -77.830 -142.43 -62.690
Pumpkin Virus 405 -91.570 -139.28 -83.780
Xenopus tropicalis hemoglobin 429 -111.19 -167.13 -98.520
Banana Virus2 531 -137.09 -189.56 -123.16
StCroix River virus 675 -191.50 -271.58 -160.57
GFP Jelly fish 720 -134.21 -243.56 -112.37
Citirus variegation Virus 849 -236.89 -333.42 -189.97
Honeysucklin 1035 -288.25 -434.46 -268.76
Potato Virus 1077 -299.97 -423.91 -249.43
Vibrio sp. Ex25 1260 -367.07 -500.60 -326.23
Polio Virus 2643 -666.68 -1003.2 -604.90

22

Chapter 3

Designing autocorrelated
genes1,2

Transfer RNA is an adaptor molecule that acts as a bridge between the mes-
senger RNA and the translated amino acid sequence. At one end, each tRNA
carries an anticodon composed of three nucleotides that forms hydrogen bonds
with a corresponding mRNA codon during protein synthesis. At the other end,
tRNA is covalently bound to an amino acid. Each tRNA can be attached to
only one amino acid, but as a consequence of the redundancy of the genetic
code, several tRNAs may carry the same amino acid. Thus a one-to-many
relationship exists between each amino acid and the tRNAs that code for it.
This is related to the familiar triplet code, but more specialized since certain
tRNAs match multiple different codons.

Because there are no physical differences between proteins translated using
different synonymous codons, it is expected that synonymous codons would
appear in roughly equal frequencies in the genome. However, in most genomes
this is not the case. Codon bias is a long-observed phenomenon where the genes
of a particular organism tend to favor the use of particular synonymous codons
over others [44]. The degree to which the sequence of a given gene conforms to
the preferences of the host is measured by the Codon Adaptation Index (CAI)
[7]. Generally speaking, genes with higher CAI translate faster than genes
with lower CAI [44]. For the purposes of synthetic biology, controlling protein
expression has important implications in designing and fine-tuning gene reg-
ulatory networks. Controlling codon usage in a sequence is a demonstrated
convenient and cheap method of accomplishing this, which can result in up to
a 40-fold difference in expression [45]. Minimizing protein expression through

1R. Yeasmin, J. J. Tithi, J. Chen and S. Skiena. Designing autocorrelated genes. ACM-
BCB, 2013

2Direct excerpts from [11]

23

altering codon usage is also an important application in gene synthesis, espe-
cially with regard to viral genomes [45, 46]. Beyond codon usage, factors such
as codon-pair bias [9] and RNA stability also affect translation. However, the
exact mechanism of optimal codon bias is still poorly understood, and there
are many other considerations beyond the sequence level, such as rare codon
and motif usage and mRNA structure. We refer the reader to the recent sur-
vey of Plotkin and Kudla [8] for the state of the current knowledge on coding
sequence design to optimize protein expression.

Here, we will be concerned with a different factor that affects gene expres-
sion. Recent work shows that evolutionary pressure favors selecting repeating
codons to code for successive occurrences of a given amino acid. Cannarozzi
et al. [10] have demonstrated the effect of such autocorrelation in tRNA usage
on gene translation speed. They mutated a green florescence protein (GFP)
dimer to have respectively the most (and then least) autocorrelated coding
sequence. The highly autocorrelated sequence translated and expressed up to
29% faster than the weakly autocorrelated one. The authors argue that auto-
correlation in fact plays a more significant role than CAI index in identifying
highly expressed genes. In [47], the authors proposed measuring the degree
of tRNA re-usage in genes with an autocorrelation measure, tRNA pairing
index (TPI). They proposed two variants of the index, TPI1 and TPI2 and
showed statistically that genes with higher TPI values change their expression
level rapidly. TPI1 is measured by computing the probability of the num-
ber of changes of tRNAs for each codon assuming constant codon frequencies
(each codon is equally likely). TPI2, in contrast, is computed by assuming
that the codon choice of amino acids is fixed (i.e., codon frequency for each
amino acid is given). According to TPI1, a highly autocorrelated tRNA se-
quence is TTTSSS, which has the fewest number of tRNA transitions possible,
and a highly anti-autocorrelated sequence that maximizes tRNA transitions is
TSTSTS, where T and S correspond to different tRNAs expressing the same
amino acid.

Although the tRNA Pairing Index (TPI) has been widely used to study the
phenomenon of autocorrelated sequences [48], it counts successive transitions
of tRNA usage without regard to how far they are on the sequence. Cannarozzi
et al. [10] demonstrate that there is a distance aspect to autocorrelation, where
the probability of finding identical adjacent synonymous codons decays with
distance and both types of TPI measures fail to incorporate the distance effect
in the scoring. Consider, for example, an amino acid sequence where Leucine
residues occur at the 10th, 20th, and 400th position of the protein, to be coded
by a mix of codons from two different tRNAs (say two of type A and one of
type B). There are three relative orders in which these codons can appear:

24

AAB, BAA, and ABA. From the standpoint of TPI, both AAB and BAA are
equally preferable, with only one transition, over the ordering ABA, which has
two transitions. Yet from the vantage point of tRNA reuse, we would expect
AAB to translate fastest, because the two occurrences of A are close-enough
that the specific tRNA molecule employed in coding for the 10th residue is less
likely to diffuse away before it can be used again. Indeed, through analysis on
the genomes of several species, Cannarozzi et al. [10] have demonstrated that
the degree of autocorrelation in codon ordering decays with distance.

Factoring in position distance is important, because the effects of auto-
correlation or anti-autocorrelation at large distances become negligible as a
previously-used tRNA molecule is more likely to diffuse away during a long
stretch after it has been used. Furthermore, a tRNA transition may not prove
costly if there quickly follows a second opportunity to reuse the previous tRNA.
All in all, minimizing the number of tRNA transitions will generally not max-
imize the frequency of reusing tRNA molecules and will generally fail to opti-
mize protein expression. This motivates us to consider a new autocorrelation
measure (DICA) which weighs positional distance between codons as well the
number of transitions.

In this research work, our major contributions are:

• Distance-dependent measures of sequence autocorrelation – We propose
a new measure, Distance-Incorporated Codon Autocorrelation (DICA),
which factors in the positional distance into evaluating the cost of a
tRNA transition. Three types of reward models were considered based on
threshold, inverse distance, and exponential functions respectively. The
relative success of these various models on biological data may provide
mathematical insight into the physical mechanism behind proper tRNA
recruitment during protein translation.

We believe that our DICA function better distinguishes the most signif-
icantly autocorrelated sequences than TPI does, and present the results
of bioinformatics experiments to demonstrate this.

• Designing optimally autocorrelated and anti-autocorrelated gene sequences
– The algorithmic problem of designing maximum (or minimum) auto-
correlated coding sequence according to TPI for a given protein sequence
and codon distribution is trivial: simply sort the available codons by
tRNA compatibility, and then use them consecutively from the 5’ to 3’
ends of the gene.

But gene design is much harder under our DICA criteria. We propose
an exhaustive search procedure that exploits a new pruning criterion
to design provably optimal designs for modest length genes, which when

25

coupled with heuristics performs very well on all sequences. An alternate
search strategy and heuristics are proposed to design anti-autocorrelated
sequences, and evaluated.

• Mapping the autocorrelation design space – How much freedom exists to
rearrange the codons used in naturally-occurring gene sequences to mod-
ulate the degree of autocorrelation? We performed a study on all the
genes in the yeast Saccharomyces cerevisiae, designing minimally and
maximally autocorrelated genes using the wildtype (WT) codon distri-
bution. We show that there is indeed considerable freedom to maximize
the autocorrelation scores of a large number of genes in yeast, suggesting
interesting experiments which synthesize our designs and compare them
to wildtype.

3.1 Preliminaries

The phenomenon that different codons encode for the same tRNA and amino
acid, yet are not seen in relatively equal frequencies, has been well established.
However, the evolutionary advantages of codon bias are still being investigated
widely [8]. Some advantages of using a certain synonymous codon frequency or
distribution include proper mRNA folding and secondary structure, transla-
tion initiation and elongation rate, and translation accuracy and proper folding
[8, 49, 50, 51]. Several different studies have already identified the scope of
codon usage in its relation to translation speed. Tuller et al. [50] examined the
contribution of low- and high- frequency codon usage to protein translation
efficiency, and discovered that among most species, the first 30 to 50 codons
of a given sequence tend to favor rarely used codons, before a “ramp” into a
period where commonly-used codons dominate. Interestingly, both the avail-
able tRNA pool and the genome sequences co-evolve to maintain this profile,
suggesting that genome sequences evolve to be deliberately slowly translated
directly after translation initiation.

Cannarozzi et al. [10] further corroborated the importance of rare and
frequent codon positioning in translation speed. Synonymous codon usage is
not random and the codons are not equivalent [10, 52, 53]. In particular, the
frequency of codons in gene sequences correlates well to the frequency of the
tRNA molecules corresponding to these codons [52, 54]. If a recently used
tRNA diffusion were slower than the ribosomal progression, then it would be
efficient to re-use the same tRNA for subsequent occurrences of the same amino
acid. Furthermore, genes, especially those that must be translated rapidly
under stressful conditions, appear to have evolved to increase autocorrelation

26

of codons, having higher autocorrelation measure than similar sequences that
have randomly shuffled all of their synonymous codons.

A pattern of codon usage may either be induced due to mutational pro-
cesses or by synonymous mutations which natural selection may favor. Muta-
tional processes, such as a silent mutation changing one synonymous codon to
another has no overall impact on the fitness of a species. However if natural
selection plays a role in how that mutation affects fitness, then a similar codon
usage pattern could be seen across entire genomes or species [8]. Positive cor-
relation between codon bias and a gene’s expression level has been observed
among different species [6, 7, 8, 55]. Conversely, the synonymous codon substi-
tution rate among diverging species is negatively correlated with gene expres-
sion level [8]. An extreme codon bias has been observed in highly expressed
genes to match a skew in iso-accepting tRNAs (tRNAs that carry the same
amino acid). Xu et al. [56] demonstrated that highly expressed genes have
more synonymous codon usage biases originated from selective pressure, how-
ever this is probably a species-specific phenomenon and other organisms evolve
codon bias more for translation efficiency. Qian et al. [57] hypothesizes that
synonymous codons are translated with similar speeds under the codon-tRNA
balance optimized by nature to improve translational efficiency. Ikemura [52]
further shows an existing strong positive correlation between codon usage and
tRNA content in both Escherichia coli and Saccharomyces cerevisiae, which
is dependent on an individual gene’s protein production levels.

In [47], the authors proposed measuring the degree of tRNA re-usage in
genes with an autocorrelation measure, tRNA pairing index (TPI). They pro-
posed two variants of the index, TPI1 and TPI2 and showed statistically that
genes with higher TPI values change their expression level rapidly. TPI1 is
measured by computing the probability of the number of changes of tRNAs for
each codon assuming constant codon frequencies (each codon is equally likely).
TPI2, in contrast, is computed by assuming that the codon choice of amino
acids is fixed (i.e., codon frequency for each amino acid is given). According
to TPI1, a highly autocorrelated tRNA sequence is TTTSSS, which has the
fewest number of tRNA transitions possible, and a highly anti-autocorrelated
sequence that maximizes tRNA transitions is TSTSTS, where T and S cor-
respond to different tRNAs expressing the same amino acid. Cannarozzi et al.
[10] demonstrate that there is a distance aspect to autocorrelation, where the
probability of finding identical adjacent synonymous codons decays with dis-
tance and both types of TPI measures fail to incorporate the distance effect in
the scoring. Codon bias is already an important consideration when designing
genes, and matching synonymous codon frequencies of a gene sequence to the
frequency of the host genome generally provides optimal translation results

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.95 0.96 0.97 0.98 0.99 1

Fr
a
ct

io
n
 o

f
sa

m
p

le
s

b
e
lo

w
 w

ild
ty

p
e
 g

e
n
e

Exponential Function Base

Fast Genes
Slow Genes

Arbitrary Genes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fr
a
ct

io
n
 o

f
sa

m
p

le
s

b
e
lo

w
 w

ild
ty

p
e
 g

e
n
e

Inverse Distance Function Power

Fast Genes
Slow Genes

Arbitrary Genes

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

Fr
a
ct

io
n
 o

f
sa

m
p

le
s

b
e
lo

w
 w

ild
ty

p
e
 g

e
n
e

Threshold Function Boundary Distance

Fast Genes
Slow Genes

Arbitrary Genes

Figure 3.1: Comparison of different optimization functions to identify the best
differentiation between fast vs. slow genes. We checked 90 wildtype genes of
different speeds, where the tRNA abundance in the cell for each gene is used
as a measure of speed, i.e., larger the number of transcripts, more the gene is
expressed. 1000 random samples were generated for each wildtype gene, by
random swaps of tRNAs of different types corresponding to the same amino
acid. Left: the fraction of random samples with score less than wildtype
sequence for different values (0.950 to 0.999) of exponential function base.
Middle: different exponents (0.2 to 5) for the inverse distance function. Right:
different threshold values (5 to 30) for the threshold function. In the range
of 0.98 to 0.99, the exponential function score shows maximum separation in
different types of genes. For the inverse distance function, an exponent of 0.3
shows the best result. For the threshold function, a threshold value of 20 to
25 shows good results. Among the three types of functions, the exponential
function shows the best result, as it can successfully differentiate the fast, slow
and average speed genes for all base values in the experiment.

for all but the highest-expressing genes [45]. We consider a new autocorrela-
tion measure - DICA, which accounts for tRNA transitions as well as distance
between the synonymous tRNAs.

3.2 Distance-incorporated codon autocorrela-

tion

The ‘Distance-Incorporated Codon Autocorrelation’ (DICA) is our proposed
metric of gene autocorrelation. DICA is calculated for a coding sequence
by finding positions of all synonymous codons for a given amino acid and
summing a function, F (d(i, j)) (the reward function), which assigns a positive
score based on the distance between the synonymous codons. Here d(i, j) is
the distance between codons translated by the same tRNA i.e., if a tRNA
repeat is found at position i and j, then the distance between these two is
d(i, j) = j− i. Since there are nine amino acids that have synonymous codons
translated by different tRNAs (A, R, G, I, L, P, S, T, V), this process is
repeated for each of those nine amino acids. The final DICA is obtained by

28

summing up the contributions from each amino acid and then normalizing the
sum by the sum of the scores of maximum possible changes of the tRNAs
corresponding to each amino acid.

More formally, suppose amino acid a occurs na times in the sequence S at
positions P

(a)
1 , . . . , P

(a)
na , with the tRNAs in these positions being T

(a)
1 , . . . , T

(a)
na .

The DICA (DS) for S is defined as

DS =

∑K
a=1

∑na

i=1

∑na

j=(i+1) θ(T
(a)
i , T

(a)
j)× F (d(P

(a)
i , P

(a)
j))∑K

a=1

∑na

i=1

∑na

j=(i+1) F (d(P
(a)
i , P

(a)
j))

,

where θ(T
(a)
i , T

(a)
j) = 1 if T

(a)
i = T

(a)
j and 0 otherwise. The value of DS

ranges from 0 to 1 and it increases with the increase of autocorrelation in the
sequence.

Because autocorrelation appears to decay slowly with distance [10], for
a given synonymous codon, the probability that the next codon is the same
decreases as the distance increases. To determine the extent to which auto-
correlation is visible and how it decreases over distance, we considered three
different distance functions to calculate the DICA of genes:

• Threshold function – One possible candidate distance function is thresh-
old function, where the autocorrelation effect is visible equally at all
positions up to a certain distance, dt, after which it is not visible at all.
Here up to a certain maximum distance each tRNA repeat is rewarded
by a fixed amount, after which no reward is given. Our reward function
is 1 for a repeat within the boundary, i.e., F (d(i, j)) = 1 if d(i, j) ≤ dt
and F (d(i, j)) = 0 if d(i, j) > dt.

• Inverse distance function – In an inverse distance function, each tRNA
repeat is rewarded by the inverse of the distance between the positions
of those two tRNAs in the original amino acid sequence, i.e., if the po-
sitions of the two tRNAs are i and j, then the reward for the repeat
is F (d(i, j)) = 1

(j−i)p , where p is the power of the function which is a
parameter that we need to optimize. Here as the distance between two
codons increases, the effect of autocorrelation diminishes with distance.
Different powers to the inverse of the distance value were examined to
get the best distance measure.

• Exponential function – An exponential distance function is another
measure to take the impact of distance into account. Here the ef-
fect of distance on autocorrelation decreases exponentially with the in-
creased distance between tRNA repeat. We used the function of the form

29

F (d(i, j)) = cd, where c is a constant base value and d is the distance of
the tRNA repeat. An optimal value of c was also examined.

Any of the above scoring functions could in principle be used to calculate
an autocorrelation score. We evaluated each of these three distance functions,
as well as TPIS, our TPI estimate, to investigate which model best accounts
for the observed selective pressure of codon autocorrelation to time-sensitive
expressed genes. In general, TPI is defined as 1 minus twice the percentile of
the number of tRNA transitions over all possible combinations of a sequence. If
the percentile of the number of tRNA transitions is C, then the corresponding
TPI will be 1−2C [47]. So a TPI of 1 indicates that a sequence is at the highest
percentile of minimizing codon transitions, i.e., no other permutation of the
sequence will have fewer transitions than it. Conversely, a TPI of −1 indicates
the sequence is at the lowest percentile of minimizing codon transitions, where
no sequence will have more transitions than it. A score of 0 has the median
number of transitions. For example the sequence AAABBB has TPI close to
1, as there is one transition, and only two out of

(
6
2

)
sequences will have one

transition. Likewise the sequence ABABAB has TPI close to −1, since it has 5
transitions, and only one other sequence (i.e., BABABA) will have that many
transitions. Every other sequence has fewer transitions.

In our experiments we approximate the TPI score of a given sequence by
counting all synonymous tRNA transitions for each amino acid having multiple
synonymous tRNAs and then normalizing the sum by the sum of the frequency
of each of such amino acids. We then subtract this value from 1 to get the
final approximate score. The formal definition of our approximate version of
TPI is as follows:

Consider a sequence S of length L composed of K different amino acids
with more than one synonymous tRNA. Each amino acid a occurs na times
in the sequence at positions P

(a)
1 , . . . , P

(a)
na . Let, the tRNAs in these positions

are T
(a)
1 , . . . , T

(a)
na . Now our simulated TPI (TPIS) score can be explained as

TPIS = 1−
∑K

a=1

∑na

i=1 τ(T
(a)
i , T

(a)
(i+1))∑K

a=1 L
a

where T
(a)
i is the tRNA at position i corresponding to amino acid a and T

(a)
(i+1)

is the tRNA at the next position of the same amino acid, τ(T
(a)
i , T

(a)
(i+1)) = 1 if

T
(a)
i 6= T

(a)
(i+1) and 0 otherwise.

We use TPIS since calculating TPI is inherently recursive and thus pro-
hibitively time consuming for even moderately long sequences. Since our anal-
ysis uses the ranks of each measure rather the absolute score, TPIS should be a

30

sufficient estimate for verifying how accurate counting tRNA transitions is for
predicting expression. Since TPIS only considers codon transitions without
accounting for their frequencies, it better corresponds to TPI1. We estimated
TPI1 rather than TPI2 because both TPI1 and DICA measures are indepen-
dent of the genome codon frequency and do not take any other biases into
account. Later in the paper we discuss accounting for background codon fre-
quency as an inherent optimization problem parameter.

We studied two data sets of yeast genes, with around 4480 genes in the
first set and 5018 genes in the second set. We performed an experiment on
the 200 fastest and 200 slowest genes from both of these sets. The first set
(referred to as set 1 hereafter), was collected from the WWW site [cel] under
the α-factor/cell cycle arrest microarray experiment ([58], [59]). The second
data set (set 2) was ranked based on transcript abundance of mRNAs available
in the cell for all yeast genes [60]. Genes that express abundant mRNAs are
presumably being transcribed under time pressure, so a gene that needs to be
translated quickly would likely have high mRNA counts. It is readily accepted
that the number of RNA transcripts is a measure of gene expression (indeed,
this is what drives microarray technology and RNA-seq) and generally corre-
lates with protein abundance. The other part of the argument is that highly
expressed genes should evolve to translate quickly. This is the presumption
behind the codon adaptation index (CAI), [7] which is generally used as a
proxy for gene expression in yeast.

3.2.1 Parameter optimization

We have optimized the parameters for these candidate DICA scoring functions,
to identify which would best predict the translation speed of naturally observed
sequences. Our experimental results (fig. 3.1) suggest that the exponential
function best predicts the codon usage pattern to optimize translation speed.

For the exponential function, we investigated the optimal value of the
proper exponential base c. In general, values from 0.98 toward 0.99 tend
to show the best results. The inverse distance function also follows the obser-
vation that autocorrelation decays with distance to some extent as the reward
for tRNA repeat decreases with the increase of distance between two tRNAs.
We found empirically that an exponent of 0.3 for the polynomial function best
explains the autocorrelation.

For the threshold function, a threshold between 15 and 30 is best. We
recommend a threshold of 20. For a threshold above 15, the DICA of the
tRNAs is visible. The threshold should not be larger than 30 because the
function will not properly differentiate genes of different speeds. Note that
the threshold function scores all tRNAs similarly up to a certain distance.

31

-5

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400

#
Fa

st
-#

S
lo

w
 g

e
n
e
s

se
e
n
 s

o
 f

a
r

Rank - Decreasing: Set 1

Exponential
TPIs

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400

#
Fa

st
-#

S
lo

w
 g

e
n
e
s

se
e
n
 s

o
 f

a
r

Rank - Decreasing: Set 2

Exponential
TPIs

Figure 3.2: Comparing the exponential vs. TPIS scores for 200 fast and 200
slow genes selected from all the available genes for two different data sets. We
merged these fast and slow genes and sorted by scores from highest to lowest,
shown along the X-axis. The Y-axis shows the difference between the number
of fast genes and slow genes seen so far (with scores ≥ current gene score).
The red lines are for the exponential DICA scoring function and the blue lines
are for TPIS scores. If fast genes are more autocorrelated than slow genes,
then scores for fast genes should be higher. Hence, during the first half of the
interval, the trend of the curve should go up and then go down at the later
half. Genes from both of the data sets we used completely agree with this
expected behavior for both DICA and TPIS scores. However, DICA explains
the behavior better than TPIS since it shows a higher upward trend at the
beginning, indicating it better predicts scores of fast genes.

After that, no reward is given for the repeat. This is more stringent than
what actually occurs in nature. Fig. 3.1 shows the veracity of the parameter
optimization process.

3.3 Evaluation

Since our experimental results demonstrate that the exponential scoring func-
tion for DICA best correlates with translation speed (fig. 3.1), we calculated
exponential DICA and TPIS scores for 400 genes (200 fast and 200 slow)
from both of the data sets explained earlier and then for each set sorted the
genes from maximum to minimum score. Next we iterated through the 400-
item rank-ordered list of genes in both measures, plotted the difference of the
number of fast genes and the number of slow genes at each rank position.
Fig. 3.2 demonstrates that in general, DICA is more successful than TPIS
in differentiating fast and slow genes for both of these data sets. We per-
formed Mann-Whitney U for each of the data sets. The p-values obtained for

32

the DICA and TPIS for set 1 were respectively 0.025 and 0.136 and corre-
sponding p-values for set 2 were 2.03e−57 and 2.53e−39. For set 1 DICA could
differentiate fast and slow genes significantly (p < 0.05) whereas TPIS could
not. For set 2 though both scores performed good, DICA was more accurate
in differentiating fast vs slow genes.

3.4 Designing DICA optimized genes

Given an amino acid sequence with frequencies of different tRNAs that can
be used, we seek to design the gene with the maximum (or minimum) DICA
that follows the given tRNA distribution. Previous studies have shown that
simply maximizing CAI or always using the most frequently occurring tRNA
does not maximize expression [45]. As an important application, the tRNAs
used in the algorithm for de novo genes could therefore correspond to the host
background tRNA levels, as this balances codons and their tRNA molecules
presumably to optimize translational efficiency [46], or correspond to the orig-
inal gene frequency in an already existing gene, maintaining the sequence’s
original codon bias. We propose both optimal and heuristic strategies to de-
sign highly autocorrelated and anti-autocorrelated genes. We use depth-first
search (DFS) with pruning to get the optimal solution. Our optimal algo-
rithms can successfully predict the most and least autocorrelated genes for
modest length sequences. We also propose heuristic algorithms which, when
coupled with the optimal ones, perform very well on sequences of any length
and run very fast.

3.4.1 Highly autocorrelated gene design

An algorithm for optimizing TPI greedily minimizes the number of tRNA
transitions, but this might not lead to a globally optimal DICA solution when
distance is included. Our algorithm finds the optimal solution by minimizing
the distance between synonymous tRNAs corresponding to same amino acid
globally. Algorithm 3 gives a sketch of our backtracking based DICA optimized
gene design strategy to find the most autocorrelated sequence.

In order to prune unnecessary paths during the search, we pre-calculate
the score for potential solutions at every step. For eliminating sub-optimal
branches, two different pruning strategies have been used: strategy 1 is obvious
but gives a weak bound, and strategy 2 gives a better bound for pruning. The
strategies are described below:

• Strategy 1: – suppose the given sequence is of length L. At the current
step we have already calculated up to length L′ < L. Now, we check

33

Algorithm 3 OptimalSearchMax (Input: Amino Acid sequence of length L,
tRNA frequencies; Output: Most autocorrelated sequence)

insert the root node with empty sequence into STACK
while STACK is not empty do

remove a node from the STACK
if the sequence is of length L then

calculate DICA for the sequence
if current DICA is better than max DICA then

make the current sequence most autocorrelated sequence and update
max DICA

end if
else

check the current sequence for pruning
if current sequence cannot be pruned then

insert the sequence with all possible tRNAs at the next position into
STACK

end if
end if

end while

Algorithm 4 HeuristicMax (Input: Amino Acid sequence of length L, tRNA
frequencies; Output: Most autocorrelated sequence)

while there are more amino acids, for each do
while there is more available tRNA do

find the tRNA (T) with maximum frequency (f) from currently available
set of tRNAs
calculate distance between each consecutive tRNA position for current
amino acid
find the run of f consecutive positions (window W of size f) with mini-
mum distance
place all the tRNAs of type T at current window
remove the positions in window W from available set of positions, re-
move T from available tRNA list

end while
end while

34

all the available tRNAs to place the one at position L′ + 1 that gives
the best DICA with the sequence from 1 to L′. Then, we assume the
same tRNA at all the remaining positions, and the score for the current
sequence is the score of the sequence 1..L′ plus the score for sequence
L′ + 1..L, where all tRNAs are assumed to be of same kind, and the
interacting score of these two parts, i.e., for each tRNA from segment
L′ + 1 to L, the contribution of each tRNA from segment 1 to L′. If
the calculated score is greater than the best observed sequence (with
maximum autocorrelation) encountered so far, then the new sequence
is a potential candidate to explore, and the current sequence with all
possible tRNAs for the next position are inserted into the DFS stack
list. Otherwise, it is pruned.

This strategy is correct, as we never underestimate the total reward
for the potential sequence to be encountered later while pruning. At
position L′+1, we place the tRNA with maximum DICA with the already
encountered part among all the available tRNAs, and we are assuming
the same tRNA at all subsequent places. Hence,the score can be no
better than our calculated score with 1..L′ at the beginning, irrespective
of the types of tRNAs at positions L′ + 1..L.

• Strategy 2 – here we try to improve the upper bound. Again, for a
sequence of length L, we have optimal tRNA placement up to position
L′. We check the score at position L′ + 1 for all available tRNAs with
the sequence 1..L′, and place the one with the best score and decrease
the available tRNA frequency of that type by one. Similarly, we check
the position L′ + 2 and continue this way until we reach the end of the
sequence. The sum of all these rewards gives the interaction score of the
yet to calculate part with the already calculated part. To calculate the
score for the unknown part of the sequence, we assume all tRNAs are
of the same kind for a maximally autocorrelated gene. Finally, we add
the two scores with the score of the already calculated part, which gives
the final sequence score. Then, we compare this score with the score of
the most autocorrelated sequence observed by that time. If the current
score is better, we explore the branch, otherwise it is pruned.

The correctness of strategy 2 follows from Lemma 1.

Lemma 1. Let f(d) be any monotonically non-increasing function with val-
ues in the range [0, 1]. Let S(t, d) be a scoring function (with t being several
possible options available at hand and d being a state or position) that satisfies
S(t, d′) = f(d′ − d) × S(t, d). If S(t1, 1) ≥ S(t2, 1), then S(t1, 1) + S(t2, 2) ≥
S(t2, 1) + S(t1, 2).

35

Proof.
S(t, d′) = f(d′ − d)× S(t, d)

⇒ S(t1, 2) = f(2− 1)× S(t1, 1)

and
S(t2, 2) = f(2− 1)× S(t2, 1)

If f(2− 1) = 0 then we have S(t1, 1) ≥ S(t2, 1) which is true by definition.
Again, if f(2−1) = 1 then S(t1, 1) = S(t1, 2) and S(t2, 1) = S(t2, 2). Then

the equality condition is satisfied.
Now if 0 < f(2− 1) < 1 then,

S(t1, 1) ≥ S(t2, 1)

⇒ S(t1, 1)− f(2− 1)× S(t1, 1) ≥ S(t2, 1)− f(2− 1)× S(t2, 1)

⇒ S(t1, 1)− S(t1, 2) ≥ S(t2, 1)− S(t2, 2)

⇒ S(t1, 1) + S(t2, 2) ≥ S(t2, 1) + S(t1, 2)

Hence, for any value of f(2 − 1) in the range [0-1], S(t1, 1) + S(t2, 2) ≥
S(t2, 1) + S(t1, 2) is true.

Suppose, we are trying to prune the search at position L′ + 1. Now, at
L′ + 1 we greedily place the tRNA with maximum score, then at L′ + 2 and
so on till L. Based on Lemma 1 we can say our greedy decision at every node
of the tree will always let us find the sequence from L′ + 1..L of maximum
score, given the already obtained sequence 1..L′, as we are never violating the
monotonously decreasing order of the reward function.

Our optimal algorithm can correctly find the most autocorrelated sequences
by searching for the optimal solution of each possible amino acid independent
of others, and then, merging the solutions together to get the final optimal
sequence. However, the complexity of the algorithm increases exponentially
with the increase of the number of an particular amino acid in the sequence.
Hence, we apply the heuristic algorithm to parts of the sequences, where an
amino acid frequency is very high. Algorithm 4 describes our heuristic ap-
proach for finding the suboptimal solution. Our heuristic algorithm runs in
quadratic time and the generated sequence is almost as good as the optimal
one.

3.4.2 Anti-autocorrelated gene design

We are also interested in designing anti-autocorrelated genes. To find the
anti-autocorrelated genes the TPI approach would try to maximize the num-

36

ber of synonymous tRNA transitions. We designed an algorithm that gives
the least autocorrelated sequence by maximizing spacing between synonymous
tRNAs throughout the sequence. Here, our approach is similar to the one for
maximizing autocorrelation, DFS with pruning. However, instead of maximiz-
ing the autocorrelation we minimize it by placing synonymous tRNAs further
apart. Likewise, we developed an heuristic algorithm to get suboptimal but
fast solutions for minimally autocorrelated sequences. The heuristic approach
for designing genes with least autocorrelation is described in algorithm 5.

Algorithm 5 HeuristicMin (Input: Amino Acid sequence of length L, tRNA
frequencies; Output: Least autocorrelated sequence)

while there are more amino acids, for each do
sort current available positions of tRNAs based on distance between con-
secutive positions
if there is only one type of tRNA (T) then

return current optimal tRNA sequence with all Ts.
else

place different tRNAs alternately one after another starting from the
smallest consecutive distance
decrease tRNA frequencies from the available tRNA list based on the
tRNAs placed at previous step

end if
end while

Both of these heuristic algorithms run in quadratic time on the number of
available tRNAs for each amino acid.

3.4.3 Merged search/ heuristics algorithms for gene de-
sign

We integrated our search based algorithmic approach with our heuristic ap-
proach to give a combined algorithm. This algorithm follows the optimal ap-
proach in cases where the solution can be found within a good enough runtime,
otherwise it will use the heuristic approach to get a fast solution.

Based on our experimental results, we decided when to use which strategy.
In particular, when an amino acid is repeated more than 20 times and more
that 2 tRNAs are available for it, the algorithm takes quite long to find the op-
timal solution. For example, for a sequence having the amino acid ‘L’ 20 times
where 3 different tRNAs were used, it took a few minutes to get the optimal
solution. However, for a sequence where the amino acid ‘L’ was repeated 28

37

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

S
co

re

Gene

Optimal most-autocorrelated
Heuristic most-autocorrelated

WT
Optimal least-autocorrelated

Heuristic least-autocorrelated

Figure 3.3: Comparing Optimal and Heuristic function scores with wildtype
(WT) scores for most and least autocorrelation. The red and magenta lines
indicate the Optimal most and least autocorrelation scoring function, while
the blue and green lines indicate the Heuristic most and least autocorrelation
scoring functions and the black line (WT) is for wildtype scores. The X-
axis shows different gene positions and the Y-axis shows corresponding DICA
values.

times and 4 different tRNAs were available for it, the algorithm took around
an hour to find the desired sequence. We checked for several other cases and
decided to apply the heuristic strategy on amino acids in the sequence where
it is repeated more than 20 times and more than two tRNAs are available for
it. Otherwise we apply the search based approach.

Our algorithms always give the optimal solutions. However, to minimize
the run time, we proposed heuristic algorithms that give good solutions for
sequences of any length with much faster runtime, quadratic in the length of
sequence. Fig. 3.3 shows that the performance of our heuristic algorithm is
comparable to the optimal solution for both most and least autocorrelated
sequence design. Here, we selected 100 wildtype genes and sorted these genes
from maximum to minimum by their DICA values. The black line shows
the trend of wildtype gene scores. Then we ran both of our optimal and
heuristic algorithms on these genes. The trend for the optimal most (least)
autocorrelated sequence scores of these genes are shown in red (magenta) line,
and the maximized and minimized results according to the heuristic algorithms
are shown in blue and green.

3.4.4 Algorithm validation through experiments

We applied our algorithms on several genes to verify experimentally that our
algorithms are performing well. We selected several yeast genes and generated

38

 0

 10

 20

 30

 40

 50

 60

 70

 0.35 0.4 0.45 0.5 0.55 0.6

R
a
n
d
o
m

 S
a
m

p
le

 S
co

re
s

D
is

tr
ib

u
ti

o
n

Exponential DICA Score (YAL044C/GCV3)

 0

 10

 20

 30

 40

 50

 60

 70

 0.25 0.3 0.35 0.4 0.45 0.5 0.55

R
a
n
d
o
m

 S
a
m

p
le

 S
co

re
s

D
is

tr
ib

u
ti

o
n

Exponential DICA Score (YAL046C)

Figure 3.4: Distribution of DICA values of 1000 randomly generated samples
for two yeast genes YAL044C (or “GCV3”) and YAL046C are shown in blue,
the designed DICA optimized maximum sequence score is indicated by red
arrow, the green arrow indicates the optimized minimum sequence score, and
the black arrow is for the wildtype gene’s DICA. Here the score of the designed
maximum sequence is greater than all the randomly generated sequences for
both of the genes, while the minimum score is less than all of the randomly
generated sequence scores.

1000 random samples for these genes by random swap of tRNAs corresponding
to the same amino acid, maintaining similar tRNA distribution. Then we
generated DICA optimized (or de-optimized) gene sequences using our search
based algorithms. Later we compared the scores of these random sequences
with the score of the designed sequence. We observed that, our designed
sequence score is always greater (or less for anti-autocorrelated sequences)
than the random sample scores and the wildtype score. This is an indication
that our algorithms generate sequences with optimal scores. Fig. 3.4 shows
the distribution plot of the DICA scores for 1000 random samples along with
the wildtype and the generated most and least optimal sequence scores for
two genes, YAL044C/GCV3 and YAL046C. It is clearly visible in the figures
that our DICA optimized sequence scores are further apart from the random
sequence score distribution, while the wildtype score is within the distribution.

Our optimal algorithms can perfectly predict the most and least autocorre-
lated genes. Fig. 3.4 shows results for two such genes. For both of these genes
we generated 1000 random samples, and compared the scores of these random
samples with our DICA optimized scores. The distribution of the scores of
these random samples were lower than our designed most autocorrelated gene
score and higher than the least autocorrelated one.

39

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

D
e
si

g
n
e
d
 G

e
n
e
 S

co
re

WT Gene Score

Most-Autocorrelated Least-Autocorrelated

Figure 3.5: The figure compares combined Optimal and Heuristics function
scores for 5018 yeast genes with wildtype (WT) scores for most and least
autocorrelation function. Red dots are for wildtype vs (Optimal+Heuristic)
most autocorrelation score, blue dots are for least autocorrelation score, black
line indicates wildtype vs wildtype scores. Here, higher the height along Y-
axis, more autocorrelated is the sequence. The figure shows, red dots are
always above the black line and blue dots are below the line, having marginal
difference in cases where either wildtype gene itself is significantly auto/ anti-
autocorrelated or there is little room to design.

3.5 Results and discussion

3.5.1 Data collection and processing

As mentioned before, we used two different data sets for our experiments. For
the first set we took gene expression data from the WWW cite [cel] under the
α-factor/cell cycle arrest microarray experiment (Cho et.al. [58] and Spellman
et al. [59]). The data had gene expression levels for over 4000 genes from the
beginning of the experiment to 119 minutes, taken every 7 minutes after arrest.

The speed of translation of each mRNA was estimated the same way as
Cannarozzi et al. [10] did by taking the difference of the normalized log2
of each expression level between every two time intervals and averaging the
positive differences in expression levels. Genes with incomplete expression
data were excluded. We use the following equation for calculating the speed
of a gene from the microarray data:

Speed =

∑(
E(t+1) − Et

)
n

where Et is the value of expression at time stamp t, (E(t+1)−Et) > 0 and n =

40

number of changes for which (E(t+1) − Et) > 0. However, rather than taking
all the positive differences, we took the average of the top three differences to
determine the speed which also adequately express the speed of genes.

The second set (set 2) of yeast genes were taken from [60] where we used
the transcript abundance of mRNA in the cell as a measure of speed. Transla-
tion speed has been historically very difficult to explicitly measure, and in the
absence of good metrics, mRNA transcript count has been used in one of our
experiments as a good proxy for translation speed. Specifically, mRNA count
can account for up to 40% of translation product [61]. In yeast, mRNA tran-
script count and protein output correlate with an r2 value of 0.59 [62]. Hence,
mRNA count should account for a valid approximate measure of translation
speed. Genes having the largest number of transcripts (in the range 538.52
to 12336.15) available in the cell were taken as fast genes. Genes with the
number of transcripts ranging from 0.02 to 1.13 were taken as slow genes. The
RNA sequences corresponding to genes of these data sets were collected from
Saccharomyces Genome Database (www.yeastgenome.org).

3.5.2 Freedom of design

To evaluate the design landscape imposed by our DICA scoring function, we
determined the most and least autocorrelated genes for all the yeast genes.
In our final algorithm we merged the search based and heuristic approaches
together. We applied our merged algorithm on 5018 yeast genes to find the
most and least autocorrelated sequences. Fig. 3.5 shows the performance of
our algorithm by comparing the DICA of our algorithm generated sequences
with wildtype sequence score. Our algorithms optimize all of these genes to
give the most or least autocorrelated sequences based on their synonymous
codon distributions. For some of these genes, the optimized scores are largely
different compared to their corresponding wildtype scores. We analyzed the
top 100 of these genes. These are mostly very long genes with large variation
in their tRNA use. Note that, some of the wildtype genes, of which most are
highly expressed genes, are also highly autocorrelated. These genes evolved to
come close to the optimal solutions. There was little room to further optimize
these genes. Our algorithms could successfully reach that optimization level.

3.6 Conclusion

In this paper, we have proposed a new distance dependent autocorrelation
measure, DICA and proved that autocorrelation effect on genes is distance
dependent by using our newly developed scoring method. So far previous

41

studies worked on autocorrelation, where only the number of tRNA changes
were considered to measure autocorrelation and were minimized (maximized)
to design highly autocorrelated (anti-autocorrelated) genes. We used our new
scoring method to further optimize (or de-optimize) the sequence which might
result in higher (lower) levels of gene expression.

We also show that, in the absence of a tRNA charging and translational
model autocorrelation is well explained by exponential decay, though we em-
phasize that we do not intend that the actual mechanics of translation is
explained by this function. We have proposed algorithms for designing most
and least autocorrelated genes. However with the increase of the length of
the amino acid sequence the algorithm complexity grows exponentially and it
becomes a problem when an amino acid appears more than 20 times in the se-
quence and more than 2 synonymous tRNAs are available for that amino acid.
To overcome the problem we propose heuristic algorithms which sometimes
may give suboptimal solutions but run in quadratic time. Our combined (op-
timal and heuristic) algorithms run very fast and give solutions comparable to
the one where we apply only the optimal approach. We ran our combined algo-
rithm for 5018 yeast genes to find the most and least autocorrelated sequences
of these genes.

It is important to note that while we demonstrated DICA’s significance in
predicting gene translation speed, and showed evidence that selective pressures
will want to group synonymous codons in time-sensitive genes closer together,
for the purposes of synthetic biology DICA is far from the only concern in
designing an optimal gene. DICA optimized genes may not necessarily result
in the highest level protein expression, but may act as an important parameter
along with other optimization criteria to maximize (or minimize) protein ex-
pression. One important future direction would be to take the highly expressed
wildtype genes and recreate the sequence optimizing DICA to see its effects
on expression rates. Other considerations are also important for proper gene
design, and the algorithm discussed in our paper may be combined with other
considerations such as avoiding certain nucleotide sequences, a consideration
that Welch et al. [45] uses in their algorithm. Finally, comparing DICA and
TPIS scores by excluding the first 50 codons would lend greater credibility
to the importance of optimizing codon autocorrelation in evolution, as these
codons are translated slowly [50].

3.7 Acknowledgement

We note that the second and third authors contributed equally to the design
and setup of this work. We specially thank Bruce Futcher for helping us

42

with yeast gene mRNA transcript abundance data collection. This work was
partially supported by NIH Grant AI075219 and NSF Grants DBI-1060572
and IIS-1017181.

43

Chapter 4

Statistical analysis of tiled
microarray gene expression
data1

Microarray data analysis is an continually evolving technology for gene expres-
sion analysis and for identifying biological processes, functions and activities
affected by genes and discovering novel diseases. One particular challenge with
this procedure is the amount of data it generates. Analyzing microarray data
generally consumes considerably more time than the laboratory protocols re-
quired to generate the data [63]. Part of the challenge lies in assessing the
quality of the data and normalizing the data in one array in a way to make it
comparable to data from other microarray experiments.

We use microarray based genome expression profiling to create a global
picture of the cellular function and to compare genomic expression changes
at different conditions. Through the analysis of the microarray data, we aim
to identify novel housekeeping genes and differentially expressed genes. Based
on the expression changes across the array, we seek to cluster genes at differ-
ent experimental conditions. We further work on gene ontology enrichment
analysis for a set of genes of our interest.

Viruses use various mechanisms to avoid antiviral responses introduced by
the host cell. One commonly used mechanism is to inhibit host gene expression,
while selectively sparing viral genes. Gammaherpesvirus infection at the lytic
stages of the host cell causes widespread degradation of cytoplasmic mRNAs
through the activity of the viral endonuclease SOX [64]. However, the impact
of the SOX-induced infection on viral mRNAs had not been explored yet. Our
analyzed data on Murine gammaherpesvirus 68 (MHV68) was used to study

1This chapter contains materials from [4].

44

Figure 4.1: Quality control experiments on array 5 data. Figure-A. Box-and-
whisker plot (ignoring the outliers) of cy3 (green) and cy5 (red) labeled two
independent biological replicates at different experimental conditions, infection
with WT or ∆HS viruses. Figure-B. Scatter plot of wildtype vs wildtype and
mutant vs mutant.

the changes in viral gene expression in the presence or absence of the viral
Sox during infection [4]. Interesting results came out of the analysis. The
virus employs a strategy to degrade host cell mRNA level, which affects viral
mRNAs as well. Further study revealed that, the viral mRNA degradation is
an important step to control the overall viral gene expression. For the analysis,
we used microarray gene expression data from two different mutants of MHV68
infection - one that is impaired for host shutoff (∆HS, host shutoff defective)
and the other one is the rescue virus (MR/WT) in which the mutation was
restored to wildtype. Analysis outcome revealed that, MHV68 SOX protein
down regulates the majority of viral transcripts at all kinetic classes [4].

The type of the data-sets used in the microarray analysis and the quality
check experiments are described in sec. 4.1. Section 4.2 includes our results

45

Figure 4.2: Hierarchical clustering of two different mutants of MHV68 viral
ORFs (array 5) based on the log fold changes in expression. Figure-A. Cluster
of ORFs. Figure-B. Heatmap of the two independent replicates of each virus
infection.

from the analysis of the data-sets across the arrays, where the goal is to find
stable and differentially expressed genes. The following section (sec. 4.3) de-
scribes our findings on the gammaherpesvirus induced host shutoff mechanism
based on the expression changes for two different mutants of MHV68-infected
viral and cellular genes (see [4] for complete write-up).

4.1 Data preparation and quality check2

Array data were derived from independent biological replicates at different
infection conditions. The custom MHV68 tiled arrays in both 8 by 15,000
and 4 by 44,000 formats were designed using the Agilent eArray software. For
both formats, a total of 11,940 tiled 60-mer oligonucleotides with 20-nucleotide
(nt) spacing were generated on the basis of the MHV68 genomic sequence
to enable triple probe coverage of every nucleotide of both strands of the
virus [66]. RNA was labeled with linear amplification using an Agilent Quick
Amp labeling kit. Initial reverse transcription used an oligo (dT) promoter-
primer that enabled the generation of Cy5- or Cy3-labeled cRNA by T7 RNA
polymerase. Adenovirus spike-in controls were added to each labeling reaction
to allow normalization per the two-color spike-in kit instructions (Agilent).

2Experimental data prepared by: LTK Lab. See [65] for detail.

46

The Cy5-labeled reference RNA derived from an independent infection of NIH
3T3 fibroblasts at 8 h post-infection (hpi) with WT MHV68 was generated,
purified, fragmented, and then hybridized in parallel with the Cy3-labeled
sample RNA at 65◦C for 17 h. Microarrays were scanned with ‘Agilent Scanner
Control’ software, and hybridization signal intensities were quantified using
‘Agilent Feature Extraction’ software [65].

We had microarray data-sets at seven different experimental conditions of
Murine gammaherpesvirus 68 infection.

• Array 1 – Represents microarray gene expression data at different time
points (de novo time course experiment).

• Array 2 – Examine the effect of drugs and of inhibiting NF-kB on infec-
tion.

• Array 3 – Compares biological replicates and labeling techniques.

• Array 4 – Examine changes of cellular genes over time and effect of
inhibition of NF-kB on infection.

• Array 5 – Examine changes in vSOX mutant (host shut-off defective) vs
wild type (mutant rescue) viral and cellular genes at 24 hour time point.

• Array 6 – Examine changes in ‘tegument serine/threonine protein kinase’
(ORF36) mutant vs wild type viral and cellular genes.

• Array 7 – Examine changes in vSOX mutant vs wild type viral and
cellular genes at 6 hour time point.

Raw data were processed by subtracting the median background signals
from the mean signals in the Agilent feature extraction file and then normalized
by multiplying log2 values by the spike-in scale factor. We calculated a scaling
factor from the linear fit of the spike-ins versus their concentration and scaled
all the probe intensities with this scaling factor for each array. The expression
value of each viral ORF was calculated as the median of the normalized log2
green subtracted red signal of all tiling probes enclosed inside the ORF.

As a quality control measure, data from each replicate array were com-
pared in box plots (box-and-whisker plot ignoring outliers, from R package
‘graphics ’), density plots (R package ‘stats ’), and scatter plot of wildtype vs
wildtype variant and mutant vs mutant variant to measure consistency be-
tween array replicates. Figure. 4.1 shows the quality control plots of array 5
data. Array 5 data had two different experimental conditions (WT and ∆HS),

47

Table 4.1: Top 7 candidate housekeeping genes

Gene µ σ CV (%) log2MFC Max− 2× σ − µ

Fasn 11.834 0.395 3.342 1.561 -0.059
Cxxc1 11.394 0.395 3.467 1.482 -0.186
Gpi1 14.927 0.519 3.480 2.115 -0.376
Ube2i 14.435 0.521 3.609 2.094 -0.198
Polr2a 9.825 0.366 3.731 1.809 0.0043
Nedd8 13.691 0.522 3.816 2.100 -0.146
Ankrd10 9.718 0.382 3.935 1.622 -0.166

Table 4.2: Statistics of two commonly used candidate housekeeping genes

Gene µ σ CV (%) log2MFC Max− 2× σ − µ

Gapdh 13.856 0.735 5.310 3.216 -0.330
Hprt1 13.074 0.767 5.870 3.162 -0.194

with each having 2 biological replicates. Green signals show the original ex-
perimental conditions, red signals were used as reference. We linear fitted the
data from the scatter plots using ‘lm’ from R package ‘stats ’; the black line
at each scatter plot shows the fitted line through the data. The adjusted r2

(coefficient of determination) value for the linear model fitted from wildtype
vs wildtype data was 0.9622 and the corresponding r2 value from the fit of
mutant vs mutant data was 0.9095. Quality control plots verify that the repli-
cates at each experimental condition matches well enough. Also, the reference
signal is quite stable across the experimental conditions.

4.2 Data analysis across the arrays3

We analyzed each individual array data-set in different ways. At first we
tried to group genes based on the changes in the expression. We clustered
the ORFs from the array data to know which genes show similar behavior.
Fig. 4.2A is showing the hierarchical clustering of the ORFs from array5 data
(which contains two different array replicates - ∆HS and MR viruses) using the
complete linkage method. The corresponding heatmap of the ORFs based on
different experimental conditions is shown in fig. 4.2B. Here, the color changes
from darker to lighter indicate increasing gene expression values.

Next, we sought to identify housekeeping genes, whose change in expression

3Partially completed (all results not published yet).

48

is relatively stable across the arrays. Generating a list of housekeeping genes is
important, as these genes can be used as biological factors for normalization on
the same set of genes in later experiments. To find the stable genes, we needed
to combine the data across the arrays. We tried to merge data from six different
arrays collected at different experimental conditions (excluding array7 - which
had some important genes missing). At first we removed replicates from the
array data that differed by more than 2-fold. Each array has expression data
from duplicate genes and there are duplicate probe data for each gene. We
merged array data first by probe name and then took the mean from each
group. Next, we merged genes corresponding to different probe names but
with the same gene name and again took the mean from each group. Then we
quantile normalized the data (using R package LIMMA) to achieve consistency
across the arrays, which forces the entire empirical distribution of each array
to be identical.

A candidate housekeeping gene is defined as a gene with the most stable
expression - having small coefficient of variation (CV) and a maximum fold
change (MFC, the ratio of the maximum and minimum values observed within
the dataset) below 2. A mean expression level lower than the maximum ex-
pression level subtracted with 2 standard deviation (σ) can also be used as
a prerequisite for a candidate housekeeping gene [67]. To find the candidate
housekeeping genes, we generated statistics of the merged quantile normal-
ized data. We calculated standard deviation (σ) and coefficient of variation
(CV) of expression for each gene across the arrays. However, no gene in the
list fulfilled the criteria: MFC < 2. Based on our analysis, the top 7 prob-
able candidate housekeeping genes are shown in table 4.1. Two commonly
used candidate housekeeping genes statistics are shown in table 4.2. However,
there is no universal set of rules that can be used to find housekeeping genes.
In addition, viruses like MHV68 can have large effects on host transcription
mechanism. As the data across the arrays had large variability due to the ex-
perimental conditions, it was difficult to identify stable genes. Relaxing some
of the prerequisites in a careful way and exploring other conditions may help
to better predict the candidate housekeeping genes. One possible way to verify
the reliability of these putative housekeeping genes would be to normalize the
data in different arrays using the mean change of expression of the stable genes
and compare the values with the data normalized using other techniques (i.e.
quantile normalization).

We separately analyzed microarray data on variants of MHV68 infection
at different experimental conditions. To find the differentially expressed viral
genes, we merged genes corresponding to the same ORF and took the median
value from each group. Then the differentially expressed genes were identified

49

(from array5 and array7 data) by performing empirical Bayes moderated t-
statistics using the Bioconductor LIMMA package (version 3.12.1) [68].

4.3 Gammaherpesviral gene expression and virion

composition are broadly controlled by ac-

celerated mRNA degradation4,5

Viruses use various ways to interact with host cell translation mechanism and
to shutoff host gene expression. Part of the benefit could lie in reducing the
competition for gene expression resources or to impair the immune response
system inside the host cell. Earlier research works have shown for both alpha-
and gammaherpesviruses that, host shutoff mutants exhibit defects in immune
evasion, viral trafficking, and latency establishment [69, 70, 71].

Gammaherpesviruses promote host shutoff by inducing widespread cellular
mRNA degradation [72, 73]. This viral subfamily includes Kaposi’s sarcoma-
associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and the murine
herpesvirus (MHV68). In KSHV, a special viral nuclease (SOX) is used to
endonucleolytically cleave cytoplasmic mRNAs during lytic infection, leading
to their degradation by the host exoribonuclease Xrn1 [74]. The phenotype
of global mRNA degradation has been conserved in other SOX homologs in
EBV (termed BGLF5) and MHV68 (termed muSOX) as well [73, 75]. An
earlier study revealed that, MHV68 bearing muSOX mutant that is specifically
defective for mRNA cleavage, resulted in defects in viral trafficking from the
mouse lung to distal sites, and also resulted in a reduction of the viral loads
during the time of peak latency establishment [69].

However, viruses generally have evolved a wide range of strategies to escape
the effects of host shutoff. This phenomena have been observed for poliovirus,
which inhibits cap-dependent translation by cleaving eIF4G, but enabling the
viral mRNAs to translate [76, 77]. HSV-induced host shutoff involves inhibit-
ing spliceosome assembly and blocking the biogenesis of host mRNAs [78].
However HSV mRNAs being largely unspliced, can successfully overcome the
blocking stage [79, 80]. SARS coronavirus acts in host shutoff by cleaving
cellular mRNAs of the host, but its viral mRNAs bear a protective 59 leader
sequence, which aids in protecting the viral mRNAs from cleavage [81].

Based on the results from earlier studies performed on various virus life

4E. Abernathy, K. Clyde, R. Yeasmin, L. T. Krug, A. Burlingame, L. Coscoy and B. Glaun-
singer. Gammaherpesviral gene expression and virion composition are broadly controlled
by accelerated mRNA degradation. PLoS Pathog, 2014

5RT-qPCR analysis and mRNA half-life analysis results are contributed by BG Lab.

50

cycles, the general assumption is that, viral transcripts possess some strategy
to escape the shutoff mechanism. SOX and muSOX are expressed with early
gene kinetics beginning at 8 − 10 hours post infection (hpi) and continues
through the end of the viral lifecycle [73]. Hence, it has been assumed for
SOX and muSOX-induced viruses as well that, viral gene expression remains
unaffected by the host shutoff activity, though there was no direct evidence of
such phenomena. However, our analysis revealed that, viral gene expression
is widely affected by the muSOX-induced RNA degradation during MHV68
infection. A majority of viral mRNAs are reduced during lytic infection in the
WT infected cells compared to cells infected with the vSOX mutant virus, and
the escapee population is enriched with viral non-coding RNAs.

4.3.1 Expression of viral mRNAs are largely degraded
during host shutoff

Gammaherpesvirus uses SOX protein to induce widespread degradation of
cellular mRNAs [72, 73]. The impact of this protein on viral mRNAs are yet
to explore. We used two different MHV68 mutants to address this question -
one that is host shutoff defective (∆HS) and another one is mutant rescue virus
(MR) in which mutation was restored to wild type (array 5 data in sec. 4.1).

The ORF37 gene in ∆HS (which encodes the SOX homolog, MHV68 mu-
SOX) contains an R443I mutation that causes muSOX to be selectively de-
fective for mRNA degradation [69]. Viral transcript abundance was compre-
hensively evaluated using an MHV68 microarray platform containing 12,000
tiled 60-mer probes that provides 3-fold coverage of each strand of the viral
genome. Relative transcript levels were measured in NIH 3T3 cells infected
at an MOI of 5 at 24 hours post infection (hpi), by which time the phenotype
causing mRNA degradation is well established. Surprisingly, the majority of
viral mRNAs from all three kinetic classes (immediate early (IE), early (E),
and late (L)) were significantly down-regulated during the MR infection as
compared to the ∆HS infection (fig. 4.3A, red bars). This phenomena sug-
gests that, viral transcripts do not escape the muSOX-induced degradation.

RT-qPCR was used as an independent measure of viral mRNA levels during
infection for three representative genes (ORFs 8, 49, and 54) after normaliza-
tion to the host shutoff resistant 18S ribosomal RNA, which confirmed the
earlier finding [74, 75]. However, some of the genes (ORFs 4, 9, 65, 68, and
73) found to be decreased in level during MR infection compared to the ∆HS
in the qPCR analysis, which appeared to remain unchanged based on the mi-
croarray data analysis (fig. 4.3B). This could be because of microarray data
underestimating the extent to which muSOX-induced infection affects the viral

51

mRNAs. RT-qPCR analysis of these transcripts in different cell types yielded
similar results ([4], S2A-B).

To figure out whether the degradation of viral transcripts are the direct
consequence of muSOX-induced activity or due to the degradation of cellular
proteins, half-life of representative IE (ORF57), E (ORFs 54 and 55), and L
(ORF8) viral transcripts (following the infection of 3T3 cells with MR or ∆HS
virus) were compared. In the analysis, significant increase in the transcript
levels were observed for ∆HS mutation (fig. 4.3C-F). These results suggest
that, viral mRNAs are specifically targeted for degradation during gammaher-
pesvirus infection. Hence, the host cell degradation mechanism imposed by
muSOX is not limited to cellular mRNAs only, it affect viral mRNAs as well.

4.3.2 Escapee population is enriched with non-coding
RNAs

Although the majority of viral RNAs seem to be targeted for degradation dur-
ing the host shutoff process of MHV68 vSOX, a subset of the genes escape
the degradation, which are shown by the green bars in fig. 4.3A. In the es-
capee population, M1 and M2 mRNA levels are higher in MR infected cells
compared to ∆HS infected cells. RT-qPCR analysis revealed similar results
[4]. Among other escapees in the population, non-coding RNAs (ncRNAs) are
highly enriched. Analysis of viral vs non-coding RNA distribution revealed
that, most of the viral coding mRNAs are affected by the muSOX-induced
infection, while the escapee population is widely enriched for the ncRNAs [4].
RT-qPCR analysis confirmed that, the levels of the non-coding RNA subset,
the viral tRNA-like RNAs, were not decreased during the MR infection relative
to the infection with the ∆HS virus. Several long non-coding RNAs termed
EGRs (Expressed Genomic Regions) also escaped the down-regulation, which
was confirmed by both microarray data and qPCR analysis (fig. 4.3A). How-
ever, some of the EGR levels (24, 27, and 29) were decreased during the MR
infection relative to the ∆HS MHV68 infection [4]. The functionality of EGRs
are not fully characterized yet. EGRs, down-regulated during the infection
possess features of mRNAs such as polyA tails. All of these findings suggest
that, viral mRNAs are preferentially targeted by the muSOX during the host
shutoff process, but the non-coding RNAs broadly escape this degradation.

4.3.3 Discussion

Altogether the analysis outcome reveals that, along with targeting for cellular
mRNAs, majority of viral mRNAs are also targeted for degradation during

52

lytic MHV68 infection, which selectively spares non-coding RNAs and some
expressed genomic regions. Further analysis revealed that, degradation of viral
mRNA level is particularly important for the regulation of viral loads at later
stages of the viral life cycle (see [4] for detail). This is in contrast to the earlier
findings of host shutoff inducing viruses, which possess specific strategies to
escape the degradation.

Earlier studies showed that, SOX homologs preferentially target for RNAs
transcribed by Pol II, but fails to degrade RNAs transcribed by Pol I and III
[74, 75]. In our analysis, we also noticed viral mRNAs are preferentially tar-
geted over non-coding RNAs and EGRs. However, some EGRs were targeted
by muSOX for degradation, further studies may reveal unknown functionali-
ties of these expressed genomic regions. Earlier analysis showed that, some of
the viral and cellular transcripts escaped the degradation process [72, 82], it
may be because of lacking some SOX-targeting features or these mRNAs may
contain some specific protective features against muSOX activity [83]. Further
study on these mRNAs could be interesting as well.

53

Figure 4.3: Expression of the majority of viral mRNAs is dampened during
host shutoff. (A) For viral genes, the log2 fold change in expression upon
infection with WT compared to ∆HS MHV68 expression was plotted and
data points were colored to indicate the adjusted P values, with green points
indicating positive log2 fold change with p-value < 0.05 and red indicating
negative log2 fold change with p-value < 0.05. (B) RT-qPCR was used to
validate selective viral transcripts. RNA was isolated at 24 hpi from NIH 3T3
cells infected with MR or ∆HS MHV68 at an MOI of 5. Transcript levels were
normalized to 18s and ∆HS levels set to 1. (C-F) mRNA half-life analyses
were conducted by infecting NIH 3T3 cells with MR or ∆HS MHV68 at an
MOI of 5. At 18 hpi, 2µg of Actinomycin D was added to block transcription
and RNA was harvested at the indicated times thereafter. RT-qPCR was
performed with ORF-specific primers and probes to determine mRNA levels.
The black dotted line indicates the best-fit line for the ∆HS virus, and the
grey solid line indicates the best-fit line for the MR virus.

54

Chapter 5

Measurement of average
decoding rates of the 61 sense
codons in vivo1,2

Most of the amino acids are encoded by more than one codons. The frequency
of usage of these codons are not equal. The reason or significance behind the
difference in codon usage frequency is not clear yet. One compelling hypothesis
is that, codons that are translated faster are more commonly used. Relative
rates of protein production, protein folding, ribosome traffic-management etc.
can be explained by the hypothesis. However, there is little direct, in vivo
evidence regarding codon-specific translation rates. We have analyzed high-
coverage ribosome profile data from yeast using a novel algorithm and have
deduced events at the A and P-sites of the ribosome. Codons are decoded at
varying rates in the A-site. In general, frequently used codons are decoded
more quickly than rare codons, and AT-rich codons are decoded more quickly
than GC-rich codons. At the P-site, we see that proline is slow in forming
peptide bonds. We also have applied our algorithm to short footprints (which
captures a different conformation of an active ribosome), and found strong,
amino-acid specific effects independent of codon specific preferences, that may
reflect interactions with the exit tunnel of the ribosome.

Different synonymous codons are used in genes at very different frequencies,
and the reasons for this biased codon usage have been debated for three decades
[51, 88, 89, 90, 91, 92, 93, 94]. In particular, it has been suggested that the
frequently-used codons are translated more rapidly than rarely-used codons,

1J. Gardin, R. Yeasmin, A. Yurovsky, Y. Cai, S. Skiena and B. Futcher. Measurement of
average decoding rates of the 61 sense codons in vivo. eLife, 2014

2Direct excerpts from [84].

55

Figure 5.1: Ribosome profiles of the TDH1 gene from two independent exper-
iments. Top profile is from the data collected from Ingolia et al. [85]; bottom
profile is from the SC-lys dataset (sec. 5.5).

perhaps because tRNAs for the frequent codons are relatively highly expressed
[8]. However, there have also been competing hypotheses, including the idea
that frequently-used codons are translated more accurately [8]. Genes are
often recoded to use frequent codons to increase protein expression [95, 96],
but without any solid understanding of why this manipulation is effective.
There is little or no direct in vivo evidence as to whether the more common
codons are indeed translated more rapidly than the rarer codons. Even if they
are, the fact that translation is typically limited by initiation, not elongation,
leaves the effectiveness of codon optimization a puzzle [8].

Ribosome profiling [85] allows observation of positions of ribosomes on
translating cellular mRNAs. The basis of the method is that a translating
ribosome protects a region of mRNA from nuclease digestion, generating a
30 base footprint. The footprint is roughly centered on the A-site of the ri-
bosome. If some particular codon in the A-site were translated slowly, then
the ribosome would dwell at this position, and so footprints generated from
ribosomes at this position would be relatively common. Thus, if one looked at
the number of ribosome footprints generated along an mRNA, there should be
more footprints centered at every codon that is translated slowly, and fewer
centered at every codon translated rapidly; in principle, this is a method for
measuring rates of translation of individual codons.

Experimentally, there is dramatic variation in the number of footprints
generated at different positions along any particular mRNA [97] (fig. 5.1).
However, these large peaks and valleys do not correlate with particular codons
[97, 98]. It is still unclear what features of the mRNA cause the peaks and

56

Figure 5.2: Validation for ribosome residence time analysis. (A) Real footprint
data from the SC-lys dataset were randomly assigned to codons. No signal is
detected from this randomly generated data-set. (B) A dataset of 2 million
simulated reads was generated but biased to give more reads over the codon
AAA at position 5. Sharp peak at position 5 is noticed for AAA. (C) RNA-seq
data processed in a way similar to ribosome profiling, our algorithm does not
detect any signal for this data-set. (D) Real ribosome footprint data from Li
et al. [86] were analyzed. Here, E. coli were starved for Serine. Among the
Ser codons, highest peak is detected for the rarest codon TCA, and the lowest
peak is noticed for AGC, which is the most common Ser codon in E.coli.

valleys, though there is evidence that prolines, or a poly-basic amino acid
stretch, contribute to a slowing of the ribosome and a peak of ribosome foot-
prints [97, 98, 99].

Still, the fact that prolines and poly-basic amino acid stretches affect trans-
lation speed does not tell us whether different synonymous codons may also
cause smaller effects. This question was investigated by Qian et al. [57] and
Charnesky and Hurst [98] using the yeast ribosome profiling data of Ingolia
et al. [85]. Neither group found any effect of different synonymous codons on
translation rate - that is, perhaps surprisingly, each codon, rare or common,
appeared to be translated at the same rate [57, 98].

We have re-investigated this issue with two differences from these previous
investigations. First, we have generated four yeast ribosome profiling data-sets
by optimized methods, including the flash-freezing of growing cells before the

57

Figure 5.3: Principle of ribosome residence time analysis. The ribosome pro-
tects a 30 nt footprint of RNA centered around the A, P, and E sites (positions
6, 5, and 4). Position 6 is likely the ribosome A-site (where the rare Leu codon
CTC shows a peak).

addition of cycloheximide (5.5); Ingolia et al. added cycloheximide before har-
vesting cells. Second, we have developed a novel method of analysis, designed
with the knowledge that, at best, codon decoding rates could account for only
a small portion of the variation in ribosome footprints across an mRNA (5.5).
The combination of optimized data and novel analysis reveals that different
codons are decoded at different rates.

5.1 Previous works

A well-known method for assessing the translation status of mRNAs is polysome
profiling, which involves microarray data analysis to measure the mRNA frag-
ments containing varying number of ribosomes [100, 101, 102]. In polysome
profiling, velocity sedimentation on a sucrose gradient is used to separate mR-
NAs into groups based on the number of ribosomes attached to it and the resul-
tant data is analyzed using quantitative microarray analysis [101]. Polysome
profiling can be used as an alternative method for ribosome profiling, in par-
ticular to perform mechanistic studies of translational control. However, ribo-

58

some profiling avoids the difficulty in resolving the exact number of ribosomes
attached to a highly ribosome-loaded transcript and hence provides more pre-
cise expression measurement [100]. Moreover, exact ribosome position in an
mRNA cannot be detected in polysome profiling [103]. However one advantage
of polysome profiling is that, it provides a way to study the translation status
of the entire transcript.

Ribosome profiling data was first generated by Ingolia et al. [97, 100]. The
process starts with cell lysis, where in vivo positions of the translating ribo-
somes are kept intact. Next, mRNA molecules bound to ribosomes are isolated
and nuclease digestion is used to remove unprotected mRNA. Recovered foot-
prints are purified and ligated to a single-stranded linker to serve as a priming
site for reverse transcription. Sequences are then amplified in strand-specific
manner using PCR amplification. One problem with ribosome profiling data
is that, de-convolving repetitive sequences or alternative transcripts in these
data is quite hard, as the ribosome-protected mRNA regions are quite short
[103].

Several researchers worked on the data-set generated by Ingolia et al. Tuller
et al. suggested that, the speed of the ribosome tends to be slower at the be-
ginning of the coding sequence [104]. In the original data-set, a relatively large
peak of ribosome footprints was detected immediately after the initiator AUG,
which was interpreted as being due to slowly-translating codons at this posi-
tion. However, the data-set was generated by adding cycloheximide to growing
cells, and an alternative explanation to the finding can be, cycloheximide can
only slow down or freeze elongating ribosomes, but it does not stop the addi-
tion of new ribosomes at the beginning of the gene. This phenomena would
also cause a peak of footprints after the initiator AUG. Recent ribosome profile
data-sets, where cells are flash-frozen before the addition of cycloheximide, do
not display the large peak in ribosome footprints downstream of the initiator
codon, consistent with this alternative explanation.

5.2 Results

In principle, using the ribosome footprint data to establish occupancy as a
function of position might seem easy: align the reads to the reference genome
to identify the ten or so codons under each read, and tabulate the frequency
of each codon observed in each position. Analysis of this general kind has
been carried out previously, but without detecting codon-specific differences
in decoding rates [57, 98]. However, this analysis in its simplest form would
overweight the highly expressed genes, which account for a large fraction of
total reads - that is, a relatively small number of highly-expressed genes would

59

dominate the analysis. But because there are extreme peaks and valleys in
ribosome footprint profiles (fig. 5.1), and because these are not primarily due to
codon usage, this simple analysis would likely fail, because the results would
depend mainly on a relatively small number of chromosome positions, and
because of the peak-to-valley variability affecting these positions. Defining
the right normalization to compensate for differences in gene expression, gene
length, sequence composition, etc., is complicated and problematic.

Instead, we have opted for a simpler approach. We independently analyze
many selected regions (windows) where the effects of codon usage are partic-
ularly easy to assay. For each codon, we identify all translated regions in the
genome where a particular codon (say CTC) occurs uniquely within a window
of ten codons upstream and ten codons downstream - that is, a window 19
codons wide, with the codon of interest occurring exactly once, at position 10
of the 19-position window. For footprints 10 codons long, there are exactly ten
classes of footprints that contain this particular CTC, and fit entirely in the
window. That is, the CTC of interest can occur at position 1 of the footprint,
or position 2, ..., or position 10. Analysis was restricted to windows with at
least 20 total reads and at least 3 non-empty classes. For our four data-sets
discussed below, there were an average of 408, 1586, 1749, or 2868 qualify-
ing windows per codon, respectively (more windows for the abundant codons,
fewer for the rare codons).

In the absence of any codon preference of the ribosome, there should be a
uniform distribution of footprints across the ten positions. That is, in a window
centered on CTC and containing 100 footprints, one expects 10 footprints at
each of the 10 positions, a relative frequency of 0.1 (10/100) at each position.
On the other hand, if the ribosome were to dwell for an extended time over the
CTC whenever that codon was at, say, position six of the footprint, then there
might be 30 footprints with CTC in position six, and about 8 footprints at each
of the other nine positions, thus giving a frequency distribution with a peak at
position 6. Many such relative frequency distributions can be fairly averaged
over all windows over all genes centered on a specific codon. Regions on highly
expressed genes can be fairly compared with similar regions on genes with lower
expression, because we are dealing with relative frequency distributions. Each
window thus represents an independent trial of the ribosome’s dwell time over
each given codon. Averaging over the hundreds or thousands of windows in the
genome generates a statistically rigorous analysis. Note that we do not attempt
any normalization based on gene expression - instead, we take each qualifying
window as an independent experiment, regardless of level of expression, then
average all frequency distributions from all windows for each codon. A related
idea was also used by Lareau et al. [87], although on significantly different

60

Table 5.1: Top ten RRT at position 8 in E. coli starved for Serine

Codon AA Usage RRT

TCA Ser 8.1 1.98
TCC Ser 9.0 1.90
TCG Ser 8.8 1.73
TCT Ser 8.7 1.71
AGT Ser 9.4 1.57
ATA Ile 5.5 1.42
AGC Ser 16.0 1.25
ATT Ile 29.7 1.18
CCT Pro 7.2 1.15
CCA Pro 8.4 1.13

data, and with normalization by gene.
The relative frequency averaged over all windows is a number between 0

and 1, and we compare this to the baseline frequency (0.1) (total footprints
over 10 positions) to compute a final statistic, which we call the Ribosome
Residence Time, or RRT. For instance, if the average relative frequency for a
codon at a particular position is 0.1, then the RRT is 1, and we interpret this
to mean that the ribosome spends the average amount of time at the given
codon at the given position. An RRT of 2 suggests the ribosome spends twice
as long as average at the given codon.

5.3 Validation of ribosome residence time anal-

ysis

We tested this method of analysis using simulated and real positive and nega-
tive control data. For a simulated negative control, we assigned real footprint
data from our SC-lys data-set to random codons, and did RRT analysis. As
expected, all codons at all positions show an RRT of about 1, i.e., no signal
(fig. 5.2A). For a simulated positive control, we generated a simulated data set
of 2 million 10-codon reads over coding genes, but we biased these simulated
reads to give more reads for the codon AAA at position 5 of the footprint. As
expected, RRT analysis shows a peak for AAA at position 5 (fig. 5.2B).

For a real-data negative control, we pooled the control mRNA-seq data
for 30bp fragments from our four experiments (sec. 5.5), and analyzed these
mRNA fragments. Since this RNA came from a total naked RNA preparation,
there were no ribosomes and no ribosome footprints, so there should not be

61

any signal from translation, even though we are analyzing real 30bp RNA
fragments. Indeed, RRT analysis shows no peak at positions 2 through 9 of
these fragments (fig. 5.2C). However, there are modest deviations from 1 at
the termini, positions 1 and 10. We attribute these to some base-specificity for
the enzymatic reactions used to generate the fragment library [105, 106, 107].
Supporting this interpretation, the same peaks and valleys at positions 1 and
10 (i.e., the same base-specificity) were seen in real ribosome-footprint data
(see below).

For a real-data positive control experiment, we used the E. coli data gener-
ated by Li et al., who starved E. coli for serine, and did ribosome profiling [86].
Because of the starvation for serine, there is an expectation that all six serine
codons should be decoded slowly, and so should have high RRT values. This
proved to be the case (fig. 5.2D). The six serine codons had 6 of the 7 highest
RRT values at position 8 (fig. 5.2D, table 5.1), which presumably represents
the A-site in this experiment. Note that because these are E. coli ribosomes,
the phase of the footprint (i.e., the position of the A-site in the footprint) is
different from its phase with regard to yeast ribosomes (see below). The RRT
analysis of E. coli footprints also showed interesting variation at positions 2,
3, and 4 (fig. 5.2D), which we will consider elsewhere.

Lareau et al. [87] starved S. cerevisiae for histidine using the His3 inhibitor
3-aminotriazole. This was another potential positive control, where the two
His codons should be decoded slowly. We analyzed these ribosome profiling
data. However, of the 11 million reads obtained in that experiment, about
10.6 million mapped to ribosomal RNA. The remaining ∼ 0.4 million reads
mapped to mRNA, but gave only 10 (ten) total windows passing our quality
filters for RRT analysis, and this is too few. However, when we relaxed the
filters to obtain more (albeit lower quality) windows, we observed obvious
peaks (high RRT values) for both histidine codons at position 6 specifically in
the 3-aminotriazole experiment (data not shown).

5.3.1 Ribosome residence time analysis of codons

Having found that RRT analysis gives the expected results in control experi-
ments, we applied it to the analysis of four of our ribosome profiling experi-
ments. Our experiments differ from those of Ingolia et al. and Lareau et al.,
in that in those studies, cycloheximide was added to the growing yeast culture
before harvesting [85, 87], whereas we harvest by flash-freezing, and later add
cycloheximide to the frozen cells (sec. 5.5). The nature of our results is shown
in fig. 5.3 using the rare Leu codon CTC as an example. In this example, 10
codon (30 nucleotide) footprints that have CTC as the first codon have about
the average relative frequency - that is, they have about the same relative

62

frequency as footprints with any other codon at the first position. Similarly
when CTC is in the 2nd, 3rd, 4th, 7th, 8th, 9th, and 10th positions. However,
there is a relative over-abundance of footprints that have CTC at the 6th po-
sition. In fact, for CTC at the 6th position, averaged over 451 windows (in
the case of this rare codon), there are 1.89-fold more footprints than at the
baseline. This suggests that ribosomes move relatively slowly when CTC is at
the 6th position, and, therefore, these ribosomes are more frequently captured
as footprints. We say that CTC has a Ribosome Residence Time (RRT) of
1.89 at position 6.

Fig. 5.4 shows data for all 61 sense codons from one of four experiments,
the SC-lys experiment. In a large majority of cases, a codon has its highest or
lowest footprint abundance when the codon is in position 6. We interpret this
to mean that the codon affects the rate of ribosome movement when the codon
is in position 6, which we believe to be the A-site of the ribosome (see below for
further support for this assignment). The behavior of the six Leu codons and
the four Thr codons, is highlighted in fig. 5.4B and 5.4C. Footprint frequencies
also differ from the average in a specific way at positions 5 (fig. 5.4D) (see
below) and 1 and 10, the two ends of the footprint. We attribute variation
at positions 1 and 10 to some base-specificity for the enzymatic reactions
involved in generating and analyzing ribosome footprints [105, 106, 107]; the
same variations are seen in reactions with naked RNA fragments.

Fig. 5.5A shows the deduced rate of ribosome movement for each codon,
plotted against the frequency of codon usage. There is a good correlation
(r = −0.52); that is, the ribosome moves faster over the more common codons.
There is also a correlation, albeit weaker, with the AT-richness of the codon.
AT-rich codons are decoded somewhat faster than average, while GC-rich
codons are decoded more slowly (fig. 5.5B). The mean RRT of codons with
3 or 2 GC residues was 1.23, while the mean RRT of codons with 1 or 0
GC residues was 1.01, a statistically significant difference (p < 0.003 by a
two-tailed t-test).

Table 5.2 shows the Ribosome Residence Time at position 6 for each of the
61 sense codons. The slowest codon is the rare Leu codon CTC. Relatively,
the ribosome spends about 1.9 times as long with a CTC codon in the A-site
as it does at the average codon. If the yeast ribosome spends 50 milliseconds
[108] on an average codon in the A-site, then the RRT suggests it spends about
95 milliseconds on CTC codons. The fastest codon is the relatively abundant
Thr codon ACC (fig. 5.4C, table 5.2), where it spends 0.70 times as long as
average (i.e., about 35 milliseconds).

There are also peaks at position 5 (fig. 5.4A, 5.4D), which we interpret as
the ribosome’s P-site, where the peptide bond is formed. All four Pro codons

63

are high at position 5: CCT, CCA, and CCC are the three slowest codons
at position 5, while CCG is 6th (fig. 5.4D, table 5.3). Proline is a unique
amino acid in having a secondary rather than a primary amino group, and so
is less reactive in peptide bond formation. Proline forms peptide bonds slowly
[109, 110, 111], and it has been associated with slow translation in footprinting
experiments [97]. Our result that the ribosome slows with proline at position 5
is consistent with this, and tends to confirm our assignment of position 5 to the
P-site and, therefore, position 6 to the A-site. A few other residues also seem
slightly slow at position 5 (e.g., Asn, Gly, see table 5.3 and appendix A.1),
possibly due to low reactivity in peptide bond formation [109].

All four proline codons also have high RRT at position 6, the A-site
(fig. 5.4D, table 5.2). The dipeptide ProPro is translated very slowly [112,
113, 114]. We wondered whether the apparent slowness of proline at both
positions 5 and 6 was an informatic artefact due to extreme slowness for Pro-
Pro dipeptides. We redid the original analysis after excluding all footprints
encoding ProPro dipeptides. Results did not change significantly; Pro still
appeared to be slow at both positions 5 and 6 (fig. 5.6A). On the other hand,
when we looked specifically at footprints containing a ProPro dipeptide, there
was a very large peak at position 5 (fig. 5.6B), consistent with the very slow
peptide bond formation seen in studies cited above.

To establish repeatability, we generated and analyzed three other ribosome
profiling data-sets and also re-analyzed previously-published data [85]. All five
data sets gave qualitatively similar results; pairwise correlations for RRT at
position 6 ranged from 0.22 to 0.96 between the data-sets (table 5.4). The
poorest correlation (0.22) was a correlation with the previously-published data-
set, which was generated using significantly different methods than our data-
sets. In particular, that data-set was generated by adding cycloheximide to the
growing culture, then harvesting [85], whereas our data was generated by flash-
freezing first, then adding cycloheximide to the frozen cells. Complete results
for all five experiments are given in appendix A.1 (table A.1, A.2, A.3, A.4
and A.5). More recently, we also subjected the long footprint data of Lareau
et al. [87] to RRT analysis, and obtained correlations at position 6 of 0.21,
0.47, 0.23, and 0.27, respectively, for their untreated 1, untreated 2, untreated
merge, and cycloheximide 1 experiments to our SC-lys experiment. Again,
these experiments were carried out in a significantly different way from ours
and it is not surprising that the correlations are modest. It is reassuring that a
positive correlation can be seen even for experiments where no cycloheximide
was used.

There are strong correlations between codon usage, the number of tRNA
genes for the relevant tRNA, and tRNA abundance [6, 50, 54, 115]. Although

64

one cannot determine causation from this correlation [8], nevertheless it is
consistent with idea that the rate of decoding in translation is at least partly
limited by tRNA concentration. Most of our results are consistent with this.
However, there are some interesting exceptions. In yeast, the 61 sense codons
are decoded by only 42 tRNAs. There are 12 pairs of codons that share a single
tRNA (e.g., Phe TTC and TTT, Tyr TAT and TAC, etc.) [116]. In many but
not all cases, the RRT of the two codons is similar (table 5.2), consistent with
the concentration hypothesis. However, there are also cases where the RRT
appears to be significantly different for two codons sharing the same tRNA. For
instance, the Cys codon TGC has an RRT of 1.23, while TGT has an RRT of
0.81 (table 5.2). Both codons are recognized by the same tRNA, which in this
case is complementary for TGC, and wobble for TGT. Similarly, the Gly codon
GGC has an RRT of 1.22 (tRNA is complementary), while GGT has an RRT
of 0.93 (tRNA is wobble). Both these relationships (RRTTGC > RRTTGT ,
and RRTGGC > RRTGGT) were true in all five data-sets (appendix A.1). In
both cases, the perfect match is decoded more slowly than the wobble match
and in both cases, the slower, complementary pairing has a G:C match at the
third (i.e., wobble) position. These and other similar examples (not shown)
suggest that the RRT depends on more than just the concentration of the
relevant tRNA. Perhaps the long RRT for these GC-rich codons is related to
the time needed to eject incorrectly paired anticodons of incorrect tRNAs,
although this explanation is somewhat at odds with the literature [117, 118].
Alternatively, it has been suggested that translocation can occur more quickly
when the codon-anticodon interaction is weaker [119, 120].

5.3.2 RRT analysis of short footprints

Recently, Lareau et al. made the exciting discovery that ribosome profiling on
cells that have not been treated with any drug yields two classes of footprints,
long (28-30 nucleotides) and short (20-22 nucleotides) [87]. It is the long class
that is seen in cycloheximide experiments, and which we have characterized
above. The short (20-22 nt) footprints seem to represent a different conforma-
tion of the ribosome, perhaps one that occurs when the ribosome translocates
along the mRNA. Furthermore, Lareau et al. found that treatment of cells
with the elongation inhibitor anisomycin efficiently generates short footprints.
Lareau et al. suggest that the long and short footprints are reporting on two
different states of translation [87].

We applied RRT analysis to the short footprints generated by Lareau et al.,
with special focus on the footprints after anisomycin treatment. All three of
their anisomycin data-sets were studied, and the pairwise correlations between
the RRT results for these three data-sets were very high, ranging from 0.89 to

65

0.998. Partial results are shown in fig. 5.7 and table 5.5 and complete results
are shown in appendix A.1 (A.6, A.7 and A.8). RRT analysis showed a series
of peaks at different positions along the 7-codon footprint. The RRT values
for the short footprints did not significantly correlate with RRT values for
the long footprints, even when the phases of the footprints were shifted. This
suggests, in agreement with Lareau et al., that the short and long footprints
are indeed reporting on different translational processes. Furthermore, for
the short footprints the RRT values are amino acid specific, while for the long
footprints at position 6, the RRT values are codon specific (table 5.2; table 5.5;
fig. 5.4, fig. 5.7, fig. 5.8). This again indicates that the two kinds of footprints
are reporting on different translational processes. The amino acids in the
peaks at positions 3, 5, and 6 are shown in table 5.5: the peak at position 3
contains glycine; the peak at position 5 contains smallish hydrophobic amino
acids (Leu, Val, Ile, and to some extent Phe), and the peak at position 6 is
dominated by the two basic amino acids, Arg and Lys. It has previously been
shown that basic amino acids can cause a pause in elongation by interacting
with the ribosome exit tunnel [98, 99, 121]. The basis of the anisomycin arrest
is partly but not fully understood [122, 123], and so it is difficult to clearly
interpret these results (but see sec. 5.4). Nevertheless, the application of RRT
analysis to the anisomycin-generated footprints gives strong, specific signals
that are unlikely to be explained by a random process. We note, however,
that results from the short footprints from untreated (no anisomycin) cells are
only modestly correlated (0.23) with results from short footprints from the
anisomycin-treated cells (data not shown).

It appeared that the RRT values at position 6 for the long footprints were
codon-specific (fig. 5.4, table 5.2), while the RRT values for the short footprints
were amino-acid specific (fig. 5.7, table 5.5). To confirm this, we developed
a statistical test for the coherence of the results for a particular amino acid
(sec. 5.5). Briefly, this method tests whether every codon for a particular
amino acid behaves similarly, and yields a small p-value if it does. Indeed, this
analysis confirms that the short footprints give results specific to the amino
acid, while the long footprints generally do not (i.e., the long footprints are
codon-specific) (fig. 5.8). This suggests that the long footprints are reporting
on the process of decoding (which depends on specific codons), while the short
footprints are reporting on events after decoding.

5.4 Discussion

To our knowledge, this is the first measurement of the differential rate of
translation of all 61 codons in vivo. There is a correlation between a high

66

Table 5.2: Ribosome residence rime at position 6. Usage of each codon per
1000 codons and the ribosome residence time (RRT) at position 6 (the A-site
of the ribosome). The p-value for a difference between the calculated RRT
value and an RRT value of 1 is shown. P-values less than or equal to 0.001
are marked with an asterisk.)

Codon AA Usage RRT p-value Codon AA Usage RRT p-value

CTC Leu 5.4 1.892 *0.0001 TTT Phe 26.1 1.0483 0.0529
CCC Pro 6.8 1.7148 *0.0001 GAA Glu 45.6 1.0405 0.0538
GGG Gly 6 1.6089 *0.0001 AGA Arg 21.3 1.0132 0.3014
AGG Arg 9.2 1.5948 *0.0001 TTC Phe 18.4 1.0001 0.4955
ATA Ile 17.8 1.5667 *0.0001 GCG Ala 6.2 0.9949 0.465
GGA Gly 10.9 1.5582 *0.0001 TCC Ser 14.2 0.9892 0.3341
TGG Trp 10.4 1.5257 *0.0001 TTA Leu 26.2 0.9853 0.3166
GTG Val 10.8 1.5194 *0.0001 TCT Ser 23.5 0.9813 0.2249
CGC Arg 2.6 1.4532 *0.0001 CAT His 13.6 0.9302 0.0188
CGA Arg 3 1.447 *0.0008 GGT Gly 23.9 0.9257 *0.0003
CGG Arg 1.7 1.436 *0.0010 ATG Met 20.9 0.923 0.0027
TCG Ser 8.6 1.4273 *0.0001 ATT Ile 30.1 0.922 *0.0005
CCA Pro 18.3 1.3817 *0.0001 TTG Leu 27.2 0.9202 *0.0001
ACA Thr 17.8 1.347 *0.0001 CTG Leu 10.5 0.916 0.0139
CCG Pro 5.3 1.3124 *0.0001 AAT Asn 35.7 0.8785 *0.0001
GTA Val 11.8 1.3055 *0.0001 AAA Lys 41.9 0.8781 *0.0003
GCA Ala 16.2 1.2847 *0.0001 CGT Arg 6.4 0.8749 *0.0002
CCT Pro 13.5 1.2711 *0.0001 CAA Gln 27.3 0.8722 *0.0001
TCA Ser 18.7 1.2642 *0.0001 GCC Ala 12.6 0.8607 *0.0001
TAC Tyr 14.8 1.2515 *0.0001 GAC Asp 20.2 0.8506 *0.0001
TAT Tyr 18.8 1.2506 *0.0001 TGT Cys 8.1 0.8126 *0.0001
GAG Glu 19.2 1.2465 *0.0001 GCT Ala 21.2 0.809 *0.0001
CTA Leu 13.4 1.246 *0.0001 ATC Ile 17.2 0.8044 *0.0001
CTT Leu 12.3 1.2375 *0.0001 ACT Thr 20.3 0.7776 *0.0001
TGC Cys 4.8 1.2281 *0.0001 GAT Asp 37.6 0.7569 *0.0001
GGC Gly 9.8 1.215 *0.0001 AAC Asn 24.8 0.7564 *0.0001
CAG Gln 12.1 1.1505 *0.0002 GTT Val 22.1 0.7544 *0.0001
ACG Thr 8 1.1164 0.0069 GTC Val 11.8 0.7541 *0.0001
AGT Ser 14.2 1.1037 0.006 AAG Lys 30.8 0.7409 *0.0001
AGC Ser 9.8 1.0916 0.0213 ACC Thr 12.7 0.6969 *0.0001
CAC His 7.8 1.0815 0.0098

67

Table 5.3: Ribosome residence time at position 5. Usage of each codon per
1000 codons and the ribosome residence time (RRT) at position 5 (the P-site
of the ribosome). The p-value for a difference between the calculated RRT
value and an RRT value of 1 is shown. P-values less than or equal to 0.001
are marked with an asterisk.)

Codon AA Usage RRT p-value Codon AA Usage RRT p-value

CCT Pro 13.5 1.8011 *0.0001 GGG Gly 6 0.9566 0.1321
CCC Pro 6.8 1.47933 *0.0001 ACG Thr 8 0.9507 0.1391
CCA Pro 18.3 1.4771 *0.0001 CGT Arg 6.4 0.946 0.0431
AAT Asn 35.7 1.3892 *0.0001 TTC Phe 18.4 0.9401 0.0064
CGG Arg 1.7 1.3446 0.007 TGC Cys 4.8 0.9379 0.1141
CCG Pro 5.3 1.302 *0.0001 AAG Lys 30.8 0.9366 0.0062
CAT His 13.6 1.29 *0.0001 GCC Ala 12.6 0.9347 0.0025
GGT Gly 23.9 1.1917 *0.0001 GAA Glu 45.6 0.917 *0.0001
AAC Asn 24.8 1.18 *0.0001 ACC Thr 12.7 0.9144 *0.0009
GAT Asp 37.6 1.1767 *0.0001 ATC Ile 17.2 0.9071 *0.0002
CGA Arg 3 1.146 0.1353 AGA Arg 21.3 0.8999 *0.0002
GTA Val 11.8 1.1364 *0.0006 GTT Val 22.1 0.8667 *0.0001
GGA Gly 10.9 1.0954 0.0083 CTT Leu 12.3 0.8664 *0.0004
GGC Gly 9.8 1.0913 *0.0009 CTG Leu 10.5 0.8471 *0.0001
ACT Thr 20.3 1.0877 *0.0004 TAC Tyr 14.8 0.8436 *0.0001
TTA Leu 26.2 1.0751 0.0083 GTC Val 11.8 0.8131 *0.0001
AAA Lys 41.9 1.0594 0.03 ATG Met 20.9 0.812 *0.0001
CAA Gln 27.3 1.0578 0.0137 TTG Leu 27.2 0.8093 *0.0001
ATT Ile 30.1 1.057 0.0106 AGT Ser 14.2 0.8011 *0.0001
TGT Cys 8.1 1.0494 0.0701 ATA Ile 17.8 0.7969 *0.0002
TTT Phe 26.1 1.0459 0.059 TCC Ser 14.2 0.788 *0.0001
ACA Thr 17.8 1.0436 0.1152 TCG Ser 8.6 0.7871 *0.0001
TAT Tyr 18.8 1.0424 0.1107 GAG Glu 19.2 0.7798 *0.0001
GCA Ala 16.2 1.0286 0.1647 GCG Ala 6.2 0.7749 *0.0001
GCT Ala 21.2 1.0252 0.1298 CGC Arg 2.6 0.7573 *0.0003
TCA Ser 18.7 1.0213 0.264 GTG Val 10.8 0.7532 *0.0001
TCT Ser 23.5 1.0144 0.273 TGG Trp 10.4 0.7195 *0.0001
GAC Asp 20.2 0.9988 0.4721 AGC Ser 9.8 0.7066 *0.0001
CAG Gln 12.1 0.9986 0.4946 AGG Arg 9.2 0.7061 *0.0001
CAC His 7.8 0.975 0.2335 CTC Leu 5.4 0.6666 *0.0001
CTA Leu 13.4 0.9643 0.1462

68

Table 5.4: Pairwise Spearman correlation between the RRT values at position
6 for 4 different data-sets

Y PD1 −His Y PD2 Ingo.

-Lys 0.80 0.35 0.76 0.22
YPD1 0.53 0.96 0.55
-His 0.58 0.37
YPD2 0.53

Table 5.5: Top 10 RRTs at positions 3 through 6 of the anisomycin-generated
short footprints

AAPos3 CODONPos3 RRTPos3 AAPos4 CODONPos4 RRTPos4

Gly GGG 2.64 Pro CCC 2.36
Gly GGC 2.52 Pro CCA 2.34
Gly GGT 2.36 Met ATG 2.25
Gly GGA 2.32 Pro CCT 2.17
Asp GAC 1.8 Ala GCC 2.13
Ala GCC 1.79 Phe TTC 2.03
Ala GCA 1.7 Ala GCA 2.01
Ala GCT 1.65 Ala GCT 1.98
Ala GCG 1.59 Tyr TAC 1.98
Glu GAG 1.58 Ser TCC 1.97

AAPos5 CODONPos5 RRTPos5 AAPos6 CODONPos6 RRTPos6

Leu TTA 2.75 Arg CGA 3.72
Leu CTC 2.73 Arg CGG 3.5
Val GTA 2.43 Pro CCG 2.74
Leu CTA 2.36 Lys AAA 2.59
Leu TTG 2.29 Lys AAG 2.49
Val GTG 2.21 Arg CGC 2.46
Leu CTT 2.16 Arg CGT 2.34
Val GTC 2.12 Arg AGG 2.32
Val GTT 2.11 Arg AGA 2.21
Ile ATA 2.03 Asp GAT 2.12

69

codon usage and a high rate of decoding. Although this is a correlation that
has been widely expected, there has been little evidence for it; indeed, the
most recent experiments suggested that all codons were decoded at the same
rate [57, 98]. Some workers have had other expectations for decoding rates.
For instance, an important theory was that the more common codons were
common because their translation might be more accurate [8] (and this still
might be correct).

Translation is optimized for both speed and accuracy [124]. During trans-
lation, the ribosome must sample many incorrect tRNAs at the A-site before
finding a correct tRNA. It must match the anticodon of that correct tRNA
with the codon; after such matching, there is a conformational change around
the codon-anticodon interaction at the decoding center [125, 126]. The ribo-
some must form the peptide bond [127, 128], translocate [119, 120, 129], and
eject the empty tRNA. The nascent peptide must make its way through the
ribosome exit tunnel [121, 130, 131]. Depending on the rate of each of these
events, the concentration of the various tRNAs might or might not have a
detectable effect on the overall rate of translation. Our findings that (i) the
more frequent codons (i.e., the ones with the highest tRNA concentrations)
are decoded rapidly; and (ii) GC-rich codons are decoded slowly; and (iii)
proline is slow in the P-site, suggest that there are at least three processes
that happen somewhat slowly and on a similar timescale. The high rate of
decoding for high concentration tRNAs may reflect the relatively short time
it takes for the ribosome to find a high-concentration correct tRNA among
many incorrect tRNAs. The fact that we detect proline-specific delays of a
similar magnitude to the rare-codon specific delays suggest that peptide bond
formation and identification of the correct tRNA are happening on similar
time scales. In general, this is what one might expect from the evolution of
such an important process as protein synthesis - if one process were entirely
rate-limiting, there would be very strong selection for greater speed in that
process, until a point is reached where it catches up with other processes, and
several processes together are then rate-limiting.

Even though these data establish that common codons are translated rela-
tively rapidly, this does not on its own explain the success of codon optimiza-
tion for increasing protein expression, since the rate of translation is primarily
limited by the rate of initiation, not elongation [8, 132] (although one recent
study identifies a mechanism whereby rapid elongation causes rapid initiation
[133]). Nevertheless, on a genome-wide (and not gene-specific) scale, the use
of faster codons would mean that a given genomic set of mRNAs would require
(or titrate out) fewer ribosomes to make a given amount of protein than the
same set of mRNAs using slower codons [8, 132]. Based on our RRT measure-

70

ments, and taking into account the different copy numbers of different mRNAs
[60], we roughly estimate that yeast require about 5% fewer ribosomes than if
they were to make protein at the same overall rate but using each synonymous
codon at an equal frequency (see sec. 5.5). This provides at least a sufficient
reason for the bias towards faster synonymous codons.

We applied RRT analysis to the short footprints identified by Lareau et al.
(fig. 5.7). These short footprints seem to report on a different translational
process than the long footprints seen in cycloheximide experiments. We see
that the basic amino acids Arg and Lys are slow at position 6; small hydropho-
bic amino acids are slow at position 5; and glycine is slow at position 3. While
we know too little about the nature of the short footprints to reliably inter-
pret these results, one speculative possibility is that the results report on the
interaction of amino acids in the nascent peptide chain with the exit tunnel
of the ribosome [130, 131, 134, 135]. We find Arg and Lys slow at position 6,
and this correlates with the fact that these basic amino acids cause a pause
by interacting with the exit tunnel [98, 99, 121]. This would then suggest that
small hydrophobic amino acids, and then glycine, might similarly cause pauses
by interacting with positions one or three amino acids further out in the exit
tunnel.

In summary, we believe that RRT analysis is a sensitive, high-resolution
method that can characterize the interaction of codons and amino acids with
the ribosome. It can be applied to ribosome profiling data of many types, from
many organisms. Here, we show that frequent codons are decoded more quickly
than rare codons; that codons high in AT are decoded somewhat quickly; that
proline forms peptide bonds slowly; and that short footprints from anisomycin
treated cells have an interesting RRT profile that may reflect interaction of
amino acids with the ribosome exit tunnel.

5.5 Materials and methods

Experiments were done with yeast strain background BY4741. Ribosome pro-
filing was based on the method of Ingolia [85], but with modifications (see
below). Programs for analysis of ribosome residence time were written by
the authors (primarily R.Y. and A.Y.). The code for ribosome residence time
analysis is available from the authors upon request.

5.5.1 Ribosome profiling

Informatic analysis was conducted on four ribosome profiling experiments
(YPD1, YPD2, SC-lys, and SC-his) done for other reasons in the Futcher lab.

71

The strains and methods used varied slightly from experiment to experiment;
nevertheless similar results were obtained for the RRT analysis table 5.5. The
ribosome profiling experiments YPD1 and YPD2 have been reported previ-
ously (Cai and Futcher, 2013) as the WT and whi3 experiments, respectively.

All experiments used S. cerevisiae strain background BY4741. Two bio-
logically independent ribosome-profiling libraries and mRNA-seq libraries were
obtained from YPD rich media (the YPD1 and YPD2 experiments), and two
biologically independent ribosome-profiling libraries and mRNA-seq libraries
were prepared in synthetic complete media (the SC-lys and SC-his experi-
ments). Two methods for harvesting cells were used. After harvesting and
footprint size selection, footprints from all four experiments were processed
identically into sequencing libraries using the ARTseq Yeast Ribosome Profil-
ing kit, following the manufacture’s instructions beginning with step B3 in the
protocol.

• Harvesting method 1 (YPD1 and YPD2 experiments): – 1 liter of cells in
YPD were grown to a density of 2.0×107cells/ml. Medium was cooled to
0◦C by adding ice (stored at −20◦C) and simultaneously cycloheximide
was added to a concentration of 100µg/ml to quickly halt translation
and freeze translating ribosomes in place. Cells were centrifuged using a
Sorvall Evolution RC centrifuge at 3000rpm for 2 minutes at 4◦C. The
resulting cell pellet was washed with ice-cold RNase-free water contain-
ing 100µg/ml cycloheximide by gentle vortexing, and repelleted. Su-
pernatant was aspirated, and cells were re-suspended in polysome lysis
buffer prepared according to the ARTseq ribosome profiling kit instruc-
tions. Cell lysis buffer slurry was slowly dripped into an RNase-free 50ml
conical tube containing liquid nitrogen. Resulting frozen pellets of cell
slurry were lysed using a TissueLyser II and 50ml grinding jars at liquid
nitrogen temperature for six 3 minute cycles at 15 hertz. Frozen cell
lysate was scraped from the grinding jar into a new RNase-free 50ml
conical tube followed by reheating the slurry in a 30◦C waterbath with
constant swirling. Immediately after complete thawing (∼ 3 − 5 min-
utes), cell lysate was centrifuged for 5 minutes at 3000× g. Supernatant
was moved to a 1.5ml RNase-free centrifuge tube and centrifuged for
10 minutes at 20, 000 × g. Clarified lysate total RNA content was es-
timated using a Nanodrop at A260nm, and polysome complexes were
digested using ARTseq ribonuclease mix according to the manufacture’s
instructions. Ribosome-protected mRNA footprints were purified using
an Illustra Microspin S-400HR column prepared according to ARTseq
manufacture’s instructions. All following library generation steps were
performed according to the ARTseq protocol starting at step 4 (PAGE

72

purification). Following the end repair step in the protocol, a biotiny-
lated oligonucleotide antisense to a specific rRNA fragment was used to
reduce rRNA contamination using a protocol from the Jonathan Weiss-
man lab (personal communication from Gloria Brar).

• Harvesting method 2 (SC-lys and SC-his experiments): – Synthetic me-
dia lacking lysine or lacking histidine was used to prepare 1 liter of cells
at 2.0× 107cells/ml. The strains were prototropic for Lys or His (HIS3
gap1 frame1), respectively. Cells were harvested by vacuum filtration
using Whatman 7184-009 membrane filters at 30◦C. A liquid nitrogen
cooled spatula was used to scrap cells from the membrane followed by
immediate flash freezing in an RNase-free 50ml conical tube containing
liquid nitrogen. Special care was taken to ensure cells were exposed to air
for as little time as possible between vacuum filtration and flash freezing
(2 − 3 seconds) to prevent loss of ribosome footprints at the 5’ ends of
mRNAs (personal communication, Gloria Brar). ARTseq polysome lysis
buffer containing cycloheximide at 50µg/ml was slowly dripped into the
liquid nitrogen filled cell pellet conical tube. Cells were lysed using a
TissueLyser II and 50ml grinding jars at liquid nitrogen temperature for
six 3 minute cycles at 15 hertz. Frozen cell lysate was scraped from the
grinding jar into a new RNase-free 50ml conical tube followed by reheat-
ing the slurry in a 30◦C waterbath with constant swirling. Immediately
after complete thawing (∼ 3− 5 minutes), cell lysate was centrifuged for
5 minutes at 3000 × g. Supernatant was moved to a 1.5ml RNase-free
centrifuge tube and centrifuged for 10 minutes at 20, 000 × g. Clarified
lysate total RNA content was estimated using a Nanodrop at A260nm,
and polysome complexes were digested using ARTseq ribonuclease mix
according to the manufacture’s instructions.

• SC-lys dataset: – Digested monosomes were purified using sucrose cush-
ion ultracentrifugation for 3 hours at 35, 000rpm using a SW-41 rotor.
The sucrose cushion contained 9ml of 10% sucrose polysome lysis buffer
lacking triton detergent layered over 3ml of 60% sucrose polysome lysis
buffer lacking triton detergent. Gradient fractionation was carried out
using a BioRad EM-1 UV absorbance monitor and peristaltic pump. Ef-
ficiency of RNase digestion was monitored in tandem using a undigested
control lysate on an identically prepared 10%-60% sucrose cushion and
a digested control centrifuged on a 10%-60% sucrose gradient. Following
fractionation, the monosome containing fraction was mixed 1:1 with 4M
guanidine thiocyanate and was precipitated overnight using a 1:1 volume
of 100% isopropanol chilled to −20◦C. The RNA pellet was aspirated

73

and resuspended in 400µl RNase-free water and protein was removed
by two acid phenol-chloroform purifications followed by one chloroform
purification. Recovered supernatant was brought to 0.3M ammonium
acetate and precipitated with 3 volumes of 100% ethanol. All following
library generation steps were performed according to the ARTseq pro-
tocol starting at step 4 (PAGE purification). Following the end repair
step in the protocol, a biotinylated oligonucleotide antisense to a specific
rRNA fragment was used to reduce rRNA contamination using a pro-
tocol from the Jonathan Weissman lab (personal communication Gloria
Brar).

• SC-his dataset: – Digested monosomes were purified using an Illustra
Microspin S-400HR column according to ARTseq manufacture’s instruc-
tion. All following library generation steps were performed according to
the ARTseq protocol starting at step 4 (PAGE purification). Follow-
ing the end repair step in the protocol, a biotinylated oligonucleotide
antisense to a specific rRNA fragment was used to reduce rRNA con-
tamination using a protocol from the Jonathan Weissman lab (personal
communication Gloria Brar).

5.5.2 Data analysis

Unless indicated, data processing and analysis was performed using a collection
of custom programs written in Perl.

• Sequence processing and alignment: – Primary data was generated using
Illumina HiSeq2000. Data was processed using Fastq clipper from the
FASTX Toolkit 0.0.13 to remove the adaptor sequence and all reads
shorter than 25 nucleotides were discarded. Alignment to the reference
was done using bowtie2 2.1.0 in local alignment mode.

Before performing our analysis on the Ingolia et al. data [85], in order to
adhere to the processing guidelines of that paper, we used bowtie 0.12.8,
reporting all alignments with at most 3 mismatches, and a seed length
of 21. We then processed the multiple alignments, removing the poly-A
tails and picking the one with the greatest number of bases matching to
the reference.

• Ribosome residence time analysis: – This analysis uses the general idea
that many different mRNA sequences should get an independent and
equal vote on decoding speed. We opted to analyze select regions where
the effects of codon usage become particularly easy to assay. First we

74

discounted all reads with more than 2 mismatches or quality less than
10. We identified the first in-frame codon of each read, and discarded
those less than 30 nucleotides long to exclude fragments that may have
been over digested by RNAase I. We then examined the coding regions
of the genome, ignoring those overlapping with other genes, rRNAs, and
tRNAs, in order to maximize our confidence in unique mapping. Each
of the footprint reads that fully fit into a coding region that it aligned
to was considered for further analysis.

For each particular codon, we identified all instances in our coding re-
gions where this codon (say CTC) occurs uniquely within a window of
ten codons upstream and ten codons downstream (i.e. a window of 19
codons with the target CTC in the center of the window). For footprints
that are 10 codons long, there will be ten classes of footprints where this
particular CTC can appear - position 1, position 2, . . . position 10.
Thus, all footprints where the first codon of the footprint aligns to this
particular CTC will belong to the position 1 class, all footprints where
the second codon of the footprint aligns to this particular CTC will
belong to position 2 class, etc.

In the absence of any codon preference of the ribosome, we would expect
to see a uniform distribution of reads across these ten classes. In general,
the codon-positional preference is described by the relative frequency of
reads in each of these classes. These relative frequency distributions can
be fairly averaged over all target regions over all genes centered on a spe-
cific codon. This average we call the ”Ribosome Residence Time” (RRT);
it is intended as a statistical estimate of the relative time spent by the
ribosome at a particular codon at a particular read position. Typically
we discuss the RRT at position 6 (the A-site), but we also discuss the
RRT at position 5 (the P-site). Regions on highly expressed genes can
be fairly compared with similar regions on genes with lower expression,
because we are dealing with relative frequency distributions (i.e. per-
centage instead of read counts). Each region represents an independent
trial of any positional preference of the given central codon. Averaging
over the hundreds or thousands of occurrences on the genome provides
for a statistically rigorous analysis.

Relative frequency distributions will only be representative if the ob-
served number of reads in the window is high enough that no single
position dominates the distribution. For this reason, we restricted our
analysis to windows with at least 20 total reads with at least 3 non-empty
classes.

75

The frequency distributions are not normally distributed; this is in part
because the number of reads is limited, so many windows have zero
footprints at many positions, so the mode of the distribution is often
0. Nevertheless we believe that the mean is a good summary statis-
tic. Maximum values are less than 1, so the mean cannot be skewed
by extremely high values. We have also calculated the RRT using the
median of the windows instead of the mean, but the results are almost
indistinguishable. The Spearman rank correlation between the RRT as
calculated by the mean, and by the median, is 0.97, while the Kendall
Tau correlation is 0.89.

For each codon, we obtain the two-tailed p-value by comparing the ex-
perimental relative frequency to the distribution of 10,000 relative fre-
quencies based on permuted results. For each of the 10,000 instances,
for each considered window, we permute the footprint counts of the 10
position classes.

We performed our RRT analysis on the Ingolia et al. data [85], with
small modifications. We did not perform the checks of read quality and
the number of mismatches, as this was taken care of in pre-processing
steps (See ‘Sequence processing and alignment’). We also considered all
reads with at least 24 nucleotides, and performed our relative frequency
calculations on the 8 codons, because the majority of the reads were
shorter than the reported size selection of RNA fragments ∼ 27 − 31
nucleotides in length.

The statistical significance shown in table 5.2 and table 5.3 were ob-
tained by constructing 10,000 random simulated frequency distributions
and independently permuting each region’s frequency distribution prior
to averaging. The rank of each observed positional peak among these
simulated distributions established the p-value.

• Codon coherence analysis: – We developed a p-value computation to
assess whether the codons for a given amino acid behave similarly to
one another (i.e., are coherent) or not. Each codon’s RRT values along
the positions of a footprint may be considered as a k-dimensional vector,
where k is the number of positions in the footprint (10 for long reads
vs. 7 for short reads). Each point in the vector represents a position in
the k-dimensional space. Coherency analysis was performed on the set
of points at each dimension belonging to the synonymous codons of a
particular amino acid. For any given set of c such points, we can compute
the average pairwise distance d between them over all c×(c−1)÷2 pairs
of points. If all codons for an amino acid behave similarly, then the points

76

are close together, and the distance d is relatively small, indicating codon
coherence (amino-acid specific behavior), whereas if the various codons
for a given amino acid behave differently (non-coherent, codon-specific
behavior), then the distance d is relatively large.

To judge the sizes of these distances for a particular set of points, S,
containing c codons (c ranges from 2 to 6) for a particular amino acid,
we used a p-value. We constructed 10,000 random samples of c codons
drawn from the 61 possible sense codons. For each sample, we computed
the average pairwise distance and compared this to the average pairwise
distance of S. The rank of S in this distribution provides a p-value, which
is significant if the vast bulk of random samples have greater pairwise
distance than S. Results are shown in fig. 5.8.

• Estimates of ribosomes needed for differently-encoded transcriptomes: –
An mRNA encoding a given protein could use only the fastest codon
for each amino acid, or only the slowest, or it could use a mixture. In
each case, the mRNA would occupy, or titrate out, a different number
of ribosomes. A transcriptome of mRNAs using only the slowest codons
would require more ribosomes to make a given amount of total protein
in a given time than a transcriptome of mRNAs using only the fastest
codons. We roughly estimated the size of this effect for the range of
codon decoding speeds we observed. We generated in silico a yeast tran-
scriptome using only the fastest codon for each amino acid at position
6 (from table 5.1), or only the slowest codon, or a random mixture of
codons. Furthermore, we weighted the abundance of each mRNA accord-
ing to its actual abundance as measured by Lipson et al. [60]. We then
compared the relative time required to translate each of these in silico
transcriptomes by a set number of ribosomes based on the RRT values
for each codon at position 5 and 6, and also assuming that the relevant
delay is the delay at position 5 plus the delay at position 6 (since these
two reactions must occur sequentially and not simultaneously before the
ribosome can shift along the mRNA). In doing this, we noted that the
RRT values for position 5 are negatively correlated with those at position
6. Results are as follows: the random encoding requires 1.05 as long as
WT; the slowest encoding requires 1.168 as long as WT; and the fastest
encoding requires 0.930 as long as WT. Note that this estimate uses the
simplification that each species of mRNA will initiate translation at the
same rate. A more accurate calculation in which the more abundant
mRNAs initiate more rapidly than average would increase the difference
between the WT and the random encodings.

77

5.6 Author contributions

Experiments were conceived and designed by JG, SS, RY, AY and BF. Wet
lab experiments were done by JG and YC. Algorithmic design was by SS. RY
and AY implemented algorithmic design as code, with some contribution from
JG. All authors contributed to interpretation of data. The paper was written
largely by BF, AY and JG with contributions from all other authors.

5.7 Acknowledgments

We thank J. Weissman and G. Brar for their generosity in helping us learn
ribosome profiling, and for providing protocols and advice. Three anony-
mous reviewers provided insightful comments that greatly improved the final
manuscript. This work was supported by NIH grant R01 GM098400 to BF,
and NSF grants DBI-1060572 and IIS-1017181 to SS.

78

Figure 5.4: Ribosome residence times. (A) The pattern of RRTs for all codons
at all positions of the 30 nt footprint reads. Most peaks are at position 6, with
some at position 5. (B) The RRTs for the six leucine codons. Among all
codons, CTC has the highest RRT at position 6. (C) The RRTs for the four
threonine codons. ACC has the lowest RRT of all codons at position 6. (D)
The RRTs for the four proline codons. Proline has peaks at position 5 (the
P-site), as well as at position 6.

79

Figure 5.5: Correlation of ribosome residence times with codon properties. (A)
Correlation of RRT with codon usage. RRT is plotted against the frequency of
each codon per 1000 codons. (B) Correlation of RRT with the GC content of
each codon. The codons were divided into quartiles by RRT, Fastest− lowest
(around 15 codons per group), and the GC content of the codons in each group
is shown in a violin plot.

80

Figure 5.6: Analysis of ProPro dipeptides. (A) RRT analysis of the windows
containing no ProPro dipeptides. (B) RRT analysis of the windows containing
ProPro dipeptides.

81

Figure 5.7: RRT analysis of short footprints from anisomycin treatment.
The short, seven-codon footprints from anisomycin treatment from Lareau
et al. [87] were analyzed for RRT. All 61 sense codons are shown; codons from
selected amino acids are color-coded. Position along the footprint is shown on
the x-axis.

82

Figure 5.8: Short footprints are amino-acid specific; Long footprints are codon
specific. For the set of codons corresponding to each amino acid (x-axis), a test
was done to see if all codons behaved similarly or not. For the short footprints
(left), p-values (y-axis) are generally small, showing that codons belonging to
the same amino acid behave similarly. For the long footprints (right), p-values
are generally large, which shows that the synonymous codons (corresponding
to same amino acid) behave differently.

83

Chapter 6

Statistical analysis of ribosome
profile data1

Ribosome profiling is an emerging technique for identifying active ribosome
positions bound to the target mRNA. Here, fragments of a translating mRNA
(that are covered by ribosomes) are isolated using the method of nuclease
digestion - which degrades unprotected mRNA regions. A translating ribo-
some surrounds around 30nt positions of an mRNA (may vary based on the
conformation of the ribosome, see chapter 5 for detail, [87]). By analyzing
the protected area of the translating mRNA, exact ribosome position and the
translated message can be detected.

Ribosome footprint data can be used for various applications including the
discovery of novel ORFs, making revisions to the gene annotations, genomic
expression measurement and in studying the mechanics of translation and of
co-translational processes in vivo [100]. The rate of translation varies across
the length of an mRNA. The ribosomal pauses in the translation process can
regulate synthesis, folding and localization of a protein or mRNA [97, 136,
137, 138, 139, 140, 141]. Several factors could contribute to these pauses, such
as codon usage, RNA folded structure or the peptide sequence [142, 143, 144].
tRNA re-use can also be a contributing factor in boosting the translation
efficiency [10].

We work on the high coverage ribosome profile data to answer these ques-
tions. In this chapter, I will describe our work on predicting impact of the
bias introduced by the codon-pair preferences, on correlating ribosome profile
data with the folded mRNA secondary structure around the ribosome and
finally on determining the impact of tRNA auto-correlation on the ribosome
residency time. Ribosome profile data generation steps are explained in detail

1Results not published yet.

84

in sec. 5.5. Profile data were analyzed using python. For data pre-processing
and sam file generation FASTX Toolkit 0.0.13 and bowtie2 were used, and
python package HTSeq [145] was used for mapping reads to genes.

6.1 Codon-pair bias analysis

In our work, we have generated high-coverage ribosome profile data in yeast,
and novel algorithm procedures were employed to analyze the data. We worked
on measuring average decoding rate of each individual codon and showed the
average decoding rates of the codons are well-correlated with the usage bias
(sec. 5.3). However, this may not be the only contributing factor influencing
codon usage preference, the context surrounding a codon may also play a role
here [146]. The context of a codon may impact translation efficiency and
accuracy [142, 146, 147]. Codon context may also play a role in suppressing
missense and premature stop codons [148, 149].

Following the study of context-dependent codon bias effect, researchers
were interested in studying the effect of codon pair bias on translation effi-
ciency [150, 151]. Gutman et al. found extreme codon pair specific utiliza-
tion bias in bacteria, yeast, and mammals [150]. Based on the study of 237
E.coli protein coding genes, they showed that certain codon pairs were over-
represented compared to the theoretically predicted means, while some others
were under-represented. Following this study Irwin et al. found that, over-
represented codon pairs in protein coding sequences (pairs appearing more
frequently than expected) are translated slower than the corresponding under-
represented codon pairs [151]. During the time of peptide bond formation,
simultaneous accommodation of two tRNAs at the ribosomal A and P sites
are required. Hence, compatibilities of adjacent tRNAs at these two sites
should play a role in translation rate determination and it may depend to
some extent on the nature of the bond formation [152, 153, 154]. Buchan et
al. found that, the tRNA used at the ribosomal A site has a strong influence
in determining pairing preferences [155].

However, the translation efficiency of a particular codon-pair is independent
of the frequency of usage of individual codons in that pair [9, 156]. Gutman
et al. demonstrated that, codon pair bias is directional (bias for pair A-B
and pair B-A are independent of each other) and restricted to adjacent codons
[150, 157]. They also suggested that, highly expressed genes tend to avoid over-
represented codon pairs (along with avoiding infrequent codons [158, 159]).
The effect of codon-pair bias along with codon usage bias is used in synthetic
attenuated virus engineering (SAVE) [9]. It would be interesting to study the
impact of codon-pair bias on ribosome residency time.

85

Figure 6.1: 19 codon window with A at the tenth position. We collect reads
at the window with A being in the first position, second position, ..., tenth
position. Assign the collected data to two different codon-pairs: CA and AB,
where CA corresponds to the data-set with reads collected at the second codon
of the pair (set2) and AB corresponds to the set with reads collected at the
first codon of the pair (set1).

If we try to analyze the effect of each individual codon-pair on ribosome
footprint pileup, our analysis outcome may suffer from the biases introduced
by too few footprint reads for some codon-pairs. Moreover, usage bias of
individual codons may dominate over the combined effect of a particular codon
pair. Hence, we came up with a novel idea to naturally normalize out the
impact of codon usage bias effect on the codon-pair bias analysis.

6.1.1 Data collection

Consider a 19-codon window around codon A (fig. 6.1). Suppose the codon
ahead of A is C (at position 9 of the window) and the codon following A
is B (at position 11 of the window). We collect reads at the window, with A
being in the first position (10 codon read-window starting at position 10 of the
19-codon window), second position, ..., tenth position (10 codon read-window
starting at the first position of the 19-codon window). Data is collected in a
way similar to that explained in sec. 5.5 of chapter 5.

We assign reads at A to two different pairs CA and AB. Reads for CA goes
into one data-set (set2, which specifies reads at C2 for all pairs of the form
C1C2) and reads at AB goes into another data-set (set1, which specifies reads
at C1 for all pairs of the form C1C2). This way, we collect data for all the 3721
codon pairs (excluding pairs with stop codons) into two sets - set1 and set2.

6.1.2 Data analysis

We considered 3 different codon-pair bias scoring methods:

86

Figure 6.2: Codon pair bias analysis. Consider a read-window of 10 codon
length. (A) Codon A is immediately being followed by B. (B) Codon B is
immediately ahead of A. We collect data at the window with codon A being
in position 1, 2, ..., 10. Collected data is normalized and assigned to set1 for
pair AB and to set2 for pair BA. Reads at A from set1 will differ from the
reads at A from set2 based on the bias introduced by the pairs AB vs BA.

• Classic - Ranks codon-pairs based on the abundance of the pair in-frame.

ScoreClassic = ScoreFrame0

• Gap - Assigns scores to codon pairs based on the abundance in-frame vs
out of frame.

ScoreGap = ScoreFrame0 − (ScoreFrame1 + ScoreFrame2)/2

• Signal - Ranks codon-pairs by the average score in all three reading
frames.

ScoreSignal = (ScoreFrame0 + ScoreFrame1 + ScoreFrame2)/3

The formula to calculate the score of a codon pair at a particular reading
frame (frame - 0/ 1/ 2) is as follows [9]:

ScoreAB = ln
F (AB)

F (A)×F (B)
F (X)×F (Y)

× F (XY)

87

Figure 6.3: Mean codon pair statistics of high vs low group: classic scoring
method. The number of codon pairs in each group were 207. Left: Equal
weight analysis. Right: Weighted by frequency.

Figure 6.4: Mean codon pair statistics of high vs low group: gap scoring
method. 189 codon pairs were considered in each group. Left: Equal weight
analysis. Right: Weighted by frequency.

Here, codons A and B code for amino acids X and Y respectively. F rep-
resents the frequency of individual entity being considered at a particular
reading frame.

For each of the scoring methods described above, we do the following:
We consider pair of codon pairs of the form AB vs BA, where the scores

of these pairs are of opposite sign (if AB is positive, then BA is negative and
vice versa). Next, we place these codon pairs into two different groups - high
vs low ; the pair with positive score goes into the high group and the one with
negative score goes into the low group. We ignore pairs of the form AA or
BB. If the frequency of appearance of any of the codon pairs (AB or BA) is
below the minimum threshold frequency (30), we ignore both pairs.

88

Figure 6.5: Mean codon pair statistics of high vs low group: signal scoring
method. Each group had 177 different codon pairs. Left: Equal weight anal-
ysis. Right: Weighted by frequency.

Next we calculate mean codon-pair RRT of each group from the previously
collected data-sets. For a pair of the form (AB, BA), we consider statistics
around A (fig. 6.2). For pair AB we collect data from set1, as it specifies
reads at C1 for all pairs of the form C1C2. For pair BA, we collect data from
set2, which specifies reads at C2 for all pairs of the form C1C2. Similarly we
collect data for each pair in the two group and then compute the mean score
of each group. The way we are doing our analysis, codon usage bias should
automatically be nullified or equally distributed in both group, if we assign
equal weight to each codon pair. Only difference in the pair-analysis should
be based on whether B is ahead or after A. Similar claim can be applied for
all other paired codon-pairs (e.g. CD vs DC).

We performed our analysis in two different ways:

• Equal weight analysis – Every pair contributes equally. Hence, the mean
codon usage RRT scores for both high and low groups should show sim-
ilar pattern.

• Weighted by frequency – Pairs get weights based on the frequency of
appearance. Hence, the patterns for high and low groups may vary
a little based on the difference in the frequency of usage of individual
codon pairs.

For further illustration see sec. B.3.

Now, if codon-pair bias has no impact on the translation process, both high
and low groups should show similar peaks or valleys (similar to codon usage
RRT for the groups). However, in our analysis we see different valley depth
for two groups in each of the scoring methods. Fig. 6.3 is showing the RRT

89

statistics of high and low groups considering classic scoring method, which
gives positive weight to the in-frame codon pair frequency. 207 different codon
pairs were considered in each group. The left plot is showing the statistics for
equal weight analysis and the right one is for weighted analysis. Mean RRT at
each codon position and the corresponding p-values are listed in table 6.1 and
in supplementary table A.9 (p-value computation method is described later).
High in classic represents codon pairs over-represented in-frame, while low
represents codon pairs under-represented in-frame. Here, we see no significant
peak or valley at position 6 of high group (p-value = 0.379). However, signifi-
cantly deep valley is noticed at position 6 for the low group (p-value = 0.001).
For the weighted analysis, p-values at position 6 of group high and low are
respectively 0.13 and 0.001.

Fig. 6.4 is showing the corresponding statistics considering gap scoring
method, 189 codon pairs were considered in the analysis. Gap assigns positive
weights to the in-frame frequency of codon pairs, while giving negative weights
to the out of frame frequency of the pairs. Hence, codon pairs in low group
are under-represented in-frame, while over-represented out of frame. In this
case we see similar pattern as the classic scoring method, with an even deeper
valley at position 6 for the low group. For group high, p-value at position 6
is 0.784 and for group low, it is 0.001 (see table 6.1 for complete statistics).
Considering weighted analysis, we get a p-value of 0.284 at position 6 of the
high group and 0.001 for low group (supplementary table A.9).

Fig. 6.5 is showing the RRT statistics considering signal scoring method,
177 codon pairs were used in the analysis. For signal, high group represents
codon pairs over-represented in all three coding frames and low group has
codon pairs under-represented in all three frames. Here, group high is showing
a significantly deep valley at position 6 (with a p-value of 0.001). However,
in case of group low, though we see a valley at position 6, it is not significant
(p-value = 0.26). Hence, we see a reversal in the pattern for high vs low group
when considering signal scoring method. In case of weighted analysis, for the
high and low groups, we get p-values of 0.001 and 0.515 respectively. Complete
statistics have been shown in table 6.1 and supplementary table A.9.

Our earlier analysis on measuring the decoding rates of codons showed
that, ribosome moves faster over more common codons (chapter 5). For codon
pairs, we see the reverse pattern (considering classic and gap scoring methods).
According to Irwin et al., over-represented codon pairs translate slowly com-
pared to under-represented codon pairs [151]. When considering codon pairs
under-represented in-frame, our statistics for low codon pair group shows sim-
ilar pattern, much deeper and statistically significant valley compared to the
codon pair group high. On the other hand, for signal scoring method, we see

90

less reads (or deeper valley) at position 6 of group high compared to that for
group low. As based on the statistics of other two scoring methods, valley
depth at abundant codon pair group is insignificant, valley at position 6 for
the signal scoring method could be because of the codon pairs over-represented
out of frame.

However, nature generally optimizes sequences to maximize the amount
of protein production. According to Coleman et al., under-represented codon
pairs decrease the rate of protein translation [9]. However, faster translation
usually leads to increased protein production. One potential reason behind
the selection against the under-represented codon pairs could be to control
the rate of missense translation. Various in vivo and in vitro experiments sug-
gest that, error in the translation process is very rare and selection acts against
the mistranslation [160, 161, 162]. Ribosomal frame-shifting and ribosome by-
passing both contribute to the global error frequency of translation process,
which are highly controlled by the gene control mechanism. Though frame-
shifting can be beneficial for some viruses and retrotransposons [163], these
are exceptions to the natural process and occur very rarely (less than 1 per
10000 codons) [164]. Hence, context of the sequences triggering frame-shifting
events are highly avoided in the coding regions of the genes. In Saccharomyces
cerevisiae, hepta-nucleotide sequences triggering +1 frame-shifting are signifi-
cantly under-represented in the open reading frame [165].

Part of the coding sequences that slow down ribosomal movement (termed
as choke points) reduces the probability of frame-shifting events [166]. On the
other hand, part of coding sequences aiding in faster ribosomal transaction
(slippery sequences), often cause the translating ribosome to slip and skip few
bases, and as a result ends up reading a completely different frame thereafter
[Wik]. Hence, valley at position 6 (in fig. 6.3, 6.4, 6.5) can alternately be
due to the effect of frame-shifting event. In this latter case, it would mean
ribosome slipped more often at those codon pair positions, which resulted in
missing reads or lack of reads. Codon pairs with positive scores in signal
scoring method may have been chosen more often out of frame, to compensate
for (or to correct) an accidental shift of the ribosome from the coding frame.

To validate any of the hypotheses explained earlier, further evidence is
needed in favor of that hypothesis. It remains as an interesting future challenge
to deal with.

6.1.3 P-value computation

Permutation method was used to calculate the p-values at the codon positions
of each codon pair group. Rather than assigning codon pairs to high vs low
group based on the abundance of the pairs, pair of codon pairs of the form AB

91

Table 6.1: Mean RRT of codon pair groups, considering scoring methods:
classic, gap, signal.

Scoring method - classic:

Position high p-value (high) low p-value (low)

1 0.098 0.037 0.100 0.334
2 0.101 0.027 0.104 0.001
3 0.101 0.812 0.103 0.282
4 0.100 0.318 0.100 0.555
5 0.099 0.520 0.099 0.482
6 0.097 0.379 0.093 0.001
7 0.099 0.862 0.102 0.001
8 0.099 0.022 0.103 0.038
9 0.102 0.842 0.098 0.001
10 0.103 0.006 0.099 0.569

Scoring method - gap:

Position high p-value (high) low p-value (low)

1 0.100 0.474 0.098 0.12
2 0.102 0.470 0.106 0.001
3 0.100 0.904 0.101 0.835
4 0.096 0.349 0.098 0.907
5 0.098 0.518 0.097 0.104
6 0.096 0.784 0.089 0.001
7 0.099 0.941 0.105 0.001
8 0.102 0.829 0.104 0.371
9 0.100 0.818 0.098 0.004
10 0.105 0.218 0.105 0.201

Scoring method - signal:

Position high p-value (high) low p-value (low)

1 0.100 0.953 0.102 0.753
2 0.103 0.002 0.104 0.001
3 0.101 0.788 0.102 0.642
4 0.102 0.107 0.101 0.438
5 0.099 0.608 0.099 0.705
6 0.091 0.001 0.095 0.26
7 0.098 0.31 0.100 0.146
8 0.102 0.087 0.100 0.475
9 0.102 0.245 0.099 0.06
10 0.102 0.179 0.098 0.064

92

Figure 6.6: Pearson, Spearman and Kendall Tau correlation plot for Sac-
charomyces cerevisiae RNA secondary structure energy vs ribosome footprint
reads (read-window size: 1 and RNA secondary structure energy window size:
3). Reads at each gene were normalized by the average reads per codon of
that gene. Left: correlation plots for offsets in the range, −20 <= x <= 20.
Right: correlations for offsets in the range, −100 <= x <= 100.

vs BA were assigned randomly to high or low group.
Next, the mean RRT of high group with randomly chosen codon pairs

were compared to the mean RRT of the high group with abundant codon
pairs. Similarly mean RRT of the low group with randomly assigned codon
pairs were compared to the mean RRT of the low group with rare codon pairs.
1000 random permutations of the codon pairs were considered to calculate
the p-values of each codon pair group. Table 6.1 shows the mean RRT and
p-values of each codon pair group for equal weight analysis. Supplementary
table A.9 shows the corresponding statistics considering weighted analysis.

6.2 RNA secondary structure effect on ribo-

some profile data

Translation of an mRNA is a complex process, which occurs in a non-uniform
rate. RNA secondary structure plays critical role in this translation process
[8, 12, 13, 167]. Katz et al. [168] studied the biases exhibited by the natu-
ral mRNAs to local RNA secondary structure and found that, Saccharomyces
cerevisiae shows statistically significant biases in favor of local RNA structure
measured by the folding energy. Each folded structure in an mRNA sequence
must unwind as the ribosome progresses through it. Hence, its speed of traver-
sal may vary based on the strength of the bonded structure. We are interested
in predicting the correlation of the RNA secondary structure with ribosome

93

Figure 6.7: Correlation plot for Saccharomyces cerevisiae RNA secondary
structure energy vs reads per codon at control data-set using Pearson, Spear-
man and Kendall Tau correlation measures. Left: randomly generated read
data-set, no significant pattern in the correlation was observed. Right: wild-
type mRNA-seq data-set, the data shows significant two dip pattern similar
to the real ribosome profile data-set, but to a lesser extent.

footprint pile-ups.

6.2.1 Data collection and preprocessing

We downloaded PARS assisted folded RNA secondary structures of Saccha-
romyces cerevisiae genes from Segal lab of Computational Biology [169]. Loop
based energy of the folded structure is determined using ‘RNAeval’ from Vi-
enna RNA package. Next we have converted the hierarchical loop based energy
obtained from ‘RNAeval’ to per base energy using our own program. We con-
verted per nucleotide energy to per codon energy by taking the sum of the
energies of three nucleotides.

We also have downloaded raw PARS scores, which measures the probability
of a nucleotide to be in double-stranded conformation. Higher (more positive)
PARS score means increased probability of the nucleotide being in bonded
structure, which corresponds to the lower (more negative) energy state of the
structure. Hence we considered inverted PARS scores, to make it compatible
with the secondary structure energy during the correlation analysis.

We collected raw footprint read counts for each gene and mapped reads to
the ribosomal A site (position 6 of a 10 codon-length read, see chapter 5 for
detail). For each gene, we normalized reads across the gene by the average
reads per codon of that gene.

94

Table 6.2: Correlation table for Saccharomyces cerevisiae RNA secondary
structure energy vs ribosome profile data.

Offset Frequency Spearman P-value Pearson P-value K. tau P-value

-15 226760 0.0034 0.10483 0.0073 0.001 0.0024 0.0885
-14 227260 0.0012 0.57589 0.0058 0.006 0.0008 0.559
-13 227760 -0.0001 0.97756 0.0043 0.040 0.0000 0.972
-12 228260 -0.0009 0.67293 0.0029 0.165 -0.0006 0.652
-11 228760 -0.0032 0.13008 0.0010 0.635 -0.0022 0.11
-10 229260 -0.0063 0.00266 -0.0016 0.438 -0.0044 0.002
-9 229760 -0.0089 1.84E-05 -0.0041 0.05 -0.0063 6.03E-06
-8 230260 -0.0123 3.46E-09 -0.0069 0.001 -0.0087 4.29E-10
-7 230760 -0.0203 1.62E-22 -0.0120 7.41E-09 -0.0143 6.96E-25
-6 231260 -0.0381 5.08E-75 -0.0232 6.88E-29 -0.0268 5.234E-83
-5 231760 -0.0560 2.24E-160 -0.0344 8.97E-62 -0.0393 1.85E-177
-4 232260 -0.0647 5.24E-214 -0.0370 2.67E-71 -0.0454 1.53E-236
-3 232760 -0.0601 2.28E-185 -0.0298 4.95E-47 -0.0422 1.52E-204
-2 233260 -0.0533 2.68E-146 -0.0237 1.98E-30 -0.0374 2.02E-161
-1 233760 -0.0542 8.02E-152 -0.0258 9.06E-36 -0.0380 1.33E-167
0 234260 -0.0563 7.06E-164 -0.0304 3.59E-49 -0.0395 2.93E-181
1 233760 -0.0588 8.66E-178 -0.0340 1.13E-60 -0.0413 7.57E-197
2 233260 -0.0587 4.24E-177 -0.0337 1.26E-59 -0.0412 4.43E-196
3 232760 -0.0541 2.81E-150 -0.0312 2.86E-51 -0.0380 9.97E-167
4 232260 -0.0425 1.88E-93 -0.0239 1.35E-30 -0.0299 8.84E-104
5 231760 -0.0309 5.687E-50 -0.0168 5.35E-16 -0.0217 1.75E-55
6 231260 -0.0218 9.83E-26 -0.0124 2.71E-09 -0.0154 1.53E-28
7 230760 -0.0181 2.96E-18 -0.0110 1.35E-07 -0.0128 3.039E-20
8 230260 -0.0174 6.69E-17 -0.0100 1.49E-06 -0.0123 1.014E-18
9 229760 -0.0169 5.35E-16 -0.0092 1.05E-05 -0.0119 1.08E-17
10 229260 -0.0151 4.95E-13 -0.0083 7.22E-05 -0.0106 2.14E-14
11 228760 -0.0132 2.95E-10 -0.0068 0.0012 -0.0093 2.702E-11
12 228260 -0.0115 4.32E-08 -0.0056 0.007 -0.0081 6.94E-09
13 227760 -0.0108 2.34E-07 -0.0052 0.0123 -0.0076 4.48E-08
14 227260 -0.0103 8.62E-07 -0.0054 0.01 -0.0073 1.88E-07
15 226760 -0.0105 6.27E-07 -0.0050 0.02 -0.0074 1.35E-07

95

6.2.2 Data analysis

We considered top 500 Saccharomyces cerevisiae genes based on the total
number of reads per gene. For each gene, we do the following analysis:

Let us consider a read-window of size R and a secondary structure energy
window of size S. Now, for each codon-position C of a gene G, we assign the
average reads at window (C − r : C + r) to C, where r = R

2
. Similarly,

we calculate average secondary structure energy of the window (C + x − s :
C + x + s) for codon C, where s = S

2
and x is an offset from the codon

position. The idea is to find the strength of the correlation of FTP read with
secondary structure energies at different offsets (x) at both 5′ and 3′ end of
the codon-window being considered.

Three different correlation measures were considered:

• Pearson correlation – measures linear correlation (or dependence) be-
tween two variables.

• Spearman’s rank correlation – determines the monotonic relationship be-
tween two variables.

• Kendall’s tau correlation – rank based correlation measure, calculates
the strength of the dependence between two variables. For a set of
observations of size N: τ = Nc−Nd

1
2
N(N−1) , where Nc = number of concordant

pairs and Nd = number of discordant pairs.

Correlation analysis was performed using python scipy package stats.

The analysis was performed for different values of R and S. Most interesting
pattern was obtained for small smoothing windows (i.e. 0 < R <= 3, S = 3).
Fig. 6.6 is showing the correlation plot for R = 1 and S = 3. Here, we have
shown correlation values for different offsets (x). The left figure is showing the
correlation scores for offsets in the range −20 <= x <= 20 and the right one
is showing the correlation scores for offsets in the range −100 <= x <= 100.
We see a two dip pattern for each of the correlation measures considered in
the analysis, one centered around 4 codons upstream (pearson corr. score =
−0.03705 with a p-value of 2.68e−71, spearman corr. score of -0.06472, p-value
= 5.25e−214) and the other one around 1 codon downstream (pearson corr.
score = −0.03398, p-value = 1.13e−60, spearman corr. score of -0.05875 with a
p-value of 8.66e−178). Table 6.2 lists the correlation scores and corresponding
p-values at different offsets of the secondary structure energy-window from
the footprint read-window, for all three correlation measures. We re-did the
analysis considering inverted PARS scores of the RNA sequences instead of

96

Figure 6.8: Compare the tRNA auto-correlation effect - average reads for
tRNA repeat vs tRNA switch. Left: average reads at different tRNA-pair
distances. Average reads for cases with tRNA switch (blue crosses) are higher
compared to the average reads for cases where tRNA is re-used (red stars).
Right: Frequency of tRNA-pairs at different distance ranges.

using the energy of the bonded structures, which confirmed the two dip pattern
(see fig. B.3).

To verify the results, we repeated the analysis using in silico random data
set and wildtype mRNA-seq data (fig. 6.7, B.4). We did not find any cor-
relation between the structure energy and the reads at the random data-set.
Pearson correlation score at 4 codons upstream was 0.001 with a p-value of
0.498 and 1 codon downstream it was 0.002 with a p-value of 0.168 (see supple-
mentary table A.10 for complete statistics). However, for wildtype mRNA-seq
data, we have seen a quite similar pattern with less prominent valleys. Pearson
correlation score at 4 codons upstream was -0.0157 with a p-value of 1.44e−12

and 1 codon downstream it was -0.0177 with a p-value of 1.36e−15 (supple-
mentary table A.11). Similar correlation pattern for both profile data and
mRNA-seq data may indicate bias introduced by the data generation method,
as the same sequence library preparation method was used to generate both of
these data sets, which made it harder to predict the effect of RNA secondary
structure on ribosomal pauses at coding regions.

6.3 tRNA auto-correlation effect analysis

mRNA translation is a complex and energy consuming process, and efficiency
and accuracy is very important in this process. For better understanding of
how translation was shaped and optimized during evolution and how it is af-
fected by any alteration to the natural process, proper knowledge of allocation

97

Table 6.3: Average reads at ‘tRNA repeat’ vs ‘tRNA switch’

Distance tRNA repeat tRNA switch p-value

1-10 0.855 1.212 0.001
11-20 0.913 1.177 0.001
21-30 0.920 1.163 0.001
31-40 0.964 1.204 0.001
41-50 0.948 1.212 0.001
51-60 0.994 1.278 0.001

and interactions of various resources are important [170].
Several factors contribute to the optimization of the translation process.

Among those, codon usage bias effect on translation optimization has been
studied extensively [6, 51, 52, 88, 89, 90, 91, 92, 93, 94, 171]. The claim is
that, frequent codons improve translation efficiency [8, 158, 171]. However,
it is not the only factor to be considered in translation optimization. There
are evidences of highly expressed genes having lower codon usage scores [172].
Among other factors, codon pair bias and strength of the folded RNA sec-
ondary structures are considered to be important in controlling translation
efficiency [8, 12, 13, 142, 146, 147, 150, 151, 167].

Along with optimizing the mRNA sequence, structures and concentrations
of various molecules participating on the translation process have been studied
widely [52, 54, 126, 129, 152, 154, 155, 173]. At the same time, increasing
attention is being given on the movements of the tRNA molecules surrounding
an active ribosome [10, 174, 175, 176, 177, 178]. During the course of an
active ribosome halting at a codon and then progressing to the next one,
availability of the right tRNA at the right moment is critical for efficient and
accurate translation. As the cell interior is highly crowded [179], tRNAs may
not diffuse away freely through the cytoplasm. Stapulionis et al. suggested
a channeled tRNA cycle during protein synthesis in mammalian cells [175].
According to Cannarozzi et al. [10], tRNA re-use plays a significant rule in
this optimization process as it minimizes the time to match the proper tRNA.
Based on the study on S. cerevisiae they found that, autocorrelation improves
the translation efficiency significantly. Later, tRNA recycling was proven to be
beneficial at the translation mechanism of other organisms as well [177, 178].

However, no study have been performed yet on genome wide tRNA re-
cycling phenomena using ribosome profile data. If re-use of a tRNA takes
less time than another already charged tRNA diffusing into the area, then
less reads should be observed for the repeat of the tRNAs compared to the
situation where a tRNA flip occurs. We have studied the impact of tRNA

98

Figure 6.9: Compare the tRNA auto-correlation effect - reads at tRNA repeat
vs tRNA switch for pairs of tRNAs with highly abundant codons (codon-usage
>= 16.0). Left: read statistics for tRNA repeat vs tRNA switch with highly
abundant codons at both tRNA positions. Average reads at tRNA switch
cases (blue crosses) are significantly higher compared to the average reads at
repeats of the tRNA (red stars). Right: frequency of tRNA-pairs with highly
abundant codons at different distance ranges.

auto-correlation on ribosome profile data.
We considered two different situations:

• Type 1: tRNA repeat vs tRNA switch – Occurrences of each amino acid
having more than one tRNA were divided into two groups: consecutive
tRNA repeat vs switch of the tRNA at the next occurrence. If we com-
pare the reads at the second tRNA, we should observe less reads at the
repeat of the tRNA compared to the reads at cases where a tRNA switch
occurs.

• Type 2: tRNA repeat distance impact – For each amino acid, occurrences
of 2 consecutive tRNA repeats were considered. Consider a situation
where tRNA t1 repeats twice (t1...t1...t1). Let the distance between the
first repeat is d1 and the distance between second repeat is d2. If d1 >
d2, then we should see less reads at d2 compared to the reads at d1,
as it would take less time for the ribosome to find the correct tRNA.
Conversely, if d1 < d2, then we should see more reads at d2. Cases having
zero read either at the second or third tRNA position were ignored.

99

Table 6.4: Average reads at ‘tRNA repeat’ vs ‘tRNA switch’ for different
codon-usage groups.

Highly abundant codon group:

Distance tRNA repeat tRNA switch p-value

1-10 0.7412 0.9233 0.001
11-20 0.8342 0.9601 0.001
21-30 0.8292 0.9306 0.001
31-40 0.8725 1.0092 0.001
41-50 0.8597 1.0117 0.002
51-60 0.8807 0.9005 0.189

Moderate usage codon group:

Distance tRNA repeat tRNA switch p-value

1-10 1.1647 1.3838 0.001
11-29 1.1773 1.2973 0.279
21-30 1.1422 1.2755 0.012
31-40 1.1449 1.3322 0.289
41-50 1.0621 1.2721 0.076
51-60 1.0978 1.2355 0.443

Under-represented codon group:

Distance tRNA repeat tRNA switch p-value

1-10 1.650 1.999 0.001
11-20 1.403 1.688 0.002
21-30 1.410 1.555 0.001
31-40 1.394 1.588 0.024
41-50 1.376 1.764 0.015
51-60 1.330 1.989 0.003

100

Figure 6.10: Compare the tRNA auto-correlation effect - reads at tRNA repeat
vs tRNA switch for pairs of tRNAs with moderately available codons (10.0 <=
codon-usage < 16.0). Left: read statistics for tRNA repeat vs tRNA switch.
Average reads at tRNA switch cases (blue crosses) are significantly higher
compared to the average reads at the repeats of the tRNA (red stars), the
effect is maximum till the tRNA pair distance of 10. Right: frequency of
tRNA-pairs with moderately available codons at different distance ranges.

6.3.1 Compare average reads at tRNA repeat vs tRNA
switch

For each gene, reads were normalized by the average reads at that gene. Top
10% of the genes were ignored, based on the RPKM measure. Fig. 6.8 is
showing the read statistics for type 1 analysis - occurrences of consecutive
tRNAs. We would expect auto-correlation effect to be more prominent at a
shorter distance. In the left image we see, when tRNA is re-used (red stars),
average reads are much lower than the case when a tRNA switch occurs (blue
crosses). The right image is showing the frequency of the cases considered at
each tRNA-pair distance. Mean of the reads at different distance ranges for
both ‘tRNA repeat’ and ‘tRNA switch’ and the corresponding p-values of the
differences in average reads of these two groups are shown in table 6.3.

Permutation statistics were used to compute the p-values in different buck-
ets (as shown in table 6.4). We randomly swapped average reads at each tRNA
pair distance from ‘tRNA repeat’ and ‘tRNA switch’ cases. Let a total of N
‘tRNA repeat’ and ‘tRNA switch’ cases were considered at a tRNA pair dis-
tance D, of which X cases are for ‘tRNA repeat’ and Y cases are for ‘tRNA
switch’. To compute the p-value, we randomly assigned X cases from the N
available cases to the ‘tRNA repeat’ group and Y cases to the ‘tRNA switch’
group. Next, we computed the mean of the reads at different distance buck-

101

Figure 6.11: Compare the tRNA auto-correlation effect - reads at tRNA repeat
vs tRNA switch for pairs of tRNAs with rare codons (codon-usage < 10.0).
Left: read statistics for tRNA repeat vs tRNA switch. Average reads at tRNA
switch cases (blue crosses) are significantly higher compared to the average
reads at repeats of the tRNA (red stars). Right: frequency of tRNA-pairs
with rare codons at different distance ranges.

ets and compared the mean with the previously calculated means of ‘tRNA
repeat’ and ‘tRNA switch’ cases. The whole process was repeated 1000 times
to get the final p-values at each distance bucket.

To test whether codon usage bias is affecting the analysis or not, we sep-
arated the cases into three different groups. In the first group (high), con-
secutive occurrences of tRNAs with highly abundant codons at both tRNA
positions were considered (usage >= 16.0). Pairs of tRNAs with codon-usage
in the range of 10.0 to 16.0 were considered in another group (mid) and oc-
currences with codon-usage less than 10.0 were considered in the third group
(low). Fig. 6.9 is showing the tRNA statistics for highly abundant codon-usage
group. Fig. 6.10 and 6.11 are showing the statistics for tRNA pairs with mod-
erately available and rare codons at both tRNA positions. In all of these cases
we again see that, the average reads for ‘tRNA repeat’ is lower compared to
the average reads for ‘tRNA switch’.

Mean read statistics and corresponding p-values at different distance ranges
for each of these groups have been shown in table 6.4. Here cases were divided
into 6 buckets based on the tRNA repeat/ switch distance, and the average
of all the values in that bucket have been considered. We see that, the auto-
correlation effect is independent of the codon usage effect. Note from table 6.4,
the difference between mean reads is maximum for under-represented codon
group. Re-use of the already available tRNA can be particularly beneficial for
this group, as finding another rare tRNA would take more time. Also note,

102

Figure 6.12: Triangles away from the matrix diagonal M(i, i), cases for l = −6
at left, for l = −5 in the middle and for l = −4 at right.

the average reads for both groups with rare codons have been increased by
almost 1.5 times from the average reads at highly abundant codon group and
auto-correlation effect is also visible.

6.3.2 tRNA repeat distance impact on auto-correlation

Auto-correlation effect decays slowly with distance [10]. To analyze the effect
of tRNA pair distance, we considered 2 consecutive tRNA repeats (t1...t1...t1)
at positions x0, x1 and x2 of an amino acid sequence (type 2 analysis). Let,
x1 − x0 = d1 and x2 − x1 = d2. The claim is that, if distance d1 is larger than
d2 and if auto-correlation is effective till distance d2, then ribosome would
spend relatively less time at d2, and vice versa. Let, reads at x1 is r1 and
at x2 is r2. We considered all cases with both r1 and r2 greater than zero.
Now, consider a 2-dimensional matrix M(I, J), where I = max(D1) for all
d1 ∈ D1 and J = max(D2) for all d2 ∈ D2. Each entry in M has the value
M(d1, d2) = log(r2

r1
). If multiple values map into same matrix location, that

entry gets the average of all of these values and later in the analysis is weighted
by the frequency of occurrence.

If we consider a diagonal along the matrix, negative values should be more
common below the diagonal till a certain range where auto-correlation effect is
visible. Similarly positive values should be more common above the diagonal.
Consider a triangle at the two extreme corners of the matrix M (fig. 6.12).
We consider different offset distances. In fig. 6.12, for l = −6 only one entry
at the corner is considered. For l = −5, size of the triangle increases by one
more diagonal row toward the main diagonal and so on. We compared the red
vs blue intensities at the triangles considered at two extreme corners of the

103

Figure 6.13: Auto-correlation effect analysis at triangles away from the matrix
diagonal. Left: Frequency of consecutive tRNA repeats. Right: average of the
log-ratios of the reads at the second tRNA repeat vs first tRNA repeat. Red
line with stars - distance of the second tRNA repeat is shorter than the distance
of the first tRNA repeat. Blue line with crosses - distance of the second tRNA
repeat is larger than the distance of the first tRNA repeat.

matrix (fig. 6.13). The intensity scores at these two triangles should be largely
different for smaller triangles (blue triangle should have more positive values
indicating more reads at the later tRNA and red one should have more negative
values indicating more reads at the earlier tRNA). However, as the size of the
triangle increases, it will cross the auto-correlation distance boundary and we
expect to see no difference in these two curves. We see from the figure that,
till approximately around l = −45, red and blue curves are showing expected
patterns and after that the effect diminishes.

6.4 Discussion

mRNA translation is a complex process which involves active participation of
various molecules. It is critical to understand the whole process to control
the amount of protein production, to study genetic diseases and to aid in suc-
cessful vaccine design. Extensive studies are going on to properly understand
the whole mechanism. We work on optimizing (or de-optimizing) the steps in
mRNA translation process, to aid in controlling the amount of protein pro-
duction. Hence, we are interested in studying delays introduced by various
participating molecules at different steps of the process.

Ribosome profile data gives us a clear picture of the active ribosome posi-
tions on a translating mRNA. From the ribosome footprints we can determine
approximately how much time ribosome spent at each codon. In an ideal world,

104

it would spend equal time at each codon. However, we see large variability in
the delays it makes while traveling along the sequence (see fig. 5.1, B.1, B.2).
Several factors may affect the speed of an active ribosome. We studied the
impact of codon usage and found delays introduced by synonymous codons
are well-correlated with the usage bias of the codons (chapter 5). Speed of the
translation largely depends on the availability of various resources. Optimal
use of these resources (such as, tRNA recycling) may aid in faster translation
(sec. 6.3). Context surrounding a codon also impacts the translation process
(sec. 6.1). We also have worked on determining the impact of RNA secondary
structure (sec. 6.2). Amino acid type can also impact the speed of translation.
Significantly large peak at the ribosomal P-site was noticed for codons coding
for proline (see chapter 5 for detail). Presence of the start codon (coding for
methionine) can also be a factor. Ribosomal pauses are largely determined by
any one or combination of these factors.

It is hard to exactly quantify the contribution of each of these factors in
ribosomal delays, as it will largely depend on the surrounding environment
at which the translation is taking place. Moreover, nature may optimize one
factor to compensate for the other. Recent study by Gorochowski et al. showed
that, codons belonging to abundant tRNAs are preferentially used in strongly
bonded regions and codons read by less abundant tRNAs are used in less
structured regions [173]. See appendix B.1 for per codon plot of different
factors for yeast genes YAL038W and YKL152C ; read pile-up varies largely
with the variation of the factors affecting the translation mechanism.

Contribution of each factor in the ribosomal speed may be correlated in
a global manner. We have worked on identifying impact of several known
factors affecting the translation process. However, there are issues yet to
explore. Once the effect of individual factors have been figured out, it would
be interesting to study the combined effect - nature may often trades off one
factor to compensate for the effect of another. Detailed understanding of
these factors may aid in solving unanswered questions regarding the protein
synthesis and its optimization process. Further, it may open up new biological
facts yet to explore.

105

Chapter 7

Conclusion

Synthetic biology is a relatively young field, being popular with days because
of its contributions to the modern science. It combines science and engineering
together, where the goal is to create new biological systems and functions not
available in nature and to find out how life works and how to use it to benefit
our society. It can also be defined as engineering technology based on living
systems [180]. It’s field of application is not limited to biological or medical
sciences, but also to take better care of the environment, design modern bio-
synthesized technology, and to provide better source of nutrition to the growing
population.

In 1978, Szybalksi and Skalka wrote about synthetic biology:
The work on restriction nucleases not only permits us easily to construct

recombinant DNA molecules and to analyse individual genes, but also has led
us into the new era of ‘synthetic biology’ where not only existing genes are
described and analyzed but also new gene arrangements can be constructed and
evaluated [181].

The question arises, why engineering of synthetic biology is still expen-
sive and unreliable? According to Drew Endy, either we do not have much
knowledge about biological systems or these are to complex to reliably engi-
neer [182]. Alternately, evolution might not have optimized natural biological
systems for the purposes of human understanding and engineering [183].

However, the hope is that tremendous improvements are being achieved
with time. The cost for large-scale synthesis is dropping rapidly, and is now
about $0.24/base for kilo-base sequences. Researchers can now successfully
design synthetic viruses [184] and can design vaccines by synthesizing atten-
uated forms of the viruses [9, 23]. Complex gene circuits are being formed
to detect changes in the cancer cells [185]. Novel drugs are being discovered
and expensive drugs are being made cheap and easily available through the
synthesis of rare natural products [186, 187].

106

Though synthetic biology is more about doing or building, proper knowl-
edge of what role a particular biological component plays and how various
functional components interact with each other is critical. We work on both
design and explore phase of synthetic biology. We analyze biological data to
better understand the role of different cellular components and their impact
on gene translation mechanism. At the design phase we utilize the explored
knowledge to optimize or control gene expression.

During the gene translation process, large number of unique functional
components interact in various ways. To control the amount of protein produc-
tion, controlling the gene expression mechanism is essential. Through years of
experiments, researchers determined several factors affecting translation pro-
cess, either by improving or degrading the amount of protein production. One
widely accepted factor is codon usage bias. However, there is no direct evi-
dence of how codon usage bias affects the translation process. Through our
analysis of ribosome profile data, we showed that more frequent codons (be-
longing to tRNAs with higher concentration) are translated relatively faster.
We further have shown that, GC-rich codons are relatively slow in the trans-
lation process. Type of amino acid also plays a role in the translation process.
We found proline (which has a different chemical structure compared to other
amino acids) is slow at the ribosome P-site, where the peptide bond is formed.

We further have worked on analyzing ribosome profile data to evaluate the
impact of codon pair bias. The concept of codon pair bias has been utilized by
the researchers to design vaccines [9, 23]. Here the idea is to change the relative
frequency of the neighboring codons keeping the codon usage frequency same.
Some researchers suggested, over-abundant codon pairs translate relatively
slowly compared to under-represented codon pairs [151]. Other researchers
found, under-represented codon pairs decrease the rate of protein translation
[9]. The latter finding was attributed to the compatibilities of adjacent tRNAs
at the ribosome [9, 155]. In our analysis, less average reads (valleys) were
observed at the codon pair groups under-represented in-frame. Analysis of
the codon pair bias effect on ribosome profile data (considering abundance
of the pairs in frame vs out of frame) revealed a reversed pattern compared
to that for codon usage bias. This may indicate faster ribosomal transaction
at the under-represented codon pairs. On the other hand, codon pairs over
abundant in all coding frames also showed a valley at position 6 of the read
window. An alternate hypothesis of the effect of codon pair bias could be
attributed to the frame-shifting event. Probably the codon pairs causing more
frame-shifts are under-represented in-frame to avoid translation error, while
over-represented out of frame to overcome a shift of the ribosome from the
coding frame. Further evidence is needed to validate any of theses hypotheses.

107

The effect of secondary structure on message translation has been studied
by researchers for years [13, 15, 16, 17, 18, 167]. Some researchers have sug-
gested that, secondary structure is preferred at the 5’ end of the mRNA [8, 13].
Katz et al. found statistically significant correlation between natural mRNAs
and corresponding local secondary structures [168]. We worked on determin-
ing the per codon effect of the secondary structures at the coding regions of an
mRNA on an active ribosome. We found significant correlation at around 4
codons upstream and 1 codon downstream of the active ribosome position. We
did not see any such correlation for in silico random data. However, we have
seen quite similar correlation to a lesser extent for wildtype mRNA-seq data.
Hence we could not come up with a conclusion about the direct impact of
folded RNA secondary structure on ribosome speed. Part of the impact could
be due to the bias introduced by the sequence library preparation method.

We also have worked on predicting tRNA auto-correlation impact on ribo-
some profile data. Several in vivo experiments conducted on different organ-
isms found recycling of tRNAs beneficial for the translation process [10, 177,
178]. However, no genome wide study of the impact have been performed yet.
We analyzed high coverage ribosome profile data on 4801 Saccharomyces cere-
visiae genes. Our analysis results show that, on average reads at the positions
where a tRNA switch occurs are comparatively higher than at the positions
where previously used tRNA is repeated. Moreover, distance is also important
in this recycling process. Re-use of the tRNA at a shorter distance results in
a lower average reads compared to a repeat further apart.

The method of ribosome profiling has opened up new ways in front of
the researchers. As the ribosome is at the heart of the translation process,
detailed knowledge of where it pauses and how long it spends at each site
during the translation process will give us clear answers to many debated
questions and at the same time will guide us to factors not known yet. We
worked on predicting the impact of several factors. Interesting results came
out of the analysis, which may aid in clarifying some widely accepted concepts
in the translation mechanism. Our lab is further working on the project to get
deeper understanding of the whole mechanism.

We also have worked on statistical analysis of microarray data, which en-
ables to research on expression changes on a large set of genes. Through the
analysis of the same set of genes at different experimental conditions we can
broadly determine the behavior of the genes, and how it is impacted by the
environmental changes inside the cell. We worked on identifying housekeeping
genes and on predicting differentially expressed genes through the analysis of
Murine Gammaherpervirus 68 microarray data. Interesting facts about virus
life cycle came out of the analysis. Enrichment analysis of the differentially

108

Figure 7.1: Laboratory synthesis of energy optimized/ de-optimized yeast gene
YOR202W. Each row represents independent replicates of the designed max
or min structure sequence strains. Each column has different number of cells
per spot, 50000 cells per spot for the first column, following columns represent
serial three fold dilutions of the earlier columns. (Synthesized by: Justin
Gardin, B. Futcher Lab.)

expressed gene-sets would be interesting to get better understanding of the
functional profile of those gene-sets.

Along with analyzing biological data, we work on developing novel algo-
rithms to design optimized genes. We developed algorithm to design max
structure (min energy) and min structure (max energy) RNA sequences. Fold-
ing energy is an important factor in determining translation efficiency [21]. The
amount of secondary structure may aid in controlling the amount of protein
production from a given gene [8, 13]. Based on the laboratory synthesis of our
designed sequences, the amount of protein formed for max structured sequence
was less compared to the min structured sequence (fig. 7.1).

We also have worked on designing genes with maximum and minimum
tRNA auto-correlation (chapter 3). In our work, we have proposed a new
distance dependent measure of tRNA sequence auto-correlation (DICA), while
previous studies focused only on the number of tRNA changes [47, 48]. Using
our algorithms we have designed 5018 auto-correlation optimized yeast genes
considering distance between pairs of tRNAs into account.

Factors studied so far in our analysis cover only parts of the complex biolog-
ical processes involved in protein translation mechanism. We mostly covered
factors involved in the translation elongation step. However, overall translation
mechanism is significantly impacted by the initiation step [8]. Detailed study
of the factors involved in translation initiation and their impact on ribosome
profile data remains as an important future challenge.

109

Appendix A

Supplementary tables

A.1 Measurement of average decoding rates

of the 61 sense codons in vivo

Complete ribosome residence times for each codon at each of the 10 possible
codon positions in a 30 nt (or, for Ingolia data, 24 nt) ribosome footprint are
shown in table A.1, A.2, A.3, A.4 and A.5. Each table is based on data from
an independent biological experiment. Four of these experiments were done
during the course of this work, two experiments by JG and two experiments
by YC, while the fifth experiment was published by Ingolia et al. [85].

Table A.6, A.7 and A.8 are showing complete Ribosome Residence Times
for each codon at each of the 7 possible codon positions in a 21 nt ribosome
footprint. Each table is based on one of the three anisomycin datasets of
Lareau et al. [87].

A.2 Codon pair bias effect analysis on ribo-

some profile data

Weighted mean RRT of the high vs low codon pair groups have been listed in
table A.9. Three different scoring methods have been used for measuring the
abundance of a codon pair: classic, gap and signal.

110

Table A.1: Ribosome residence time analysis for all codons from the SC-lys
expt.

Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 Pos9 Pos10

CTC 0.0944 0.0956 0.0969 0.1063 0.0667 0.1892 0.0997 0.0932 0.0785 0.0798
CCC 0.0804 0.0879 0.0799 0.1089 0.1479 0.1715 0.0991 0.0866 0.0665 0.0712
GGG 0.1098 0.1003 0.0915 0.0810 0.0957 0.1609 0.0846 0.0840 0.1115 0.0808
AGG 0.1082 0.0720 0.0865 0.0875 0.0706 0.1595 0.0979 0.0873 0.1163 0.1143
ATA 0.0908 0.0882 0.1114 0.1106 0.0797 0.1567 0.1042 0.0887 0.0957 0.0741
GGA 0.0835 0.1083 0.0929 0.0794 0.1095 0.1558 0.0891 0.1003 0.0920 0.0892
TGG 0.1291 0.0892 0.0844 0.0945 0.0720 0.1526 0.0861 0.0852 0.1223 0.0846
GTG 0.1004 0.0972 0.0869 0.0782 0.0753 0.1519 0.1018 0.0979 0.1135 0.0970
CGC 0.1194 0.1054 0.1037 0.0883 0.0757 0.1453 0.0884 0.0901 0.0924 0.0912
CGA 0.0897 0.0912 0.0763 0.0882 0.1146 0.1447 0.1136 0.1133 0.0936 0.0747
CGG 0.1171 0.0745 0.0637 0.0854 0.1345 0.1436 0.0773 0.0839 0.1228 0.0972
TCG 0.1062 0.0875 0.0952 0.0909 0.0787 0.1427 0.1045 0.1019 0.1172 0.0752
CCA 0.0962 0.0888 0.0822 0.1145 0.1477 0.1382 0.0936 0.0914 0.0896 0.0578
ACA 0.0813 0.0874 0.0898 0.1044 0.1044 0.1347 0.0998 0.1117 0.1098 0.0766
CCG 0.1109 0.0839 0.0719 0.1150 0.1302 0.1312 0.0986 0.0808 0.0872 0.0904
GTA 0.0764 0.1025 0.1049 0.0962 0.1136 0.1306 0.0987 0.0939 0.0996 0.0835
GCA 0.0972 0.1074 0.0913 0.0982 0.1029 0.1285 0.1033 0.1033 0.0888 0.0790
CCT 0.0999 0.0914 0.0811 0.1101 0.1801 0.1271 0.0934 0.0840 0.0785 0.0543
TCA 0.1020 0.0994 0.1058 0.1058 0.1021 0.1264 0.0987 0.1013 0.0907 0.0677
TAC 0.1057 0.0837 0.0942 0.1040 0.0844 0.1252 0.1084 0.1032 0.0902 0.1010
TAT 0.0960 0.0852 0.1092 0.1169 0.1042 0.1251 0.1026 0.0941 0.1027 0.0641
GAG 0.0930 0.0922 0.0933 0.0851 0.0780 0.1247 0.0988 0.1030 0.1102 0.1218
CTA 0.0971 0.0943 0.1090 0.1216 0.0964 0.1246 0.1022 0.0947 0.0974 0.0627
CTT 0.1052 0.0938 0.1048 0.1277 0.0866 0.1238 0.0980 0.0998 0.0971 0.0632
TGC 0.1063 0.0958 0.1005 0.0858 0.0938 0.1228 0.0917 0.0991 0.0853 0.1189
GGC 0.1029 0.1075 0.0976 0.0918 0.1091 0.1215 0.0876 0.0956 0.0783 0.1081
CAG 0.1187 0.0786 0.0883 0.0858 0.0999 0.1151 0.1011 0.1034 0.1106 0.0985
ACG 0.1137 0.0920 0.0823 0.1006 0.0951 0.1116 0.1022 0.1053 0.0886 0.1086
AGT 0.0989 0.0872 0.0986 0.0972 0.0801 0.1104 0.1074 0.1059 0.1077 0.1067
AGC 0.0940 0.0830 0.0982 0.1176 0.0707 0.1092 0.0998 0.0944 0.0894 0.1438
CAC 0.1094 0.0911 0.0960 0.1015 0.0975 0.1082 0.1078 0.1092 0.0879 0.0915
TTT 0.0947 0.0778 0.1083 0.1088 0.1046 0.1048 0.1047 0.1060 0.1159 0.0743
GAA 0.0737 0.1114 0.1041 0.0908 0.0917 0.1041 0.0934 0.0983 0.0953 0.1373
AGA 0.0932 0.0826 0.0897 0.0851 0.0900 0.1013 0.1069 0.1038 0.1139 0.1335
TTC 0.1058 0.0903 0.1030 0.0956 0.0940 0.1000 0.1013 0.1025 0.0871 0.1204
GCG 0.1090 0.1107 0.0931 0.1030 0.0775 0.0995 0.1008 0.0993 0.0976 0.1095
TCC 0.1170 0.1047 0.1012 0.0942 0.0788 0.0989 0.1017 0.0993 0.0848 0.1195
TTA 0.0944 0.0823 0.1105 0.1185 0.1075 0.0985 0.1059 0.1028 0.1102 0.0693
TCT 0.1067 0.1028 0.1073 0.1021 0.1014 0.0981 0.1089 0.0985 0.0964 0.0777
CAT 0.0971 0.0943 0.1062 0.1139 0.1290 0.0930 0.1093 0.1000 0.0968 0.0604
GGT 0.1077 0.1290 0.1065 0.0963 0.1192 0.0926 0.0842 0.0940 0.1000 0.0705
ATG 0.1231 0.0854 0.0986 0.0934 0.0812 0.0923 0.1090 0.1022 0.1173 0.0975
ATT 0.0886 0.0894 0.1130 0.1203 0.1057 0.0922 0.1041 0.0992 0.1063 0.0813
TTG 0.1289 0.0917 0.0981 0.1074 0.0809 0.0920 0.0991 0.0982 0.1180 0.0857
CTG 0.1289 0.0919 0.0923 0.1161 0.0847 0.0916 0.1136 0.0894 0.1116 0.0798
AAT 0.0823 0.0851 0.1070 0.1073 0.1389 0.0879 0.1041 0.0896 0.0955 0.1023
AAA 0.0659 0.0797 0.1044 0.0937 0.1059 0.0878 0.1050 0.0909 0.0946 0.1720
CGT 0.1060 0.0892 0.0969 0.0925 0.0946 0.0875 0.1059 0.1108 0.1258 0.0908
CAA 0.0924 0.0954 0.1034 0.0994 0.1058 0.0872 0.1124 0.1012 0.1134 0.0894
GCC 0.1120 0.1226 0.0965 0.0996 0.0935 0.0861 0.1024 0.1028 0.0756 0.1090
GAC 0.0881 0.1171 0.1048 0.0932 0.0999 0.0851 0.0922 0.1120 0.0884 0.1192
TGT 0.1181 0.0909 0.0967 0.0904 0.1049 0.0813 0.1045 0.1017 0.1179 0.0936
GCT 0.1034 0.1274 0.0999 0.1041 0.1025 0.0809 0.0993 0.1041 0.0902 0.0880
ATC 0.1007 0.1077 0.1053 0.1050 0.0907 0.0804 0.0973 0.1033 0.0836 0.1259
ACT 0.0934 0.1056 0.1009 0.1174 0.1088 0.0778 0.1043 0.1062 0.0999 0.0857
GAT 0.0900 0.1275 0.1187 0.0959 0.1177 0.0757 0.0900 0.1050 0.0957 0.0839
AAC 0.0886 0.0823 0.0968 0.0978 0.1180 0.0756 0.1007 0.1023 0.0860 0.1518
GTT 0.0971 0.1200 0.1181 0.1030 0.0867 0.0754 0.1000 0.1050 0.1088 0.0858
GTC 0.1009 0.1190 0.1112 0.0965 0.0813 0.0754 0.1046 0.1019 0.0900 0.1191
AAG 0.0958 0.0763 0.1046 0.0920 0.0937 0.0741 0.1076 0.0956 0.1130 0.1473
ACC 0.1127 0.1094 0.1011 0.1109 0.0914 0.0697 0.1090 0.1043 0.0825 0.1090

111

Table A.2: Ribosome residence time analysis from the YPD1 (WT) expt.
Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 Pos9 Pos10

TGG 0.0922 0.0831 0.0793 0.1302 0.1126 0.1465 0.0818 0.0726 0.1127 0.0890
GGG 0.0996 0.0919 0.0826 0.0951 0.1004 0.1454 0.0800 0.0802 0.1070 0.1178
GGA 0.0876 0.1060 0.0883 0.0888 0.1232 0.1415 0.0854 0.0923 0.0959 0.0909
GAG 0.0957 0.1041 0.0838 0.0828 0.0819 0.1415 0.0874 0.1012 0.1226 0.0990
TAC 0.0874 0.0929 0.0984 0.1035 0.0946 0.1393 0.1056 0.1007 0.0975 0.0803
GGC 0.1079 0.1179 0.0997 0.0850 0.1058 0.1388 0.0798 0.0878 0.0714 0.1060
CCG 0.1161 0.0915 0.0678 0.1055 0.1534 0.1248 0.0901 0.0928 0.0853 0.0726
CCA 0.0967 0.0911 0.0883 0.1145 0.1574 0.1228 0.0984 0.0877 0.0875 0.0556
TCG 0.0951 0.0929 0.0897 0.1192 0.0852 0.1207 0.1021 0.1055 0.1137 0.0759
AGG 0.1150 0.0723 0.0929 0.1157 0.0650 0.1198 0.0863 0.0887 0.1157 0.1286
CGC 0.1372 0.1080 0.1183 0.1028 0.0807 0.1189 0.0914 0.0778 0.0844 0.0805
GAA 0.0824 0.1243 0.1005 0.0990 0.0781 0.1183 0.0905 0.0954 0.0977 0.1137
CCC 0.0961 0.0925 0.0870 0.1106 0.1698 0.1179 0.0955 0.0837 0.0747 0.0723
CTC 0.1077 0.1047 0.1163 0.1224 0.0809 0.1171 0.1044 0.0913 0.0795 0.0756
ACA 0.0859 0.0898 0.0967 0.1107 0.0950 0.1159 0.1052 0.1052 0.1041 0.0914
ATA 0.0926 0.0891 0.1062 0.1316 0.0765 0.1156 0.1045 0.0982 0.1000 0.0858
TCA 0.0749 0.0971 0.1074 0.1199 0.0909 0.1149 0.1110 0.1103 0.1089 0.0646
CTA 0.1042 0.0991 0.1123 0.1025 0.1069 0.1130 0.1106 0.0932 0.0970 0.0612
GTG 0.1040 0.1027 0.0914 0.0942 0.0928 0.1125 0.0764 0.0801 0.1011 0.1449
TAT 0.0890 0.0937 0.1084 0.1039 0.1040 0.1114 0.1161 0.1077 0.1075 0.0584
GTA 0.0932 0.1156 0.1162 0.1028 0.0784 0.1111 0.0927 0.0951 0.1028 0.0919
GCA 0.0911 0.1177 0.1149 0.1273 0.0942 0.1106 0.0874 0.0871 0.0869 0.0828
TCC 0.1035 0.1060 0.0968 0.0983 0.0867 0.1106 0.1111 0.1037 0.0907 0.0927
AGC 0.1212 0.0837 0.1013 0.1091 0.0726 0.1097 0.0845 0.0903 0.0839 0.1440
CTG 0.1223 0.0867 0.0878 0.1086 0.1108 0.1087 0.1008 0.0820 0.1046 0.0877
TGC 0.0946 0.1023 0.1024 0.0866 0.1095 0.1063 0.0986 0.1006 0.0921 0.1069
TCT 0.0909 0.1033 0.1118 0.1017 0.1016 0.1061 0.1180 0.1057 0.0919 0.0690
GGT 0.1101 0.1205 0.1043 0.0863 0.1167 0.1051 0.0830 0.0877 0.0904 0.0960
CAG 0.1136 0.0772 0.0832 0.0956 0.1041 0.1030 0.1088 0.1002 0.1166 0.0978
AGT 0.1163 0.0815 0.0988 0.0985 0.0856 0.1020 0.0978 0.0998 0.1075 0.1121
CTT 0.1083 0.0924 0.1098 0.1086 0.1028 0.1017 0.1151 0.1068 0.0921 0.0624
TTA 0.0680 0.0959 0.1115 0.1219 0.0853 0.1015 0.1240 0.1159 0.1214 0.0546
CCT 0.1071 0.0904 0.0850 0.1047 0.1884 0.1005 0.0993 0.0877 0.0747 0.0621
GAC 0.0972 0.1279 0.0978 0.0821 0.0883 0.0996 0.0881 0.1064 0.0995 0.1130
CGA 0.1202 0.1031 0.1207 0.1647 0.1023 0.0982 0.0900 0.0723 0.0692 0.0594
TTG 0.0864 0.0871 0.0913 0.1020 0.0998 0.0976 0.1119 0.1075 0.1309 0.0855
GCC 0.1090 0.1159 0.1014 0.1060 0.0888 0.0956 0.0962 0.0943 0.0758 0.1171
CAC 0.1203 0.0942 0.1010 0.1121 0.1322 0.0941 0.1012 0.0950 0.0811 0.0688
GCG 0.1122 0.1118 0.1011 0.1306 0.0754 0.0939 0.0840 0.0877 0.0880 0.1153
ACG 0.1094 0.0922 0.0761 0.0915 0.1128 0.0933 0.0973 0.1006 0.0964 0.1304
AGA 0.1118 0.0829 0.0935 0.0833 0.0812 0.0931 0.0999 0.1152 0.1220 0.1171
GCT 0.0995 0.1248 0.1113 0.0979 0.1000 0.0898 0.0919 0.0938 0.0837 0.1074
GAT 0.1071 0.1313 0.1114 0.0841 0.1031 0.0894 0.0906 0.1052 0.0929 0.0850
TTC 0.0847 0.0979 0.1058 0.1094 0.0944 0.0887 0.1164 0.1092 0.1003 0.0932
AAA 0.0876 0.0858 0.0973 0.0898 0.1055 0.0874 0.0998 0.0970 0.0959 0.1540
CAA 0.1106 0.0881 0.0989 0.1020 0.1049 0.0870 0.1154 0.1058 0.1131 0.0743
ATT 0.0958 0.0852 0.1114 0.1079 0.0981 0.0863 0.1115 0.1120 0.1014 0.0904
CGG 0.1052 0.0786 0.0793 0.1144 0.2180 0.0861 0.0790 0.0582 0.0930 0.0882
TTT 0.0783 0.0917 0.1156 0.1102 0.0996 0.0861 0.1215 0.1225 0.1117 0.0628
GTC 0.1149 0.1235 0.1185 0.1059 0.0640 0.0854 0.0944 0.0978 0.0868 0.1089
GTT 0.1091 0.1139 0.1226 0.1041 0.0714 0.0852 0.0990 0.0990 0.0994 0.0963
AAT 0.1020 0.0847 0.0953 0.0888 0.1157 0.0822 0.1077 0.1086 0.1038 0.1111
CAT 0.1102 0.0915 0.1104 0.0983 0.1401 0.0821 0.1095 0.1042 0.0952 0.0585
ATC 0.1116 0.1039 0.1024 0.1088 0.0871 0.0803 0.1031 0.1009 0.0847 0.1172
ACT 0.0956 0.1008 0.1050 0.0943 0.1051 0.0800 0.1078 0.1095 0.0944 0.1074
AAC 0.1066 0.0838 0.0904 0.0865 0.1095 0.0796 0.1032 0.1026 0.0883 0.1495
ACC 0.1193 0.0984 0.0976 0.0996 0.0862 0.0774 0.1154 0.0988 0.0877 0.1197
ATG 0.1221 0.0845 0.0872 0.1060 0.0831 0.0764 0.1004 0.1003 0.1192 0.1210
CGT 0.1271 0.1027 0.1049 0.0845 0.0857 0.0756 0.0995 0.0973 0.1197 0.1030
AAG 0.1045 0.0766 0.0853 0.0874 0.1061 0.0752 0.0993 0.0978 0.1168 0.1510
TGT 0.1050 0.0930 0.0998 0.0812 0.1143 0.0734 0.1074 0.1026 0.1253 0.0980

112

Table A.3: Ribosome residence time analysis from the YPD2 (whi3) expt.
Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 Pos9 Pos10

GGG 0.1068 0.1035 0.0785 0.0934 0.1025 0.1385 0.0789 0.0831 0.1197 0.0952
GGC 0.1135 0.1278 0.0962 0.0880 0.1066 0.1385 0.0784 0.0802 0.0760 0.0948
GGA 0.0827 0.1115 0.0891 0.0851 0.1263 0.1374 0.0875 0.0870 0.1005 0.0928
TAC 0.0886 0.0847 0.0986 0.1083 0.1004 0.1363 0.1077 0.1007 0.0903 0.0842
GAG 0.0928 0.1029 0.0890 0.0838 0.0797 0.1348 0.0935 0.1025 0.1273 0.0937
TGG 0.1009 0.0735 0.0813 0.1301 0.1139 0.1302 0.0856 0.0778 0.1272 0.0796
TCG 0.1052 0.0888 0.0872 0.1221 0.0894 0.1273 0.1028 0.0977 0.1108 0.0688
CCA 0.1034 0.0903 0.0856 0.1109 0.1603 0.1249 0.0969 0.0841 0.0825 0.0612
CTC 0.1139 0.1064 0.1153 0.1138 0.0882 0.1225 0.0932 0.0857 0.0775 0.0836
CCC 0.1015 0.0966 0.0889 0.1027 0.1777 0.1211 0.0887 0.0749 0.0708 0.0769
CCG 0.1266 0.0936 0.0664 0.1119 0.1578 0.1197 0.0852 0.0902 0.0807 0.0678
CGC 0.1682 0.1100 0.1185 0.0888 0.0950 0.1188 0.0701 0.0692 0.0786 0.0828
AGG 0.1173 0.0685 0.0949 0.1149 0.0762 0.1184 0.0814 0.0842 0.1312 0.1131
GAA 0.0750 0.1334 0.1001 0.1006 0.0789 0.1149 0.0900 0.0955 0.0932 0.1185
TCT 0.0863 0.0993 0.1139 0.1035 0.1060 0.1144 0.1196 0.1059 0.0854 0.0657
TCA 0.0723 0.0921 0.1075 0.1204 0.0999 0.1133 0.1168 0.1101 0.0972 0.0705
TCC 0.1003 0.1041 0.0942 0.0990 0.0909 0.1127 0.1107 0.1015 0.0871 0.0995
ACA 0.0850 0.0867 0.0974 0.1058 0.0905 0.1126 0.1015 0.1109 0.1066 0.1031
TAT 0.0888 0.0897 0.1113 0.1116 0.1010 0.1113 0.1213 0.1094 0.1006 0.0550
AGC 0.1258 0.0736 0.1046 0.1089 0.0772 0.1113 0.0848 0.0851 0.0909 0.1377
CTT 0.1023 0.0861 0.1132 0.1082 0.1123 0.1095 0.1077 0.1070 0.0904 0.0632
CCT 0.1099 0.0895 0.0839 0.1055 0.1919 0.1079 0.0952 0.0821 0.0708 0.0633
ATA 0.0877 0.0847 0.1113 0.1303 0.0756 0.1075 0.0986 0.1076 0.1023 0.0944
GTG 0.1095 0.1029 0.0938 0.0947 0.0881 0.1071 0.0779 0.0837 0.1035 0.1389
CGA 0.1174 0.0782 0.1099 0.1485 0.1071 0.1050 0.0890 0.0969 0.0792 0.0688
GGT 0.1089 0.1367 0.1055 0.0897 0.1090 0.1050 0.0827 0.0812 0.0950 0.0864
GCA 0.0950 0.1250 0.1145 0.1270 0.0934 0.1048 0.0879 0.0860 0.0803 0.0862
CAG 0.1155 0.0734 0.0810 0.0918 0.1033 0.1039 0.1122 0.1015 0.1213 0.0963
CTA 0.1128 0.0978 0.1124 0.0986 0.1001 0.1014 0.1052 0.1053 0.0942 0.0721
TGC 0.0870 0.0916 0.1092 0.0953 0.1187 0.1013 0.1037 0.0949 0.0974 0.1009
AGT 0.1171 0.0766 0.0986 0.1008 0.0852 0.1012 0.1016 0.1007 0.1163 0.1018
TTG 0.0839 0.0799 0.0914 0.1064 0.1004 0.1007 0.1118 0.1130 0.1317 0.0808
TTA 0.0645 0.0865 0.1152 0.1265 0.0872 0.1002 0.1280 0.1212 0.1169 0.0538
GTA 0.0828 0.1209 0.1179 0.1015 0.0761 0.1000 0.1005 0.0999 0.1028 0.0976
CTG 0.1425 0.0872 0.0860 0.1089 0.1079 0.0996 0.0957 0.0794 0.1095 0.0834
ATT 0.0906 0.0812 0.1149 0.1125 0.0961 0.0932 0.1101 0.1149 0.1038 0.0829
GCC 0.1115 0.1247 0.0969 0.1108 0.0947 0.0931 0.0930 0.0831 0.0742 0.1179
GAC 0.0932 0.1383 0.0933 0.0816 0.0920 0.0926 0.0880 0.1079 0.0988 0.1143
GAT 0.0977 0.1404 0.1086 0.0852 0.1020 0.0916 0.0925 0.1064 0.0963 0.0792
GCT 0.0939 0.1312 0.1145 0.1003 0.0989 0.0914 0.0932 0.0887 0.0791 0.1089
GCG 0.1194 0.1172 0.1005 0.1295 0.0800 0.0911 0.0777 0.0813 0.0933 0.1102
CAC 0.1256 0.0909 0.1013 0.1090 0.1308 0.0908 0.1001 0.0968 0.0784 0.0763
AGA 0.1147 0.0741 0.0927 0.0794 0.0817 0.0902 0.1041 0.1136 0.1343 0.1152
AAT 0.0980 0.0757 0.1031 0.0893 0.1137 0.0893 0.1170 0.1076 0.1035 0.1027
TTT 0.0756 0.0854 0.1202 0.1153 0.0955 0.0888 0.1246 0.1287 0.1077 0.0581
TTC 0.0840 0.0935 0.1051 0.1126 0.0926 0.0888 0.1175 0.1136 0.0936 0.0986
AAA 0.0793 0.0780 0.0990 0.0909 0.1001 0.0887 0.1043 0.1026 0.0945 0.1628
ACG 0.1087 0.0842 0.0800 0.0903 0.1051 0.0886 0.0979 0.1106 0.1011 0.1334
CAA 0.1151 0.0792 0.1008 0.1020 0.1021 0.0866 0.1179 0.1111 0.1078 0.0773
GTC 0.1121 0.1322 0.1131 0.1069 0.0702 0.0861 0.0918 0.0912 0.0844 0.1121
ATC 0.1053 0.0999 0.1008 0.1108 0.0899 0.0860 0.1013 0.1049 0.0829 0.1182
GTT 0.0984 0.1237 0.1295 0.1098 0.0685 0.0854 0.0983 0.0999 0.0993 0.0871
CGG 0.1431 0.0760 0.0714 0.1005 0.2316 0.0849 0.0775 0.0567 0.0802 0.0782
ACT 0.0926 0.0961 0.1059 0.0978 0.1051 0.0848 0.1077 0.1099 0.0925 0.1077
CAT 0.1137 0.0859 0.1125 0.0984 0.1372 0.0826 0.1153 0.1071 0.0876 0.0598
AAC 0.1084 0.0787 0.0893 0.0866 0.1087 0.0817 0.0992 0.1012 0.0866 0.1596
ACC 0.1260 0.0953 0.0938 0.0966 0.0868 0.0811 0.1122 0.0985 0.0855 0.1241
AAG 0.1044 0.0692 0.0874 0.0872 0.1083 0.0797 0.0984 0.1001 0.1228 0.1424
ATG 0.1257 0.0823 0.0916 0.1044 0.0791 0.0795 0.0945 0.1058 0.1255 0.1117
TGT 0.0981 0.0850 0.1018 0.0905 0.1139 0.0791 0.1123 0.0984 0.1285 0.0925
CGT 0.1335 0.0880 0.1065 0.0851 0.0833 0.0784 0.0981 0.0938 0.1278 0.1056

113

Table A.4: Ribosome residence time analysis from the SC-his expt.
Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8 Pos9 Pos10

GGA 0.1092 0.0910 0.0829 0.0663 0.1255 0.1474 0.1101 0.0794 0.0962 0.0920
GGG 0.1553 0.0958 0.0682 0.0683 0.1200 0.1391 0.0819 0.0654 0.1247 0.0812
CCT 0.0681 0.1189 0.0908 0.0678 0.1820 0.1382 0.1017 0.0878 0.0699 0.0749
CCA 0.0774 0.0902 0.0868 0.0765 0.1634 0.1367 0.1186 0.0911 0.0826 0.0765
CCC 0.0664 0.1274 0.0896 0.0662 0.2120 0.1317 0.0760 0.0981 0.0527 0.0799
CCG 0.0956 0.0927 0.0637 0.0865 0.1927 0.1304 0.0763 0.0994 0.0954 0.0673
CTC 0.0593 0.1329 0.1301 0.1444 0.0611 0.1247 0.0983 0.1040 0.0696 0.0756
AGG 0.1268 0.0764 0.0935 0.0918 0.0756 0.1229 0.1086 0.0907 0.1294 0.0843
CGC 0.0478 0.1551 0.1296 0.1139 0.0718 0.1227 0.1111 0.0986 0.0911 0.0582
GAA 0.0770 0.1035 0.0793 0.0849 0.0839 0.1195 0.1142 0.1022 0.0939 0.1417
TTG 0.1169 0.0629 0.0913 0.1326 0.1062 0.1174 0.0954 0.0875 0.1226 0.0672
GGC 0.1529 0.1282 0.0908 0.0901 0.0977 0.1168 0.0855 0.0654 0.0810 0.0917
CTG 0.1226 0.0724 0.0977 0.1067 0.1052 0.1162 0.0735 0.0808 0.1521 0.0727
TAT 0.0663 0.0770 0.1358 0.1251 0.0988 0.1154 0.1297 0.0997 0.0914 0.0608
CAG 0.1122 0.0803 0.0914 0.1007 0.1352 0.1150 0.0874 0.0850 0.1164 0.0764
AAT 0.0699 0.0664 0.0952 0.0761 0.1240 0.1144 0.1318 0.1197 0.1052 0.0974
TGC 0.1117 0.0768 0.1038 0.1137 0.1421 0.1140 0.0692 0.0985 0.0832 0.0871
CTT 0.0668 0.1030 0.1152 0.1228 0.1041 0.1135 0.1020 0.1172 0.0858 0.0695
TAC 0.0890 0.0926 0.1016 0.1024 0.0871 0.1119 0.1234 0.1231 0.0821 0.0869
GAG 0.1423 0.0798 0.0689 0.0800 0.0887 0.1117 0.0872 0.1016 0.1300 0.1098
GTA 0.0763 0.1224 0.1432 0.1204 0.0738 0.1110 0.0868 0.0801 0.0970 0.0891
CAA 0.0693 0.0836 0.1064 0.0910 0.1315 0.1087 0.1192 0.1331 0.0826 0.0745
AAA 0.0736 0.0753 0.0973 0.1036 0.1059 0.1081 0.1341 0.0984 0.0839 0.1198
TCG 0.0735 0.0832 0.1217 0.1288 0.0650 0.1062 0.1266 0.1132 0.1029 0.0788
GCC 0.1122 0.1433 0.0831 0.0877 0.1023 0.1061 0.1043 0.0820 0.0767 0.1023
AAC 0.0862 0.0797 0.0927 0.0850 0.1179 0.1052 0.1122 0.1179 0.0919 0.1114
TCT 0.0642 0.1021 0.1228 0.1052 0.0816 0.1050 0.1273 0.1190 0.0947 0.0780
CTA 0.0907 0.0989 0.1445 0.1205 0.0862 0.1048 0.0997 0.1216 0.0646 0.0685
CAT 0.0560 0.1016 0.1173 0.1152 0.1238 0.1029 0.1164 0.1154 0.0769 0.0745
GCT 0.0919 0.1444 0.1030 0.0871 0.1093 0.1025 0.0845 0.0905 0.0771 0.1098
GCA 0.0909 0.1347 0.0967 0.1251 0.1069 0.1024 0.0807 0.0893 0.0806 0.0925
GGT 0.1529 0.1287 0.1001 0.0780 0.1000 0.1019 0.0749 0.0703 0.0991 0.0941
GAC 0.1002 0.1190 0.0924 0.0825 0.1079 0.1017 0.0883 0.0988 0.0920 0.1172
AGT 0.0901 0.0923 0.1076 0.1067 0.0623 0.1016 0.1135 0.0848 0.1353 0.1058
ACT 0.0625 0.1032 0.1048 0.1181 0.1075 0.0990 0.1100 0.1117 0.0914 0.0917
TGT 0.0953 0.0681 0.0846 0.0647 0.1306 0.0986 0.1052 0.1041 0.1445 0.1042
TCC 0.0913 0.1085 0.1055 0.1026 0.0721 0.0982 0.1155 0.1156 0.0936 0.0973
ATT 0.0644 0.0773 0.1474 0.1305 0.0726 0.0962 0.1055 0.1195 0.1012 0.0855
AGC 0.0968 0.0882 0.1113 0.1272 0.0695 0.0961 0.1240 0.0798 0.1110 0.0961
CGA 0.0793 0.0941 0.1360 0.1040 0.0915 0.0952 0.0963 0.1604 0.0940 0.0490
TTA 0.0814 0.0779 0.1138 0.1566 0.0771 0.0947 0.1100 0.1247 0.0953 0.0684
TTT 0.0718 0.0627 0.1085 0.1060 0.1320 0.0940 0.1174 0.1269 0.1142 0.0666
AGA 0.1017 0.0746 0.0914 0.0849 0.0726 0.0932 0.1184 0.1052 0.1440 0.1140
TTC 0.0977 0.0985 0.0988 0.0922 0.1100 0.0924 0.0998 0.1234 0.0868 0.1003
TCA 0.0686 0.0929 0.1294 0.1469 0.0821 0.0918 0.1334 0.1230 0.0642 0.0677
ATC 0.0775 0.1030 0.1308 0.1295 0.0688 0.0902 0.0995 0.1114 0.0853 0.1041
GAT 0.0868 0.1076 0.0948 0.0832 0.1185 0.0899 0.1074 0.1074 0.0934 0.1110
GTC 0.1016 0.1273 0.1172 0.1092 0.0807 0.0897 0.0884 0.0872 0.0815 0.1172
ACA 0.0507 0.0747 0.0939 0.1396 0.1055 0.0895 0.0941 0.1500 0.1012 0.1006
GTT 0.0847 0.1226 0.1252 0.1058 0.0735 0.0848 0.0898 0.1027 0.0913 0.1196
ACC 0.1022 0.1172 0.1004 0.1196 0.1002 0.0841 0.1066 0.0968 0.0928 0.0801
ATA 0.0403 0.0371 0.1367 0.2565 0.0712 0.0837 0.1203 0.1191 0.0771 0.0580
AAG 0.1048 0.0627 0.1019 0.1002 0.1036 0.0834 0.1126 0.1096 0.1325 0.0887
ACG 0.0989 0.0774 0.0912 0.1241 0.1291 0.0829 0.0605 0.1126 0.1324 0.0910
GTG 0.1201 0.0919 0.0961 0.1037 0.0799 0.0785 0.0787 0.0828 0.1361 0.1322
TGG 0.1892 0.0787 0.0962 0.1207 0.0926 0.0780 0.0818 0.0758 0.1307 0.0562
CGG 0.1762 0.1163 0.0554 0.0684 0.2499 0.0755 0.0904 0.0478 0.0649 0.0552
CAC 0.1042 0.1071 0.1021 0.1230 0.1115 0.0748 0.1167 0.1013 0.0777 0.0815
CGT 0.1065 0.1108 0.1231 0.0717 0.0697 0.0744 0.0890 0.1041 0.1235 0.1271
ATG 0.1247 0.0895 0.0998 0.1232 0.0842 0.0715 0.0896 0.1157 0.1278 0.0741
GCG 0.1482 0.1007 0.0905 0.1440 0.0933 0.0665 0.0690 0.0764 0.1181 0.0932

114

Table A.5: Ribosome residence time analysis from the Ingolia expt.
Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 Pos8

GGG 0.0714 0.1387 0.1067 0.1213 0.1133 0.1693 0.1367 0.1426
GAG 0.0841 0.1365 0.1097 0.1147 0.1320 0.1643 0.1267 0.1320
GGC 0.0662 0.1210 0.1311 0.1236 0.1223 0.1550 0.1382 0.1425
TAT 0.1216 0.1121 0.1191 0.1183 0.1329 0.1543 0.1270 0.1147
GTA 0.0962 0.1185 0.1369 0.1131 0.1025 0.1532 0.1297 0.1500
GAA 0.0954 0.1428 0.1138 0.1292 0.1280 0.1507 0.1193 0.1208
TAC 0.1005 0.1216 0.1297 0.1249 0.1124 0.1497 0.1355 0.1257
GGA 0.0858 0.1327 0.1156 0.1240 0.1392 0.1493 0.1319 0.1213
TTG 0.0733 0.1258 0.1299 0.1271 0.1327 0.1475 0.1387 0.1251
AGG 0.1731 0.1248 0.1075 0.1035 0.0827 0.1449 0.1300 0.1334
GTG 0.0840 0.1302 0.1257 0.1082 0.1183 0.1415 0.1374 0.1546
CCA 0.1315 0.0948 0.1118 0.1297 0.1524 0.1394 0.1254 0.1150
GGT 0.0824 0.1307 0.1137 0.1192 0.1459 0.1389 0.1312 0.1380
AAA 0.1625 0.1218 0.1027 0.1208 0.1322 0.1381 0.1166 0.1054
AGC 0.1735 0.1158 0.1164 0.1151 0.0871 0.1348 0.1254 0.1319
TCG 0.0901 0.1305 0.1117 0.1232 0.1218 0.1341 0.1478 0.1407
GTT 0.0905 0.1306 0.1551 0.1180 0.1044 0.1330 0.1319 0.1366
CCG 0.1217 0.1164 0.0979 0.1174 0.1337 0.1327 0.1435 0.1368
TTA 0.0957 0.1208 0.1312 0.1401 0.1318 0.1318 0.1303 0.1181
ATT 0.1753 0.1129 0.1275 0.1125 0.1185 0.1293 0.1139 0.1101
GAC 0.0700 0.1376 0.1370 0.1333 0.1380 0.1293 0.1226 0.1321
ATA 0.1765 0.1121 0.1343 0.1228 0.0824 0.1291 0.1304 0.1124
TCA 0.1027 0.1156 0.1282 0.1413 0.1179 0.1289 0.1361 0.1293
TCC 0.0817 0.1278 0.1299 0.1340 0.1243 0.1288 0.1396 0.1339
GTC 0.0756 0.1345 0.1501 0.1180 0.0937 0.1286 0.1396 0.1599
GAT 0.0877 0.1265 0.1214 0.1282 0.1559 0.1281 0.1221 0.1302
GCA 0.1115 0.1304 0.1393 0.1296 0.0957 0.1280 0.1266 0.1390
TTC 0.0771 0.1391 0.1446 0.1331 0.1145 0.1278 0.1349 0.1290
ATC 0.1666 0.1184 0.1277 0.1122 0.1052 0.1259 0.1206 0.1233
AAG 0.1816 0.1097 0.0999 0.1176 0.1325 0.1242 0.1130 0.1214
CTG 0.1176 0.1096 0.1358 0.1344 0.1108 0.1240 0.1345 0.1333
TCT 0.0918 0.1284 0.1345 0.1300 0.1405 0.1237 0.1314 0.1199
TGC 0.0732 0.1233 0.1337 0.1227 0.1248 0.1237 0.1588 0.1399
GCC 0.0714 0.1471 0.1474 0.1323 0.0979 0.1231 0.1314 0.1492
CTC 0.1081 0.1029 0.1555 0.1472 0.0915 0.1230 0.1408 0.1309
TTT 0.0950 0.1362 0.1415 0.1298 0.1240 0.1226 0.1340 0.1169
CTA 0.1205 0.1073 0.1468 0.1397 0.1139 0.1219 0.1336 0.1163
AGT 0.1673 0.1153 0.1091 0.1182 0.1039 0.1218 0.1394 0.1250
AGA 0.1947 0.1243 0.1048 0.1080 0.1086 0.1216 0.1158 0.1224
CGC 0.1277 0.1173 0.1706 0.1204 0.0906 0.1182 0.1209 0.1342
CCC 0.0993 0.1119 0.1327 0.1399 0.1479 0.1147 0.1268 0.1268
GCT 0.0930 0.1463 0.1446 0.1276 0.1123 0.1139 0.1234 0.1390
TGG 0.0846 0.1418 0.1283 0.1216 0.1009 0.1136 0.1579 0.1512
ACG 0.1669 0.1320 0.1099 0.1164 0.1276 0.1127 0.1073 0.1272
ATG 0.1989 0.1196 0.1136 0.1191 0.1015 0.1124 0.1129 0.1220
AAC 0.1697 0.1230 0.1177 0.1204 0.1395 0.1101 0.1070 0.1125
CCT 0.1141 0.1062 0.1195 0.1307 0.1761 0.1099 0.1281 0.1154
AAT 0.1698 0.1135 0.1098 0.1185 0.1587 0.1095 0.1115 0.1087
CTT 0.1111 0.1081 0.1583 0.1424 0.1227 0.1079 0.1271 0.1225
GCG 0.0939 0.1616 0.1317 0.1379 0.0755 0.1041 0.1293 0.1662
TGT 0.0949 0.1290 0.1226 0.1134 0.1566 0.1024 0.1471 0.1341
ACC 0.1565 0.1313 0.1293 0.1308 0.1080 0.1016 0.1151 0.1274
CAG 0.1558 0.0971 0.1144 0.1408 0.1352 0.0976 0.1263 0.1329
CGT 0.1361 0.1300 0.1374 0.1211 0.1064 0.0970 0.1374 0.1346
ACA 0.1817 0.1202 0.1255 0.1281 0.1163 0.0942 0.1139 0.1201
ACT 0.1793 0.1366 0.1238 0.1266 0.1151 0.0911 0.1124 0.1150
CGG 0.0959 0.0981 0.1347 0.1087 0.2116 0.0894 0.1183 0.1433
CGA 0.1394 0.1467 0.1323 0.1335 0.0687 0.0865 0.1438 0.1491
CAA 0.2000 0.0999 0.1211 0.1363 0.1206 0.0806 0.1188 0.1227
CAT 0.1566 0.1082 0.1306 0.1381 0.1405 0.0710 0.1271 0.1279
CAC 0.1603 0.1124 0.1280 0.1453 0.1221 0.0703 0.1231 0.1385

115

Table A.6: Ribosome residence time for short footprints (aniso2 dataset).
Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 #Windows

CTT 0.0972 0.1200 0.1257 0.1331 0.2226 0.1477 0.1537 5092
GCC 0.0732 0.1898 0.1928 0.2062 0.1064 0.1097 0.1221 6575
GGA 0.0677 0.2183 0.2411 0.1452 0.1007 0.0693 0.1577 3628
GTC 0.0907 0.1818 0.1492 0.1284 0.1788 0.1245 0.1466 5416
TGC 0.1721 0.1689 0.1769 0.1910 0.0890 0.0645 0.1376 1876
AGT 0.0842 0.1273 0.1315 0.1728 0.2236 0.1422 0.1183 6481
TGT 0.1606 0.1460 0.1451 0.1841 0.1148 0.1160 0.1335 3045
TCA 0.1973 0.1192 0.1193 0.1445 0.2029 0.0901 0.1268 8619
CGA 0.1156 0.0933 0.1457 0.0741 0.1245 0.3126 0.1342 1167
ATT 0.1593 0.1149 0.1165 0.1503 0.1453 0.1407 0.1731 11355
TAT 0.2026 0.1296 0.1253 0.1676 0.1014 0.1571 0.1165 7220
ATC 0.1938 0.1339 0.1159 0.1544 0.1292 0.1275 0.1453 8547
AAC 0.1926 0.1783 0.1491 0.1012 0.1132 0.1273 0.1382 9926
AGC 0.0996 0.1545 0.1537 0.1823 0.1858 0.1050 0.1191 4603
TAC 0.2353 0.1486 0.1342 0.1813 0.1081 0.0841 0.1085 7017
AAT 0.1572 0.1457 0.1396 0.0884 0.1148 0.1999 0.1543 10919
ACT 0.1600 0.1322 0.1281 0.1578 0.1036 0.1485 0.1699 9807
TCG 0.1746 0.1099 0.1168 0.1275 0.1946 0.1341 0.1424 4909
ACA 0.2058 0.1376 0.1364 0.1541 0.1030 0.1346 0.1285 9038
GAC 0.0673 0.1986 0.1786 0.1102 0.1558 0.1560 0.1336 7804
CAA 0.1953 0.1600 0.1660 0.1622 0.0902 0.1249 0.1014 9871
CCG 0.1247 0.1472 0.1246 0.1456 0.0576 0.2435 0.1567 2857
CTG 0.1155 0.1286 0.1258 0.1277 0.1966 0.1620 0.1437 4791
GGT 0.0764 0.2207 0.2405 0.1592 0.1229 0.0685 0.1117 6212
GCA 0.0812 0.1788 0.1922 0.2199 0.1053 0.1075 0.1150 8004
AAG 0.1769 0.1158 0.1387 0.0752 0.1011 0.2293 0.1629 10826
GTG 0.0799 0.1522 0.1280 0.1332 0.2521 0.1246 0.1299 4371
TCC 0.1756 0.1290 0.1185 0.1421 0.1824 0.0969 0.1556 7729
TTT 0.1772 0.1129 0.1083 0.1611 0.1329 0.1120 0.1955 9261
AGG 0.1207 0.1088 0.1488 0.0965 0.0921 0.2553 0.1777 3592
CAC 0.1875 0.1633 0.1736 0.1574 0.0970 0.0997 0.1216 4053
GTT 0.0731 0.1477 0.1547 0.1412 0.1857 0.1269 0.1707 7972
CGT 0.1118 0.1190 0.1737 0.0931 0.1276 0.2415 0.1333 2565
CGG 0.1204 0.1301 0.1672 0.0832 0.0654 0.3132 0.1204 575
AGA 0.1235 0.1158 0.1451 0.0844 0.1025 0.2103 0.2184 7851
CAT 0.1468 0.1424 0.1625 0.1625 0.0980 0.1800 0.1078 5742
ATA 0.1678 0.1105 0.1028 0.1465 0.2125 0.1347 0.1252 8016
GGG 0.0835 0.2220 0.2574 0.1479 0.0952 0.0695 0.1245 1924
CCC 0.1285 0.1406 0.1253 0.1771 0.1126 0.1520 0.1640 3769
ACC 0.1905 0.1463 0.1371 0.1531 0.0989 0.1374 0.1367 7013
GAG 0.0684 0.1782 0.1775 0.1309 0.0665 0.2363 0.1421 6257
TTA 0.1822 0.1062 0.0918 0.1043 0.2935 0.0945 0.1275 10995
CCA 0.1656 0.1611 0.1327 0.2032 0.1089 0.1027 0.1257 9050
CTA 0.1252 0.1323 0.1222 0.1346 0.2791 0.0991 0.1076 6658
GAT 0.0468 0.1606 0.1602 0.0968 0.1397 0.2451 0.1507 10457
TCT 0.1472 0.1138 0.1159 0.1467 0.1958 0.1003 0.1804 10345
TGG 0.2147 0.1174 0.1255 0.1184 0.1021 0.1829 0.1390 3245
TTC 0.1984 0.1321 0.1061 0.1751 0.1463 0.0769 0.1652 8394
CTC 0.1062 0.1227 0.1203 0.1419 0.2906 0.1045 0.1137 2779
CGC 0.1422 0.1343 0.1784 0.1030 0.0997 0.1787 0.1637 1010
TTG 0.1693 0.0963 0.0910 0.1132 0.2514 0.1103 0.1686 10815
GCG 0.0826 0.1545 0.1780 0.1977 0.0724 0.1914 0.1234 3152
GGC 0.0707 0.2499 0.2557 0.1523 0.0990 0.0484 0.1240 3463
GCT 0.0663 0.1556 0.1718 0.2016 0.1159 0.1310 0.1579 8709
CAG 0.1386 0.1618 0.1681 0.1841 0.0690 0.1532 0.1253 5547
GAA 0.0764 0.1947 0.1842 0.1325 0.0886 0.1861 0.1375 11360
CCT 0.1156 0.1543 0.1365 0.1761 0.1177 0.1272 0.1727 6913
ACG 0.1911 0.1230 0.1275 0.1667 0.0876 0.1516 0.1525 4660
ATG 0.2038 0.0958 0.1072 0.1854 0.1341 0.0971 0.1767 7806
AAA 0.1813 0.1100 0.1298 0.0724 0.1302 0.2391 0.1371 11988
GTA 0.0799 0.1542 0.1377 0.1320 0.2547 0.1084 0.1330 5165

116

Table A.7: Ribosome residence time for short footprints (aniso1B dataset).
Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 #Windows

GCC 0.1365 0.1570 0.1787 0.2132 0.0984 0.0936 0.1226 11754
CTT 0.1493 0.1052 0.1222 0.1492 0.2156 0.1224 0.1361 9758
GGA 0.1885 0.1808 0.2317 0.1023 0.1123 0.0383 0.1461 7670
GTC 0.1395 0.1331 0.1498 0.1280 0.2117 0.0978 0.1401 10156
TGC 0.1751 0.1600 0.1539 0.1845 0.1083 0.0931 0.1252 3668
AGT 0.1344 0.1382 0.1247 0.1694 0.1428 0.1377 0.1527 11094
TGT 0.1577 0.1452 0.1443 0.1772 0.1235 0.1010 0.1511 5941
TCA 0.1374 0.1383 0.1321 0.1757 0.1634 0.1232 0.1298 13594
CGA 0.1190 0.0732 0.1008 0.0465 0.1411 0.3723 0.1472 2603
ATT 0.1309 0.1335 0.1205 0.1672 0.1841 0.1039 0.1598 18779
TAT 0.1553 0.1312 0.1122 0.1774 0.1251 0.1646 0.1341 12461
ATC 0.1075 0.1429 0.1201 0.1717 0.1875 0.1176 0.1526 13882
AAC 0.1376 0.1809 0.1458 0.0828 0.1192 0.1475 0.1862 16192
AGC 0.1419 0.1376 0.1391 0.1952 0.1420 0.1234 0.1206 8373
TAC 0.1268 0.1444 0.1305 0.1985 0.1306 0.1294 0.1399 11335
AAT 0.1319 0.1714 0.1378 0.0826 0.1206 0.1765 0.1791 18713
TCG 0.1206 0.1277 0.1265 0.1713 0.1498 0.1784 0.1259 8317
ACT 0.1390 0.1329 0.1261 0.1722 0.1439 0.1175 0.1684 15849
ACA 0.1491 0.1471 0.1303 0.1628 0.1368 0.1341 0.1398 13864
GAC 0.1190 0.1733 0.1799 0.0782 0.1225 0.1750 0.1521 14939
CAA 0.1687 0.1422 0.1463 0.1580 0.1000 0.1589 0.1259 17109
CCG 0.1348 0.1335 0.1079 0.1646 0.0519 0.2737 0.1336 5598
CTG 0.1580 0.1196 0.1138 0.1234 0.1754 0.1836 0.1262 9475
GCA 0.1538 0.1428 0.1704 0.2011 0.1056 0.1064 0.1199 14211
GGT 0.1948 0.1751 0.2359 0.1108 0.1246 0.0293 0.1295 12960
GTG 0.1578 0.1411 0.1496 0.1203 0.2207 0.1059 0.1047 8208
AAG 0.1448 0.1221 0.1337 0.0559 0.1163 0.2495 0.1777 18417
TCC 0.1116 0.1396 0.1333 0.1971 0.1582 0.1180 0.1422 12710
TTT 0.1392 0.1315 0.1205 0.1929 0.1753 0.0858 0.1547 16150
CAC 0.1548 0.1276 0.1502 0.1585 0.1058 0.1592 0.1440 6960
AGG 0.1498 0.1256 0.1539 0.0628 0.1025 0.2323 0.1731 7245
GTT 0.1503 0.1302 0.1562 0.1256 0.2115 0.0853 0.1409 15355
CGT 0.1398 0.0961 0.1428 0.0642 0.1321 0.2341 0.1910 5496
CGG 0.1310 0.0964 0.1240 0.0602 0.0809 0.3498 0.1576 1466
ATA 0.1205 0.1329 0.1157 0.1715 0.2031 0.1302 0.1262 12373
AGA 0.1578 0.1236 0.1384 0.0567 0.1029 0.2206 0.1999 13981
CAT 0.1477 0.1194 0.1373 0.1550 0.1087 0.1881 0.1439 10656
ACC 0.1160 0.1498 0.1343 0.1888 0.1384 0.1183 0.1544 11375
CCC 0.1137 0.1387 0.1245 0.2363 0.0754 0.1783 0.1331 7395
GGG 0.1876 0.1956 0.2644 0.1089 0.1013 0.0301 0.1121 4512
TTA 0.1329 0.1227 0.1128 0.1307 0.2752 0.1072 0.1184 17302
GAG 0.1435 0.1575 0.1582 0.0981 0.0831 0.2123 0.1473 13090
CCA 0.1505 0.1460 0.1267 0.2341 0.0857 0.1301 0.1268 14918
CTA 0.1491 0.1146 0.1216 0.1492 0.2365 0.1079 0.1212 10891
GAT 0.1322 0.1575 0.1550 0.0736 0.1060 0.2125 0.1631 20267
TCT 0.1317 0.1308 0.1299 0.1708 0.1614 0.1149 0.1604 17120
TGG 0.1836 0.1230 0.1192 0.0993 0.1059 0.1998 0.1691 6804
TTC 0.1232 0.1371 0.1224 0.2035 0.1918 0.0778 0.1443 13934
CTC 0.1304 0.1022 0.1207 0.1578 0.2731 0.1065 0.1094 5359
CGC 0.1492 0.0987 0.1543 0.0758 0.1229 0.2457 0.1533 2244
TTG 0.1234 0.1277 0.1152 0.1319 0.2289 0.1296 0.1433 18790
GCG 0.1446 0.1381 0.1594 0.1680 0.0826 0.1878 0.1194 6486
GGC 0.1864 0.1826 0.2519 0.1079 0.1150 0.0327 0.1234 8181
GCT 0.1485 0.1405 0.1647 0.1985 0.1071 0.0981 0.1427 16615
GAA 0.1637 0.1671 0.1513 0.1000 0.0873 0.1818 0.1488 21473
CAG 0.1581 0.1487 0.1484 0.1433 0.0855 0.1839 0.1321 10246
CCT 0.1515 0.1381 0.1226 0.2171 0.0856 0.1335 0.1516 12270
ACG 0.1241 0.1420 0.1318 0.1710 0.1349 0.1545 0.1418 7604
ATG 0.1339 0.1283 0.1291 0.2252 0.1450 0.0904 0.1481 12791
AAA 0.1244 0.1213 0.1327 0.0580 0.1385 0.2593 0.1659 20049
GTA 0.1365 0.1346 0.1468 0.1227 0.2426 0.1001 0.1168 9512

117

Table A.8: Ribosome residence time for short footprints (aniso1A dataset).
Codon Pos1 Pos2 Pos3 Pos4 Pos5 Pos6 Pos7 #Windows

GCC 0.1447 0.1599 0.1779 0.2131 0.0963 0.0893 0.1189 10597
CTT 0.1468 0.1071 0.1250 0.1461 0.2199 0.1203 0.1348 8311
GGA 0.1837 0.1783 0.2375 0.0994 0.1068 0.0374 0.1569 6184
GTC 0.1421 0.1408 0.1498 0.1265 0.2098 0.0967 0.1343 8803
TGC 0.1781 0.1528 0.1574 0.1804 0.1101 0.0827 0.1385 3132
AGT 0.1343 0.1351 0.1243 0.1752 0.1488 0.1323 0.1499 9303
TGT 0.1600 0.1489 0.1389 0.1790 0.1269 0.1027 0.1436 4913
TCA 0.1458 0.1350 0.1296 0.1722 0.1633 0.1277 0.1264 11629
CGA 0.1106 0.0741 0.1003 0.0457 0.1401 0.3966 0.1327 2165
ATT 0.1304 0.1304 0.1190 0.1645 0.1899 0.1045 0.1614 15718
TAT 0.1529 0.1312 0.1102 0.1744 0.1287 0.1704 0.1323 10387
ATC 0.1086 0.1464 0.1205 0.1717 0.1825 0.1162 0.1541 11892
AAC 0.1381 0.1823 0.1484 0.0793 0.1140 0.1460 0.1918 13726
AGC 0.1472 0.1387 0.1439 0.1830 0.1335 0.1144 0.1392 7233
TAC 0.1306 0.1439 0.1296 0.1982 0.1343 0.1315 0.1320 9708
AAT 0.1321 0.1690 0.1375 0.0797 0.1220 0.1811 0.1785 15408
TCG 0.1230 0.1301 0.1289 0.1646 0.1520 0.1748 0.1266 7154
ACT 0.1445 0.1330 0.1253 0.1716 0.1428 0.1151 0.1678 13644
ACA 0.1532 0.1519 0.1276 0.1569 0.1367 0.1352 0.1386 11859
GAC 0.1229 0.1729 0.1731 0.0805 0.1215 0.1729 0.1563 12710
CAA 0.1684 0.1465 0.1479 0.1572 0.1033 0.1603 0.1165 14515
CCG 0.1340 0.1325 0.1106 0.1676 0.0490 0.2713 0.1349 4884
CTG 0.1593 0.1231 0.1124 0.1212 0.1696 0.1874 0.1270 8128
GGT 0.1871 0.1726 0.2397 0.1090 0.1256 0.0289 0.1371 10948
GCA 0.1564 0.1488 0.1723 0.1994 0.1031 0.1041 0.1159 12368
GTG 0.1502 0.1405 0.1430 0.1214 0.2283 0.1042 0.1124 7021
AAG 0.1394 0.1168 0.1348 0.0514 0.1148 0.2549 0.1880 15454
TCC 0.1197 0.1433 0.1347 0.1926 0.1553 0.1152 0.1392 11174
TTT 0.1403 0.1322 0.1181 0.1977 0.1756 0.0859 0.1503 13662
AGG 0.1519 0.1218 0.1551 0.0584 0.0979 0.2275 0.1873 6054
CAC 0.1690 0.1350 0.1458 0.1561 0.1068 0.1507 0.1367 6119
GTT 0.1449 0.1310 0.1572 0.1237 0.2164 0.0860 0.1408 13103
CGT 0.1369 0.1025 0.1409 0.0645 0.1349 0.2357 0.1845 4630
CGG 0.1366 0.0906 0.1419 0.0477 0.0727 0.3345 0.1760 1200
ATA 0.1203 0.1309 0.1129 0.1682 0.2058 0.1374 0.1246 9966
CAT 0.1495 0.1244 0.1442 0.1522 0.1045 0.1896 0.1356 8996
AGA 0.1541 0.1216 0.1355 0.0530 0.1035 0.2299 0.2024 11466
ACC 0.1198 0.1497 0.1318 0.1856 0.1405 0.1188 0.1538 10126
CCC 0.1218 0.1417 0.1168 0.2362 0.0760 0.1723 0.1352 6465
GGG 0.1805 0.1941 0.2777 0.1076 0.0884 0.0273 0.1244 3730
TTA 0.1325 0.1244 0.1095 0.1328 0.2823 0.1064 0.1120 14669
GAG 0.1448 0.1540 0.1609 0.0944 0.0787 0.2131 0.1541 10696
CCA 0.1546 0.1490 0.1255 0.2336 0.0843 0.1296 0.1234 13135
GAT 0.1233 0.1509 0.1557 0.0729 0.1074 0.2183 0.1715 16623
CTA 0.1525 0.1198 0.1232 0.1468 0.2407 0.1091 0.1079 9308
TCT 0.1344 0.1315 0.1312 0.1736 0.1588 0.1133 0.1573 14629
TGG 0.1821 0.1207 0.1160 0.0983 0.0966 0.1979 0.1885 5662
TTC 0.1284 0.1387 0.1263 0.2067 0.1871 0.0752 0.1376 12087
CTC 0.1339 0.1019 0.1179 0.1624 0.2798 0.0988 0.1053 4636
CGC 0.1645 0.0950 0.1583 0.0740 0.1175 0.2409 0.1498 1894
TTG 0.1196 0.1230 0.1118 0.1286 0.2330 0.1317 0.1522 15957
GCG 0.1461 0.1349 0.1579 0.1774 0.0806 0.1829 0.1201 5492
GGC 0.1828 0.1765 0.2628 0.1061 0.1119 0.0259 0.1340 7065
GCT 0.1487 0.1431 0.1673 0.1997 0.1050 0.0966 0.1396 14450
CAG 0.1611 0.1570 0.1424 0.1475 0.0818 0.1821 0.1280 9047
GAA 0.1575 0.1639 0.1532 0.0982 0.0891 0.1855 0.1525 17674
CCT 0.1577 0.1467 0.1223 0.2170 0.0818 0.1301 0.1445 10942
ACG 0.1228 0.1442 0.1300 0.1709 0.1330 0.1510 0.1479 6576
AAA 0.1179 0.1140 0.1305 0.0560 0.1405 0.2763 0.1648 16232
ATG 0.1329 0.1226 0.1304 0.2234 0.1453 0.0872 0.1581 10629
GTA 0.1310 0.1341 0.1468 0.1211 0.2506 0.1015 0.1150 7884

118

Table A.9: Weighted mean RRT of codon pair groups, considering scoring
methods: classic, gap, signal.

Scoring method - classic:

Position high p-value (high) low p-value (low)

1 0.098 0.017 0.103 0.153
2 0.103 0.001 0.105 0.001
3 0.103 0.183 0.103 0.234
4 0.101 0.297 0.100 0.511
5 0.096 0.104 0.098 0.588
6 0.095 0.130 0.092 0.001
7 0.098 0.580 0.100 0.001
8 0.099 0.012 0.104 0.005
9 0.102 0.917 0.097 0.001
10 0.104 0.002 0.098 0.279

Scoring method - gap:

Position high p-value (high) low p-value (low)

1 0.101 0.516 0.101 0.381
2 0.104 0.244 0.107 0.002
3 0.103 0.445 0.102 0.869
4 0.098 0.353 0.099 0.902
5 0.096 0.437 0.096 0.423
6 0.093 0.284 0.089 0.001
7 0.097 0.847 0.101 0.001
8 0.101 0.887 0.103 0.235
9 0.102 0.750 0.098 0.001
10 0.106 0.140 0.104 0.579

Scoring method - signal:

Position high p-value (high) low p-value (low)

1 0.101 0.893 0.104 0.41
2 0.104 0.003 0.106 0.001
3 0.104 0.267 0.104 0.576
4 0.102 0.276 0.101 0.595
5 0.096 0.638 0.097 0.698
6 0.089 0.001 0.095 0.515
7 0.097 0.199 0.098 0.482
8 0.102 0.131 0.100 0.583
9 0.101 0.449 0.100 0.125
10 0.103 0.100 0.097 0.019

119

A.3 Effect of RNA secondary structure on ri-

bosome profile data

Correlation scores of Saccharomyces cerevisiae RNA secondary structure en-
ergy vs control data-sets (in silico random data and wildtype mRNA-seq data)
at different offsets of energy window from the read window have been listed in
table A.10 and A.11.

120

Table A.10: Correlation table for Saccharomyces cerevisiae RNA secondary
structure energy vs randomly generated read data-set.

Offset Frequency Spearman P-value Pearson P-value K. tau P-value

-15 437769 -0.0003 0.854 -0.0009 0.567 -0.0002 0.845
-14 438271 -0.0004 0.799 -0.0002 0.878 -0.0003 0.785
-13 438773 -0.0005 0.730 0.0006 0.703 -0.0004 0.709
-12 439275 0.0004 0.788 0.0011 0.446 0.0003 0.769
-11 439777 0.0007 0.655 0.0011 0.448 0.0005 0.630
-10 440279 0.0009 0.551 0.0010 0.487 0.0006 0.519
-9 440781 0.0012 0.439 0.0009 0.572 0.0008 0.401
-8 441283 0.0014 0.354 0.0009 0.547 0.0010 0.315
-7 441785 0.0019 0.199 0.0012 0.406 0.0014 0.165
-6 442287 0.0019 0.216 0.0014 0.349 0.0013 0.181
-5 442789 0.0019 0.204 0.0015 0.318 0.0014 0.169
-4 443291 0.0011 0.468 0.0010 0.499 0.0008 0.431
-3 443793 0.0017 0.257 0.0013 0.394 0.0012 0.219
-2 444295 0.0027 0.074 0.0018 0.242 0.0019 0.053
-1 444797 0.0034 0.023 0.0023 0.121 0.0025 0.014
0 445299 0.0033 0.023 0.0024 0.116 0.0024 0.018
1 444797 0.0029 0.050 0.0021 0.169 0.0021 0.034
2 444295 0.0029 0.051 0.0021 0.162 0.0021 0.034
3 443793 0.0017 0.270 0.0019 0.212 0.0012 0.231
4 443291 0.0010 0.492 0.0013 0.371 0.0007 0.455
5 442789 0.0005 0.745 0.0007 0.663 0.0004 0.721
6 442287 0.0009 0.559 0.0005 0.721 0.0006 0.525
7 441785 0.0007 0.638 0.0004 0.812 0.0005 0.608
8 441283 0.0005 0.754 0.0002 0.878 0.0003 0.731
9 440781 0.0004 0.796 0.0000 0.998 0.0003 0.774
10 440279 0.0002 0.884 0.0001 0.946 0.0002 0.869
11 439777 0.0004 0.779 0.0006 0.694 0.0003 0.755
12 439275 0.0005 0.755 0.0009 0.560 0.0003 0.729
13 438773 0.0005 0.755 0.0010 0.493 0.0003 0.728
14 438271 0.0002 0.908 0.0007 0.645 0.0001 0.893
15 437769 0.0002 0.901 0.0008 0.618 0.0001 0.886

121

Table A.11: Correlation table for Saccharomyces cerevisiae RNA secondary
structure energy vs wildtype mRNA-seq data-set.

Offset Frequency Spearman P-value Pearson P-value K. tau P-value

-15 195631 -0.017 2.15E-13 -0.005 0.0386 -0.011 3.98E-14
-14 196131 -0.018 3.50E-16 -0.006 0.0094 -0.013 4.29E-17
-13 196631 -0.019 8.14E-17 -0.007 0.0028 -0.013 9.13E-18
-12 197131 -0.018 2.17E-16 -0.007 0.0010 -0.013 2.58E-17
-11 197631 -0.018 3.04E-16 -0.008 0.0002 -0.013 3.68E-17
-10 198131 -0.019 1.50E-16 -0.010 3.12E-06 -0.013 1.68E-17
-9 198631 -0.022 3.12E-22 -0.014 2.95E-10 -0.015 1.58E-23
-8 199131 -0.026 2.82E-31 -0.018 1.51E-15 -0.018 3.86E-33
-7 199631 -0.029 1.54E-37 -0.020 2.78E-19 -0.020 8.49E-40
-6 200131 -0.029 1.81E-37 -0.019 1.24E-17 -0.020 1.06E-39
-5 200631 -0.028 6.90E-35 -0.017 3.07E-14 -0.019 5.98E-37
-4 201131 -0.026 1.94E-32 -0.016 1.44E-12 -0.018 2.47E-34
-3 201631 -0.027 2.37E-34 -0.017 6.81E-14 -0.019 2.45E-36
-2 202131 -0.027 2.09E-33 -0.018 2.40E-15 -0.018 2.38E-35
-1 202631 -0.025 2.78E-30 -0.017 4.74E-15 -0.017 4.38E-32
0 203131 -0.026 2.77E-32 -0.017 2.08E-14 -0.018 2.91E-34
1 202631 -0.029 2.13E-38 -0.018 1.36E-15 -0.020 9.63E-41
2 202131 -0.032 3.38E-47 -0.020 1.65E-19 -0.022 4.51E-50
3 201631 -0.033 2.14E-49 -0.021 4.91E-21 -0.023 2.19E-52
4 201131 -0.032 1.67E-46 -0.020 3.09E-19 -0.022 2.54E-49
5 200631 -0.030 3.16E-41 -0.017 3.55E-14 -0.021 9.68E-44
6 200131 -0.028 8.17E-36 -0.014 6.33E-10 -0.019 5.78E-38
7 199631 -0.027 2.30E-33 -0.011 5.03E-07 -0.019 2.54E-35
8 199131 -0.026 5.42E-32 -0.010 1.04E-05 -0.018 7.95E-34
9 198631 -0.026 1.82E-31 -0.009 5.89E-05 -0.018 2.71E-33
10 198131 -0.026 5.25E-30 -0.008 0.0003 -0.018 9.20E-32
11 197631 -0.024 1.40E-27 -0.007 0.0029 -0.017 3.37E-29
12 197131 -0.023 2.68E-24 -0.005 0.0163 -0.016 9.90E-26
13 196631 -0.022 6.66E-23 -0.004 0.0530 -0.015 3.06E-24
14 196131 -0.021 2.22E-21 -0.003 0.1464 -0.015 1.27E-22
15 195631 -0.021 2.30E-20 -0.002 0.3090 -0.014 1.55E-21

122

Appendix B

Supplementary figures

B.1 Ribosomal pauses and other statistics per

gene

Fig. B.1 is showing ribosomal pauses and corresponding potential factors at
each codon position of YAL038W. The first plot is showing the raw footprint
count at each codon position by blue dotted line and a 10 codon-window mov-
ing average of it in yellow. We detect the peak regions from the smoothed
footprint data. Regions having 1.7 times or more footprints than the aver-
age and having at least 200 footprints are selected as peaks (black circles on
the smoothed curve). The next plot is showing the folding energy (summed
over 3 nucleotides) at each codon position of YAL038W. The third image is
showing the presence of amino acids Met, Pro and ProPro dipeptide. In the
fourth graph, 10 codon-window moving average of the relative adaptiveness of
the codons in the gene are shown. Similar plot is shown in fig B.2 for gene
YKL152C. We see the peaks or read pile-ups in YAL038W are comparatively
larger than those in YKL152C. Note the RNA folding energies are also lower
in YAL038W. Also, the density of Met and Pro are much higher in YAL038W
compared to YKL152C. Note for YKL152C, folded secondary structure ener-
gies near the detected peaks are lower compared to other regions.

B.2 RNA secondary structure effect on ribo-

some profile data

Fig. B.3 is showing the correlation scores of ribosome footprint reads with
inverted PARS scores of the Saccharomyces cerevisiae mRNA sequences at
different offsets. Left figure is showing correlation statistics for offsets in the

123

Figure B.1: Ribosomal pauses and other statistics for YAL038W. Figure-1:
raw read count along the gene is shown in blues dotted line and the 10-codon
window smoothed line is shown in yellow. Figure-2: secondary structure en-
ergy per codon (raw values in blue dotted line and the smoothed curve in
yellow). Figure-3: positions of amino acids Met, Pro and ProPro dipeptide
are shown. Figure-4: 10-codon window smoothed line for relative adaptiveness
of the RNA sequence is shown.

range: −20 <= x <= 20. Right figure is showing statistics for the extended
offset range (−100 <= x <= 100). We see a significant two dip pattern around
the A-site of a translating ribosome. Fig. B.4 is showing the plots of the
correlation statistics for control data-set. Left figure is showing the statistics
for randomly generated read data-set, we found no significant correlation of
the inverted PARS scores with the in silico random read data-set. Right figure
is showing the correlation statistics for wildtype mRNA-seq data, it shows
significant two dip pattern similar to the real ribosome profile data-set, though
less significant compared to the real footprint data.

124

Figure B.2: Ribosomal pauses and other statistics for YKL152C. Figure-1:
raw read count along the gene is shown in blues dotted line and the 10-codon
window smoothed line is shown in yellow. Figure-2: secondary structure en-
ergy per codon (raw values in blue dotted line and the smoothed curve in
yellow). Figure-3: positions of amino acids Met, Pro and ProPro dipeptide
are shown. Figure-4: 10-codon window smoothed line for relative adaptiveness
of the RNA sequence is shown.

B.3 Codon-pair bias analysis

Fig. B.5, B.6 and B.7 are showing the patterns of the codon usage statistics
for both equal weight and weighted analysis. For equal weight analysis, we
took the mean RRT of the codons in the high or low group (see chapter 5 for
codon usage RRT calculation). Here, both groups will have same codons equal
number of times, so the mean should also be same. For weighted analysis, we
calculated the weighted average (by the frequency of corresponding codon pair)
of the codon usage RRT of each codon in a group. The mean for weighted
analysis may vary based on the frequency of usage of individual codon pair.
However, we found no significant difference in the two groups while considering
codon-usage effect.

125

Figure B.3: Pearson, Spearman and Kendall Tau correlation plot for the in-
verted PARS scores of the Saccharomyces cerevisiae genes vs ribosome foot-
print reads (read-window size: 1 and PARS score window size: 3). Reads are
normalized by the average reads per codon. Correlation plots are shown for
offsets in the range, −20 <= x <= 20, significant two dip pattern is noticed
in the correlation values at different offsets.

Figure B.4: Correlation plot for inverted PARS scores of the Saccharomyces
cerevisiae mRNA sequences vs reads per codon at control data-set using Pear-
son, Spearman and Kendall Tau correlation measures. Left: randomly gen-
erated read data-set, no significant pattern in the correlation was observed.
Right: wildtype mRNA-seq data-set, the data shows significant two dip pat-
tern similar to the real ribosome profile data-set, but to a lesser extent.

126

Figure B.5: RRT statistics for codons in the high and low group separated
based on classic scoring method.

Figure B.6: RRT statistics for codons in the high and low group separated
based on gap scoring method.

Figure B.7: RRT statistics for codons in the high and low group separated
based on signal scoring method.

127

Bibliography

[1] Nih working definition of bioinformatics and computational biology.
Biomedical Information Science and Technology Initiative, 2000.

[2] H. König, D. Frank, R. Heil, and C. Coenen. Synthetic genomics and
synthetic biology applications between hopes and concerns. Curr Ge-
nomics, 2013.

[3] F. J. Isaacs, D. J. Dwyer, and J. J. Collins. Rna synthetic biology. Nat
Biotechnol., 24:545–54, 2006.

[4] Emma Abernathy, Karen Clyde, Rukhsana Yeasmin, Laurie T. Krug,
Al Burlingame, Laurent Coscoy, and Britt Glaunsinger. Gammaher-
pesviral gene expression and virion composition are broadly controlled
by accelerated mrna degradation. PLoS Pathog, 10, 2014.

[5] R. B. Weiss and J. F. Atkins. Molecular biology. translation goes global.
Science, 334, 2011.

[6] T. Ikemura. Correlation between the abundance of escherichia coli trans-
fer rnas and the occurrence of the respective codons in its protein genes:
A proposal for a synonymous codon choice that is optimal for the e. coli
translational system. Journal of Molecular Biology, 151(3):389 – 409,
1981.

[7] P. M. Sharp and W. H. Li. The codon adaptation index–a measure of
directional synonymous codon usage bias, and its potential applications.
Nucleic Acids Res, 15:1281–95, 1987.

[8] J. Plotkin and G. Kudla. Synonymous but not the same: the causes and
consequences of codon bias. Nature Reviews Genetics, 12:32–42, 2011.

[9] J.R. Coleman, D. Papamichial, S. Skiena, B. Futcher, E. Wimmer, and
S. Mueller. Virus attenuation by genome-scale changes in codon-pair
bias. Science, 320:1784–1787, 2008.

128

[10] Gina Cannarozzi, Nicol N. Schraudolph, Mahamadou Faty, Peter von
Rohr, Markus T. Friberg, Alexander C. Roth, Pedro Gonnet, Gaston
Gonnet, and Yves Barral. A role for codon order in translation dynamics.
Cell, 141:355–367, 2010.

[11] Rukhsana Yeasmin, Jesmin Jahan Tithi, Jeffrey Chen, and Steven
Skiena. Designing autocorrelated genes. ACM-BCB 2013, 2013.

[12] Marilyn Kozak. Influences of mrna secondary structure on initiation by
eukaryotic ribosomes. Proc. Nati. Acad. Sci, 83, 1986.

[13] G. Kudla, A.W. Murray, D. Tollervey, and J.B. Plotkin. Coding-
sequence determinants of gene expression in escherichia coli. Science,
324:255–258, 2009.

[14] R. Yeasmin and S. Skiena. Designing rna secondary structures in cod-
ing regions. International Symposium on Bioinformatics Research and
Applications, 7292, 2012.

[15] M. Zuker, D. H. Mathews, and D. H. Turner. Algorithms and thermo-
dynamics for rna secondary structure prediction. 1999.

[16] J. Jaeger, D.H. Turner, and M. Zuker. Improved predictions of secondary
structures for rna. Proc. Natl. Acad. Sci. USA, 86:7706–7710, 1989.

[17] I. Jr. Tinoco, P.N. Borer, B. Dengler, M.D. Levin, O.C. Uhlenbeck, D.M.
Crothers, and J. Bralla. Improved estimation of secondary structure in
ribonucleic acids. Nat. New Biol., 246:40–41, 1973.

[18] I.L. Hofacker, W. Fontana, P.F. Stadler, and L.S. Bonhoeffer. Fast
folding and comparison of rna secondary structures. Monatshefte fur
Chemie, 125:167–188, 1994.

[Mfo] http://mfold.rna.albany.edu.

[Vie] http://rna.tbi.univie.ac.at.

[19] B. Cohen and S. Skiena. Natural selection and algorithmic design of
mRNA. J. Computational Biology, 10:419–432, 2003.

[20] Barry Cohen and Steven Skiena. Optimizing rna secondary structure
over all possible encodings of a given protein. RECOMB, 2000.

[21] Tamir Tuller, Yedael Y. Waldman, Martin Kupiec, and Eytan Ruppin.
Translation efficiency is determined by both codon bias and folding en-
ergy. Natl Acad Sci USA, 2010.

129

http://mfold.rna.albany.edu
http://rna.tbi.univie.ac.at

[22] V. Sitaraman, P. Hearing, C. Ward, D. Gnatenko, Eckard Wimmer,
S. Mueller, S. Skiena, and W. Bahou. Computationally designed adeno-
associated virus (aav) rep 78 is efficiently maintained within an aden-
ovirus vector. Proc. National Academy of Sciences, 108:14294–14299,
2011.

[23] S. Mueller, R. Coleman, D. Papamichail, C. Ward, A. Nimnual,
B. Futcher, S. Skiena, and E. Wimmer. Live attenuated influenza vac-
cines by computer-aided rational design. Nature Biotechnology, 28, 2010.

[24] M. Zuker. Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res., 31:3406–3415, 2003.

[25] D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded se-
quence dependence of thermodynamic parameters improves prediction
of rna secondary structure. J Mol Biol, 288:911–940, 1999.

[26] M. Zuker and P. Stiegler. Optimal computer folding of large rna se-
quences using thermodynamics and auxiliary information. Nucleic Acids
Res., pages 133–48, 1981.

[27] JS. McCaskill. The equilibrium partition function and base pair binding
probabilities for rna secondary structure. Biopolymers, 29:1105–19, 1990.

[28] S. Wuchty, Walter Fontana, I. L.H., and P. Schuster. Complete subopti-
mal folding of rna and the stability of secondary structures. Biopolymers,
49:145–165, 1999.

[29] B.A. Shapiro and K. Zhang. Comparing multiple rna secondary struc-
tures using tree comparisons. Comput. Appl. Biosci., 6:309–318, 1990.

[30] Ivo Ludwig Hofacker. The rules of the evolutionary game for rna: A
statistical characterization of the sequence to structure mapping in rna.
PhD thesis, 1994.

[31] N. Dromi, A. Avihoo, and D. Barash. Reconstruction of natural rna
sequences from rna shape, thermodynamic stability, mutational robust-
ness, and linguistic complexity by evolutionary computation. Biomol
Struct Dyn, 26:147–162, 2008.

[32] B.I. Dehiyat and S.L. Mayo. De novo protein design: Fully automated
sequence selection. Science, 278:82–87, 1997.

[33] A. Busch and R. Backofen. Info-rna: a server for fast inverse rna folding
satisfying sequence constraints. Nucleic Acids Res., 2007.

130

[34] Assaf Avihoo, Alexander Churkin, and Danny Barash. Rnaexinv: An
extended inverse rna folding from shape and physical attributes to se-
quences. BMC Bioinformatics, 2011.

[35] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological sequence
analysis: Probabilistic models of proteins and nucleic acids. Cambridge
University Press, 1998.

[36] B. Knudsen and J. Hein. Rna secondary structure prediction using
stochastic context-free grammars and evolutionary history. Bioinfor-
matics, 15:446–454, 1999.

[37] R.D. Dowell and S.R. Eddy. Evaluation of several lightweight stochastic
context-free grammars for rna secondary structure prediction. BMC
Bioinformatics, 5, 2004.

[38] Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. Con-
trafold: Rna secondary structure prediction without physics-based mod-
els. Bioinformatics, 22:90–98, 2006.

[39] Mirela Andronescu, Anne Condon, Holger H. Hoos, David H. Mathews,
and Kevin P. Murphy. Efficient parameter estimation for rna secondary
structure prediction. Bioinformatics, 23, 2007.

[40] M. Andronescu. Computational approaches for rna energy parameter
estimation. PhD thesis, University of British Columbia, Vancouver,
Canada, 2008.

[41] Shay Zakov, Yoav Goldberg, Michael Elhadad, and Michal Ziv-Ukelson.
Rich parameterization improves rna structure prediction. RECOMB’11
Proceedings of the 15th Annual international conference on Research in
computational molecular biology, pages 546–562, 2011.

[42] Kishore J Doshi, Jamie J Cannone, Christian W Cobaugh, and Robin R
Gutell. Evaluation of the suitability of free-energy minimization using
nearest-neighbor energy parameters for rna secondary structure predic-
tion. BMC Bioinformatics, 5:105, 2004.

[43] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth,
Augusta H Teller, and Edward Teller. Equation of state by fast comput-
ing machines. The Journal of Chemical Physics, 21:1087–1092, 1953.

[44] Ruth Hershberg and Dmitri A. Petrov. Selection on codon bias. Annu.
Rev. Genet., 42, 2008.

131

[45] M. Welch, A. Villalobos, C. Gustafsson, and J. Minshull. Designing
genes for successful protein expression. Methods Enzymol., 498:43–66,
2011.

[46] C. Gustafsson, S. Govindarajan, and J. Minshull. Codon bias and het-
erologous protein expression. Trends in biotechnology, 22:346–53, 2004.

[47] T. F. Markus, G. Pedro, B. Yves, N. S. Nicol, and H. G. Gaston. Mea-
sures of codon bias in yeast, the trna pairing index and possible dna
repair mechanisms. WABI, 2006.

[48] Philipp Bucher and Bernard M. E. Moret. Algorithms in bioinformatics.
6th international workshop, WABI 2006, Zurich, Switzerland, 2006.

[49] G. Kudla, A. W. Murray, D. Tollervey, and J. B. Plotkin. Coding-
sequence determinants of gene expression in escherichia coli. Science,
324, 2009.

[50] T. Tuller, A. Carmi, K. Vestsigian, S. Navon, Y. Dorfan, J. Zaborske,
T. Pan, O. Dahan, I. Furman, and Y. Pilpel. An evolutionarily conserved
mechanism for controlling the efficiency of protein translation. Cell, 141:
344–354, 2010.

[51] D. A. Drummond and C. O. Wilke. Mistranslation-induced protein mis-
folding as a dominant constraint on coding-sequence evolution. Cell,
134:341–352, 2008.

[52] T. Ikemura. Codon usage and trna content in unicellular and multicel-
lular organisms. Mol. Biol. Evol., 2:13–34, 1985.

[53] P.M. Sharp, M. Stencio, J.F. Peden, and A.T. Lloyd. Codon usage:
mutational bias, translational selection, or both? Biochem. Soc. Trans.,
21:835841, 1993.

[54] H. Dong, L. Nilsson, and C. G. Kurland. Co-variation of trna abundance
and codon usage in escherichia coli at different growth rates. J Mol Biol,
260:649–63, 1996.

[55] A. Eyre-Walker and M. Bulmer. Synonymous substitution rates in en-
terobacteria. Genetics, 140:1407–1412, 1995.

[56] Chen Xu, Jing Dong, Chunfa Tong, Xindong Gong, Qiang Wen, and
Qiang Zhuge. Analysis of synonymous codon usage patterns in seven
different citrus species. Evolutionary bioinformatics online, 9:215, 2013.

132

[57] Wenfeng Qian, Jian-Rong Yang, Nathaniel M Pearson, Calum Maclean,
and Jianzhi Zhang. Balanced codon usage optimizes eukaryotic transla-
tional efficiency. PLoS genetics, 8(3), 2012.

[cel] http://genome-www.stanford.edu/cellcycle/data/rawdata/

combined.txt.

[58] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway,
L. Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J.
Lockhart, and R. W. Davis. A genome-wide transcriptional analysis of
the mitotic cell cycle. Cell, 2:65–67, 1998.

[59] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen,
P. Brown, D. Botstein, and B. Futcher. Comprehensive identification
of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by
microarray hybridization. Cell, 9, 1998.

[60] D. Lipson, T. Raz, A. Kieu1, D. R Jones, E. Giladi, E. Thayer, J. F
Thompson, S. Letovsky, P. Milos, and M. Causey. Quantification of the
yeast transcriptome by single-molecule sequencing. Nature Biotechnol-
ogy, 27:652–658, 2009.

[61] Q. Tian, S.B. Stepaniants, M. Mao, L. Weng, M.C. Feetham, and M.J.
Doyle. Integrated genomic and proteomic analyses of gene expression in
mammalian cells. Molecular & Cellular Proteomics, 3(10), 2004.

[62] M. Siwiak and P Zielenkiewicz. Integrated genomic and proteomic anal-
yses of gene expression in mammalian cells. A Comprehensive, Quanti-
tative, and Genome-Wide Model of Translation, 6(7), 2010.

[63] Donna K. Slonim and Itai Yanai. Getting started in gene expression
microarray analysis. PLoS Computational Biology, 2009.

[64] S. Covarrubias, M. M. Gaglia, G. R. Kumar, W. Wong, A. O. Jackson,
and B. A. Glaunsinger. Coordinated destruction of cellular messages in
translation complexes by the gammaherpesvirus host shutoff factor and
the mammalian exonuclease xrn1. PLoS Pathog, 2011.

[65] Benson Yee Hin Cheng, Jizu Zhi, Alexis Santana, Sohail Khan, Eduardo
Salinas, J. Craig Forrest, Yueting Zheng, Shirin Jaggi, Janet Leather-
wood, and Laurie T. Krug. Tiled microarray identification of novel vi-
ral transcript structures and distinct transcriptional profile during two
modes of productive murine gammaherpesvirus 68 infection. J. Virol.,
86, 2012.

133

http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt
http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt

[66] H. W. Virgin, P. Latreille, P. Wamsley, K. Hallsworth, K. E. Weck,
A. J. Dal Canto, and S. H. Speck. Complete sequence and genomic
analysis of murine gammaherpesvirus 68. J. Virol., 71, 1997.

[67] Hendrik J. M. de Jonge, Rudolf S. N. Fehrmann, Eveline S. J. M.
de Bont, Robert M. W. Hofstra, Frans Gerbens, Willem A. Kamps,
Elisabeth G. E. de Vries, Ate G. J. van der Zee, Gerard J. te Meerman,
and Arja ter Elst. Evidence based selection of housekeeping genes. PLoS
ONE, 2007.

[68] G. K. Smyth. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Statistical Applications
in Genetics and Molecular Biology, 3, 2004.

[69] Justin M. Richner, Karen Clyde, Andrea C. Pezda, Benson Yee Hin
Cheng, Tina Wang, G. Renuka Kumar, Sergio Covarrubias, Laurent
Coscoy, and Britt Glaunsinger. Global mrna degradation during lytic
gammaherpesvirus infection contributes to establishment of viral la-
tency. PLoS Pathog, 7, 2011.

[70] A. D. Kwong and N. Frenkel. The herpes simplex virus virion host
shutoff function. J Virol, 63, 1989.

[71] L. I. Strelow and D. A. Leib. Role of the virion host shutoff (vhs) of
herpes simplex virus type 1 in latency and pathogenesis. J Virol, 69,
1995.

[72] B. Glaunsinger and D. Ganem. Lytic kshv infection inhibits host gene
expression by accelerating global mrna turnover. Mol Cell, 13, 2004.

[73] S. Covarrubias, J. M. Richner, K. Clyde, Y. J. Lee, and B. A. Glaun-
singer. Host shutoff is a conserved phenotype of gammaherpesvirus in-
fection and is orchestrated exclusively from the cytoplasm. J Virol, 83,
2009.

[74] S. Covarrubias, M. M. Gaglia, G. R. Kumar, W. Wong, A. O. Jackson,
and B. Glaunsinger. Coordinated destruction of cellular messages in
translation complexes by the gammaherpesvirus host shutoff factor and
the mammalian exonuclease xrn1. PLoS Pathog, 7, 2011.

[75] M. M. Gaglia, S. Covarrubias, W. Wong, and B. A. Glaunsinger. A
common strategy for host rna degradation by divergent viruses. J Virol,
86, 2012.

134

[76] H. G. Krausslich, M. J. Nicklin, H. Toyoda, D. Etchison, and E. Wimmer.
Poliovirus proteinase 2a induces cleavage of eucaryotic initiation factor
4f polypeptide p220. J Virol, 61, 1987.

[77] M. Zamora, W. E. Marissen, and R. E. Lloyd. Multiple eif4gi-specific
protease activities present in uninfected and poliovirus-infected cells. J
Virol, 76, 2002.

[78] K. S. Sciabica, Q. J. Dai, and R. M. Sandri-Goldin. Icp27 interacts with
srpk1 to mediate hsv splicing inhibition by altering sr protein phospho-
rylation. EMBO J, 22, 2003.

[79] M. D. Koffa, J. B. Clements, E. Izaurralde, S. Wadd, S. A. Wilson, I. W.
Mattaj, and S. Kuersten. Herpes simplex virus icp27 protein provides
viral mrnas with access to the cellular mrna export pathway. EMBO J,
20, 2001.

[80] I. H. Chen, K. S. Sciabica, and R. M. Sandri-Goldin. Icp27 interacts
with the rna export factor aly/ref to direct herpes simplex virus type 1
intronless mrnas to the tap export pathway. J Virol, 76, 2002.

[81] C. Huang, K. G. Lokugamage, J. M. Rozovics, K. Narayanan, B. L.
Semler, and S. Makino. Sars coronavirus nsp1 protein induces template-
dependent endonucleolytic cleavage of mrnas: viral mrnas are resistant
to nsp1-induced rna cleavage. PLoS Pathog, 7, 2011.

[82] K. Clyde and B. A. Glaunsinger. Deep sequencing reveals direct targets
of gammaherpesvirus-induced mrna decay and suggests that multiple
mechanisms govern cellular transcript escape. PLoS One, 6, 2011.

[83] S. Hutin, Y. Lee, and B. A. Glaunsinger. An rna element in human
interleukin 6 confers escape from degradation by the gammaherpesvirus
sox protein. J Virol, 87, 2013.

[84] J. Gardin, R. Yeasmin, A. Yurovsky, Y. Cai, S. Skiena, and B. Futcher.
Measurement of average decoding rates of the 61 sense codons in vivo.
eLife, 2014.

[85] N. T. Ingolia, S. Ghaemmaghami, J. R. S. Newman, and J. S. Weissman.
Genome-wide analysis in vivo of translation with nucleotide resolution
using ribosome profiling. Science, 324:218–223, 2009.

[86] G. W. Li, E. Oh, and J. S. Weissman. The anti-shine-dalgarno sequence
drives translational pausing and codon choice in bacteria. Nature, 484:
538–41, 2012.

135

[87] L. F. Lareau, D. H. Hite, G. J. Hogan, and P. O. Brown. Distinct stages
of the translation elongation cycle revealed by sequencing ribosome-
protected mrna fragments. eLife, 3, 2014.

[88] J. L. Bennetzen and B. D. Hall. Codon selection in yeast. J Biol Chem,
257:3026–31, 1982.

[89] M. Bulmer. Coevolution of codon usage and transfer rna abundance.
Nature, 325:728–30, 1987.

[90] W. M. Fitch. Is there selection against wobble in codon-anticodon pair-
ing? Science, 194:1173–4, 1976.

[91] M. Hasegawa, T. Yasunaga, and T. Miyata. Secondary structure of ms2
phage rna and bias in code word usage. Nucleic Acids Res, 7:2073–9,
1979.

[92] D. J. Lipman and W. J. Wilbur. Contextual constraints on synonymous
codon choice. J Mol Biol, 163:363–76, 1983.

[93] T. Miyata, H. Hayashida, T. Yasunaga, and T. Yasunaga. The prefer-
ential codon usages in variable and constant regions of immunoglobulin
genes are quite distinct from each other. Nucleic Acids Res, 7:2431–8,
1979.

[94] P. M. Sharp and W. H. Li. An evolutionary perspective on synonymous
codon usage in unicellular organisms. J Mol Evol, 24:28–38, 1986.

[95] B. Maertens, A. Spriestersbach, U. Von Groll, U. Roth, J. Kubicek,
M. Gerrits, M. Graf, M. Liss, D. Daubert, R. Wagner, and F. Schafer.
Gene optimization mechanisms: a multi-gene study reveals a high suc-
cess rate of full-length human proteins expressed in escherichia coli. Pro-
tein Sci, 19:1312–26, 2010.

[96] N. A. Burgess-Brown, S. Sharma, F. Sobott, C. Loenarz, U. Oppermann,
and O. Gileadi. Codon optimization can improve expression of human
genes in escherichia coli: A multi-gene study. Protein Expr Purif, 59:
94–102, 2008.

[97] N. T. Ingolia, L. F. Lareau, and J. S. Weissman. Ribosome profiling
of mouse embryonic stem cells reveals the complexity and dynamics of
mammalian proteomes. Cell., 147:789–802, 2011.

[98] C. A. Charneski and L. D. Hurst. Positively charged residues are the
major determinants of ribosomal velocity. PLoS Biol, 11, 2013.

136

[99] O. Brandman, J. Stewart-Ornstein, D. Wong, A. Larson, C. C. Williams,
G. W. Li, S. Zhou, D. King, P. S. Shen, J. Weibezahn, J. G. Dunn,
S. Rouskin, T. Inada, A. Frost, and J. S. Weissman. A ribosome-bound
quality control complex triggers degradation of nascent peptides and
signals translation stress. Cell, 151:1042–54, 2012.

[100] Nicholas T. Ingolia, Gloria A. Brar, Silvia Rouskin, Anna M. McGeachy,
and Jonathan S. Weissman. The ribosome profiling strategy for monitor-
ing translation in vivo by deep sequencing of ribosome-protected mrna
fragments. Nat Protoc., 7:15341550, 2012.

[101] Y. Arava, Y. Wang, J. D. Storey, C. L. Liu, P. O. Brown, and D. Her-
schlag. Genome-wide analysis of mrna translation profiles in saccha-
romyces cerevisiae. Proc Natl Acad Sci, 100:3889–94, 2003.

[102] P. Sampath, D. K. Pritchard, L. Pabon, H. Reinecke, S. M. Schwartz,
D. R. Morris, and C. E. Murry. A hierarchical network controls protein
translation during murine embryonic stem cell self-renewal and differen-
tiation. Cell Stem Cell., 8:448–60, 2008.

[103] Nicholas T. Ingolia. Ribosome profiling: new views of translation, from
single codons to genome scale. Nature Reviews Genetics, 15:205–213,
2014.

[104] Alexandra Dana and Tamir Tuller. Determinants of translation elonga-
tion speed and ribosomal profiling biases in mouse embryonic stem cells.
PLoS Comput Biol, 8, 2012.

[105] A. T. Lamm, M. R. Stadler, H. Zhang, J. I. Gent, and A. Z. Fire.
Multimodal rna-seq using single-strand, double-strand, and circligase-
based capture yields a refined and extended description of the c. elegans
transcriptome. Genome Res, 21:265–75, 2011.

[106] C. A. Raabe, T. H. Tang, J. Brosius, and T. S. Rozhdestvensky. Biases
in small rna deep sequencing data. Nucleic Acids Res, 42:1414–26, 2014.

[107] T. J. Jackson, R. V. Spriggs, N. J. Burgoyne, C. Jones, and A. E. Willis.
Evaluating bias-reducing protocols for rna sequencing library prepara-
tion. BMC Genomics, 15, 2014.

[108] B. Futcher, G. I. Latter, P. Monardo, C. S. McLaughlin, and J. I. Garrels.
A sampling of the yeast proteome. Mol Cell Biol., 19, 1999.

137

[109] M. Johansson, K. W. Ieong, S. Trobro, P. Strazewski, J. Aqvist, M. Y.
Pavlov, and M. Ehrenberg. ph-sensitivity of the ribosomal peptidyl
transfer reaction dependent on the identity of the a-site aminoacyl-trna.
Proc Natl Acad Sci USA, 108:79–84, 2011.

[110] H. Muto and K. Ito. Peptidyl-prolyl-trna at the ribosomal p-site reacts
poorly with puromycin. Biochem Biophys Res Commun., 366:1043–1047,
2008.

[111] Michael Y. Pavlov, Richard E. Watts, Zhongping Tan, Virginia W. Cor-
nish, Mans Ehrenberg, and Anthony C. Forster. Slow peptide bond
formation by proline and other n-alkylamino acids in translation. Proc
Natl Acad Sci, 106, 2009.

[112] L. K. Doerfel, I. Wohlgemuth, C. Kothe, F. Peske, H. Urlaub, and M. V.
Rodnina. Ef-p is essential for rapid synthesis of proteins containing
consecutive proline residues. Science, 339:85–8, 2013.

[113] L. Peil, A. L. Starosta, J. Lassak, G. C. Atkinson, K. Virumae,
M. Spitzer, T. Tenson, K. Jung, J. Remme, and D. N. Wilson. Dis-
tinct xppx sequence motifs induce ribosome stalling, which is rescued
by the translation elongation factor ef-p. Proc Natl Acad Sci USA, 110:
15265–70, 2013.

[114] S. Ude, J. Lassak, A. L. Starosta, T. Kraxenberger, D. N. Wilson, and
K. Jung. Translation elongation factor ef-p alleviates ribosome stalling
at polyproline stretches. Science, 339:82–5, 2013.

[115] T. Ikemura. Correlation between the abundance of yeast transfer rnas
and the occurrence of the respective codons in protein genes. differences
in synonymous codon choice patterns of yeast and escherichia coli with
reference to the abundance of isoaccepting transfer rnas. J Mol Biol,
158:573–97, 1982.

[116] A. C. Roth. Decoding properties of trna leave a detectable signal in
codon usage bias. Bioinformatics, 28, 2012.

[117] T. Daviter, K. B. Gromadski, and M. V. Rodnina. The ribosome’s
response to codon-anticodon mismatches. Biochimie, 88, 2006.

[118] K. B. Gromadski, T. Daviter, and M. V. Rodnina. A uniform response
to mismatches in codon-anticodon complexes ensures ribosomal fidelity.
Mol Cell, 21, 2006.

138

[119] P. K. Khade and S. Joseph. Messenger rna interactions in the decoding
center control the rate of translocation. Nat Struct Mol Biol, 18, 2011.

[120] Y. P. Semenkov, M. V. Rodnina, and W. Wintermeyer. Energetic con-
tribution of trna hybrid state formation to translocation catalysis on the
ribosome. Nat Struct Biol, 7, 2000.

[121] J. Lu and C. Deutsch. Electrostatics in the ribosomal tunnel modulate
chain elongation rates. J Mol Biol, 384, 2008.

[122] G. Blaha, G. Gurel, S. J. Schroeder, P. B. Moore, and T. A. Steitz.
Mutations outside the anisomycin-binding site can make ribosomes drug-
resistant. J Mol Biol, 379, 2008.

[123] J. L. Hansen, P. B. Moore, and T. A. Steitz. Structures of five antibiotics
bound at the peptidyl transferase center of the large ribosomal subunit.
J Mol Biol, 330, 2003.

[124] P. Bieling, M. Beringer, S. Adio, and M. V. Rodnina. Peptide bond
formation does not involve acid-base catalysis by ribosomal residues.
Nat Struct Mol Biol, 13:423–8, 2006.

[125] N. Demeshkina, L. Jenner, E. Westhof, M. Yusupov, and G. Yusupova.
A new understanding of the decoding principle on the ribosome. Nature,
484:256–9, 2012.

[126] X. Zeng, J. Chugh, A. Casiano-Negroni, H. M. Al-Hashimi, and 3RD
Brooks, C. L. Flipping of the ribosomal a-site adenines provides a basis
for trna selection. J Mol Biol, 426, 2014.

[127] M. V. Rodnina. The ribosome as a versatile catalyst: reactions at the
peptidyl transferase center. Curr Opin Struct Biol, 23, 2013.

[128] Y. S. Polikanov, T. A. Steitz, and C. A. Innis. A proton wire to cou-
ple aminoacyl-trna accommodation and peptide-bond formation on the
ribosome. Nat Struct Mol Biol, 21, 2014.

[129] J. Zhou, L. Lancaster, J. P. Donohue, and H. F. Noller. How the ribosome
hands the a-site trna to the p site during ef-g-catalyzed translocation.
Science, 345, 2014.

[130] P. M. Petrone, C. D. Snow, D. Lucent, and V. S. Pande. Side-chain
recognition and gating in the ribosome exit tunnel. Proc Natl Acad Sci
USA, 105, 2008.

139

[131] J. Lu, Z. Hua, W. R. Kobertz, and C. Deutsch. Nascent peptide side
chains induce rearrangements in distinct locations of the ribosomal tun-
nel. J Mol Biol, 411, 2011.

[132] S. G. Andersson and C. G. Kurland. Codon preferences in free-living
microorganisms. Microbiol Rev, 54, 1990.

[133] D. Chu, E. Kazana, N. Bellanger, T. Singh, M. F. Tuite, and T. Von
Der Haar. Translation elongation can control translation initiation on
eukaryotic mrnas. EMBO J, 33, 2014.

[134] U. Berndt, S. Oellerer, Y. Zhang, A. E. Johnson, and S. Rospert. A
signal-anchor sequence stimulates signal recognition particle binding to
ribosomes from inside the exit tunnel. Proc Natl Acad Sci USA, 106,
2009.

[135] U. Raue, S. Oellerer, and S. Rospert. Association of protein biogenesis
factors at the yeast ribosomal tunnel exit is affected by the translational
status and nascent polypeptide sequence. J Biol Chem, 282, 2007.

[136] J. C. Darnell, S. J. Van Driesche, C. Zhang, K. Y. Hung, A. Meleand,
C. E. Fraser, E. F. Stone, C. Chen, J. J. Fak, S. W. Chi, D. D. Licatalosi,
J. D. Richter, and R. B. Darnell. Fmrp stalls ribosomal translocation on
mrnas linked to synaptic function and autism. Cell., 146:247–61, 2011.

[137] D. R. Morris and A. P. Geballe. Review upstream open reading frames
as regulators of mrna translation. Mol Cell Biol., 20:8635–42, 2000.

[138] C. Kimchi-Sarfaty, J. M. Oh, I. W. Kim, Z. E. Sauna, A. M. Calcagno,
S. V. Ambudkar, and M. M. Gottesman. A silent polymorphism in the
mdr1 gene changes substrate specificity. Science., 315:525–8, 2007.

[139] G. Zhang, M. Hubalewska, and Z. Ignatova. Transient ribosomal atten-
uation coordinates protein synthesis and co-translational folding. Nat
Struct Mol Biol., 16:274–80, 2009.

[140] M. Mariappan, X. Li, S. Stefanovic, A. Sharma, A. Mateja, R. J. Keenan,
and R. S. Hegde. A ribosome-associating factor chaperones tail-anchored
membrane proteins. Nature., 466:1120–4, 2010.

[141] K. Yanagitani, Y. Kimata, H. Kadokura, and K. Kohno. Translational
pausing ensures membrane targeting and cytoplasmic splicing of xbp1u
mrna. Science., 331:586–9, 2011.

140

[142] B. Irwin, J. D. Heck, and G. W. Hatfield. Codon pair utilization biases
influence translational elongation step times. J Biol Chem., 270:22801–6,
1995.

[143] O. Namy, S. J. Moran, D. I. Stuart, R. J. Gilbert, and I. Brierley. A
mechanical explanation of rna pseudoknot function in programmed ri-
bosomal frameshifting. Nature., 441:244–7, 2006.

[144] H. Nakatogawa and K. Ito. The ribosomal exit tunnel functions as a
discriminating gate. Cell., 108:629–36, 2002.

[145] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. Htseq - a python
framework to work with high-throughput sequencing data. bioRxiv
preprint, 2014.

[146] M. Yarus and L. S. Folley. Sense codons are found in specific contexts.
J. Mol. Biol., 182, 1985.

[147] T. Taniguchi and C. Weissmann. Inhibition of qbeta rna 70s ribosome
initiation complex formation by an oligonucleotide complementary to
the 3’ terminal region of e. coli 16s ribosomal rna. Nature, 275:770772,
1978.

[148] L. Bossi and J. R. Ruth. The influence of codon context on genetic code
translation. Nature, 286, 1980.

[149] E. J. Murgola, F. T. Pagel, and K. A. Hijazi. Codon context effects in
missense suppression. J. Mol. Biol., 175, 1984.

[150] G. A. Gutman and G. W. Hatfield. Non-random utilization of codon
pairs in escherichia coli. Proc. Natl Acad. Sci., 86, 1989.

[151] B. Irwin, J. D. Heck, and G. W. Hatfield. Codon pair utilization biases
influence translational elongation step times. J Biol Chem., 1995.

[152] D. Smith and M Yarus. trna-trna interactions within cellular ribosomes.
Proc. Natl Acad. Sci., 86:43974401, 1989.

[153] M. Yarus and J. Curran. Transfer rna in protein synthesis. CRC Press,
page 319365, 1992.

[154] K. H. Nierhaus, J. Wadzack, N. Burkhardt, R. Junemann, W. Meer-
winck, R. Willumeit, and H. B. Stuhrmann. Structure of the elongating
ribosome: arrangement of the two trnas before and after translocation.
Proc. Natl Acad. Sci., 1998.

141

[155] J. R. Buchan, L. S. Aucott, and I. Stansfield. trna properties help shape
codon pair preferences in open reading frames. Nucleic Acids Research,
2006.

[156] Svetlana Boycheva, Georgi Chkodrov, and Ivan Ivanov. Codon pairs in
the genome of escherichia coli. Bioinformatics, 19:987–998, 2003.

[157] G. W. Hatfield and G. A. Gutman. Transfer rna in protein synthesis.
CRC Press, 86:157190, 1989.

[158] P. M. Sharp and W. H. Li. Codon usage in regulatory genes in escherichia
coli does not reflect selection for ‘rare codons. Nucleic Acids Research,
1986.

[159] T. Ikemura. Transfer rna in protein synthesis. CRC Press, page 113124,
1992.

[160] R. B. Loftfield and D. Vanderjagt. The frequency of errors in protein
biosynthesis. Biochem. J., 1972.

[161] I. Stansfield, K. M. Jones, P. Herbert, A. Lewendon, W. V. Shaw, and
M. F. Tuite. Missense translation errors in saccharomyces cerevisiae. J.
Mol. Biol., 1998.

[162] L. Boe. Translational errors as the cause of mutations in escherichia coli.
Mol. Gen. Genet., 1992.

[163] P. J. Farabaugh. Programmed translational frameshifting. Annu Rev
Genet., 1996.

[164] C. G. Kurland. Translational accuracy and the fitness of bacteria. Annu
Rev Genet, 1992.

[165] A. A. Shah, M. C. Giddings, J. B. Parvaz, R. F. Gesteland, and Ivanov
I. P. Atkins, J. F. Computational identification of putative programmed
translational frameshift sites. Bioinformatics, 2002.

[166] L. Green, C. H. Kim, C. Bustamante, and I. Tinoco. Characterization of
the mechanical unfolding of rna pseudoknots. J. Mol. Biol., 375, 2008.

[Wik] http://en.wikipedia.org/wiki/Translational_frameshift.

[167] M. Kozak. Regulation of translation via mrna structure in prokaryotes
and eukaryotes. Gene, 361, 2005.

142

http://en.wikipedia.org/wiki/Translational_frameshift

[168] L. Katz and C. B. Burge. Widespread selection for local rna secondary
structure in coding regions of bacterial genes. Genome Res., 2003.

[169] Michael Kertesz, Yue Wan, Elad Mazor, John L. Rinn, Robert C. Nutter,
Howard Y. Chang, and Eran Segal. Genome-wide measurement of rna
secondary structure in yeast. Nature, 467:103107, 2010.

[170] D. Chu, D. J. Barnes, and T. von der Haar. The role of trna and
ribosome competition in coupling the expression of different mrnas in
saccharomyces cerevisiae. Nucleic Acids Research, 2011.

[171] E. P. Rocha. Codon usage bias from trna’s point of view: redun-
dancy, specialization, and efficient decoding for translation optimization.
Genome Res., 2004.

[172] M. dos Reis, L. Wernisch, and R. Savva. Unexpected correlations be-
tween gene expression and codon usage bias from microarray data for
the whole escherichia coli k-12 genome. Nucleic Acids Res., 2003.

[173] T. E. Gorochowski, Z. Ignatova, R. A. L. Bovenberg, and J. A. Roubos.
Trade-offs between trna abundance and mrna secondary structure sup-
port smoothing of translation elongation rate. Nucl. Acids Res., 2015.

[174] B. S. Negrutskii and M. P. Deutscher. Channeling of aminoacyl-trna for
protein synthesis in vivo. Proc Natl Acad Sci USA, 1991.

[175] R. Stapulionis and M. P. Deutscher. A channeled trna cycle during
mammalian protein synthesis. Proc Natl Acad Sci USA, 1995.

[176] M. Kaminska, S. Havrylenko, P. Decottignies, P. Le Maréchal, B. Ne-
grutskii, and M. Mirande. Dynamic organization of aminoacyl-trna syn-
thetase complexes in the cytoplasm of human cells. J. Biol. Chem.,
2009.

[177] Z. Q. Shao, Y. M. Zhang, X. Y. Feng, B. Wang, and J. Q. Chen. Syn-
onymous codon ordering: A subtle but prevalent strategy of bacteria to
improve translational efficiency. PLoS One, 2012.

[178] V. Godinic-Mikulcic, J. Jaric, B. J. Greber, V. Franke, V. Hodnik,
G. Anderluh, N. Ban, and I. Weygand-Durasevic. Archaeal aminoacyl-
trna synthetases interact with the ribosome to recycle trnas. Nucleic
Acids Res., 2014.

143

[179] S. R. McGuffee and A. H. Elcock. Diffusion, crowding & protein stability
in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput.
Biol., 2010.

[180] T. F. Knight. Engineering novel life. Mol. Syst. Biol., 13, 2005.

[181] W. Szybalski and A. Skalka. Nobel prizes and restriction enzymes. Gene,
4, 1978.

[182] D. Endy. Foundations for engineering biology. Nature, 438, 2005.

[183] Kosuri S. Chan, L. Y. and D. Endy. Refactoring bacteriophage. Mol.
Syst. Biol., 2005.

[184] E. Wimmer, S. Mueller, T. M. Tumpey, and J. K. Taubenberger. Syn-
thetic viruses : a new opportunity to understand and prevent viral dis-
ease. Nat. Biotechnol., 2009.

[185] Z. Xie, L. Wroblewska, L. Prochazka, R. Weiss, and Y. Benenson. Multi-
input rnai-based logic circuit for identification of specific cancer cells.
Science, 2011.

[186] W. Weber, R. Schoenmakers, B. Keller, M. Gitzinger, T. Grau, M. D.
Baba, P. Sander, and M. Fussenegger. A synthetic mammalian gene
circuit reveals antituberculosis compounds. Proc Natl Acad Sci USA,
2008.

[187] A. S. Khalil and J. J. Collins. Synthetic biology: applications come of
age. Nat Rev Genet, 2010.

144

	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Introduction
	1.1 Overview

	2 Designing RNA secondary structures in coding regions
	2.1 Preliminaries
	2.2 Heuristics for inverse RNA folding
	2.2.1 Structure maximization
	2.2.2 Structure minimization
	2.2.3 Algorithmic variants

	2.3 Results and discussion
	2.3.1 Parameter optimization

	2.4 Conclusion
	2.5 Acknowledgement

	3 Designing autocorrelated genes
	3.1 Preliminaries
	3.2 Distance-incorporated codon autocorrelation
	3.2.1 Parameter optimization

	3.3 Evaluation
	3.4 Designing DICA optimized genes
	3.4.1 Highly autocorrelated gene design
	3.4.2 Anti-autocorrelated gene design
	3.4.3 Merged search/ heuristics algorithms for gene design
	3.4.4 Algorithm validation through experiments

	3.5 Results and discussion
	3.5.1 Data collection and processing
	3.5.2 Freedom of design

	3.6 Conclusion
	3.7 Acknowledgement

	4 Statistical analysis of tiled microarray gene expression data
	4.1 Data preparation and quality check
	4.2 Data analysis across the arrays
	4.3 Gammaherpesviral gene expression and virion composition are broadly controlled by accelerated mRNA degradation
	4.3.1 Expression of viral mRNAs are largely degraded during host shutoff
	4.3.2 Escapee population is enriched with non-coding RNAs
	4.3.3 Discussion

	5 Measurement of average decoding rates of the 61 sense codons in vivo
	5.1 Previous works
	5.2 Results
	5.3 Validation of ribosome residence time analysis
	5.3.1 Ribosome residence time analysis of codons
	5.3.2 RRT analysis of short footprints

	5.4 Discussion
	5.5 Materials and methods
	5.5.1 Ribosome profiling
	5.5.2 Data analysis

	5.6 Author contributions
	5.7 Acknowledgments

	6 Statistical analysis of ribosome profile data
	6.1 Codon-pair bias analysis
	6.1.1 Data collection
	6.1.2 Data analysis
	6.1.3 P-value computation

	6.2 RNA secondary structure effect on ribosome profile data
	6.2.1 Data collection and preprocessing
	6.2.2 Data analysis

	6.3 tRNA auto-correlation effect analysis
	6.3.1 Compare average reads at tRNA repeat vs tRNA switch
	6.3.2 tRNA repeat distance impact on auto-correlation

	6.4 Discussion

	7 Conclusion
	A Supplementary tables
	A.1 Measurement of average decoding rates of the 61 sense codons in vivo
	A.2 Codon pair bias effect analysis on ribosome profile data
	A.3 Effect of RNA secondary structure on ribosome profile data

	B Supplementary figures
	B.1 Ribosomal pauses and other statistics per gene
	B.2 RNA secondary structure effect on ribosome profile data
	B.3 Codon-pair bias analysis

	 Bibliography

