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Abstract of the Dissertation 
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Robustness, defined as tolerance to perturbations such as mutations and environmental 

fluctuations, is pervasive in biological systems. However, robustness often coexists with its 

counterpart, evolvability - the ability of perturbations to generate new phenotypes. Previous 

models of gene regulatory network evolution have shown that robustness evolves under 

stabilizing selection, but in more realistic scenarios such as coevolution, it may be advantageous 

to evolve sensitivity, i.e. for some mutations to change the phenotype. Furthermore, it is unclear 

how robustness and evolvability will emerge in common coevolutionary scenarios. In this 

dissertation, we consider three different two-species models of coevolution involving one host 

and one parasite population. First, we developed a two-population (host, parasite) model to 

investigate how robustness and evolvability become distributed within a network under 

antagonistic coevolution. We found that sensitivity follows a pattern, similar to that of the game 

“whack-a-mole”, in which sensitive sites mutate, thus becoming insensitive, but new sensitive 

sites emerge to take their place. Second, we developed a host-virus interaction model focusing on 
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host resistance and viral pathogenicity which depend on quite different evolutionary conditions. 

Viruses may evolve cell entry strategies that use small receptor binding regions, represented by 

low complexity binding in our model. Our modeling results suggest that if the virus adopts a 

strategy based on binding to low complexity sites on the host receptor, the host will select a 

defense strategy at the protein (receptor) level, rather than at the level of the regulatory network - 

a virus-host strategy that appears to have been selected most often in nature. Lastly, we 

developed a model of the host innate immunity evolution in the context of host-virus 

coevolution. After viruses enter host cells, they interfere with innate immune systems via 

protein-protein interactions such as molecular mimicry of various host proteins involved in the 

immunity. We found that depending on different viral mechanisms for pathogenicity, hosts 

evolved to optimize the use of 1) mutations at protein-protein interaction sites to avoid mimicry 

and 2) environmental robustness in the innate immune systems imposed by viral disruption of the 

immune systems. 
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Chapter 1. Introduction 

1.1. Introduction 

1.1.1. Robustness and evolvability in biological systems 

Standing genotypic variation in biological systems occurs across many different scales 

ranging from coding region differences that affect amino acid sequences, through changes in 

metabolic pathways and signaling pathways, up to gene regulatory network changes affecting 

development and morphology. Organisms are also affected by environmental variation such as 

temperature changes, fluctuating concentrations of resources [1-4]. Although an environmental 

variation may affect standing genetic variation, mutations are, of course, the original source of 

variation [1, 5-7].  

Robustness, defined as tolerance to perturbations such as mutations and environmental 

fluctuations, is pervasive in biological systems [5, 8]. Many studies have demonstrated the 

existence of robustness at many different biological scales including gene regulatory networks 

[9], RNA secondary structures [10], protein structures [11], signaling pathways [12-14] and 

metabolic networks[15]. Because of the long evolutionary time scales involved, experimental 

approaches to understanding the evolution of robustness in biological systems are extremely 

difficult. As an alternative, to address such questions, computational modeling and simulation 

approaches based on realistic representation of biological and chemical processes have been 

widely used for the last few decades. Early computational models of evolution aimed at 

understanding the relationship between gene-network evolution and behavior (gene expression 

dynamics) [16-18]. These studies found that, although a large number of different networks 

(genotypes) have the same gene expression dynamics (phenotype), they can usually be connected 
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to one another via minimal changes (e.g. creation or deletion of single cis-regulatory 

interactions) that might easily occur during evolution via mutation. This capacity for neutral 

evolution can facilitate the evolution of robustness since it allows a population to migrate 

towards more robust genotypes without altering the phenotype [19]. Numerous theoretical 

studies have shown that robustness will evolve in particular when the phenotype is under 

evolutionary pressure to remain constant (stabilizing selection). Experimental results are 

consistent with this notion. Gene networks in E. coli, for example, have been shown to be robust 

specifically to regulatory rewiring [20]. Similar experiments on metabolic networks, also in E. 

coli, have shown network robustness with respect to both gene knockouts and network rewiring 

[21-23]. 

However, robustness often coexists with its counterpart, evolvability - the ability of 

perturbations to generate new phenotypes. It has previously been suggested that evolvability can 

be facilitated by robustness. Mutations will tend to accumulate in populations with high 

robustness, leading to greater genetic variation, which in turn may facilitate access to new 

phenotypes [5, 19]. Work in the late 1990s on Drosophila Hsp90 (Heat Shock Protein 90, a 

chaperone targeting signal transducers) introduced the concept of phenotypic capacitance. A 

phenotypic capacitor is a mechanism which has the potential to expose the underlying genotypic 

variation. In the case of Hsp90 deletion, it was shown that an increased probability of stop codon 

read-through could expose cryptic variation in genotype that would not be translated in non-

stress conditions, leading to increased phenotypic variation. Later work both theoretical and 

experimental showed more generally that environmental stress or stochastic processes could 

break robustness and drive phenotypic evolvability [24-26]. In this way, two opposite concepts, 

robustness and evolvability turn out to be tightly connected synergistic phenomena. While 
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genetic mutations are not often manifested at the phenotypic level in a robust system, they may 

accumulate silently and can drive phenotypic evolution by creating a wider range of mutational 

opportunities. Thus, perturbations in a phenotypic capacitor in which cryptic mutations are 

silently stored decrease robustness but facilitate evolvability and adaptation to environmental 

changes [5]. 

Many recent studies have shown that ecological interactions both within and between 

species, and particularly coevolutionary interactions, drive evolutionary changes on a far more 

rapid timescale than previously estimated [27-29]. Various forms of interaction occur among 

different species including mutualism, antagonistic coevolution and competition. In an ecological 

context, the interference within and among species is important to their evolution and survival 

[27-29]. Previous models of gene regulatory network evolution have shown that robustness 

evolves under stabilizing selection, but it is unclear how evolutionary features including 

robustness and evolvability will emerge in common but more complex coevolutionary scenarios. 

Although there have been many studies emphasizing importance of coevolution from both 

evolutionary and ecological perspectives [29], network model-based theoretical studies have not 

been used yet. Network modeling is a simple but powerful theoretical approach and has been 

widely used to improve our understanding of the evolution of diverse biological systems. It will 

be meaningful therefore, to use network models to understand how coevolutionary selection 

evolves networks and determines evolutionary properties such as robustness and evolvability 

[27]. Furthermore, as the two species interaction network that we consider here is eventually 

expanded to a bigger multiple species network, the network model might better explain the 

evolution of ecosystems [8].  

1.1.2. Gene regulatory network evolution model 
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In traditional population genetics, a genotype-phenotype mapping is like a black box, and 

each genotype is assigned with a fitness value, 1-s, where s is selection coefficient. In contrast, 

computational models such as the gene regulatory network evolution model (also known as the 

Wagner’s gene regulatory network model), combine a complex genotype-phenotype mapping 

(describing a gene regulatory network) with evolutionary dynamics. The Wagner model will be 

the basis for all the models presented here. An overview is shown in Fig 1.1. 

 

Figure 1. 1. Genotype-phenotype mapping and population level dynamics. A cycle of one 
generation includes a reproduction, a mutation and a selection step. In a homogeneous fixed-size 
founder population, a founder individual possesses a randomly assigned gene regulatory network 
with the initial gene expression. The stable gene expression (phenotype) can be obtained via 
gene expression dynamics. Under stabilizing selection, the founder’s phenotype is used as the 
target (optimum) phenotype.  
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In the Wagner model, a genotype is represented as a matrix (𝑾) where 𝑾 𝒊, 𝒋 = 𝒘𝒊𝒋 

indicates i-th gene regulation by j-th gene product. Positive entries mean activation, negative 

entries mean repression and zeros indicate no interaction. Gene expression is represented as a 

vector (𝑺) of 𝑵 genes. The initial gene expression is given as a random binary vector where 0 

and 1 indicate unexpressed and expressed gene respectively. Gene expression at time 𝒕 + 𝟏 is 

𝑺 𝒕 + 𝟏 = 𝝈 𝑾 ∙ 𝑺 𝒕  where 𝝈 𝒙 = 𝟏
𝟏1𝒆3𝒂𝒙

, and.	
  𝒂(> 𝟎) is a parameter which controls the 

steepness of the sigmoid function. When 𝑺 reaches a steady state ( 𝑺: phenotype), the individual 

is used as a founder. The initial population is built using copies of the founder. In the 

reproduction step, each offspring is produced by inheriting each gene (i.e., a row in 𝑾) from 

either parent. In the mutation step, the offspring’s 𝑾 is mutated with interaction additions, 

deletions and modifications. However, only offspring having high fitness value are likely to be 

selected to the next generation. The fitness function is 𝒇 𝑺 = 𝒆;
𝑫(𝑺,𝑺𝑶𝑷𝑻)

𝑵𝜶 , where 𝑺𝑶𝑷𝑻 is a 

phenotype of founder individual, 𝜶 is selection pressure and 𝑫 𝑺𝟏, 𝑺𝟐 = 𝑺𝟏 𝒊 − 𝑺𝟐 𝒊
𝟐𝑵

𝒊B𝟏  

(𝑺𝟏 and 𝑺𝟐 are of the same length 𝑵). Hence, offspring whose phenotype is similar to the 

founder’s phenotype are most likely to be selected (stabilizing selection). 

The gene regulatory network evolution model has been used previously to address a 

range of questions concerned with evolution of biological complexity [30, 31]. In previous 

studies, the original model has been extended to account for different system levels, including 

transcription factor (TF)-DNA binding interactions [32] and protein-protein interactions (PPI) 

[33] at the microscopic level, or, as presented below, between two different populations [34] at 

the macroscopic level. We were interested in considering how robustness and evolvability can 

evolve to be distributed across different system levels, depending on various model conditions. 
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In particular, we integrate protein-protein interactions (virus-receptor binding) and gene 

regulatory networks (which control receptor expression) in the context of an evolutionary model 

that represents both host and pathogen populations. 

1.1.3. Research objectives 

As described in section 1.1.2, the gene regulatory network evolution model has so far 

been mainly used to address the evolution of robustness under stabilizing selection in a single 

population. However, in more realistic scenarios different levels of systems interact each other 

and it is important to understand how interacting systems coevolve. Depending on interaction 

schemes, it may be advantageous to evolve sensitivity, i.e. for some mutations to change the 

phenotype instead of simply evolving mutational robustness. In this dissertation, we consider 

three different two-species models of coevolution involving one host and one parasite (virus) 

population.  

In Chapter 2, we introduce our two-population (host, parasite) model and investigate how 

robustness and evolvability evolve within a gene regulatory network under antagonistic 

coevolutionary selection. In the model, parasites are modeled on species such as cuckoos where 

mimicry of the host phenotype confers high fitness to the parasite but lowers the fitness of the 

host. We study how sensitivity, defined as the potential to cause major phenotype changes, 

evolves and comes to be distributed in gene regulatory networks during antagonistic coevolution.  

In Chapter 3, we introduce our model of host-virus coevolution involving two different 

levels of systems: a gene regulatory network and a protein-protein interaction. In this chapter, we 

focus on host resistance and viral pathogenicity which depend on quite different evolutionary 

conditions. We investigate model parameters that will encourage host individuals to evolve 
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network level resistance strategies to change receptor gene expression. We also explored 

conditions that the hosts will use to select a defense strategy at the protein (receptor) level, rather 

than at the level of the regulatory network - a virus-host strategy that appears to have been 

selected most often in nature.  

In Chapter 4, we introduce our model of the host innate immunity evolution in the 

context of host-virus coevolution. After viruses enter host cells, they interfere with innate 

immune systems via protein-protein interactions such as molecular mimicry of various host 

proteins involved in the immunity. In this chapter, we investigate evolutionary features appear in 

host innate immune systems, and the conditions that induce evolution of gene regulatory network 

complexity. We discuss viral mechanisms for pathogenicity and how hosts evolve their defense 

mechanisms depending on different viral mechanisms.  

Lastly, in Chapter 5, we summarize the three main studies in Chapter 2, 3, and 4, and 

propose future work.  
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Chapter 2. Antagonistic coevolution drives whack-a-mole sensitivity in gene regulatory 

networks  

This chapter is adopted from the paper “Antagonistic Coevolution Drives Whack-a- Mole 

Sensitivity in Gene Regulatory Networks” [34]. 

 

2.1. Background 

Robustness, defined as tolerance to perturbations such as mutations and environmental 

fluctuations, is pervasive in biology. Previous models of gene regulatory networks have shown 

that robustness can evolve when the phenotype is under evolutionary pressure to remain constant 

(stabilizing selection). But in more realistic scenarios such as coevolution, it may be 

advantageous to evolve sensitivity, i.e. for some mutations to change the phenotype. 

Many recent studies have shown that ecological interactions both within and between 

species, and particularly coevolutionary interactions, drive evolutionary changes on a far more 

rapid timescale than previously estimated [27-29]. Here we use network modeling to understand 

how coevolutionary selection, rather than stabilizing selection, evolves network structure and 

function and how coevolution determines evolutionary properties such as robustness and 

evolvability [27]. We focus on a simple case of antagonistic coevolution between two 

populations, specifically a parasite population that uses mimicry of a complex phenotype as its 

survival strategy, as well as its host population. There are many documented cases of such 

interactions. A well-studied example is brood parasitism of cuckoos on their avian hosts. For 

instance, cuckoo finches (Anomalospiza imberbis) deposit their eggs in the nest of their host, the 

African tawny-flanked Prinia (Prinia subflava). By mimicking the eggshell morphology of their 
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hosts, the cuckoos trick their hosts into brooding these eggs. An evolutionary arms race between 

cuckoos and their host species drives continued variation in eggshell morphology in both species 

[35, 36]. In another example, coevolution of complex chemical signals occurs between 

Maculinea alcon, a parasitic butterfly species and their host, Myrmica ants [37]. M. alcon larvae 

emit a pattern of surface chemicals very similar to those of the ant larvae, leading the ants to 

adopt and feed the butterfly larvae as their own. An evolutionary arms race has arisen between 

these two species such that the ants evolve changes in their larval surface chemicals to 

discriminate their own larvae from those of the parasite whereas the parasite is continuously 

evolving to again produce a similar pattern. 

It has previously been suggested that evolvability - the capacity for generating new 

phenotypes – can be facilitated by robustness, a somewhat counter-intuitive idea since 

evolvability and robustness would superficially appear to be opposite concepts [38]. However, 

with high robustness, mutations will tend to accumulate, increasing genetic variation in 

populations, which in turn may promote adaptation to new phenotypes [5, 19]. Phenotypic 

variation might be accessible during episodes of directional selection or particular conditions 

such as environmental stress [5, 6, 38-40]. Thus, under this model, periods of stabilizing 

selection allow genetic variation to accumulate, which is then eliminated by periodic selective 

sweeps and the cycle begins again with a new period of stabilizing selection. At the same time, 

the importance of this model remains unclear since few studies of network evolution have gone 

beyond stabilizing selection to investigate more realistic selection regimes [41]. Here we analyze 

host-parasite coevolution and find an entirely different strategy arises in which networks evolve 

a capacity for evolvability together with robustness against mutations. Here, evolvability in the 

network facilitates coevolutionary adaptation and is distributed throughout the network. 
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Previous studies have also shown there is a relationship between evolvability and 

modularity in networks. A strategy of using two target phenotypes presented, for example, in 

alternating succession has been used because it can select for distinct network modules, each of 

which is capable of generating one of the target phenotypes [42, 43]. One such study by Kashtan 

and Alon [42] used feed-forward logic networks and found that modularity evolved together with 

a fixed “evolvability node” which controlled the switch between two modules when mutated, 

thus switching phenotypes. Subsequent analyses showed evidence for modularity in other 

contexts including neural and metabolic networks [42, 44-46]. An alternative to a fixed 

“evolvability node” may be to have evolvability distributed throughout the network, allowing 

phenotype changes to occur in many different ways. Both types of evolvability are observed in 

nature [47]. Examples of fixed evolvability nodes include the Drosophila shavenbaby locus 

which predominantly controls trichome patterning [47], Pitx1 which determines the pelvic spine 

phenotype in stickleback fish [48] and optix which controls rapidly evolving wing patterns in 

Heliconius butterflies [49]. Examples of distributed evolvability have been reported in bacterial 

and virus species including in Helicobacter pylori where a broad spectrum of genetic variations 

explains adaptation to its human host [50], in the pathogen Pseudomonas aeroginosa where 

antibiotic resistance evolves via several different mechanisms [51] and similarly in E. coli 

adaptation to low glucose environments [52]. Although the examples above illustrate the two 

extremes of what is likely a continuum between fixed and distributed evolvability, here we 

investigate a more general question - what conditions might favor the evolution of fixed vs 

distributed evolvability?  

 

2.2. Model 
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2.2.1. Host-parasite coevolution model 

The model largely follows previously published models [53-56] with the exception of 

selection, which here depends on interactions between the host and parasite populations. In our 

model, a genotype is represented as a matrix ( W ) where the elements  
wij  describe the regulation 

of the !i−th  gene by the   j − th  gene product. Positive matrix entries represent activation, 

negative entries represent repression and zeros indicate no interaction. Gene expression is 

represented by a vector   S(t)  containing elements   Si(t)  representing the expression level, in the 

range 
 
0,1( ) , over time  t  of the !i−th  gene. Initial gene expression,   S(0) , is given as a random 

binary vector of 0 and 1 expression levels. Gene expression dynamics are determined by the 

difference equation 
  
S t +1( ) =σ W ⋅S t( )( )  where 

  
σ x( ) = 1

1+ e−ax  is a sigmoid function. The 

steady state gene expression,   Ŝ , is the phenotype and individuals not reaching steady state have 

zero fitness. The evolutionary simulation is initiated by creating a founder individual for each 

population in the form of a random matrix  W  of regulatory interactions containing non-zero 

elements with probability  c , drawn from a Normal distribution,   N (0,1) . The founder is copied to 

form the initial population of size  M . Each population undergoes cycles of reproduction, 

mutation and selection. In the case of sexual reproduction candidate offspring are produced by 

inheriting a row in the matrix  W  at random from either parent. Here each row  i  represents 

regulatory interactions of the set of cis-regulatory elements controlling the expression of gene  i . 

Row-wise inheritance implies inheritance of cis-regulatory regions and free recombination 

among loci. Under asexual reproduction, random parent genotypes are simply cloned. Following 

[54], mutations apply to the genotype of each offspring,  W  and may cause addition of new 
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network interactions (when element wij = 0 ) or deletions and modifications (when   
wij ≠ 0 ). The 

mutation frequency per genotype is constant (µ ). Mutations lead to either addition ( ρ ), deletion (

φ ) or modification (δ ) of interactions. The addition and deletion rates are set to ensure that 

network density does not change from its initial value (See Parameters section below). In the 

selection step, the interaction between host and parasite populations determines a distinct fitness 

function for each population, as described in the following section 2.3.1. 

 

2.2.2. Parameters 

Unless otherwise stated, the simulation results used the following parameter values: 

number of genes,   N = 10 ; population size,   M = 200 ; mutation rate per genotype, µ = 0.1; 

selection strength, α = 0.1; asexual reproduction; network density,   c = 0.5 . As described 

previously [54], the network density  c , will be at steady state when its difference in time, 

  
Δc(t) = c(t)− c(t −1) = µ α 1− c(t)( )−φc(t)( ) N 2  is zero. We therefore chose the parameters for 

addition ( ρ = 0.025 ) and deletion ( φ = 0.025 ) that satisfy   Δc(t) = 0 . Given these parameters, 

modifications are set to ( δ = 1−φ ).  

 

2.3. Results 

2.3.1. Host-parasite coevolution model 

To study gene regulatory network evolution under antagonistic coevolution we defined a 

model with two interacting populations. The model is an extension of a widely used single-
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population model that assumes stabilizing selection [30, 55]. As in the previous model, each 

population functions at two broad levels: genotype-to-phenotype mapping and population 

dynamics (see Methods for details). For the genotype-phenotype mapping, the genotype is 

defined as a gene regulatory network of !N  genes represented by a !N ×N  matrix, !W , the 

entries 
!
wij  of which represent the regulatory strength and sign of gene !j  on gene !i (  N = 10  was 

used for all results unless otherwise stated). The genotype is mapped to phenotype via gene 

expression dynamics. The gene expression levels at time  t  are represented by !!S(t) , a length !N  

vector !!S(t)= [s1 ,!s2 ,!!…,!sN ]  !!(0≤ si ≤1, i =1,!!…,!N) . The genotype !W defines a dynamical system 

that is used to determine steady state gene expression levels for each gene, which correspond to 

the phenotype, !!Ŝ . Both host and parasite populations have a fixed number of individuals !M . 

Cycles of reproduction, mutation and selection proceed in parallel as shown schematically in 

Figure 2.1a. Reproduction (either sexual or asexual) and mutation largely follow previous 

models [53, 54, 56]. Genotype mutations allow for creation and deletion of regulatory 

interactions as well as quantitative changes [54]. The main difference with previous models is at 

the selection stage, where the host and parasite populations interact by mutually determining 

fitness in the other population. To represent antagonistic coevolution in our model, we assume 

that a specific morphological pattern (e.g. egg surface color of cuckoos and hosts) is determined 

by a gene regulatory network, and the phenotype does not affect vitality and fertility. Hence, in 

the model, a candidate parasite individual has higher fitness when its phenotype is similar to that 

of a randomly chosen host individual (a new random host is chosen for each parasite at every 

selection step and similarly for each host). Thus parasite fitness is defined as: !!f ŜP( ) = e−
D( ŜP ,ŜH )

α , 
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where 
!!
D X ,Y( ) = (xi , yi )2i=1

N∑
N

, !!ŜP  is the parasite phenotype, and !!ŜH  is the phenotype of a 

randomly selected host individual. On the other hand, we assume the host has higher fitness 

when its phenotype is different from that of the parasite and therefore host fitness is defined as: 

  
f ŜH( ) = e

−
1−D ŜH ,ŜP( )

α  where   ŜP  is the phenotype of a randomly selected parasite individual. α  is 

a parameter representing selection pressure. The fitness functions are symmetric about   x = 0.5  

(Figure 2.2) to avoid any bias in how selection is applied in host vs parasite. Although the initial 

phenotypes are random, this two-population approach allows the eventual target phenotypes to 

emerge from the model, in contrast to previous models where the target phenotypes are defined a 

priori. The fitness definitions used are analogous to the two examples of host-parasite 

evolutionary arms races described above (cuckoo finch and M. alcon) whereby similarity (and 

differences) in complex phenotypes are selected for: eggshell morphology in the case of the 

cuckoo finch or the pattern of larval surface chemicals in the case of M. alcon. 
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Figure 2. 1. Host-parasite model and alternating phenotype dynamics. A) Schematic 
overview of the host-parasite model. B) To compare host and parasite phenotypes, here in a 
typical simulation, gene expressions are rescaled from ![0,1] to ![−1,+1]  so that for each gene the 
sign of their multiplied gene expression indicates whether their expressions are similar or 
different. Host and parasite phenotypes are compared, here in a typical simulation, by 
multiplying the expression of each gene, rescaled from ![0,1] to ![−1,+1] , from one host and one 
parasite at each generation. In the horizontal direction, the leftmost block of columns represents 
the comparative expression (by multiplication of rescaled expressions) level of gene 1 for 200 
host-parasite pairs (the pairings themselves are random). Similar gene expression between host 
and parasite is shown in yellow (parasite winning) and divergent expression in blue (host 
winning). 
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Figure 2. 2. Fitness function for host (red) and parasite (blue) for different selection 

pressure strengths. (α ). 
  
D S1,S2( ) = i=1

N

∑ S1i − S2i( )2

N
 is the distance between two phenotypes 

  S1  and   S2 . Host and parasite fitness values are symmetric about   D = 0.5 . 

	
  

2.3.2. Host and parasite populations evolve networks with distributed sensitivity and 

robustness 

Under sufficiently strong selection pressure (α ) both host and parasite populations reach 

a stage where their phenotypes alternate between one phenotype   Ŝ  and an approximately 

“inverted” version of the same phenotype, i.e.   1− Ŝ = [1− s1, 1− s2 ,  …, 1− sN ] . At a given 

generation, if the host population phenotype is   ŜH  and that of the parasite is   ŜP = 1− ŜH , then 

the host will have high fitness and the parasite will have low fitness. However, if at a later 

generation the parasite population is able to “invert” its phenotype   ŜP →1− ŜP(= ŜH )  and the 

host population maintains its phenotype (  ŜH ), then the parasite and the host phenotypes will 
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become the same - the host will now have low fitness and the parasite will have high fitness. The 

parasite population will continue “winning” until the host population is able to invert its 

phenotype, and the cycle continues. Figure 2.1b and Figure 2.3 Fig show this progression over 

time (vertical axis) for every gene expression level in every gene (horizontal axis) of every 

individual in a typical simulation (see Methods for parameter values used). Each cell in Figure 

2.1b is colored blue when the expression level favors the host “winning” (i.e. when a host gene is 

on and the corresponding parasite gene is off and vice versa), and yellow if the parasite is 

“winning” (i.e. the host and parasite levels are the same). We see that by generation ~100 (blue 

arrow Figure 2.1b) both populations have converged to an alternating strategy as the rows 

alternate in color. Thus both host and parasite genotypes have become highly evolvable in 

response to phenotype changes in the opposite population. We are primarily interested in how 

these coevolutionary interactions between host and parasite populations affect gene regulatory 

network evolution and in particular how evolvability itself evolves within the networks. As 

expected, under weaker selection (approximately  α > 0.15 , see Figure 2.5a) sensitivity did not 

evolve and the alternating phenotype was not observed. Hence, we focused here on the stronger 

selection case. 
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Figure 2. 3. Host and parasite populations used to generate Figure 2.1b. Here, as in Figure 
2.1b, genes are shown on the horizontal axis and evolutionary time in generations on the vertical 
axis. The colors represent the gene expression levels of every gene in every individual, as 
indicated in the color bar. 

	
  

	
  

Figure 2. 4. Emergence of sensitivity. A) As coevolution proceeds, the sensitivity score (𝑺𝑺) 
increases monotonically reaching a plateau in both host and parasite. B) Robustness in the 
remaining (non-sensitive) part of the network was defined as the fraction of mutations that leave 
the phenotype unchanged if we exclude phenotype inversions (see main text). Both plots show 
mean values for 100 simulations with the error bars indicating standard error of the mean (SEM). 

 

B) A) 
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Figure 2. 5. Effect of parameter changes on the evolution of sensitivity and robustness. 
Results analogous to Figure 2.4 (for sensitivity and robustness) for varying parameters of the 
model. In each case, we only vary one parameter, maintaining the others fixed. (A) and (B) are 
for different values of the selection strength, α    (c = 0.3, M = 200,µ = 0.1); (C) and (D) are for 

A) B) 

E) F) 

G) 

C) D) 

H) 

Population size 

Network density 

Mutation rate 

Selection strength 
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population size,  M    (c = 0.3,σ = 0.1,µ = 0.1); (E) and (F) for network density,  c  

  (σ = 0.1, M = 200,µ = 0.1 ); (G) and (H) are for mutation rate, µ    (c = 0.5,σ = 0.1, M = 200 ). 
 

We next sought to identify the mechanism underlying the phenotype inversion process, 

i.e. the evolution of evolvability. One possibility is that the alternating phenotype strategy would 

evolve in the form of a particular “evolvability hotspot” or interactions in the network, analogous 

to those identified previously by Kashtan et al. [42] in modular networks. A mutation in an 

“evolvability hotspot” would be highly likely to cause a phenotype inversion. An alternative 

scenario is one in which the capacity for phenotype inversion is highly distributed, and 

phenotype inversion can occur in many different places throughout the network, albeit with low 

probability. To assess these effects we implemented two measurements: first, a sensitivity score (

 SS ) that estimates the overall probability that a mutation will cause a phenotype inversion (see 

Methods), and secondly a measure of how distributed the sensitivity is within the set of network 

interactions that can cause a phenotype inversion, as described below. In addition, to measure the 

effects of coevolution on the remaining parts of the network (that do not cause phenotype 

inversions) we also quantify mutational robustness in this subset of network interactions. 

Figure 2.4a shows the progression of the sensitivity score ( SS ) during a typical 

simulation. Here we see that at the beginning of the coevolutionary process, because host and 

parasite networks are random, both have a negligible number of sensitive interactions and the 

mean  SS  is close to zero. As antagonistic coevolution proceeds and both populations evolve 

towards the alternating phenotype strategy, they both acquire sensitive interactions and the mean 

 SS  increases, eventually reaching a plateau. For the set of parameters shown in this example (see 

Methods),  SS  reaches approximately 0.08. Although this qualitative behavior is observed across 

a large range of parameter values, there are quantitative differences. Thus, the steady state  SS  
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level is reduced, as expected, if selection pressure is lower (Figure 2.5a) and with smaller 

population sizes (Figure 2.5c) where random drift effects are greater. Also, networks with a 

greater density of connections can evolve sensitivity more easily (Figure 2.5e). Lastly, note that 

multiple simultaneous mutations can occur within a single genotype, particularly when the 

frequency of the single mutation is high, as is often the case when a population is undergoing a 

phenotype inversion (Figure 2.6a, b). Although such events occur at low frequency, we found 

that, in cases of double mutations at least one of the mutation positions had a high sensitivity 

score whereas the other usually had a sensitivity score that was either very low or zero (Figure 

2.6c). Thus, a phenotype inversion is most often achieved with a single point mutation at a 

sensitive interaction, although occasional double mutations where at least one mutation is at a 

sensitive interaction can also cause a phenotype inversion. 

	
  

Figure 2. 6. Analysis of cases with multiple mutations. In the case of (A) a single typical 
simulation, and (B) averaged over 100 simulations, we compared the genotype of each individual 
with the ancestor genotype by back-tracking asexually reproducing populations. Curves show the 
frequency of single (red) and multiple (2 (green), 3 (blue), and 4 (cyan)) mutations over time. 
Error bars represent one SEM. (C) For the same simulation shown in (A), we measured the 
sensitivity score at those interactions that mutated when there were two mutations. The higher of 
the two sensitivity scores is shown in red, and the lower of the two is shown in blue. The error 
bars represent one SD. 

 
The sensitivity score ( SS ) estimates the probability of causing a phenotype inversion. We 

A) Mutations per genotype B) Mutations per genotype C) 
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found that the capacity for causing a phenotype inversion is distributed across a large number of 

sensitive network interactions, and we therefore sought to quantify how sensitivity was 

distributed throughout the network. Sensitivity might either be distributed fairly equally among 

these interactions, or unequally in the sense that particular interactions are likely to cause a 

phenotype inversion whereas others interactions do so only with low probability. To quantify the 

distribution of sensitivity we first chose the subset of network interactions,   
wij , that exhibit 

sensitivity, where the subset is defined as those having a (interaction specific) sensitivity score 

  
SSij > 0

 
(see Methods). We compared the observed standard deviation (SD) of the  

SSij  values to 

the SD of a null model that assumes the observed total sensitivity in this set of nodes is randomly 

distributed (see Methods). We consistently found that the null model has a comparable, and even 

slightly higher, variance of sensitivity within the sensitive interactions than the evolved networks 

(Figure 2.7a). Thus the levels of sensitivity are at least as similar amongst themselves than would 

be expected by chance given the observed total sensitivity in the network (see Methods). 

	
  

Figure 2. 7. Emergence of sensitive interactions and distribution of sensitivity score ( SS ) 
among the sensitive interactions. (A) Standard deviation (SD) of sensitivity scores at sensitive 
interactions for which   

SSij > 0 , in red for host, blue for parasite. Null model results (see Methods) 

are also shown for host in magenta and for the parasite in cyan. The observed SD is comparable 
and even slightly below the SD of the null model. (B) As coevolution proceeds, the fraction of 
sensitive interactions in the network for which   

SSij > 0  increases monotonically reaching a 

plateau in both host (red curve) and parasite (blue curve). 

B) A) 
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Apart from causing a phenotype inversion, a mutation may either   (a)  leave the 

phenotype unchanged, which indicates robustness, or   (b)  cause the phenotype to change only 

partially which will usually be sub-optimal. As a measure of robustness, Figure 2.4b shows the 

fraction of mutations that leave the phenotype unchanged if we exclude phenotype inversions, 

i.e.
  
 (a) (a)+ (b)( ) . These results show that robustness initially decreases but then increases, 

eventually reaching a level higher than that of the initial population.  

Note that the initial host and parasite populations have random phenotypes, generally 

their phenotypes are not in either similar or inverted forms. In addition, sensitivity does not exist 

before coevolution. Therefore, during the initial phase, all host/parasite individuals are under 

evolutionary pressure to explore alternative phenotypes to counter the other (parasite/host) 

population, which is also in a similar situation. Partial phenotype changes will therefore be 

beneficial until both populations enter the process of phenotype inversion. This is why 

robustness decreases in the earliest stages of coevolution (Fig 2-4b). However, once the capacity 

for phenotype inversion has evolved, partial phenotype changes will not be beneficial especially 

under strong selection and there is selection pressure for mutations to either preserve or invert 

the phenotype. This is why robustness increases together with sensitivity, and why robustness 

eventually exceeds the initial (pre-selection) levels. Again, we found that the phenomenon of 

increased robustness is observable across a wide range of parameter values although the range is 

more limited under sexual reproduction than it is with asexual reproduction (Figure 2.8). 

Generally though, robustness evolves in the parts of the network that are not causing phenotype 

inversion. Thus in the steady state, both robustness and evolvability coexist in the network under 

coevolutionary selection. 
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Figure 2. 8. Evolution of sensitivity and robustness under sexual reproduction. The results 
for sexual reproduction are qualitatively equivalent to those for asexual reproduction. However, 
for many parameter combinations in which robustness evolves under asexual reproduction, it 
does not evolve to be higher than the initial (random) case under sexual reproduction. Here, in 
plot (B) we show an example (parameters:   c = 0.7 ,  M = 500 , α = 0.1 ) for which the robustness 
clearly evolves. 

 

Although we observe that mutational robustness evolves under antagonistic coevolution, 

environmental robustness appears to coevolve to a much lesser extent. Previous studies have 

shown that even without direct selection for environmental robustness, mutational and 

environmental robustness will coevolve under stabilizing selection [57, 58]. Environmental 

robustness was evaluated via perturbations of the initial gene expression levels and then by 

measuring the phenotypic distance between the perturbed and unperturbed cases (see Methods). 

Given the trend for mutational robustness (Figure 2.4b), the overall pattern was similar to that 

expected (Figure 2.9). However, the phenotypic distance increased to steady state levels that 

were well above those observed initially, indicating an overall reduction in environmental 

robustness. This was the case regardless of whether the perturbation rates were low or high 

relative to the mutation rate.   

A) B) 
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Figure 2. 9. Progression over time of phenotype distance in response to perturbations of the 
initial conditions to evaluate environmental robustness. The initial gene expression levels 
were perturbed 500 times for each individual in the population (A) at a rate 0.01/gene and (B) 
0.2/gene. The phenotype distance was used (see Methods) to evaluate the environmental 
robustness. 

 

We have addressed the simple case of equal population sizes for host and parasite. This 

case is relevant to many real host-parasite interactions such as the example of the cuckoos and 

their avian hosts discussed above, where the populations appear to be relatively stable and of 

comparable size [58]. Clearly however, host and parasite populations will often differ in size. We 

therefore evaluated the case of host population size = 100 and parasite population size=1000 

(and vice-versa), finding only slight differences with the case of equal population sizes (Figure 

2.10 vs. Figure 2.4). However, due to computational constraints we were unable to model much 

larger population sizes and we therefore leave a more thorough evaluation of unequal population 

sizes for future work. 

A) B) 
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Figure 2. 10. Sensitivity and robustness over time for asymmetric population sizes. (A) 
Sensitivity and (B) robustness over time for asymmetric population sizes. We tested one order of 
magnitude difference between host population size = 100 and parasite population size = 1000. 
These plots are in the same format as for Figure 2.4; all other parameter values are the same as 
for Figure 2.4. 

 

2.3.3. Sensitive regulatory interactions are highly labile throughout evolution 

We next investigated whether sensitivity is preserved at particular points in the network 

or whether it changes over time. As described above for the case of modular networks, 

sensitivity will often evolve to be focused on “hotspots” that control distinct phenotypes and 

which do not change over time [42, 44]. To assess the changes in the sensitive interactions over 

time we used asexual reproduction. Under asexual reproduction, tracing the ancestral lineage is 

straightforward because there is a single parent for each individual, and after  G  generations 

each individual in the population needs  G  ancestral genotypes to store its genetic history. In 

contrast, under sexual reproduction each individual needs at most !!21 +22 + ⋅⋅⋅+2G ancestral 

genotypes, which rapidly becomes unwieldy. We consider the set of sensitive points of the 

network (i.e. those interactions  
wij  with sensitivity score   

SSij > 0 that may cause a phenotype 

inversion) and how this set changes over time. We selected networks at a particular steady state 

A) B) 
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generation and compared these to ancestral networks at various evolutionary distances. The 

comparison was done by measuring the similarity, in terms of sensitivity, between the ancestral 

and derived networks using the Jaccard index (see Methods) as shown in Figure 2.11a. Given 

that the phenotype is constantly changing, to ensure a valid comparison we only compared with 

ancestral networks having the same phenotype. As shown in Figure 2.11a, the overlap in 

sensitivity remains high only for a short time period, before dropping almost to levels that would 

be expected by chance (null model Figure 2.11a – also see Methods). However, at steady state 

the sensitivity remains stable, as do the total number of sensitive interactions (generations ~1000 

onwards, Figure 2.4a and Figure 2.7b). Thus, sensitive interactions are highly labile and on 

average, each time a sensitive interaction is eliminated by mutation, a new one emerges to take 

its place. Colloquially this property is known as “whack-a-mole”, named after the fun park game, 

and we therefore refer to this phenomenon as whack-a-mole sensitivity. 

	
  

Figure 2. 11. Lability of sensitive interactions and network diversity. A) Comparison of the 
sensitivity network interactions from a single individual in a population at generation 2000 with 
its ancestors using the Jaccard index to quantify the overlap in sensitivity (see Methods). (B) 
Time course of network diversity, defined as the number of distinct networks, simplified to sign 
(-1/0/+1) form, and expressed as a fraction of the population (green line: host population of 
single simulation). Apart from the green line in (B), both plots show mean values for 100 
simulations with the error bars indicating SEM. 

 

A) B) 
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Even though sensitive interactions are labile and are constantly being relocated, we 

thought there might be a specific subset of interactions with consistently high sensitivity. 

Alternatively, there might be no persistence in the sensitive interactions or any such interactions 

would be rapidly lost. Consistent with the latter scenario we found there are no interactions with 

a significantly high frequency of being a persistent sensitive interaction within a population and 

throughout a simulation, as shown in Figure 2.12. Figure 2.12a shows, for a typical simulation, 

the frequency at which each interaction  
wij  was sensitive over a period of 1500 generations while 

sensitivity and robustness were at steady state levels. Figure 2.12b shows the change in 

sensitivity over time for two particular interactions in Figure 2.12a (those that had the highest 

and lowest overall sensitivity respectively). Figure 2.12c shows the same data in histogram form 

(green curve) together with the mean value for many simulations (red curve). Even though there 

appears to be no preference for particular positions within the matrix, we tested whether there 

was a higher-level preference for particular rows of the interaction matrix  W , which represent 

the cis-regulatory elements for each gene. For this, we considered the total sensitivity score for 

each row ( i ),  SSi , and in particular, tracked the row  imax  for which the value of  SSi  is 

maximal within each individual (Figure 2.13a). We found that rarely does a particular  imax  

dominate both the population and throughout generations (Figure 2.13b). We repeated this 

analysis for columns, which represent gene outputs regulating genes, finding similar results. 

Thus, there does not appear to be any predilection for sensitivity to be associated with particular 

genes. 
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Figure 2. 12. Distribution of sensitivity throughout the network. A) Frequency of being a 
sensitive interaction in the  N × N  matrix of interactions (with   N = 10 ) in a typical simulation. 
From generation 500 onwards we identified the sensitive gene interactions  

wij  (  
SSij > 0 ), then 

measured the frequency for each  
wij  being sensitive within the population, at intervals of 50 

generations. We sum the frequencies over time and normalize to the interval ![0,1] as indicated by 
the colors. Generally, there are no interactions that appear to dominate within each population 
over many generations. B) Detailed progression of sensitivity over time for two particular 
interactions in (A). These interactions had the lowest (blue) and highest (pink) overall sensitivity, 
as indicated by the black squares in (A). C) Distribution of the frequency of being sensitive in all 
 N × N  interactions for all host individuals (green dashed line: the host population of (A), red 
solid line: mean of 100 simulations). Since distributions are mostly right-skewed there are no 
interactions that dominate in terms of sensitivity. Error bars indicate one SD. 

 

A) 

C) 

B) 
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Figure 2. 13. Distribution of higher-level (row) sensitivity in the population. A) Every 50 
generations we determined the sum of sensitivity scores ( 

SSij ) for each row in every individual 

in the host population of a typical simulation. In particular, we tracked the row  imax  for which 

the value of  SSi  is maximal within each individual. The row  imax  of each individual is indicated 
by a different color, and the profile of for the entire population is represented by a row. We 
sampled these values every 50 generations (vertical axis). Light blue was used (NA on color bar) 
if there are no sensitive interactions in that particular network. For example, in generation 2000, 

shown at the bottom of the plot, 53 out of 200 individuals had   imax = 2 . We define a “dominant” 

row as existing when more than half of the population has the same  imax . Thus for example, at 

generation 500, row   imax = 8  is dominant because more than half the individuals in the population 

have   imax = 8  (light purple). Row  10 (beige) on the other hand, is never dominant. The green 

curve in plot (B) shows, in rank order, the frequencies with which  imax  was dominant for each 
generation in plot (A). In most cases there was no dominant row and we classified these cases as 
“row 0”. For this analysis we considered only populations in steady state, i.e. from generation 
500 onwards. For example, in plot (A), row 4 and 8 were dominant in 5.56% of the generations 
for each, more than any other row (rank #1), and this is shown in plot (B) as green dots at 
(1,0.0556) and (2,0.0556). The red curve shows the mean values for 100 independent 
simulations. 
 

2.3.4. Antagonistic coevolution drives high levels of diversity 

As explained in the introduction, another way by which phenotypic innovation has been 

B) A) 
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proposed to occur is through increased genetic variation, which is promoted by robustness. 

However, if a sensitivity mechanism has evolved to generate the appropriate phenotype changes, 

it does not, in principle, require high levels of genetic variation to function. To investigate the 

observed levels of genetic variation in the population that has evolved sensitivity we used a 

measure that simplifies each network using the sign of each matrix entry   
sgn(wij ) , then counts 

the number of distinct (simplified) networks, expressed as a fraction of the population. Figure 

2.11b shows how this diversity measure increases over time. Taking a typical host case (green 

curve) as an example we found that in the final population there were 91 distinct networks, 

which expressed as a fraction of the total population, leads to a diversity measure of 

91/200=0.45. The average trend (red and blue curves) shows diversity increasing over time, 

eventually reaching a plateau. This diversity is a consequence of the beneficial mutations 

(occurring at sensitive interactions) being broadly distributed throughout the network, thus 

making multiple evolutionary pathways available. Taking this analysis further, we used the same 

diversity metric to measure the level of variation generated by stabilizing selection (see 

generations 1-500 in Figure 2.14) and found that the level of diversity was consistently below 

that observed under antagonistic coevolution. Although the comparison needs to be interpreted 

cautiously given that stabilizing and coevolutionary selection are quite different, we include it 

here to emphasize the high degree of diversity observed under coevolution. This high diversity 

occurs despite there being, in principle, no requirement for it.  
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Figure 2. 14. Evolution of diversity with an initial phase of stabilizing selection. As 
described in the main text, we measure diversity in the population as the fraction of distinct 
networks in the population (simplified to sign form: +1/0/-1). We performed simulations with an 
initial phase of 500 generations under stabilizing selection (magenta and cyan curves) and 
include here the original results without the initial phase for comparative purposes. 

 

Lastly, we assessed the impact of having an initial phase of stabilizing selection that 

allows each population to evolve robustness and accumulate genetic variation independently 

before the coevolutionary process begins. As shown in Figure 2.14 (generation 500 onwards), 

genetic variation increases under the initial stabilizing selection phase (previous model of [55] 

was used for this), reaching a plateau by generation ~100. Once coevolution begins, at 

generation 500, genetic diversity is reduced as both populations pass through a bottleneck but 

then increases eventually exceeding the level achieved under stabilizing selection. However, the 

dynamics are not significantly different from those observed without the initial phase of 

stabilizing selection, and therefore the initial phase appears not to offer any advantage. 

 

2.3.5. Innovation arising from sensitivity does not require modularity 

As mentioned in the Introduction, previous studies [42, 44, 46, 57] have investigated the 
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conditions leading to increased modularity in a network using multiple target phenotypes. In 

each case, the target phenotypes contained a combination of features such that a modular 

network evolves. In particular, the study by Espinosa-Soto and Wagner [43] used two target 

phenotypes that only overlapped partially, leading to increased modularity (Figure 2.15a, red 

curve). Applying the same modularity measure to our own simulations (see Methods), we found 

that increased modularity did not evolve for any combination of parameters. We thought this 

might be because in our model, the entire phenotype alternates, in contrast to only part of the 

phenotype in the Espinosa-Soto model. However, a variant of our model in which only half the 

phenotype genes participate in host-parasite fitness and the other half of them are under 

stabilizing selection also did not evolve modularity (Figure 2.15a, green curve). The other key 

differences between the two models are how gene interactions and expression levels are 

represented (real vs discrete), the method of presentation of target phenotypes (sequentially 

alternating vs simultaneous) and the type of perturbation (mutational vs environmental), as 

summarized in Figure 2.15b. We therefore tested variant models that contained mixtures of 

features from either of the models but were unable to find increased modularity for any of the 

variant models (Figure 2.15a). These results suggest that modularity will evolve only under the 

very specific conditions. Biologically, the most important of these conditions is perhaps the 

nature of the perturbations, which can broadly be interpreted as growth-related or developmental 

for our model vs physiological or environmental in the case of the Espinosa-Soto model. 
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Figure 2. 15. Evolution of modularity in different model variants. A) The table describes 
features (1st column) that are different between our model (M1, described in 2nd column) and the 
Espinosa-Soto model (M2, described in 3rd column). Using the measure defined in Espinosa-Soto 
and Wagner, we measured modularity in our model (curve C1 in plot) and reproduced the results 
of model M2 (curve C4). We further tested two variant models that had features of both models, 
as indicated in columns 5 and 6, which correspond to curves C2 and C3 in the plot. The variant 
models did not show increased modularity over time. In these simulations, coevolution begins at 
generation 500 for all models C1 ~ C4. Initial network density, !c =  0.3 for all four models to 
match the parameters used in Espinosa-Soto and Wagner. To make the models comparable, for 
models C2 and C3, we adopted the convention in the M1 model of defining only half the genes 
using the opposite population (either host or parasite) as a reference phenotype for defining 
fitness. The remaining genes used the founder individual, as in the stabilizing selection model 
without antagonistic coevolution, as in initial phase of Figure 2.14. 

 

Another relevant study, by Kashtan and Alon [42] also found that modularity evolved in 

  Host-Parasite GRN 
coevolution model (M1) 

Modularity evolving 
GRN model (M2) C1 C2 C3  C4  

Populations Host and parasite One population M1 M1 M1 M2 

A gene 
interaction 

Represented as a value 
following normal distribution 

Either 0 (no interaction), 
-1 (repression) or  
1 (activation) 

M1 M2 M2 M2 

Gene 
expression 

Real value between 
0 and 1 

Either -1 (unexpressed) 
or 1 (expressed) M1 M2 M2 M2 

Target 

Alternating single target 
determined by host and 
parasite populations which is 
not given to a simulation 

Fixed multiple 
simultaneous targets 
given to a simulation 

M1 M1* M1* M2 

Stage Developmental process Physiological process M1 M1 M2 M2 

Environmental 
perturbation 

Environmental perturbations 
are not considered on initial 
gene expression 

Environmental 
perturbations on initial 
gene expression 

M1 M1 M2 M2 

B) 

A) 
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the network together with persistent sensitive nodes. This was achieved using alternating target 

outputs, so-called Modularly Varying Goals (MVGs), which were defined as pairs of logical 

functions containing different combinations of sub-goals. For example, the authors defined two 

functions (of 4 inputs, X, Y, Z and W) as G1: (X XOR Y) OR (Z XOR W), G2: (X XOR Y) 

AND (Z XOR W). Although the model used was based on logical circuits and therefore quite 

different to the one we have used here, we evaluated whether using this particular pair (G1, G2) 

of MVGs would also result in long-term sensitive nodes. We implemented this using a single 

population model with networks having 4 designated input genes and 6 interacting regulatory 

genes, one of which is considered the output. Since there are  possible inputs, fitness was 

defined as the fraction of correct input-output mappings. We evolved the population using 

alternating targets (G1, G2, G1, …) for 50 generations per target. For a population evolved under 

one target (e.g., G1), we assessed sensitivity, and in particular we considered any mutated 

network as sensitive if it matched the alternate target (e.g., G2) in more than 12 out of 16 input-

output pairs (i.e., a fraction of 0.75). The threshold was set to 0.75 because we did not observe 

the average fitness exceeding this level for either target (Figure 2.16a). As shown in the Figure 

2.16b, we do observe that a subset of persistent sensitive network nodes evolves; this is the 

subset of nodes with frequency of sensitivity equal to 1. However, in contrast to the previous 

study we did not observe increased modularity over time (Figure 2.16c), presumably because 

most sensitive interactions are not persistent, but highly transient, with frequencies of sensitivity 

between zero and one (Figure 2.16b). To further confirm that it is indeed the MVGs that 

facilitate the appearance of the subset of persistent sensitive nodes, we checked two further 

scenarios using the single population model. Firstly, we used two alternating targets in which 

half of the target genes (  N / 2 ) are kept the same as the founder phenotype and the other half are 

!24 =16
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inverted every 50 generations. This model is similar to that of Espinosa-Soto described above, 

except that the targets alternate in time, rather than being selected for simultaneously. In the 

second case, we simply alternated between the founder phenotype and its inverted form, again 

every 50 generations. In neither of these cases did we observe the emergence of persistent 

sensitive nodes (Figure 2.17) as we observed with the MVGs. 

	
  

Figure 2. 16. Persistent/dominant sensitive interactions appear under selection for 
repeatedly switching Modularly Varying Goals (MVGs). (A) Fitness vs time for MVGs that 
switch every 50 generations. Fitness drops when the goal is changed and reaches equilibrium 
within approximately 20 generations. (B) Distribution of the frequency of being a sensitive 
interaction among all  N × N interactions. This figure is the equivalent of Figure 2.12c for the 
case of MVGs. The bottom figure presents the same data, but has been zoomed in by omitting 
the left-most data point (fraction=0). The non-zero tail, and especially those interactions that 
have frequency of being sensitive =1, shows there are persistent sensitive interactions. (C) While 
persistent sensitive interactions do appear under the MVG model as shown in (B), modularity 
does not evolve because labile sensitive interactions are still present in these networks. 

 

A) 

C) Zoom in ↓

B) 
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Figure 2. 17. Distribution of the frequency of interactions being sensitive among all  N × N  
interactions for a single population under alternating selection strategies. The format is 
equivalent to Fig 4C. As explained in the main text, in (A) we used two alternating targets in 
which half of the target genes (N/2) are kept the same as the founder phenotype and the other 
half are inverted. In (B) we simply alternated between the founder phenotype and its inverted 
form. In both cases, switching between the two target goals occurs every 50 generations. 

 

A second important difference between our approach and that of Kashtan and Alon lies in 

the mutation model. The Kashtan and Alon study used only topology changes, whereas our 

approach allows for both quantitative interaction modifications and topology changes. To 

investigate this difference further, we used our model to evaluate differences in the contribution 

of weight modifications vs topology changes. We found that increasing the relative importance 

of topology changes (by increasing the parameters for addition, ρ , and deletion, φ ) did not 

qualitatively change our results and in particular, did not create persistent sensitive nodes in the 

network (Figure 2.18a, b). A reduction in the relative use of topology changes (by reducing ρ  

and φ ) also did not change results qualitatively (Figure 2.18c, d). In conclusion, these analyses 

suggest that MVGs explain the major difference in outcomes, namely persistent evolvability 

nodes in the Kashtan and Alon model compared to distributed and labile evolvability nodes in 

our host-parasite coevolution model. 

B) A) 
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Figure 2. 18. Emergence of sensitivity (A, C) and the distribution of the frequency of 
interactions being sensitive among all  N × N  interactions (B, D) for different addition ( ρ ) 
and deletion (φ ) rates. The format is equivalent to Figures Figure 2.4a and Figure 2.12c 
respectively (where  ρ = φ = 0.025 ). (A) and (B) are results for a 2.5X higher addition/deletion 
rate of  ρ = φ = 0.0625 , whereas (C) and (D) are for the 2.5X lower addition/deletion rate of 

 ρ = φ = 0.01. Other parameters remain as described in Methods (section “Parameters”). 

 

2.4. Methods 

2.4.1. Sensitivity score 

As described above, a mutation is defined as the replacement of one element  
wij  (

  i, j = 1,…, N ) with a random number drawn from a Gaussian distribution,   N (0,1)  if the 

interaction is either modified or added and with zero if the interaction is deleted. The sensitivity 

score is calculated by estimating the expectation of a phenotype inversion given a random 

A) B) 

C) D) 



	
  

39 
	
  

mutation. This involves evaluating whether a mutation that would change  
wij → l  will generate a 

phenotype inversion (  k(l) = 1) or not (  k(l) = 0 ). Because the probability of the mutation  
wij → l  

follows a continuous Gaussian distribution  
f l( ) , we employ a discrete approximation given by 

evaluating  
f l( )  at   2L / δ +1  positions across the range   –L , L⎡⎣ ⎤⎦  separated by small intervals 

of size δ . More formally, the sensitivity score of an interaction ( 
wij ) in a network is measured as 

  
SSij =

l=−L

L

∑δ ⋅ f (l) ⋅ k(l)  where    l ∈ −L+ n ⋅δ{  |  −L + n ⋅δ ≤ L, n∈Z*}  
(= the range of mutation: 

 
wij → l ),

  
f (l) = 1

σ 2π
e
− l2

2σ 2  (normal distribution probability density function with mean=0) and 

  k(l) = 1  if the phenotype is inverted by the perturbation  
wij → l , otherwise   k(l) = 0 . We 

consider a phenotype as inverted if the   L1  distance (
  

X −Y
1
=

i=1

N

∑ xi − yi
) between the original 

phenotype and a perturbed phenotype by the 
wij → l  mutation, excepting those Nb  genes that have 

basal expression !!(si =0.5)  due to not having inputs, is greater than 
  
p flip ⋅ N − Nb( ) . For all 

results reported we used 
!
pflip   = 0.9  and  δ = 0.02 ,  σ = 1  and   L = 3 , which covers the range of 

99.73% of possible mutations at  
wij . The  SS  of a genotype ( W ) is the average of  

SSij  for all 

elements  
wij , i.e., 

  
SS =

i=1

N

∑
j=1

N

∑
SSij

N 2 . 

 

2.4.2. Lability of sensitive interactions 
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The overlap in sensitivity, which describes the similarity of two genotypes,  u  and  v , is 

measured as the Jaccard index, 
   
J u,v( ) = 

Au ∩ Av

Au ∪ Av

, where  Au  is the set of sensitive interactions 

in  u  for which   
SSij > 0  and  Av  is the set for genotype  v . We calculate   J (u,v)  for an individual (

 u ) and its ancestor ( v ) of the same phenotype. Comparing with an ancestor of the same 

phenotype is fairer than comparing with an inverted phenotype. Because it is not possible to 

guarantee that an ancestor at a particular previous generation will have the same phenotype, we 

chose the closest ancestor having the same phenotype within a window of size 10 (i.e., assuming 

intervals of size 100, ancestors in ranges of 1-10,11-20, .., 91-100 generations previous). As a 

null model, sensitive interactions, with   
SSij > 0  are randomly redistributed in the networks. The 

overlap in sensitivity for the null model is calculated in the same way and the mean overlap for 

100 null models is used (Figure 2.11a). 

 

2.4.3. Null model for distribution of sensitivity in sensitive interactions 

Assuming that a network has  x  interactions with sensitivity score   
SSij > 0  and the sum of 

these  x  sensitivity scores is  H . For the null model we used a standard string cutting method that 

generates  x  numbers such that their sum equals  H . This was implemented by choosing   x −1  

random numbers in the range 
  
0, H( )  and then calculating the distances between the adjacent 

numbers including the end points 0 and  H . These distances (of which there are  x ), are random 

numbers which are distributed according to a Dirichlet distribution, and whose sum is  H . As we 

did for the original network, we calculated the standard deviation (SD) of these  x  randomly 
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distributed sensitivity scores. We repeated this process 100 times and compared the mean value 

with the SD of the original network (Figure 2.7a).  

 

2.4.4. Measuring environmental robustness 

To quantify environmental robustness, we perturbed initial gene expression 500 times for 

each individual in the population by changing!!si →1− si  at a rate 0.01/gene (Figure 2.9a) and 

0.2/gene (Figure 2.9b). We then calculated the phenotype distance 
  
D S1,S2( ) = i=1

N

∑ S1i − S2i

N
 

between unperturbed (  S1 ) and perturbed (  S2 ) phenotypes excluding phenotype inversion cases 

as the measure of environmental robustness.  

 

2.4.5. Evolution of modularity under coevolutionary selection 

The modularity measure we used is taken from [59]. We restate the definition as follows: 

Given a graph 
  
G V , E( ) , where   V = k, E = l, the vertices of 

  
G V , E( )  can be clustered into  n  

clusters,   C = C1, C2 , …, Cn{ }, 1≤ n ≤ k . Modularity is defined as 

  

Q C( ) =
i=1

k

∑
E Ci( )

l
− v∈Ci
∑ deg v( )

2l

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 where 
  
E Ci( ) = vh ,vt{ }∈E | vh ,vt ∈Ci{ }  and 

  
deg v( ) = ∀vt ≠ v | v,vt{ }∈E{ } . 

We adopted the (Espinosa-Soto) model described in [43] to our antagonistic coevolution 
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model as follows. The previous study used two target phenotypes simultaneously, each of which 

has a conserved part and a distinct part as input gene expressions. To emulate this in our model, 

we assigned half the genes to be under stabilizing selection and the other half under 

coevolutionary selection. The set of genes under stabilizing selection has the same target 

phenotype throughout the simulation whereas the other is under coevolutionary selection. To 

represent environmental perturbations, the input gene expression is perturbed by changing 

!!si →1− si  at a rate 0.15/ N  as described in [43], for 400 experiments. The fitness function of an 

individual is   f = 1− e−3γ , 
  
γ =

i=1

400

∑ 1− Di / Dmax( )5
/ 400 , where  Di  is the Hamming distance 

between the target phenotype and a new phenotype from   i th  perturbed input. For the model 

version that assigns half of the genes to be under stabilizing selection and the other half to be 

under coevolutionary selection but does not include environmental perturbations, we calculate 

two types of fitness for stabilizing and coevolutionary selection respectively: 

  
fs = 1− e

− d
α , d =

i=1

Ns

∑ Soptimal i( )− Ŝ i( )( )2
Ns ⋅ζ( )  and 

  

fc =
e
−1−d

α ,   host

e
− d
α ,  parasite

⎧

⎨
⎪

⎩
⎪

, d =
i=1

Nc

∑ Santagonist i( )− Ŝ i( )( )2
Nc ⋅ζ( ) .  

 ζ = 1  for continuous expression levels and  ζ = 4  for discrete (-1,+1) expression levels.  Ns  is the 

number of genes under stabilizing selection and  Nc  is the number of genes under coevolutionary 

selection. Survival requires both  fs  and  fc  to exceed a uniformly-distributed random value in 

the range  [0,1] . 
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2.5. Discussion and conclusion 

Previous models of gene regulatory networks have shown that mutational robustness 

evolves under conditions of stabilizing selection [55, 57]. However, under more realistic 

scenarios, such as coevolution, evolvability may be advantageous. It is unclear though, how 

sensitivity and robustness will evolve and in particular how they will become distributed 

throughout a regulatory network. To investigate this, we developed a two-population (host-

parasite) model of antagonistic coevolution. Although previous studies [42-44] had investigated 

the evolution of sensitivity in networks under fluctuating environmental conditions, a key 

novelty of our model is that the fitness landscapes are emergent properties of the inter-population 

interactions. This approach avoids the need to impose a changing environmental regime 

externally. Furthermore, the pace of evolution is dictated largely by the model’s ability to adapt. 

Self-contained models such as these represent a step towards open-ended evolutionary models 

that will be critical in the longer term to understanding how biological complexity evolves. 

We found that sensitivity increases after the initiation of coevolution and becomes highly 

distributed throughout the network. At the same time, the remaining (non-sensitive) parts of the 

network evolve to become robust. Interestingly, genetic diversity evolves to be higher under 

antagonistic coevolution than under stabilizing selection. There are two obvious sources of 

diversity in this case. Firstly, in the non-sensitive parts of the network, robustness facilitates the 

accumulation of genetic variation via a well-understood mechanism [60]. Secondly, because 

sensitivity is distributed across the network, there are many different ways in which mutations 

cause phenotype inversions, contributing to diversity particularly after several rounds of 

selection. If sensitivity were not distributed, but were focused on a particular “evolvability 
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hotspot”, genetic diversity could in principle be far lower. 

We found that robustness evolves in the parts of the network that are not involved in 

phenotype inversion. Interestingly, this robustness evolves more easily under asexual 

reproduction (Figure 2.4b) than sexual reproduction (Figure 2.8b). Generally speaking, we found 

that under sexual reproduction, a combination of higher network density, stronger selection 

pressure and/or larger population size was required in order to attain levels of robustness 

comparable to the asexual case, suggesting that recombination load is having nontrivial effects 

under sexual reproduction. In support of this, theoretical population genetic studies investigating 

the evolution of recombination [61, 62] have shown that asexual reproduction will be favored 

over sexual reproduction under antagonistic coevolution when the two modes are allowed to 

compete. At the same time, a previous study using a similar network model to ours [63], but 

having a single population under conditions of stabilizing selection, demonstrated that 

recombination load evolves to minimal levels under stabilizing selection. Thus it would appear 

that recombination load evolves to be higher under antagonistic coevolution than under 

stabilizing selection.  

We found that coevolutionary selection drives networks to evolve labile sensitivity such 

that evolvability and robustness are continuously redistributed throughout the network. Sensitive 

points within the network cause a phenotype inversion when mutated (from   Ŝ →1− Ŝ ), but the 

mutation by definition also changes the genotype, in particular by causing a change   
wij  → wij ' . 

Assuming the lineage continues through another phenotype inversion (from   1− Ŝ → Ŝ ) and   
wij '  

is not mutated again, then   
wij '  will most likely no longer be sensitive. However, each time a 

sensitive point in the network is “used up”, a new sensitive point emerges elsewhere, thus 
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maintaining overall sensitivity at approximately constant levels. We refer to this process as 

whack-a-mole sensitivity, named after a fun park game in which targets are removed from one 

place only to reappear elsewhere. A comparable whack-a-mole process also appears to occur 

with meiotic recombination hotspots in mammals [64, 65]. During meiosis, recombination 

breakpoints are frequently initiated at DNA motif hotspots recognized by the PRDM9 protein. 

However, DNA repair mechanisms cause hotspots to be preferentially lost in the gametes of 

heterozygote (hotspot/non-hotspot) individuals and the net effect is for recombination hotspots to 

be lost over time. However, by means that are still not well understood, the overall number of 

hotspots (in humans for example) remains approximately constant while the positions of 

recombination hotspots are transient and vary within humans [66, 67], suggesting there must be a 

mechanism for generating new hotspots to replace those that have been lost, i.e., a whack-a-mole 

process. Broad distributions of mutations have been observed in antibiotic resistance, for 

example in bacteria which produce extended-spectrum beta-lactamase (ESBL) enzymes [68, 69]. 

In this case, many distinct point mutations occurring in ESBL genes such as TEM-1 and SHV-1 

transform the active site of the enzyme. More than 330 ESBL variants including TEM- and 

SHV- type variants have been reported [69]. Whack-a-mole sensitivity may explain these rapidly 

expanding mutations in genes encoding ESBLs, thus helping to predict the evolution of 

resistance. 

In our model the ongoing phenotypic inversions are dependent on successive mutations 

that accumulate across many different loci. Because we found that sensitive nodes are labile 

(whack-a-mole sensitivity), this means that over time similar mutations at a particular gene 

regulatory interaction might have distinct phenotypic effects. For example, a phenotype 

inversion (!!S→1− S ) might be caused by a mutation at a particular sensitive site  
wij . The 
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original phenotype !S  might then be restored by a reverse mutation at the same site. However, 

because sensitivity is distributed across the network, the restored phenotype !S  is more likely to 

arise through a mutation at some other site different than  
wij . Indeed, several generations may 

pass before this reverse mutation occurs and by that time other mutations may have accumulated 

in the network. In this new genetic background, the “reverse” mutation may no longer have the 

same effect. This is a clear example of serial epistasis - the dependency of mutational effect on 

the genetic background established by previous mutations [70]. A widely-cited study of serial 

epistasis in a natural population involves the evolution of resistance to the insecticide diazinon in 

populations of Australian sheep blowfly [71, 72]. Here, an early resistance mutation arose 

conferring higher fitness in the presence of insecticide, but lower fitness compared to wildtype in 

the absence of insecticide. A second mutation then evolved to ameliorate the deleterious 

mutation, thus restoring fitness to wildtype levels for the double mutants.  

A key issue in evolutionary biology is understanding the extent to which epistasis, and in 

particular serial epistasis, determines the path of evolutionary change [70]. Such evolutionary 

constraints have been shown clearly at the level of individual proteins, for example, in a classic 

study of the evolution of novel function in vertebrate steroid receptors [73], the authors evaluated 

experimentally the inferred ancestral proteins leading to the separate evolution of 

mineralocorticoid and glucocorticoid steroid receptors. They found that structural interactions 

imposed constraints that determined a specific ordering for the observed evolutionary 

substitutions. At the same time, the importance of serial epistasis in larger-scale systems such as 

regulatory networks is less well understood [74]. Our results suggest that whack-a-mole 

sensitivity will evolve as an emergent property of the network when there is distributed 

sensitivity and the serial epistasis effects that come with it. 
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Taken together, under conditions of strong antagonistic coevolution, sensitivity in gene 

regulatory networks evolves to be broadly distributed and highly labile. Our results suggest there 

will be no central network elements that determine phenotype changes in the long term. Previous 

studies had found that network modularity could evolve in the context of alternating 

environments comparable to those that emerge in our model [42, 43]. A modular network 

architecture can facilitate phenotype switching by perturbing key interaction(s) between modules 

[46]. However, we observe an entirely different mechanism based on sensitivity in which 

modularity does not play a role. When we compared with the Espinosa-Soto model [43], we 

found that modularity did not evolve even when we adopted many model features, and perhaps 

the most relevant difference with that model lies in the nature of the perturbations (Figure 2.15). 

Modularity may be more likely to evolve in the face of environmental perturbations than in 

networks faced predominantly with mutational perturbations [45, 46, 75]. When we compared 

with the Kashtan model [42], we found that introducing Modularly Varying Goals (MVGs) 

could, to some extent, drive the evolution of persistent sensitive interactions (Figure 2.16b), 

although network modularity did not increase (Figure 2.16c). As we have observed, distributed 

sensitivity offers the advantage of allowing a large number of mutations throughout the network 

to generate phenotype changes. If a network has many different regulatory interactions that 

enable rapid adaptation via point mutations, the network does not have to mutate a specific 

interaction back-and-forth in order to repeat the process. 
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Chapter 3. Potential for evolution of complex defense strategies in a multi-scale model of 

virus-host coevolution  

This chapter is adopted from the paper “Potential for evolution of complex defense 

strategies in a multi-scale model of virus-host coevolution” [76]. 

 

3.1. Background 

Viruses and their hosts engage in evolutionary arms races in the form of continuous 

molecular level changes that determine the mechanisms of infection and defense [77-80]. The 

evolutionary dynamics are determined in large part by host susceptibility and viral pathogenicity 

and ultimately depend on molecular interactions between genes and their products [81-83]. 

These relentless evolutionary arms races drive genetic diversity in both host and pathogen [78, 

84, 85]. More generally, host-pathogen interactions have been proposed as a major factor in the 

evolution of biological complexity [34, 86-88]. 

If we consider humans and other higher organisms as potential hosts, they will usually 

evolve at much slower rates than the viruses that infect them [89]. At the same time these hosts 

are highly complex organism and will usually have far greater resources in terms of potential 

defense mechanisms and, more generally, in terms of genetic information to deal with the viral 

infections. Viral entry will commonly involve binding interactions with receptors on the host cell 

surface [90, 91]. Most host cells will have a large number of cell surface receptors, many of 

which are involved in essential functions such as detection of signaling molecules (e.g. 

hormones) or nutrients, but which can be usurped by viruses as cell entrance mechanisms [92, 

93]. Functional redundancy among receptors is common. For example, nectins are cell entry 
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receptors of Herpes simplex virus (HSV) and are involved in cell adhesion. Functional 

redundancy within the nectin family and also other cellular adhesion proteins can compensate for 

particular nectins [94]. Also, in humans there are 19 known chemokine receptors which activate 

the same chemokine signaling pathway but some of these have highly specific receptor binding 

ligands whereas others may bind multiple ligands [95]. Interestingly, some viruses produce 

mimics of chemokine receptor binding ligands, or may encode their own chemokines and 

chemokine receptors [96]. For example, CCR5 and CXCR4 act as co-receptors for HIV-1 entry 

[97], and the  Respiratory Syncytial Virus (RSV) produces its own version of the chemokine 

CXC3 which binds to the host receptor CX3CRI, thus facilitating RSV infection [98].  

While there are multiple mechanisms of infection and resistance across many levels, 

virus entry into the host cell is the first and essential step that must succeed for a viral infection 

to proceed [90, 91]. Thus, preventing virus entry has often been the preferred strategy for 

therapeutic development [90, 99, 100]. On evolutionary timescales, hosts can evade receptor-

mediated viral entry in several ways including amino acid changes at the binding sites to inhibit 

protein interactions, or by regulation of receptor gene expression. Several previous studies have 

provided evidence of evolutionary arms races at the level of virus-receptor protein interactions. 

For example, Transferrin Receptor-1 (TfR1) is a key regulator of iron uptake in mammalian cells 

and is up-regulated when intracellular iron concentrations are low [92]. However, TfR1 is also 

used for cell entry by viruses such as the Mouse mammary tumor virus (MMTV) and the 

Machupo virus. Clear evidence of positive selection has been found both on the binding sites of 

TfR1 for MMTV and Machupo virus and on the corresponding sites in the virus proteins that 

bind these [101-104]. Mutations at these residues affect receptor-binding interactions and change 

virulence and host susceptibility, suggesting an ongoing evolutionary arms race. Regulation of 



	
  

50 
	
  

host cell surface receptors can also be an effective defense strategy against virus entry [99, 100, 

105, 106]. For example, there appears to be significant variation across human bladder cells for 

mRNA and protein expression levels of the Coxsackie and Adenovirus Receptor (CAR) gene, 

another virus-targeted receptor. Thus, the T24 bladder cell line has very low CAR expression and 

is resistant to virus entry, whereas RT4 cells have high CAR expression level and are highly 

susceptible to infection [107]. Thus, regulatory changes affecting cell surface receptor levels are 

related to susceptibility to viral infection. Clearly, however, there may be a tradeoff between 

reduced receptor expression and the fitness gained by reduced infectivity, which may explain 

why there are many more published examples of virus-receptor coevolution than for receptor 

expression evolution (virus-receptor coevolution is also easier to study, so ascertainment bias 

may also be a factor). 

Thus, hosts may adopt different resistance mechanisms at different system levels, e.g., 

receptor binding vs regulation. However, little previous research has focused on how these 

different levels of defense mechanisms may evolve in the context of host-pathogen co-evolution. 

Computational models such as the gene regulatory network evolution model (also known as the 

Wagner model), that combine a complex genotype-phenotype mapping (describing a gene 

regulatory network) with evolutionary dynamics have previously been used to address a range of 

questions concerned with evolution of biological complexity [30, 31]. In previous studies, the 

gene regulatory network evolution model has been extended to account for different system 

levels, including transcription factor (TF)-DNA binding interactions [32] and protein-protein 

interactions (PPI) [33] at the microscopic level, or between two different populations [34] at the 

macroscopic level. These previous studies [33, 34] showed how robustness and evolvability can 

evolve to be distributed across different system levels, depending on the model conditions. Here, 
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we integrate protein-protein interactions (virus-receptor binding) and gene regulatory networks 

(which control receptor expression) in the context of an evolutionary model that represents both 

host and pathogen populations.   

Viral proteins commonly evolve to mimic receptor binding sites in order to enter host 

cells through cell surface receptors [96, 101-104]. We introduce a model where the host receptor 

and the corresponding viral protein are represented as linear sequences and binding is quantified 

by a similarity score, under the assumption that a close match corresponds to better binding and a 

higher probability of viral entry. Hosts can evolve to block viral entry either via binding site 

mismatches or by regulatory changes in receptor protein expression. We further investigate how 

hosts evolve resistance to different types of viruses: specialists (that target a single receptor) vs 

generalists (that target many receptors). We consider how the balance between receptor binding 

and regulation evolves in the context of host-pathogen co-evolution and the need for virus to 

enter the host cell and the host to block virus entry. More generally, we consider what 

evolutionary conditions might drive a shift from protein-protein interaction towards gene 

regulation, and thus increased biological complexity, a key question in the field of evolutionary 

biology [108, 109]. Furthermore, because we specifically consider host-pathogen coevolution, 

our study begins to address how complex immune systems may have evolved. 

3.2. Model 

3.2.1. Host-virus coevolution model 

The individual gene regulatory network (GRN) structure and gene expression dynamics 

largely follows the original gene regulatory network evolution model [17, 110, 111], with 3 

primary differences: (i) host individuals are represented by a GRN together with a set of receptor 
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binding site sequences, (ii) populations follow the dynamics of an SIS model, and (iii) the 

selection pressure on hosts is given by differential survival probability for the offspring of 

susceptible vs infected parents and by the rate of disease-related death for infected hosts as 

selection on the hosts arises from the advantage that resistant offspring have over non-resistant 

offspring. 

A host GRN is represented as a matrix (𝑊) of size 𝑁×𝑁FG where 𝑁 is the total number 

of genes, which includes receptor genes (𝑁H) and the transcription factor genes (𝑁FG) that 

regulate them. Each element, 𝑤JK indicates a regulation of the gene 𝑖 by a gene product of the 

gene 𝑗, and can represent activation (𝑤JK > 0), inhibition (𝑤JK < 0), or no regulation (𝑤JK = 0). 

The network density (𝑐) is a parameter of the model and is defined as the fraction of nonzero 𝑤JK 

elements in the matrix 𝑊. A founder host individual has a randomly assigned 𝑊 with a given 

network density 𝑐 and with each nonzero 𝑤JK element drawn from a Normal distribution, 𝑁(0,1). 

Each row 𝑖 of the matrix 𝑊 represents the cis-regulatory elements of the 𝑖RS genes. The GRN is 

composed of two sub-networks. The first sub-network, from the 1TR row to the 𝑁FGRS  row 

corresponds to the transcription factor (TF) genes and the second sub-network, from the 𝑁FG1URS  

row to the last 𝑁RS row corresponds to the 𝑁H receptor genes. The expression levels of the 𝑁 

genes at time 𝑡 are represented as a vector 𝑆(𝑡) where the 𝑖RS element 𝑆J(𝑡) corresponds to the 

gene expression of 𝑖RS gene. A sub-vector of 𝑆(𝑡) of TF genes (𝑆U(𝑡)~	
  𝑆FG(𝑡)) is called 𝑆FG(𝑡), 

and a sub-vector of 𝑆(𝑡) of receptor genes (𝑆FG1U(𝑡)~	
  𝑆X(𝑡)) is called 𝑆H(𝑡). Initial gene 

expression 𝑆 0  is set as a random binary vector where 0 corresponds to no gene expression and 

1 is for full gene expression. Gene expression levels are updated according to the equation 

𝑆 𝑡 + 1 = 𝑆𝑖𝑔(𝑊 ∙ 𝑆FG 𝑡 ), where 𝑆𝑖𝑔 𝑥 = U
U1[3\]

 (𝑎=100) is a sigmoid function which maps 
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values to gene expression levels in the range 0,1 . Here, 0.5 corresponds to basal (unregulated) 

gene expression. When the gene expression dynamics 𝑆 𝑡  reach steady state [31] we simplify 

gene expression to binary form by applying the function 𝜑 𝑥 = 0, 𝑥 ≤ 0.5
1, 𝑥 > 0.5 , thus defining the 

phenotype 𝑆.  

In the model, we assume there is some degree of functional redundancy for cell surface 

receptors. Among the total number (𝑁H) of receptors which can be expressed on the cell surface, 

a subset (𝑁cH) is required to satisfy the minimum demand for normal host functions. Here we 

tested 𝑁cH = 1 or 3 among 𝑁H = 5 receptors. For example, 𝑁cH = 1 indicates that expression of 

any single receptor is sufficient for host function and any receptor can substitute for any other. 

At the other extreme, if 𝑁cH = 5 then all receptors must be expressed and there is no functional 

redundancy. There are multiple examples showing that different receptors on a host cell can be 

targeted for virus entry and also that a single host receptor can be targeted by different viruses 

[90, 91]. Hence, offspring individuals whose phenotypes have fewer expressed receptor genes 

than 𝑁cH (1 ≤ 𝑁cH ≤ 	
  𝑁H) are assigned zero fitness since we assume that this is the minimum 

required for normal host cell functions. The expressed receptor genes produce cell surface 

receptor proteins that can be targeted by viruses for entry. Each receptor protein is represented as 

a binary vector of length 𝐿, where 0 indicates a polar amino acid and 1 indicates a hydrophobic 

amino acid. To represent different receptors on the host cell surface, an amino acid sequence is 

assigned to each receptor protein independently (we avoided having a homogeneous set of initial 

host receptor proteins as we found this caused population decay due to extremely beneficial 

conditions for the virus infection). While a host individual is represented with a GRN together 

with a set of receptor proteins, each virus is represented only by the protein used to enter host 

cells, represented also as a binary vector of length 𝐿.  
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The initial host population is created in the form of 𝑀 clones of a founder individual 

possessing a randomly assigned matrix 𝑊 and set of receptor amino acid sequences. The host 

population iterates through cycles of reproduction, mutation and stabilizing selection (similarity 

to the phenotype of the founder) for 500 time steps in order to generate genetic diversity within 

the population before the viruses are introduced [31]. Under asexual reproduction each offspring 

individual is cloned from a random parent, whereas under sexual reproduction each offspring has 

two random parents and inherits genes (protein sequences and cis-regulatory regions) from either 

parent randomly assuming free recombination among the genes. Since each row represents the 

cis-regulatory region of each gene, sexual reproduction involves copying each row of 𝑊 from 

either of the parents for all 𝑁 genes. GRN mutations change regulatory interactions between 

genes. As used previously [111], we allow interaction addition (𝑤JK = 0 → 𝑤JK ≠ 0), deletion 

(𝑤JK ≠ 0 → 𝑤JK = 0), and modification (𝑤JK = 𝑤JKi ≠ 0 → 𝑤JK = 𝑤JK∗ ≠ 𝑤JKi , 0). The mutation 

frequency per matrix 𝑊 is 𝜇 including addition (𝜌), deletion (𝜙) and modification (𝛿). 𝜌 and 𝜙 

are set to satisfy 𝛥𝑐 = 𝑐 𝑡 + 1 − 𝑐 𝑡 = p
X∙Xqr

∙ 𝜌(1 − 𝑐 𝑡 ) − 𝜙𝑐 𝑡 = 0 so that the network 

density (𝑐) remains close to that of the founder. Before contact with viruses, the host population 

size is fixed and hosts evolve under stabilizing selection to be close to the founder’s gene 

expression phenotype and expressed receptor amino acid sequences. Under stabilizing selection, 

a host whose phenotype has more than one gene expression difference is not able to survive. 

Protein mutations involve switching between 0 (polar) and 1 (hydrophobic), where the mutation 

probability is 𝜇Ss per set of receptors. We assume that the amino acid mutations at the virus 

protein binding site do not affect protein folding. Also for the receptor similarity, we measured a 

fitness value 𝑓 = 𝑒;
v
w, where 𝜎 = 0.1 (strong selection) and 𝐷 =

|{|,};{|,}
~ |�

}��|∈��

cH ∙�
 (𝐸𝑅: set of 
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expressed receptors, 𝐸𝑅 : the number expressed receptors, 𝑎�,J: the 𝑖RS entry of the amino acid 

sequence of receptor 𝑟, 𝑎�,J
� : the 𝑖RS entry of the amino acid sequence of the founder receptor 𝑟), 

which is the mean L1 distance from the founder amino acid sequence for all expressed receptors.  

In preparation for the infection phase, two founder viruses are generated based on protein 

sequences from host individuals in order to guarantee a high initial transmission rate. 

Specifically, each founder virus is copied from a receptor protein sequence of a random host, 

then mutated using the virus protein mutation rate (𝜇�s = 0.1 per virus protein). Although we 

tested a case of larger initial virus population size including a greater diversity of founder 

viruses, we could not find a significant difference from the small initial founder virus population 

case in terms of the infection strategy of the virus. Hence, in this study, we used two founder 

viruses for all simulations. Once the host-virus coevolution phase begins, the hosts are divided 

into susceptible and infected populations and the host population is no longer under stabilizing 

selection, as hosts need to acquire phenotypic variation to defend against virus entry. Initially all 

hosts are susceptible and as the founder viruses infect the healthy hosts, those hosts are moved to 

the infected population. Each individual in the infected group possesses the virus that caused the 

infection. From this point the population evolves under conditions of co-evolutionary selection 

and the size of the susceptible (S) and infected (I) groups is allowed to vary. The susceptible and 

infected population dynamics are inspired by the standard SIS model with births and deaths as 

shown in the following difference equations:  

𝛥𝑆 = 𝑆 𝑡 + 1 − 𝑆(𝑡) = 𝜂 ∙ 𝑏 ∙ 𝑁(𝑡) ∙ 1 − X(R)
�

− 𝜉 ∙ �
X(R)

∙ 𝑆(𝑡) ∙ 𝐼(𝑡) − 𝜆X ∙ 𝑆(𝑡) + 𝛾 ∙ 𝐼(𝑡)

 (1) 
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𝛥𝐼 = 𝐼 𝑡 + 1 − 𝐼(𝑡) = 𝜉 ∙ �
X R

∙ 𝑆(𝑡) ∙ 𝐼(𝑡) − (𝜆X + 𝜆� + 𝛾) ∙ 𝐼(𝑡)    (2) 

where 𝑁 𝑡 = 𝑆 𝑡 + 𝐼 𝑡 , 𝑏=growth rate, 𝐾=carrying capacity, 𝜂 = #	
  ��	
  T���J�[�	
  ���Ts�J��
#	
  ��	
  ���Ts�J��	
  �{��J�{R[T

 , 

𝑟=contact rate, 𝜉 = #	
  ��	
  J��[�RJ��T
#	
  ��	
  ���R{�RT

 (determined empirically, as described below), 𝑟 ∙

𝜉=transmission rate, 𝜆X=natural death rate, 𝜆�=disease related death rate, 𝛾=recovery rate. The 

main difference from the standard ODE SIS model is that 𝜉 and 𝜂 are determined by the 

individuals in the population and these parameter values can change as the population evolves. In 

our model, 𝜉 and 𝜂 are determined through a complex process that includes random sampling 

within the population and the evaluation of individual phenotypes. The transmission rate is 

frequency dependent (i.e., divided by 𝑁(𝑡)), which assumes that a population occupies an area 

proportional to its size, i.e., per capita contact rate does not depend on population density, i.e. 

assuming a wide and unrestricted region affected by infectious viruses [112]. We also use 

standard assumptions of logistic population growth and that every offspring is initially 

susceptible. The difference equations dictate the number of offspring that need to be generated, 

the number of contact events between infected and susceptible hosts, host deaths, and recovered 

hosts at every time step, but because our model is individual-based, these numeric changes are 

applied to the actual populations as follows:  

The growth term, 𝜂 ∙ 𝑏 ∙ 𝑁(𝑡) ∙ 1 − X(R)
�

, describes the number of offspring, which are 

generated via sexual or asexual reproduction and mutations in GRN and amino acid sequences 

are generated as described above. The term 𝑏 ∙ 𝑁(𝑡) ∙ 1 − X(R)
�

 is the total number of offspring 

candidates who have the stable gene expression and express at least 𝑁cH receptors. As candidates 

who have infected parents are less likely to survive, only a fraction of the candidates (𝜂) can 
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actually be added to the susceptible population. If phenotypes of the offspring candidates satisfy 

the criteria of expressing the minimal number (𝑁cH) of receptor genes, and depending on the 

survival probability, the candidate may be added to the susceptible population. The survival 

probability is 1 if both parents are susceptible, 𝑘� < 1 if both parents are infected, or ��1U
 

 if only 

one parent is infected. Therefore, among the 𝑏 ∙ 𝑁(𝑡) ∙ 1 − X(R)
�

 candidate offspring, only a 

fraction 𝜂 of candidates can be added to the susceptible population when 𝑘� is less than 1. Thus, 

the parameter 𝑘� determines selection due to viral pathogenicity. For the infection term, the 

number of contacts is �
X(R)

∙ 𝑆(𝑡) ∙ 𝐼(𝑡). Here, for each contact we choose a random pair of 

susceptible and infected individuals. We assume that each infected host individual contains a 

single virus that caused the infection and multiple co-infections were not considered in the 

model. With each host-virus contact event, the virus mutates the original amino acid sequence at 

the point of the infection with mutation rate, 𝜇�s = 0.1 per protein. The virus can bind a host 

receptor if the percentage of one-to-one amino acid pairs that match between the virus and the 

host receptor exceeds a matching threshold, 𝜖T[¢£. If the virus can bind at least one of the 

expressed receptors on a susceptible host, then the infection proceeds and the individual moves 

from the susceptible to the infected population together with the virus that infected it, otherwise 

the susceptible individual remains in the susceptible population. Successive infection attempts by 

the same infected individual will involve new mutations with each host-virus contact occurs. 

Thus, virus transmission will depend on the coevolving host resistance and pathogen virulence. 

Also, note that the fraction of successful infections 𝜉 in the equations 1 and 2 is determined 

empirically, rather than as a given parameter. 

3.2.2. Parameters 
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There are parameters at both the level of population dynamics and at the individual level, 

i.e. governing the regulatory network and the protein sequences (Table 3.1). In this study, we 

tested a range of parameters including protein binding site amino acid sequence length (𝐿), the 

minimum number of required expressed receptors (𝑁cH), host protein mutation rate (𝜇Ss), amino 

acid matching threshold for receptor binding (	
  𝜖T[¢£), offspring survival probability from both 

infected parents (𝑘�) and disease-related death rate (𝜆�) to investigate the effect of parameter 

changes on host resistance evolution. Unless otherwise stated, we used the following parameters: 

for the population dynamics model, the number of simulations=100, initial host population size 

𝑀J�JR=150, initial virus population size=2, offspring survival probability from both infected 

parents 𝑘�=0.8, amino acid matching threshold for receptor binding 𝜖T[¢£=90%, carrying 

capacity 𝐾=1000, growth rate 𝑏=0.15, natural death rate 𝜆X=0.09, disease-related death rate 

𝜆�=0.06, recovery rate 𝛾=0.2, host-virus contact rate 𝑟=2. These parameters are chosen to make 

steady state host population size large enough to investigate evolutionary mechanisms. For the 

GRN and protein evolution model, virus protein mutation rate 𝜇�s = 0.1, the number of TFs 

𝑁FG=5, network density 𝑐=0.4, mutation rate per 𝑊 𝜇 = 0.1 with 𝜌=0.028 and 𝜙=0.042 (𝜙 +

𝛿 = 1). Note that 𝜙 + 𝛿 = 1, since for an interaction (𝑤JK), deletion and modification are 

conditional on the interaction being nonzero value (𝑤JK ≠ 0). These individual level parameters 

are chosen based on our previous study [34]. 

Table 3. 1. The list of model parameters at both the level of population dynamics and at the 
individual level in symbols with descriptions and parameter values used in this study. 

Parameter 
symbol 

Description Values 

𝐿 
Protein binding site amino acid 

sequence length 
5, 10, 15, 20, 25, 30 

𝜇Ss Host protein mutation rate per a set of 0.002, 0.01, 0.05 
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receptors 
𝜇�s Virus protein mutation rate 0.1 

𝑁FG 
The number of transcription factor 

genes 
5 

𝑁H The number of receptor genes 5 

𝑁cH 
The minimum number of required 

expressed receptors 
1, 3 

𝜖T[¢£ Amino acid matching threshold for 
receptor binding 

90%, 75% 

𝑘� 
Offspring survival probability from 

both infected parents 
0.5, 0.8 

𝜉 
#	
  𝑜𝑓	
  𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠
#	
  𝑜𝑓	
  𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠  

Self-determined 
during simulations 

𝜂 
#	
  𝑜𝑓	
  𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑	
  𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
#	
  𝑜𝑓	
  𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔	
  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

Self-determined 
during simulations 

𝐾 Carrying capacity 1000 
𝑀J�JR Initial host population size 150 
𝑏 Growth rate 0.15 
𝜆X Natural death rate 0.09 
𝜆� Disease-related death rate 0.06 
𝛾 Recovery rate 0.2 
𝑟 Host-virus contact rate 2 
𝑐 Network density 0.4 

𝜇 
Mutation rate per gene regulatory 

network 
0.1 

𝜌 Conditional rate of interaction addition 
in gene regulatory network 

0.028 

𝜙 
Conditional rate of interaction deletion 

in gene regulatory network 
0. 042 

𝛿 
Conditional rate of interaction 

modification in gene regulatory 
network 

0. 958 

𝜎 Selection pressure 0.1 

𝑎 
Gene expression mapping sigmoid 

function parameter 
100 

 

3.3. Results 
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3.3.1. Population dynamics of infection 

For many infectious diseases, hosts never achieve long-term immunity due to rapid 

pathogen divergence. In particular, RNA viruses such as rhinoviruses and coronaviruses mutate 

so rapidly that even hosts that have recently recovered from an infection can become susceptible 

again to different strains of the same viruses circulating in the population. The Susceptible-

Infectious-Susceptible (SIS) model is a simple infectious disease model that has been widely 

used to describe population dynamics for rapidly evolving pathogens and their target host 

populations [113, 114]. We introduce a model of host-virus coevolution that extends the gene 

regulatory network evolution model of gene regulatory network evolution, integrating it with a 

discretized form of the SIS model at the population level (see Methods). In our combined model, 

population sizes can vary, in contrast to the original gene regulatory network evolution model 

that considered a fixed population size. Since we preserve an explicit representation of each 

individual genotype in the population, we can observe the evolution of defense and infection 

mechanisms in both the host and pathogen populations. In its standard form, the SIS model uses 

fixed values to describe parameters such as the infection transmission rate. However, on 

evolutionary timescales, parameters such as host susceptibility and pathogen virulence are likely 

to vary over time and consequently key model parameters such as the transmissibility, 𝜉, will 

also change. In our model, each host genotype is represented explicitly with a gene regulatory 

network and the corresponding receptor protein sequences (Figure 3.1). Each virus is represented 

explicitly with a receptor binding protein sequence, that will be compared to the host receptor 

sequences during contact (attempted infection) events (Figure 3.1). Hence, rather than 

determining the rate of infection based on a fixed parameter, as in the standard SIS model, we 

allow the contacting host and pathogen phenotypes to determine infection events. Specifically, 
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the key transmission parameter (𝜉 = #	
  ��	
  J��[�RJ��T
#	
  ��	
  ���R{�RT

) that determines the infection rate (𝑟 ∙ 𝜉) 

changes as both hosts and viruses evolve. Analytically, the steady state susceptible and infectious 

population sizes are 𝑆 = «�
�∙¬
∙ 𝐾 ∙ 1 − U

­∙®
∙ 𝜆X + 𝜆�(1 −

«�
�∙¬

 and  𝐼 = 1 − «�
�∙¬
	
   ∙ 𝐾 ∙

1 − U
­∙®
∙ 𝜆X + 𝜆�(1 −

«�
�∙¬

 respectively when 𝑟 ∙ 𝜉 ≠ 0 and  ­∙®;¯°
¯v

> 1 − «�
�∙¬
> 0 where 𝛿� =

𝜆X + 𝜆� + 𝛾. Different steady state values of 𝜉 lead to different 𝑆 and 𝐼 since these population 

sizes ultimately depend on the value of 𝜉. Since our main interest is the evolution of host 

resistance mechanisms, we only analyzed cases where the mean population size over time is 

greater than the initial susceptible population size (𝑀J�JR=150). In cases where the mean total 

population size < 𝑀J�JR (Figure 3.2), we found that the susceptible population was too small to 

investigate and these cases mostly occur when the extremely infectious viruses appear which can 

spread widely and make the host population sick.  

	
  

Figure 3. 1. Diagram of gene regulatory network (GRN) and host-virus interaction scheme. 
a) the GRN is composed of a transcription factor regulation sub-network and a receptor protein 
coding regulation sub-network. Mutations at the network level can be used to shut down the 
targetable receptor. Mutations at the protein level can result in a protein mismatch to block virus 
protein binding. b) If more than 𝝐𝒔𝒆𝒒𝑴% of amino acids are one-to-one matched, we assume the 
virus protein can bind to the matched receptor (top). If less than the threshold (𝝐𝒔𝒆𝒒𝑴) are 
matched, we assume the virus protein fails to bind the receptor. 
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Figure 3. 2. Two different types of susceptible and infectious population dynamics. Typical 
population dynamics of a) healthy population case where the mean host population size is greater 
than the initial host population size and b) sick population case where the mean host population 
size is less than the initial population and the population is composed of more infected hosts than 
healthy hosts. (L=10, 𝑵𝑬𝑹=3, 𝝁𝒉𝒑=0.002, 𝝐𝒔𝒆𝒒𝑴=75%, 𝒌𝑰=0.8) 

 

We measured the steady state transmissibility (𝜉), defined here as the mean value of 𝜉 

across the last 250 time points in each simulation, and considered how this measure changed 

under different conditions such as the protein binding sequence complexity (length, 𝐿), host 

protein mutation rate (𝜇Ss), the number of required expressed receptors (𝑁cH), the threshold 

above which the virus and receptor proteins are considered to have matched (𝜖T[¢£), the survival 

rate from infected parents (𝑘�) and the disease-related death rate (𝜆�). As shown in Figure 3.3, 

higher receptor binding sequence complexity (𝐿) and higher host protein mutation rates (𝜇Ss) 

tend to generate lower transmissibility 𝜉 and are therefore disadvantageous to virus transmission. 

Similarly, when more receptors have to be expressed on the host cell surface (higher 𝑁cH), there 

are more ways in which viruses can attempt receptor binding and consequently, 𝜉 tends to 

increase together with the number of required expressed receptor (𝑁cH), at least when the 

receptor binding complexity is low (Figure 3.4a). For similar reasons, the transmissibility 𝜉 also 

a) b)
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increases for lower matching threshold (𝜖T[¢£) value, such that when protein binding sequence 

complexity (𝐿) is low, reducing the matching threshold (𝜖T[¢£) dramatically increases virus 

transmission whereas for complex receptor binding, it does not have an advantageous effect on 𝜉 

(Figure 3.4b). That transmissibility 𝜉 increases only in the case of low complexity binding can be 

explained by the way viruses target host receptors, as explained in the next section. Intuitively, 

when a survival rate from infected parents (𝑘�) is low, non-resistant offspring have much lower 

fitness (if infected) than resistant offspring, and thus resistant individuals should increase in 

frequency. This would actually tend to decrease 𝜉 which is the opposite of what we observe. 

However, we found that in practice, it is more common for a low 𝑘� value to cause population 

decay and a large decrease in the number of contacts between host and virus individuals as 

shown in (Figure 3.5). A reduced number of contacts causes a larger decrease in the denominator 

of 𝜉 (#	
  ��	
  J��[�RJ��T
#	
  ��	
  ���R{�RT

), and therefore leads to a net increase in 𝜉 (Figure 3.4c). The observation of 

higher 𝜉 as a consequence of a high disease related death rate (𝜆�) is due to the same reason as 

for low 𝑘� (Figure 3.4d). In sum, the virus transmissibility is dependent on various conditions for 

different underlying reasons. We now consider in greater detail why and how these variables 

affect the host and virus population dynamics and virus transmission. 
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Figure 3. 3. Transmissibility changes for different receptor binding complexity and host 
protein mutation rate. The mean transmissibility (𝝃) for the last 250 time points (Error bar: one 
std. dev. over 100 simulations). 𝝃 increases as the receptor binding complexity decreases (shorter 
𝑳) in which case viruses can target multiple receptors and as the host protein mutation rate (𝝁𝒉𝒑) 
decreases which is due to the more limited speed of protein mutations to counteract the rapidly 
evolving viruses. 

	
  

 

Figure 3. 4. Transmissibility changes for different conditions. The mean transmissibility (𝝃) 
for the last 250 time points (Error bar: one std. dev. over 100 simulations). a) 𝝃 increases as the 
number of required receptor expression (𝑵𝑬𝑹) increases when the binding complexity (𝑳) is low. 

d)

b)a)

c)
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For low receptor binding threshold (𝝐𝒔𝒆𝒒𝑴), low survival rate from both infected parents (𝒌𝑰) and 
high disease related death rate (𝝀𝑫), population dynamics generally follows that shown in Figure 
3.2b. Hence, in b), c) and d) we considered all 100 simulations for the comparison of mean 𝝃 
values. 𝝃 increases as (b) the receptor binding site matching threshold (𝝐𝒔𝒆𝒒𝑴) decreases, as (c) 
the survival rate from both infected parents (𝒌𝑰) decreases and as (d) disease related death rate 
(𝝀𝑫) increases. 

 

 

Figure 3. 5. The number of contacts between host and parasite populations for different 
offspring survival rate from infected parents. The number of contacts between host and 
parasite populations decreases when offspring survival rate from infected parents (𝒌𝑰) is low 
(Error bar: one std. dev. over 100 simulations). 

 

3.3.2. Host resistance strategy depends on the number of targeted receptors 

Since receptor-virus protein binding enables virus entry and determines whether the 

infection succeeds, the virus’s ability to target multiple receptors and host’s ability to escape 

virus protein binding will have a significant impact on host resistance and viral pathogenicity. 

Hence we measured the number of targeted receptors across a variety of different conditions. We 

next show how the number of targeted receptors can change depending on the receptor binding 

complexity (protein sequence length, 𝐿), the number of required expressed receptors (𝑁cH), 

protein binding threshold (𝜖T[¢£), the survival rate from infected parents (𝑘�) and the disease-
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related death rate (𝜆�). As each simulation proceeded, we measured the frequency with which 

multiple receptors are targeted simultaneously and also used the Gini coefficient to measure the 

unevenness in the distribution of targeted receptors among the newly infected hosts throughout 

the simulation (see Methods). Thus, for example, when the frequency of multi-receptor matching 

is low, this indicates that mostly a single receptor is being targeted by the virus. However, this 

does not guarantee that the virus population targets the same specific receptor or whether 

different subpopulations are targeting distinct receptors. In this case, when the Gini coefficient of 

targeted receptors is high, this indicates that all viruses target a common receptor and when the 

Gini coefficient is low, this implies that the matched receptor for each host is different and that 

viruses have diversified into subpopulations by targeting different receptors. 

When binding complexity (𝑳) is low, viruses can target different receptors by means of a few 

amino acid mutations, whereas when receptor binding complexity is high, targeting multiple 

receptors is more difficult since the different receptors are likely separated by more mutations. 

Hence, as shown in (Figure 3.6), when 𝑳 is short, multiple receptors are often targeted 

simultaneously and the frequency of each receptor being targeted is not highly variable (low Gini 

coefficient). Considering this, more permissive receptor binding (lower 𝝐𝒔𝒆𝒒𝑴), increases the 

chances for multiple receptor targeting when 𝑳 is short (Figure 3.7c, d). On the other hand, when 

binding complexity is high, a single receptor is usually targeted and the Gini coefficient is close 

to 1 indicating there are usually one or two dominant targeted receptors (Figure 3.6). 

Furthermore, in this case, reducing the receptor binding threshold does not help viruses target 

multiple receptors (Figure 3.7c, d). These results indicate that for complex receptor binding, one 

or two receptors are targeted for virus entry and that there is no switch from one targeted 

receptor to another (Figure 3.6). Based on this observation, as expression of more distinct 
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receptors is required (higher 𝑵𝑬𝑹), multiple receptors can be targeted and at the same time the 

Gini coefficient decreases only when receptor binding complexity is low (short 𝑳). On the other 

hand, when receptor binding is complex (long 𝑳), increasing 𝑵𝑬𝑹 does not allow more receptors 

to be targeted by viruses (Figure 3.7a, b). Hence the number of required expressed receptors only 

impacts the strategy of the virus when the receptor binding is less complex (short 𝑳). 

Interestingly, the survival rate of offspring from infected parents also affects how the viruses 

target receptors. As we explained in the previous section, a low survival rate from infected 

parents (𝒌𝑰) causes the host population to become sick (the mean host population size is less than 

the initial population and the population is composed of more infected hosts than healthy hosts) 

and thus the population size decays. Consequently, as shown in Figure 3.13d, e and f, we observe 

that variation within the host population decreases, suggesting that viruses will need to specialize 

on binding to specific receptors (Figure 3.7e, f). Specific receptor targeting as a consequence of 

high disease related death rate (𝝀𝑫) arises for the same reason as for low 𝒌𝑰 (Figure 3.7g, h). We 

tested the effect of diversity in the initial virus population on the number of targeted host 

proteins. We compared a case with a highly diverse initial virus population to the default case of 

two initial viruses. Thus, given an initial population of 15 distinct founder viruses, each three 

viruses were chosen to bind a distinct host receptor. With 𝑳 = 𝟑𝟎, 𝝁𝒉𝒑 = 𝟎. 𝟎𝟎𝟐	
  and 𝑵𝑹 = 𝟓, all 

virus strains except one went extinct. In this case, the frequency of multi-receptor targeting was 

0.04±0.04 and unevenness of targeting receptors (Gini coefficient) was 0.793±0.009 which is 

close to the values for the 2 founder virus case. Even with 𝑳 = 𝟏𝟎, 𝝁𝒉𝒑 = 𝟎. 𝟎𝟎𝟐 and 𝑵𝑹 = 𝟓, 

we could not find a significant difference from the 2 founder case. Here, the frequency of multi-

receptor targeting was 0.16±0.14 and unevenness of targeting receptors (Gini coefficient) was 

0.70±0.08. In sum, receptor binding complexity (𝑳) affects viruses by determining the variety of 



	
  

68 
	
  

targetable receptors, although this also is dependent on parameters such as 𝑵𝑬𝑹 and 𝝐𝒔𝒆𝒒𝑴. Also 

indirect causality between host population diversity and parameters, 𝒌𝑰 and 𝝀𝑫 has an influence 

on the specificity of targetable receptors. So far, we considered how viruses behave and choose 

infection strategies for different conditions. We next explore how hosts react to virus infection 

strategies differently depending on the various environments. 

 

Figure 3. 6. Two different virus infection strategies: Targeting a specific receptor or non-
specific multiple receptors. a) The fraction of time points that multiple receptors are targeted 
simultaneously and b) the Gini coefficient of the frequency of targeted receptors for different 
receptor binding complexities (𝑳s) (Error bar: std. dev. over 100 simulations). A lower Gini 
coefficient (close to zero) indicates evenness and one that is close to one indicates inequality. As 
the receptor binding complexity increases (longer 𝑳) viruses target a specific receptor and do not 
change the target receptor over time. 

 

b)

a)
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Figure 3. 7. Viruses change their receptor targeting strategy under different conditions. 
The first column is the fraction of time points that multiple receptors are targeted simultaneously 
and the second column is the Gini coefficient of the frequency of targeted receptors (Error bar: 
one std. dev. over 100 simulations). a, b) When the binding complexity is low, a greater required 
number of expressed receptors (𝑵𝑬𝑹) causes viruses to target multiple receptors simultaneously. 

a) b)

c) d)

e) f)

g) h)
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However, when the binding complexity is high, a higher required number of expressed receptors 
does not change the targeting to a multiple receptor binding strategy. For low receptor binding 
threshold (𝝐𝒔𝒆𝒒𝑴) and survival rate from both infected parents (𝒌𝑰), population dynamics 
generally follows the trend shown in Figure 3.2b. Hence, in c~h) we considered all 100 
simulations for the comparison of the fraction of time points that multiple receptors are targeted 
simultaneously and the Gini coefficient of the frequency of targeted receptors. c, d) The low 
amino acid matching threshold for the receptor binding (𝝐𝒔𝒆𝒒𝑴) facilitates viruses to target 
multiple receptors. e, f) The low survival rate of an offspring from both infected parents results 
in viruses targeting more specific receptors for more robust receptor binding. g, h) The high 
disease related death rate (𝝀𝑫) causes more specialized receptor targeting. 

 

3.3.3. Evolved preference for resistance using network rewiring 

Hosts can adopt two different resistance strategies in the model: 1) Gene regulatory 

network rewiring to switch a targeted receptor off and 2) protein binding site changes to block 

protein binding to a targetable receptor. Here we consider how hosts balance the usage of these 

two strategies and what conditions determine their relative preference. At each time step the 

most frequently targeted receptor is identified among the set of newly infected hosts and from 

here we measure how often successful resistance events use network rewiring to shut down the 

most targetable receptor rather than protein sequence changes. We proceed by counting the 

fraction of hosts who resisted successfully and that do not express the most frequently targeted 

receptor. If there are multiple equally frequent most targeted receptors, we use the mean 

frequency across those receptors. The fraction of resisted hosts using network rewiring was 

measured at every time point. We then accumulated these measurements over all time points 

throughout the simulation and if the overall use of network rewiring resistance was higher than 

protein level resistance, we counted the simulation as preferential to rewiring. We subsequently 

measured the fraction of simulations for which this occurred to quantify the relative use of 
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rewiring across many simulations. Using this measure, we find that GRN rewiring is 

preferentially used as protein binding complexity increases (Figure 3.8). This outcome relates to 

the number of targeted receptors since when protein binding is more complex, the virus most 

often targets a single receptor and therefore down-regulating the targetable receptor is usually an 

effective strategy. Conversely when protein binding is low complexity, viruses are able to enter 

the host cell by binding multiple receptors and therefore rewiring is a less effective host strategy 

for resistance. As the host protein mutation rate (𝝁𝒉𝒑) decreases, hosts also use GRN rewiring 

more often due to the reduced ability to catch up with the relatively fast-evolving virus proteins 

(Figure 3.8). As we increase the number of receptors that need to be expressed (𝑵𝑬𝑹) then 

combinatorially there are fewer possible phenotypes for a given number of required receptors, 

and viruses have more chances to bind to the different receptors so that the frequency of 

resistance using GRN rewiring decreases (Figure 3.9a). Reducing the protein matching threshold 

also favors the protein interaction level (Figure 3.9b). Lastly, at low survival rate (𝒌𝑰) from 

infected parents and at high disease related death rate (𝝀𝑫), viruses tend to target more specific 

receptors, which is due to population size decay and low population diversity (Figure 3.7e~h). In 

fact, as shown in (Figure 3.10g, i), the potential for resistance (which will be explained in the 

following paragraph) via network rewiring increases. However, the small population size and 

low variation do not allow this potential to be realized. This explains the apparently 

contradictory result of (Figure 3.9c, d), where the observed (as opposed to potential) number of 

resistance events occurring via GRN decreases when 𝒌𝑰 is low but also when 𝝀𝑫 is high. Hence, 

unlike with 𝑳, 𝑵𝑬𝑹 and 𝝐𝒔𝒆𝒒𝑴, we observed that low 𝒌𝑰 and high 𝝀𝑫 did not promote resistance 

via network rewiring (Figure 3.9c, d). In sum, hosts choose a resistance mechanism depending 

on the virus infection strategy and their defense ability relative to viruses (how fast they react to 
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the fast evolving viruses). In the next section, we consider the temporal dynamics of hosts with 

respect to regulatory network and receptor protein binding evolution. 

 

Figure 3. 8. Preference for resistance using gene regulatory network (GRN) rewiring rather 
than protein mutations. The fraction of simulations where GRN rewiring strategy is used more 
often than protein binding site change for successful resistance under different protein binding 
complexities (𝑳s) and host receptor sequence mutation rates (𝝁𝒉𝒑). In a more complex receptor 
binding system, hosts tend to select the GRN rewiring strategy more often than the protein 
mutation strategy due to the single receptor targeting infection strategy. Since low 𝝁𝒉𝒑 means a 
lower rate of protein mutations to counteract the rapidly evolving viruses, hosts tend to favor a 
protein mutation strategy less. 
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Figure 3. 9. Preference for resistance using gene regulatory network (GRN) rewiring to 
protein mutations under different conditions. The fraction of simulations where GRN 
rewiring strategy is used more often than the protein binding site change strategy for resistance 
for different a) required number of expressed receptors (𝑵𝑬𝑹), b) amino acid matching threshold 
for the receptor binding (𝝐𝒔𝒆𝒒𝑴), c) survival rate from both infected parents (𝒌𝑰) and d) disease 
related death rate (𝝀𝑫). For low 𝝐𝒔𝒆𝒒𝑴, 𝒌𝑰 and 𝝀𝑫, the population dynamics generally follows 
that shown in Figure 3.2b. Hence, in b, c, d) we considered all 100 simulations for the 
comparison of the preference for resistance using GRN rewiring to protein mutations. a) As more 
receptors are required to be expressed (higher 𝑵𝑬𝑹), hosts preferentially use GRN rewiring less 
often than protein mutations. b) When the binding complexity is low, for lower amino acid 
matching threshold for the receptor binding (𝝐𝒔𝒆𝒒𝑴), hosts do not preferentially select GRN 
rewiring strategy. c) When  𝒌𝑰 is low, hosts do not favor the GRN rewiring strategy. d) When the 
disease related death rate (𝝀𝑫) is high, hosts less favor the GRN rewiring strategy for resistance. 

 

b)a)

c) d)
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Figure 3. 10. Evolutionary potential for resistance in the gene regulatory network and 
receptor proteins for different conditions. For susceptible host population, the ability to resist 
using GRN rewiring (𝟏𝒔𝒕 column) and protein binding site changes (𝟐𝒏𝒅 column) is measured for 
different a, b) host protein mutation rates (𝝁𝒉𝒑), c, d) number of required expressed receptors 
(𝑵𝑬𝑹), e, f) amino acid matching threshold for the receptor binding (𝝐𝒔𝒆𝒒𝑴),  g, h) survival rate 
from both infected parents (𝒌𝑰) and i, j) disease related death rate (𝝀𝑫) (Error bar: std. dev. over 
100 simulations). For low 𝝐𝒔𝒆𝒒𝑴 and 𝒌𝑰, population dynamics generally follows that of Figure 
3.2b. Hence, in e~h) we considered all 100 simulations for the comparison of the resistance 
potentials. a, b) For lower 𝝁𝒉𝒑, hosts evolve a GRN based strategy (𝑳=30, 𝝁𝒉𝒑=0.01, 
𝝐𝒔𝒆𝒒𝑴=90%, 𝒌𝑰=0.8). c, d) When expression of more receptors is required, hosts evolve the 
potential for resistance using GRN rewiring to higher level. (𝑳=30, 𝑵𝑬𝑹/𝑵𝑹=3/5, 𝝐𝒔𝒆𝒒𝑴=90%, 
𝒌𝑰=0.8), e, f) When receptor binding is simple (short 𝑳), for reduced 𝝐𝒔𝒆𝒒𝑴 hosts does not 
necessarily evolve the potential for a GRN rewiring strategy (𝑳=10, 𝝁𝒉𝒑=0.002, 𝑵𝑬𝑹/𝑵𝑹=3/5, 
𝒌𝑰=0.8). g, h) Selection pressure triggered by the low 𝒌𝑰 evolves the potential for GRN rewiring 
strategy (𝑳=30, 𝝁𝒉𝒑=0.002, 𝑵𝑬𝑹/𝑵𝑹=3/5, 𝝐𝒔𝒆𝒒𝑴=90%). i, j) The potential for resistance using 
network rewiring increases both for low and high diseases related death rates (𝝀𝑫). 

 

3.3.4. Evolutionarily gained potential to switch from infectious to resistance using GRN 

rewiring and protein mutations 

In the previous section, we showed that hosts determine the resistance strategy between 

GRN rewiring and protein binding site mutation depending on factors such as binding site 

complexity and mutation rate relative to that of the virus. We now consider the evolution of the 

potential within the population to resist future virus contact events. For each virus in the infected 

group, we selected all susceptible hosts in the population that can be potentially infected by that 

virus and measure how efficiently each host can avoid infection via a random mutation either in 

its GRN or in protein binding sites. Every regulatory interaction in the GRN was mutated 

multiple times and we then measured how often it switched to becoming resistant as a 

consequence of these network perturbations. Similarly, for each matched receptor, we mutate the 

receptor using the host protein mutation rate at each site (as would occur during the simulation) 
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and measured the average fraction of such perturbations that caused a switch to resistance. The 

reason for using the same protein mutation rate that is used within the simulation rather than a 

single random amino acid mutation for the perturbation is that the impact of a single site amino 

acid mutation differs depending on the protein binding site length (𝐿). For example, when 𝐿 is 

long, a chance of switching from infectious to resistible is very low, whereas when 𝐿 is short, a 

host can easily switch from infectious to resistible.  

For resistance acquired via regulatory rewiring, the ability to resist increases only when 

the protein complexity is high (Figure 3.11a blue and green lines), while it does not increase 

when the protein binding complexity is low (red line). It is plausible that when the protein 

binding complexity is low, since network rewiring is not a good resistance strategy (Figure 3.8) 

due to multiple receptor binding site matches by viruses (Figure 3.6), it is unnecessary for 

individuals to evolve network rewiring potential and for this reason few perturbations are 

expected to change receptor gene expression to switch the targetable receptor off. In contrast, 

when the protein binding complexity is high so that the targeted receptor is specialized to one 

receptor (Figure 3.6) and switching targetable receptor off by network rewiring is adopted by 

hosts (Figure 3.8), hosts evolve the potential to resist by network rewiring. In contrast, for 

resistance via protein mutations, we observed that under all conditions hosts rapidly evolve the 

ability to acquire resistance via protein binding site changes (Figure 3.10 and Figure 3.11b) 

because the protein binding site mutations can directly affect virus protein binding.  
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Figure 3. 11. Trade-offs in the resistance potential between the gene regulatory network 
and receptor proteins. For the susceptible host population, the ability to resist using a) GRN 
rewiring and b) protein binding site changes is measured for different receptor binding 
complexities (Error bar: std. dev. over 100 simulations). As the receptor binding complexity 
increases, hosts increase evolutionary potential more on the GRN while decreasing it on receptor 
proteins (𝝁𝒉𝒑=0.01, 𝑵𝑬𝑹/𝑵𝑹=3/5, 𝝐𝒔𝒆𝒒𝑴=90%, 𝒌𝑰=0.8). 

  

We also observed that there is an apparent tradeoff in that, as the resistance ability via 

rewiring increases (Figure 3.11a) with receptor binding complexity, the ability to resist using 

binding site mutations decreases (compare order of curves in Figure 3.11a vs Figure 3.11b). The 

complexity of the protein-protein interaction appears therefore to be an important factor driving 

the transition toward resistance using regulation and thus leading to higher GRN complexity. As 

expected, when the protein mutation rate is low, hosts will use GRN rewiring more for resistance 

as a consequence of the limited capacity for protein mutations to coevolve with the viruses 

(Figure 3.10a, b). The ability to resist using network rewiring also depends on the number of 

required expressed receptors (𝑁cH). As more receptors are required to be expressed (𝑁cH), 

viruses have a greater probability of targeting more than one receptor. Hence, as shown above in 

(Figure 3.9a), the fraction of simulations where GRN rewiring is used in preference to protein 

mutation decreases for higher values of 𝑁cH. However, for the same reason, hosts are under 

pressure to evolve the ability to resist using network rewiring more when more receptors are 

a) b)
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required to be expressed (Figure 3.10c, d). In the (Figure 3.7c, d), in higher matching threshold 

(𝜖T[¢£) condition, viruses are not able to target multiple receptors and the fraction of simulations 

where GRN rewiring is preferentially used also increases (Figure 3.9b). Consequently, high 

𝜖T[¢£ results in evolution of the potential to resist infection using GRN (Figure 3.10e, f). A 

lower survival rate from infected parents induces viruses to target specific receptors (Figure 3.7e, 

f). Therefore, for such viruses, hosts are evolved to increase the ability to resist using GRN 

rewiring to shut down the targetable receptor (Figure 3.10g, h).  

So far, we explored various conditions that can promote the evolution of the ability to 

resist using GRN rewiring. Interestingly, receptor binding complexity balances the usages of 

GRN rewiring vs amino acid mutations for resistance. Resistance via protein binding site 

mutation is much higher than that using network rewiring under all conditions. This may explain 

why receptor binding site mutations have been reported often for virus entry defense 

mechanisms in contrast to resistance via regulatory changes. 

 

3.3.5. Genetic diversity and host range 

In many previous studies it has been shown that antagonistic coevolution between host 

and pathogen populations correlates with increased genetic diversity [88, 115]. We checked that 

the diversity of the regulatory network, the phenotype and the protein sequence all increase 

throughout the coevolution phase (Figure 3.12). To quantify diversity we used the Margalef 

index [116], an ecological measure of biodiversity that takes into account the expected increase 

in species sampled as a consequence of increased sample size (ÄÅÆ	
  ÇÈÉÊÆË	
  ÌÍ	
  ÎÆÇÆÄÏÐ	
  ÑÒËÏÒÇÄÓ;U
ÔÇ	
  (ÄÌÄÒÔ	
  ÇÈÉÊÆË	
  ÌÍ	
  ÏÇÕÏÑÏÕÈÒÔÓ)

). 

After we simplified each GRN using the sign of each interaction matrix entry (e.g., -0.8 to -1 and 
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+0.8 to 1), we measured the GRN diversity of a susceptible host group as 

ÄÅÆ	
  ÇÈÉÊÆË	
  ÌÍ	
  ÕÏÓÄÏÇÐÄ	
  Ö×ØÓ;U
ÔÇ	
  (ÓÈÓÐÆÙÄÏÊÔÆ	
  ÏÇÕÏÑÏÕÈÒÔÓ)

. We found that diversity of GRNs, phenotypes and receptor protein 

sequences all increased throughout the coevolutionary phase, showing that coevolution between 

hosts and viruses is an important factor in producing genetic diversity. We also used the 

Margalef index to quantify the genetic diversity of the infected group to estimate virus host 

range. We compared the diversity over the last 250 time steps in intervals of 50-time steps to 

identify variables affecting host range and under what conditions pathogens evolve as specialists 

or generalists (Figure 3.13). We observed that pathogens become either specialists or generalists 

dependent primarily on three parameters: protein binding complexity, survival rate for offspring 

from infected parents, and the matching threshold. For example, as receptor binding complexity 

increases, viruses tend to become specialists, which directly relates to the number of targeted 

receptors due to the difficulty in this case for binding multiple receptors (Figure 3.13a~c). Also a 

lower survival rate for offspring from infected parents narrows the host range and leads viruses 

to become specialists because this condition causes the host population size to decay and thus 

reduces variations within the host population (Figure 3.13d~f). For the same reason, since a low 

matching threshold is beneficial for virus entry when the binding complexity is low (short 𝐿), 

viruses become specialists (Figure 3.13g~i).  
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Figure 3. 12. Increased genetic diversity in the gene regulatory networks, phenotypes and 
receptor proteins. Genetic diversity is measured using the Margalef index (see the last section 
in Results). a) whole GRNs (blue), transcription factor regulation sub-networks (red), receptor 
regulation sub-networks (green) of susceptible hosts. b) Phenotypes (gene expression levels) of 
susceptible populations. c) Receptor sequence of susceptible populations. 

 

a) b) c)
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Figure 3. 13. Host range measured by infected host population’s genetic diversity under 
different conditions. The first column is the gene regulatory network diversity, the second 
column is the phenotype diversity and the last column is the receptor protein sequence diversity. 
Viruses become specialists when receptor binding complexity (𝑳) increases (a,b,c), survival rate 
for offspring from infected parents (𝒌𝑰) decreases (d,e,f) and amino acid matching threshold for 
protein binding (𝝐𝒔𝒆𝒒𝑴) decreases (g,h,i). For low 𝝐𝒔𝒆𝒒𝑴 and 𝒌𝑰, population dynamics generally 
follows that shown in Figure 3.2b. Hence, in d~i) we considered all 100 simulations for 
measuring the genetic diversity. 

 

a) b) c)

d) e) f)

g) h) i)
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3.4. Methods 

3.4.1 Measure of unevenness among targeted receptors 

Every 50 time steps after the coevolution phase has begun, we use the Gini coefficient to 

calculate unevenness in the targeted receptors among the newly infected hosts. Let 𝑦J (𝑖 =

1,… ,𝑁H) be the mean number of newly infected hosts who match their sequences to the 𝑖RS 

receptor throughout the simulation. If these values are sorted in ascending order such that 𝑦′U ≤

𝑦′  ≤ ⋯ ≤ 𝑦′�;U ≤ 𝑦′� , then the Gini coefficient = 𝑛 + 1 − 2 ßi}(�1U;J)à
}��

ßi}à
}��

𝑛. Gini 

coefficient is 1 for the maximum unevenness (inequality) and 0 for perfect evenness (equality). 

 

3.4.2. Measure of ability to switch multiple receptors using gene regulatory network 

rewiring 

Every regulatory interaction in the GRN is mutated 50 times and we measure how often it 

switches expression of more than one gene. We then measure the average fraction of such 

perturbations that caused a multi-receptor expression switch over all regulatory interactions in 

the network for all susceptible individuals. 

 

3.5. Discussion and conclusion 

We showed that regulatory changes can be used to suppress expression of cell surface 

receptor genes leading to a blocking of virus entry. Changes in the expression of virally-targeted 

receptors has been shown to block virus transmission experimentally, for example, in both 
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dengue virus (DENV) [100] and Hepatitis C virus (HCV) [99], siRNAs can be used to eliminate 

cell surface receptors and suppress virus entry and infection. At the same time, specific receptors 

can be intentionally expressed in the context of tumor gene therapy, for example, allowing 

adenovirus vectors to be used [106, 107] to deliver apoptosis-activating genes to kill tumor cells. 

Two mechanisms of resistance were addressed in our model: rewiring of gene regulatory 

networks and receptor binding site mutations. The balance in usage between these two 

mechanisms depends on various conditions. As the protein-protein interaction at the cell surface 

increases in complexity (in our model represented by the binding site length), viruses tend to 

target a specific receptor and hosts preferentially use network rewiring more often than receptor 

amino acid changes. In contrast, when the receptor binding site has lower complexity, viruses are 

able to enter via multiple receptors and hosts evolve receptor amino acid changes to escape viral 

protein binding. One can ask why is it that in nature, examples of resistance via receptor amino 

acid mutations appear to be more common than network rewiring? In the examples of dengue 

virus (DENV) and hepatitis C virus (HCV) resistance through experimentally-induced receptor 

down-regulation it was shown that, since there several alternative receptors expressed on the cell 

surface that viruses can use to enter host cells, multiple inhibitory siRNAs for different receptors 

worked better than a single siRNA for one receptor, although both studies showed that it was 

difficult to block infection completely [99]. Thus, for example, HCV can enter human liver cells 

via several cell surface receptors including CD81 tetraspanin, claudin1(CLDN1), low density 

lipoprotein receptor receptor (LDLR) and scavenger receptor class B type 1 (SR-B1). In our 

model, when receptor binding has low complexity, multiple receptors are targeted by viruses and 

receptor amino acid mutations are used preferentially over network rewiring. Given this 

observation, the capability of viruses to use alternative receptors for host cell entry is a plausible 
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explanation of why resistance using network rewiring changes is difficult in practice. Another 

possible reason for more frequent protein level resistance could be related to the level of 

functional redundancy among receptors. Higher 𝑁cH indicates less functional redundancy among 

receptors, and we found that protein level resistance was favored for higher 𝑁cH (Figure 3.9a). 

Although functional redundancy is often observed in receptors such as nectin and chemokine 

receptors as described in Introduction, it is plausible that viruses evolve to target receptors whose 

absence cannot be compensated for, so that hosts have to express all (or nearly all) required 

receptors for their normal function, which makes it difficult to use network level resistance. 

In order to investigate the importance of including the complex GRN for controlling 

receptor gene expression, we compared our model with one that did not contain gene regulatory 

interactions for receptor coding genes. We designed this model by using a diagonal matrix 

regulatory network both for TF genes and for the receptor coding genes. Complex gene 

regulation by TFs were removed by having a diagonal matrix with 1s for the regulatory gene 

network. To satisfy the minimum number of required expressed receptors (𝑁cH/𝑁H=3/5), we set 

the initial density of non-zeros on the diagonal for the receptor coding genes with probability 0.7. 

Here, mutations can occur only on the diagonal of receptor coding genes and no regulation from 

other genes is possible. Compared to this model, the benefit of having a complex GRN is that the 

network is capable of evolving increased potential for resistance using network rewiring as 

shown in Figure 3.11a for complex protein binding (long 𝐿), as an example. Here, in the case of 

complex protein binding where a specific receptor is targeted, it is not possible for the potential 

for resistance to change because there is only a single entry on the diagonal which can change 

the expression of the targeted receptor. We compared the preference for GRN level resistance 

between these two models. We found that the preference of GRN rewiring decreased for the 
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model without gene regulatory interactions (Figure 3.14a).  Furthermore, in order to express at 

least 𝑁cH receptors for the normal host cell function, down-regulating a receptor gene for 

resistance can be deleterious, and therefore, hosts need to be able to change the expression of 

multiple receptors simultaneously, in particular to compensate for receptor down-regulation. We 

found that the systems with complex GRNs evolve the ability to switch the expression of 

multiple receptors (Figure 3.14b and Methods), whereas without the GRNs, multiple receptor 

expression change is impossible given a single mutation. 

	
  

Figure 3. 14. The effect of having a complex gene regulatory network (GRN) for controlling 
receptor gene expression. a) Preference for resistance using GRN rewiring to protein mutations 
decreases when there are no regulatory interactions between genes (without regulatory 
interactions in the gene network) (𝑵𝑬𝑹/𝑵𝑹=3/5, 𝝐𝒔𝒆𝒒𝑴=90%, 𝒌𝑰=0.8). b) The ability to switch 
the expression of multiple receptors with a complex GRN. The probability of multiple receptor 
gene expression switching (see Methods) increases during host-virus coevolution (𝑳=30, 
𝝁𝒉𝒑=0.01 and 0.002, 𝝐𝒔𝒆𝒒𝑴=90%, 𝒌𝑰=0.8). 

 

Although defending from infection at the level of virus entry would appear to be an 

effective resistance mechanism, the host evolution rate is usually too slow relative to most virus 

populations and furthermore, viruses are often capable of entering host cells via interaction with 

multiple receptors. For these reasons, host strategies may have evolved preferentially to allow 

b)a)
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viruses to enter cells but to focus defense mechanisms to the post-entry stage by evolving innate 

and adaptive immune systems. For example, a previous study of North American house finches 

showed rewiring of gene regulatory networks to up-regulate immune related genes in a relatively 

short timespan of just 12 years [83].  

In addition to network rewiring and receptor amino acid mutations, mutations causing 

premature stop codons can be used by hosts to block virus entry. CCR5 (CC-chemokine 

receptor-5) is a co-receptor for HIV entry that facilitates virus entry. A CCR5 allele carrying a 

32-bp deletion (ccr5Δ32) in the open reading frame generates a premature stop codon leading to 

an inactive receptor protein [117, 118]. Homozygous ccr5Δ32/ccr5Δ32 carriers show high 

immunity to HIV infection and heterozygous wt/ccr5Δ32 carriers show partial resistance to HIV 

cell entry or delayed progression of the disease. A similar example is an allele of the TVBR 

receptor involving a 4-bp insertion which contains a stop codon resulting in protection against 

Avian Sarcoma and Leukosis Virus (ASLV) entry in chicken [119]. Of note is that even though 

these stop codon-containing alleles can block virus entry, they work effectively only in 

homozygous form, in contrast to alleles encoding regulatory repression, which may be effective 

in single copy form. 

 

	
    



	
  

87 
	
  

Chapter 4. Evolution of environmental robustness in host innate immune systems induced 

by host-virus interaction  

4.1. Background 

Infectious disease modeling has been used extensively in the past to understand the 

dynamics of various pathogens, but rarely do such models address changes at the genetic level. 

Experimental approaches to study host-virus coevolution are challenging due to the large 

timescales involved and large population sizes of the co-evolving host and pathogen populations. 

Instead, computational modeling approaches can be adopted to gain insights into the evolution of 

infection and resistance mechanisms during host-virus coevolution. In Chapter 3, we studied 

different resistance strategies at the levels of both GRN and protein interaction in the context of 

virus entry to the host cell which is the first step of virus infection. Due to the extremely fast 

virus evolution rate at the protein level, defense at the viral entry level is limited for host 

populations. Hence, we addressed the hypothesis that fast viral evolution may drive more 

complex resistance mechanisms such as innate or adaptive immunity. In this chapter, we adopted 

a computational modeling approach to investigate aspects of the evolution of innate immunity.  

Once viruses are detected as they enter host cells, hosts initiate innate immune signaling 

cascades to reach an antiviral state. Protein Recognition Receptors (PRR), such as Toll-like 

receptors (TLR) recognize pathogens entering the host cells via detecting Pathogen-associated 

molecular patterns (PAMP) [120-122]. The PAMP-PRR interaction initiates innate immune 

signaling cascades in insects and mammals by regulating transcription factors (TFs) such as NF-

𝜅B, interferon regulatory TFs such as IRF3 and IRF7 in order to activate pro-inflammatory 

cytokines which regulate inflammatory responses and induce cells to establish the antiviral state 

[120, 121].  
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However, the innate immune pathways are frequently interrupted by various viral 

proteins (virulence factors). As viruses enter host cells, their virulence factors interact with host 

components involved in the signaling pathways in order to evade host immunity in various ways 

[123-125]. For example, in human, suppression of type I interferon (IFN), which has a critical 

role in inducing many antiviral genes, is an effective immune evasion strategy that has been 

observed in different viruses including Hepatitis B virus (HBV) [126, 127]. HBV core protein 

binds to IFN-𝛽 (type I IFN) and represses IFN-𝛽 expression. IRF3 is another critical TF required 

for the type I IFN activation. IRF3 is activated by interaction between TBK1/IKK𝜖 and DDX3 

which is interrupted by a HBV polymerase. In addition to these two strategies, the HBV has 

more modes of Type I IFN suppression [127].  

NF-𝜅B is a TF that mediates expression of cytokine genes including type I IFN and a 

chemokine called Interleukin-8 (IL-8) in macrophages. A chemokine is a cytokine which is able 

to regulate nearby cells by inducing chemotaxis, a chemical signal that induces cell movement. 

I𝜅B is an inhibitor protein of the NF-𝜅B. African swine fever virus (ASFV) produces the I𝜅B 

homologue encoded by A238L gene. Therefore, A238L prevents NF-𝜅B from binding the IL-8 

promoter, represses IL-8 expression, and interferes with the inflammatory pathway [128, 129]. 

A238L is an example of pathogen mimicry of a host regulator protein involved in the immune 

pathway. Similarly, pathogens mimic host ligands and compete to bind host receptors to evade 

immunity. For example, Axl is a receptor tyrosine kinase and Gas6 is a Axl binding protein. The 

Axl/Gas6 pathway has been suggested to be important for IL-15 induced human NK-cell 

development [130]. Simian polyoma virus SV40 protein VP1 mimics Gas6. The VP1-Axl 

interaction has been suggested to induce the SV40 entry and infection [131]. As another example 

of host ligand mimicry, NS5 is a Dengue Virus (DENV) protein that mimics a host ligand that 
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binds to STAT2. As type I IFNs (IFN-𝛼/𝛽) bind Type I IFN receptors on the surface of infected 

cell, the JAK/STAT signaling pathway is initiated. This signaling pathway activates hundreds of 

IFN-𝛼/𝛽-stimulated regulatory elements and induces many IFN stimulated genes that are 

responsible for the antiviral state. Thus, the NS5-STAT2 binding results in STAT2 degradation 

and blocking of the JAK/STAT signaling pathway [132].  

It has been shown that the virus evasion via host factor mimicry induces coevolution 

between hosts and parasites at the molecular level [78]. The arms race between Poxvirus and 

human Protein kinase R (PKR) is an example. Here, eIF2𝛼 is a critical host protein that initiates 

protein synthesis. Poxvirus encodes the K3L protein which mimics eIF2𝛼. PKR recognizes 

double stranded RNA (dsRNA) viruses such as Poxvirus and phosphorylates eIF2𝛼 in order to 

prevent virus protein production. A PKR domain that directly contacts eIF2𝛼 changes to 

compete and defend the K3L binding the PKR [78, 133]. More generally, previous studies found 

that innate immune-related genes were under positive selection and that innate immune-related 

proteins evolved rapidly compared to random genes excluding pathogen recognition genes [134-

136].  

In this chapter, we present a model where we represented a virus as a set of virus proteins 

(virulence factors) that mimic and bind host regulator proteins such as NF-κB and interferon 

regulatory factors, which are involved in innate immune pathways. A host individual is 

represented at two levels: a set of immune-related host proteins that are targeted by virus proteins 

and a gene regulatory network (GRN) of immune-related genes whose output phenotype 

determines an antiviral state. In the model, hosts can use two resistance mechanisms: (a) amino 

acid mutations to defend against virus protein mimicry or binding and (b) tolerating 

perturbations at the level of the gene regulatory network (GRN) in order to preserve the antiviral 
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state. We explored how hosts evolve to use these two different levels of resistance. We are 

interested in understanding how viruses evolve to target host proteins for mimicry or binding, 

and also how hosts evolve to gain and distribute resistance between the proteins targeted by virus 

proteins and the GRNs. 

 

4.2. Model 

4.2.1. Host innate immunity model and host-virus coevolution model 

As viruses enter host cells via cell surface receptors, innate immune signaling pathways 

are initiated by regulating host regulators which induce inflammatory cytokine production. 

Consequently, various cytokine-stimulated genes are expressed and they result in an antiviral 

state in the host cells. Viruses interrupt the innate immune pathways at various levels through 

protein-protein interactions. A pro-inflammatory signaling pathway is represented as a gene 

regulatory network (𝑊) of size 𝑁×𝑁FG where 𝑁FG is the number of host regulators and 𝑁 is the 

total number of genes including the 𝑁FG regulators and 𝑁å  genes that are responsible for 

establishing the antiviral state. The individual gene regulatory network (GRN) structure and gene 

expression dynamics largely follows the original gene regulatory network evolution model (see 

Chapter 1) [17, 110, 111]. With a given network density (𝑐), each nonzero 𝑤JK element in the 𝑊 

matrix is drawn from the Normal distribution, 𝑁(0,1). Each row 𝑖 in 𝑊 represents the cis-

regulatory elements of the 𝑖RS gene.  

In the model, there are two different initial regulatory gene expression vectors for a virus-

exposed/entered state and for a virus-unexposed state. Once a virus enters a host cell, the host 

individual sets the initial gene expression level 𝑆 0  to 𝑆�(0), a length 𝑁FG vector. Following the 
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gene expression dynamics, 𝑆 𝑡 + 1 = 𝑆𝑖𝑔(𝑊 ∙ 𝑆FG 𝑡 ), where 𝑆𝑖𝑔 𝑥 = U
U1[3\]

 (𝑎=100), the 

stable gene expression of all 𝑁 genes (phenotype) including cytokine-stimulated genes shaping 

an antiviral state can reach at 𝑆�, a length 𝑁 vector. Similarly, at the normal state without viruses, 

𝑆 0  is set to 𝑆æ(0), a length 𝑁FG vector and the phenotype is noted as 𝑆æ, a length 𝑁 vector 

obtained using the same gene expression dynamics above. In order to differentiate virus -exposed 

and -unexposed states, we set 𝑆æ(0) ≠ 𝑆�(0) and 𝑆æ ≠ 𝑆�. As shown in the Figure 4.1, the top 

𝑁FG = 3 genes are input regulatory genes and the bottom 𝑁å = 3 genes are antiviral genes. For a 

virus-unexposed host individual, a founder individual’s phenotype, 𝑆æ reached from 𝑆æ(0) is 

used for a target phenotype. The target phenotype of the bottom 𝑁å  antiviral genes is denoted as 

𝑆çèFæ . Similarly, in the virus contact event, the founder individual’s phenotype, 𝑆� reached from 

𝑆�(0) is used for a target phenotype and the target phenotype of the 𝑁å  antiviral genes is noted 

as 𝑆çèF� .  

At the protein level, a host individual possesses 𝑁FG regulator proteins in the immune 

system and a virus possesses 𝑁éè number of viral proteins which is not necessarily equal to 𝑁FG. 

Each protein represents a protein binding site as a binary vector of length 𝐿, where 0 indicates a 

polar amino acid and 1 indicates a hydrophobic amino acid. Assuming a pair of two amino acids 

of the same polarity increases binding affinity, protein-protein binding interaction is assumed to 

be tight when the percentage of one-to-one amino acid matching among 𝐿 sites is more than a 

given threshold (𝜖T[¢£%). Considering that viruses can disrupt the host immunity via hijacking 

or mimicking the host regulators, in this model, the host-virus protein-protein interactions 

represent viral evasion which results in initial state perturbations in the innate immune system, 

i.e. the perturbed initial regulatory gene expression level from 𝑆�(0) to a different state 𝑆�i 0 ≠
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𝑆�(0). For 𝑁FG host regulators and 𝑁éè virus proteins, 𝑁FG×𝑁éè protein-protein interactions 

occur. For each virus protein, if the virus protein binds to regulator(s), the 𝑆�(0) is perturbed as 

𝑠J� 0 → 1 − 𝑠J� 0  at the matched 𝑖-th regulator(s). Therefore, the perturbed phenotype of the 

antiviral genes (𝑆å�i) is not necessarily maintained closely to the antiviral state, 𝑆çèF�  due to the 

initial state disturbance. We measure phenotype distance between 𝑆çèF�  and perturbed phenotype 

of antiviral genes, 𝑆å�i which is reached from the perturbed initial gene expression. Note that the 

phenotype distance is êê� êëìq
� ,êí

�î

Xí
, where SSD is the sum of squared distance, and if a phenotype 

is not reached from the perturbed initial gene expression, we set the phenotype distance 1. Then, 

we calculate the average phenotype distance across the 𝑁éè virus proteins (𝑑� =

êê� êëìq
� ,êí

�î

Xí
Xïì
JBU 𝑁éè). Then, if 𝑑� ≥ 𝜖 = 10;ñ, we assume that antiviral state is not maintained 

due to disruption by 𝑁éè virus proteins, which indicates that the protein level virus evasion 

causes the host innate immunity to malfunction and the host individual becomes infected.  

At the population level, we adopted the SIS model with births and deaths that we used in 

the previous model in Chapter 3. The susceptible and infected population dynamics are 

represented using the following difference equations:  

𝛥𝑆 = 𝑆 𝑡 + 1 − 𝑆(𝑡) = 𝜂 ∙ 𝑏 ∙ 𝑁(𝑡) ∙ 1 − X(R)
�

− 𝜉 ∙ �
X(R)

∙ 𝑆(𝑡) ∙ 𝐼(𝑡) − 𝜆X ∙ 𝑆(𝑡) + 𝛾 ∙ 𝐼(𝑡)  (1) 

𝛥𝐼 = 𝐼 𝑡 + 1 − 𝐼(𝑡) = 𝜉 ∙ �
X R

∙ 𝑆(𝑡) ∙ 𝐼(𝑡) − (𝜆X + 𝜆� + 𝛾) ∙ 𝐼(𝑡)           (2) 

where 𝑁 𝑡 = 𝑆 𝑡 + 𝐼 𝑡 , 𝑏=growth rate, 𝐾=carrying capacity, 𝜂 = #	
  ��	
  T���J�[�	
  ���Ts�J��
#	
  ��	
  ���Ts�J��	
  �{��J�{R[T

 , 

𝑟=contact rate, 𝜉 = #	
  ��	
  J��[�RJ��T
#	
  ��	
  ���R{�RT

 (determined empirically, as described below), 𝑟 ∙

𝜉=transmission rate, 𝜆X=natural death rate, 𝜆�=disease related death rate, 𝛾=recovery rate. In the 
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growth term, 𝜂 ∙ 𝑏 ∙ 𝑁(𝑡) ∙ 1 − X(R)
�

, 𝑏 ∙ 𝑁(𝑡) ∙ 1 − X(R)
�

 is the total number of offspring 

candidates who function normally under the virus-unexposed condition, i.e., 𝑆æ 0 → 	
  𝑆æ ≈

𝑆çèFæ . Among these offspring candidates, only a fraction of the candidates (𝜂) can actually be 

added to the susceptible population since candidates who have infected parents are less likely to 

survive. For each host-virus contact event, the virus mutates its amino acid sequences at the point 

of the infection with mutation rate, 𝜇�s = 0.1 per protein and each virus protein attempts to 

mimic/bind host proteins. In the infection term, 𝜉 ∙ �
X(R)

∙ 𝑆(𝑡) ∙ 𝐼(𝑡), among the total number of 

contacts, �
X(R)

∙ 𝑆(𝑡) ∙ 𝐼(𝑡), only a fraction	
  (𝜉) of the contact events lead to actual transmission and 

host individuals move to infected group if their immune systems (𝑊 matrices) do not tolerate the 

direct perturbation by viruses, i.e., 𝑑� ≥ 𝜖. On the other hand, if the virus disruption does not 

lead to a non-antiviral state, i.e., 𝑑� < 𝜖, host individuals remain in the susceptible group (Figure 

4.1).  

	
  

Figure 4. 1. A diagram of host-virus protein-protein interaction and a scheme of host innate 
immunity interruption by the virus. Host-virus protein-protein interaction is simplified as a 
one-to-one hydrophobic (0) or polar (1) amino acid matching at a protein binding site. If host 
regulators are targeted by a virus protein, the initial gene expression of the regulator genes are 
perturbed. The host individual is infected by the virus if the phenotype from the perturbed initial 
state is not maintained closely at the target phenotype which represent an anti-viral state. If not, 
the host individual resists infection and stays in the susceptible group. 
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4.2.2. Parameters 

At the level of the individual, model parameters include the number of host regulator 

proteins (𝑁FG), the number of virus proteins (𝑁éè), the number of genes that are responsible for 

establishing the antiviral state (𝑁å), protein binding site amino acid sequence length (𝐿), host 

protein mutation rate (𝜇Ss), virus protein mutation rate (𝜇�s), amino acid matching threshold for 

receptor binding (	
  𝜖T[¢£), network density (𝑐), and mutation rate per matrix 𝑊 (𝜇) with 

interaction addition (𝜌), deletion (𝜙), and modification (𝛿) with 𝜙 + 𝛿 = 1. Note that 𝜙 + 𝛿 =

1, since for an interaction (𝑤JK), deletion and modification are conditional on the interaction 

being nonzero value (𝑤JK ≠ 0).  

There are also parameters at the level of the population dynamics including offspring 

survival probability from both infected parents (𝑘�), disease-related death rate (𝜆�), initial host 

population size 𝑀J�JRó, initial virus population size 𝑀J�JRé, carrying capacity 𝐾, growth rate 𝑏, 

natural death rate 𝜆X, disease-related death rate 𝜆�, recovery rate 𝛾, and host-virus contact rate 𝑟. 

In order to investigate the effect of parameter changes on the evolution of host resistance, 

we tested a range of parameters above. In Table 4.1, we summarize the range of parameter sets 

that we used in this study. The default values for the population dynamics related parameters are 

chosen to make a steady state host population size large enough to investigate evolutionary 

mechanisms. The individual level parameters for GRN modeling and evolution are chosen based 

on our previous study [34]. 

Table 4. 1. The list of model parameters at both the level of population dynamics and at the 
individual level in symbols with descriptions and parameter values used in this study. 

Parameter 
symbol 

Description Values 
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𝐿 
Protein binding site amino acid 

sequence length 
10, 30 

𝜇Ss Host protein mutation rate  0.003, 0.01 
𝜇�s Virus protein mutation rate 0.03 
𝑁FG The number of host regulators 6 
𝑁éè The number of virus virulence factors 6 

𝑁å  
The number of genes establishing the 

anti-viral state 
6 

𝜖T[¢£ Amino acid matching threshold for 
receptor binding 

90%, 75% 

𝑡J�JR Time at which coevolution begins 1, 601 

𝑘� 
Offspring survival probability from 

both infected parents 
0.5, 0.8 

𝜉 
#	
  𝑜𝑓	
  𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠
#	
  𝑜𝑓	
  𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠  

Self-determined 
during simulations 

𝜂 
#	
  𝑜𝑓	
  𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑	
  𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
#	
  𝑜𝑓	
  𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔	
  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

Self-determined 
during simulations 

𝐾 Carrying capacity 1000 
𝑀J�JRó Initial host population size 150 
𝑀J�JRé 	
   Initial virus population size 5 
𝑏 Growth rate 0.15 
𝜆X Natural death rate 0.09 
𝜆� Disease-related death rate 0.06 
𝛾 Recovery rate 0.05, 0.2 
𝑟 Host-virus contact rate 2 
𝑐 Network density 0.4 

𝜇 
Mutation rate per gene regulatory 

network 
0.1 

𝜙 
Conditional rate of interaction deletion 

in gene regulatory network 
0. 042 

𝛿 
Conditional rate of interaction 

modification in gene regulatory 
network 

0. 958 

𝜎 Selection pressure 0.1 

𝑎 
Gene expression mapping sigmoid 

function parameter 
100 

 

4.3. Results 
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4.3.1. Virus strategy for infection 

In the model, a founder virus protein is generated as a copy of a random host protein. For 

the case of 𝑁éè = 𝑁FG, a founder virus protein of index 𝑖 is copied from a random host protein of 

the same index 𝑖. Thus, it is expected that each virus protein can bind/mimic a host protein at the 

beginning of coevolution. A successful virus protein interaction indicates that the virus will 

perturb the host immune system to potentially disrupt an antiviral state. In order to measure the 

viral protein ability to target a host protein, we first observed the fraction of infected individuals 

whose 𝑖RS protein (𝑖 = 1,⋯𝑁FG) is targeted by the 𝑗RS viral protein (𝑗 = 1,⋯𝑁éè). In figure 

4.2.a, each cell in a 𝑗RS subplot indicates 
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. For simplicity, we call it 𝑉J,K. 

The height of stacked cells at a time indicates the average frequency of a host protein being 

targeted by the 𝑗RS viral protein. For simplicity, we call it 𝑉K. Then, we averaged the 

measurements over all viral proteins which indicates the average viral protein ability to target a 

host protein. For simplicity, we call it 𝑎𝑣𝑒(𝑉K). Considering how a founder virus is generated as 

described above, 𝑎𝑣𝑒(𝑉K) value is expected to be close to U
Xqr

 at the beginning. In figure 4.2.c, 

since we used 𝑁FG = 6, the 𝑎𝑣𝑒(𝑉K) value at the beginning of coevolution is close to U
ú
. Since 

both host and virus accumulate amino acid mutations, the average viral protein ability to target a 

host protein will change during coevolution. We found that hosts evolve to evade regulatory 

protein mimicry during the coevolution, as we observed the 𝑎𝑣𝑒(𝑉K) value decreased over time 

(Figure 4.2b, c). Since the average frequency of a host protein being targeted by a viral protein 

(𝑉K’s) change unpredictably at early time points, we focused on the end of the simulations. As 

shown in Figure 4.2d, the ability to mimic/bind a host protein evolves to be very different across 
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virus proteins, and only a subset of virus proteins evolves to be able to target host proteins, 

which indicates that specfic virus(es) evolve to target host proteins and others are blocked by 

host’s protein-level defense. An area below a curve in Figure 4.2d relates to overall viral ability 

to target host proteins. Next, we show that the area changes depending on different model 

parameters.  

We found that the overall viral ability to target host proteins can change depending on the 

receptor binding complexity (protein sequence length, 𝐿), protein binding threshold (𝜖T[¢£), and 

recovery rate (𝛾) (Figure 4.3). As protein binding complexity increases (longer 𝐿), only a single 

viral protein evolves to target host regulator(s) and hosts evolve to escape binding all other viral 

proteins. An area below a curve is smaller and the overall viral ability to target host proteins 

decreases for longer 𝐿 condition (Figure 4.3a vs. Figure 4.3b). A low amino acid matching 

threshold is beneficial for viruses to target host proteins and induces them to target multiple 

proteins. Thus, for lower 𝜖T[¢£ the area below the curve increases and the overall viral ability to 

target host proteins increases (Figure 4.3c vs. Figure 4.3d). For a low recovery rate, infected 

hosts have lower chance to re-enter the susceptible group and remain in the infected group. This 

induces viruses to accumulate more mutations, which is beneficial to target various host proteins. 

Hence, low recovery rate increases the overall viral ability to target host proteins (Figure 4.3e vs. 

Figure 4.3f).  
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Figure 4. 2. Changes in the distribution of targeted host regulators per virulence factor of a 
virus. a) The distribution of targeted host proteins within the infected host group per virus 
protein over time for a single simulation. In each subplot, each colored bar indicates a different 
host protein. Height of stacked cells (𝑽𝒋 in the main text) at a time point indicates the average 
frequency of a host protein being targeted by the specific viral protein. The maximun height for 
each cell is 𝟏

𝑵𝑻𝑭
 and the range of y-axis is 𝟎, 𝟏 ). b) The average viral protein ability to target a 

host protein. (𝒂𝒗𝒆(𝑽𝒋) in the main text). We averaged 𝑽𝒋 values in a) over all 𝑵𝑽𝑷 virus 
proteins. c) Red curve: Average of the measurement in b) over 50 simulations. Blue curve: The 
corresponding measurement for the resisted host group. (error bar: SEM) b) and c) show that 
hosts use amino acid mutations at protein binding sites to block interactions with virus proteins. 
d) At the end of a simulation, we sorted virus proteins by 𝑽𝒋 values in a) for all 50 simulations 
and averaged them for resisted (blue) and infected (red) host groups separately. The average of 
the sorted 𝑽𝒋 values at the end of simulations are very different across virus proteins showing 
that specfic virus(es) evolve to target host proteins and others are blocked by host’s protein-level 
defense. 

a)

b) c) d)
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Figure 4. 3. The Distribution of sorted fractions of targeted host proteins among 𝑵𝑽𝑷 virus 
proteins for different model parameters. We compared the average of the sorted 𝑽𝒋 values at 
the end of simulations for the infected host group across different a, b) protein binding 
complexity (𝑳), c, d) protein binding threshold (𝝐𝒔𝒆𝒒𝑴), and e, f) recovery rate (𝜸) (error bar: 
SEM). For example, in a) and b), the effect of protein binding complexity (𝑳) is investigated for 
four different parameter sets changing a host protein mutation rate (𝝁𝒉𝒑) and a state of early 
stabilizing selection induced by GRN mutations (SM(o/x)). Host proteins are less targeted by 
viruses and an inequality in the ability to target host proteins among virus proteins is higher for 
higher protein binding complexity (𝑳) (a vs. b), higher protein binding threshold (𝝐𝒔𝒆𝒒𝑴) (c vs. 
d), and higher recovery rate (𝜸) (e vs. f). 

 

a) b)

c) d)

e) f)
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4.3.2. Two different resistance strategies at the protein interaction level and at the GRN 

level 

Viruses evade host immunity by modulating the innate immune system and disrupting the 

antiviral state. To defend against viruses, hosts can take two different resistance strategies in the 

model: 1) phenotypic robustness to environmental perturbations, i.e., initial gene expression 

changes and 2) amino acid changes in viral protein binding sites to block protein level 

interactions with viral proteins. Since founder virus proteins are able to bind host regulators, 

defending the protein mimicry/binding is difficult for the early host population. When the host 

population is evolved under the stabilizing selection for 600 time points, mutational robustness 

evolves in GRNs [55]. Previous experimental and theoretical studies suggested the correlation 

between the mutational robustness and the environmental robustness [5, 10, 137]. Therefore, at 

the beginning of coevolution, the initially acquired mutational robustness is beneficial for host 

individuals to use network level resistance strategy to tolerate initial gene expression 

perturbations by viruses. However, we observed that the early mutational robustness was only 

beneficial in the early coevolution stage but did not influence on the host resistance and the virus 

pathogenicity afterwards. Regardless of mutational robustness acquired beforehand, as host 

individuals accumulate amino acid mutations to avoid protein interaction with viral proteins, 

they become able to balance both network level and protein level resistance strategies. Here we 

consider how hosts balance the usage of these two strategies and what conditions determine their 

relative preference. At each time point, we measure the fraction of individuals that resisted using 

GRN level resistance by buffering initial regulatory gene expression perturbations rather than 

protein level resistance which works by avoiding all host protein interactions with virus proteins. 

We proceed by counting the fraction of exposed hosts to viruses that allow protein mimicry 
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(protein-protein interaction) and thus direct network level perturbations, but which maintain the 

antiviral state at every time point. We then calculated the average of these measurements over all 

time points throughout the simulation to quantify the relative preference for network level 

resistance over protein level resistance. We specifically measure this at the end of simulation 

where the fraction of resisted individuals using network level resistance reaches a stable state. 

We compare these measurements across different parameter sets to figure out under what 

conditions, network level resistance is preferentially used. We found that the relative preference 

for network level resistance depends on the receptor binding complexity (protein sequence 

length, 𝐿), host protein mutation rate (𝜇Ss), protein binding threshold (𝜖T[¢£), and recovery rate 

(𝛾) (Figure 4.4). In the Figure 4.4a, we compared the effect of protein binding complexity for 

different 𝜇Ss values and for different early states with (SM(o)) and without (SM(o)) the initial 

stabilizing selection induced by GRN mutations. Again, as shown in Figure 4.3a and b, an area 

below a curve in Figure 4.3b (𝐿=10) is bigger than in Figure 4.3a (𝐿=30) indicating that the 

overall viral ability to target host proteins is higher for shorter 𝐿. From the host’s point of view, 

for less complex protein binding (shorter 𝐿), more proteins are targeted by viruses, and thus the 

protein level resistance strategy is less favored. Hence, when protein binding complexity is low, 

the network level resistance is used more often (Figure 4.4a). When host protein mutation rate 

(𝜇Ss) is low, it is difficult to catch up with the fast-evolving virus proteins, leading hosts to 

evolve GRN level resistance instead of using amino acid mutations to evade protein mimicry 

(Figure 4.4b). Similarly, since a lower amino acid matching threshold (lower 𝜖T[¢£) increases the 

overall viral ability to target host proteins (Figure 4.3c, d), the GRN level resistance strategy is 

relatively more favored than the protein level strategy (Figure 4.4.c).	
  In Figure 4.3e and f, it has 

been shown that low recovery rate (𝛾) increases the overall viral ability to target host proteins. 
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The lower 𝛾, therefore, leads to increase the relative usage of the GRN level resistance strategy 

(Figure 4.4e).  

Lastly, it turns out that there is a correlation between the relative preference gene 

regulatory network (GRN) level resistance strategy shown in Figure 4.4 and the overall viral 

ability to target host proteins shown in Figure 4.3. For conditions that are beneficial for viruses to 

target host proteins increasing 𝑎𝑣𝑒(𝑉K), hosts allow mimicry by viruses but instead preferentially 

choose network level resistance by buffering the initial regulatory gene disruption.  

	
  

Figure 4. 4. Preference for gene regulatory network (GRN) level resistance strategy rather 
than amino acid mutations at viral protein binding sites. The GRN level resistance strategy is 
preferred, and the fraction of resisted individuals that used the GRN level resistance strategy 
(buffers initial regulatory gene level perturbations by viruses) increases for a) lower protein 
binding complexity (𝑳), b) lower host protein mutation rate (𝝁𝒉𝒑), c) lower protein binding 
threshold (𝝐𝒔𝒆𝒒𝑴), and d) lower recovery rate (𝜸). 

	
  

c) d)

a) b)
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4.3.3. Hosts evolve environmental robustness 

We observed that host-virus coevolution drives the evolution of environmental 

robustness, as shown by the increased tolerance to random initial gene expression perturbations 

(Figure 4.5). In order to measure the environmental robustness, we perturb 𝑆(0), each gene at a 

time and measure the average phenotype distances between the perturbed phenotypes and 𝑆çèF� . 

Again, if stable gene expression (phenotype) is not reached, we set the phenotype distance to 1. 

In the previous section, we found that the overall ability of viruses to target host proteins was 

positively correlated with the relative preference for the GRN level resistance strategy. As more 

host proteins are targeted by viruses, the initial regulatory gene state becomes more different 

from the normal state. This makes the host population come under stronger selection for 

environmental robustness. Therefore, under these conditions that lead to a higher fraction of 

targeted host proteins per virus protein, hosts both use GRN level resistance more frequently and 

evolve higher environmental robustness (Figure 4.6).  

In the previous section (Figure 4.3), we specified model parameters that change the viral 

ability to mimic host proteins. The more host proteins being targeted lead to more GRNs being 

perturbed by initial regulatory gene changes. Consequently, those conditions for the host 

population to suffer more network perturbation facilitate them to evolve higher level of 

environmental robustness (Figure 4.6). 
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Figure 4. 5. Environmental robustness increases during host-virus coevolution. We 
randomly perturb the initial regulatory gene expression and measured phenotype distance 
between 𝑺𝑶𝑷𝑻𝑰  and perturbed phenotype of antiviral genes, 𝑺𝑪𝑰i. The phenotype distance imposed 
by environmental fluctuation decreases over time which indicates increased environmental 
robustness. (𝑳=10, 𝝁𝒉𝒑 =0.003, 𝝐𝒔𝒆𝒒𝑴=90%, 𝒌𝑰=0.8.) 
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Figure 4. 6. A correlation between the overall viral ability to target host proteins and the 
environmental robustness for initial gene expression perturbations, and a correlation 
between the preference for the GRN level resistance strategy and the environmental 
robustness for initial gene expression perturbations. (a, c, e, g) For protein binding 
complexity (𝑳), host protein mutation rate (𝝁𝒉𝒑), protein binding threshold (𝝐𝒔𝒆𝒒𝑴), and recovery 
rate (𝜸), as the viral ability to target host proteins increases, hosts tend to evolve higher 
environmental robustness for random initial regulatory gene perturbations. (b, d, f, h) Also, for 
these model parameters, as hosts evolve higher environmental robustness for random initial 
regulatory gene perturbations, they tend to prefer the gene regulatory network level resistance 
strategy. 

	
  

4.4. Conclusion and future work 

A previous study has shown that viruses impose coevolutionary selection on their hosts 

(mammals) and viruses have been suggested to be a critical component that drives protein 

adaptation of conserved proteins [138]. This work also found that virus-interacting proteins 

included not only antiviral and immune system proteins but also housekeeping proteins and other 

proteins with various different functions unrelated to immunity. In our study, we proposed that 

complexity in innate immune signaling pathways is required to defend against interference by 

various virus proteins including mimicry of host regulators that have critical functions in 

signaling pathways. Since viruses evolve extremely fast compared to their hosts, protein level 

defense against protein mimicry by mutations in virus protein binding sites may not be sufficient. 

Therefore, hosts may have evolved higher level defense mechanisms in the innate immune 

pathways. In this study, we found that sabotage by virulence factors of viruses induce selection 

pressure for environmental robustness in innate immune systems. Furthermore, we observed that 

the level of the environmental robustness was determined by different conditions that were also 

related to virus pathogenicity. In nature, hosts have evolved complex immune signaling 

pathways. In the model, increasing the number of regulators (𝑁FG) involved in the host system 



	
  

107 
	
  

gives viruses more chances to interrupt immunity. Since it also increases size and complexity of 

the immune systems, we can understand the evolution of complexity in the innate immunity 

using the model. 

The viral evasion of host innate immune systems via protein-protein interactions has been 

reported in many previous studies [124, 125]. As represented in the model, viral proteins have 

protein-protein interaction with host TFs to interrupt antiviral gene transcription [125, 139]. 

However, in some studies of Hepatitis B virus (HBV) and Kaposi's sarcoma-associated 

herpesvirus (KSHV), it has been shown that viral proteins target not only host proteins but also 

host gene promoters of various genes involved in signaling pathways [140, 141]. Considering 

that the viral evasion via viral proteins targeting host gene promoter has not widely been reported 

for many viruses, only some of viruses may have evolved to use their proteins to bind regulatory 

regions and change host gene expression. For future work, we intend to investigate the evolution 

of viral genotypes and proteins to study what factors (e.g. viral genome size) may affect the 

ability of viruses to adopt those two layers of viral evasion strategies, and to study how they 

influence on the evolution of pathogenicity and host immune systems. 

Viruses target host proteins in order to interfere with innate immune signaling pathways. 

The host-virus protein-protein interactions inhibit the critical host protein functions involved in 

the signaling cascades. In this study, we focused on protein-protein interactions of host 

regulatory proteins and virus proteins. Viruses have reported to target both inhibitory regulatory 

proteins such as I𝜅B, SOCS (suppressor of cytokine signaling) proteins, and TFAF1 and 

activating regulatory proteins such as STAT2 and DEAD-box RNA helicase (DDX3) to disrupt 

innate immunity in TNF signaling pathways and JAK/STAT pathways [142]. As another 

direction for future work, we intend to investigate the effect of activating vs. inhibitory regulator 
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targeting on virus pathogenicity and host resistance. Viruses may have evolved to target either 

activating or inhibitory regulator proteins for higher transmissibility. Likewise, hosts may have a 

preference for a specific mode of regulator for evolving higher environmental robustness.  
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Chapter 5. Summary and future work 

5.1. Summary and future work 

In the three studies above, we found that the hosts evolve to increase complexity in their 

biological systems depending on the interacting and coevolving parasites (or viruses). In 

particular, host individuals evolved their gene regulatory networks under the selection pressure 

imposed by the parasite (or virus) individuals and vice versa.  

In Chapter 2, we explored evolutionary features in gene regulatory networks of two 

different organisms of similar levels of complexity under antagonistic coevolutionary selection 

pressure. By using two interacting species, key model parameters that determine the fitness 

landscapes became emergent properties of the model, avoiding the need to impose these 

parameters externally. Both host and parasite populations could achieve frequent and accurate 

phenotype changes due to broadly distributed sensitivity in a gene regulatory network. We found 

that sensitivity follows a pattern, similar to that of the game “whack-a-mole”, in which sensitive 

sites mutate, thus becoming insensitive, but new sensitive sites emerge to take their place. We 

predict that this type of sensitivity will evolve under conditions of strong directional selection, an 

observation that helps interpret existing experimental evidence, for example, during the 

emergence of bacterial antibiotic resistance. 

In Chapter 3, we studied the evolution of the first step during a viral infection, where we 

considered two possible levels of resistance mechanism in the host: 1) at the level of the protein 

binding interaction between host receptors and a virus protein, and 2) at the level of receptor 

protein expression regulation where we use a standard gene regulatory network model using our 

host-virus coevolution model. We explored a range of different conditions (model parameters) 
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that affect host evolutionary dynamics and, in particular, the balance between the use of different 

resistance mechanisms. We found that host resistance and viral pathogenicity depend on quite 

different evolutionary conditions. Viruses may evolve cell entry strategies that use small receptor 

binding regions, represented by low complexity binding in our model. Our modeling results 

suggest that if the virus adopts a strategy based on binding to low complexity sites on the host 

receptor, the host will select a defense strategy at the protein (receptor) level, rather than at the 

level of the regulatory network - a virus-host strategy that appears to have been selected most 

often in nature.  

After viruses enter host cells, they interfere with innate immune systems via protein-

protein interactions such as molecular mimicry of various host proteins involved in the 

immunity. In Chapter 4, we developed a model of the host innate immunity evolution in the 

context of host-virus coevolution. In this chapter, we discussed viral mechanisms for 

pathogenicity and how hosts evolve their defense mechanisms depending on different viral 

mechanisms. We found that the host evolved to optimize the use of 1) mutations at protein-

protein interaction sites to avoid mimicry/binding and 2) environmental robustness in the innate 

immune systems imposed by viral disruption of the immune systems. For future work, we aim to 

focus more on the evolution of complexity in host immune systems and viral systems. Using this 

model, we can study how the complex immune systems evolve to influence viral evasion and 

host defense strategies. Also, focusing on viruses such as HBV and KSHV, which bind host gene 

promoters to interrupt host signaling pathways for infection, we intend to study how different 

levels of viral genome complexity relate to viral pathogenicity and host defense mechanisms.  
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