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Abstract of the Dissertation

Group LASSO for Prediction of Clinical Outcomes in Cancer

by

Xinyu Tian

Doctor of Philosophy

in

Applied Mathematics and Statistics

Statistics

Stony Brook University

2017

High-dimensional datasets are now ubiquitous in biomedical research. Fea-
ture selection is an essential step in mining high-dim data to reduce noise, avoid
overfitting and improve the interpretation of statistical models. In the last few
decades, numerous feature selection methods and algorithms have been pro-
posed for various response types, connections in predictors and requirements
on sparsities; and penalized methods, such as LASSO and its variations, are
among the most efficient and popular ones in this area. In addition, genomic
features, such as gene expressions, are usually connected through an under-
lying biological network, which is an important supplement to the model in
improving performance and interpretability. In this study, we first extend
the group LASSO to a network-constrained classification model and develop a
modified proximal gradient algorithm for the model fitting. In this algorithm,
group lasso regularization is used to induce model sparsity, and a network
constraint is imposed to induce the smoothness of the coefficients using under-
lying network structure. The applicability of the proposed method is verified
by analyzing both numerical examples and real gene expression data in TCGA.

We further work on the feature selection problem with Bayesian hierarchi-
cal structure. R. Tibshirani, who introduced LASSO in 1996, also proposed
that linear LASSO can be considered as a Bayesian model with Laplace prior
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on coefficient parameters, which shed lights on the feature selection problem in
Bayesian models. Compared to frequentist approaches, Bayesian model copes
better with complex hierarchical structures of the data. On one hand, we
compare the performance of Laplace, horseshoe and Gaussian priors in linear
Bayesian models with extensive simulations. On the other, we extend the pro-
jection predictive feature selection scheme to group-wise selection and bench-
mark its feature selection performance and prediction accuracy with standard
Bayesian methods. All Bayesian posterior parameters are estimated using
Hamiltonian Monte Carlo implemented in Stan.
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Chapter 1

Network-constrained Group LASSO

Classic multinomial logit model, commonly used in multiclass regression prob-

lem, is restricted to few predictors and with no regard to the relationship

among variables. Its usage is insufficient for genomic data, where the number

of genomic features far exceeds the sample size. Also, genomic features such as

gene expressions are usually related to each other via an underlying biological

network. Making use of the network information is crucial to improving model

performance as well as the biological interpretability. In this Chapter, a clas-

sification model based on logistic regression is discussed, which accommodates

network information and group LASSO as well. The result has been published

in 2014 [1].

1.1 Introduction

In cancer diagnosis, cancer patients with the same diagnostic profile may have

different clinical outcomes. This difference probably lies in the limitation of

the traditional strategies in tumor type classification, which typically are based
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on morphology only. A reliable and precise classification of tumors is essential

for successful diagnosis [2]. Modern sequencing and microarray technology has

enabled more detailed molecular characterization of cancer samples, leading to

the discovery of many cancer subtypes. Depending on the subtype, different

treatments will be administered. In conclusion, cancer subtype identification

has become an integral part of personalized medicine [3].

The problem of multiclass cancer classification has been approached in

many ways, including multinomial logit models [4], Bayesian probit mod-

els [5, 6], random forest [7] and support vector machine (SVM) [8–11]. Other

discriminationary methods, including linear discriminant analysis (LDA), k-

nearest-neighbor (kNN) classifier and classification trees, were also investigated

[12]. Among those, SVM was a successful procedure applied to microarray-

based cancer diagnosis problems. However, SVM predicts the class label with-

out estimating the underlying probabilities. Multinomial logit model, on the

other hand, performs similarly to SVM, but it provides estimation of the prob-

abilities [4]. The probabilistic nature of multinomial logit regression model has

many advantages, such as the abilities to set the rejection thresholds freely,

and to accommodate the frequency of each class in an unbalanced design [13].

Classic multinomial logit model works well when the number of predictors

is small. However, a large number of predictors often leads to model overfit-

ting and even a singular matrix of the normal equations when the number of

predictors exceeds the number of observations as commonly seen in genomic

studies. To deal with the curse of high-dimensionality as well as to increase

the model interpretability, regularized procedures that incorporate a sparsity
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penalty have been proposed [14–18]. Among these methods, group LASSO is

particularly appropriate for models with multiclass responses, which means all

the coefficients linked to a common predictor constitute a group and are forced

to shrink to zero simultaneously in the process of variable selection [14].

Although the sparse multinomial logit models are able to achieve variable

selection, they can not efficiently utilize prior biological information, such as

a network of regulatory relationships between genes or gene-products. Such

biological information has been accumulated through years of biomedical re-

search and many databases such as KEGG, Reactome and MIPS have been

developed to organize different types of biological network information. Can-

cer is a complex disease caused by dysregulation of pathways instead of a

single gene [19–21]. Thus, the incorporation of the network information can

potentially increase the power of identifying cancer subtypes.

Networks are often represented as graphs, where each vertex indicates a

gene or a gene-product and each edge represents a relationship between two

connected vertices. The incorporation of network information has been stud-

ied in other regression models. A constraint, enrolled by the Laplace matrix

of a graph [22], has been proposed to facilitate the selection of predictors in

ordinary regression setting, enhancing both the global smoothness over net-

work and the interpretability of the association between selected genes and

responses in the context of known biology.
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1.2 Multinomial Logit Model and Penalized Likelihood Approach

For data (yi,xi) , i = 1, . . . , n with n observations and p predictors, yi denotes

an observation of the categorical response variable Y ∈ {1, . . . , k} and xi =

(xi1, xi2, . . . , xip) ∈ Rp indicates an observation of a p-dimensional vector of

predictors. Assuming that yi follows a multinomial distribution, a multinomial

logit model is built with logit link, which is,

πir = P (Y = r|xi) =
exp

(
βr0 + xiβ

T
r·
)∑k

s=1 exp (βs0 + xiβTs·)
=

exp (ηir)∑k
s=1 exp (ηis)

, (1.1)

where βr· = (βr1, , βr2, . . . , βrp) and ηir = βr0 + xiβ
T
r·. We choose category k as

the reference category by setting βk0 = 0, βk· = 0. Under this choice, the linear

predictors ηir, r = 1, . . . , k correspond to the log odds ratio between category

r and the reference category k.

We regularize the multinomial logit model using a penalized likelihood

approach, in which one maximizes the penalized log-likelihood

lp (β) = l (β)− λJ (β) , (1.2)

over a (k − 1)×(p+ 1)-dimensional parameter vector β =
(
β10, · · · , β(k−1)0, β1· · · · , βk−1,·

)T
.

In (1.2),

l (β) =
n∑
i=1

k∑
r=1

yir log πir =
n∑
i=1

(
k−1∑
r=1

yirηir − log

(
k∑
s=1

exp (ηis)

))

denoting the ordinary log-likelihood of a multinomial logit model. J (β) is a
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function that penalizes the size of the parameters and regularizes the structure

of features. λ, the tuning parameter, determines the strength of the regular-

ization.

Assuming that all predictors are metric and standardized, that is, each pre-

dictor has one degree of freedom and the differences in scale will not influence

the penalty and thus the variable selection. In the multinomial logit model,

we use a vector β·j = (β1j, β2j, . . . , βk−1,j)
T of parameters to capture the ef-

fect of variable xj, so that variable selection is achieved only when the k − 1

parameters are shrunk to zero simultaneously. Since the ordinary LASSO

facilitates only parameter selection rather than predictor selection, a group

LASSO penalty is applied to penalize the parameters at a group level, defined

as

J1 (β) =

p∑
j=1

φj ‖β·j‖ =

p∑
j=1

φj
(
β2
1j + β2

2j + · · ·+ β2
k−1,j

) 1
2 , (1.3)

where φj is a penalty weight, set as 1 by default. All the parameters in a group

β·j would be shrunk to zero simultaneously.

In an association study, the graphs or networks depicting relationships

among predictors are important priori information, which we may take advan-

tage of. Consider a network represented by a weighted graph G = (V,E,W )

with the set of vertices V = 1, . . . , p corresponding to p predictors, the set of

edges E = {(j, k) : j and k are linked} and the set of weightsW = {wjk : (j, k) ∈ E}.

wjk measures the similarity of predictor j and k, with 1 for identity and 0 for

complete difference, if normalized to the scale of [0, 1]. We then construct an
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adjacency matrix A by

ajk =


wjk

0

(j, k) ∈ E

(j, k) /∈ E
,

and a degree matrix D = diag (d1, d2, . . . , dp), where dj =
∑

(j,k)∈E wjk is

defined as the degree of vertex j. The normalized Laplacian matrix associated

with graph G is L = D − A, whose the jkth element is defined by

Ljk =



1− w(j,k)
dj

if j = k, and dj 6= 0,

− w(j,k)√
djdk

(j, k) ∈ E,

0 otherwise.

In fact, L is always non-negative definite and can be factorized as L = SST .

By simple algebra, βr·Lβ
T
r· can be written as

βr·Lβ
T
r· =

∑
(j,k)∈E

(βrj − βrk)2wjk,

Thus, the network-constrained penalty [22–24], defined as

J2 (β) =
k−1∑
r=1

βr·Lβ
T
r·, (1.4)

induces a smooth solution of the vector βr· with respect to the labeled weighted

graph G.

To sum up, in our regularized model, the penalized log-likelihood function
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is given by

lp (β) = l (β)− λJ (β) (1.5)

=
n∑
i=1

(
k−1∑
r=1

yirηir − log
k∑
s=1

eηis

)
− λ1

p∑
j=0

φj ‖β·j‖ − λ2
k−1∑
r=1

βr·Lβ
T
r·,(1.6)

of which the second term, the sparse penalty, induces model sparsity and the

third term, the network penalty, imposes smoothness over the network. When

λ2 = 0, the model is reduced to the group LASSO multinomial logit model.

The incorporation of the extra tuning parameter expands the parameter search

space and directs the search to more biological meaningful regions.

Like ordinary LASSO, group LASSO also suffers from an issue of estimation

bias, which is resulted from the fact that all predictors are penalized to the

same degree. In order to reduce the bias, we use adaptive group LASSO,

which penalizes predictors to different degrees by assigning a weight to each

predictor. In our model, the weight is set to be the reciprocal of the L2 norm of

the fitted coefficients in univariate analysis, where we fit the model with each

individual predictor only. Denoting β̃·j the univariate estimate, the group

LASSO penalty term (1.3) becomes

J1 (β) =

p∑
j=1

1∥∥∥β̃·j∥∥∥ ‖β·j‖ .
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1.3 Proximal Gradient Method and Model Fitting

We use the proximal gradient based FISTA (Fast Iterative Shrinkage-Thresholding

Algorithm) to fit the model [25]. Consider the optimization of the general pe-

nalized log-likelihood lp (β) = l∗ (β) − λ1J1 (β), composed by a concave and

continuously differentiable term l∗ (β) and a convex penalty term J1 (β). The

penalized maximum likelihood estimator is defined by

β̂ = arg min
β∈Rd

lp (β) = arg min
β∈Rd

(−l∗ (β) + λ1J1 (β)) , (1.7)

where

l∗ (β) =
n∑
i=1

(
k−1∑
r=1

yirηir − log
k∑
s=1

eηis

)
− λ2

k−1∑
r=1

βr·Lβ
T
r·.

is a smooth function with respect to parameter β.

With a positive step size v, the quadratic approximation [25] of −lp (β) at

a given point β0 is

Qv (β, β0) = −l∗ (β0)−∇l∗ (β0)
T (β − β0) +

1

2v
‖β − β0‖2 + λ1J1 (β) .

∇l∗ (β), the first-order derivative of l∗ (β), is a (k − 1) × (p+ 1)-dimensional

vector, whose element corresponding to βrj is

[∇l∗ (β)]rj =
∂l∗

∂βrj
=

n∑
i=1

∂l∗

∂ηir

∂ηir
∂βrj

=
n∑
i=1

(yir − πir)xij.
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The iterations of proximal gradient methods are defined by

β̂(t+1) = arg min
β∈Rd

{
−l∗

(
β̂(t)
)
−∇l∗

(
β̂(t)
)T (

β − β̂(t)
)

+
1

2v

∥∥∥β − β̂(t)
∥∥∥2 + λ1J1 (β)

}
,

(1.8)

which consists of a linear approximation of the negative modified log-likelihood

at the current value β̂(t), a proximity term and the penalty term.

First, we set λ1 = 0, and based on the standard formula for the iterates of

gradient methods for smooth optimization, the unpenalized estimator β̃(t+1)

has an explicit form

β̃(t+1) = β̃(t) + v∇l∗
(
β̃(t)
)
.

Then we move back to the optimization problem with an active penalty. Via

Lagrange duality, equation (1.7) can be equivalently expressed by

β̂ = arg min
β∈C

(−l∗ (β)) ,

where C =
{
β ∈ Rd|J1 (β) ≤ κ (λ1)

}
is the constraint region corresponding

to J1 (β), and κ (λ1) is a tuning parameter that is linked to λ1 by a one-to-

one mapping. Given a search point u ∈ Rd, the so-called proximal operator

associated with J1 (β) is defined as

Pλ (u) = argminβ∈Rd

(
1

2
‖β − u‖2 + λJ1 (β)

)
, (1.9)

which is the projection of u onto region C. Then the proximal gradient iterates
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defined in (1.8) can be equally expressed by the projection

β̂(t+1) = Pλ1v
(
β̂(t) + v∇l∗

(
β̂(t)
))

.

Next, consider the proximal operator (1.9). Due to the block-separability

of this specific penalty, the proximal operator can be written as

Pλ
(
β̃
)

=
(
pλ

(
β̃�0

)
, pλ

(
β̃�1

)
, · · · , pλ

(
β̃�p

))
,

where

pλ

(
β̃�0

)
= arg min

β�j∈Rk−1

(
1

2

∥∥∥β�0 − β̃�0∥∥∥2) = β̃�0

pλ

(
β̃�j

)
= arg min

β�j∈Rk−1

(
1

2

∥∥∥β�j − β̃�j∥∥∥2 + λφj ‖β·j‖
)
, j = 1, . . . , p. (1.10)

With (u)+ = max (u, 0), the explicit solution to the proximal operator (1.10)

can be derived from the Karush-Kuhn-Tucker conditions:

pλ

(
β̃�j

)
=

1− λφj∥∥∥β̃�j∥∥∥


+

β̃�j, j = 1, . . . , p.

Set β̃(t+1) = β̂(t) + v∇l∗
(
β̂(t)
)

, then the solution to the optimization problem

(1.8) can be expressed as

β̂(t+1) = Pλ1v
(
β̃(t+1)

)
=
(
pλ1v

(
β̃
(t+1)
�0

)
, pλ1v

(
β̃
(t+1)
�1

)
, · · · , pλ1v

(
β̃
(t+1)
�p

))
=

β̃(t+1)
�0 ,

1− λφj∥∥∥β̃(t+1)
�1

∥∥∥


+

β̃
(t+1)
�1 , · · · ,

1− λφj∥∥∥β̃(t+1)
�p

∥∥∥


+

β̃
(t+1)
�p


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To summarize, the basic idea of proximal gradient methods is: First, re-

move the L1 penalty of the objective function (1.6) and then optimize the

smooth part by taking a step toward its ML estimator via first-order meth-

ods, which creates a search point. Second, project this search point onto the

constraint region C in order to account for the non-smooth penalty term. To

accelerate the convergence rate, we extrapolate the current and the previous

iterations with the help of deliberately chosen acceleration factors at [18],

α̂(t) = β̂(t) +
at−1 − 1

at

(
β̂(t) − β̂(t−1)

)
.

The extrapolate point α̂(t), instead of the current iterate β̂(t), is used as a

starting point to generate a search point, which is then projected on the penalty

region.

To select the tuning parameters λ1 and λ2, we use cross-validation, where

we divide the data set into training and test data set. The model is trained on

the training data set and prediction error is then assessed on the test data set.

We search on a grid of λ1, λ2 values and choose the value of λ1, λ2 that minimize

the cross-validated errors. We use the Brier score, a measurement of the

accuracy of probabilistic predictions defined as the Euclidean distance between

sample response and its estimated distribution probabilities, to measure the

prediction error.
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1.4 Simulation

The purpose of the simulation is to show that the structure-constrained model

dominates the alternative models that do not use such prior information in

terms of parameter estimation and prediction. For each scenario presented,

we simulate a training set and an independent test set both with 200 samples.

We first select the optimal tuning parameters through a 5-fold cross validation

on the training set. With the selected tuning parameters, a final model is built

on the whole training set, and then tested on the test set. For each setting, we

run 50 simulations, and calculate several criteria to evaluate the performance

of the proposed model.

1.4.1 Simulation Settings

We consider a small model and a large model. Each model has 4 response

categories. First of all, we construct a predictor matrix. The numbers of

total predictors are 20 for small and 200 for large models, and the numbers

of relevant ones are 4 and 10 respectively. The predictors are continuous and

follow a multivariate normal distribution with mean 0 and the p×p correlation

matrix

Σ =



1 ρ ρ2 · · · ρp−1

ρ 1 ρ · · · ρp−2

ρ2 ρ 1 · · · ρp−3

...
...

...
. . .

...

ρp−1 ρp−2 ρp−3 · · · 1


where ρ = 0.5.
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Secondly, we simulate the network structure of predictors. We divide the

predictors into a few subsets (subnetworks). Taking the small model for exam-

ple, 20 predictors are divided into 5 subnetworks evenly, and all the 4 relevant

predictors belong to the first subnetwork. Ideally, we assume that predictors

within each subnetwork are fully connected, and there is no connection be-

tween subnetworks. That is, the corresponding adjacency matrix is a block

diagonal matrix, with the main diagonal blocks being all-ones square matrices,

and the off-diagonal blocks are zero matrices. We label this scenario as ‘Ideal

structure’. To study the effects of model misspecification, we also simulate in-

correct prior information, where the large adjacency coefficients are randomly

drawn from (0.4, 1) and the small ones from (0, 0.6) without respect to the

relevant variables.

Finally, we also simulate the coefficients, which can be represented by a

3 × p matrix where rows are indexed by all categories of the response but

the reference, and columns are indexed by the predictors. The columns with

respect to the irrelevant predictors are filled with zeros. The entries of the

the relevant columns have three settings: ‘identical’, ‘similar’ or ‘random’.

For ‘identical’ case, coefficients of relevant predictors in each category are

identical. For ‘similar’ case, coefficients in each category have the same sign

but different values, suggesting that all the relevant predictors impact the

response in the same direction but different magnitude. Their absolute val-

ues are independently drawn from the set {0.05, 0.10, · · · , 0.50} and the sign

of each category is random. In the case of ‘random’ coefficients, each co-

efficient is independently selected from a set of positive and negative val-

13



ues {−0.50,−0.45, · · · ,−0.05, 0.05, · · · , 0.50}. The ‘random’ case violates the

model assumption, where we expect the coefficients be similar within each

subnetwork.

Under the multinomial logistic model, the actual class probabilities are

calculated based on the coefficient matrix and the values of predictors for

each observation. Then the class label is drawn randomly on the basis of

calculated probabilities. We set the intercept to be zero to generate more

balanced sample. However, due to the randomness in the data generation, the

numbers of observations vary tremendously across categories.

Simulation Results

To see the improved performance of using prior structure information in terms

of parameter estimation and prediction accuracy, we compare the variants of

the proposed model, network-constrained multinomial logit model with group

LASSO penalty (NGL-MLM) and the one with adaptive group LASSO penalty

(NGL-MLMa) to two traditional multinomial logit models with LASSO (L-

MLM) and group LASSO (GL-MLM) respectively, implemented in the pack-

age of glmnet in R [14]. To measure the estimation accuracy, the mean squared

error (MSE) between true parameter values and the estimated ones, is used.

In addition, the performance of prediction on test data is evaluated with ‘Brier

score’, the Euclidean distance between sample response and the estimated dis-

tribution probabilities, and ‘prediction accuracy’, the proportion of correctly

predicted class labels.

We first simulate ‘ideal’ network structure, that is, all the relevant variables
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come from a fully connected subnetwork. Figure 1.1 shows the estimation per-

formance of various models. As expected, the structure information improves

estimation significantly, especially for large models, which is particular relevant

for real applications. The estimation of the adaptive method (NGL-MLMa)

outperforms others substantially. In case of random coefficients, where prior

network does not provide any useful information, the proposed model is com-

parable to models without using the network information (L-MLM, GL-MLM),

and sometimes even better. Figure 1.2 shows that the prediction accuracy is

also higher for the proposed model in almost all scenarios. When Brier score

is used (Figure 1.3), similar trend follows: the network-constrained model al-

ways performs better when we simulate ideal and similar coefficients, and is

comparable to traditional models without using structure information in case

of random coefficients.

To investigate the impact of incorrect prior network, we simulate a medium-

sized model with 100 predictors, of which 10 are relevant. The performance

of our model is still satisfactory due to the flexible tuning parameter on the

smoothness penalty term (Figure 1.4). The prediction accuracy of NGL-MLM

is comparable to that of GL-MLM. In terms of parameter estimation, the

structure-constrained model performs better even if the structure information

is incorrect. This may be due to the fact that network constraint provides

better capability of shrinking the entire coefficients of a subnetwork to zeros.

In summary, our structure-constrained multinomial logit model has better

performance in terms of parameter estimation and prediction when the prior

network knowledge is at least partially correct and the performance is compa-
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Figure 1.1. MSE of parameter estimation under ideal structure information
for small and large models with ideal, similar and random coefficients.

Figure 1.2. Prediction accuracy rate for small and large models with ideal,
similar and random coefficients under ideal structure information.
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Figure 1.3. Brier scores for small and large models with ideal, similar and
random coefficients under ideal structure information.

Figure 1.4. Comparison of four candidate methods under incorrect
structure information in terms of MSE, accuracy rate and Brier score.
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rable to traditional models when the network knowledge is incorrect. This is

because that the GL-MLM is a special case of NGL-MLM with λ2 = 0. Cross-

validation tends to select λ2 = 0 when the prior assumption is not correct.
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1.5 Application to the GBM Data Set

One important application of our method is cancer subtype prediction and rel-

evant subnetwork identification on large-scale gene expression data. We apply

all four candidate methods, L-MLM, GL-MLM, NGL-MLM and NGL-MLMa,

to a large-scale TCGA Glioblastoma Multiforme (GBM) subtype prediction

problem, which contains the expression of 11,861 genes across 202 samples.

The network was built from a variety of sources, including Reactome, KEGG,

as well as the inferred gene-interaction from protein interactions, gene co-

expression, protein domain interaction and text-mined interaction. The out-

come is one of the four subtypes of Glioblastoma Multiforme [26]. The data set,

the network information as well as the subtype information were downloaded

from http://bioen-compbio.bioen.illinois.edu/NCIS/.

Since the number of genes in the GBM dataset is much larger than the

number of samples, which may lead to computation instability, one common

practice is to filter irrelevant genes before model building. Starting with 11,861

genes, we conduct gene screening based on the prior weights calculated by

NCIS algorithm [26], and include the top 599 genes afterward. To construct

the network constraint for model building, the original network is tailored to

contain only the screened genes. Then the Laplacian matrix is constructed

based on the tailored subnetwork.

To compare the prediction performance of the four methods, 202 samples

are divided into two subsets, a training set with 150 samples and a test set with

52 samples. Feature selection and parameter estimation in model building are
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prediction accuracy (mean/sd) model size

L-MLM 0.824 / 0.043 52.76
GL-MLM 0.858 / 0.044 43.18

NGL-MLM 0.859 / 0.053 37.54
NGL-MLMa 0.907 / 0.040 34.62

Table 1.1. Average prediction accuracy and average number of predictors in
each model (model size) for the GBM dataset.

done strictly on the training set. Then the fitted models are tested on test

set. The whole procedure of random division, model building and testing are

repeated 50 times to assess variability, and results are summarized in table

1.1.

The tuning parameter of the network-constraint controls the impact of the

prior structure knowledge on model building. The network information will

have no effect if the tuning parameter is set to zero. Among the 50 models

built by NGL-MLM, the network tuning parameter is chosen as zero in 28

models, where NGL-MLM is reduced to GL-MLM in this specific case. In

contrast, 48 NGL-MLMa models choose non-zero tuning parameter for the

network constraint, which indicates that the structure knowledge is useful for

prediction, explaining the higher prediction accuracy rate for NGL-MLMa.

Next, we apply NGL-MLMa, the best model in both simulation and the

application to GBM subtype analysis, on the whole sample set of GBM gene

expression data and investigate the selected subnetwork. It selects 35 predic-

tors, among which 21 are non-singletons and form a subnetwork, shown in

Figure 1.5. The selected genes make great biological sense. For example, the

most connected gene ’AKT1’ plays an important role in the pathogenicity of
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Figure 1.5. The subnetwork selected by NGL-MLMa on GBM gene
expression data.

GBM. AKT1 is a downstream serine/theroine kinase in the RTK/PTEN/PI3K

pathway and large scale genomic analysis of GBM has demonstrated that this

pathway is mutated in many but not all GBMs [27]. Therefore, the AKT1 can

be potentially used to define GBM subtypes.
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1.6 Conclusion and Discussion

Cancer subtype prediction is crucial in the understanding, diagnosis and treat-

ment of cancer. We introduced a classification model on the basis of multino-

mial logit regression to identify cancer subtypes from high-throughput gene ex-

pression data. The model incorporates a group LASSO penalty and a network-

constraint. The group LASSO penalizes all coefficients linked to a predictor

at a group level so that it facilitates variable selection at the group level. In

addition, the network constraint improves the smoothness of coefficients with

respect to the prior structure information and results in more interpretable

identification of genes and subnetworks.

The proposed model and its adaptive extension are compared to LASSO

and group LASSO multinomial logit model without involving network con-

straint. From the results of simulation and the application to GBM gene

expression data, the proposed model is superior given correct prior network

information and are comparable to traditional models given incorrect network

information.

A key challenge to the future study is to correctly specify the networks. In

the application to real data, we may include too many misspecified edges on

the network due to incomplete knowledge of pathways. One possible solution

is to use problem-specific network for a particular type of cancer, rather than

using a general molecular interaction network. Also, it is important to identify

the proper pathway databases to use. For example, KEGG is more accurate

because the entries are entered manually rather than discerned automatically
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from publications.

The proposed method can be extended by using a non-convex sparsity

penalty to reduce estimation bias. SCAD (Smoothly Clipped Absolute De-

viation) and MCP (Minimax concave penalty) are two potential alternatives

[28–30].
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Chapter 2

Bayesian Sparse Models with Probabilistic Programming

T. Park and G. Casella proposed that linear LASSO can be interpreted as a

Bayesian posterior mode estimate when the regression parameters have inde-

pendent Laplace priors [31]. Motived by their work, researchers have discov-

ered even more connections between penalized feature selection models and

Bayesian hierarchical structures [32, 33]. Converting a frequentist model into

Bayesian models has plenty of benefits. First of all, a probabilistic problem

can always be solved by sampling schemes, at the cost of heavy computation

though, no matter how complex the penalty terms are. On the other hand, to

fit a regularized linear regression by Gradient descent algorithm or its varieties

is not promising because it may arrive at a local optimum in case of the non-

convexity in loss functions. Another advantage of the Bayesian model lies in

its powerful capabilities in inferences. Rather than using point estimates and

p values, Bayesian inferences deduce more informative statistics from posterior

draws, such as credible intervals and density functions. Furthermore, Bayesian

structure is intuitive to construct and to modify, which makes it convenient
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to be generalized into more complex ones, such as from linear regression to

logistic regression and survival analysis.

In the Bayesian linear regression, a proper prior distribution will enroll

shrinkage in parameter estimation. Besides Laplace, some other distributions

are also proposed to have good properties in certain specific situations. In this

chapter, we will implement several Bayesian models to compare the perfor-

mance of priors in a variety of scenarios. The comparison will be carried out

in feature selection, estimation and prediction with simulated data sets.

2.1 Bayesian Sparse Models

2.1.1 Bayesian Data Analysis

Bayesian data analysis is typically making inferences from data using probabil-

ity models for quantities we observe and parameters we wish to learn [34]. In

Bayesian data analysis, the posterior distribution of a parameter provides us

with interval estimates, poterior predictive distribution and some other infer-

ence schemes. It also sheds light on feature selection problem. Different from

frequentist methods, there are two separate steps to achieve feature selection

in Bayesian models - prior selection and feature subset selection.

2.1.2 Priors of Coefficients in Sparse Models

Penalized regression models for simultaneous variable selection and coefficient

estimation, such as LASSO and its variations, have received a great deal of

attention in the past decades. In Bayesian data analysis, most versions of
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LASSO models can be developed into hierarchical Bayesian models by speci-

fying certain priors to the coefficient parameters [31,32].

Laplace Prior

LASSO algorithm estimates the coefficients of linear regression through L1-

norm penalized least squares:

β̂ = arg min
β

(y −Xβ)T (y −Xβ) + λ

p∑
j=1

|βj| . (2.1)

Tibshirani suggested that LASSO estimates can be interpreted as posterior es-

timates when the regression parameters have independent and identical double-

exponential (Laplace) priors [35].

The probability density function of Laplace distribution with location µ

and scale τ is given by

Laplace (x;µ, b) =
1

2τ
exp

(
−|x− µ|

τ

)
. (2.2)

This prior can better accommodate large regression coefficients due to its heav-

ier tails than standard normal.

According to (2.2), the penalty term in (2.1), λ
∑p

j=1 |βj|, can be con-

sidered as the summation of the absolute log-likelihood of the parameters

βj, j = 1, . . . , p, which follow independent and identical Laplace priors with

zero mean. Thus linear LASSO is equivalent to a Bayesian model with a
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conditional Laplace prior for the coefficients, that is,

f (βj) =
1

2τ
exp

(
−|βj|

τ

)
(2.3)

with τ = 1/λ.

Motivated by this connection, Park and Casella proposed the Bayesian

LASSO using a conditional Laplace prior specification and the non-informative

scale-invariant marginal prior [31].

y|X,β, σ2 ∼ Nn

(
Xβ, σ2In

)
β|σ2, τ 21 , . . . , τ

2
p ∼ Np

(
0p, σ

2Dτ

)
Dτ = diag

(
τ 21 , . . . , τ

2
p

)
σ2, τ 21 , . . . , τ

2
p ∼ π

(
σ2
)
dσ2

p∏
j=1

λ2

2
exp

(
−1

2
λ2τ 2j

)
dτ 2j (2.4)

σ2, τ 21 , . . . , τ
2
p > 0

After integrating out τ 21 , . . . , τ
2
p , the conditional prior on β has the desired

form (2.3). Note that the prior distribution in model (2.4) is equivalent to

Laplace priors (2.3) due to the scale mixture representation of the Laplace
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distribution with normal and exponential density [31], that is,

βj|α ∼ Laplace
(
0, α−1/2

)
is equivalent to

βj ∼ Normal
(
0, τ 2j

)
(2.5)

τ 2j ∼ exponential
(α

2

)
.

In the following, we verify the equivalence (2.5). In this process, we will

utilize the equation

√
α

2
exp

(
−
√
α |z|

)
=

∞∫
0

1√
2πs

exp

(
−z

2

2s

)
α

2
exp

(
−αs

2

)
ds,
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as well as substitute the reciprocal of the precision of βj, denoted as 1
tj

, for τ 2j .

P (βj|α) =

∫
P
(
βj|τ 2j

)
P
(
τ 2j |α

)
dτ 2j

=

∫
1√
2πτ 2j

exp

(
−
β2
j

2τ 2j

)
α

2
exp

(
−
ατ 2j
2

)
dτ 2j

=

∫ √
tj
2π

exp

(
−
β2
j

2
tj

)
α

2
exp

(
−α

2

1

tj

)
d

1

tj

=
α

2

∫ √
1

2πt3j
exp

(
−
β2
j

2tj

(
t2j +

α

β2
j

))
dtj

=
α

2

∫ √
1

2πt3j
exp

− β2
j

2tj

(tj −√ α

β2
j

)2

+ 2tj

√
α

β2
j

 dtj

=
α

2

∫ √
1

2πt3j
exp

− β2
j

2tj

(
tj −

√
α

β2
j

)2
 exp

(
−
√
αβ2

j

)
dtj

=

√
α

2
exp

(
−
√
α |βj|

)
= Laplace

(
0, α−1/2

)
.

More connections between LASSO-family penalized regressions and fully

Bayesian formulation were built by Kyung et. al. [32]. For instance, the

conditional prior for group LASSO can be written as

π
(
β|σ2

)
∝ exp

(
−λ
σ

K∑
k=1

‖βGk‖

)
,

where K is the number of groups, βGk is the vector of β in group k. Similarly,
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the conditional prior for the fused LASSO is

π
(
β|σ2

)
∝ exp

(
−λ1
σ

p∑
j=1

|βj| −
λ2
σ

p−1∑
j=1

|βj+1 − βj|

)
,

and that for elastic net is given by

π
(
β|σ2

)
∝ exp

(
−λ1
σ

p∑
j=1

|βj| −
λ2
2σ

p∑
j=1

β2
j

)
.

Compared with penalized linear regression models, the advantage of the

hierarchical Bayesian formulations are huge. In addition to the usual ease-of-

interpretation of hierarchical models, the Bayesian formulation produces valid

standard errors, and is based on a geometrically ergodic Markov chain. In

addition, the results from the Bayesian LASSO are confirmed to be similar to

those from the ordinary LASSO [31,32].

Horseshoe Prior

Besides Laplace prior, horseshoe prior is another shrinkage or sparsity-promoting

priors for regression coefficients [36], defined as

β ∼ Np

(
0p, σ

2Dτ

)
, where Dτ = diag

(
τ 21 , . . . , τ

2
p

)
τj ∼ Half − Cauchy (0, 1) , for all j.

Half-Cauchy distribution is a special case of half-t distribution when the de-

gree of freedom is one. While half-t distribution is also a special case of fold-

noncentral-t distributions with zero mean. Particularly, the fold-noncentral-t
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distributions are derived from the non-central Student’s t-distribution by tak-

ing the values greater than the location parameter, whose probability density

function with ν degrees of freedom is given by

f (x|µ, σ, ν) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπσ2


[

1 +
1

ν

(x− µ)2

σ2

]− ν+1
2

+

[
1 +

1

ν

(x+ µ)2

σ2

]− ν+1
2

 (for x ≥ 0),

where µ is the location parameter [3].

From the conditionally-conjugate point of view, the half-t distributions can

be considered as the absolute value of a normal random variable, divided by

the square root of a gamma random variable [3, 37].

The folded non-central t distribution is not commonly used in statistics,

but it has some appealing properties. By restricting the prior mean to zero, so

that the folded non-central t distribution becomes simply a half-t distribution.

We can parameterize this in terms of scale A and degrees of freedom ν

p (τ) ∝
(

1 +
1

ν

( τ
A

)2)− ν+1
2

.

This family includes, as special case, the improper uniform density (when

ν = −1 ) and the the proper half-Cauchy, p (τ) ∝ (τ 2 + σ2)
−1

(when ν = 1)

[37,38].

A study comparing the Laplace and horseshoe prior pointed out that the

Laplace prior may overshrink large coefficients in a sparse situation, while the

horseshoe prior is more robust [36,39]. Also, SL Van Der Pas et. al. concluded

that the posterior distribution under the horseshoe prior may be more infor-
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Figure 2.1. The probability density functions of horseshoe prior and two
close cousins: Laplace and Cauchy (Student-t df=1).

mative than under the Laplace prior in a sparse normal means problem [40]. In

this Chapter, we will compare their abbilities in picking up signals in multiple

scenarios.

The density functions of horseshoe, Laplace and Cauchy are displayed in

Figure 2.1 [36].

Gaussian Prior

As known, ridge regression is equivalent to a hierarchical model with normal

prior for coefficients. According to the notation of (2.4), the posterior distri-
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bution of β can be written as

p
(
β|y,X, σ2, τ

)
∝ Normal

(
y|X,β, σ2

)
Normal

(
β|σ2, τ

)
∝ exp

{
− 1

2σ2
(y −Xβ)2

}
exp

{
− β2

2σ2τ 2

}
.

Thus the maximum a posteriori (MAP) estimate of β has a ridge format

β̂ = arg max
β

p
(
β|y,X, σ2, τ

)
= arg min

β
(y −Xβ)2 + λβ2,

where λ ∝ 1
τ2

and τ is a constant. Normal prior will be used as a baseline to

compare with in our study.

2.1.3 Estimation of Tuning Parameters

In the implementation of LASSO, cross validation is mostly applied to search

for a proper value for the coefficients of penalty terms in loss functions, that

is λ in (2.1). This parameter controls the size of the final model, known as the

tuning parameter.

In Bayesian analysis, there are two options for the estimation of the tuning

parameter λ. One is to estimate the marginal MLE using an Gibbs sampler.

Another is to introduce a diffuse hyperprior on λ2, adopted by Park et. al.

[31, 41],

π
(
λ2
)

=
δr

Γ (r)

(
λ2
)r−1

exp
(
−δλ2

)
.

Gamma hyperprior will result in an easy extension of the Gibbs sampler due
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to conjugacy. The choose of the shape parameter and the scale parameter in

the Gamma distribution should ensure that the prior density approach zero

sufficiently fast as λ2 →∞ and should be relatively flat and place high proba-

bility near the maximum likelihood estimate. Since the n-fold cross validation

is usually unstable, the Bayesian estimation of λ often leads to a more stable

estimates.

2.2 Implementation of Bayesian Models

The Bayesian framework can be naturally illustrated with hierarchical prob-

abilistic models. Unfortunately, computations in Bayesian framework are in-

tractable even for very simple cases. Most approximation techniques fall into

two categories: Markov chain Monte Carlo (MCMC) methods, such as Gibbs

sampling, as well as large sample methods, such as Laplace approximation [42].

MCMC algorithms have facilitated an explosion of interest in Bayesian meth-

ods by achieving exact results. It is an incredibly useful and important tool

but typically requires huge computational resources when used to estimate

complex posteriors applied to large data sets, so as to become inefficient for

complex models in high data dimensions. Whereas large sample methods are

tractable but typically make a rough approximation by building the posteriors

over all parameters as Normal. Moreover, they require the computation of

the Hessian matrix, which is computationally expensive [43]. In this study, all

the Bayesian models are implemented in R package rstan with Hamiltonian

Monte Carlo.
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2.2.1 Algorithms of Bayesian Models

Markov chain Monte Carlo

In 1907, A. A. Markov proposed an important new type of stochastic process.

This process is memoryless, meaning that the future states of the process based

solely on its present state. This type of process is called a Markov chain [44,45].

Markov chain Monte Carlo (MCMC) methods were developed for cases in

which direct sampling is difficult [46]. It samples from a probability distribu-

tion based on constructing a Markov chain that has the desired distribution as

its equilibrium distribution. After certain “warm-up” steps, the state of the

chain can be considered as a sample of the desired distribution. The Markov

chains generated by Stan and other MCMC samplers are both ergodic, mean-

ing that any collection of random samples from a process must represent the

average statistical properties of the entire process, and stationary, meaning

that the transition probabilities do not change at different positions in the

chain.

Gibbs sampling is a widely used MCMC algorithm. The point is that

given a multivariate distribution it is simpler to sample from a conditional

distribution than to marginalize by integrating over a joint distribution. It

is a randomized algorithm, and is commonly used as a means of Bayesian

inference. BUGS (Bayesian inference Using Gibbs Sampling) and JAGS (Just

Another Gibbs Sampling) are both programs for analyzing Bayesian graphical

models via Gibbs sampling [47–49].
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Hamiltonian Monte Carlo

Despite its advatages in convenient implementation and easy interpretation,

MCMC also suffers from several drawbacks. For instance, Gibbs sampling pro-

duces highly correlated posteriors, which cannot be addressed even with an effi-

cient and scalable implementation [50]. Stan applies Hamiltonian Monte Carlo

(HMC) algorithm, which reduces the correlation between successive sampled

states via a Hamiltonian evolution between states and additionally by target-

ing states with a higher acceptance criteria. But the Hamiltonian dynamics

simulation requires the gradient of the log posterior which is unlikely to imple-

ment by programs. In order to compute the analytic gradient automatically,

reverse-mode algorithmic differentiation is adopted, which allows the compu-

tation of the log posterior in only a few multiples of the cost to evaluate the log

probability function itself [51]. Here is a simple explanation of reverse-mode

automatic differentiation.

• Forward-Prop.

Any differentiable algorithm can be translated into a sequence of assignments

of basic operations.

xi ← fi
(
xπ(i)

)
, i = n+ 1, n+ 2, ..., N

Here, each function fi is some very basic operation (e.g. addition, multiplica-

tion, a logarithm) and π(i) denotes the set of “parents” of xi. So, for example,

if π(7) = (2, 5) and f7 = add, then x7 = x2 + x5.
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Given an algorithm in the previous format, it is easy to compute its deriva-

tives. The essential point here is just the application of the chain rule.

dxN
dxi

=
∑

j:i∈π(j)

dxN
dxj

∂xj
∂xi

• Back-Prop.

dxN
dxN

← 1

dxN
dxi
←

∑
j:i∈π(j)

dxN
dxj

∂fj
∂xi

, i = N − 1, N − 2, ..., 1

By creating an expression graph representation of the algorithm, all the deriva-

tives can be computed in reverse order.

2.2.2 Irregular Priors

As discussed in Section 2.1.2, several prior distributions can be assigned to the

coefficient parameters to acchieve sparseness. The priors of other parameters,

such as scale parameters or hyperparameters, will be discussed in this section.

Improper Uniform Priors

According to Bayes’s theorem,

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

,

the posterior distribution P (Ai|B) does not change if all prior probabilities

P (Ai) were multiplied by a constant, which means, the posterior probabilities
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will sum (or integrate) to one even if the prior does not. Taking this idea

further, the prior may not even need to be finite to get sensible values for the

posterior probabilities. This type of priors is called improper priors.

By default, Stan provides uniform prior on parameters over their legal

values. If a parameter is not constrained, a uniform prior on (−∞,∞) or

(0,∞) is given, which is an improper uniform prior. Both of these priors are

improper in the sense that there is no way to formulate a density function for

them that integrates to 1 over its support. Stan allows models to be formulated

with improper priors, but in order for sampling or optimization to work, the

data provided must ensure a proper posterior. An imporper prior is useful as

a starting point for inference and as a baseline for sensitivity analysis [50].

Truncated Priors

If a variable is declared with a lower bound of zero, then assigning it a normal

prior in a Stan model produces the same effect as providing a properly trun-

cated half-normal prior. The truncation at zero need not be specified because

Stan only requires the density up to a proportion. So declaring the limit of a

parameter

r ea l<lower=0> sigma ;

along with a normal prior

sigma ˜ normal (0 , 1000 ) ;
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leads to a half-normal prior, technically

p (σ) =
Normal (σ|0, 1000)

1−NormalCDF (0|0, 1000)
∝ Normal (σ|0, 1000) .

Weakly Informative Priors

We characterize a prior distribution as weakly informative if it is proper but

is set up so that the information it does provide is intentionally weaker than

whatever actual prior knowledge is available [37]. Typically any problem has

some natural constraints that would allow a weakly-informative model. An

example could be to estimate the mean population height. On the basis of

common sense, it should be a value within one to three meter range, that

gives us information around which to form a weakly informative prior [50].

Weakly informative priors are recommended due to their abilities to control

inference statistically and computationally. Statistically, a weakly informative,

or widely spreading, prior is more sensible, because it allows the majority of

the prior probability mass fall outside the the expactation region, which can

overwhelm the inferences from a small data set. Computationally, a prior

increases the curvature around the volume where the solution is expected to

lie, which in turn guides Monte Carlo sampling by restricting them within the

local [50].

2.2.3 Convergence of MCMC

Samples in a Markov chain only represent the underlying distribution after

the chain has converged to its equilibrium. In the implementation of MCMC,
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a constant problem is to decide when it is safe to terminate sampling and

conclude convergence. Most researchers apply diagnostic tools to deal with

the convergence problem, which is summarized by Cowles et. al. [52].

The recommended method for Stan is to run multiple Markov chains, ini-

tialized randomly with a diffuse set of initial parameter values, discard the

warm-up/adaptation samples, then split the remainder of each chain in half

and compute the potential scale reduction statistic, R̂ [53].

Potential Scale Reduction The potential scale reduction statistic R̂ mea-

sures the ratio of the average variance of samples within each chain to the

variance of the pooled samples across chains; if all chains are at equilibrium,

these will be the same and R̂ will be one. If the chains have not converged to

a common distribution, the R̂ statistic will be greater than one.

The definition of R̂ statistic is defined for a set of M Markov chains,

θm,m = 1, 2, . . . ,M , each of which has N samples θ
(n)
m , n = 1, 2, . . . , N . Ac-

cordingly, the between-sample B and within-sample W variance estimates are

given below.

B =
N

M − 1

M∑
m=1

(
θ̄(·)m − θ̄(·)·

)2
,

W =
1

M

M∑
m=1

s2m,
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where

θ̄(·)m =
1

N

N∑
n=1

θ(n)m

θ̄(·)· =
1

M

M∑
m=1

θ̄(·)m

s2m =
1

N − 1

N∑
n=1

(
θ(n)m − θ̄(·)m

)2
.

The variance estimator is

ˆvar+ (θ|y) =
N − 1

N
W +

1

N
B.

Finally, the potential scale reduction statistic is defined by

R̂ =

√
ˆvar+ (θ|y)

W
.

Note that R̂ statistic makes very strong assumptions that the related func-

tions are Gaussian or only first two moments are considered. As a result,

it may not work for all functions equally well. In this study, we check the

distribution of R̂ to ensure convergence before actually analyzing the results.

Effective Sample Size Another technical difficulty posed by MCMC meth-

ods is the autocorrelation within a chain. It increases the uncertainty of the

estimation of posterior quantities of interest, such as means, variances or quan-

tiles; and this uncertainty can be measured by effective sample size (ESS).

According to Central Limit Theorem, by estimating the mean of M indepen-
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dent draws rather than the raw samples, the estimation error is proportionally

reduced to 1/
√
M . If the draw are not independent but positive correlative,

such as drawing using Markov chain, the error is proportional to 1/
√
Neff ,

where Neff is the effective sample size and Neff < M . Thus, it is also stan-

dard practice to monitor the ESS till it is large enough for the estimation or

inference task [50].

The effective sample size of a sequence is defined in terms of the autocor-

relations within the sequence at different lags,

Neff =
N∑∞

t=−∞ ρt
=

N

1 + 2
∑∞

t=1 ρt
,

where ρt is the autocorrelation of the chain at lag t ≥ 0 and N is the actual

sample size.

In order to reduce the error caused by autocorrelation, thinning samples are

frequently used in Bayesian sampling method, which means we take a sample

every nth value. For instance, there are two ways of generating 1000 samples

1. Generate 1000 samples after convergence and save all of them.

2. Generate 10000 samples after convergence and save every tenth samples.

Even though both produce 1000 samples, the second approach with thinning

will produce more effective samples because the autocorrelation of the thinned

samples ρ10 will be lower than the autocorrelation of ρ1 so that the effective

sample size is higher. Furthermore, saving all 10000 sample without thinning

will result in a even higher effective sample size. More analysis on ESS and

MCMC has been discussed particularly by C Geyer et. al. [54].
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In this studies, we compared the autocorrelation with and without thin-

ning in several model fitting results, only to find that the autocorrelation is

negligible even without thinning. As a result, we adopt the default thin = 1

in Stan fitting, which means all samples in chain are used for result analysis.

2.2.4 Bayesian Inferences

After obtaining a valid chain of posterior draws, we are capable to estimate the

properties of posterior distributions from the random samples. Typically, the

point estimates can be the average of all samples; and the interval estimation

is achieved by credible intervals.

Credible Interval In Bayesian statistics, a credible interval is an interval in

the domain of a posterior probability distribution [55]. Credible intervals are

analogous to confidence intervals in frequentist statistics, although they differ

on a philosophical basis [56]; Bayesian intervals treat their bounds as fixed and

the estimated parameter as a random variable, whereas frequentist confidence

intervals treat their bounds as random variables and the parameter as a fixed

value. In particular, a 95% confidence interval for parameter β covers the true

but unknown value of β with 95% of chance; and a 95% credible interval means

the probability of β lying within that interval is 0.95.

Credible Intervals can be created based on the posterior draws of a param-

eter. For example, the interval limited by 2.5% quantile and 97.5% quantile

constitutes an equal-tailed credible interval when the sample size is big enough.

T. Park and G. Casella used Bayesian credible interval to guide variable selec-
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tion [31]. If the credible interval for a parameter covers 0, there is not enough

evidence to conclude this parameter deviates from 0, so that this corresponding

variable can be considered insignificant. Moreover, they confirmed its decent

performance by finding all of the Lasso estimates are well within the credible

intervals. In this Chapter, we will implement feature selection with credible

intervals for all Bayesian models. Further discussion on feature selection in

Bayesian models will take place in the next Chapter.

2.3 Prior Distribution Comparison in Simulation

2.3.1 Data Simulation

We performed simulation studies to compare the performance of Bayesian

models with different prior distributions for coefficients in terms of variable

selection, coefficients estimation and prediction.

We simulate a linear relationship between dependent variable y and pre-

dictors x based on the generative model

x ∼ N (0, R) , R ∈ Rp×p

y|x ∼ N
(
xβ, σ2

)
.

To compute the variance of y, we use Law of total variance,

var (y) = E [var (y|x)] + var (E [y|x]) (2.6)

= σ2 + var (xβ) .
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The simulation is designed with group information — variables in the same

group are correlated and have equal effect size [57]. The details of the settings

are described below.

To begin with, there will be two scenarios and the only difference between

them is the sample size, where N1 = 100 and N2 = 400. Next in each scenario,

the number of variables is P = 100. As mentioned above, the variables are

divided into 20 groups, 5 variables in each group. Each variable xj follows

a normal distribution marginally with a zero mean and unit variance, and

is correlated with other variables in the same group with coefficient ρ but

uncorrelated with variables in the other groups, that is, the correlation matrix

is block diagonal. Among the 20 groups of variables, three are generative

groups, which means the dependent variable y is derived solely based on them.

To set the 15 variables as relevant, we specify them with non-zero coefficients

(β1:5, β6:10, β11:15) = (ζ, 0.5ζ, 0.25ζ) whereas the rest have zero weight. At last,

the constant ζ is determined adjusting for the signal-to-noise ratio (SNR) of

the data. To get comparable results for different levels of correlation ρ, we set

ζ so that σ2/var (y) = 0.3, where the noise variance σ2 = 1. According to

(2.6), the SNR is

σ2
signal

σ2
noise

=
σ2
signal + σ2

noise

σ2
noise

− 1

=
var (y)

σ2
noise

− 1

=
1

0.3
− 1 = 7/3.

For ρ = 0, 0.5, 0.9, this is satisfied by setting approximately ζ = 0.59, 0.34, 0.28
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Model 1 Double exponential (Laplace) prior

Model 2 Gaussian prior

Model 3 Gaussian-exponential hierarchical structure

Model 4
Gaussian-exponential hierarchical structure,
λ2 follows a Gamma distribution

Model 5 Half-t distribution

Model 6
Half-Cauchy distribution, which is the
special case of half-t distribution with one
degree of freedom

Table 2.1. The settings of prior distributions for the coefficient parameters
in the candidate models for this simulation study.

respectively. The trial is carried out 50 times to adjust for the randomness in

simulation and Monte Carlo sampling.

2.3.2 Candidate Priors

In this section, we will discuss the priors for the coefficient parameters β in

each model being compared in this simulation study (see table 2.1) and how

they are implemented in Stan. A stan program is organized into a sequence of

named blocks [50]. Some selected transformed parameters blocks and model

blocks will be shown is this document.

• Double Exponential Prior

The coefficients β1, . . . , βP follow a single double-exponential prior distribution

with location parameter µ and scale parameter γ, both of which have improper

uniform priors. The model is described in the model block in a stan file as

following.

model {
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y ˜ normal ( x ∗ beta , sigma ) ;

sigma ˜ normal ( 0 , 1 ) ;

beta ˜ doub l e exponent i a l (mu, gamma ) ;

f o r ( k in 1 :K)

t a r g e t += − lambda ∗ N ∗ f abs ( beta [ k ] ) ;

}

“lambda” controls the magnitude of the penalty term, which follows a im-

proper uniform prior; N is the number of samples. “target” is an embedded

variable, representing the log probability accumulator.

In fact, the basic purpose of a Stan program is to compute a log probabil-

ity function and its derivatives. The log probability function in a Stan model

outputs the log density on the unconstrained scale. The variables are first

transformed from unconstrained to constrained, and the log Jacobian deter-

minant added to the log probability accumulator. Then the model block is

executed on the constrained parameters, with each sampling statement (˜).

At the end of the model block execution, the value of the log probability accu-

mulator is the log probability value returned by the build-in function target()

in Stan program.

• Gaussian prior

The coefficient parameters β1, . . . , βP follow a single Gaussian prior distribu-

tion with mean µ and standard deviation γ, both of which have improper

uniform priors. The model is described in the model block in a stan file as

following.
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model {

y ˜ normal ( x ∗beta , sigma ) ;

beta ˜ normal (mu, gamma ) ;

f o r ( k in 1 :K)

t a r g e t += − lambda ∗ N ∗ f abs ( beta [ k ] ) ;

}

• Gaussian-exponential prior

In this model, each βj has a Gaussian prior with mean µ and standard deviation

σ
√
τ 2j . Both mean µ and the global variance follows improper uniform priors.

While the local variance parameter follows an exponential distribution, making

a Gaussian-exponential hierarchy for β. The model block is coded as below

for this model.

model {

y ˜ normal ( x ∗beta , sigma ) ;

f o r ( j in 1 :K)

beta [ j ] ˜ normal (mu, sigma∗ s q r t ( tau sq [ j ] ) ) ;

tau sq ˜ exponent i a l ( lambda sq ∗ Nˆ2 / 8 ) ;

f o r ( k in 1 :K)

t a r g e t += − lambda ∗ N ∗ f abs ( beta [ k ] ) ;

}

• Gaussian-exponential prior for coefficients β and Gamma prior for λ2
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This difference between this model and the precious lies in the prior of λ2.

It was an improper uniform prior in model 3 but is a Gamma distribution

in Model 4. The model code is given below. Note that the logarithm of the

Jacobian determinants of non-linear transformation should be added to target

specially.

model {

y ˜ normal ( x ∗beta , sigma ) ;

f o r ( j in 1 :K)

beta [ j ] ˜ normal (mu, sigma∗ tau [ j ] ) ;

tau sq ˜ exponent i a l ( lambda sq ∗ Nˆ2 / 8 ) ;

lambda sq ˜ gamma( 2 , 5 0 ) ;

f o r ( k in 1 :K)

t a r g e t += − lambda ∗ N ∗ f abs ( beta [ k ] ) ;

t a r g e t += sum( log ( tau ) ) ;

t a r g e t += log ( lambda ) ;

}

• Half-t prior

In this model, the beta is constrained by a global scale parameter τ and a local

scale parameter λ, both of which follow half-Cauchy distributions [58]. From

the discussion of section 2.1.2, we learnt that half-Cauchy can be considered

as the result of the absolute value of a Gaussian variable divided by a Gamma

variable, that is the product of the absolute value of a Gaussian variable and

a inverse-Gamma variable. This is how these two scale parameters are defined
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in the stan model.

transformed parameters {

r ea l<lower=0> tau ;

vector<lower=0>[K] lambda ;

vec to r [K] beta ;

tau = r 1 g l o b a l ∗ s q r t ( r 2 g l o b a l ) ;

lambda = r 1 l o c a l .∗ s q r t ( r 2 l o c a l ) ;

beta = z .∗ lambda∗ tau ;

}

model {

y ˜ normal ( x∗beta , sigma ) ;

z ˜ normal (0 , 1 ) ;

r 1 l o c a l ˜ normal ( 0 . 0 , 1 . 0 ) ;

r 2 l o c a l ˜ inv gamma (0 . 5∗ nu , 0 .5∗ nu ) ;

r 1 g l o b a l ˜ normal ( 0 . 0 , 1 . 0 ) ;

r 2 g l o b a l ˜ inv gamma ( 0 . 5 , 0 . 5 ) ;

}

• Half-Cauchy prior

As discussed in section 2.1.2, half-Cauchy prior is a special case of half-t distri-

bution. Therefore, this model is exactly the same as the previous one except

for prespecifying one degree of freedom.
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2.3.3 Simulation Results Analysis

Feature Selection

In this study, features are selected based on credible intervals, introduced in

Section 2.2.4. Three credible levels are applied, 0.8, 0.95 and 0.99. Of course,

in each setting the 0.8 credible level leads to a larger model whereas the 0.99

leads to a smaller model.

Statistical Measures Feature selection accuracy are measured by positive

predictive value (PPV), negative predictive value (NPV), true positive rate or

sensitivity (SEN), true negative rate or specificity (SPC) and overall accuracy

rate (ACC). Those terms are defined by the following formula:

PPV =
TP

TP+FP

NPV =
TN

TN+FN

SEN =
TP

TP+FN

SPC =
TN

TN+FP

ACC =
TN+TP

TN+TP+FN+FP
.

The terms in the above formula are defined in the table below.

prediction positive prediction negative

condition positive True Positive (TP) False Negative (FN)

condition negative False Positive (FP) True Negative (TN)
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In each setting, we repeat the trial for 50 times and the five criteria, in-

cluding PPV, NPV, SEN, SPC and ACC, are calculated for all trials. The

mean and standard error across the 50 trials are given in table 2.2 - 2.7. Some

conclusion can be drawn from these tables.

First of all, the low PPV for Model 3 and 4 suggests that they tend to

selected more features, especially at the credible level of 0.8. Comparing with

Model 1, Model 3 and 4 use one more hierarchy to construct the Laplace distri-

bution, which undoubtedly brings in more uncertainty and thus larger intervals

at a certain credible level. Moreover, Model 3 and 4 obtain higher ACC at

higher credible levels, which confirms the wide spreading of the posteriors.

The hierarchical structure is supposed to accommodate more heteroskedastic-

ity coefficients.

Second, t-distribution-based models, Model 5 and 6, behave most accu-

rately when the variables are independent, especially at the credible level of

0.8. That is to say, they capture weak signals well enough even without bor-

rowing information from other signals. This could be a result of using local

variance in the model design, in 2.3.2, which allows parameters estimated sep-

arately when they do not behave alike.

Further, Gaussian prior outperforms others when large within-group cor-

relation ρ applies. The high correlation within group leads to a lower overall

variance of the data, and thus the lower variance in posterior distributions.

Therefore, it is less likely to see unexpected large posterior draws comparing

to the case of independent variables. Referring to Figure 2.1, the heavy tail

distributions become less appropriate in this situation.
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At last, all models behave more alike in case of large sample size N = 400,

that makes sense because a large amount of samples overwhelm the character-

istics in the prior distribution.

AUC Besides the specific measures, we calculate AUC for over all perfor-

mance of feature selection. Area Under Curve (AUC) refers to the area under

the receiver operating characteristic (ROC) curve, which is a graphical plot

that illustrates the performance of a binary classifier system as its discrim-

ination threshold is varied. The curve is created by plotting the sensitivity

against one minus specificity at various threshold settings. The value of AUC

is equal to the probability that a classifier, or a selective system in this case,

will rank a randomly chosen positive instance higher than a randomly chosen

negative one.

AUC values are also compared across all settings. The results are given

in table 2.8. As shown, the Laplace prior (Model 1) behaves the best in all

settings, but the advantage diminishes as the sample size increases.

As a reference, the ROC curves for all settings can be found in the Appendix

in Figure A.1 - A.6.

Parameter Estimation

The parameter estimated is evaluated by the root-sum-square error (RSSE),

which is the square root of the L2- norm of the deviation between the true
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.6(0.15) 0.9(0.13) 0.96(0.09)
Model2 0.56(0.14) 0.87(0.16) 0.95(0.11)

PPV Model3 0.32(0.09) 0.47(0.17) 0.62(0.2)
Model4 0.32(0.09) 0.5(0.19) 0.63(0.19)
Model5 0.84(0.12) 0.98(0.07) 1(0.02)
Model6 0.95(0.08) 1(0.02) 1(0)
Model1 0.94(0.02) 0.91(0.01) 0.89(0.01)
Model2 0.94(0.02) 0.91(0.02) 0.88(0.02)

NPV Model3 0.94(0.03) 0.93(0.02) 0.92(0.02)
Model4 0.94(0.03) 0.93(0.02) 0.92(0.02)
Model5 0.91(0.01) 0.89(0.01) 0.88(0.01)
Model6 0.91(0.01) 0.89(0.01) 0.88(0.01)
Model1 0.68(0.12) 0.44(0.1) 0.29(0.1)
Model2 0.66(0.12) 0.43(0.12) 0.26(0.13)

SEN Model3 0.77(0.11) 0.63(0.12) 0.53(0.12)
Model4 0.76(0.11) 0.63(0.11) 0.51(0.13)
Model5 0.47(0.1) 0.33(0.08) 0.25(0.09)
Model6 0.41(0.09) 0.31(0.07) 0.24(0.08)
Model1 0.91(0.06) 0.99(0.02) 1(0.01)
Model2 0.9(0.06) 0.98(0.02) 1(0.01)

SPC Model3 0.67(0.14) 0.83(0.13) 0.91(0.11)
Model4 0.69(0.14) 0.85(0.13) 0.92(0.11)
Model5 0.98(0.02) 1(0.01) 1(0)
Model6 1(0.01) 1(0) 1(0)
Model1 0.87(0.05) 0.91(0.02) 0.89(0.01)
Model2 0.86(0.05) 0.9(0.02) 0.89(0.02)

ACC Model3 0.69(0.12) 0.8(0.11) 0.86(0.09)
Model4 0.7(0.11) 0.81(0.11) 0.86(0.08)
Model5 0.9(0.02) 0.9(0.01) 0.89(0.01)
Model6 0.91(0.01) 0.9(0.01) 0.89(0.01)

Table 2.2. The performance of six models in feature selection when
N = 100 and ρ = 0. Each cell displays the mean and standard error across
50 trials in each setting of credible level .
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.81(0.13) 0.98(0.08) 1(0.03)
Model2 0.7(0.14) 0.96(0.08) 0.99(0.05)

PPV Model3 0.32(0.09) 0.49(0.17) 0.71(0.21)
Model4 0.35(0.1) 0.53(0.16) 0.76(0.2)
Model5 0.95(0.09) 0.99(0.04) 1(0)
Model6 0.98(0.06) 0.99(0.04) 1(0)
Model1 0.92(0.02) 0.89(0.01) 0.87(0.01)
Model2 0.93(0.01) 0.9(0.01) 0.88(0.01)

NPV Model3 0.92(0.02) 0.9(0.01) 0.89(0.01)
Model4 0.92(0.02) 0.9(0.01) 0.89(0.01)
Model5 0.9(0.01) 0.87(0.01) 0.86(0.01)
Model6 0.89(0.01) 0.87(0.01) 0.86(0.01)
Model1 0.53(0.1) 0.3(0.09) 0.14(0.07)
Model2 0.58(0.08) 0.38(0.08) 0.22(0.08)

SEN Model3 0.61(0.1) 0.41(0.11) 0.3(0.07)
Model4 0.61(0.1) 0.4(0.09) 0.28(0.07)
Model5 0.36(0.08) 0.16(0.06) 0.07(0.05)
Model6 0.26(0.07) 0.13(0.06) 0.06(0.06)
Model1 0.97(0.02) 1(0.01) 1(0)
Model2 0.95(0.03) 1(0.01) 1(0)

SPC Model3 0.75(0.1) 0.9(0.08) 0.97(0.05)
Model4 0.78(0.09) 0.92(0.06) 0.98(0.03)
Model5 1(0.01) 1(0) 1(0)
Model6 1(0.01) 1(0) 1(0)
Model1 0.91(0.02) 0.89(0.01) 0.87(0.01)
Model2 0.9(0.03) 0.9(0.01) 0.88(0.01)

ACC Model3 0.73(0.08) 0.83(0.06) 0.87(0.04)
Model4 0.75(0.08) 0.84(0.05) 0.87(0.03)
Model5 0.9(0.01) 0.87(0.01) 0.86(0.01)
Model6 0.89(0.01) 0.87(0.01) 0.86(0.01)

Table 2.3. The performance of six models in feature selection when
N = 100 and ρ = 0.5. Each cell displays the mean and standard error across
50 trials in each setting of credible level .
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.99(0.05) 1(0) 1(0)
Model2 0.98(0.06) 1(0) 1(0)

PPV Model3 0.48(0.21) 0.75(0.28) 0.85(0.29)
Model4 0.58(0.23) 0.83(0.25) 0.89(0.28)
Model5 1(0) 1(0) 1(0)
Model6 1(0) 1(0) 1(0)
Model1 0.89(0.01) 0.86(0) 0.85(0)
Model2 0.91(0.01) 0.87(0.01) 0.85(0)

NPV Model3 0.89(0.01) 0.87(0.01) 0.86(0.01)
Model4 0.89(0.01) 0.87(0.01) 0.86(0.01)
Model5 0.86(0.01) 0.85(0) 0.85(0)
Model6 0.86(0.01) 0.85(0) 0.85(0)
Model1 0.3(0.09) 0.05(0.04) 0.01(0.02)
Model2 0.41(0.06) 0.19(0.06) 0.03(0.04)

SEN Model3 0.34(0.09) 0.14(0.06) 0.06(0.06)
Model4 0.34(0.08) 0.13(0.05) 0.06(0.06)
Model5 0.09(0.05) 0.02(0.03) 0.01(0.02)
Model6 0.06(0.05) 0.02(0.03) 0.01(0.02)
Model1 1(0) 1(0) 1(0)
Model2 1(0) 1(0) 1(0)

SPC Model3 0.9(0.09) 0.98(0.05) 0.99(0.02)
Model4 0.93(0.07) 0.99(0.03) 1(0.01)
Model5 1(0) 1(0) 1(0)
Model6 1(0) 1(0) 1(0)
Model1 0.89(0.01) 0.86(0.01) 0.85(0)
Model2 0.91(0.01) 0.88(0.01) 0.85(0.01)

ACC Model3 0.82(0.07) 0.85(0.04) 0.85(0.01)
Model4 0.84(0.06) 0.86(0.02) 0.86(0.01)
Model5 0.86(0.01) 0.85(0) 0.85(0)
Model6 0.86(0.01) 0.85(0.01) 0.85(0)

Table 2.4. The performance of six models in feature selection when
N = 100 and ρ = 0.9. Each cell displays the mean and standard error across
50 trials in each setting of credible level .
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.58(0.09) 0.88(0.08) 0.98(0.04)
Model2 0.5(0.07) 0.81(0.09) 0.96(0.05)

PPV Model3 0.54(0.08) 0.82(0.09) 0.95(0.05)
Model4 0.55(0.07) 0.82(0.09) 0.97(0.05)
Model5 0.78(0.09) 0.96(0.05) 0.99(0.03)
Model6 0.9(0.08) 0.98(0.03) 1(0.02)
Model1 0.99(0.01) 0.98(0.01) 0.97(0.01)
Model2 0.99(0.01) 0.98(0.01) 0.97(0.01)

NPV Model3 0.99(0.01) 0.98(0.01) 0.97(0.01)
Model4 0.99(0.01) 0.98(0.01) 0.97(0.01)
Model5 0.98(0.01) 0.97(0.01) 0.96(0.01)
Model6 0.98(0.01) 0.96(0.01) 0.95(0.01)
Model1 0.96(0.05) 0.9(0.08) 0.8(0.08)
Model2 0.96(0.05) 0.91(0.07) 0.84(0.08)

SEN Model3 0.96(0.05) 0.9(0.08) 0.83(0.08)
Model4 0.96(0.05) 0.91(0.07) 0.83(0.08)
Model5 0.91(0.07) 0.83(0.08) 0.75(0.07)
Model6 0.88(0.08) 0.79(0.08) 0.72(0.06)
Model1 0.87(0.04) 0.98(0.02) 1(0.01)
Model2 0.82(0.05) 0.96(0.02) 0.99(0.01)

SPC Model3 0.85(0.04) 0.96(0.02) 0.99(0.01)
Model4 0.85(0.04) 0.96(0.02) 0.99(0.01)
Model5 0.95(0.03) 0.99(0.01) 1(0)
Model6 0.98(0.02) 1(0) 1(0)
Model1 0.88(0.04) 0.96(0.02) 0.97(0.01)
Model2 0.85(0.04) 0.95(0.02) 0.97(0.01)

ACC Model3 0.87(0.04) 0.95(0.02) 0.97(0.01)
Model4 0.87(0.04) 0.95(0.02) 0.97(0.01)
Model5 0.94(0.02) 0.97(0.01) 0.96(0.01)
Model6 0.97(0.02) 0.97(0.01) 0.96(0.01)

Table 2.5. The performance of six models in feature selection when
N = 400 and ρ = 0. Each cell displays the mean and standard error across
50 trials in each setting of credible level .
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.69(0.11) 0.94(0.06) 0.99(0.03)
Model2 0.56(0.09) 0.86(0.1) 0.98(0.04)

PPV Model3 0.61(0.11) 0.88(0.08) 0.98(0.04)
Model4 0.62(0.11) 0.89(0.1) 0.99(0.03)
Model5 0.87(0.09) 0.99(0.04) 1(0)
Model6 0.95(0.06) 0.99(0.02) 1(0)
Model1 0.97(0.01) 0.94(0.01) 0.92(0.01)
Model2 0.97(0.01) 0.95(0.01) 0.93(0.01)

NPV Model3 0.97(0.01) 0.94(0.01) 0.93(0.01)
Model4 0.97(0.01) 0.94(0.01) 0.93(0.01)
Model5 0.96(0.01) 0.93(0.01) 0.91(0.01)
Model6 0.95(0.01) 0.92(0.01) 0.91(0.01)
Model1 0.84(0.07) 0.67(0.08) 0.54(0.07)
Model2 0.84(0.06) 0.69(0.07) 0.57(0.07)

SEN Model3 0.83(0.07) 0.67(0.07) 0.55(0.06)
Model4 0.83(0.07) 0.67(0.07) 0.56(0.07)
Model5 0.74(0.06) 0.57(0.07) 0.46(0.06)
Model6 0.68(0.06) 0.53(0.07) 0.41(0.07)
Model1 0.93(0.03) 0.99(0.01) 1(0)
Model2 0.88(0.04) 0.98(0.02) 1(0)

SPC Model3 0.9(0.04) 0.98(0.01) 1(0)
Model4 0.9(0.04) 0.98(0.02) 1(0)
Model5 0.98(0.02) 1(0) 1(0)
Model6 0.99(0.01) 1(0) 1(0)
Model1 0.92(0.03) 0.94(0.01) 0.93(0.01)
Model2 0.87(0.04) 0.94(0.02) 0.93(0.01)

ACC Model3 0.89(0.04) 0.94(0.02) 0.93(0.01)
Model4 0.89(0.04) 0.94(0.02) 0.93(0.01)
Model5 0.94(0.02) 0.93(0.01) 0.92(0.01)
Model6 0.95(0.01) 0.93(0.01) 0.91(0.01)

Table 2.6. The performance of six models in feature selection when
N = 400 and ρ = 0.5. Each cell displays the mean and standard error across
50 trials in each setting of credible level .
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.87(0.11) 1(0.03) 1(0)
Model2 0.75(0.14) 0.96(0.08) 1(0.04)

PPV Model3 0.79(0.15) 0.96(0.08) 1(0.04)
Model4 0.82(0.14) 0.98(0.06) 1(0.04)
Model5 0.98(0.05) 0.99(0.04) 1(0)
Model6 1(0.02) 1(0) 1(0)
Model1 0.93(0.01) 0.89(0.01) 0.87(0.01)
Model2 0.94(0.01) 0.91(0.01) 0.89(0.01)

NPV Model3 0.92(0.01) 0.89(0.01) 0.87(0.01)
Model4 0.92(0.01) 0.89(0.01) 0.87(0.01)
Model5 0.9(0.01) 0.87(0.01) 0.86(0.01)
Model6 0.88(0.01) 0.86(0.01) 0.86(0.01)
Model1 0.57(0.09) 0.3(0.08) 0.13(0.04)
Model2 0.62(0.08) 0.42(0.07) 0.27(0.07)

SEN Model3 0.55(0.08) 0.31(0.08) 0.16(0.06)
Model4 0.55(0.08) 0.32(0.08) 0.15(0.05)
Model5 0.35(0.09) 0.14(0.05) 0.06(0.04)
Model6 0.23(0.05) 0.1(0.05) 0.05(0.05)
Model1 0.98(0.02) 1(0) 1(0)
Model2 0.96(0.03) 1(0.01) 1(0)

SPC Model3 0.97(0.03) 1(0) 1(0)
Model4 0.98(0.02) 1(0) 1(0)
Model5 1(0) 1(0) 1(0)
Model6 1(0) 1(0) 1(0)
Model1 0.92(0.02) 0.9(0.01) 0.87(0.01)
Model2 0.91(0.03) 0.91(0.01) 0.89(0.01)

ACC Model3 0.91(0.03) 0.89(0.01) 0.87(0.01)
Model4 0.91(0.03) 0.9(0.01) 0.87(0.01)
Model5 0.9(0.01) 0.87(0.01) 0.86(0.01)
Model6 0.88(0.01) 0.87(0.01) 0.86(0.01)

Table 2.7. The performance of six models in feature selection when
N = 100 and ρ = 0.9. Each cell displays the mean and standard error across
50 trials in each setting of credible level .
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ρ = 0 ρ = 0.5 ρ = 0.9
Model1 0.88(0.06) 0.87(0.04) 0.91(0.05)
Model2 0.86(0.06) 0.84(0.05) 0.86(0.05)

N = 100 Model3 0.8(0.08) 0.74(0.08) 0.69(0.09)
Model4 0.8(0.08) 0.75(0.07) 0.72(0.08)
Model5 0.85(0.05) 0.84(0.05) 0.88(0.05)
Model6 0.85(0.05) 0.85(0.05) 0.84(0.07)
Model1 0.98(0.02) 0.95(0.03) 0.92(0.04)
Model2 0.98(0.02) 0.93(0.03) 0.87(0.04)

N = 400 Model3 0.98(0.02) 0.93(0.03) 0.87(0.05)
Model4 0.98(0.02) 0.94(0.03) 0.88(0.05)
Model5 0.98(0.02) 0.95(0.03) 0.91(0.05)
Model6 0.98(0.02) 0.95(0.03) 0.88(0.05)

Table 2.8. The mean and standard error of AUC for the six models in all
settings.

value and the estimated value of β, defined below.

RSSE =

√√√√ P∑
j=1

(
βj − β̂j

)2
.

The results are summarized in table 2.9 and 2.10. Generally, the estimation

results perform in accordance with feature selection accuracy, so that all con-

clusions drawn from Section 2.3.3 are verified.

As a reference, RSSE are illustrated in plots for each setting, which locate

in the Appendix Figure A.7 - A.12.

Prediction

For each setting, we also simulate a test set with 100 samples
{(
X̃i, ỹi

)
, i = 1, 2, . . . , 100

}
,

on which we compute the prediction root-mean-squared error (PRMSE) with
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.84 (0.12) 0.88 (0.14) 1 (0.18)
Model2 0.97 (0.1) 0.99 (0.15) 1.13 (0.2)

ρ = 0 Model3 1.27 (0.52) 1.21 (0.53) 1.12 (0.52)
Model4 1.22 (0.5) 1.15 (0.51) 1.09 (0.49)
Model5 0.81 (0.13) 0.9 (0.16) 1.04 (0.19)
Model6 0.81 (0.13) 0.91 (0.15) 1.05 (0.18)
Model1 0.52 (0.09) 0.61 (0.1) 0.76 (0.07)
Model2 0.5 (0.08) 0.5 (0.08) 0.63 (0.1)

ρ = 0.5 Model3 1.11 (0.36) 1 (0.33) 0.89 (0.28)
Model4 1 (0.28) 0.91 (0.26) 0.84 (0.21)
Model5 0.65 (0.11) 0.78 (0.07) 0.84 (0.04)
Model6 0.75 (0.11) 0.84 (0.07) 0.86 (0.04)
Model1 0.52 (0.1) 0.7 (0.04) 0.72 (0.03)
Model2 0.37 (0.05) 0.55 (0.07) 0.69 (0.03)

ρ = 0.9 Model3 1.12 (0.61) 0.98 (0.53) 0.89 (0.42)
Model4 0.94 (0.45) 0.86 (0.35) 0.82 (0.25)
Model5 0.83 (0.16) 0.81 (0.15) 0.77 (0.13)
Model6 0.89 (0.19) 0.84 (0.2) 0.79 (0.17)

Table 2.9. The RSSE of parameter estimation in all settings when N = 100.
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.37 (0.04) 0.32 (0.05) 0.34 (0.06)
Model2 0.45 (0.05) 0.37 (0.05) 0.35 (0.05)

ρ = 0 Model3 0.38 (0.04) 0.33 (0.05) 0.33 (0.05)
Model4 0.38 (0.04) 0.33 (0.05) 0.32 (0.05)
Model5 0.32 (0.05) 0.31 (0.05) 0.35 (0.05)
Model6 0.3 (0.05) 0.33 (0.05) 0.37 (0.05)
Model1 0.33 (0.05) 0.33 (0.05) 0.37 (0.04)
Model2 0.38 (0.06) 0.32 (0.06) 0.34 (0.04)

ρ = 0.5 Model3 0.37 (0.06) 0.35 (0.05) 0.37 (0.03)
Model4 0.36 (0.06) 0.35 (0.05) 0.37 (0.04)
Model5 0.34 (0.05) 0.38 (0.04) 0.43 (0.05)
Model6 0.36 (0.05) 0.42 (0.05) 0.48 (0.07)
Model1 0.43 (0.08) 0.53 (0.08) 0.64 (0.04)
Model2 0.39 (0.09) 0.38 (0.07) 0.47 (0.07)

ρ = 0.9 Model3 0.49 (0.1) 0.55 (0.08) 0.63 (0.05)
Model4 0.47 (0.1) 0.54 (0.08) 0.63 (0.05)
Model5 0.62 (0.1) 0.7 (0.07) 0.73 (0.06)
Model6 0.74 (0.08) 0.77 (0.07) 0.76 (0.07)

Table 2.10. The RSSE of parameter estimation in all settings when
N = 400.
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 1.06 (1.2) 1.06 (1.23) 1.11 (1.27)
Model2 1.06 (1.19) 1.09 (1.26) 1.23 (1.39)

ρ = 0 Model3 1.62 (1.7) 1.57 (1.73) 1.4 (1.59)
Model4 1.57 (1.69) 1.54 (1.77) 1.36 (1.55)
Model5 1.04 (1.21) 1.09 (1.26) 1.34 (1.52)
Model6 1.08 (1.24) 1.08 (1.24) 1.23 (1.41)
Model1 1.19 (1.36) 1.2 (1.4) 1.4 (1.67)
Model2 1.21 (1.36) 1.2 (1.39) 1.28 (1.46)

ρ = 0.5 Model3 1.35 (1.58) 1.38 (1.62) 1.3 (1.48)
Model4 1.32 (1.55) 1.35 (1.56) 1.36 (1.52)
Model5 1.2 (1.38) 1.39 (1.66) 1.53 (1.74)
Model6 1.2 (1.39) 1.52 (1.74) 1.52 (1.74)
Model1 1.2 (1.35) 1.43 (1.78) 1.62 (2.06)
Model2 1.18 (1.31) 1.22 (1.38) 1.62 (2.06)

ρ = 0.9 Model3 1.24 (1.51) 1.54 (1.95) 1.4 (1.74)
Model4 1.21 (1.47) 1.43 (1.79) 1.39 (1.72)
Model5 1.36 (1.66) 1.62 (2.06) 1.62 (2.06)
Model6 1.34 (1.63) 1.62 (2.06) 1.62 (2.06)

Table 2.11. The PRMSE of prediction in all settings when N = 100.

the following formula.

PRMSE =

√√√√ 100∑
i=1

(
ỹi − X̃iβ̂

)2
/100 (2.7)

Here β̂ is the estimates of β in a randomly one out of the 50 trials in that

setting. Results are summarized in table 2.11 and 2.12. Comparing table

2.12 to table 2.12, there is no doubt that larger sample size leads to a more

accurate fitting. Moreover, model fitting deteriorates as the correlation among

features raises. At the same time, all conclusion drawn from Section 2.3.3 are

confirmed from the prediction results.
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Credible Level = 0.8 Credible Level = 0.95 Credible Level = 0.99
Model1 0.84 (0.89) 0.84 (0.9) 0.84 (0.92)
Model2 0.84 (0.92) 0.85 (0.92) 0.85 (0.93)

ρ = 0 Model3 0.83 (0.89) 0.84 (0.9) 0.86 (0.94)
Model4 0.83 (0.89) 0.84 (0.91) 0.84 (0.91)
Model5 0.83 (0.9) 0.83 (0.9) 0.84 (0.91)
Model6 0.83 (0.9) 0.84 (0.93) 0.84 (0.92)
Model1 1.09 (1.33) 1.07 (1.32) 1.11 (1.38)
Model2 1.1 (1.33) 1.07 (1.31) 1.07 (1.31)

ρ = 0.5 Model3 1.09 (1.33) 1.07 (1.32) 1.1 (1.38)
Model4 1.09 (1.33) 1.07 (1.32) 1.1 (1.38)
Model5 1.05 (1.29) 1.09 (1.37) 1.16 (1.36)
Model6 1.05 (1.28) 1.1 (1.37) 1.15 (1.36)
Model1 1.06 (1.23) 1.2 (1.31) 1.42 (1.77)
Model2 1.08 (1.23) 1.25 (1.35) 1.19 (1.33)

ρ = 0.9 Model3 1.08 (1.24) 1.26 (1.34) 1.22 (1.4)
Model4 1.08 (1.24) 1.2 (1.31) 1.3 (1.56)
Model5 1.1 (1.22) 1.27 (1.5) 1.62 (2.06)
Model6 1.25 (1.46) 1.35 (1.66) 1.62 (2.06)

Table 2.12. The PRMSE of prediction in all settings when N = 400.

64



2.4 Discussion

This chapter presented a comparison of the Laplace(Model 1), Gaussian (Model

2) and horseshoe (Model 6) priors on Bayesian linear models and demonstrated

an expected difference in their behavior. In particular, the heavy tail distri-

bution, such as horseshoe, is more capable to capture dispersive parameters

so as to favor independent predictors. On the other hand, when the variables

are highly correlated, their signals are more likely to concentrate at zero and

a Gaussian prior outperforms others in this case.

In addition, we compared different implementation of Laplace prior (Model

1, 3, 4) and confirmed the impact of hierarchical structures. In this simulation,

the simpler structures outperform complex ones, probably because the data

generation model is so straightforward that a simple model is sufficient to

seize the majority of signals. Whereas the real-world data, where the data

generation models are usually quite complicated or do not even exist, may

need a complex model to fit well.

To select the subset of variables to be included in the model, we made use

of the credible intervals, which is a particular output of probabilistic models.

The size of selected model is controlled by the credible levels of these intervals,

higher credible levels leading to smaller models. Based on that, we compared

the prior distributions at different credible levels, which actually helps to ex-

plore the impact of the shape, primarily the tails, on the performance of the

candidates. In general, priors with heavier tails benefit from a smaller credible

level because it results in a large model. Credible levels was applied to select
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features by Park and Casella in 2008 [31] and it is the most intuitive strategy

in this field. More approaches will be discussed in the next chapter.

Stan, an efficient, powerful and user-friendly tool for probabilistic program-

ming, is applied to fit Bayesian models in this study. First of all, it utilizes

Hamiltonian Monte Carlo in sampling, which reduces the correlation between

two consecutive samples in the Markov chain. Thus, the computation time is

shortened tremendously due to the fast converge and zero thinning. Hamilto-

nian Monte Carlo also helps prevent the sampling process from choking at a

local optimum point. In terms of computational stability, stan is more prac-

tical than BUGS because it can be applied to large data sets. Last but not

least, because of the flexibility of the hierarchical structure and the feasibility

of Stan scripts, this study can be easily expanded to generalized linear models,

such as logistic and survival models, which is part of the future work of this

study.

In the future, extensive simulation work will also be performed for reaching

a solid conclusion. For instance, the scenario when the number of predictors

surpasses the number of samples is of great interest and should be constructed

in the simulation.
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Chapter 3

Group-wise Projective Bayesian Feature Selection

In Bayesian data analysis, feature subset selection is a separate step from

the prior selection. Unlike LASSO, which achieves parameter shrinkage and

feature selection simultaneously in model fitting, the estimates of parameters in

Bayesian models will not shrink to exact zero because they are random samples

of a posterior distribution essentially. We cannot decide which variables should

be included in a model based on their point estimates. Therefore, a strategy

should be proposed to select a subset of variables for the model construction

based on the posterior draws produced by a proper shrinkage prior.

Fortunately, Bayesian inferences is so powerful that it provides a much

broader description of parameters, such as the credible intervals we adopted

in Chapter 2. Based on this knowledge, numerous methods are proposed for

the feature selection in Bayesian models. In 2003, J. Dupuis and C. Robert

proposed the Projection method [59]. The idea of this method is to fit an all-

encompassing model first and then to search for a submodel which is sparse

and sufficiently close to the full model. Posterior distributions are used to
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estimate the divergence of two probabilistic models and to evaluate the pre-

dictive performance of a candidate model. This strategy is efficient because it

requires fitting the full model only, and all submodels will be searched within

a certain model space by means of cross-validation.

In this Chapter, we will extend the searching process of the Projective

method to the group level, so as to enhance the accuracy of feature selection by

incorporating the grouping information and further improve the computation

efficiency. To produce shrinkage, we apply the horseshoe prior in the model

fitting due to its advantageous performance observed in Section 2.3.

3.1 Review of Feature Selection Methods in Bayesian Models

Numerous techniques have been proposed for feature subset selection in Bayesian

models. Some of them will be reviewed in Section 3.1.2. To get started, the

measures of the predictive ability of candidate models should be specified.

3.1.1 Predictive Ability Evaluation

The predictive performance of a model is typically defined in terms of a utility

function that describes the quality of the predictions. An often used utility

function to measure the quality of the predictive distribution of the candidate

model M is the logarithmic score

u (M, ỹ) = log p (ỹ|D, x̃,M) ,

where D is the training data set.
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Since the future observations ỹ are unknown, the utility function u (M, ỹ)

cannot be evaluated beforehand. Therefore one usually works with the ex-

pected utilities instead

ū (M) = E [log p (ỹ|D, x̃,M)]

=

∫
pt (ỹ) log p (ỹ|D, x̃,M) dỹ (3.1)

where pt (ỹ) denotes the true data generating distribution. This expression will

be referred to as the generalization utility or more loosely as the predictive

performance of model M . Maximizing (3.1) is equivalent to minimizing the

Kullback–Leibler (KL) divergence from the true data generating distribution

pt (ỹ) to the predictive distribution of the candidate model M .

Kullback–Leibler divergence In probability theory, Kullback–Leibler di-

vergence (KL divergence) is a measure of the non-symmetric difference between

a theory model Q to the true model P . The Kullback–Leibler divergence was

originally introduced by Solomon Kullback and Richard Leibler in 1951 as

the directed divergence between two distributions [60]. The Kullback–Leibler

divergence from Q to P is defined as

KL (P ||Q) =
∑
i

P (i) log
P (i)

Q (i)
,

which has a continuous version

KL (P ||Q) =

∫ ∞
−∞

P (x) log
P (x)

Q (x)
dx.

69



Although the KL divergence measures the “distance” between two distri-

butions, it is not a distance measure. This is because that the KL divergence

is not a metric measure — it is not symmetric that the KL from P to Q is

generally not the same as the KL from Q to P . Furthermore, it does not

satisfy triangular inequality.

In Bayesian model selection system, we use the predictive KL divergence

to compare the reference model M∗ and the candidate model M .

KL divergence in normal distribution For normal distribution, the

KL divergence of a Gaussian model M2 from another Gaussian model M1 is

defined as
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KL (M1||M2) =

∫
log

Normal (y|µ1, σ1)

Normal (y|µ2, σ2)
Normal (y|µ1, σ1) dx

=

∫ [
−

1

2
log(2π)− log(σ1)−

1

2

(
y−µ1

σ1

)2

+
1

2
log(2π) + log(σ2) +

1

2

(
y−µ2

σ2

)2
]

× 1√
2πσ1

exp

[
−

1

2

(
y−µ1

σ1

)2
]
dx

=

∫ [
− log(σ1)−

1

2
log(

(
y−µ1

σ1

)2

+ log(σ2) +
1

2
log

(
y−µ2

σ2

)2
]

× 1√
2πσ1

exp

[
−

1

2

(
y−µ1

σ1

)2
]
dx

= E

{
log

(
σ2
σ1

)
+

1

2

[(
y−µ2

σ2

)2

−
(
y−µ1

σ1

)2
]}

= log

(
σ2
σ1

)
+

1

2σ2
2

E1

[
(y−µ2)

2]− 1

2σ2
1

E1

[
(y−µ1)

2]
= log

(
σ2
σ1

)
+

1

2σ2
E1

[
(y−µ2)

2]− 1

2
,

where E1 (·) denotes the expectation under model M1.

In Bayesian model selection system, the two Gaussian model can be de-

signed as follows.

M1 : y = µ1 + ε1, ε1 ∼ N
(
0, σ2

1

)
(3.2)

M2 : y = µ2 + ε1 + ∆ε2,∆ε2 ∼ N
(
0, σ2

2

)
, (3.3)

where σ1 and ∆σ2 are independent. Thus, we can define another error term

ε2 = ε1 + ∆ε2 and ε2 ∼ N (0, σ2
1 + σ2

2). The KL divergence of model M2 from
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model M1 is

KL (M1||M2) = log

(√
σ2
1 + σ2

2

σ1

)
+

1

2 (σ2
1 + σ2

2)
E1

[
(y−µ2)

2]− 1

2

= log

(√
σ2
1 + σ2

2

σ1

)
+

1

2 (σ2
1 + σ2

2)
E1

[
(y−µ1)

2 + (µ1 − µ2)
2]− 1

2

= log

(√
σ2
1 + σ2

2

σ1

)
+
σ2
1 + (µ1 − µ2)

2 − (σ2
1 + σ2

2)

2 (σ2
1 + σ2

2)

= log

(√
σ2
1 + σ2

2

σ1

)
+

(µ1 − µ2)
2 − σ2

2

2 (σ2
1 + σ2

2)

= log

(√
σ2
1 + σ2

2

σ1

)
. (3.4)

The last equation holds because µ1 − µ2 = ∆ε2 so that the numerator of the

second term is 0.

In particular, model M1 (3.2) is a linear regression and can be written as

M1 : y = µ1 + ε1, ε1 ∼ N
(
0, σ2

1

)
µ1 = ŷ = xβ̂,

where β̂ is the least square estimate of the coefficients in M1. After Selecting

a subset of predictors xp with any method introduced in Section 3.1.2 and 3.2,

another linear regression of ŷ can be built based on xp, which is

M2 : y = µ2 + ε1 + ∆ε2,∆ε2 ∼ N
(
0, σ2

2

)
,

ŷ = µ2 + ∆ε2 = xpβ̂p + ∆ε2.
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As a result, we can approximate σ2
2 with

(
ŷ − xpβ̂p

)2
, which updates the KL

divergence of M2 from M1 (3.4) into

KL (M1||M2) =
1

2
log

(
σ2
1 + σ2

2

σ2
1

)

≈ 1

2
log

σ2
1 +

(
ŷ − xpβ̂p

)2
σ2
1

 . (3.5)

3.1.2 Review of Methodology

Following [57, 61–64], the feature selection strategies naturally fall into three

categories, M-closed, M-completed and M-open views, based on the prop-

erties of the data generator. The relationship among the three views can be

summarized as

M− open �M− complete �M− closed,

where � represents a decreasing complexity ordering.

M-closed Methods In the M-closed view, it assumes that the true data

generating model is one of the models under consideration, i.e., the true model

is actually on the model list (at least in the sense that error due to mis-

specification is negligible compared to any other source of error), under uncer-

tainty about which of the candidate model is the said true model. This class

of problems is comparatively simple and well studied.

If the number of alternative models is countable, the actual belief model
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of the future observations is constructed as the Bayesian model averaging

(BMA) predictive distribution p (ỹ|D,M∗) = pBMA (ỹ|D). Bayesian model

averaging is a strategy to build a richer model by averaging over a class of

simpler parametric models, which is thoroughly discussed by J. Hoeting et.

al. [65]. In a situation in which a set of alternative models {Mk}Kk=1 and a

corresponding prior p(Mk) on that set have been specified, one can integrate

over the models and thereby arrive at the BMA predictive distribution

pBMA (ỹ|D) =
K∑
k=1

p (ỹ|x̃, D,Mk) p (Mk|D) , (3.6)

where p (Mk|D) are the posterior probabilities of the models Mk.

Literally, theM-closed view only applies to the situation when it is known

for certain that the true data generating mechanism is among candidates.

However, Bayesian model averaging has been shown to have good predictive

performance even without the strict interpretation of theM-closed view holds

.

From a model selection point of view, one may choose the model maximiz-

ing the posterior distribution of models p(Mk|D) ending up with a maximum a

posteriori (MAP) model. Assuming the true data generating model belongs to

the set of the candidate models, MAP model can be shown to be the optimal

choice under the zero-one utility function (utility being one if the true model

is found, and zero otherwise). If the models are given equal prior probabili-

ties, p (M) ∝ 1, finding the MAP model reduces to maximizing the marginal

likelihood.
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M-completed Methods The M-completed view abandons the idea of a

true model in the M-open view, but still forms a rich enough model M∗,

whose predictive distribution p (ỹ|D,M∗) is considered as the best available

description of the uncertainty of future data. There are basically two differ-

ent but related approaches that fit M-completed view , reference predictive

method and projection predictive method. The projection predictive method

will be discussed in Section 3.2.

Reference Predictive Method Reference model M∗ is built as the

best description of our knowledge about the future observations, which is

considered as a proxy of the true model. Based on this point of view, the

utilities of a candidate model M can be estimated by replacing the true dis-

tribution pt (ỹ) in (3.1) with the predictive distribution of the reference model

p(ỹ|D,M∗). Averaging this over the training inputs {xi}ni=1 gives the reference

utility

ūref (M) =
1

n

n∑
i=1

∫
pt

(
ỹ|xi, D,M∗

)
log p (ỹ|xi, D,M) dỹ. (3.7)

As the reference model is in practice different from the true data generating

model, the reference utility is a biased estimate of the true generalization

utility (3.1).

The maximization of the reference utility is equivalent to minimizing the

predictive KL-divergence between the reference model M∗ and the candidate
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model M at the training inputs

δ (M∗||M) =
1

n

n∑
i=1

KL
(
pt

(
ỹ|xi, D,M∗

)
||pt
(
ỹ|xi, D,M

))
. (3.8)

Thus, the model can be chosen based on the strict minimization of the discrep-

ancy measure (3.1), or the simplest model that has an acceptable discrepancy

(3.8).

The reference predictive approach is inherently a less straightforward ap-

proach to model selection than theM-open views, because it requires the con-

struction of the reference model. San Martini et. al. proposed using Bayesian

model average (BMA) as the reference [66]. In fact, any other models or priors

can be used as long as we believe it reflects our best knowledge of the problem

and allows convenient computation.

M-open Methods TheM-open class of problems is one step more elusive.

M-open problems are those in which the data generation is too complex to

admit a true model, such as the nucleotide sequence in a chromosome. In this

case, we are only able to compare different predictors without reference to a

true model.

M-open view corresponds to avoiding the explicit specification of the pre-

dictive posterior p (ỹ|D,M∗) by reusing observations D as proxy for the pre-

dictive distribution of the actual belief model. One option is using information

criteria [57].

A fully Bayesian criterion is the widely applicable information criterion
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(WAIC) [67,68], defined as

WAIC =
1

n

n∑
i=1

log p (yi|xi, D,M)− V

n

where the first term is the training utility and V is the functional variance

given by

V =
n∑
i=1

{
E
[
(log p (yi|xi, θ,M))2

]
− E [log p (yi|xi, θ,M)]2

}
.

Here both of the expectations are taken over the posterior p (θ|D,M). WAIC

is proved to be asymptotically equal to the Bayesian LOO-CV.

Another still popular way is the deviance information criterion (DIC) pro-

posed by Spiegelhalter et. al. [69]. DIC estimates the generalization per-

formance of the model with parameters fixed to the posterior mean θ̄ =

E [θ|D,M ]. DIC can be written as

DIC =
1

n

n∑
i=1

log p
(
yi|xi, θ̄,M

)
− peff

n
,

where peff is the effective number of parameters, estimated by

peff = 2
n∑
i=1

(
log p

(
yi|xi, θ̄,M

)
− E

[
log p

(
yi|xi, θ̄,M

)])
.

Here the expectation is taken over the posterior, which is questionable from a

practical point of view especially when the model is singular.
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3.2 Feature Subset Selection Strategy

Projection predictive method is an extension of the reference predictive method

3.1.2. The idea is to project the information in the posterior of the reference

modelM∗ onto the candidate model spaceM so that the predictive distribution

of the candidate model remains as close to the reference model as possible

[58,63]. Thus the candidate model parameters are determined by the fit of the

reference model, not by the data; and the reference model is fitted with the

Bayesian models constructed in the previous chapter. In this section, we will

discuss the Projection predictive scheme in feature subset selection.

3.2.1 Projective Submodels

Simply speaking, the projection of a vector onto a subspace is to reduce the

“distance” between the vector and the subspace. Given a reference model

parameter θ∗, the projected parameter θ⊥ onto the parameter space of model

M is defined via

θ⊥ = arg min
θ

1

n

n∑
i=1

KL
(
p
(
ỹ|xi, θ∗,M∗

)
||p
(
ỹ|xi, θ,M

))
. (3.9)

The discrepancy between the reference model M∗ and the projected candidate

model M is then defined to be the expectation of the divergence over the

posterior of the reference model

δ (M∗||M) =
1

n

n∑
i=1

E
[
KL

(
p
(
ỹ|xi, θ∗,M∗

)
||p
(
ỹ|xi, θ⊥,M

))]
. (3.10)
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Since, the posterior expectation in the discrepancy (3.10) is in general not

available analytically, it can be approximated with the average of individual

discrepancies between the reference model and each candidate model defined

with θ⊥s , where θ⊥s , s = 1, 2, . . . .S is the projection, based on (3.9), of random

samples θs, s = 1, 2, . . . .S from the posterior of the reference model.

δ (M∗||M) ≈ 1

nS

n∑
i=1

S∑
s=1

KL
(
p
(
ỹ|xi, θ∗,M∗

)
||p
(
ỹ|xi, θ⊥s ,M

))
. (3.11)

Predictive Performance Evaluation

To evaluate the predictive performance of a model, we can use the logarithm

of the predictive density (LPD) at an actual observation. This scoring rule

is proper and measures the calibration and sharpness of the predictive dis-

tribution simultaneously [70]. Since the predictive densities are usually not

available analytically, we estimate the LPD score with randoms samples of the

posterior distribution, instead of the posterior distribution itself:

LPD (M) ≈ log
1

S

S∑
s=1

p
(
ỹ|x̃, θ⊥s ,M

)
, (3.12)

where θ⊥s , s = 1, 2, . . . .S is the projection of θs, s = 1, 2, . . . .S, the random

draws from the Markov chain Monte Carlo samples of the posterior distribu-

tion of the reference model. Given predictions (3.12), the model predictive

performance is summarized by the mean LPD (MLPD) over the full set of n

data points [58].

For the purpose of model comparison, we introduce q-value. For each
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model M , LPD (M) is a n×J matrix, where n is the total number of samples

and J is the number of posterior draws. To reduce gauge uncertainty, the

MLPD difference between model Ma and model Mb is computed with Bayesian

bootstrap samples

∆MLPD(j) (Ma,Mb) =
n∑
i=1

ω
(j)
i [LPDi (Ma)− LPDi (Mb)] , (3.13)

where ω
(j)
i , i = 1, . . . , n, are the bootstrap weights for the j-th bootstrap sam-

ple generated using the Dirichlet distribution with parameters set to 1. The

comparison is summarized as the probability of model Ma performing bet-

ter than model Mb based on the posterior distribution of parameters, named

q-values,

q (Ma,Mb) =
1

J

J∑
j=1

I
(
∆MLPD(j) (Ma,Mb) ≥ 0

)
. (3.14)

3.2.2 Submodel Search

Exhaustive search of the model space is not feasible when the number of can-

didate covariates is large. The projection approach works in the suboptimal

forward selection strategy for its simplicity and its scalability to large covariate

sets, Algorithm 1.

In algorithm 1, Mj represents the submodel containing j variables. To

start with, the model is a constant model, M0. At each forward selection step,

we add into model Mj with one more variable, which is the one leading to a

model Mj+1 with minimum KL divergence (3.5) among all candidates. These

steps terminate till all variables enter the model. That is to say, j grows from
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0 to P in this process, P being the total number of variables. This search ends

up with a ranking of all variables, which defines a submodel for each model

size (from 1 to P ), as well as the KL divergence (3.5) of each chosen submodel

Mj, j = 1, . . . , P , with regards to the reference model.

Algorithm 1 Submodel search for projection predictive methods

1. Begin with the submodel M0 (no variables) and set j to 0, where j
indicates the size of a candidate model

2. Repeat until the candidate model is full:

Find the projections for all submodels that are obtainable by adding one
new variable to Mj. Choose the one with smallest KL divergence and set it as
Mj+1

Set j to j + 1

Cross Validation The forward selection scheme has been used in searching

for a sequence of submodels. Further more, Peltola et. al. proposed using

cross validation outside the searching process to decide the model size [58].

In each fold of the cross validation, the forward selection scheme is executed

on the training samples in that fold, and LPD (3.12) of the submodels is

computed with the test part of the fold. At last, each pair of submodels will

be compared with MLPD (3.13) and q-values (3.14). The number of variables

is then decided by summarizing the predictive performance estimates, and a

new model with the chosen model size is built with all training data.

3.2.3 Submodel Search at Group Level

Group-wise feature selection schemes have been discussed in the cases where

explanatory facts are represented by a group of predict variables [71, 72]. We
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will also expand the Projection predictive feature selection to the group level,

Algorithm 2.

Algorithm 2 Submodel search for projection predictive methods

1. Begin with the submodel M0 (no variables) and set g to 0, where g
indicates the number of groups of a candidate submodel

2. Repeat until the candidate model is full:

Find the group of projections for all submodels that are obtainable by
adding one new group into Mg. Choose the group leading to the smallest KL
divergence after being added to the model, resulting in Mg+1

Set g to g + 1

The difference between Algorithm 1 and 2 lies in the selection steps. In

Algorithm 2, g ∈ (1, . . . , G) represents the number of groups chosen in model

Mg. This algorithm returns the ranking of all feature groups based on the

order they are selected in the model and the KL divergence of the submodels.

3.3 Simulation in Feature Subset Selection

We simulate both the training data and test data with the exact same settings

as that in Section 2.3.1. The trial is repeated 50 times and the measures of

model performance are averaged across the 50 trials.

3.3.1 Variable Selection

In the cross validation of projection algorithm, we make predictions for the

validation set of each fold, and further compute the predictive performance

estimates for all submodels chosen in that fold. Since the forward selection

in each fold might (and usually will) select different sets of variables, the pre-
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diction performance does not necessarily compare any certain submodels, but

only the performance of the selection procedure. This process mostly resembles

tuning the parameter λ with cross validation in the LASSO-like algorithms,

where the same value of λ does not ensure the same feature selection results

in every fold. However, a proper λ, such as λmin and λ1se, will still be chosen

based on the prediction measures of all folds.

Similarly, we will choose the size of the final model by summarizing the

prediction measures of all folds. Unfortunately, T. Peltola, the researcher

who proposed Projection feature selection [58], did not provide any analytical

solution to choosing an appropriate model size. As a result, we adopt these

strategies in this study: for individual search, we choose the size leading to

highest MLPD value; for group search, we choose the size in which MLPD

reaches a local maximum for the first time as the submodels expand, that is,

the most sparse model with local peak of MLPD.

We compared the correctly identified groups averaged over 50 trials. The

feature selection results are summarized in Table 3.1 and 3.2 for individual

search and group search respectively. It contains the means and standard

errors (in the parentheses) of the sensitivities (SEN) of each positive group,

the positive prediction values (PPV) as well as the AUC for feature selection.

From the following tables we can first conclude that group 1 can be selected

for sure due to its high effect size. Also, the sensitivities of selecting group 2

and 3 drop dramatically when the within group correlation is as high as 0.9.

This agrees with the relationship between correlation and signal-to-noise ratio

(SNR), that is, the high correlation among features amplifies the overall SNR,
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SEN 1 SEN 2 SEN 3 PPV AUC
ρ = 0 1(0) 0.88(0.33) 0.52(0.5) 0.69(0.29) 0.86(0.05)

N = 100 ρ = 0.5 1(0) 1(0) 0.9(0.3) 0.62(0.29) 0.84(0.05)
ρ = 0.9 1(0) 1(0) 0.88(0.33) 0.63(0.31) 0.85(0.05)
ρ = 0 1(0) 0.88(0.33) 0.64(0.48) 0.83(0.23) 0.99(0.01)

N = 400 ρ = 0.5 1(0) 1(0) 0.9(0.3) 0.68(0.31) 0.95(0.02)
ρ = 0.9 1(0) 1(0) 0.9(0.3) 0.63(0.3) 0.9(0.02)

Table 3.1. The means and standard errors of the group-wise sensitivities
(SEN), positive prediction values (PPV) and AUC for all settings of the
variable-wise Projection selection. Note that in the definition of group-wise
sensitivity, we consider a group positive if any feature in that group is
selected.

so that the group of correlated features explain away a larger portion of the

data variance, turning the weak signals less important.

To compare between the individual search and group search, the sensi-

tivities of group 2 and 3 are higher in the individual search. Actually, it is

a result of the definition of being positive in group search, which is that we

consider a group as positive if any single feature in that group is selected. It

is highly likely that only a small portion of the group are selected, because it

explains the lower PPV in individual search than that in the group search al-

gorithm. In addition, we observed much higher AUC in group-level algorithm,

which suggests that Algorithm 2 is favorable when the grouping information

is accurate.

3.3.2 Prediction

For each setting, we simulate a test set with 100 samples, on which we then

compute the prediction root-mean-squared error (PRMSE) (2.7) and MLPD

(3.12) based on the models selected in 3.3.1. Results are summarized in table
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SEN 1 SEN 2 SEN 3 PPV AUC
ρ = 0 1(0) 0.76(0.43) 0.36(0.48) 0.91(0.17) 0.95(0.08)

N = 100 ρ = 0.5 1(0) 0.96(0.2) 0.54(0.5) 0.85(0.21) 0.98(0.05)
ρ = 0.9 1(0) 0.32(0.47) 0.12(0.33) 0.97(0.1) 1(0.01)
ρ = 0 1(0) 0.8(0.4) 0.58(0.5) 0.87(0.17) 1(0)

N = 400 ρ = 0.5 1(0) 0.96(0.2) 0.52(0.5) 0.87(0.2) 1(0)
ρ = 0.9 1(0) 0.34(0.48) 0.1(0.3) 0.96(0.13) 1(0)

Table 3.2. The means and standard errors of the group-wise sensitivities
(SEN), positive prediction values (PPV) and AUC for all settings of the
group-wise Projection selection.

Number of Variables Number of Groups
ρ = 0 21.36(22.25) 2.46(1.09)

N = 100 ρ = 0.5 25.32(25.34) 3.3(1.64)
ρ = 0.9 22.24(28.79) 1.58(1.14)
ρ = 0 16.72(13.21) 3.02(1.6)

N = 400 ρ = 0.5 25.4(22.77) 3.22(1.71)
ρ = 0.9 24.48(25.91) 1.66(1.38)

Table 3.3. The number of selected variables/groups in the two projection
algorithms.
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Individual Projection Group Projection Credible Level=0.95
ρ = 0 1.22(0.16) 1.17(0.1) 1.08 (1.24)

N = 100 ρ = 0.5 1.23(0.26) 1.14(0.07) 1.52 (1.74)
ρ = 0.9 1.5(0.39) 1.23(0.09) 1.62 (2.06)
ρ = 0 1.03(0.03) 1.07(0.07) 0.84 (0.93)

N = 400 ρ = 0.5 1.1(0.2) 1.05(0.05) 1.1 (1.37)
ρ = 0.9 1.24(0.3) 1.22(0.12) 1.35 (1.66)

Table 3.4. The PRMSE of the Projection group selection algorithm for all
settings.

Individual Projection Group Projection
ρ = 0 -1.63(0.11) -1.59(0.08)

N = 100 ρ = 0.5 -1.63(0.2) -1.55(0.06)
ρ = 0.9 -1.81(0.28) -1.62(0.08)
ρ = 0 -1.45(0.03) -1.48(0.07)

N = 400 ρ = 0.5 -1.5(0.15) -1.47(0.05)
ρ = 0.9 -1.61(0.22) -1.61(0.11)

Table 3.5. The comparison on MLPD between the Projection group-wise
selection and the Projection variable-wise selection for all settings.

3.4 and 3.5. We compare MLPD in the two proposed algorithms only because

it can only be calculated in probabilistic models. For PRMSE, we compare the

two proposed model and the credible level method discussed in Section 2.2.4.

Typically, the group-wise Projection selection outperforms the individual-

wise model in both MLPD and PRMSE in most settings, even though it con-

stantly selected fewer variables according to Table 3.3. The advantage of

group-wise model in correct identification of signal in group structure data

set is obvious. In addition, all model deteriorates under the condition of high

correlation within group.
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3.4 Discussion and Future Work

In this chapter, we have briefly reviewed working schemes for Bayesian model

selection and extended the Projection predictive model for group-level search.

Projection methods first construct a full encompassing model, which is con-

sidered as the reference model, and then search for a sequence of submod-

els producing similar answers to the full model. The numerical experiments

are conducted showing that the group-level Projection methods improved the

model predictive performance and feature selection accuracy.

However, the estimated discrepancy between the reference model and a

submodel is an unreliable indicator of the predictive performance of the sub-

model, which means, even if the submodel performs as well as the reference

model, it may not be able to predict well. On the other hand, a well-performed

reference model also caused some problems. In the searching process, all candi-

date models are nested to the reference, so that they are unlike to outperform

the reference even if they can selected most relevant features. As a result, it

brought in difficulties in summarizing the evaluation results in cross validation.

Consider the cross validation in fitting a linear LASSO frequentist model. The

fitted model starts to deteriorate when the model contains too many features,

that is when λ is small. It is a favorable property because it yields a global

minimum of MSE, based on which a proper tuning parameter can be selected.

Whereas, it does not apply to the Projection algorithms because a larger model

usually favors prediction rather than worsens it. Therefore, in most cases, the

best prediction occurs in large models, even in the full model, which could not
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be used as a decision of model size. In this study, we chose the smallest model

among those producing local maximal MLPDs. The choice is based on the

pre-information on the sparsity of the model.

Although the proposed algorithm works well when there is accurate group

information, it is still unknown how non-perfect information will affect the

algorithm. In the future, more simulation should be designed to detect the

influence of inaccurate or insufficient knowledge on grouping. Further, the

features within a group have the same effect size in the simulation, which

may not be the case in reality. Specifically, maybe only part of the group is

influential; or some features may yield exact opposite impact on the response.

As known, the sparse group LASSO is a solution to this situation. Similarly, we

can enroll sparsity inside a group through the credible level method in Chapter

2 to achieve a sparse group selection based on the Projection algorithm.

Finally, this algorithm will be applied to a read-world data set to identify

relevant genes and pathways for a particular endpoint.
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62. José M Bernardo and Adrian FM Smith. Bayesian theory, 2001.

63. Aki Vehtari, Janne Ojanen, et al. A survey of bayesian predictive meth-
ods for model assessment, selection and comparison. Statistics Surveys,
6:142–228, 2012.

64. Jennifer Lynn Clarke, Bertrand Clarke, Chi-Wai Yu, et al. Prediction
in m-complete problems with limited sample size. Bayesian Analysis,
8(3):647–690, 2013.

65. Jennifer A Hoeting, David Madigan, Adrian E Raftery, and Chris T
Volinsky. Bayesian model averaging: a tutorial. Statistical science,
pages 382–401, 1999.

94



66. A San Martini and Fulvio Spezzaferri. A predictive model selection crite-
rion. Journal of the Royal Statistical Society. Series B (Methodological),
pages 296–303, 1984.

67. Sumio Watanabe. Algebraic geometry and statistical learning theory,
volume 25. Cambridge University Press, 2009.

68. Sumio Watanabe. Asymptotic equivalence of bayes cross validation and
widely applicable information criterion in singular learning theory. Jour-
nal of Machine Learning Research, 11(Dec):3571–3594, 2010.

69. David J Spiegelhalter, Nicola G Best, Bradley P Carlin, and Angelika
Van Der Linde. Bayesian measures of model complexity and fit. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
64(4):583–639, 2002.

70. Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Proba-
bilistic forecasts, calibration and sharpness. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 69(2):243–268, 2007.

71. Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1):49–67, 2006.

72. Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A
sparse-group lasso. Journal of Computational and Graphical Statistics,
22(2):231–245, 2013.

95



Appendix

96



Model 1

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
05

0.
43

0.
82

●●
●●

●

●

0.050.23
0.450.6

0.79

1

0.89

Model 2

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0
0.

2
0.

6
1●●

●
●

●

●

00.2
0.35

0.58

0.76

0.99

0.87

Model 3

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
01

0.
41

0.
81

●

●
●

●
●

●

0.01

0.29
0.61

0.83
0.96

1
0.77

Model 4

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
01

0.
41

0.
81

●

●
●

●
●

●

0.01

0.260.56
0.84

0.96

1
0.77

Model 5

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0
0.

2
0.

61
1.

01●
●●

●

●

●

0
0.080.17

0.34

0.54

1

0.86

Model 6

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0
0.

2
0.

61
1.

01●●
●

●

●

●

00.06
0.14

0.27

0.42

1

0.89

Figure A.1. The ROC curve of a randomly chosen trial of Simulation 1
when N = 100 and ρ = 0. The decimal under the diagonal is the AUC of
each curve.
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Figure A.2. The ROC curve of a randomly chosen trial of Simulation 1
when N = 100 and ρ = 0.5. The decimal under the diagonal is the AUC of
each curve.
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Figure A.3. The ROC curve of a randomly chosen trial of Simulation 1
when N = 100 and ρ = 0.9. The decimal under the diagonal is the AUC of
each curve.

99



Model 1

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
02

0.
41

0.
81

●●●●

●

●

0.020.190.450.65

0.84

1

0.97

Model 2

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
02

0.
42

0.
81

●●●●

●

●

0.020.30.510.72

0.93

1

0.96

Model 3

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
02

0.
42

0.
81

●●●●

●

●

0.020.240.50.69

0.91

1

0.95

Model 4

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
04

0.
43

0.
82

●●●●

●

●

0.040.240.50.69

0.92

1

0.96

Model 5

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.
01

0.
41

0.
81

●●●●

●

●

0.010.130.330.49

0.7

1

0.94

Model 6

1−Specificity

S
en

si
tiv

ity

0.0 0.4 0.8

0.
0

0.
4

0.
8

0
0.

2
0.

61
1.

01●●●●

●

●

00.10.250.39

0.61

1

0.94

Figure A.4. The ROC curve of a randomly chosen trial of Simulation 1
when N = 400 and ρ = 0. The decimal under the diagonal is the AUC of
each curve.
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Figure A.5. The ROC curve of a randomly chosen trial of Simulation 1
when N = 400 and ρ = 0.5. The decimal under the diagonal is the AUC of
each curve.
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Figure A.6. The ROC curve of a randomly chosen trial of Simulation 1
when N = 400 and ρ = 0.9. The decimal under the diagonal is the AUC of
each curve.
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Figure A.7. The L2- norm of parameter estimation deviance by six models
at each credible level in Simulation 1 when N = 100 and ρ = 0.

103



●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.6

0.8

1.0

0.8 0.95 0.99

Credibility Level

Model
●

●

●

●

●

●

Model1

Model2

Model3

Model4

Model5

Model6

Mean + SE: Distance of estimation

Figure A.8. The L2- norm of parameter estimation deviance by six models
at each credible level in Simulation 1 when N = 100 and ρ = 0.5.
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Figure A.9. The L2- norm of parameter estimation deviance by six models
at each credible level in Simulation 1 when N = 100 and ρ = 0.9.
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Figure A.10. The L2- norm of parameter estimation deviance by six
models at each credible level in Simulation 1 when N = 400 and ρ = 0.
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Figure A.11. The L2- norm of parameter estimation deviance by six
models at each credible level in Simulation 1 when N = 400 and ρ = 0.5.
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Figure A.12. The L2- norm of parameter estimation deviance by six
models at each credible level in Simulation 1 when N = 400 and ρ = 0.9.
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