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Abstract of the Dissertation 

Multi-Class ROC Random Forest for Imbalanced Classification 

by  

Jiaju Yan 

Doctor of Philosophy 

In Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

May 2017 

 

The imbalanced class problem in classification is highly relevant in many realistic 

scenarios such as the detection of a rare condition. One solution is to design specific algorithms 

incorporating the unbalanced classes in the training process of a classifier. In this dissertation, we 

propose a novel multi-class classification tree based on the area under the ROC curve (AUC) to 

resolve the imbalanced classification problem. This tree classifier aims to maximize the sum of 

AUC for all one versus all classifiers at the node attribute selection stage while balancing the 

performance of sensitivity and specificity of all one versus all classification at the node threshold 

selection stage. The ROC tree is extended to ROC random forest with suitable modifications. 

Furthermore, the volume under surface (VUS), the extension of AUC for multi-class 

classification, is discussed in this dissertation as well and used to measure the performance of 

classifiers. The simulation results show that this multi-class ROC tree/forest method is superior 
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to the classic CART/random forest on severely imbalanced multi-class classification problems, 

while the ROC random forest performs equally well as the SMOTE random forest on imbalanced 

binary classification problems. The application on Boston housing data shows that the ROC 

random forest can also be used for model ensemble and it performs better than all the base 

models and other ensemble methods in this application. 

 

Keywords: Imbalanced Classification, ROC, AUC, Tree Based Method, Random Forest, VUS, 

Model Ensemble 
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Chapter I: Introduction 

 

1.1 Classification 

Classification is a center piece in machine learning, playing an increasingly important 

role in modern life. It is used in banks to read checks and detect fraud, in vehicles to voice 

interact with people, in digital cameras to automatically detect human faces – just to name a few 

of its multitude of applications. Generally speaking, classification is a process to put items into 

several known categories. More specifically, the goal of classification is to build a model, or a 

classifier, to predict the class of incoming observations based on a set of training data with given 

target labels.  

For example, the email spam filter problem is a typical classification problem [1]. In this 

problem, the training data are a set of emails with each labeled as “spam” or “non-spam”. The 

standard procedure is to generate features from these emails, analyze the relationships between 

the features and the labels, and establish a suitable classification model based on these features to 

predict whether an email is spam or not. In the end, we are able to use the classification model 

thus built to identify future emails. 

Another example is the handwritten digits recognition. In this, we are given a picture of a 

handwritten digit, which belongs to one of the 10 categories. The same process is applied with 

features generated on the image, and a classification model trained, and ready for future 

prediction. 
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These two examples can also be done by human or rule based methods. The advantages 

of classification algorithms over human are mainly its speed and scalability for large data, and 

the advantages of classification algorithms over rule based methods are mainly their 

performance. 

1.1.1 Classification Algorithms 

There are many classification algorithms which can be divided to several families. The 

perceptron [2] is one of the earliest classification algorithms, which was developed to neural 

networks, or multi-layer perceptron. Furthermore, there could be more and more layers in neural 

networks with different purposes. Back propagation [3] was developed based on gradient descent 

to train neural networks. The advantages of neural networks are its ability to achieve excellent 

performance and its coverage for many fields. The disadvantages of neural networks includes 

their lack of interpretability, their being computational expensive and their requirement of huge 

amount of training data. 

The Support Vector Machine (SVM) [4] is another classification algorithm which 

became very popular in the 1990s. SVM tries to find a boundary or a separating hyperplane in 

the original or transformed feature space to divide data points into different classes. Compared to 

the neural network, SVM is theoretically simpler and require less computational power. 

However, as computation power become cheaper and more abundant these years, SVM became 

less popular than the neural networks due to its lower performance. 

Another family is the Decision Trees. Technically speaking, rule based methods are also 

tree based methods, since they have the similar model structure. However, almost all decision 

tree methods are able to automatically choose the criteria and threshold based on their design. 
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The CART proposed by Leo Breiman [5] is an important member of the decision tree family, 

which will be discussed in detail Chapter 2. The main advantages of decision trees are their 

simple design and wide applicability in different classification problems. The performance of a 

single decision tree is normally much worse than SVM or neural networks, but with the help of 

the ensemble methods, a bunch of trees, befittingly named as a forest, can compete with other 

classifiers. 

There are also other classification methods such as the discriminant analysis, which is 

based on a strong assumption of the normal distribution. These methods are normally simpler in 

design and worse in performance, though they can be combined with other methods to achieve 

some specific goals and/or better performance. 

1.1.2 Ensemble Methods 

The idea of ensemble is to combine a lot of weak base learners to achieve a higher 

predictive power. The weak learners here indicate classifiers with lower predictive performance. 

For example, for a certain classification problem, an SVM classifier may achieve 80% accuracy, 

while a tree classifiers can only achieve 60% accuracy. In this case they are called weak learner. 

Simple classifiers are preferred for base learners, as many of them will be used in the ensemble 

structure. With the help of ensemble methods, the final model is still able to learn a complicated 

structure presented by the data. The tree classifier is a popular base learner because it is fast and 

simple. 

The ensemble methods can be divided into 2 families. In the first family, the process of 

building base learners is separated from the process of combining all the base learners. In the 

first stage, we need to develop a population of base learners. In the second stage, we need to 
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combine these base learners to build a composite classifier. Furthermore, we can build several 

composite classifiers and combine them to build a mega model, and this process is called 

stacking [24]. The stacking methods will be further discussed in Chapter 6. 

 One popular method to combine many different classifiers is to ask them to vote for the 

results. The process of sampling with replacement from the original training data is called 

Bagging [6]. The random forest algorithm [7] uses CART as base learner, uses this bagging 

technique to build trees with different training data, and ask them to vote for the result. The class 

with majority votes will be the final result. 

 In the second family, the process of building base learners and final model are combined 

together in an iterative way. A widely used ensemble method in this family is Boosting, which 

can be viewed as a weighted sum of base learners in the functional space of classifiers [25]. In 

boosting, the later base learner treated the residual of previous models as target, so the classifiers 

have to be trained sequentially. A weight is assigned to the new base learner to be added into the 

final model. 

 The ensemble methods is very important to tree based methods in the sense of 

performance improvement. The random forest, gradient boosting trees and regularized greedy 

forest are simpler than deep neural networks and can be used on any data, which make them very 

popular in classification problems. 
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1.2 Imbalanced Class Problem 

These aforementioned classification algorithms work well when the size of different 

classes are similar to each other, but not so if the size of different classes are severely skewed. 

For example, in fraud detection, the percentage of credit card fraud in all card transactions is less 

than 0.1% [8]. If we directly apply classification algorithms on this kind of imbalanced 

problems, the classifiers will tend to assign every observations to the majority class, especially 

when the two classes are hard to differentiate. In this case the accuracy is very high because most 

observations are correctly classified, however the classifiers are not differentiating the 

observations. 

Take random forest for example. Suppose there is no relationship between the predictors 

and the response, and each tree is allowed to grow without restriction, in the end each leaf will 

have only one observation, and the probability for a new random observation falling into any leaf 

would roughly be the same. Therefore the probability of a single tree giving a minority 

prediction will be the same to the percentage of the minority class in the training data. After the 

majority voting in the random forest algorithm, it is very unlikely for a random forest model to 

give a prediction of the minority class. This situation happens in real world problems where the 

relationship between the predictors with the response is not strong enough. 

 

1.3 Solutions to Imbalanced Class Problem 

 Much has been done to deal with the imbalanced class problem. They are trying to solve 

the problems from different directions, which can be divided to four families. The performance 

of each method depends on the specific problem given. 
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1.3.1 Pre-processing Methods 

 The idea of pre-processing methods is to modify the training data before the modeling 

step. The sampling methods belong to this category, which can be divided into under-sampling 

and over-sampling. The idea of under-sampling is to shrink the number of observations in the 

majority class to a smaller figure, hence it is a problem of dimension reduction. One under-

sampling method is based on clustering [9]. Clustering methods are used to divide data to many 

small clusters, and the majority class is sampled with different frequency from each cluster.  

The idea of over-sampling is to enlarge the number of observations in minority class, for 

example, bootstrap can be used to enlarge the minority class [26]. However, this approach does 

not change the point location of the minority class in the feature space. The SMOTE algorithm 

[10] is designed to generate synthetic data in the feature space for minority class. The key idea of 

the SMOTE algorithm is to use several closest minority observations in the feature space to 

synthetically generate a new minority observation, whose features are determined by a weighted 

average of the corresponding feature of the real observations. In this case the SMOTE algorithm 

is able to generate new minority observations in the feature space, which will render the minority 

class denser in certain zones. 

1.3.2 Post-processing Methods 

  The focus of post-processing methods is to modify the model after training. For single 

model, the processing procedure differs by algorithm. A simple example is to choose different 

threshold for the score given by the classifier. Castro and colleagues [11] proposed a method to 

modify the weights of SVM after the model is built. 
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Some ensemble methods that designed to deal with imbalanced data problem belong to 

this category. Galar and team [12] provided a detailed overview on ensemble methods for class 

imbalance problem, which further divided this category to several subcategories and introduced 

many modified bagging and boosting based methods. 

1.3.3 Cost Sensitivity Learning 

 The focus of cost sensitivity learning is to assign cost to false positive and false negative, 

and use algorithms to minimize the cost function related to false positive and false negative. 

Elkan [13] provided a general introduction to this field. 

 A popular method with similar idea is to assign weight to each observations, and 

minimize the weighted objective function. This method is comparatively simpler and is 

implemented in many packages. 

1.3.4 Algorithm Specific Approach 

 Methods in this category modify the original model training procedure to handle the 

imbalanced problem. The ROC tree and ROC random forest [17] belongs to this category and 

will be introduced in the next several chapters. 

 Note that all these approaches can be combined together to achieve a better performance. 

For example, this is a sampling stage while building the trees in random forest, and we can 

assign a higher weight to the minority observations so they have a larger chance to be selected. 

In this case the whole model still benefit from the full training data, with each tree having a more 

balanced class distribution. 
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1.4 The ROC Curve and the Area Under ROC Curve (AUC) 

 As it’s mentioned in Section 1.2, the total accuracy is no longer a good measure for the 

performance of classifiers when the class size is severely skewed, because it will be very high 

when we assign every observations to the majority class. Therefore we need to use a different 

measure for imbalanced data classification. The ROC curve [14] is widely used for evaluating 

the performance of binary classification result. It is a plot with y axis as true positive rate 

(Sensitivity) and x axis false positive rate (1- Specificity). Each point on the ROC curve 

represents a threshold, and by choosing that threshold we can compute the corresponding 

sensitivity and specificity for the data set. The point on the plot that indicates best performance is 

(0, 1), which means the true positive rate is 1 and false positive rate is 0. In this case the 

classifier perfectly identifies the two classes. Normally a classifiers could not achieve this point, 

and there are several method to determine the best threshold of a given classifier. For example, 

we can choose the point on ROC curve that is closest to (0, 1) to be the threshold. 

To compare the ROC curve of two classifiers, we need another measure, which is the 

area under the ROC curve (AUC). The AUC is defined as the area bounded by the ROC curve, 

the positive x axis and the line passing through (1,0) and (1,1). AUC is a measure that considers 

both Sensitivity and Specificity of a classifier, and it is frequently used as a performance 

indicator for classifiers in imbalanced data classification. 

 One thing specific about AUC is that AUC doesn’t depend on the threshold and it is 

generated by the score of prediction. The Algorithm 1 below illustrates the process of 

calculating the AUC (code written in R). Note that the AUC given by Algorithm 1 may be less 

than 0.5, which is information needed for future computation. 



 

9 

 

Algorithm 1 AUC_calculation 

Input(s):  𝒑, the prediction vector; 𝝎, the corresponding label vector 

Output(s):  Area Under Curve (AUC) 

1:  let data frame X=cbind(𝝎, 𝒑) 

2:  Sort X by column 𝒑: X=X[order(X[,2]),] 

3:  Get the sorted unique values of 𝒑: uniq_values=sort(unique(𝒑)) 

4:  total_true=length(which(𝝎 == 𝟏)) 

5:  total_false=length(𝝎) – total_true 

6:  tp_array=rep(0, length(uniq_values)) 

7:  fp_array=rep(0, length(uniq_values)) 

8:  auc_result=0 

9:  for 𝑖 in 1:uniq_values: 

10: indice=which(p<=uniq_values[i]) 

11:   tp_array[i] = which(X[indice,1]==1)/total_true 

12:   fp_array[i] = which(X[indice,1]!=1)/total_false 

13:   if 𝑖 == 1 then 

14:  auc_result= 
tp_array[i]∗ fp_array[i]

2
 

15:   else 

16:  auc_result=auc_result+(fp_array[i]-fp_array[i-1])*(tp_array[i-1]+tp_array[i])/2 

17:   end if 

18:  end for 

19:  return auc_result 

20:  end 
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Chapter II: Binary ROC Tree 

 

2.1 Brief Introduction of CART 

2.1.1 The Structure of a CART 

 The Classification and Regression Tree (CART) [5] is a classifier with binary tree 

structure. Every tree is a combination of nodes. Each node has the following contents: (1) the 

feature used in this node (2) the threshold of that feature (3) left child node and right child node. 

(4) score of this node. Figure 1 below shows an example of a classification tree. 

 

  

In Figure1, in the root node, the feature is “sex”, and the threshold is “male”. If the “sex” 

of an incoming observation is “male”, then it will proceed to the left child, otherwise it will go to 

the right child. The right child of the root node is an end node, whose score is 0.73. It can be 

Figure 1: Classification Tree Example from Wikipedia 

https://en.wikipedia.org/wiki/Decision_tree_learning 
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regarded as the probability of survival, and we can further choose a threshold for the score to 

assign the label prediction of this end node. In this example, we can set the label to be 0.5, so end 

nodes with score larger than 0.5 is labeled as survived. The left child of the root node is not an 

end node, so there is another feature and threshold to compare. Each observation will finally 

reach an end node, and returns the score of that end node as prediction. 

2.1.2 Feature and Threshold Selection 

 The selection of feature and threshold in each node is based on the Gini Impurity of the 

left and right child given by that split. The Gini Impurity, 𝐼𝐺 , for a data set with m classes is 

defined as  

𝐼𝐺 = ∑ 𝜋𝑘(1 − 𝜋𝑘)𝑚
𝑘=0 , 

where 𝜋𝑘 is the percent of class k in this set. 

In CART [5], the algorithm will go over every possible split of every feature that can 

divide the data into two parts, and select the feature and threshold that minimize the Gini 

Impurity sum of the left child and the right child. This method is computational expensive since 

it will find each unique value along each feature and check the Gini Impurity of this split. 

Moreover, it was shown that features with more splits would be more likely to be selected 

because it has more possible splits, which will increase the bias of the tree model [30]. Loh and 

Shih proposed a method based on clustering to solve this problem [29]. 

 For categorical variable, the traditional method is to check every possible split of two 

sets. In this case, suppose there are N categories for one categorical variable, we need to check 

∑ 𝐶𝑁
𝑖[

𝑁

2
]

𝑖=1
 different splits and select the best one from which. To simplify this process for 
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categorical variable in binary classification, CART sorts all the levels of that categorical variable 

by the percentage of class 0, and then treats them as ordinal variables. In this case the method for 

ordinal variables can be used on categorical variable, which speeds up the computation. 

2.1.3 Advantages and Disadvantages of CART 

 CART has many advantages and disadvantages compared to other classification 

algorithms. The foremost advantage is its simple structure and design. Compared to SVM and 

neural network which are designed to minimizing a global cost function, CART is more like a 

greedy algorithm. For each node, CART selects the current best split instead of the global best 

split. Therefore, if we want a tree that has the minimum Gini Impurity sum, CART may not give 

the best one. On the other hand, the greedy design also makes CART very fast and efficient, 

which is desirable for base learners in ensemble methods. 

 The second advantage of CART is its wide applicability. CART requires very few data 

preprocessing steps, including outlier filtering, variable transformation, variable selection and 

interaction checking. The splitting method makes CART insensitive to outliers. Even if the 

predictor does not have any relationship between the response variable, CART is more likely to 

select a split in the dense area since there are more possible splits. CART is also immutable to 

variable transformation which maintains the relative order of each observation, because the Gini 

Impurity depends only on the proportion of classes in the two child nodes. As for variable 

selection, CART will automatically choose the feature and split. If a variable is not related to the 

response variable, it will not be selected in the node. CART also considers interaction between 

different variables, although it does not check for linear interactions like generalized linear 

regression models. Additionally, the CART models are easy to interpret. 
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 There are also many disadvantages to CART. First of all, CART can only make one split 

at each node, which makes the decision boundary of the tree not as smooth as other classifiers. 

Therefore a single node in CART can only divide observations to two categories instead of 

learning any linear or non-linear patterns in the data. As CART grows deeper, the tree can learn 

more complicated pattern. For example, suppose variable Y is linearly related to variable X and 

we want to predict Y using X. CART will be able to learn a linear relationship by splitting 

multiple times on the X variable, and the classifier will be a polygonal line that approximates the 

linear relationship. This design makes CART easier to overfit and less robust, since the 

prediction is highly dependent upon the split threshold, and the split threshold depends on only a 

few points in the data set. To deal with this problem, one approach is to fit linear regression in 

the leaf nodes [31], so that the final classifier will be smoother in the feature space. 

Secondly, the design of CART doesn’t have explicit regularization, although it contains 

much implicit regularization. For example, the maximum depth, setting the deepest depth of the 

tree, regulates the maximum level of interactions and therefore controls how complicated the 

classifier would be. Another similar criterion is the maximum number of nodes. The minimum 

leaf size threshold sets the minimum number of observations in one leaf. A split has to make the 

size of both child nodes larger than this threshold to be qualified. The minimum split size 

threshold sets the minimum number for a node to continue splitting. Both minimum split size and 

minimum leaf size will ensure that the tree will not learn too complicated structure from a small 

size of data. Finally, the minimum deduction of Gini threshold sets the minimum Gini Impurity 

deduction after the split. If there doesn’t exist any split that has Gini Impurity deduction larger 

than this threshold, the node will not split and become an end node. 
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All the criteria mentioned above are implicit regularization measures aiming to control 

the complexity of the tree classifier. However, there doesn’t exist one uniform penalty term that 

can control the regularization strength in CART. The more the parameters are, the harder it is to 

tune the model and control model overfit. 

Most importantly, the performance of a single CART is usually minor than logistic 

regression, SVM and neural network, so it’s normally used with ensemble methods. This is also 

a result of its simple design. 

 

2.2 ROC Tree Introduction 

 Like other classification algorithms, CART doesn’t work well on severely biased data. 

The Gini Impurity will always be very small whichever split is chosen. Therefore, an attribute 

selection method based on AUC was first proposed in 2002 [15]. The resulting decision tree [15] 

has multiple child nodes and multiple split points, which is different from the CART framework. 

Another splitting method based on AUC for binary decision tree was proposed in 2008 [16]. At 

each node, the feature that gives the highest AUC was first chosen. Then the misclassification 

rate for the left child and the right child was computed for every possible split of that feature, and 

the split with the lowest misclassification rate was chosen for that node. 

 In his doctoral thesis published in 2015, Bowen Song proposed another node attribution 

selection method [17] for binary classification and also extended the ROC tree using the random 

forest (RF) framework. In his ROC RF [17], the feature with the highest AUC was selected, and 

the threshold that gives the largest harmonic mean of Sensitivity and Specificity was chosen. 

This approach considers both Sensitivity and Specificity and thus yields a better result. 
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2.2.1 Node Attribute Selection 

 In Bowen’s ROC tree, the attribute that gives the largest AUC was selected. This step is 

described below by Algorithm 2. Note that this is Algorithm 9 in his thesis [17]. 

Algorithm 2 Node_Attribute_Selection 

Input(s):  𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝑃 and 𝑁, the 

number of positive and negative examples; 𝓐, the attribute set 

Output(s):  𝒜, attribute with the highest AUC; 𝛼, (𝑇𝑃𝑅, 𝐹𝑃𝑅) and 𝑡ℎ𝑟𝑒𝑠, corresponding 

splitting direction, ROC points and threshold vector 

1:  𝑚𝑎𝑥𝒜 ← 0 

2:  𝑚𝑎𝑥α ← 1 

3:  𝑚𝑎𝑥ROC ← 𝑁𝑈𝐿𝐿 

4:  𝑚𝑎𝑥thres ← −Inf 
5:  for each attribute 𝒜𝑖 ∈ 𝓐 do  

6:   𝑡𝑒𝑚𝑝𝑅𝑂𝐶 , 𝑡𝑒𝑚𝑝𝑡ℎ𝑟𝑒𝑠 ← ROC_generating(𝒜𝑖, 𝝎, 𝑃, 𝑁) 

7:   𝑡𝑒𝑚𝑝𝐴𝑈𝐶 ← AUC_calculation(𝑡𝑒𝑚𝑝𝑅𝑂𝐶) 

8:   𝑡𝑒𝑚𝑝𝛼 ← 1 

9:   if 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 < 0.5 then  

10:    𝑡𝑒𝑚𝑝𝐴𝑈𝐶 = 1 − 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 

11:    𝑡𝑒𝑚𝑝𝛼 = −1 

12:   end if 

13:   if 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 > max_𝒜 then 

14:    𝑚𝑎𝑥𝒜 = 𝑡𝑒𝑚𝑝𝐴𝑈𝐶 

15:    𝑚𝑎𝑥α = 𝑡𝑒𝑚𝑝𝛼 

16:    𝑚𝑎𝑥ROC = 𝑡𝑒𝑚𝑝𝑅𝑂𝐶 

17:  𝑚𝑎𝑥thres = 𝑡𝑒𝑚𝑝𝑡ℎ𝑟𝑒𝑠 

18:   end if 

19:  end for 

20:  return 𝑚𝑎𝑥𝒜, 𝑚𝑎𝑥α, 𝑚𝑎𝑥ROC, 𝑚𝑎𝑥thres 

21:  end 

 

2.2.2 Node Threshold Selection 

 After the attribute is selected for this node, the threshold that gives the largest F1 score 

(harmonic mean of Sensitivity and Specificity) is selected. This process is described below by 

Algorithm 3, which is Algorithm 10 in [17]. 

Algorithm 3 Node_Splitting_threshold 
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Input(s):  𝒜𝛼, 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅) and 𝒜𝑡ℎ𝑟𝑒𝑠, the splitting direction, ROC points and corresponding 

threshold associating with attribute 𝒜, which has the largest AUC 

Output(s):  𝑡ℎ𝑟𝑒𝑠, final splitting threshold for attribute 𝒜 

1.  𝑐𝑢𝑟ℎ𝑚𝑒𝑎𝑛 ← −Inf 
2.  𝑡ℎ𝑟𝑒𝑠 ← −Inf 
3.  for each ROC points (𝑇𝑃𝑅𝑖 , 𝐹𝑃𝑅𝑖) ∈ 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅) do 

4.   if 𝒜𝛼 == 1 then 

5.    𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛 = Harmonic_Mean(𝑇𝑃𝑅𝑖, 𝐹𝑃𝑅𝑖) 

6.   else then 

7.    𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛 = Harmonic_Mean(1 − 𝑇𝑃𝑅𝑖, 1 − 𝐹𝑃𝑅𝑖) 

8.   end if 

9.   if 𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛 > 𝑐𝑢𝑟ℎ𝑚𝑒𝑎𝑛 then 

10.    𝑐𝑢𝑟ℎ𝑚𝑒𝑎𝑛 = 𝑡𝑒𝑚𝑝ℎ𝑚𝑒𝑎𝑛 

11.    𝑡ℎ𝑟𝑒𝑠 = 𝒜𝑡ℎ𝑟𝑒𝑠𝑖
 

12.   end if 

13.  end for 

14.  return 𝑡ℎ𝑟𝑒𝑠 

15.  end 

 

2.2.3 ROC Tree Building 

 The node building process is completed by Algorithm 2 and Algorithm 3. The tree 

building process is a recursive process of node building. It builds the current node and uses the 

data satisfying the criteria to build the left child node and uses the data that doesn’t satisfy the 

criteria to build the right child. This process for ROC tree is described below by Algorithm 4, 

which is Algorithm 11 in [17]. 

Algorithm 4  ROC_tree 

Input(s):  𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝑃 and 𝑁, the 

number of positive and negative examples; 𝓐, the attribute set 

Output(s):  𝒯,  the final ROC tree 

1.  if (𝑿, 𝝎, 𝑃, 𝑁) contains no record then  

2.   return a single NULL node 

3.  end if 

4.  if (𝑿, 𝝎, 𝑃, 𝑁) consists of records all with the same label value then  

5.   return a single leaf node labeling this value 

6.  end if 

7.  (𝒜𝛼, 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅), 𝒜𝑡ℎ𝑟𝑒𝑠) ← Node_Attribute_Selection(𝑿, 𝝎, 𝑃, 𝑁, 𝓐) 
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8.  𝑡ℎ𝑟𝑒𝑠 ← Node_Splitting_threshold(𝒜𝛼, 𝒜(𝑇𝑃𝑅,𝐹𝑃𝑅), 𝒜𝑡ℎ𝑟𝑒𝑠) 

9.  set (𝑿, 𝝎, 𝑃, 𝑁)𝑙𝑒𝑓𝑡 as the negative child node and (𝑿, 𝝎, 𝑃, 𝑁)𝑟𝑖𝑔ℎ𝑡 as the positive child node 

based on 𝒜𝛼 and 𝑡ℎ𝑟𝑒𝑠 

10. Recursively applies ROC_tree to subsets (𝑿, 𝝎, 𝑃, 𝑁, 𝓐𝒍𝒆𝒇𝒕)
𝑙𝑒𝑓𝑡

 and 

(𝑿, 𝝎, 𝑃, 𝑁, 𝓐𝒓𝒊𝒈𝒉𝒕)
𝑟𝑖𝑔ℎ𝑡

 until they are empty or the stopping criteria are met.  Here 𝓐𝒍𝒆𝒇𝒕 and 

𝓐𝒓𝒊𝒈𝒉𝒕 are the randomly selected attributes subset for the left tree and right tree. 

11. return ROC tree 𝒯 

12. end 

 

 

2.3 Limitation of the Current ROC Tree 

 The ROC tree described above designed to solve the binary imbalanced data 

classification problem outperforms the original CART as a base learner on many imbalanced 

datasets [17]. It also removes one disadvantage of CART that features with more splits would be 

selected. In ROC tree, the attribute is selected based on AUC, and more split points on attribute 

will only make the ROC curve smoother. Therefore it will have less bias than CART in the 

attribute selection process. 

However, there were still some limitations to this ROC tree design. For example, it only 

works for binary classification, so a method that can deal with multiple classes needs to be 

proposed. To solve this problem, a new split selection method based on both AUC and the idea 

of One vs. All technique is proposed in Chapter 3, which works for mutli-class classification 

problems, and is a natural expansion of the binary ROC tree in [17]. 
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Chapter III: Multi-Class ROC Tree 

 

3.1 Review of Concepts 

3.1.1 Notations 

Table 1: Definition of TP, FP, FN and TN 

 

 

Table 1 above shows the definition of true positive, false positive, false negative and true 

negative. 

 True Positive (TP): The number of observations predicted as positive is also positive in 

reality. 

 False Positive (FP): The number of observations predicted as positive is negative in 

reality. 

  Reality  

  Positive Negative 

Prediction Positive True Positive (TP) False Positive(FP)  

 Negative False Negative (FN)  True Negative (TN) 
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 False Negative (FN): The number of observations predicted as negative is positive in 

reality. 

 True Negative (TN): The number of observations predicted as negative is also negative in 

reality. 

Based on these definitions, we can define some measures for the performance of a classifier 

based on a set of test data. 

 True Positive Rate (TPR): also called Sensitivity, Recall, defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 False Positive Rate (FPR): defined as 
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

 Specificity: equals to 1-FPR, defined as  
𝑇𝑁

𝐹𝑃+𝑇𝑁
 

 Precision: defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

3.1.2 Harmonic Mean 

 Harmonic mean is one of the three Pythagorean Means. It is normally used to calculate 

the mean of rates. The Harmonic Mean of 𝑥1, … , 𝑥𝑛is defined as 

𝐻𝑀(𝑥1, … , 𝑥𝑛) =
𝑛

∑
1
𝑥𝑖

𝑛
𝑖=1

 

 When there are only two numbers Sensitivity and Specificity, the equation can be written 

as  

𝐻𝑀(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
 

 The Harmonic mean of Precision and Recall is called F1 score [18], which is a measure 

for binary classification. 



 

20 

 

 The following Algorithm 5 shows the process of calculating the harmonic mean. 

Algorithm 5 Harmonic_mean 

Input(s):  𝑽, The vector of contents to calculate harmonic mean 

Output(s):  𝐻, the harmonic mean 

1:  𝐻=0 

2:  for 𝑖 in 1:length(𝑽) 

3:   𝐻= 𝐻+
1

𝑽[𝒊]
 

4:  end for 

5:  𝐻=
𝑙𝑒𝑛𝑔𝑡ℎ(𝑽)

𝐻
 

6:  return 𝐻 

7:  end 

 

3.1.3 Multi-Class Classification Technique 

 Some of the binary classification algorithms can be expanded to multi-class naturally. For 

example, in CART, the Gini Impurity for two classes can be expanded to multiple classes, so we 

can still choose the feature and split that minimizing the multi-class Gini Impurity. 

 For algorithms that can’t be expanded naturally, there are two kinds of general strategies 

to reduce multi-class classification problem to binary classification problem [19]. 

 The first strategy is the One vs. All strategy (also called One vs. Rest). For each class, we 

use all the data to train a classifier treating that class as class 1 and every other classes as class 0. 

Therefore we will have n classifiers for a classification problem of n classes. In the prediction 

process, all the classifiers will be applied to incoming observations, and the class with the largest 

score will be chosen as the prediction. 

 The second strategy is the One vs. One strategy. We need to train a classifier for each 

pair of classes, using only the data belongs to these two classes. Therefore we will have 

𝑛∗(𝑛−1)

2
 (𝐶𝑛

2) binary classifiers for a classification problem of n classes. In the prediction process, 
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all the classifiers will be applied to incoming observations, which returns their predictions for 

this observation. Then a voting process is applied, and the class that gets the most positive votes 

will be chosen as the result. 

 These two techniques are mature and widely used in algorithms like SVM for multi-class 

classification. 

 

3.2 Node Split Selection Method for Multi-Class ROC Tree 

 The One vs. All and One vs. One framework work well on balanced classification 

problems. However, they can’t be directly applied to severely biased data, which may leads to 

several severely imbalanced binary classification problems, and the performance of voting may 

vary. On the other hand, this method will produce multiple trees only to perform as one multi-

class classifier, which is not memory and computationally efficient. Therefore we incorporate the 

idea of One vs. All technique in the node attribute selection step. 

 There are two steps in the node selection process for multi-class ROC Tree.  

3.2.1 Attribute Selection 

Step 1, find the feature having the largest sum AUC for all classifiers. In binary ROC 

tree, the feature that yields the highest AUC was selected. In multi-class ROC tree, we calculate 

the AUC for the entire one vs. all classification problems, and select the feature with the largest 

sum of AUC. Algorithm 6 below states this process. Note that the AUC_sign variable tells 

whether the AUC is smaller than 0.5 or not. If it is smaller than 0.5, the observation that smaller 

than the threshold should be classified to negative in the One vs. All classifier.  
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Algorithm 6 Node_Attribute_Selection 

Input(s):  𝑿, the matrix of training data; 𝝎, the corresponding label vector; 𝓐, and the set of 

column indices in 𝑿 as available attributes 

Output(s):  𝒜, column indice of attribute with the highest total AUC; max_auc, the AUC sum of 

this feature for all One vs. All classifiers; AUC_sign, the vector of signals to tell 

whether AUC for this class is smaller than 0.5 

1:  max_auc=0 

2:  uniq_class=unique(𝝎) 

3:  𝒜=0 

4:  AUC_sign=rep(0, length(uniq_class)) 

5:  for 𝑖 in 𝓐  

6:   tmp_auc=0  

7:   for 𝑗 in 1:length(uniq_class) 

8:  tmp_label=rep(0,length(𝝎)) 

9:  tmp_label[which(𝝎 == uniq_class[𝑗])]=1 

10:    auc_result= AUC_calculation(𝑿[,i], tmp_label) 

11:    if auc_result<0.5 then 

12:   auc_result=1- auc_result 

13:  tmp_auc=tmp_auc+ auc_result 

14: end for 

15:   if tmp_auc>max_auc then  

16:    max_auc=tmp_auc 

17:    𝒜 = 𝑖 
18:   end if 

19:  end for 

20:  for j in 1:length(uniq_class) 

21:   tmp_label=rep(0,length(𝝎)) 

22: tmp_label[which(𝝎 == uniq_class[𝑗])]=1 

23:   auc_result= AUC_calculation(𝑿[,𝒜], tmp_label) 

24:  if auc_result<0.5 then 

25:  AUC_sign [j]=1 

26: end if 

27:  end for 

15:  return 𝒜, max_auc, AUC_sign 

16:  end 

 

3.2.2 Threshold Selection 

Step 2, select the split threshold with the largest harmonic mean of all Sensitivity and 

Specificity. After the feature is chosen, we calculate Sensitivity and Specificity for all One vs. 

All classifiers on each possible split, and select the split with the largest harmonic mean of all 
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those Sensitivity and Specificity. Algorithm 7 below states this process. Note that the Sensitivity 

and Specificity are related to the AUC_sign. If AUC_sign is smaller than 0.5 for a One vs. All 

classifier, we need to classify observations smaller than that threshold to negative, and if not, we 

need to classify observations smaller than that threshold to positive. This would change the result 

of Sensitivity and Specificity. 

Algorithm 7 Node_Threshold_Selection 

Input(s):  𝑿, the matrix of training data; 𝝎, the corresponding label vector; 𝒜, column indice of 

attribute with the highest total AUC; AUC_sign, the vector of signal to tell whether 

AUC for this class is smaller than 0.5 

Output(s):  thre_result, the threshold of for this split 

1:  thre_result=0 

2:  uniq_class=unique(𝝎) 

3:  tp_array=rep(0,length(uniq_class)) 

4:  fp_array=rep(0,length(uniq_class)) 

5:  uniq_splits=sort(unique(𝑿[, 𝒜])) 
6:  total_true=rep(0,length(uniq_class)) 

7:  for 𝑖 in 1:length(uniq_class) 

8:   total_true[i]=length(which(𝝎 ==uniq_class[i])) 

9:  end for 

10:  total_false=rep(nrow(𝑿),length(uniq_class)) – total_true 

11:  max_harmean=0 

12:  for 𝑖 in 1:length(uniq_splits) 

13:   indice=which(𝑿[, 𝒜]<uniq_splits[i])  

14:   for 𝑗 in 1:length(uniq_class) 

15:    if AUC_sign[j]==0 then 

16:   tp_array[j] = length(which(𝝎[indice]==uniq_class[j]))/total_true[j] 

17:   fp_array[j] = length(which(𝝎[indice]!=uniq_class[j]))/total_false[j] 

18:    else 

19:   tp_array[j] = length(which(𝝎[indice]!=uniq_class[j]))/total_true[j] 

20:   fp_array[j] = length(which(𝝎[indice]==uniq_class[j]))/total_false[j] 

21:  end if 

22: end for 

23:   tmp_harmean=Harmonic_mean(c(tp_array,rep(1,length(uniq_class))-fp_array)) 

24:   if tmp_harmean > max_harmean then  

25:    max_harmean = tmp_harmean 

26:    thre_result=uniq_splits[i] 

27:   end if 

28:  end for 

29:  return thre_result 

30:  end 
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3.3 Stopping Criteria for Multi-Class ROC Tree 

 The tree building process is a greedy algorithm based on the divide and conquer 

framework. At each node, we select the split based on the split selection method presented in 

Section 3.2, and build the left child with data that satisfy this criterion, and build the right child 

with data that doesn’t satisfy this criterion. We need a stopping criterion so that this recursive 

process will stop at some suitable point, and prevent the overfitting of the data. 

 There are two major purposes to the stopping criteria -- efficiency and regularization. 

Firstly, if there is no stopping criteria, the tree will grow until there is only one training 

observation in the end node. In this case the tree will be very large, deep, and overfitted since the 

final result highly depends on the individual training observations. Secondly, the stopping 

criterion can be used as regularization for CART, although they are implicit regularization. 

These criteria help build shallower trees so that little or no tree pruning procedure will be 

needed. 

 The usual stopping criteria include but are not limited to 

 Max depth of the tree. The tree will stop growing after reaching this depth. 

 Max nodes of the tree. The tree will stop growing after having this number of nodes. 

 Min split size. The node will stop to split if the training observations in this node are 

smaller than this amount. 

 Min node size. Splits that make either child node have observations less than this 

threshold will be omitted. 

 Min Gini deduction. Splits that reduce Gini less than this threshold will be omitted. 
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Some of the criteria are similar to each other. For example, the max depth of the tree is 

similar to the max nodes of the tree. Both of them try to control the size of the tree regardless of 

the amount of training data. On the other hand, the following three criteria are also similar to 

each other. All of them is related to the amount of the data and are based on node level instead of 

controlling the size of the tree. 

Some of the stopping criteria for CART can also be applied to the Multi-Class ROC Tree, 

and the following conditions are the stopping criteria for Multi-Class ROC Tree. 

 When the maximum tree depth is reached. 

 When a node is pure. In other words, there is only 1 class in this node. 

 When the number of observations in this node is smaller than a certain threshold. 

Therefore a maximum depth and a minimum number of observations for each node need 

to be defined before building the tree. 

 

3.4 Multi-Class ROC Tree Algorithm 

Algorithm 8 states the recursive algorithm for multi-class ROC Tree. This code is 

designed for R, so a data frame is used to store the tree and linked by id. In C++, the tree can be 

stored using struct and linked by pointers. To prevent overfitting, only part of the data is used to 

train the node, and the rest of the data can be used as out of bag score to evaluate the 

performance. A stopping can be defined based on the difference of training data score and out of 

bag score. The node score is calculated based on the percentage of each class in training data in 

this node, and the  
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Algorithm 8 Multi_Class_ROC_Tree 

Input(s):  𝑿, the matrix of training data; 𝝎, the corresponding label vector; 𝓐, the set of column 

indices in 𝑿 as available attributes; cur_id, the current id of this node; max_depth, the 

maximum depth for this tree; min_leaf, the minimum number of observations on each 

node; train_ratio, the ratio of data to be used for training; 𝑵𝒂, the number of attribute 

allowed in each node 

Output(s):  roc_tree, the data frame of the multi-class ROC tree 

1:  roc_tree=data.frame(id=cur_id, split_var="", thre="",lchild=0,rchild=0,nodelabel= -1, 

                         nodescore="",oob_score="") 

2:  Randomly generate the training indices and testing indices of the rows of 𝑿 based on the 

train_ratio 

3:  Calculate the nodesocre and nodelabel based on the training data 𝑿[training_indice,] 

4:  Calculate the oob_score based on the testing data 𝑿[testing_indice,] for comparison 

5:  Check whether the stopping criterion is met or not. If it is met, return roc_tree 

6:  Sample 𝑵𝒂 features from 𝓐 and set them to be 𝓐′ 

7:  Find the attribute 𝒜 using training data 𝑿[training_indice,], the attributes set 𝓐′, the label 

vector 𝝎[training_indice] and function Node_Attribute_Selection (Algorithm 6) 

8:  Find the threshold thre_result using the attribute 𝒜, training data 𝑿[training_indice,] and 

corresponding label vector 𝝎[training_indice] and function Node_Threshold_Selection 

(Algorithm 7) 

9:  Build the left child by calling Multi_Class_ROC_Tree (Algorithm 8) recursively. Let the left 

child id to be cur_id*2, left child max depth = max_depth – 1. Append the return dataframe with 

the data frame roc_tree 

10:  Build the right child based using same function. Let the left child id to be cur_id*2+1, right 

child max depth = max_depth – 1. Append the return dataframe with the data frame roc_tree 

11:  return roc_tree 

12:  end 

 

 After the tree is built and the dataframe is returned, a recursive algorithm can be used to 

get the prediction of new observations. The process is stated in Algorithm 9. 

Algorithm 9 ROC_Tree_Prediction 

Input(s):  ROC_Tree, the tree built by Algorithm 5; 𝒙, a new observation; pred_type, the type of 

prediction needed; id, the id of tree node 

Output(s):  �̂�, the predicted label for 𝒙 

1:  Find the row in the ROC_Tree whose id equals to the input id 

2:  If the split_var and thre is empty then 

3:   If pred_type=="score" then 

4:    return the nodescore of this row as �̂� 

5:   else 

6:    return the nodeclass of this row as �̂� 

7:   end if 
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8:  end if  

9:  Check whether 𝒙 satisfy the condition of this row. 

10:  If  𝒙 satisfy the split_var and thre then 

11:   call the function again with new id as the left child id 

12:  else 

13:   call the function again with new id as the right child id 

14:  end if 

15:  return the result as �̂� 

16:  end 

 

 

3.5 Summary of Multi-Class ROC Tree 

 The multi-class ROC tree can also be applied to the binary classification problems where 

it’s the same as the binary ROC tree algorithm proposed in [17]. In binary classification 

problems, the multi-class ROC tree consider both the AUC of class 1 vs. class 0 and the AUC of 

class 0 vs. class 1, which are the same after converting AUC to be larger than 0.5. Hence the 

multi-class ROC tree is a natural expansion of the binary ROC tree in [17], which can be 

regarded as a degenerate case of multi-class ROC tree. The following Table 2 is modified from 

Table 1, which shows the concept. 

 

Table 2: Definition of TP, FP, FN and TN in Different Settings 

 

 Reality 

Positive (Negative) Negative (Positive) 

Prediction Positive (Negative) True Positive (TN) False Positive (FN)  

Negative (Positive) False Negative (FP)  True Negative (TP) 
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As we can see from the table, if we switch the definition of positive and negative, the true 

positive in the old setting will be the true negative, and vice versa. Recall that the x axis of the 

ROC curve is the false positive rate (1 – true negative rate) and the y axis of ROC curve is the 

true positive rate (1 – false negative rate). Therefore after switching the label, the x axis is 

plotting the false negative rate, which is 1 – true positive rate, and the y axis is plotting the true 

negative rate, which is 1 – false positive rate. It actually transposes the ROC curve plot, and the 

AUC of the new plot equals to 1 – AUC of the old plot. Since AUC is defined to be larger than 

0.5, the AUC after switching label will be the same to the old one. 

In reality, the performance of a multi-class ROC tree is slightly better than the 

performance of the original binary ROC tree because it randomly select part of the input training 

data to train each node. This method prevents the overfitting problem to some extent, and 

provides the out of bag score to compare with the node score, so that we can detect the 

overfitting problem in the training process. The simulation result shows that including this 

randomness will increase the performance of classification. 
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Chapter IV: ROC Random Forest 

 

4.1 Random Forest Introduction 

The random forest [7] was first proposed in the 1990s and soon became very popular. 

Compared to other classification algorithms, the idea of the random forest is very simple, but it 

turned out to be useful on many real world problems. On the other hand, the random forest can 

be regarded as an ensemble framework instead of one single classification algorithm. 

4.1.1 Brief Introduction on Methodology 

Generally speaking, the random forest is an ensemble of many trees. There is a “random” 

in its name because each tree in this forest is different. There are two type of randomness in 

random forest. 

Firstly, the training data used to build each tree is randomly sampled with replacement 

from the whole data set. Secondly, at node attribute selection step of each tree, only a part of the 

possible features are selected to be possible split. In this design, the correlations of these trees are 

reduced. After that, the majority voting process is applied on these trees to obtain the final forest 

classifier. By doing so, the bias of the classifiers still remain the same, while the variance of the 

classifiers will be greatly reduced. Therefore the random forest performs much better than a 

single tree especially for the out-of-bag testing data. 

An advantage of this design is that random forest will not become more overfitted when 

we increase the number of trees in the forest. Overfitting means the performance of a classifier is 

inconsistent between the training data and the testing data, when the training data and testing 
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data are from the same distribution. It happens when a classifier tries to find every detailed 

difference between the classes in the training data, so it would also take noise into 

considerations. However in random forest, the classifiers are built with different data and using 

different feature pools, so the correlation between each single tree is reduced. Furthermore, the 

majority voting process ensembles all the trees and reduce the variance of each single classifier. 

Therefore the variance of classifiers will likely to be reduced when new trees are added to the 

forest. However, to control the overfitting degree of a random forest model, it is important to 

have regularization parameters including max depth or max nodes in the model, which makes the 

performance of random forest classifier similar on both training and testing data. 

4.1.2 Advantages of Random Forest 

Besides the important “no overfitting by extra trees” feature, there are several other 

advantages to the random forest.  

1 Scalability. Another important advantage of random forest is its speed. The idea of 

random forest is very simple and it is also very fast. Moreover, the trees in random forest can be 

fit independently. Hence we can parallel this process and make it even faster. 

2 Few parameters. Also random forest has very few parameters, which is very important 

in application. When we are fitting Support Vector Machine, we need to find the best penalty (or 

slack variable) by cross validation, and determine the best kernel for this problem. In neural 

networks, the design of the network structure is very important. Including or excluding a hidden 

unit may totally change its performance. However, in random forest, the most important 

parameter is the number of trees if we are focusing on the testing data performance only. We can 

also define the maximum depth, minimum leaf size, percentage of data used for training, number 
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of features to select from, but they have comparatively lower importance to the performance on 

the testing data. Therefore we don’t need to worry about parameter tuning while using random 

forest to maximize the model performance on testing data. 

3 Low demand on data format. Before we use SVM/neural network or other algorithms 

that rely on distance, we need to normalize the data to prevent saturation. However tree doesn’t 

require the data to be pre-processed. The variable and threshold selection of a tree perfectly dealt 

with this problem. Therefore we don’t need to worry about the data before we use the random 

forest. 

4 Variable Importance. Random forest calculates the variable importance in the training 

process, which can greatly help the variable selection process. Random forest can detect the non-

linear relationship between the response and predictors, while the step regression assumes the 

monotone relationship. Random forest also considered the interaction between variables by 

putting them on different levels of a tree. 

4.1.3 Disadvantage of Random Forest 

 The random forest algorithm also has a few disadvantages, with two being major 

disadvantages. 

 Firstly, as a complicated ensemble algorithm, random forest is able to achieve much 

better performance than a single tree and most simple classifiers. However, the interpretability of 

a classifier is reduced during this process. Unlike a single tree, it is hard to tell the exact impact 

of each variable in the random forest classifier. There are two measures developed in random 

forest to help this process, the variable importance and partial dependency plot. 
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 The variable importance is calculated by performing permutation of each selected 

features in the forest, which requires extra calculation time. Then the importance of each feature 

is measured by the drop of performance after changing all that features in the classifier, and it is 

possible that different features have different order of importance because of different measures. 

However the importance ranking in different measures should be very similar, and we are able to 

have more understanding about the classifier by the variable importance. 

 The partial dependency plot can be used as a tool to understand the relationship between 

the response variable and selected feature, or the interaction between two features regarding the 

response variable. This plot ignores all other features and plots the relationship between the 

response and given features. We can have more understanding about the impact of the features 

on the response variable via the partial dependency plot. Furthermore, this information can be 

used to change features into splines or dummy variables and use simpler models to achieve 

similar performance. 

 The second disadvantage of random forest is its performance compared to other 

complicated classifiers. The performance of random forest is normally worse than gradient 

boosting trees, and the gradient boosting trees requires shallower trees than random forest to 

achieve a good performance. Therefore random forest is seldom used as a single model in data 

science competitions. 

 However random forest is still able to provide information including variable importance 

and less correlated predictions with other algorithms, hence it is frequently used in data science 

problems for exploratory data analysis or as a base model. 
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4.2 Representative Tree of Random Forest 

 One way to interpret a random forest model is to find and plot the most representative 

tree in the forest, so that we have the interpretability advantage of a single tree. This idea is first 

proposed in [45] along with several measures to define the distance of trees, and it was further 

developed in [44]. 

 The key point in this method is to define the distance measure of trees. There are several 

methods proposed in these two papers, which are summarized below. 

4.2.1 Distance Measures 

 A very intuitive idea is that two trees should be close if they give similar predictions. 

Therefore the first measure is based on the similarity of the prediction. This idea is proposed in 

[45] and the distance is based on the difference of predicted value of each tree. 

Let 𝑇 be the space of trees, and 𝑦𝑖, 𝑖 = 1 … 𝑛 be the true response of selected testing data. 

For any 𝑇𝑚, 𝑇𝑙  ∈ 𝑇, let 𝑦𝑖
𝑚 and 𝑦𝑖

𝑙 be the prediction of  𝑇𝑚, 𝑇𝑙 on observation 𝑖, 0 < 𝑖 ≤ 𝑛. 

Suppose the distance between 𝑦𝑖
𝑚 and 𝑦𝑖

𝑙 is defined to be the square error, that 𝑑𝑖𝑠𝑡(𝑦𝑖
𝑚, 𝑦𝑖

𝑙) =

(𝑦𝑖
𝑚 − 𝑦𝑖

𝑙)2. In this case the distance of trees, 𝑑0, could be defined as 

𝑑0(𝑇𝑚, 𝑇𝑙) =
1

𝑛
∑ 𝑑𝑖𝑠𝑡(𝑦𝑖

𝑚, 𝑦𝑖
𝑙)

𝑛

𝑖=1

 

which is the average distance between all predicted values. 

The advantage of this method is its simplicity, and the disadvantage is that the distance of 

each tree depends on the testing data. 
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Another idea is that we can define the distance based on the similarity of tree nodes. This 

idea is proposed in [45] and the distance is based on the different features used in the trees as 

following. 

𝑑1(𝑇𝑚, 𝑇𝑙) =
# 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇𝑚 𝑎𝑛𝑑 𝑇𝑙

# 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦
 

 However, in random forest, the feature pool in each tree is different, which will introduce 

bias in this distance measure. Therefore this measure is not adopted. 

The distance between the trees can also be defined by the similarity of terminal nodes. 

The similarity of terminal nodes is defined based on whether two observations would end up in 

same terminal node. If two observations fall in the same terminal node in one tree but not the 

other one, then the distance of the two trees is increased. The formula of calculating distance is 

shown below. 

𝑑2(𝑇𝑚, 𝑇𝑙) =
∑ ∑ |𝐼𝑇𝑚

(𝑖, 𝑗) − 𝐼𝑇𝑙
(𝑖, 𝑗)|𝑗𝑖>𝑗

(
𝑛
2

)
 

where 𝐼𝑇𝑚
(𝑖, 𝑗) = 1 when observation 𝑖 and observation 𝑗 ends up in the same terminal node in 

tree 𝑇𝑚, and 𝐼𝑇𝑚
(𝑖, 𝑗) = 0 if otherwise. 

 The major disadvantage of this distance measure is its expensive computation. For 𝑛 

observations, it requires 𝑂(𝑛2) computation time for each pair of trees. Suppose there are N trees 

in the random forest, the total time to compute the distance of each tree would be 𝑂(𝑁2𝑛2), 

which is much more expensive than the distance by prediction method. 

 Furthermore, it is possible that two terminal nodes has the same label (for classification) 

or similar prediction (for regression), especially for deep trees. Therefore it is possible that two 
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observations end up in one terminal node in one tree but not the other, but both tree have same 

prediction for them. In this case, we probably should not increase the distance of the two trees. 

 There are other distance measures including some combination of the above measures, 

and it is hard to compare the effectiveness of different measures. Therefore in this dissertation, 

we adopt the distance by prediction to measure the distance between the ROC trees in the ROC 

random forest for simplicity. 

4.2.2 Features of Representative Tree 

 Based on the current distant measure, we can derive several features of representative 

tree. First of all, since the distance is based on the predicted values, we can also calculate the 

distance between trees and the whole random forest model. Given that the representative tree is 

defined as the tree that has the smallest average distance with other trees, the representative tree 

is also very close to the random forest model. 

 Secondly, the distance between representative tree with the single classification and 

regression tree model (CART) is smaller than the average distance between CART and other 

trees in the random forest, because the representative tree should be the most unbiased tree in the 

random forest. 

 Thirdly, the distance between representative tree and the random forest model is related 

to the regularization strength of the random forest model. For example, a larger number of 

maximum nodes in random forest will increase the variance of the trees, which will increase the 

distance between the representative tree and the random forest model. 
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4.2.3 Representative Tree in UCI Census Income Data 

 Here we use the UCI Census Income data to explain the features of the representative 

trees in a classification setting. This data set has 32561 observations and each observation 

represents a person. There are 15 variables in this data set, including whether this person has a 

yearly income larger than 50K each year, which is the target of the classification random forest 

models. 

 The data set is randomly split into training data (50%) and testing data (50%). The 

random forest models and CART models are built with the same maximum nodes regularization, 

and the random forest model contains 100 trees. The distance between the trees is defined as the 

percentage difference on the testing prediction. The distance mean and standard deviation after 

10 runs between CART, random forest and the representative tree of random forest in different 

situations is summarized below. 

Table 3: Distance between Representative tree, Random Forest and CART in Different Regularization  

Max number 

of Nodes 

Avg Tree vs. CART 

Distance 

Rep Tree vs. 

CART Distance 

Rep Tree vs. RF 

Distance 

CART vs. RF 

Distance 

24 0.0818 ± 3.79e-03 0.0186 ± 9.61e-03 0.0165 ± 3.31e-03 0.0213 ± 3.15e-03 

25 0.0836 ± 3.48e-03 0.0201 ± 8.77e-03 0.0176 ± 4.92e-03 0.0186 ± 2.60e-03 

26 0.1103 ± 1.97e-03 0.0716 ± 9.90e-03 0.0286 ± 6.30e-03 0.0721 ± 2.87e-03 

27 0.1129 ± 3.73e-03 0.0820 ± 2.32e-02 0.0425 ± 1.01e-02 0.0727 ± 8.87e-03 

28 0.1203 ± 1.33e-03 0.0963 ± 1.33e-02 0.0499 ± 9.84e-03 0.0822 ± 5.40e-03 

29 0.1247 ± 1.54e-03 0.0941 ± 6.65e-03 0.0472 ± 7.36e-03 0.0706 ± 2.54e-03 

 

 We can see from this table that the result agrees with the features of representative tree 

discussed in Section 4.2.2. The distance between representative tree and CART is smaller than 
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the average distance between CART and all the trees in the random forest, which means the 

representative is closer to CART than the average trees in the random forest.  

 As the maximum number of nodes increases, the regularization strength decreases, 

therefore there will be more variance in single trees in the random forest model. This increases 

the distance between representative tree and CART as well as the distance between 

representative tree and the random forest model.  

However, the distance between the representative tree and the random forest is always 

smaller than the distance between CART and the random forest, which means the representative 

tree is better than CART in interpreting the random forest model. 

 

4.3 Multi-Class ROC Random Forest Algorithm 

 The random forest framework can also be applied to the ROC trees to obtain the ROC 

random forest [17]. As for Multi-Class ROC random forest, the process stays the same, which is 

shown in Algorithm 10 below. 

Algorithm 10 Multi_Class_ROC_Random_Forest 

Input(s): 𝑿, the matrix of training examples; 𝝎, the corresponding label vector; 𝑵𝒕, the number 

of trees to be generated; 𝑵𝒂, the number of attributed needed for each node 

Output(s): 𝓕, the final forest 

1:  set 𝓕 to NULL 

2:  for 𝑖 = 1 to 𝑵𝒕  

3:   sample a set of row indices from the original data with replacement noted as 

bagging_indice 

4:   train 𝑡𝑟𝑒𝑒𝑖 by this sampled data 𝑿[bagging_indice,], 𝝎[bagging_indice,] with 

Multi_Class_ROC_Tree (Algorithm 8) 

5:   append 𝑡𝑟𝑒𝑒𝑖 to 𝓕 

6:  end for 

7:  return 𝓕 

8:  end 
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 However, we can’t directly apply the original prediction method to ROC random forest 

since there will be some problems when the class sizes are highly skewed. To reduce the 

correlation between each single trees, the ROC tree in the random forest is using less data and 

fewer features. This design is acceptable when the class sizes are roughly balanced, however 

when the class sizes are highly skewed, the ROC tree will tend to assign each observation to the 

majority class. Therefore in the multi-class ROC random forest algorithm, the prior probability 

of each class is used to balance the prediction score, which is shown below in Algorithm 11. 

Algorithm 11 ROC_Forest_Prediction 

Input(s):  𝓕, the ROC forest; 𝒙, a new observation; pred_type, the type of prediction needed; 

prior_prob, the prior distribution of each class 

Output(s):  �̂�, the predicted label for 𝒙 or �̂�, the predicted probability for 𝒙 

1:  set score as an empty data frame 

2:  for each 𝑡𝑟𝑒𝑒𝑖 in 𝓕: 

3: score[𝑖,]=ROC_Tree_Prediction(𝑡𝑟𝑒𝑒𝑖, 𝒙 ,pred_type,id=1) 

4:  end for 

5:  sum up score for each class and calculate the score sum percentage for each class as �̂� 

6:  �̂�=�̂�/prior_prob/sum(�̂�/prior_prob) 

7:  If pred_type=="score" then 

8: return �̂� 

9:  else 

10:   �̂�=which.max(�̂�) 

11:   return �̂� 

12:  end if  

13:  end 

 

To sum up, the ROC random forest inherits the major advantages of the random forest 

including the representative tree. The correlation between each single tree is reduced by the 

randomness and all the trees can be built in parallel. Compared to random forest, the ROC 

random forest is specialized in dealing with imbalanced classification problem because it uses 

the ROC tree as the base learner. 
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The major improvement of Multi-Class ROC forest over the ROC forest proposed in [17] 

is that it is capable of processing multiple class classification problems. The introduction of 

sampling in the node attribute selection step also improved the robustness of ROC tree as well as 

the ROC random forest. 

  



 

40 

 

Chapter V: Performance of Multi-Class ROC Tree 

 

5.1 Performance Measure of Multi-Class Classification Problems 

 The performance of imbalanced binary classification can be evaluated by the ROC curve 

and AUC. However the original ROC curve only works in binary classification problems, so new 

measures needs to be defined to evaluate the performance of multi-class classification. 

5.1.1 Generalized Form of Notations 

 The notations in Section 3.1.1 can be extended to multi-classes naturally. In [20], these 

measures for 𝑙 classes classification problem are defined as following. 

 Average Accuracy: 
∑

𝑡𝑝𝑖+𝑡𝑛𝑖
𝑡𝑝𝑖+𝑡𝑛𝑖+𝑓𝑝𝑖+𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
  which measures the average accuracy of each class 

 Precision𝜇: 
∑ 𝑡𝑝𝑖

𝑙
𝑖=1

∑ 𝑡𝑝𝑖+𝑓𝑝𝑖
𝑙
𝑖=1

 which measures the micro-average accuracy for positive 

predictions 

 Recall𝜇: 
∑ 𝑡𝑝𝑖

𝑙
𝑖=1

∑ 𝑡𝑝𝑖+𝑓𝑛𝑖
𝑙
𝑖=1

 which measures the micro-average true positive rate 

 Precision𝑀: 
∑

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑝𝑖

𝑙
𝑖=1

𝑙
  which measures the macro-average accuracy for positive 

predictions 

 Recall𝑀:  
∑

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖

𝑙
𝑖=1

𝑙
  which measures the macro-average true positive rate 

Note that in multi-class classification, the Precision𝜇 and Recall𝜇 will be the same since 

∑ 𝑡𝑝𝑖 + 𝑓𝑝𝑖
𝑙
𝑖=1  is the sum of predicted positive for each class, which is the number of 



 

41 

 

observations, and ∑ 𝑡𝑝𝑖 + 𝑓𝑛𝑖
𝑙
𝑖=1  is the sum of real positive for each class, which is also the 

number of observations. 

5.1.2 Volume Under Surface (VUS) 

 The VUS is an extension for AUC. In binary classification, the ROC curve shows the 

performance of a classifier on a plot with y axis as TPR and x axis as FPR for class 1. The FPR 

for class 1 can also be regarded as 1 – TPR for class 0. Therefore the axis in the ROC curve plot 

can be regarded as TPR for different class. 

 Therefore in multi-class classification problems, a coordinate system similar to ROC 

curve can be built to measure the performance of classifiers [21]. In an 𝑙 class classification 

problem, the dimension of this system will be 𝑙 and the axis is the TPR for each class. And the 

classifier will be a hyperplane in this space. The ROC curve in 2D is a degenerate form of this 

surface. Hence similar to AUC, the Volume Under Surface can be defined to evaluate the 

performance of a classifier, which involves the calculation of volume of a convex hull. 

5.1.3 Point Selection for ROC Surface 

The original ROC curve is generated by a vector of prediction scores in Algorithm 1. A 

threshold is defined and all observations with predicted score lower than this threshold are 

assigned to one class, which gives us one pair of true positive rate and false positive rate. Hence 

each threshold represents one point on the curve. However, in high dimension, we can’t simply 

define and move the threshold from the minimum to the maximum of the prediction score. If we 

still find all possible points in high dimension, the VUS will be augmented since we need to find 

a convex hull and compute the volume under this convex hull. 
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Figure 2 below shows the difference of ROC curve with predicted score and single 

predicted label. 

 

Figure 2: ROC Curve Plot. The area below the red line is considered to be the area under the convex hull 

of ROC curve, and the area below the blue line is the original area under ROC curve 

  

In [21], the convex hull is found based on one vertex given by a vector predicted label 

and other trivial vertexes on the axis. For example, in a three-class classification problem, 

assigning all the data to class 1 will let the TPR for class 1 to be 1 and TPR for class 2 and 3 to 

be 0. Therefore the (1, 0, 0) vertex is naturally on the ROC Surface, and so is the vertex (0, 1, 0), 

(0, 0, 1). Another vertex is generated by the class prediction of the classifier, and the best 

situation is the point (1, 1, 1), which means the classifier has perfectly separated all the 3 classes. 
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5.1.4 Qhull Algorithm 

 After we found a bunch of points given by the prediction in ROC space, we need to find a 

convex hull of these points to get the ROC surface, then the Volume Under Surface also needs to 

be calculated. 

 This process can be done with the Qhull algorithm presented in [21]. The implementation 

of Qhull algorithm given by [22] is used for the evaluation in this dissertation. 

 

5.2 Imbalanced Classification Simulation Settings and Results 

 There are many situations in multi-class classification, and here we compared the 

performance of Multi-Class ROC Tree, Multi-Class ROC Random Forest, CART, random forest 

and random guess on four situations. The number of classes is set to be 4, with 1 dominate class 

of 4750 observations (95% of the total data), and 2 minor classes of 100 observations (2% of the 

total data), and 1 rare class of 50 observations (1% of the total data). The random guess is 

generated by a multi-nominal distribution with probability as the class distribution. The CART is 

fit using the rpart package in R, and the random forest is fit using the randomForest package in 

R. All the performance is measured by out of bag testing data, which is generated using the same 

method as training data. 

5.2.1 Setting 1: 2 dimensions, easy to differentiate 

 In this setting, we generate observations from Gaussian distribution with 2 dimensions so 

that it is easy to visualize the data. All the variables have a variance of 1. The Class 1 is centered 
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at (0, 0), the Class 2 is centered at (2, 2), the Class 3 is centered at (-2, -2), the Class 4 is centered 

at (-2, 2). Figure 3 shows the distribution of the data. 

 

Figure 3: The distribution of simulated data in setting 1 

 

 The performance of Multi-Class ROC Tree, CART and random guess is showed in Table 

4. The ROC tree has slight advantage over CART in Recall𝑀 and VUS. 

Table 4: Performance of Classifiers on Setting 1 

 Average 

Accuracy 

Precision𝜇 Precision𝑀 Recall𝑀 VUS  

ROC Tree 0.9809 0.9618 0.7345 0.5794 0.09657 

CART 0.9817 0.9634 0.8110 0.5360 0.08933 

Random 

Guess 

0.9513 0.9026 0.2476 0.2473 0.04167 

 

5.2.2 Setting 2: 2 dimensions, hard to differentiate 

 In this setting, we still generated observations that are normally distributed with variance 

1, while the class centers are closer. The Class 1 is centered at (0, 0), the Class 2 is centered at (1, 
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1), the Class 3 is centered at (-1, -1), the Class 4 is centered at (-1, 1). Figure 4 shows the 

distribution of the data. 

 

Figure 4: The distribution of simulated data for setting 2 

 

The performance of Multi-Class ROC Tree, CART and random guess is showed in Table 

5 below. The CART classified every observations to class 1 so the Precision𝑀 is NA and the 

VUS is the same to random guess. In this case the Multi-Class ROC Tree outperformed CART. 

Table 5: Performance of Classifiers on Setting 2 

 Average 

Accuracy 

Precision𝜇 Precision𝑀 Recall𝑀 VUS  

ROC Tree 0.9699 0.9398 0.3371 0.2767 0.04612 

CART 0.975 0.95 NA 0.25 0.04167 

Random 

Guess 

0.9513 0.9026 0.2476 0.2473 0.04167 
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5.2.3 Setting 3: 10 dimensions 

In this setting, high dimension data is used to check the performance of multi-class ROC 

Tree. All the data are normally generated with variance 1 and the centers for each class is listed 

below. 

 Class 1: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

 Class 2: (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) 

 Class 3: (-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5) 

 Class 4: (-0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5) 

Table 6 shows the performance of each classifier on this setting. Similar to setting 2, 

CART predicted all test observations to class 1 so it is no better than random guess. Both ROC 

random forest and traditional random forest are built with max depth equals to 4 (max nodes 

equals to 2^4). The prior probability is used on Random Forest algorithm and the Naïve Bayes 

algorithm to get a comparable result with ROC Random Forest. After the transformation, the 

multi-class ROC random forest still has large advantage over traditional random forest, and we 

can see that the performance of multi-class ROC random forest is very close to Naïve Bayes. 

Note that Naïve Bayes is the optimal classifier in this problem because the underlying 

distribution of each classes is normal. 

Table 6: Performance of Classifiers on Setting 3 

 Average 

Accuracy 

Precision𝜇 Precision𝑀 Recall𝑀 VUS  

ROC Tree 0.9676 0.9352 0.3215 0.2830 0.04716 

CART 0.975 0.95 NA 0.25 0.04167 

Random 

Guess 

0.9513 0.9026 0.2476 0.2473 0.04167 

ROC RF 

(100 trees) 

0.6004 0.2008 0.2750 0.5610 0.09349 
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RF (100 

trees) 

0.9579 0.9158 0.3423 0.3393 0.05654 

Naïve Bayes 0.7433 0.4866 0.2908 0.6217 0.1036 

 

Table 7 shows the sensitivity and specificity of each class in detail for random forest, 

Naïve Bayes and ROC random forest. 

Table 7: Sensitivity and Specificity of Classifiers on Setting 3 

Algorithm Random Forest Naïve Bayes ROC Random Forest 

Class Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

1 0.957 0.144 0.477 0.812 0.174 0.920 

2 0.130 0.984 0.650 0.822 0.770 0.688 

3 0.130 0.982 0.700 0.814 0.720 0.705 

4 0.140 0.991 0.660 0.850 0.580 0.798 

 

5.2.4 Setting 4, 10 dimension with noise 

 In this setting, each class has the same center and variance with setting 3, but 10 features 

with normal distribution centered at 0 with variance 1 is added into the problem as noise. There 

in this setting, each classifier is built with 20 features, but only 10 of them is related to the 

response. 

 The following table shows the performance of each classifier in this setting. Both ROC 

random forest and traditional random forest are built with max depth equals to 4 (max nodes 

equals to 2^4), and scores from both traditional random forest and Naïve Bayes model are 

divided by the prior distribution probability before calculating the label. We can see that the 
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VUS performance of ROC random forest is still better than random forest after the noise is 

added, and it’s very close to Naïve Bayes, which is the optimal classifier in this problem. 

 

Table 8: Performance of Classifiers in Setting 4 

 Average 

Accuracy 

Precision𝜇 Precision𝑀 Recall𝑀 VUS  

ROC Tree 0.9649 0.9298 0.3328 0.2815 0.04692 

CART 0.975 0.95 NA 0.25 0.04167 

Random 

Guess 

0.9513 0.9026 0.2476 0.2473 0.04167 

ROC RF 

(100 trees) 

0.6015 0.2030 0.2730 0.5545 0.09241 

RF (100 

trees) 

0.9591 0.9182 0.3026 0.2907 0.04845 

Naïve Bayes 0.7621 0.5242 0.2900 0.5922 0.09871 

 

 The following table shows the sensitivity and specificity of each classifier. 

Table 9: Sensitivity and Specificity of Classifiers on Setting 4 

Algorithm Random Forest Naïve Bayes ROC Random Forest 

Class Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

1 0.963 0.084 0.519 0.748 0.178 0.900 

2 0.080 0.983 0.630 0.835 0.670 0.692 

3 0.080 0.986 0.640 0.832 0.690 0.706 

4 0.040 0.994 0.580 0.862 0.680 0.796 
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5.3 Balanced Classification Simulation 

 The results in Section 5.2 showed that ROC tree has advantage over CART, and ROC 

random forest has large advantage over traditional random forest in imbalanced classification 

problems. Therefore the ROC random forest is desirable when the class sizes are highly skewed. 

However, the performance of ROC random forest on balanced classification problems also needs 

to be compared to the classic random forest. 

 In this simulation, the size of each class is balanced. Each class has 1250 observations, 

and the centers are the same to setting 3. 

 Class 1: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

 Class 2: (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) 

 Class 3: (-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5) 

 Class 4: (-0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5) 

Table 10 shows the performance of each classifier in this setting. We can see that the 

performance of ROC RF is very close to the traditional random forest and support vector 

machine, and the performance of a single ROC tree is slightly better than CART.  

Table 10: Performance of Classifiers on balanced classification 

 Average 

Accuracy 

Precision𝜇 Precision𝑀 Recall𝑀 VUS  

ROC Tree 0.7511 0.5022 0.5097 0.5022 0.0837 

CART 0.7306 0.4612 0.4402 0.4612 0.07687 

Random 

Guess 

0.6208 0.2416 0.2417 0.2416 0.04167 

ROC RF 

(100 trees) 

0.8121 0.6242 0.6052 0.6242 0.1040 

RF (100 

trees) 

0.8172 0.6344 0.6265 0.6344 0.1057 

SVM 0.8221 0.6442 0.6388 0.6442 0.1073 
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5.4 Performance on UCI Repository Data 

 The ROC random forest and ROC tree has shown its superiority in these simulated data 

sets which are hard to classify. Next we selected several data sets from UCI repository data to 

check the performance of ROC random forest on real world data sets. The algorithms we are 

comparing here are Ferri’s ROC tree [15] and the classical SMOTE algorithm [10] combined 

with random forest classifier. 

 We choose four data sets listed below in Table 11. These data sets have different sizes, 

feature number and minority class percentage, representing different kinds of real world 

problems. All the four data sets are binary classification problems since the SMOTE algorithm 

can only deal with binary cases. 

Table 11: Chosen binary classification UCI repository data set 

Data Set Name Observation 

Number 

Feature Number Minority Class 

Percentage 

Letter Recognition: A 20000 16 3.95 

Optical Recognition of handwritten digits: 0 5620 64 9.86 

Pen-based Recognition of handwritten digits: 0 10992 16 9.4 

Ionosphere 351 34 35.9 

 

The SMOTE algorithm is performed by the unbalanced package in R and the random 

forest model is built by the randomForest package in R. The performance of Ferri’s tree is given 
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in B. Song’s work [17]. We ran 10 fold cross validation 10 times on the data and got the 

following performance. The ROC random forest and SMOTE random forest both contain 100 

trees so that their performance is comparable. The performance of each method is shown in the 

following Table 12. 

Table 12: Algorithm Performance Measured by AUC 

Data Set Letter A Opt Digit 0 Pen Digit 0 Ionosphere 

Ferri’s Gain Ratio 98.9±1.4 94.2±1.4 99.6±0.5 90.4±7.0 

Ferri’s AUC Split 99.3±0.7 98.5±1.8 99.4±0.6 89.7±6.7 

Proposed ROC Random Forest 99.9±0.02 99.9±0.03 99.8±0.1 96.7±3.1 

SMOTE Random Forest 99.9±0.02 99.9±0.04 99.9±0.1 96.9±2.9 

 

We can see from this table that the proposed ROC random forest performs better than 

Ferri’s methods, and it performs equally well with the SMOTE random forest model when 

measured by AUC. 

Compared to the SMOTE algorithm, the ROC random forest is much faster since it does 

not require any pre-processing steps on the data, and it is equally fast compared to random forest. 

Let 𝑛 be the number of training observations at one node, and 𝑘 be the number of unique classes, 

𝑚 be the number of features considered at this node, and 𝑠 be the average number of possible 

splits along each feature. Given the time complexity of calculating AUC is 𝑂(𝑛𝑙𝑜𝑔(𝑛)) [42], the 

time complexity of building a ROC tree node is 

𝑂(𝑚(𝑛𝑙𝑜𝑔(𝑛) + 𝑘𝑠)) 

On the other hand, the time complexity of building a CART tree node is  

𝑂(𝑚(𝑛𝑙𝑜𝑔(𝑛) + 𝑠)) 
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The majority of the time is spent on sorting the observations based by each feature to 

calculate the AUC and Gini impurity. Therefore the speed of building a ROC tree node should be 

the same as the speed of building a CART node. 

 

5.5 Summary of Performance 

The simulation results show the superiority of ROC Tree to CART and ROC random 

forest to traditional random forest on simulated imbalanced data sets when the trees are shallow. 

The ROC based methods outperformed traditional tree methods in all settings when the class 

percentage is 95%, 2%, 2% and 1%. The advantage of Multi-Class ROC tree/random forest will 

be more significant when  

 the classification problem is harder to differentiate. The splitting method based on 

the sum of all One vs. All AUC will tend to balance the AUC. 

 the dimension of the problem is higher. The advantage of Multi-Class ROC Tree 

will be able to cumulate as the dimension grows. 

Meanwhile, the multi-class ROC random forest outperformed the random forest in both 

setting 3 and setting 4, which indicates that the random forest framework works well on the ROC 

tree. The ROC random forest is able to achieve a better performance than traditional random 

forest when the depth restriction is small, which means the AUC based node selection method is 

more efficient in selecting the first several features and thresholds. 

The result of balanced classification simulations showed that ROC tree and ROC random 

forest performed equally well as CART and traditional random forest in different measures, 
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which means the splitting criteria based on AUC would not reduce the classifier performance in 

balanced classification settings. 

The performance of ROC forest on the UCI repository data shows that the ROC forest 

could achieve similar performance with the SMOTE algorithm without any data pre-processing 

steps. Note that in the process of SMOTE algorithm, it needs to find several nearest neighbors to 

generate synthetic minority examples, which requires 𝑂(𝑛2) time complexity for each generated 

node to search for its neighbors. Therefore the SMOTE algorithm is comparatively time 

consuming. It may take more time than building a random forest model, and increases the 

number of parameters a predicting system needs to tune. 

The time complexity of building a ROC tree node is similar to building a CART tree 

node. The majority of the time is spent on the sorting process to calculate the AUC and Gini 

impurity. Furthermore, in the ROC tree node selection process, the threshold of attributes that are 

not selected will not be used, which potentially reduce the computation load. The disadvantage 

of ROC forest is that it needs to turn categorical data into dummy variables, and in this case one 

node can only choose one level as the attribute. 

Generally speaking, the ROC Tree and ROC random forest are performing well in 

different data sets. They can be used as a solution for highly skewed classification problems. 

They can also be used in regression problems as an ensemble method, which is discussed in 

detail in Chapter VI. 
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Chapter VI: Ensemble Application on Boston Housing Data 

 

6.1 Ensemble and Model Stacking Introduction 

 Generally speaking, ensemble methods refer to methods that combine different classifiers 

to predict the target. Model stacking is part of ensemble methods, which means building meta 

models using but not limited to the predictions of other models. This stacking idea is first 

proposed by Wolpert in 1992 [24], and has since grown into a widely used technique in machine 

learning competitions. Almost all recent winning solutions of public competitions either used 

ensemble methods or deep learning methods.  

6.1.1 Bias Variance Tradeoff 

 The explanation to the ensemble methods is based on the bias-variance tradeoff theory. 

Suppose y is the target we want to predict using features X, and f is the true relationship between 

X and y that E[f(X)] = y. The model we built to predict y based on X is 𝑓, then the expected 

error of this model can be decomposed to two components shown below: 

𝐸 [(𝑦 − 𝑓(𝑋))
2

] =  𝐵𝑖𝑎𝑠[𝑓(𝑋)]2 + 𝑉𝑎𝑟 (𝑓(𝑋)) +  𝜎2 

where 𝐵𝑖𝑎𝑠[𝑓(𝑋)] = 𝐸[𝑓(𝑋) −  𝑓(𝑋)], and 𝑉𝑎𝑟 (𝑓(𝑋)) = 𝐸[𝑓(𝑋)2] − 𝐸[𝑓(𝑋)]2. Here 𝜎2 

represents the error contained in y [36]. 
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 Based on this formula, we can see that the error of a model actually comes from two 

parts, bias of the model and variance of the model. Figure 5 below explains this formula and the 

theory behind [37]. 

 

Figure 5: Bias Variance Tradeoff (S. Fortmann [37]) 

 

 The total error equals to the sum of Bias square and Variance, as it is shown in the 

formula. As the model becomes more complex, the bias will decrease and the variance will 

increase. We can see that the training error always decreases when we have more complex 

models, because a complex model will be able to learn more details than a simple model. 

However, these details might not be true relationship but some random errors, and in this case 

the variance of the complex model will increase, which will be an important part of the test error. 

For example, as we increase the number of trees in gradient boosting machine, the training error 
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will always go down, but the test error will start to go up at some point. This situation is also 

known as overfitting. 

6.1.2 Variance Deduction by Ensemble 

The major purpose of combining different classifiers is to reduce the variance of the 

models. As stated in Section 6.1.1, when the complexity of the model increases, the model will 

be able to learn more details of the training data. A polynomial regression will always has a 

larger 𝑅2 than linear regression on the training data, and a tree with depth n+1 will always has a 

smaller error rate than a tree with depth n on the training data. However, when the model is 

focusing on so many details in the training data, it actually learns this specific training data set 

instead of the possible relationship between the features and the target, which increase the 

variance of the model, because the model will change a lot if we have another training data from 

the same distribution. 

However, the decrease of bias and increase of variance happen at the same time a lot. 

Stacking methods can be used to reduce the variance of complex models while having the benefit 

of small bias. Take average ensemble for regression problems as an example. Suppose 𝐹 is the 

functional space which includes all functions mapping from the feature X to the target y, and 

𝑓𝑖  ∈ 𝐹, 𝑖 = 1, … , 𝑘 are the k models we built to predict y based on X. Suppose we have 

 𝐸 (𝑓�̂�(𝑋)) = 𝑦 + 𝜇𝑖, 𝑖 = 1, … , 𝑘 where 𝜇𝑖 are the bias of model 𝑓�̂�, and 

 𝑉𝑎𝑟 (𝑓�̂�(𝑋)) =  𝜎𝑖
2, 𝑖 = 1, … , 𝑘 where 𝜎𝑖

2 are the variances of model 𝑓�̂�. 

Then define the average ensemble 𝑓𝑘
′̂ =  

1

𝑘
∑ 𝑓�̂�

𝑘
𝑖=1 , and we can have 
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𝐸 (𝑓𝑘
′̂(𝑋)) = 𝑦 +  

1

𝑘
∑ 𝜇𝑖

𝑘

𝑖=1

 

and 

𝑉𝑎𝑟 (𝑓𝑘
′̂(𝑋)) =  

1

𝑘2
∑ 𝜎𝑖

2

𝑘

𝑖=1

+
1

𝑘2
∑ 𝐶𝑜𝑣(𝑓�̂�(𝑋), 𝑓�̂�(𝑋)) 

𝑖≠𝑗

 

In reality, the correlation between 𝑓�̂�(𝑋) will be very large. Suppose the correlation is 0.9 

between all 𝑓�̂� 𝑎𝑛𝑑 𝑓�̂�, and suppose 𝜎𝑖
2 =  𝜎𝑗

2 = 𝜎2, ∀ 𝑖, 𝑗, 𝑠. 𝑡. 1 ≤ 𝑖, 𝑗 ≤ 𝑘, which means the 

variance of all the models are the same. In this setting, we can have  

𝑉𝑎𝑟 (𝑓𝑘
′̂(𝑋)) =

1

𝑘
𝜎2 + 0.9 ∗

𝑘(𝑘 − 1)

𝑘2
𝜎2 = 0.9𝜎2 +

1

10𝑘
𝜎2 < 𝜎2 

Therefore, the average ensemble will reduce the variance of the models when the models 

have non-perfect correlation and similar variance. However, in reality, it is hard to tell the 

variance of a model, but the average ensemble will work when the models are less correlated and 

have similar performance.  

6.1.3 Ensemble Methods 

 The stacking methods can be roughly divided into two categories, depends on whether it 

requires extra training process or not. The first category includes the average ensemble 

mentioned above, the majority voting process used in random forest, and weighted average 

ensemble where the weights are based on the performance on the out of bag training data. This 

category doesn’t require extra training data, which is a large advantage since in most cases the 

feature space is very sparse and more data means better model performance. However these 
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methods are not able to ensemble the models differently for different observations, so they can’t 

learn complicated structures. 

The second category requires extra training data, which includes meta modeling (model 

stacking) and gradient boosting trees. The training process of gradient boosting trees is different 

from meta modeling, since it doesn’t require extra training data. The summation coefficient of 

each tree and each leaf in gradient boosting trees is calculated based on the same training data 

that built the tree. 

Meta modeling, or model stacking, refers to those methods that build a higher level 

model which integrates the prediction of base models. For example, we can build a logistic 

regression or linear regression model which takes the original features as well as the output of 

the base models as input to predict the label or the response. In this case we can have different 

ensemble for observations with different features. On the other hand, this also introduces more 

parameters into the model architecture, which increases the complexity of the final model and 

the risk of overfitting. 

In reality, the ensemble methods can be combined together to build several layers of 

models. In the Otto Group Product Classification Challenge on kaggle, the winning solution is 

based on a 3-layer learning architecture [38]. This solution uses 33 base models in the first layer, 

and 3 meta models in the second layer which takes the result of these 33 models and 7 other 

features as input. The third layer is a combination of weighted geometric mean and arithmetic 

mean of the 3 meta models. This complex architecture finally won this competition. 
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6.2 Data Introduction and Pre-processing 

 In this application, we are going to use Multi-Class ROC random forest as a meta model 

to predict the house price. We use different methods to build three base models to predict the 

house prices, and use ROC random forest to assign weight to the three base models. This method 

is compared to all the base models as well as other popular ensemble methods to show that 

ensemble is improving the performance and Multi-Class ROC random forest works well as an 

ensemble method in this data set. 

6.2.1 Boston Housing Data Introduction 

 The data set is called Boston Housing data, which is described in [32]. The data set has 

2930 rows and 82 columns. Each row represents a residential house sale record occurred within 

Ames from 2006 to 2010. Each column is a feature of the house, including Neighborhoods, 

Overall Condition, Year Built, Foundation, Ground living area, etc. The documentation of all the 

columns can be found in [39]. Observations with living area square feet larger than 4000 were 

removed because they are regarded as outliers in the documentation. There are 2925 observations 

after filtering. 

This data set is already used in several textbook for regression analysis. In this 

application, we are going to predict the Sale Prices of the home based on all other features 

excluding ID. 

6.2.2 Imputation and Evaluation 

 There are many missing values in the data so imputation is necessary before we start the 

modeling process. 42 out of the 82 features are categorical features, and there were only a few 

numerical features with missing data, which are Lot Frontage, Masonry Veneer Area, Basement 
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Square Feet, and Garage Year Built. These numerical features are imputed to be zero. For all the 

categorical features, missing data is treated as another level. 

 All the categorical features are transformed into dummy variables, which increase the 

number of features to 285. This is necessary because the gradient boosting trees and ROC 

random forest used here can only take numerical features. We used 80% of the data to be training 

data (2340 rows) and 20% of the data to be test data (585 rows) by random split. We further split 

the training data to sub model training data (1404 rows, 60%) and meta model training data (936 

rows, 40%) by random split. The reason that we further split the training data is to avoid 

overfitting of the meta model. The performance of each base models on the training data will be 

better than its performance on the testing data, therefore if we build the meta model using the 

same training data with the base models, there is a risk of overfitting, since the decrease of 

performance of each model on the testing data may not be the same. 

 The evaluation measure of the model performance is the logarithm root of mean square 

(log rmse), which is  

(
1

𝑛
∑(log(𝑝𝑟𝑒𝑑𝑖) − log(𝑡𝑟𝑢𝑒𝑣𝑎𝑙𝑢𝑒𝑖))2

𝑛

𝑖=1

)0.5 

 

6.3 Base Models 

 Three based models, gradient boosting trees (XGBoost package in R), random forest 

(randomForest package in R) and regularized regression (glmnet package in R), are used in this 

application. 
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6.3.1 XGBoost Model 

 The XGBoost package is chosen to build the gradient boosting trees because it is very 

efficient and has pretty good performance on a lot of data sets [41]. The response of the leaf in 

each tree is calculated by the first and second derivative of the cost function, which is deduced 

by Taylor expansion of the cost function. Therefore it is easy to change the cost function in 

XGBoost, and it takes comparatively less time to build the tree compared with the gbm package. 

Furthermore, the performance of an XGBoost model is pretty good, which makes it very popular 

in data science competitions. 

The gradient boosting tree model here used all 283 features and built 600 trees, which 

was selected by cross validation. The parameters are tuned to minimize the logarithm rmse on 

the test data. This model achieves a log rmse of 0.1194 on the meta training data and a log rmse 

of 0.1119 on the testing data. 

6.3.2 Random Forest Model 

 One advantage of random forest over gradient boosting trees is that it requires less effort 

to train the model. The random forest model used 283 features and 1000 trees, and this model 

achieves a log rmse of 0.1340 on the meta training data and a log rmse of 0.1164 on the testing 

data. The variable importance given by random forest showed that a lot of features contributed to 

the prediction, and the several most important features are general living area, overall quality, 

etc. 

6.3.3 Regularized Regression 

 The regularized regression model is chosen because it could achieve a much more robust 

result than tree based models. Although it could not learn any interactions between the features, 
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or non-linear relationship between the features and the target, it could provide a prediction less 

correlated to tree based methods, which is important to the ensemble part. 

 For this regularized regression model, some numerical features including last sold year, 

built year are not used since it doesn’t make sense to assign a coefficient strictly related with 

year, and some of the numerical features are imputed to 0. Since there are so many features in 

this problem, the feature space is very sparse, so we need to use large penalty to avoid 

overfitting. The final regularized regression model used both lasso and ridge penalization and 

there were 58 non-zero coefficients. The target of this model is the sale price after log 

transformation. This model achieves a log rmse of 0.1183 on the meta training data and a log 

rmse of 0.1073 on the testing data. 

6.3.4 Correlation of Base Models 

 The following Table 13 shows the correlation of the testing data prediction of the three 

base models. 

Table 13: Correlation on Testing Data of Each Base Model 

 XGBoost Random Forest Regularized Reg 

XGBoost 1 0.9906 0.9816 

Random Forest 0.9906 1 0.9819 

Regularized Reg 0.9816 0.9819 1 

 

 The correlation between all the base models are very high, since they are predicting the 

same response variable using the same features, and they all perform pretty well. However, there 

is still room for ensemble methods to improve based on this level of correlation. Furthermore, 
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the ensemble will be able to learn from a different set of training data, so they will perform better 

than the base models. 

 

6.4 Ensemble Methods for Comparison 

 Next we are going to compare several ensemble methods including average ensemble, 

Multi-Class ROC forest ensemble, classification random forest ensemble and regression random 

forest ensemble. 

6.4.1 Average Ensemble 

 The idea of average ensemble is simple, that for each testing observation we use the 

average of the three base model predictions to be the final prediction. This method doesn’t need 

extra training and achieves a log rmse of 0.1012 on the testing data with a standard deviation of 

0.00127 after 10 runs, which is better than any single base model. The average ensemble works 

well when the performance of each base model is close and the prediction of each base model are 

less correlated. 

6.4.2 Regularized Regression Ensemble 

 The regularized regression ensemble model is similar to the base regularized regression 

model. The regularization is a combination of L1 norm and L2 norm, and the model is trained 

with the 283 features as well as the predictions of the 3 base models on the meta training data to 

predict the sale price directly. This model can be regarded as an advanced version of weighted 

average ensemble because it is actually assigning weights to all the base models and calculates 

the weighted average of the model predictions. It is different from weighted average because it 
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also considers other features and has regularization to prevent overfitting. This method is able to 

find a set of weights to ensemble the base models and assign weights differently based on 

different value in the features. 

 The regularized regression ensemble achieves a log rmse of 0.1030 on the testing data 

with a standard deviation of 0.00342 after 10 runs. 

6.4.3 ROC Forest Ensemble 

 The multi-class roc random forest is a classification algorithm, therefore in order to use 

this algorithm to perform ensemble, we need to transform the regression ensemble problem to a 

classification one.  

 For each prediction on the meta training data, the model that gives the closest prediction 

is regarded as the target. Therefore the ensemble problem is transformed into a problem to 

predict the best model. The predictions are very close for some observations, so these 

observations are dropped. The criteria for acceptable labels are that it is the closest to the true 

label and the absolute deviance is at most two thirds of the average absolute deviance of the 

other two base models. After filtering out observations with obscure best model, we have 960 

rows in the meta training data. The ROC random forest is built with 30 trees using 283 features 

together with the prediction of the three base models to predict the best model. 

 After the prediction of this ROC random forest ensemble is given on each testing 

observation, we use the probability of each class to get a weighted average of the 3 base models 

as the ensemble prediction, because the weighted average can help reduce the variance of the 

final ensemble. The major advantage of applying ROC random forest here is that we are able to 

ensemble the predictions differently for observations with different features. 
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 The final ROC random forest ensemble achieves an average log rmse of 0.1006 with a 

standard deviation of 0.00207 after 10 runs.  

 The most representative tree in this ROC random forest ensemble is plotted below as 

Figure 6. 

 

Figure 6: The Most Representative Tree in Split Train ROC Random Forest Ensemble. The red number is 

the split point on that feature, the blue number is the score for xgboost model, the green number is the 

score for random forest model, and the yellow number is score for regularized regression model. 
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6.4.4 Classification Random Forest Ensemble 

 A classification random forest is applied on the same meta training data with the ROC 

random forest described in Section 6.4.3 for comparison. The classification random forest uses 

the same parameters with the ROC random forest and achieves an average log rmse of 0.1006 on 

the testing data with a standard deviation of 0.00194. 

 The most representative tree in this ensemble is plotted below as Figure 7. 

 

Figure 7: The Most Representative Tree in Split Train Classification Random Forest Ensemble. In the 

end nodes, RF indicates that the label for this node is the random forest base model, XGB indicates the 

label for this node is the XGBoost base model, and Reg indicates the label for this node is the regularized 

regression base model. 
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6.4.5 Regression Random Forest Ensemble 

 A traditional method to perform ensemble is to build a model using the predictions of the 

base models to predict the response. Here I use a regression random forest, which used all 283 

features as well as the prediction of the three base models, to build a meta model to predict the 

sale price directly. This regression random forest ensemble achieves an average log rmse of 

0.1063 with a standard deviation of 0.00186 on the testing data. 

 The most representative tree in the regression forest ensemble is plotted below. 

 

Figure 8: The Most Representative Tree in Split Train Regression Random Forest Ensemble. The number 

in the internal nodes indicates the split threshold, and the number in the terminal nodes indicates the 

response value for this node. 
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6.4.6 Comparison Summary  

The performance of each base model and ensemble method is summarized in Table 14 

below. The mean and standard deviation of the performance is calculated based on 10 different 

random splits of the base modeling training and meta model training data. Therefore a large part 

of the variance comes from the difference in training data. 

Table 14: Performance of each model on the testing Data 

Algorithm Model Type Test Log RMSE 

Gradient Boosting Tree Base Model 0.1072 ± 0.00243 

Random Forest Base Model 0.1144 ± 0.00138 

Regularized Regression  Base Model 0.1078 ± 0.00497 

Average Ensemble Ensemble Model 0.1012 ± 0.00127 

Regularized Regression Ensemble Model 0.1030 ± 0.00342 

ROC Forest Ensemble Ensemble Model 0.1006 ± 0.00207 

Classification Random Forest Ensemble Model 0.1006 ± 0.00194 

Regression Random Forest Ensemble Model 0.1063 ± 0.00186 

 

 From the table it is easy to see that all ensemble method improve the performance on the 

testing data including the average ensemble. The ROC random forest ensemble has the lowest 

average on the testing data, followed by the classification random forest. Most ensemble 

methods excluding the regularized regression ensemble have smaller variance than base models, 

which agrees with the theory in Section 6.1.  

The classification ensemble scheme performs better than the regression ensemble 

scheme. One reason behind is that the problem is very sparse and too many features in the 
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regression ensemble model will lead to overfitting. On the other hand, there might be overfitting 

in the classification ensemble scheme as well, but the classification ensemble scheme uses 

weighted average of the base models as final prediction, which increases the stability of the 

system. 

The model performance across each run is shown in the figure below using a line plot. 

 

Figure 9: Model Performance on Testing Data. This figure shows the performance of separated trained 

base models and ensemble models on the testing data. 

 

One of the advantages of ROC random forest over random forest is that it is much more 

stable, however it is not obvious in this setting because most of the variance comes from the 
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random split of the training data. It is also the reason that the regularized regression has such 

high variance, which is supposed to be more stable than random forest, as shown in Section 6.5.  

 

6.5 Overlapping Ensemble 

 Note that this problem is very sparse, and it is hard for classifiers to achieve a good 

performance with such limited training data. As a result, none of the four ensemble methods we 

compared above has significant advantage over the average ensemble. In this case we would like 

to check the result when we use all the training data to train the base models and perform 

ensemble training on the same training data. 

6.5.1 Fine Tune Gradient Boosting Tree Model 

 Before we move to the overlapping ensemble part, it is important to check the best 

performance a single layer model could achieve, since the models trained for ensemble have to 

minimize the performance difference between training data and testing data. 

 Therefore a fine-tuned XGBoost model is built using all the training data, which achieves 

a log rmse of 0.0629 on the training data and a log rmse of 0.0998 on the testing data. The single 

XGBoost model is selected because it performs better than single random forest and regularized 

regression model. 

6.5.2 Full Train Base Models for Ensemble 

 In this situation that the base models and the ensemble models are trained with the same 

training data, it’s very important to control the difference of base model performance on the 
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training data and their performance on the validation data. Therefore in this case, the target of the 

training is to control the variance of the base model instead of minimizing the total error. 

 The XGBoost base model is trained with 400 trees and it only considers at most 3 way 

interactions to avoid overfitting. This model achieves a log rmse of 0.1025 on the training data 

and a log rmse of 0.1051 on the testing data.  

 The random forest base model is trained with a max nodes restriction of 2^6, which 

means the depth of each tree is at most 6. If there are no restrictions on random forest, each tree 

would be fully grown and each leaf will have exactly one observation. In this case the 

performance on the training data will be much better than the performance on the testing data. 

Therefore it is important to place restriction on random forest. This random forest model with all 

the training data gives a log rmse of 0.1300 on the training data and a log rmse of 0.1254 on the 

testing data. 

 The regularized regression base model is using a smaller penalty and it has 136 non zero 

features. This model achieves a log rmse of 0.1082 on the training data and a log rmse of 0.1021 

on the testing data. 

 The correlation of testing data prediction of all the base models is shown in the following 

Table 15. We can see that the correlation is less than those in Section 6.3.4, because the base 

models here are not optimizing the testing data performance but control the difference of 

performance on the training data and testing data. 

Table 15: Correlation between Each Full Train Base Model 

 XGboost Random Forest Regularized Reg 

XGBoost 1 0.9883 0.9879 
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Random Forest 0.9883 1 0.9764 

Regularized Reg 0.9879 0.9764 1 

 

6.5.3 Full Train Ensemble Models 

 The ensemble models are trained similarly with Chapter 6.4. The performance of each 

base model and ensemble methods are summarized in the following Table 16. The mean and 

standard deviation is calculated by 10 repeated runs. The standard deviation here is much smaller 

than Section 6.3 and 6.4 because the training data remains the same for all models. Note that the 

performance of the base XGBoost model and the base regularized regression model are not 

changing because there is no randomness in regularized regression and the random seed in 

XGBoost model is the same. 

Table 16: Performance of each model on the testing Data 

Algorithm Model Type Test Log RMSE 

Gradient Boosting Tree Base Model 0.1051 ± 0 

Random Forest Base Model 0.1254 ± 0.00023 

Regularized Regression Base Model 0.1021 ± 0 

Gradient Boosting Tree Single Model 0.0998 

Average Ensemble Ensemble Model 0.1015 ± 0.00010 

Regularized Regression Ensemble Model 0.0994 ± 0.00018 

ROC Random Forest Ensemble Model 0.0987 ± 0.00008 

Classification Random Forest Ensemble Model 0.0992 ± 0.00041 

Regression Random Forest Ensemble Model 0.1046 ± 0.00113 
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 The following Figure 10 shows the performance of each model across all runs. 

 

Figure 10: Model Performance on Testing Data. This figure shows the performance of overlapping 

trained base models and ensemble models on the testing data. The performance of random forest is 

dropped to control the performance difference on the testing data and training data. 

 

 The following Figure 11 enlarges the performance of the best four models, the ROC 

random forest ensemble, regularized regression ensemble, classification random forest ensemble 

and the single XGBoost model. 
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Figure 11: Enlarged Model Performance on Testing Data. The data shown in this figure is the same to 

Figure 7. The performance of the best models is enlarged in this figure. 

 

 From this figure we can see that ROC random forest has a large advantage over other 

ensemble methods, and most ensemble methods performs better than single fine-tuned model. 

 The classification random forest and ROC random forest are built using the same training 

scheme that they are all predicting the closest base model and use class probability to ensemble 

the base models. The result shows that ROC random forest has advantage over classification 

random forest in this ensemble application in both average performance and stability. 
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 The regularized regression ensemble and regression random forest ensemble are built on 

same training scheme that they are all predicting the response directly using the features as well 

as the predictions of the base models. This training scheme is not performing as well as the 

classification one above. One reason for this is that the regression scheme may put too much 

weights in the base model outputs instead of the base features, as shown in the following 

representative trees. 

 The following figure shows the most representative tree in ROC random forest ensemble. 

 

Figure 12 The Most Representative Tree in Overlapping Train ROC Random Forest Ensemble. The red 

number is the split point on that feature, the blue number is the score for xgboost model, the green 

number is the score for random forest model, and the yellow number is score for regularized regression 

model. 
 

 The following figure shows the most representative tree in classification random forest 

ensemble. 
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Figure 13:The Most Representative Tree in Overlappling Train Classification Random Forest Ensemble. 

In the end nodes, RF indicates that the label for this node is the random forest base model, XGB indicates 

the label for this node is the XGBoost base model, and Reg indicates the label for this node is the 

regularized regression base model. 
 

 The following figure shows the most representative tree in regression random forest 

ensemble. 
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Figure 14 The Most Representative Tree in Overlapping Train Regression Random Forest Ensemble. The 

number in the internal nodes indicates the split threshold, and the number in the terminal nodes indicates 

the response value for this node. 

 

 From these representative trees along with representative trees in the split training 

scheme, we can see that the regression random forest ensemble is heavily using the prediction of 

the base models instead of the features. On the other hand, the ROC random forest and 

classification random forest is trying to ensemble the models based on the features of the data, 

which maybe the reason that they are more stable and accurate. 
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6.6 Boston Housing Data Application Summary 

 First of all, this application shows that ensemble methods are able to perform better and 

more stable than a fine-tuned single model, which agrees with the bias-variance tradeoff theory 

in Section 6.1. Among all the algorithms tested in this application, the ROC random forest is the 

best one in both splitting training scheme and overlapping training scheme. The top three models 

in this problem are overlapping trained ROC random forest, overlapping trained classification 

random forest and overlapping trained regularized regression. The main reason for this is that the 

ROC random forest is able to consider the sensitivity and specificity of all the classes and use the 

prior probability to adjust the prediction. 

 Secondly, this application shows that the ensemble methods could be used even in sparse 

problems. The Boston housing data has a lot of features and comparatively less training data. 

Therefore when we split the training data to base model training part and meta model training 

part, it is hard for us to achieve an excellent ensemble model. In this case, we can also use the 

training data twice for both base model and ensemble model, which is shown in Section 6.5. The 

key in this is to prevent overfitting in the base models, so that their performance on the training 

data is very close to their performance on the testing data. This is pretty hard for random forest, 

since random forest with loose regularization would achieve much better performance on the 

training data than testing data. Therefore there is a performance drop for random forest in the 

overlapping training part. 

 However, with these base models, the ensemble methods could achieve better 

performance than the split training part, and they are also performing better than a fine-tuned 
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single gradient boosting tree model. Therefore when the data is very sparse, we may want to use 

the whole training data for both base model training and ensemble model training. 

 Thirdly, this application shows that the classification ensemble scheme is better than the 

regression ensemble scheme, and ROC random forest is performing better than classification 

random forest in this scheme. The probability of the classification ensemble models is used to get 

a weighted average of all the base models, which could be the reason it is performing better, 

since weighted average could directly reduce the variance of the models.  

Generally speaking, the last layer of an ensemble scheme should be a simple one like a 

weighted average to achieve robustness and reduce variance of the models. The classification 

scheme could help to utilize all the features but also keep the weighted average process, which is 

an advantage over simple weighted average and the regression scheme. On the other hand, 

although the regression scheme is also using all the features, it has a larger risk of overfitting as 

an ensemble model. 

 Finally, there are several key points in using the ensemble methods to improve the model 

performances, which are summarized below. 

 The base models have similar performance but low correlation on testing data prediction. 

The lower the correlation is, the better performance the ensemble methods could achieve. 

 The base models are performing similarly on the meta training data and testing data so 

that the risk of overfitting in ensemble model is reduced. 

 Use robust ensemble method in the final layer of the ensemble scheme. 
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Chapter VII: Conclusion and Future Work 

  

The multi-class ROC random forest proposed in this dissertation is developed from the 

ROC random forest proposed by B. Song [17]. It expands the binary ROC RF to multi-class 

cases by applying the one versus all idea. In the node attribute selection stage, it considers the 

AUC of all one versus all classifier and selects the attribute that provides the largest sum of the 

AUC. In the node threshold selection stage, it considers the harmonic mean of sensitivity and 

specificity of all the one versus all classifiers. By this design, the ROC random forest is able to 

(1) perform multi-class classification and (2) balance the performance on sensitivity and 

specificity for all classes. Furthermore, the prior probability of each class is considered in the 

random forest scheme, so that the minority class will have a reasonable weight adjustment. This 

is a parameter a user could tune during the modeling process. The multi-class ROC random 

forest shows its advantage on performance and speed in classification problems based on 

simulated data and UCI repository data. 

 Moreover, as a classification algorithm, the multi-class ROC random forest can also be 

used in regression problems as an ensemble methods, as shown in Chapter 6. The ensemble 

problem can be transformed into a classification problem by predicting which model is the best 

performing model, and the probability of each model could be used to obtain a weighted average 

of all the base models. This ensemble scheme combined with multi-class ROC random forest is 

performing better than all other ensemble methods tested and the best single XGBoost model in 

the Boston housing data. 
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 The multi-class ROC random forest also shares some disadvantages with other 

algorithms. The first disadvantage is that the ROC random forest has to turn categorical features 

into dummy features, therefore it can only use one level of the categorical feature in one node. 

This solution is also used in linear regression, XGBoost, SVM, but the traditional random forest 

could utilize all the levels in one node. The second disadvantage is that the ROC random forest 

still has implicit regularization including max depth and minimum leaf size. This makes the 

model hard to tune. The Regularized Greedy Forest [35] provides a scheme to use direct penalty 

to control the regularization process, which could also be used on ROC random forest. 

 To summarize, the multi-class ROC random forest is recommended in highly imbalanced 

classification problems when the target is to maximize the AUC of the model prediction. It can 

also be considered as an alternative ensemble method in both classification and regression 

problems. 
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