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Abstract of the Dissertation

Two Essays in Quantitative Finance

by

Ke Wang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

This dissertation explores two interesting problems in quantitative finance. In

the first part, we consider the detection methods on structural breaks that are char-

acterized by a credit rating transition matrix based on homogeneous Markov process

model. Recent studies have shown that firms’ credit rating migration process is

not stationary and may have structural breaks. Assuming the generator of prob-

ability transition matrices of firms’ credit rating to be piecewise constant and the

jump time of generator corresponds to the structural break time in the pattern of

firms’ rating migrations, we study several types of sequential surveillance rules for

early detection. The surveillance rules we investigated includes the Shewhart control

chart, an generalized likelihood ratio (GLR) detection rule for a single change-point
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with unknown pre- and post-change transition matrices, a detection rule based on

an extension of Shiryaev’s Bayes single change-point model, and a detection rule for

multiple unknown structural breaks. We provide theoretical discussion and exten-

sive simulations to compare the performance of these rules. We further use these

rules to online detect structural breaks in firms’ credit rating migrations based on

U.S. firms’ rating record from 1986 to 2012. In part two, we develop a multivari-

ate log-linear Poisson time series model to investigate the interdependence between

components of a vector time series of counts. Maximum likelihood method is used

for the estimation of the parameters and the property of geometrically ergodic is

demonstrated. We further successfully applied it to study the interdependence of

trading behavior in high-frequency trading market and of tail exceedance events in

different markets. Specifically, we generalized the univariate log-linear Poisson model

for time series counts data to the multivariate case, and developed an inference pro-

cedure for it. In this study, this model has been applied to investigate two types

of time series counts data in finance. The first application is to use the developed

model to study the dependence of financial risks in different market. Specifically,

consider the stock market indices in the US, Europe, and Japan, the exceedance of

the stock index return over certain threshold represents the magnitude of market

variations and provides us a new measurement for the market tail risk in different

countries/market. The second application is the interdependence of trading behav-

ior for different stocks, through which the impact of one stock’s trading behavior on

another stock can be quantitatively modeled and identified by this model.
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Chapter 1

Introduction

1.1 Literature review

In modern credit risk management, people usually assume that the credit rat-

ing of firms follows a time homogeneous Markov Chain which is characterized by a

credit rating transition matrix (Xing et al.,2012). There are some applications on

using homogeneous Markov process to model credit rating transition matrix which

summarizes historical data and changes of obligors’ credit ratings in finance. For

example, the measurement of risk for loans and bonds in the portfolio risk assess-

ment is based on the joint distribution of rating transitions (Das et al., 2006; Frey

and McNeil, 2007; Egloff et al., 2007; Duffie et al., 2009; Tsaig et al., 2011). In the

2



pricing model of bond and credit derivatives, the credit rating of obligors is used to

value the risky credit derivatives (Jarrow et al., 1997, 1998; Lando, 2000; Acharya

et al., 2006). In the credit rating industry, the credit rating transition reports are

studied by the estimation of rating transition matrices.

Usually, people use a discrete-time setting to estimate the credit rating transition

matrices. Now, the estimation of credit rating transitions based on continuous-

time homogeneous Markov process is assumed for the rating process due to the rich

significant dependence on regressors and the availability of rating data, also the

advantages of continuous time Markov approach used instead of discrete one (Lando

and Skødeberg, 2002; Bangia et al., 2002; Frydman and Schuerman, 2008). Based

on Xing et al.(2012), particularly, suppose there are K rating classes where the state

K is an absorbing state (e.g. bankruptcy). Also the rating transition process in the

period (0, t) is determined by the transition matrix P (0, t), which is a continuous time

homogeneous Markov Chain. The entry of ij represents the transition probability

from class i to class j during the period (0, t). The matrix P (0, t) is represented

using a generator matrix Λ, for t > 0,

P (0, t) = exp(Λt) :=
∞∑
k=0

Λktk

k!
(1.1.1)

where Λ = (λ(i,j)) satisfies λ(i,i) = −
∑

i 6=j λ
(i,j) for 1 ≤ i ≤ K, and λ(i,j) ≥ 0

for 1 ≤ i 6= j ≤ K. Maximum likelihood estimation is used to estimate Λ to get

λ̂(i,j) = N̂ij/
∫ t

0
Yi(s)ds, in which N̂ij is the total number of transitions from i to
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j( 6= i) in (0, t) and Yi(s) is the number of firms in rating class i at time s. (Küchler

and Sørensen, 1997).

However, some publications have challenged the assumptions of time homoge-

neous Markov process of rating process. In Altman (1998)’s study, the credit rat-

ing migration is based on an in-depth investigation of the expected ratings changes

(drift). Nickell et al. (2000)’s analysis of the stability of rating transitions considers

the variations on time and the industry heterogeneity. Bangia et al. (2002) proposes

that the volatility is a key part of a useful conceptual framework for stress testing

credit portfolios. Credit ratings are sometimes considered stable over credit cycles

because the market participants want ratings to be a view of an issuer’s fundamental

credit risk(Fons, 2002; Cantor and Mann, 2003; Altman and Rijken, 2004; Bruche et

al., 2010). Frydman and Schuermann (2008) propose a mixture model of two inde-

pendent continuous time homogeneous Markov chains for rating transitions process

based on the assumptions of firms with same rating migration at different speeds

without using a firm-specific information and analyze corporate credit rating his-

tory from Standard and Poor’s spanning 1981-2002 basing on the proposed model.

Weissbach and Walter (2010) study the time-stationarity of rating transitions that

are modeled by a time-continuous discrete-state Markov process and derive a like-

lihood ratio test. They apply their approach to an internal rating data set, which

reveals highly significant nonstationarity. Xing et al. (2012) model rating transition

process as piecewise homogeneous Markov chains with unobserved structural breaks.

Their proposed model provides explicit formulas for the posterior distribution of
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the time-varying rating transition generator matrices, the probability of structural

break at each period and prediction of transition matrices in the presence of possible

structural breaks. Estimating the model by credit rating history, Xing et al. (2012)

show that the structural breaks in rating transitions can be captured by the pro-

posed model, and compare the prediction performance of their proposed and time

homogeneous Markov chain models.

1.2 Motivation for structural breaks detection

Recently, testing on structural breaks has been an interesting research topic due

to the important impact after it happens. Levine (2001) uses the test in Perron

(1989)’s paper on structural breaks to evaluate changes of stock market liquidity

after the policy change date. People has realized that the structural breaks has

contributed to weakening risk management (Noel, 2008). Finding a better way to

assess systemic risk has been an important area to reduce the risk of crises. The

importance and advantages of detection on structural breaks has been more obvious.

Valentinyi-Endrész (2004)’s study has given the result of whether detecting structural

breaks in the volatility model can improve the Value at Risk forecast. Our study

in this part is to develop statistical surveillance tools to monitor the stability of US

firmsâĂŹ credit rating transition dynamics. An important and challenging problem

after the 2007-2008 financial crisis is to monitor the stability of credit market and

early detect the sharp changes of the market.
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We should note that the model proposed by Xing et al. (2012) essentially identify

historical market structural breaks or sharp changes based only on credit rating

records. Basing on Xing et al. (2012), we assume the rating transition process of an

obligor follows a K-state non-homogeneous continuous time Markov process, which

is characterized by a transition probability matrix P (s, t) in the period (s, t). The

ijth element of P (s, t) represents the probability of the obligor’s rating being i at

time s, while j at time t. Suppose there are n rating transitions observed in (s, t).

For a transition time ti in (s, t), denote ∆Nkj(ti) the number of transitions observed

from state k to stake j at time ti, ∆Nk(ti) =
∑

1≤j≤K,j 6=k ∆Nkj(ti), and Yk(ti) the

number of firms in state k right before time ti. The transition matrix P (s, t) can be

consistently estimated by the product-limit estimator

P̂ (s, t) =
n∏
i=1

(I + ∆Â(ti)),

in which

∆Â(ti) =



−∆N1(ti)
Y1(ti)

∆N12(ti)
Y1(ti)

∆N13(ti)
Y1(ti)

. . . ∆N1K(ti)
Y1(ti)

∆N21(ti)
Y2(ti)

−∆N2(ti)
Y2(ti)

∆N23(ti)
Y2(ti)

. . . ∆N2K(ti)
Y2(ti)

...
...

... . . .
...

∆NK−1,1(ti)

YK−1(ti)

∆NK−1,2(ti)

YK−1(ti)
. . . −∆NK−1(ti)

YK−1(ti)

∆NK−1,K(ti)

YK−1(ti)

0 0 . . . . . . 0


see Andersen et al. (1995). Here, the element of the kth diagonal represents the

proportion of the firms Yk(ti) leaving the state at time ti, and the element of the
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kjth off-diagonal represents the proportion of transitions from state k to state j at

time ti. Also, the kth state which is zero represents absorbing (i.e., default state).

In the study of Xing et al. (2012), the non-homogeneous continuous time Markov

process is decomposed into piecewise homogeneous continuous time Markov process

with unobserved structural breaks.

1.3 Outline

To make an effort in surveillance of structural breaks as early as possible after it

happens, this report in this part studies the detection of structural breaks in credit

ratings based on the model proposed in Xing et al. (2012), using different detection

rules on single change point and multiple change points. We have studied several

types of sequential surveillance rules for early detection. The surveillance rules in

this study include the Shewhart control chart, an generalized likelihood ratio (GLR)

detection rule for a single change-point with unknown pre- and post-change transition

matrices, a detection rule based on an extension of Shiryaev’s Bayes single change-

point model, and a detection rule for multiple unknown structural breaks. This

study also provides theoretical discussion and extensive simulations to compare the

performance of these rules, and further applies these rules to online detect structural

breaks in firms’ credit rating migrations based on U.S. firms’ rating record from 1986

to 2012.
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Chapter 2

Stochastic Structural Break Model

and Associated Detection Rules

2.1 Shewhart Control Chart Detection Method

Based on the statistical surveillance of the CIR Model, proposed by Schmid and

Tzothchev (2004), we modify the decision statistic Zt based on an EWMA recursion

on singular value decomposition (SVD) M(P ) as

8



Zt = (1− α)Z(t−1) + αM(P ) (2.1.1)

where the SVD metric for a transition matrix P is defined as

M(P ) =
1

K

K∑
i=1

2
√
ei(P − I)′(P − I) (2.1.2)

in which I is a K×K identity matrix and ei(·) is the ith eigenvalue of the matrix.

Combining the above model, we derive a simple change-point detection rule, with

a change-point at t, but not before tp as

T = inf{t > tp : Zt ≥ θ} (2.1.3)
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2.2 Generalized Likelihood Ratio (GLR) Detection Rule For

a Single Change-Point Model

The observations, Yt are independent random vectors with a common density

function f0 for t < v, and f1 when t ≥ v. Shiryaev (1978) gave an optimal sequential

detection of the change-time v by Bayesian approach with following assumptions:

(1) a loss of c for each observation taken at or after v; (2) a loss of 1 for a false alarm

before v; (3) a geometric prior distribution on v. Based on the above assumptions,

he proved that there would be an alarm as soon as the posterior probability exceeds

some fixed level when a change has occurred using optimal stopping theory. Since

P{v ≤ n|Y1, . . . ,Yn} = Rp,n/(Rp,n + p−1) (2.2.1)

where p is the parameter of the geometric distribution P{v = n} = p(1− p)n−1 and

Rp,n =
∑n

k=1

∏n
i=k{f1(Yi)/(1− p)f0(Yi)}, the Bayes rule declares at time

N(γ) = inf{n ≥ 1 : Rp,n ≥ γ} (2.2.2)

where a change has occurred. Roberts (1966) proposed the case of p = 0 in (2.2.2),

and Pollak (1985) gave the Shiryaev-Roberts rule, which can be expressed as

Ñ(γ) = inf{n ≥ 1 :
n∑
k=1

n∏
i=k

(f1(Yi)/f0(Yi)) ≥ γ} (2.2.3)

He also proved when p→ 0, it is asymptotically Bayes risk efficient.
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Instead of Bayesian approach, Lorden (1971) minimized the worst-case expected

delay using the minimax approach.

E1(T ) = sup
v≥1

ess supE[(T − v + 1)+|Y1, . . . ,Yv−1] (2.2.4)

over the class Fγ of all rules T satisfying the constraint E0(T ) ≥ γ on the expected

duration to false alarm. He showed that as γ →∞ , Page’s (1954) CUSUM rule

τ = inf{n : max
0≤k<n

n∑
i=k+1

log(f1(Yi)/f0(Yi)) ≥ c} (2.2.5)

with c so chosen E0(τ) = γ, is asymptotically minimax in the sense that

E1(τ) ∼ inf
T∈Fγ

E1(T ) ∼ (log γ)/I(f1, f0) (2.2.6)

where I(f1, f0) = E1{log(f1(Yt)/f0(Yt))} is the Kullback-Leiber information num-

ber.

According to Lai,Liu and Xing (2009), without specifying the post-change density

function in advance and supposed a multivariate exponential family

fθ(y) = exp{θ′y − ψ(θ)} (2.2.7)

with respect to the baseline distribution so that f1 = f0, θ 6= 0. Replacing the

likelihood ratio statistic in the CUSUM rule by the generalized likelihood ratio (GLR)
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statistic leads to the GLR rule for testing the null hypothesis of no change-point,

versus the alternative hypothesis of a single change-point prior to n but not before

n0 is

τ̂ = inf{n : max
0≤k<n

(n− k)L(Y k+1,n) ≥ c} (2.2.8)

where (n− k)L(Y k+1,n) = supθ
∑n

i=k+1 log(fθ(Yi)/f0(Yi)), and

Y m,n =
n∑

i=m

Yi/(n−m+ 1), L(µ) = sup
θ
{θ′µ− ψ(θ)} = {θ′µµ− ψ(θµ) (2.2.9)

and θµ = (∇ψ)−1(µ), ∇ denotes the gradient vector of partial derivatives. Barnard

(1959) gave the special case of GLR when fθ is N(θ, 1). Siegmund and Venkatraman

(1995) showed when replacing τ by τ̂ , it is asymptotically optimal in (2.2.6) with c

chosen from E0(τ̂) = γ and E0(τ̂) ∼ K−1c−1ec for a constant K as c → ∞, in fact

K
√
ce−1τ̂ has a limiting exponential distribution with mean 1.

When considering the case of unknown both of the pre- and post-change density

functions in advance, the GLR statistics for testing the null hypothesis of no change-

point based on Y1, . . . ,Yn, versus the alternative hypothesis of a single change-point

prior to n but not before n0 is

max
n0≤k≤n

{
sup
θ

k∑
i=1

log fθ(Yi) + sup
θ̃

n∑
i=k+1

log fθ̃(Yi)− sup
λ

n∑
i=1

log fλ(Yi)

}
= max

n0≤k≤n

{
kL(Y 1,k) + (n− k)L(Y k+1,n)− nL(Y 1,n)

}
(2.2.10)
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where supλ is the maximizing likelihood under the null hypothesis, and supθ and

supθ̃ are obtained by maximizing the likelihood under the hypothesis of a single

change-point occurring at k + 1. Let

g(α, x, y) = αL(x) + (1− α)L(y)− L(αx+ (1− α)y). (2.2.11)

the GLR rule for detecting a change in θ when the pre- and post-parameters are

unknown is

N̂ = inf

{
n > n0 : max

n0≤k≤n

{
sup
θ

k∑
i=1

log fθ(Yi) + sup
θ̃

n∑
i=k+1

log fθ̃(Yi)− sup
λ

n∑
i=1

log fλ(Yi)

}
≥ c

}
(2.2.12)

2.3 Detection Method Based on An Extension of Shiryaev’s

Bayesian Single Change-Point Model

Based on the model of Lai and Xing (2010), the generalization form of the ex-

tension of Shiryaev’s Bayesian change-point model and detection rule is proposed as

following: for the multiparameter exponential family (2.2.7), let π be a prior density

function on Θ := {θ :
∫
eθ

′Y dω(Y ) <∞} given by

π(θ; a0,µ0) = c(a0,µ0) exp{a0µ
′
0θ − a0ψ(θ)},θ ∈ Θ, (2.3.1)
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where 1/c(a0,µ0) =
∫

Θ
exp{a0µ

′
0θ − a0ψ(θ)}dθ, and µ0 ∈ (∇ψ)(Θ). Based on

Diaconis and Ylvisaker (1979, p.274), the posterior density of θ given the observations

Y1, . . . ,Ym drawn from fθ is

π(θ; a0 +m, (a0µ0 +
m∑
i=1

Yi)/(a0 +m)) (2.3.2)

Moreover,

∫
Θ

fθ(Y )π(θ; a,µ)dθ =
c(a,µ)

c(a+ 1, (aµ+ Y )/(a+ 1))
(2.3.3)

Suppose the change-time v and the pre- and post-change values of parameter are

unknown, and for t < v, the parameter θ is the value of θ0 and θ1 for t ≥ v.

Following Shiryaev (1963,1978), Lai and Xing (2010) use the Bayesian approach

that assumes v to be geometric with parameter p but constrained to be lager than

n0, and θ0,θ1 are i.i.d of (2.3.1), which is also independent of v. The modification of

Shiryaev’s rule is as follows. Let Ft denote the σ-field generated by Y1, . . . ,Yt. Let

π0,0 = c(a0,µ0) and πi,j = c(a0 + j − i + 1, a0µ0 +
∑j

t=i Yt)/(a0 + j − i + 1)). For

n0 < i < n,

P{v = i|Fn} ∝ p(1− p)i−1π2
0,0/π1,i−1πi,n, P{v > n|Fn} ∝ p(1− p)nπ0,0/π1,n

(2.3.4)

and we express P (n0 < v ≤ n|Fn) =
∑n

i=n0+1 P{v = i|Fn} in terms of πi,j. There-

fore, the format of Shiryaev’s stopping rule for unknown pre-and post-change param-
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eters can be given with replacement of Rp,n =
∑n

i=n0+1 π0,0π1,n/{(1 − p)n−iπ1,iπi,n}

in (2.2.2). And it can be modified to

N = inf{n > np : P (v ≤ n|v ≥ n− kp,Fn) ≥ ηp} (2.3.5)

Since

P (v ≤ n|v ≥ n∗ − kp,Fn) =
n∑

i=n−kp

P (v = i|Fn)/

{ n∑
i=n−kp

P (v = i|Fn) + P (v > n|Fn)

}
(2.3.6)

we can get

N = inf

{
n > np :

n∑
i=n−kp

π0,0π1,n

(1− p)n−i+1π1,i−1πi,n
≥ γp

}
(2.3.7)

Specifically, based on the model in Xing et al.(2012), assuming the structural

breaks in credit rating generator matrices follow a Poisson process {NΛ(t); t ≥ 0}

with constant rate η, which means the duration between two adjacent structural

breaks follows an exponential distribution with mean 1/η. The generator matrices

between two adjacent structural breaks are constant and at time t, the generator

matrix is Λ(t) = QNΛ(t), in which Q1, Q2, . . . are independent and identically dis-

tributed random generator matrices with the off-diagonal elements λ(i,j) following
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independently Gamma(αij, βi) prior distribution

g(λ(i,j)) =
β
αij
i

Γ(αij)
[λ(i,j)]αij−1 exp(−λ(i,j)βi), (i, j) ∈ K, (2.3.8)

where K = {(i, j)|i 6= j, 1 ≤ i ≤ K−1, 1 ≤ j ≤ K}. The elements in the last row are

always zero, which presents the rating migrations from default to other class. Also,

the assumptions suggest that Λ(t) follows a compound Poisson process with rate η,

and for the time period (s, t), the time-dependent credit rating transition matrix

P (s, t) can be characterized in the following way.

If there are M structural breaks in the period (s, t) and assuming the observed

M time changes satisfy s < τ1 < · · · < τM < t, then the transition matrix in the

period (s,t) are

P (s, t) =
M+1∏
k=1

P (τk−1, τk) =
M+1∏
k=1

exp

(∫ τk

τk−1

Λ(u)du

)
=

M+1∏
k=1

exp

[
(τk − τk−1)Λ(τk−)

]

where τ0 = s, τM+1 = t.

If there is no changes in the generator Λ(t) over the period (s, t),the transition

matrix P (s, t) becomes homogeneous

P (s, t) = exp

(∫ t

s

Λ(u)du

)
= exp

[
(t− s)Λ(t−)

]
(2.3.9)

In this case, over the period, due to the assumption of the elements Λ(t) following
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the conjugate Gamma priors (2.3.8), we can calculate the posterior distribution of

Λ(t) given transition history as follows. Suppose there are n realizations of a Markov

chain with generator matrices Λ(t). Here, in the period (s, t), let Ys,t be the observed

transitions, K(i,j)
s,t be the number of transitions from class i to class j, S(i)

s,t be the

total time spending in class i, and λ(i,j)
s,t be the ijth entry in the generator Λ(t). Then

given the constant Λ(t), the likelihood of Ys,t can be expressed as

exp

{ K∑
i=1

[∑
j 6=i

K
(i,j)
s,t log λ

(i,j)
s,t − (

∑
j 6=i

λ
(i,j)
s,t + 1−K)S

(i)
s,t

]}
∝
∏
i 6=j

(λ
(i,j)
s,t )K

(i,j)
s,t e−λ

(i,j)
s,t S

(i)
s,t

(2.3.10)

see Küchler and Sørensen (1997, p. 26). Combining this with the prior in (2.3.8),

the posterior distribution of λ(i,j)
s,t given Ys,t is Gamma (K

(i,j)
s,t +αij, S

(i)
s,t + βi). Hence

we can get the estimation of the element λ(i,j)
s,t by the posterior mean of the Gamma

distribution, i.e., λ̂(i,j)
s,t = (K

(i,j)
s,t + αij)/(S

(i)
s,t + βi).

Also, the proposed model is based on the assumption that firm’s rating transi-

tion from state i to statej over period (s, t) are conditional independent given the

generator matrix in the period of (s, t).

In Xing et al.(2012), the posterior distribution of Λ(tl) = (λ
(i,j)
tl−1,tl

)(i,j) ∈ K given

Y(0,T ) can be characterized as following: let Rl = max{tm−1|Im = 1,m ≤ l}, i.e.,

Rl represents the most recent structural break up to time tl−1. From the above

assumption, given Rl = tm−1, we can get the conditional distribution of λ(i,j)
tm−1,tl

,
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which is Gamma(K
(i,j)
tm−1,tl

+αij, S
(i)
tm−1,tl

+βi). Let pm,l = P (Rl = tm−1|Ytm−1,tl). Then

the posterior distribution of λ(i,j)
tl−1,tl

given Y(0,tl) can be expressed as a mixture of

Gamma distributions,

λ
(i,j)
tl−1,tl

|Y(0,tl) ∼
l∑

m=1

pm,lGamma(K
(i,j)
tm−1,tl

+ αij, S
(i)
tm−1,tl

+ βi) (2.3.11)

where the mixture weight is recursively calculated by pm,l = p∗m,l/
∑l

m=1 p
∗
m,l, in

which

p∗m,l =


pfl,l/f0,0 m = l,

(1− p)pm,l−1fm,l/fm,l−1 m < l

(2.3.12)

The terms fm,l and f0,0 in (2.3.12) are expressed as follows:

fm,l =
∏
i,j∈K

Γ(K
(i,j)
tm−1,tl

+ αij)/(S
(i)
tm−1,tl

+ βi)
(K

(ij)
tm−1,tl

+αij), (2.3.13)

f0,0 =
∏
i,j∈K

Γ(αi,j)/β
αi,j
i (2.3.14)

The proof of the above posterior distributions given in the appendix A in Xing

et al.(2012) can be briefly expressed as follows:
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Let f(.|Y(0,tl]) denote the density function of λ(i,j)
tl−1,tl

given Y(0,tl]. We have

f(λ
(i,j)
tl−1,tl

|Y(0,tl]) ∝ f(λ
(i,j)
tl−1,tl

,Y(tl−1,tl]|Y(0,tl−1])

= pf(λ
(i,j)
tl−1,tl

,Y(tl−1,tl]|Y(0,tl−1], Il=1) + (1− p)f(λ
(i,j)
tl−1,tl

,Y(tl−1,tl]|Y(0,tl−1], Il=0)

in which

pf(λ
(i,j)
tl−1,tl

,Y(tl−1,tl]|Y(0,tl−1], Il=1) = p∗l,lf(λ
(i,j)
tl−1,tl

|Y(0,tl], Il=1)

= p∗l,lGamma(K
(i,j)
tl−1,tl

+ αij, S
(i)
tl−1,tl

+ βi)

where

p∗l,l = pf(Y(tl−1,tl]|Y(0,tl−1], Il=1)

= p

∫
f(Y(tl−1,tl]|λ

(i,j)
tl−1,tl

)g(λ
(i,j)
tl−1,tl

dλ
(i,j)
tl−1,tl

= pfl,l/f0,0

and

(1− p)f(λ
(i,j)
tl−1,tl

,Y(tl−1,tl]|Y(0,tl−1], Il=0)

= (1− p)
l−1∑
m=1

P (Rl−1 = tm−1|Y(0,tl−1], Il=0)×

f(λ
(i,j)
tl−1,tl

,Y(tl−1,tl]|Rl−1 = tm−1,Y(0,tl−1], Il = 0)

=
l−1∑
m=1

p∗m,lf(λ
(i,j)
tl−1,tl

|Rl−1 = tm−1,Y(0,tl], Il=0)
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=
l−1∑
m=1

p∗m,lGamma(K
(i,j)
tm−1,tl

+ αij, S
(i)
tm−1,tl

+ βi)

where

p∗m,l = (1− p)pm,l−1f(Y(tl−1,tl]|Rl−1 = tm−1,Y(0,tl−1], Il = 0)

= (1− p)pm,l−1

f(Ytm−1,tl , Rl = tm−1)

f(Ytm−1,tl−1
, Rl−1 = tm−1)

= (1− p)pm,l−1fm,l/fm,l−1

Combining the above model with the rule in (2.3.5), let Ft denote the σ-field

generated by I1, I2, . . . , It. Let m be the time of change point, the associated detec-

tion rule for testing the null hypothesis of no change-point, versus the althernative

hypothesis of a single change-point to n but not before n0 is

N = inf

{
n > np : P (m ≤ n|m ≥ n− kp,Fn) ≥ ηp

}
(2.3.15)

and

P{m = r|Fn} ∝ p(1− p)r−1f1,r−1fr,l/f
2
0,0, P{m > n|Fn} ∝ p(1− p)nf1,l/f0,0

(2.3.16)
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we can use (2.3.16) to rewrite (2.3.15) in the form

N = inf

{
n > np :

n∑
r=n−kp

f1,r−1fr,n
(1− p)n−r+1f0,0f1,n

≥ γp

}
(2.3.17)

2.4 A Sequential Detection Rule For Multiple Structural Breaks

The detection rule proposed by Lai,Liu and Xing (2009) focus on the Bayesian

change-point model which does not have to retain all past observations and the pos-

terior probability can be calculated by explicit recursive formulas. We can summarize

below.

Consider the same multiparameter model in section 2.2, which expressed in

(2.2.7),(2.3.1),(2.3.2) and (2.3.3). Suppose the parameter vector θt may undergo

occasional changes for t > 1 and as in Chernoff and Zacks (1964), the indicator

variables

It := 1{θt 6=θt−1} (2.4.1)

are independent Bernoulli random variables with P (It = 1) = p. Generalizing Yao

(1984), when a parameter changing occurred at time t (i.e., It = 1), the changed

parameter θt is assumed to be sampled from π. Denote Kt as the most recent

change-time up to t, i.e., Kt = max{s ≤ t : Is = 1}, and f(|) as the conditional
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densities

f(θt|Yt) =
t∑
i=1

pitf(θt|Yi,t, Kt = i) (2.4.2)

where pit = P (Kt = i|Yt). Following (2.3.1), we have

f(θt|Yi,t, Kt = i) = π(θt; a0 + t− i+ 1,Y i,t) (2.4.3)

where Y i,j = (a0µ0 +
∑j

k=i yk)/(a0 + j − i + 1) for j ≥ i. Combining (2.4.2) with

(2.4.3), we get

f(θt|Yt) =
t∑
i=1

pitπ(θt; a0 + t− i+ 1,Y i,t) (2.4.4)

Note,
∑t

i=1 pit = 1, the recursive formula can be characterized

pit ∝ p∗it =


pf(yt|It = 1) i = t,

(1− p)pi,t−1f(yt|Yi,t−1, Kt = i) i ≤ t− 1

(2.4.5)

When combining f(yt|Yi,t−1, Kt = i) =
∫
fθt(y)f(θt|Yi,t−1, Kt = i)dθt with (2.2.7),(2.3.3)

and (2.4.2) yields

p∗it =


pπ0,0

πt,t
i = t,

(1− p)pi,t−1
πi,t−1

πi,t
i < t

(2.4.6)

where π0,0 = c(a0,µ0) and πi,j = c(a0 + j − i + 1,Y i,j).Note that
∑t

t−m pit is the
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posterior mean number of change-points in the time interval between t − m and t

given Yt.

Following the assumption proposed in Shiryaev (1978), assuming a loss of 1 or

c(N −v) if N < v or N ≥ v when the stopping time is N . Shiryaev has used optimal

stopping theory to show that there exists a constant δp,c such that the threshold rule

stopping at time n, when

P (v ≤ n|Yn) ≥ δp,c (2.4.7)

is optimal.

Note that {k ≤ v ≤ n} = ∪ni=k{Kn = i}. Based on the more general model which

allows unknown pre- and post-change parameters and multiple change-points, Lai,Liu

and Xing (2009) has proposed a modified Shiryaev’s rule (2.4.7) that a change-point

occurred in the time interval between nk(p) and n, declaring at time n if

n∑
i=n−k(p)

pin ≥ ηp (2.4.8)

Consider the model proposed by Xing et al.(2012) and apply the above detection
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rule. In the time interval between l − k(p) and l, if

L = inf

{
l > lp :

l∑
r=l−k(p)

pr,l ≥ ηp

}
(2.4.9)

for suitably chosen ηp, and pr,l = p∗r,l/
∑l

r=1 p
∗
r,l and p∗r,l is defined in 2.3.12.
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Chapter 3

Numerical Studies and Results

3.1 Simulation Studies-Change Points Detection

This section presents the simulation studies of the four detection methods pro-

posed in section 2. For simplicity, we only consider a 2-state Markov Chain as the

transition matrix for the credit rating dynamics, and let the second state as the de-

fault state. A more complicated model with 4-state Markov Chain will be discussed

in next section. All the change point process is generated following the credit rating

model in Xing et al.(2012). Four different scenarios are considered in this study.
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3.1.1 Data Generation

For the 2-state Markov chain model, we assume that there are 2 rating categories

1 and 2 observed over the sample time period (0, 3), where state 2 is absorbing state

and can not transfer to state 1. We consider an evenly spaced partition in the time

period (0, 3), 0 = t0 < t1 < · · · < tL = 3 and let each time period be 0.01, so

there are totally 300 time periods in our model. In each scenario, 1000 samples

(simulations) of size n=1000 firms (suppose there are 1000 firms) are generated to

detect the change-point time.

The parameter of structural break in a 2-state Markov chain model is generated

as

Λ(s) =

−λ(s) λ(s)

0 0


and the steps are as following:

Step 1. Pre-specify the change-point time. In our study, do avoid the impact

from the previous change-point in the sequential change-point model, we suppose

that there are more than 50 time periods between adjacent structural breaks. In our

data, the structural breaks are no more than 3 for each sample.

Step 2. From (2.3.9), let ∆s = 0.01, and combining Λ, we can get the rating
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transition matrix is as following:

P (s, s+ ∆s) = exp

(∫ s+∆s

s

Λ(u)du

)
≈ exp[Λ(s)∆s]

=
∞∑
k=0

(Λ(s)∆s)k

k!

=

∑∞k=0
(−λ(s)∆s)k

k!
1−

∑∞
k=0

(−λ(s)∆s)k

k!

0 1


=

exp(−λ(s)∆s) 1− exp(−λ(s)∆s)

0 1


In this study, we let the absorbing firms less than 100 until tL = 3, in other words,

there are less than 100 firms transferred to state 2 in the total time period (0, 3).

3.1.2 Scenarios Statement

The four scenarios are: no change-point model, single change-point model, two

change points model, and multiple change points model with change-point process

following the model in Xing et al.(2012).

Scenario 1. No change-point model. The data are generated from a constant

parameter model with parameter λ = 0.01 based on the rating transition matrix

given in section 3.1.1.
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Scenario 2. Single change-point model. The data are generated from a single

change-point model with change-point at t = 2, and λ0 = 0.015 for 0 ≤ t < 2,

λ1 = 10−5 for 2 ≤ t ≤ 3.

Scenario 3. Two change points model. The data are generated from a two change

points model with the first change-point at t = 1, the second change-point at t = 2

and λ0 = 0.01 for 0 ≤ t < 1, λ1 = 0.012 for 1 ≤ t < 2, λ2 = 0.015 for 2 ≤ t ≤ 3.

Scenario 4. Multiple change points model. The data are generated based on

the structural break model in Xing et al.(2012). For step 1, we have to simulate

a Poisson process with a constant rate η during the time period (0, 3), such that

{τm − τm−1} ∼ exp(η), where τm is the time of change-point occurred. Here, we let

η = 0.00105. For step 2, According to Λ(t) = QNΛ(t) and the assumption of the prior

distribution followed a Gamma(αij, βi), the generator matrices of a 2-state Markov

chain model can be characterized as

Λ(τm) =

−λ(τm) λ(τm)

0 0


where λ(τm) ∼ Gamma(α12, β1). Here, we let α12 = 0.9067, β1 = 100. From the

formula of transition probability, the transition matrix with a change-point occurring
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during one time period (tl, tl+1) is:

P (tl, tl+1) =

e−λ(τi−1)(τi−tl) 1− e−λ(τi−1)(τi−tl)

0 1


e−λ(τi)(tl+1−τi) 1− e−λ(τi)(tl+1−τi)

0 1



3.1.3 Simulation Results

In our study, given α=5%, 3%, 2%, we choose the threshold θ in(2.1.3), c in(2.2.12),

γp in(2.3.17) and ηp in (2.4.9) by using Monte Carlo simulation under the null hy-

pothesis of no change-point based on the data of Scenario 1 with constant λ of the

transition matrix for each of the four detection rules.

For Shewhart Control Charts detection method, we choose α = 0.2 in (2.1.3) and

figure 3.1 shows one sample of the Zt ’s (2.1.3) value as time changes on a single

change-point simulation based on a 2-state Markov chain model. From the path of

Zt ’s value, we can clearly see the change point time around t = 200.

Table 3.1 compares the performance of the 4 methods for the single change-point

model with change-point time at t=200. We choose np = 5 and kp = 30 in the

detection rule of the extension of Shiryaev’s Bayesian change-point model (2.3.17)

and the sequential detection rule for multiple structural breaks (2.4.9). Once a

change-point time is detected, the data before this time is not considered for the

next time point detection. For each detection rule, we list the expected detection
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Figure 3.1: EWMA Control Charts detection method: value of Zt as time changes
on a 2-state Markov chain model
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delay E(N −m)+ based on 1000 simulations, and standard errors are given in the

parentheses. To simplify the written of method’s name, we label rule 1 for the

Shewhart control chart detection method, label rule 2 for the generalized likelihood

ratio (GLR) detection rule on single change-point model, label rule 3 for the detection

based on an extension of Shiryaev’s Baye’s single change-point model, and label rule

4 for the sequential detection method for multiple structure breaks.

Table 3.1: Expected detection delays for Scenario 2 (single change-point model)
α Detection rule C-P time t = 200 Detected number (based on 1000)
0.05 Rule-1(2.1.3) 9.55(43.43) 811

Rule-2(2.2.12) 30.78(20.20) 986
Rule-3(2.3.17) 7.23(7.69) 995
Rule-4(2.4.9) 9.63(6.88) 979

0.03 Rule-1 8.89(52.44) 931
Rule-2 33.85(21.67) 977
Rule-3 14.21(11.24) 982
Rule-4 13.20(9.16) 955

0.02 Rule-1 10.31(72.57) 969
Rule-2 36.66(22.19) 961
Rule-3 14.28(11.44) 978
Rule-4 13.23(9.30) 950

In table 3.1, the second column is the expected detection delay of t = 200, and

the according standard error is in the parentheses. For 1000 simulations, the total

number of change-points is 1000 and the number of change-point that we can detect

is listed in the third column. From this comparison, we can see although rule 1

shows a good expected detection delay, but has very large variance. The expected

detection delay in rule 2 is large. Only rule 3 and rule 4 have both acceptable

expected detection delay and low standard errors.

31



For the detection rule 2, rule 3 and rule 4, we have a more detailed analysis based

on scenario 3-two change points model and scenario 4-multiple change points based

on the structural break model in Xing et al.(2012). Table 3.2 and table 3.3 give the

detection results for this study.

Table 3.2: Expected detection delays for Scenario 3 (two change points model)
α Rule C-P time t1= 100 C-P time t2=200 Detected number

(based on 2000)
0.05 Rule-2 17.95(12.68) 38.42(19.51) 1994

Rule-3 7.31(6.38) 16.62(4.54) 1980
Rule-4 7.34(6.84) 16.58(4.43) 1992

0.03 Rule-2 20.22(13.50) 44.48(16.27) 1984
Rule-3 7.38(5.53) 17.99(4.66) 1976
Rule-4 7.54(7.11) 18.11(4.56) 1984

0.02 Rule-2 22.56(15.01) 47.62(18.85) 1970
Rule-3 7.57(5.84) 19.13(4.72) 1960
Rule-4 7.89(8.85) 19.05(4.63) 1971

Table 3.3: Expected detection delays for Scenario 4 (multiple change points model
based on Xing et al.(2012))
α Rule C-P time t1 = τ1 C-P time t2= τ2 C-P time t3 = τ3 Detected number

(based on 1731)
0.05 Rule-2 12.85(35.91) 16.58(28.98) 62.09(33.57) 1030

Rule-3 8.98(26.21) 25.31(32.27) 27.79(26.34) 1009
Rule-4 8.25(24.37) 24.59(34.70) 28.77(27.14) 984

0.03 Rule-2 12.69(36.45) 16.25(30.07 ) 29.87(∞) 1002
Rule-3 8.79(26.64) 24.39(31.03) 28.68(27.20) 976
Rule-4 8.68(26.43) 23.76(34.40) 28.77(27.14) 958

0.02 Rule-2 13.48(37.87) 14.39(27.68) 47.87(∞) 986
Rule-3 8.95(27.56) 25.09(31.85) 29.99(26.25) 957
Rule-4 8.61(26.99) 22.76(32.44) 29.23(26.65) 941
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Here, except for the expected detection delay and the standard errors, another

important measurement indicator should be considered which we call detected num-

ber. First,we denote two kinds of detection error. One is the error not showing

change-point when it does have, and the other one falsely shows the change-point

when it does not have. In our study, usually, the second kind of error happens before

the time of the first change-point happens (we can call it pre-detection in this situ-

ation). The detected number in the right list of the tables is the theoretical change

points number we deducts the first kind of errors, and the theoretical number of

change-points in 1000 simulations is given in the parentheses.

In table 3.2 (two change points model), the change-point time is t1 = 100,

t2 = 200, and the total number of change-points of 1000 simulations is 2000. It

is clearly to see that detection rule-2 has a worse expected detection delay and stan-

dard error comparing with the other two rules, and the expected detection delay and

the standard errors of rule-3 and rule-4 are almost the same, but rule-4 has a little

bit more detected numbers than rule-3. For a comprehensive analysis of this table,

the result of detection rule-4 is more acceptable.

Table 3.3 shows the result for the multiple change points based on scenario 4, we

can get almost the same result with table 3.2. For this multiple change points model,

the correct detected number of change points is less than other scenarios.

To more simply and clearly compare for detection rule 2, rule 3 and rule 4, we
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also plots some figures to present the results.

Figure 3.2: Plots of detected change points given α = 0.05 for scenario 2: single
change-point model with change-point at t = 200 in rule 2, rule 3 and rule 4

Figure 3.2 plots the detected time of rule 2, rule 3 and rule 4 for scenario 2. We

can see that the blue dots which represent the result of rule 3 are closest to the line of

change-point time at t = 200, and the green dots are farthest among the three rules.

In the single change-point model, rule 3 and rule 4 have a much better detection

result than rule 2.

Figure 3.3 is the same plot as 3.2 for scenario 3 and we can get the same result

with table 3.2. In this figure, the blue dots which represent rule 3 and the red dots
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Figure 3.3: Plots of detected change points given α = 0.05 for scenario 3: two change
points at t1 = 100, t2 = 200

which represent rule 4 show very acceptable results for both change time at t1 = 100

and t2 = 200. The green dots for rule 2 is also the farthest among the three rules.
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Figure 3.4: Detected number of 1000 simulations for scenario 3: two change points
model. 0=detected none, 1=detected 1 C-P, 2=detected 2 C-Ps, 3=detected 3 C-Ps

Figure 3.4 is the histogram of the detected number of change-points of 1000

simulations for scenario 3. From this figure, rule 3 (green bar) has the most number of

2 detected change points, which means the correct detection. All the three detection

rules (rule 2, rule 3 and rule 4) have a more than 90% correct detection.
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3.2 Simulation Studies-Critical Value Determined

In last section, we have roughly detected both single change-point model and

multiple change points model based a 2-state Markov chain transition matrix. In

this section, we focus on the detection based on a more theoretical threshold. In

this study, the data with no change-point in 1000 simulations is used to determine

the critical value, which can be seen as the theoretical threshold. Here, we consider

a more complicated Markov chain model with 4 transition states and a longer time

periods of 500.

3.2.1 Data Generation and Critical Value Determined Procedure

Predetermine G0 as the prior, and G0 is:

(αij) =



. α12 α13 α14

α21 . α23 α24

α31 α32 . α34

. . . .


(βi) =

(
β1 β2 β3 .

)

Step 1. Generate Λ1,Λ2, . . . ,Λm, m = 1000.
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Λ =



−
∑4

j=2 λ1j λ12 λ13 λ14

λ21 −
∑4

j=1,j 6=2 λ2j λ23 λ24

λ31 λ32 −
∑4

j=1,j 6=3 λ3j λ34

0 0 0 0



where λij follows Gamma(αij, βi) prior distribution with

g(λ(ij)) =
β
αij
i

Γ(αij)
× [λ

αij−1

(ij) ]× exp(−λ(ij)βi), i, j ∈ K

Step 2. From section 3.1.1, we know that transition matrix P ≈ exp(δt × Λ).

Let δt = 1
12
, which is according to the monthly credit data, we have P1 = exp( 1

12
×

Λ1), . . . , Pm = exp( 1
12
× Λm), m = 1000 (the total number of simulations).

Step 3. In one simulation, suppose n = 1000 firms, t = 500 time periods, let the

number of defaults ≤ 100 until time period t = 500, i.e default rate ≤ 10%. For the

4-state Markov chain model, at each time period, the credit rating dynamics can be

established as a 4× 4 matrix. Given an initial random number of firms in each state

i, satisfying the total number of firms 1000, in each row of the matrix, the credit

rating data are multinomial random numbers with the probabilities of the according

row in the transition matrix P which is calculated in Step 2.
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P =



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

0 0 0 1



where
∑4

j=1 Pij = 1.

For time period t in (0 ∼ 1), we can get data1 as

data1 =



d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

0 0 0 d44



where di =
∑4

j=1 dij,i ∈ K, K = 4, and d1 +d2 +d3 +d4 = 1000 (the total number

of firms), and for row i, dij follows multinomial random numbers with initial di, and

Pi1, Pi2, Pi3, Pi4.

For time period t in (1 ∼ 2), we use the same method to get data2, but the multi-

nomial random numbers are generated with initial dj, and Pi1, Pi2, Pi3, Pi4, where

dj =
∑4

i=1 dij in data1.
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Follow this method of generating data, we can get data3 with changing dj in

data2, and so on, until we get data500.

For 1000 simulations, redo step 2 for 1000 times using the same prior G0 to get

Λ1, . . . ,Λm, m = 1000, and follow step 3 to generate time series data with length 500

under the same Pm, and change Pm in different simulations, m = 1 ∼ 1000.

Step 4. Critical value determined for rule 1: Shewhart control chart detection

method.

From equation(2.1.2), we can get M(p) combining with step 1 and step 2 for

K = 4. For 1000 simulations, we can get

Λ1 → P1 →M(p)1

...

Λm → Pm →M(p)m,m = 1000

So the 95% quantile of the histogram for M(p) can be seen as a critical value.
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Step 5. Critical value determined for rule 2: Generalized likelihood ratio detection

rule for a single change point model.

Using the data from step 3, at T = 500

V2 = max
t0≤k≤T

{
1

T

{
sup
θ

k∑
i=1

log fθ(Yi) + sup
θ̃

n∑
i=k+1

log fθ̃(Yi)− sup
λ

n∑
i=1

log fλ(Yi)
}}
(3.2.1)

From 1000 simulations, we can get 1000 V2, and the 95% quantile of the histogram

for V2 can be seen as a critical value for rule 2.

Step 6. Critical value determined for rule 3: Detection rule of an extension of

Shiryaev’s Bayesian single change-point model.

Using the data from step 3, at T = 500

V3 =
1

kp

{ n∑
r=T−kp

f1,r−1fr,T
(1− p)T−r+1f0,0f1,T

≥ γp

}
(3.2.2)

Like step 5, from 1000 simulations, we can get 1000 V3, and the 95% quantile of

the histogram for V3 can be seen as a critical value for rule 3.
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Step 7. Critical value determined for rule 4: Sequential detection rule for multiple

structural breaks.

Using the data from step 3, at T = 500

V4 =
1

kp

{ T∑
r=T−kp

pr,T ≥ ηp

}
(3.2.3)

From 1000 simulations, we can get 1000 V4, and the 95% quantile of the histogram

for V4 can be seen as a critical value for rule 4.

3.2.2 Simulation Results with Critical Value

In this study, we give four groups of prior to test the detection of single change-

point model using the critical value,and each group is based on 1000 simulations.

The data is generated by setting G0 as the initial prior and G1 as the changing prior

following the steps from step 1 to step 3 in section(3.2.1) with the prior G0 changed

to G1 at t=200. In the last part of this section, we give a discussion about the

multiple change points model with critical values, in which the data is generated

by changing the prior G1 to G2 at t=300 in addition to single change-point model.

We choose p = 0.01, np = 20 and kp = 20 in the detection rule of the extension of
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Figure 3.5: Histogram for M(p) in rule 1, V2 in rule 2, V3 in rule 3 and V4 in rule 4

Shiryaev’s Bayesian change-point model (2.3.17) and the sequential detection rule

for multiple structural breaks (2.4.9) and once a change-point is detected at time t,

the data before t is not considered for the the next time detection, that means the

detection process will entirely move on a window size of 20 to t+ 20.

We also use some tables to compare the performance of the four rules. In each

table, the false alarm rate is calculated as the number of pre-detection over the

number of total simulations of 1000. The expected delay is E[τ − t0|τ ≤ 500], where

τ is the delayed detected time, and t0 is the true change-point time. All simulations
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are considered based on the thresholds for 95% quantile, 97.5% quantile and 99%

quantile of the histograms in 3.5, and the critical values are calculated using the

method in section (3.2.1) from step 4 to step 7.
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Group 1. Let the change-point time at t=200, given G0:

α =



0 0.2 0.5 0.01

0.6 0 0.4 0.002

0.8 0.3 0 0.01

0 0 0 0


β =

(
1 1 1 0

)

and G1:

α =



0 0.8 0.9 0.01

0.7 0 0.5 0.002

0.8 0.6 0 0.01

0 0 0 0


β =

(
2 1 3 0

)

Table 3.4: False alarm rate and expected detection delay given 95%, 97.5%, 99%
quantile for the change-point time at t = 200 under group 1

95% 97.5% 99%
Rule (1) False alarm rate 10.3% 8.8% 9.7%

Expected delay 36.1 37.8 37.1
Rule (2) False alarm rate 36.2% 20.1% 10.2%

Expected delay 1.76 1.72 1.75
Rule (3) False alarm rate 4.7% 2.1% 0.4%

Expected delay 1.6 1.83 1.79
Rule (4) False alarm rate 4.4% 1.8% 4%

Expected delay 1.6 1.83 1.79
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Group 2. Let the change-point time at t=200, given G0:

α =



0 0.2 0.5 0.01

0.6 0 0.4 0.002

0.8 0.3 0 0.01

0 0 0 0


β =

(
1 1 1 0

)

and G1:

α =



0 0.2 0.5 0.01

0.7 0 0.5 0.002

0.8 0.6 0 0.01

0 0 0 0


β =

(
2 1 1 0

)

Table 3.5: False alarm rate and expected detection delay given 95%, 97.5%, 99%
quantile for the change-point time at t = 200 under group 2

95% 97.5% 99%
Rule (1) False alarm rate 10.5% 8.7% 10%

Expected delay 39.1 40.8 40.2
Rule (2) False alarm rate 37.7% 21.4% 12.5%

Expected delay 1.85 1.91 1.92
Rule (3) False alarm rate 4.9% 2.2% 1.3%

Expected delay 1.8 2.09 2.12
Rule (4) False alarm rate 4.4% 1.9% 1.2%

Expected delay 1.8 2.09 2.12
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Group 3. Let change-point time at t=200, given G0:

α =



0 0.2 0.5 0.01

0.6 0 0.4 0.002

0.8 0.3 0 0.01

0 0 0 0


β =

(
1 1 1 0

)

and G1:

α =



0 0.2 0.5 0.01

0.7 0 0.5 0.002

0.8 0.6 0 0.01

0 0 0 0


β =

(
1 1 1 0

)

Table 3.6: False alarm rate and expected detection delay given 95%, 97.5%, 99%
quantile for the change-point time at t = 200 under group 3

95% 97.5% 99%
Rule (1) False alarm rate 10.3% 9.1% 10.1%

Expected delay 39.1 40.8 40.2
Rule (2) False alarm rate 36.5% 21% 11.1%

Expected delay 1.66 1.63 1.62
Rule (3) False alarm rate 5.5% 2.7% 1%

Expected delay 1.6 1.61 1.81
Rule (4) False alarm rate 4.7% 2.5% 1%

Expected delay 1.64 1.61 1.8
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Group 4. Let change-point time at t=200, given G0:

α =



0 0.2 0.5 0.01

0.7 0 0.5 0.002

0.8 0.6 0 0.01

0 0 0 0


β =

(
1 1 1 0

)

and G1:

α =



0 0.2 0.5 0.01

0.6 0 0.4 0.002

0.8 0.3 0 0.01

0 0 0 0


β =

(
1 1 1 0

)

Table 3.7: False alarm rate and expected detection delay given 95%, 97.5%, 99%
quantile for the change-point time at t = 200 under group 4

95% 97.5% 99%
Rule (1) False alarm rate 4.1% 0.8% 3.3%

Expected delay 35.9 44.3 38.1
Rule (2) False alarm rate 32.4% 13.3% 4.8%

Expected delay 1.33 1.17 1.26
Rule (3) False alarm rate 3.7% 2% 0.6%

Expected delay 1.12 1.19 1.37
Rule (4) False alarm rate 2.5% 1.1% 0.3%

Expected delay 1.11 1.21 1.37
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From the table 3.4, table 3.5, table 3.6, table 3.7, which are the results for group

1 to group 4 respectively, both rule 3 and rule 4 give acceptable pre-detection rate

and low expected delay, which are within 2 months, while the results from rule 1

and rule 2 either have very high pre-detection rate or high expected detection delay.

There is no missed change-point detected in each simulation of all the four rules.

Now we move on to the multiple change points model. Group 5 lists the priors

we have used to generate the data in this model and table 3.8 gives the result given

95% quantile, 97.5% quantile and 99%quantile thresholds.

5. Two change-points model with first change-point time at t1=200, second

change-point at t2=300. Given G0:

α =



0 0.2 0.5 0.01

0.6 0 0.4 0.002

0.8 0.3 0 0.01

0 0 0 0


β =

(
1 1 1 0

)

and G1:
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α =



0 0.8 0.9 0.01

0.7 0 0.5 0.002

0.8 0.6 0 0.01

0 0 0 0


β =

(
2 1 3 0

)

and G2:

α =



0 0.2 0.5 0.01

0.7 0 0.5 0.002

0.8 0.6 0 0.01

0 0 0 0


β =

(
1 1 1 0

)
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Table 3.8: False alarm rate and expected detection delay given 95%, 97.5%, 99%
quantile for two change points time at t1 = 200, t2 = 300 under group 5

t1=200 t2=300
Rule (1) 95% 97.5% 99% 95% 97.5% 99%
Detected rate 81.8% 80.1% 80.7% 99.9% 99.9% 99.8%
False alarm rate 19.9% 16.9% 18.6% 27% 19.6% 18.1%
Expected delay 20.97 21.15 21.01 18.87 37.02 48.11
Accurate rate 3.0% 1.6% 1.1% 1.3% 0.4% 0.3%
Rule (2) 95% 97.5% 99% 95% 97.5% 99%
Detected rate 100% 100% 100% 100% 100% 100%
False alarm rate 34.8% 20.5% 10.3% 19.4% 12.5% 5.3%
Expected delay 1.89 1.90 1.78 1.60 1.50 1.38
Accurate rate 62.5% 76.4% 86.0% 80.1% 86.9% 93.9%
Rule (3) 95% 97.5% 99% 95% 97.5% 99%
Detected rate 100% 100% 100% 100% 100% 100%
False alarm rate 4.7% 2.3% 1.1% 1.3% 0.6% 0.4%
Expected delay 2.083 2.077 2.067 1.67 1.60 1.56
Accurate rate 94.1% 96.4% 97.4% 97.5% 97.9% 98.0%
Rule (4) 95% 97.5% 99% 95% 97.5% 99%
Detected rate 100% 100% 100% 100% 100% 100%
False alarm rate 3.2% 1.4% 0.7% 0.5% .3% 0.3%
Expected delay 2.0 2.08 2.0 1.64 1.60 1.56
Accurate rate 95.5% 97.3% 97.3% 98.1% 98.2% 98.1%

Table 3.8 is the results of the four types of detection rule based on the two change

points model. In this model, we consider another two indexes: the detected rate and

the accurate rate. The detected rate represents the number of simulations that we

can detect the change-point among 1000 simulations. Here, we pre-specify all the

time points we can detect before t = 250 as the first change-point detection result,

while all the time-points we detect after t = 250 as the second change-point detection

result. From this pre-specification, if there is no time-point detected before t = 250,

implies there is no detected result for the first change-point, which implies a zero
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detected rate for the first change-point. For the accurate rate, we define the rate as

the number of correct detection result which just at the change-point time divided

by the total number of simulations number of 1000. The false alarm rate and the

expected delay are calculated as the same way with the single change-point model.

Now comparing the detection results based on the critical value with the detec-

tion results from section 3.1, both of the results show that rule 3 and rule 4 are

more acceptable than rule 1 and rule 2 for the credit rating dynamics, and it has

obvious lower expected delay and more accurate detected rate in section 3.2 with the

theoretical thresholds.
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Chapter 4

Real Data Analysis with Different

Method of Threshold Determined

4.1 Data Description

In this study, the data set is obtained from COMPUSTAT and consists of Stan-

dard & Poor’s monthly credit ratings from January 1985 to September 2009,which

is consistent with the data used in Xing et al.(2012). The data set contains 21,755

firms with a total of 2,160,809 rating records, which were recorded at the end of each

month. There are 10 rating categories, AAA, AA, A, BBB, BB, B, CCC, CC, C

and D(default), and 25 subcategories. According to Xing et al.(2012), the data are
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cleaned as follows, we first put both group C and group CC into group CCC and also

remove the rating records of two invalid ratings "N.M.". Then we have eight rating

categories, AAA, AA, A, BBB, BB, B, CCC, D. Note the first transition happens

after it transfers away from its initial rating. We can see that there is only one rating

transition among 1286 initial ratings in 1985. So our analysis is based on the data set

from January 1986 to September 2009. Also, we should note that the starting time

of entering our recorded database is different for different firms. Figure 4.1 gives a

clear explanation of this for 3 firms.

Figure 4.1: Credit Rating Recorded Data for 3 Firms
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4.2 Parameters Estimation

4.2.1 EM Algorithm in Estimating Parameters of the Transition Matrix

In our model of the credit rating transition matrix, the parameter vector Φ =

{p, αi,j, βi|(i, j) ∈ K}, where K = {(i, j)|i 6= j, 1 ≤ i ≤ K−1, 1 ≤ j ≤ K} and for the

8 transition states in the real data analysis, K = 8. It is computationally extensive

to maximize the likelihood function directly with the K(K − 1) + 1-dimemsional

vector in Φ. In our study, we use the EM algorithm to complete the estimation for

the parameters in this model.

The EM (expectation-maximization) algorithm is a general iterative algorithm

for parameter estimation by maximum likelihood when the model depends on unob-

served latent variables. The term EM was introduced in Dempster, Laird, and Rubin

(1977) where the general results about the behavior of the algorithm was proved as

well as many applications. The iteration in the EM algorithm alternates between the

E-step, which is the function for the expectation of the log-likelihood based on the

current estimation for the parameters, and an M-step, which calculates the parame-

ters by maximizing the expected log-likelihood function from the E-step. The E-step

and the M-step are repeated alternately until the difference between the likelihood

function on two continuous time period L(θt+1)−L(θt) is less than a prescribed small

quantity δ.
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Apply the EM Algorithm in this study with the 8-state transition matrix, the

likelihood function is given in the Appendix B. in Xing et al.(2012) as follows:

lc(Φ) =
L∑
l=1

K∑
i=1

{∑
j 6=i

K
(i,j)
tl−1,tl

logλ
(i,j)
tl−1,tl

−
(∑

j 6=i

λ
(i,j)
tl−1,tl

+ 1−K
)
S

(i)
tl−1,tl

}
+

L∑
l=1

K∑
i=1

{∑
j 6=i

(
αij − 1

)
logλ

(i,j)
tl−1,tl

−
(∑

j 6=i

λ
(i,j)
tl−1,tl

)
βi

+
∑
j 6=i

(
αijlogβi − logΓ(αij)

)}
1{Λtl 6=Λtl−1

}

+
L∑
l=1

{[
log(1− p)

]
1{Λtl=Λtl−1

} +
(
logp

)
1{Λtl 6=Λtl−1

}

}
(4.2.1)

Then, combine the E-step and M-step together to the parameter p, αij and βi

respectively.

The details of the maximization process on the E-step can be described as follows:

1. For the parameter p, the steps of the derivative to p of the likelihood function

4.2.1 based on E-step, let

L∑
l=1

1

p− 1
E
[
1{Λtl=Λtl−1

}

]
+

L∑
l=1

1

p
E
[
1{Λtl 6=Λtl−1

}

]
= 0
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we have

L∑
l=1

1

1− p

[
1− P

(
Λtl 6= Λtl−1

|Y(0,T )

)]
=

L∑
l=1

1

p
P
(

Λtl 6= Λtl−1
|Y(0,T )

)

where P
(

Λtl 6= Λtl−1
|Y(0,T )

)
= P

(
1l = 1|Y(0,T )

)

then we can get the estimation of parameter p is

p̂ =
L∑
l=1

P
(

Λtl 6= Λtl−1
|Y(0,T )

)
/L (4.2.2)

2. For the parameter βi, same as p, let

−
L∑
l=1

K∑
i=1

{
E
[∑
j 6=i

λ
(i,j)
tl−1,tl

1{Λtl 6=Λtl−1
}

]
+
∑
j 6=i

αij
βi

E
[
1{Λtl 6=Λtl−1

}

]}
= 0

then we have the estimation of βi is

β̂i,new =

∑L
l=1

∑
j 6=i α̂ij,oldP

(
Λtl 6= Λtl−1

|Y(0,T )

)
∑L

l=1 E
[(∑

j 6=i λ
(i,j)
tl−1,tl

)
1{Λtl 6=Λtl−1

}|Y(0,T )

] (4.2.3)
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3. For the parameter αij, the estimation is not obvious. First we have

L∑
l=1

K∑
i=1

{
E
[
logλ

(i,j)
tl−1,tl

1{Λtl 6=Λtl−1
}

]
+
∑
j 6=i

logβiP
(

Λtl 6= Λtl−1
|Y(0,T )

)
− Γ′(αij)

Γ(αij)
P
(

Λtl 6= Λtl−1
|Y(0,T )

)}
= 0 (4.2.4)

From the above equation 4.2.4, we can get

Γ′(α̂ij,new)

Γ(α̂ij)
=

∑
l=1 E

(
logλ

(i,j)
tl−1,tl

1{Λtl 6=Λtl−1
}|Y(0,T )

)
∑L

l=1 P
(

Λtl 6= Λtl−1
|Y(0,T )

) + logβ̂i,old (4.2.5)

and from Xing et al.2012, it was showed that

E
(
λ

(i,j)
tl−1,tl

1{Λtl 6=Λtl−1
}|Y(0,T )

)
=
∑
l≤k≤L

πlkk
K

(i,j)
tl,tk

+ αij

S
(i)
tl,tk

+ βi

Then the equation 4.2.5 can be solved numerically by grid search with digamma

function

Diga(
r

M
) = −γ − ln(2M)− π

2
cot(

rπ

M
) + 2

M
2∑
i=1

cos(
2πir

M
) ln sin(

πi

M
)
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4.2.2 Initial Value Determined

In this study, we use the sample moments to estimate the initial αij and βi.

1. For any time period (tl−1, tl)), we let


λ(i,j) = K(i,j)

S(i)

λ(i,i) = −
∑

j
K(i,j)

S(i)

then the expectation of λ and λ2 in the time period from (0 ∼ L) is


m1 = E(λ(i,j)) =

∑L
t=1 λ

(i,j)
t /t

m2 = E((λ(i,j))2) =
∑L

t=1(λ(i,j))2/t

if m2 6= m2
1, let αii = 0, βii = 0

αij =
m2

1

m2 −m2
1

=
E2(λ(i,j))

E((λ(i,j))2)− E2(λ(i,j))
(4.2.6)

βij =
m1

m2 −m2
1

=
E(λ(i,j)

E((λ(i,j))2)− E2(λ(i,j))
(4.2.7)
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and

βi =
K∑
j=1

βi,j/(N(βi,j)) (4.2.8)

where N(βi,j) is the number of non-zero βi,j for specific i.

4.3 Threshold Determined from the Simulations Data

From the description in section 4.1, our data set has totally L=285 time periods

from January 1986 to September 2009. To determine the threshold for the detection

in the real data analysis, we first put the data set into two parts, and follow the EM

algorithm in section 4.2.1 to estimate all the parameters Φ = {p, αi,j, βi|(i, j) ∈ K}

in the 8-state Markov chain model using the first part of the data set, then simulate

data under the estimated prior to determine the threshold with 95%, 97.5% or 99%,

last, apply the four detection methods to the second part of the data set to have an

early detect of the credit market. The detailed process is stated as follows.

To make the estimation more accurate, in this study, we start the detection from

t = 201, which means the estimation is based on at least 200 monthly data. For

the time point t = 201, we first follow the estimation steps in 4.2.1 based on the

data set from t = 1 to t = 200 to get an estimation prior of Gt=200. Given the prior

Gt=200, the simulation data is generated under the method in section 3.2.1. With

1000 simulation data, we have a 95% quantile, 97.5% quantile and 99% quantile
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critical value for all four kinds of rules under the function M(p) in (2.1.2), V2 in

(3.2.1), V3 in (3.2.2) and V4 in (3.2.3). Then we respectively detect the real data

under rule 1, rule 2, rule 3 and rule 4 for the time period (1 ∼ 201), and check if

there is a change-point at t = 201.

Now we move on the real data set to t = 202 and first have an estimated prior

Gt=201 and simulate 1000 groups of data under Gt=201. Following the same steps as

t = 200, calculate the critical value for all four kinds of rules and detect the real data

from the time period (1 ∼ 202) and check if there is a change-point at t = 202.

Repeat the process for t = 203, t = 204, . . . , t = 285. If there is a change-point

detected at time t, the data before t is not considered for the next time detection.

This step eliminates the continued impact from a structure break happened. In rule

4 (the sequential detection rule for multiple structure breaks), the detection process

entirely move on a window size to t+kp, and kp = 20 in this study. And the window

size kp should not be set too large to cover all practical data for detection.

We also use a table to list the result for this study. The detection time perids in

our study is actually from t = 201, which according to Sep, 2002. From the table 4.1,

synthesize the result from all four kinds of detection rules, especially based on the

result from rule 3 and rule 4, in which we have gotten more acceptable results from

simulations in chapter 3, we can summarize that a structure break during 2002 and

2003, which can be seen as a detection delay for the second recession of March 2001
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- Nov 2001 announced by NBER. A change-point series among Mar, 2007 to Aug,

2009 can be seen from the result which matches the third recession of Dec, 2007 to

June, 2009 announced by NBER.

Table 4.1: Structure break detected based on the data from Jan 1986 to Sep 2009
Structure break

Rule (1)

226 227 228 230 231
(Oct,2004) (Nov,2004) (Dec,2004) (Feb,2005) (Mar,2005)
233 236 245 255 276
(May,2005) (Aug,2005) (May,2006) (Mar,2007) (Dec,2008)
278
(Feb,2009)

Rule (2)

210 213 214 225 238
(Jun,2003) (Sep,2003) (Oct,2003) (Sep,2004) (Oct,2005)
255 275 276 284
(Mar,2007) (Dec,2008) (Aug,2009) (Nov,2008)

Rule (3)

206 222 227 238 240
(Feb,2003) (Jun,2004) (Nov,2004) (Oct,2005) (Dec,2005)
252 257 259 260 261
(Dec,2006) (May,2007) (Jul,2007) (Aug,2007) (Sep,2007)
275 276 283 284
(Nov,2008) (Dec,2008) (Jul,2009) (Aug,2009)

Rule (4) 218 276
(Feb,2004) (Dec,2008)

4.4 Threshold Determined under Bootstrapping Method

In this part, we determine the threshold using bootstrapping method to resample

1000 groups of time series data from January 1986 to September 2009 which is based
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on the data set we have described in section 4.1. The method for the critical value

determined is very similar as the steps stated in section 4.3, the difference is that

we do not simulate data from the estimated priors, instead we use 1000 groups

of bootstrap sample data set to determine the threshold for each time point from

t = 201, t = 202, . . . , t = 285.

Step 1 , suppose we have N firms with transition history from t = 1 to t = 285,

for bootstrap sample 1, we resample (1, 2, . . . , N) to get a new all-firms transition

history. Redo bootstrap for sample 2, 3, . . . B=1000 to have a total of 1000 groups

of time series data.

Step 2, for t = 201, following the EM Algorithm estimation steps in 4.2.1 and

4.2.2 based on the real data set from t = 1 to t = 201, we then get an estimation

prior of Gt=201 and an estimation of parameter p.

Step 3 , given the prior Gt=201 and p, we can calculate the value M(p) in (2.1.2),

V2 in (3.2.1), V3 in (3.2.2) and V4 in (3.2.3) under specific kp based on the real data

set for rule 2, rule 3 and rule 4. In this study, we set kp = 15 as the window size for

detection rule 2 and kp = 20 as the window size for detection rule 3 and rule 4 in

this study.

Step 4, from the 1000 groups of the time series data which we have bootstrapped

in step 1, we can get 1000 values of M(p), V2, V3 and V4 respectively for each rule.
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Then a quantile forM(p), V2, V3 and V4 from the real data set in step 3 to the values

from the 1000 bootstrapping data can be obtained for each rule respectively. This

quantile can be seen as the p-value in this study. If this p-value is more than 90%,

we will claim there is a change-point at this time t = 201, or if there is a big change

in this quantile compared to the previous time point, we also claim there is a big

change at this time in the credit rating transitions.

Step 5, repeat the step 2 to step 4 for t = 202, t = 203, . . . , t = 285. As stated

in section 4.3, once there is a change-point detected at time t, the data before t is

not considered for the next time detection.

For the result of the bootstrapping method, we use a table to describe the change-

point time that we have claimed under this method, in addition, all the quantiles

(p-value) calculated for the four rules are listed in another table.
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Table 4.2: Structure break detected based on the data from Jan 1986 to Sep 2009
under bootstrapping method

Structure break

Rule (1)

205 212 ∼ 229 239 ∼ 242
(Jan,2003) (Aug,2003)∼(Jan,2005) (Nov,2005)∼(Feb,2006)
247 ∼ 253 261 264
(Jul,2006)∼(Jan,2007) (Sep,2007) (Dec,2007)
272 283 285
(Aug,2008) (Jul,2009) (Sep,2009)

Rule (2)

209 212 216
(May,2003) (Aug,2003) (Dec,2003)
218 238 265
(Feb,2004) (Oct,2005) (Jan,2008)
269 270 275
(May,2008) (Jun,2008) (Nov,2008)
280
(Apr,2009)

Rule (3)

203 208 216
(Nov,2002) (Apr,2003) (Dec,2003)
226 273 276
(Oct,2004) (Sep,2008) (Dec,2008)
277 279
(Jan,2009) (Mar,2009)

Rule (4)

220 224 227
(Apr,2004) (Aug,2004) (Nov,2004)
235 239 261
(Jul,2005) (Nov,2005) (Sep,2007)
275 278 284
(Nov,2008) (Feb,2009) (Aug,2009)
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Table 4.3: Quantile (p-value) under bootstrapping method at time 201 ∼ 285

Month T R-1 R-2 R-3 R-4 Month T R-1 R-2 R-3 R-4
09/2002 201 67.1% 3.6% 50.6% 7.7% 01/2006 241 99.3% 3.8% 26.6% 0.8%
10/2002 202 41.7% 8.1% 54.7% 11.9% 02/2006 242 95.9% 2.7% 28.1% 0%
11/2002 203 87.0% 12.2% 100% 4% 03/2006 243 82.5% 2% 24.7% 0%
12/2002 204 21.6% 13.2% 47.9% 14.8% 04/2006 244 76% 1.2% 27.3% 0.2%
01/2003 205 99.2% 11.6% 44.9% 16.3% 05/2006 245 40.4% 1.8% 23% 1.1%
02/2003 206 69.9% 9.9% 44.5% 18.7% 06/2006 246 28.8% 1% 18.4% 8%
03/2003 207 88.6% 6.1% 47.5% 23.1% 07/2006 247 98.2% 0.5% 14.9% 3.6%
04/2003 208 80.5% 4.5% 100% 34.4% 08/2006 248 92.9% 0.7% 18.6% 2.1%
05/2003 209 89.7% 10.6% 45.2% 8.4% 09/2006 249 98.7% 1.8% 19.6% 2.6%
06/2003 210 48.5% 4.9% 45.2% 9.7% 10/2006 250 70% 4% 23.1% 0%
07/2003 211 33.7% 6.1% 41.3% 22% 11/2006 251 95.1% 8.2% 26.3% 2.4%
08/2003 212 94.1% 17.2% 38.2% 19.4% 12/2006 252 87.2% 16% 27.5% 1.2%
09/2003 213 98.9% 18.9% 37.6% 4.1% 01/2007 253 97% 11.2% 28.3% 0.6%
10/2003 214 97.8% 25.9% 30.8% 20.9% 02/2007 254 17.5% 3.2% 31.8% 3.1%
11/2003 215 98.5% 29.4% 28.8% 30.4% 03/2007 255 13.2% 2.2% 33.4% 6.4%
12/2003 216 98.9% 34.1% 0.1% 44.1% 04/2007 256 18.6% 10.6% 30.4% 2.6%
01/2004 217 99.5% 27.3% 13.9% 40.3% 05/2007 257 13.4% 24.4% 30.1% 13.6%
02/2004 218 99.5% 36.4% 18.1% 51.4% 06/2007 258 58.9% 18.8% 36.9% 6.5%
03/2004 219 99.7% 21.3% 22.8% 56.3% 07/2007 259 68.9% 4.1% 39.3% 0.3%
04/2004 220 98.5% 19.9% 24.8% 96.5% 08/2007 260 56.7% 3.1% 37.9% 0.5%
05/2004 221 96.8% 18.6% 39.4% 57.1% 09/2007 261 98.2% 2% 35.7% 17.6%
06/2004 222 96.2% 18.7% 33.4% 59.5% 10/2007 262 71.4% 4.8% 38.5% 1.9%
07/2004 223 97.1% 21.4% 34.4% 57.5% 11/2007 263 68% 2.5% 40.5% 1.2%
08/2004 224 91.1% 11.1% 38.9% 90% 12/2007 264 91% 3% 37.7% 4%
09/2004 225 90% 11.3% 32.4% 41.1% 01/2008 265 48.7% 13.8% 37.7% 4.3%
10/2004 226 83.2% 4% 4.9% 12.5% 02/2008 266 58.1% 13.2% 32% 1.3%
11/2004 227 91.2% 2.6% 24.7% 82% 03/2008 267 33.4% 15.6% 35% 0%
12/2004 228 86% 3.1% 32.9% 53.1% 04/2008 268 26.5% 14.9% 34.6% 0.5%
01/2005 229 94.8% 2.7% 35.3% 58.7% 05/2008 269 66.6% 27.1% 34% 0.8%
02/2005 230 45.5% 0.9% 34.2% 37.6% 06/2008 270 78.3% 33.3% 31.9% 3%
03/2005 231 50.4% 1.1% 43.4% 27.4% 07/2008 271 16.2% 24.1% 25% 3.7%
04/2005 232 70.3% 1.8% 43.6% 35.5% 08/2008 272 97% 13% 22.5% 9.4%
05/2005 233 61.3% 4.2% 44.7% 37.3% 09/2008 273 70.3% 1.6% 10.3% 8.6%
06/2005 234 74.3% 3.1% 41.5% 33.3% 10/2008 274 3% 1.5% 9.5% 0.5%
07/2005 235 86.9% 2.8% 38.3% 5% 11/2008 275 6.3% 17.2% 9.7% 37.2%
08/2005 236 35.1% 2.1% 29% 26.7% 12/2008 276 0% 31.8% 3.5% 25.4%
09/2005 237 62.5% 4.1% 27.8% 1.7% 01/2009 277 0.4% 46.7% 39.7% 45.1%
10/2005 238 37.1% 14.6% 27.5% 24.1% 02/2009 278 3.4% 53.2% 49.5% 88.5%
11/2005 239 91.7% 2.3% 22.5% 0.2% 03/2009 279 0.2% 53.4% 60.2% 83.5%
12/2005 240 93.2% 0.4% 23% 0% 04/2009 280 4.1% 56.1% 62.8% 77.4%
05/2009 281 64.4% 53.6% 63.9% 82.1% 08/2009 284 87.8% 42.3% 59.8% 92.1%
06/2009 282 32.3% 53.2% 63.4% 78% 09/2009 285 100% 21.2% 61.7% 88.5%
07/2009 283 99.6% 42% 62.9% 89.8%
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4.5 Concluding Remarks

Table 4.1 and 4.2 respectively list the change-point time we have claimed under

different threshold determined methods. Compared the two tables, it is clearly to see

a change-point during Jan, 2003 (205)∼ Aug, 2003 (212), a change-point around Oct,

2005 (238), a change-point around Jan, 2008 (265) and a change-point during Nov,

2008 (275) ∼ Sep, 2009 (285). Combining with the economic recessions announced by

NBER, the time periods detected in this study cover one year delayed reaction of the

second recession (March, 2001-November, 2003), and the third recession (December

2007-June, 2009). The change-point we claimed during Jan, 2003 (205) ∼ Aug,

2003 (212) can been seen as a delayed credit rating reaction to the second economic

recession, the change-point claimed around Jan, 2008 (265) is just the beginning

of the third economic recession, and the change-point during Nov, 2008 (275) ∼

Sep, 2009 (285) is consistent with the cause of financial crisis staring in 2007. As

known from the simulation study, there usually exists detection delay or false alarm.

The results between the two methods are not exactly matched can been seen as the

detection delay or false alarm problem in the real data study. That’s another reason

for us to use different threshold determined methods in this study and combine the

results to the analysis of the real world.
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Part II

Multivariate Log-linear Poisson

Autoregression
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Chapter 5

Introduction

5.1 Literature Review

Developing models for time series of counts has been a renewed interest with

the widely applications in economics, finance, epidemiology and so on. Cox (1981)

classifies the time series of counts into two categories: parameter-driven models and

observation-driven models. From the recent research study on time series of counts,

the observation driven models are very important and realistic (Kedem and Fokianos

(2002), Tjøstheim (2012)). Many research are based on the observation driven mod-

els that assume the observations following a Poisson distribution, such as Poisson

integer-valued GARCH (INGARCH) in Ferland et al.(2006), Fokianos et al.(2009)
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and Zhu (2012); log-linear Poisson autoregression models in see Fokianos and Tjøs-

theim (2011); Poisson threshold models in Henderson et al.(2011); other observation-

driven models for Poisson time series of counts in Davis et al.(2003), Davis and Liu

(2012) and Neumann (2011). In this thesis, we also focus on the observation driven

models that assume the observations following a Poisson distribution.

Fokianos et al.(2009) considers the geometric ergodicity and likelihood-based in-

ference for Poisson autoregression in linear and nonlinear models and has shown

that the differences between the perturbed and nonperturbed models vanish as far

as considering the asymptotic distribution of the parameter estimations. In many

industries like finance, biology, and epidemiology, multivariate time series of counts

data are considered for analysis. So a bivariate Poisson autogression is proposed and

the stability is proved in Liu (2012) chapter 4. Only positive association and the ex-

clusive covariates which guarantee the positive regression term are two shortcomings

for the Poisson autoregression model. To solve the drawbacks of the Poisson autore-

gression model, a univariate log-linear Poisson autoregression model in Fokianos and

Tjøstheim (2011) is proposed with both negative and positive association taken into

account and a straightforward time dependent covariates are accommodated. Our

study in this part is to generalize the univariate log-linear Poisson autoregression

into the multivariate case to investigate the interdependence between components of

a vector time series of counts., which is an extension of log-linear Poisson autoregres-

sion model in Fokianos and Tjøstheim (2011).

70



5.2 Parameter-Driven Models for Poisson Counts

Let Y1, ..., Yn be a Poisson time series of counts, and denote xt as the explana-

tory regression vector respect to Yt at time t. Assume Yt|λt is Poisson(λt). The

distribution of the Yt given xt and a stochastic process αt are independent Poisson

distributed with mean

λt = exp{xTt β + Zt} (5.2.1)

and

logλt = xTt β + Zt (5.2.2)

where {Zt} is a stationary Gaussian process and β is the regression coefficients vector.

A simple example for Zt is AR(1) process:

(Zt + σ2/2) = φ(Zt−1 + σ2/2) + εt (5.2.3)

and {εt} ∼ IID N(0, σ2(1−φ2). The stability properties of the models are easy to de-

rive and the regression parameters can be interpreted, E(Yt) = exp(xTt β)E[exp(Zt)] =

exp(xTt β), when E[exp(Zt)]=1. (see Davis, R., Rodriguez-Yam, G.,). However, the

estimation of this model is difficult because the likelihood function which has multi-

ple integrals with sample size n is difficult to calculate. And the predictions based

on this model are difficult.
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5.3 Observation-Driven Models for Poisson Counts

Following the same assumption in equation 5.2.1, assume Yt|λt is Poisson(λt),

rewrite equation 5.2.2

logλt = xTt β + Zt (5.3.1)

where {Zt} is a function of past observations Ys , s < t. For example, Zt =

a1Yt−1 + a2Yt−2 + ... + ahYt−h. Unlike the parameter-driven model, the conditional

mean λt in the observation-driven model solely depends on the past observations,

which make the estimation easier and the prediction straightforward. However,

the stability such as stationarity and ergodicity of the process is difficult to de-

rive. In addition, xTt β is not easy to interpret. Take the above example of Zt,

E(Yt) = exp(xTt β)E[exp(a1Yt−1 + ...+ ahYt−h]).

A well-known observation-driven model for Poisson counts which was first pro-

posed by Davis et al.(2003) is the generalized linear ARMA (GLARMA) process

for Poisson counts. Assume Yt|λt ∼ Poisson(λt), with logλt = xTt β + Zt, where

Zt =
∑∞

i=1 ψiet−i and ei = (Yt − λt)/λαt for α > 0, {ei} is the martingale difference

sequence. It was shown by Davis et al.(2003) that when 1/2 ≤ α ≤ 1, the chain

{logλt} has a stationary distribution. As the observation-driven models, the stability

of GLARMA should be under some restrictive conditions for parameter space.
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5.4 Poisson Autoregression

The generalized autoregressive conditional heteroscedasticity (GARCH)-type Pois-

son time series model, also known as Poisson autoregression was proposed by Fokianos

et al.(2009), which is a famous observation-driven model for Poisson counts. In this

model, suppose {Yt} follows a Poisson time series of counts, let {FY,λt } be a σ-field

generated by {Y0, Y1, ..., Yt, λ0}, where {λt} is a Poisson intensity process. The con-

ditional mean λt of Yt is a linear autoregression model depends on the previous mean

and previous observation:

λt = d+ αλt−1 + βYt−1 (5.4.1)

To ensure the stability of the model, the parameters d, α, β should be positive and

must satisfy α + β < 1. (See Rydberg and Shephard (2000), Streett, S. (2000),

Fokianos et al.(2009), Ferland et al.(2006), and Neumann (2011)).

5.5 Log-linear Poisson Autoregression

To solve the drawbacks of the only positive association and the exclusive covari-

ates for positive regressive terms, Fokianos and Tjøstheim (2011) proposed a new

model for liner Poisson autogression, which take logarithm of the conditional mean

and the associated observations with a small adjustment. Let {vt} ≡ logλt, the
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log-linear auroregression model for {Yt} is:

vt = d+ αvt−1 + βlog(Yt−1 + 1) (5.5.1)

The stationarity and ergodicity has been proved in Fokianos and Tjøstheim (2011)

that under |α| < 1, when β > 0, then |α+β| < 1, and when β < 0, then |α||α+β| < 1.

The reason using log(Yt−1 + 1) instead of log(Yt−1) is that the stability of the system

with log(Yt−1) is guaranteed only when b < 0 (see Fokianos and Tjøstheim (2011)).

5.6 Outline

This dissertation research in this part focus on the multivariate Poisson time

series of counts data. We first proposed a bivariate log-linear Poisson autoregres-

sion model based on the log-linear Poisson autoregression model in Fokianos and

Tjøstheim (2011). A stationarity and ergodicity has been proved in chapter 6, and

we derive the likelihood inference for this bivariate log-linear Poisson autoregression

model. In addition, not only for bivariate model, we extend our work to multivariate

model in the simulation study. In real data study, we apply this model to analyze

the association between two or three stocks/financial markets simultaneously. This

theory can be applied to the number of transactions of financial time series of counts

for two or more stocks and the number of exceedance returns for two or more stocks/

financial markets. We further use this model to estimate the exceedance returns asso-
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ciation between SP500 and NASDAQ monthly counts record from 1996 to 2015, and

the exceedance returns association among stock market indices in the US, Europe,

and Japan.
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Chapter 6

Multivariate Log-linear Poisson

Autoregression Model

6.1 Model Specification

Denote {Yt,1, Yt,2} be bivariate observations, and {Yt,1, t ≥ 1} and {Yt,2, t ≥ 1} are

two time series of counts. Let {λt,1} and {λt,2} be the Poisson intensity process for

{Yt,1} and {Yt,2}, respectively. The bivariate Poisson autoregression was proposed in
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Liu (2012) as: Yt|Ft−1 ∼ BP (λt1 , λt2 , φ),

λt,1
λt,2

 = D +A

λt−1,1

λt−1,2

+B

Yt−1,1

Yt−1,2

 (6.1.1)

where, D ∈ R2
+, and A and B are 2 × 2 matrix with nonnegative entries, and

Cov(Yt1 , Yt2|Ft−1) = φ.

To solve the drawback of only positive association in 6.1.1, following the univari-

ate log-linear Poisson autoregression, we propose a K-dimensional log-linear Poisson

autoregression model. For simplicity, we first let {Yt,1, t ≥ 1}, · · · , {Yt,k, t ≥ 1}

be two conditional independent time series of counts given information up to time

t− 1, let {vt,1} ≡ logλt,1, · · · , {vt,k} ≡ logλt,k, so the multivariate log-linear Poisson

autoregression model is:


vt,1
...

vt,k

 = D +A


vt−1,1

...

vt−1,k

+B


log(Yt−1,1 + 1)

...

log(Yt−1,k + 1)

 (6.1.2)

whereD ∈ RK
+ and the entries of the parameter matrix A and B are belong to R

with restrictions in the parameter space. The model 6.1.2 captures the dependence

among {vt,1} · · · {vt,k}, which means it is suitable to the coefficients of A or B not

diagonal.
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Specifically, for K=2, a bivariate log-liner Poisson autoregression is defined as

vt,1
vt,2

 = D +A

vt−1,1

vt−1,2

+B

log(Yt−1,1 + 1)

log(Yt−1,2 + 1)

 (6.1.3)

Assume {v0,1, v0,2} and {Y0,1, Y0,2} are fixed, and I is a 2× 2 identity matrix. By

recursion, model 6.1.3 can be expressed as

vt,1
vt,2

 =
I −At

I −A
D +At

v0,1

v0,2

+
t−1∑
i=0

AiB

log(Yt−i−1,1 + 1)

log(Yt−i−1,2 + 1)

 (6.1.4)

where the largest absolute eigenvalue of A is less than 1. Since the unobserved

process {vt,1, vt,2} is determined by the matrix version of previous functions of lagged

observations, model 6.1.3 is still belongs to the class of observation driven models as

defined by Cox (1981), but a matrix version.

6.2 Stationarity and Ergodicity

Before giving the results of the stationarity and ergodicity, we first have some

preliminaries which are related notations and definitions we will use in this part. For
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the ease of discussion, we simply consider K = 2 in the proof of the properties and

it is similar arguments and discussions for the multivariate case of K ≥ 3.

First, some definitions for norm. The vector norm of x = (x1, x2, . . . , xn)T is

defined as ||x||p = (|x1|p + |x2|p + · · · + |xn|p)
1
p = p

√
|x1|p + |x2|p + · · ·+ |xn|p. The

inequality of vector norm is ||x||r ≤ n( 1
r
− 1
p

)||x||p, where n is the dimension of vector

x, and this inequality can be proved by Cauchy-Schwarz inequality. For matrix

A ∈ Cm×n, the p-induced norm of matrix A is defined as

||A||p = max
x6=0

||A||p
||x||p

= max
x6=0

(
∑m

i=1 |
∑n

j=1 aijxj|p)
1
p

(
∑n

i=1 |xi|p)
1
p

where x is an n × 1 vector. For p = 1, ||A||1 = max
1≤j≤n

∑m
i=1 |aij|, which is the

maximum absolute column sum of A; for p =∞, ||A||∞ = max
1≤i≤m

∑n
j=1 |aij|, which is

the maximum absolute row sum of A. When A is a square matrix, let ρ(A) be the

spectral radius of A, i.e. the largest absolute eigenvalue of A, and ρ(A) ≤ ||A||p, for

1 ≤ p ≤ ∞. IfA is diagonal, then ρ(A) = ||A||1 = ||A||∞. Also, lim
r→∞
||Ar|| 1r = ρ(A).

We also need some related notations on the bivariate Markov chain {vt, t ≥ 1},

where vt = (vt,1, vt,2)T . Combining with the notation in Fokianos and Tjøstheim

(2011), independent Poisson process of unit intensity is Yt = N(λt), and

vt = D +Avt−1 +Blog(Yt + e) (6.2.1)

where Yt = (Yt,1, Yt,2)T , λt = (λt,1, λt,2)T , vt = (vt,1, vt,2)T , e = (1, 1)T , vt = log(λt).
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Follow the notation in Liu (2012), let u = (u1, u2) ∈ [0, 1]2 be the independent

uniform distribution. We can describe the random function fu(v), where {vt, t ≥ 1}

is a bivariate Markov Chain, as

fu(v) = D +Av +Blog(F−1
v (u) + e) (6.2.2)

where F−1
v (u) = (F−1

v1
(u1), F−1

v2
(u2))T and F−1

v (u) = inf{y ≥ 0 : Fv(y) ≥ u}. From

6.2.2, for all time t, {ut, t ≥ 1} is independent uniform distribution on [0, 1]2, so we

have vt = fut(vt−1). Combining this bivariate log-Poisson model with Liu (2012),

we have the following propositions:

Proposition 6.2.1. Assume model 6.1.2, D is a 2 × 1 vector with nonnegative

entries, A and B are both 2 × 2 matrix with entries ∈ R (i.e. both positive and

negative entries can be considered), and suppose that ρ(A) < 1.

1. If ρ(A + B) < 1 and ρ(A − B) < 1, then there exists at least one stationary

distribution to {vt}. In addition, the stationary is unique if ||A||p ≤ 1 for some

1 ≤ p ≤ ∞.

2. For some 1 ≤ p ≤ ∞, if ||A||p + 2(1−1/p)||B||p < 1, then {vt} is a GMC Markov

chain with a unique stationary and ergodic distribution, denoted by π.

Proof. 1. From the definition in Meyn and Tweedie (2005) and in Liu (2012), {vt}

is a weak Feller chain, i.e., for every sequence {xn} in X, such that xn → x ∈ X,

Pf(xn) → Pf(x), whenever f ∈ Cb(X), f is any bounded continuous function on

[0,∞)× [0,∞). The proof is similar as Liu (2012). For simplicity, first consider K=2.
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For v = (v1, v2)T , where v1 ≡ logλ1, v2 ≡ logλ2, and λ = (λ1, λ2)T , let v1 represents

v at time 1, we have

Pvf =
∞∑
y1=0

∞∑
y2=0

f(D +Av1 +Blog(y + e)
∣∣v1 = v)p(y|v) (6.2.3)

where y = (y1, y2)T , e = (1, 1)T , and p(y|v) is the pmf of (Y1, Y2)T , with Yt,1 =

N(λt,1), Yt,2 = N(λt,2) and Yt,1, Yt,2 are conditional independent. So Pvf is con-

tinuous by following the continuity of f . Due to Theorem 12.0.1 (i) in Meyn and

Tweedie (2005), if we can prove v is bounded in probability on average, i.e., for

any v1 ∈ X, and ε > 0, there exists C = [0,M1] × [0,M2] ∈ R2, such that

1
m

∑m
t=1 P

t(v1,C ) ≥ 1− ε, for all m ≥ 1, where P t(v1, ·) is the t-th transition prob-

ability of {vt}, then there exists at least one invariant probability measure. Since

we have v2 = D +Av1 +Blog(Y1 + e), where the subscript number represent time

sequence, then

E[v2|v1] = D +Av1 +BE[log(Y1 + e)|v1] (6.2.4)

by Jensen’s Inequality, we have

D +Av1 +BE[log(Y1 + e)|v1] ≤D +Av1 +Blog(E[Y1 + e|v1])

then 6.2.4 satisfy

E[v2|v1] ≤ D +Av1 +Blog(E[Y1 + e|v1])
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= D +Av1 +Blog(E[Y1|v1] + e)

= D +Av1 +Blog(λ1 + e) (6.2.5)

where λ1 ≡ exp(v1).

For λ1 ∈ [1,∞)2, i.e., v1 ≡ log(λ1) ∈ [0,∞)2, 6.2.5 satisfy

E[v2|v1] ≤ D +Av1 +Bv1 +Be

= D + (A+B)v1 +Be (6.2.6)

by induction, for any t ≥ 1,

E[vt+1|v1] ≤ [I + (A+B) + · · ·+ (A+B)t−1](D +Be) + (A+B)tv1 (6.2.7)

where I is a 2 × 2 identity matrix, e = (1, 1)T . So when ρ(A + B) < 1, we have

(A + B)t → 0 as t → 0, also I − (A + B) is nonsingular and
∑∞

t=0(A + B)t =

[I − (A+B)]−1. Then 6.2.7 becomes

E[vt+1|v1] ≤ [I + (A+B) + · · ·+ (A+B)t−1](D +Be) + (A+B)v1

= [I − (A+B)]−1(D +Be) + (A+B)v1 (6.2.8)
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This follows that

P t(vt+1 ∈ C |v1) = P (vt+1,1 ≤M1, vt+1,2 ≤M2|v1)

≥ 1− P (vt+1,1 > M1|v1)− P (vt+1,2 > M2|v1) (6.2.9)

from Markov Inequality, i.e., x > 0 for any ε > 0, P (x > ε) ≤ E[x]
ε
, we have

P (vt+1,1 > M1|v1) ≤ E[vt+1,1|v1]

M1
, where vt+1,1 > 0, M1 > 0, then 6.2.9 satisfies

P t(vt+1 ∈ C |v1) ≥ 1− E[vt+1,1|v1]

M1

− E[vt+1,2|v1]

M2

= 1−MTE[vt+1|v1]

≥ 1−MT{[I − (A+B)]−1(D +Be) + (A+B)v1}

(6.2.10)

where MT = ( 1
M1

1
M2

). There exists M1, M2 ∈ R large enough to such that

MT{[I − (A + B)]−1(D + Be) + (A + B)v1} ≤ ε, which means that P t(vt+1 ∈

C |v1) ≥ 1− ε for all t ≥ 1.

For λ1 ∈ (0, 1)2, i.e., v1 ≡ log(λ1) ∈ (−∞, 0)2, 6.2.5 satisfy

E[v2|v1] = D +Av1 +Blog(λ1 + e)

≤ D +Av1 +B(−logλ1 + e)

= D + (A−B)v1 +Be (6.2.11)
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by induction for any t ≥ 1,

E[vt+1|v1] ≤ [I + (A−B) + · · ·+ (A−B)t−1](D +Be) + (A−B)tv1 (6.2.12)

So when ρ(A − B) < 1, we have (A − B)t → 0 as t → 0, also I − (A + B) is

nonsingular and
∑∞

t=0(A−B)t = [I − (A−B)]−1. Then 6.2.12 becomes

E[vt+1|v1] ≤ [I + (A−B) + · · ·+ (A−B)t−1](D +Be) + (A−B)v1

= [I − (A−B)]−1(D +Be) + (A−B)v1 (6.2.13)

Same as λ1 ∈ [1,∞)2, we have

P t(vt+1 ∈ C |v1) = P (vt+1,1 ≤M1, vt+1,2 ≤M2|v1)

≥ 1− P (vt+1,1 > M1|v1)− P (vt+1,2 > M2|v1)

≥ 1− E[vt+1,1|v1]

M1

− E[vt+1,2|v1]

M2

= 1−MTE[vt+1|v1]

≥ 1−MT{[I − (A−B)]−1(D +Be) + (A−B)v1}

and there exists M1, M2 ∈ R large enough to such that MT{[I − (A−B)]−1(D +

Be) + (A−B)v1} ≤ ε, which means that P t(vt+1 ∈ C |v1) ≥ 1− ε for all t ≥ 1.

So for all m ≥ 1, we have 1
m

∑m
t=1 P

t(v1,C ) ≥ 1 − ε. This proves that {vt}

is bounded in probability on average. Therefore, {vt} has at least one stationary

distribution.
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Assume ||A||p < 1 for some 1 ≤ p ≤ ∞, from equation 6.1.3, we have

vt = (I +A+ · · ·+At−1)D +Atv0 +
t−1∑
i=0

AiBlog(Yt−i−1 + e) (6.2.14)

where e = (1, 1)T . If Yt = Yt−1 = · · · = 0 for t → ∞, t ∈ N, we can see that

(I − A)−1D is a reachable state. Due to Theorem 18.4.4 in Meyn and Tweedie

(2005), if {vt} is an e-chain, i.e., for each continuous function f on compact sets

[0,∞) × [0,∞), and ε > 0, let || · || is some norm on R2, there exists an η > 0,

s.t. |P n
x1
f − P n

z1
f | < ε, for ||x1 − z1|| < η for all n ≥ 1, where x1 = (x1,1, x1,2)T ,

z1 = (z1,1, z1,2)T , then the stationary distribution to {vt} is unique.

Based on Liu (2012), assume |f | < 1, let ε′ and η small enough to make sure

ε′ + 8η/(1 − ||A||p) < ε, |f(x1) − f(z1)| < ε′, whenever ||x1 − z1||p < η for some

1 ≤ p ≤ ∞.

For n = 1, from 6.2.3, we have

|Px1f − Pz1f | =
∣∣ ∞∑
y1=0

∞∑
y2=0

[
f(D +Ax1 +Blog(y + e))p(y|x1)

− f(D +Az1 +Blog(y + e))p(y|z1)
]∣∣

≤
∞∑
y1=0

∞∑
y2=0

p(y|x1)
∣∣f(D +Ax1 +Blog(y + e))− f(D +Az1 +Blog(y + e))

∣∣
+

∞∑
y1=0

∞∑
y2=0

∣∣p(y|x1)− p(y|z1)
∣∣× ∣∣f(D +Az1 +Blog(y + e))

∣∣

85



= I + II (6.2.15)

where y = (y1, y2)T , and e = (1, 1)T . First focus on II in 6.2.15, since |f | < 1, we

have

II ≤
∞∑
y1=0

∞∑
y2=0

∣∣p(y|x1)− p(y|z1)
∣∣

=
∞∑
y1=0

∞∑
y2=0

∣∣P (y1|x1,1)P (y2|x1,2)− P (y1|z1,1)P (y2|z1,2)
∣∣

≤
∞∑
y1=0

∞∑
y2=0

∣∣P (y1|x1,1)− P (y1|z1,1)
∣∣P (y2|x1,2)

+
∞∑
y1=0

∞∑
y2=0

P (y1|z1,1)
∣∣P (y2|x1,2)− P (y2|z1,2)

∣∣
≤

∞∑
i=0

∣∣P (i|x1,1)− P (i|z1,1)
∣∣+

∞∑
i=0

∣∣P (i|x1,2) + P (i|z1,2)
∣∣ (6.2.16)

since y1 ∼ Poisson(λ1), y2 ∼ Poisson(λ2), we have

∞∑
i=0

∣∣P (i|x1,1)− P (i|z1,1)
∣∣ =

∞∑
i=0

∣∣e−x1,1xi1,1
i!

−
e−z1,1zi1,1

i!

∣∣
≤

∞∑
i=0

∣∣e−x1,1 − e−z1,1
∣∣xi1,1
i!

+ e−z1,1
∞∑
i=0

∣∣xi1,1 − zi1,1∣∣
i!

≤ 2(1− e−|x1,1−z1,1|) (6.2.17)
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then combine with equation 6.2.16, we have

∞∑
i=0

∣∣P (i|x1,1)− P (i|z1,1)
∣∣+

∞∑
i=0

∣∣P (i|x1,2) + P (i|z1,2)
∣∣ ≤ 2(1− e−|x1,1−z1,1|) + 2(1− e−|x1,2−z1,2|)

(6.2.18)

From the definition of vector norm and p-induced norm, we have |x1,i − z1,i| ≤

||x1 − z1||1 = |x1,1 − z1,1| + |x1,2 − z1,2| ≤ Cp||x1 − z1||p for i = 1, 2, 1 ≤ p ≤ ∞,

where Cp = 21− 1
p ≤ 2 from the inequality of vector norm. Then 6.2.16 becomes

∞∑
y1=0

∞∑
y2=0

∣∣p(y|x1)− p(y|z1)
∣∣ ≤ 2(1− e−2||x1−z1||p) + 2(1− e−2||x1−z1||p)

= 4(1− e−2||x1−z1||p) (6.2.19)

from 6.2.16, we have proved II ≤ 4(1− e−2||x1−z1||p).

For I, since ||x1 − z1||p ≤ η, and ||A||p ≤ 1, we have

||(D +Ax1 +Blog(y + e))− (D +Az1 +Blog(y + e))||p

= ||A(x1 − z1)||p ≤ ||A||p||x1 − z1||p ≤ η (6.2.20)

then from the assumption stated previously, we have I =
∑∞

y1=0

∑∞
y2=0 p(y|x1)

∣∣f(D+

Ax1 +Blog(y + e))− f(D +Az1 +Blog(y + e))
∣∣ ≤ |f(x1 − z1)| ≤ ε′.
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Combining the results for I and II, we have

|Px1f − Pz1f | ≤ I + II ≤ ε′ + 4(1− e−2||x1−z1||p) (6.2.21)

For the case n = 2, we have

|P 2
x1
f − P 2

z1
f | =

∣∣ ∞∑
y1=0

∞∑
y2=0

[
P (y1, y2|x1)Px2f − P (y1, y2|z1)Pz2f ]

∣∣
≤

∞∑
y1=0

∞∑
y1=0

P (y1, y2|x1)
∣∣Px2f − Pz2f

∣∣+
∞∑
y1=0

∞∑
y2=0

∣∣P (y1, y2|x1)− P (y1, y2|z1)
∣∣× ∣∣Pz2f

∣∣
(6.2.22)

in which

∣∣Px2f − Pz2f
∣∣ ≤ ∞∑

y1=0

∞∑
y2=0

P (y1, y2|x2)
∣∣f(D +Ax2 +Blog(y + e))− f(D +Az2 +Blog(y + e))

∣∣
+

∞∑
y1=0

∞∑
y2=0

∣∣P (y1, y2|x2)− P (y1, y2|z2)
∣∣× ∣∣f(D +Az2 +Blog(y + e))

∣∣
(6.2.23)

since x2 = D+Ax1 +Blog(y+e), z2 = D+Az1 +Blog(y+e), then ||x2−z2||p =

||A(x1 − z1)||p ≤ ||A||p||x1 − z1||p ≤ η, then |f(x2 − f(z2)| < ε′, and follow 6.2.21,

we have

∣∣Px2f − Pz2f
∣∣ ≤ I + II ≤ ε′ + 4(1− e−2||x2−z2||p) (6.2.24)
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and from 6.2.19, we have

∞∑
y1=0

∞∑
y2=0

∣∣P (y1, y2|x1)− P (y1, y2|z1)
∣∣× ∣∣Pz2f

∣∣ ≤ 4(1− e−2||x1−z1||p) (6.2.25)

substitute 6.2.24, 6.2.25 into 6.2.22, we have

|P 2
x1
f − P 2

z1
f | ≤ ε′ + 4(1− e−2||x2−z2||p) + 4(1− e−2||x1−z1||p)

≤ ε′ + 4(1− e−2||A||p||x1−z1||p) + 4(1− e−2||x1−z1||p) (6.2.26)

By induction and the inequality ex ≥ x + 1, since ||x1 − z1||p < η, so for n ≥ 1, we

have

|P n
x1
f − P n

z1
f | ≤ ε′ + 4

n−1∑
i=0

(1− e−2||A||ip||x1−z1||p)

≤ ε′ + 4
∞∑
i=0

(2||A||ip||x1 − z1||p)

= ε′ + 8
∞∑
i=0

||A||ip||x1 − z1||p

≤ ε′ +
8η

1− ||A||p

< ε (6.2.27)

which proves that {vt} is an e-chain. Combining with {vt} is bounded in probability

on average, and a reachable state (I − A)−1D exists, according to the Theorem

18.4.4 in Meyn and Tweedie (2005), there exists a unique stationary distribution to

{vt}.
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2. To prove proposition 2, we need to follow the Theorem 2 in Wu and Shao

(2004). Condition 1 in Wu and Shao (2004) provides a bound on the intercept of the

random transform F , so it holds trivially. For condition 2 in Wu and Shao (2004),

similar as Liu (2012), consider {v0} = (v0,1, v0,2)T fixed at time 0, for any time t,

v = (v1, v2)T ∈X, where X is the state space, then

E||v1(v)− v1(v0)||p

=

∫
||(D +Av +Blog(F−1

v (u) + e))− (D +Av0 +Blog(F−1
v0

(u) + e))||pd(u)

≤ ||A(v − v0)||p +

∫
||B[log(F−1

v (u) + e)− log(F−1
v0

(u) + e)]||pd(u)

≤ ||A||p||v − v0||p + ||B||p
∫
||log(F−1

v (u) + e)− log(F−1
v0

(u) + e)||1d(u) (6.2.28)

since

∫
||log(F−1

v (u) + e)− log(F−1
v0

(u) + e)||1d(u)

=

∫ [
|log(F−1

v1
(u1) + 1)− log(F−1

v0,1
(u1) + 1)|+ |log(F−1

v2
(u2) + 1)− log(F−1

v0,2
(u2) + 1)|

]
d(u)

= E|log(F−1
v1

(u1) + 1)− log(F−1
v0,1

(u1) + 1)|+ E|log(F−1
v2

(u2) + 1)− log(F−1
v0,2

(u2) + 1)|

(6.2.29)

from Lamma A.1 in Fokianos and Tjøstheim (2011), 6.2.29→ |v1−v0,1|+|v2−v0,2| =

||v − v0||1, as v →∞, so we have

∫
||log(F−1

v (u) + e)− log(F−1
v0

(u) + e)||1d(u) = ||v − v0||1 (6.2.30)
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Again from the inequality of vector norm, ||v − v0||1 ≤ 21− 1
p ||v − v0||p, then

E||fu(v)− fu(v0)||p ≤ ||A||p||v − v0||p + ||B||p||v − v0||1

≤ ||A||p||v − v0||p + 21− 1
p ||B||p||v − v0||p

≤ (||A||p + 21− 1
p ||B||p)||v − v0||p (6.2.31)

Due to the definition and Condition 2 in Wu and Shao (2004), we have proved that

{vt} is geometric contracting under (||A||p + 21− 1
p ||B||p) < 1, and hence {vt} has a

unique stationary distribution. Based on Liu (2012) and according to Theorem 3.1,

Remark 3.1 and Corollary 3.1 in Doukhan and Wintenberger (2008), we know that

the stationary distribution is also τ -weakly dependent and automatically an ergodic

process as a causal Bernoulli shift solution.
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Chapter 7

Likelihood Inference

7.1 Likelihood Function and Score Function

For simplicity, consider the bivariate log-linear Poisson autoregression model, we

denote θ as a ten-dimensional vector of unknown parameters, i.e.

θ = (d1, d2, a11, a12, a21, a22, b11, b12, b21, b22). Then the conditional likelihood function

for θ given the observations {Yt,1, Yt−1,1, ..., Y0,1} and {Yt,2, Yt−1,2, ..., Y0,2} with the

starting value λ0,1 = exp(v0,1) and λ0,2 = exp(v0,2) is:

L(θ) =
n∏
t=1

[
exp(−λt,1(θ))λt,1(θ)Yt,1

Yt,1!
× exp(−λt,2(θ))λt,2(θ)Yt,2

Yt,2!

]
(7.1.1)
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Here we use the Poisson assumption

λt,1(θ)

λt,2(θ)

 = D +A

λt−1,1(θ)

λt−1,2(θ)

+B

Yt−1,1

Yt−1,2

 (7.1.2)

by 6.1.3, and the log-likelihood function is given by

l(θ) =
n∑
t=1

lt(θ) =
n∑
t=1

[
Yt,1vt,1(θ)− exp(vt,1(θ)) + Yt,2vt,2(θ)− exp(vt,2(θ))

]
(7.1.3)

where

vt,1 = d1 + a11vt−1,1 + a12vt−1,2 + b11(log(Yt−1,1 + 1)) + b12(log(Yt−1,2 + 1)) (7.1.4)

vt,2 = d2 + a21vt−1,1 + a22vt−1,2 + b21(log(Yt−1,1 + 1)) + b22(log(Yt−1,2 + 1)) (7.1.5)

for the simplicity and expansion formula for model 6.1.3. And the score function is:

Sn(θ) =
∂l(θ)

∂θ
=

n∑
t=1

∂lt(θ)

∂θ
=

n∑
t=1

[
Yt,1 − exp(vt,1(θ))

∂vt,1(θ)

∂θ
+ Yt,2 − exp(vt,2(θ))

∂vt,2(θ)

∂θ

]
(7.1.6)

where the partial derivative of vt(θ) to θ are ten-dimensional vectors with notation

vt(θ) = (vt,1(θ), vt,2(θ))T and vt−1(θ) = (vt−1,1(θ), vt−1,2(θ))T are given by

∂vt
∂d1

=

1

0

+A
∂vt−1

∂d1

,
∂vt
∂d2

=

0

1

+A
∂vt−1

∂d2
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∂vt
∂a11

=

vt−1,1

0

+A
∂vt−1

∂a11

,
∂vt
∂a12

=

vt−1,2

0

+A
∂vt−1

∂a12

∂vt
∂a21

=

 0

vt−1,1

+A
∂vt−1

∂a21

,
∂vt
∂a22

=

 0

vt−1,2

+A
∂vt−1

∂a22

∂vt
∂b11

= A
∂vt−1

∂b11

+

log(Yt−1,1 + 1)

0

 ,
∂vt
∂a12

= A
∂vt−1

∂b12

+

log(Yt−1,2 + 1)

0



∂vt
∂b21

= A
∂vt−1

∂b21

+

 0

log(Yt−1,1 + 1)

 ,
∂vt
∂a22

= A
∂vt−1

∂b22

+

 0

log(Yt−1,2 + 1)


(7.1.7)

Here, for simplicity, we rewrite the derivative ∂vt(θ)/∂θ with k-dimensional obser-

vations. Define vector ei = (0, 0, . . . , 1, 0, . . . , 0)T with the i-th element equals to 1

while the others are 0 for the total of k elements in the vector. Then the derivative

of vt(θ) to the element in the vector of D is:

∂vt
∂di

= ei +A
∂vt−1

∂di
(7.1.8)
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for i = 1, 2, . . . , k.

For i in (1, . . . , k), and j in (1, . . . , k), the derivative of vt(θ) to the element in the

vector of A and to the element in the vector of B are respectively as

∂vt
∂aij

= vt−1 · ei +A
∂vt−1

∂aij
(7.1.9)

and

∂vt
∂bij

= A
∂vt−1

∂bij
+ log(Yt−1,j + 1) · ei (7.1.10)

where "·" is dot production in function 7.1.9 and function 7.1.10.

We can get the estimation of θ denoted as θ̂ by the conditional maximum likeli-

hood estimation from the solution of Sn(θ) = 0. Also, the Hessian matrix for model

6.1.3 is

Hn(θ) = −
n∑
t=1

∂2lt(θ)

∂θ∂θ′

=
n∑
t=1

exp(vt,1(θ))
∂vt,1(θ)

∂θ

∂vt,1(θ)

∂θ

′

−
n∑
t=1

(Yt,1 − exp(vt,1(θ)))
∂2vt,1(θ)

∂θ∂θ′

+
n∑
t=1

exp(vt,2(θ))
∂vt,2(θ)

∂θ

∂vt,2(θ)

∂θ

′

−
n∑
t=1

(Yt,2 − exp(vt,2(θ)))
∂2vt,2(θ)

∂θ∂θ′

(7.1.11)

where θ is a ten-dimensional vector.
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Chapter 8

Simulation Study

8.1 Simulations for Bivariate Log-linear Poisson Autoregres-

sion

We use simulations to illustrate the theory of the bivariate model presented in

Chapter 6. The parameters in model 6.1.3 are estimated by direct optimization of

the log-likelihood function 7.1.3. Following the method for starting value used in

Fokianos and Tjøstheim (2011), we use a routine GLM fit of the model

vt,1
vt,2

 =
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D+B

log(Yt−1,1 + 1)

log(Yt−1,2 + 1)

 for bivariate model by using the recursions function in 7.1.7

to get the initial values of the entries for the parameter vector D and the matrix

B, and the iterative least squares estimation are used to fit the model (see Fokianos

et al.(2009)). With the estimates of D and B which are denoted as (D̃, B̃), and

a initial diagonal matrix for A under the constraint, the optimization procedure is

taken with the initial values of (D̃, Ã, B̃) (see Fokianos and Tjøstheim (2011)).

Following the constraint for the stability and the conditions for bivariate log-liner

Poisson autoregression model, we first let

θ = (D,A,B) =

(d1

d2

 ,

a11 a12

a21 a22

 ,

b11 b12

b21 b22

)

=

(0.5

0.8

 ,

−0.5 0.2

0.3 −0.6

 ,

−0.35 −0.2

0.1 0.3

)

Table 8.1 shows the simulation results for sample size (data points) of 200, 500

,1000 respectively, and the summary statistics of the sampling distribution of the

standardized MLE. All the results are based on 1000 simulations.
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Table 8.1: Simulation Results for Bivariate Log-linear Poisson Autoregression Model
with eigenvalue of (A+B): (-0.85, -0.3), eigenvalue of (A-B): (0.99, 0.06)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
200 d1 0.5 0.493 0.013 -0.535 4.614 2.76E-06

d2 0.8 0.777 0.010 -1.336 6.710 9.08E-05
a11 -0.5 -0.508 0.012 0.675 4.395 0.002
a12 0.2 0.174 0.011 0.719 4.479 0.005
a21 0.3 0.329 0.012 1.666 10.210 4.22E-04
a22 -0.6 -0.612 0.011 1.788 8.129 2.64E-05
b11 -0.35 -0.330 0.004 -0.049 3.134 0.914
b12 -0.2 -0.206 0.004 0.172 3.374 0.219
b21 0.1 0.101 0.003 -0.067 3.125 0.828
b22 0.3 0.316 0.003 0.215 3.243 0.341

500 d1 0.5 0.516 0.009 -0.987 5.765 1.07E-08
d2 0.8 0.785 0.008 -1.291 6.749 0.002
a11 -0.5 -0.517 0.009 0.557 4.900 0.370
a12 0.2 0.176 0.009 1.083 5.959 7.43E-05
a21 0.3 0.313 0.008 1.099 6.077 0.008
a22 -0.6 -0.589 0.008 1.657 8.202 2.91E-04
b11 -0.35 -0.345 0.003 0.057 2.863 0.314
b12 -0.2 -0.204 0.002 0.368 3.410 0.432
b21 0.1 0.103 0.002 -0.022 2.795 0.500
b22 0.3 0.300 0.002 0.057 3.109 0.432

1000 d1 0.5 0.490 0.006 -0.506 8.655 4.54E-06
d2 0.8 0.786 0.006 -1.407 8.848 0.001
a11 -0.5 -0.491 0.007 0.066 8.016 0.004
a12 0.2 0.205 0.007 0.700 9.018 0.010
a21 0.3 0.313 0.006 1.111 7.760 0.011
a22 -0.6 -0.588 0.006 1.646 9.677 2.64E-05
b11 -0.35 -0.348 0.002 -0.016 3.102 0.341
b12 -0.2 -0.202 0.002 -0.017 3.266 0.610
b21 0.1 0.101 0.001 -0.035 2.812 0.164
b22 0.3 0.301 0.001 0.024 2.997 0.914
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In table 8.1, the fourth column is the mean of the estimators calculated by the

maximum likelihood method. The sample standard deviation of the estimators by the

simulation is shown in the fifth column. The sixth column in this table is the sample

skewness and the seventh column reports the sample kurtosis. The last column in the

table is the p-value of Kolmogorov-Smirnov test statistic for the standardized MLE

(testing with the standard normal distribution), as the same statistic considered in

Fokianos and Tjøstheim (2011).

In this simulation study, we also plot the histograms and qq-plots for the stan-

dardized sample distribution of each entries in θ̂ = (D̂, Â, B̂), for which the true

values are

(0.5

0.8

 ,

−0.5 0.2

0.3 −0.6

 ,

−0.35 −0.2

0.1 0.3

). All the plots are
for the sample size of 500.

We also change the parameters in D, A and B under the constraint ρ(A) < 1,

ρ(A+B) < 1 and ρ(A−B) < 1 for more simulations, and the results are in table

8.2, table 8.3, table 8.4, table 8.5.
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Figure 8.1: Histogram and qq-plots of d1, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.

Figure 8.2: Histogram and qq-plots of d2, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.3: Histogram and qq-plots of a11, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.

Figure 8.4: Histogram and qq-plots of a12, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.5: Histogram and qq-plots of a21, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.

Figure 8.6: Histogram and qq-plots of a22, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.7: Histogram and qq-plots of b11, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.

Figure 8.8: Histogram and qq-plots of b12, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.9: Histogram and qq-plots of b21, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.

Figure 8.10: Histogram and qq-plots of b22, for the qq-lots, the horizontal axis is
theoretical quantiles, the vertical axis is sample quantiles.
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Table 8.2: Simulation Results for Bivariate Log-linear Poisson Autoregression Model
with eigenvalue of (A+B): (0.9, 0.8); eigenvalue of (A-B): (0.82, -0.32)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
200 d1 0.3 0.899 0.018 0.617 2.246 8.25E-10

d2 0.7 0.681 0.024 1.202 9.480 4.16E-08
a11 0.7 0.203 0.016 -0.544 2.194 1.11E-05
a12 0.2 0.137 0.005 -0.574 3.712 0.002
a21 -0.1 -0.076 0.021 -1.110 8.594 2.13E-05
a22 0.4 0.386 0.005 -1.948 10.639 1.42E-06
b11 0.1 0.091 0.003 -0.018 3.166 0.573
b12 -0.2 -0.201 0.003 0.592 4.374 0.069
b21 -0.6 -0.596 0.004 0.960 6.640 0.341
b22 0.5 0.481 0.004 -0.611 5.072 0.078

500 d1 0.3 0.518 0.010 2.106 8.544 1.70E-14
d2 0.7 0.650 0.012 -0.083 7.686 1.11E-05
a11 0.7 0.524 0.009 -2.059 8.184 3.48E-14
a12 0.2 0.195 0.002 -2.076 9.463 7.36E-11
a21 -0.1 -0.050 0.010 0.117 7.359 4.22E-04
a22 0.4 0.409 0.002 -0.473 5.015 0.148
b11 0.1 0.095 0.002 0.163 3.376 0.288
b12 -0.2 -0.213 0.002 0.357 3.505 0.181
b21 -0.6 -0.602 0.002 0.117 2.918 0.610
b22 0.5 0.488 0.002 0.134 3.174 0.828

1000 d1 0.3 0.399 0.008 4.083 24.616 2.2E-16
d2 0.7 0.660 0.007 -1.094 10.493 8.67E-04
a11 0.7 0.620 0.007 -4.100 24.842 4.95E-14
a12 0.2 0.199 0.002 -3.322 21.277 1.12E-06
a21 -0.1 -0.061 0.006 1.153 10.585 0.020
a22 0.4 0.404 0.002 -6.802 76.067 1.86E-08
b11 0.1 0.097 0.001 0.093 2.750 0.914
b12 -0.2 -0.204 0.001 3.293 28.998 1.64E-04
b21 -0.6 -0.599 0.002 4.566 45.797 2.13E-05
b22 0.5 0.491 0.002 -2.729 24.557 0.006
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Table 8.3: Simulation Results for Bivariate Log-linear Poisson Autoregression Model
with eigenvalue of (A+B): (-0.55, 0.3), eigenvalue of (A-B): (-0.8, 0.65)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
200 d1 0.6 0.711 0.009 3.712 30.349 2.43E-08

d2 0.4 0.511 0.011 1.110 6.615 0.020
a11 0.35 0.420 0.011 1.149 18.459 0.000
a12 0.1 -0.119 0.016 -3.224 27.053 1.12E-06
a21 0.7 0.672 0.012 -2.963 57.932 0.000
a22 -0.4 -0.506 0.011 -0.986 13.942 0.164
b11 -0.5 -0.506 0.003 1.017 6.338 0.263
b12 0.2 0.212 0.003 0.184 3.394 0.536
b21 -0.1 -0.096 0.003 0.297 2.998 0.370
b22 0.3 0.286 0.003 -0.061 2.997 0.536

500 d1 0.6 0.615 0.003 0.185 3.451 0.648
d2 0.4 0.411 0.006 0.277 3.419 0.038
a11 0.35 0.379 0.005 0.884 5.838 0.078
a12 0.1 0.055 0.007 -1.040 6.188 0.181
a21 0.7 0.704 0.006 0.734 4.508 0.010
a22 -0.4 -0.420 0.006 -0.185 4.163 0.241
b11 -0.5 -0.505 0.002 0.044 3.076 0.536
b12 0.2 0.202 0.002 0.033 2.970 0.219
b21 -0.1 -0.099 0.002 0.088 2.936 0.685
b22 0.3 0.301 0.002 0.068 2.912 0.859

1000 d1 0.6 0.610 0.002 0.115 3.240 0.432
d2 0.4 0.400 0.004 0.075 3.062 3.18E-08
a11 0.35 0.357 0.003 0.436 4.929 0.341
a12 0.1 0.083 0.004 -0.663 5.797 0.723
a21 0.7 0.697 0.004 0.461 4.018 0.314
a22 -0.4 -0.403 0.004 -0.224 5.735 0.370
b11 -0.5 -0.503 0.001 -0.091 2.835 0.401
b12 0.2 0.200 0.001 0.042 3.194 0.685
b21 -0.1 -0.099 0.001 0.051 2.867 0.573
b22 0.3 0.301 0.001 -0.187 2.997 0.466
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Table 8.4: Simulation Results for Bivariate Log-linear Poisson Autoregression Model
with eigenvalue of (A+B): (0.7, 0.3), eigenvalue of (A-B): (0.75, 0.75)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
200 d1 0.6 0.628 0.008 0.740 4.738 2.20E-16

d2 0.2 0.289 0.008 1.433 8.338 1.38E-05
a11 -0.2 -0.213 0.007 0.350 3.342 0.263
a12 0.3 0.301 0.009 -5.684 94.423 1.07E-08
a21 -0.45 -0.529 0.009 -0.960 6.300 0.288
a22 0.1 0.052 0.008 -0.523 4.323 0.002
b11 0.5 0.480 0.003 0.015 2.989 0.980
b12 -0.3 -0.303 0.003 0.075 2.840 0.723
b21 -0.1 -0.101 0.004 -0.106 3.010 0.936
b22 0.6 0.564 0.004 -0.178 3.493 0.828

500 d1 0.6 0.598 0.004 0.285 5.222 0.432
d2 0.2 0.235 0.005 0.651 3.920 0.048
a11 -0.2 -0.194 0.004 0.440 4.946 0.020
a12 0.3 0.317 0.003 -1.063 13.895 0.263
a21 -0.45 -0.482 0.005 -0.209 3.532 0.097
a22 0.1 0.086 0.004 -0.308 3.692 0.969
b11 0.5 0.493 0.002 -0.033 3.102 0.500
b12 -0.3 -0.300 0.002 0.067 3.231 0.241
b21 -0.1 -0.097 0.003 0.062 3.222 0.341
b22 0.6 0.585 0.003 -0.012 3.270 0.500

1000 d1 0.6 0.596 0.003 -0.110 2.816 0.794
d2 0.2 0.219 0.003 0.298 3.032 0.087
a11 -0.2 -0.194 0.003 0.465 3.797 0.029
a12 0.3 0.305 0.002 0.105 2.927 0.759
a21 -0.45 -0.468 0.004 -0.130 3.048 0.828
a22 0.1 0.092 0.003 -0.174 3.181 0.314
b11 0.5 0.498 0.001 0.208 2.886 0.062
b12 -0.3 -0.301 0.001 -0.067 2.913 0.685
b21 -0.1 -0.101 0.002 0.179 3.380 0.097
b22 0.6 0.595 0.002 0.103 2.992 0.370
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Table 8.5: Simulation Results for Bivariate Log-linear Poisson Autoregression Model
with eigenvalue of (A+B): (0.81, -0.51), eigenvalue of (A-B): (0.66, -0.36)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
200 d1 0.4 0.406 0.005 -0.011 3.739 1.35E-04

d2 0.7 0.673 0.005 0.293 11.464 0.401
a11 0.3 0.228 0.012 -1.222 5.763 5.07E-04
a12 -0.1 -0.106 0.010 -1.221 11.540 0.048
a21 -0.15 -0.079 0.014 -1.948 51.634 7.43E-05
a22 -0.3 -0.278 0.008 0.865 7.406 0.003
b11 0.1 0.095 0.004 0.349 3.328 0.573
b12 -0.4 -0.394 0.004 0.223 3.141 0.759
b21 -0.6 -0.593 0.004 0.133 3.001 0.432
b22 0.2 0.192 0.004 0.000 2.899 0.500

500 d1 0.4 0.398 0.003 -0.254 3.125 0.003
d2 0.7 0.692 0.003 -0.194 3.532 0.432
a11 0.3 0.293 0.006 -0.649 4.641 0.013
a12 -0.1 -0.093 0.006 -0.217 3.182 0.610
a21 -0.15 -0.126 0.006 -0.190 3.874 0.888
a22 -0.3 -0.295 0.004 0.054 3.649 0.341
b11 0.1 0.097 0.003 0.017 3.200 0.200
b12 -0.4 -0.401 0.003 0.101 3.032 0.969
b21 -0.6 -0.597 0.003 0.012 3.280 0.969
b22 0.2 0.194 0.003 -0.023 3.109 0.723

1000 d1 0.4 0.404 0.002 0.276 3.272 0.002
d2 0.7 0.692 0.002 0.145 3.369 0.500
a11 0.3 0.296 0.004 0.151 3.855 0.723
a12 -0.1 -0.101 0.004 -0.199 3.283 0.401
a21 -0.15 -0.135 0.004 0.097 3.289 0.888
a22 -0.3 -0.291 0.003 -0.135 3.276 0.263
b11 0.1 0.097 0.002 0.102 2.962 0.954
b12 -0.4 -0.402 0.002 0.146 2.759 0.828
b21 -0.6 -0.600 0.002 -0.096 2.873 0.573
b22 0.2 0.198 0.002 -0.050 2.914 0.648
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Table 8.6: Simulation Results for Bivariate Log-linear Poisson Autoregression Model
with eigenvalue of (A+B): (-0.7, -0.3), eigenvalue of (A-B): (-0.9, 0.9)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
200 d1 0.9 0.902 0.012 1.030 6.682 0.022

d2 0.6 0.577 0.009 0.369 3.518 0.010
a11 -0.1 -0.105 0.007 -0.439 4.271 0.314
a12 -0.4 -0.394 0.013 -1.620 12.263 0.008
a21 -0.3 -0.276 0.006 -0.308 4.705 0.500
a22 -0.4 -0.370 0.008 0.560 3.719 0.015
b11 -0.3 -0.291 0.003 0.321 3.427 0.610
b12 0.7 0.684 0.003 0.016 2.916 0.097
b21 0.4 0.385 0.003 -0.025 3.119 0.164
b22 -0.2 -0.194 0.003 0.050 2.725 0.219

500 d1 0.9 0.887 0.007 1.225 7.486 0.015
d2 0.6 0.572 0.006 0.071 3.737 0.022
a11 -0.1 -0.096 0.004 -0.914 2.849 0.148
a12 -0.4 -0.393 0.007 -1.265 8.131 0.108
a21 -0.3 -0.282 0.004 0.246 3.895 0.536
a22 -0.4 -0.382 0.005 0.596 4.150 0.134
b11 -0.3 -0.297 0.002 0.073 3.180 0.888
b12 0.7 0.702 0.002 0.103 3.275 0.828
b21 0.4 0.398 0.002 0.009 3.109 0.794
b22 -0.2 -0.195 0.002 -0.069 2.849 0.370

1000 d1 0.9 0.894 0.004 -0.104 4.888 0.401
d2 0.6 0.584 0.004 0.417 4.676 0.314
a11 -0.1 -0.095 0.003 0.561 8.309 0.341
a12 -0.4 -0.400 0.004 0.177 7.103 0.888
a21 -0.3 -0.295 0.003 -0.200 5.636 0.466
a22 -0.4 -0.390 0.003 0.328 3.772 0.648
b11 -0.3 -0.300 0.001 0.034 3.091 0.988
b12 0.7 0.702 0.001 0.029 3.157 0.573
b21 0.4 0.404 0.002 0.008 2.774 0.969
b22 -0.2 -0.197 0.001 -0.066 3.182 0.500
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8.2 Simulations for Three Dimensional Log-linear Poisson Au-

toregression

In this section, we expend the simulation study to three-dimensional model. Sim-

ilar as bivariate model 6.1.3, the three-dimensional log-Poisson autoregression is ex-

pressed as


vt,1

vt,2

vt,3

 = D +A


vt−1,1

vt−1,2

vt−1,3

+B


log(Yt−1,1 + 1)

log(Yt−1,2 + 1)

log(Yt−1,3 + 1)

 (8.2.1)

whereD ∈ R3
+,A andB are 3×3 matrix with entries ∈ R restricted by the parameter

space. The model 8.2.1 captures the dependence between {vt,1}, {vt,2} and {vt,3}.

Follow the likelihood method stated in section 7.1, there are 21 parameters need to

be estimated. The simulation for three-dimensional log-Poisson model are based on

the sample size of 3000, and similar as the bivariate simulations, all the simulation

studies are based on 1000 times. We also use a table to show the results for the

estimations. Table 8.7 shows the results for the model with eigenvalue of (A+B):

(-0.95, 0.34 and -0.21), and eigenvalue of (A-B): (0.87, 0.7, -0.24), with the same

indicators we have considered in Bivariate simulations. And the histogram and qq-

plots for each of the parameters are given in figure 8.11, figure 8.12 , figure 8.13,

figure 8.14, figure 8.15, figure 8.16, figure 8.17. Also, more simulation results with

different eigenvalue of (A+B) and (A-B) are given in table 8.8 and table 8.9.

110



Table 8.7: Simulation Results for 3-D Log-linear Poisson Autoregression Model with
eigenvalue of (A+B): (-0.95, 0.34 and -0.21), eigenvalue of (A-B): (0.87, 0.7, -0.24)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
3000 d1 0.7 0.690 0.003 1.454 12.601 5.47E-02

d2 0.3 0.299 0.003 -0.154 3.210 7.76E-02
d3 0.8 0.814 0.004 6.832 79.974 3.28E-07
a11 -0.50 -0.497 0.002 -1.462 17.554 2.00E-01
a12 -0.20 -0.198 0.001 -0.127 3.813 9.80E-01
a13 0.40 0.401 0.001 -1.628 13.549 9.71E-02
a21 0.20 0.202 0.002 2.071 19.882 2.19E-01
a22 -0.30 -0.298 0.001 0.881 7.689 6.16E-02
a23 -0.10 -0.101 0.001 0.100 3.652 6.85E-01
a31 -0.40 -0.408 0.003 -9.297 116.455 2.20E-16
a32 0.00 -0.003 0.002 -6.900 80.363 1.52E-11
a33 -0.28 -0.282 0.001 -0.140 15.167 2.57E-02
b11 0.20 0.201 0.001 -2.487 27.309 1.64E-01
b12 0.30 0.301 0.001 -0.561 5.979 4.66E-01
b13 -0.40 -0.399 0.001 0.239 4.360 3.41E-01
b21 0.10 0.100 0.001 -0.416 5.221 5.73E-01
b22 -0.30 -0.301 0.001 -2.068 28.889 1.64E-01
b23 0.50 0.500 0.001 0.034 3.456 7.59E-01
b31 -0.20 -0.201 0.001 -1.039 14.431 3.14E-01
b32 0.70 0.697 0.001 -10.615 235.160 3.51E-04
b33 0.35 0.349 0.001 0.247 3.736 5.36E-01
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Figure 8.11: Histogram and qq-plots of d1, d2,d3 (from top to bottom), for the qq-lots,
the horizontal axis is theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.12: Histogram and qq-plots of a11, a12, a13 (from top to bottom), for the qq-
lots, the horizontal axis is theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.13: Histogram and qq-plots of a21, a22, a23 (from top to bottom), for the qq-
lots, the horizontal axis is theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.14: Histogram and qq-plots of a31, a32, a33 (from top to bottom), for the qq-
lots, the horizontal axis is theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.15: Histogram and qq-plots of b11, b12, b13 (from top to bottom), for the qq-
lots, the horizontal axis is theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.16: Histogram and qq-plots of b21, b22, b23 (from top to bottom), for the qq-
lots, the horizontal axis is theoretical quantiles, the vertical axis is sample quantiles.
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Figure 8.17: Histogram and qq-plots of b31, b32, b33 (from top to bottom), for the qq-
lots, the horizontal axis is theoretical quantiles, the vertical axis is sample quantiles.
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Table 8.8: Simulation Results for 3-D Log-linear Poisson Autoregression Model with
eigenvalue of (A+B): (0.82, -0.68 and 0.46), eigenvalue of (A-B): (0.79, 0.79, 0.27)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
3000 d1 0.5 0.591 0.014 8.320 89.431 2.20E-16

d2 0.3 0.341 0.006 4.860 40.409 2.20E-16
d3 0.8 0.870 0.014 6.840 65.276 2.20E-16
a11 0.25 0.153 0.012 -4.282 25.104 2.20E-16
a12 0.00 0.071 0.018 6.756 56.190 2.20E-16
a13 -0.30 -0.381 0.012 -6.763 63.474 2.20E-16
a21 0.10 0.060 0.007 -6.344 52.039 2.20E-16
a22 -0.30 -0.205 0.015 6.935 60.110 2.20E-16
a23 -0.20 -0.215 0.005 -6.592 63.778 2.20E-16
a31 0.40 0.243 0.032 -8.227 87.447 2.20E-16
a32 -0.50 -0.189 0.063 8.196 86.516 2.20E-16
a33 -0.30 -0.304 0.010 -6.718 90.641 2.20E-16
b11 0.50 0.497 0.002 -2.071 24.138 2.20E-16
b12 0.70 0.680 0.004 -4.261 25.926 2.20E-16
b13 -0.40 -0.388 0.002 4.603 29.645 2.20E-16
b21 0.60 0.569 0.004 -3.282 14.121 2.20E-16
b22 0.10 0.094 0.002 -1.981 13.278 2.20E-16
b23 -0.30 -0.284 0.002 2.600 11.329 2.20E-16
b31 0.20 0.178 0.003 -3.902 18.013 2.20E-16
b32 -0.10 -0.106 0.002 -5.721 46.957 2.20E-16
b33 0.35 0.337 0.002 -2.755 12.236 2.20E-16
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Table 8.9: Simulation Results for 3-D Log-linear Poisson Autoregression Model with
eigenvalue of (A+B): (0.77, -0.59 and 0.22), eigenvalue of (A-B): (0.61, 0.49, -0.32)
Sample Parameters Real MLE Standard Skewness Kurtosis P-Value
Size Value Error
3000 d1 0.4 0.133 0.006 1.504 4.703 2.20E-16

d2 0.7 1.039 0.008 0.094 3.911 0.007
d3 0.8 0.934 0.008 -0.539 3.891 1.07E-08
a11 0.70 0.831 0.003 -1.220 4.227 6.15E-09
a12 -0.30 -0.254 0.002 0.025 3.373 0.610
a13 0.45 0.541 0.003 -0.432 3.498 0.241
a21 -0.40 -0.623 0.005 -0.291 3.975 0.314
a22 0.65 0.512 0.004 -0.386 3.650 0.263
a23 -0.30 -0.406 0.003 -0.302 4.114 0.121
a31 -0.10 -0.192 0.005 0.388 3.696 0.007
a32 0.70 0.631 0.004 0.346 3.926 0.029
a33 -0.50 -0.535 0.003 0.326 3.888 0.219
b11 -0.20 -0.182 0.001 0.041 3.109 0.794
b12 0.10 0.130 0.001 -0.519 3.455 0.097
b13 -0.45 -0.432 0.001 -0.008 3.338 9.995E-01
b21 -0.10 -0.103 0.001 -0.052 2.871 0.314
b22 -0.35 -0.355 0.001 -0.110 2.734 0.859
b23 0.50 0.498 0.001 -0.051 2.917 0.536
b31 0.40 0.402 0.001 -0.139 3.279 0.759
b32 0.00 0.003 0.001 -0.051 3.276 0.828
b33 0.10 0.101 0.001 0.102 3.016 0.288
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Chapter 9

Real Data Analysis for Multivariate

Log-Poisson Autogression

9.1 Data Description

In this part, we apply this model to the stock return data to study the interde-

pendence of different stocks in the same industry. By focusing on the exceedance

of different stock return in a certain time period, the correlations of the exceedance

return for the certain stocks can be gained by this model. Especially, we apply this

model to study the dependence of financial risks in different market. Specifically,

consider the stock market indices in the US, Europe, and Japan, the exceedance of
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the stock index return over certain threshold represents the magnitude of market

variations and provides us a new measurement for the market tail risk in different

countries/market. Also, another application is the interdependence of trading behav-

ior for different stocks, through which the impact of one stockâĂŹs trading behavior

on another stock can be quantitatively modeled and identified by this model. In this

study, we apply this model to the stock data for the number of trades per minute

or within two minutes or five minutes and get the interaction of different stocks’

transactions.

The data we use in this real data study are the stock daily return data and the

TAQ data of the high frequency transactions. For the stock daily return data, given

a threshold of return, let the Poisson event be the exceedance return and count

the number of this event in one month. 20 years’ daily data are used between Jan

1996 and Dec 2015 and the total of 240 months are considered as the sample size in

this study. Index data like SP500, NASDAQ, FTSE 100 in London stock exchange,

and Nikkei 225 in Japan market, different industry data like Bank of America, Citi

group as the banking industry, GE and Philips as the machine industry, Exxon Mobil

corporation and Marathon oil as the petroleum industry are considered in this study.

For the TAQ data, we choose stock data in Jan 2002 and Jan 2012 respectively for

comparison.
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9.2 Exceedance Return Examples

9.2.1 Application to the dependence of indices/stocks in the same mar-

ket/industry

We first apply the bivariate log-Poisson autoregression model to the analysis of

the dependence of two indices/stocks within the same market/industry in this part.

20 years’ indices/stock return data between Jan 1996 and Dec 2015 are used to

analyze the interdependence of two markets/stocks in the same industry. Figure

9.1, 9.2, 9.3, 9.4, respectively show the plots of daily return during this period for

the index of SP500 and NASDAQ, and other six stocks (of which each two are in

the same industry) that we pick as the examples of three different industries in this

study.
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Figure 9.1: 20 Years daily return for SP500 and NASDAQ (from top to bottom), the
horizontal axis is the time period from Jan 1996 to Dec 2015, the vertical axis is the
daily return.
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Figure 9.2: 20 Years daily return for BOA and Citigroup (from top to bottom), the
horizontal axis is the time period from Jan 1996 to Dec 2015, the vertical axis is the
daily return.
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Figure 9.3: 20 Years daily return for GE and Philips (from top to bottom), the
horizontal axis is the time period from Jan 1996 to Dec 2015, the vertical axis is the
daily return.
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Figure 9.4: 20 Years daily return for Marathon Oil and Exxon Mobil (from top
to bottom), the horizontal axis is the time period from Jan 1996 to Dec 2015, the
vertical axis is the daily return.
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Then, let the event be the number of exceedance of stock return per month given

a specific threshold. There are total 240 months in our data set. Let {Yt,1, Yt,2} be the

bivariate observations, where t = 1, 2, . . . , 240, {Yt,1, t ≥ 1} and {Yt,2, t ≥ 1} are two

conditional independent time series of counts. We also plot the observations given

different threshold at (0.01, 0.01), (−0.01,−0.02), (0.02,−0.01) for SP500 v.s NAS-

DAQ, at (0.02, 0.02), (−0.02, 0.05), (0.01,−0.02) for Bank of America v.s Citigroup,

at (−0.03,−0.01), (0.03, 0.02), (0.01, 0.04) for GE v.s Philips, and at (−0.01,−0.01),

(0.02,−0.03), (0.03, 0.01) for Marathon Oil v.s Exxon Mobil. The corresponding

log-Poisson autogregression and analysis are in the followings.

Given different thresholds, we plot the exceedance number per month for SP500

and NASDAQ respectively in figure 9.5. Let λ1 represent the threshold of daily return

for SP500, λ2 represent the threshold of daily return for NASDAQ, the observations of

SP500 and NASDAQ are {Yt,1} and {Yt,2} corresponding to model 6.1.3. Parameters

can be estimated by direct optimization of the log-likelihood function 7.1.3 and the

estimation results of the parameters in the bivariate log-Poisson autoregression model

are shown in table 9.1 and 9.2 under different thresholds.

128



Jan, 1996 Apr, 2004 Aug, 2012
0

2

4

6

8

10

Jan, 1996 Apr, 2004 Aug, 2012
0

5

10

15

Jan, 1996 Apr, 2004 Aug, 2012
0

5

10

15

Jan, 1996 Apr, 2004 Aug, 2012
0

2

4

6

8

10

Jan, 1996 Apr, 2004 Aug, 2012
0

2

4

6

8

Jan, 1996 Apr, 2004 Aug, 2012
0

5

10

15

Figure 9.5: Exceedance number per month for SP500 (left) and NASDAQ (right)
given different threshold (0.01, 0.01), (-0.01, -0.02), (0.02, -0.01) from top to bottom.
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Table 9.1: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for SP500 and NASDAQ under different threshold λ

λ=(0.01, 0.01) λ=(0.01, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.002 0.027 9.48E-01 1.096 0.489 2.60E-02
d2 5.78E-09 0.016 1.00E+00 0.124 1.034 9.05E-01
a11 0.650 0.055 1.13E-25 -0.305 0.487 5.32E-01
a12 -0.028 0.057 6.24E-01 0.284 0.187 1.30E-01
a21 -0.099 0.034 3.72E-03 -0.580 1.064 5.86E-01
a22 0.725 0.035 1.27E-55 0.464 0.454 3.08E-01
b11 0.319 0.038 2.17E-15 0.109 0.040 6.43E-03
b12 0.009 0.039 8.12E-01 0.204 0.028 5.97E-12
b21 0.140 0.021 1.04E-10 0.124 0.119 2.96E-01
b22 0.204 0.024 1.25E-15 0.722 0.110 3.63E-10

λ=(0.01, -0.01) λ=(-0.01, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 2.31E-04 0.043 9.96E-01 1.83E-08 0.042 1.00E+00
d2 0.405 0.089 8.28E-06 0.020 0.012 9.15E-02
a11 0.824 0.112 2.97E-12 0.340 0.066 6.26E-07
a12 -0.289 0.106 6.93E-03 0.169 0.063 7.56E-03
a21 0.995 0.129 2.82E-13 -0.157 0.036 1.57E-05
a22 -0.360 0.119 2.75E-03 0.839 0.029 3.10E-80
b11 0.182 0.038 1.31E-07 0.408 0.046 2.82E-16
b12 0.240 0.039 2.58E-25 -0.016 0.042 7.09E-01
b21 -0.146 0.021 4.09E-12 0.077 0.021 2.79E-04
b22 0.371 0.024 3.17E-45 0.188 0.019 9.26E-20

λ=(-0.02, -0.01) λ=(-0.01, -0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.094 0.364 7.96E-01 0.799 0.162 1.57E-06
d2 0.546 0.142 1.59E-04 0.119 0.407 7.71E-01
a11 0.614 0.166 2.71E-04 -0.215 0.180 2.33E-01
a12 -0.797 0.401 4.82E-02 0.101 0.103 3.26E-01
a21 0.118 0.057 3.91E-02 -0.446 0.520 3.91E-01
a22 0.314 0.102 2.33E-03 0.402 0.270 1.38E-01
b11 0.508 0.121 3.52E-05 0.112 0.037 2.74E-03
b12 0.484 0.230 3.62E-02 0.435 0.034 7.60E-29
b21 0.037 0.028 1.92E-01 -0.052 0.113 6.49E-01
b22 0.291 0.032 6.40E-17 0.840 0.111 7.45E-13
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Table 9.2: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for SP500 and NASDAQ under different threshold λ continued

λ=(0.02, -0.01) λ=(-0.01, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.10E-05 0.516 1.00E+00 0.231 0.134 8.65E-02
d2 0.455 0.278 1.03E-01 0.003 0.245 9.92E-01
a11 0.783 0.170 6.83E-06 0.342 0.148 2.13E-02
a12 -0.793 0.495 1.11E-01 0.027 0.077 7.30E-01
a21 0.064 0.091 4.83E-01 -0.832 0.307 7.20E-03
a22 0.401 0.180 2.65E-02 0.733 0.148 1.34E-06
b11 0.273 0.088 2.04E-03 0.313 0.034 7.71E-18
b12 0.622 0.263 1.88E-02 0.105 0.036 3.40E-03
b21 0.046 0.034 1.84E-01 0.543 0.102 2.13E-07
b22 0.267 0.038 1.81E-11 0.378 0.075 8.03E-07

λ=(-0.02, 0.01) λ=(-0.01, 0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.023 0.603 9.69E-01 3.85E-09 0.093 1.00E+00
d2 1.159 0.316 2.97E-04 2.64E-06 0.019 1.00E+00
a11 0.624 0.224 5.78E-03 -0.064 0.086 4.53E-01
a12 -0.811 0.348 2.07E-02 0.607 0.101 6.28E-09
a21 0.285 0.109 9.38E-03 -0.098 0.047 3.72E-02
a22 0.064 0.193 7.42E-01 0.652 0.049 1.22E-30
b11 0.531 0.092 2.54E-08 0.434 0.032 7.24E-32
b12 0.529 0.201 8.94E-03 -0.156 0.040 1.23E-04
b21 0.166 0.020 1.26E-14 0.199 0.014 1.00E-32
b22 0.116 0.037 1.92E-03 0.226 0.023 4.13E-19

λ=(0.02, 0.02) λ=(0.03, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 6.38E-10 0.053 1.00E+00 5.09E-10 0.164 1.00E+00
d2 0.018 0.049 7.07E-01 0.046 0.067 4.92E-01
a11 0.625 0.117 2.15E-07 0.399 0.391 3.08E-01
a12 -0.426 0.126 8.23E-04 -0.548 0.584 3.50E-01
a21 -0.216 0.079 7.00E-03 -0.153 0.584 1.97E-01
a22 0.409 0.084 2.23E-06 0.244 0.116 3.70E-02
b11 0.494 0.132 2.33E-04 0.800 0.586 1.74E-01
b12 0.078 0.112 4.86E-01 -0.260 0.405 5.20E-01
b21 0.322 0.058 6.12E-08 0.255 0.063 6.85E-05
b22 0.277 0.070 9.77E-05 0.343 0.086 8.61E-05
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Figure 9.6: Time series of vt in model 6.1.3 for SP500 (left) and NASDAQ (right)
given different threshold (0.01, 0.01), (-0.01, -0.02), (0.02, -0.01) from top to bottom.
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In the above tables, the second column and the fifth column list the estimations

from the maximum likelihood method. The third column and the sixth column show

the standard error of the corresponding estimated coefficients. The fourth column

and the last column in the table are the P-value of t-test statistic for the estimators.

In table 9.1, under the paired thresholds λ = (0.01, 0.01), from the estimated num-

ber of a12 and a21, b12 and b21 in model 6.1.3, the interdependence between vt+1,SP500

and vt,NASDAQ is -0.028, the interdependence between vt+1,NASDAQ and vt,SP500 is

-0.099, and the interdependence between vt+1,SP500 and log(Yt,NASDAQ + 1) is 0.622,

the interdependence between vt+1,NASDAQ and log(Yt,SP500 + 1) is 0.046. While, with

changing one of the paired thresholds, say λ = (0.01, 0.02), the interdependence

between vt+1,SP500 and vt,NASDAQ becomes positive at 0.284, the interdependence be-

tween vt+1,NASDAQ and vt,SP500 is -0.580, and the interdependence between vt+1,SP500

and log(Yt,NASDAQ + 1) becomes a significant estimation at 0.204, the interdepen-

dence between vt+1,NASDAQ and log(Yt,SP500 + 1) becomes 0.124. When fixing the

threshold for NASDAQ at −0.01, change the threshold of SP500 from 0.01 to -0.01,

the interdependence between vt+1,SP500 and vt,NASDAQ changes from -0.289 to 0.169,

the interdependence between vt+1,NASDAQ and vt,SP500 changes from 0.995 to -0.157,

the interdependence between vt+1,SP500 and log(Yt,NASDAQ+1) changes from 0.240 to

-0.016, and the interdependence between vt+1,NASDAQ and log(Yt,SP500 + 1) changes

from 0.037 to -0.052. Similar results can be seen from table 9.2. The insignificant

estimation under the paired thresholds λ = (0.03, 0.02) in the right bottom corner

in table 9.2 due to the reason of fewer observations under this threshold. Time series

of vt+1,1 and vt+1,2 are plotted in figure 9.6.
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Figure 9.7: Exceedance number per month for BOA (left) and Citigroup (right) given
different threshold (0.02, 0.02), (-0.02, 0.05), (0.01, -0.02) from top to bottom.
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Table 9.3: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for BOA and Citigroup under different threshold λ

λ=(-0.02, 0.01) λ=(0.02, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.361 0.794 6.50E-01 3.03E-07 0.073 1.00E+00
d2 1.584 0.325 2.04E-06 2.29E-09 0.033 1.00E+00
a11 0.562 0.219 1.10E-02 0.122 0.171 4.77E-01
a12 -0.558 0.609 3.61E-01 0.467 0.175 8.08E-03
a21 0.213 0.092 2.17E-02 -0.126 0.117 2.83E-01
a22 -0.355 0.228 1.21E-01 0.580 0.127 7.69E-06
b11 0.592 0.043 3.35E-32 0.291 0.038 7.22E-13
b12 0.164 0.072 2.43E-02 0.047 0.042 2.65E-01
b21 0.265 0.011 4.86E-65 0.182 0.027 1.76E-10
b22 0.141 0.018 1.35E-13 0.301 0.039 3.34E-13

λ=(-0.02, 0.02) λ=(0.03, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 4.11E-05 0.081 1.00E+00 1.54E-04 0.566 1.00E+00
d2 0.044 0.066 5.07E-01 0.530 0.657 4.20E-01
a11 0.786 0.106 2.41E-12 0.912 0.394 2.15E-02
a12 -0.587 0.148 9.24E-05 -0.601 0.682 3.79E-01
a21 -0.046 0.082 5.73E-01 0.314 0.462 4.98E-01
a22 0.424 0.112 2.02E-04 0.003 0.768 9.97E-01
b11 0.453 0.030 4.25E-37 0.216 0.035 1.70E-09
b12 0.270 0.040 9.54E-11 0.382 0.089 2.53E-05
b21 0.292 0.021 1.06E-33 0.124 0.033 1.79E-04
b22 0.249 0.029 2.41E-15 0.251 0.046 1.58E-07

λ=(-0.02, 0.05) λ=(0.01, -0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.453 0.099 6.96E-06 1.593 0.506 1.86E-03
d2 0.005 0.295 9.87E-01 0.001 1.674 9.99E-01
a11 -0.110 0.086 1.98E-01 -0.436 0.404 2.81E-01
a12 0.088 0.058 1.32E-01 0.438 0.184 1.82E-02
a21 -0.663 0.458 1.49E-01 -0.282 1.374 8.38E-01
a22 0.569 0.243 1.99E-02 0.595 0.647 3.59E-01
b11 0.540 0.041 2.77E-30 0.108 0.018 1.37E-08
b12 0.256 0.030 3.09E-15 0.181 0.011 9.33E-39
b21 0.191 0.242 4.31E-01 0.187 0.051 2.90E-04
b22 0.716 0.247 4.18E-03 0.449 0.034 5.01E-30
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Table 9.4: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for BOA and Citigroup under different threshold λ continued

λ=(0.01, 0.01) λ=(0.01, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.990 0.132 1.34E-36 0.916 0.123 1.47E-12
d2 2.006 0.140 6.05E-34 0.916 0.136 1.23E-10
a11 4.302 0.577 1.65E-12 -3.892 1.847 3.62E-02
a12 -4.602 0.589 1.77E-13 4.116 1.784 2.19E-02
a21 3.371 0.584 2.39E-08 -4.906 1.908 1.07E-02
a22 -3.601 0.610 1.22E-08 5.087 1.849 6.41E-03
b11 0.128 0.015 2.69E-16 0.044 0.011 1.69E-04
b12 0.108 0.015 7.39E-12 0.182 0.013 1.63E-32
b21 0.087 0.014 7.23E-10 0.053 0.012 9.22E-06
b22 0.075 0.014 1.53E-07 0.213 0.014 1.81E-38

λ=(0.01, 0.02) λ=(0.02, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.236 0.308 7.91E-05 0.005 0.523 9.92E-01
d2 0.154 0.405 7.05E-01 1.533 0.278 8.91E-08
a11 -0.179 0.272 5.10E-01 0.775 0.187 4.55E-05
a12 0.516 0.151 7.20E-04 -0.590 0.463 2.03E-01
a21 -0.327 0.353 3.56E-01 0.465 0.079 1.30E-08
a22 0.782 0.218 4.00E-04 -0.557 0.199 5.50E-03
b11 0.065 0.021 1.83E-03 0.268 0.032 8.62E-15
b12 0.086 0.015 2.58E-08 0.486 0.080 5.01E-09
b21 0.116 0.035 9.95E-04 0.041 0.013 1.45E-03
b22 0.332 0.040 1.38E-14 0.336 0.022 3.52E-38

λ=(0.01, 0.03) λ=(0.03, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.280 0.237 1.59E-07 0.046 0.750 9.51E-01
d2 0.002 0.552 9.97E-01 0.773 0.326 1.85E-02
a11 0.021 0.154 8.94E-01 0.843 0.137 3.06E-09
a12 0.345 0.076 9.37E-06 -1.261 0.726 8.35E-02
a21 -0.322 0.367 3.81E-01 0.125 0.072 8.66E-02
a22 0.656 0.204 1.49E-03 0.198 0.197 3.18E-01
b11 0.115 0.022 2.57E-07 0.196 0.088 2.73E-02
b12 0.060 0.012 2.48E-06 1.053 0.509 3.95E-02
b21 0.204 0.094 3.13E-02 -0.036 0.030 2.33E-01
b22 0.399 0.067 7.28E-09 0.322 0.061 2.74E-07
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Figure 9.8: Time series of vt in model 6.1.3 for BOA (left) and Citigroup (right)
given different threshold (0.02, 0.02), (-0.02, 0.05), (0.01, -0.02) from top to bottom.
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Figure 9.7 shows the plots for the exceedance number for BOA and Citigroup

at different threshold, and the corresponding estimation results are shown in table

9.3 and table 9.4. Same as the analysis table for index return, the second column

and the fifth column list the estimations from the maximum likelihood method. The

third column and the sixth column show the standard error of the corresponding

estimated coefficients. The fourth column and the last column in the table are the

P-value of t-test statistic for the estimators. In table 9.3, under the paired thresholds

λ = (-0.02, 0.01), from the estimated number of a12 and a21, b12 and b21 in model

6.1.3, the interdependence between vt+1,BOA and vt,Citi is -0.558, the interdependence

between vt+1,BOA and vt,Citi is 0.213, and the interdependence between vt+1,BOA and

log(Yt,Citi + 1) is 0.164, the interdependence between vt+1,Citi and log(Yt,BOA + 1) is

0.265. Fixing the threshold for BOA at −0.02, change the threshold of Citigroup

from 0.01 to 0.02, the interdependence between vt+1,BOA and vt,Citi becomes -0.587,

the interdependence between vt+1,Citi and vt,BOA is -0.046, the interdependence be-

tween vt+1,BOA and log(Yt,Citi + 1) becomes 0.270, and the interdependence between

vt+1,Citi and log(Yt,BOA + 1) becomes 0.292. While with changing both of the paired

thresholds, say λ = (-0.02, 0.05) to λ = (0.01, -0.02), the parameters of a12, a21,

b12, which represent the interdependence in model 6.1.3, all have significant changes.

This can also be seen from the middle and bottom plots of vt in figure 9.8.
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Figure 9.9: Exceedance number per month for GE (left) and Philips (right) given
different threshold (-0.03, -0.01), (0.04, 0.02), (0.01, 0.04) from top to bottom.
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Table 9.5: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for GE and Philips under different threshold λ

λ=(-0.01, 0.01) λ=(0.01, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.752 0.422 7.59E-02 0.953 0.111 1.10E-15
d2 1.373 0.673 4.24E-02 1.073 0.108 1.16E-19
a11 1.172 0.249 4.18E-06 2.128 0.242 2.68E-16
a12 -0.880 0.430 4.21E-02 -1.936 0.262 2.58E-12
a21 0.639 0.380 9.37E-02 1.331 0.246 1.54E-07
a22 -0.451 0.676 5.05E-01 -1.116 0.268 4.38E-05
b11 0.231 0.012 5.20E-49 0.141 0.013 2.12E-23
b12 0.119 0.018 1.58E-10 0.251 0.013 4.26E-50
b21 0.119 0.010 2.76E-24 0.096 0.012 6.19E-14
b22 0.074 0.016 8.32E-06 0.228 0.013 1.88E-46

λ=(0.01, 0.01) λ=(-0.03, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.423 0.411 6.42E-04 0.001 2.686 1.00E+00
d2 1.732 0.334 4.77E-07 1.795 0.816 2.87E-02
a11 2.201 0.470 4.68E-06 0.512 0.496 3.03E-01
a12 -2.049 0.630 1.30E-03 -0.608 1.612 7.06E-01
a21 1.563 0.402 1.31E-04 0.219 0.113 5.38E-02
a22 -1.467 0.527 5.81E-03 -0.214 0.444 6.30E-01
b11 0.159 0.013 1.61E-27 0.554 0.178 2.09E-03
b12 0.077 0.015 1.12E-06 0.365 0.305 2.33E-01
b21 0.096 0.011 4.85E-15 0.054 0.012 1.37E-05
b22 0.071 0.015 1.79E-06 0.210 0.026 7.42E-14

λ=(0.01, -0.02) λ=(-0.01, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.438 1.006 1.54E-01 2.167 0.072 7.74E-83
d2 0.913 1.737 6.00E-01 1.715 0.109 5.88E-39
a11 -0.644 1.043 5.37E-01 1.112 0.053 1.31E-55
a12 0.663 0.595 2.66E-01 -1.842 0.077 2.44E-65
a21 -1.275 1.759 4.69E-01 0.262 0.042 2.28E-09
a22 1.267 0.985 1.99E-01 -0.407 0.094 2.36E-05
b11 0.118 0.021 6.76E-08 0.352 0.019 2.43E-47
b12 0.193 0.014 1.41E-31 0.352 0.022 7.24E-17
b21 0.245 0.038 4.72E-10 0.137 0.011 2.43E-29
b22 0.310 0.038 4.01E-23 0.091 0.013 1.11E-10
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Table 9.6: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for GE and Philips under different threshold λ continued

λ=(0.01, -0.03) λ=(0.02, 0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.710 0.617 6.06E-03 0.075 0.651 9.08E-01
d2 0.314 1.655 8.50E-01 1.838 0.651 8.18E-10
a11 -0.354 0.438 4.19E-01 0.521 0.183 4.77E-03
a12 0.325 0.167 5.24E-02 -0.027 0.431 9.50E-01
a21 -0.969 1.049 3.56E-01 0.356 0.067 2.29E-07
a22 0.726 0.440 1.00E-01 -0.219 0.180 2.25E-01
b11 0.109 0.022 1.95E-06 0.540 0.066 2.27E-14
b12 0.153 0.017 4.96E-17 -0.143 0.081 7.80E-02
b21 0.582 0.159 3.13E-04 0.072 0.009 1.01E-12
b22 0.423 0.046 2.75E-17 0.031 0.018 8.69E-02

λ=(0.01, 0.02) λ=(0.03, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.608 1.465 2.73E-01 0.002 0.644 9.98E-01
d2 1.095 2.489 6.61E-01 1.003 0.406 1.42E-02
a11 -0.981 1.660 5.55E-01 0.782 0.319 1.49E-02
a12 1.067 1.008 2.91E-01 -0.816 0.467 8.16E-02
a21 -1.557 2.767 5.74E-01 0.392 0.176 2.70E-02
a22 1.691 1.705 3.22E-01 -0.093 0.304 7.61E-01
b11 0.143 0.021 8.40E-11 0.365 0.097 2.16E-04
b12 0.049 0.018 6.01E-03 0.547 0.214 1.12E-02
b21 0.270 0.038 1.72E-11 0.075 0.029 1.00E-02
b22 0.089 0.018 1.64E-06 0.235 0.044 2.84E-07

λ=(0.01, 0.04) λ=(-0.02, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.191 0.290 5.38E-05 0.316 0.657 6.32E-01
d2 4.42E-05 1.405 1.00E+00 2.396 0.162 1.92E-35
a11 0.142 0.187 4.49E-01 0.683 0.133 6.03E-07
a12 0.200 0.099 4.38E-02 -0.681 0.433 1.18E-01
a21 -0.581 0.748 4.39E-01 0.373 0.036 1.32E-20
a22 0.838 0.318 8.95E-03 -0.708 0.089 6.39E-14
b11 0.059 0.024 1.68E-02 0.409 0.047 5.88E-16
b12 0.125 0.018 4.41E-11 0.371 0.095 1.17E-04
b21 0.475 0.232 4.22E-02 0.070 0.015 2.85E-06
b22 0.205 0.067 2.52E-03 0.214 0.025 4.97E-16
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Figure 9.10: Time series of vt in model 6.1.3 for GE (left) and Philips (right) given
different threshold (-0.03, -0.01), (0.03, 0.02), (0.01, 0.04) from top to bottom.
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We also choose GE and Philips in machine industry to do the same analysis.

The plots of the number of exceedance return for GE and Philips under different

threshold are shown in figure 9.9. Table 9.5 and table 9.6 are the estimation results

given different threshold sets, figure 9.10 plots the time series of vt,GE and vt,Philips.

Similar as the results for commercial bank industry, many of the estimations of the

cross term are significant, which means there do have an interdependence for the

exceedance return between the two stocks. In addition, the exceedance event can be

seen as a tail problem in stock return, which indirectly shows an interdependence for

the tail stock return problem.

Similar results are shown from the petroleum industry in the following with ob-

servation plots given different threshold sets in figure 9.11, and the estimation results

are given in table 9.7, table 9.8. The plots for vt,Marathon and vt,Exxon is shown in

figure 9.12.
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Figure 9.11: Exceedance number per month for Marathon Oil (left) and Exxon Mobil
(right) given different threshold (-0.01, -0.01), (0.02, -0.03), (0.03, 0.01) from top to
bottom.
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Table 9.7: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for Marathon Oil and Exxon Mobil under different threshold λ

λ=(-0.01, -0.01) λ=(0.02, -0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.991 0.128 2.57E-13 0.405 0.214 5.95E-02
d2 0.621 0.176 4.84E-04 0.474 0.300 1.15E-01
a11 0.097 0.111 3.86E-01 -0.581 0.984 5.56E-01
a12 0.097 0.053 1.85E-04 0.689 0.662 2.99E-01
a21 -0.549 0.158 6.13E-04 -1.848 1.346 1.71E-01
a22 0.787 0.074 7.16E-22 1.699 0.903 6.10E-02
b11 0.111 0.013 1.24E-14 0.092 0.014 1.55E-10
b12 0.075 0.012 4.55E-09 0.205 0.019 7.32E-22
b21 0.108 0.019 1.86E-08 0.132 0.016 6.38E-15
b22 0.290 0.020 1.25E-33 0.316 0.020 4.80E-38

λ=(-0.02, -0.01) λ=(0.02, -0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.041 0.072 5.64E-01 0.048 0.046 3.05E-01
d2 0.405 0.062 4.70E-10 5.44E-09 0.079 1.00E+00
a11 0.662 0.065 1.41E-20 0.698 0.057 2.23E-27
a12 -0.241 0.111 3.16E-02 -0.204 0.043 3.40E-06
a21 0.184 0.044 4.38E-05 -0.260 0.097 7.94E-03
a22 0.152 0.069 2.96E-02 0.597 0.073 1.64E-14
b11 0.332 0.030 7.92E-23 0.144 0.027 2.95E-07
b12 0.160 0.042 1.95E-04 0.247 0.021 1.02E-25
b21 0.041 0.017 1.30E-02 0.091 0.056 1.04E-01
b22 0.368 0.025 6.45E-35 0.437 0.054 2.31E-14

λ=(0.03, -0.01) λ=(0.02, -0.03)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.022 0.552 9.68E-01 0.514 0.239 3.20E-02
d2 0.984 0.266 2.64E-04 2.65E-04 0.782 1.00E+00
a11 0.797 0.209 1.70E-04 0.358 0.151 1.84E-02
a12 -0.749 0.506 1.40E-01 0.083 0.098 3.95E-01
a21 0.293 0.082 4.46E-04 -0.885 0.703 2.09E-01
a22 -0.122 0.195 5.30E-01 0.681 0.324 3.66E-02
b11 0.265 0.074 4.18E-04 0.158 0.059 7.78E-03
b12 0.578 0.157 2.95E-04 0.219 0.050 1.76E-05
b21 -0.019 0.018 2.85E-01 0.442 0.430 3.05E-01
b22 0.373 0.030 1.93E-27 0.596 0.232 1.09E-02
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Table 9.8: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for Marathon Oil and Exxon Mobil under different threshold λ continued

λ=(-0.03, -0.01) λ=(-0.01, 0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.004 0.307 9.91E-01 0.588 0.040 1.76E-35
d2 0.595 0.139 2.86E-05 0.572 0.040 2.29E-33
a11 0.694 0.138 9.51E-07 0.309 0.042 2.37E-12
a12 -0.523 0.319 1.02E-01 0.014 0.030 6.33E-01
a21 0.144 0.054 7.47E-03 -0.665 0.041 7.98E-41
a22 0.168 0.113 1.40E-01 0.979 0.031 2.83E-88
b11 0.368 0.059 1.99E-09 0.213 0.011 9.15E-51
b12 0.366 0.120 2.53E-03 0.129 0.011 1.03E-26
b21 0.054 0.016 1.15E-03 0.196 0.011 5.90E-44
b22 0.330 0.028 6.31E-26 0.162 0.012 4.41E-31

λ=(-0.03, -0.02) λ=(0.03, 0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.003 0.192 9.89E-01 0.007 0.288 9.82E-01
d2 0.147 0.177 4.07E-01 0.441 0.069 7.40E-10
a11 1.053 0.449 1.98E-02 0.567 0.091 1.89E-09
a12 -0.910 0.675 1.79E-01 -0.316 0.241 1.91E-01
a21 0.394 0.386 3.08E-01 -0.009 0.020 6.38E-01
a22 -0.266 0.507 6.00E-01 0.425 0.055 3.28E-13
b11 0.412 0.063 3.13E-10 0.457 0.083 9.08E-08
b12 0.202 0.074 6.62E-03 0.163 0.128 2.04E-01
b21 0.275 0.055 9.79E-07 0.061 0.014 1.01E-05
b22 0.248 0.059 3.48E-05 0.245 0.021 1.68E-24

λ=(-0.04, -0.02) λ=(0.02, 0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 3.67E-06 0.812 1.00E+00 1.254 0.511 1.49E-02
d2 0.313 0.485 5.19E-01 1.805 0.303 9.62E-09
a11 1.037 0.673 1.25E-01 1.807 0.437 4.88E-05
a12 -1.264 0.830 1.29E-01 -1.676 0.641 9.48E-03
a21 0.293 0.414 4.79E-01 1.303 0.322 7.13E-05
a22 -0.120 0.577 8.35E-01 -1.318 0.406 1.33E-03
b11 0.608 0.132 6.96E-06 0.181 0.021 1.44E-15
b12 0.446 0.217 4.13E-02 0.118 0.019 4.98E-09
b21 0.389 0.082 3.10E-06 0.167 0.015 3.68E-24
b22 0.255 0.092 5.97E-03 0.061 0.019 1.19E-03
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Figure 9.12: Time series of vt in model 6.1.3 for Marathon Oil (left) and Exxon Mobil
(right) given different threshold (-0.01, -0.01), (0.02, -0.03), (0.03, 0.01) from top to
bottom.
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9.2.2 Application to the dependence financial risks in different market

Not only for the dependence of different index/stock in the same market/industry,

an interesting application of this model is to analyze the dependence of financial risks

in different market. We choose SP500 index in the US, FTSE 100 in London stock

exchange, and Nikkei 225 in Japan market in this study to analyze the interde-

pendence of this three markets under different risk levels (i.e., different thresholds).

Figure 9.13 is the 20 years’ daily index return for the three indices respectively.

We first apply the bivariate log-Poisson model to SP500 and FTSE 100, SP500

and Nikkei 225 respectively under different threshold. Figure 9.14 and 9.16 list the

exceedance number per month for SP500 (left) and FTSE 100 (right), for SP500

(left) and Nikkei 225 (right) under different threshold, respectively. And table 9.9

and 9.10 are the results for the bivariate model applications. In addition, figure 9.15

and 9.17 are the corresponding time series of vt for the two examples.

Then we apply the three dimensional log-Poisson model to this three indices

together under different threshold to analyze the dependence in the US market, the

England market and the Japan market. Table 9.11 and table 9.12 are the estimation

results for the parameters in model 8.2.1 under different threshold. We also plot vt

of SP500, FTSE 100 and Nikkei 225 from this regression which list in figure 9.18.
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Figure 9.13: 20 Years daily return for SP500, FTSE 100 and Nikkei 225 (from top
to bottom), the horizontal axis is the time period from Jan 1996 to Dec 2015, the
vertical axis is the daily return.
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Figure 9.14: Exceedance number per month for SP500 (left) and FTSE 100 (right)
given different threshold (-0.01, 0.01), (0.01, -0.03), (0.02, 0.02) from top to bottom.
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Table 9.9: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for SP500 and FTSE 100 under different threshold λ

λ=(0.01, 0.01) λ=(-0.01, 0.01)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.636 0.282 2.49E-02 0.092 0.069 1.81E-01
d2 0.260 0.321 4.18E-01 3.92E-08 0.050 1.00E+00
a11 -1.368 0.815 9.46E-02 -0.031 0.184 8.69E-01
a12 1.535 0.662 2.13E-02 0.459 0.170 7.64E-03
a21 -1.363 0.976 1.64E-01 -0.673 0.189 4.40E-04
a22 1.597 0.795 4.56E-02 1.127 0.160 1.94E-11
b11 0.055 0.038 1.53E-01 0.432 0.031 1.75E-32
b12 0.303 0.033 1.99E-17 -0.006 0.030 8.36E-01
b21 0.204 0.048 3.52E-05 0.369 0.030 8.45E-28
b22 0.312 0.036 6.24E-16 0.102 0.028 2.82E-04

λ=(0.01, -0.02) λ=(-0.02, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 2.086 0.721 4.16E-03 0.178 2.266 9.37E-01
d2 0.916 1.267 4.70E-01 3.14E-04 3.658 1.00E+00
a11 -0.896 0.586 1.27E-01 -1.415 6.056 8.15E-01
a12 0.756 0.430 7.95E-02 0.941 3.628 7.96E-01
a21 -1.533 0.831 6.61E-02 -3.147 10.123 7.56E-01
a22 1.091 0.600 7.02E-02 2.064 5.956 7.29E-01
b11 0.004 0.046 9.33E-01 0.539 0.122 1.49E-05
b12 0.389 0.031 1.59E-27 0.257 0.147 8.05E-02
b21 0.397 0.261 1.30E-01 0.953 0.265 3.99E-04
b22 0.597 0.094 9.13E-10 0.336 0.274 2.21E-01

λ=(0.01, -0.03) λ=(0.02, 0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.471 0.330 1.54E-01 0.148 1.293 9.09E-01
d2 4.63E-04 1.327 1.00E+00 6.98E-06 2.822 1.00E+00
a11 0.326 0.167 5.23E-02 -1.332 4.770 7.80E-01
a12 0.020 0.114 8.63E-01 0.728 2.211 7.42E-01
a21 -1.269 1.429 3.76E-01 -3.983 10.137 6.95E-01
a22 0.631 0.423 1.37E-01 2.057 4.735 6.64E-01
b11 0.201 0.116 8.35E-02 0.170 0.154 2.71E-01
b12 0.326 0.084 1.31E-04 0.417 0.144 4.20E-03
b21 0.620 1.182 6.00E-01 0.515 0.268 5.61E-02
b22 0.842 0.435 5.39E-02 0.780 0.257 2.72E-03
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Figure 9.15: Time series of vt in model 6.1.3 for SP500 (left) and FTSE 100 (right)
given different threshold (-0.01, 0.01), (0.01, -0.03), (0.02, 0.02) from top to bottom.
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From the results table in 9.9, the off-diagonal entries a12, a21 of the parameter ma-

trix A and b12, b21 of the parameter matrix B which we care more in this model have

significant estimations. This shows the index return tail problem in the US market

are interacted by the exceedance return of the European market. Specifically, with

the threshold for FTSE 100 fixed at 0.01, the exceedance return for the index SP500

has different estimations of the cross terms under this model with threshold at 0.01

to -0.01. The interdependence between vt+1,SP500 and vt,FTSE100 representing by a12

decrease from 1.535 to 0.459, the interdependence between vt+1,FTSE100 and vt,SP500

representing by a21 changes from -1.363 to -0.673 , the interdependence between

vt+1,SP500 and log(Yt,FTSE100 + 1) representing by b12 changes from positive 0.303 to

negative of -0.006, the interdependence between vt+1,FTSE100 and log(Yt,SP500 + 1)

increases from 0.204 to 0.369 with very significant estimation. More results within

different paired thresholds are given in the same table.

For the interdependance between US market and the Japan Market, the same

estimation under this bivariate log-liner Poisson autoregression are analyzed in table

9.10. The results show an interaction of the exceedance index return between the

US market and Japan market.
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Figure 9.16: Exceedance number per month for SP500 (left) and Nikkei 225 (right)
given different threshold (0.01, 0.01), (0.02, -0.01), (-0.02, -0.03) from top to bottom.
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Table 9.10: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for SP500 and Nikkei 225 under different threshold λ

λ=(0.01, 0.01) λ=(0.01, -0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.137 0.066 3.84E-02 1.92E-04 0.035 9.96E-01
d2 0.320 0.052 2.57E-09 1.57E-10 0.058 1.00E+00
a11 0.705 0.035 2.99E-54 0.618 0.046 1.15E-30
a12 -0.127 0.081 1.20E-01 -0.147 0.044 8.92E-04
a21 0.006 0.022 8.00E-01 -0.125 0.092 1.75E-01
a22 0.474 0.052 3.14E-17 0.587 0.085 3.97E-11
b11 0.322 0.026 4.37E-27 0.269 0.031 2.79E-16
b12 -0.025 0.036 4.95E-01 0.186 0.020 1.31E-17
b21 0.082 0.015 1.76E-07 0.047 0.063 4.53E-01
b22 0.214 0.022 3.35E-19 0.350 0.053 2.13E-10

λ=(0.02, 0.01) λ=(0.02, -0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.405 0.986 6.82E-01 3.03E-04 0.424 9.99E-01
d2 0.716 0.109 2.76E-10 0.296 0.220 1.80E-01
a11 0.207 0.187 2.71E-01 0.635 0.200 1.69E-03
a12 -0.447 0.688 5.16E-01 -1.088 0.737 1.41E-01
a21 -0.010 0.023 6.54E-01 -0.079 0.116 4.95E-01
a22 0.221 0.084 8.79E-03 -0.021 0.315 9.47E-01
b11 0.898 0.180 1.24E-06 0.523 0.128 6.39E-05
b12 -0.204 0.282 4.70E-01 0.406 0.151 7.62E-03
b21 0.095 0.016 2.67E-08 0.264 0.062 2.99E-05
b22 0.255 0.027 9.76E-19 0.220 0.058 1.78E-04

λ=(0.02, -0.01) λ=(-0.02, -0.03)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.195 1.015 8.48E-01 8.53E-07 0.096 1.00E+00
d2 0.789 0.288 6.63E-03 2.43E-10 0.106 1.00E+00
a11 0.444 0.276 1.09E-01 -0.048 0.189 7.98E-01
a12 -0.681 0.716 3.43E-01 -0.695 0.332 3.75E-02
a21 0.064 0.078 4.17E-01 -0.289 0.194 1.38E-01
a22 0.224 0.192 2.46E-01 -0.230 0.250 3.59E-01
b11 0.732 0.164 1.20E-05 0.455 0.085 1.91E-07
b12 0.236 0.222 2.88E-01 0.156 0.079 4.91E-02
b21 0.166 0.019 4.54E-16 -0.179 0.130 1.70E-01
b22 0.195 0.028 3.51E-11 0.416 0.141 3.61E-03
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Figure 9.17: Time series of vt in model 6.1.3 for SP500 (left) and Nikkei 225 (right)
given different threshold (0.01, 0.01), (0.02, -0.01), (-0.02, -0.03) from top to bottom.
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To clearly analyze the interdependence of financial risks from the exceedance

index return among the US market, the European market and the Japan market,

we apply the three-dimensional log-linear Poisson autoregression model to estimate

the cross terms for the three indices simultaneously. Table 9.11 shows the estimation

results under the threshold sets of (0.01, 0.01, 0.01) and (0.01, 0.02, 0.03) for SP500,

FTSE100 and Nikkei 225 respectively. With the threshold fixed at 0.01 for SP500

and changing the threshold of FTSE100 from 0.01 to 0.02, Nikkei from 0.01 to 0.03,

the impact to vt+1,SP500 from vt,FTSE100 has decreased from -0.982 to -0.147, and

the impact from vt,Nikkei225 changes from -0.587 to -0.147. From the estimation of

a21, a23, the the impact to vt+1,FTSE100 from vt,SP500 has a big change from 3.475 to

-0.125, and the impact from vt,Nikkei225 changes from -1.856 to 0.587. The interaction

to FTSE100 from the US market and Japan market are stronger than the interaction

to SP500 from FTSE100 and Nikkei225. Similar analysis and results can be seen from

the estimation of the entries of the parameter matrix B in the table and some of the

estimations for the cross terms are significant which can be seen from the P-value of

t-statistic. More estimation results under different threshold sets are given in table

9.12. The time series of vt,SP500, vt,FTSE100 and vt,Nikkei225 are plotted in figure 9.18.
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Table 9.11: Estimation Results of Three Dimentional Log-linear Poisson Autoregres-
sion Model for SP500, FTSE 100 and Nikkei 225 under different threshold λ

λ=(0.01, 0.01, 0.01) λ=(0.01, 0.02, 0.03)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.379 0.326 2.46E-01 0.714 0.627 2.56E-01
d2 1.198 0.702 8.91E-02 0.012 1.042 9.91E-01
d3 0.202 0.116 8.30E-02 0.002 2.462 9.99E-01
a11 1.897 0.646 3.66E-03 0.086 0.452 8.49E-01
a12 -0.982 0.415 1.89E-02 -0.147 0.292 4.93E-01
a13 -0.587 0.425 1.68E-01 -0.147 0.148 1.88E-01
a21 3.475 1.168 3.25E-03 -0.125 0.715 3.15E-01
a22 -1.740 0.738 1.92E-02 0.587 0.509 2.10E-01
a23 -1.856 0.806 2.22E-02 0.587 0.327 8.76E-01
a31 -0.330 0.228 1.49E-01 -0.125 1.818 7.01E-01
a32 0.190 0.146 1.94E-01 0.587 1.000 7.79E-01
a33 0.727 0.147 1.42E-06 0.587 0.539 9.44E-01
b11 0.156 0.033 4.57E-06 0.269 0.062 5.41E-01
b12 0.283 0.025 1.37E-23 0.186 0.050 1.07E-15
b13 -0.037 0.035 2.90E-01 0.186 0.039 8.09E-02
b21 0.076 0.043 7.41E-02 0.047 0.340 3.55E-01
b22 0.355 0.041 1.09E-15 0.350 0.177 4.16E-04
b23 -0.031 0.047 5.11E-01 0.350 0.210 9.29E-01
b31 0.008 0.019 6.77E-01 0.047 0.470 7.51E-01
b32 0.113 0.016 1.19E-11 0.350 0.347 3.24E-01
b33 0.141 0.021 2.20E-10 0.350 0.409 7.51E-02
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Table 9.12: Estimation Results of Three Dimentional Log-linear Poisson Autore-
gression Model for SP500, FTSE 100 and Nikkei 225 under different threshold λ
(continued)

λ=(-0.01, 0.01, -0.02) λ=(0.01, -0.01, -0.02)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.135 0.139 3.32E-01 0.141 0.265 5.96E-01
d2 0.095 0.130 4.65E-01 0.196 0.339 5.64E-01
d3 1.03E-08 0.093 1.00E+00 1.77E-08 0.257 1.00E+00
a11 -0.838 0.688 2.24E-01 2.939 1.285 2.31E-02
a12 1.567 0.739 3.49E-02 -2.545 1.340 5.87E-02
a13 -0.638 0.278 2.23E-02 -0.138 0.229 5.46E-01
a21 -1.666 0.717 2.10E-02 2.851 1.227 2.10E-02
a22 2.304 0.762 2.79E-03 -2.387 1.288 6.50E-02
a23 -0.555 0.293 6.00E-02 -0.247 0.281 3.79E-01
a31 -1.130 0.453 1.34E-02 2.065 1.235 9.59E-02
a32 0.830 0.474 8.15E-02 -2.278 1.267 7.35E-02
a33 0.443 0.185 1.74E-02 0.541 0.233 2.10E-02
b11 0.360 0.029 5.44E-28 0.025 0.033 4.45E-01
b12 -0.017 0.030 5.80E-01 0.410 0.029 6.38E-33
b13 0.097 0.024 5.07E-05 0.050 0.024 3.70E-02
b21 0.369 0.030 7.56E-28 -0.047 0.034 1.67E-01
b22 0.042 0.031 1.75E-01 0.398 0.030 9.05E-30
b23 0.102 0.024 3.12E-05 0.087 0.024 3.67E-04
b31 0.266 0.051 3.32E-07 -0.081 0.081 3.16E-01
b32 0.104 0.045 2.25E-02 0.255 0.056 7.96E-06
b33 0.181 0.043 3.48E-05 0.284 0.063 8.98E-06
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Figure 9.18: Time series of vt in model 8.2.1 for SP500, FTSE 100 and Nikkei 225
(from top to bottom) given different threshold (0.01, 0.01, 0.01) (left), (0.01, 0.02,
0.03) (right).
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9.3 Trading Transactions Examples

Another application of this multivariate linear log-Poisson autoregression is the

interdependence of trading behavior for different stocks, through which the impact

of one stock’s trading behavior on another stock can be quantitatively modeled and

identified by this model. TAQ data of the high frequency transactions per minute

or within two minutes or five minutes are used as the observations in this study.

The transactions in Jan 2002 and Jan 2012 of Bank of America vs Citigroup, GE

vs Philips are considered in the analysis of this model. As in section 9.2, to clearly

analyze the result and the interdependence of between the transactions of different

stocks, we first plot the transactions number per minute in figure 9.19 and 9.21, and

list the estimation results for the parameters in table 9.13 and table 9.14, then plot

the vt of the model for the two industries respectively. In Jan 2002, the data set

are considered of 21 transaction days of total 8190 observations for one-minute data,

4095 observations for two-minute data, and 1638 observations for five-minute data,

while in Jan 2012, 20 transaction days of total 7800 observations for one-minute, 3900

observations for two-minute, and 1560 observations for five-minute are considered in

this study.

161



0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2000

4000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2000

4000

6000

Figure 9.19: Transactions per minute for BOA and Citigroup in Jan 2002 (top two),
and in Jan 2012 (bottom two). The horizontal axis is time, the vertical axis is the
number of transactions.

162



Table 9.13: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for Transactions for BOA and Citigroup

1-minute (Jan,2002) 1-minute (Jan,2012)
MLE Standard Error P-value MLE Standard Error P-value

d1 1.2958 0.0353 7.87E-273 0.2202 5.46E-06 0.0000
d2 2.1868 0.0208 0.0000 0.2002 5.89E-06 0.0000
a11 1.2765 0.0095 0.0000 0.8511 2.07E-06 0.0000
a12 -0.7897 0.0208 1.19E-290 -0.0401 1.85E-06 0.0000
a21 0.5200 0.0064 0.0000 -0.0521 2.16E-06 0.0000
a22 -0.2986 0.0123 2.61E-126 0.8197 2.13E-06 0.0000
b11 0.0891 0.0008 0.0000 0.1176 1.39E-06 0.0000
b12 0.0339 0.0003 0.0000 0.0412 1.49E-06 0.0000
b21 0.0969 0.0005 0.0000 0.0502 1.42E-06 0.0000
b22 0.0233 0.0004 0.0000 0.1552 1.74E-06 0.0000

2-minute (Jan,2002) 2-minute (Jan,2012)
MLE Standard Error P-value MLE Standard Error P-value

d1 4.2103 0.0192 0.0000 0.2984 8.64E-06 0.0000
d2 4.5351 0.0129 0.0000 0.2778 5.66E-06 0.0000
a11 2.3861 0.0077 0.0000 0.8012 2.39E-06 0.0000
a12 -2.3498 0.0116 0.0000 0.0148 1.33E-06 0.0000
a21 1.5297 0.0058 0.0000 -0.0471 1.66E-06 0.0000
a22 -1.5112 0.0083 0.0000 0.8004 1.37E-06 0.0000
b11 0.0244 0.0003 0.0000 0.1430 1.34E-06 0.0000
b12 -0.0478 0.0003 0.0000 0.0018 1.05E-06 0.0000
b21 -0.0069 0.0002 3.12E-155 0.0378 9.99E-07 0.0000
b22 -0.0746 0.0002 0.0000 0.1729 1.09E-06 0.0000

5-minute (Jan,2002) 5-minute (Jan,2012)
MLE Standard Error P-value MLE Standard Error P-value

d1 3.7640 0.0113 0.0000 5.4439 1.43E-05 0.0000
d2 4.2923 0.0104 0.0000 5.3208 1.21E-05 0.0000
a11 1.5018 0.0019 0.0000 3.6515 1.68E-05 0.0000
a12 -1.3941 0.0042 0.0000 -3.4083 1.73E-05 0.0000
a21 0.6676 0.0018 0.0000 2.6655 1.66E-05 0.0000
a22 -0.5970 0.0039 0.0000 -2.3805 1.71E-05 0.0000
b11 0.0746 0.0001 0.0000 -0.0931 3.89E-07 0.0000
b12 0.0290 0.0001 0.0000 0.1243 3.91E-07 0.0000
b21 0.0104 0.0001 0.0000 -0.1039 3.84E-07 0.0000
b22 0.0211 0.0001 0.0000 0.1086 3.89E-07 0.0000
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Figure 9.20: Time series of vt in model 6.1.3 for BOA (left) and Citigroup (right) of
one-minute transactions in Jan 2002 and Jan 2012 (from top to bottom).

In the result table 9.13 for BOA and Citigroup, from the estimated number of

a12 and a21, b12 and b21 in model 6.1.3, in Jan 2002, for the one-minute time interval

transaction data, the interdependence between vt+1,BOA and vt,Citi is -0.7897, the
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interdependence between vt+1,Citi and vt,BOA is 0.5200, the interdependence between

vt+1,BOA and log(Yt,Citi + 1) is 0.0339, and the interdependence between vt+1,Citi and

log(Yt,BOA + 1) is 0.0969; while, in Jan 2012, the correlation between vt+1,BOA and

vt,Citi becomes less dependent at -0.0401, the interdependence between vt+1,Citi and

vt,BOA becomes negative to -0.0521, and the interdependence between vt+1,BOA and

log(Yt,Citi+1) changes to 0.0412, the correlation between vt+1,Citi and log(Yt,BOA+1)

becomes less dependent to 0.0502. Comparing this results to the two-minutes and

five-minutes table, the impact to vt+1,BOA from vt,Citi and the impact to vt+1,Citi from

vt,BOA are both getting stronger with the value of the observations getting larger.

The time series of vt+1,BOA and vt+1,Citi in Jan 2002 and Jan 2012 for one-minute

transactions are plotted in figure 9.20.

Except for the commercial banking industry, more regression results in machine

industry are given in table 9.14 and figure 9.21 and 9.22.
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Figure 9.21: Transactions per minute for GE and Philips in Jan 2002 (top two),
and in Jan 2012 (bottom two). The horizontal axis is time, the vertical axis is the
number of transactions.
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Table 9.14: Estimation Results of Bivariate Log-linear Poisson Autoregression Model
for Transactions for GE and Philips

1-minute (Jan,2002) 1-minute (Jan,2012)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.0233 0.0012 1.07E-87 4.3549 0.0119 0.0000
d2 4.94E-11 0.0050 1.0000 0.0143 0.0169 0.3983
a11 0.7782 0.0005 0.0000 -0.3863 0.0036 0.0000
a12 0.0287 0.0005 0.0000 0.8985 0.0029 0.0000
a21 -0.0546 0.0057 1.29E-21 -0.1181 0.0050 2.99E-118
a22 0.8810 0.0037 0.0000 0.9427 0.0037 0.0000
b11 0.2176 0.0003 0.0000 0.1435 1.34E-05 0.0000
b12 -0.0241 0.0002 0.0000 0.0079 7.09E-06 0.0000
b21 0.0450 0.0056 8.33E-16 0.1381 0.0001 0.0000
b22 0.1230 0.0036 6.06E-241 0.0265 0.0001 0.0000

2-minute (Jan,2002) 2-minute (Jan,2012)
MLE Standard Error P-value MLE Standard Error P-value

d1 0.0427 0.0018 1.48E-114 4.0540 0.0082 0.0000
d2 1.91E-12 0.0039 1.00E+00 0.0138 0.0112 0.2157
a11 0.7582 0.0006 0.0000 -0.1572 0.0022 0.0000
a12 0.0782 0.0008 0.0000 0.6594 0.0015 0.0000
a21 -0.0052 0.0023 2.32E-02 -0.1711 0.0028 0.0000
a22 0.8366 0.0021 0.0000 0.9182 0.0020 0.0000
b11 0.2234 0.0003 0.0000 0.1369 5.73E-06 0.0000
b12 -0.0449 0.0001 0.0000 0.0012 6.68E-06 0.0000
b21 0.0149 0.0022 1.81E-11 0.1960 4.86E-05 0.0000
b22 0.1282 0.0019 0.0000 0.0464 0.0001 0.0000

5-minute (Jan,2002) 5-minute (Jan,2012)
MLE Standard Error P-value MLE Standard Error P-value

d1 3.1772 0.0492 0.0000 6.7165 0.0298 0.0000
d2 5.3022 0.0468 0.0000 0.0055 0.1281 9.65E-01
a11 0.5304 0.0055 0.0000 -0.3151 0.0055 0.0000
a12 -0.6621 0.0099 0.0000 0.4315 0.0021 0.0000
a21 -0.4759 0.0048 0.0000 -0.1348 0.0241 2.60E-08
a22 -0.1356 0.0111 0.0000 0.8055 0.0097 0.0000
b11 0.1278 0.0001 0.0000 0.0753 7.45E-06 0.0000
b12 0.0232 0.0001 0.0000 0.0452 6.51E-06 0.0000
b21 -0.0589 0.0005 0.0000 0.1710 0.0002 0.0000
b22 -0.0219 0.0003 1.05E-32 0.1484 0.0002 0.0000

167



0 2000 4000 6000 8000
0

1

2

3

4

5

6

0 2000 4000 6000 8000
-0.5

0

0.5

1

1.5

2

0 2000 4000 6000 8000
3.5

4

4.5

5

5.5

6

6.5

7

0 2000 4000 6000 8000
0

1

2

3

4

5

Figure 9.22: Time series of vt in model 6.1.3 for GE (left) and Philips (right) of
one-minute transactions in Jan 2002 and Jan 2012 (from top to bottom).

In table 9.14, the interdependence of the transactions between GE and Philips is

clearly described from the estimation of the parameters in model 6.1.3, where a11 and

a12 describe the interdependence of vt+1 and vt between GE and Philips, while b12
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and b21 describe the interdependence of vt+1 and log(Yt+1) between GE and Philips.

Similar as previous results, the coefficients of the interdependence have a significant

change from 2002 to 2012, and a small change with the time interval changing. In

this example, since the observations of Philips are much fewer than the observations

of GE which cause an insignificant estimation of d2, which is also shown from the

value of vertical-axis in figure 9.21.

9.4 Concluding Remarks

This multivariate log-liner Poisson autoregression model has solved the drawback

of only positive association taken into account in Poisson autoregression. Moreover,

comparing with the univariate log-liner Poisson autoregression model, this multivari-

ate model has been applied to the application of the dependence of different stocks in

the same industry, especially the dependence of financial risks in different market. In

addition, it is applied to the interdependence of trading behavior for different stocks,

through which to study the impact of one stock’s trading behavior on another stock.

Massive real data examples in difference cases and industries have been quantita-

tively modeled in this study and the interdependence of these problems are clearly

seen from the estimation results under this model.
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Chapter 10

Appendix

In this appendix, some theorems and definitions which are used in previous chap-

ters are given from references including Meyn and Tweedie (2005), Wu and Shao

(2004), Diaconis and Freedman (1999) and Doukhan and Wintenberger (2008). The

proofs can be found in the original references and will not be restated here.

First, we list some definitions and theorems described in Meyn and Tweedie

(2005), which we have referred to and used in the previous chapter.

Definition 10.0.1. State Space Definitions

(i) The state space X is called countable if X is discrete, with a finite or countable

number of elements, and with B(X) the σ-field of all subsets of X.
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(ii) The state space X is called general if it is equipped with a countably generated

σ-field B(X).

(iii) The state space X is called topological if it is equipped with a locally compact,

separatable, metrizable topology with B(X) as the Borel σ-field.

Definition 10.0.2. If P = {P (x,A), x ∈ X,A ∈ B(X)} is such that

(i) for each A ∈ B(X), P (·, A) is a non-negative measurable function on X

(ii) for each x ∈ X, P (x, ·) is a probability measure on B(X)

then we call P a transition probability kernel or Markov transition function.

Definition 10.0.3. A Markov chain {Xt} with state space X is φ-irreducible if there

exists a measure φ on B(X) such that

∞∑
t=1

P t(x,A) > 0, forallx ∈ X

whenever φ(A) > 0, where A ∈ B(X).

Definition 10.0.4. If P (·, O) is a lower semicontinuous function for any open set

O ∈ B(X), then P is called a (weak) Feller chain.

The transition probability kernel P acts on bounded functions through the map-

ping is

Ph(x) =

∫
P (x, dy)h(y), x ∈ X

Suppose thatX is a topological space, and we denote the class of bounded continuous

from X to R by C.
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If the transition probability kernel P maps from C(X) to C(X), then P is called

(weak) Feller. If the transition probability kernel P maps all bounded measurable

functions to C(X), then P is called strong Feller.

Definition 10.0.5. A σ-finite measure π is invariant if

π(A) =

∫
X

π(dx)P (x,A), A ∈ B(X)

.

Definition 10.0.6. A sequence of probabilities {µk : k ∈ Z+} is called tight if for

each ε > 0, there exists a compact subset C ⊂ X such that

lim inf
k→∞

µk(C ) ≥ 1− ε

.

Definition 10.0.7. A chain Φ is called bounded in probability on avearge if for any

initial state x ∈ X, the sequence { 1
k

∑k
i=1 P

i(x, ·) : k ∈ Z+} is tight.

Theorem 10.0.1 (Theorem 12.0.1 (i) of Meyn and Tweedie (2005)). If Φ is a weak

Feller chain which is bounded in probability on average, then there exists at least

one invariant probability measure.

Definition 10.0.8. A point x ∈ X is called reachable if for every open set O ∈ B(X)

containing x, ∑
n

P n(y,O) > 0, for any y ∈ X

.
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Definition 10.0.9. The Markov transition function P is called equicontinuous if

for each f ∈ Cc(X), the sequence of functions {P kf : k ∈ Z+} is equicontinuous

on compact sets. So the Markov chain which possesses an equicontinuous Markov

transition function will be called an e-chain.

Proposition 10.0.1 (Proposition 6.4.2 of Meyn and Tweedie (2005)). Suppse that

the Markov chain Φ has the Feller property, and that there exits a unique probability

measure π such that for every x, P n(x, ·) w−→ π. Then Φ is an e-chain.

Theorem 10.0.2 (Theorem 18.4.4 of Meyn and Tweedie (2005)). Suppose that Φ

is an e-chain which is bounded in probability on average. Then a unique invariant

probability π exists if and only if reachable state x∗ ∈ X exists.

Definition 10.0.10. A Markov chain {Xt} is ergodic if there exists a probability

measure φ such that

sup
A∈B(X)

|P n(x,A)− π(A)| −→ 0, asn→ 1

for any x ∈ X, where P n(x,A) = P (Xn ∈ A|x0 = x).

Definition 10.0.11. If µ is a signed measure on B(X) then the total variation norm

||µ|| is defined as

||µ|| := sup
f :|f |≤1

|µ(f)| = sup
A∈B(X)

µ(A)

For an ergodic Markov chain, we have

lim
n→∞

||P n(x, ·)− π|| = 2 lim
n→∞

sup
A
|P n(x,A)− π(A)| = 0
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Definition 10.0.12. A Markov chain {Xt} is geometrically ergodic if there exists

ρ ∈ (0, 1) such that for any x ∈ X,

||P n(x, ·)− π(·)||TV = o(ρn)

Theorem 10.0.3 (Theorem 6.2.3 in Liu (2012)). Suppose {Xt, t ≥ 1} is a Feller

chain, and there exists a measure φ and a compact set A with φ(A) > 0, such that

(i) {Xt} is φ-irreducible,

(ii) there exists a non-negative continuous function g: X → R1, such that

g(X) ≥ 1, for all x ∈ A

and for some ρ ∈ (0, 1),

E[g(Xt+1)|Xt = x] ≤ (1− ρ)g(x), for x ∈ Ac

then {Xt} is geometrically ergodic.

There are also some definitions and theorems about iterated random functions we

have used to prove the propositions in Chapter 6 in Wu and Shao (2004). Following

the notation in Wu and Shao (2004), let (X, τ) be the a complete separable metric

space with Borel sets B(X), an iterated random function system on the state space

X is defined as

Xn = Fθn(Xn−1), n ∈ N
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where θ, θn, n ∈ N, takes values in a second measurable space Θ, and are independent

with identical marginal distribution H. Here, Fθ(·) = F (·, θ) is the θ-section of a

jointly measurable function F : X ×Θ→ X and X0 is independent of (θn)n≥1.

Definition 10.0.13 (Wu and Shao (2004)). Geometric-Moment Contracting

Assume π is an invariant probability measure of the Markov chain {Xn}. Let X ′0 ∼ π

independent of X0 ∼ π and (θk)k≥1. Xn(X ′0) can be viewed as a coupled version of

Xn(X0), where Xn(x) = Fθn ◦ Fθn−1 ◦ · · · ◦ Fθ1(x). Then Xn is a geometric-moment

contracting if there exists α > 0, C = C(α) > 0 and r = r(α) ∈ (0, 1), such that for

all n ∈ N,

E{τα[Xn(X ′0), Xn(X0)]} ≤ Crn

Condition 1 (Condition 1 in Wu and Shao (2004)). There exists y0 ∈ X and α > 0

such that

I(α, y0) := E{τα[y0, Fθ(y0)]} =

∫
θ

τα[y0, Fθ(y0)]H{dθ} <∞

Condition 2 (Condition 2 in Wu and Shao (2004)). There exists x0 ∈ X, α > 0,

r(α) ∈ (0, 1) and C(α) > 0 such that

E{τα[Xn(x), Xn(x0)]} ≤ C(α)rn(α)τα(x, x0)

Definition 10.0.14. A random variable is said to have an algebraic tail if there exists

A,B > 0, such that P (|Y | > y) < A/(By) for all y > 0.

Theorem 10.0.4 (Theorem 1 in Wu and Shao (2004) from Diaconis and Freedman
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(1999)). Assume that condition 1 holds,

E(logKθ) =

∫
Θ

logKθH(dθ) < 0, where Kθ = sup
x′ 6=x

τ [Fθ(x
′), Fθ(x)]

τ(x′, x)

and that Kθ has an algebraic tail. Then there exists a unique stationary distribution

π for 10.0.13 and Zn(x) → Z∞ ∼ π at a geometric rate. The limit Z∞ dose not

depend on x.

Theorem 10.0.5 (Theorem 2 in Wu and Shao (2004)). Suppose that Conditions

1 and 2 hold. Then there exists a random variable Z∞ such that for all x ∈ X,

Zn(x) → Z∞ almost surely. The limit Z∞ is σ(θ1, θ2, · · · )-measurable and does not

depend on x. Moreover, for every n ∈ N,

E{τα[Zn(x), Z∞]} ≤ Cn
r (α)

where C > 0 depends solely on x, x0, y0 and α, and r(α) ∈ (0, 1). In addition,

10.0.13 holds.

Theorem 10.0.6 (Lemma A.1 in in Fokianos and Tjøstheim (2011)).

E(log(Yt + 1)|vt = v)− v → 0 as v →∞

In this thesis, same as Liu (2012), the properties and theorems related to τ -weak

dependence are also used to prove the propositions of ergodic property in Chapter

6. The definitions and theorems relate to the proof are given in following, which can
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be referred to Doukhan and Wintenberger (2008) and Dedecker and Prieur (2004)

for details.

Definition 10.0.15 (β-mixing coefficient in Dedecker and Prieur (2004)). Let (Ω, A,

P) be a probability space,M a σ-algebra of A and X a real-valued random variable

with distribution PX , and PX|M is a conditional distribution given M, then the

β-mixing coefficient betweenM and σ(X) is defined as

β(M, σ(X)) =
1

2
||V (PX|M)||1

where ||V (PX|M)||1 = sup
{
|
∫
f(x)PX|M(dx) −

∫
f(x)PX(dx)| : ||f∞|| < 1

}
is a

M-measurable random variable.

One of the most important properties of β is the coupling property proved by

Berbee (1979): if Ω is rich enough, there is a random variable X∗ independent ofM

and distributed as X such that P(X 6= X∗) = β(M, σ(X)).

Definition 10.0.16 (τ coefficient in Dedecker and Prieur (2004)). If the real-valued

random variable X is integrable, the coefficient τ is defined by

τ(M, X) = ||W (PX|M)||1

where ||W (PX|M)||1 = sup
{
|
∫
f(x)PX|M(dx) −

∫
f(x)PX(dx)|, f ∈< Λ1(R)

}
, and

Λ1(R) is a 1-Lipschitz functions from R to R.
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In Doukhan and Wintenberger (2008), || · ||m denotes Lm-norm, i.e.,||X||mm =

E||X||m for m ≥ 1, for every E-valued random variable X. For h: E → R, we define

||h||∞ = supx∈E|h(x)| and

Lip(h) = sup
x 6=y

h(x)− h(y)

||x− y||

.

The coupling argument also works on this τ coefficient:

τ(M, X) ≤ ||X − Y ||1

for any Y with the same distribution as X and independent ofM, and this can be

reached by some particular random variable X∗ see Major (1978). In Doukhan and

Wintenberger (2008), the dependence between the past of the sequence (Xt)t∈Z and

its future k-tuples may be assessed by the definition of τ coefficient: Consider the

norm ||x−y|| = ||x1−y1||+ · · ·+ ||xk−yk|| on Ek, setMp = σ(Xt, t ≤ p) and define

τk(r) = max
1≤l≤k

1

l
sup{τ(Mp, (Xj,1, ·Xj,l)) with p+ r ≤ j1 < · · · < jl}

τ∞(r) = sup
k>0

τk(r)

For the sake of simplicity, τ∞(r) is denoted by τ(r). Finally, the time series (Xt)t∈Z

is τ − weakly dependent when its coefficients τ(r) tend to 0 as r tends to infinity.
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Combining the Theorem 3.1, Remark 3.1 and Corollary 3.1 in Doukhan and

Wintenberger (2008), Liu (2012) gave a theorem on τ -weakly dependent station-

ary solution to Markov chain under the assumptions in Doukhan and Wintenberger

(2008).

Theorem 10.0.7 (Theorem 6.4.1 in Liu (2012)). For the Markov chain Xn(x) =

Fθn ◦ Fθn−1 ◦ · · · ◦ Fθ1(x), if for all x, y ∈ X,

E||f(x, θ)− f(y, θ)|| ≤ a||(x− y)||

where 0 < a < 1, and µ1 = E||f(0, θ)||1 <∞, then there exists a τ -weakly dependent

stationary solution {Xt}, such that E||X0|| <∞ and τ(r) ≤ 2µ1(1−a)−1ar for r ≥ 1.

In addition, {Xt} is the unique causal Bernoulli shift solution and is automatically

an ergodic process.
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