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Abstract of the Dissertation 

Using Plant Traits to Predict Denitrification in Wetland Ecosystems 

by 

Mary Alldred 

Doctor of Philosophy 

in 

Ecology and Evolution 

Stony Brook University 

2013 

Understanding how changes in ecological communities affect ecosystem function, including the 

provisioning of ecosystem services, is a critical challenge in the field of ecology.  I apply a trait-

based approach to link the characteristics of plant communities to their effects on denitrification 

and nitrogen-removal ecosystem services.  My work has addressed this challenge at multiple 

scales using literature syntheses, field surveys, field manipulations, and greenhouse experiments.  

In a meta-analysis of 419 published measurements of denitrification, I estimated that vegetation 

on average increases the ability of marshes to remove nitrogen by 55% and that this effect differs 

among species.  My study was the first to quantify the general effect of wetland vegetation on 

this globally important term of the nitrogen cycle.  I pursued two field projects to explain 

variation among species by investigating interactions among plant traits and sediment properties 

and processes.  In the first, I determined that removing an invasive marsh grass, Phragmites 

australis, increased sediment nitrogen concentrations and decreased denitrification relative to 

marshes containing invasive Phragmites or native cattail species.  These results suggest a trade-

off between removing invasive species to conserve biodiversity and managing wetlands to 

promote nitrogen removal.  The second field project addressed interactions between traits of 

dominant salt marsh grass Spartina alterniflora and ecosystem properties and processes along a 

land-use gradient on Long Island, NY.  Root growth of S. alterniflora responded positively to 

salinity and negatively to nitrogen availability, suggesting that eutrophication and sea-level rise 

may have opposing effects on root mass, and therefore marsh stability, in the future.  Results 

from greenhouse experiments, which employed a novel combination of oxygen-sensitive planar 

optodes and microbial process measurements, suggested that S. alterniflora roots influence 

nitrification and denitrification rates by introducing oxygen to sediments.  Field measurements 

from Long Island marshes confirmed that plant traits are useful predictors of denitrification 

potential among wetland sites, offering superior estimates relative to those obtained from abiotic 

predictors.  Results also suggest that the influence of plant communities on denitrification scales 

positively with aboveground biomass.  Together my results support the utility of trait-based 

approaches in understanding the role of plant communities in promoting nitrogen-removal 

services in wetland ecosystems.  
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Chapter 1 

Introduction 

 Human activities have profoundly transformed the structure and function of ecosystems 

on a global scale.  Many of these transformations, including agricultural and industrial land-use 

development, have increased the well-being and economic prosperity of human societies.  

However, these transformations have also caused substantial negative impacts on ecosystem 

services, including regulation of air and water quality, with potentially severe consequences for 

human health and well-being (Millennium Ecosystem Assessment 2005).  Simultaneously, 

humans have altered biodiversity and the composition of ecological communities worldwide 

(Chapin III et al. 2000).  Ecological communities are generally understood to affect ecosystem 

processes and services (Tilman 1999, Loreau et al. 2001, Hooper et al. 2005).  However, 

predicting how changes in biodiversity will alter ecosystem services remains a central problem in 

the field of ecology, and one that requires a synthesis of knowledge from the subdisciplines of 

physiological, community, and ecosystem ecology (Naeem 2002, Kremen 2005).  

 A trait-based framework offers one promising approach to bridge the gaps among various 

subdisciplines of ecology and to address interactions between community and ecosystem 

processes.  Trait-based approaches have been around for some time (Keddy 1992, Eviner and 

Chapin III 2003) and continue to generate enthusiasm for their potential to produce general, 

predictive models in ecology by focusing on the mechanistic links among organism 

characteristics, organism performance, and the environment (Lavorel and Garnier 2002, McGill 

et al. 2006, Lavorel and Grigulis 2012).  Unfortunately, adoption of the word “trait” by multiple 

subdisciplines in ecology has led to considerable confusion over what measurements a trait, or a 

“functional trait,” can encompass (Violle et al. 2007).  Most of this confusion arises from the 
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several reasons traits may be studied.  In physiology or functional ecology, traits are typically 

studied to infer how a particular organism will respond to fluctuations or directional changes in 

its environment.  The idea of a trait as a species characteristic is also employed by community 

ecologists when defining the fundamental niches of species, and to explain patterns of species 

interactions that ultimately govern the realized niches of species (McGill et al. 2006).  This usage 

is similar to the concept of “response trait” proposed by Lavorel and colleagues to explain 

responses of plant communities to abiotic change or disturbance (Lavorel and Garnier 2002).  In 

ecosystem ecology, traits most commonly refer to those characteristics of organisms that affect 

ecosystem properties or processes (Suding et al. 2008, Ehrenfeld 2010).  Since the focus is the 

effect of the trait on the environment, it is not necessary that the trait be a stable characteristic of 

a species; the same effect would result if the trait value were the result of changing species 

composition or plastic phenotypic responses to the environment within resident species.  

Moreover, when traits are studied for their influence on the ecosystem, they are measured or 

integrated at a scale that is relevant to the ecosystem process of interest.  Often this means 

averaging a trait value over many co-existing species within an ecosystem.  This usage is similar 

to the concept of “effect trait” proposed by Lavorel and colleagues (Lavorel and Garnier 2002). 

 An organismal trait can simultaneously be both an effect and a response trait.  In fact, 

where the goal of a study is to predict how a change in community structure may alter ecosystem 

function, an overlap in response and effect traits is the ideal scenario (Lavorel and Garnier 2002).  

For example, in grasslands of Central Europe, nutrient enrichment favored the dominance of 

plant species with higher specific leaf area, leaf nitrogen content, and maximum photosynthetic 

rate, without having an overall impact on standing biomass of the plant community.  The net 

effect of this change in the trait composition of the plant community was to increase the annual 
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net primary productivity (ANPP) of the nutrient-enriched grasslands (Lavorel and Garnier 2002).  

In this example, using a trait-based approach offered a mechanistic explanation of how plant 

communities responded to nutrient enrichment and how this community-level response in trait 

composition affected ANPP, an important ecosystem process.  Rather than favoring species that 

achieve higher peak biomass, nutrient enrichment in this case resulted in selection for species 

with traits that conferred higher maximum photosynthetic rates per unit biomass.  To the extent 

that these traits respond to other environmental changes (e.g., drought, temperature, rising 

atmospheric CO2), the same framework could be applied to predict the consequences of trait 

responses for community composition, as well as the effect of the new community on ANPP. 

A fundamental strength of a trait-based approach is that it is flexible enough to be applied 

at multiple scales, depending on the question of interest.  For example, in systems dominated by 

a single species (e.g., agricultural or monospecific wetland systems), trait dynamics may operate 

on an intraspecific level, often resulting from phenotypic plasticity or selection on standing 

genetic variation.  In contrast, in extremely diverse communities, the trait variation of interest 

may result from replacement of some taxa with others possessing different traits.  In either case 

similar trait-based frameworks can be applied, in which the response and effect traits of interest 

are identified, assessed at a scale relevant to the ecosystem process of interest, and 

mechanistically linked to predict outcomes for ecosystem function. 

Human modification of the global nitrogen cycle presents a considerable management 

challenge for which a trait-based approach may prove useful.  By adding an industrial fixation 

term to the global nitrogen cycle and increasing rates of biological fixation (Figure 1.1), human 

activities have more than doubled the amount of biologically available nitrogen added to 

landscapes (Vitousek et al. 1997).  In aquatic ecosystems, excess nitrogen can result in 
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eutrophication, hypoxia, and harmful algal blooms, all of which have severe consequences for 

human health and economics (Millennium Ecosystem Assessment 2005).  Denitrification, a 

microbial respiratory process in which nitrate is permanently removed from ecosystems to the 

atmosphere as inert dinitrogen gas (Figure 1.1), helps to counteract these effects and thus 

represents a critical ecosystem service (Zedler 2003, Hinga et al. 2005).   

Wetland ecosystems are important sites of denitrification, and wetland plant communities 

are known to influence sediment chemistry and denitrification rates by altering organic carbon 

availability and the redox conditions of sediments through root aeration (Figure 1.2) (Sherr and 

Payne 1978, Weisner et al. 1994, Bachand and Horne 2000).  Denitrifying microbes require 

organic carbon as an energy source and nitrate as an electron acceptor.  Because oxygen yields 

greater energy, microbes will use oxygen preferentially when it is available; therefore, oxygen 

concentrations must be low before denitrifiers will use nitrate as a terminal electron acceptor for 

respiration.  However, because the dominant form of nitrogen in anoxic systems tends to be 

ammonium (Figure 1.2A), denitrifiers commonly rely on the production of nitrate via microbial 

nitrification, which requires oxygen to proceed (Figure 1.2B).  Therefore, highest denitrification 

rates are often observed in systems that experience variation in oxygen availability, such that 

sufficient oxygen is available for the production of nitrate via nitrification, but low oxygen 

conditions also exist and induce denitrifiers to switch from reducing oxygen to reducing nitrate 

(Seitzinger et al. 2006).  Plant-mediated sediment aeration is one mechanism that may promote 

coupled nitrification-denitrification by increasing spatial (Figure 1.2C) or temporal (Figure 1.2D) 

variation in sediment oxygen availability. 

Figure 1.3 presents a conceptual framework that incorporates the various possible 

influences of plant communities on denitrification potential as interactions between components 
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of the nitrogen cycle and traits of the plant community.  In general, traits that increase sediment 

aeration may have a direct negative influence on denitrification by providing a superior oxidant 

or an indirect positive influence on denitrification by enhancing the production of nitrate via 

nitrification (Figure 1.2B).  Belowground traits associated with sediment ventilation, like root 

mass or rhizome width, could impact delivery of oxygen or spatial variation in oxygen delivery 

(Armstrong and Armstrong 1990, Armstrong et al. 1996).  Aboveground traits like maximum 

photosynthetic rate, or proxies of photosynthetic potential including specific leaf area or leaf 

nitrogen content, could also be related to diurnal variation in oxygen production (Armstrong and 

Armstrong 1990, Wright et al. 2004, Reich et al. 2007).  Litter quality and root production may 

influence carbon availability and quality and enhance denitrification potential, albeit on very 

different timescales, with root exudation influencing short-term carbon dynamics and litter 

quality influencing long-term carbon dynamics via decomposition and nutrient recycling (Hume 

et al. 2002a, b).  Conversely, traits associated with high nitrogen demand or accumulation of 

nitrogen in recalcitrant biomass would result in competition with microbes for nitrogen and may 

inhibit denitrification rates. 

The goal of my dissertation was to apply a trait-based framework to understand how plant 

communities modify nitrogen cycling processes and nitrogen-removal services in wetland 

sediments.  In Chapter 2, I conducted a systematic review and meta-analysis of 419 published 

measurements of denitrification to determine whether denitrification rates vary systematically 

among different wetland communities, defined by the dominant species in the community.  I also 

determined the general effect of vegetation on denitrification rates and whether this effect varies 

among wetland communities.  Chapters 3 and 4 applied an effect-trait approach to predict the 

influence of dominant salt marsh grass Spartina alterniflora on denitrification potential.  In 
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Chapter 3, to establish sediment aeration as a mechanism by which S. alterniflora influences 

denitrification rates, I applied a novel combination of oxygen-sensitive planar optode methods, 

microbial process assays, measurements of sediment chemistry, and quantification of plant traits 

in mesocosm-scale greenhouse experiments.  In Chapter 4, I used plant traits to predict 

denitrification potential among 11 salt marsh locations on Long Island, NY that span a gradient 

of land-use and nitrogen-loading intensity.   

Wetlands have been heavily impacted by humans, with over 50% of global wetland area 

lost to human development and much of the remaining area degraded or threatened due to such 

pressures as sea-level rise, salinization, eutrophication, and invasion by exotic plant species 

(Zedler and Kercher 2005).  In Chapters 5 and 6, I focused on trait responses in wetland plant 

communities resulting from sea-level rise, eutrophication, and invasive-species management.  

Belowground growth in coastal plants is a critical determinant of marsh stability and the ability 

of wetlands to keep pace with sea-level rise; however, the responses of belowground traits to 

nutrient enrichment and salinity remains an open question in coastal marsh ecology despite a 

long history of study (Valiela et al. 1976, Mendelssohn and Morris 2000).  In Chapter 5, I 

established the responses of belowground traits of Spartina alterniflora to salinity and nutrient 

conditions among 11 field sites varying in nitrogen-loading intensity and salinity.  In Chapter 6, I 

monitored removals of Phragmites australis, an invasive marsh grass, from freshwater tidal 

wetlands of the Hudson River and compared treated removal sites to intact Phragmites 

communities and native Typha angustifolia communities.  The trait composition of plant 

communities that recolonized treated sites was compared to both Phragmites- and Typha-

dominated communities, and changes in nitrogen-removal services were assessed following 

invasive-plant management. 
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Together, these chapters represent the application of a trait-based conceptual framework 

to address the critical and difficult challenge of predicting how changes in wetland plant 

communities may alter present and future patterns of denitrification and nitrogen-removal 

ecosystem services. 
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Figure 1.1:  Diagram showing major transformations of the nitrogen cycle.  Human activities 

have increased inputs of biologically available nitrogen to ecosystems by increasing rates of 

biological fixation and adding an industrial fixation term to the global nitrogen cycle.  Microbial 

denitrification permanently removes biologically available nitrogen in the form of nitrate (NO3
-) 

from ecosystems to the atmosphere as inert nitrogen gas (N2). 
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Figure 1.2:  Example of root-mediated sediment aeration, one potential mechanism by which 

plants may influence sediment chemistry and denitrification.  (A) Because wetland sediments are 

saturated, the dominant form of inorganic nitrogen is reduced ammonium (NH4
+).  (B) Plants 

may introduce oxygen to sediments via stems and roots, either diffusively from the atmosphere 

or as a product of photosynthesis.  (C) Once oxygen is present, nitrifying bacteria may oxidize 

ammonium to nitrate (NO3
-).  Nitrate from nitrification may diffuse to anoxic sediment sites, or 

(D) remain in the sediment until oxygen is depleted (e.g. via net respiration at night), and be 

reduced to N2 gas by denitrifying bacteria.  Therefore, plant characteristics that enhance spatial 

or temporal variation in oxygen availability should also be expected to promote coupled 

nitrification-denitrification.  

(A) (B) (C) (D) 
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Figure 1.3:  Conceptual framework linking key processes of nitrogen cycling and nitrogen-

removal services (brown) to changes in the trait composition of plant communities (green).  

Solid lines indicate positive interactions, and dashed lines indicate negative interactions.  



 

Page 11 

Chapter 2 

Effects of wetland plants on denitrification rates: a meta-analysis 

Abstract  

Human activity is accelerating changes in biotic communities worldwide.  Predicting impacts of 

these changes on ecosystem services such as denitrification, a process that mitigates the 

consequences of nitrogen pollution, remains one of the most important challenges facing 

ecologists.  Wetlands especially are valued as important sites of denitrification, and wetland 

plants are expected to have differing effects on denitrification.  Here I present the results of a 

meta-analysis, conducted on 419 published estimates of denitrification in wetlands dominated by 

different plant species.  Plants increased denitrification rates by 55% on average.  This effect 

varied significantly among communities as defined by the dominant plant species, but 

surprisingly did not differ substantially among methods for measuring denitrification or among 

types of wetlands.  I conclude that mechanistically linking functional plant traits to 

denitrification will be key to predicting the role of wetlands in nitrogen mitigation in a changing 

world. 

Introduction 

Identifying general relationships between biotic community structure and ecosystem 

function is a key challenge facing ecologists.  Changes to biotic communities that result from 

global climate change, sea-level rise, species introductions, or selected harvesting are likely to 

have a substantial effect on biogeochemical processes (Chapin III et al. 2000, Lavorel and 

Garnier 2002, Kremen and Ostfeld 2005).  Nonetheless, attempts to link simple measures of 

community structure to ecosystem process have often met with limited success (Lawton 1999, 

Simberloff 2004).  For example, a large number of studies has found that relationships between 
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biodiversity and a number of biogeochemical processes are often complex and statistically weak 

(Hooper et al. 2005).  Such a result is not necessarily surprising.  Ecosystem processes are often 

most strongly influenced by those organisms in a community that contribute most to biomass and 

productivity, or which play unique biogeochemical roles (Lavorel and Garnier 2002, Suding et 

al. 2008).  Due to differences in key traits, dominant organisms can vary widely in their effects 

on the local chemical and physical environment, as well as on other species in the community 

(Eviner and Chapin III 2003, Laughlin 2011).  Therefore, one may expect ecosystem processes 

to be closely linked to the identity of the dominant species in an ecosystem.   

Here I apply meta-analytic techniques to relate published values of wetland 

denitrification to plant community composition as defined by the dominant species present.  This 

study represents an important first step in a broader effort to develop a more mechanistic 

incorporation of community structure into models of the nitrogen cycle.  Humans have more than 

doubled the amount of nitrogen fixation on a global basis, with highly industrialized areas 

experiencing mineralized nitrogen concentrations up to 25 times that of pre-development 

concentrations (Vitousek et al. 1997, Hinga et al. 2005).  Movement of excess fixed nitrogen into 

downstream ecosystems, particularly nitrogen-limited coastal ecosystems, results in 

eutrophication, hypoxia, and harmful algal blooms, all of which may have severe consequences 

for the economy and human health (Hooper and Vitousek 1997, Vitousek et al. 1997, Hinga et al. 

2005, Howarth et al. 2011).  Denitrification, a microbial process in which nitrate is permanently 

removed from ecosystems to the atmosphere as inert dinitrogen gas (N2), can help to mitigate the 

effects of mineralized-nitrogen pollution (Zedler 2003, Jordan et al. 2011).  Consequently, 

estimating denitrification at landscape scales is a critical goal for managers of aquatic and coastal 

ecosystems (Hinga et al. 2005, Groffman et al. 2009).  Wetland sediments are particularly 
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important sites of denitrification because their anaerobic nature favors complete reduction of 

mineralized nitrogen to N2 gas, while minimizing the release of the intermediate product, N2O, a 

powerful greenhouse gas (Kralova et al. 1992, Schlesinger 2009).   

Wetland plants are generally understood to play an important role in nitrogen removal by 

altering the sediment environment in which denitrification occurs (Caffrey et al. 2007).  

Denitrification is an anaerobic bacterial respiratory process that requires nitrate (NO3
-, an 

oxidizing agent), organic carbon (as a reducing agent) and low O2 concentrations to proceed.  In 

several cases, plants have been shown to control sediment denitrification dynamics by competing 

for nitrate (Schimel et al. 1989, Kirk and Kronzucker 2005), supplying labile organic carbon 

(Hume et al. 2002b), and introducing oxygen via diffusion from roots (Caffrey and Kemp 1990, 

Caffrey and Kemp 1992).  Research on plant invasions has further revealed that changes in the 

composition of plant communities can have a major effect on sediment microbial processes 

(Ehrenfeld 2003), including denitrification (Windham and Meyerson 2003).  The extent and 

composition of wetland plant communities are changing rapidly due to species introductions, 

land-use changes, sea level rise, and climate change (Bertness et al. 2002, Ehrenfeld 2003).  

Because plants differ in functional characteristics that may influence denitrification, broad scale 

changes in the composition of plant communities may substantially alter denitrification rates of 

future landscapes.   

Despite the growing realization that vegetation may exert considerable control over 

denitrification rates, to date no attempts have been made to assess the generality of plant-

mediated effects and incorporate these effects into predictive denitrification models (Boyer et al. 

2006).  Instead, efforts have more typically focused on abiotic factors, such as hydrography, 

water chemistry, and sediment characteristics, which are relatively easy to characterize and 
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whose potential influence on denitrification is often more clearly understood.  The influence of 

plant communities on denitrification may be hard to disentangle from the influence of abiotic 

variables because plant community structure may be correlated to a number of physical and 

chemical variables.  Methodological concerns also pose problems for attempts to build predictive 

models from existing observations.  Researchers have developed diverse techniques for 

measuring small rates of N2 production against the enormous background concentrations in the 

atmosphere (Groffman et al. 2006).  Whether these various methods provide comparable 

estimates of denitrification rates remains one of the greatest concerns in denitrification research.  

As an example, acetylene-inhibition methods have been found to underestimate denitrification 

rates relative to direct measurements of nitrogen-gas production (Watts and Seitzinger 2000).  If 

any type of method tends to be used more in a given plant community, spurious correlations 

between plant communities and measured denitrification could result.  Alternatively, variation 

among methods may obscure any relationships between plant community structure and 

denitrification that actually exist. 

Here I synthesize the results of a large number of denitrification studies conducted in well 

characterized plant communities from across the ecological and engineering literature.  Using 

this extensive database, I determine whether denitrification rates differ among communities 

dominated by specific plant species.  I also evaluate the relative importance of the type of 

wetland system in which the studies were conducted and the methods used to measure 

denitrification in explaining the variation in denitrification rates among studies.  The presence of 

nearby non-vegetated control plots or treatments in a number of studies allow me to control for 

geophysical context and methodology by calculating an effect size for vegetation on 

denitrification rates.  Using the effect-size metric, I test for generality in the effect of vegetation 
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on denitrification rates among plant communities.  I conclude by exploring possible approaches 

for predicting what effects specific plant communities will have on sediment denitrification rates. 

Methods 

 To develop an exhaustive data set, I performed a systematic review using Web of Science 

and Google Scholar databases using the key terms “wetland AND plant AND denitrification.”  I 

expanded this search by including all studies cited in key review papers examining variation in 

denitrification rates or the effects of plants on geochemical processes (Cornwell et al. 1999, 

Ehrenfeld 2003, Caffrey et al. 2007), and I searched for all papers citing any of these reviews.  

Publication dates ranged from earliest available publications to studies published in 2010.  Once 

a list of potentially useful studies was compiled, I examined each study systematically to include 

only those that measured denitrification rates within well characterized plant communities.  

Among these studies, plant communities were most often characterized by the dominant species 

inhabiting the community; therefore, I only included studies that reported a denitrification rate 

measurement associated with a dominant species in the community.  Where percent composition 

was specified, the “dominant species” classification was only used if the species comprised 

greater than 50% of the biomass or cover within a plant community.  On several occasions in 

which the inputs to a wetland system were known or easily determined, investigators quantified 

other fates of nitrogen, such as plant uptake, and calculated denitrification by mass balance.  If 

studies used either nitrogen removal (ammonium or nitrate removal) or mass balance to calculate 

denitrification, I required that they quantify other fates of nitrogen inputs or justify that 

denitrification was the dominant form of nitrogen removal within their system.  Mass-balance 

studies that failed to meet these criteria were assumed to overestimate denitrification rates and 

were discarded. 



 

Page 16 

 For each plant community studied in an article, the average denitrification rate, as well as 

the error and sample size for that average, was recorded.  Where multiple averages were 

recorded, I included only those averages that were collected during the growing season at 

independent wetland locations (or in separate laboratory or field containers).  For each average 

denitrification measurement, I recorded the type of wetland system within which the 

measurement was made as well as the method used to measure denitrification.  Denitrification 

rates were converted to common units (g N m-2 h-1) prior to analyses.  For studies that measured 

denitrification per volume of sediment, volume measurements were converted to area 

equivalents, given the dimensions of sediment cores analyzed.  Studies that failed to report error 

or sample size, or failed to provide enough methodological information to convert denitrification 

rates to common units, were excluded from further examination.  My search yielded average 

measurements of denitrification in vegetated sediments from 419 independent sites or 

mesocosms collected from 55 publications.  Ninety-two of these measurements could be paired 

with estimates of denitrification from nearby non-vegetated control plots or treatments.  A final 

list of measurements included in this analysis is provided in Table S1 in Supporting Information. 

 Effect sizes were calculated as the average denitrification rate for each measurement, 

weighted by the inverse of the sampling variance.  This calculation gives greater weight to 

measurements of denitrification rates with greater precision or greater replication (Osenberg et 

al. 1999).  Data were then grouped by plant community, wetland system, and method of 

denitrification measurement.  Any differences observed in average denitrification rates among 

plant communities may be the result of physiological differences in the plants themselves; 

however, they could also be an artifact of geophysical conditions (e.g., hydrology, nitrogen 

loading, salinity), which influence denitrification and coincidentally affect the composition of 



 

Page 17 

wetland plant communities.  Unfortunately, geophysical conditions such as nitrogen loading 

were rarely reported in a way that would facilitate inclusion in this analysis.  To estimate the 

effect of vegetation independent of geophysical context, I made use of the subset of 92 

measurements that included denitrification measurements in non-vegetated control sites or 

treatments.  For each of these measurements, I calculated the logarithm of the ratio of 

denitrification rate in vegetated sediments to that in nearby non-vegetated sediments.  This ratio 

provided me with a measure of the local effect of vegetation on denitrification (Hedges et al. 

1999).  To test whether functional or taxonomic groupings of plant communities may explain 

variation in vegetation effects, I repeated this analysis, grouping plant communities at the family 

and genus level and into functional groups based on growth form.  Growth-form categories 

included trees and shrubs, emergents (including grasses, sedges, and rushes), emergent forbs, 

submersed macrophytes, and floating plants.  Q-tests of heterogeneity were performed to test the 

ability of each grouping variable to explain both the variation in the effect of plants on 

denitrification and the variation in average denitrification rates among all measurements.  A 

random-effects model was used for these tests (Gurevitch and Hedges 2001).  In the context of 

meta-analysis, a random-effects model is a more conservative test of differences among groups 

in that it does not assume that a common true effect size exists for each group among 

measurements; rather, it includes an additional variance term which accounts for random 

variation in the effect of interest among measurements (Gurevitch and Hedges 2001).  For both 

sets of analyses, confidence intervals and probability values were estimated by bootstrapping, 

using 999 iterations of the data.  All calculations were performed in MetaWin 2.0 (Rosenberg et 

al. 2000). 
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Results 

Overview of the Data 

Average net denitrification rates reported among all the measurements included in this 

analysis varied over six orders of magnitude, from -6.4 to 880 mg-N m-2 h-1.  Studies varied 

widely in purpose from documenting the effects of species invasions on denitrification rates to 

comparing treatment-wetland designs employing different plant species.  Often, the dominant 

plant species at a site was reported under site characterization and was not the main focus of the 

study.  Results were obtained from a variety of wetland systems, including 168 constructed 

wetland sites, 53 experimental microcosms or mesocosms, and 198 naturally occurring wetlands 

(including salt marshes, tidal freshwater marshes, riparian wetlands, and depressional wetlands).  

More than 82% of the measurements involved emergent plant communities dominated by 

monocots, with 49% of the monocot species belonging to the family Poaceae.   

Of the many methods available to measure denitrification (for a complete review, see 

Groffman et al. 2006), the most commonly used method was denitrification enzyme activity 

(DEA) and other similar acetylene-reduction techniques (Appendix A); DEAs and other 

acetylene reduction techniques accounted for over 59% of the measurements included in my 

analysis.  The methods used to measure denitrification and the systems in which measurements 

were made did not appear to be strongly associated with any particular type of plant community 

(for complete list, see Appendix A).  However, instances in which investigators have used 

multiple denitrification measurements to investigate the same plant community, or instances in 

which the same community was investigated in multiple wetland systems, were rarely available.  

Consequently I was unable to calculate interaction terms or perform multiple regression analyses 

with my predictor variables.   
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Do Denitrification Rates Differ among Plant Communities? 

 Measurements of denitrification differed significantly among plant communities, with 

differences among dominant plant species ranging over four orders of magnitude (Figure 2.1A).  

The highest observed denitrification rates occurred in sites dominated by Spartina alterniflora 

and Oryza sativa (Figure 2.1A).  Grouping by the dominant species in a plant community 

explained 28% of the variation in denitrification rates among measurements (Table 2.1).  These 

results were not sensitive to the removal of high-denitrification and low-denitrification plant 

communities from the analysis.  Because I was unable to determine if there was an interaction 

between plant communities and denitrification measurements using the whole data set, I repeated 

this analysis for only those studies using DEA and similar acetylene-reduction methods in order 

to rule out a confounding effect of variation in methods among studies.  This subset analysis 

provided statistically similar results to an analysis of the full dataset (p = 0.002; df = 23, 221; 

variance explained = 31%). 

A notably large amount of variation remained within many of the plant community 

groupings, including cases for which a large number of measurements were available.  For 

example, denitrification rates observed at sites dominated by Phragmites australis (n = 55) 

varied by over an order of magnitude (Figure 2.1A).  Grouping denitrification measurements by 

the wetland type explained only 14% of the total variation in denitrification rates, less than half 

of the variation explained when grouping by plant community (Table 2.1).  Most of this variation 

was explained by very low denitrification rates in experimental estuarine ponds and very high 

denitrification rates in mesocosm experiments (Figure 2.1B).  When studies conducted in 

experimental ponds and mesocosm experiments were removed from the analysis, differences 
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among the remaining wetland types ranged within only one order of magnitude and explained 

only 2.1% of the variation in denitrification measurements. 

Denitrification measurements were found to differ significantly among the various 

methods used to measure denitrification, but grouping by method explained only 8% of the 

variation in denitrification rates among measurements.  The greatest estimates of denitrification 

were based on ammonium removal, although denitrification measurements obtained by direct N2 

flux methods—including membrane inlet mass spectrometry (MIMS) and N2:Ar 

measurements—also appeared higher than those obtained by acetylene reduction methods 

(including DEA) and 15N tracer methods.  When studies employing ammonium removal were 

removed from my analysis, grouping by denitrification-measurement method explained only 

2.3% of the variation in denitrification measurements (Figure 2.1C).  Though average 

denitrification rates varied significantly among functional groups (Table 2.1), grouping dominant 

species into functional groups based on their growth forms explained only 2% of the variation in 

denitrification measurements (Figure 2.1D). 

Does “the Effect of Vegetation” on Denitrification Rates Differ among Plant Communities? 

 When normalized to rates in nearby non-vegetated sediments, denitrification rates in 

vegetated sediments varied over three orders of magnitude and differed significantly among plant 

communities.  Average denitrification among communities with different dominant species 

ranged over two orders of magnitude (Figure 2.2A), a reduction from the four orders of 

magnitude variation observed in non-normalized average denitrification rates.  Grouping plant 

communities by the dominant species accounted for 38% of the variation in the effect of 

vegetation (Table 2.2).  This result was not sensitive to the removal of high-denitrification and 

low-denitrification plant communities from the analysis.  Significant variation remained within 
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individual community groupings, most notably in Salix-dominated communities, for which the 

greatest average effect of vegetation was observed but for which this effect varied over two 

orders of magnitude (Figure 2.2A).  Vegetation effects on denitrification rates were positive for 

12 out of the 16 plant communities included in this analysis, with 9 of these having a positive 

effect on denitrification that differed significantly from zero.  In four plant communities 

denitrification rates were lower than those in non-vegetated sediments, but none of these 

differences were statistically significant.  The same analysis failed to detect differences among 

plant communities when dominant species were grouped at either the family (p = 0.551, df = 9, 

59) or genus level (p = 0.271, df = 12, 57) or by growth form (Table 2.2, Figure 2.2D). 

 When normalized to denitrification rates in non-vegetated sediments, denitrification rates 

in vegetated sediments did not differ significantly either among different types of wetland 

systems or among the various methods used to measure denitrification (Table 2.2).  Average 

vegetation effects ranged within one order of magnitude (Figure 2.2B-C).  These variables also 

explained far less variation in the vegetation effect than did the dominant species in the plant 

community (Table 2.2).  Because this dataset contained little to no overlap in predictor variables 

among studies, I was unable to compute interaction terms between predictors or to perform the 

subset analysis described for denitrification rates. 

On average, I found that denitrification rates were 55% higher in vegetated sediments, 

relative to denitrification rates in non-vegetated sediments (lnR = 0.4380, confidence interval = 

0.1460-0.7357).  Thus the overall “effect of vegetation” was a 1.55 factor increase in 

denitrification rates. 
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Discussion 

 The data set used in this study is the largest currently available on wetland denitrification, 

bridging extensive literatures in both ecology and environmental engineering.  My analysis of 

this huge dataset established several key points regarding controls on denitrification.  First, I 

found that the type of wetland studied and the method used to measure denitrification was poorly 

related to variability in denitrification rates.  Instead, what mattered most was the presence of 

vegetation, which caused denitrification to be on average ~50% greater than in nearby non-

vegetated sediments.  Furthermore, I found that the size of this vegetative effect varied widely 

with plant community composition as defined by the dominant species, suggesting that the 

characteristics of dominant species need to be considered in future models of wetland 

denitrification.  In the following discussion, I will explore the implications of my main findings 

and their ramifications for estimation of denitrification at a landscape level. 

 The general lack of a systematic effect of methodology on denitrification rates was 

perhaps the most surprising finding.  While I found some influence of methodology on raw 

denitrification estimates, differences in denitrification between vegetated and adjacent non-

vegetated sediments were unrelated to the methods employed.  Attempts to predict denitrification 

across ecosystems have been limited because of uncertainty concerning the comparability and 

accuracy of different methods, and because many methods can only be used under certain 

circumstances (Groffman et al. 2006).  For example, the technique widely believed to be most 

accurate, changes in N2:Ar as measured by membrane inlet mass spectrometry, is technically 

challenging and can only be used routinely in saturated environments where interference from 

atmospheric N2 is minimal (Kana et al. 1994).  My analysis suggests that the measurement of 

denitrification potential using acetylene reduction, which is cheap, technically straightforward 
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and feasible in most environments, can be used to assess wide scale variation in relative 

denitrification rates, making broad comparative studies feasible.  It also raises the possibility that 

absolute rates may be estimated from relative measures by calibrating them against more robust 

and intensive methods, such as change in N2:Ar, in reference habitats that allow the use of both 

methods.  Future analyses would strongly benefit from a greater availability of studies that 

estimate denitrification rates for the same plant community using multiple measurement 

techniques (e.g., Watts and Seitzinger 2000, Hopfensperger et al. 2009).  With these data, one 

could more conclusively assess relative differences in the estimates that various denitrification 

methods provide, without the confounding influence of differences among plant communities.  

 A major goal of this study was to determine if vegetation exerted a positive influence on 

denitrification.  While enhancement of denitrification by vegetation had been observed in 

previous experimental studies, it was not clear that it would be broadly observed across wetland 

ecosystems.  In addition to promoting denitrification by adding organic substrates and 

introducing oxygen that enhances generation of nitrate from nitrification, plants may inhibit 

denitrification by flooding the sediments with oxygen or competing with nitrifying and 

denitrifying bacteria for nitrogenous compounds (Schimel et al. 1989, Kirk and Kronzucker 

2005).  This competition for nitrogen should be particularly important in wetlands since primary 

production in these systems is often limited by nitrogen (Howarth 1988, LeBauer and Treseder 

2008).  That such competition was not sufficient to offset the positive effect of plants on 

denitrification would seem at first to suggest that nitrifying and denitrifying microbes 

significantly out-compete the plants for nitrogen.  However, other studies have suggested that 

nitrifiers are in fact poor competitors for ammonium (Verhagen et al. 1994, Verhagen et al. 

1995).  Alternatively, at the scale of microbes, both nitrogen sufficient and nitrogen deficient 
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conditions could coexist side by side in soils over relatively small spatial scales.  Over the larger 

scales experienced by plants, however, the actions of denitrifying microbes may result in an 

overall deficit of nitrogen relative to plant needs, resulting paradoxically in the limitation of 

primary production by nitrogen in an ecosystem with enough free nitrate to allow substantial 

denitrification. 

 My analyses indicate that over a third of the variability in the effect of vegetation can be 

explained by the dominant species in the plant community.  Along with previous studies of pair-

wise species comparisons (Caffrey and Kemp 1990) and studies of species invasions (Ehrenfeld 

2003, Windham and Ehrenfeld 2003), my findings make a clear case that community 

composition plays an important role in determining denitrification.  That effect may actually be 

larger than observed here.  The identity of the dominant species is an incomplete description of 

plant community structure, and the composition and biomass of the subdominant community, as 

well as interactions among dominant and subdominant species, could vary substantially within 

one of the community categories in ways that could significantly influence denitrification.  In 

any case, community structure should be considered when making landscape scale assessments 

of denitrification from remote sensing data, or when predicting the effects of sea-level rise or 

species invasions on denitrification.   

One obvious approach for including species composition in future assessments of 

denitrification would be to estimate the average rates associated with each dominant species 

using analyses like those conducted here.  It might be possible to do so using factorial laboratory 

experiments under controlled conditions and technically straightforward denitrification methods, 

such as denitrification potential.  While conceptually simple, such an approach may be 

complicated in practice.  Relevant traits like oxygen production, nitrogen demand, and root:shoot 
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allocation can be very plastic and may vary substantially with ambient conditions in ways that 

are particular to each species.  Moreover, the effects of these important traits on denitrification 

could vary substantially with abiotic variables, such as hydrologic regime, or sediment and water 

chemistry.  Establishing separate, context-specific relationships to predict denitrification for each 

community type, even for the limited number of dominant species included in this analysis, 

could soon prove to be a quixotic effort.  Even if successfully obtained, such relationships would 

not necessarily account for the influence of subdominant species and may therefore fail to 

replicate real patterns in nature. 

An alternative approach would be to identify a few distinct functional groupings of 

species based on their effects on denitrification.  For example, emergent plants, whose leaves are 

in contact with the atmosphere and whose roots penetrate sediments, would be expected to have 

very different effects on sediment oxygen relative to submerged or floating plants that have little 

or no rooting structure.  Consequently, functional groupings based on morphology are often 

expected to explain variation in the influence of plant communities on sediment processes like 

denitrification (Keddy 1992, Boutin and Keddy 1993).  Contrary to this expectation, I found that 

morphological groupings of dominant species did not explain significant variation in raw 

denitrification rates or in the influence of plant communities on denitrification.  This result is 

perhaps not surprising given that the highest and lowest denitrification rates observed in this 

study occur in emergent plant communities dominated by species in Poales (Figure 2.1A), while 

plant communities dominated by different species in the genus Typha are associated with low, 

intermediate, and high effects on denitrification rates (Figure 2.2A).  Furthermore, vegetation 

effects were not found to differ significantly when measurements were grouped by either the 

family or the genus of the dominant plant in the community.  These results are consistent with 
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previous assessments that conventional functional or taxonomic groupings are relatively less 

useful in predicting rates of ecosystem processes than is information about plant community 

composition or functional trait composition (Eviner and Chapin III 2003, Wright et al. 2006). 

A third approach is to describe the plant community along several continuous functional 

trait axes that may be relevant to denitrification, rather than by the dominant species (Eviner and 

Chapin III 2003, Suding et al. 2008).  These “aggregate functional traits” would be those likely 

to influence denitrification through specific effects on oxygen concentrations, nitrogen 

availability or labile carbon in associated sediments.  A list of such traits could include above- or 

belowground biomass, rooting area or depth, elemental composition of tissues, litter quality, etc.  

When applied at the community level, a trait based approach promises to address the effect of the 

dominant species on denitrification while accommodating for plasticity within species and for 

some of the influence of subdominant species.  By addressing only a few relevant functional 

traits at a time, it also simplifies the task of characterizing the community in ways that are 

relevant to denitrification.  Moreover, determining how specific traits relate to denitrification can 

reveal which critical factors seem to be the most important determinants of this process.   

Although I wanted to explore the possibility of using functional traits to predict 

denitrification on a preliminary basis, most denitrification-relevant traits were not reported 

consistently enough among taxa to be of use in my meta-analysis.  Wetland plants also tend to be 

underrepresented in online plant trait databases (Wright et al. 2004, Kleyer et al. 2008, Kattge et 

al. 2011).  Nonetheless, I was able to find information on “average shoot height” for 16 of the 

taxa in my analysis belonging to the order Poales in the United States Department of Agriculture 

Plants Database (USDA 2014).  Over some time scale, I expect that average shoot height should 

be correlated to nutrient demand and photosynthetic rate, which may be relevant for oxygen and 
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nitrogen levels in associated sediments.  Below a certain value, shoot height should be positively 

related to denitrification due to the effects of diel oxygenation of sediments on denitrification 

(Figure 2.3A).  Above a certain shoot height one may expect sediment oxygenation will be 

enough to inhibit denitrification, or that plants will sequester enough nitrogen that they 

effectively compete with nitrifiers and denitrifiers.  Consequently, I expected a unimodal 

relationship between denitrification and shoot height.  When I plotted weighted average 

denitrification rates calculated in my analysis to average shoot heights from the USDA database, 

I did observe a general trend of maximum denitrification rates occurring in communities 

dominated by species of intermediate height (Figure 2.3B); this pattern became even clearer 

when I removed the extremely high denitrification measurements obtained in Oryza sativa and 

Spartina alterniflora communities (Figure 2.3C).   

 Clearly, much more information is required in order to understand how various other 

plant traits, as well as sediment properties and site history, interact to influence the effects of 

plant communities on denitrification.  However, the patterns observed here suggest that a 

functional-trait approach may offer a promising way forward, particularly as the 

characterizations of wetland plant species that are already underway continue to become 

available.  Functional-trait variables offer many of the same advantages as abiotic factors in that 

they are relatively easy to quantify using established methods and can be generalizable, in this 

case according to physiological trade-offs for plants that have been shown to operate 

independently of plant functional type, growth form, or environment (Wright et al. 2004).  A 

focus on key plant traits offers a general and, therefore, flexible way to link plant community 

composition and structure to important ecosystem process such as denitrification.  Such 
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approaches will become increasingly important as plant community distributions and 

compositions are expected to change in the future. 
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Table 2.1:  Summary of Q-tests of heterogeneity for each of the three grouping variables, 

performed on weighted average denitrification rates.  P-values were estimated from 

bootstrapping, using 999 iterations.  Results significant at α = 0.05 are shown in bold. 

 

Source of Heterogeneity Plant Community Wetland System Method Functional Group 

Q df Q Df Q df Q df 

Among 4865 37 2533 7 1479 10 174 4 

Within 12773 355 15330 402 16471 405 7899 382 

Total 17637 392 17863 409 17950 415 8073 386 

p 0.004 0.004 0.041 0.043 

% Variation Explained 28 14* 8† 2 

 

*  Percent variation explained is equal to 2.1% when studies conducted in experimental estuarine 

ponds and constructed wetlands are excluded from analysis. 

†  Percent variation explained is equal to 2.3% when measurements obtained by ammonium 

removal are excluded from analysis. 
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Table 2.2:  Summary of Q-tests of heterogeneity for each of the three grouping variables, 

performed on log response ratios of denitrification in vegetated and non-vegetated sediments.  P-

values were estimated from bootstrapping, using 999 iterations.  Results significant at α = 0.05 

are shown in bold. 
 

Source of Heterogeneity Plant Community Wetland System Method Functional Group 

Q df Q Df Q df Q df 

Among 81 15 16 4 23 7 9 3 

Within 134 39 149 59 144 56 84 55 

Total 214 54 165 63 166 63 93 58 

p 0.04 0.187 0.284 0.207 

% Variation Explained 38 10 14 10 
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Figure 2.1:  Weighted average denitrification rates among (a) dominant species in the wetland 

plant community, (b) types of wetland in which the studies were conducted, (c) methods used to 

measure denitrification rates (DEA = denitrification enzyme activity, MIMS = membrane inlet 

mass spectroscopy), and (d) functional groups based on growth forms. Average rates are plotted 

on a log10 scale. Error bars show bootstrapped confidence intervals, generated from 999 

sampling iterations. 
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Figure 2.2:  Denitrification rates in vegetated sediments, normalized as a log response relative to 

denitrification rates in paired non-vegetated plots or treatments. Weighted means are grouped by 

(a) the dominant species in the wetland plant community, (b) the type of wetland system in 

which the studies were conducted, (c) measurements used to measure denitrification rates (DEA 

= denitrification enzyme activity, MIMS = membrane inlet mass spectroscopy), and (d) 

functional groups based on growth forms. Error bars show bootstrapped confidence intervals, 

generated from 999 sampling iterations. 
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Figure 2.3:  (a) Denitrification may be expected to vary with plant size such that small plants 

introduce insufficient oxygen to sediments to facilitate production of nitrate, and larger plants 

compete with denitrifiers for nitrate, both limiting denitrification rates.  Maximum rates of 

denitrification would occur at intermediate plant size.  (b) Among emergent plant communities, 

maximum rates of denitrification are observed in communities dominated by 1.0-2.0 m plants. 

(c) When the highest rates in Spartina alterniflora (1.0 m) and Oryza sativa communities (2.0 m) 

are excluded, the pattern persists.  Data for average shoot height for grasses, sedges, and rushes 

were obtained from the USDA database. 
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Chapter 3 

Plant traits predict the influence of wetland plants on sediment oxygen and denitrification 

potential 

Abstract 

Human activities have altered major biogeochemical cycles and the diversity and distribution of 

species on a global scale, yet our ability to quantify the effects that changes in ecological 

communities have on ecosystem processes lags far behind management needs.  Specifically, 

microbial denitrification represents an ecosystem service on which human societies depend for 

nitrogen removal and maintenance of water quality.  Denitrification is known to respond to 

differences in the characteristics of wetland plant communities but remains a notoriously difficult 

process to measure and predict.  Here I examine the influence of the dominant salt-marsh grass 

Spartina alterniflora on sediment oxygenation and microbial nitrogen-cycling processes in 

replicated experimental mesocosms.  I apply a novel combination of oxygen-sensitive planar 

optode methods, microbial process assays, measurements of sediment chemistry, and 

quantification of plant traits to determine associations between characteristics of wetland 

vegetation and the potential for wetland sediments to remove nitrogen.  Denitrification potentials 

were found to correlate strongly to plant traits that enhance sediment aeration, and thus facilitate 

coupled nitrification-denitrification.  My results suggest that knowledge of the trait composition 

of wetland plant communities may simplify the task of predicting denitrification potential of 

wetland ecosystems.  Trait-process associations offer one promising approach to the challenge of 

predicting rates of ecosystem processes such as denitrification in the face of rapid changes in 

wetland plant communities due to land development, sea-level rise, and species invasions. 
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Introduction 

Human activities have profoundly altered the diversity and distribution of species and 

ecological communities on a global scale (Chapin III et al. 2000).  Changes in the diversity and 

structure of ecological communities are known to alter provisioning of ecosystem services on 

which we depend (e.g., storm and flood protection, clean water, food resources, recreation and 

aesthetics) (Chapin III et al. 2000, Loreau et al. 2001, Hooper et al. 2005).  However, our ability 

to quantify and predict how specific changes in communities, especially those that result in novel 

or “no analog” communities, will alter ecosystem services lags far behind management needs.  

One promising approach to this problem involves using traits of organisms within communities 

to mechanistically link community structure with the effects those communities have on specific 

ecosystem properties or processes (Chapter 1, Lavorel and Garnier 2002, McGill et al. 2006).  

Here I use “trait” to refer to any measurable characteristic of a plant or plant community that 

may affect specific ecosystem processes; this usage is synonymous with the definition of “effect 

trait” used by Lavorel and colleagues to link plant communities to the effects they have on 

ecosystem processes and services (Lavorel and Garnier 2002, Lavorel et al. 2011). 

In many areas worldwide, humans have doubled the amount of biologically available 

nitrogen entering watersheds, resulting in severe water-quality degradation in aquatic and coastal 

systems (Vitousek et al. 1997, Millennium Ecosystem Assessment 2005).  Wetland ecosystems 

are hotspots of microbial denitrification, a valuable ecosystem service that permanently removes 

nitrogen from aquatic systems to the atmosphere as inert nitrogen gas (Zedler 2003, Hinga et al. 

2005).  Understanding the characteristics of wetland ecosystems that promote high rates of 

denitrification is essential both in valuing current wetland resources and in managing future 

water quality in rapidly changing coastal and aquatic systems.  Whereas the ability to rapidly 
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assess the nitrogen-removal capacity of wetlands is critical to this endeavor, denitrification itself 

is a notoriously difficult process to measure due to the challenges associated with measuring tiny 

fluxes of N2 gas against an 80% atmospheric background (Groffman et al. 2006).  Constructing 

models to predict denitrification is also difficult because the physical, chemical, and biological 

characteristics of ecosystems that determine rates of nitrogen removal are extremely diverse 

(Boyer et al. 2006, Seitzinger 2008, Groffman et al. 2009).  For all of these reasons, 

denitrification remains one of the least well quantified terms in the global nitrogen cycle despite 

its ecological and economic importance (Schlesinger 2009).   

Wetland vegetation is known to alter sediment chemistry in ways that influence 

denitrification rates (Chapter 1, Sherr and Payne 1978, Weisner et al. 1994, Bachand and Horne 

2000).  Denitrifying microbes are heterotrophs that require organic carbon as an energy source 

and nitrate as an oxidizing agent.  When oxygen is available in their environment, denitrifiers 

will favor it as an electron acceptor as it yields greater energy; only when oxygen becomes 

depleted will they switch to nitrate as a terminal electron acceptor.  However, in saturated 

systems like wetlands, oxygen is rarely abundant and much of the available nitrogen is in the 

reduced form of ammonium.  In these systems, denitrifiers rely on microbial nitrification to 

oxidize ammonium into nitrate (see Figure 1.2).  As a result, denitrification rates are maximized 

by processes that create spatial and temporal variation in sediment oxygen, producing a scenario 

in which enough oxygen is available to favor nitrification of ammonium to nitrate and in which 

hypoxic or anoxic conditions cause denitrifiers to use nitrate as an electron acceptor.  Therefore, 

highest denitrification rates are often observed in systems that experience either spatial or 

temporal variation in oxygen availability, such that sufficient oxygen (Seitzinger et al. 2006).   
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Because denitrification potential is maximized by variation in oxygen conditions, I would 

expect plant traits that increase spatial or temporal variation in oxygen availability to enhance 

rates of coupled nitrification-denitrification (Figure 1.3).  These traits could include belowground 

characteristics that would facilitate delivery of oxygen from the atmosphere to the rhizosphere or 

that would lead to spatial variation in oxygen delivery such as total root mass or maximum 

rhizome or root width.  Oxidized areas surrounding the roots would promote the production of 

nitrate via microbial nitrification, which could then diffuse into adjacent anoxic areas of the 

sediment and be denitrified (Figure 1.2).  Traits could also include those related to 

photosynthesis, or traits that are commonly related to photosynthetic potential including leaf 

nitrogen and specific leaf area, which would increase diurnal variation in oxygen production 

(Wright et al. 2004, Reich et al. 2007).  When plants are photosynthetically active during the 

day, oxygen delivery to the sediments would promote nitrification, and nitrate produced during 

the day could undergo denitrification at night when root and microbial respiration results in 

depletion of oxygen.  Such diel cycles in sediment oxygen have been observed for a variety of 

both submerged and emergent wetland plants (Sand-Jensen et al. 1982, Armstrong and 

Armstrong 1990, Caffrey and Kemp 1991, Brix et al. 1992).  Though this chapter focuses on the 

influence of wetland plants on sediment oxygen availability and denitrification potential, similar 

trait-based approaches could address other pathways through which plants may influence 

sediment chemistry and denitrification (Figure 1.3).   

I examined the influence of common salt marsh dominant Spartina alterniflora on 

sediment oxygen dynamics and nitrogen cycling processes in experimental mesocosms.  Using 

oxygen-sensitive photographic films and direct measurements of sediment oxygen 

concentrations, I investigated potential relationships among key plant traits, spatial and temporal 
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variation in sediment oxygen availability, and microbial process rates.  For the multiple reasons 

listed earlier, denitrification offers a powerful test of a trait-based predictive approach.  If 

successful, predictions of denitrification potential using relatively easily quantifiable plant traits 

would greatly simplify the considerable challenges of understanding current mechanisms that 

determine sediment denitrification rates and predicting the potential for future wetland 

ecosystems to remove nitrogen. 

Methods 

Experimental Design 

Plugs of sediment were collected from two salt marshes on the northern coast of Long 

Island, NY, Flax Pond and West Meadow Creek (40.965249, -73.133750 and 40.936468, -

73.143173, respectively) in July 2013.  The sampling time was chosen to correspond to peak 

biomass of the vegetation when the effect of plants was expected to be readily detectable, but 

prior to the onset of seed production, when plants begin reallocating resources to reproduction 

and dormancy and become less physiologically active.  At each site, I randomly collected two 

plugs from mudflats containing no vegetation, two plugs from the marsh edge containing tall-

form Spartina alterniflora, and two plugs from the marsh platform containing short-form 

Spartina alterniflora.  I transferred the sediment plugs to PVC mesocosms (20 cm wide x 30 cm 

tall x 10 cm deep) in the field under deoxygenated site water and installed a deoxygenated PVC 

porewater equilibrator along one side (Hesslein 1976).  The fronts of the mesocosms were each 

sealed with a transparent plexiglass panel containing the oxygen-sensitive optode film.  

Mesocosms were returned to the Life Sciences Greenhouse at Stony Brook University within 

two hours of initial collection and placed in rigid photographic darkroom structures in a growth 
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chamber at 25°C, with the vegetation and surface sediments exposed to saturating light 

conditions on a 16:8 hour light-dark cycle.   

Darkroom structures consisted of a rigid steel frame to hold mesocosms, cameras, and 

LED light fixtures in place under light-proof black cloth, while allowing emergent plant 

structures and the sediment surface to be exposed to light.  Within the darkroom structures, I 

affixed LED lights that transmitted at 390 nm (the excitation wavelength of our O2-sensitive dye) 

at an angle of 45° relative to the optode film and fitted with a diffuser and 475 nm short-pass 

filter.  Photos were acquired using Canon Powershot A480 point-and-shoot cameras that I 

modified by removing the infrared filter and fitting with an OG-530 long-pass filter.  Raw 

images were captured every 5 minutes for 36 hours using an automatic image-capture program 

CHDK (Canon Hack Development Kit).   

Mesocosms containing the various sediment treatments were allowed to acclimate under 

growth chamber conditions for three days, and sediment O2 data were collected via photography 

of the optode films for three days following the initial acclimation period.  At the end of the 

experimental period, plant traits, equilibrated and extractable sediment porewater nutrients, and 

microbial process rates were measured. 

Preparation of Oxygen-Sensitive Optode Films 

Methods for preparing and calibrating optode films were adopted from Larsen et al. 

(2011) following the modifications employed by Forbes et al. (2014).  Optode films consisted of 

a 20 cm x 15 cm polyethylene film coated with a layer of oxygen-sensitive and reference dyes 

and a second layer of black-carbon coating to control for contrast in sediment color.  The 

oxygen-sensitive dye I used was Pt (II) meso-tetra (pentafluorophenyl) porphrine, or PtTFPP, 

which fluoresces at 650 nm.  It is an oxygen-quenched fluorophore, meaning that it fluoresces 
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more brightly when oxygen is absent and less brightly as oxygen increases.  Macrolex Yellow 

10GN, which fluoresces at 480 nm and does not respond to oxygen, was used as a reference dye 

to control for uneven distribution of dye mixture on the optode surface.  Films were first affixed 

to a water-coated PVC block, taped securely, and placed on a perfectly level surface in a fume 

hood.  A mixture of 1% (wt/wt) oxygen-sensitive PtTFPP, 2% (wt/wt) reference fluorophore 

Macrolex Yellow 10GN, and 4% (wt/wt) polystyrene beads were dissolved in chloroform and 

applied to the films.  When the fluorophore layer was completely dry, I added a second layer of 

black silicone sealant dissolved in hexane.  When the second layer was completely dry, optodes 

were removed from the PVC block and affixed over immersion oil to the transparent plexiglass 

front panels of the mesocosms with several layers of black electrical tape. 

For initial calibrations of the optode films, fully assembled mesocosms were filled with 

distilled water and randomly placed in the darkroom structures.  I bubbled the mesocosms with 

air to achieve maximum oxygen saturation, measured oxygen using a dissolved oxygen meter, 

and captured five images for later calibration.  Subsequent oxygen-saturation points were 

obtained by bubbling with prepure nitrogen gas, and a near-zero point was achieved with the 

addition of several grams of sodium sulfite.  No fewer than eight oxygen-saturation points were 

collected for calibration of each optode film.  Oxygen signals were extracted from raw images in 

ImageJ as the fluorescence of the red channel (O2-sensitive signal) normalized to the 

fluorescence of the green channel (the reference-dye signal) as (Red-Green)/Green (Schneider et 

al. 2012).  I fit a calibration plot for each optode to a modified Stern-Volmer standard curve 

[3.1]  
𝑅

𝑅0
=  𝛼 +  [(1 − 𝛼) × (

1

1 + 𝐾𝑆𝑉 × 𝑂2
)] 
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 where R/R0 is the pixel intensity at a given O2 concentration divided by the pixel intensity at 

zero, α represents the non-quenchable fraction of the optode, KSV is the Stern-Volmer 

coefficient, and O2 is the known oxygen saturation obtained by the dissolved oxygen meter.   

Temporal variability in oxygenation for each mesocosm was estimated as the difference 

in mean oxygen saturation over the optode surface between light and dark conditions in the 

growth chamber.  Spatial variability was estimated under light and dark conditions as the 

standard deviation of oxygen saturation over the optode surface at a given time point. 

Sediment Chemistry  

During the experiment, porewater samples were collected every 12 hours using syringe-

vacuum porewater sippers to monitor any changes in dissolved nutrients and salinity (Kolker 

2005).  Prior to experiments, I prepared PVC porewater equilibrators with duplicate 20 ml 

sampling wells spaced vertically at 3 cm intervals.  Equilibrators were filled with deionized 

water, covered with a Spectr-Por cellulose membrane, and deoxygenated overnight by bubbling 

with nitrogen gas prior to installation in mesocosms (Hesslein 1976).  The equilibrators were 

undisturbed for six days, three days of acclimation prior to the experiment and during the three 

days the experiment was running.  Upon completion of the experiments, porewater was extracted 

by syringe from PVC porewater equilibrators and acidified until analysis of ammonium, nitrate, 

phosphate, and salinity using standard methods (Jones 1984, Parsons et al. 1984b, Wetzel and 

Likens 2000).  I also collected a subfraction of equilibrated water in each mesocosm from 6 and 

12 cm below the sediment surface, corresponding to the top and bottom of the optode film, and 

shipped these samples in gas-tight glass vials to Woods Hole Marine Laboratory for analysis of 

N2:Ar and O2:Ar using membrane inlet mass spectroscopy (MIMS) (Kana et al. 1994).   
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Sediment subsamples were collected at the end of the experiment from 6 and 12 cm 

below the sediment surface, extracted with 2N potassium chloride solution, and analyzed for 

ammonium, nitrate, and phosphate following the same methods used for porewater samples.  I 

also used sediment subsamples at these depths for determination of moisture content (change in 

mass after drying at 70°C for a minimum of 24 hours) and total carbon and nitrogen content 

using a Perkin Elmer Series II CHNS Analyzer.  Sediment composition was measured at 3 cm 

intervals as sand content after wet-sieving through a 63 µm mesh, drying at 70ºC for at least 24 

hours, and calculating mass of sand relative to the total mass of the sample. 

Microbial Processes 

At the end of the experiment, sediment samples were collected from each mesocosm at 6 

and 12 cm below the sediment surface for determination of denitrification rates using 

denitrification enzyme activity (DEA) measurements, nitrification measurements, and net 

mineralization-immobilization measurements.  All microbial-process measurements began 

within 24 hours of initial sediment sampling.  For DEAs, I amended a 5 g subsample of sediment 

with potassium nitrate, glucose, chloramphenicol, and acetylene gas under anaerobic conditions 

for 90 minutes (Smith and Tiedje 1979b).  Headspace samples were collected at 30 and 90 

minutes, stored in pre-evacuated gas-tight vials, and analyzed for N2O concentration on a 

Hewlett Packard 5890 gas chromatograph, equipped with a 63Ni electron-capture detector and a 

2.5 m x 0.318 cm stainless steel column packed with Poropak Q (80/100 mesh); the column was 

operated at 40ºC with a detector temperature of 350ºC and an ultrahigh purity N2 carrier gas at a 

flow rate of 30 ml/min.  The denitrification potential of the microbial community was calculated 

from the change in concentration of N2O during the incubation time using the equation: 

[3.2]  𝑑𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝜇𝑔𝑁 𝑔−1ℎ−1) =  
𝑣 (𝑁2𝑂𝑇1−𝑁2𝑂𝑇0)  

𝑀𝑇
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where v is the volume of the headspace and porespace, M is the mass of the sediment in the 

incubation, and T is the incubation time (Smith and Tiedje 1979a, Watts and Seitzinger 2000).  

This method provides an estimate of the maximum potential of the microbial community to 

perform denitrification and is therefore a useful variable for determining differences between 

experimental treatments or locations, but it should not be interpreted as an exact measurement of 

N2 flux from sediments (Groffman et al. 2006).  

Nitrification and mineralization assays were performed using three replicate 2 g sediment 

subsamples, also collected from 6 and 12 cm depths from each mesocosm.  For each 

measurement, one “initial” 2 g subsample was immediately used to determine initial ammonium 

content using extraction methods described above, one “blocked” 2 g subsample was amended 

with nitrification inhibitor nitrapyrin in a 10 mg/L dimethyl sulfoxide (DMSO) solution, and one 

“control” subsample was amended with DMSO only (Hall 1984, Bédard and Knowles 1989, 

Strauss and Lamberti 2000).  “Blocked” and “control” sediments were incubated in 20 mL site-

collected water for 48 hours in the dark on a shaker table at 20-25º C.  At the end of the 

incubation period, I added 20 mL of 2N potassium chloride solution and measured extractable 

ammonium concentrations as described above.  I determined gross nitrification from the 

difference in final ammonium concentrations between “blocked” and “control” incubations, 

controlling for dilution and incubation time, in the following equation: 

[3.3]  𝑔𝑟𝑜𝑠𝑠 𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝜇𝑔𝑁 𝑐𝑚−3ℎ−1) =  
0.2([𝑁𝐻4−𝑁𝑏𝑙𝑜𝑐𝑘𝑒𝑑] − [𝑁𝐻4−𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙])

𝑉𝑇
 

where V is the volume of sediment, T is the incubation time, and 0.2 is a constant to account for 

dilution of the nutrient extraction (Starry et al. 2005).  Net mineralization/immobilization was 

determined from the difference between “control” incubations and “initial” measurements of 

extractable ammonium:   
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[3.4] 𝑛𝑒𝑡 𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝜇𝑔𝑁 𝑐𝑚−3ℎ−1) =  
0.2([𝑁𝐻4−𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙] − [𝑁𝐻4−𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙])

𝑉𝑇
 

Positive values for mineralization indicate net mineralization, whereas negative values indicate 

net immobilization (Starry et al. 2005). 

Vegetation characteristics 

Duplicate sediment cores were collected from each mesocosm using a bulb planter (5 cm 

diameter, ~20 cm length or to bottom of root zone) and PVC coring device and kept frozen 

at -20°C until determination of total root and rhizome mass at 3 cm intervals by wet sieving onto 

a 2000 µm mesh filter, removing non-organic fragments by hand, and determining mass after 

drying at 70ºC for at least 24 hours.  For each 3 cm subsection that contained root material, the 

maximum width of the root or rhizome (hereafter referred to as “rhizome width” for simplicity) 

was also recorded.  I measured total stem density and aboveground biomass for each mesocosm, 

as well as the stem height of each plant within each mesocosm.  For each stem, I randomly 

selected two leaves for determination of leaf width and thickness, specific leaf area (area of leaf 

per gram of dry mass), and carbon and nitrogen content using a Perkin Elmer Series II CHNS 

Analyzer.  For non-vegetated treatments, the majority of plant trait data are not available; out of 

necessity, models using these variables had 4 fewer observations than those for which non-

vegetated treatments were included (e.g., root mass and stem density for which values of 0 or 

near-0 were logical). 

Statistical analysis 

All data analysis was performed in R version 3.0.2 (R Core Team 2012).  I first computed 

Pearson correlations among plant traits and the two sediment-chemistry variables I expected 

plants would influence (i.e., oxygen enrichment and extractable ammonium content) at the scale 

of the whole mesocosm.  I avoided including redundant plant traits (r ≥ 0.50) in subsequent 
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models used to predict responses in sediment chemistry and rates of microbial processes.  Initial 

general linear models (GLMs) were constructed to predict oxygen and ammonium, initially 

containing the microsite treatment (i.e., marsh edge, marsh platform) as a categorical predictor 

and the plant trait most correlated to oxygen or ammonium as continuous predictors.  Plant traits 

that were redundant but found to be useful predictors were evaluated in separate initial models.  

Predictors that were not found to be significantly related to oxygen or ammonium (α = 0.10) 

were eliminated from models in a stepwise fashion.  At each step of elimination, the fit of the 

previous and resulting model were compared.  Residuals of the best model were inspected for 

normality using a Kolmogorov-Smirnov Lilliefors test. 

I next constructed GLMs to predict microbial process rates (i.e., mineralization, 

nitrification, and denitrification and N2 enrichment) using extractable ammonium and oxygen 

enrichment as continuous predictors using the methods described above.  Denitrification rates 

obtained from DEA measurements were normalized to carbon content of sediments and log10 

transformed prior to analysis to achieve normal distributions of model residuals.  N2 and O2 

measurements in equilibrated sediment porewater, obtained from MIMS measurements, were 

expressed as an enrichment relative to atmosphere-equilibrated site water.  Plant traits that were 

found to be best predictors of sediment oxygen and ammonium were then used in general linear 

models to predict denitrification rates, and fits of best models were compared to those including 

ammonium and oxygen as predictors.   

R code used to perform all statistical tests, the output of all statistical comparisons 

performed, and code used to generate figures is reported in Appendix B. 
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Results 

Many plant traits included in this analysis were highly correlated (Table 1).  Total 

aboveground biomass was positively correlated with both stem density and root width at α = 

0.05, root width was negatively correlated with specific leaf area (SLA) at α = 0.10, and 

maximum stem height was negatively correlated with the ratio of carbon to nitrogen in leaf tissue 

at α = 0.05.  Several additional trait combinations were correlated at marginally non-significant α 

levels of 0.10-0.30 (see Table 3.1).  Traits that best predicted O2 enrichment in equilibrated 

sediment porewater were root width and maximum stem height (Figure 3.1), which were found 

to be redundant and thus considered in separate predictive models (Table 3.1).  SLA was the best 

predictor of extractable ammonium content of sediments (Figure 3.1).   

Net mineralization/immobilization rates indicated that microbial immobilization was 

occurring across all treatments, and that immobilization rates responded strongly to extractable 

ammonium concentrations in sediments (Figure 3.2A).  Nitrification rates and denitrification 

potentials (DEAs normalized to sediment carbon) depended on the interaction between sediment 

oxygen and sediment ammonium concentrations (Figure 3.2B and 3.2C).  No combination of 

sediment variables was able to predict net N2 enrichment in sediment porewater.  In all cases, I 

observed no significant effect of the microsite treatment on the relationship between plant traits 

and sediment chemistry, nor any interaction between microsite treatments and plant traits; thus, 

microsite and its interaction terms were eliminated from final models.   

While models including ammonium and oxygen concentrations provided the best fit to 

observed denitrification potentials, comparable fits could also be achieved with univariate 

models including only maximum rhizome width or maximum stem height of plants in 

mesocosms (Table 3.2), traits which were also strong predictors of sediment oxygen 
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concentrations (Figure 3.1).  Denitrification potentials were positively associated with both 

rhizome width and stem height (Figure 3.3A and 3.3B).  Net N2 enrichment measured with 

MIMS did not correlate with denitrification potentials (r = 0.02, p = 0.98) and responded 

differently to vegetation treatments, with higher N2 enrichment measurements observed in 

vegetated mesocosms relative to non-vegetated mesocosms.  The best predictor of net N2 

enrichment was the density of plant stems in mesocosms, with the lowest values of N2 

enrichment occurring in mesocosms with highest stem densities (Figure 3.3C). 

Discussion 

I found that the same plant traits that best predicted sediment oxygen enrichment, root 

width and maximum stem height (Figure 3.1), were also successful in predicting variation in 

denitrification rates among experimental mesocosms (Table 3.2).  Moreover, models including 

only univariate relationships with rhizome width or maximum stem height were nearly as 

successful in explaining variation in denitrification potentials, 58% and 49% respectively, as 

models parameterized with both sediment oxygen and ammonium availability, 77% (Table 3.2).   

Sediment ammonium availability was predictably a key variable in determining the rates 

of all of nitrogen cycling processes measured in this study (Figure 3.2).  That I observed high 

rates of microbial immobilization in all mesocosms is not surprising, given that the mean ratio of 

carbon to nitrogen in S. alterniflora leaves was 36 (± 7) in this study, which indicated that leaf 

litter alone was highly unlikely to meet the nitrogen requirements of typical decomposing 

microbes (Goldman et al. 1987).  However, both nitrification and denitrification were also 

dependent on sediment oxygen availability (Figure 3.2B and 3.2C), suggesting that rates of 

denitrification are as dependent on the production of nitrate via nitrification as on total 

availability of mineralized nitrogen in this system.  This observation lends considerable support 
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to my hypothesis that plant traits influencing oxygen delivery to sediments could play a key role 

in determining rates of microbial denitrification (Figure 1.3).   

Contrary to my expectations (Figure 1.3), measurements of N2 enrichment in sediment 

porewater did not correlate well with denitrification potentials.  While measurements of N2 

enrichment relative to argon using membrane inlet mass spectroscopy (MIMS) methods 

indicated that net denitrification occurred in all treatment groups, N2 enrichment followed the 

opposite patterns observed in measurements of denitrification potential using denitrification 

enzyme activity (DEA) assays.  Denitrification potentials responded positively to plant traits that 

enhanced oxygenation of sediments (Figure 3.3A and 3.3B), whereas N2 concentrations in 

sediment porewater decreased with increasing stem density (Figure 3.3C).  Two possible 

mechanisms could explain this discrepancy.  Higher rates of nitrogen fixation in vegetated plots 

could have removed N2 from porewater, resulting in lower apparent net denitrification.  This 

mechanism seems unlikely in this specific study because oxygen, which inhibits nitrogen 

fixation by free living heterotrophs, was higher in vegetated mesocosms; furthermore, fixation 

should decrease with increasing ammonium availability, but N2 concentrations were unrelated to 

sediment ammonium concentrations.  The more likely explanation is that plant stems provided a 

conduit that facilitated equilibration of N2 produced from denitrification with the atmosphere.  

Plant ventilation of sediments would explain why N2 in sediment porewater decreased with 

increasing stem density, causing N2:Ar ratios to more closely resemble atmosphere-equilibrated 

water (Figure 3.3C).  If true, this mechanism would represent a potential pathway for expediting 

the flux of N2 from sediments.  Further experiments involving direct measurements of nitrogen 

fixation or 15N tracers would be needed to fully resolve the fate of N2 produced by denitrification 

in vegetated marsh sediments. 
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Wetland plant communities worldwide are undergoing rapid transitions due to land 

development, sea-level rise, and species invasions (Zedler and Kercher 2005).  Acclimation of 

current communities and changes in the species composition of communities are known to alter 

sediment chemistry and denitrification rates (Ehrenfeld 2003, Craft et al. 2008).  To the extent 

that potential responses of plant traits to various management scenarios are predictable, our 

analysis offers hope that the impacts of community-level changes on denitrification potentials 

could also be predicted using trait-based models.  Further investigation of associations between 

plant traits and sediment microbial processes is clearly needed to develop more general trait-

based models that would apply to multiple plant species and abiotic contexts.   

Encouragingly, relationships between plant traits influencing sediment oxygen and 

resulting denitrification potentials were observed despite considerable background variation in 

sediment ammonium among mesocosms in this study (Figure 3.3).  This consistency may simply 

be a result of an extreme dependence of denitrification on coupled nitrification in the particularly 

anoxic sediments of our confined mesocosms.  Alternatively, it may be that covariance of plant 

traits arising from economic trade-offs described elsewhere result in plant-trait relationships that 

remain robust to differences in sediment nutrient context (Wright et al. 2004, Freschet et al. 

2010).  For example, if opportunistic traits associated with nutrient uptake also enhance sediment 

oxygenation (e.g., root width, stem height), then one may expect these traits to consistently 

covary with higher rates of microbial nitrogen removal.  Further investigation of trait 

associations with microbial rates across a range of nutrient-loading conditions would allow one 

to test this hypothesis.  If true, this result leads to the intriguing possibility of building general 

models to predict nitrogen removal with simple measures of plant-community characteristics, 
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while eliminating the need to painstakingly establish trait-process relationships for every plant 

species of interest. 

My results indicate that trait-based models could greatly simplify our ability to predict 

processes as complicated as denitrification.  Both plant-trait data (Kattge et al. 2011) and tools to 

incorporate trait data into predictive ecosystem models (LeBauer et al. 2013) are increasingly 

available in public-access formats.  The field of ecology is now well placed to address critical 

management decisions concerning both the conservation of functional diversity in ecological 

communities and the maintenance of ecosystem services on which human societies depend.  

Coupling characteristics of ecological communities to the various effects that these communities 

have on key ecosystem processes is a necessary first step in this endeavor. 
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Table 3.1:  Correlations among plant traits included in analyses.  Values above the diagonal 

correspond to Pearson’s correlation coefficient; values below the diagonal correspond to p-

values (n = 8).  (• Significant at α = 0.10, * Significant at α = 0.05, ** Significant at α = 0.01, 

AG = aboveground, SLA = specific leaf area) 

 

 
AG biomass 

(g m-2) 

Stem density 

(m-2) 

Root mass 

(g m-2) 

Root width 

(mm) 

Stem height 

(cm) 

SLA 

(cm2g-1) 
Leaf C:N 

AG biomass 

(g m-2) 
1 ** 0.75 0.12 * 0.77 0.61 -0.50 -0.44 

Stem density 

(m-2) 
** 0.0054 1 0.19 -0.42 0.11 0.58 -0.17 

Root mass 

(g m-2) 
0.7095 0.5448 1 -0.05 0.36 0.45 -0.02 

Root width 

(mm) 
* 0.0253 0.3013 0.9006 1 0.56 • -0.63 -0.27 

Stem height 

(cm) 
0.1059 0.8029 0.3803 0.1466 1 0.04 * -0.73 

SLA 

(cm2g-1) 
0.2076 0.1297 0.2600 • 0.0919 0.9300 1 -0.08 

Leaf C:N 0.2746 0.6810 0.9648 0.5191 * 0.0389 0.8432 1 
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Table 3.2:  Alternate general linear models to predict denitrification using (1) sediment 

ammonium and oxygen concentrations, (2) rhizome width, and (3) maximum stem height.  

Denitrification potentials were normalized to sediment carbon and log10 transformed prior to 

analysis. 

 

 

 

  

 Model 1 

NH4
+ and O2 

Model 2 

Root width 

Model 3 

Max. stem height 

Parameter Estimate p Estimate p Estimate p 

Intercept 5.8 2.2 x 10-5 0.50 0.656 -0.087 0.956 

[NH4
+] (µM) -4.4 x 10-3 0.054     

[O2]/[O2 atm] (ppt) 1.9 x 10-2 0.003     

[NH4
+] x [O2] -3.4 x 10-5 0.052     

Rhizome width (mm)   0.46 0.028   

Stem height (cm)     0.032 0.052 

R2 0.77 0.58 0.49 

p 0.006 0.028 0.052 

df (model, error) 3, 8 1, 6 1, 6 
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Figure 3.1:  Sediment oxygen concentration increased linearly with (A) rhizome width (y = -

351.0+ 39.80 x, R2 = 0.74, p = 0.006) and (B) maximum stem height (y = -357.4 +2.37 x, R2 = 

0.46, p = 0.063) of plants in mesocosms.  Oxygen is reported as the concentration in sediment 

equilibrators relative to atmosphere-equilibrated standards (O2 enrichment = 0).  (C) Extractable 

ammonium content in sediments was negatively associated with specific leaf area (y = 1076 – 

7.829 x, R2 = 0.52, p = 0.044). 
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Figure 3.2:  Relationships between sediment chemistry (ammonium and oxygen) and microbial 

processes.  (A) Immobilization rates are linearly related to ammonium (y = -44.81 – 5.53 x, R2 = 

0.98, p < 10-10).  (B) Nitrification rates and (C) denitrification rates depend on the interaction 

between sediment oxygen and ammonium availability.  
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Figure 3.3:  Denitrification potentials correlated positively with (A) rhizome width and (B) 

maximum stem height.  N2 enrichment in equilibrated sediment porewater decreased with 

increasing stem density (y = 5.78 – 0.009 x, R2 = 0.57, p = 0.004). 
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Chapter 4 

Using plant traits to predict denitrification potential in salt marsh ecosystems 

Abstract 

Microbial denitrification, a critical ecosystem service on which humans depend for nitrogen 

removal and the maintenance of water quality, remains a notoriously difficult process to measure 

and predict.  Models that incorporate traits of wetland plant communities may provide a 

complementary approach to traditional hydrologically and chemically based models in predicting 

rates of denitrification among wetland ecosystems.  I examined the influence of the dominant 

salt-marsh grass Spartina alterniflora on microbial nitrogen-cycling processes in eleven field 

sites spanning a range of land-use conditions on Long Island, NY.  My analysis revealed that 

simple linear models of plant traits provided predictions of denitrification potentials among sites 

that were comparable to models using measurements of sediment carbon and nitrogen content as 

predictors.  Among all sites, denitrification potentials in Spartina-dominated sediments were 

double those measured in adjacent non-vegetated control plots on average, with the influence of 

vegetation increasing with total aboveground and belowground biomass of the plant community.  

Together these results support the utility of trait-based approaches in understanding the role of 

plant communities in promoting nitrogen-removal services in wetland ecosystems.  Trait-based 

models offer a powerful way to estimate denitrification rates at the whole-ecosystem scale and 

could be used to predict how changes in the composition of ecological communities alter the 

provisioning of ecosystem services in future landscapes. 

Introduction 

Denitrification remains one of the most important but least well-quantified terms in the 

global nitrogen cycle (Galloway et al. 2004, Schlesinger 2009).  Humans have augmented inputs 
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of nitrogen to ecosystems on a global scale, resulting in an accumulation of biologically 

available nitrogen within many ecosystems (Vitousek et al. 1997, Galloway et al. 2004).  In 

aquatic ecosystems, excess nitrogen can have severe negative consequences for human health 

and local water quality, including eutrophication, hypoxia, and harmful algal blooms 

(Millennium Ecosystem Assessment 2005).  Denitrification, a microbial respiratory process in 

which nitrate is permanently removed from ecosystems to the atmosphere as inert dinitrogen gas, 

helps to counteract these effects and thus represents a critical ecosystem service (Zedler 2003, 

Hinga et al. 2005).  For this reason, denitrification is perhaps the most essential term in the 

nitrogen cycle for those aiming to mitigate the impacts of excess nitrogen availability.    

Much of the uncertainty in estimating denitrification at the scale of whole ecosystems is 

due to the difficulty of measuring and modeling this process.  Directly measuring denitrification 

requires the detection of tiny fluxes of N2 gas against an atmosphere that is 80% N2.  Different 

techniques developed to address this challenge often provide conflicting estimates (Groffman et 

al. 2006).  Because many of these methods are expensive and technically challenging, whatever 

measurements of denitrification exist are often very limited in spatial and temporal scale (Boyer 

et al. 2006).  For these reasons, managers and biogeochemists often rely on predictive models of 

denitrification, which usually incorporate the various hydrological and chemical factors 

controlling denitrification rates (Boyer et al. 2006, Groffman et al. 2009).  Denitrifying microbes 

are facultative anaerobic heterotrophs that use organic carbon as an energy source and can switch 

to using nitrate as an electron acceptor when molecular oxygen becomes depleted.  Models that 

have been developed to predict denitrification typically use nitrogen loading and organic carbon 

as predictor variables.  Sediment temperature, measurements or predictions of sediment redox 

conditions, and factors associated with hydrology and residence time are also commonly 
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incorporated to identify environments in which denitrification is likely to occur (Boyer et al. 

2006).   

Though these models serve a useful purpose, they do not try account for the influence of 

organisms and ecological communities on ecosystem process rates (Boyer et al. 2006, Groffman 

et al. 2009).  A trait-based framework offers one potential approach to improving these models 

by linking community structure and dynamics with ecosystem processes (Lavorel and Garnier 

2002, McGill et al. 2006).  Wetland plant communities are known to influence sediment 

chemistry and denitrification rates by altering organic carbon availability and the redox 

conditions of sediments through root aeration (Sherr and Payne 1978, Weisner et al. 1994, 

Bachand and Horne 2000).  Traits represent useful parameters for describing mechanistic 

relationships between organisms and their environments, in this case between wetland plants and 

the sediment environment (Keddy 1992).   

The conceptual framework introduced in Chapter 1 illustrates that plant traits may affect 

denitrification via multiple pathways, possibly leading to complex relationships that depend on 

environmental context (Figure 1.3).  Traits that increase sediment aeration may suppress 

denitrification by introducing molecular oxygen, the favored electron acceptor in respiration. 

Alternatively, they may enhance denitrification by encouraging the production of nitrate from 

ammonium via nitrification.  Both belowground traits such as root mass or rhizome width, and 

aboveground traits such as like photosynthetic rate, specific leaf area or leaf nitrogen content, 

could be related to diurnal variation in oxygen within sediments (Wright et al. 2004, Reich et al. 

2007).  Litter quality and root production may influence carbon availability and quality and 

enhance denitrification potential, albeit on very different timescales, with root exudation 

influencing short-term carbon dynamics and litter quality influencing long-term carbon dynamics 
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via decomposition and nutrient recycling (Hume et al. 2002a, b).  Conversely, traits associated 

with higher nitrogen demands or accumulation of nitrogen in recalcitrant biomass would result in 

competition with microbes for nitrogen and may inhibit denitrification rates (Figure 1.3).  

In this chapter, I examined the association of traits of coastal salt marsh communities 

dominated by Spartina alterniflora with sediment characteristics and microbial nitrogen cycling 

rates in a comparative field study on Long Island, NY.  Long Island represents a well-established 

gradient of high-intensity land use in urban areas of western Long Island near New York City to 

comparatively low-intensity land use in agricultural and forested areas of eastern Long Island 

(O’Shea and Brosnan 2000, Scorca and Monti 2001, Monti and Scorca 2003, Benotti et al. 2007) 

(Figure 4.1), with corresponding variation in inorganic nitrogen availability in sediments as a 

result of the various land uses (see Chapter 5).  I examined potential associations between the 

traits of Spartina-dominated communities and nitrogen-cycling rates across Long Island.  I then 

used trait associations to predict denitrification rates among sites and compared my predictions 

to predictions obtained from sediment variables commonly used in predictive denitrification 

models (organic carbon and nitrate availability).   

Because my approach is correlative, I expected that both the Spartina-dominated plant 

community and the microbial community may be responding to differences in nitrogen 

availability sites.  Therefore, correlations between plant traits and denitrification rates could 

indicate a direct effect of the plant community on denitrification, or they could simply represent 

a biologically meaningful proxy for nitrogen availability to which both the plant and microbial 

communities are responding.  To directly evaluate the influence of marsh vegetation, I calculated 

an effect of the plant community on denitrification potential, relative to adjacent non-vegetated 

plots at the same marsh sites, and attempted to explain this effect using aggregate traits of the 
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plant community.  This study represents a regional-scale attempt to establish predictive 

associations between characteristics of an ecological community and a microbial process that 

constitutes a critical service in many ecosystems.   

Methods 

Field Sampling 

Eleven coastal salt marshes on Long Island, each dominated by Spartina alterniflora, 

were selected for sampling to examine relationships among plant traits, sediment characteristics, 

and microbial nitrogen transformations (Figure 4.1).  I sampled all sites in June and August of 

2013, times that correspond to the onset of plant growth and peak biomass.  To control for tidal 

height and time of day, all sampling occurred within two hours of low tide and within two hours 

of solar noon, when physiological rates of both the vegetation and microbes were expected to be 

maximized.  For each marsh location, 12 quadrats (25 x 25 cm) were randomly placed at a 

minimum of one meter apart, five within the marsh platform where short-form S. alterniflora is 

typically found, five near a creek edge where tall-form S. alterniflora is typically more common, 

and two in adjacent non-vegetated mudflats. 

Vegetation measurements 

Within each quadrat location, two canopy leaves from different S. alterniflora stems were 

randomly selected for measurements of photosynthetic rate, stomatal conductance, and 

photosystem II efficiency (Fv/Fm) using an LI-6400XT portable photosynthesis system, 

equipped with a 6400-40 leaf chamber fluorometer.  When leaf width was insufficient to fill the 

leaf chamber, area corrections were applied prior to final calculations of photosynthetic rate and 

stomatal conductance (Box 4.1).  I collected a 10 cm long leaf fragment from the leaves used in 

physiological measurements for measurements of leaf width and specific leaf area.  Leaf 
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fragments were dried at 50°C for a minimum of 24 hours, weighed, and analyzed for carbon and 

nitrogen content with a Perkin Elmer Series II CHNS Analyzer.  All aboveground material in the 

quadrats was harvested, dried at 50°C for at least 24 hours, and weighed to determine 

aboveground biomass.  A sediment core (diameter ≈ 5 cm, depth ≈ 10 cm) was collected from 

near a stem closest to the center of each quadrat for determination of belowground biomass and 

maximum rhizome width.  Total belowground biomass, including living and dead roots and 

rhizomes, was determined by wet sieving sediment through a 1000 µm sieve and removing non-

vegetative material by hand.  Both physiological and morphological traits are expressed as a 

weighted mean of the traits of individual constituents of the community within the plot area.   

Sediment Chemistry 

Porewater samples were collected from each quadrat using syringe-vacuum porewater 

sippers (Kolker 2005) and were kept frozen at -20° C until analysis for salinity using a 

refractometer and ammonium, nitrate, and phosphate content using standard colorimetric 

techniques (Jones 1984, Parsons et al. 1984b, Wetzel and Likens 2000).  Sediment subsamples 

from each quadrat were extracted with 2N potassium chloride solution and analyzed for nutrient 

contents using the same methods used for porewater samples.  Sediment subsamples were also 

used to measure moisture content (change in mass after drying at 70°C for at least 24 hours) and 

total carbon and nitrogen content with a  Perkin Elmer Series II CHNS Analyzer.  Sediment 

composition was determined as sand content by wet-sieving through a 63 µm mesh, drying at 

70°C for 24 hours, and calculating mass of sand relative to the total mass of sediment subsample. 

At the end of each sampling season, porewater nutrient profiles were obtained for each 

site with PVC porewater equilibrators using the same methods described in Chapter 3 (Hesslein 

1976).  Porewater equilibrators were installed in the transition zone between the marsh edge and 
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marsh platform at each marsh site and left in the field for 7 to 10 days; porewater was collected 

from sampling wells using a syringe and stored in acidified scintillation vials until analysis. 

Microbial Processes 

Sediment samples were collected from each quadrat for determination of denitrification 

rates using denitrification enzyme activity (DEA) measurements, gross nitrification 

measurements, and net mineralization-immobilization measurements.  All microbial process 

measurements began within 24 hours of initial sediment sampling.  DEA measurements followed 

the same protocols detailed in Chapter 3 (Smith and Tiedje 1979a, Watts and Seitzinger 2000).  

DEAs provide an estimate of the maximum potential of the microbial community to perform 

denitrification and are therefore useful for determining differences in denitrification potential 

between locations, but should not be interpreted as an absolute measurement of N2 flux from 

sediments (Groffman et al. 2006).  Nitrification and mineralization assays were performed on 

sediment subsamples from the same sediment cores used to measure DEA, using methods 

described in Chapter 3 (Hall 1984, Bédard and Knowles 1989, Strauss and Lamberti 2000, Starry 

et al. 2005). 

Statistical Analysis 

All data analyses were performed in R version 3.0.2 (R Core Team 2012).  I first 

computed Pearson correlations among plant traits using the function rcorr{Hmisc} (Harrell 2014, 

Schloerke et al. 2014) in order to avoid including redundant plant traits in subsequent models 

used to predict response rates of microbial processes.  General linear models (GLMs) were 

constructed to predict denitrification rates, gross nitrification rates, and net mineralization-

immobilization rates for site-level means using both plant-trait predictors and sediment-variable 

predictors.  Rates measured in tall- and short-form S. alterniflora were not found to differ 
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systematically and were pooled at the site level in all models.  Denitrification and nitrification 

rates were found to be log-normally distributed and were logarithmically transformed prior to 

analysis to achieve normal distribution of model residuals.  Because logarithmic transformations 

cannot be performed on negative values, net immobilization and net mineralization 

measurements were analyzed as untransformed rates.  Both nitrification and mineralization rates 

showed unequal variance among sampling groups when untransformed; therefore, weighted 

linear regressions were attempted in predictive models for both of these variables.  Weights were 

calculated as the inverse of the site-level sampling variance. 

I examined pairwise correlations between process rates and plant traits, and between 

process rates and sediment parameters.  Initial GLMs contained “sampling time” as a categorical 

predictor, the two most informative trait or sediment predictor variables (most correlated to the 

process of interest) as continuous predictors, and all potential interactions.  Non-significant 

factors and interactions (p ≥ 0.10) were eliminated from models in a forward step-wise 

procedure.  Residuals of final models were tested for normality using a Kolmogorov-Smirnov 

Lilliefors test (Lilliefors 1967). 

For each marsh site, I computed the effect of plants on denitrification rates as a log10-

response ratio of denitrification potentials in vegetated sediments divided by denitrification 

potentials in non-vegetated sediments: 

[Equation 4.1] 𝑙𝑜𝑔𝑅 = 𝑙𝑜𝑔10 (
𝐷𝐸𝐴𝑉𝐸𝐺

𝐷𝐸𝐴𝑆𝐸𝐷
) 

The error in effect was calculated as the propagated error of sampling denitrification in both 

vegetated and non-vegetated locations at the site level: 

[Equation 4.2] 𝑙𝑜𝑔𝑅(𝑠) =  
√(𝑠𝑉𝐸𝐺)2+(𝑠𝑆𝐸𝐷)2

2
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where s refers to the standard deviation in denitrification rates in vegetated and sediment plots at 

each site.  I evaluated the ability of plant traits to explain the effect of plants on denitrification in 

weighted GLMs, where weights were equal to the inverse of the variance in logR.  All model 

formulations, and code used to generate models and figures, are available in Appendix C. 

Results 

At the site level, plant traits explained 52% of the variation in denitrification rates, with a 

model fit comparable to the 56% explained by sediment variables (Table 4.1).  In the bivariate 

plant-trait model (Figure 4.2A), denitrification rates were negatively associated with root mass 

(Figure 4.2B) and positively associated with leaf nitrogen content (Figure 4.2C).  In the bivariate 

sediment model (Figure 4.2D), denitrification rates were positively associated with both carbon 

content (Figure 4.2E) and extractable nitrate content of sediments (Figure 4.2F).  Denitrification 

rates were also positively associated with gross nitrification rates (Figure 4.3).  Variation in gross 

nitrification rates (Figure 4.4A) and net mineralization rates (Figure 4.4B) at the site level was 

best explained by a weighted univariate relationship with extractable ammonium availability 

(Table 4.2).  Nitrification was positively associated with ammonium availability (Figure 4.4A), 

whereas net mineralization declined with increasing ammonium (Figure 4.4B).  No significant 

relationships were found between plant traits and nitrification rates (Appendix C); however, 

mineralization was found to be positively associated with both root mass and stomatal 

conductance, with these traits explaining 34% of the site-level variation in net mineralization in a 

weighted linear model (Table 4.2).  Negative net mineralization (net immobilization) was 

observed in the vast majority of the sediments I surveyed, with positive net mineralization 

detected in only 40 of the 220 measurements conducted in vegetated sediments.  In all cases, 
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there were no significant differences in microbial process rates between sampling times, and 

sampling time was eliminated from final models. 

The effect of plants on denitrification rates was positive for seven out of eleven sites, but 

the average effect among all sites was not significantly different from zero.  On average 

vegetation resulted in a doubling of denitrification potential relative to adjacent non-vegetated 

sediments.  The effects of plants on denitrification are best explained by a linear additive model 

using aboveground and belowground biomass as predictors (Table 4.3, Figure 4.5A).  Vegetation 

effects were significantly and positively associated with total aboveground biomass of the plant 

community (Figure 4.5B) and positively associated with total belowground biomass (Figure 

4.5C) at α = 0.10 (Table 4.3).  However, the effect of vegetation was also highly variable, with a 

negative effect occurring in four of eleven sites, and much of the variation in effect remains 

unexplained (Table 4.3).  Maximum plant effects appeared to occur at intermediate values of 

aboveground and belowground biomass, but our sampling was insufficient at extreme values of 

these variables to fit a monotonic relationship to the data (Figure 4.5A). 

Discussion 

Field observations from Spartina alterniflora salt marshes provided strong support for 

associations between plant traits and potential rates of microbial denitrification.  Together, the 

negative association with root mass and positive association with leaf nitrogen content explained 

over 52% of the variation in denitrification rates at the site level (Figure 4.2), performing 

comparably to models parameterized with sediment carbon and nitrate availability (Table 4.1).  

Notably, these plant traits were associated with both nitrogen assimilation and sediment aeration, 

two separate but related plant-mediated pathways that I hypothesized would influence sediment 

conditions and denitrification potential (Figure 1.3).  The negative association with root mass is 
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consistent with my hypothesis that sediment oxygenation may have a direct inhibitory effect on 

denitrification by providing a superior oxidant for denitrifiers such that they do not switch to 

using nitrate as a terminal electron acceptor.  Likewise, the positive association between 

denitrification potential and leaf nitrogen content was consistent with the hypothesized influence 

of photosynthetic rate on enhancing coupled nitrification-denitrification.  Specifically, I expected 

that higher photosynthetic rates would increase the diurnal variation in oxygen delivery to 

sediments, wherein oxygen loss from plant roots is high during the day when plants are 

photosynthetically active but low at night when continued root and microbial respiration results 

in a net loss of oxygen.  This diurnal cycling in oxygen could result in a dynamic in which 

nitrification is favored during conditions of high oxygen, producing nitrate that can be consumed 

by denitrifiers when oxygen becomes depleted.  A positive association with leaf nitrogen 

content, a well-supported proxy of photosynthetic potential, provides some support for this 

hypothesis (Reich et al. 2007, Kattge et al. 2009).  That denitrification potential is positively 

associated with gross nitrification rates among sites (Figure 4.3) lends further support to the 

indirect enhancement of denitrification via coupled nitrification-denitrification (Figure 1.3). 

An alternate explanation for these results could be that both plant and microbial 

communities are responding to the same gradient in nitrogen enrichment among the marsh sites 

on Long Island.  One would expect that leaf nitrogen would be greater in sites where more 

inorganic nitrogen is available.  Likewise, root mass in Spartina alterniflora has been shown to 

decrease in response to nutrient enrichment because plants require less belowground growth to 

obtain sufficient nutrients and allocate more growth to aboveground, photosynthetically active 

tissues (see Chapter 5) (Deegan et al. 2012, Watson et al. 2014).  Therefore, both plant responses 

that are associated with higher denitrification potentials are also potentially correlated to 
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increasing nitrogen availability.  That the plant-trait model performs comparably to sediment 

models in explaining variation in denitrification potential among sites (Table 4.1) is itself an 

interesting result because it suggests that plant traits may provide an informative proxy of 

biologically available nitrogen.   

Both nitrification and mineralization rates were strongly associated with sediment 

nitrogen availability (Figure 4.4), while plant traits were relatively less successful in predicting 

rates of these processes (Table 4.2, Appendix C).  Net immobilization was observed for over 

80% of the vegetated plots that I surveyed, with a strong positive association between 

immobilization and nitrogen enrichment in sediments (Figure 4.4).  This result indicates first that 

the nutrient content of Spartina alterniflora litter is insufficient to meet microbial needs, which is 

unsurprising given that the mean leaf C:N among sites is 32.6, well below the needs of typical 

decomposing microbes (Goldman et al. 1987).  It also suggests that as nutrient enrichment 

increases, net storage of nitrogen in organic forms would increase simultaneously in these 

systems (Bowden 1986, Groffman et al. 1992).  Notably, I did detect a significant positive 

association between net mineralization rates and root mass (Table 4.2), which may lend further 

support for the possibility that plant traits provide a useful indicator of biologically available 

nitrogen.   

Associations between plant traits and denitrification potential do not themselves allow me 

to distinguish between alternate mechanisms that could be responsible for observed patterns in 

denitrification among sites.  To begin to address this challenge, I made use of observations 

obtained from nearby non-vegetated sediments, and computed an “effect of vegetation” metric 

for each site.  This metric should control for factors such as nitrogen enrichment that would 

contribute to responses in both the plant and microbial community.  I found that denitrification 
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potentials in vegetated plots were on average double those observed in nearby non-vegetated 

plots, though significant variation was detected in the effect of vegetation among sites.  

Moreover, the influence of plants on denitrification potential generally increased with increasing 

aboveground biomass (Figure 4.5B) and belowground biomass (Figure 4.5C).  This observation 

is consistent with the idea that trait relationships may be scaled to ecosystem-level processes 

using measurements of plant abundance as an indicator of plant influence (Lavorel and Grigulis 

2012).  If true, extending these relationships to multi-species communities may simply be a 

matter of computing community-trait means, weighted by the biomass of individual constituents 

of the community. 

Overall my results support the usefulness of plant traits in predicting patterns of 

microbial processes, likely due to a combination of the direct influence of plants on sediment 

chemistry and the usefulness of plant traits as indicators of biologically available nitrogen.  

Though further experimental and observational work is clearly needed to assess the relative 

importance of the various mechanisms by which plant communities influence sediment 

processes, as well as the generality of these mechanisms for multi-species communities, my 

findings indicate great potential for plant traits to inform predictions of denitrification in wetland 

ecosystems.  All of the components of the nitrogen cycle that I measured—denitrification, 

nitrification, and net mineralization—were closely associated with nitrogen availability in 

sediment porewater (Figure 4.2F, Figure 4.4).  To the extent that plant traits provide useful 

proxies of biologically available nitrogen, surveys of plant traits within an ecosystem may 

provide valuable insight into this key determinant of the nitrogen cycle.  Plant-trait predictors 

provide additional advantages in that they may be assessed relatively quickly and inexpensively, 

and many traits including foliar nitrogen can be measured at the landscape scale using 
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hyperspectral remote-sensing methods (Serbin et al. 2014, Asner et al. 2015).  When combined 

with moisture and geophysical measurements obtained by remote sensing, such variables offer 

the potential for landscape-scale predictions of the nitrogen removal capacity of ecosystems 

(Boyer et al. 2006, Kulkarni et al. 2008). 
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Table 4.1:  Results of general linear models to predict denitrification potential in salt marshes 

dominated by Spartina alterniflora.  Denitrification potentials were log10 transformed prior to 

analysis. (Root mass = total belowground biomass g m-2, Leaf N = leaf nitrogen content mgN g-

1dry weight, Carbon = sediment carbon content mgC g-1dry weight, Nitrate = extractable nitrate 

content of sediments µM) 

 

Plant-trait Model 

R2 = 0.52 

F2,19 = 10.21 

p = 9.7 x 10-4 

Sediment Model 

R2 = 0.56 

F2,19 = 12.04 

p = 4.2 x 10-4 

Factor Estimate t p Factor Estimate t p 

Intercept 2.0 4.2 4.6 x 10-4 Intercept 1.9 9.0 2.9 x 10-8 

Root mass -3.4 x 10-4 -3.5 2.6 x 10-3 Carbon 1.8 x 10-3 1.4 1.9 x 10-1 

Leaf N 8.4 x 10-2 3.1 5.9 x 10-3 Nitrate 7.1 x 10-3 3.6 1.2 x 10-3 
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Table 4.2:  Results of general linear models to predict net mineralization rates; models were 

weighted by the inverse of the sampling variance in mineralization at the site level.  (Root mass 

= total belowground biomass g m-2, Conductance = stomatal conductance mol H2O m-2 s-1, Leaf 

N = leaf nitrogen content mgN g-1dry weight, Ammonium = extractable ammonium content of 

sediments µM) 

 

Plant-trait Model 

R2 = 0.34 

F2,19 = 4.81 

p = 5.1 x 10-3 

Sediment Model 

R2 = 0.55 

F1,17 = 24.64 

p = 7.5 x 10-5 

Factor Estimate t p Factor Estimate t p 

Intercept -8.6 x 102 -5.4 3.4 x 10-5 Intercept -22.5 -0.3 0.79 

Root mass 1.6 x 10-1 2.6 0.02 Ammonium -4.6 -5.0 7.5 x 10-5 

Conductance 1.5 x 103 1.7 0.10     
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Table 4.3:  Results of weighted general linear model to predict the effect of plants on 

denitrification rates.  The effect of plants was calculated as the log10 response ratio of 

denitrification rates in vegetated sediments, relative to denitrification rates in non-vegetated 

sediments.  The regression was weighted by the inverse of the combined sampling variance of 

vegetated and non-vegetated means at each site.  (R2 = 0.23, F2, 19 = 1.73, p = 0.08) 

 

Factor Estimate t p 

Intercept -1.3 -1.7 0.10 

Aboveground Biomass 1.6 x 10-3 2.1 0.05 

Root Mass 3.6 x 10-4 1.8 0.09 
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Figure 4.1:  Research locations on Long Island, NY, ranging from high human population 

density in western Long Island to rural areas in eastern Long Island (United States Geological 

Survey 2010).  Each salt-marsh location was dominated by Spartina alterniflora and sampled in 

June and August, 2013.  At each site, five plots were sampled along the marsh edge, five along 

the marsh platform, and five on non-vegetated mudflats. 
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Figure 4.2:  Result of best models to predict denitrification rates at the site level. (A) A linear, 

additive model including root mass and leaf nitrogen content as predictors explained 52% of 

variation in denitrification rates. Denitrification was (B) negatively associated with root mass 

and (C) positively associated with leaf nitrogen content. (D) A linear, additive model including 

sediment carbon and extractable nitrate as predictors explained 56% of variation in 

denitrification rates.  Denitrification was positively associated with (E) sediment carbon and (F) 

extractable nitrate content. 

  

(A) 

(D) 
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Figure 4.3:  Denitrification rates were positively associated with nitrification rates at the site 

level (y = 1.6 + 0.45 x, R2 = 0.18, F1, 20 = 4.4, p = 0.05). 
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Figure 4.4:  (A) Variation in nitrification rates among sites was best explained by extractable 

ammonium content of sediments, using a univariate linear model, weighted by the inverse of the 

site-level sampling variance in nitrification (y = -170 + 3.2 x, p = 5.2 x 10-4, R2 = 0.46). (B) 

Variation in mineralization rates was best also best explained by extractable ammonium in a 

weighted, linear model. 
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Figure 4.5:  (A) The effect of plants on denitrification rates, shown here as a log-response ratio 

of denitrification potential in vegetated plots to denitrification potential in sediment plots, 

increased with both (B) aboveground biomass and (C) root mass at the site level.  Sizes of the 

points in B and C correspond to their relative weights in the weighted linear model (Table 4.5).  

A log-response ratio of 0 indicates no effect of vegetation; a positive value indicates a positive 

effect, and a negative value indicates a negative effect. 

  

(A) 



 

78 

 

  

Box 4.1 Derivation of leaf-area correction for the LI-COR 6400-40 leaf chamber fluorometer 

The area of the leaf inside the chamber was determined by calculating the area of the two 

circular segments not covered with leaf area [Equation 4.3-4.4] and subtracting these 

segments from the total area of the leaf chamber 

[Equation 4.5].  The only inputs necessary to make 

the final calculation is chamber area (2 cm2), chamber 

radius (R, or the square-root of the area, divided by 

π), and the mid-leaf width (d). 

[Equation 4.3] 𝐴𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =  
1

2
𝜃2[𝜃 − sin (𝜃)]  

[Equation 4.4] where  𝜃 = 2 𝑎𝑟𝑐𝑐𝑜𝑠 (
1

2
𝑑

𝑅
)  

[Equation 4.5] 𝐴𝑙𝑒𝑎𝑓 = 𝐴𝑐ℎ𝑎𝑚𝑏𝑒𝑟 − 2 (𝐴𝑠𝑒𝑔𝑚𝑒𝑛𝑡)  
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Chapter 5 

Impacts of salinity and nutrients on salt marsh stability 

Abstract 

Belowground growth in coastal plants is a critical determinant of marsh stability and the ability 

of wetlands to keep pace with sea-level rise.  Quantifying the multiple effects of nutrient loading 

on root biomass and marsh stability is an ongoing controversy in wetland research.  Though 

some physiological models for marsh vegetation predict that root mass should increase with 

increasing nutrient availability, fertilization experiments and field measurements have indicated 

that plants shift growth allocation from belowground to aboveground as nitrogen availability 

increases.  Likewise, salinity may decrease belowground growth through sulfide toxicity, or it 

may increase belowground allocation as plants respond to sulfide stress by increasing root 

growth to oxidize sediments.  Here, I made use of an urban to rural range of land-use conditions 

among coastal marshes dominated by Spartina alterniflora on Long Island, NY to test for 

correlates of root growth.  Based on two years of data from both low- and high-marsh S. 

alterniflora in 11 field sites, I found that belowground biomass was related positively to salinity 

and negatively to extractable nitrogen content in sediments.  These results indicate that further 

eutrophication may reduce marsh stability and that increasing salinity, perhaps as a result of 

future sea level rise, may increase marsh stability. 

Introduction 

Coastal salt marsh ecosystems provide valuable services such as shoreline stabilization, 

flood and storm surge protection, and maintenance of coastal water quality (Zedler 2003, 

Costanza et al. 2008, Gedan et al. 2011).  The resilience of these ecosystems to multiple 

anthropogenic pressures, including coastal eutrophication and accelerated sea-level rise, is 
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therefore critical for the health and economic well-being of coastal communities worldwide 

(Millennium Ecosystem Assessment 2005).  For salt marshes to keep pace with projected sea 

level-rise, they must accumulate sufficient sediment and organic matter for vertical growth, 

while maintaining sediment stability despite periodic hydrologic disturbances (e.g. storm surges 

and overland flow).  Both of these features of resilient marshes depend on well-developed root 

systems (Nyman et al. 2006, Perillo et al. 2009).  However, despite a long history of study 

(Valiela et al. 1976, Mendelssohn and Morris 2000), the relative importance of abiotic factors in 

influencing root-mass production and accumulation remains controversial in coastal marsh 

ecology.  To predict future patterns of marsh stability and the ability of marshes to provide 

critical ecosystem services, one must first resolve which abiotic factors are positively or 

negatively associated with belowground growth. 

One of the abiotic factors influencing root growth in coastal marsh vegetation is the 

availability of inorganic nitrogen, which is thought to be a limiting nutrient in coastal marshes 

(Mendelssohn and Morris 2000, Bertness et al. 2002).  Human activities have more than doubled 

nitrogen inputs worldwide relative to preindustrial levels, with inputs from synthetic fertilizers 

and animal wastes accompanying industrialized agricultural development, and human wastes 

from septic systems, sewage treatment, and combined sewer overflows accompanying urban 

development (Vitousek et al. 1997, Millennium Ecosystem Assessment 2005).  However, the 

consequences of increased nitrogen loading for root growth and stability in coastal ecosystems 

remains an open question.  Growth allocation in plants is typically assumed to shift from 

belowground to aboveground with increasing nutrient availability; that is, when nutrient 

limitation is relieved by fertilization, plants require fewer roots to acquire sufficient nutrients and 

can allocate more growth to photosynthetic tissues (Ericsson 1995).  Therefore, one may expect 
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to observe a reduction in belowground growth in coastal marshes that receive higher nutrient 

loads.  Reductions in living root mass have been observed in long-term nutrient enrichment 

studies and were often accompanied by a decrease in sediment stability (Turner et al. 2009, 

Kearney et al. 2011, Deegan et al. 2012, Watson et al. 2014).  However, physiological models of 

salt marsh vegetation and other enrichment studies have shown that nitrogen additions result in 

increased belowground growth, as well as increased sediment capture and accretion due to 

enhanced aboveground growth (Morris et al. 2002, Anisfeld and Hill 2012, Fox et al. 2012, 

Graham and Mendelssohn 2014).  An increase in root growth with increasing nitrogen 

amendments may be predicted if alleviating nitrogen limitation increases total plant production, 

including allocation to photosynthetic tissues, rhizomes, and roots (Morris et al. 2013), or if 

nitrogen fertilization results in a shift to phosphorus limitation and stimulates the growth of plant 

roots to scavenge for phosphorus (Turner 2011).  In any case, the net impact that increasing 

nitrogen loads have on belowground plant growth deserves further scrutiny at whole-marsh 

scales over multidecadal time periods and multiple nutrient-loading regimes. 

As a consequence of sea-level rise, salinity is also expected to increase across many 

brackish, coastal marshes; however, in coastal areas where climate change results in increased 

precipitation events or river discharge, salinity may also be expected to decrease (Craft et al. 

2008).  Additionally, greater tidal ranges may also reduce salinity in what were previously poorly 

flushed, high evaporation portions of the marsh.  However salinity changes in the future, 

understanding the effects of salinity on root mass in coastal vegetation is critical to our ability to 

forecast future marsh stability.  Increasing salinity translates to a higher concentration of sulfate 

ions, which when reduced to hydrogen sulfide in low redox marsh sediments, is toxic to plants 

(Mendelssohn and Morris 2000).  Therefore, one may expect to observe decreasing plant 
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production, including root production, with increasing salinity in anoxic marsh sediments 

(Linthurst and Seneca 1981).  However, marsh plants may also respond to sulfide stress under 

low redox conditions by introducing oxygen to sediments via their roots and specialized 

aerynchymatous tissues (Armstrong et al. 1994).  Considering plant responses to sulfide, 

increased salinity stress may lead to an increase in root growth.  The impacts of salinity on 

belowground growth in coastal vegetation are complicated by interactions and between nitrogen 

and salinity (Mendelssohn and Morris 2000).  Salinity is known to increase ammonium fluxes 

from sediments, leading to net nitrogen loss (Giblin et al. 2010), as well as to directly inhibit 

ammonium assimilation by plants (Bradley and Morris 1990).  Therefore, given the mixed 

responses described above, counteracting effects of nitrogen and salinity on root mass may be 

expected.  Field evidence for effects of salinity on belowground growth is sparse and does not 

clearly support either alternative hypothesis, nor test potential interactions with nutrient 

assimilation (Drake and Gallagher 1984, Howes et al. 2010).  Further field assessments are 

needed to fully resolve the influence of salinity on marsh stability. 

Here I examined the simultaneous influences of salinity and sediment nutrient availability 

on belowground growth of Spartina alterniflora across 11 coastal salt marshes that span an urban 

to rural land-use gradient from western to eastern Long Island, NY (Figure 4.1).  Using 430 

observations of total belowground biomass collected in June and August over two years, I 

assessed the ability of salinity and inorganic nutrients to explain site-level variation in root mass.  

The sites examined in this study form a 50-100 year chronosequence of development from 

forested to agricultural to urban land-use types, a series of land-use transitions that reflects 

development patterns occurring worldwide (Millennium Ecosystem Assessment 2005).  This 

comparative study complements long-term fertilization experiments (13-17 year) by identifying 
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correlates of root mass, and thus marsh stability, which have established on a multidecadal scale 

under a common pattern of land-use development. 

Methods 

Long Island, NY represents a well-established gradient of high-intensity land use in 

urban areas of western Long Island near New York City to comparatively low-intensity land use 

in agricultural and forested areas of eastern Long Island (O’Shea and Brosnan 2000, Scorca and 

Monti 2001, Monti and Scorca 2003, Benotti et al. 2007).  As an example, nitrogen loads to the 

entirety of Jamaica Bay in western Long Island have risen from 35 kg/day in 1900 prior to 

extensive development to an estimated 15,800 kg/day as of 2005 (Benotti et al. 2007).  Whereas 

pre-development nitrogen fluxes to Long Island marshes originated almost entirely from 

groundwater flow, post-development fluxes are dominated by sewage-treatment outflows, 

combined-sewer overflows, septic systems and cesspools, and agricultural drainage (including 

legacy effects from historically extensive duck farms in eastern portions of the island) (Ayers et 

al. 2000, Benotti et al. 2007).  Total nitrogen inputs are generally found to be greatest in areas of 

highest human population density (United States Geological Survey 2010).  Additionally, 

variation in tidal range between Long Island Sound on the northern coast of Long Island and the 

various coastal embayments of southern and eastern Long Island, as well as variation in stream-

flow discharge, offered a high probability that average salinity would vary among marsh sites 

independently of variation in nitrogen loading (Scorca and Monti 2001, Monti and Scorca 2003). 

Eleven coastal salt marshes on Long Island, each dominated by Spartina alterniflora, 

were selected for sampling (Figure 4.1) to examine the effects of nutrient availability and salinity 

on aboveground and belowground plant growth.  Sampling was conducted in June and August of 

2012 and 2013, chosen to correspond to the onset of plant growth and peak biomass.  For each 
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marsh location, ten 25 x 25 cm quadrats were randomly placed at a minimum of one meter apart, 

five within the marsh platform where short-form S. alterniflora are typically found, and five near 

a creek edge where tall-form S. alterniflora are typically more common.  For each quadrat 

location I measured aboveground and belowground biomass, sand content, sediment carbon 

content, sediment porewater salinity, and sediment porewater nutrient availability (ammonium, 

nitrate, and phosphate). 

Within each sampling quadrat, I clipped all aboveground vegetation; clippings were dried 

at 50° C for at least 48 hours and weighed to determine aboveground biomass.  A sediment core 

(diameter ≈ 5 cm, length ≈ 10 cm) was taken from near a stem closest to the center of each 

quadrat for determination of belowground biomass, maximum rhizome width, and sand content.  

Total belowground biomass, including living and dead roots and rhizomes, was determined by 

wet sieving core samples through a 1000 µm sieve and removing non-vegetative material by 

hand.  Sand particles larger than 63 µm were likewise collected by sieving and weighed to 

determine sand content of marsh sediments.  Vegetated sediment from duplicate cores within the 

same quadrat, was subsampled, dried, and analyzed for total nitrogen and carbon content using a 

Perkin Elmer Series II CHNS Analyzer.  I collected sediment porewater from each quadrat using 

syringe-vacuum porewater sippers.  Porewater samples kept on ice, returned to the lab, and 

frozen at -20° C until analysis of salinity with a refractometer, and ammonium and nitrate 

content using standard colorimetric methods (Jones 1984, Parsons et al. 1984b); unless otherwise 

specified, measurements of nitrate and ammonium were summed prior to analysis and reported 

as “dissolved inorganic nitrogen (DIN).”  In 2013, an additional 5 g sediment subsample from 

the duplicate sediment cores was extracted with 10 ml 2N KCl solution and analyzed for 

ammonium, nitrate, and phosphate content using standard colorimetric methods (Jones 1984, 
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Parsons et al. 1984b, Wetzel and Likens 2000).  I also obtained nutrient and salinity profiles for 

each wetland location in April, June, and August of each year using PVC porewater equilibrators 

with 12 ml sampling wells spaced vertically at 3 cm intervals.  Equilibrators were filled with 

dionized water, covered with a Spectr-Por cellulose membrane, and deoxygenated overnight by 

bubbling with nitrogen gas prior to installation (Hesslein 1976).  Equilibrators were installed in 

vegetated sediments at the transition zone between tall- and short-form S. alterniflora at each site 

and left in the field for 7-10 days.  Porewater was collected from sampling wells using a syringe 

and stored in acidified scintillation vials until analysis.   

I performed all data analyses on site-level means in R version 3.0.2 (R Core Team 2012).  

Measurements obtained in tall- and short-form S. alterniflora (marsh edge and platform, 

respectively) were not found to differ systematically in total aboveground or belowground 

biomass and were pooled at the site level.  Because all predictor variables were not measured in 

all years, two separate sets of linear models were constructed, one initially containing all 

predictor variables collected in 2012-2013 [salinity, porewater DIN] and one initially containing 

all predictor variables collected in 2013 [salinity, extractable DIN, extractable phosphate].  

Models were constructed to predict aboveground biomass, root mass, and maximum rhizome 

width.  For all variables included in initial models, distributions and pairwise correlations were 

examined using the R function ggpairs (Schloerke et al. 2014) and tested for significance using 

the R function rcorr (Harrell 2014).  Extractable phosphate and all porewater nutrient 

measurements were log10 transformed to satisfy assumptions of normality prior to testing. 

Significance testing for each model was performed as an ANCOVA, with “Sampling 

Time” included as a categorical predictor, and nutrients and salinity included as continuous 

predictors in a sequential linear model.  Factors and interactions that did not add predictive value 
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were eliminated from models; after each elimination, changes in model fits were evaluated for 

significance.  Relationships between predictor variables and root mass were calculated (Legendre 

2013) and plotted (Wickham and Chang 2015) as standard-major-axis (SMA) regressions to 

account for appreciable measurement error in both dependent and independent variables.  Code 

for analyses and figures is provided in Appendix D. 

Results 

Extractable inorganic nitrogen and salinity varied independently among Long Island field 

sites (Figure 5.1, Appendix D).  High concentrations of nitrogen were detected in areas of 

western Long Island, as predicted, but concentrations were also high in central Long Island near 

Peconic Bay, where duck farms were historically abundant.  Salinity was greatest at sites near 

the westernmost and easternmost ends of Long Island (Figure 5.1), and was uncorrelated to 

variation in nitrogen availability (Appendix D).  

For measurements conducted in June and August 2013, initial models to predict root 

mass included sampling time, salinity, extractable inorganic nitrogen, and extractable phosphate.  

Total root mass was negatively related to extractable inorganic nitrogen (Figure 5.2A), but 

positively related to porewater salinity at α = 0.05 (Figure 5.2B).  Though mean root mass 

differed between sampling times, the effect of salinity and nitrogen on root mass did not, and no 

interaction was detected between salinity and nitrogen.  Overall, I detected a 60-70% reduction 

in standing root mass and a 70% increase in standing aboveground biomass with increasing 

nitrogen availability at the site level (Figure 5.2A, 5.2C).  Additionally, root mass was found to 

increase with increasing porewater salinity by as much as 70% at the site level; the effect of 

salinity on root mass was remarkably consistent among all sampling times included in this 

analysis (Figure 5.2B). 
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Aboveground biomass was positively related only to extractable inorganic nitrogen at α = 

0.10 (Figure 5.2C) but had no obvious response to variation in salinity (Figure 5.2D).  In all 

cases, extractable phosphate was a poor predictor of vegetation responses and was removed from 

final models.  Overall, I was able to explain over 51% of the total variation in root mass with 

extractable nitrogen, salinity, and seasonal information; with only nitrogen and seasonal 

information, I was able to explain 42% of the total variation in aboveground biomass among 

marsh sites (Table 5.1).  For the full set of root mass measurements (2012-2013), only porewater 

inorganic nitrogen and salinity were available as independent variables.  Porewater nitrogen did 

not explain a significant amount of variation in root mass and was discarded from the model.  

Salinity was positively related to root mass at α = 0.05, and although mean root mass again 

differed significantly among sampling times, the effect of salinity on root mass did not.  No 

variables sampled in both 2012 and 2013 were significantly associated with aboveground 

biomass.  Sampling time and salinity explained 34% of the variation in root mass for the 2012-

2013 dataset.  In all cases, porewater nutrient measurements obtained from vacuum porewater 

sippers were found to be poor predictors of root mass and aboveground biomass and were 

ultimately discarded from final models.  No linear combination of sediment variables was 

capable of explaining a significant amount of variation in maximum rhizome width in either set 

of analyses.  Vegetation response variables—aboveground biomass, root mass, and maximum 

rhizome width—were uncorrelated at the site level; likewise, no significant correlations were 

detected among predictor variables—extractable nitrogen, extractable phosphorus, porewater 

nitrogen, porewater phosphorus, porewater salinity (see Appendix D for full analysis). 
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Discussion 

This work supports the hypothesis that eutrophication due to nitrogen loading exerts a 

negative influence on belowground biomass, and thus marsh stability, in coastal marshes.  This 

result is consistent with a growing body of evidence suggesting that increasing nutrient 

availability increases the amount of growth marsh plants allocate to aboveground production and 

decreases the amount of growth allocated to roots and rhizomes (Valiela et al. 1976, Deegan et 

al. 2012, Watson et al. 2014).  Notably, most studies have been based on enrichment experiments 

and have witnessed a response in only the living fraction of belowground biomass.  My study is 

one of the few that has detected a response in total belowground biomass, including both living 

and dead root material, in a coastal marsh (Morris and Bradley 1999).  Because the long-term 

stability of marshes experiencing sea-level rise ultimately depends on the total accumulation of 

organic material and mineral sediments, my results suggest one biological mechanism under 

which chronic nutrient enrichment may inhibit the ability of marshes to grow vertically.  A 

reduction in total belowground biomass, resulting from both the accumulation and 

decomposition of dead root matter, is a slow response variable that is perhaps unlikely to be 

detected in short- to moderate-term (i.e., 5-15 year) enrichment experiments.  In contrast, the 

variation in standing total root mass in Long Island salt marshes could be viewed as a 50 to 100 

year enrichment experiment in which the effects of chronic eutrophication on total biomass are 

more likely to be detected.  This finding has important implications for the long-term stability of 

marshes that are believed to be currently stabilized by nutrient enrichment.   

An alternate explanation for my observed pattern of reduced belowground biomass with 

increased nitrogen is that increasing aboveground production through nutrient enrichment 

enhances mineral sedimentation rate, thus decreasing the proportion of organic material in 
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sediments relative to non-organic components (Morris et al. 2002).  If true, I would expect to 

observe an inverse relationship between aboveground biomass and total belowground biomass or 

organic content of sediments at the site level.  Although I did detect an increase in aboveground 

production in sites with higher nutrient availability (Figure 5.2C), I found no correlation between 

aboveground biomass and belowground biomass among sites, nor with total organic sediment 

content (Appendix D).  However, aboveground biomass was weakly correlated with the sand 

content of sediments for samples collected in 2013 (Appendix D).  Together, these results 

suggest that aboveground biomass does influence sediment capture, but that the amount of 

sediment captured is insufficient to affect the total fraction of sediments composed of organic 

material.  Such a result is not surprising given that stream discharge and thus overall particle 

delivery to Long Island marshes is small relative to tidal influence (Kim and Bokuniewicz 1991).  

The lack of a negative correlation between aboveground and belowground production (Appendix 

D) further suggests that controls on these vegetation responses may be decoupled, which seems 

counterintuitive since both responses depend on nitrogen availability (Figure 5.2A, 5.2C).  In 

addition to nitrogen, these biomass components may be responding to alternate abiotic variables, 

such as salinity in the case of root mass (Figure 5.2B) or tidal range in the case of aboveground 

biomass (Steever et al. 1976).  The relative importance of enhanced sediment capture due to 

increasing aboveground biomass, versus reduced sediment accumulation resulting from 

decreasing belowground biomass, may depend strongly on rates of sediment delivery via stream 

discharge and the strength of tidal influences on coastal marshes.  My findings indicate that, in 

marshes with relatively low rates of sediment deposition, factors controlling belowground 

growth and organic-matter accumulation are likely to be more important determinants of vertical 

marsh growth than sediment capture by aboveground biomass. 
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The nutrient-loading context of a marsh may also influence large-scale patterns.  I found 

no evidence of phosphate effects in our analysis (Appendix D); however, because the mean N:P 

ratio in sediment porewater never exceeded 15 for any of the sites included in this study, marsh 

vegetation in these sites is extremely unlikely to be phosphorus limited (Verhoeven et al. 1996).  

In marshes with lower phosphorus availability, nitrogen enrichment may cause plants to become 

increasingly phosphorus limited, in which case they may allocate more growth to roots to 

scavenge for phosphate (Turner 2011).  If the phosphorus-scavenging hypothesis is true, nitrogen 

enrichment of sites experiencing nitrogen and phosphorus co-limitation could result in an 

increase in root mass. 

The most surprising pattern I observed was the positive and remarkably consistent effect 

of salinity on belowground biomass in Spartina alterniflora marshes (Figure 5.2B).  This result 

supports the hypothesis that plants allocate more growth to roots as a stress response, aerating 

sediments to increase sulfide oxidation and alleviate sulfide stress (McKee et al. 1988).  My 

results are consistent with at least one other field study (Howes et al. 2010), which found that 

high-salinity marshes produce more roots and have a higher sediment shear strength than nearby 

low-salinity marshes.  However, these field studies appear to conflict with greenhouse studies 

that have found reductions in root production under sulfide stress (Mendelssohn and Morris 

2000).  This discrepancy may arise because greenhouse plants kept in static conditions may not 

have sufficient opportunity to influence redox conditions in the sediments via responses in root 

growth, whereas observations of field conditions include longer term acclimation responses of 

plants (Mendelssohn and Morris 2000). Overall, results from field studies suggest that increasing 

salinity from sea-level rise may enhance stability of existing coastal marshes, assuming that 

sediment delivery and total production is sufficient for vertical marsh growth. 
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Though consistent with previous work showing that nutrient loading negatively impacts 

root mass, my findings suggest a much larger role for salinity in determining total root mass than 

is commonly expected.  Together, these results indicate that further eutrophication may reduce 

marsh stability and that increasing salinity experienced by inland marshes as sea level rises may 

increase stability of those marshes.  Because high sulfide concentrations inhibit the ability of 

roots to assimilate nitrogen (Mendelssohn and Morris 2000), I expected an interaction between 

the effects of salinity and nitrogen availability on root mass.  However, I found that salinity and 

nitrogen acted independently to influence total root mass.  Therefore, though the effects of these 

two anthropogenic stressors on root mass are likely to exhibit complex spatial signatures over 

time, the fact that they act independently and consistently means that it should be possible to 

predict a significant proportion of the variation using relatively simple biological relationships.  

Given sufficient knowledge of hydrology and particle load for a site, a holistic management 

approach that accounts for both hydrological and chemical determinants of vegetative growth 

may well be within reach.  Such an approach would greatly enhance our ability to properly 

assess the stability of marshes under future scenarios of sea-level rise and eutrophication. 
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Table 5.1:  Results of ANCOVAs explaining variation in root mass (g/m2) and aboveground 

biomass of Spartina alterniflora at the site level in June-August 2013.  In both cases, interaction 

terms were non-significant and were removed from final models.  DIN = Extractable Dissolved 

Inorganic Nitrogen, SS = Sum of Squares. 

Root mass (g/m2) 

Model R2 = 0.5133 
Aboveground Biomass (g/m2) 

Model R2 = 0.4185 

Parameter df SS F p  Parameter df SS F  p  

Sampling Time 1 2.051 x 106 5.796 0.0285 Sampling Time 1 2.722 x 105 9.136 0.007 

Salinity (ppt) 1 1.695 x 106 4.790 0.0438      

DIN (µM) 1 2.225 x 106 6.288 0.0233 DIN (µM) 1 1.138 x 105 3.819 0.066 

Residuals 16 5.661 x 106   Residuals 18 5.364 x 105   
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Table 5.2:  Results of ANCOVA explaining variation in root mass (g/m2) of Spartina alterniflora 

at the site level in June and August 2012-2013.  Interaction terms were non-significant and were 

removed from the final model.  Model R2 = 0.3426. 

 

Parameter df 
Sum of 

Squares 

F 

value 
p value 

Sampling Time 3 3.904 x 106 2.993 0.0435 

Salinity (ppt) 1 4.251 x 106 9.778 0.0035 

Residuals 36 1.565 x 107   
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Figure 5.1:  Variation in extractable inorganic nitrogen and salinity in sediments across the 11 

Long Island field sites included in this study.  Error bars show standard error for site-level means 

(n = 10); the moving averages (solid lines) and confidence regions (shaded areas) were computed 

using a loess smoothing function.   
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Figure 5.2:  (A) At the site level, root mass of Spartina alterniflora was negatively associated 

with extractable inorganic nitrogen content of sediments in June 2013 [slopeSMA = -10.72, n = 

10, R2 = 0.49] and August 2013 [slopeSMA = -8.94, n = 11, R2 = 0.13].  (B) Root mass was 

positively associated with the salinity of sediment porewater in June 2012 [slopeSMA = 133.4, n = 

10, R2 = 0.05], August 2012 [slopeSMA = 109.4, n = 10, p = 0.044, R2 = 0.42], June 2013 

[slopeSMA = 89.19, n = 10, R2 = 0.27], and August 2013 [slopeSMA = 101.4, n = 11, R2 = 0.19]. 

(C) Total aboveground biomass was positively associated with extractable inorganic nitrogen in 

June 2013 [slopeSMA = 2.18, n = 10, R2 = 0.23] and August 2013 [slopeSMA = 2.75, n = 11, R2 = 

0.14], but (D) aboveground biomass was not related to salinity. 
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Chapter 6 

Impacts of invasive-plant management on nitrogen-removal services in freshwater tidal 

marshes 

Abstract 

Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor 

in contemporary ecosystem and community ecology, with important practical implications for 

conservation and the maintenance of ecosystem services.  Removal of invasive plant species to 

conserve native diversity is a common management objective in many ecosystems, including 

wetlands.  However, substantial changes in plant community composition have the potential to 

alter sediment characteristics and ecosystem services, including permanent removal of nitrogen 

from these systems via microbial denitrification.  A balanced assessment of costs associated with 

keeping and removing invasive plants is needed to manage simultaneously for biodiversity and 

pollution targets.  I monitored small-scale removals of Phragmites australis over four years to 

determine their effects on potential denitrification rates relative to three untreated Phragmites 

sites and adjacent sites dominated by native Typha angustifolia.  Sediment ammonium increased 

following the removal of vegetation from treated sites, likely as a result of decreases in both 

plant uptake and nitrification.  Denitrification potentials were lower in removal sites relative to 

untreated Phragmites sites, a pattern that persisted at least two years following removal as native 

plant species began to re-colonize treated sites.  These results suggest the potential for a trade-off 

between invasive-plant management and nitrogen-removal services.  A balanced assessment of 

costs associated with keeping versus removing invasive plants is needed to adequately manage 

simultaneously for biodiversity and pollution targets.   
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Introduction 

Characterizing relationships between biodiversity and ecosystem function is a central 

goal in contemporary ecological research (Loreau et al. 2001).  Because many ecosystem 

functions provide essential services for human survival and well-being, this discussion is of vital 

importance to environmental management (Kremen 2005).  For ecosystems that provide multiple 

ecosystem services, conserving biodiversity or functional diversity of the community is 

considered essential to preserving ecosystem function (Tilman 1999, Loreau et al. 2001).  The 

increasing prevalence of invasive or exotic species, which are often responsible for reducing 

biodiversity and causing local extinctions of native species, is commonly thought to be 

antithetical to this goal (Simberloff 2015).  Eradicating invasive species has become a common 

management practice, with the implicit assumption that removing invasives will increase 

biodiversity and restore one or more functions of the local ecosystem.  However, relationships 

between biodiversity and ecosystem function depend on complex interactions between organisms 

and their environments, which themselves may be context dependent, making broad 

generalizations difficult (Hooper et al. 2005).  In many cases, the traits of the dominant species 

in a community can be more important than diversity in controlling ecosystem services (Grime 

1998, Smith and Knapp 2003, Díaz et al. 2007).  Invasive species, which often become dominant 

species in a community and are known to impact sediment nutrient cycling processes, therefore 

have the potential to create conflicting management goals (Ehrenfeld 2003, Stein et al. 2014).   

This tradeoff may be especially important in wetlands.  Wetland ecosystems provide a 

wealth of services, including flood abatement, support for biodiversity, and improvement of 

water quality, that together has been valued at approximately $3000 per hectare annually (Zedler 

2003).  At least 50% of the global wetland area has been lost to agricultural, urban, and rural 
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development, and many of the remaining wetlands are considered to be “degraded” due to 

eutrophication and the increasing dominance of invasive species (Bertness et al. 2002, Zedler 

and Kercher 2005).  Wetlands have been found to be particularly susceptible to invasions by 

opportunistic plant invaders that form monotypic stands and displace native plant species; in fact, 

over 24% of the "worst plant invaders" are wetland plants (Zedler and Kercher 2004).  Removal 

of invasive species to restore native plant biodiversity is thus a frequent target of restoration in 

wetland ecosystems (Martin and Blossey 2013).  Some invasive plants are associated with 

differing rates of existing ecological processes or even novel processes (Vitousek and Walker 

1989, Ehrenfeld 2003).  One attribute of a successful invader is sequestration of limiting 

resources, and certain invasive plants are known to increase rates of nutrient removal in the 

wetlands they invade (Ehrenfeld 2003, Hansson et al. 2005).  Removing invasive plants in these 

wetlands to restore native biodiversity could thus have negative consequences for nutrient-

removal ecosystem services.  Understanding the interactions between the various impacts of 

invasive species, as well as the consequences of removing invasives, is critical to determine a 

proper balance among potentially conflicting management goals for wetland systems. 

In this chapter I investigated the impacts of small-scale Phragmites australis herbicide 

removals on sediment nutrient concentrations and denitrification potential.  Using two years of 

pre-removal monitoring data and two years of post-removal monitoring data, I compared the 

nitrogen removal rates of treated sites to intact Phragmites stands and sites dominated by native 

Typha angustifolia.  I also assessed the species composition of treated sites two years following 

removal, and compared traits relevant to nitrogen removal of the recolonizing plant community 

to plant communities at sites dominated by Phragmites and Typha.  Phragmites australis, a 

clonal marsh grass, has been a frequent target of invasive-species management efforts (Kiviat 
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2006).  Though Phragmites australis has been at least a minor component of brackish marshes in 

the United States for at least 40,000 years (Orson 1999), cryptic invasions of European 

haplotypes of Phragmites beginning in the 1800s caused a dramatic increase in abundance and 

size of existing Phragmites stands, as well as aggressive colonization into freshwater and 

brackish marshes beyond the limits of the native’s historic range (Saltonstall 2002).  The 

invasive haplotypes of Phragmites are particularly adept at colonizing disturbed or nutrient-rich 

aquatic systems (Kettenring et al. 2012), and once established reach heights of up to 4 meters and 

biomass densities of 727-3663 g/m2 (Meyerson et al. 2000a).  Due to the dense, tall growth 

associated with Phragmites, local reductions in the native diversity of plant species are often 

observed following invasions (Chambers et al. 1999, Keller 2000, Silliman and Bertness 2004).  

Phragmites is also often considered to provide poor habitat conditions for native birds, fish, and 

invertebrates relative to native wetland plants (Benoit and Askins 1999, Fell et al. 2003), 

although it clearly provides habitat for some organisms (Kiviat 2013).  For these reasons and for 

general aesthetic reasons, management organizations in the United States invest considerable 

sums, an estimated $4.6 million annually (Martin and Blossey 2013), on the control and 

eradication of Phragmites.   

However, the same traits that allow Phragmites to form dense monocultures can also 

promote desired ecosystem services such as nutrient and pollutant remediation (Meyerson et al. 

2000b, Windham et al. 2001), shoreline stabilization (Rooth and Stevenson 2000), and 

maintenance of wetland habitat in disturbed and urban areas (Kiviat 2013).  In the Hudson 

Valley and throughout many highly developed regions of the United States, excessive nitrogen 

loading poses a considerable challenge to managing local water quality.  Phragmites dominance 

in these areas may serve to improve water quality.  Phragmites sequesters larger pools of 
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nitrogen aboveground because it exhibits much higher aboveground growth than native wetland 

plants, and its stems tend to remain standing following senescence (Meyerson et al. 2000b).  

Phragmites also aerates wetland sediments that would otherwise remain anoxic (Armstrong and 

Armstrong 1990), allowing greater production of nitrate (nitrification) and thus greater removal 

of nitrogen to the atmosphere as inert dinitrogen gas (via denitrification) (Otto et al. 1999, 

Windham and Ehrenfeld 2003). 

Though a great deal of research has focused on the removal of Phragmites through 

mechanical, chemical, or biological means (Hazelton et al. 2014), most of these studies have 

focused on evaluating the success of these methods in eradicating Phragmites.  Relatively less 

attention has been given to monitoring the impacts of Phragmites removal on nitrogen-removal 

ecosystem services (but see Meyerson et al. 1999, Findlay et al. 2003), and the plant 

communities that recolonize treated areas are only infrequently characterized (Hazelton et al. 

2014).  Following removal of vegetation with herbicide, lower rates of sediment aeration should 

decrease rates of nitrate production from ammonium via nitrification and limit the supply of 

nitrate to denitrifying microbes.  The absence of plant uptake should further limit removal of 

ammonium from sediments to plant biomass.  Therefore, I predicted that ammonium 

concentrations should increase in sediments following Phragmites removal and that 

denitrification potentials should decrease relative to vegetated sites.  To my knowledge, this is 

only the second study to investigate the impacts of Phragmites removal on sediment 

denitrification potential (Findlay et al. 2003) and the first to have the opportunity to do so within 

replicated removal stands. 
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Methods 

Site Description 

In September 2010, the Eastern New York (ENY) Chapter of the Nature Conservancy 

initiated small-scale (0.30-0.76 ha) eradications of three stands of Phragmites australis from 

Ramshorn Marsh (N 42.216059, W -73.854959), a 308 ha freshwater tidal marsh located on the 

west shore of the Hudson river near Catskill, NY (Figure 6.1).  Initial removals were performed 

with an application of AquaproTM glyphosate herbicide (7.0 L/ha) and LI-700 aquatic surfactant 

(1.25 ppm) from a Marsh MasterTM using a mounted spray system.  Subsequent spot treatments 

of AquaproTM (1%) and LI-700 were applied in September 2011 and 2012 using low-volume 

backpack sprayers (Zimmerman and Shirer 2013). 

I conducted an initial survey of denitrification potential, sediment organic content, and 

sediment ammonium and nitrate concentrations in the three Phragmites stands in Ramshorn 

Marsh in August 2009 prior to removal; four replicate locations were sampled in each of the 

stands.  In August 2010, I expanded my pre-treatment survey to include three reference stands of 

Phragmites, one at Brandow Point (N 42.249440, W -73.824390) and two at West Flats (N 

42.295549, W -73.786796), which were not selected for removal (Figure 6.1).  These sites were 

similar to Ramshorn in terms of sediment chemistry and hydrology prior to treatment (Alldred 

and Baines 2011), and are located on the west shore of the Hudson River 5.4 km and 11.3 km 

northeast of Ramshorn Marsh, respectively.  In August 2010, I sampled two locations within 

each Phragmites reference stand, one location within each Phragmites stand in Ramshorn 

designated for removal, and one paired Typha-dominated area near each Ramshorn Phragmites 

stand (total of 12 sampling locations).  Following removal in September 2010, I repeated my 

sampling in September 2011, June 2012, and September 2012.  At each of these times, I sampled 
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three locations in the reference Phragmites stands (hereafter “Reference-Phragmites”), three 

locations in the treated Phragmites stands (“Ramshorn-Removal”), and six locations in Typha-

dominated areas near each of the Phragmites stands (“Reference-Typha” and “Ramshorn-

Typha”). 

Vegetation 

In September 2011 and June 2012, I measured aboveground biomass and leaf carbon and 

nitrogen content for all locations sampled at the reference sites, but I refrained from collecting 

biomass samples at Ramshorn due to concerns that Phragmites regrowth could escape follow-up 

herbicide treatments if clipped.  In September 2012 I received permission from the Nature 

Conservancy to add biomass and leaf carbon and nitrogen content measurements to sampling at 

Ramshorn locations as well.  I harvested all aboveground biomass within two haphazardly placed 

quadrats (25 x 25 cm) within a 2 m radius of each sediment-sampling location.  Harvested 

biomass was dried, weighed, and subsampled for analysis of leaf carbon and nitrogen content 

using a Perkin Elmer Series II CHNS Analyzer.  For September 2012 data, I identified harvested 

biomass to species and determined dry mass and leaf carbon and nitrogen content for each 

component plant species within each quadrat.  Plot-level data for vegetation measurements were 

calculated as an average weighted by the biomass of the component species. 

Porewater Nutrients 

I measured sediment nutrient profiles using PVC porewater equilibrators with 12 ml 

sampling wells spaced vertically at 3 cm intervals.  Equilibrators were filled with dionized water, 

covered with a Spectr-Por cellulose membrane, and deoxygenated overnight by bubbling with 

nitrogen gas prior to installation in sediments (Hesslein 1976).  Equilibrators were left in 

vegetated sediments at each sampling location for 7-10 days.  Porewater was collected from 
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sampling wells using a syringe and stored in acidified vials until analysis.  In 2009, samples were 

analyzed for ammonium and nitrate by ion chromatography and in all subsequent years using 

standard colorimetric methods (Jones 1984, Parsons et al. 1984a).  After 2010, porewater was 

also sampled from ~5-10 cm below the sediment surface using a syringe-vacuum porewater 

sipper; sipper samples were frozen at -20° C until analysis using standard colorimetric methods. 

Denitrification potential 

Duplicate sediment cores from each sampling location were collected with a 7 cm 

diameter metal corer to a depth of ~10-15 cm for assays of denitrification potential.  Samples 

were stored at 4 C and analyzed within 24 hours of sampling.  A five gram subsample was 

amended with potassium nitrate (KNO3), glucose, chloramphenicol, and acetylene and incubated 

under anaerobic conditions for 90 minutes (Smith and Tiedje 1979b).  Headspace samples were 

collected at 30 and 90 minutes and stored in pre-evacuated glass vials.  Gas samples were 

analyzed for N2O using electron capture gas chromatography.  This method provides a relative 

measurement of the maximum potential of the microbial community to perform denitrification 

and has been demonstrated to be a useful measurement for comparing experimental treatments 

(Groffman et al. 2006), but it should not be interpreted as a measure of absolute denitrification 

rates. 

A subsample of each core was also used to determine sediment moisture content (change 

in mass after drying at 70°C for a minimum of 24 hours), total organic content (loss after 

combustion at 450°C for 4 hr), and total nitrogen and carbon content (CHNS analysis as 

described for vegetation samples).   
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Statistical Analysis 

Differences in plant community composition among the three dominant vegetation types 

[Phragmites, Typha, Removal] were assessed using discriminant analysis of duplicate 

aboveground-biomass plots in September 2012.  This method attempts to characterize an a priori 

grouping (in this case, three dominant vegetation types), based on a linear combination of 

predictor variables (in this case, biomass of the component species occupying the plots).  If the 

plant community at the removal sites reverted to a Typha- or Phragmites-dominated community 

within the time frame of my study, the discriminant analysis would fail to distinguish the 

removal sites from one of these dominant vegetation types.  If the plant community at removal 

sites switched to a novel community following herbicide treatment, the discriminant analysis 

would succeed in assigning removal plots to this novel vegetation type.  Differences in plant 

traits [aboveground biomass, leaf nitrogen content, total plant nitrogen content] measured in 

September 2012 among the three dominant vegetation types [Phragmites, Typha, Removal] were 

analyzed with a one-way ANOVA.  A separate two-way ANOVA was used to compare 

Phragmites and Typha communities sampled at the reference sites at two additional sampling 

times [September 2011, June 2012, September 2012].  Measurements of sediment nitrogen and 

carbon collected August 2010-September 2012 were also analyzed with a two-way ANOVA to 

compare the three dominant vegetation groups. 

Measurements of denitrification potential, sediment porewater nutrients, and total 

sediment organic content were analyzed at the stand scale using 2-way ANOVA.  Because the 

“Reference-Typha” treatment group was not added until September 2011, it was necessary to 

analyze the data using two different statistical designs.  The first compared the three “treatments” 

[Ramshorn-Removal, Ramshorn-Typha, Reference-Phragmites] that were sampled across all 
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“sampling times” [August 2010, September 2011, June 2012, September 2012], both before and 

after herbicide treatment.  For these ANOVAs, significant impacts of herbicide treatment on 

dependent variables [denitrification potential, sediment ammonium content, and sediment 

organic content] were tested as planned comparisons within the interaction term (treatment x 

sampling time).  In the second statistical design, I compared four treatments [Ramshorn-

Removal, Ramshorn-Typha, Reference-Typha, Reference-Phragmites] for sampling times that 

occurred after herbicide treatment [September 2011, June 2012, September 2012].  For these 

ANOVAs, significance of herbicide treatment was assessed for the dependent variables listed 

above and additional measurements added in 2011 [total organic carbon and nitrogen content of 

sediments] using planned comparisons of treatments.  Planned comparisons of Ramshorn-

Removal and Reference-Phragmites sampling times were used to test for significant differences 

between sites where Phragmites was removed relative to sites where Phragmites was left intact.  

Planned comparisons of Reference-Typha and Reference-Phragmites were used to test whether 

sites dominated by plant species differed when left undisturbed.  Though I attempted to control 

for phenology by sampling at peak biomass in each of our sampling years (late August/early 

September), I acknowledge that other factors such as temperature may influence sediment 

chemistry and microbial activity.  The planned comparisons of treatment and reference sites 

statistically control for interannual and seasonal variability when detecting treatment effects.  

Statistical analyses were performed in JMP (JMP(R) 1989-2007).  Graphs were produced in R 

using the package ggplot2 (Wickham and Chang 2015). 
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Results 

Vegetation 

In September 2011, one year following initial herbicide application, the removal sites in 

Ramshorn Marsh remained largely unvegetated, except for sparse regrowth of Peltandra 

virginica (Figure 6.2B).  By September 2012 the removal sites had been colonized by a 

community dominated by Leersia oryzoides, Polygonum arifolium, Peltandra virginica, 

Impatiens capensis, Scirpus fluviatilis, and Scirpus tabernaemontani (Figure 6.2C).  This 

community was distinct in species composition from other marsh communities dominated by 

Typha angustifolia or Phragmites australis (Figure 6.3, Table 6.1).  Removal communities were 

also characterized by lower aboveground biomass (Figure 6.4A, Table 6.2) and leaf nitrogen 

content (Figure 6.4B, Table 6.2), relative to Phragmites-dominated reference sites.  In all cases, 

Phragmites-dominated sites greatly exceeded other plant communities in aboveground biomass 

production and leaf nitrogen content (Table 6.2).  For both Typha-dominated communities and 

removal communities, leaf nitrogen content was negatively correlated with aboveground biomass 

at the plot level; for Phragmites-dominated communities, this correlation was weak and of small 

effect (Figure 6.4C).  Sediments in Phragmites-dominated sites on average contained slightly 

more organic carbon than Typha-dominated sites (Figure 6.5A), but the variation in this 

measurement was sufficiently high that results were non-significant at α = 0.05 (Table 6.2).  

Sediment organic nitrogen, however, was significantly greater for Phragmites-dominated sites 

than Typha-dominated sites, and slightly higher on average than in removal communities (Figure 

6.5B, Table 6.2). 
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Porewater Nutrients 

Average porewater nitrate concentrations remained at or below 0.02 mg/L (i.e., the 

detection limit for our analytical methods) across all treatments throughout our study; therefore, 

only results of porewater ammonium are reported.  Following initial herbicide treatment, 

porewater ammonium concentrations in removal sites increased by over an order of magnitude 

relative to all vegetated sites (Figure 6.6, Table 6.2); they returned to pretreatment levels within 

two years (Figure 6.6). 

Denitrification Potential 

The most striking source of variation in denitrification potential was time, with average 

measurements varying nearly 8-fold among seasons and years (Figure 6.7, Table 6.2).  

Nevertheless, denitrification potential in removal sites decreased significantly by approximately 

50% relative to intact Phragmites-dominated reference locations (Figure 6.7, Table 6.2); this 

effect remained remarkably constant two years following initial herbicide application (Figure 

6.7).  With the exception of anomalously high denitrification potential measurements at the 

reference Typha sites in September 2011, denitrification potentials were consistently highest in 

Phragmites-dominated sites, and were significantly higher than Typha-dominated sites in 

Ramshorn Marsh at α = 0.10 (Table 6.2). 

Discussion 

The removal of invasive Phragmites australis had a significant negative impact on 

nitrogen-removal processes in Ramshorn Marsh.  Following removal, available inorganic 

ammonium concentrations in the sediments rose by over an order of magnitude (Figure 6.6), and 

denitrification potential decreased by 50% relative to sites with intact Phragmites (Figure 6.7).  

This difference in denitrification potential between treated and untreated sites persisted for at 
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least two years following initial herbicide application (Figure 6.7).  The impacts I observed in 

this study are consistent with the results of the only other study to examine changes in 

denitrification potential following eradication of Phragmites (Findlay et al. 2003).  Moreover, 

the effectiveness of Phragmites in promoting nitrogen-removal services, relative to native plant 

communities in our sites, is consistent with what one would expect based on extensive 

characterization of this plant invader (Meyerson et al. 1999, Meyerson et al. 2000b, Windham 

and Meyerson 2003).  Phragmites is known to sequester larger pools of nitrogen in both above 

and belowground growth (Meyerson et al. 2000b), as well as to aerate otherwise anoxic 

sediments (Armstrong and Armstrong 1990), promoting removal of nitrogen via coupled 

nitrification-denitrification.  Following herbicide treatment, assimilation of inorganic nitrogen 

into plant tissues would cease, and roots would no longer introduce oxygen to sediments, 

hindering oxidation of ammonium to nitrate.  This sequence of events should result in a build-up 

of sediment ammonium, which I clearly observed (Figure 6.6).  Though total inorganic nitrogen 

levels increased, I expected denitrification potential to decrease due to limitation of denitrifying 

microbes by nitrate (oxidant).  Not only did I observe an initial decrease in denitrification 

potential in treated sites relative to intact Phragmites-dominated sites, this effect persisted two 

years following the initial treatment, even as native plant communities began to recolonize the 

treated sites. 

This study is one of the few that have characterized the plant community that recolonized 

sites following Phragmites eradication (Hazelton et al. 2014).  Consistent with those studies, I 

found that, rather than recovering to a similar native plant community found elsewhere in the 

marsh, the sites shifted to a completely different suite of species.  The results of my vegetation 

surveys were consistent with surveys of 1.0 m2 plots conducted by the Nature Conservancy at the 
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same marsh locations (Zimmerman and Shirer 2013).  In this case, the new community was 

characterized primarily by the presence of Leersia oryzoides and Polygonum arifolium, rather 

than Typha-dominated marshes that are typical of emergent wetlands in the Hudson River 

(Figure 6.3).  Notably, many of these species are commonly found in the understory of Typha-

dominated marshes in the Hudson River, and may represent an early stage in the succession of a 

tidal marsh community in this system (Zimmerman and Shirer 2009).  This new community 

attained only 1/4 of the peak biomass of a Phragmites-dominated community and contained less 

than half the nitrogen content of a mature Phragmites leaf (Figure 6.4A and 6.4B).  Overall, the 

capacity of this community to store nitrogen in aboveground tissue is severely reduced relative to 

both Phragmites- and Typha-dominated communities (Figure 6.4).  The net effect of species 

succession in this case could serve to increase the amount of time needed for a site to recover 

nitrogen-removal capacity following invasive species removal.  Though I did not measure 

belowground traits of the plant communities, the lag in recovery of denitrification potential 

(Figure 6.7) suggests that plant communities may also differ in their belowground impacts on 

microbial processes.  In order to fully understand impacts of plant-community alterations on 

ecosystem processes, belowground measurements should be given greater attention in future 

studies.  

The success of Phragmites as an invader is often attributed to its ability to alter sediment 

nutrient cycles such that it has a competitive advantage relative to native plant species (Meyerson 

et al. 2000b).  Specifically, Phragmites has been shown to increase pools of organic nitrogen 

relative to inorganic nitrogen in sediments, which other native plants are less efficient at 

assimilating (Meyerson et al. 2000b, Mozdzer et al. 2010).  My results suggest that such a 

mechanism may be at work in the Hudson River.  I found significantly higher concentrations of 
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total organic nitrogen in sediments of Phragmites-dominated sites, relative to sites inhabited by 

native Typha-dominated plant communities (Figure 4B, Table 2).  Moreover, total aboveground 

biomass was negatively correlated with leaf nitrogen in native plant communities, which is a 

common sign of nutrient competition within a plant community (Figure 3C).  This correlation 

was much weaker for Phragmites, which is consistent with relaxed nutrient competition in 

Phragmites-dominated sites due to access to an additional pool of organic nitrogen.  Relaxed 

nutrient competition, along with resprouting from rhizomes and quickly producing high 

aboveground biomass, may explain the difficulty in permanently eradicating stands of 

Phragmites (Hazelton et al. 2014). 

Overall, Phragmites-dominated plant communities assimilate more nitrogen in 

aboveground biomass (Figure 3) and store more nitrogen in organic form in sediments (Figure 4) 

than native plant communities.  Further, the removal of Phragmites resulted in significant 

increases in dissolved inorganic nitrogen pools (Figure 6) and significant decreases in the 

potential of the microbial community to permanently remove nitrogen to the atmosphere via 

denitrification (Figure 7).  Together, these results suggest a management trade-off between 

eradicating Phragmites to restore a diverse native plant community and promoting nitrogen-

removal ecosystem services in the wetland.  Certainly, management actions such as immediate 

replanting of native plants could help ameliorate these impacts, but follow-up herbicide 

treatments are always required, and some degree of disturbance is likely to be inevitable 

(Kettenring and Adams 2011, Lombard et al. 2012).  In light of this trade-off in management 

priorities, the question then becomes:  When and where is Phragmites eradication likely to 

significantly impact local water quality?  For small, isolated patches of Phragmites in a system 

like the Hudson, which is relatively hydrologically open and well flushed by periodic tidal 
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inundation, the impact on water quality is likely to be quite small relative to the benefit of 

restoring native diversity and improving habitat conditions for wildlife.  However, for systems in 

which Phragmites has become the major plant community in the landscape, complete eradication 

is not only unlikely (Kettenring and Adams 2011) but may result in water quality problems that 

outweigh the benefits of biodiversity restoration, particularly for aquatic systems where water 

sources are smaller or hyrologically isolated.  Invasive-species management highlights the need 

to develop specific management priorities for ecosystems.  Frameworks are continually being 

developed that seek to optimize the provisioning of multiple ecosystem services, with the 

understanding that management priorities may in some cases conflict (Findlay et al. 2002, 

Wainger et al. 2010, Truitt et al. 2015). 

Phragmites management in the Hudson River Estuary provides one example of a 

situation in which biodiversity does not maximize delivery of an ecosystem service; in this case a 

dominant species with traits that maximize opportunistic nutrient acquisition and high biomass 

production also maximizes nitrogen-removal ecosystem services.  In addition to nitrogen 

removal, Phragmites is credited with additional ecosystem services including carbon and heavy 

metal sequestration, soil stabilization, and habitat provisioning for both common and rare native 

animals (Kiviat 2013).  Other exotic grasses have been found to store carbon and provide forage 

for grazing animals (Stein et al. 2014).  Ecosystems dominated by invasive species and low-

diversity communities challenge simple assumptions that biodiversity should beget greater value 

for multiple ecosystem functions.  Particularly in urbanized and highly modified systems, 

invasive species like Phragmites can have quantifiable functional value both to the environment 

and local human societies that may not be easily achieved with native communities.  In such 

cases, a holistic approach that begins with explicit management priorities, and considers potential 
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trade-offs among management outcomes, is likely to provide the best solutions to management 

and restoration. 
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Table 6.1:  Discriminant analysis of plant communities.  Three a priori vegetation-cover types 

[Phragmites, Typha, Removal] were distinguished based on a weighted linear combination of 

component species’ biomass. (Wilks’ Λ = 0.017, Approx. F18,26 = 9.603, p <0.001, percent 

misclassified = 4.167) 

 

Canonical Axis Eigenvalue 

% Variance 

Explained 

Cumulative % 

Explained 

Canonical 

Correlation 

1 12.705 79.54 79.54 0.96 

2 3.268 20.46 100.00 0.87 
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Table 6.2:  Summary of p values from ANOVAs comparing vegetated communities before and 

after herbicide application to “Removal” sites in Ramshorn Marsh.  Results significant at α = 

0.10 are shown in bold.  For full ANOVA tables, see Appendix E. 
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Denitrification 

Potential 

2010-2012 0.0018 0.1122 0.8896 0.9675 0.9269 0.0471 0.9134 0.0591 0.9066 

2011-2012 0.0046 0.1938    0.0874 0.9259 0.7594 0.2590 

Sediment 

Ammonium 

2010-2012 0.0335 0.0162 0.9858 0.9772 0.9472 0.0007 0.0054 0.4215 0.0330 

2011-2012 0.0861 0.0016    0.0007 0.0055 0.9244 0.0385 

Sediment 

Organic Content 

2010-2012 0.8467 0.4542 0.6109 0.9205 0.6935 0.2737 0.7354 0.4446 0.8830 

2011-2012 0.5938 0.4099    0.2763 0.6175 0.1108 0.7872 

Aboveground 

Biomass 

2011-2012 0.6601 0.0079      0.0079 0.9274 

Sep. 2012  0.1186    0.0464  0.1386  

Leaf Nitrogen 
2011-2012 0.0001 0.0004      0.0004 0.5456 

Sep. 2012  0.0408    0.0408  0.0651  

Sediment 

Carbon 2010-2012 0.3356 0.1318    0.1096  0.0609 0.5124 

Sediment 

Nitrogen 2010-2012 0.3997 0.0237    0.0549  0.0077 0.6416 
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Figure 6.1:  Map of sites included in field sampling.  Phragmites removals ocurred at Ramshorn 

Marsh.  Intact Phragmites stands were monitored at West Flats and Brandow Point (hereafter 

referred to as “Reference” sites).  Typha-dominated communities were monitored at all sites. 
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Figure 6.2:  Photos from Ramshorn Marsh taken (A) prior to removal in August 2010, (B) one 

year following removal in September 2011, and (C) two years following removal in September 

2012.   
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Figure 6.3:  Biplot of dicriminant analysis for three dominant vegetation classifications 

[Phragmites, Typha, Removal] sampled in September 2012.  Independent variables used to 

discriminate among the classifications were the biomasses of the component plant species at 

individual sampling plots.  Rather than reverting from a Phragmites-dominated (purple) to a 

typical Typha-dominated community (green), communities shifted to a novel community 

characterized by Leersia oryzoides and Polygonum arifolium (brown) two years after initial 

herbicide treatment. 
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Figure 6.4: Differences in (A) aboveground biomass and (B) leaf nitrogen content among the 

three dominant vegetation classifications.  Phragmites-dominated communities reach a higher 

peak biomass and assimilate more nitrogen per gram of leaf material than Typha-dominated and 

removal communities.  Boxplots represent the median and interquartile range, and whiskers 

extend to the most extreme point within 1.5 times the interquartile range.  (C) The nitrogen 

content of leaves decreases with increasing biomass in Typha-dominated (n = 24, slopeSMA = -

8.34, r = 0.59, p = 0.0023) and removal communties (n = 6, slopeSMA = -9.92, r = 0.80, p = 

0.0549), indicating nutrient limitation.  Leaf nitrogen was not significantly correlated to 

aboveground biomass in Phragmites-dominated communities (n = 18, , slopeSMA = -2.12, r = 

0.23, p = 0.3584).  
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Figure 6.5: Sediments in Phragmites-dominated plant communities tend to contain (A) 

marginally higher organic-carbon content and (B) significantly higher organic nitrogen content 

than in Typha-dominated and removal communites.  This results suggests the potential for higher 

organic-nitrogen storage in sediments in Phragmites-dominated sites.  Boxplots represent the 

median and interquartile range, and whiskers extend to the most extreme point within 1.5 times 

the interquartile range.   
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Figure 6.6:  Following herbicide treatment in September 2010 (vertical black line), ammonium 

concentrations in sediments of treated sites increased by an order of magnitude relative to sites 

vegetated with Phragmites or Typha.  Ammonium concentrations returned to pretreatment levels 

within two years of initial treatment.  Error bars show standard errors. 
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Figure 6.7:  Denitrification potentials at all sites showed substantial interannual and interseasonal 

variability.  Relative to Phragmites-dominated sites (purple), denitrification potentials in removal 

sites (brown) decreased by 50% following initial herbicide treatment (vertical black line).  This 

effect persisted for two years following removal.  Error bars show standard errors.  
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Chapter 7 

Conclusions 

Human activities have resulted in an unprecedented rate of global change in ecosystems 

worldwide (Millennium Ecosystem Assessment 2005).  Ecological communities are changing 

rapidly due to global climate change, sea-level rise, species introductions, and land-use 

alterations (Chapin III et al. 2000).  Because species composing ecological communities respond 

differently and at different rates to these various environmental pressures and have, in some 

cases, been artificially introduced to systems they would not inhabit naturally, humans have 

facilitated the emergence of novel, or "no analog," communities and ecosystems (Hobbs et al. 

2006).  To predict how these novel ecosystems will function and manage the services they may 

provide, we must extrapolate beyond observations in current and past ecosystems (Mitsch and 

Jørgensen 2003, Hooper et al. 2005).  In this dissertation, I applied a trait-based theoretical 

framework to predict the effects that plant communities have on nitrogen cycling, based on 

hypothesized relationships between components of the nitrogen cycle and characteristics of 

wetland plants (Chapter 1).  This approach has immediate practical applications for the difficult 

management challenge of predicting rates of microbial denitrification and associated nitrogen-

removal ecosystem services, and provides a test of the utility of trait-based methods to describe 

and predict the influence of organisms on ecosystem functioning.   

In Chapter 2, in a systematic review and meta-analysis of 419 published measurements of 

denitrification in plant communities dominated by different plant species I confirmed that 

wetland plants have a demonstrable effect on denitrification.  The influence of vegetation on 

denitrification rates has been a missing component in understanding how to manage nitrogen 

removal in aquatic systems for some time (Boyer et al. 2006), and this study represented the first 
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generalizable estimate of this effect.  Though isolated studies in the literature indicated that 

plants may exert control over microbial denitrification rates (Caffrey and Kemp 1990, Caffrey 

and Kemp 1992, Ehrenfeld and Scott 2001, Ehrenfeld 2003, Windham and Ehrenfeld 2003), the 

generality of plant-mediated effects and the variation in impact among species remained largely 

unresolved.  I found that plants increased denitrification rates by 55% on average, and the impact 

was found to differ significantly among plant communities.  My estimate was robust to the use of 

different experimental methods, which is a major concern in denitrification research (Groffman 

et al. 2006).  

Having established that wetland plants differ in their impacts on sediment denitrification 

(Chapter 2), I investigated the mechanisms by which a dominant salt marsh grass, Spartina 

alterniflora, influences sediment oxygen and denitrification potential in greenhouse mesocosm 

experiments (Chapter 3).  Using a novel combination of experimental methods, I determined that 

denitrification potentials correlated most strongly with plant traits that enhanced sediment 

aeration, most notably rhizome width.  This finding supported the hypothesis that plant-mediated 

sediment aeration would indirectly enhance denitrification rates by promoting the production of 

nitrate via microbial nitrification.  In Chapter 4, I addressed potential trait-process relationships 

by conducting field measurements in Spartina alterniflora salt marshes on Long Island, NY.  

Among eleven salt-marsh sites differing in nitrogen-loading intensity, I determined that simple 

linear models using plant-trait parameters provided comparable predictions of denitrification 

relative to those based on sediment chemistry.  At the site level, root mass and leaf nitrogen 

content explained 52% of the total variation in denitrification rates.  I further found that, among 

all sites, denitrification potentials in Spartina-dominated sediments were double those measured 

in adjacent non-vegetated control plots on average, with the influence of vegetation increasing 
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with total aboveground and belowground biomass of the plant community.  Together with 

Chapter 3, these results support the utility of trait-based approaches in understanding the role of 

plant communities in promoting nitrogen-removal services in wetland ecosystems. 

Belowground traits of Spartina alterniflora, which I found to be critical determinants of 

nitrogen-removal services and are also known to be critical determinants of salt-marsh stability, 

are expected to respond to both sea-level rise and increased nutrient loading.  However, despite a 

long history of study (Valiela et al. 1976, Mendelssohn and Morris 2000), quantifying the 

multiple effects of nutrient loading on root biomass and marsh stability is an ongoing 

controversy in wetland research.  In Chapter 5, I made use of two years of field-survey data from 

Long Island, NY to examine associations among root growth, nitrogen availability, and salinity.  

I found that total root mass correlated positively to salinity and negatively to extractable nitrogen 

content in sediments.  These results indicate that further eutrophication may reduce marsh 

stability and that increasing salinity, perhaps as a result of future sea level rise (Craft et al. 2008), 

may increase marsh stability. 

Removal of invasive plant species to conserve native plant diversity is a major 

management goal in many ecosystems, including wetlands (Tilman et al. 1997, Loreau et al. 

2001, Zedler and Kercher 2005).  However, substantial changes in the trait composition of plant 

communities, which are frequently observed following plant invasions, have the potential to alter 

sediment characteristics and processes of management interest, including denitrification 

(Ehrenfeld 2003, Ehrenfeld 2010).  In Chapter 6, I monitored the impacts of removing 

Phragmites australis, an invasive marsh grass, from freshwater tidal wetlands of the Hudson 

River and compared treated sites to intact Phragmites communities and native Typha 

angustifolia communities.  As I predicted, sediment ammonium increased following the removal 
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of vegetation, likely as a result of decreases in both plant uptake and nitrification.  Concurrently, 

sediment denitrification rates decreased relative to untreated Phragmites sites.  Plant 

communities that recolonized treated sites produced less aboveground biomass and removed less 

nitrogen than either Phragmites- or Typha-dominated communities.  Taken together, these 

results suggest the potential for a trade-off between managing invasive plants to achieve 

conservation goals and maintaining nitrogen-removal services. 

My dissertation demonstrates the utility of trait-based conceptual frameworks in 

understanding how the functional compositions of ecological communities are likely to change in 

the future and projecting how these changes may affect ecosystem processes.  Though my 

research to date indicates great potential for plant traits to explain variation in denitrification 

rates, several questions remain that would benefit from data-synthesis, remote sensing, and/or 

survey approaches that examine traits among a greater variety of multi-species communities.   

A considerable benefit of using physiological plant traits as variables in predictive 

modelling is the potential to measure them at the landscape scale using remote-sensing 

technology (Serbin et al. 2014, Asner et al. 2015).  Leaf traits such as nitrogen content, which I 

found to be an important predictor of denitrification potential in Chapter 4, can now be measured 

and mapped for whole ecosystems using data from hyperspectral imaging (Serbin et al. 2014).  

In addition to incorporating the influence of plants on process rates, responses in plant traits at 

the community level may provide biologically relevant proxies of sediment variables such as 

moisture and nitrogen availability (Kulkarni et al. 2008).  These new remote-sensing methods 

provide a potentially powerful solution to the difficult challenge of describing and predicting 

patterns in ecosystem processes such as denitrification that cannot be measured at the canopy 

level.   
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Ecosystem-level trait variables, whether they are assessed using remote-sensing or 

traditional ground-assessment methods, could enhance predictions of ecosystem processes and 

services within a variety of modeling frameworks (Boyer et al. 2006).  For example, the structure 

of my trait-based conceptual framework linking nitrogen cycling processes to plant traits (Figure 

1.1) naturally lends itself to structural equation modelling (SEM) or Bayesian hierarchical 

approaches.  SEM could provide a method for evaluating the importance of specific pathways in 

my conceptual framework using existing data from plant-trait and ecological monitoring 

databases (Kattge et al. 2011) or newly collected data from a greater variety of multispecies 

communities.  Bayesian approaches benefit from the ability to integrate prior knowledge from 

multiple data sources and provide more precise predictions.  For example, Bayesian approaches 

have been successfully used to integrate plant-trait and ecosystem-flux data to explain dynamics 

of carbon uptake and allocation in terrestrial ecosystems (LeBauer et al. 2013).  Trait-based 

models, once established, may greatly assist efforts to extrapolate beyond the current range of 

ecological observations to predict processes and potential services of no-analog ecosystems 

(Keddy 1992, Lavorel and Garnier 2002, McGill et al. 2006).   
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Appendix A:  Supplement to Chapter 2 

 

Table A1:  Summary list of measurements included in this analysis, organized by the dominant 

plant species examined in each measurement. 
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Acer rubrum 2     X             X   Patuxent River, MD, USA Verhoeven et al.. 2001 

Acer rubrum 18      X            X   Kingson, RI, USA Groffman et al. 1992 

Acer rubrum 4      X            X   Kingson, RI, USA Hanson et al. 1994 

Acer rubrum 2 X     X            X   MD, USA McCarty et al. 2007 

Alnus glutinosa 1     X               X Oude Maas, the Netherlands Verhoeven et al. 2001 

Alnus rugosa 1     X               X Jug Bay, MD, USA Verhoeven et al. 2001 

Annual 3      X              X Potomac River, VA, USA Hopfensperger et al. 2009 

Bulboschoenus medianus 1  X           X        New South Wales, Australia Erler et al. 2010 

Calamagrostis angustifolia 22     X         X       Sanjiang Plain, China Sun & Liu 2007 

Colocasia esculentus 1     X            X      Morgan et al. 2008 

Cyperus papyrus 1     X            X      Morgan et al. 2008 

Eichhornia crassipes 2       X         X     Marion, MA, USA Hamersley et al. 2003 

Eichhornia crassipes 1            X X        Santo Tomé, Santa Fe, Argentina Maine et al. 2007 

Elodea canadensis 2      X       X        Linköping, Sweden Bastviken et al. 2005 

Elodea canadensis 26            X X        Plönninge, Sweden Bastviken et al. 2009 

Elodea nuttallii 4     X        X        Everstekoog, the Netherlands Toet et al. 2003 

Glyceria maxima 4     X             X   Waal & IJssel Rivers, The Netherlands Olde Venterink et al. 2006 

Glyceria maxima 16      X       X        Kallby, Lund, Sweden Bastviken et al. 2007 

Glyceria maxima 2 X     X           X      Bodelier et al. 1998 

Glyceria maxima 8 X     X            X   Elberg, The Netherlands Bodelier et al. 1996 

Halimione portulacoides 1 X  X                X  Lagoon of Venice, Italy Eriksson et al. 2003 

Hibiscus moscheutus 1     X            X      Morgan et al. 2008 

Hydrocotyle umbellata 2            X     X      Hume et al. 2002b 

Hydrocotyle umbellata 1            X     X      Hume et al. 2002a 

Impatiens pallida 2 X     X            X   MD, USA McCarty et al. 2007 

Juncus effusus 1 X X               X    Lake Okeechobee, FL, USA Reddy et al. 1989 

Juncus effusus 1     X             X   Patuxent River, MD, USA Verhoeven et al. 2001 

Juncus maritimus 1 X  X                X  Lagoon of Venice, Italy Eriksson et al. 2003 

Juncus roemerianus 3        X     X        Open Grounds Farm, NC, USA Poe et al. 2003 

Lemna minor 2            X      X     Hume et al. 2002b 

Lemna minor 1            X      X     Hume et al. 2002a 

Limonium serotinum 1 X  X                X  Lagoon of Venice, Italy Eriksson et al. 2003 

Littorella uniflora 1 X X                X   Lake Hampen, Denmark Ottosen et al. 1999 
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Lythrum salicaria 1      X              X Tivoli Bay, NY, USA Otto et al. 1999 

Nuphar advena 1     X               X Jug Bay, MD, USA Verhoeven et al. 2001 

Oryza sativa 1 X X               X    Lake Okeechobee, FL, USA Reddy et al. 1989 

Oryza sativa 1     X        X        Sannogawa River, Japan Zhou & Hosomi 2008 

Perennial 3      X              X Potomac River, VA, USA Hopfensperger et al. 2009 

Phalaris arundinacea 1 X  X              X    Rhin-Haveluch fen, Germany Ruckauf et al. 2004 

Phalaris arundinacea 7      X       X        Champaign County, IL, USA Xue et al. 1999 

Phragmites australis 1 X  X              X    Sernitz-Welse lowland, Germany Ruckauf et al. 2004 

Phragmites australis 5     X        X        Everstekoog, the Netherlands Toet et al. 2003 

Phragmites australis 1 X    X            X      Munch 2005 

Phragmites australis 4     X             X   Waal & IJssel Rivers, The Netherlands Olde Venterink et al. 2006 

Phragmites australis 2     X               X Belgium & the Netherlands Verhoeven et al. 2001 

Phragmites australis 2      X       X        Linköping, Sweden Bastviken et al. 2005 

Phragmites australis 2 X     X       X        Costa Brava, Spain Ruiz-Rueda et al. 2009 

Phragmites australis 1      X             X  Tivoli Bay, NY, USA Windham & Meyerson 2003 

Phragmites australis 6      X              X Connecticut River, CT, USA Findlay et al. 2003 

Phragmites australis 1      X              X Tivoli Bay, NY, USA Otto et al. 1999 

Phragmites australis 1         X    X        Kodijärve, Estonia Mander et al. 2008 

Phragmites australis 4           X  X        Saxonia-Anhalt, Germany Kuschk et al. 2003 

Phragmites australis 26            X X        Plönninge, Sweden Bastviken et al. 2009 

Phragmites australis 1            X       X  Mullica River Great Bay, NJ, USA Windham & Ehrenfeld 2003 

Pontederia cordata 1 X X               X    Lake Okeechobee, FL, USA Reddy et al. 1989 

Potamogeton pectinatus 1 X X                X   Lake Hampen, Denmark Ottosen et al. 1999 

Potamogeton pectinatus 16      X       X        Kallby, Lund, Sweden Bastviken et al. 2007 

Potamogeton perfoliatus 2 X X             X      Chesapeake Bay, MD, USA Caffrey & Kemp 1992 

Potamogeton perfoliatus 3 X     X             X  Chesapeake Bay, MD, USA Caffrey & Kemp 1990 

Quercus spp. 18      X            X   Kingson, RI, USA Groffman et al. 1992 

Quercus spp. 4      X            X   Kingson, RI, USA Hanson et al. 1994 

Salix cineria 1 X X               X    Lake Okareka, New Zealand Lusby et al. 1998 

Salix cineria 1 X     X            X   Lake Okareka, New Zealand Lusby et al. 1998 

Salix nigra 1     X            X      Morgan et al. 2008 

Salix spp. 4     X             X   Waal & IJssel Rivers, The Netherlands Olde Venterink et al. 2006 

Salix spp. 1     X               X Waal River, the Netherlands Verhoeven et al. 2001 

Schoenoplectus acutus 3 X       X     X        Hemet, CA, USA Smith et al. 2000 

Schoenoplectus californicus 4 X       X     X        Hemet, CA, USA Smith et al. 2000 

Schoenoplectus pungens 1 X        X          X  Narragansett Bay, RI, USA Davis et al. 2004 

Schoenoplectus spp. 1     X        X        Duplin County, NC, USA Hunt et al. 2003 

Schoenoplectus spp. 3     X        X        Duplin County, NC, USA Hunt et al. 2009 

Schoenoplectus spp. 1      X       X        Duplin County, NC, USA Hunt et al. 2003 

Schoenoplectus spp. 1      X       X        Duplin County, NC, USA Hunt et al. 2009 

Schoenoplectus tabernaemontani 1      X       X        Olentangy River, Columbus, OH, USA Hernandez & Mitsch 2007 

Schoenoplectus tabernaemontani 1       X         X       Tanner & Kadlec 2003 

Schoenoplectus tabernaemontani 4       X         X       Tanner et al. 2002 

Scirpus acutus 2            X     X      Hume et al. 2002b 

Scirpus acutus 1            X     X      Hume et al. 2002a 

Scirpus mariqueter 3 X    X              X  Yangtze River, China Wang et al. 2007 

Scirpus olneyi 6      X             X  Chesapeake Bay, USA Matamala & Drake 1999 

Scirpus spp. 1     X               X Oude Maas, the Netherlands Verhoeven et al. 2001 
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Scirpus spp. 2            X X        Prado Basin, CA, USA Bachand & Horne 2000 

Scirpus spp. 6            X    X       Gebremariam 2008 

Spartina alterniflora 4      X             X  Narragansett Bay, RI, USA Wigand et al. 2004 

Spartina alterniflora (short) 6 X   X               X  Virginia Coast Reserve, USA Anderson et al. 1997 

Spartina alterniflora (short) 2 X     X             X  SERF, Savannah, GA, USA Dollhopf et al. 2004 

Spartina alterniflora (short) 9 X         X         X  Great Sippewissett Marsh, USA Kaplan et al. 1979 

Spartina alterniflora (tall) 2 X     X             X  SERF, Savannah, GA, USA Dollhopf et al. 2004 

Spartina alterniflora (tall) 8 X         X         X  Great Sippewissett Marsh, USA Kaplan et al. 1979 

Spartina patens 4      X             X  Narragansett Bay, RI, USA Wigand et al. 2004 

Spartina patens 1      X             X  Tivoli Bay, NY, USA Windham & Meyerson 2003 

Spartina patens 4 X        X          X  Narragansett Bay, RI, USA Davis et al. 2004 

Spartina patens 8 X         X         X  Great Sippewissett Marsh, USA Kaplan et al. 1979 

Spartina patens 1            X       X  Mullica River Great Bay, NJ, USA Windham & Ehrenfeld 2003 

Symplocarpus foetidus 2 X     X            X   MD, USA McCarty et al. 2007 

Typha angustifolia 3      X              X Connecticut River, USA Findlay et al. 2003 

Typha angustifolia 1      X              X Tivoli Bay, NY, USA Otto et al. 1999 

Typha domingensis 1            X X        Santo Tomé, Santa Fe, Argentina Maine et al. 2007 

Typha latifolia 2     X               X Anacostia River, MD, USA Verhoeven et al. 2001 

Typha latifolia 2      X       X        Kallby, Lund, Sweden Bastviken et al. 2005 

Typha latifolia 16      X       X        Linköping, Sweden Bastviken et al. 2007 

Typha latifolia 2         X    X        Kõo, Estonia Mander et al. 2008 

Typha latifolia 2            X     X      Hume et al. 2002b 

Typha latifolia 1            X     X      Hume et al. 2002a 

Typha latifolia 3 X           X     X      Martin et al. 2003 

Typha orientalis 3  X           X        New South Wales, Australia Erler et al. 2010 

Typha orientalis 1 X X               X    Lake Okareka, New Zealand Lusby et al. 1998 

Typha orientalis 1 X     X            X   Lake Okareka, New Zealand Lusby et al. 1998 

Typha orientalis 2 X           X    X     Minumatanbo wetland, Japan Sasikala et al. 2009 

Typha spp. 1     X        X        Duplin County, NC, USA Hunt et al. 2003 

Typha spp. 3     X        X        Duplin County, NC, USA Hunt et al. 2009 

Typha spp. 1      X       X        Olentangy River, Colombus, OH, USA Hernandez & Mitsch 2007 

Typha spp. 1      X       X        Duplin County, NC, USA Hunt et al. 2003 

Typha spp. 1      X       X        Duplin County, NC, USA Hunt et al. 2009 

Typha spp. 2 X     X       X        Costa Brava, Spain Ruiz-Rueda et al. 2009 

Typha spp. 2            X X        Prado Basin, CA, USA Bachand & Horne 2000 

Typha spp. 6            X    X       Gebremariam 2008 

Typha spp. 1            X    X       Ingersoll & Baker 1998 

Zostera marina 1 X X                 X  Limfjorden & Aarhus, Denmark Ottosen et al. 1999 

Zostera marina 4 X     X             X  Chesapeake Bay, MD, USA Caffrey & Kemp 1990 
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Appendix B:  Supplement to Chapter 3 

Packages 
library(ggplot2) 
library(bear) 
library(Hmisc) 

 

Data and formatting 
setwd(filepath2) 
# Import profile data 
ExProfiles <- read.csv("20150204_WMExFPEx_ProfileData.csv") 
# Import mesocosm-scale data 
MesoScaleData <- read.csv("MesoScaleData_All.csv") 
# Convert Microsite to an ordered variable 
ExProfiles$Microsite <- ordered(ExProfiles$Microsite, levels = c("Edge", "Platform", "Mudflat")) 
MesoScaleData$Microsite <- ordered(MesoScaleData$Microsite, levels = c("Edge", "Platform", 

"Mudflat")) 
# Create a dataframe that contains only rows with process measurements 
ProcessProfiles <- ExProfiles[which(ExProfiles$Mineralization != "NA"), ] 

 

Correlations among plant traits 
# Compute Pearson correlations for plant-trait data 
rcorr(as.matrix((MesoScaleData[, c("AGBiomass_g.m2", "Stem_density_m2", "RootMass_g.m..2",  
    "Root_width_mm", "Max_Stem_height_cm", "SLA_cm2.g", "Veg_CN")]))) 
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AGBiomass_g.m2 1 0.75 0.12 0.77 0.61 -0.5 -0.44 

Stem_density_m2 0.75 1 0.19 -0.42 0.11 0.58 -0.17 

RootMass_g.m..2 0.12 0.19 1 -0.05 0.36 0.45 -0.02 

Root_width_mm 0.77 -0.42 -0.05 1 0.56 -0.63 -0.27 

Max_Stem_height_cm 0.61 0.11 0.36 0.56 1 0.04 -0.73 

SLA_cm2.g -0.5 0.58 0.45 -0.63 0.04 1 -0.08 

Veg_CN -0.44 -0.17 -0.02 -0.27 -0.73 -0.08 1 
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RootMass_g.m..2 12 12 12 8 8 8 8 

Root_width_mm 8 8 8 12 8 8 8 

Max_Stem_height_cm 8 8 8 8 12 8 8 

SLA_cm2.g 8 8 8 8 8 12 8 

Veg_CN 8 8 8 8 8 8 12 
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AGBiomass_g.m2  0.0054 0.7095 0.0253 0.1059 0.2076 0.2746 

Stem_density_m2 0.0054  0.5448 0.3013 0.8029 0.1297 0.681 

RootMass_g.m..2 0.7095 0.5448  0.9006 0.3803 0.26 0.9648 

Root_width_mm 0.0253 0.3013 0.9006  0.1466 0.0919 0.5191 

Max_Stem_height_cm 0.1059 0.8029 0.3803 0.1466  0.93 0.0389 

SLA_cm2.g 0.2076 0.1297 0.26 0.0919 0.93  0.8432 

Veg_CN 0.2746 0.681 0.9648 0.5191 0.0389 0.8432  
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General linear models (GLMs) to predict sediment oxygen from plant traits 
# Examine correlations of plant traits with O2 enrichment and extractable ammonium 
rcorr(as.matrix(MesoScaleData[, c("O2Enrichment_ppt", "ExtNH4_uM", "AGBiomass_g.m2", 

"Stem_density_m2", "RootMass_g.m..2", "Root_width_mm", "Max_Stem_height_cm", "SLA_cm2.g", 

"Veg_CN")])) 
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O2Enrichment_ppt 1 0.53 0.55 0.11 -0.26 0.86 0.68 -0.53 -0.39 

ExtNH4_uM 0.53 1 0.16 -0.27 -0.47 0.33 -0.13 -0.72 -0.16 

AGBiomass_g.m2 0.55 0.16 1 0.75 0.12 0.77 0.61 -0.5 -0.44 

Stem_density_m2 0.11 -0.27 0.75 1 0.19 -0.42 0.11 0.58 -0.17 

RootMass_g.m..2 -0.26 -0.47 0.12 0.19 1 -0.05 0.36 0.45 -0.02 

Root_width_mm 0.86 0.33 0.77 -0.42 -0.05 1 0.56 -0.63 -0.27 

Max_Stem_height_cm 0.68 -0.13 0.61 0.11 0.36 0.56 1 0.04 -0.73 

SLA_cm2.g -0.53 -0.72 -0.5 0.58 0.45 -0.63 0.04 1 -0.08 

Veg_CN -0.39 -0.16 -0.44 -0.17 -0.02 -0.27 -0.73 -0.08 1 
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O2Enrichment_ppt 12 12 12 12 12 8 8 8 8 

ExtNH4_uM 12 12 12 12 12 8 8 8 8 

AGBiomass_g.m2 12 12 12 12 12 8 8 8 8 

Stem_density_m2 12 12 12 12 12 8 8 8 8 

RootMass_g.m..2 12 12 12 12 12 8 8 8 8 

Root_width_mm 8 8 8 8 8 12 8 8 8 

Max_Stem_height_cm 8 8 8 8 8 8 12 8 8 

SLA_cm2.g 8 8 8 8 8 8 8 12 8 

Veg_CN 8 8 8 8 8 8 8 8 12 
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O2Enrichment_ppt  0.0755 0.0631 0.7297 0.41 0.006 0.063 0.1737 0.3367 

ExtNH4_uM 0.0755  0.6225 0.4019 0.1224 0.4184 0.7548 0.0437 0.7082 

AGBiomass_g.m2 0.0631 0.6225  0.0054 0.7095 0.0253 0.1059 0.2076 0.2746 

Stem_density_m2 0.7297 0.4019 0.0054  0.5448 0.3013 0.8029 0.1297 0.681 

RootMass_g.m..2 0.41 0.1224 0.7095 0.5448  0.9006 0.3803 0.26 0.9648 

Root_width_mm 0.006 0.4184 0.0253 0.3013 0.9006  0.1466 0.0919 0.5191 

Max_Stem_height_cm 0.063 0.7548 0.1059 0.8029 0.3803 0.1466  0.93 0.0389 

SLA_cm2.g 0.1737 0.0437 0.2076 0.1297 0.26 0.0919 0.93  0.8432 

Veg_CN 0.3367 0.7082 0.2746 0.681 0.9648 0.5191 0.0389 0.8432  

 
# Predict O2 enrichment with root width, include microsite treatment as a categorical variable 
mod1v <- lm(O2Enrichment_ppt ~ Microsite * Root_width_mm, data = MesoScaleData) 
summary(mod1v) 
Call: 
lm(formula = O2Enrichment_ppt ~ Microsite * Root_width_mm, data = MesoScaleData) 
 
Residuals: 
      1       4       5       6       7       9      11      12  
 44.294   9.325 -37.298 -34.989   6.252 -15.557  43.083 -15.110  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) -392.05 98.42 -3.983 0.016 * 

Microsite.L -56.94 139.19 -0.409 0.7035  

Root_width_mm 47.04 15.81 2.975 0.0409 * 

Microsite.L:Root_width_mm 11.06 22.36 0.495 0.6466  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 41.92 on 4 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.766, Adjusted R-squared:  0.5906  
F-statistic: 4.366 on 3 and 4 DF,  p-value: 0.09424 
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# Effect did not differ between treatments; remove 'Microsite' as a factor 
mod2v <- lm(O2Enrichment_ppt ~ Root_width_mm, data = MesoScaleData) 
summary(mod2v) 
Call: 
lm(formula = O2Enrichment_ppt ~ Root_width_mm, data = MesoScaleData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-39.194 -21.232  -8.707  10.101  59.103  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -350.983 63.686 -5.511 0.002 ** 

Root_width_mm 39.801 9.596 4.148 0.00603 ** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 35.99 on 6 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.7414,    Adjusted R-squared:  0.6983  
F-statistic:  17.2 on 1 and 6 DF,  p-value: 0.006027 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod2v$residuals, y = "pnorm", mean(mod2v$residuals), sd(mod2v$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod2v$residuals 
D = 0.2478, p-value = 0.624 
alternative hypothesis: two-sided 

 
# Compare fits of models with and without microsite treatment as a factor 
anova(mod1v, mod2v) 
Analysis of Variance Table 
Model 1: O2Enrichment_ppt ~ Microsite * Root_width_mm 
Model 2: O2Enrichment_ppt ~ Root_width_mm 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1      4 7029.8                            
2      6 7770.2 -2   -740.43 0.2107 0.8185 

 
# Predict O2 enrichment with maximum stem height, include microsite 
mod3v <- lm(O2Enrichment_ppt ~ Microsite * Max_Stem_height_cm, data = MesoScaleData) 
summary(mod3v) 
Call: 
lm(formula = O2Enrichment_ppt ~ Microsite * Max_Stem_height_cm, data = MesoScaleData) 
 
Residuals: 
     1      4      5      6      7      9     11     12  
-47.72 -58.43  28.82 -43.87  48.48  43.11  25.30   4.31  
 
Coefficients: 
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 Estimate Std.Error t Pr(>|t|) 

(Intercept) -576.553 275.089 -2.096 0.104 

Microsite.L 214.028 389.035 0.55 0.611 

Max_Stem_height_cm 4.193 2.302 1.822 0.143 

Microsite.L:Max_Stem_height_cm -1.461 3.255 -0.449 0.677 

 
Residual standard error: 57.69 on 4 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.5569,    Adjusted R-squared:  0.2246  
F-statistic: 1.676 on 3 and 4 DF,  p-value: 0.3082 

 
# Effect did not differ between treatments; remove 'Microsite' as a factor 
mod4v <- lm(O2Enrichment_ppt ~ Max_Stem_height_cm, data = MesoScaleData) 
summary(mod4v) 
Call: 
lm(formula = O2Enrichment_ppt ~ Max_Stem_height_cm, data = MesoScaleData) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-80.42 -34.24  12.73  35.77  51.64  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) -357.39 117.89 -3.032 0.023 * 

Max_Stem_height_cm 2.37 1.04 2.278 0.063 . 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 51.83 on 6 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.4637,    Adjusted R-squared:  0.3743  
F-statistic: 5.187 on 1 and 6 DF,  p-value: 0.06302 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod4v$residuals, y = "pnorm", mean(mod4v$residuals), sd(mod4v$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod4v$residuals 
D = 0.1766, p-value = 0.9293 
alternative hypothesis: two-sided 

 
# Compare fits of models with and without microsite treatment as a factor 
anova(mod3v, mod4v) 
Analysis of Variance Table 
Model 1: O2Enrichment_ppt ~ Microsite * Max_Stem_height_cm 
Model 2: O2Enrichment_ppt ~ Max_Stem_height_cm 
  Res.Df   RSS Df Sum of Sq      F Pr(>F) 
1      4 13314                            
2      6 16116 -2   -2801.9 0.4209 0.6825 
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# Compare fits of models including root width or max. stem height 
anova(mod2v, mod4v) 
Analysis of Variance Table 
Model 1: O2Enrichment_ppt ~ Root_width_mm 
Model 2: O2Enrichment_ppt ~ Max_Stem_height_cm 
  Res.Df     RSS Df Sum of Sq F Pr(>F) 
1      6  7770.2                       
2      6 16115.8  0   -8345.5     

      

GLMs to predict sediment extractable ammonium from plant traits 
# Predict NH4 with specific leaf area 
mod5v <- lm(ExtNH4_uM ~ Microsite * SLA_cm2.g, data = MesoScaleData) 
summary(mod5v) 
Call: 
lm(formula = ExtNH4_uM ~ Microsite * SLA_cm2.g, data = MesoScaleData) 
 
Residuals: 
      1       4       5       6       7       9      11      12  
 -20.96   35.27 -277.22  -50.11  -66.09  137.16   98.73  143.22  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 1138.37 419.887 2.711 0.054 . 

Microsite.L -152.182 593.81 -0.256 0.8104  

SLA_cm2.g -8.409 3.793 -2.217 0.0909 . 

Microsite.L:SLA_cm2.g 1.94 5.365 0.362 0.7359  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 183.4 on 4 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.5782,    Adjusted R-squared:  0.2619  
F-statistic: 1.828 on 3 and 4 DF,  p-value: 0.2821 

 
# Effect did not differ between treatments; remove 'Microsite' as a factor 
mod6v <- lm(ExtNH4_uM ~ SLA_cm2.g, data = MesoScaleData) 
summary(mod6v) 
Call: 
lm(formula = ExtNH4_uM ~ SLA_cm2.g, data = MesoScaleData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-241.34  -99.84   18.57  113.05  172.28  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 1075.741 341.706 3.148 0.020 * 

SLA_cm2.g -7.829 3.075 -2.546 0.0437 * 
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--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 159.8 on 6 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.5193,    Adjusted R-squared:  0.4392  
F-statistic: 6.482 on 1 and 6 DF,  p-value: 0.04372 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod6v$residuals, y = "pnorm", mean(mod6v$residuals), sd(mod6v$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod6v$residuals 
D = 0.2579, p-value = 0.5762 
alternative hypothesis: two-sided 

 
# Compare fits of models with and without microsite treatment as a factor 
anova(mod5v, mod6v) 
Analysis of Variance Table 
Model 1: ExtNH4_uM ~ Microsite * SLA_cm2.g 
Model 2: ExtNH4_uM ~ SLA_cm2.g 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1      4 134486                            
2      6 153267 -2    -18781 0.2793 0.7699 

 

GLMs to predict net microbial mineralization rates from sediment ammonium and oxygen 
# Predict mineralization/immobilization using extractable ammonium and O2 enrichment 
mod1m <- lm(Mineralization ~ ExtNH4_uM * O2Enrichment_ppt, data = MesoScaleData) 
summary(mod1m) 
Call: 
lm(formula = Mineralization ~ ExtNH4_uM * O2Enrichment_ppt, data = MesoScaleData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-192.86  -91.16   21.61   93.82  165.87  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -2.65E+02 2.09E+02 -1.266 0.241  

ExtNH4_uM -5.16E+00 6.17E-01 -8.362 3.17E-05 *** 

O2Enrichment_ppt -1.58E+00 1.42E+00 -1.11 0.299  

ExtNH4_uM:O2Enrichment_ppt 1.26E-03 4.71E-03 0.268 0.796  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 145.8 on 8 degrees of freedom 
Multiple R-squared:  0.9874,    Adjusted R-squared:  0.9827  
F-statistic: 208.9 on 3 and 8 DF,  p-value: 6.181e-08 
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# Remove insignificant interaction term 
mod2m <- lm(Mineralization ~ ExtNH4_uM + O2Enrichment_ppt, data = MesoScaleData) 
summary(mod2m) 
Call: 
lm(formula = Mineralization ~ ExtNH4_uM + O2Enrichment_ppt, data = MesoScaleData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-189.693  -83.882    9.777   90.942  170.531  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -2.21E+02 1.21E+02 -1.824 0.102  

ExtNH4_uM -5.31E+00 2.47E-01 -21.463 4.87E-09 *** 

O2Enrichment_ppt -1.26E+00 7.57E-01 -1.667 0.13  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 138.1 on 9 degrees of freedom 
Multiple R-squared:  0.9873,    Adjusted R-squared:  0.9845  
F-statistic: 349.3 on 2 and 9 DF,  p-value: 2.95e-09 

 
# Compare fits of models with and without interaction term 
anova(mod1m, mod2m) 
Analysis of Variance Table 
Model 1: Mineralization ~ ExtNH4_uM * O2Enrichment_ppt 
Model 2: Mineralization ~ ExtNH4_uM + O2Enrichment_ppt 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1      8 170073                            
2      9 171596 -1   -1522.7 0.0716 0.7958 

 
# Remove insignificant effect of oxygen 
mod3m <- lm(Mineralization ~ ExtNH4_uM, data = MesoScaleData) 
summary(mod3m) 
Call: 
lm(formula = Mineralization ~ ExtNH4_uM, data = MesoScaleData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-226.750  -93.348    2.842   84.724  217.712  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -4.48E+01 6.43E+01 -0.697 0.502  

ExtNH4_uM -5.53E+00 2.28E-01 -24.306 3.17E-10 *** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 149.9 on 10 degrees of freedom 
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Multiple R-squared:  0.9834,    Adjusted R-squared:  0.9817  
F-statistic: 590.8 on 1 and 10 DF,  p-value: 3.166e-10 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod3m$residuals, y = "pnorm", mean(mod3m$residuals), sd(mod3m$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod3m$residuals 
D = 0.1157, p-value = 0.9911 
alternative hypothesis: two-sided 

 
# Compare fits of models with and without oxygen 
anova(mod2m, mod3m) 
Analysis of Variance Table 
Model 1: Mineralization ~ ExtNH4_uM + O2Enrichment_ppt 
Model 2: Mineralization ~ ExtNH4_uM 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1      9 171596                            
2     10 224578 -1    -52982 2.7789 0.1299 

 

GLMs to predict gross nitrification rates from sediment ammonium and oxygen 
# Predict nitrification using extractable ammonium and O2 enrichment 
mod1n <- lm(Nitrification ~ ExtNH4_uM * O2Enrichment_ppt, data = MesoScaleData) 
summary(mod1n) 
Call: 
lm(formula = Nitrification ~ ExtNH4_uM * O2Enrichment_ppt, data = MesoScaleData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-154.508  -29.911   -8.049   43.004  142.626  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 2.32E+02 1.27E+02 1.823 0.106 

ExtNH4_uM 3.20E-01 3.75E-01 0.852 4.19E-01 

O2Enrichment_ppt 1.06E+00 8.62E-01 1.235 0.252 

ExtNH4_uM:O2Enrichment_ppt -3.93E-03 2.86E-03 -1.372 0.207 

 
Residual standard error: 88.56 on 8 degrees of freedom 
Multiple R-squared:  0.8238,    Adjusted R-squared:  0.7577  
F-statistic: 12.46 on 3 and 8 DF,  p-value: 0.0022 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod1n$residuals, y = "pnorm", mean(mod1n$residuals), sd(mod1n$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod1n$residuals 
D = 0.1242, p-value = 0.9814 
alternative hypothesis: two-sided 

# Interaction between ammonium and oxygen appears to be most important term 
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GLMs to predict denitrification rates from sediment ammonium and oxygen 
# Predict denitrification using O2 and NH4 
mod1d <- lm(log10(DEA_ngN.gC.h_Full) ~ ExtNH4_uM * O2Enrichment_ppt, data = MesoScaleData) 
summary(mod1d) 
Call: 
lm(formula = log10(DEA_ngN.gC.h_Full) ~ ExtNH4_uM * O2Enrichment_ppt,  
    data = MesoScaleData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.48607 -0.26082 -0.07431  0.21285  0.87838  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 5.80E+00 6.60E-01 8.784 2.21E-05 *** 

ExtNH4_uM -4.40E-03 1.95E-03 -2.261 5.37E-02 . 

O2Enrichment_ppt 1.88E-02 4.48E-03 4.208 0.00296 ** 

ExtNH4_uM:O2Enrichment_ppt -3.39E-05 1.49E-05 -2.277 0.05233 .   

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.4599 on 8 degrees of freedom 
Multiple R-squared:  0.7676,    Adjusted R-squared:  0.6804  
F-statistic: 8.806 on 3 and 8 DF,  p-value: 0.006479 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod1d$residuals, y = "pnorm", mean(mod1d$residuals), sd(mod1d$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod1d$residuals 
D = 0.1723, p-value = 0.811 
alternative hypothesis: two-sided 

# Interaction between ammonium and oxygen appears to be important  

 

GLMs to predict N2 enrichment from sediment ammonium and oxygen 
# Test for a potential correlation between DEA measurements and N2 measurements from MIMS 
MesoScaleData$log10DEAC <- log10(MesoScaleData$DEA_ngN.gC.h_Full) 
N2DEA <- MesoScaleData[, c("log10DEAC", "N2Enrichment_ppt")] 
rcorr(as.matrix(N2DEA)) 
                 log10DEAC N2Enrichment_ppt 
log10DEAC             1.00             0.02 
N2Enrichment_ppt      0.02             1.00 
 
n= 12  
 
p 
                 log10DEAC N2Enrichment_ppt 
log10DEAC                  0.9443           
N2Enrichment_ppt 0.9443         
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# Predict N2 enrichment in sediment porewater using sediment O2 and NH4 
mod1N <- lm(N2Enrichment_ppt ~ O2Enrichment_ppt * ExtNH4_uM, data = MesoScaleData) 
summary(mod1N) 
Call: 
lm(formula = N2Enrichment_ppt ~ O2Enrichment_ppt * ExtNH4_uM,  
    data = MesoScaleData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.9199 -0.7264  0.3173  1.4275  2.5056  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) -1.83E+00 3.48E+00 -0.526 0.613 

O2Enrichment_ppt -3.59E-02 2.36E-02 -1.522 0.167 

ExtNH4_uM 1.56E-02 1.03E-02 1.521 0.167 

O2Enrichment_ppt:ExtNH4_uM 9.07E-05 7.84E-05 1.156 0.281 

 
Residual standard error: 2.426 on 8 degrees of freedom 
Multiple R-squared:  0.2609,    Adjusted R-squared:  -0.01633  
F-statistic: 0.9411 on 3 and 8 DF,  p-value: 0.4649 

 
# Remove interaction and rerun 
mod2N <- lm(N2Enrichment_ppt ~ O2Enrichment_ppt + ExtNH4_uM, data = MesoScaleData) 
summary(mod2N) 
Call: 
lm(formula = N2Enrichment_ppt ~ O2Enrichment_ppt + ExtNH4_uM,  
    data = MesoScaleData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-5.5018 -1.0109  0.1218  1.5306  2.5321  
 
Coefficients 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 1.36E+00 2.16E+00 0.628 0.546 

O2Enrichment_ppt -1.34E-02 1.35E-02 -0.987 0.349 

ExtNH4_uM 4.86E-03 4.43E-03 1.098 0.301 

 
Residual standard error: 2.471 on 9 degrees of freedom 
Multiple R-squared:  0.1373,    Adjusted R-squared:  -0.05438  
F-statistic: 0.7164 on 2 and 9 DF,  p-value: 0.5144 
# No significant relationship detected 

 

GLMs to predict denitrification potential from plant traits 
# Predict effect of plants on denitrification rates using root width, include Microsite as a factor 
mod2d <- lm(log10(DEA_ngN.gC.h_Full) ~ Microsite * Root_width_mm, data = MesoScaleData) 
summary(mod2d) 
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Call: 
lm(formula = log10(DEA_ngN.gC.h_Full) ~ Microsite * Root_width_mm,  
    data = MesoScaleData) 
 
Residuals: 
       1        4        5        6        7        9       11       12  
 1.04965 -0.11493 -0.06593 -0.86205  0.03557 -0.22317 -0.00684  0.18770  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 1.11E+00 1.64E+00 0.676 0.536 

Microsite.L -1.28E-01 2.32E+00 -0.055 0.959 

Root_width_mm 3.64E-01 2.63E-01 1.384 0.238 

Microsite.L:Root_width_mm -2.53E-02 3.72E-01 -0.068 0.949 

 
Residual standard error: 0.698 on 4 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.6212,    Adjusted R-squared:  0.3372  
F-statistic: 2.187 on 3 and 4 DF,  p-value: 0.2322 

 
# No significant differences in effect among Microsite treatments; remove Microsite factor and rerun 
mod3d <- lm(log10(DEA_ngN.gC.h_Full) ~ Root_width_mm, data = MesoScaleData) 
summary(mod3d) 
Call: 
lm(formula = log10(DEA_ngN.gC.h_Full) ~ Root_width_mm, data = MesoScaleData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.61100 -0.23801 -0.14466  0.05454  1.26855  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 4.98E-01 1.06E+00 0.469 0.656  

Root_width_mm 4.60E-01 1.60E-01 2.873 0.028 * 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.6008 on 6 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.5791,    Adjusted R-squared:  0.509  
F-statistic: 8.256 on 1 and 6 DF,  p-value: 0.0283 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod3d$residuals, y = "pnorm", mean(mod3d$residuals), sd(mod3d$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod3d$residuals 
D = 0.306, p-value = 0.3664 
alternative hypothesis: two-sided 
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# Compare fits of models with and without Microsite factor 
anova(mod2d, mod3d) 
Analysis of Variance Table 
Model 1: log10(DEA_ngN.gC.h_Full) ~ Microsite * Root_width_mm 
Model 2: log10(DEA_ngN.gC.h_Full) ~ Root_width_mm 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1      4 1.9488                            
2      6 2.1655 -2  -0.21665 0.2223 0.8099 

 
# Compare fit of model using root width to fit of model using ammonium and oxygen as predictors 
mod1d <- lm(log10(DEA_ngN.gC.h_Full) ~ ExtNH4_uM * O2Enrichment_ppt, data = 

MesoScaleData[which(MesoScaleData$Microsite != "Mudflat"), ]) 
anova(mod1d, mod3d) 
Analysis of Variance Table 
Model 1: log10(DEA_ngN.gC.h_Full) ~ ExtNH4_uM * O2Enrichment_ppt 
Model 2: log10(DEA_ngN.gC.h_Full) ~ Root_width_mm 
  Res.Df     RSS Df Sum of Sq      F Pr(>F)   
1      4 0.36748                              
2      6 2.16546 -2    -1.798 9.7855 0.0288 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
# Predict effect of plants on denitrification using maximum stem height, include Microsite as a factor 
mod4d <- lm(log10(DEA_ngN.gC.h_Full) ~ Microsite * Max_Stem_height_cm, data = MesoScaleData) 
summary(mod4d) 
Call: 
lm(formula = log10(DEA_ngN.gC.h_Full) ~ Microsite * Max_Stem_height_cm,  
    data = MesoScaleData) 
 
Residuals: 
       1        4        5        6        7        9       11       12  
-0.32601 -0.49048  0.19640 -0.46254  0.22777  0.56078  0.21870  0.07538  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) -3.01E+00 2.41E+00 -1.251 0.279  

Microsite.L 8.31E+00 3.40E+00 2.442 0.071 . 

Max_Stem_height_cm 5.16E-02 2.01E-02 2.561 0.0626 . 

Microsite.L:Max_Stem_height_cm -7.09E-02 2.85E-02 -2.49 0.0675 . 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.5048 on 4 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.8019,    Adjusted R-squared:  0.6533  
F-statistic: 5.397 on 3 and 4 DF,  p-value: 0.06852 
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# Remove microsite factor and rerun 
mod5d <- lm(log10(DEA_ngN.gC.h_Full) ~ Max_Stem_height_cm, data = MesoScaleData) 
summary(mod5d) 
Call: 
lm(formula = log10(DEA_ngN.gC.h_Full) ~ Max_Stem_height_cm, data = MesoScaleData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1.1105 -0.4177  0.3205  0.4348  0.5495  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) -8.65E-02 1.50E+00 -0.058 0.956  

Max_Stem_height_cm 3.20E-02 1.32E-02 2.415 0.052 . 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.6595 on 6 degrees of freedom 
  (4 observations deleted due to missingness) 
Multiple R-squared:  0.4928,    Adjusted R-squared:  0.4083  
F-statistic: 5.831 on 1 and 6 DF,  p-value: 0.05224 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod5d$residuals, y = "pnorm", mean(mod5d$residuals), sd(mod5d$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod5d$residuals 
D = 0.3073, p-value = 0.3613 
alternative hypothesis: two-sided 

 
# Compare fits of models with and without microsite factor 
anova(mod4d, mod5d) 
Analysis of Variance Table 
Model 1: log10(DEA_ngN.gC.h_Full) ~ Microsite * Max_Stem_height_cm 
Model 2: log10(DEA_ngN.gC.h_Full) ~ Max_Stem_height_cm 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1      4 1.0192                            
2      6 2.6094 -2   -1.5901 3.1203 0.1526 

 
# Compare fit of model using max. stem height to model using ammonium and oxygen 
anova(mod1d, mod5d) 
Analysis of Variance Table 
Model 1: log10(DEA_ngN.gC.h_Full) ~ ExtNH4_uM * O2Enrichment_ppt 
Model 2: log10(DEA_ngN.gC.h_Full) ~ Max_Stem_height_cm 
  Res.Df     RSS Df Sum of Sq      F  Pr(>F)   
1      4 0.36748                               
2      6 2.60937 -2   -2.2419 12.202 0.01983 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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GLMs to predict N2 enrichment from plant traits 
# Because O2 and NH4 were poor predictors, examine correlations among other 
# traits that could influence ventilation and N2 
rcorr(as.matrix(MesoScaleData[, c("N2Enrichment_ppt", "AGBiomass_g.m2",  
    "Stem_density_m2", "RootMass_g.m..2", "Root_width_mm", "Max_Stem_height_cm",  
    "SLA_cm2.g", "Veg_CN")])) 
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N2Enrichment_ppt 1 -0.65 -0.76 -0.1 0.08 0.33 0.06 -0.61 

AGBiomass_g.m2 -0.65 1 0.75 0.12 0.77 0.61 -0.5 -0.44 

Stem_density_m2 -0.76 0.75 1 0.19 -0.42 0.11 0.58 -0.17 

RootMass_g.m..2 -0.1 0.12 0.19 1 -0.05 0.36 0.45 -0.02 

Root_width_mm 0.08 0.77 -0.42 -0.05 1 0.56 -0.63 -0.27 

Max_Stem_height_cm 0.33 0.61 0.11 0.36 0.56 1 0.04 -0.73 

SLA_cm2.g 0.06 -0.5 0.58 0.45 -0.63 0.04 1 -0.08 

Veg_CN -0.61 -0.44 -0.17 -0.02 -0.27 -0.73 -0.08 1 
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N2Enrichment_ppt 12 12 12 12 8 8 8 8 

AGBiomass_g.m2 12 12 12 12 8 8 8 8 

Stem_density_m2 12 12 12 12 8 8 8 8 

RootMass_g.m..2 12 12 12 12 8 8 8 8 

Root_width_mm 8 8 8 8 12 8 8 8 

Max_Stem_height_cm 8 8 8 8 8 12 8 8 

SLA_cm2.g 8 8 8 8 8 8 12 8 

Veg_CN 8 8 8 8 8 8 8 12 

 
p 
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N2Enrichment_ppt  0.5131 0.0227 0.0044 0.7653 0.8539 0.424 0.8813 0.1061 

ExtNH4_uM 0.5131  0.6225 0.4019 0.1224 0.4184 0.7548 0.0437 0.7082 

AGBiomass_g.m2 0.0227 0.6225  0.0054 0.7095 0.0253 0.1059 0.2076 0.2746 

Stem_density_m2 0.0044 0.4019 0.0054  0.5448 0.3013 0.8029 0.1297 0.681 

RootMass_g.m..2 0.7653 0.1224 0.7095 0.5448  0.9006 0.3803 0.26 0.9648 

Root_width_mm 0.8539 0.4184 0.0253 0.3013 0.9006  0.1466 0.0919 0.5191 

Max_Stem_height_cm 0.424 0.7548 0.1059 0.8029 0.3803 0.1466  0.93 0.0389 

SLA_cm2.g 0.8813 0.0437 0.2076 0.1297 0.26 0.0919 0.93  0.8432 

Veg_CN 0.1061 0.7082 0.2746 0.681 0.9648 0.5191 0.0389 0.8432  

# Stem density appears to be the best candidate 

 
mod3N <- lm(N2Enrichment_ppt ~ Microsite * Stem_density_m2, data = MesoScaleData) 
summary(mod3N) 
Call: 
lm(formula = N2Enrichment_ppt ~ Microsite * Stem_density_m2,  
    data = MesoScaleData) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.78440 -0.62496  0.09186  0.30902  2.77570  
 
Coefficients: (1 not defined because of singularities) 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 7.52E+00 1.27E+00 5.926 0.001 *** 

Microsite.L 1.06E+00 1.15E+00 0.923 0.387  

Microsite.Q -5.61E+00 2.89E+00 -1.943 0.093142 . 

Stem_density_m2 -3.19E-02 1.07E-02 -2.971 0.020768 * 

Microsite.L:Stem_density_m2 -0.03931 0.01628 -2.415 0.046429 * 

Microsite.Q:Stem_density_m2 NA NA NA NA  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 1.367 on 7 degrees of freedom 
Multiple R-squared:  0.7946,    Adjusted R-squared:  0.6772  
F-statistic:  6.77 on 4 and 7 DF,  p-value: 0.01485 

 
# Remove microsite as a factor 
mod4N <- lm(N2Enrichment_ppt ~ Stem_density_m2, data = MesoScaleData) 
summary(mod4N) 
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Call: 
lm(formula = N2Enrichment_ppt ~ Stem_density_m2, data = MesoScaleData) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.3350 -0.3287  0.3663  0.6342  1.9982  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 5.79E+00 7.31E-01 7.914 1.29E-05 *** 

Stem_density_m2 -9.71E-03 2.65E-03 -3.665 4.36E-03 ** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 1.649 on 10 degrees of freedom 
Multiple R-squared:  0.5732,    Adjusted R-squared:  0.5305  
F-statistic: 13.43 on 1 and 10 DF,  p-value: 0.004356 

 
# Test residuals for normality using Kolmogorov-Smirnov test 
ks.test(x = mod4N$residuals, y = "pnorm", mean(mod4N$residuals), sd(mod4N$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod4N$residuals 
D = 0.2516, p-value = 0.3702 
alternative hypothesis: two-sided 

 
# Compare fits of models with and without Microsite factor 
anova(mod3N, mod4N) 
Analysis of Variance Table 
Model 1: N2Enrichment_ppt ~ Microsite * Stem_density_m2 
Model 2: N2Enrichment_ppt ~ Stem_density_m2 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1      7 13.086                            
2     10 27.195 -3   -14.109 2.5157  0.142 

 

Figures 
# Change base text size for figures 
theme_set(theme_bw(base_size = 16)) 

 

# O2 enrichment versus rhizome width 
Rootwidth_O2 <- ggplot(MesoScaleData, aes(x = Root_width_mm, y = O2Enrichment_ppt)) 
Rootwidth_O2 + geom_point(size = 4) + stat_smooth(method = lm, size = 2, color = "black") + 

xlab("Rhizome width (mm)") + ylab(expression(paste(O[2], " Enrichment (ppt)"))) + ggtitle("(A)") 

 

# O2 enrichment versus maximum stem height 
MaxStemHeight_O2 <- ggplot(MesoScaleData, aes(x = Max_Stem_height_cm, y = O2Enrichment_ppt)) 
MaxStemHeight_O2 + geom_point(size = 4) + stat_smooth(method = lm, size = 2, color = "black") + 

xlab("Maximum stem height (mm)") + ylab(expression(paste(O[2], " Enrichment (ppt)"))) + 

ggtitle("(B)") 
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# Extractable ammonium versus specific leaf area 
SLA_ammonium <- ggplot(MesoScaleData, aes(x = SLA_cm2.g, y = ExtNH4_uM)) 
SLA_ammonium + geom_point(size = 4) + stat_smooth(method = lm, size = 2, color = "black") +     

xlab(expression(paste("Specific leaf area (", cm^2, g^-1, ")"))) + ylab(expression(paste("Extractable 

N", H[4], " (", mu, "M)"))) + ggtitle("(C)") 

 

# Extractable ammonium verus immobilization 
AmmoniumMin <- ggplot(ExProfiles, aes(x = ExtNH4_uM, y = -1 * Mineralization)) 
AmmoniumMin + geom_point(size = 4, color = "black") + stat_smooth(method = lm, size = 2, color = 

"black") + xlab(expression(paste("Extractable N", H[4], "(", mu, "M)"))) + 

lab(expression(paste("Immobilization Rate (", mu, "gN ", cm^-3, h^-1, ")"))) + ggtitle("(A)") 

 

# Interaction plot: Nitrification Predictors = Ammonium (NH4) and O2 Enrichment 
AmmoniumNit <- ggplot(MesoScaleData, aes(x = O2Enrichment_ppt, y = Nitrification,  
    color = NH4LowHigh)) 
AmmoniumNit + geom_point(size = 4) + stat_smooth(method = lm, size = 2) + 

xlab(expression(paste(O[2], "Enrichment"))) + ylab(expression(paste("Nitrification Rate (", mu, "gN ",     

cm^-3, h^-1, ")"))) + scale_color_manual(values = c("black", "grey50"), labels = 

c(expression(paste("High ", NH[4])), expression(paste("Low ", NH[4])))) + theme(legend.title = 

element_blank()) + theme(legend.text.align = 0) + theme(legend.position = c(0.8, 0.85)) + ggtitle("(B)") 

 
# Interaction plot: log10(Denitrification/C) Predictors = Ammonium (NH4) and O2 Enrichment 
MesoScaleData$log10DEAC_meso <- log10(MesoScaleData$DEA_ngN.gC.h_Full) 
AmmoniumDEAC <- ggplot(MesoScaleData, aes(x = O2Enrichment_ppt, y = 

DEA_ngN.gC.h_Full/1000, color = NH4LowHigh)) 
AmmoniumDEAC + geom_point(size = 4) + stat_smooth(method = lm, size = 2) + 

xlab(expression(paste(O[2], "Enrichment"))) + ylab(expression(paste("Denitrification Rate (", mu, "gN 

", gC^-1, h^-1, ")"))) + scale_color_manual(values = c("black", "grey50"), labels = 

c(expression(paste("High ", NH[4])), expression(paste("Low ", NH[4])))) + scale_y_log10() + 

theme(legend.title = element_blank()) + theme(legend.text.align = 0) + theme(legend.position = c(0.8, 

0.2)) + ggtitle("(C)") 

 

# Root width versus denitrification 
RootWidth_Denit <- ggplot(MesoScaleData[which(MesoScaleData$Microsite != "Mudflat"),  
    ], aes(x = Root_width_mm, y = DEA_ngN.gC.h_Full/1000)) 
RootWidth_Denit + geom_point(size = 4, aes(color = Microsite)) + stat_smooth(method = lm, size = 2, 

color = "black") + xlab("Rhizome width (mm)") + ylab(expression(paste("Denitrification Rate (", mu, 

"gN ", gC^-1, h^-1, ")"))) + scale_color_manual(values = c("springgreen4", "springgreen", 

"darkgoldenrod"), labels = c("Marsh Edge", "Marsh Platform")) + scale_y_log10() + ggtitle("(A)") 

 

# Maximum stem height versus denitrification 
Maxstemheight_Denit <- ggplot(MesoScaleData[which(MesoScaleData$Microsite != "Mudflat"), ], 

aes(x = Max_Stem_height_cm, y = DEA_ngN.gC.h_Full/1000)) 
Maxstemheight_Denit + geom_point(size = 4, aes(color = Microsite)) + stat_smooth(method = lm, size 

= 2, color = "black") + xlab("Maximum stem height (cm)") + ylab(expression(paste("Denitrification 

Rate (", mu, "gN ", gC^-1, h^-1, ")"))) + scale_color_manual(values = c("springgreen4", "springgreen", 

"darkgoldenrod"), labels = c("Marsh Edge", "Marsh Platform")) + scale_y_log10() + ggtitle("(B)") 

 

# Stem density versus N2 enrichment 
Stemdens_N2 <- ggplot(MesoScaleData, aes(x = Stem_density_m2, y = N2Enrichment_ppt)) 
Stemdens_N2 + geom_point(size = 4, aes(color = Microsite)) + stat_smooth(method = lm, size = 2, 
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color = "black") + xlab(expression(paste("Stem density (", m^-2, ")"))) + ylab(expression(paste(N[2], " 

Enrichment (ppt)"))) + scale_color_manual(values = c("springgreen4", "springgreen", "darkgoldenrod"), 

labels = c("Marsh Edge", "Marsh Platform", "Mudflat")) + ggtitle("(C)") + theme(legend.position = 

c(0.3, 0.2), legend.text = element_text(size = 11)) 
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Appendix C:  Supplement to Chapter 4 

Packages 
library(ggplot2) 
library(bear) 
library(Hmisc) 
library(scatterplot3d) 

 

Data and Formatting 
setwd(filepath3) 
LIall <- read.csv("20141107_LI_AllData_2012-2013.csv") 
# Convert 'Month_Year' from factor to ordered factor 
LIall$Month_Year <- ordered(LIall$Month_Year, levels = c("April2012", "June2012",  
    "August2012", "April2013", "June2013", "August2013")) 
# Convert Site from a Factor to an Ordered Factor 
LIall$Site <- ordered(LIall$Site, levels = c("East Creek", "Frost Creek", "Oceanside",  
    "Lido", "Gardiners", "West Meadow", "Smith Point", "Indian Island", "Hubbard",  
    "Mashomack", "Accabonac")) 
# Create dataframe for measurements collected in vegetated plots only 
LIallVEG <- droplevels(LIall[LIall$Tall_short != "sediment", ]) 
# Create dataframe for measurements collected in non-vegetated, or 'sediment,' plots 
LIallSED <- droplevels(LIall[LIall$Tall_short == "sediment", ]) 
# Create dataframe for all plots measured in 2013 
LIall2013 <- LIall[which(LIall$Sample_Year == "2013"), ] 
# Create dataframe for all vegetated plots measured in 2013 
LIallVEG2013 <- LIallVEG[which(LIallVEG$Month_Year == "June2013" | LIallVEG$Month_Year ==  
    "August2013"), ] 
LIallSED2013 <- LIallSED[which(LIallSED$Month_Year == "June2013" | LIallSED$Month_Year ==  
    "August2013"), ] 

#Change base text size for figures 

theme_set(theme_bw(base_size = 16)) 

 

Examine pairwise correlations among plant traits 

I used rcorr{Hmisc} to compute Pearson correlations for a matrix of plant traits. 
# Create a matrix of plant traits for all vegetated plots measured in 2013 
cordata_veg <- LIallVEG2013[, c("DryWeight_g.m2", "RootMass_g.m2", "RhizomeWidth_mm",  
    "Photosyn_uMCO2.m2.s1", "Conduct_molH2O.m2.s1", "VegN_mg.gDW", "SLA_cm2g.1")] 
# Compute pairwise Pearson correlations for trait variables 
rcorr(as.matrix(cordata_veg)) 
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DryWeight_g.m2 1 -0.34 -0.07 -0.07 -0.08 -0.09 -0.2 

RootMass_g.m2 -0.34 1 0.05 0.17 0.05 -0.05 0.13 

RhizomeWidth_mm -0.07 0.05 1 0.06 -0.12 0.16 0.15 

Photosyn_uMCO2.m2.s1 -0.07 0.17 0.06 1 0.35 0.24 0.15 

Conduct_molH2O.m2.s1 -0.08 0.05 -0.12 0.35 1 0.06 -0.09 

VegN_mg.gDW -0.09 -0.05 0.16 0.24 0.06 1 0.41 

SLA_cm2g.1 -0.2 0.13 0.15 0.15 -0.09 0.41 1 
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DryWeight_g.m2  0.0000 0.3308 0.2926 0.2680 0.2011 0.0032 

RootMass_g.m2 0.0000  0.4945 0.0113 0.4675 0.4669 0.0620 

RhizomeWidth_mm 0.3308 0.4945  0.4129 0.0667 0.0189 0.0254 

Photosyn_uMCO2.m2.s1 0.2926 0.0113 0.4129  0.0000 0.0004 0.0315 

Conduct_molH2O.m2.s1 0.2680 0.4675 0.0667 0.0000  0.3523 0.1843 

VegN_mg.gDW 0.2011 0.4669 0.0189 0.0004 0.3523  0.0000 

SLA_cm2g.1 0.0032 0.0620 0.0254 0.0315 0.1843 0.0000  

 

Determine which traits are most correlated with denitrification 
# Transform denitrification rates to meet assumptions of normality for all data sets 
LIallVEG2013$log10DEAC <- log10(LIallVEG2013$Denitrification_ng.N.g.C.hr) 
LIallVEG2013$log10DEA <- log10(LIallVEG2013$Denitrification_ng.N.g.hr) 
# Examine correlations between log10-transformed denitrification rates and plant traits 
cordata_logdenit_traits <- LIallVEG2013[, c("log10DEA", "log10DEAC", "DryWeight_g.m2",  
    "RootMass_g.m2", "RhizomeWidth_mm", "Photosyn_uMCO2.m2.s1", "Conduct_molH2O.m2.s1",  
    "VegN_mg.gDW", "SLA_cm2g.1")] 
rcorr(as.matrix(cordata_logdenit_traits)) 
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log10DEA 1.00 0.93 0.28 -0.42 0.08 -0.02 -0.03 0.32 0.16 

log10DEAC 0.93 1.00 0.34 -0.33 0.02 0.06 0.02 0.35 0.21 

DryWeight_g.m2 0.28 0.34 1.00 -0.34 -0.07 -0.07 -0.08 -0.09 -0.20 

RootMass_g.m2 -0.42 -0.33 -0.34 1.00 0.05 0.17 0.05 -0.05 0.13 

RhizomeWidth_mm 0.08 0.02 -0.07 0.05 1.00 0.06 -0.12 0.16 0.15 

Photosyn_uMCO2.m2.s1 -0.02 0.06 -0.07 0.17 0.06 1.00 0.35 0.24 0.15 

Conduct_molH2O.m2.s1 -0.03 0.02 -0.08 0.05 -0.12 0.35 1.00 0.06 -0.09 

VegN_mg.gDW 0.32 0.35 -0.09 -0.05 0.16 0.24 0.06 1.00 0.41 

SLA_cm2g.1 0.16 0.21 -0.20 0.13 0.15 0.15 -0.09 0.41 1.00 
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log10DEA 220 218 218 218 218 218 218 218 218 

log10DEAC 218 220 218 218 218 218 218 218 218 

DryWeight_g.m2 218 218 220 220 220 220 220 220 220 

RootMass_g.m2 218 218 220 220 220 220 220 220 220 

RhizomeWidth_mm 218 218 220 220 220 220 220 220 220 

Photosyn_uMCO2.m2.s1 218 218 220 220 220 220 220 220 220 

Conduct_molH2O.m2.s1 218 218 220 220 220 220 220 220 220 

VegN_mg.gDW 218 218 220 220 220 220 220 220 220 

SLA_cm2g.1 218 218 220 220 220 220 220 220 220 
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log10DEA  0.000 0.000 0.000 0.235 0.821 0.701 0.000 0.016 

log10DEAC 0.000  0.000 0.000 0.755 0.354 0.751 0.000 0.002 

DryWeight_g.m2 0.000 0.000  0.000 0.331 0.293 0.268 0.201 0.003 

RootMass_g.m2 0.000 0.000 0.000  0.495 0.011 0.468 0.467 0.062 

RhizomeWidth_mm 0.235 0.755 0.331 0.495  0.413 0.067 0.019 0.025 

Photosyn_uMCO2.m2.s1 0.821 0.354 0.293 0.011 0.413  0.000 0.000 0.032 

Conduct_molH2O.m2.s1 0.701 0.751 0.268 0.468 0.067 0.000  0.352 0.184 

VegN_mg.gDW 0.000 0.000 0.201 0.467 0.019 0.000 0.352  0.000 

SLA_cm2g.1 0.016 0.002 0.003 0.062 0.025 0.032 0.184 0.000  

 

Create summary dataframes of site means and errors for Denitrification, log10-

transformed Denitrification rates, BGBiomass, and Leaf N 

I used the summarySE{bear} function to create summary data frames for each variable of 

interest at the site level. I used the rename function to rename the error variables with unique 

column headings. Finally, I used cbind to merge all of the summary tables into a single data 

frame (order is important for this function). 
# For each summary dataframe, rename error variables with unique column headings 
Denit <- summarySE(measurevar = "Denitrification_ng.N.g.hr", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013) 
Denit <- rename(Denit, c(se = "Denit_se", sd = "Denit_sd", ci = "Denit_ci")) 
log10DEA <- summarySE(measurevar = "log10DEA", groupvars = c("Month_Year", "Site"),  
    data = LIallVEG2013, na.rm = T) 
log10DEA <- rename(log10DEA, c(se = "log10DEA_se", sd = "log10DEA_sd", ci = "log10DEA_ci")) 
RootMass <- summarySE(measurevar = "RootMass_g.m2", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013) 
RootMass <- rename(RootMass, c(se = "RootMass_se", sd = "RootMass_sd", ci = "RootMass_ci")) 
LeafN <- summarySE(measurevar = "VegN_mg.gDW", groupvars = c("Month_Year", "Site"),  
    data = LIallVEG2013) 
LeafN <- rename(LeafN, c(se = "LeafN_se", sd = "LeafN_sd", ci = "LeafN_ci")) 
denit_trait_site <- cbind(Denit, log10DEA, RootMass, LeafN) 

 

Construct GLMs to predict denitrification rates with plant traits for site-level data 

Initial models contain Month_Year as a categorical predictor and the two plant traits most 

correlated with denitrification rates that are not intercorrelated (redundant). In this case, the two 

most correlated plant traits were total Root mass and leaf nitrogen content. 
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# Run denitrification model at site level 
mod1dt <- lm(log10DEA ~ Month_Year * RootMass_g.m2 * VegN_mg.gDW, data = denit_trait_site) 
summary(mod1dt) 
Call: 
lm(formula = log10DEA ~ Month_Year * RootMass_g.m2 * VegN_mg.gDW,  
    data = denit_trait_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.66804 -0.04400  0.03585  0.14754  0.27036  
 
Coefficients: 

 Estimate Std.Error t value Pr(>|t|) 

(Intercept) 3.16E-01 2.22E+00 0.143 0.889 

Month_Year.L -1.11E+00 3.14E+00 -0.355 0.728 

RootMass_g.m2 -3.70E-04 1.06E-03 -0.349 0.732 

VegN_mg.gDW 1.88E-01 1.58E-01 1.19 0.254 

Month_Year.L:RootMass_g.m2 -8.92E-04 1.50E-03 -0.597 0.56 

Month_Year.L:VegN_mg.gDW 6.73E-02 2.23E-01 0.302 0.767 

RootMass_g.m2:VegN_mg.gDW 1.03E-05 7.72E-05 0.134 0.895 

Month_Year.L:RootMass_g.m2: 

VegN_mg.gDW 

6.63E-05 1.09E-04 0.607 0.553 

 
Residual standard error: 0.2717 on 14 degrees of freedom 
Multiple R-squared:  0.7814,    Adjusted R-squared:  0.672  
F-statistic: 7.148 on 7 and 14 DF,  p-value: 0.0009519 
# Seasonality is not an important component; remove and rerun 
mod2dt <- lm(log10DEA ~ RootMass_g.m2 * VegN_mg.gDW, data = denit_trait_site) 
summary(mod2dt) 
Call: 
lm(formula = log10DEA ~ RootMass_g.m2 * VegN_mg.gDW, data = denit_trait_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.70748 -0.11176  0.01732  0.17788  0.67539  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 0.261 1.189 0.220 0.829  

RootMass_g.m2 0.000 0.000 0.813 0.427  

VegN_mg.gDW 0.194 0.074 2.608 0.018 * 

RootMass_g.m2:VegN_mg.gDW 0.000 0.000 -1.577 0.132  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.3335 on 18 degrees of freedom 
Multiple R-squared:  0.5764,    Adjusted R-squared:  0.5058  
F-statistic: 8.165 on 3 and 18 DF,  p-value: 0.001216 
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# No significant interaction between BGBiomass and Leaf N; remove 
# interaction and rerun model 
mod3dt <- lm(log10DEA ~ RootMass_g.m2 + VegN_mg.gDW, data = denit_trait_site) 
summary(mod3dt) 
Call: 
lm(formula = log10DEA ~ RootMass_g.m2 + VegN_mg.gDW, data = denit_trait_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.64008 -0.15953  0.03293  0.25169  0.70461  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 1.994 0.472 4.225 4.59E-04 *** 

RootMass_g.m2 0.000 0.000 -3.465 2.60E-03 ** 

VegN_mg.gDW 0.084 0.027 3.103 5.86E-03 ** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.3464 on 19 degrees of freedom 
Multiple R-squared:  0.5179,    Adjusted R-squared:  0.4671  
F-statistic: 10.21 on 2 and 19 DF,  p-value: 0.0009769 
# Test normality of residuals with KS Lilliefors test 
ks.test(x = mod3dt$residuals, y = "pnorm", mean(mod3dt$residuals), sd(mod3dt$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod3dt$residuals 
D = 0.0949, p-value = 0.9779 
alternative hypothesis: two-sided 

 
# Visualize relationship between log10DEA BGBiomass and Leaf N in 3 
# dimensions 
s1d <- scatterplot3d(x = denit_trait_site$RootMass_g.m2, y = denit_trait_site$VegN_mg.gDW, z = 

denit_trait_site$log10DEA, xlab = expression(paste("Root mass (g ",  m^-2, ")")), ylab = 

expression(paste("Leaf nitrogen content (mgN ", g^-1, ")")), zlab = expression(paste(log[10], 

"[Denitrification rate (ngN ", g^-1, h^-1, ")]")), color = "black", pch = 19) 
s1d$plane3d(mod3dt) 
 
# Plot Denitrification versus Root Mass at the site level 
Denit_RootMass2 <- ggplot(denit_trait_site, aes(x = RootMass_g.m2, y = 

Denitrification_ng.N.g.hr/1000)) 
Denit_RootMass2 + geom_point(size = 6, color = "gray24") + stat_smooth(method = lm, size = 2, color 

= "black") + ylab(expression(paste("Denitrification Rate (", mu, "gN ", g^-1, h^-1, ")"))) + 

xlab(expression(paste("Root mass (g ", m^-2, ")"))) + theme(legend.title = element_blank()) + 

scale_y_log10() 
 
# Plot Denitrification versus Leaf N at the site level 
Denit_LeafN2 <- ggplot(denit_trait_site, aes(x = VegN_mg.gDW, y = Denitrification_ng.N.g.hr/1000)) 
Denit_LeafN2 + geom_point(size = 6, color = "gray24") + stat_smooth(method = lm, size = 2, color = 

"black") + ylab(expression(paste("Denitrification Rate (", mu, "gN ", g^-1, h^-1, ")"))) + 
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xlab(expression(paste("Leaf nitrogen content (mgN ", g^-1, ")"))) + theme(legend.title = 

element_blank()) + scale_y_log10() 
 

Determine which sediment variables are most correlated with denitrification rates 
cordata_denit_sed <- LIallVEG2013[, c("log10DEA", "log10DEAC", "SedC_mg.gDW",  
    "SedN_mg.gDW", "NH4_Extractable_uM", "NO3_Extractable_uM", "Salinity_ppt",  
    "Sed_temp")] 
rcorr(as.matrix(cordata_denit_sed)) 
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log10DEA 1.00 0.93 0.28 0.32 0.39 0.52 -0.21 -0.10 

log10DEAC 0.93 1.00 -0.05 0.05 0.35 0.48 -0.18 -0.11 

SedC_mg.gDW 0.28 -0.05 1.00 0.79 0.10 0.30 -0.33 -0.12 

SedN_mg.gDW 0.32 0.05 0.79 1.00 0.04 0.33 -0.27 -0.14 

NH4_Extractable_uM 0.39 0.35 0.10 0.04 1.00 0.30 -0.07 0.03 

NO3_Extractable_uM 0.52 0.48 0.30 0.33 0.30 1.00 -0.34 -0.24 

Salinity_ppt -0.21 -0.18 -0.33 -0.27 -0.07 -0.34 1.00 0.48 

Sed_temp -0.10 -0.11 -0.12 -0.14 0.03 -0.24 0.48 1.00 
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log10DEA 220 218 218 218 217 216 216 218 

log10DEAC 218 220 218 218 217 216 216 218 

SedC_mg.gDW 218 218 220 220 219 218 218 220 

SedN_mg.gDW 218 218 220 220 219 218 218 220 

NH4_Extractable_uM 217 217 219 219 220 218 217 219 

NO3_Extractable_uM 216 216 218 218 218 220 216 218 

Salinity_ppt 216 216 218 218 217 216 220 218 

Sed_temp 218 218 220 220 219 218 218 220 
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log10DEA  0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.1529 

log10DEAC 0.0000  0.4861 0.4457 0.0000 0.0000 0.0085 0.1074 

SedC_mg.gDW 0.0000 0.4861  0.0000 0.1439 0.0000 0.0000 0.0853 

SedN_mg.gDW 0.0000 0.4457 0.0000  0.5402 0.0000 0.0000 0.0323 

NH4_Extractable_uM 0.0000 0.0000 0.1439 0.5402  0.0000 0.2752 0.6697 

NO3_Extractable_uM 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000 0.0003 

Salinity_ppt 0.0016 0.0085 0.0000 0.0000 0.2752 0.0000  0.0000 

Sed_temp 0.1529 0.1074 0.0853 0.0323 0.6697 0.0003 0.0000  

# DEAs appear to be correlated with sediment organic matter and nitrate; will build models with these 

variables 

 

Create summary dataframes of site means and errors for Denitrification, log10-

transformed Denitrificaiton rates, BGBiomass, and Leaf N 
# Create dataframe of site means for denitrification, sediment carbon, and nitrate 
SedC <- summarySE(measurevar = "SedC_mg.gDW", groupvars = c("Month_Year", "Site"),  
    data = LIallVEG2013) 
SedC <- rename(SedC, c(se = "SedC_se", sd = "SedC_sd", ci = "SedC_ci")) 
ExtNO3 <- summarySE(measurevar = "NO3_Extractable_uM", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013, na.rm = T) 
ExtNO3 <- rename(ExtNO3, c(se = "ExtNO3_se", sd = "ExtNO3_sd", ci = "ExtNO3_ci")) 
Denit_sed_site <- cbind(Denit, log10DEA, SedC, ExtNO3) 

 

Construct GLMs to predict denitrification rates using sediment data at the site level 
# Run denitrification/sediment model at site level 
mod1ds <- lm(log10DEA ~ Month_Year * SedC_mg.gDW * NO3_Extractable_uM, data = 

Denit_sed_site) 
summary(mod1ds) 
Call: 
lm(formula = log10DEA ~ Month_Year * SedC_mg.gDW * NO3_Extractable_uM,  
    data = Denit_sed_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.70788 -0.14646 -0.05757  0.11143  0.56904  
 
Coefficients: 

 Estimate Std.Error t value Pr(>|t|) 

(Intercept) 1.50E+00 4.92E-01 3.055 **0.00857 
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Month_Year.L 5.83E-01 6.95E-01 0.838 0.41615 

SedC_mg.gDW 3.25E-03 2.69E-03 1.206 0.24785 

NO3_Extractable_uM 1.26E-02 9.05E-03 1.397 0.18421 

Month_Year.L:SedC_mg.gDW -8.07E-04 3.81E-03 -0.212 0.83528 

Month_Year.L:NO3_Extractable_uM -1.41E-02 1.28E-02 -1.101 0.28961 

SedC_mg.gDW:NO3_Extractable_uM -1.76E-05 3.87E-05 -0.456 0.65533 

Month_Year.L:SedC_mg.gDW: 

NO3_Extractable_uM 

3.71E-05 5.47E-05 0.678 0.50855 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.3388 on 14 degrees of freedom 
Multiple R-squared:  0.6602,    Adjusted R-squared:  0.4902  
F-statistic: 3.885 on 7 and 14 DF,  p-value: 0.01474 

 
# Remove season variable and rerun 
mod2ds <- lm(log10DEA ~ SedC_mg.gDW * NO3_Extractable_uM, data = Denit_sed_site) 
summary(mod2ds) 
Call: 
lm(formula = log10DEA ~ SedC_mg.gDW * NO3_Extractable_uM, data = Denit_sed_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.55816 -0.15092 -0.07691  0.12355  0.68625  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 1.641 0.445 3.684 1.70E-03 ** 

SedC_mg.gDW 0.003 0.002 1.347 0.195  

NO3_Extractable_uM 0.012 0.007 1.703 0.106  

SedC_mg.gDW:NO3_Extractable_uM 0.000 0.000 -0.728 0.476  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.3354 on 18 degrees of freedom 
Multiple R-squared:  0.5716,    Adjusted R-squared:  0.5002  
F-statistic: 8.006 on 3 and 18 DF,  p-value: 0.001341 

 
# Remove non-significant interaction and rerun 
mod3ds <- lm(log10DEA ~ SedC_mg.gDW + NO3_Extractable_uM, data = Denit_sed_site) 
summary(mod3ds) 
Call: 
lm(formula = log10DEA ~ SedC_mg.gDW + NO3_Extractable_uM, data = Denit_sed_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.65828 -0.19823 -0.04106  0.18050  0.64631  
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Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 1.924 0.214 8.971 2.93E-08 *** 

SedC_mg.gDW 0.002 0.001 1.353 0.192  

NO3_Extractable_uM 0.007 0.002 3.600 0.002 ** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.3312 on 19 degrees of freedom 
Multiple R-squared:  0.559, Adjusted R-squared:  0.5126  
F-statistic: 12.04 on 2 and 19 DF,  p-value: 0.0004187 
# Test model residuals for normality using KS Lilliefors test 
ks.test(x = mod3ds$residuals, y = "pnorm", mean(mod3ds$residuals), sd(mod3ds$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod3ds$residuals 
D = 0.1339, p-value = 0.7771 
alternative hypothesis: two-sided 

 
# Visualize relationship in 3 dimensions 
s2d <- scatterplot3d(x = Denit_sed_site$SedC_mg.gDW, y = Denit_sed_site$NO3_Extractable_uM, z = 

Denit_sed_site$log10DEA, xlab = expression(paste("Sediment carbon content (mgC ", g^-1, ")")), ylab 

= expression(paste("Extractable nitrate (", mu, "M)")), zlab = expression(paste(log[10], 

"[Denitrification rate (ngN ", g^-1, h^-1, ")]")), color = "black", pch = 19) 
s2d$plane3d(mod3ds) 
 
# Plot Denitrification versus Sediment carbon at the site level 
Denit_SedC <- ggplot(Denit_sed_site, aes(x = SedC_mg.gDW, y = Denitrification_ng.N.g.hr/1000)) 
Denit_SedC + geom_point(size = 6, color = "gray24") + stat_smooth(method = lm, size = 2, color = 

"black") + ylab(expression(paste("Denitrification Rate (", mu, "gN ", g^-1, h^-1, ")"))) + 

xlab(expression(paste("Sediment carbon (mgC ", gDW^-1, ")"))) + theme(legend.title = 

element_blank()) + scale_y_log10() + ggtitle("(E)") 
 
# Plot Denitrification versus Sediment extractable nitrate content at the site level 
Denit_NO3 <- ggplot(Denit_sed_site, aes(x = NO3_Extractable_uM, y = 

Denitrification_ng.N.g.hr/1000)) 
Denit_NO3 + geom_point(size = 6, color = "gray24") + stat_smooth(method = lm, size = 2, color = 

"black") + ylab(expression(paste("Denitrification Rate (", mu, "gN ", g^-1, h^-1, ")"))) + 

xlab(expression(paste("Extractable nitrate (", mu, "M)"))) + theme(legend.title = element_blank()) + 

scale_y_log10() + ggtitle("(F)") 
 

Determine which traits are most correlated with nitrification 
# Create a matrix of nitrification rates and plant traits 
cordata_nit_traits <- LIallVEG2013[, c("Nitrification_ug.N.cm3.hr", "DryWeight_g.m2",  
    "RootMass_g.m2", "RhizomeWidth_mm", "Photosyn_uMCO2.m2.s1", "Conduct_molH2O.m2.s1",  
    "VegN_mg.gDW", "SLA_cm2g.1")] 
rcorr(as.matrix(cordata_nit_traits)) 
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Nitrification_ug.N.cm3.hr 1.00 0.18 -0.24 -0.12 0.03 0.1 -0.05 -0.03 

DryWeight_g.m2 0.18 1.00 -0.34 -0.07 -0.07 -0.08 -0.09 -0.2 

RootMass_g.m2 -0.24 -0.34 1 0.05 0.17 0.05 -0.05 0.13 

RhizomeWidth_mm -0.12 -0.07 0.05 1 0.06 -0.12 0.16 0.15 

Photosyn_uMCO2.m2.s1 0.03 -0.07 0.17 0.06 1 0.35 0.24 0.15 

Conduct_molH2O.m2.s1 0.10 -0.08 0.05 -0.12 0.35 1 0.06 -0.09 

VegN_mg.gDW -0.05 -0.09 -0.05 0.16 0.24 0.06 1 0.41 

SLA_cm2g.1 -0.03 -0.20 0.13 0.15 0.15 -0.09 0.41 1 
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Nitrification_ug.N.cm3.hr 220 219 219 219 219 219 219 219 

DryWeight_g.m2 219 220 220 220 220 220 220 220 

RootMass_g.m2 219 220 220 220 220 220 220 220 

RhizomeWidth_mm 219 220 220 220 220 220 220 220 

Photosyn_uMCO2.m2.s1 219 220 220 220 220 220 220 220 

Conduct_molH2O.m2.s1 219 220 220 220 220 220 220 220 

VegN_mg.gDW 219 220 220 220 220 220 220 220 

SLA_cm2g.1 219 220 220 220 220 220 220 220 
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Nitrification_ug.N.cm3.hr  0.0072 0.0004 0.0739 0.6382 0.1254 0.4985 0.7010 

DryWeight_g.m2 0.0072  0.0000 0.3308 0.2926 0.2680 0.2011 0.0032 

RootMass_g.m2 0.0004 0.0000  0.4945 0.0113 0.4675 0.4669 0.0620 

RhizomeWidth_mm 0.0739 0.3308 0.4945  0.4129 0.0667 0.0189 0.0254 

Photosyn_uMCO2.m2.s1 0.6382 0.2926 0.0113 0.4129  0.0000 0.0004 0.0315 

Conduct_molH2O.m2.s1 0.1254 0.2680 0.4675 0.0667 0.0000  0.3523 0.1843 

VegN_mg.gDW 0.4985 0.2011 0.4669 0.0189 0.0004 0.3523  0.0000 

SLA_cm2g.1 0.7010 0.0032 0.0620 0.0254 0.0315 0.1843 0.0000  

 
# log10 transform nitrification rates to meet assumptions of normality 
LIall2013$log10Nitrification <- log10(LIall2013$Nitrification_ug.N.cm3.hr) 
LIallVEG2013$log10Nitrification <- log10(LIallVEG2013$Nitrification_ug.N.cm3.hr) 
LIallSED2013$log10Nitrification <- log10(LIallSED2013$Nitrification_ug.N.cm3.hr) 
# Rerun correlation analysis with log10 transformed nitrification rates 
cordata_nit_traits <- LIallVEG2013[, c("log10Nitrification", "DryWeight_g.m2",  
    "RootMass_g.m2", "RhizomeWidth_mm", "Photosyn_uMCO2.m2.s1", "Conduct_molH2O.m2.s1",  
    "VegN_mg.gDW", "SLA_cm2g.1")] 
rcorr(as.matrix(cordata_nit_traits)) 
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log10Nitrification 1.00 0.15 -0.28 -0.20 0.09 0.12 0.07 0.14 

DryWeight_g.m2 0.15 1.00 -0.34 -0.07 -0.07 -0.08 -0.09 -0.20 

RootMass_g.m2 -0.28 -0.34 1.00 0.05 0.17 0.05 -0.05 0.13 

RhizomeWidth_mm -0.20 -0.07 0.05 1.00 0.06 -0.12 0.16 0.15 

Photosyn_uMCO2.m2.s1 0.09 -0.07 0.17 0.06 1.00 0.35 0.24 0.15 

Conduct_molH2O.m2.s1 0.12 -0.08 0.05 -0.12 0.35 1.00 0.06 -0.09 

VegN_mg.gDW 0.07 -0.09 -0.05 0.16 0.24 0.06 1.00 0.41 

SLA_cm2g.1 0.14 -0.20 0.13 0.15 0.15 -0.09 0.41 1.00 
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log10Nitrification 220 155 155 155 155 155 155 155 

DryWeight_g.m2 155 220 220 220 220 220 220 220 

RootMass_g.m2 155 220 220 220 220 220 220 220 

RhizomeWidth_mm 155 220 220 220 220 220 220 220 

Photosyn_uMCO2.m2.s1 155 220 220 220 220 220 220 220 

Conduct_molH2O.m2.s1 155 220 220 220 220 220 220 220 

VegN_mg.gDW 155 220 220 220 220 220 220 220 

SLA_cm2g.1 155 220 220 220 220 220 220 220 
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log10Nitrification  0.0628 0.0004 0.0127 0.2822 0.1417 0.3789 0.0908 

DryWeight_g.m2 0.0628  0.0000 0.3308 0.2926 0.2680 0.2011 0.0032 

RootMass_g.m2 0.0004 0.0000  0.4945 0.0113 0.4675 0.4669 0.0620 

RhizomeWidth_mm 0.0127 0.3308 0.4945  0.4129 0.0667 0.0189 0.0254 

Photosyn_uMCO2.m2.s1 0.2822 0.2926 0.0113 0.4129  0.0000 0.0004 0.0315 

Conduct_molH2O.m2.s1 0.1417 0.2680 0.4675 0.0667 0.0000  0.3523 0.1843 

VegN_mg.gDW 0.3789 0.2011 0.4669 0.0189 0.0004 0.3523  0.0000 

SLA_cm2g.1 0.0908 0.0032 0.0620 0.0254 0.0315 0.1843 0.0000  

# Potential correlations with BGBiomass and Rhizome Width 
 

Create data frame of site-level means and errors for Nitrification, BGBiomass, and 

Rhizome width 
Nitrification <- summarySE(measurevar = "Nitrification_ug.N.cm3.hr", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013, na.rm = T) 
Nitrification <- rename(Nitrification, c(se = "Nit_se", sd = "Nit_sd", ci = "Nit_ci")) 
log10Nit <- summarySE(measurevar = "log10Nitrification", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013, na.rm = T) 
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log10Nit <- rename(log10Nit, c(se = "log10Nit_se", sd = "log10Nit_sd", ci = "log10Nit_ci")) 
RhizomeWidth <- summarySE(measurevar = "RhizomeWidth_mm", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013, na.rm = T) 
RhizomeWidth <- rename(RhizomeWidth, c(se = "RW_se", sd = "RW_sd", ci = "RW_ci")) 
Nit_trait_site <- cbind(Nitrification, log10Nit, RootMass, RhizomeWidth) 

 

Construct GLMs to predict nitrification rates using plant traits at the site level 

Both weighted and unweighted models were attempted.  Weighted models weighted observations 

of nitrification by the inverse of the sampling mean. 
mod1n <- lm(log10Nitrification ~ Month_Year * RootMass_g.m2 * RhizomeWidth_mm,  
    weights = 1/(log10Nit_sd)^2, data = Nit_trait_site) 
summary(mod1n) 
Call: 
lm(formula = log10Nitrification ~ Month_Year * RootMass_g.m2 *  
    RhizomeWidth_mm, data = Nit_trait_site, weights = 1/(log10Nit_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-1.7298 -0.7333 -0.1001  0.2923  1.4508  
 
Coefficients: 

 Estimate Std.Error t value Pr(>|t|) 

(Intercept) 5.22E+00 1.96E+00 2.659 *0.0197 

Month_Year.L 1.67E+00 2.78E+00 0.603 0.5568 

RootMass_g.m2 -1.59E-03 9.12E-04 -1.74 0.1055 

RhizomeWidth_mm -6.29E-01 4.73E-01 -1.331 0.2062 

Month_Year.L:RootMass_g.m2 -1.36E-03 1.29E-03 -1.056 0.3104 

Month_Year.L:RhizomeWidth_mm -3.55E-01 6.68E-01 -0.531 0.6044 

RootMass_g.m2:RhizomeWidth_mm 3.62E-04 2.27E-04 1.592 0.1353 

Month_Year.L:RootMass_g.m2:RhizomeWidth_mm 3.19E-04 3.21E-04 0.992 0.3395 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 1.112 on 13 degrees of freedom 
  (1 observation deleted due to missingness) 
Multiple R-squared:  0.3748,    Adjusted R-squared:  0.03818  
F-statistic: 1.113 on 7 and 13 DF,  p-value: 0.4106 
# Remove seasonality variable and rerun 
mod2n <- lm(log10Nitrification ~ RootMass_g.m2 * RhizomeWidth_mm, data = Nit_trait_site) 
summary(mod2n) 
Call: 
lm(formula = log10Nitrification ~ RootMass_g.m2 * RhizomeWidth_mm,  
    data = Nit_trait_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.70804 -0.30917  0.04335  0.28035  0.72747  
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Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 2.137 1.682 1.270 0.220 

RootMass_g.m2 0.000 0.001 0.021 0.983 

RhizomeWidth_mm 0.135 0.403 0.336 0.741 

RootMass_g.m2:RhizomeWidth_mm 0.000 0.000 -0.285 0.779 

 
Residual standard error: 0.4454 on 18 degrees of freedom 
Multiple R-squared:  0.1518,    Adjusted R-squared:  0.01048  
F-statistic: 1.074 on 3 and 18 DF,  p-value: 0.3849 

 
# Remove non-significant interaction and rerun 
mod3n <- lm(log10Nitrification ~ RootMass_g.m2 + RhizomeWidth_mm, data = Nit_trait_site) 
summary(mod3n) 
Call: 
lm(formula = log10Nitrification ~ RootMass_g.m2 + RhizomeWidth_mm, data = Nit_trait_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.70635 -0.31428  0.03237  0.28641  0.71265  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) 2.587 0.569 4.545 0.000 *** 

RootMass_g.m2 0.000 0.000 -1.751 0.096 . 

RhizomeWidth_mm 0.026 0.117 0.221 0.828  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.4345 on 19 degrees of freedom 
Multiple R-squared:  0.148, Adjusted R-squared:  0.05834  
F-statistic:  1.65 on 2 and 19 DF,  p-value: 0.2183 
ks.test(mod3n$residuals, "pnorm", mean(mod3n$residuals), sd(mod3n$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod3n$residuals 
D = 0.091, p-value = 0.9853 
alternative hypothesis: two-sided 
# Trait models not successful in predicting variation in nitrification rates at the site level Note: Weighted 

GLM (see GLM performed for sediment variables below) also not successful in explaining significant 

variation in Nitrification rates with plant traits. 

 

Determine which sediment variables are most correlated with nitrification rates 
# Examine correlations between nitrification rates and sediment data 
cordata_lognit_sed <- LIallVEG2013[, c("Nitrification_ug.N.cm3.hr", "log10Nitrification",  
    "SedC_mg.gDW", "SedN_mg.gDW", "NH4_Extractable_uM", "NO3_Extractable_uM",  
    "Salinity_ppt", "Sed_temp")] 
rcorr(as.matrix(cordata_lognit_sed)) 
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Nitrification_ug.N.cm3.hr 1.00 0.73 0.19 0.18 0.34 0.21 -0.19 -0.22 

log10Nitrification 0.73 1.00 0.04 0.03 0.39 0.23 -0.17 -0.20 

SedC_mg.gDW 0.19 0.04 1.00 0.79 0.10 0.30 -0.33 -0.12 

SedN_mg.gDW 0.18 0.03 0.79 1.00 0.04 0.33 -0.27 -0.14 

NH4_Extractable_uM 0.34 0.39 0.10 0.04 1.00 0.30 -0.07 0.03 

NO3_Extractable_uM 0.21 0.23 0.30 0.33 0.30 1.00 -0.34 -0.24 

Salinity_ppt -0.19 -0.17 -0.33 -0.27 -0.07 -0.34 1.00 0.48 

Sed_temp -0.22 -0.20 -0.12 -0.14 0.03 -0.24 0.48 1.00 
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Nitrification_ug.N.cm3.hr 220 155 219 219 218 217 217 219 

log10Nitrification 155 220 155 155 154 154 153 155 

SedC_mg.gDW 219 155 220 220 219 218 218 220 

SedN_mg.gDW 219 155 220 220 219 218 218 220 

NH4_Extractable_uM 218 154 219 219 220 218 217 219 

NO3_Extractable_uM 217 154 218 218 218 220 216 218 

Salinity_ppt 217 153 218 218 217 216 220 218 

Sed_temp 219 155 220 220 219 218 218 220 

 
 

  



 

185 

 

p 

 N
it

ri
fi

ca
ti

o
n

_
u

g
.N

.c
m

3
.h

r 

lo
g

1
0

N
it

ri
fi

ca
ti

o
n
 

S
ed

C
_

m
g

.g
D

W
 

S
ed

N
_

m
g

.g
D

W
 

N
H

4
_

E
x

tr
ac

ta
b

le
_

u
M

 

N
O

3
_

E
x

tr
ac

ta
b

le
_

u
M

 

S
al

in
it

y
_

p
p
t 

S
ed

_
te

m
p
 

Nitrification_ug.N.cm3.hr  0.0000 0.0042 0.0093 0.0000 0.0020 0.0044 0.0012 

log10Nitrification 0.0000  0.6592 0.6971 0.0000 0.0049 0.0393 0.0123 

SedC_mg.gDW 0.0042 0.6592  0.0000 0.1439 0.0000 0.0000 0.0853 

SedN_mg.gDW 0.0093 0.6971 0.0000  0.5402 0.0000 0.0000 0.0323 

NH4_Extractable_uM 0.0000 0.0000 0.1439 0.5402  0.0000 0.2752 0.6697 

NO3_Extractable_uM 0.0020 0.0049 0.0000 0.0000 0.0000  0.0000 0.0003 

Salinity_ppt 0.0044 0.0393 0.0000 0.0000 0.2752 0.0000  0.0000 

Sed_temp 0.0012 0.0123 0.0853 0.0323 0.6697 0.0003 0.0000  

 

Create data frame of site-level means and errors for Nitrification, log10Nitrification, 

Salinity and total extractable ammonium in sediment porewater 
Salinity <- summarySE(measurevar = "Salinity_ppt", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013, na.rm = T) 
Salinity <- rename(Salinity, c(se = "Sal_se", sd = "Sal_sd", ci = "Sal_ci")) 
Ammonium <- summarySE(measurevar = "NH4_Extractable_uM", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013, na.rm = T) 
Ammonium <- rename(Ammonium, c(se = "NH4_se", sd = "NH4_sd", ci = "NH4_ci")) 
Nit_sed_site <- cbind(Nitrification, log10Nit, Salinity, Ammonium) 

 

Run weighted linear regression using sediment variables to predict nitrification rates 

Weights were calculated as the inverse of the variance in microbial rates at the site level. 
# Create initial model with seasonality, salinity, and ammonium 
mod1ns <- lm(Nitrification_ug.N.cm3.hr ~ Month_Year * Salinity_ppt * NH4_Extractable_uM,  
    weights = 1/(Nit_sd)^2, data = Nit_sed_site) 
summary(mod1ns) 
Call: 
lm(formula = Nitrification_ug.N.cm3.hr ~ Month_Year * Salinity_ppt *  
    NH4_Extractable_uM, data = Nit_sed_site, weights = 1/(Nit_sd)^2) 
 
Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-1.11874 -0.07423  0.14862  0.34496  1.26988  
 
Coefficients: 

 Estimate Std.Error t value Pr(>|t|) 

(Intercept) 5.22E+00 1.96E+00 2.659 *0.0197 

Month_Year.L 1.67E+00 2.78E+00 0.603 0.5568 
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RootMass_g.m2 -1.59E-03 9.12E-04 -1.74 0.1055 

RhizomeWidth_mm -6.29E-01 4.73E-01 -1.331 0.2062 

Month_Year.L:RootMass_g.m2 -1.36E-03 1.29E-03 -1.056 0.3104 

Month_Year.L:RhizomeWidth_mm -3.55E-01 6.68E-01 -0.531 0.6044 

RootMass_g.m2:RhizomeWidth_mm 3.62E-04 2.27E-04 1.592 0.1353 

Month_Year.L:RootMass_g.m2:RhizomeWidth_mm 3.19E-04 3.21E-04 0.992 0.3395 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.7283 on 14 degrees of freedom 
Multiple R-squared:  0.6411,    Adjusted R-squared:  0.4616  
F-statistic: 3.572 on 7 and 14 DF,  p-value: 0.02036 

 
# Remove seasonality and rerun model 
mod2ns <- lm(Nitrification_ug.N.cm3.hr ~ Salinity_ppt * NH4_Extractable_uM,  
    weights = 1/(Nit_sd)^2, data = Nit_sed_site) 
summary(mod2ns) 
Call: 
lm(formula = Nitrification_ug.N.cm3.hr ~ Salinity_ppt * NH4_Extractable_uM,  
    data = Nit_sed_site, weights = 1/(Nit_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-1.1204 -0.1234  0.3189  0.5584  1.8888  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) -163.400 340.600 -0.480 0.637 

Salinity_ppt -0.211 11.640 -0.018 0.986 

NH4_Extractable_uM 3.335 4.869 0.685 0.502 

Salinity_ppt:NH4_Extractable_uM -0.006 0.168 -0.034 0.973 

 
Residual standard error: 0.7876 on 18 degrees of freedom 
Multiple R-squared:  0.4604,    Adjusted R-squared:  0.3704  
F-statistic: 5.119 on 3 and 18 DF,  p-value: 0.009795 
# Remove non-significant interaction term and rerun model 
mod3ns <- lm(Nitrification_ug.N.cm3.hr ~ Salinity_ppt + NH4_Extractable_uM,  
    weights = 1/(Nit_sd)^2, data = Nit_sed_site) 
summary(mod3ns) 
Call: 
lm(formula = Nitrification_ug.N.cm3.hr ~ Salinity_ppt + NH4_Extractable_uM,  
    data = Nit_sed_site, weights = 1/(Nit_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-1.1175 -0.1237  0.3234  0.5665  1.8799  
 
Coefficients: 
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 Estimate Std.Error t Pr(>|t|)  

(Intercept) -152.780 133.227 -1.147 0.266  

Salinity_ppt -0.584 3.977 -0.147 0.885  

NH4_Extractable_uM 3.171 0.790 4.015 7.41E-04 *** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.7666 on 19 degrees of freedom 
Multiple R-squared:  0.4603,    Adjusted R-squared:  0.4035  
F-statistic: 8.104 on 2 and 19 DF,  p-value: 0.002852 

 
# Remove non-significant Salinity term and rerun model 
mod4ns <- lm(Nitrification_ug.N.cm3.hr ~ NH4_Extractable_uM, weights = 1/(Nit_sd)^2,  
    data = Nit_sed_site) 
summary(mod4ns) 
Call: 
lm(formula = Nitrification_ug.N.cm3.hr ~ NH4_Extractable_uM,  
    data = Nit_sed_site, weights = 1/(Nit_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-1.1080 -0.1278  0.3181  0.5873  1.8667  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -169.967 61.934 -2.744 1.25E-02 * 

NH4_Extractable_uM 3.175 0.770 4.125 5.25E-04 *** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.7476 on 20 degrees of freedom 
Multiple R-squared:  0.4597,    Adjusted R-squared:  0.4327  
F-statistic: 17.02 on 1 and 20 DF,  p-value: 0.0005248 

 
ks.test(mod4ns$residuals, "pnorm", mean(mod4ns$residuals), sd(mod4ns$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod4ns$residuals 
D = 0.1853, p-value = 0.3891 
alternative hypothesis: two-sided 

 
# Plot relationship between ammonium and nitrification 
Nit_NH4 <- ggplot(Nit_sed_site, aes(x = NH4_Extractable_uM, y = Nitrification_ug.N.cm3.hr)) 
Nit_NH4 + geom_errorbar(aes(ymin = Nitrification_ug.N.cm3.hr - Nit_se, ymax = 

Nitrification_ug.N.cm3.hr + Nit_se), width = 0) + geom_errorbarh(aes(xmin = NH4_Extractable_uM - 

NH4_se, xmax = NH4_Extractable_uM + NH4_se), width = 0) + geom_point(size = 6, color = "gray24") 

+ geom_abline(intercept = -169.9668, slope = 3.1753, color = "black", size = 2) + 

xlab(expression(paste("Extractable ammonium (", mu, "M)"))) + ylab(expression(paste("Nitrification 

rate (", mu, "gN ", cm^-3, h^-1, ")"))) + ggtitle("(A)") 
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Examine potential relationship between nitrification and denitrification at the site level 
# Create data frame of site-level means for denitrification and nitrification rates 
Nit_DEA_site <- cbind(Denit, Nitrification, log10DEA, log10Nit) 
# Use nitrification rates as predictor of denitrification rates 
mod1dn <- lm(log10DEA ~ log10Nitrification, data = Nit_DEA_site) 
summary(mod1dn) 
Call: 
lm(formula = log10DEA ~ log10Nitrification, data = Nit_DEA_site) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.81810 -0.21134 -0.02627  0.24174  0.99431  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 1.594 0.485 3.284 3.71E-03 ** 

log10Nitrification 0.450 0.215 2.097 4.89E-02 * 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.4402 on 20 degrees of freedom 
Multiple R-squared:  0.1802,    Adjusted R-squared:  0.1392  
F-statistic: 4.397 on 1 and 20 DF,  p-value: 0.04892 

 
# Test residuals of model for normality using KS Lilliefors test 
ks.test(mod1dn$residuals, "pnorm", mean(mod1dn$residuals), sd(mod1dn$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod1dn$residuals 
D = 0.0778, p-value = 0.9978 
alternative hypothesis: two-sided 

 
# Plot denitrification versus nitrification rates at the site level 
Nit_Denit_site <- ggplot(Nit_DEA_site, aes(x = Nitrification_ug.N.cm3.hr, y = 

Denitrification_ng.N.g.hr/1000)) 
Nit_Denit_site + geom_point(size = 6, color = "gray24") + stat_smooth(method = "lm", color = "black", 

size = 2) + ylab(expression(paste("Denitrification rate (", mu, "gN ", g^-1, h^-1, ")"))) + 

xlab(expression(paste("Nitrification rate (", mu, "gN ", cm^-3, h^-1, ")"))) + scale_y_log10() + 

scale_x_log10() 
 

Determine which traits are most correlated with net (mineralization-immobilization) 
# Examine correlations among immobilization, min, and plant traits 
cordata_min_traits <- LIallVEG2013[, c("Mineralization_ug.N.cm3.hr", "DryWeight_g.m2",  
    "RootMass_g.m2", "RhizomeWidth_mm", "Photosyn_uMCO2.m2.s1", "Conduct_molH2O.m2.s1",  
    "VegN_mg.gDW", "SLA_cm2g.1")] 
rcorr(as.matrix(cordata_min_traits)) 
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Mineralization_ug.N.cm3.hr 1.00 -0.01 0.04 -0.09 0.01 0.23 -0.11 -0.04 

DryWeight_g.m2 -0.01 1.00 -0.34 -0.07 -0.07 -0.08 -0.09 -0.20 

RootMass_g.m2 0.04 -0.34 1.00 0.05 0.17 0.05 -0.05 0.13 

RhizomeWidth_mm -0.09 -0.07 0.05 1.00 0.06 -0.12 0.16 0.15 

Photosyn_uMCO2.m2.s1 0.01 -0.07 0.17 0.06 1.00 0.35 0.24 0.15 

Conduct_molH2O.m2.s1 0.23 -0.08 0.05 -0.12 0.35 1.00 0.06 -0.09 

VegN_mg.gDW -0.11 -0.09 -0.05 0.16 0.24 0.06 1.00 0.41 

SLA_cm2g.1 -0.04 -0.20 0.13 0.15 0.15 -0.09 0.41 1.00 

 
n= 220  
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Mineralization_ug.N.cm3.hr  0.8875 0.5523 0.2045 0.9274 0.0005 0.1065 0.5759 

DryWeight_g.m2 0.8875  0.0000 0.3308 0.2926 0.2680 0.2011 0.0032 

RootMass_g.m2 0.5523 0.0000  0.4945 0.0113 0.4675 0.4669 0.0620 

RhizomeWidth_mm 0.2045 0.3308 0.4945  0.4129 0.0667 0.0189 0.0254 

Photosyn_uMCO2.m2.s1 0.9274 0.2926 0.0113 0.4129  0.0000 0.0004 0.0315 

Conduct_molH2O.m2.s1 0.0005 0.2680 0.4675 0.0667 0.0000  0.3523 0.1843 

VegN_mg.gDW 0.1065 0.2011 0.4669 0.0189 0.0004 0.3523  0.0000 

SLA_cm2g.1 0.5759 0.0032 0.0620 0.0254 0.0315 0.1843 0.0000  

  

Create data frame of site-level means and errors for Mineralization, root mass, leaf 

nitrogen, rhizome width, and stomatal conductance 
Mineralization <- summarySE(measurevar = "Mineralization_ug.N.cm3.hr", groupvars = 

c("Month_Year", "Site"), data = LIallVEG2013, na.rm = T) 
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Mineralization <- rename(Mineralization, c(se = "Min_se", sd = "Min_sd", ci = "Min_ci")) 
Conductance <- summarySE(measurevar = "Conduct_molH2O.m2.s1", groupvars = c("Month_Year",  
    "Site"), data = LIallVEG2013, na.rm = T) 
Conductance <- rename(Conductance, c(se = "Conduct_se", sd = "Conduct_sd", ci = "Conduct_ci")) 
Min_trait_site <- cbind(Mineralization, RootMass, LeafN, RhizomeWidth, Conductance) 

 

Construct weighted GLMs to predict net mineralization rates using plant traits at the site 

level 

Because net mineralization rates range from negative (net immobilization) to positive (net 

mineralization) values, log10 transformations could not be performed for the whole dataset. 

Therfore, weighted regressions are used to construct initial GLMs, where weights are equal to 

the inverse of the sampling variance. 
mod1m <- lm(Mineralization_ug.N.cm3.hr ~ Month_Year * RootMass_g.m2 * Conduct_molH2O.m2.s1,  
    weights = 1/(Min_sd)^2, data = Min_trait_site) 
summary(mod1m) 
Call: 
lm(formula = Mineralization_ug.N.cm3.hr ~ Month_Year * RootMass_g.m2 *  
    Conduct_molH2O.m2.s1, data = Min_trait_site, weights = 1/(Min_sd)^2) 
 
Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-1.69367 -0.26253  0.08222  0.33115  1.74122  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -1784.988 475.428 -3.754 0.00213 ** 

Month_Year.L 945.565 672.357 1.406 0.18143  

RootMass_g.m2 0.484 0.180 2.681 0.01792 * 

Conduct_molH2O.m2.s1 9345.307 4605.710 2.029 0.06191 . 

Month_Year.L:RootMass_g.m2 -0.282 0.255 -1.106 0.28756  

Month_Year.L:Conduct_molH2O.m2.s1 -4648.054 6513.457 -0.714 0.4872  

RootMass_g.m2:Conduct_molH2O.m2.s1 -3.124 2.126 -1.47 0.16374  

Month_Year.L:RootMass_g.m2: 

   Conduct_molH2O.m2.s1 

1.252 3.006 0.416 0.68343 

 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.8867 on 14 degrees of freedom 
Multiple R-squared:  0.493, Adjusted R-squared:  0.2395  
F-statistic: 1.945 on 7 and 14 DF,  p-value: 0.1371 

 
# Remove seasonality and rerun 
mod2m <- lm(Mineralization_ug.N.cm3.hr ~ RootMass_g.m2 * Conduct_molH2O.m2.s1,  
    weights = 1/(Min_sd)^2, data = Min_trait_site) 
summary(mod2m) 
Call: 
lm(formula = Mineralization_ug.N.cm3.hr ~ RootMass_g.m2 * Conduct_molH2O.m2.s1,  
    data = Min_trait_site, weights = 1/(Min_sd)^2) 
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Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-2.18609 -0.27330 -0.02539  0.38994  1.96689  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -1147.359 290.995 -3.943 9.54E-04 *** 

RootMass_g.m2 0.285 0.126 2.257 0.036658 * 

Conduct_molH2O.m2.s1 4659.377 2880.973 1.617 0.123205  

RootMass_g.m2:Conduct_molH2O.m2.s1 -1.454 1.252 -1.161 0.260612  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.8631 on 18 degrees of freedom 
Multiple R-squared:  0.3823,    Adjusted R-squared:  0.2793  
F-statistic: 3.713 on 3 and 18 DF,  p-value: 0.0307 

 
# Remove non-significant interaction term and rerun 
mod3m <- lm(Mineralization_ug.N.cm3.hr ~ RootMass_g.m2 + Conduct_molH2O.m2.s1,  
    weights = 1/(Min_sd)^2, data = Min_trait_site) 
summary(mod3m) 
Call: 
lm(formula = Mineralization_ug.N.cm3.hr ~ RootMass_g.m2 + Conduct_molH2O.m2.s1,  
    data = Min_trait_site, weights = 1/(Min_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-2.1861 -0.3718  0.1973  0.4215  1.6296  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -864.405 160.614 -5.382 3.41E-05 *** 

RootMass_g.m2 0.156 0.061 2.561 0.0191 * 

Conduct_molH2O.m2.s1 1457.518 844.782 1.725 0.1007  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.871 on 19 degrees of freedom 
Multiple R-squared:  0.336, Adjusted R-squared:  0.2661  
F-statistic: 4.807 on 2 and 19 DF,  p-value: 0.02045 

 
# Test residuals of model for normality using KS Lilliefors test 
ks.test(mod3m$residuals, "pnorm", mean(mod3m$residuals), sd(mod3m$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod3m$residuals 
D = 0.1305, p-value = 0.8021 
alternative hypothesis: two-sided 
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# Visualize final model in 3d 
s1m <- scatterplot3d(x = Min_trait_site$RootMass_g.m2, y = Min_trait_site$Conduct_molH2O.m2.s1, 

z = Min_trait_site$Mineralization_ug.N.cm3.hr, xlab = expression(paste("Root mass (g ", m^-2, ")")), 

ylab = expression(paste("Stomatal conductance (mol ", H[2], O, m^-2, s^-1, ")")), zlab = 

expression(paste("Mineralization rate (", mu, "gN ", cm^-3, h^-1, ")")), color = "black", pch = 19) 
s1m$plane3d(mod3m) 

 
 
# Plot relationship between BGBiomass and Mineralization 
Min_RootMass_site <- ggplot(Min_trait_site, aes(x = RootMass_g.m2, y = 

Mineralization_ug.N.cm3.hr)) 
Min_RootMass_site + geom_errorbar(aes(ymin = Mineralization_ug.N.cm3.hr - Min_se, ymax = 

Mineralization_ug.N.cm3.hr + Min_se), width = 0) + geom_errorbarh(aes(xmin = RootMass_g.m2 -     

RootMass_se, xmax = RootMass_g.m2 + RootMass_se), width = 0) + geom_point(size = 6, color = 

"gray24") + geom_abline(intercept = -864.40514, slope = 0.15618, color = "black", size = 2) + 

ylab(expression(paste("Mineralization rate (", mu, "gN ", cm^-3, h^-1, ")"))) + 

xlab(expression(paste("Root mass (g ", m^-2, ")"))) 

 
# Plot relationship between stomatal conductance and Immobilization 
Min_conduct_site <- ggplot(Min_trait_site, aes(x = Conduct_molH2O.m2.s1, y = 

Mineralization_ug.N.cm3.hr)) 
Min_conduct_site + geom_errorbar(aes(ymin = Mineralization_ug.N.cm3.hr - Min_se, ymax = 

Mineralization_ug.N.cm3.hr + Min_se), width = 0) + geom_errorbarh(aes(xmin = 

Conduct_molH2O.m2.s1 - Conduct_se, xmax = Conduct_molH2O.m2.s1 + Conduct_se), width = 0) + 

geom_point(size = 6, color = "gray24") + geom_abline(intercept = -864.40514, slope = 1457.51833) +     

ylab(expression(paste("Mineralization rate (", mu, "gN ", cm^-3, h^-1, ")"))) + 

xlab(expression(paste("Stomatal conductance (mol ", H[2], O, m^-2, s^-1, ")"))) 
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Determine which sediment variables are most correlated with net (mineralization-

immobilization) 
# Examine correlations between sediment variables and mineralization and immobilization rates 
cordata_min_sed <- LIallVEG2013[, c("Mineralization_ug.N.cm3.hr", "SedC_mg.gDW",  
    "SedN_mg.gDW", "NH4_Extractable_uM", "NO3_Extractable_uM", "Salinity_ppt", "Sed_temp")] 
rcorr(as.matrix(cordata_min_sed)) 
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Mineralization_ug.N.cm3.hr 1.00 0.20 0.19 -0.44 0.06 -0.23 -0.24 

SedC_mg.gDW 0.20 1.00 0.79 0.10 0.30 -0.33 -0.12 

SedN_mg.gDW 0.19 0.79 1.00 0.04 0.33 -0.27 -0.14 

NH4_Extractable_uM -0.44 0.10 0.04 1.00 0.30 -0.07 0.03 

NO3_Extractable_uM 0.06 0.30 0.33 0.30 1.00 -0.34 -0.24 

Salinity_ppt -0.23 -0.33 -0.27 -0.07 -0.34 1.00 0.48 

Sed_temp -0.24 -0.12 -0.14 0.03 -0.24 0.48 1.00 
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Mineralization_ug.N.cm3.hr 220 220 220 219 218 218 220 

SedC_mg.gDW 220 220 220 219 218 218 220 

SedN_mg.gDW 220 220 220 219 218 218 220 

NH4_Extractable_uM 219 219 219 220 218 217 219 

NO3_Extractable_uM 218 218 218 218 220 216 218 

Salinity_ppt 218 218 218 217 216 220 218 

Sed_temp 220 220 220 219 218 218 220 
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Mineralization_ug.N.cm3.hr  0.0023 0.0043 0.0000 0.3478 0.0005 0.0004 

SedC_mg.gDW 0.0023  0.0000 0.1439 0.0000 0.0000 0.0853 

SedN_mg.gDW 0.0043 0.0000  0.5402 0.0000 0.0000 0.0323 

NH4_Extractable_uM 0.0000 0.1439 0.5402  0.0000 0.2752 0.6697 

NO3_Extractable_uM 0.3478 0.0000 0.0000 0.0000  0.0000 0.0003 

Salinity_ppt 0.0005 0.0000 0.0000 0.2752 0.0000  0.0000 

Sed_temp 0.0004 0.0853 0.0323 0.6697 0.0003 0.0000  

             

Create data frame of site-level means and errors for Mineralization, salinity, and 

extractable ammonium content 
Min_sed_site <- cbind(Mineralization, Salinity, Ammonium) 
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Construct weighted GLMs to predict net mineralization rates using sediment variables at 

the site level 
# Build model to predict immobilization, initialize with seasonality, salinity, and ammonium 
mod1ms <- lm(Mineralization_ug.N.cm3.hr ~ Month_Year * Salinity_ppt * NH4_Extractable_uM,  
    weights = 1/(Min_sd)^2, data = Min_sed_site) 
summary(mod1ms) 
Call: 
lm(formula = Mineralization_ug.N.cm3.hr ~ Month_Year * Salinity_ppt *  
    NH4_Extractable_uM, data = Min_sed_site, weights = 1/(Min_sd)^2) 
 
Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-1.07175 -0.29176  0.09653  0.50605  1.06406  
 
Coefficients: 

 Estimate Std.Error t value Pr(>|t|)  

(Intercept) 3.15E+02 5.35E+02 0.589 0.5652 . 

Month_Year.L 1.59E+03 7.56E+02 2.107 0.0536  

Salinity_ppt -8.14E+00 1.82E+01 -0.447 0.662  

NH4_Extractable_uM -7.42E+00 6.75E+00 -1.099 0.2903 . 

Month_Year.L:Salinity_ppt -5.29E+01 2.58E+01 -2.052 0.0593 * 

Month_Year.L:NH4_Extractable_uM -2.37E+01 9.55E+00 -2.478 0.0266  

Salinity_ppt:NH4_Extractable_uM 4.31E-02 2.31E-01 0.187 0.8546 * 

Month_Year.L:Salinity_ppt:NH4_Extractable_uM 8.38E-01 3.27E-01 2.565 0.0224  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.6598 on 14 degrees of freedom 
Multiple R-squared:  0.7192,    Adjusted R-squared:  0.5788  
F-statistic: 5.123 on 7 and 14 DF,  p-value: 0.004616 

 
# Remove salinity and rerun model 
mod2ms <- lm(Mineralization_ug.N.cm3.hr ~ Month_Year * NH4_Extractable_uM, weights = 

1/(Min_sd)^2, data = Min_sed_site) 
summary(mod2ms) 
Call: 
lm(formula = Mineralization_ug.N.cm3.hr ~ Month_Year * NH4_Extractable_uM,  
    data = Min_sed_site, weights = 1/(Min_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-1.7233 -0.1809  0.1979  0.5728  1.2374  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -17.470 92.399 -0.189 0.852154  

Month_Year.L 12.899 130.672 0.099 0.922458  

NH4_Extractable_uM -4.799 1.068 -4.491 0.000282 *** 
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Month_Year.L:NH4_Extractable_uM 0.229 1.511 0.152 0.881061  

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.7305 on 18 degrees of freedom 
Multiple R-squared:  0.5576,    Adjusted R-squared:  0.4838  
F-statistic: 7.562 on 3 and 18 DF,  p-value: 0.001774 

 
# Remove non-significant interaction and rerun model 
mod3ms <- lm(Mineralization_ug.N.cm3.hr ~ Month_Year + NH4_Extractable_uM, weights = 

1/(Min_sd)^2, data = Min_sed_site) 
summary(mod3ms) 
Call: 
lm(formula = Mineralization_ug.N.cm3.hr ~ Month_Year + NH4_Extractable_uM,  
    data = Min_sed_site, weights = 1/(Min_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-1.6886 -0.1836  0.1916  0.5844  1.2323  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -13.886 87.004 -0.16 0.874875  

Month_Year.L 30.007 64.362 0.466 0.646355  

NH4_Extractable_uM -4.808 1.039 -4.627 0.000184 *** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.7114 on 19 degrees of freedom 
Multiple R-squared:  0.557, Adjusted R-squared:  0.5104  
F-statistic: 11.95 on 2 and 19 DF,  p-value: 0.0004372 

 
# Remove non-significant effect of seasonality and rerun model 
mod4ms <- lm(Mineralization_ug.N.cm3.hr ~ NH4_Extractable_uM, weights = 1/(Min_sd)^2,  
    data = Min_sed_site) 
summary(mod4ms) 
Call: 
lm(formula = Mineralization_ug.N.cm3.hr ~ NH4_Extractable_uM,  
    data = Min_sed_site, weights = 1/(Min_sd)^2) 
 
Weighted Residuals: 
    Min      1Q  Median      3Q     Max  
-1.6637 -0.2570  0.1898  0.5817  1.2036  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -22.535 83.324 -0.270 0.790  

NH4_Extractable_uM -4.608 0.928 -4.964 7.47E-05 *** 



 

197 

 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 0.6974 on 20 degrees of freedom 
Multiple R-squared:  0.5519,    Adjusted R-squared:  0.5295  
F-statistic: 24.64 on 1 and 20 DF,  p-value: 7.473e-05 

 
# Test residuals of model for normality using KS Lilliefors test 
ks.test(mod4ms$residuals, "pnorm", mean(mod4ms$residuals), sd(mod4ms$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod4ms$residuals 
D = 0.2285, p-value = 0.1718 
alternative hypothesis: two-sided 

 
# Plot univariate relationship between ammonium and immobilization rates 
Min_Ammonium_site <- ggplot(Min_sed_site, aes(x = NH4_Extractable_uM, y = 

Mineralization_ug.N.cm3.hr)) 
Min_Ammonium_site + geom_errorbar(aes(ymin = Mineralization_ug.N.cm3.hr - Min_se, ymax = 

Mineralization_ug.N.cm3.hr + Min_se), width = 0) + geom_errorbarh(aes(xmin = 

NH4_Extractable_uM - NH4_se, xmax = NH4_Extractable_uM + NH4_se), width = 0) + 

geom_point(size = 6, color = "gray24") + geom_abline(intercept = -22.5353, slope = -4.6084, size = 2) + 

xlab(expression(paste("Extractable ammonium (", mu, "M)"))) + ylab(expression(paste("Mineralization 

rate (", mu, "gN ", cm^-3, h^-1, ")"))) + ggtitle("(B)") 
 

Calculate an "effect of vegetation" log-response ratio for denitrification rates 

To estimate the effect that vegetation exerts on denitrification rates, I calculated a log response 

ratio of denitrification rates in vegetated sediments to denitrification rates in non-vegetated 

sediments for site-level means. 
# Create a table of site means for denitrification rates in non-vegetated sediments 
Denit_sed <- summarySE(data = LIallSED2013, measurevar = "Denitrification_ng.N.g.hr",  
    groupvars = c("Month_Year", "Site")) 
Denit_sed <- rename(Denit_sed, c(se = "Denit_sed_se", sd = "Denit_sed_sd", ci = "Denit_sed_ci")) 
# Rename column names in Denit and Denit_sed to reflect treatment 
Denit$Denit_VEG <- Denit$Denitrification_ng.N.g.hr 
Denit_sed$Denit_SED <- Denit_sed$Denitrification_ng.N.g.hr 
# Create table of site means for AGBiomass 
AGBiomass <- summarySE(LIallVEG2013, measurevar = "DryWeight_g.m2", groupvars = 

c("Month_Year", "Site")) 
AGBiomass <- rename(AGBiomass, c(se = "AGBiomass_se", sd = "AGBiomass_sd", ci = 

"AGBiomass_ci")) 
# Merge tables of means for Denit, Denit_sed, and plant traits 
Denit_Plant_traits <- cbind(Denit, Denit_sed, AGBiomass, RootMass, LeafN) 

 

# Calculate log response ratio as log10(Denit_VEG/Denit_SED) 
Denit_Plant_traits$logR <- log10(Denit_Plant_traits$Denit_VEG/Denit_Plant_traits$Denit_SED) 

 
# Calculate standard deviation of log response ratios as mean of independent standard deviations of each 

treatment group 
Denit_Plant_traits$logR_sd <- log10((Denit_Plant_traits$Denit_sd^2 + 

Denit_Plant_traits$Denit_sed_sd^2)^0.5) 
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# Examine distribution of plant effects on denitrification, where 0 = no effect 
hist(Denit_Plant_traits$logR) 

 
 
# Calculate mean effect of plants on denit at site level 
mean(Denit_Plant_traits$logR) 
[1] 0.3203291 
# Back transform mean effect 
10^0.3203291 
[1] 2.09088 
# Mean effect of vegetation is an approximate doubling of denitrification rates 

 

Use plant traits to predict the effect of vegetation on denitrification rates 

Initial model was a GLM, weighted by the inverse of the propagated sampling error in logR. 

Initial continuous predictors were total root mass, total aboveground biomass, and leaf nitrogen 

content. 
# Create model, initialize with AGBiomass, BGBiomass, and Leaf N 
mod1logR <- lm(logR ~ DryWeight_g.m2 * RootMass_g.m2 * VegN_mg.gDW, weights = 1/logR_sd^2,  
    data = Denit_Plant_traits) 
summary(mod1logR) 
Call: 
lm(formula = logR ~ DryWeight_g.m2 * RootMass_g.m2 * VegN_mg.gDW,  
    data = Denit_Plant_traits, weights = 1/logR_sd^2) 
 
Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-0.47090 -0.12953  0.00197  0.08182  0.47043  
 
Coefficients: 

 Estimate Std.Error t value Pr(>|t|) 

(Intercept) 2.49E+00 1.48E+01 0.168 0.869 

DryWeight_g.m2 -6.20E-03 3.09E-02 -0.201 0.844 

RootMass_g.m2 -8.98E-04 5.24E-03 -0.172 0.866 

VegN_mg.gDW -1.73E-01 9.21E-01 -0.187 0.854 

DryWeight_g.m2:RootMass_g.m2 2.67E-06 1.22E-05 0.219 0.83 

DryWeight_g.m2:VegN_mg.gDW 3.77E-04 2.06E-03 0.183 0.857 

RootMass_g.m2:VegN_mg.gDW 4.88E-05 3.31E-04 0.147 0.885 
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DryWeight_g.m2:RootMass_g.m2:VegN_mg.gDW -1.13E-07 8.37E-07 -0.136 0.894 

 
Residual standard error: 0.2776 on 14 degrees of freedom 
Multiple R-squared:  0.2806,    Adjusted R-squared:  -0.07906  
F-statistic: 0.7802 on 7 and 14 DF,  p-value: 0.6144 

 
# Remove Leaf N and rerun model 
mod2logR <- lm(logR ~ DryWeight_g.m2 * RootMass_g.m2, weights = 1/logR_sd^2,  
    data = Denit_Plant_traits) 
summary(mod2logR) 
Call: 
lm(formula = logR ~ DryWeight_g.m2 * RootMass_g.m2, data = Denit_Plant_traits,  
    weights = 1/logR_sd^2) 
 
Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-0.47905 -0.13575 -0.00166  0.11270  0.46915  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|) 

(Intercept) -0.197 1.260 -0.156 0.878 

DryWeight_g.m2 0.000 0.002 -0.245 0.809 

RootMass_g.m2 0.000 0.000 -0.268 0.792 

DryWeight_g.m2:RootMass_g.m2 0.000 0.000 1.084 0.293 

 
Residual standard error: 0.2455 on 18 degrees of freedom 
Multiple R-squared:  0.2763,    Adjusted R-squared:  0.1557  
F-statistic: 2.291 on 3 and 18 DF,  p-value: 0.1128 

 
# Remove non-significant interaction and rerun model 
mod3logR <- lm(logR ~ DryWeight_g.m2 + RootMass_g.m2, weights = 1/logR_sd^2,  
    data = Denit_Plant_traits) 
summary(mod3logR) 
Call: 
lm(formula = logR ~ DryWeight_g.m2 + RootMass_g.m2, data = Denit_Plant_traits,  
    weights = 1/logR_sd^2) 
 
Weighted Residuals: 
     Min       1Q   Median       3Q      Max  
-0.49353 -0.17863  0.00935  0.11240  0.51154  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) -1.295 0.752 -1.723 0.1011  

DryWeight_g.m2 0.002 0.001 2.133 0.0462 * 

RootMass_g.m2 0.000 0.000 1.808 0.0865 . 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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Residual standard error: 0.2466 on 19 degrees of freedom 
Multiple R-squared:  0.2291,    Adjusted R-squared:  0.1479  
F-statistic: 2.823 on 2 and 19 DF,  p-value: 0.08443 

 
# Test residuals of model for normality using KS Lilliefors test 
ks.test(mod3logR$residuals, "pnorm", mean(mod3logR$residuals), sd(mod3logR$residuals)) 
One-sample Kolmogorov-Smirnov test 
data:  mod3logR$residuals 
D = 0.1124, p-value = 0.915 
alternative hypothesis: two-sided 

 
# Visualize final model in 3 dimensions 
logR_AGBGBiomass <- scatterplot3d(x = Denit_Plant_traits$DryWeight_g.m2, y = 

Denit_Plant_traits$RootMass_g.m2, z = Denit_Plant_traits$logR, xlab = expression(paste("AG Biomass 

(g ", m^-2, ")")), ylab = expression(paste("BG Biomass (g ", m^-2, ")")), zlab = 

expression(paste(log[10], "(", DEA[VEG], "/", DEA[SED], ")")), color = "black", pch = 19) 
logR_AGBGBiomass$plane3d(mod3logR) 
 
# Plot relationship between AGBiomass and Effect of Plant 
logR_AGBiomass <- ggplot(Denit_Plant_traits, aes(y = logR, x = DryWeight_g.m2)) 
logR_AGBiomass + geom_point(aes(size = logR_sd * 2), color = "gray24") + geom_hline(yintercept = 

0, size = 1, color = "gray24") + geom_abline(intercept = -1.2954225, slope = 0.0015582, size = 2) + 

ylab(expression(paste(log[10], "(", DEA[VEG], "/", DEA[SED], ")"))) + xlab(expression(paste("AG 

Biomass (g ", m^-2, ")"))) + theme(legend.position = "none") + ggtitle("(B)") 
 
# Plot relationship between BGBiomass and Effect of Plant 
logR_BGBiomass <- ggplot(Denit_Plant_traits, aes(y = logR, x = RootMass_g.m2)) 
logR_BGBiomass + geom_point(aes(size = logR_sd * 2), color = "gray24") + geom_hline(yintercept = 

0, size = 1, color = "gray24") + geom_abline(intercept = -1.2954225, slope = 0.0003559, size = 2) + 

ylab(expression(paste(log[10], "(", DEA[VEG], "/", DEA[SED], ")"))) + xlab(expression(paste("Root 

mass (g ", m^-2, ")"))) + theme(legend.position = "none") + ggtitle("(C)") 
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Appendix D:  Supplement to Chapter 5 

Packages 
library(ggplot2) 
library(bear) 
library(car) 
library(lmodel2) 
library(Hmisc) 
library(GGally) 
library(smatr) 

 

Data and Formatting 
# Set working directory and import data 
setwd(filepath1) 
LIall <- read.csv("20141107_LI_AllData_2012-2013.csv") 
# Convert 'Month_Year' from factor to ordered factor 
LIall$Month_Year <- ordered(LIall$Month_Year, levels = c("April2012", "June2012",  
    "August2012", "April2013", "June2013", "August2013")) 
# Convert Site from a Factor to an Ordered Factor, West to East 
LIall$Site <- ordered(LIall$Site, levels = c("East Creek", "Frost Creek", "Oceanside",  
    "Lido", "Gardiners", "West Meadow", "Smith Point", "Indian Island", "Hubbard",  
    "Mashomack", "Accabonac")) 
# Drop levels to show only vegetated plots 
LIallVEG <- droplevels(LIall[LIall$Tall_short != "sediment", ]) 

# Create dataframe for all vegetated plots measured in 2013 

LIallVEG2013 <- LIallVEG[which(LIallVEG$Month_Year =="June2013" | LIallVEG$Month_Year == 

"August2013"),] 

 

Dependent variables 

I created tables of means, standard deviations, standard errors, and confidence intervals for each 

dependent variable, grouped by Sampling Time (Month_Year) and Site. Initial groupings also 

included whether measurements were conducted in tall- or short-form vegetation (Tall_short), but 

these groupings were not useful in partitioning variation. 
BGBiomassMeans <- summarySE(LIallVEG, measurevar = "RootMass_g.m2", groupvars = 

c("Month_Year", "Site", na.rm = T)) 
AGBiomassMeans <- summarySE(LIallVEG, measurevar = "DryWeight_g.m2", groupvars = 

c("Month_Year", "Site", na.rm = T)) 
RhizomeMeans <- summarySE(LIallVEG, measurevar = "RhizomeWidth_mm", groupvars = 

c("Month_Year", "Site", na.rm = T)) 

 

Independent Variables 
PW_DINMeans <- summarySE(LIallVEG, measurevar = "DIN_uM", groupvars = c("Month_Year",  
    "Site", na.rm = T)) 
PW_PhosphateMeans <- summarySE(LIallVEG, measurevar = "PO4_uM", groupvars = 

c("Month_Year", "Site", na.rm = T)) 
PW_SalinityMeans <- summarySE(LIallVEG, measurevar = "Salinity_ppt", groupvars = 

c("Month_Year", "Site", na.rm = T)) 
Ext_DINMeans <- summarySE(LIallVEG, measurevar = "DIN_Extractable", groupvars = 

c("Month_Year", "Site", na.rm = T)) 
Ext_PhosphateMeans <- summarySE(LIallVEG, measurevar = "PO4_Extractable_um",  
    groupvars = c("Month_Year", "Site", na.rm = T)) 
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SedCMeans <- summarySE(LIallVEG, measurevar = "SedC_mg.gDW", groupvars = c("Month_Year",  
    "Site", na.rm = T)) 
SedNMeans <- summarySE(LIallVEG, measurevar = "SedN_mg.gDW", groupvars = c("Month_Year",  
    "Site", na.rm = T)) 
FracSandMeans <- summarySE(LIallVEG, measurevar = "Frac_Sand", groupvars = c("Month_Year",  
    "Site", na.rm = T)) 

 

Variable Correlations and Distributions 

I created a data frame of site means for all variables included in initial models. I examined 

variables for distribution and correlation, then transformed as needed to meet assumptions of 

normality. 
# Create data frame of site means for variables of interest 
ancova1data <- cbind(PW_DINMeans, Ext_DINMeans, PW_PhosphateMeans, Ext_PhosphateMeans,  
    PW_SalinityMeans, BGBiomassMeans, AGBiomassMeans, RhizomeMeans, SedCMeans,  
    FracSandMeans) 
# Examine correlations and distributions of independent variables in 2013 model 
pcdata_ind <- ancova1data[, c("Salinity_ppt", "DIN_uM", "DIN_Extractable", "PO4_uM",  
    "PO4_Extractable_um")] 
ggpairs(pcdata_ind) 

 
# Log10 transform PWPO4, PWDIN, ExtPO4 
ancova1data$log10_PWPO4 <- log10(ancova1data$PO4_uM) 
ancova1data$log10_ExtPO4 <- log10(ancova1data$PO4_Extractable_um) 
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ancova1data$log10_PWDIN <- log10(ancova1data$DIN_uM) 
# Re-examine distributions for independent variables after transformations 
pcdata_ind2 <- ancova1data[, c("Salinity_ppt", "log10_PWDIN", "DIN_Extractable",  
    "log10_PWPO4", "log10_ExtPO4")] 
ggpairs(pcdata_ind2) 

 
# Test correlations among independent varaibles for significance 
rcorr(as.matrix(pcdata_ind2)) 

 Salinity_ppt log10_PWDIN DIN_Extractable log10_PWPO4 log10_ExtPO4 

Salinity_ppt 1.00 0.08 -0.14 0.55 -0.10 

log10_PWDIN 0.08 1.00 -0.01 -0.02 -0.08 

DIN_Extractable -0.14 -0.01 1.00 0.17 0.17 

log10_PWPO4 0.55 -0.02 0.17 1.00 0.82 

log10_ExtPO4 -0.10 -0.08 0.17 0.82 1.00 

n 

 Salinity_ppt log10_PWDIN DIN_Extractable log10_PWPO4 log10_ExtPO4 

Salinity_ppt 64.00 52.00 20.00 7.00 17 

log10_PWDIN 52.00 64.00 21.00 7.00 18 

DIN_Extractable 20.00 21.00 64.00 6.00 18 

log10_PWPO4 7.00 7.00 6.00 64.00 5 

log10_ExtPO4 17.00 18.00 18.00 5.00 64 
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p 

 Salinity_ppt log10_PWDIN DIN_Extractable log10_PWPO4 log10_ExtPO4 

Salinity_ppt  0.5796 0.5536 0.2041 0.7010 

log10_PWDIN 0.5796  0.9522 0.9606 0.7381 

DIN_Extractable 0.5536 0.9522  0.7455 0.4933 

log10_PWPO4 0.2041 0.9606 0.7455  0.0893 

log10_ExtPO4 0.7010 0.7381 0.4933 0.0893  

 
# Examine correlations and distributions of dependent variables 
pcdata_dep <- ancova1data[, c("DryWeight_g.m2", "RootMass_g.m2", "RhizomeWidth_mm")] 
ggpairs(pcdata_dep) 

 
# Transform Aboveground Biomass (DryWeight_g.m2) to meet assumptions of normality 
ancova1data$log10_DryWeight <- log10(ancova1data$DryWeight) 
pcdata_dep2 <- ancova1data[, c("log10_DryWeight", "RootMass_g.m2", "RhizomeWidth_mm")] 
ggpairs(pcdata_dep2) 
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# Test correlations among dependent variables for significance 
rcorr(as.matrix(pcdata_dep2)) 

 
log10_DryWeight RootMass_g.m2 RhizomeWidth_mm 

log10_DryWeight 1.00 0.00 0.15 

RootMass_g.m2 0.00 1.00 -0.08 

RhizomeWidth_mm 0.15 -0.08 1.00 

 

n 

 
log10_DryWeight RootMass_g.m2 RhizomeWidth_mm 

log10_DryWeight 64 42 41 

RootMass_g.m2 42 64 40 

RhizomeWidth_mm 41 40 64 

 
p 

 log10_DryWeight RootMass_g.m2 RhizomeWidth_mm 

log10_DryWeight  0.9828 0.3351 

RootMass_g.m2 0.9828  0.6430 

RhizomeWidth_mm 0.3351 0.6430  

 

Longitudinal Patterns in Independent Variables 

I plotted site means of DIN (Dissolved inorganic nitrogen) and Salinity by longitude (west to 

east) to examine patterns and potential gradients in these variables among sites. I found variation 

in both of these variables among sites but no linear gradients. 
# Create summaries of site means for Salinity and DIN by Longitude 
DIN <- summarySE(data = LIallVEG2013, measurevar = "DIN_Extractable", groupvar = "Site",  
    na.rm = T) 
DIN <- rename(DIN, c(se = "DINse", sd = "DINsd", ci = "DINci")) 
Sal <- summarySE(data = LIallVEG2013, measurevar = "Salinity_ppt", groupvar = "Site", na.rm = T) 
Sal <- rename(Sal, c(se = "Salse", sd = "Salsd", ci = "Salci")) 
UTM <- summarySE(data = LIallVEG2013, measurevar = "UTM_W", groupvar = "Site", na.rm = T) 
UTM <- rename(UTM, c(se = "UTMse", sd = "UTMsd", ci = "UTMci")) 
DIN_Sal_UTM <- cbind(DIN, Sal, UTM) 
# Change base text size and background for figures 
theme_set(theme_bw(base_size = 16)) 
# DIN by Longitude 
DIN_UTMmeans <- ggplot(DIN_Sal_UTM, aes(x = UTM_W, y = DIN_Extractable)) 
DIN_UTMmeans + stat_smooth(size = 2, color = "grey40") + geom_errorbar(aes(ymin = 

DIN_Extractable - DINse, ymax = DIN_Extractable + DINse, width = 0), size = 1.5, color = "gray34") +  
    geom_point(size = 7, color = "white") + geom_point(size = 5, color = "grey40") +  
    xlab("Longitude (UTM west)") + ylab(expression(paste("Extractable inorganic nitrogen ( ",  
    mu, "M)"))) 
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# Salinity by Longitude 
Sal_UTMmeans <- ggplot(DIN_Sal_UTM, aes(x = UTM_W, y = Salinity_ppt)) 
Sal_UTMmeans + stat_smooth(size = 2, color = "grey40") + geom_errorbar(aes(ymin = Salinity_ppt -  
Salse, ymax = Salinity_ppt + Salse, width = 0), size = 1.5, color = "gray34") + geom_point(size = 7, 

color = "white") + geom_point(size = 5, color = "grey40") + xlab("Longitude (UTM west)") + 

ylab("Salinity (ppt)") 

 
 
Ancova 1 
Independent Variables measured in 2013 

Dependent variable = RootMass_g.m2 

Categorical variable = Month_Year[June2013, August2013] 

Initial Continuous variables = Salinity_ppt, DIN_Extractable, log10_PO4 

This model was initiated first with porewater nutrient values; due to insufficient sample volume 

to perform phosphate analyses for some sites, the model was run without interactions. Models 

including porewater nutrient values had no predictive power, and were discarded in favor of full-

factorial models initiated with extractable nutrient values. 
# Create data frame of site means for variables of interest 
ancova1data <- cbind(PW_DINMeans, Ext_DINMeans, PW_PhosphateMeans, Ext_PhosphateMeans,  
    PW_SalinityMeans, BGBiomassMeans, AGBiomassMeans, RhizomeMeans, SedCMeans,  
    FracSandMeans) 
# Log10 transform variables to meet assumptions of normality 
ancova1data$log10_PWPO4 <- log10(ancova1data$PO4_uM) 
ancova1data$log10_ExtPO4 <- log10(ancova1data$PO4_Extractable_um) 
ancova1data$log10_PWDIN <- log10(ancova1data$DIN_uM) 
# Subset data frame to include only measurements collected in 2013 
ancova1data2013 <- ancova1data[which(ancova1data == "June2013" | ancova1data == "August2013"), ] 
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# Initial model, all independent variables and interactions 
mod1.1 <- aov(RootMass_g.m2 ~ Month_Year * Salinity_ppt * DIN_Extractable * log10_ExtPO4, data 

= ancova1data2013) 
summary(mod1.1) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 1 3.33E+06 3334812 16.9 0.0261 * 

Salinity_ppt 1 1.45E+06 1453740 7.367 0.0729 . 

DIN_Extractable 1 1.36E+06 1355247 6.868 0.079 . 

log10_ExtPO4 1 1.16E+05 116283 0.589 0.4986  

Month_Year:Salinity_ppt 1 6.02E+04 60194 0.305 0.6192  

Month_Year:DIN_Extractable 1 4.95E+05 495153 2.509 0.2113  

Salinity_ppt:DIN_Extractable 1 2.64E+04 26406 0.134 0.7388  

Month_Year:log10_ExtPO4 1 1.53E+05 152504 0.773 0.4441  

Salinity_ppt:log10_ExtPO4 1 1615573 1615573 8.188 0.0645 . 

DIN_Extractable:log10_ExtPO4 1 1170398 1170398 5.931 0.0929 . 

Month_Year:Salinity_ppt:DIN_Extractable 1 220521 220521 1.118 0.368  

Month_Year:Salinity_ppt:log10_ExtPO4 1 119784 119784 0.607 0.4927  

Salinity_ppt:DIN_Extractable:log10_ExtPO4 1 753322 753322 3.818 0.1457  

Residuals 3 591963 197321    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
203 observations deleted due to missingness 

 
# Model with phosphate eliminated 
mod1.2 <- aov(RootMass_g.m2 ~ Month_Year * Salinity_ppt * DIN_Extractable, data = 

ancova1data2013) 
summary(mod1.2) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 1 2.05E+06 2050883 4.773 0.0495 * 

Salinity_ppt 1 1.69E+06 1694707 3.944 0.0704 . 

DIN_Extractable 1 2.22E+06 2224973 5.178 0.042 * 

Month_Year:Salinity_ppt 1 4.90E+01 49 0 0.9917  

Month_Year:DIN_Extractable 1 4.95E+05 495071 1.152 0.3042  

Salinity_ppt:DIN_Extractable 1 8.87E+03 8874 0.021 0.8881  

Month_Year:Salinity_ppt:DIN_Extractable 1 6.56E+02 656 0.002 0.9695  

Residuals 12 5.16E+06 429704    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
200 observations deleted due to missingness 

 
# Model with interactions eliminated 
mod1.3 <- aov(RootMass_g.m2 ~ Month_Year + Salinity_ppt + DIN_Extractable, data = 

ancova1data2013) 
summary(mod1.3) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 1 2.05E+06 2050883 5.796 0.0285 * 
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Salinity_ppt 1 1.69E+06 1694707 4.79 0.0438 * 

DIN_Extractable 1 2.22E+06 2224973 6.288 0.0233 * 

Residuals 16 5.66E+06 353818    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
200 observations deleted due to missingness 

 
# Evaluate difference between models 
anova(mod1.2, mod1.3) 
Analysis of Variance Table 
Model 1: RootMass_g.m2 ~ Month_Year * Salinity_ppt * DIN_Extractable 
Model 2: RootMass_g.m2 ~ Month_Year + Salinity_ppt + DIN_Extractable 
  Res.Df     RSS Df Sum of Sq      F Pr(>F) 
1     12 5156443                            
2     16 5661093 -4   -504650 0.2936 0.8765 

 
# Run mod1.3 as linear model to evaluate fit 
mod1.3lm <- lm(RootMass_g.m2 ~ Month_Year + Salinity_ppt + DIN_Extractable,  
    data = ancova1data2013) 
summary(mod1.3lm) 
Call: 
lm(formula = RootMass_g.m2 ~ Month_Year + Salinity_ppt + DIN_Extractable,  
    data = ancova1data2013) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-986.12 -287.48   78.36  404.48  825.76  
 
Coefficients: 

 Estimate Std. Error t Pr(>|t|)  

(Intercept) 2067 6.00E+02 3.443 0.00334 ** 

Month_Year.L -524 1.99E+02 -2.636 0.01799 * 

Salinity_ppt 32 1.82E+01 1.738 0.10148  

DIN_Extractable -5 1.86E+00 -2.508 0.02331 * 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 594.8 on 16 degrees of freedom 
  (200 observations deleted due to missingness) 
Multiple R-squared:  0.5133,    Adjusted R-squared:  0.422  
F-statistic: 5.625 on 3 and 16 DF,  p-value: 0.00791 

 
# Inspect residuals of final model 
hist(mod1.3lm$residuals) 
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Ancova 1 
Independent Variables measured in 2013 

Dependent variable = DryWeight_g.m2 

Categorical variable = Month_Year[June2013, August2013] 

Initial Continuous variables = Salinity_ppt, DIN_Extractable, log10_PO4 

This model was initiated first with porewater nutrient values; due to insufficient sample volume 

to perform phosphate analyses for some sites, the model was run without interactions. Models 

including porewater nutrient values had no predictive power, and were discarded in favor of full-

factorial models initiated with extractable nutrient values. 
# Create data frame of site means for variables of interest 
ancova1data <- cbind(PW_DINMeans, Ext_DINMeans, PW_PhosphateMeans, Ext_PhosphateMeans,  
    PW_SalinityMeans, BGBiomassMeans, AGBiomassMeans, RhizomeMeans, SedCMeans,  
    FracSandMeans) 
# Log10 transform variables to meet assumptions of normality 
ancova1data$log10_PWPO4 <- log10(ancova1data$PO4_uM) 
ancova1data$log10_ExtPO4 <- log10(ancova1data$PO4_Extractable_um) 
ancova1data$log10_PWDIN <- log10(ancova1data$DIN_uM) 
ancova1data$log10_DryWeight <- log10(ancova1data$DryWeight_g.m2) 
# Subset data frame to include only measurements collected in 2013 
ancova1data2013 <- ancova1data[which(ancova1data == "June2013" | ancova1data == "August2013"), ] 
 
# Initial model, all independent variables and interactions 
mod1.1a <- aov(DryWeight_g.m2 ~ Month_Year * Salinity_ppt * DIN_Extractable *  
    log10_ExtPO4, data = ancova1data2013) 
summary(mod1.1a) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 1 3.28E+05 327527 5.575 0.0993 . 

Salinity_ppt 1 2.26E+04 22585 0.384 0.5791  

DIN_Extractable 1 6.41E+04 64088 1.091 0.373  

log10_ExtPO4 1 6.40E+04 63988 1.089 0.3733  

Month_Year:Salinity_ppt 1 8.00E+00 8 0 0.9913  

Month_Year:DIN_Extractable 1 1.95E+03 1948 0.033 0.8671  

Salinity_ppt:DIN_Extractable 1 5.71E+02 571 0.01 0.9277  

Month_Year:log10_ExtPO4 1 1.11E+05 111423 1.897 0.2622  

Salinity_ppt:log10_ExtPO4 1 222 222 0.004 0.9549  
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DIN_Extractable:log10_ExtPO4 1 186 186 0.003 0.9587  

Month_Year:Salinity_ppt:DIN_Extractable 1 315 315 0.005 0.9463  

Month_Year:Salinity_ppt:log10_ExtPO4 1 15321 15321 0.261 0.6448  

Salinity_ppt:DIN_Extractable:log10_ExtPO4 1 6927 6927 0.118 0.754  

Residuals 3 176248 58749    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
203 observations deleted due to missingness 

 
# Model with salinity eliminated 
mod1.2a <- aov(DryWeight_g.m2 ~ Month_Year * DIN_Extractable * log10_ExtPO4,  
    data = ancova1data2013) 
summary(mod1.2a) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 1 2.34E+05 234486 8.259 0.0166 * 

DIN_Extractable 1 1.10E+05 109598 3.86 0.0778 . 

log10_ExtPO4 1 5.44E+04 54406 1.916 0.1964  

Month_Year:DIN_Extractable 1 1.04E+04 10383 0.366 0.5588  

Month_Year:log10_ExtPO4 1 1.25E+05 124577 4.388 0.0626 . 

DIN_Extractable:log10_ExtPO4 1 5.93E+02 593 0.021 0.888  

Month_Year:DIN_Extractable:log10_ExtPO4 1 1.36E+04 13626 0.48 0.5042  

Residuals 10 2.84E+05 28391    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
202 observations deleted due to missingness 

 
# Model with phosphate eliminated 
mod1.3a <- aov(DryWeight_g.m2 ~ Month_Year * DIN_Extractable, data = ancova1data2013) 
summary(mod1.3a) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 1 272259 272259 8.628 0.0092 ** 

DIN_Extractable 1 113797 113797 3.606 0.0747 . 

Month_Year:DIN_Extractable 1 0 0 0 0.9975  

Residuals 17 536420 31554    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
199 observations deleted due to missingness 

 
# Model with interactions eliminated 
mod1.4a <- aov(DryWeight_g.m2 ~ Month_Year + DIN_Extractable, data = ancova1data2013) 
summary(mod1.4a) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 1 272259 272259 9.136 0.00732 ** 

DIN_Extractable 1 113797 113797 3.819 0.06641 . 

Residuals 18 536420 29801    
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--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
199 observations deleted due to missingness 

 
# Evaluate difference between models 
anova(mod1.3a, mod1.4a) 
Analysis of Variance Table 
Model 1: DryWeight_g.m2 ~ Month_Year * DIN_Extractable 
Model 2: DryWeight_g.m2 ~ Month_Year + DIN_Extractable 
  Res.Df    RSS Df Sum of Sq  F Pr(>F) 
1     17 536420                        
2     18 536420 -1  -0.31054  0 0.9975 

 
# Run mod1.3 as linear model to evaluate fit 
mod1.4alm <- lm(DryWeight_g.m2 ~ Month_Year + DIN_Extractable, data = ancova1data2013) 
summary(mod1.4alm) 
Call: 
lm(formula = DryWeight_g.m2 ~ Month_Year + DIN_Extractable, data = ancova1data2013) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-283.05 -104.22    4.56  112.30  311.69  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 453.305 83.978 5.398 3.96E-05 *** 

Month_Year.L 155.69 53.41 2.915 0.00924 ** 

DIN_Extractable 1.036 0.53 1.954 0.06641 . 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 172.6 on 18 degrees of freedom 
  (199 observations deleted due to missingness) 
Multiple R-squared:  0.4185,    Adjusted R-squared:  0.3539  
F-statistic: 6.477 on 2 and 18 DF,  p-value: 0.007602 
# Inspect residuals of final model, Residuals were more normally distributed for non-transformed 

variable; fit simple linear model instead 
hist(mod1.4alm$residuals) 
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Ancova 2 
Independent Variables measured in 2012-2013 

Dependent variable = RootMass_g.m2 

Categorical variable = Month_Year[June2012, August2012, June2013, August2013] 

Initial Continuous variables = Salinity_ppt, log10_DIN 
# Create data frame of site means for variables of interest 
ancova2data <- cbind(PW_DINMeans, PW_SalinityMeans, BGBiomassMeans, AGBiomassMeans,  
    RhizomeMeans) 
# Log transform DIN to meet assumptions of normality 
ancova2data$log10_DIN <- log10(ancova2data$DIN_uM) 
# Subset data to include only sampling times of interest 
ancova2data20122013 <- ancova2data[which(ancova2data == "June2012" | ancova2data ==  
    "August2012" | ancova2data == "June2013" | ancova2data == "August2013"), ] 
 
# Initial model, all independent variables and interactions 
mod2.1 <- aov(RootMass_g.m2 ~ Month_Year * Salinity_ppt * log10_DIN, data = 

ancova2data20122013) 
summary(mod2.1) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 3 3904434 1301478 2.623 0.07277 . 

Salinity_ppt 1 4251230 4251230 8.568 0.00719 ** 

log10_DIN 1 260238 260238 0.524 0.47566  

Month_Year:Salinity_ppt 3 157055 52352 0.106 0.95609  

Month_Year:log10_DIN 3 747186 249062 0.502 0.68437  

Salinity_ppt:log10_DIN 1 109109 109109 0.22 0.64318  

Month_Year:Salinity_ppt:log10_DIN 3 1974228 658076 1.326 0.2881  

Residuals 25 12404507 496180    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
174 observations deleted due to missingness 

 
# Model with DIN eliminated 
mod2.2 <- aov(RootMass_g.m2 ~ Month_Year * Salinity_ppt, data = ancova2data20122013) 
summary(mod2.2) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 3 3904434 1301478 2.790 0.05579 . 

Salinity_ppt 1 4251230 4251230 9.115 0.00486 ** 

Month_Year:Salinity_ppt 3 260632 86877 0.186 0.90498  

Residuals 33 15391690 466415    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
174 observations deleted due to missingness 

 
# Model with interaction term eliminated 
mod2.3 <- aov(RootMass_g.m2 ~ Month_Year + Salinity_ppt, data = ancova2data20122013) 
summary(mod2.3) 

 Df SumSq MeanSq F Pr(>F)  
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Month_Year 3 3904434 1301478 2.993 0.04349 * 

Salinity_ppt 1 4251230 4251230 9.778 0.00349 ** 

Residuals 36 15652322 434787    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
174 observations deleted due to missingness 

 
# Evaluate difference between models 
anova(mod2.2, mod2.3) 
Analysis of Variance Table 
Model 1: RootMass_g.m2 ~ Month_Year * Salinity_ppt 
Model 2: RootMass_g.m2 ~ Month_Year + Salinity_ppt 
  Res.Df      RSS Df Sum of Sq      F Pr(>F) 
1     33 15391690                            
2     36 15652322 -3   -260632 0.1863  0.905 

 
# Run mod2.3 as linear model to evaluate fit 
mod2.3lm <- lm(RootMass_g.m2 ~ Month_Year + Salinity_ppt, data = ancova2data20122013) 
summary(mod2.3lm) 
Call: 
lm(formula = RootMass_g.m2 ~ Month_Year + Salinity_ppt, data = ancova2data20122013) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-1144.6  -471.7  -127.3   264.8  1398.2  
 
Coefficients: 

 Estimate Std.Error t Pr(>|t|)  

(Intercept) 675.48 425.71 1.587 0.121  

Month_Year.L 371.6 204.27 1.819 0.07721 . 

Month_Year.Q -509.44 207.99 -2.449 0.01931 * 

Month_Year.C -510.77 219.54 -2.327 0.02573 * 

Salinity_ppt 47.81 15.29 3.127 0.00349 ** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 659.4 on 36 degrees of freedom 
  (174 observations deleted due to missingness) 
Multiple R-squared:  0.3426,    Adjusted R-squared:  0.2695  
F-statistic: 4.689 on 4 and 36 DF,  p-value: 0.003773 

 
# Inspect residuals of final model 
hist(mod2.3lm$residuals) 
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Ancova 2 

Independent Variables measured in 2012-2013 

Dependent variable = DryWeight_g.m2 

Categorical variable = Month_Year[June2012, August2012, June2013, August2013] 

Initial Continuous variables = Salinity_ppt, log10_DIN 
# Create data frame of site means for variables of interest 
ancova2data <- cbind(PW_DINMeans, PW_SalinityMeans, BGBiomassMeans, AGBiomassMeans,  
    RhizomeMeans) 
# Log transform DIN to meet assumptions of normality 
ancova2data$log10_DIN <- log10(ancova2data$DIN_uM) 
# Subset data to include only sampling times of interest 
ancova2data20122013 <- ancova2data[which(ancova2data == "June2012" | ancova2data ==  
    "August2012" | ancova2data == "June2013" | ancova2data == "August2013"), ] 
 
# Initial model, all independent variables and interactions 
mod2.1a <- aov(DryWeight_g.m2 ~ Month_Year * Salinity_ppt * log10_DIN, data = 

ancova2data20122013) 
summary(mod2.1a) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 3 914710 304903 18.306 1.36E-06 *** 

Salinity_ppt 1 839 839 0.05 0.824  

log10_DIN 1 5195 5195 0.312 0.581  

Month_Year:Salinity_ppt 3 47915 15972 0.959 0.427  

Month_Year:log10_DIN 3 6875 2292 0.138 0.937  

Salinity_ppt:log10_DIN 1 7287 7287 0.438 0.514  

Month_Year:Salinity_ppt:log10_DIN 3 61673 20558 1.234 0.317  

Residuals 26 433043 16655    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
173 observations deleted due to missingness 

 
# Model with Salinity eliminated 
mod2.2a <- aov(DryWeight_g.m2 ~ Month_Year * log10_DIN, data = ancova2data20122013) 
summary(mod2.2a) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 3 899779 299926 16.829 6.16E-07 *** 
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log10_DIN 1 29470 29470 1.654 0.207  

Month_Year:log10_DIN 3 41216 13739 0.771 0.518  

Residuals 35 623766 17822    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
172 observations deleted due to missingness 

 
# Model with interaction term eliminated 
mod2.3a <- aov(DryWeight_g.m2 ~ Month_Year + log10_DIN, data = ancova2data20122013) 
summary(mod2.3a) 

 Df SumSq MeanSq F Pr(>F)  

Month_Year 3 899779 299926 17.139 3.36E-07 *** 

log10_DIN 1 29470 29470 1.684 0.202  

Residuals 38 664982 17500    

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
172 observations deleted due to missingness 

 

Fit RMA regressions for Extractable Inorganic Nitrogen and Salinity versus Root Mass 

Because both my independent and dependent variables include measurement error, it is 

appropriate to visualize relationships using reduced-major-axis (RMA) regression, as opposed to 

ordinary-least-squares (OLS) regression. The lmodel2 package refers to RMA regressions as 

SMA (or standardized-major-axis) regressions. I also created tables of coefficients for easy 

insertion of RMA lines into plots. 
# DIN v BG Biomass June 2013 
data_June2013 <- ancova1data[which(ancova1data == "June2013"), ] 
DIN_fit_June2013 <- lmodel2(RootMass_g.m2 ~ DIN_Extractable, data = data_June2013) 
DIN_coef_June2013 <- with(data_June2013, line.cis(RootMass_g.m2, DIN_Extractable)) 
DIN_fit_June2013 
Model II regression 
 
Call: lmodel2(formula = RootMass_g.m2 ~ DIN_Extractable, data = 
data_June2013) 
 
n = 10   r = -0.6986631   r-square = 0.4881302  
Parametric P-values:   2-tailed = 0.02459641    1-tailed = 0.0122982  
Angle between the two OLS regression lines = 3.874798 degrees 
 
Regression results 
  Method Intercept      Slope Angle (degrees) P-perm (1-tailed) 
1    OLS  3513.804  -7.492212       -82.39755                NA 
2     MA  4587.043 -15.280769       -86.25580                NA 
3    SMA  3959.085 -10.723640       -84.67247                NA 
 
Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS       2539.463        4488.145  -13.74735   -1.237071 
2     MA       3626.321       15101.628  -91.58570   -8.308758 
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3    SMA       3330.160        5054.038  -18.66978   -6.159498 
 
Eigenvalues: 676904.3 2987.493  
H statistic used for computing C.I. of MA: 0.002959727  

 
# DIN v BG Biomass August 2013 
data_August2013 <- ancova1data[which(ancova1data == "August2013"), ] 
DIN_fit_August2013 <- lmodel2(RootMass_g.m2 ~ DIN_Extractable, data = data_August2013) 
DIN_coef_August2013 <- with(data_August2013, line.cis(RootMass_g.m2, DIN_Extractable)) 
DIN_fit_August2013 
Model II regression 
 
Call: lmodel2(formula = RootMass_g.m2 ~ DIN_Extractable, data = 
data_August2013) 
 
n = 11   r = -0.3593934   r-square = 0.1291636  
Parametric P-values:   2-tailed = 0.2776882    1-tailed = 0.1388441  
Angle between the two OLS regression lines = 14.97878 degrees 
 
Regression results 
  Method Intercept      Slope Angle (degrees) P-perm (1-tailed) 
1    OLS  2396.341  -3.214648       -72.72034                NA 
2     MA  5506.925 -24.617738       -87.67386                NA 
3    SMA  3229.102  -8.944652       -83.62090                NA 
 
Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS       1382.036        3410.646  -9.508743    3.079446 
2     MA       3133.574       -1806.235  25.702152   -8.287352 
3    SMA       2603.944        4433.428 -17.231297   -4.643109 
 
Eigenvalues: 427368.5 4636.558  
H statistic used for computing C.I. of MA: 0.006304798  

 
# Salinity v BG Biomass June 2012 
data_June2012 <- ancova1data[which(ancova1data == "June2012"), ] 
Sal_fit_June2012 <- lmodel2(RootMass_g.m2 ~ Salinity_ppt, data = data_June2012) 
Sal_coef_June2012 <- with(data_June2012, line.cis(RootMass_g.m2, Salinity_ppt)) 
Sal_fit_June2012 
Model II regression 
 
Call: lmodel2(formula = RootMass_g.m2 ~ Salinity_ppt, data = 
data_June2012) 
 
n = 10   r = 0.2317316   r-square = 0.05369952  
Parametric P-values:   2-tailed = 0.5194423    1-tailed = 0.2597212  
Angle between the two OLS regression lines = 1.753331 degrees 
 
Regression results 
  Method  Intercept     Slope Angle (degrees) P-perm (1-tailed) 



 

217 

 

1    OLS    743.845  30.91206        88.14714                NA 
2     MA -14028.580 575.61800        89.90046                NA 
3    SMA  -2035.518 133.39596        89.57049                NA 
 
Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS      -2180.768       3668.4582  -74.88469    136.7088 
2     MA       8026.164      -1947.5872  130.15366   -237.6100 
3    SMA      -5904.396       -165.9811   64.46022    276.0537 
 
Eigenvalues: 567044.6 30.15493  
H statistic used for computing C.I. of MA: 3.535228e-05  

 
# Salinity v BG Biomass August 2012 
data_August2012 <- ancova1data[which(ancova1data == "August2012"), ] 
Sal_fit_August2012 <- lmodel2(RootMass_g.m2 ~ Salinity_ppt, data = data_August2012) 
Sal_coef_August2012 <- with(data_August2012, line.cis(RootMass_g.m2, Salinity_ppt)) 
Sal_fit_August2012 
Model II regression 
 
Call: lmodel2(formula = RootMass_g.m2 ~ Salinity_ppt, data = 
data_August2012) 
 
n = 10   r = 0.645659   r-square = 0.4168755  
Parametric P-values:   2-tailed = 0.04375435    1-tailed = 0.02187717  
Angle between the two OLS regression lines = 0.4730375 degrees 
 
Regression results 
  Method  Intercept     Slope Angle (degrees) P-perm (1-tailed) 
1    OLS  -163.1501  70.62235        89.18876                NA 
2     MA -3053.3977 169.40047        89.66178                NA 
3    SMA -1297.2067 109.38027        89.47619                NA 
 
Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS      -2193.649       1867.3484    2.52430    138.7204 
2     MA    -136704.094       -620.1054   86.23942   4737.0934 
3    SMA      -3859.334        125.7642   60.74832    196.9444 
 
Eigenvalues: 437665.3 21.33021  
H statistic used for computing C.I. of MA: 3.239855e-05  

 
# Salinity v BG Biomass June 2013 
data_June2013 <- ancova1data[which(ancova1data == "June2013"), ] 
Sal_fit_June2013 <- lmodel2(RootMass_g.m2 ~ Salinity_ppt, data = data_June2013) 
Sal_coef_June2013 <- with(data_June2013, line.cis(RootMass_g.m2, Salinity_ppt)) 
Sal_fit_June2013 
Model II regression 
 
Call: lmodel2(formula = RootMass_g.m2 ~ Salinity_ppt, data = 
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data_June2013) 
 
n = 10   r = 0.5211492   r-square = 0.2715965  
Parametric P-values:   2-tailed = 0.122417    1-tailed = 0.06120849  
Angle between the two OLS regression lines = 0.8976689 degrees 
 
Regression results 
  Method  Intercept     Slope Angle (degrees) P-perm (1-tailed) 
1    OLS  1386.3047  46.48238        88.76756                NA 
2     MA -1475.5884 171.12929        89.66519                NA 
3    SMA   405.6902  89.19206        89.35764                NA 
 
Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS       -146.592       2919.2013  -15.57984    108.5446 
2     MA      14176.780        771.0308   73.28002   -510.5941 
3    SMA      -1466.237       1383.6605   46.59754    170.7220 
 
Eigenvalues: 732757.7 67.08885  
H statistic used for computing C.I. of MA: 6.086949e-05  

 
# Salinity v BG Biomass August 2013 
data_August2013 <- ancova1data[which(ancova1data == "August2013"), ] 
Sal_fit_August2013 <- lmodel2(RootMass_g.m2 ~ Salinity_ppt, data = data_August2013) 
Sal_coef_August2013 <- with(data_August2013, line.cis(RootMass_g.m2, Salinity_ppt)) 
Sal_fit_August2013 
Model II regression 
 
Call: lmodel2(formula = RootMass_g.m2 ~ Salinity_ppt, data = 
data_August2013) 
 
n = 11   r = 0.4342889   r-square = 0.1886068  
Parametric P-values:   2-tailed = 0.1819802    1-tailed = 0.0909901  
Angle between the two OLS regression lines = 1.055763 degrees 
 
Regression results 
  Method  Intercept     Slope Angle (degrees) P-perm (1-tailed) 
1    OLS   664.4365  44.02468        88.69878                NA 
2     MA -4775.8563 233.40196        89.75452                NA 
3    SMA  -982.9921 101.37188        89.43481                NA 
 
Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS      -1358.306       2687.1788  -24.83020    112.8796 
2     MA      13817.520       -685.8218   91.02734   -413.8358 
3    SMA      -3569.248        386.7776   53.69002    191.3998 
 
Eigenvalues: 426679.9 33.68857  
H statistic used for computing C.I. of MA: 4.490059e-05  
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Fit RMA regressions for Extractable Inorganic Nitrogen versus Aboveground Biomass 
# DIN v AG Biomass June 2013 
data_June2013 <- ancova1data[which(ancova1data == "June2013"), ] 
DIN_fit2_June2013 <- lmodel2(DryWeight_g.m2 ~ DIN_Extractable, data = data_June2013) 
DIN_coef2_June2013 <- with(data_June2013, line.cis(DryWeight_g.m2, DIN_Extractable)) 
DIN_fit2_June2013 
Model II regression 
 
Call: lmodel2(formula = DryWeight_g.m2 ~ DIN_Extractable, data = 
data_June2013) 
 
n = 10   r = 0.4793113   r-square = 0.2297393  
Parametric P-values:   2-tailed = 0.1609991    1-tailed = 0.08049957  
Angle between the two OLS regression lines = 31.51547 degrees 
 
Regression results 
  Method Intercept    Slope Angle (degrees) P-perm (1-tailed) 
1    OLS 343.45312 1.034006        45.95783                NA 
2     MA -37.28324 3.797031        75.24541                NA 
3    SMA 188.67017 2.157275        65.13002                NA 
 
Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS      103.00952        583.8967 -0.5096103    2.577623 
2     MA     1638.64861        298.5268  1.3600388   -8.365300 
3    SMA      -92.29751        333.1137  1.1090400    4.196273 
 
Eigenvalues: 28873.74 4265.164  
H statistic used for computing C.I. of MA: 0.1351749  

 
# DIN v AG Biomass August 2013 
data_August2013 <- ancova1data[which(ancova1data == "August2013"), ] 
DIN_fit2_August2013 <- lmodel2(DryWeight_g.m2 ~ DIN_Extractable, data = data_August2013) 
DIN_coef2_August2013 <- with(data_August2013, line.cis(DryWeight_g.m2, DIN_Extractable)) 
DIN_fit2_August2013 
Model II regression 
 
Call: lmodel2(formula = DryWeight_g.m2 ~ DIN_Extractable, data = 
data_August2013) 
 
n = 11   r = 0.3765868   r-square = 0.1418176  
Parametric P-values:   2-tailed = 0.2536335    1-tailed = 0.1268167  
Angle between the two OLS regression lines = 36.16343 degrees 
 
Regression results 
  Method Intercept    Slope Angle (degrees) P-perm (1-tailed) 
1    OLS  563.1471 1.037428        46.05242                NA 
2     MA -231.4784 6.505033        81.26050                NA 
3    SMA  313.5529 2.754818        70.04908                NA 
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Confidence intervals 
  Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope 
1    OLS      253.03430        873.2598 -0.8869227    2.961779 
2     MA     1827.54980        401.0308  2.1529064   -7.662588 
3    SMA      -54.12773        505.2171  1.4360285    5.284730 
 
Eigenvalues: 41322.37 4482.445  
H statistic used for computing C.I. of MA: 0.07760072  

 

Figure 2A: Extractable Inorganic Nitrogen versus Root Mass 
# Change base text size and background for figures 
theme_set(theme_bw(base_size = 16)) 
# Create data table for figure 
ExtDIN_BGbiomass_means <- merge(Ext_DINMeans, BGBiomassMeans, by = c("Month_Year",  
    "Site")) 
ExtDIN_BGbiomass_means2 <- ExtDIN_BGbiomass_means[which(ExtDIN_BGbiomass_means ==  
    "June2013" | ExtDIN_BGbiomass_means == "August2013"), ] 
# Create plot 
ExtDIN_BGbiomass <- ggplot(ExtDIN_BGbiomass_means2, aes(x = DIN_Extractable,  
    y = RootMass_g.m2, color = Month_Year)) 
ExtDIN_BGbiomass + geom_errorbar(aes(ymin = RootMass_g.m2 - se.y, ymax = RootMass_g.m2 +     

se.y, width = 0), size = 1) + geom_errorbarh(aes(xmin = DIN_Extractable - se.x, xmax = 

DIN_Extractable + se.x, width = 0), size = 1) + geom_point(size = 6, color = "white") + 

geom_point(size = 5) + geom_abline(aes(intercept = DIN_coef_June2013[1, 1], slope = 

DIN_coef_June2013[2, 1]), size = 2, color = "Dark Blue") + geom_abline(aes(intercept = 

DIN_coef_August2013[1, 1], slope = DIN_coef_August2013[2, 1]), size = 2, color = "Dark Red") +     

xlab(expression(paste("Extractable Inorganic Nitrogen (", mu, "M)"))) + ylab(expression(paste("Root 

mass (g/", m^{2}, ")"))) + scale_color_manual(values = c("Dark Blue", "Dark Red"), labels = c("June 

2013", "August 2013")) + theme(legend.title = element_blank()) + scale_y_continuous(limits = c(0, 

5000)) + ggtitle("A") 
 

Figure 2B: Salinity versus Root Mass 
# Create data table for figure 
Salinity_BGbiomass_means <- merge(PW_SalinityMeans, BGBiomassMeans, by = c("Month_Year",  
    "Site")) 
Salinity_BGbiomass_means2 <- Salinity_BGbiomass_means[which(Salinity_BGbiomass_means ==  
    "June2012" | Salinity_BGbiomass_means == "August2012" | Salinity_BGbiomass_means ==  
    "June2013" | Salinity_BGbiomass_means == "August2013"), ] 
# Create plot 
Salinity_BGbiomass <- ggplot(Salinity_BGbiomass_means2, aes(x = Salinity_ppt,  
    y = RootMass_g.m2, color = Month_Year, shape = Month_Year)) 
Salinity_BGbiomass + geom_errorbar(aes(ymin = RootMass_g.m2 - se.y, ymax = RootMass_g.m2 +     

se.y, width = 0), size = 1) + geom_errorbarh(aes(xmin = Salinity_ppt - se.x, xmax = Salinity_ppt + se.x, 

width = 0), size = 1) + geom_point(size = 6, color = "white") + geom_point(size = 5) + 

geom_abline(aes(intercept = Sal_coef_June2012[1, 1], slope = Sal_coef_June2012[2, 1]), size = 2, color 

= "Dark Cyan") + geom_abline(aes(intercept = Sal_coef_August2012[1, 1], slope = 

Sal_coef_August2012[2, 1]), size = 2, color = "Orange") + geom_abline(aes(intercept = 

Sal_coef_June2013[1, 1], slope = Sal_coef_June2013[2, 1]), size = 2, color = "Dark Blue") + 

geom_abline(aes(intercept = Sal_coef_August2013[1, 1], slope = Sal_coef_August2013[2, 1]), size = 2, 

color = "Dark Red") + scale_color_manual(values = c("Dark Cyan", "Orange", "Dark Blue", "Dark 
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Red"), labels = c("June 2012", "August 2012", "June 2013", "August 2013")) +     

scale_shape_manual(values = c(17, 17, 19, 19), labels = c("June 2012", "August 2012", "June 2013", 

"August 2013")) + xlab("Salinity (ppt)") + ylab(expression(paste("Root mass (g/", m^{ 2}, ")"))) + 

theme(legend.title = element_blank()) + scale_y_continuous(limits = c(0, 5000)) + ggtitle("B") 
 

Figure 2C: Extractable Inorganic Nitrogen versus Aboveground Biomass 
# Change base text size and background for figures 
theme_set(theme_bw(base_size = 16)) 
# Create data table for figure 
ExtDIN_AGbiomass_means <- merge(Ext_DINMeans, AGBiomassMeans, by = c("Month_Year",  
    "Site")) 
ExtDIN_AGbiomass_means2 <- ExtDIN_AGbiomass_means[which(ExtDIN_AGbiomass_means ==  
    "June2013" | ExtDIN_AGbiomass_means == "August2013"), ] 
# Create plot 
ExtDIN_AGbiomass <- ggplot(ExtDIN_AGbiomass_means2, aes(x = DIN_Extractable,  
    y = DryWeight_g.m2, color = Month_Year)) 
ExtDIN_AGbiomass + geom_errorbar(aes(ymin = DryWeight_g.m2 - se.y, ymax = DryWeight_g.m2 +    

se.y, width = 0), size = 1) + geom_errorbarh(aes(xmin = DIN_Extractable - se.x, xmax = 

DIN_Extractable + se.x, width = 0), size = 1) + geom_point(size = 6, color = "white") + 

geom_point(size = 5) + geom_abline(aes(intercept = DIN_coef2_June2013[1, 1], slope = 

DIN_coef2_June2013[2, 1]), size = 2, color = "Dark Blue") + geom_abline(aes(intercept = 

DIN_coef2_August2013[1, 1], slope = DIN_coef2_August2013[2, 1]), size = 2, color = "Dark Red") + 

xlab(expression(paste("Extractable Inorganic Nitrogen (", mu, "M)"))) + 

ylab(expression(paste("Aboveground Biomass (g/", m^{2}, ")"))) +  scale_color_manual(values = 

c("Dark Blue", "Dark Red"), labels = c("June 2013", "August 2013")) + theme(legend.title = 

element_blank()) + scale_y_continuous(limits = c(0, 1200)) + ggtitle("C") 
 

Figure 2D: Salinity versus Aboveground Biomass 
# Create data table for figure 
Salinity_AGbiomass_means <- merge(PW_SalinityMeans, AGBiomassMeans, by = c("Month_Year",  
    "Site")) 
Salinity_AGbiomass_means2 <- Salinity_AGbiomass_means[which(Salinity_AGbiomass_means ==  
    "June2012" | Salinity_AGbiomass_means == "August2012" | Salinity_AGbiomass_means ==  
    "June2013" | Salinity_AGbiomass_means == "August2013"), ] 
# Create plot 
Salinity_AGbiomass <- ggplot(Salinity_AGbiomass_means2, aes(x = Salinity_ppt,  
    y = DryWeight_g.m2, color = Month_Year, shape = Month_Year)) 
Salinity_AGbiomass + geom_errorbar(aes(ymin = DryWeight_g.m2 - se.y, ymax = DryWeight_g.m2 +     

se.y, width = 0), size = 1) + geom_errorbarh(aes(xmin = Salinity_ppt - se.x, xmax = Salinity_ppt + se.x, 

width = 0), size = 1) + geom_point(size = 6, color = "white") + geom_point(size = 5) + 

scale_color_manual(values = c("Dark Cyan", "Orange", "Dark Blue", "Dark Red"), labels = c("June 

2012", "August 2012", "June 2013", "August 2013")) + scale_shape_manual(values = c(17, 17, 19, 19), 

labels = c("June 2012", "August 2012", "June 2013", "August 2013")) + xlab("Salinity (ppt)") + 

ylab(expression(paste("Aboveground Biomass (g/", m^{2}, ")"))) + theme(legend.title = 

element_blank()) + scale_y_continuous(limits = c(0, 1200)) + ggtitle("D") 
 

Supplementary Figure: Aboveground Biomass versus Sediment C 
SedC_AGbiomass_means <- merge(SedCMeans, AGBiomassMeans, by = c("Month_Year",  
    "Site")) 
SedC_AGbiomass_means2 <- SedC_AGbiomass_means[which(SedC_AGbiomass_means ==  
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    "June2012" | SedC_AGbiomass_means == "August2012" | SedC_AGbiomass_means ==  
    "June2013" | SedC_AGbiomass_means == "August2013"), ] 
# Create plot 
SedC_AGbiomass <- ggplot(SedC_AGbiomass_means2, aes(x = SedC_mg.gDW, y = DryWeight_g.m2,  
    color = Month_Year, shape = Month_Year)) 
SedC_AGbiomass + geom_errorbar(aes(ymin = DryWeight_g.m2 - se.y, ymax = DryWeight_g.m2 +     

se.y, width = 0), size = 1) + geom_errorbarh(aes(xmin = SedC_mg.gDW - se.x, xmax = SedC_mg.gDW 

+ se.x, width = 0), size = 1) + geom_point(size = 6, color = "white") + geom_point(size = 5) + 

scale_color_manual(values = c("Dark Cyan", "Orange", "Dark Blue", "Dark Red"), labels = c("June 

2012", "August 2012", "June 2013", "August 2013")) + scale_shape_manual(values = c(17, 17, 19, 19), 

labels = c("June 2012", "August 2012", "June 2013", "August 2013")) + xlab("Sediment Carbon Content 

(mg/g)") + ylab(expression(paste("Aboveground Biomass (g/", m^{2}, ")"))) + theme(legend.title = 

element_blank()) + scale_y_continuous(limits = c(0, 1200)) 
 

Supplementary Figure: Aboveground Biomass versus Sand Content 
Sand_AGbiomass_means <- merge(FracSandMeans, AGBiomassMeans, by = c("Month_Year",  
    "Site")) 
Sand_AGbiomass_means2 <- Sand_AGbiomass_means[which(Sand_AGbiomass_means ==  
    "June2012" | Sand_AGbiomass_means == "August2012" | Sand_AGbiomass_means ==  
    "June2013" | Sand_AGbiomass_means == "August2013"), ] 
# Create plot 
Sand_AGbiomass <- ggplot(Sand_AGbiomass_means2, aes(x = Frac_Sand, y = DryWeight_g.m2,  
    color = Month_Year, shape = Month_Year)) 
Sand_AGbiomass + geom_errorbar(aes(ymin = DryWeight_g.m2 - se.y, ymax = DryWeight_g.m2 +    

se.y, width = 0), size = 1) + geom_errorbarh(aes(xmin = Frac_Sand - se.x, xmax = Frac_Sand + se.x, 

width = 0), size = 1) + geom_point(size = 6, color = "white") + geom_point(size = 5) + 

stat_smooth(method = "lm", size = 2) + scale_color_manual(values = c("Dark Cyan", "Orange", "Dark 

Blue", "Dark Red"), labels = c("June 2012", "August 2012", "June 2013", "August 2013")) + 

scale_shape_manual(values = c(17, 17, 19, 19), labels = c("June 2012", "August 2012", "June 2013", 

"August 2013")) + xlab("Fraction Sand Content") + ylab(expression(paste("Aboveground Biomass (g/",  
    m^{2}, ")"))) + theme(legend.title = element_blank()) + scale_y_continuous(limits = c(0, 1200)) 
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# Test association between fraction sand and aboveground biomass 
SandAGBiomass <- Sand_AGbiomass_means2[, c("Frac_Sand", "DryWeight_g.m2")] 
rcorr(as.matrix(SandAGBiomass)) 
               Frac_Sand DryWeight_g.m2 
Frac_Sand           1.00          -0.01 
DryWeight_g.m2     -0.01           1.00 
 
n= 43  
 
p 
               Frac_Sand DryWeight_g.m2 
Frac_Sand                0.9662         
DryWeight_g.m2 0.9662                 

   
# Test association between fraction sand and aboveground biomass for 2013 data only 
Sand_AGbiomass2013 <- Sand_AGbiomass_means[which(Sand_AGbiomass_means == "June2013" |  
    Sand_AGbiomass_means == "August2013"), ] 
SandAGBiomass2013 <- Sand_AGbiomass2013[, c("Frac_Sand", "DryWeight_g.m2")] 
rcorr(as.matrix(SandAGBiomass2013)) 
               Frac_Sand DryWeight_g.m2 
Frac_Sand           1.00           0.48 
DryWeight_g.m2      0.48           1.00 
 
n= 22  
 
p 
               Frac_Sand DryWeight_g.m2 
Frac_Sand                0.0244         
DryWeight_g.m2 0.0244                   
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Appendix E:  Supplement to Chapter 6 

 

Output from JMP 

 

Table E1: Summary of one-way ANOVAs of plant traits collected in September 2012 for three 

vegetation cover types [Phragmites, Typha, Removal], two-way ANOVAs of plant traits 

collected September 2011-September 2012 for Phragmites and Typha communities only, and 

two-way ANOVAs of sediment carbon and nitrogen content collected August 2010-September 

2012.  Leaf nitrogen content in September 2012 was calculated as an average of the component 

species of the community, weighted by their biomass.  Effects significant at α = 0.05 are shown 

in bold.  Analyses performed in JMP. 

 

Source df Sum of Squares F Ratio p 

Aboveground Biomass, September 2012 

Vegetation 2 35.12 2.73 0.1186 

   Contrast:  Phragmites v. Removal 1 34.30 5.33 0.0464 

   Contrast:  Phragmites v. Typha 1 17.00 2.64 0.1386 

Error 9 57.94   

Total 11 93.07   

Aboveground Biomass,  2011-2012, Reference Phragmites and Typha only 

Time 2 4.13 0.42 0.6601 

Vegetation 1 45.49 9.39 0.0079 

Time x Vegetation 2 0.73 0.07 0.9274 

Error 15 72.64   

Total 20 121.56   

Leaf Nitrogen Content, September 2012 

Vegetation 2 117.67 4.66 0.0408 

   Contrast:  Phragmites v. Removal 1 115.28 9.13 0.0144 

   Contrast:  Phragmites v. Typha 1 55.65 4.41 0.0651 

Error 9 113.58   

Total 11 231.25   

Leaf Nitrogen Content, 2011-2012, Reference Phragmites and Typha only 

Time 2 459.31 19.80 <0.0001 

Vegetation 1 241.12 20.78 0.0004 

Time x Vegetation 2 14.64 0.63 0.5456 

Error 15 173.99   

Total 20 1001.32   

Sediment Carbon Content, August 2010-September 2012 

Time 3 1576.98 1.17 0.3356 

Vegetation 2 1931.61 2.14 0.1318 

   Contrast:  Phragmites v. Removal 1 1211.47 2.69 0.1096 

   Contrast:  Phragmites v. Typha 1 1685.38 3.74 0.0609 

Time x Vegetation 6 2404.57 0.89 0.5124 

Error 36 16208.37   

Total 47 21914.03   

Sediment Nitrogen Content, August 2010-September 2012 
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Time 3 4.4462 1.01 0.3997 

Vegetation 2 12.2090 4.16 0.0237 

   Contrast:  Phragmites v. Removal 1 5.7760 3.94 0.0549 

   Contrast:  Phragmites v. Typha 1 11.6806 7.96 0.0077 

Time x Vegetation 6 6.2764 0.71 0.6416 

Error 36 52.8383   

Total 47 73.6617   

 

Table E2:  Summary of two-way ANOVAs comparing denitrification potential and sediment 

properties of three vegetation treatments [Ramshorn-Removal, Ramshorn-Typha, Reference-

Phragmites] before [August 2010] and after [September 2011, June 2012, September 2012] 

herbicide application.  Effects significant at α = 0.05 are shown in bold.  Analyses performed in 

JMP. 

 

Source df Sum of Squares F Ratio P 

Denitrification Potential, 2010-2012 

Time 3 7.32 x 106 6.57 0.0018 

Vegetation 2 1.76 x 106 2.37 0.1122 

Time x Vegetation 6 7.68 x 105 0.34 0.9066 

  Contrast: Phragmites v Removal 2010 1 7.29 x 103 0.02 0.8896 

  Contrast: Typha v Removal 2010 1 6.38 x 102 0.00 0.9675 

  Contrast: Phragmites v Typha 2010 1 3.19 x 103 0.01 0.9269 

  Contrast: Phragmites v Removal 2011-2012 1 1.61 x 106 4.33 0.0471 

  Contrast: Typha v Removal 2011-2012 1 4.47 x 103 0.01 0.9134 

  Contrast: Phragmites v Typha 2011-2012 1 1.44 x 106 3.88 0.0591 

Error 27 1.00 x 107   

Total 38 1.97 x 107   

Ammonium, 2010-2012 

Time 3 0.6398 3.42 0.0335 

Vegetation 2 0.6145 4.92 0.0162 

Time x Vegetation 6 1.0480 2.79 0.0330 

  Contrast: Phragmites v Removal 2010 1 0.0000 0.00 0.9858 

  Contrast: Typha v Removal 2010 1 0.0000 0.00 0.9772 

  Contrast: Phragmites v Typha 2010 1 0.0003 0.00 0.9472 

  Contrast: Phragmites v Removal 2011-2012 1 0.9370 15.00 0.0007 

  Contrast: Typha v Removal 2011-2012 1 0.5831 9.34 0.0054 

  Contrast: Phragmites v Typha 2011-2012 1 0.0418 0.67 0.4215 

Error 24 1.4987   

Total 35 4.1843   

Organic Content, 2010-2012 

Time 3 1.44 x 10-3 0.26 0.8467 

Vegetation 2 2.89 x 10-3 0.81 0.4542 

Time x Vegetation 6 4.01 x 10-3 0.38 0.8830 

  Contrast: Phragmites v Removal 2010 1 4.71 x 10-4 0.26 0.6109 

  Contrast: Typha v Removal 2010 1 1.80 x 10-5 0.01 0.9205 

  Contrast: Phragmites v Typha 2010 1 2.82 x 10-4 0.16 0.6935 
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  Contrast: Phragmites v Removal 2011-2012 1 2.22 x 10-3 1.25 0.2737 

  Contrast: Typha v Removal 2011-2012 1 2.07 x 10-4 0.12 0.7354 

  Contrast: Phragmites v Typha 2011-2012 1 1.07 x 10-3 0.60 0.4446 

Error 27 4.79 x 10-2   

Total 38 5.67 x 10-2   

 

Table E3:  Summary of two-way ANOVAs comparing denitrification potential and sediment 

properties of four vegetation treatments [Ramshorn-Removal, Ramshorn-Typha, Reference-

Typha, Reference-Phragmites] only after [September 2011, June 2012, September 2012] 

herbicide application.  Effects significant at α = 0.05 are shown in bold.  Analyses performed in 

JMP. 

 

Source df Sum of 

Squares 

F Ratio p 

Denitrification Potential, 2011-2012 

Time 2 6.88 x 106 6.80 0.0046 

Vegetation 3 2.58 x 106 1.70 0.1938 

  Contrast: Reference-Phragmites v Ramshorn-Removal 1 1.61 x 106 3.18 0.0874 

  Contrast: Ramshorn-Typha v Ramshorn-Removal 1 4.47 x 103 0.01 0.9259 

  Contrast: Reference-Phragmites v Reference-Typha  1 4.85 x 104 0.10 0.7594 

Time x Vegetation 6 2.71 x 106 0.89 0.2590 

Error 27 1.21 x 107   

Total 38 2.43 x 107   

Ammonium, 2011-2012 

Time 2 0.3402 2.72 0.0861 

Vegetation 3 1.2993 6.93 0.0016 

  Contrast: Reference-Phragmites v Ramshorn-Removal 1 0.9370 14.99 0.0007 

  Contrast: Ramshorn-Typha v Ramshorn-Removal 1 0.5831 9.33 0.0055 

  Contrast: Reference-Phragmites v Reference-Typha  1 0.0092 0.01 0.9244 

Time x Vegetation 6 1.0091 2.69 0.0385 

Error 24 1.5005   

Total 35 4.1490   

Organic Content, 2010-2012 

Time 2 4.60 x 10-4 0.53 0.5938 

Vegetation 3 1.30 x 10-3 1.00 0.4099 

  Contrast: Reference-Phragmites v Ramshorn-Removal 1 5.37 x 10-4 1.24 0.2763 

  Contrast: Ramshorn-Typha v Ramshorn-Removal 1 1.11 x 10-4 0.26 0.6175 

  Contrast: Reference-Phragmites v Reference-Typha  1 1.19 x 10-3 2.74 0.1108 

Time x Vegetation 6 1.35 x 10-3 0.52 0.7872 

Error 27 1.04 x 10-2   

Total 38 1.35 x 10-2   
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Output from R 

 

Packages 

library(ggplot2) 

library(bear) 

 

Data and Formatting 

setwd(filepath5) 

hudson <- read.csv("20141022_Sediment_AllYears.csv") 

treatmentmeans <- read.csv("20140428_Sediment_AllYears_Treatmentmeans.csv") 

# Convert 'Time' from factor to date 

hudson$Time <- as.Date(hudson$Time) 

# Convert 'Vegetation' from factor to ordered factor 

hudson$Vegetation <- ordered(hudson$Vegetation, levels = c("Phragmites", "Typha", 

"Removal")) 

# Convert 'Time' from factor to date 

treatmentmeans$Time <- as.Date(treatmentmeans$Time) 

# Convert 'Vegetation' from factor to ordered factor 

treatmentmeans$Vegetation <- ordered(treatmentmeans$Vegetation, levels = c("Phragmites",  

    "Typha", "Removal")) 

# Convert 'Site_Treatment' from factor to ordered factor 

treatmentmeans$Site_Treatment <- ordered(treatmentmeans$Site_Treatment, levels = 

c("Reference Phragmites", "Reference Typha", "Ramshorn Typha", "Ramshorn Removal")) 

# Change base text size for figures 

theme_set(theme_bw(base_size = 20)) 

 

Plot Biomass by Vegetation Type 

# Create a summary table for Biomass data at the plot level using summarySE{bear} 

Biomass <- summarySE(hudson, measurevar = "AGBiomass_kg.m2", groupvar = c("Time",  

    "ReplicateCode", "Vegetation"), na.rm = T) 

# Create a boxpolot for biomass 

biomass <- ggplot(Biomass, aes(x = Vegetation, y = AGBiomass_kg.m2, color = Vegetation)) 

biomass + geom_boxplot(size = 1.5) + scale_color_manual(values = c("maroon4", 

"darkolivegreen", "darkgoldenrod")) + ylab(expression(paste("Biomass (kg/", m^{2}, ")"))) + 

theme(legend.position = "none") + theme(axis.text.x = element_text(face = c("italic", "italic", 

"plain"), color = "black")) + theme(axis.text.y = element_text(color = "black")) + ggtitle("A") 

 

Plot Leaf N Content by Vegetation Type 

LeafN <- summarySE(hudson, measurevar = "PlantN_mg.gDW", groupvar = c("Time",  

    "ReplicateCode", "Vegetation"), na.rm = T) 

LeafNcontent <- ggplot(LeafN, aes(x = Vegetation, y = PlantN_mg.gDW, color = Vegetation)) 

LeafNcontent + geom_boxplot(size = 1.5) + scale_color_manual(values = c("maroon4", 

"darkolivegreen", "darkgoldenrod")) + ylab("Leaf Nitrogen Content (mg-N/g)") + 

theme(legend.position = "none") + theme(axis.text.x = element_text(face = c("italic", "italic", 

"plain"), color = "black")) + theme(axis.text.y = element_text(color = "black")) + ggtitle("B") 
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Graph aboveground biomass v Leaf nitrogen content 

A negative slope would indicate nutrient competition 

Biomass_LeafN_means <- cbind(Biomass, LeafN) 

Biomass_LeafN <- ggplot(Biomass_LeafN_means, aes(x = AGBiomass_kg.m2, y = 

PlantN_mg.gDW,  

    color = Vegetation)) 

Biomass_LeafN + geom_abline(intercept = 42.61210463, slope = -2.120325886, color = 

"maroon4",     size = 2) + geom_abline(intercept = 42.14073928, slope = -8.3415148, color = 

"darkolivegreen", size = 2) + geom_abline(intercept = 23.3532942, slope = -9.917019514, color 

= "darkgoldenrod", size = 2) + geom_point(size = 5, color = "white") + geom_point(size = 4) + 

scale_color_manual(values = c("maroon4", "darkolivegreen", "darkgoldenrod"), labels = 

expression(paste(italic("Phragmites")), paste(italic("Typha")), paste("Removal"))) + 

xlab(expression(paste("Biomass (kg/", m^{2}, ")"))) + ylab("Leaf Nitrogen Content (mg-N/g)") 

+ theme(legend.title = element_blank(), legend.key = element_blank(), legend.text.align = 0) + 

ggtitle("C") + scale_y_continuous(limits = c(10, 40)) 

 

Create Plot for Sediment C content 

SedC <- summarySE(hudson, measurevar = "SedCmg.gDW", groupvar = c("Time", 

"ReplicateCode",  

    "Vegetation"), na.rm = T) 

SedCcontent <- ggplot(SedC, aes(x = Vegetation, y = SedCmg.gDW, color = Vegetation)) 

SedCcontent + geom_boxplot(size = 1.5) + scale_color_manual(values = c("maroon4",     

"darkolivegreen", "darkgoldenrod")) + ylab("Sediment Organic Carbon \nContent (mg-N/g)") +     

theme(legend.position = "none") + theme(axis.text.x = element_text(face = c("italic", "italic", 

"plain"), color = "black")) + theme(axis.text.y = element_text(color = "black")) + ggtitle("A") 

 

Create Plot for Sediment N content 

SedN <- summarySE(hudson, measurevar = "SedNmg.gDW", groupvar = c("Time", 

"ReplicateCode",  

    "Vegetation"), na.rm = T) 

SedNcontent <- ggplot(SedN, aes(x = Vegetation, y = SedNmg.gDW, color = Vegetation)) 

SedNcontent + geom_boxplot(size = 1.5) + scale_color_manual(values = c("maroon4",     

"darkolivegreen", "darkgoldenrod")) + ylab("Sediment Organic Nitrogen \nContent (mg-N/g)") 

+ theme(legend.position = "none") + theme(axis.text.x = element_text(face = c("italic", "italic", 

"plain"), color = "black")) + theme(axis.text.y = element_text(color = "black")) + ggtitle("B") 

 

Plot Sediment Ammonium over Time 

# Create an object that refers to my ammonium variable 

NH4 <- treatmentmeans$Mean.NH4_mgL. 

# Create an object that refers to standard errors for y error bars 

NH4se <- treatmentmeans$Std.Err.NH4_mgL. 

# Create a position_dodge to keep treatment points and errorbars from overlapping 

pd <- position_dodge(width = 20) 

# Create an object indicating the date when herbicide application was performed (for v line) 

herbicide <- as.Date("2010-09-15") 

# Create an object that indicates whether sites were reference or treatment sites (for ease of 
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reading legend title) 

Site_Treatment <- treatmentmeans$Site_Treatment 

 

# Create plot 

NH4Time <- ggplot(treatmentmeans, aes(x = Time, y = NH4, color = Site_Treatment,  

    shape = Site_Treatment)) 

NH4Time + geom_line(size = 2, position = pd, aes(color = Site_Treatment)) + 

geom_errorbar(aes(ymin = NH4 - NH4se, ymax = NH4 + NH4se, width = 0), position = pd, 

size = 1) + geom_point(size = 9, position = pd, color = "white") + geom_point(size = 7, position 

= pd) + geom_vline(xintercept = as.numeric(as.Date("2010-09-30", format = "%Y-%m-%d")), 

size = 2) + scale_color_manual(name = "Site and Vegetation", values = c("maroon4", 

"darkolivegreen", "darkolivegreen", "darkgoldenrod"),   labels = expression(paste("Reference ", 

italic("Phragmites")), paste("Reference ", italic("Typha")), paste("Ramshorn ", 

italic("Typha")), paste("Ramshorn Removal")), guide = guide_legend(title = NULL)) + 

scale_shape_manual(values = c(17, 17, 19, 19), name = "Site and Vegetation", labels = 

expression(paste("Reference ", italic("Phragmites")), paste("Reference ", italic("Typha")), 

paste("Ramshorn ", italic("Typha")), paste("Ramshorn Removal")), guide = guide_legend(title 

= NULL)) + theme(legend.key = element_blank(), legend.text.align = 0) + ylab("Ammonium 

(mg/L)") + xlab("Sampling Time") + theme(axis.text.x = element_text(color = "black")) + 

theme(axis.text.y = element_text(color = "black")) 

 

Plot Denitrification Rates over Time 

# Create an object that refers to my dentirification variable 

DEA <- treatmentmeans$Mean.DEA..ng.N.g.hr.. 

# Create an object that refers to standard errors for y error bars 

DEAse <- treatmentmeans$Std.Err.DEA..ng.N.g.hr.. 

 

# Create plot 

DenitTime <- ggplot(treatmentmeans, aes(x = Time, y = DEA, color = Site_Treatment,  

    shape = Site_Treatment)) 

DenitTime + geom_line(size = 2, position = pd, aes(color = Site_Treatment)) + 

geom_errorbar(aes(ymin = DEA - DEAse, ymax = DEA + DEAse, width = 0), position = pd, 

size = 1) + geom_point(size = 9, position = pd, color = "white") + geom_point(size = 7, position 

= pd) + geom_vline(xintercept = as.numeric(as.Date("2010-09-30", format = "%Y-%m-%d")), 

size = 2) + scale_color_manual(name = "Site and Vegetation", values = c("maroon4", 

"darkolivegreen", "darkolivegreen", "darkgoldenrod"), labels = expression(paste("Reference ", 

italic("Phragmites")), paste("Reference ", italic("Typha")), paste("Ramshorn ", 

italic("Typha")), paste("Ramshorn Removal")), guide = guide_legend(title = NULL)) + 

scale_shape_manual(values = c(17, 17, 19, 19), name = "Site and Vegetation", labels = 

expression(paste("Reference ", italic("Phragmites")), paste("Reference ", italic("Typha")), 

paste("Ramshorn ", italic("Typha")), paste("Ramshorn Removal")), guide = guide_legend(title 

= NULL)) + theme(legend.key = element_blank(), legend.text.align = 0) + 

ylab("Denitrification Enzyme Activity (ng-N/g/h)") + xlab("Sampling Time") + 

theme(axis.text.x = element_text(color = "black")) + theme(axis.text.y = element_text(color = 

"black")) 

 


