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Abstract of the Thesis

Volumetric Focus+Context Visualization
Techniques

by

Xin Zhao

Master of Science

in

Computer Science

Stony Brook University

2013

This thesis introduces new techniques and applications for volu-
metric visualization. Focus+context visualization and interaction
techniques are used to navigate and interact with objects in in-
formation spaces. They provide in-place magnification of a region
of the display without consequently losing any context representa-
tion. Diverse focus+context visualization techniques are of broad
use in different application domains, such as geovirtual environ-
ments, navigation and visualization of large graphs or hierarchies,
as well as the volume rendering (e.g., for medical applications).
However, how to accurately represent and highlight the focus ob-
jects while maximally keeping all the important context informa-
tion (e.g., shape features and area size) becomes a major chal-
lenge. To overcome the limitations generated by traditional optical
lenses and to effectively facilitate the data exploration and anal-
ysis (e.g., organ segmentation and cancer detection for the med-
ical data), new focus+context methods have been proposed and
used for the design of real-time volumetric visualization techniques
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for both 2D and 3D applications. In general, detailed views of
a focus volumetric object or multiple objects are combined seam-
lessly with abstracted or compressed views of the context within a
single rendered image. To perform the real-time display required
for interactive visualization, dedicated parallel processors (GPUs)
are used for computing and rendering. For this purpose, the de-
sign and implementation of appropriate computer graphics and
modeling based techniques and visualization rendering pipelines
are necessary. Meanwhile, effective and efficient highlighting can
enable users to quickly locate and easily decode relevant infor-
mation. Therefore, high-dimensional transfer functions are used
as highlighting techniques for the visualization of various objects-
of-interests. With the purpose of exploration and navigation of
the volumetric data, there are basically three categories relevant
to the scope of this thesis. First component focuses on the en-
hancement methods: two high dimensional transfer function sys-
tems are proposed to accurately segment ROIs in 3D medical data
and provide the enhanced visualization display to allow the user
to easily perceive the focus data. Second part describes and in-
troduces the focus+context visualization techniques. Two frame-
works are based on geometric theories to generate focus+context
visualization styles with angle-preservation or area-preservation.
The conformal magnifier, works as a novel geometric model based
lens design framework to serve as the focus+context visualization
for various medical applications, which provides a smooth transi-
tion between focus and context regions and optimized local shape
preservation everywhere. Meanwhile, the area-preservation visual-
ization is obtained using a novel area-preservation mapping method
based on the Monge-Brenier theory based optimal mass transport
technique, which is rigorous and solid in theory, efficient and par-
allel in computation, and general for various applications.
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Chapter 1

Introduction

This chapter introduces highlighting techniques for the 3D visualization, mainly
focusing on transfer function design for volume rendering, which can help the
user easily and efficiently display and detect the object or region of interest for
the volumetric focus+context (F+C) visualization. Next, a brief overview of
the state-of-the-art F+C visualization methods is presented. Then it discusses
the potentials of geometry based mapping techniques for the F+C visualiza-
tion, the core topic of this thesis, and how these techniques facilitate the data
exploration and analysis for various applications. The chapter closes with
problem statements and related techniques and their contributions.

1.1 Problem Statements and Solutions

The focus of this thesis is to develop efficient volumetric F+C visualization and
present its applications. This section summarizes the conceptual and technical
challenges as well as the contributions presented.

The application of volumetric F+C visualization is faced by a number of
challenges and problems. First, the highlighting techniques should be used
to accurate segment the objects of interest and direct the viewers focus of
attention by facilitating the pre-attentive cognition. Second, it should effi-
cient use of screen space to increase the amount of information visible of focus
regions, while keeping all the context areas. The goal is to maintain the fea-
ture understanding in 3D space and preserve the properties (such as angle or
the size of area) of spatial information after applying F+C visualization tech-
niques. Third, it should be suitable for both 2D and 3D data, and simplify
the exploration and analysis of complicated volumetric data with an auto-
matic or semi-automatic system with minimal user interactions. A further
challenge represents at generating high quality rendering results for various
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visualization needs. In particular this includes the support for multiple focus
regions as well as smooth transitions between focus and context regions. Last
technical challenge lies at the real-time enabled implementations. In order
to have hardware accelerated system, suitable data structures are required to
store data efficiently; and efficient algorithms are required to apply these data
structures within a programmable GPU pipeline. In other words, these algo-
rithms should be applicable to different large and complicated datasets with
the real-time rendering and displaying.

Aim to solve these challahes, this thesis has the following research topics:

• Focus enhancement methods: Two high dimensional transfer function
systems to accurately segment ROIs in 3D medical data and provide the
enhanced visualization display to allow the user to easily perceive the
focus data.

• Deformation based Focus+Context visualization: An interface scheme
that allows the user to work at, and move between, focused and con-
textual views of a data set, using moving least squares (MLS) [6] based
deformation methods.

• Angle-preservation lens design: A novel geometric model based lens de-
sign framework to serve as the Focus+Context visualization for various
medical applications, which provides a smooth transition between focus
and context regions and optimized local shape preservation everywhere.

• Area-preservation visualization: A novel area-preservation mapping method
using the optimal mass transport technique, based on the Monge-Brenier
theory, which is rigorous and solid in theory, efficient and parallel in com-
putation, and general for various applications.

1.2 Highlighting Techniques

Highlighting functionality is an essential component of a visualization frame-
work for direct data exploration and flexible user interactions. For the vol-
umetric F+C visualization, highlighting techniques enable the user to easily
perceive and select the targeted object. The highlighted regions typically
represent features relevant for specific user tasks and facilitate effective user
exploration through a volumetric dataset. With the increasing amounts of
data visualized on a wide range of applications, a good system demands the
visualization, especially the F+C visualization, with clear separations and dif-
ferences. Here, effective and efficient highlighting methods can enable the user
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to quickly locate and easily decode relevant information for various applica-
tions. The highlighting effect is achieved by modifying the appearance in which
an object or a region is usually depicted. Such appearance modification can
be as simple as overdrawing a dominant color that can easily be distinguished
from all other colors in the volume data. Modifications can be applied to an
object or an area that should be highlighted (focus-based) or to be faded away
(context-based), served as an alternative focus-based highlighting style.

To convey greater recognition of the objects being rendered, transfer func-
tions are extensively used. The transfer function system modifies the way in
which items are depicted or displayed using the volume rendering, in order to
highlight, suppress, or contextualise them. For example, the objects of interest
can be highlighted using colors or opacities, or the non-focused objects could
be visually deemphasized, to draw the users attention back to the regions of
interest. The transfer function design as a kind of highlighting technique, de-
pends on the availability of the texture element or clustering information in
the dataset, and can be used to enhance the volumetric F+C visualization.
In this thesis, each presented system or framework has a suite of 1D, 2D and
high dimensional transfer functions. The specified transfer function allows the
enhancement and selection of regions and features of interest, and further in-
teracts with 2D or 3D visual presentations of the dataset directly to display
the accurate and visual-pleasure magnification results.

1.2.1 Volume Rendering

To display volumetric data in 3D, volume rendering methods have been ex-
tensively developed [7–10]. Direct volume rendering (DVR), as a rendering
method in the computer graphics pipeline, allows for the volume to be directly
rendered without the requirement to extract surfaces. Various rendering styles
can also be implemented, which yields a 2D image that having maximum in-
tensity projection (MIP) or appearing similar to an x-ray [11].

In order to perform DVR, an optical model should be built [12]. The
emission-absorption model (in which the elements of the volume are considered
as particles within a cloud which are able to both emit their own light and
absorb incident light) is the most common model:

I(D) = I0T (D) +

D∫
0

g(s)T ′(s)ds, (1.1)

where I(D) represents the radiance reaching the camera from D. There are
two term represents of this equation: first is the background illumination
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(I0) multiplied by the transparency of the cloud (T (D)), and second is the
integration over all sample positions s, multiplying each sample’s source value
(g(s)) with the transparency between s and the eye (T ′(s)). This volume
rendering integral in the continuous domain can be further discretized into
compositing for use with discretely sampled data. Two composition schemes
are used: the back-to-front and the front-to-back methods. For back-to-front
compositing, at each sample step, performs:

Cdst ← (1− αsrc)Cdst + Csrc. (1.2)

For front-to-back compositing, at each sample step, performs:

Cdst ← Cdst + (1− αdst)Csrc,
αdst ← αdst + (1− αdst)αsrc.

(1.3)

In both equations, Cdst and Csrc are the destination and source colors, while
αdst and αsrc are the destination and source opacities. Note that while front-to-
back compositing requires extra maintenance of the opacity term through the
integration, it also allows for early termination of the composition when the
opacity reaches a sufficient level (e.g., αdst = 0.95). A number of methods focus
on performing the actual volume rendering. A technique has been introduced
where the voxels are splatted onto the screen space and rendered as disks [13].
Shear warp has been proposed where the viewing transformation would be
factored into a 3D shear parallel to the volume slices, a projection will create
a distorted image, but a 2D warp is used to undistort the final image [14]. The
volume as a whole can also be decomposed into individual slices which are then
rendered and composited with typical 2D texture rendering in the graphics
pipeline. The well-known ray casting method involves shooting rays through
the volume data and sampling at regular points along the rays [15]. Ray
casting typically provides the best image quality and is the preferred method
of performing DVR [16]. Meanwhile, the specialized graphic hardware for
volume rendering has developed and applied [17–19]. The graphics processing
unit (GPU) used for gaming provides a high level of parallel performance at a
relatively low cost and can allow for real-time ray casting [20]. More recently,
general processing on the GPU has become popular, with NVidia’s C-like
CUDA language being widely adopted [21].

1.2.2 Transfer Function Design

When rendering volumes, which often consist of singular scalar density values
for each voxel, it is desirable to map these scalar values to optical proper-
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ties, such as color and opacity. The transfer function (TF) is used to view
a certain part of the volume, by assigning RGB and alpha values for every
voxel in the volume. Among all the techniques, 1D transfer function is the
most commonly used because of its simple design and implementation. A 1D
transfer function maps one RGBA value for every isovalue (e.g., [0, 255] for
each channel). However, the 1D transfer function, which is usually based on
the scalar values of volume dataset, is very limited for accurate classification
of complicated volume dataset. Take CT or MRI medical volumetric datasets
as an example, different objects, such as tissues, muscles and bones, may have
the same scalar value and need further procedure to distinct them.

In order to solve this issue, other attributes such as gradient magnitude,
directional first and second derivative [22], curvature [23] and statistical mea-
sures [24] have been introduced and applied as 2D transfer functions to identify
more accurate boundaries between different materials. These methods are es-
pecially effective in medical contexts, where the feature of interest is often the
boundary between two materials. Revealing renderings of internal structures
are possible with transfer functions based on the gradient magnitude alone [22],
which can be enhanced by modulating opacity according to how orthogonal
the gradient vector is to the view vector.

In order to process more complicated cases, the multi-dimensional TF de-
sign has become a fundamental and important research thrust. The multi-
dimensional transfer functions (nD TF) allow multiple RGBA values to be
mapped to a single isovalue. Kniss et al. [25] have introduced dual domain
interaction to facilitate identification of 3D boundaries using a probe that fa-
cilitates manual segmentation of various materials. Roettger et al. [26] have
used the voxel barycenter and the region variance to assist in manual specifi-
cation of colors for similar features in the process of volume rendering. Can-
ban et al.[27] have used first-, second-, and high-order local statistical texture
properties to effectively assign voxels to different opacities and colors using
texture-based transfer function. Maciejewski et al. [28] have proposed a novel
non-parametric clustering method to design the TF. Although only 2D TF
shown as examples, the clustering method can also be extended to design the
nD TF. For the high dimensional computation, He et al.[29] and Marks et
al.[30] have proposed a solution to the parameter selection problem, where by
the user choosing the TF by browsing through many rendered images. Tzeng
et al.[31] have presented a new approach to the volume classification problem,
relying on an intelligent system to abstract high dimensional mapping func-
tions from the user. The benet of using multiple dimensional transfer functions
is that direct volume rendering can be an extremely expressive form of volume
visualization because the image can represent such a variety of aspects of the
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data.

1.3 Focus+Context Visualization

With the tremendous increases in computing power, data storage, and internet
bandwidth, the user can now easily store, process, and deliver over the internet
very large datasets, but an inherent limitation is the real estate available to
display these data. While display devices may have grown in size and reso-
lution, a natural limit is and remains to be the human’s visual field of view.
At the same time, with the emergence of portable devices, such as netbooks
and smart phones, there has also been a reverse trend in screen size for mobile
applications. Therefore, no matter what display size is being used, a careful
management of the display real estate is directly required. A natural solu-
tion to these requirements is the focus+context visualization. The expression
focus+context is a concept of visually discriminating interesting objects (the
focus), from nearby related objects (the context). F+C visualization elimi-
nates the spatial and temporal separation by displaying the focus within the
context in a single continuous view. It has been addressed in a great num-
ber of applications, including trees [32, 33], treemaps [34], [35], graphs [36],
[37], tables [38], city and maps [39], nested networks [40], and 3D models [2],
especially for medical data.

1.3.1 Lens based Focus+Context Visualization

The commonly used F+C techniques are lenses and magnifiers, such as fisheye
[41], nonlinear magnification transformation [42], detail-in-context [43], distor-
tion [44], multi-scale [39] and others [45, 46]. Fisheye lenses offer an effective
navigation and browsing device for various applications [47]. InterRing [48]
and Sunburst [49] have applied multi-focus fisheye techniques as an important
feature for radial space-filling hierarchical visualizations. Keahey[35] has con-
ceptualized a treemap as an image to show how to compound zooming with
a graphical fisheye lens. The fisheye lens displays the data in a continuous
manner, having an advantage in the spatial relation preservation. However, it
creates noticeable distortions towards its edges and has no method to formally
control the focus region as well as to preserve local features in the context
region. Therefore, new approaches should focus on minimizing the distortion
and formally controlling the focus region.

Various distortion lenses are further proposed to visualize important infor-
mation in a detailed visualization view [42, 50, 51]. For multiple 2D layers,
Bier et al. [52] have presented an interface for the user to enhance features of
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interest or to compress less interest regions using toolglass and magic lenses.
The generalization to handle volumetric data requires extra efforts, but dis-
tortion lenses have already been applied to 3D successfully [53, 54]. LaMar
et al. [55] have presented a fast, natural and intuitive magnification lens with
a tessellated border region that estimates the linear compression according
to the radius of lenses and the texture information. Wang et al. [56] have
provided a free-form volumetric lens function to highlight, expose and non-
linearly magnify an object in the feature-adaptive or user-configurable way.
All the above lenses must follow the physical properties of optical lenses which
require explicit and pre-defined optical or physical models for the view distor-
tion. Therefore, new F+C design should be able support the arbitrary model
design and the flexible user control.

1.3.2 Deformation based Focus+Context Visualization

In order to overcome the limitation of optical lenses, many F+C visualiza-
tion methods have been proposed and implemented, such as cutaway views
[57], transfer functions [58], ray defectors [59], ray casting [60], real-time ren-
dering [61] and artificial intelligent training and learning [62]. Most of these
approaches provide the user a direct and active magnification view, but only
support the indirect control of magnification/distortion types using global or
data-dependent parameters. Unlike those methods with only active viewing
operations, various deformation techniques [63, 64], providing direct opera-
tions of both viewing and handling to distort the data according to the user’s
requirements, are widely used for the F+C visualization. McGuffin et al. [65]
have provided a deformation method, interactively allowing the user to open
up and peel away the outer layers to reveal the hidden structures. But this
method is suffered from the undesired aliasing and undersampling effects. Dis-
continuous displacement maps, proposed by Correa et al. [64], allow arbitrary
deformations and cuts to be applied to the volumetric objects. However, at the
cost of computing displacement maps, it is very difficult to create and place
in 3D space to obtain a desired deformation. Then, they have provided an
extended deformation method for volumetric datasets using scattered data in-
terpolation and radial basis functions on the 2D images or 3D volume datasets
to visualize internal features [66]. However, instead of the direct voxel trans-
formation, the user has to take extra efforts to deform a desirable 2D rendered
image and then extrude the same deformed type into a 3D displacement map.
They have also proposed the illustrative deformation for 3D data exploration
by using the combination of geometric or optical illustration operators and
examining the best means to prevent the deformed context from being mis-
perceived [67]. The active combination of viewing and handling operations is
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extremely helpful for exploring a complex or unfamiliar object [68], but may
seriously distort context structures.

Mesh-based Deformation. Mesh-based deformation is an alternative
method for the F+C visualization based applications. Westermann et al. [69]
have defined the deformation as the transformation of nodes located in a proxy
mesh generated from the boundary of volume data. Wang et al. [2] have
presented an interactive F+C method to visualize large surface models without
perceivable distortions based on the energy optimization model. However, the
optimal energy models are passive during the deformation: the user fails to
have the required non-optimal energy deformation because of the violation of
energy stability. In order to eliminate distortions of energy models in the focus
region, they [70] have further implemented a volumetric F+C visualization
using the global optimization to minimize visual artifacts of salient features.

1.4 Surface Mapping and Flattening

With the fast generation of large and complicated data nowadays, it is desirable
to develop new frameworks aiming at generating a visualization of the entire
data needed for the navigation, detection, exploration and a global under-
standing of selected objects or regions of interest (ROIs). Complex geometric
structures are often better visualized and analyzed by mapping the surface
properties, such as normal map, angle, or area, to a simple canonical domain,
such as a rectangle or a sphere. Surface flattening and texture mapping offer
a good way of visualizing a surface section by enabling the visualization of
all surface parts within a single planar image. In general, surface flattening
unavoidably introduces distortions. There are two types of distortions, angle
distortion and area distortion. A mapping, which is both angle preservation
and area preservation, must be isometric. Therefore, the surface must have
zero Gaussian curvature everywhere, namely a developable surface or a ruled
surface. For general surfaces, one can only choose either angle-preservation
mapping or area-preservation mapping, but never both of them simultane-
ously.

By comparison, conformal mapping is very applicable for visualization
needs because it is angle, and thus shape, preserving [71]. The use of confor-
mal geometry for mapping triangular meshes, where local angles are preserved,
has been well established in the field of computer graphics, especially in the
creation of texture maps [72] and computer aided detection [5, 73]. However,
a conformal method usually substantially distorts area, thus failing to display
accurate size of area, including height, width, thickness or diameter of ROIs
[74]. Therefore, on the other side, area preservation is also important for many
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medical applications, especially organ measurement and cancer detection and
diagnosis. By comparison, area-preservation mapping can generate accurate
and information lossless mapping results, which is a key objective for many
medical imaging applications, with the ability to carry out measurements for
detecting anatomic abnormalities, such as brain fold detection [75] or colon
polyps detection and diagnosis [76, 77].

1.4.1 Angle-Preservation Mapping

Conformal (angle-preservation) mapping has its specially valuable properties,
which are extremely suitable for diverse applications:

Angle Preserving - Conformal mappings are angle-preserving. The most
common examples of conformal mappings are univalent analytical functions in
complex analysis. A more general definition is given in differential geometry
[78]. Intuitively, suppose f : S1 → S2 is a mapping between two surfaces
S1, S2, and γ1, γ2 ⊂ S1 are two arbitrary intersecting curves on S1, with the
intersection point as p = γ1 ∩ γ2. Then they are mapping to intersecting
curves on S2, f(p) = f(γ1) ∩ f(γ2). Suppose at the intersection point p, the
intersection angle between two tangent vectors dγ1, dγ2 is θ. f is conformal,
if and only if the intersection angle between the tangent vectors df(γ1) and
df(γ2) is also θ. A formal definition is as follows: f : (S1,g1) → (S2,g2) is
conformal, where gk is the Riemannian metric on Sk, k = 1, 2, if and only if

f ∗g2 = e2λg1.

where λ : S1 → R is a function, f ∗g2 is the pull back metric induced by f on
S1. Namely, locally a conformal mapping is a scaling transformation, e2λ is
the scaling factor, therefore it is shape preserving.

Intrinsic - Conformal parameterization of a surface is solely determined
by its Riemannian metric and does not require its embedding in R3. For
example, one can change a magnifier model by rotation, translation, folding
and bending without stretching, the conformal parameterization is invariant.

Stable and Practical - Computing conformal parameterization is equiv-
alent to solving an elliptic geometric PDE [79], which is stable and insensitive
to the noise and the resolution of the data. Therefore, a low-resolution mag-
nifier (around 3K vertices) is good enough for most cases. It also effectively
accelerates the computation of conformal mapping.

Discrete Ricci flow is a popular method of computing conformal maps of
structures [80]. This process acts similar to heat diffusion, with the deforma-
tion of the edge lengths being driven by the discrete Gaussian curvature. A
circle packing metric is used to approximate the discrete conformal deforma-
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tion. The final mapping result can be affected by setting the target Gaussian
curvature for each vertex in the mesh. There are many applications where
discrete Ricci flow is useful, such as in surface parameterization for texture
mapping and construction of geometric structures [81], and the optimal sur-
face parameterizations using inverse curvature maps [82]. Applications of Ricci
flow will typically use a target Gaussian curvature of zero everywhere, or con-
strain the boundary to a canonical shape, such as a disc. Discrete Ricci flow
has also been used for 3D shape analysis [83]. Based on the circle packing,
the Ricci flow method has typically required the triangular meshes to contain
triangles that are not obtuse. The discrete Ricci flow method has been gen-
eralized using inversive distance circle packing to remove this requirement for
the triangulation to lack skinny triangles [84].

1.4.2 Area-Preservation Mapping

Texture mapping on arbitrary surfaces with minimal distortion can preserve
the local and global structure of texture [85]. Therefore, the area preserva-
tion mapping is important in many medical based research fields, such as the
image segmentation, registration, and cancer recognition and diagnosis ap-
plications. Most popular solution for area-preservation mapping is inspired
by the similarity between a mapping problem and optimal mass transport
problem [86], which concerns determining the optimal method, with minimal
transportation cost, to move a pile of soil from one place to another. Zhu et
al. [87] have combined conformal mapping and area-preservation mapping for
flattening branched physiological surfaces, such as vessels. The optimal trans-
port map is carried using the minimal flow approach. Similar method has
been applied for image morphing [88]. Rehman et al. [89] have applied the
minimizing flow approach for the optimal mass transport with applications to
non-rigid 3D image registration. The implementation also employs multi-grid
and parallel methodologies on a consumer graphics processing unit (GPU) for
fast computation. Dominitz and Tannanbaum [75] have proposed a method to
compose conformal mapping with area-preservation mapping, using the tech-
nique of OMT, based on Monge-Kantorovich theory [90], which accurately
preserves the area element and also maximally preserves the angle. However,
the methods based on Monge-Kantorovich’s theory and approaches, require
n2 variables. For example, in image registration applications, a 1024 × 1024
image would result in 240 variables, the storage cost is thus very high, and the
computation is extremely expensive.

In contrast, using Monge-Brenier’s approach [91] to compute the optimal
transport map, a discrete algorithm is solidly based on the variational principle
[92]. Gu et al. [92] first compute an area-preserving map from a metric surface
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(S,g), where g is the Riemannian metric, to the planar disk D. The method
starts with an angle preserving ϕ : S → D, which introduces area distortions
on the disk; the area distortion factor is used to define a measure on the disk,
denoted as µ. Then, an optimal mass transport map is computed between
the disk with this measure and the disk with the Euclidean measure dxdy,
ψ : (D, µ) → (D, dxdy). The composition ψ ◦ ϕ : S → D gives the area-
preserving map. Basically, the method only discretizes the target space Y ,
and finds a convex function whose gradient gives the optimal transport map.
Finding the OMT is equivalent to optimizing a convex energy, which can be
efficiently achieved using Newton’s method. The whole computation requires
only n variables. Therefore, this method greatly reduces the computation cost
and improves the efficiency.

11



Chapter 2

Highlighting using Transfer
Function Design

2.1 Motivation

Techniques for highlighting focus objects or areas for various volumetric appli-
cations facilitate the pre-attentive perception of the user for the F+C visual-
ization. Meanwhile, due to the complexity of volumetric data, it is extremely
time consuming for the user to select the region of interest effectively. Thus,
transfer functions are fundamental to focus oriented direct rendering because
their role is essentially to make the data of interest visible: by assigning optical
properties (e.g., color and opacity) to voxels, highlight or further separate the
focus and context regions.

High Dimensional Transfer Function Design. Transfer function de-
sign, as an important classification method, has been proposed to produce
images that display, highlight and even select the region of interest in the vol-
umetric datasets. Good transfer functions should be able to accurately reveal
the important structures in the data without any unrelated context. Some
significant experience has been accumulated on how to identify the accurate
boundaries between different materials, such as 1D scalar values based TF
and various 2D TFs with respect to gradient magnitude, directional first and
second derivative [22], curvature [23] and statistical measures [24]. However,
the specification of a transfer function to accurately identify different objects
in a complex volumetric dataset is still a challenging task. Then a powerful
nD parameters visualization and data analysis tool, parallel coordinates plots
(PCP), is used as an alternative TF design style. This chapter introduces a
novel parallel coordinates based multi-dimensional (nD) transfer function de-
sign method, termed as parallel coordinates based transfer function (PCbTF)
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design method.
Dimension Reduction based Transfer Function Design. On the

other side, dimension reduction is an alternative solution for the high dimen-
sional TF design. Takanashi et al. [93] have used independent component
analysis (ICA) for nD parameter reduction. Rezk-Salama et al. [94] have cre-
ated models from several training datasets by principle component analysis
(PCA) to reveal the desired structures. Pinto and Freitas [95] have applied
self-organizing maps (SOMs) and radial basis functions (RBFs) to simplify the
design of nD TF to achieve the accurate classification. The local linear embed-
ding (LLE) method [96], a good nonlinear high dimension reduction method,
can be used to reduce the dimension, effectively simplifying the complicated
polyline analysis. LLE maps its inputs into a single global coordinate system
of lower dimensionality, and thus its optimizations do not involve local min-
ima, which leads to the ability of learning the global structure of nonlinear
manifolds (details in Section 2.3).

The pipeline of entire system is shown as Figure 4.2. First, for each voxel
of input dataset, various high dimensional parameters are calculated. Next,
parameters are selected according to the patterns of corresponding polylines
drawn in PCP. For the high dimensional TF design, the user can choose to
either interactively design special widgets on the coordinates directly or au-
tomatically project all the attribute parameters to the 2D space by the LLE
technique as dimension reduction, and then assign colors and opacities to the
classes calculated by a k-mean algorithm in the 2D space. A simple but ef-
fective user interface has also been developed to assist in the nD TF design.
Through the framework, a carefully designed nD TF can emphasize details
which are difficult to visualize by other approaches.

Figure 2.1: An overview of the transfer function design pipeline.

2.2 Parallel Coordinates based Transfer Func-

tion Design

A new design procedure is proposed for the presented PCbTF framework.
After the data preparation and parameter extraction, the system applies a
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simulated annealing (SA) method [97] to find the best sorting order of all the
parameters in the PCP with respect to energy minimization. Then, the corre-
lated parameters are removed according to mathematically defined patterns of
polylines. Next, several novel widgets are proposed to help the user to design
PCbTF.

2.2.1 Data Preparation

For most volumetric datasets, simply removing the background voxels does
not influence the information of the feature of interest, but will significantly
decrease the computational time and operation complexity. Therefore, the
region growing method is used to remove the background voxels around the
major objects. Next, sixteen statistical attributes (angular second moment,
contrast, correlation, variance, inverse difference moment, individual entropy,
sum average, sum variance, sum entropy, skewness, kurtosis, correlation in-
formation measurements, intensity, gradient and second order derivative) are
extracted and drawn as coordinates in the PCP (following the feature equa-
tions defined in [27] and [98]). The concept of an outlier [99] is applied to
remove noise. Randomly distributed noises are simply removed by erasing the
outlier polylines.

2.2.2 Visualization of Parameter Sorting and Selection

For the visual clustering in the PCP, various methods have been published
such as blending [100] and scatter plot matrix [101]. The system imbeds the
brush function to select, highlight and erase polylines using the XmdvTool
library [102]. One of the most important motivations of PCP is to best reveal
the relationship/correlation of neighboring coordinates. However, the PCP
sorting problem, as NP-complete problem, has no efficient algorithm (with
running time O(n!)). Peng et al. [103] have provided random swapping, near-
est neighbor and greedy methods to solve this problem. However, random
swapping suffers from serious repetition problem, while nearest neighbor and
greedy algorithms are easily stuck at the local optimization. Thus, the SA
is modified to find a fast optimization solution (with running time O(np2n)).
First, new equations are defined as the clutter measurement to describe the
internal energy f(h) between the neighboring coordinates: f(h) = 1∑N

i=1(pi−
1
N
)2
,

where N = N1 ∗ N2, N1 and N2 are the pre-defined bin number of adjacent
coordinates; pi is the 2D joint histogram distribution probability, pi =

li∑N
i=1 li

,

while li is the total polyline number in the ith bin.
This formula describes the basic idea: the more polyline aggregation in a
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Figure 2.2: Sorting results of the car dataset (7 dimensions, 392 items). Up:
Random sorting sequence. Bottom: The same optimal sorting result generated
by brutal search (T=20s) and the presented method (T=1.6s) with different
computational time.

single bin, the less internal energy. Algorithm 1 lists the details and condi-
tions during the implementation. This method can quickly reach the global
optimal solution using appropriate parameters, as shown in Figure 2.2. The
best sorting order makes it easy to select important parameters: various cor-
related patterns can be identified and removed according to precise definitions
by Inselberg [104].

2.2.3 Widgets Design

PCP preserves properties of a hypersurface by polyline patterns, which makes
the TF design easy. Figure 2.3 shows the corresponding patterns between
traditional orthogonal space (2D, 3D and nD) and the parallel coordinates.
In addition to these basic patterns, various primitives are extended for TF
design. Figures 2.4a-f show the design ideas in PCP and the corresponding
modifications in the 2D or 3D space. All the designed patterns or primitives
can be easily extended to nD by setting constraints between the neighboring
coordinates: x2 = f1(x1), x3 = f2(x2), ..., xn = fn−1(xn−1), where the functions
are pre-defined by the user. Therefore, the adjustment of x1 will automatically
control the selection of other parameters. Through using the widgets, the
complicated design of high dimensional TF, which is impossible to be drawn
on the screen by traditional methods, is easily implemented in the PCP.
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(a)

(b)

(c)

(d)

Figure 2.3: Matching patterns between PC and orthogonal space. (a) 2D
rectangle or square. (b) 3D cube, the dashed polyline is corresponding to
the corner point of cube, with position (1,0,0). (c) 3D plane, the points of
intersection of one dashed-line type in the PC is matching with the same
dashed-line type in the 3D space. (d) 5D manifold, which is impossible to be
displayed on the screen by the orthogonal coordinates. The dashed polyline is
corresponding to (1,0,0,0,0).
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(a) (b)

(c) (d)

(e)

(f)

Figure 2.4: PCbTF design widgets. For a 2D line: y=a*x+b, the adjustment
of (a) the slope b, and (b) the rate a. For a 2D plane (Figure 2.3a), (c) 2D
rectangle and (d) 2D any type polygon designed from changes of control points.
For a 3D plane (Figure 2.3c), (e) update the vertical dashed line (point b as
the point of intersection) in the PC, matching with the adjustment of point B
in the 3D space, and (f) proportionately scale of the 3D plane (scale=0.5).
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Algorithm 1 Simulated Annealing Algorithm

T ← T0; X ← X0 {Initial temperature, sequence}
Ti ← T0; Xi ← X0 {Initial the best solution Xi}
while Ti > Tmin do
i : (w1, . . . , wk, wk+1, . . . , wm, wm+1, . . .) ← j :
(w1, . . . , wm, wk+1, . . . , wk, wm+1, . . .) {For the random values k and
m, setting k < m}
df ← (f(Xj)− f(Xi)) {Calculate energy difference}
if df < 0 then
Xi ← Xj

else if df > 0 and exp
−df
Ti > random() then

Xi ← Xj

end if
Ti ← Ti − Td {Decrease temperature}

end while
Return Xi

2.3 Dimension Reduction based Transfer Func-

tion Design

Although the PCP can directly assist the design of high dimensional TF, the
major limitations are the facts that large datasets or parameter axes cause
difficulty in the interpretation for the accurate classification, and relationships
are only preserved between adjacent coordinates. Resorting the coordinates is
an extremely time-consuming task especially for very high dimensions. There-
fore, dimension reduction is motivated for the design of nD TF. We apply local
linear embedding method (LLE) [96], an unsupervised learning algorithm that
computes the low-dimensional, neighborhood-preserving embedding of high-
dimensional inputs. LLE has several predominances: (1) It eliminates the
need to estimate pairwise distances between the widely separated data points;
(2) It maintains the global nonlinear structure from locally linear fits. By
comparison with PCA [105] and metric MDS [106], LLE is especially good at
identifying the underlying complicated manifold structure. Therefore, LLE is
implemented as a dimension reduction based TF design method. The algo-
rithm is briefly described as follows: Suppose the data consists of N real-valued

vectors
−→
Xi, the LLE algorithm, is based on simple geometric intuitions with

two cost functions:
ε(W ) =

∑
i

|
−→
Xi −

∑
j

Wij
−→
Xi|2 (2.1)
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and
ϕ(Y ) =

∑
i

|
−→
Yi −

∑
j

Wij
−→
Yi |2 (2.2)

First, compute the neighbor of each data point,
−→
Xi. Then compute the

weightsWij from the neighbor points of
−→
Xi by minimizing the cost in Equation

2.1. Last, compute the best reconstruction by weightsWij, through minimizing
Equation 2.2 using its lowest nonzero eigenvectors.

The user can control two parameters of LLE, the number of neighbors
and the dimension of the embedding space (default is 2D). After applying
LLE, the embedded space tends to be very abstract and its meaning unclear.
Fortunately, the high dimensional relationships among voxels can be perfectly
preserved and can be easily classified by k-mean algorithm in 2D space, as
shown in Figure 2.5a. Thus, the user just needs to assign color and opacity for
each class to obtain the final rendering result, as shown in Figure 2.5b. Due to
the loss and distortion of information usually caused by dimension reduction,
LLE cannot provide quantitative information as accurate as PCbTF does.
However, this approach is well suitable for revealing qualitative aspects such
as shape of structures and clear dissimilarity between regions.

(a) (b)

Figure 2.5: TF design scheme using LLE. (a) The k-mean classes in the
embedded 2D space for the CT foot dataset with five parameters: intensity,
gradient, variance, entropy and angular second moment. (b) The rendering
result by assigning high opacity to the classes of bone structure shown as dark
and light blue regions.
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2.4 Implementation

The parameter extraction and dimension reduction is used as the off-line pro-
cesses, but to maximize system interactivity, the system accelerates the volume
rendering and TF specification using graphics hardware. Given a parameter
representation of each voxel, the task of designing PCbTF becomes specifying
a mapping from the nD vector to a color and opacity value. The classification
of each voxel forms a 3D texture stored in the frame buffer. New texture will
be recomputed and redrawn on the screen by the GPU whenever TF changes.
We calculate another 3D RGB texture to store colors and opacities picked by
the user. The interface used to display polylines and design TFs is imple-
mented using OpenGL and FLTK libraries. Rendering uses Cg on a desktop:
Intel Xeon CPU 3.60GHz, 3GB memory and Nvidia GeForce GTX 285 graphic
card. This approach is fast enough for the purposes of real time interaction to
modify the design of TF and update the volume rendering results.

Timing and Performance. The main time-consuming part of the pipeline
is the parameter extraction, which is related to dataset size, window size and
selected parameters. Table 2.1 shows some statistics for all the test datasets.
The table shows that the volume size and window size are major timing fac-
tors - time increases as the volume size grows while the window size decreases.
Meanwhile, comparing with PCbTF, the design of LLE basd TF provides an
easy operation and classification method in the 2D space, although some extra
mapping time is needed. From the timing point view, the bottleneck is the
interactive design of PCbTF. Therefore, total design time of LLE basd TF is
small, which is a good choice when no specified objects are wanted by the user.

Table 2.1: Statistics of various test datasets (WS: window size, T.PE: param-
eter extraction time and T.LLE: local linear embedding time in seconds).

Model Datasize WS T.PE T.LLE
CT Carp 2562x512 93 43.54 –

CT Bladder 2562x24 72x3 14.37 –
MRI Prostate 1282x16 52x3 8.76 –

CT Foot 2563 73 75.11 60.95
CT Engine 2563 93 22.35 17.30
CT Bonsai 2563 73 76.90 64.72
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2.5 Experimental Results and Discussion

Various CT and MRI datasets are used to demonstrate the ability of the
presented framework to deal with challenging tasks.

Applications of Parallel Coordinates based Transfer Function De-
sign Figure 2.6 shows the rendering result of the CT carp dataset generated
by the presented technique. Through the interface, the user can design a
PCbTF as shown in Figure 2.6c to highlight the internal region of interest.
Figure 2.6b shows the obviously visual enhancement of the swimming bladder
by comparison with the result generated by 2D TF (shown in Figure 2.6a).

(a) (b)

(c)

Figure 2.6: Volume rendering results of the CT carp dataset generated by
(a) 2D TF and (b) PCbTF. (c) The design of PCbTF with four parameters
(X1, . . . , X4): intensity, gradient, sum variance and sum average.

Figure 2.7 shows the PCbTF results by comparison with other TFs for
the CT bladder dataset. Figures 2.7a and b show that the 1D/2D TF will
fail to distinguish accurate features from bladder and other tissues. We first
apply the nD TF without any spatial information and receive a clear segment of
bone structure, as shown in Figure 2.7c. However, for the bladder, as shown in
Figure 2.7d, many “noise” points surround the bladder because these voxels are
close to the class of bladder in the parameter space but far away in the spatial
space, as shown in Figures 2.7e and f. We further refine the classification using
the prior position information. Figure 2.7g shows the final rendering result
using PCbTF designed as depicted in Figure 2.7h. The bladder is clearly
separated from the surrounding tissues.

Another case study is the classification of MRI prostate dataset, an ex-
tremely challenging task for the common TF, as shown in Figure 2.8b. From
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.7: Volume rendering results of the CT bladder dataset generated by
(a) 1D TF and (b) 2D TF. Volume segment of (c) bone structure and (d) blad-
der generated by PCbTF in parameter space. Two similar parameter values
(in boxes) in (e) a CT bladder slice but with different spatial values (posx) in
the PCP (f). (g) the result generated by PCbTF combined with spatial infor-
mation. (h) The design of PCbTF with six parameters (X1, . . . , X6): position
(x,y,z), intensity, gradient and entropy.
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(a) (b)

(c) (d)

Figure 2.8: Volume rendering results of the MRI prostate dataset generated by
various TFs. (a) MRI axial slice of the prostate. (b) The result generated by
1D TF. (c) The result generated by PCbTF combined with anatomical knowl-
edge and spatial information. (d) The design of PCbTF with five parameters
(X1, . . . , X5): intensity, second order derivative, kurtosis, contrast and vari-
ance. Points are the boundary of the TF for each coordinate and small figure
(right) shows the matching 2D pattern between X1 and X2.
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the image, a 1D TF cannot truly separate the prostate out from its surrounding
tissues due to the very similar parameter characteristics. Luckily, the medi-
cal information of the prostate such as location, size and shape can be easily
found. We use the anatomical and spatial information to improve the result.
First, detect the colon, an organ with obvious features (large dark region as
shown in Figure 2.8a). According to the anatomical knowledge, the colon is the
nearest organ to the prostate along the posterior end, and thus the system can
estimate the possible position of prostate. The position information becomes
an important parameter combined with the other selected parameters (shown
in Figure 2.8d) for the design of PCbTF to identify the prostate. Figure 2.8c
shows the final result, with high opacity for the prostate and zero opacity for
the surrounding tissues and organs. The above cases support the ability of
PCbTF to clearly and accurately distinguish objects from surrounding tissues
especially for the challenging datasets that tractional TFs fail.

(a) (b)

Figure 2.9: Volume rendering results using LLE as dimension deduction for
(a) the CT engine and (b) the CT bonsai tree datasets.

Applications of Dimension Reduction based Transfer Function
Design For some datasets, more parameters are picked as independent pa-
rameters. For example, the CT Engine dataset has five parameters: inten-
sity, gradient, entropy, correlation information and sum average, while the
CT bonsai tree dataset contains six parameters: intensity, gradient, difference
moment, skewness, variance and sum entropy. In order to simplify the design
process, the system projects all the parameters to the embedded 2D space
by LLE, then implement k-mean classification and design a 2D TF. Although
there is information loss during the dimension reduction, Figures 2.9a and b
still show good classification results: the user can easily recognize the piston
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rings and piston rods for the engine dataset, and distinguish the soil, trunk
and leaves for the bonsai tree dataset by assigning them different colors.
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Chapter 3

Conformal Mapping based
Focus+Context Visualization

3.1 Motivation

Many optical lenses have been available for centuries and humans have become
very familiar with them. Computers can easily simulate lenses’ effects, while
at the same time providing great opportunity to overcome limitations of lenses.
The presented framework addresses a specific limitation that optical lenses as
well as their many digital counterparts have: their local distortion. Although
current lenses are “magic” in the sense what they can reveal, they are less so
when it comes to overcoming serious distortion effects or artifacts. The specific
need is to control local distortion, to preserve local detail undistorted and thus
enable the user to reliably read and decode accurate information. In addition,
a good F+C method must support continuity when transitioning from the
magnified to the minified areas. Only then can the user perform effective visual
searches at these multiple levels of scales. Thus, the framework also considers
the smooth transaction between focus and context regions. The presented
lens uses the concept of conformal mapping as a novel F+C technique to
capture the region of interest (ROI) into a single view while providing a smooth
transition between the focus and context regions. Instead of only using lenses
with regular circle or square shape, arbitrary shape models are embedded in
the system to magnify ROIs with different shapes. The conformal magnifier
minimizes global angle distortions and preserves local angular relationships
which, in turn, preserve important shapes and features of objects during the
deformation.

The local angle of objects is an important structure-based factor/descriptor
for the visual cognition [107]. This property plays a crucial role during the
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(a) (b) (c)

Figure 3.1: Basic merits of the conformal mapping compared with the tradi-
tional lens for symbols located in the transition region between the focus and
context regions. (a) A checker board image with a red X-like symbol. Magni-
fication results using (b) the fisheye lens and (c) the conformal magnifier.

magnification, especially in the transition region between the focus and context
areas, as shown in Figure 3.1. After the magnification, the test symbol is
hard to be identified and recognized visually by the traditional fisheye lens
because of its local angle and area distortion in the transition area, while
the conformal magnifier well-preserves the local orthogonal features of the
symbol. The presented method is advantageous over previous approaches,
as the application of the conformal magnifier well-preserves the local shape
feature, keeps the global structure, and builds a smooth transition field, leading
to reliable zooming results. The main contributions of the presented system
are:

• Arbitrary shape models, used as magnifiers to satisfy different applica-
tion needs;

• A conformal magnifier with local shape preservation and smooth transi-
tion;

• The general applicability of the framework for diverse graphics and vi-
sualization areas.

To the best of the knowledge, no previous work has used conformal mapping
theory as an F+C technique for visualization. In this respect, the conformal
magnifier, representing an ideal continuous multi-focus F+C technique with
several unique features, is a novel non-linear magnification method. The well-
defined conformal function is numerically well behaved: in theory, conformal
mapping does not have any local angle distortion. Namely, everywhere, there
is neither angle nor shape distortion. In the discrete setting of triangular mesh-
ing structure, the approximation of conformal mapping globally minimizes the
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angle distortion. Therefore, conformal mapping is able to well preserve both
local and global shapes with minimal distortion, robustly supporting the so-
lution of several challenging cases.

3.2 Conformal Mapping Theory

This section the merits of conformal mapping and briefly introduce the basic
theory background of conformal geometry, necessary for the discussion in this
work. For more details, read more detials in [108] for Riemann surface theory
and [78] for differential geometry.

3.2.1 Conformal Structure

Conformal structure and its properties are important mathematical founda-
tions used to support the solid conformal mapping theory. Thus, this section
briefly introduces the necessary background knowledge of conformal geometry.

Suppose S is a surface embedded in R3, therefore S has the induced Eu-
clidean metric g. Let Uα ⊂ S be an open set on S, with local parameterization
ϕα : Uα → C, such that the metric has local representation

g = e2λ(p)dzdz̄, p ∈ Uα

where λ : Uα → R is called a conformal factor function, z ∈ C is parameter
coordinates, d denotes the exterior derivative. Then (Uα, ϕα) is called an
isothermal coordinate chart. The whole surface can be covered by a collection
of isothermal coordinate charts. All the isothermal coordinate charts form a
conformal structure of the surface. The surface with a conformal structure is
a Riemann surface [108]. Suppose S1 and S2 are two Riemannian surfaces.
Suppose (Uα, ϕα) is a local chart of S1, (Vβ, ψβ) is a local chart of S2. ϕ : S1 →
S2 is a conformal map if and only if

f = ψβ ◦ ϕ ◦ ϕ−1
α : ϕα(Uα)→ ψβ(Vβ)

is bi-holomorphic, i.e., it satisfies the Cauchy-Riemann equation ∂f
∂z̄

= 0. For
simplicity, the same ϕ is used to denote its local representation. Then a con-
formal map ϕ satisfies ∂ϕ

∂z̄
= 0.

3.2.2 Conformal Mapping by Surface Ricci Flow

Let S be a surface embedded in R3 with the induced Euclidean metric g.
Name that another Riemannian metric ḡ is conformal to g, if there is a scalar
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function u : S → R, such that ḡ = e2ug. The Gaussian curvature induced by
ḡ is

K̄ = e−2u(−∆gu+K),

where ∆g = e−2λ( ∂2

∂x2 + ∂2

∂y2
) is the Laplacian-Beltrami operator under the

original metric g, K the original Gaussian curvature under g, K̄ the induced
Gaussian curvature under ḡ. The above equation is called the Yamabe equa-
tion. By solving the Yamabe equation, one can design a conformal metric e2ug
by a prescribed target curvature K̄.

Ricci flow can be used to solve Yamabe equation. It is a powerful tool
which has been used for proving the Poincaré conjecture. Ricci flow behaves
like a heat diffusion process in the following form:

dgij(t)

dt
= 2(K̄ −K(t))gij(t) (3.1)

where t is the time parameter. If K̄ ≡ 0, Ricci flow deforms the Riemannian
metric g to the uniformization metric ḡ by evolving the Gaussian curvatureK,
such that the Gaussian curvature becomes constant everywhere, according to
the surface uniformization theorem in [108]. The convergency of Ricci flow to
the uniformization metric has been proved in [109] and [110]. Here the system
deals with quadrilateral surfaces with Euclidean background geometry, and
maps them to a planar rectangle parametric domain. Thus, the algorithm
chooses K̄ = 0 at interior points and K̄ = π/2 at four boundary corners in
such cases.

3.2.3 Discrete Surface Ricci Flow

This part describes several major concepts for computing Ricci flow on discrete
surfaces. In practice, most surfaces are approximated by simplicial complexes,
namely triangular meshes. Suppose M is a triangle mesh, V,E, F are vertex,
edge and face set, respectively. Use vi to denote the i-th vertex; [vi, vj] the
edge from vi to vj; [vi, vj, vk] the face, where the vertices are sorted counter-
clock-wisely.
Discrete Metric and Curvature. A discrete metric on a mesh M is a
function l : E → R+, such that on each face [vi, vj, vk], the triangle inequality
holds, ljk + lki > lij. If all faces of M are Euclidean, then the mesh is with
Euclidean background geometry, denoted as E2. The discrete metric represents
a configuration of edge lengths and determines the corner angles on each face
by cosine law,

θjki = cos−1
l2ki + l2ij − l2jk

2lkilij
,

29



where θjki is the angle at vi opposite to edge [vj, vk] in the face. The discrete
Gaussian curvature of vi is defined as an angle deficit at vi, considering all the
corner angles surrounding a vertex vi,

Ki =

{
2π −

∑
jk θ

jk
i vi ̸∈ ∂M

π −
∑

jk θ
jk
i vi ∈ ∂M

.

Circle Packing Metric. The discrete Ricci flow can be carried out through
the circle packing metric, which is a discretization of conformality and was
introduced by Thurston [111]. Each vertex vi is associated with a circle with
radius ri. Two circles at the end vertices of an edge [vi, vj] intersect at an
angle θij, then the edge length lij is given by

l2ij = r2i + r2j + 2rirj cos θij.

A conformal deformation maps infinitesimal circles to infinitesimal circles and
preserves the intersection angles among the infinitesimal circles. As shown in
Figure 3.2a, the circle radius centered at each vertex deforms while not chang-
ing the intersection angles among circles θ′ij = θij, θ

′
ik = θik. The circle packing

metric can be defined as u = {ui}, where ui = log ri, ri is the circle radius of
vi. The variation of the circle packing metric under Ricci flow generates the
desired metric.
Discrete Conformal Metric Deformation. The discrete Ricci flow method
is applied to conformally map the surfaces onto planar domains ϕ : M → D.
In all configurations, the discrete Ricci flow is defined as follows:

dui(t)

dt
= K̄i −Ki, (3.2)

where K̄i is the user prescribed target curvature and Ki is the curvature in-
duced by the current metric. The discrete Ricci flow has exactly the same
form as the smooth Ricci flow, which conformally deforms the discrete metric
according to the Gaussian curvature.

The discrete Ricci flow can be formulated in the variational setting, namely,
it is a negative gradient flow of a special energy form, called Ricci energy, which
is given by

f(u) =

∫ u

u0

n∑
i=1

(K̄i −Ki)dui, (3.3)

where u0 is an arbitrary initial metric. Computing the desired metric with
user-defined curvature {K̄i} is equivalent to minimizing the discrete Ricci en-
ergy.

30



(a) (b)

Figure 3.2: Geometric interpretation of discrete conformal metric deformation.
(a) Conformal circle packing metric deformation and (b) the radial circle (in
red) of a triangle.

The Hessian matrix for discrete Ricci energy is positive definite for the
Euclidean case (with normalization constraint

∑
i ui = 0). Therefore, the

energy is convex and can be optimized using Newton’s method. The Hessian
matrix is computed on the circle packing metric [111]. As shown in Figure
3.2b, the radial circle of a triangle is unique and perpendicular to each vertex
circle. For all configurations with Euclidean metric, suppose the distance from
the radial circle center to edge [vi, vj] is dij, then ∂θi

∂uj
=

dij
lij
, furthermore,

∂θj
∂ui

= ∂θi
∂uj
, ∂θi

∂ui
= − ∂θi

∂uj
− ∂θi

∂uk
. Define the edge weight wij for edge [vi, vj] which

is adjacent to triangles [vi, vj, vk] and [vj, vi, vl] as

wij =
dkij + dlij
lij

.

The Hessian matrix H = (hij) is given by the discrete Laplace form,

hij =


0 [vi, vj] ̸∈ E
−wij i ̸= j∑
k wik i = j

.

According to the Gauss-Bonnet theory [78], the total curvature must be
2πχ(M), where χ is the Euler characteristic number ofM . In this application,
M is a topological quadrilateral, so χ(M) = 1. Set the target curvature of the
four boundary corners to be π/2, other boundary vertices and interior vertices
to be 0. Then the toplogical quadralteral is mapped to a rectangle. The
convergency of discrete Ricci flow has been proved by [112]. Detaials about
discrete analogue for general Ricci flow can be found in [113] and [114].
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Figure 3.3: A schematic diagram of the conformal magnifier pipeline using a
simple 2D checker board image as input.

3.3 Conformal Magnifier

The conformal magnifier is built upon the conformal mapping theory. Fig-
ure 3.3 shows the pipeline of the framework. There are two pre-computation
steps: magnifier mesh model design and conformal mapping. An arbitrary
mesh model as the magnifier can either be automatically generated based on
mathematical definitions or be manually drawn through the user interface.
Then, the system pre-calculates the conformal map of each magnifier model
(parameterization of each vertex of mesh model). For any input, including
both 2D map and 3D volumetric datasets, with the user defined ROI and
magnifier models, the system can automatically display magnification results
in real time using texture mapping or volume rendering. This section first
introduces the magnifier mesh model design, and then briefly describes the
theory and algorithm of the conformal mapping.

3.3.1 Magnifier Model Design

Two steps are required to efficiently design a surface model: point cloud con-
struction and mesh generation from point cloud, as shown in Figure 3.4.
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(a) (b)

Figure 3.4: Two steps in designing a magnifier model with an arbitrary shape:
(a) Point cloud generation with respect to the user defined (red) boundary and
(purple) centerline. The cyan line is a quadratic curve for generating 3D in-
terpolation points between a boundary sample point and its nearest centerline
sample point. (b) Mesh model generation using the point cloud generated in
(a). The black dashed boxes show the magnified details.

Point Cloud Construction. The specified plane point cloud is con-
structed by the boundary curve and centerline drawn by the user to highlight
the ROI, as shown in Figure 3.4a. The user can adjust the magnification ratio
by adjusting the height of the centerline along z-direction position (in R3 with
Pxy as a 2D plane). Then, the system automatically discretizes both boundary
curve and centerline based on the sampling rate. For each boundary sample
point, the L2-nearest centerline sample point is found to form a pair. For each
pair, a pre-defined quadratic function (e.g., Gaussian function) is set with the
current pair as start and end points, and then the interpolated positions of
new cloud points are calculated and generated based on it, which results in
a model (for the entire plane) with a continuous and smooth transition. The
sampling rate can be interactively set by the user. In general, a high sampling
rate generates a large number of points and fits the transition area smoothly,
but takes long to compute (e.g., 14.36 sec for a test point cloud with 20,152
points).

Mesh Generation from Point Cloud. The system generates smooth
surface meshes from the point cloud based on Delaunay refinement [115], as
shown in Figure 3.4b, and further refines the mesh by inserting additional
vertices if necessary. The manifold extraction is also implemented to have
a regular smooth surface using the ball pivoting method [116]. In general,
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(a) (b)

(c) (d)

Figure 3.5: Various specified mesh models. Regular shapes using (a) a hemi-
sphere and (b) a Gaussian function. Arbitrary shapes using (c) a square plane
with a smooth Gaussian transition, and (d) a random shape. The height of
each model is non-linearly proportional to its magnification ratio.

more points in high curvature features produce a better fitting surface but
requires longer computing time. Meanwhile, the computation speed of the
mesh generation is also affected by the shape and topology of the point cloud
(e.g., 24.77 sec for the same test point cloud with 20,152 points).

With this design method, the user can interactively define various regu-
lar or arbitrary-specified magnifier models (Figure 3.5) to magnify the ROI.
Supported by conformal mapping theory, the truly arbitrary magnifier model
design is the first major advantage of the framework.

3.3.2 Conformal Mapping Algorithm

The discrete Ricci energy can be optimized using Newton’s method to achieve
the unique global optimal metric with the prescribed curvature. The imple-
mentation detail is listed in Algorithm 2.

The system designs the magnifier model as a 2.5-dimensional mesh with
coordinates (x, y, z), where the model can be projected to the 2D plane with
coordinates (x, y), z describes the height from the plane. According to the
conformal mapping theory, the local magnification ratio of the conformal mag-
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Algorithm 2 Newton’s Method of Discrete Ricci Flow

Input: a 3D mesh M = (V,E, F ), target curvature K̄ = {K̄i}, curvature
error threshold ε
Output: corresponding 2D parameterization positions u of mesh vertices,
used as coordinates for texture mapping or volume rendering
Initial the parameterization position u0 and curvature K = {Ki}
while max|Ki −Ki| > ε do
for all edges e = [vi, vj] ∈ E do

lij ←
√
γ2i + γ2j + 2γiγj cos θij {Compute the edge length by radii γi, γj

centered at vi, vj}
end for
for all corner angles θi ∈ [vi, vj, vk] do

θi ← cos−1 l2ij+l2ki−l2jk
2lij lik

{Compute the corner angle}
end for
for all edges e = [vi, vj] ∈ E do

wij ←
dkij+dlij

lij
{Compute the edge weight}

end for
for all vertices vi ∈ V do
hij ← −wij, [vi, vj] ∈ E;
hii ←

∑
k wik{Compute the Hessian matrix H}

end for
du← H−1(K− K̄) {Minimize the discrete Ricci energy}
for all vertices vi ∈ V do
ui ← ui + dui {Update the circle packing metric for the calculation of
each corresponding parameter position}

end for
for all vertices vi ∈ V do
Ki ← 2π −

∑
jk θ

jk
i , vi ̸∈ ∂V ; or

Ki ← π −
∑

jk θ
jk
i , vi ∈ ∂V {Update the Gaussian curvature}

end for
end while
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Table 3.1: Statistics of test magnifier models.

Model No. of Vertices No. of Faces Time (s)

Sphere 3446 6826 3.24

Square 3125 6018 3.08

Elongated Model 3691 7063 3.76

Low Gaussian 2192 4830 2.19

High Gaussian 4246 8926 3.97

Curved Model 2639 5328 2.65

nifier is non-linearly proportional to the height z at the corresponding vertex
v = (x, y, z). Therefore, the global/local magnification ratio is controllable by
adjusting the heights of all/some of vertices. The entire computational pro-
cess for a magnifier model which is a topological quadrilateral is illustrated in
Figure 3.6. The original magnifier mesh model is shown in Figure 3.6a, with
four corner vertices noted as p1, p2, p3, p4. For solving Equation 3.1, first set
the target curvature for each vertex in the triangle mesh (Figure 3.6b). Then
the four corner vertices are assigned π/2, while other vertices are 0. In Figure
3.6c, the Ricci flow conformally maps the mesh model onto a planar rectangle,
with the corner vertices mapped to the rectangle corners. Thus, the system
generates the conformal map, with the corresponding 2D parameterization
position of each vertex in the selected mesh model, used as coordinates for
texture mapping or volume rendering. Giving rise to the conformally bijective
mapping from checker-board texture to this model based conformal map in the
parameter domain, the ROI is magnified with a smooth transition, as shown
in Figure 3.6d.

Computing conformal mapping by Ricci flow equals to solving a non-linear
geometric PDE, which is stable and robust to the resolution of models. With
an accelerated CPU/GPU solution, the conformal mapping of magnifier mod-
els is on second level for most cases (note that the conformal mapping for the
designed modelscan is computed offline, separated from the F+C magnifying
procedure in practice). The real-time performance of F+C conformal mag-
nifiers depends on the efficiency of rendering or ray-tracing technique design,
which could be easily satisfied on various devices.
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Figure 3.6: Conformal mapping for a topological quadrilateral surface: (a)
The original surface. (b) The corresponding triangular mesh magnifier model.
(c) The image of the conformal map, which is a rectangle. (d) A checker board
texture mapping through the rectangular conformal map, demonstrating that
the local angles are correctly preserved.

3.4 Implementation

A general framework is implemented for the conformal mapping based F+C
visualization. The system is built using a two-tier architecture. The front-end
user interface and interactive operations are based on a small number of menu
bars, check boxes and pointer interactions using OpenGL and Glut libraries.
With the objective to optimize the computing speed, the combination of CPU
and GPU is applied.

3.4.1 Pre-computation

For efficiency purposes, the core algorithms of two pre-computation steps:
mesh generation and conformal mapping, are implemented on the CPU. The
computation time of conformal parameterization is proportional to the number
of vertices and is slightly affected by the topology shape of each magnifier
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(a)

(b) (c)

Figure 3.7: Implementation of multi-scale magnification using the conformal
magnifier with a hemisphere model. (a) Multi-scale satellite images of the
United States. The ROI contains more details/pixels as the scale decreases
(the magnification ratio increases). (b) The top view and (c) the side view of
the continuous magnification ratios of the conformal magnifier calculated by
conformal mapping. The colorbar shows the scale of the magnification ratio:
from large (red) to small (purple).

model. Table 4.1 shows the model shape, vertex and face count, and pre-
computation time of conformal parameterization for various magnifier models
on a Dell desktop precision PWS670 with Intel Xeon CPU 3.60GHz, 3GB
Memory and Nvidia GeForce GTX 285 graphic card. Once a magnifier model
is parameterized, there is no need to do any parameterization modification for
different input datasets. This is the key to the real-time performance of the
system.

3.4.2 Real-time Performance

The transfer function specification, texture mapping, and volume rendering
techniques are implemented using GPU acceleration.

Texture Mapping. For the 2D texture image, the system directly calls
the texture mapping functions provided by the OpenGL library. Each input
image is processed as an 8bit per-channel texture and directly mapped to the
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(a) (b)

Figure 3.8: The new raycasting scheme: each ray is calculated based on (b)
the designed magnifier plane (green curve marked as P’) instead of (a) the
traditional 2D plane.

Table 3.2: Time statistics of texture mapping or volume rendering for test
datasets. (second)

Catalog Name Size Model Time (ms)
Information Symbol 5122 Hemisphere 2.6
Route+city SF city 800× 750 Gaussian 3.0
Route+city Expressway 1080× 680 Elongated 3.8
Route+city NYC 10242 Gaussian 4.8
Surface Foot vertex:21.3K Gaussian 8.2
Medical Colon polyps 5122 × 96 Gaussian 16.3
Medical Skull 2563 Gaussian 14.7
Volume Smoke 643 Hemisphere 0.5

selected magnifier model according to the pre-calculated conformal param-
eters. Unlike traditional piecewise blending methods in the image domain,
supported by the conformal mapping theory, the system directly provides a
continuous blending function in the parameter space. Figures 3.7b and 3.7c
show the continuous magnification ratios of the hemisphere magnifier model
using a color map. They also reveal two properties of conformal mapping: the
model height is non-linearly proportional to the magnification ratio; and the
smooth transition of the magnification ratios results from the numerical conti-
nuity in the parameter space, which theoretically supports the texture mapping
of continuous-scale images. Therefore, the conformally bijective texture map-
ping between the parameterization value and the image pixel is syntactically
and semantically trivial. In order to accelerate the search efficiency, the sys-
tem has tree structures for the multi-scale images with the use of pre-marked
feature points. Take Figure 3.7a as an example, the root of a tree structure
is a pixel at the largest scale (100km×100km). Its direct children are right
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from the next small scale (10km×10km), and leaves are at the smallest scale
(1km×1km). The smaller scales and leaves contain more details to reveal the
local information. For the optimal speed and space, only tree structures in the
ROI is stored.

Volume Rendering. In order to extend the conformal magnifier as a
3D exploration tool, different from the camera texture [117], which locally
changes the 2D perspective plane of camera space, the 2D camera plane is
directly replaced with the specified 3D magnifier model, as shown in Figure
3.8. Fixing a view point, the surface of the 3D hemisphere magnifier model
forms a continuous view with the following fact: the closer to the view point,
the smaller the view distance will be and the larger the object of interest
will be. The fragment program is adapted for volume rendering proposed by
Stegmaier et al. [20], considering the model shape and several factors including
depth, view angle, and camera position. The framework generates results with
the nonlinear magnification of 3D views in real-time with less performance
degradation. Notice that this method directly works in 3D, which is more
realistic and interactive than the direct deformation on the 2D rendered image.

The texture mapping or volume rendering needs to be re-computed when-
ever the focus or the magnifier model changes, but with real-time performance.
Table 3.2 shows the texture mapping or volume rendering time for all exper-
imental cases on the same desktop mentioned above. Table 3.2 demonstrates
that the design strategy is fast enough for various requirements.

3.5 Experimental Results and Discussion

This section applies the conformal magnifier to various applications and demon-
strate the merits of the presented framework.

3.5.1 Route and Map Visualization

City and route F+C visualization is another popular application. For the vir-
tual city, Qu et al. [118] have described an F+C route zoom and information
overlay method for 3D urban environments. Trapp et al. [119] have proposed
a 3D generalization lens for the interactive F+C visualization and applied it
to virtual city models with different levels of structural abstraction. For the
viewing of routes, Ziegler et al. [120] have presented an automated system
for generating context-preserving route maps. It depicts navigation and ori-
entation routes as a path between nodes and edges of a topographic network.
Recently, Karnick et al. [121] have presented a novel multifocus technique to
generate a printable version of a route map that shows the overview and detail
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(a) (b)

Figure 3.9: Efficient route view using the conformal magnifier. Instead of
using (a) hemisphere models with a small (blue dashed circle) and a large
radius (green dashed circle), (b) an elongated model can magnify the entire
route of interest without taking any extra movement or magnifying any non-
interest area. It also has no widening artifacts of the routes of interest.

views of the route within a single, consistent visual frame. These methods,
however, may fail to preserve either the local features or the overall context
of the surrounding map constituents, such as nearby cities, forests, and other
useful information. The presented method magnifies the target routes with lo-
cal shape preservation while keeping all context information, which improves
the magnification function for routes and maps.

The presented method can enable the user to directly design arbitrary
magnifier models based on the shape of ROI on the route map. This design
has effective merits for the route view: cover the entire ROI without the need
of moving the magnifier around, and only cover the ROI without any non-
interest region. For example, an elongated magnifier model in Figure 3.9b
covers the entire route of interest (highlighted by a blue dashed circle), while
a regular hemisphere magnifier model in Figure 3.9a only covers a small part
of it. A parameter Λ is defined to describe the ROI magnification efficiency as:
Λ = AreaROI

AreaROM
, where ROM is the region of magnification. As shown in Figures

3.9a (ROM is highlighted by a blue dashed circle) and 3.9b, although both
magnification results have the high magnification efficiency (Λ ≈ 1.0), Figure
3.9a fails to reveal the entire ROI. If increasing the radius of the hemisphere
magnifier model in Figure 3.9a (a new ROM is highlighted by a green dashed
circle) to cover the entire ROI, many non-interest regions will be magnified
as well, sharply decreasing the magnification efficiency factor Λ down to 0.63.
The system successfully provides a good magnification scheme for the route
view as it presents general route trends and specific spots simultaneously.

In order to further demonstrate the merit of the conformal magnifier for
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(a) (b)

(c) (d)

Figure 3.10: Magnification results using different lenses for the NYC street
map. (a) Original NYC map. Magnification results using (b) the bifocal lens,
(c) the fisheye lens, and (d) the conformal magnifier. The red circles highlight
the seriously distorted areas.

the route and city visualization, popular lenses, including bifocal [122] and
fisheye lenses [56], have been implemented as comparison. Figure 3.10 shows
the route/map magnification results using different lenses. By comparison,
the conformal magnifier enlarges the small landmark/roads along the route of
interest for a detail view with the best local shape preservation, and keeps the
entire context region through a smoothest transition.

3.5.2 Volumetric Data Visualization

Our conformal magnifier can be easily applied to various volumetric datasets
for real-time navigation.

Medical Datasets. Angle preserving method is important, especially
for the computer aided detection (CAD), because the 3D geometric features
are carried by the mapping with high fidelity. For example, Figure 3.11d
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(a) (b)

(c) (d)

Figure 3.11: Magnification results using different lenses for the volumetric
colon dataset. (a) Original colon dataset. Magnification results using the poly-
focus lens (b) without and (c) with fixed boundary, following the Carpendale’s
approach [1]. (d) The magnification result using the conformal magnifier with
a Gaussian model: the local shape/features of the interior surface and the
polyp are well-preserved with the smoothest transition region.

illustrates a pre-marked polyp on a colon surface both in original 3D view
and in display view of the system. It is obvious that the shape of the polyp
is well-preserved after the magnification. During the diagnosis, radiologists
identify colon polyps mainly based on shape information. By comparison with
traditional lenses (Figures 3.11b and c), the conformal magnifier well-preserves
both global and local shapes of the colon polyps for easy and accurate detection
and diagnosis.

As an alternative F+C method, although the presented method is not
distortion-free in the focus area, it has a solid mathematical foundation to
preserve both local shape and global structure simultaneously and to produce
a smooth transition area without any serious distortion. Both properties are
important merits for the accurately visual cognition. Figure 3.12 shows an-
other magnification comparison results using two prominent methods with the

43



(a) (b)

(c) (d)

Figure 3.12: Magnification results using different lenses for the volumetric
foot dataset. (a) Original foot surface mesh dataset with a predefined focal
area (red circle). Magnification results using (b) the polyfocus lens following
the Carpendale’s approach [1], and (c) the energy based distortion minimiza-
tion method [2] (courtesy to Wang et al. [2]). (d) The magnification result
using the conformal magnifier with a Gaussian model: both local and global
shape/features are well preserved.

volumetric foot dataset. From the perspective of local shape preservation, as
shown in Figure 3.12b, Carpendale’s method [1] seriously deforms the sur-
rounding transition area (two toe bones near the ROI) without preserving
the original shape features. By comparison with the original input dataset as
shown in Figure 3.12a, the magnification results generated by Carpendale’s
[1] method (Figure 3.12b) and the presented technique (Figure 3.12d), respect
the global shape/structure of foot dataset without any obvious shape confusion
for the accurate object recognition. However, as shown in Figure 3.12c, after
setting the ROI (two foot toes), the magnification result generated by Wang’s
method [2] well-preserves the local structure/shape in the focus area, but se-
riously affects the context region and introduces visual artifacts for the global
structure, such as the extra extension of the left three toes and the overall foot
width (the surrounding regions are enforced to expand because the cubes are
connected [2]). Wang et al. [2] have also mentioned this problem as one of
their major limitations.
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(a) (b)

(c) (d)

Figure 3.13: Histograms show the distribution of the quasi-conformal distor-
tion using (a) the fisheye lens, (b) the polyfocus lens following [1], and the
conformal magnifiers with (c) a hemisphere model and (d) a Gaussian model.

3.5.3 Distortion Measurement

In order to quantitatively measure the angle distortions of various lenses, the
distortion of conformality is computed as: the ratio of the larger to the smaller
eigenvalue of the Jacobian matrix generated using the parameterization value
with respect to lens definition functions or magnifier models (details in [78,
108]). The ideal conformality is 1.0, which is the most conformal. But due
to the numerical problem, it cannot be exactly 1.0. The region with a lower
distortion value means that it is more similar to its original shape, while the
region with a higher distortion value is naturally stretched. Histograms are
used to show the distribution of the distortion of conformality for different
lenses. As shown in Figures 3.13c and 3.13d, the mapping of the conformal
magnifier is close to conformal everywhere: the maximal errors of the two pre-
defined magnifier models are less than 4% and 2%, respectively. By comparison
with the fisheye lens (Figure 3.13a) and the Carpendale’s polyfocus lens [1]
(Figure 3.13b), the presented method is statistically significant for the angle
preservation (local shape preservation).
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Chapter 4

Area-Preservation based
Focus+Context Visualization

4.1 Motivation

Angle-preservation (conformal) mapping flattening preserves local shapes, and
thus has been broadly used in many feature oriented applications in visualiza-
tion and medical imaging. However, conformal method usually substantially
distorts area, which fails to display accurate size of area, including height,
width, thickness or diameter of ROIs. Unfortunately, these distorted area
parameters are extremely important in many medical image recognition and
auto diagnosis applications, such as brain fold detection [75] or colon polyps
detection and diagnosis [77, 123]. Moreover, it is well known that conformal
mapping induces severe area distortions for surfaces with long tube shapes,
such as the elongated lion head model, as shown in Fig. 4.1. This disadvan-
tage derives from the fundamental obstacle of conformal mapping theory and
it can not be easily overcome. Imagine a cylinder r(θ, z) = (cos θ, sin θ, z),
a conformal mapping ϕ(θ, z) = e−z(cos θ, sin θ) maps it to the unit disk, the
area distortion factor e−2z is exponential with respect to the height z, and in
practice easily exceeds the machine precision.

By comparison, area-preservation mapping can generate accurate and in-
formation lossless mapping results, which is a key objective for many medical
imaging applications, with the ability to carry out measurements for detecting
anatomic abnormalities. For example, in virtual colonoscopy, the physician
may want to measure and compare different sizes of polyps, to determine dis-
ease conditions and cancer risks [76]. A special case of this problem also occurs
in any application where volume or area measurement is critical (e.g., brain
data in [75, 124, 125]). From human cognition perspective, area-preservation
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(a) (b)

(c) (d)

Figure 4.1: Disadvantages of conformal mapping for elongated shapes. (a)
Front view and (b) back view of the elongated lion head surface model. Sur-
face flattening results induced by (c) conformal mapping and by (d) the area-
preservation mapping. Conformal mapping generates major area distortions
for both the lion face and the vase regions, while the presented method can
preserve them accurately for clear view without losing any information (high-
lighted by the red circles).

mapping and flattening can also enhance the viewer’s ability to easily recog-
nize the component-aware patches or long branch parts distribution of models,
and consequently understand the local feature with the knowledge of a global
structure (Figure 4.1). Therefore, area-preservation mapping has vast poten-
tials to be applied to many related visualization and graphics applications.

To simultaneously tackle the above challenges, a flattening framework is
developed, which provides a global view of the surface with a minimum of
area distortions, while still, at the same time, maximally preserving local an-
gle/shape features on the flattened surface. This work introduces a solution
to this problem using the technique of optimal mass transport (OMT), based
on Monge-Brenier theory [126].
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4.1.1 Optimal Mass Transport

The presented solution is inspired by the similarity between a mapping prob-
lem and optimal mass transport problem. Monge [86] raised the classical “op-
timal mass transport problem” that concerns determining the optimal way,
with minimal transportation cost, to move a pile of soil from one place to
another. Formally, spaces X and Y are with measures µ and ν, respectively,
the transportation cost for moving from x ∈ X to y ∈ Y is c(x, y). The
optimal transport map T : X → Y is measure preserving, namely for any
B ⊂ Y , ν(B) = µ(T−1(B)), and minimizes the total transportation cost∫
X
c(x, T (x))µ(x)dx. From OMT perspective, the surface mapping/flattening

can be viewed as an optimal transport map T , and the size of area can be
viewed as the preserved measure µ and ν.

The solution of the OMT problem lies at the following theory. Kantorovich
[90] has proved the existence and uniqueness of the optimal transport plan us-
ing a linear programming method on n2 variables. This Monge-Kantorovich
optimization has been used in numerous fields from physics, econometrics to
computer science, including data compression and image processing [127]. Re-
cently, researchers have realized that optimal transport could provide a pow-
erful tool in image processing, if one could reduce its high computational cost
[75, 89]. However, it has one fundamental disadvantage that the number of
variables is O(n2), which is unacceptable to visualization and graphics applica-
tions since a high resolution 3D/volume dataset normally includes more than
106 vertices.

An alternative Monge-Brenier optimization can significantly reduce the
number of variables. Brenier [91] has developed a different approach for spe-
cial optimal transport problem, where the cost function c(x, y) is a quadratic
distance c(x, y) = ∥x − y∥2. Brenier’s theory proves that there is a convex
function u : X → R, the unique optimal transport map is given by its gradi-
ent map, x→ gradu(x). The Monge-Brenier’s approach reduces the unknown
variables from n2 to n, which greatly reduces the computational cost, and
improves the efficiency. Here, Monge-Brenier’s approach is followed.

4.1.2 Comparisons and Contributions

Comparison. The presented method mainly follows the Monge-Brenier ap-
proach, based on the variational principle [92]. Comparing to the state-of-the-
art techniques, it has many merits as follows:

• Comparing to the Monge-Kantorovich approaches [89, 90, 128], the pre-
sented method only requires O(n) variables instead of O(n2) variables.
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The system greatly reduces the storage complexity, and it is thus much
more efficient.

• Comparing to the Monge-Brenier based approaches [129–131], all the
existing methods are for image processing tasks. The presented method
however focuses on surfaces. For image processing, the samples are rel-
atively uniform, and therefore, the computation is relatively stable. In
these cases, the sample points are produced by the conformal mapping,
the sample density is highly non-uniform, and thus conventional meth-
ods are very vulnerable and error-prone for the large area distortions
induced by the conformal mapping. All experiments indicate that con-
ventional methods are not robust enough. Therefore, the step length
control algorithm (Section 4.2) is used to improve the robustness.

• Comparing to the minizing flow methods [75, 88, 132], the solution of lat-
ter is equivalent to a gradient descend method for optimizing the trans-
portation cost. In contrast, the presented method is equivalent to the
Newton’s method to optimize a convex energy, which has a higher order
convergence rate. Therefore, the presented method is more efficient.

The key contribution of this work is the introduction of a novel area-
preservation mapping/flattening algorithm using the optimal transport tech-
nique, based on Monge-Brenier theory. The new method has the following
merits:

• It reduces the number of variables from n2 to n, greatly reducing the
complexity.

• It converts the optimal mass transport problem to a convex optimization
problem, and can be solved using Newton’s method, greatly improving
the efficiency.

• The algorithm gives users full control of the size of area everywhere.
Users can design and manipulate the area of each triangular component
freely, improving the flexibility.

4.2 Theoretical Foundation

In this section presents the theoretical foundation.
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4.2.1 Optimal Mass Transport

Monge’s Problem. The problem of finding a map T minimizing Equation
4.1 (such that ν = T#µ), has been first studied by Monge [126] in the 18th
century. LetX and Y be two metric spaces with probability measures (volumes
or areas) µ and ν, respectively. Assume X and Y have equal total measures
(volumes or areas): ∫

X

µ =

∫
Y

ν.

A map T : X → Y is measure preserving (volume or area preservation) if
for any measurable set B ⊂ Y , such that:

µ(T−1(B)) = ν(B).

Denote by c(x, y) the transportation cost for sending x ∈ X to y ∈ Y , then,
the total transportation cost is given by:∫

X

c(x, T (x))dµ(x). (4.1)

If this condition is satisfied, ν is said to be the push forward of µ by T , and
then write ν = T#µ.

In the 1940s, Kantorovich [90] has introduced the relaxation of Monge’s
problem and solved it using linear programming. At the end of 1980’s, Brenier
[91] has proved that there is a convex function f : X → R, and the optimal
mass transport map is given by the gradient map x→ ∇f(x).

4.2.2 Discrete Optimal Mass Transport

Suppose µ has compact support on X, define:

Ω = supp µ = {x ∈ X|µ(x) > 0},

and assume Ω is a convex domain in X. The space Y is discretized to Y =
{y1, y2, · · · , yn} with Dirac measure ν =

∑n
j=1 νjδ(y − yj).

Define a height vector h = (h1, h2, · · · , hn) ∈ Rn, consisting of n real
numbers. For each yi ∈ Y , construct a hyperplane defined on X:

πi(h) : ⟨x, yi⟩+ hi = 0, (4.2)

where ⟨, ⟩ is the inner product in Rn.
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Define a function:

uh(x) = max
1≤i≤n

{⟨x, yi⟩+ hi}, (4.3)

then f(h, x) is a convex function. Next denote its graph by G(h), which is
an infinite convex polyhedron with supporting planes πi(h). The projection
of G(h) induces a polygonal partition of Ω,

Ω =
n∪

i=1

Wi(h),Wi(h) = {x ∈ X|uh(x) = ⟨x, yi⟩+ hi} ∩ Ω. (4.4)

Each cell Wi(h) is the projection of a facet of the convex polyhedron G(h)
onto Ω. The convex function uh on each cell Wi(h) is a linear function πi(h),
therefore, the gradient map

grad uh : Wi(h)→ yi, i = 1, 2, · · · , n. (4.5)

maps each Wi(h) to a single point yi.
The following theorem plays a fundamental role here:

Theorem 4.2.1 For any given measure ν, such that

n∑
j=1

νj =

∫
Ω

µ, νj > 0,

there must exists a height vector h unique up to adding a constant vector
(c, c, · · · , c), the convex function Equation 4.3 induces the cell decomposition
of Ω, Equation 4.4, such that the following area-preserving constraints are
satisfied for all cells, ∫

Wi(h)

= νi, i = 1, 2, · · · , n. (4.6)

Furthermore, the gradient map graduh optimizes the following transportation
cost

E(T ) :=

∫
Ω

|x− T (x)|2µ(x)dx. (4.7)

The existence and uniqueness have been first proven by Alexandrov [133] using
a topological method. The existence has been also proven by Argmstrong [134],
and the uniqueness and optimality have been proven by Brenier [91].

Recently, Gu et al. [92] have given a novel proof for the existence and
uniqueness based on variational principle. This framework follows their ap-
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proach. First, define the admissible space of the height vectors:

H0 := {h|
∫
Wi(h)

µ > 0,
∑
i

hi = 0}.

Then, define the energy E(h) as the volume of the convex polyhedron bounded
by the graph G(h) and the cylinder through Ω minus a linear term,

E(h) =

∫
Ω

uh(x)µ(x)dx−
n∑

i=1

νihi. (4.8)

The gradient of the energy is given by:

∇E(h) =
(∫

Wi(h)

µ− µi

)
, (4.9)

Suppose the cellsWi(h) andWj(h) intersects at an edge eij =Wi(h)∩Wj(h)∩
Ω, then, the Hessian of E(h) is given by:

∂2E(h)

∂hi∂hj
=

{ ∫
eij
µ Wi(h) ∩Wj(h) ∩ Ω ̸= ∅

0 otherwise
(4.10)

In Gu et al. [92], it is proven that H0 is convex, and the Hessian is posi-
tive definite on H0, this implies the convexity of the energy in Equation 4.8.
Furthermore, the global unique minimum h is an interior point of H0. At the
minimum point, ∇E(h) = 0, this implies the gradient map graduh meets the
measure-preserving constraints in Equation 4.6. Furthermore, this gradient
map is the optimal mass transportation map.

Due to the convexity of the volume energy (Equation 4.8), the global min-
imum can be obtained efficiently using Newton’s method. Comparing to Kan-
torovich’s approach, where there are n2 unknowns, this approach has only n
unknowns.

4.2.3 Conformal Mapping

Current work first applies conformal mapping [135] to map a topological sur-
face onto the planar domain. Suppose (S,g) is a surface embedded in R3, with
the induced Euclidean metric g. Let the mapping ϕ : (S,g)→ (D, dx2 + dy2)
transforms the surface to the planar unit disk D, where dx2+dy2 is the planar
Euclidean metric. Therefore, ϕ is a conformal mapping, or angle-preservation
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mapping, if ϕ is a diffeomorphism, such that:

g(x, y) = e2λ(x,y)(dx2 + dy2),

where λ : S → R is a smooth function defined on the surface, the so called
conformal factor.

Theorem 4.2.2 (Riemann Mapping) Suppose (S,g) is an oriented metric
surface, which is of genus zero with a single boundary. Given an interior point
p ∈ S and a boundary point q ∈ ∂S, there is a unique conformal mapping
ϕ : S → D, satisfying ϕ(p) = 0 and ϕ(q) = 1.

This work follows the approach proposed by Dominitz et al. in [75], which
gives an area-preservation mapping with shape preservation. First, map the
surface (S,g) onto the planar disk using a Riemann mapping ϕ : S → D, then
the conformal factor defines a measure on D, e2λ(x,y)dxdy. Then construct
an optimal mass transport map τ : (D, e2λ(x,y)dxdy) → (Ω, dxdy), where Ω
is a planar convex domain, the composition τ ◦ ϕ : (S,g) → (Ω, dxdy) is an
area-preservation mapping.

Figure 4.2: The pipeline of the OMT based area-preserving framework.

4.3 Optimal Mass Transport Map

This section gives the detailed algorithms for the optimal mass transport map
generation. Figure 4.2 shows the pipeline of the OMT based area-preserving
framework. The input surface is approximated by a triangular mesh M , with
vertex sets V , face set F and a convex planar domain Ω, represented as a con-
vex polygon. The goal is to compute an area-preserving map from the mesh
M to the planar domain Ω. The discrete algorithm is based on the Monge-
Briener theory and utilizes the variational principle to solve the optimization
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problem. For the input, aiming to get ROIs with arbitrary shape (e.g., ir-
regular shape of the brain folds), the saliency map [3] is utilized to for the
ROI detection. Once users specify local area weight wi everywhere, the sys-
tem will iteratively solve the OMT map and refine the area-preserving result
that yields strict equality of weighted sizes of area between the input surface
and flattened plane. The area weighting parameter wi is defined as weighted
areas in 2D or weighted volumes in 3D. After the generation of the OMT map
(bijectively area-preservation mapping), the system directly applies the ROI
guided texture mapping to obtain the output.

Merits of Saliency Map. The application of saliency map can (1) accu-
rately detect arbitrary ROI shape to obtain the accurate area preservation;
and (2) provide hierarchical resolution of surface models, supporting the re-
duction of triangles in the context area, while preserving high resolution ones
in ROIs, for the purpose of fast computation. Take the brain model as an ex-
ample, instead of using the original model with 100K faces, with the saliency
guided ROI detection, the face account can be significantly reduced to 10K or
less (data oriented).

4.3.1 Initialization

The system algorithm uses the conformal mapping result (angle preservation)
to set up the initial position for each vertex vi. First normalize the mesh such
that its total area equals to the area of the planar domain Ω. Then initialize a
discrete conformal mapping ϕ : M → D. This framework utilizes the discrete
Ricci flow method [135] to achieve this step. Then, after assigning each vertex
a target area w̄i, the algorithm defines for each vertex vi ∈ V the Dirac measure
associated with it, as one third of the total area of faces adjacent to it,

µ(vi) =
1

3

∑
[vi,vj ,vk]∈F

Area([vi, vj, vk]),

where [vi, vj, vk] represents the triangle formed by vertices vi, vj and vk.
Use the images of all the vertices as the sample points of the unit disk D,

Y = {ϕ(vi)|vi ∈ V }, each sample ϕ(vi) is associated with the Dirac measure
µ(vi). By translation and scaling, further transform Y to be contained by Ω.

4.3.2 Optimal Mass Transport Mapping

According to the Monge-Briener theory, we need to find the height vector
h = (h1, h2, · · · , hn). Fix a height vector, the support planes are given by
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Algorithm 3 Area-Preservation Mapping

Input: Input triangular meshM , total area π and area difference threshold
δw.
Output: A unique diffeomorphic area-preservation mapping f : M → D,
where D is a unit disk. The area wi of each cell Wi ∈ D is close to the target
area wi.
1. Run conformal mapping by discrete Ricci flow method [135] ϕ :M → D,
where D is a unit disk. Assign each site ϕ(vi) ∈ D with zero power weight,
and target area wi = µ(vi) defined above. Translate and scale all sites so
that they are in the unit disk.
2. Compute the power diagram and calculate the area wi of each cell Wi.
3. Compute the dual power Delaunay triangulation, and compute the
lengths of edges in the diagram and triangulation to form the Hessian matrix
of the convex energy in Equation 4.7 .
4. Update the power h← h+H−1(w̄ −w).
5. Repeat step 2 through step 4, until ∥wi−wi∥ of each cell is less than δw.
6. Compute the centroid of cell Wi, denoted as ci. Then the area-
preservation mapping is given by τ−1 ◦ ϕ(vi) = ci, where τ is the Brénier
map τ : Wi → ϕ(vi).

πi(h) : ⟨x, yi⟩ + hi, the convex function is uh(x) = maxi⟨x, yi⟩ + hi, and its
graph G(h) can be computed as upper envelope of the supporting plane πi(h).
The projection of G(h) onto Ω forms a polygonal partition Ω =

∪
iWi(h).

The implementation details are listed in Alg. 3. In order to preserve the
area of cell Wi, the system need to iteratively update the virtual variable
for each vertex with height vector h = (h1, h2, · · · , hn). Thus, in each itera-
tion, first compute the power diagram, using each vertex as a point and the
weighted radius as the power in the diagram. Then, in step 3, compute the
dual triangulation of this calculated power diagram. Then record every edge
length in both the power diagram and its dual triangulation in this step to
form the Hessian matrix. In step 4 (the last step of each iteration), the system
uses the Newton’s method to solve the gradient energy equation (Equation
4.9) and to update the height vector h until it satisfies that ∥wi−wi∥ of each
cell is less than δw. Finally, in last step, the system updates the vertex posi-
tion as the center of the power Voronoi diagram to obtain the area-preserving
parameterization result.

Initial Height Vector. At the initial stage, the algorithm scales and trans-
forms a point set Y to ensure they are contained in Ω, and then computes
the Voronoi diagram with zero power weights, or namely, with initial heights
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hi = −1/2∥yi∥2, where ∥yi∥2 is the point position in the planar domain. This
guarantees that all the cells are non-empty.

Power Diagram. The OMT based area-preserving computation for the par-
tition of Ω is equivalent to the classical power diagram in computational ge-
ometry [92]. Given a point set Y = {y1, y2, · · · , yn}, each point yi associated
with the weight wi as its power, the power distance from any point x to yi is
defined as:

Pow(x, yi) =
1

2
∥x− yi∥2 −

1

2
wi,

Then, the power diagram is the Voronoi diagram when using the power dis-
tance instead of the standard Euclidean distance.

In this method, the partition induced by the convex function uh in Equation
4.3 is equivalent to the power diagram with the power weight:

wi = 2hi + ⟨yi, yi⟩.

Therefore, the computation can be carried out using power diagram function-
alities in standard computational geometry library, such as CGAL [136]. The
construction of the power Voronoi diagram and the power Delaunay triangu-
lation are illustrated in Figure 4.3.

(a) (b)

Figure 4.3: Construction of (a) the power Voronoi diagram and (b) the power
Delaunay triangulation.

Hessian Matrix. The algorithm represents the gradient of energy∇E(h) in
Equation 4.9 as the area changes of cell (w̄−w), where w̄ and w as weighting
values. Then, compute the dual triangulation and the cell areas to form the
gradient, as in Equation 4.9,

∇E(h) = (Area(Wi(h) ∩ Ω))
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Following the theory proposed by Gu et al. [92], in order to form the Hessian
as in Equation 4.10, first compute all edge lengths eij and the dual edge lengths
ēij from the power diagram and its dual triangulation (Figure 4.3). Then use
the following matrix: H(h) = (hij(h)), where

hij(h) =


−|eij|/|ēij| i ̸= j,Wi ∩Wj ∩ Ω ̸= ∅
−
∑

k ̸=i hik i = j

0 otherwise,

hij is the (i, j) entry of a matrix, (i ̸= j) is the off diagonal entry, and the
diagonal entry is defined as hii = −

∑
k ̸=i hik (namely, hii is equal to the sum

of all off diagonal entries).
Then, use Newton’s method to update the height vector

h← h+ ϵH(h)−1∇E(h),

where ϵ is the step length.

Step Length Control. During the computation, it is crucial to ensure that
all the cells Wi(h) ∩ Ω are non-empty. Suppose at step k all the cells are
non-empty, then update hk ← hk+ ϵH(hk)

−1∇E(hk). If some cells are empty
in the power diagram induced by hk+1, the system will return to hl, shrink
the step length ϵ to be 1/2ϵ, and try again. If some cells are still degenerated,
further shrink the step length iteratively, until all the power cells are non-
empty.

4.3.3 ROIs Guided Texture Mapping

After computing the bijective area-preservation surface mapping between the
3D surface model and the flattened 2D disk or rectangular parameter domain,
the texture mapping is straightforward with the ROIs guided alignment. With
respect to user predefined mapping criteria (e.g., fix the disk boundary or fix
the four corner points of a rectangular domain with the alignment of ROIs),
the bijective texture mapping between parameterizations and image pixels is
syntactically and semantically trivial. Directly call texture mapping functions
provided by OpenGL with bilinear interpolation, which is fast and easy to
implement. Moreover, the system considers the model shape and rendering
factors, such as depth, view angle, and camera position to obtain reality style
visualization, especially for medical data. The pixel color and alpha can be
adjusted by the user defined transfer functions.
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(a) (b)

Figure 4.4: Surface flattening of a chest model using the area-preservation
mapping for direct display and accurate measurement. The yellow circles
highlight the corresponding ROIs between (a) the 3D surface model and (b)
the 2D flattening plane.

Figure 4.5: Surface flattening and area manipulation using a brain surface
model. A brain surface extracted from the MRI data with color coded com-
ponents with (a) a lateral view and (b) a medial view. The major brain folds
are color coded for easy recognition. (c) Conformal mapping result, and (d)
the area-preservation mapping result. By comparison, the presented method
accurately preserves the size of area for each fold component, while conformal
mapping leads to severely area distortions (severely shrinking some brain folds
while enlarging the others).

4.4 Area-Preservation Mapping Applications

To demonstrate the merits of the presented area-preservation mapping method,
various visualization applications and a distortion measurement analysis is
presented.

4.4.1 Medical Applications

The framework is tested using various medical data. Figure 4.4 shows a ma-
jor advantage of the area-preservation mapping and flattening method. The
mapping framework can bijectively project the 3D surface model into a unit
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Saliency map guided area-preservation mapping using a colon
model. (a) A slice of CT colon images. (b) A colon surface, extracted from (a).
(c-d) Possible polyps detected using the saliency map [3]. Surface flattening
results using (e) the area-preservation mapping and (f) the conformal mapping.
By comparison, the final result generates the accurate polyp size for area
measurement (verified by the doctor marked area measurement of the polyp
as ground truth) without any severe angle distortion.
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2D disk, so the doctor can directly and accurately visualize and measure the
size of the entire ROI area without repeatedly rotating and scaling.

Figure 4.6 shows the saliency map [3] guided area-preservation mapping
for diverse computer aided detection (CAD) applications. After extracting
the surface model from CT colon data (Figure 4.6a), the electronic biopsy
[107] is working as saliency map, for the polyp detection (Figure 4.6b). The
area-preservation flattening framework is only applied in the detected ROIs,
providing an area-preserving view of polyps for the accurate measurement of
the diameter and the size of area (verified by the doctor marked measurement
as ground truth in the original 3D surface model). By comparison with the
conformal mapping method, the framework still preserves major shape char-
acteristics of the colon surface (e.g., colon folds) without any obviously visual
distortion (Figure 4.6c).

Flattening the brain surface with area preservation is important to visualize
and study neural activity or to detect diseases/disfunctions [137]. For the easy
recognition of different brain folds, colors are used to mark different folds as
the ROIs (Figure 4.5a and Figure 4.5b). In contrast to the conformal mapping
result (Figure 4.5c), Figure 4.5d shows the area-preservation mapping result
using the MRI brain dataset, which accurately displays accurate sizes of brain
folds without severely compressing or stretching. Moreover, users can set
different weight coefficients in ROIs to flexibly adjust sizes of different ROI
areas (default 1X: equal area).

4.4.2 Informatics Applications

With the general application property of parameterization and texture map-
ping, the framework can be easily implemented for various informatics appli-
cations including earth map, city map and graph.

The fundamental challenge for earth visualization lies at mapping the
sphere earth model to a planar domain with maximal information preserved.
Direct projection only projects the half sphere, and then causes severe infor-
mation lost (Figure 4.7b). The state-of-the-art method, such as conformal
mapping (Figure 4.7c), preserves the whole sphere with angle preservation,
but severely compresses some continents while inappropriately enlarging oth-
ers without any control. By comparison, the presented method (Figure 4.7d)
can keep the original areas for all major continents, providing the accurate
size and area impression for users.

The system also provides a direct multiresolution display, functioned as
a “magic-lens” to reveal additional details in the ROIs. This method makes
the multiscale alignment accurate but easy without the need of any predefined
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(a) (b)

(c) (d)

Figure 4.7: Different mapping results and comparisons using an earth surface
model. (a) A 3D earth model. (b) Direct projection mapping with large infor-
mation loss. (c) Conformal mapping result is with large area distortions, while
(d) the area-preservation mapping result is with accurate area preservation and
small angle distortion (highlighted by the red frames).

Figure 4.8: Multiresolution view without any predefined landmarks. (a) The
original New York city (NYC) map. (b) NYCmap with multiresolution texture
images. The red frames highlight the corresponding multiresolution texture
maps in the ROI. (c) Area manipulation result with a detailed view to show
additional street information. The high resolution detail view can be easily
aligned/merged into the low scale map without using any landmark due to the
accurate area preservation.
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(a) (b)

(c) (d)

Figure 4.9: Mapping comparisons using the network graph. (a) Original
graph layout [4]. Magnification results with (b) the central nodes as the ROI,
and with (c) the surrounding exterior nodes as the ROI, using the presented
framework. (d) Magnification result using conformal magnifier [5]. By com-
parison, the presented method has flexible area control to generate various
views.

landmark, due to the accurate area preservation. As shown in Figure 4.8,
the presented method generates multiresolution texture mapping to reveal
additional street information of the city map. The result demonstrates that
the presented method can well magnify the ROI without causing any obvious
distortion.

The presented system can generate various visual displays for the graph
visualization to satisfy diverse user requirements, due to the flexible weight
settings. Figure 4.9a showcases its merit using a network visualization example
from the AT&T graph library [4]. Each graph node stands for a network
station, while each straight line depicts direct connection between two neighbor
nodes. Figure 4.9b enlarges the radius of the central core to increase the node
separation, while compressing exterior nodes to further reduce the potential
attention. Figure 4.9c shows another area manipulation style: compressing
central nodes while enlarging exterior nodes for further separation. There is
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Table 4.1: Computing time for all experimental cases using the presented
framework. N: the number of vertices, F: the number of faces, AP: area-
preserving parametrization (bijective mapping) and T: texture mapping time
in ms.

Model Texture N F AP T

Chest Chest 1528 2999 97 42

Brain MRI brain 14499 29662 1254 108

Colon CT colon 12762 24953 1096 97

Sphere Earth 3456 6846 265 63

Square City 5252 10471 474 62

Sphere Graph 3456 6846 265 71

Gaussian Graph 10201 20006 812 45

no efficient way to generate a similar result using either geometry methods
(e.g., conformal magnifier [5]) or deformation methods. Taking a close look
at Figure 4.9d, the conformal magnifier fails to flexibly control magnification
ratios in both focus and context regions. It excessively enlarges the central core
area, while compressing exterior nodes without any control. By comparison,
the presented system can easily manipulate the size of area everywhere to
generate a user preferred view with appropriate node distributions.

4.4.3 Implementation

In order to support fast visual display, the presented framework combines
both CPU and GPU for computing optimization, parameterization, texture
mapping and volume rendering using C++ with OpenGL library. The algo-
rithm and solution of the optimal transport map is easy to implement robustly
to have interactive-rate computation for all experimental cases, overcoming a
major limitation of the OMT problem - computation inefficiency. By compar-
ison with other optimization algorithms, such as [75] and [125], comparative
experiments show that the presented system provides a significant speedup,
empirically at least 3-5 times faster (more comparison technique analysis de-
tails are listed in Section 2). For the application of large volumetric data (e.g.,
brain dataset with size 2562 × 142), the system can easily obtain full resolu-
tion results in an interactive-rate using various surface models with texture
mapping or volume rendering. To further increase the flexibility of system
control, the presented framework embeds mesh editing tools, allowing users to
interactively choose a tradeoff between quality and computing speed.

63



(a)

(b)

Figure 4.10: Comparison histograms of mapping distortions using the lion
head model of Figure 4.1. (a) Conformal mapping (CM) and (b) the area-
preservation mapping (AP). Left column: area distortion. Right column: angle
distortion. By comparison, the presented framework generates good mapping
results with accurate area preservation and small angle distortions.

All experiments have been carried out on an Intel Core2Duo 2.2GHz laptop
with 4GB memory and Windows 7 as the operating system. Generally, the
cost linearly depends on the property of the surface models (the vertex and
face counts) and the number of iterations needed for the desired accuracy.
Table 4.1 presents detailed performance of the presented method, which shows
that it is significantly fast and suitable for real-time/interactive operations,
even for large datasets with high resolution requirements. In theory, finer
surface models increase in resolution to support finer rendering but having
longer computation time. Fortunately, the combination of saliency map and
hierarchical mesh design (high resolution in the ROI, while low resolution in
the context) allows the presented framework to work accurately and effectively.
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4.4.4 Quantitative Analysis for Area-Preservation Map-
ping

The main challenge of a good area-preservation mapping is yielding strict
equality of area elements between the original surface and the flattened result
at its final state. Both the area distortion and the quasi-conformal distortion
per face over the mesh are examined as the quantitative analysis. Define γmax

and γmin as the larger and smaller eigenvalues of the Jacobian of the affine
transformation that maps the domain triangles to the original surface, normal-
ized with the hypothesis that the total area of the surface equals that of the
domain. Then, the area distortion metric Υ is computed as Υ = log(γmaxγmin),
while the quasi-conformal distortion metric Λ is computed using Λ = log(γmax

γmin
).

In both cases, zero indicates that there is no distortion and a larger value means
a larger distortion.

Figure 4.10 shows the histograms of area distortion and quasi-conformal
(angle) distortion for the conformal mapping [135] and the area-preserving
approach, using the lion head surface model (Figure 4.1). By comparison, as
shown in Figure 4.10, the presented system can generate great area-preservation
results with extremely small area distortions (error < 2%) even for the com-
plicated surface model (in theory, more complicated models typically cause
larger area distortion errors). Therefore, the presented framework generates
accurately mapping and rendering results.
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Chapter 5

Conclusions and Future Work

This chapter first briefly summarizes and reviews the presented techniques and
their advantages for the volumetric F+C visualization. Then, it outlines the
possible future related research directions and topics.

5.1 Summary

In conclusion, the presented techniques have the following advantages: apply
a more effective selection for the focus regions, and improve ways for the 3D
exploration and navigation of the complicated volume data, which overcome a
number of limitations and drawbacks originating from using traditional meth-
ods for F+C visualization.

In particular, the first presented system highlights the volumetric region or
object of interest by designing high dimensional transfer functions using paral-
lel coordinates and dimension reduction techniques. Then, new focus+context
design extends geometric models serving as lenses with a smooth transition be-
tween the focus and context regions and optimizes the local shape preservation
everywhere; or accurately and efficiently preserves the size of area after map-
ping, using the optimal mass transport technique based on the Monge-Brenier
theory.

Furthermore, all the F+C related techniques are capable of using multi-
ple foci, i.e., magnifying multiple focus regions or volumes with the arbitrary
shape, which maximally facilitate the effective use of available screen space.
Meanwhile, the presented techniques, algorithms, and data structures are es-
pecially designed for the combination of CPU and GPU implementations to
have the optimal computing speed. The flexibility of pipelines enables the
efficient implementation of the visualization techniques suitable for volumetric
data, especially for complicated medical datasets. Based on the analysis of
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existing related and previous work in the area of transfer function design and
F+C visualization, this thesis proposal has presented the following four related
technological components with specified contributions and applications for the
volumetric F+C visualization. With the support of experimental results and
comparisons within various task scenarios, all proposed framework and system
show that, served as novel volumetric visualization techniques, they have great
applications in the visualization and volume graphics research areas.

Highlighting Techniques - Transfer Function Design. In order to
highlight the focused region or object of interest, high dimensional transfer
function design is essential because the multivariate classification and its visu-
alization could reduce the complexity of datasets and provide a vital connection
between the dataset and the analyst. Thus, a parallel coordinates based trans-
fer function and a local linear embedding technique based dimension reduction
scheme are used to construct high dimensional transfer functions. A simple but
effective interface is provided for the user to interactively design the high di-
mensional transfer function to facilitate the discovery of the best classification
scheme for complicated datasets in the parallel coordinates. Meanwhile, the
dimension reduction method can simplify the high dimensional design prob-
lems, although it may cause some information loss.

Conformal Mapping based F+C Visualization. The conformal mag-
nifier, a conformal mapping based non-linear spatial distortion magnifier, serves
as a novel geometry based F+C visualization technique to overcome the limi-
tation of the screen real estate. The conformal magnifier focuses on the angle
distortion minimization and visual continuity, producing optimally visual re-
sults: magnify the ROI with minimal local angle distortion and contain a
continuous transition region. Moreover, different from traditional lenses de-
signed in the spatial domain, the conformal magnifier is defined in the pa-
rameter domain, which can easily extend into various graphics or visualization
frameworks, including the route, map, surface model and 3D volumetric data.

Area-Preservation based F+C Visualization. Different from con-
formal magnifier with optimal angle preservation, a computationally efficient
numerical scheme is proposed to achieve the area-preservation mapping, served
as an alternative F+C visualization technique. The presented framework, us-
ing the optimal mass transport method, is implemented in a novel manner
and used for various visualization and graphic applications. The entire sys-
tem is built based on geometric parameterization techniques, where an area-
preserving map is generated with the minimal area distortion. The use of
parameterization is compatible with various volume applications, easily and
efficiently supporting the handling of various complicated data [138]. With the
combination of CPU and GPU, the area-preservation system becomes practical
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for the use on large 3D datasets in terms of both speed and accuracy.

5.2 Future Work

The presented techniques form a basis for development of more advanced vi-
sualization concepts and applications for the volumetric F+C visualization.
There are several available directions for future work including accurate trans-
fer function design for feature enhance, new optimization algorithm for feature
oriented F+C visualization, formal user studies for the analysis and evaluation,
and hardware accelerated algorithms for real-time display and operations.

5.2.1 Highlighting Techniques

One unavoidable drawback to using multi-dimensional transfer functions is
the increased memory consumption needed to store all the transfer function
variables at each voxel sample point. Future work can expand the dataset size
by using parallel hardware for computing and rendering, such as the effective
scheme of assigning opacity, and the dynamic rendering via hierarchical fuzzy
clustering. Meanwhile, the automatic transfer function design based on visual
clustering algorithms [139–141] is also a promising direction.

5.2.2 Volumetric Focus+Context Visualization Techniques

Aim to improving the volumetric F+C visualization approaches, the following
research directions are discussed, including the energy optimization, surface
mesh smoothing, hardware acceleration and formal user evaluations and stud-
ies.

Smooth Surface Model Design. For the geometric model based tech-
niques, a major limitation is how to generate smooth and grid-unified mesh
models, which is a key factor to produce F+C visualizations with the minimal
distortion (for both angle and area distortions) and the smooth transition.
Therefore, some specified filters or blending algorithms, inspired by [142] are
required in the future to further smooth the transition region of each model
to obtain the high quality results.

Hardware Accelerated Algorithms. The adaptation of the existing im-
plementations to the ongoing development of graphics accelerators is promis-
ing to overcome the required preprocessing steps and enable the processing
of complicated large data. The major challenges comprise new theory and
algorithm development by exploiting GPU features as well as the integration
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into existing visualization and rendering pipelines. The future work includes
the following components:

• With the development of the graphic hardware, how to further accelerate
the implementation of various non-trivial volumetric deformations that
respect the material boundaries (e.g., use the as-rigid-as-possible defor-
mation for bones, while using the as-similar-as-possible deformation for
organs).

• The computational speed of conformal mapping, although not slow, still
needs to be improved for interactive magnification operations. Further
accelerate the calculation of conformal mapping and to incorporate new
rendering methods for the high performance and resolution using GPU.

• Inspired by Sandhu et al. [143] andWang et al. [144], the area-preservation
mapping framework can be further extended to volumetric mapping,
which will significantly increase the computing time. Luckily, due to the
application of Voronoi diagram and its dual Delaunay triangulation for
the mapping algorithm, inspired by Rong et al. [145], GPU can be easily
used to reach real-time performance.

User Evaluation and Studies. Although some of the presented tech-
niques are included in software system used and tested by users, an important
aspect to focus in future work represents the conduction of qualitatively and
quantitatively formal user studies to further improve the visualizations tech-
niques. The feedback collection from professional users targeting to specific
applications and systems, would significantly improve the usability of the pre-
sented F+C techniques.
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quality maximum intensity projection. Computer Graphics Forum, 19
(3):341–350, 2000.

[12] N. Max. Optical models for direct volume rendering. IEEE Trans. on
Visualization and Computer Graphics, 1(2):99–108, 1995.

[13] Lee Westover. Footprint evaluation for volume rendering. SIGGRAPH,
24:367–376, Sept. 1990.

[14] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. Proc. of ACM SIG-
GRAPH, pages 451–458, July 1994.

[15] Marc Levoy. Efficient ray tracing of volume data. ACM Trans. on
Graphics, 9(3):245–261, July 1990.

[16] Mikhail Smelyanskiy, David Holmes, Jatin Chhugani, Alan Larson,
Douglas M. Carmean, Dennis Hanson, Pradeep Dubey, Kurt Augus-
tine, Daehyun Kim, Alan Kyker, Victor W. Lee, Anthony D. Nguyen,
Larry Seiler, and Richard Robb. Mapping high-fidelity volume render-
ing for medical imaging to CPU, GPU and many-core architectures.
IEEE Trans. on Visualization and Computer Graphics, 15(6):1563–1570,
November/December 2009.

[17] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and
Larry Seiler. The VolumePro real-time ray-casting system. SIGGRAPH,
pages 251–260, 1999.

[18] Hanspeter Pfister and Arie Kaufman. Cube-4 - A scalable architecture
for real-time volume rendering. Proc. of Symposium on Volume Visual-
ization, pages 47–54, 1996.

[19] K. Engel, M. Hadwiger, J.M. Kniss, C. Rezk-Salama, and D. Weiskopf.
Real-Time Volume Graphics. AK Peters, 2006.

[20] Simon Stegmaier, Magnus Strengert, Thomas Klein, and Thomas Ertl. A
simple and flexible volume rendering framework for graphics-hardware-
based raycasting. Proc. Volume Graphics, pages 187–195, 2005.

[21] CUDA. http://www.nvidia.com/object/cuda home new.html.

[22] G. Kindlmann and J. Durkin. Semi-automatic generation of transfer
functions for direct volume rendering. Volume Visualization, pages 79–
86, 1998.

71



[23] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moler. Curvature-
based transfer functions for direct volume rendering: Methods and ap-
plications. IEEE Visualization, pages 513–520, 2003.

[24] S. Tenginakai, J. Lee, and R. Machiraju. Salient isosurface detection with
model-independent statistical signatures. IEEE Visualization, pages
231–238, 2001.

[25] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer func-
tions for interactive volume rendering. IEEE Trans. on Visualization and
Computer Graphics., 8(3):270–285, 2002.

[26] S. Roettger, B.M. M, and M. Stamminger. Spatialized transfer functions.
Eurographics IEEE VGTC Symposium on Visualization, pages 271–278,
2005.

[27] Jesus J Caban and Penny Rheingans. Texture-based transfer functions
for direct volume rendering. IEEE Trans. on Visualization and Computer
Graphics, 14(6):1364–1371, 2008.

[28] R. Maciejewski, I. Woo, W Chen, and D.S. Ebert. Structuring feature
space: A non-parametric method for volumetric transfer function gener-
ation. IEEE Transactions on Visualization and Computer Graphics., 15
(6):1473–1480, 2009.

[29] T. He, L. Hong, A. Kaufman, and H. Pfister. Generation of transfer
functions with stochastic search techniques. IEEE Visualization, pages
227–234, 1996.

[30] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hod-
gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. ”Design galleries”: A general approach to setting parame-
ters for computer graphics and animation. SIGGRAPH, pages 389–400,
1997.

[31] Fan-Yin Tzeng, Eric B Lum, and Kwan-Liu Ma. An intelligent sys-
tem approach to higher-dimensional classification of volume data. IEEE
Trans. on Visualization and Computer Graphics., 11(3):273–284, 2005.

[32] Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang,
and Yunhong Zhou. Treejuxtaposer: Scalable tree comparison using fo-
cus+context with guaranteed visibility. ACM Transactions on Graphics,
22:453–462, 2003.

72



[33] James Slack and Tamara Munzner. Composite rectilinear deformation
for stretch and squish navigation. IEEE Transactions on Visualization
and Computer Graphics, 12:901–908, 2006. ISSN 1077-2626. doi: http:
//doi.ieeecomputersociety.org/10.1109/TVCG.2006.127.

[34] Jean Daniel Fekete and Catherine Plaisant. Interactive information vi-
sualization of a million items. IEEE Symposium on Information Visual-
ization, pages 117–124, 2002.

[35] T. Alan Keahey. Getting along: Composition of visualization paradigms.
IEEE Symposium on Information Visualization, pages 37–40, 2001.

[36] Emden Gansner, Yehuda Koren, and Stephen North. Topological fisheye
views for visualizing large graphs. IEEE Symposium on Information
Visualization, pages 175–182, 2004. ISSN 1522-404X. doi: http://doi.
ieeecomputersociety.org/10.1109/INFVIS.2004.66.

[37] T. Munzner. H3: laying out large directed graphs in 3D hyperbolic
space. IEEE Symposium on Information Visualization, pages 2–8, 1997.
doi: http://doi.ieeecomputersociety.org/10.1109/INFVIS.1997.636718.

[38] T. Tenev and R. Rao. Managing multiple focal levels in table lens.
IEEE Symposium on Information Visualization, pages 59–66, 1997. doi:
http://doi.ieeecomputersociety.org/10.1109/INFVIS.1997.636787.

[39] M. Sheelagh T. Carpendale, M. Sheelagh, T. Carpendale, David J. Cow-
perthwaite, and F. David Fracchia. Multi-scale viewing. SIGGRAPH,
pages 149–152, 1996.

[40] Masashi Toyoda and Etsuya Shibayama. Hyper mochi sheet: a predictive
focusing interface for navigating and editing nested networks through a
multi-focus distortion-oriented view. Conference on Human Factors in
Computing Systems, pages 504–511, 1999. doi: http://doi.acm.org/10.
1145/302979.303145.

[41] Arno Formella and J Keller. Generalized fisheye views of graphs. Proceed-
ings Graph Drawing, Lecture Notes in Computer Science, LNCS 1027,
pages 242–253, 1995.

[42] T. Alan Keahey and Edward L. Robertson. Nonlinear magnification
fields. IEEE Symposium on Information Visualization, pages 51–58,
1997.

73



[43] T. Alan Keahey. The generalized detail-in-context problem. IEEE Sym-
posium on Information Visualization, pages 44–51, 1998.

[44] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-
oriented presentation techniques. ACM Transactions on Computer-
Human Interaction, 1(2):126–160, 1994.

[45] X. Zhao, B. Li, L. Wang, and A. Kaufman. Focus+context volumetric
visualization using 3d texture-guided moving least squares. Proceedings
of the Computer Graphics International, 2011.

[46] B. Li, X. Zhao, and H. Qin. Four dimensional geometry lens: A novel
volumetric magnification approach. Computer Graphics Forum, page
preprint, 2013.

[47] Kang Shi, Pourang Irani, and Ben Li. An evaluation of content browsing
techniques for hierarchical space-filling visualizations. IEEE Symposium
on Information Visualization, pages 11–18, 2005. doi: http://dx.doi.
org/10.1109/INFOVIS.2005.4.

[48] Jing Yang, Matthew O. Ward, Elke A. Rundensteiner, and Anilkumar
Patro. Interring: a visual interface for navigating and manipulating
hierarchies. IEEE Symposium on Information Visualization, 2(1):16–
30, 2003. ISSN 1473-8716. doi: http://dx.doi.org/10.1057/palgrave.ivs.
9500035.

[49] John Stasko and Eugene Zhang. Focus+context display and navigation
techniques for enhancing radial, space-filling hierarchy visualizations.
IEEE Symposium on Information Visualization, pages 57–64, 2000. ISSN
1522-404X. doi: http://doi.ieeecomputersociety.org/10.1109/INFVIS.
2000.885091.

[50] T. Alan Keahey and Edward L. Robertson. Techniques for non-linear
magnification transformations. IEEE Symposium on Information Visu-
alization, pages 38–45, 1996.

[51] John Lamping, Ramana Rao, and Peter Pirolli. A Focus+Context tech-
nique based on hyperbolic geometry for visualizing large hierarchies.
SIGCHI Conference on Human Factors in Computing Systems, pages
401–408, 1995. doi: http://doi.acm.org/10.1145/223904.223956.

[52] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.
Derose. Toolglass and magic lenses: The see-through interface. Com-
puter Graphics, pages 73–80, 1993.

74



[53] M. Cohen and K. Brodlie. Focus and context for volume visualization.
Theory and Practice of Computer Graphics, pages 32–39, 2004.

[54] M. Ikits and C.D. Hansen. A focus and context interface for interactive
volume rendering. http://www.cs.utah.edu/ ikits, 2004.

[55] Eric LaMar, Bernd Hamann, and Kenneth I. Joy. A magnification lens
for interactive volume visualization. Pacific Graphics, pages 223–232,
2001.

[56] Lujin Wang, Ye Zhao, Klaus Mueller, and Arie Kaufman. The magic
volume lens: An interactive Focus+Context technique for volume ren-
dering. IEEE Visualization, pages 367–374, 2005.

[57] Ivan Viola, Armin Kanitsar, and Meister Eduard Groller. Importance-
driven volume rendering. IEEE Visualization, pages 139–145, 2004.

[58] M. Chen, D. Silver, A. S. Winter, V. Singh, and N. Cornea. Spatial
transfer functions: a unified approach to specifying deformation in vol-
ume modeling and animation. Eurographics/IEEE VGTC Workshop on
Volume Graphics, pages 35–44, 2003.

[59] Kurzion Yair and Yagel Roni. Space deformation using ray deflectors.
Rendering Techniques, pages 21–30, 1995.

[60] Jens Kruger, Jens Schneider, and Rudiger Westermann. Clearview: An
interactive context preserving hotspot visualization technique. IEEE
Transactions on Visualization and Computer Graphics, 12:941–948,
2006.

[61] Jianlong Zhou, Manfred Hinz, and Klaus D.Tonnies. Focal region-guided
feature-based volume rendering. International Symposium on 3D Data
Processing Visualization and Transmission, pages 87–90, 2002. doi: http:
//doi.ieeecomputersociety.org/10.1109/TDPVT.2002.1024047.

[62] Cheng-Kai Chen, Russell Thomason, and Kwan-Liu Ma. Intelligent fo-
cus+context volume visualization. International Conference on Intel-
ligent Systems Design and Applications, 1:368–374, 2008. doi: http:
//doi.ieeecomputersociety.org/10.1109/ISDA.2008.232.

[63] M Chen, C Correa, S Islam, M. W Jones, P.-Y Shen, D Silver, S. J Wal-
ton, and P. J. Willis. Manipulating, deforming and animating sampled
object representations. Computer Graphics Forum, 26(4):824–852, 2007.

75



[64] Carlos D. Correa, Deborah Silver, and Min Chen. Discontinuous dis-
placement mapping for volume graphics. Fifth Eurographics / IEEE
VGTC Workshop on Volume Graphics, pages 9–16, 2006.

[65] Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using
deformations for browsing volumetric data. IEEE Visualization, pages
401–408, 2003. doi: http://dx.doi.org/10.1109/VISUAL.2003.1250400.

[66] Carlos D. Correa, Deborah Silver, and Min Chen. Volume deforma-
tion via scattered data interpolation. Sixth Eurographics / IEEE VGTC
Workshop on Volume Graphics, pages 91–98, 2007.

[67] Carlos D. Correa, Deborah Silver, and Min Chen. Constrained illustra-
tive volume deformation. Comput. Graph., 34(4):370–377, 2010.

[68] Carlos Correa, Debora Silver, and Mi Chen. Illustrative deformation for
data exploration. IEEE Transactions on Visualization and Computer
Graphics, 13:1320–1327, 2007.

[69] Rudiger Westermann and Christof Rezk-Salama. Real-time volume
deformations. Computer Graphics Forum, 20(3):443–451, 2001. doi:
http://doi.acm.org/10.1145/1141911.1141920.

[70] Yu-Shuen Wang, Chaoli Wang, Tong-Yee Lee, and Kwan-Liu. Ma.
Feature-preserving volume data reduction and focus+context visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
preprint online, 2011.

[71] Xianfeng David Gu and Shing-Tung Yau. Computational Conformal
Geometry. International Press of Boston, 2008.
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