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Abstract of the Dissertation 

Extinction risk assessment as a tool for biological conservation  

by 

Jessica Carol Stanton 

Doctor of Philosophy 

in 

Ecology and Evolution 

Stony Brook University 

2013 

Effective conservation of biological diversity requires accurate assessments of species 

extinction risks. Both under- and over-estimating extinction risks can have serious 

consequences. Overlooking species that are in need of conservation management can result in 

extinction or expensive recovery efforts. Misidentifying species which have stable populations 

as threatened can misdirect limited conservation resources or unnecessarily halt economic 

activity and development. I used a retrospective multi-modeling framework to explore the 

extinction of a once abundant and wide-spread North American species, the Passenger Pigeon 

(Ectopistes migratorius). I simulated three different types of anthropogenic impacts: harvest, 

habitat loss, and nest disturbance. I explored the effect of these impacts in conjunction with a 

range of life-history parameters through a global sensitivity analysis. I found that over-harvest 

and accompanying nest disturbance, rather than habitat loss were the primary impact factors 

driving this species to extinction. I extended this analysis by looking at the population 

trajectories generated by the model to illustrate how the International Union for the 

Conservation of Nature (IUCN) Red List criteria, a globally recognized method of assessing 

extinction risk, might have been used as an early warning system to identify the threats the 

species was facing well before extinction was imminent. I demonstrate that data collection and 
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monitoring the population trends through time would have been necessary to identify the 

threat early on. Waiting until population sizes were reduced to critical thresholds would likely 

have only provided a few years of advance warning before the extinction of this species. In a 

related study, to gain a better understanding of how the IUCN Red List criteria may perform in 

the future under the threat of global climate change, I applied the Red List criteria to an 

ensemble of models representing endemic North American reptile and amphibian species, with 

a wide range of life-history characteristics, range sizes, and habitat types. Overall, I found that 

the Red List criteria reliably provided a sensitive and precautionary way to assess extinction risk 

due to climate change. Together, these case-studies demonstrate the ability of currently used 

methods to assess extinction risks under a variety of threats, and highlight the need for data 

collection and monitoring of wildlife species, particularly when simultaneously facing multiple 

impact factors. Heading into the future, preventing further loss of species will require much 

vigilance. The process of ranking species according to their threat status can provide an 

organized framework to help identify gaps in knowledge and guide data collection and 

conservation effort. 
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1  Introduction 

We no longer destroy great works of art. They are treasured, and regarded as 
of priceless value; but we have yet to attain the state of civilization where 
the destruction of a glorious work of Nature, whether it be a cliff, a forest, or 
a species of mammal or bird, is regarded with equal abhorrence. 
 

 - William Temple Hornaday, 1913 
 

 

W.T. Hornaday was among the first to advance a philosophy and approach to species 

conservation that would be familiar to conservation biologists today. Hornaday’s 1913 book, 

Our Vanishing Wild Life: Its Extermination and Preservation, has been called a precursor to Red 

Data Books which catalog threatened and endangered species at national or global levels (Scott 

et al. 1987). Hornaday (1913) highlights a number of recent extinctions in the Americas, and 

implores his readers to rally for the immediate protection of a number of additional birds and 

mammals whose extinctions he saw as imminent (Table1-1). At the time of its writing the last 

known individual passenger pigeon (Ectopistes migratorius) was still living in captivity at the 

Cincinnati zoo, a female specimen who would die the year following the publication of 

Hornaday’s call to action (Herman 1948).  

Of the 25 North American bird species named by Hornaday (1913) as threatened with 

extinction, only one was eventually lost. The heath hen (Tympanuchus cupido cupido), a once 

abundant and wide-ranging species was reduced to a single remnant population that was 

eventually lost altogether in 1932 after recovery efforts failed (Simberloff 1986, Johnson and 

Dunn 2006). An additional 4 of Hornaday’s species are currently listed by the International 

Union for the Conservation of Nature (IUCN) as threatened, 2 are near threatened, and the 

remainders are not considered to be in immediate danger (Table 1-1).   
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Table 1-1 North American bird species identified as threatened with extinction by Hornaday 
(1913) with their status today as classified by the IUCN.
 
 Common name (current, if different) Scientific name 

Current IUCN Red 
List status 

Whooping crane Grus americana Endangered 

Trumpeter swan Cygnus buccinator Least Concern 

American flamingo Phoenicopterus ruber Least Concern 

Roseate spoonbill Platalea ajaja Least Concern 

Scarlet ibis Eudocimus ruber Least Concern 

Long-billed curlew Numenius americanus Least Concern 

Hudsonian godwit Limosa haemastica Least Concern 

Upland plover (Upland sandpiper) Bartramia longicauda Least Concern 

Buff-breasted sandpiper
A
 Tryngites subruficollis Near Threatened 

Golden plover (American golden 

plover) 
Pluvialis dominica Least Concern 

Dowitcher (Short-billed dowitcher) Limnodromus griseus Least Concern 

Willet Catoptrophorus semipalmatus Least Concern 

Pectoral sandpiper Calidris melanotos Least Concern 

Black-capped petrel Pterodroma hasitata Endangered 

American egret (Great egret) Casmerodius albus Least Concern 

Snowy egret Egretta thula Least Concern 

Wood duck Aix sponsa Least Concern 

Band-tailed pigeon Patagioenas fasciata Least Concern 

Heath hen Tympanuchus cupido cupido Extinct
B
 

Sage grouse (Greater sage grouse)
C
 Centrocercus urophasianus Near Threatened 

Prairie sharp-tail (Sharp-tailed grouse) Tympanuchus phasianellus Least Concern 

Pinnated grouse (Greater prairie-

chicken) 
Tympanuchus cupido Vulnerable 

White-tailed kite Elanus leucurus Least Concern 

California condor Gymnogyps californianus Critically Endangered 

Woodcock (American woodcock) Scolopax minor Least Concern 
A
 Hornaday had this species labeled as 'Knot: Red-Breasted Sandpiper' which is an anachronistic common 

name for Calidris canutus. It's not clear which species he intended, however, he did comment that shorebirds 

in general were in danger. 
B
 IUCN does not have a separate designation for this subspecies of the greater prairie-chicken, 

Tympanuchus cupido, but its extinction is well documented (Simberloff 1986). 
C
 The Gunnison sage grouse, Centrocercus minimus, was recently recognized as a separate species. Its 

IUCN Red List status is Endangered. 
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Hornaday (1913) assembled this list based on his own observations and expert opinion. 

Very little was available at the time in terms of data collected specifically for assessing the 

status of these species. Observations of declining trends in wildlife were based primarily on 

casual observations and records for numbers captured or killed for sport or commerce. The fact 

that the majority of Hornaday’s threatened birds are no longer considered imperiled, is not 

necessarily evidence that his assessments were overly precautionary. All of the species named 

are currently legally protected or managed to some degree or another either through the 

Migratory Bird Treaty Act (http://www.fws.gov) or through other state and/or federal 

management.  Some of these species have benefited greatly from these protection efforts in 

conjunction with restoration of critical habitat. The trumpeter swan for example, while not 

nearly as numerous as it was historically,  has rebounded from very low population numbers 

(Denson Jr. 1970). Still others, such as the California condor, remain imperiled despite decades 

of intensive recovery efforts (Finkelstein et al. 2012). 

In the last several decades the trend in IUCN species risk assessment has moved away 

from expert-opinion and moved toward more objective and transparent data-driven measures 

(Mace et al. 2008).  This refinement of the assessment criteria not only increases the accuracy 

and credibility of the classifications, but guides the public, policy makers, and conservation 

organizations in setting goals and priorities. Just as a century ago, often the first step toward 

illustrating the urgency of conservation action is through highlighting the individual species 

which may be forever lost without immediate protection (Cart 1973, Smith 1976). Therefore it 

is important to have the most precise and defensible risk assessments as possible.  

The list of species in Table 1-1 illustrates a common problem encountered when 

evaluating the accuracy of risk assessment. The majority of those species that were identified a 

century ago as being immediately imperiled not only did not to go extinct but are no longer 

considered in immediate danger of doing so. Was this change due to protections that occurred 

after the recognition that they may be at risk or because the prediction was inaccurate? 

 One way to address this question is by taking a detailed look at a species for which the 

fate is known without the potentially confounding factor of conservation action. I do this here 

http://www.fws.gov/migratorybirds/RegulationsPolicies/mbta/mbtandx.html
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with a retrospective analysis of the decline and extinction of the passenger pigeon (Ectopistes 

migratorius).  Industrial and agricultural expansion throughout the 19th century heavily 

impacted the forests on which the passenger pigeon relied. At the same time, their breeding 

colonies were harvested heavily for sport and commercial markets. The population numbers 

began to fall dramatically in the latter half of the 19th century and it is believed they were 

extinct in the wild by the dawn of the twentieth (Hodge 1911, 1912). The extremely rapid 

decline of this species from extreme abundance to extinction in such a short period of time has 

drawn much speculation.  

This species makes an excellent case-study to explore risk-assessment because the 

extinction event is recent enough that there are numerous eye-witness accounts available in 

the historic record, yet far enough in the past that it pre-dated most conservation laws. This 

species is also of interest because it was wide-ranging and extremely abundant, two 

characteristics that usually indicate a lower extinction risk. In Chapter 2 I describe a 

retrospective multi-model approach I used to quantitatively reconstruct this extinction event. I 

simulated three different types of anthropogenic impacts on the passenger pigeon: harvest, 

habitat loss, and nest disturbance. I explored the effect of these impacts in conjunction with a 

range of life-history parameters through a global sensitivity analysis. This approach allowed me 

to generate thousands of possible trajectories to examine the range and interaction of 

parameters that result in extinction-level declines within a timeframe commensurate to the 

historical period of decline.  For the first time, I am able to quantitatively demonstrate that that 

over-harvest, rather than habitat loss was the primary impact factor driving this extinction 

event.  The level of harvest mortality implied by the models is likely beyond what would have 

been successfully shipped, stored, and sold in the marketplace. This reinforces historical 

accounts of large amounts of waste in this largely unregulated market where there was little 

incentive for harvesting sustainably.  

In Chapter 3 I applied some of the IUCN Red-listing criteria to the simulated trajectories 

generated by the passenger pigeon population model. I did this to both test how well the 

criteria performed in terms of identifying the risk of extinction, and also to determine how 
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much time might have been available for conservation action had appropriate monitoring data 

and a tool like the Red List criteria been available. I found that had there might have been 

several decades in which to take conservation action, had the proper monitoring data and tools 

been available. By examining simulated model trajectories, I found the strongest indicator of 

extinction risk would likely have been in the observed rate of decline, as opposed to low 

population sizes. In most extinction trajectories, the species only becomes rare a few years 

prior to extinction. This is consistent with witness accounts of the species seeming to vanish.  

These results are particularly relevant for modern conservation where for some species rapid 

declines are observed, but may still be relatively abundant.  Together these two chapters 

highlight the need for collecting data and carefully monitoring species even when high 

population numbers seem to imply low risk of extinction.  

In Chapter 4 I look to the future and examine IUCN Red List criteria in the face of a 

modern challenge to species conservation, global climate change.  Recently, the concern has 

been raised that the IUCN Red List criteria may not be sufficient to address the types of 

conservation challenges posed by climate change. I addressed these questions with a set of 

models developed to predict extinction risk over the coming century for a number of reptiles 

and amphibians endemic to North America. I found that the IUCN Red List does appropriately 

identify models when there is a high risk of extinction due to climate change. I also found that 

for the modeled species I examined it seems unlikely that a species would go from a non-

threatened status to extinct between recommended re-evaluation intervals. However, whether 

the amount of warning the IUCN Red List provides will be sufficient to implement the kind of 

conservation actions that might be needed to prevent extinctions due to climate change is a 

larger question.  

Together, this dissertation provides further evidence that extinction risk assessment and 

threat rankings can be a useful framework for setting conservation priorities and assessing 

species in need. The process of assessing extinction risk can be helpful in identifying critical 

gaps in knowledge and directing future investigations and data gathering. Finally, preventing 

further anthropogenic species extinctions will require vigilance for the foreseeable future.   
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2 How a common species went extinct: a case study of the 
passenger pigeon, Ectopistes migratorius 

2.1 INTRODUCTION 

Next year will mark the 100 year anniversary of the passing of the last known passenger 

pigeon (Ectopistes migratorius). At one time the most abundant bird species in North America, 

the passenger pigeon was so numerous that even after decades of intensive commercial 

harvesting and habitat modification many people did not believe it to be at risk of extinction1 

(Brewster 1889). This misconception remains a risk for many species even in the era of modern 

conservation biology, especially when commercial harvest is involved (Hutchings 2001). It is 

clear that hunting of adults and young from nesting colonies played a role in decreasing 

abundance, yet the precise cause of the extinction of E. migratorius remains a mystery.  

Throughout the 19th century human population growth and migration, as well as agricultural 

and industrial development, reduced and fragmented the hardwood forests which were 

primary nesting habitat for E. migratorius (Brewster 1889, Bucher 1992). Population numbers 

plummeted so dramatically that it was only a few decades after famously dense flocks were 

observed that cash rewards for evidence of a single wild individual went uncollected (Hodge 

1911, 1912).  The species was possibly extinct in the wild by the beginning of the 20th century, 

and the last known individual died in captivity in 1914 at the Cincinnati zoo (Herman 1948).   

Presently, there are two leading theories to explain how this species could have 

declined from extreme abundance to extinction so rapidly; hunting pressure and habitat loss. 

Blockstein & Tordoff (1985) argue that direct harvest of adults and young combined with the 

disturbance of the nesting colony from hunters resulted in a loss of recruitment sufficient 

enough on its own to be the primary causal factor to explain the extinction event. However, 

Bucher (1992) counters that the persecution from professional hunters eased somewhat as the 

                                                           
1
 Newspaper commentary from the late 1800’s often expressed incredulity over concern that the species was 

headed toward or had already reached extinction. Examples include: ‘The extinct wild pigeon’.  Daily Press, 
December 21, 1896. Newport News, VA; ‘The wild pigeon’s fate’. The True Democrat, January 29, 1898. Bayou 
Sara, LA.; ‘Where wild pigeon went’. The Sun, March 4, 1900. New York, NY.  
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population declined and the colonies became harder to find, thus making it unlikely that 

hunting alone was the primary causal factor. In addition, he argues that other species of 

Columbiformes with similar reproductive strategies are heavily harvested, yet maintain viable 

populations.  Other theories have been proposed such as climate change, disease, 

environmental disasters, and competition with livestock; however there is a lack of evidence to 

support any of these alternative theories (Bucher 1992). While both Blockstein and Tordoff 

(1985) and Bucher (1992) argue their cases convincingly and present some quantitative 

evidence to support their theories, to date no one has explicitly modeled possible impacts of 

habitat loss, hunting, and intrinsic life history characteristic on the population dynamics of this 

species.  

An important first step to exploring the history of the decline and extinction of species 

during the 19th century in North America is to quantify how the landscape changed during this 

time. Rapid and widespread deforestation is thought to have been a major contributing factor 

in the decline of the passenger pigeon. These changes were largely the result of the westward 

advance of human settlement and transportation infrastructure as well as increases in the 

extraction of natural resources. However, as this time period is well before the advent of 

modern technologies for monitoring changes in the landscape such as remote sensing, a great 

deal of information is lacking about the location and availability of habitat through time (Wang 

2005). Therefore it is necessary to reconstruct potential habitat using the information that is 

available and inferences about the likely progression of the landscape transformation.  

Approaches to map historic range for extinct species or species that have experienced 

significant range declines due to anthropogenic habitat disturbance usually only map, at most, 

two time-steps; one for the historic or pre-disturbance, and a second for the present-day or 

post-disturbance (Channell and Lomolino 2000, Donald and Greenwood 2001, Schulte et al. 

2005, Farnsworth and Ogurcak 2006, Aldridge et al. 2008). This approach does not supply a 

sufficient level of information for constructing a spatially explicit population model if habitat 

loss is a potential causal factor. With no information about the availability of habitat between 

the first and last time-steps it is difficult to infer the trajectory that a population may have 
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taken. For many species, spatial parameters such as the number, size, and distribution of 

suitable habitat patches have major impacts on population dynamics (Naujokaitis-Lewis et al. 

2009).  

Here I approximate the effect of habitat loss on carrying capacity by reconstructing the 

available nesting habitat for the passenger pigeon at annual time-steps. Through the analysis of 

environmental and landscape variables thought to have been important for habitat suitability, I 

first construct a model of potential nesting habitat then sequentially account for disturbance 

(i.e. human settlement patterns). I then construct a temporally dynamic model of potential 

breeding habitat for the passenger pigeon in the Eastern and Midwestern United States 

through the 19th century. 

By combining this habitat model to a population model incorporating historical records 

of life history traits, abundance, human predation, and spatially-explicit trends in deforestation, 

I test extinction scenarios for the passenger pigeon. This approach allows me to address 

whether a given factor alone such as harvest, or a combination of factors such as harvest and 

habitat loss, can explain the observed decline and eventual extinction. This is essentially a 

population viability analysis (PVA) – a common and effective tool used in conservation planning 

for single species (Brook et al. 2000). PVA is normally used to forecast possible risks of decline 

or extinction, evaluate possible management actions, or plan future research (Stanton and 

Akcakaya 2013). Here, I apply a PVA approach to hindcast rather than forecast in order to 

explore the possible driving factors behind this extinction event. A similar approach was 

recently used (Prowse et al. 2013) to illuminate another recent anthropogenic extinction event, 

that of the thylacine (Thylacinus cynocephalus) in Tazmania. 
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2.2  METHODS 

2.2.1  Estimating available nesting habitat through time 

Occurrence Locations 

I constructed an occurrence-only species distribution model (SDM) for the breeding 

range of the passenger pigeon. In total, I used 79 occurrence locations for model building (55 

historic accounts and 24 museum collections). The historical accounts were descriptions of 

nesting sites encountered by settlers, naturalists, explorers and other travelers who observed 

breeding colonies in the 19th century and recorded those encounters in journals, letters, news 

articles, sportsman journals and were subsequently collated by (Schorger 1955).  Location 

information on these accounts were descriptive in nature with varying levels of specific 

geographical details. For example, some of the descriptions gave estimates of the length and 

width of the area covered by the colony along with distance and bearing from known and 

extant landmarks such that a rough outline of the colony could be mapped. In other instances, 

the accounts were less precise, only giving the state and county where the colony was observed 

with few other details. For these I placed latitude and longitude coordinates at the described 

location or the midpoint of the location if it was an area.  

The additional 24 occurrence locations were museum specimen records I accessed 

through the Global Biodiversity Information Facility (GBIF; http://data.gbif.org). These records 

represent museum specimens collected during the breeding season (March – June) with spatial 

information for the location of where the collection was made (Table 2-1 and Figure 2-3). For 

these I used the coordinates reported by GBIF.  

I collected an additional 21 occurrence locations to use for model evaluation. This 

evaluation set consisted of 19 locations of breeding colony encounters not previously included 

by Schorger (1955) from the Auk, Wilson Journal, and early newspapers; and 2 passenger 

pigeon egg collection records accessed through GBIF (Table 2-1 and Figure 2-3). All descriptive 

historical accounts for both the testing and training sets were included only if the account 
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specifically implied that the birds were breeding or attempting to breed. I included these 

criteria to exclude accounts of migratory flights or roosts.  

 

Table 2-1 Geographic coordinates used for habitat model training and testing sets. 

Model Training Locations 

State/Provence Location Lat Long Source 

Pennsylvania Montrose 41.8 -75.9 Schorger 1955; pg 88 
Kentucky Green River 37.3 -85.5 Schorger 1955; pg 89 
Kentucky  between Shelbyville and Frankfort 38.2 -85.0 Schorger 1955; pg 89 
Michigan Petoskey 45.5 -85.0 Schorger 1955; pg 89 
Michigan Crooked Lake, Emmet county 45.4 -84.8 Schorger 1955; pg 90 
New York Allegheny River north toward Collins 42.3 -78.9 Schorger 1955; pg 90 
New York Annsville to Watertown 43.3 -75.6 Schorger 1955; pg 90 
Wisconsin La Crosse 43.8 -91.2 Schorger 1955; pg 91 
Wisconsin Black River Falls 44.1 -90.3 Schorger 1955; pg 91 
Pennsylvania McKean and Potter counties 41.8 -78.3 Schorger 1955; pg 91 
Oklahoma Potawatomi Reservation 39.3 -95.8 Schorger 1955; pg 93 
Mississippi Tombigbee River 33.3 -88.4 Schorger 1955; pg 93 
Wisconsin Prescott Island 44.7 -92.8 Schorger 1955; pg 95 
Wisconsin Nine Mile Island 44.7 -91.9 Schorger 1955; pg 95 
Minnesota Chatfield 43.8 -92.2 Schorger 1955; pg 96 
New York Bell's Run 42.0 -78.3 Schorger 1955; pg 96 
New York Moose River 43.6 -75.1 Schorger 1955; pg 96 
Wisconsin Pine River 43.4 -90.4 Schorger 1955; pg 97 
Wisconsin Wautoma 44.1 -89.3 Schorger 1956; pg 97 
Michigan Grand Haven 43.1 -86.2 Schorger 1955; pg 97 
Ontario Guelph 43.5 -80.2 Schorger 1955; pg 97 
New York Tupper's Lake 44.2 -74.5 Schorger 1956; pg 97 
New York Wood Creek 43.1 -75.2 Schorger 1955; pg 98 
New York  Altona 44.9 -73.7 Schorger 1955; pg 98 
Michigan Benzie County 44.6 -86.2 Schorger 1955; pg 115 
Michigan Platte River, Benzie County 44.7 -85.8 Schorger 1955; pg 124 
Indiana Decatur County 39.3 -85.5 Schorger 1955; pg 124 
New York Plattsburg 44.7 -73.5 Schorger 1955; pg 145 
Michigan Grand Rapids 43.0 -85.7 Schorger 1955; pg 146 
Michigan Shelby, Oceana County 43.6 -86.4 Schorger 1955; pg 149 
Wisconsin Sparta, Monroe county 43.9 -90.8 Schorger 1955; pg 152 
Wisconsin Kilbourn, Adams County 43.7 -89.8 Schorger 1955; pg 152 
Michigan Van Buren County 42.2 -86.0 Schorger 1955; pg 154 
Wisconsin Langlade/Oconto County 45.2 -88.6 Schorger 1955; pg 218 
Pennsylvania Forest and Warren counties 41.6 -79.3 Schorger 1955; pg 218 
Michigan Lake City 44.3 -85.2 Schorger 1955; pg 219 
Pennsylvania Potter County 41.7 -77.9 Schorger 1955; pg 219 
Pennsylvania Blossburg 41.7 -77.1 Schorger 1955; pg 219 
Michigan Au Sable headwaters 44.8 -84.8 Schorger 1955; pg 221 
Montana Fort Benton 47.8 -110.7 Schorger 1955; pg 264 
Kansas Neosha Valley 37.7 -95.5 Schorger 1955; pg 264 
Mississippi Choctaw 32.0 -89.0 Schorger 1955; pg 264 
Georgia Wayne County 31.5 -81.9 Schorger 1955; pg 264 
Georgia St. Simon Island 31.2 -81.4 Schorger 1955; pg 264 
Georgia McIntosh County 31.5 -81.4 Schorger 1955; pg 264 
North Dakota Berthold 48.3 -101.7 Schorger 1955; pg 265 
South Dakota Fort Pierre 44.4 -100.4 Schorger 1955; pg 265 
Manitoba Waterhan River 52.2 -99.5 Schorger 1955; pg 265 
Manitoba Portage la Prairie 50.1 -98.3 Schorger 1955; pg 265 
Oklahoma Atoka 34.4 -97.4 Schorger 1955; pg 265 
North Dakota Pembina 49.0 -97.2 Schorger 1955; pg 265 
Ontario Lake of the Woods 49.0 -94.3 Schorger 1955; pg 266 
Ontario Nipion 49.0 -88.3 Schorger 1955; pg 266 
Ontario Smokey Falls 50.1 -82.2 Schorger 1955; pg 266 
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New Brunswick Grand Falls 46.9 -67.7 Schorger 1955; pg 266 
Quebec Fort George 53.8 -79.0 Canadian Museum of Nature 
Vermont Fair Haven 43.6 -73.3 Denver Museum of Nature & Science 
Wisconsin Platteville 42.7 -90.5 Field Museum 
Wisconsin Oakfield 43.7 -88.5 Field Museum 
Illinois Chicago Grand Crossing 41.7 -87.6 Field Museum 
Maine Westbrook 43.7 -70.4 Field Museum 
Minnesota Lake City 44.4 -92.3 James R. Slater Museum of Natural History 

Wisconsin Tomah 44.0 -90.5 
Los Angeles County Museum of Natural 
History 

Minnesota Marshall County 48.5 -95.9 Museum of Vertebrate Zoology, CA 
Michigan Ypsilanti 42.2 -83.6 Museum of Vertebrate Zoology, CA 
Manitoba Oak Lake 49.7 -100.7 Royal Ontario Museum 
Manitoba Riding Mountain National Park  50.8 -100.3 Royal Ontario Museum 
Minnesota Big Lake 45.3 -93.8 Royal Ontario Museum 
Wisconsin Berlin 44.0 -89.0 Royal Ontario Museum 
Indiana Oak Forest 39.4 -85.1 Royal Ontario Museum 
Ontario Coe Hill 44.9 -77.8 Royal Ontario Museum 
Ontario Trenton 41.1 -77.6 Royal Ontario Museum 
Pennsylvania Milford 41.3 -74.8 Royal Ontario Museum 
Michigan Escanaba 45.8 -87.1 University of Michigan Museum of Zoology 
Michigan Kalamazoo 42.3 -85.6 University of Michigan Museum of Zoology 
Indiana Waterloo 39.6 -86.2 Yale University Peabody Museum 

Model Testing Locations 

State/Provence Location Lat Long Source 

Illinois North of Waukegan 42.37 -87.83 Coale 1922 
illinois West of Waukegan 42.36 -87.91 Coale 1922 
Michigan Muskegon 43.23 -86.25 Coale 1922 
Indiana English Lake 41.26 -86.82 (Deane 1895) 
Pennsylvania Columbia 40.03 -76.50 (Deane 1931) 
Michigan South Oceana County 43.53 -86.29 Jackson daily citizen 1872 
Michigan West of Traverse City 44.76 -85.93 Jackson daily citizen 1880 
Pennsylvania Forest county 41.53 -79.24 Macon Telegraph 1880 
Iowa Marquoketa 42.58 -90.68 (McGee 1910) 
Pennsylvania Upper Potter County 45.50 -84.85 The Sun 1899 
Pennsylvania Pike county 41.56 -76.06 The Sun 1899 
Pennsylvania Monroe county 41.91 -77.92 The Sun 1899 
New Jersey Cumberland 41.33 -75.06 The Sun 1899 
New Jersey Cape May 41.04 -75.25 The Sun 1899 
New Jersey Atlantic County 39.35 -75.06 The Sun 1899 
Pennsylvania Mehoopany Creek, Wyoming county 39.20 -74.80 The Sun 1899 
Michigan  Straights of Mackinac  39.53 -74.67 The Sun 1899 
Michigan Northport 45.13 -85.62 (Wilson 1934) 
Missouri  Salt River 39.61 -91.06 (Wright 1910) 
New York  Albany 42.69 -73.75 (Wright 1911) 
Vermont Clarendon settlement 43.52 -72.97 Wright 1911 
Pennsylvania Indiana County 40.42 -79.12 Museum of Vertebrate Zoology, CA 
Ohio Holmes County 40.56 -81.92 Museum of Vertebrate Zoology, CA 

 

I conducted the distribution modeling at a spatial resolution of 2.5 minutes 

(approximately 4.5 km by 4.5km) covering a spatial extent including the continental United 

States and a southern portion of Canada below approximately 55°N latitude. There is inherent 

spatial uncertainty in assigning location data to nest site locations coming from the historic 

record and museum collections. However, the nesting colonies themselves could be quite large. 

Schorger (1955) calculated the average of 47 nesting colonies that report length and width as 
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80 square kilometers. The vast spatial requirements of the breeding colonies and the 

coarseness of the spatial resolution should compensate somewhat for the inherent uncertainty 

of the location data.  

Predictor Variables 

In selecting predictor variables to include in the habitat model, I elected to include those 

that primarily relate to the distribution of food resources utilized by the nesting colony. The 

species preferred the high quality nuts of American beech (Fagus grandifolia) but also were 

known to feed on the nuts or acorns of oaks (Quercus sp.), chestnut (Castanea dentata), and 

hickory (Carya sp.) (Cook 1903, Schorger 1955, Bucher 1992). Therefore I included variables 

important to American beech distribution and deciduous forests with a high percentage of 

these species. A characteristic of many of these tree species is highly variable year-to-year nut 

production or having ‘masting seasons’. Similar to many social species that are dependent on a 

highly variable food resource, passenger pigeons were nomadic or ‘irruptive’ (Allen and 

Saunders 2002, Hancock et al. 2006). The breeding range may also have been partially dictated 

by winter temperature and precipitation patterns as there was asynchrony between the fall 

production of tree mast and the spring arrival of the nesting colony. Early snowfall covering the 

forest floor was thought to both conceal the mast from possible forest-dwelling competitors 

and prevent the mast from rotting or germinating before the spring migration (Bucher 1992). In 

fact, it had been observed that passenger pigeons could be reliably predicted to occur in the 

spring where a sizable fall beech mast was covered continuously over the winter by snow (Cook 

1903). Table 2-2 summarizes the variables included in the model.  

I obtained the climate variables from Natural Resources Canada (McKenney et al. 2006). 

The climate variables were ANUSPLIN gridded layers from weather station data for the period 

1901-2000. Although this time period does not perfectly align with the era being modeled, 

weather station data for this region prior to 1900 do not exist at enough locations to generate 

reliable gridded layers (D. McKenney pers. com). Further, including data post 1950 would begin 

to incorporate records from the current warming trend. Summarizing over this timeframe of 

records spans enough years to incorporate year-to-year climatic variation while still 
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representing conditions very similar to those experienced by the passenger pigeons and the 

forests within which they nested.  

To characterize the distribution of Fagus grandifolia in North America, I selected 

temperature seasonality, total precipitation through the growing season, and maximum July 

temperature for inclusion on the model because similar variables have been shown to be 

important in previous studies for this tree species (Prasad et al. 2007, 2009).  I included April 

temperature range in the analysis because there is evidence that it may be relevant to the 

regulation of mast production in Fagus species (Kon et al. 2005). I selected mean temperature 

in the coldest quarter, total precipitation in the coldest quarter, and Julian date of the 

beginning of the growing season as variables related the overwinter preservation and spring 

availability of tree mast.  

Table 2-2 Predictor variables included in passenger pigeon breeding habitat model. 

Variable Rationale Data Source 
% 

Contribution 
to final model 

Temperature seasonality*  Beech distribution  Natural Resources Canada  0.5 

Mean temp. coldest quarter  Mast preservation  Natural Resources Canada 0.5 

Total precipitation coldest 
quarter  

Mast preservation  Natural Resources Canada 3.6 

Start growing season  Mast preservation  Natural Resources Canada 11.1 

Total precipitation growing 
season  

Beech distribution Natural Resources Canada 20.1 

Max July temperature  Beech distribution Natural Resources Canada 26.9 

April temperature range  Mast regulation  Natural Resources Canada 30.9 

Potential Natural Vegetation  Forest type  Ramankutty and Foley 1999  3.2 

Slope variation  Forest type  SRTM 90m  3.1 

* Climate variables are based on data from 1900-1950 (see text) 

  

I incorporated a land cover layer in the model derived from the potential natural 

vegetation map from Ramankutty and Foley (1999) which is a 5 min. resolution categorical map 

of 15 potential natural land cover types. Potential natural vegetation is not necessarily 

equivalent to pre-settlement vegetation; however the categories from this dataset are 
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sufficiently broad that in the model they essentially function to distinguish forested area from 

non-forested areas.  

In order to characterize the dominant pattern in elevational changes over the landscape, 

I smoothed a 90m digital elevation model (Jarvis et al. 2008) by finding the mean of a 10 pixel 

by 10 pixel window. I then calculated the maximum difference in the mean slope values within 

each 2.5 minute resolution grid cell.  

Model Construction 

I modeled habitat suitability using the program Maxent (v.3.3.3; Phillips et al. 2006). 

Maxent uses a maximum entropy approach to predict the geographic location of suitable 

habitat. Maxent takes as input locations where the species has been observed (presence 

locations) and a set of environmental predictors layers. Because the program does not require 

the user to specify locations that were known to have been surveyed but where the species was 

not detected (absence locations), Maxent is characterized as a ‘presence-only’ or ‘presence-

background’ model as it does not require the specification of known absence locations (Phillips 

et al. 2006, Phillips and Dudík 2008). Comparisons among a number of frequently used 

presence-only approaches showed Maxent to have reliably high predictive performance (Elith 

et al. 2006). Since the environmental predictor variables I selected for the model were related 

to the distribution of the primary food and structural resource the species depended on for 

reproduction, I treated the suitability value predicted by Maxent as proportional to the quantity 

of breeding habitat available, and thus proportional to the carrying capacity of each area unit. 

I used the output from the habitat model as a spatial template of the breeding habitat 

which was modified through land use change (described below). I then scaled the carrying 

capacity at each time-step to the corresponding total habitat suitability dependent on a 

stochastic colony movement process and the strength of colony cohesion (both processes 

described below).  

I evaluated the habitat model fit by the area under the receiver operating characteristic 

curve (area under curve, or AUC) calculated from the 21 occurrence locations retained for 
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model testing (Table 2-1 and Figure 2-3). AUC is a measure of model fit based on the area under 

a curve that plots the true positive rate vs. false positive rate at multiple threshold values. A 

model that fits no better than random would be expected to have an AUC value close to 0.5, 

while a model with perfect predictive accuracy would have an AUC value of 1.  

Habitat Loss and Fragmentation 

I treated the output from the distribution model as a baseline-level, maximum possible 

habitat without anthropogenic disturbance. To estimate the quantity of habitat available at 

each time step, I reduced the habitat suitability based on anthropogenic disturbance. For each 

decade from 1800-1900, I modified the baseline habitat map to account for human settlement 

land use by reducing the proportion of breeding habitat available within each grid cell by the 

amount of land estimated to have been cleared for growing crops or pasturing animals. I then 

linearly interpolated the maps between decades to produce a habitat map for each year.  

The cropland and pasture land use maps I used were from the HYDE History Database of 

the Global Environment (HYDE 3.1; Klein Goldewijk et al. 2010, 2011). The HYDE database is a 

set of global gridded time series maps of historic land use and population density. The land use 

layers include decadal time-steps at a 5 min-by-5 min resolution of area in crop and pasture for 

each decade. These land use areas are mapped by considering how much land area would have 

been needed to support the estimated human population density levels. The HYDE models then 

spatially allocate the needed land area based on information about landform, soil, climate, and 

access to water.  Each grid cell in the HYDE database is the proportion of land area within that 

grid cell estimated to be in cropland or pasture. To downscale the resolution of the HYDE layers 

to the baseline habitat layer I assumed that the proportions in each land use type remained 

constant.  

 

2.2.2 Linking nesting habitat to population dynamics 

I constructed a stage-based matrix model to simulate population abundances from 1800 

through 1900 plus a 20 year burn-in period to allow the model to calibrate. Because the 
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passenger pigeon was nomadic and irruptive with no major physical barriers to dispersal within 

its range, it was unlikely that there was any form of metapopulation structure.  Therefore, I 

modeled the species as a single panmictic population. I only modeled females in the 

population. Passenger pigeons formed monogamous pairs with shared parental duties during 

the breeding season. However, because population sizes were very large, it is unlikely that 

demographic stochasticity would result in either sex becoming limiting until the species was 

very close to extinction. Limiting the analysis to a single sex allowed me to speed calculation 

times and avoid computational memory limitations with little impact on model results or 

conclusions.         

I constructed the model with discrete time-step, birth-pulse model with the entire 

female population calculated once annually pre-breeding. I configured the model with two life 

stages, hatch year (HY) and after hatch year (AHY). I calculated fecundity values for HY and AHY 

birds as the product of maternity for each stage and chick survival from hatching to the next 

pre-breeding census.  

I parameterized the model using both qualitative historic descriptions of the life history 

characteristics of passenger pigeon and quantitative information from related species. Based on 

accounts of both wild and captive passenger pigeons, they were similar biologically to members 

of the genus Patagioenas and other Columbid species (Bucher 1992, Blockstein 2002). True 

estimates of some model parameters can never be known. However, given that there is nothing 

to suggest they were not biologically similar in many respects to other pigeons, it is justifiable 

to look at studies of related species for some estimated life history parameter values. Given the 

inherent uncertainty of this approach, I conducted a global sensitivity analysis to assess the 

impact of parameter uncertainty on model outcomes. Further details of the global sensitivity 

analysis are described below.  

Survival and Fecundity 

The genus Patagioenas is the sister genus to Ectopisties based on ecological, 

morphological (Bucher 1992), and genetic evidence (Pereira et al. 2007, Johnson et al. 2010). 
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The most thoroughly studied species in this genus and one of the closest extant relatives to the 

passenger pigeon is the band-tailed pigeon (Patagioenas fasciata). Jarvis & Passmore (1992) 

estimated average adult survival of band-tailed pigeon at 0.64 (CV = 0.23) based on a mark-

recovery study of over 23,000 band-tailed pigeons banded between 1950 and 1973 in Oregon 

(though survival estimates are only averaged over the years 1965-1973). Although the authors 

did not attempt to estimate survival over the first year after hatching, a rough estimate can be 

made based on data presented. Ratios of juvenile to adult birds based on wings surrendered by 

hunters for the years 1966-1976 have a mean of 0.21 (CV=0.09). The hunting season extended 

from September 1 through September 30. In the spring another estimate of juveniles to adults 

in the population is presented for the years 1968-1969 and 1976-1977 based on birds captured 

for the banding study. The mean for the springtime ratios was 0.16 (CV=0.30). Assuming that 

both juvenile and adult survival probabilities are constant over a single calendar year, the fall to 

spring survival estimates for juveniles can be estimated from the fall to spring ratios using the 

following formula: 

            

              
 

                               

                                   
 

 

 This calculation is possible because the birds breed within a relatively discrete breeding season 

that takes place after the spring banding data are collected, and concludes before the fall 

hunting season. Therefore there is no influence of reproduction in the fall versus spring ratios. 

The spring and fall juvenile to adult ratios were the means as reported above. The adult 

survival from fall to spring was estimated by breaking down the annual adult survival into the 

approximately 37 weeks between the midpoint of the fall hunting season and the midpoint of 

the spring banding season. The fall to spring juvenile survival rate was then extrapolated to a 

full year as 0.45. Kautz & Braun (1981) estimate adult survival of band-tailed pigeons at 0.73 (CV 

= 0.24) and juvenile survival as 0.66 (CV = 0.49) from marked birds in Colorado from 1969 to 

1974. The adult survival rates estimated from these two studies may be on the lower end for 
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this species.  It was not uncommon for individuals greater than 10 years old to be recaptured in 

the Oregon study, especially prior 1968 when dramatic population declines were observed 

(Jarvis and Passmore 1992). However, given the survival estimates from these two studies, the 

probability of any individual surviving to 10 years of age is between 0.01 and 0.04. It is possible 

that whatever conditions were driving the population estimates downward were also reflected 

in the estimated survival rates. 

Jarvis & Passmore (1992) do not directly estimate maternity or nesting success and 

instead rely on knowledge of band-tailed pigeon biology and breeding phenology. By 

monitoring the production of crop milk for feeding nestlings and egg development of birds 

captured during the breeding season, they estimate that most adult pairs attempt 2-3 nestings 

per season of single-egg clutches, resulting in an average of 1 fledgling per breeder or 1 

daughter per mother. Yearling birds will sometimes attempt to reproduce in their first year, but 

typically later in the season and at a lower rate than adult birds. Jarvis & Passmore (1992) 

estimate yearling maternity to be 0.33 of the adult rate. Other studies estimate an annual 

reproductive rates as 1.14-1.26 juveniles/pair or 0.63 daughters/mother (Keppie and Braun 

2000). 

Although there was some early debate about whether passenger pigeons laid one-egg 

or two-egg clutches (Brewster 1889, Schorger 1952, 1955), there was later general agreement 

largely from observing captive birds that the clutches were strictly single-egg and any observed 

two-egg nests must have been from multiple females depositing in the same nest (Deane 1908, 

Coale 1922, Schorger 1955).  This is consistent with the band-tailed pigeon, which also 

invariantly lays a single-egg clutch (Blockstein 2002). 

There remains some debate as to how many nestings were attempted by each pair of 

passenger pigeons within a season. Schorger (1952, 1955) and Brewster (1889) strongly argued 

that there was only a single successful nesting colony per season and colonies were only 

assembled long enough to accomplish a single round of nesting. That is not to say that a second 

nesting would not be attempted in the case of a failed attempt. However, Bucher (1992) and  

Ellsworth & McComb (2003) counter that if passenger pigeon survival estimates and single-egg 
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clutches were similar to band-tailed pigeons, population growth rates would be unrealistically 

low without at least regular attempts for at least two rounds of nesting per season. Iterative 

nesting would also have been consistent with other irruptive colonial avian species. However, I 

found little evidence to support multiple nestings within a season, at least for the very large 

colonies. Out of approximately 100 nesting records spanning from 1749 to 1896 with both 

location and year, there is only one year where distances between reported observations of 

large colonies was great enough that they couldn’t be considered part of the same colony. This 

occurred in 1880 when there were colonies reported in both northwestern Michigan and 

central Pennsylvania, a distance of over 650km. In addition, there was only a short window of 

time to complete the nesting cycle between snowmelt in the early spring and the ground being 

warm enough to allow the mast to germinate which would effectively eliminate the primary 

food source for the breeding colony (Schorger 1955).  That is not to say that re-nesting after a 

failed attempt or small colonies or single pairs wouldn’t nest multiple times on occasion. I 

contend that the (albeit scant) evidence supports the theory that the majority of pairs in the 

main colony only attempted a single breeding cycle per season. I constructed my model and 

parameterized fecundity estimates based on this assumption. Although a range of both survival 

and fecundity values were fully explored through global sensitivity analysis (see below) to 

account for these kinds of uncertainty.  

Constructing a 2-stage matrix based on the survival and fecundity values as described 

above for a band-tailed pigeon describe populations with generation times of 4 to 4.6 years  

(calculated by the method described in Caswell 2001), These estimates are lower than expected 

for band-tailed pigeons (as well as most New World columbids) which are thought to be 

relatively long-lived birds with high annual survival rates (Keppie and Braun 2000). This 

discrepancy is possibly due to adult survival being artificially low in these studies because of 

harvesting, which can have measurable impacts on a population’s demography (Langvatn and 

Loison 1999).  I surveyed the Bird Life International database (www.birdlife.org) for average 

generation times of columbiformes in general, and birds in the genus Patagioenas in particular, 

to establish a likely range of values for the passenger pigeon assuming they were a long-lived 

species (on average, 15 years in captivity; Blockstein 2002) with a generation time similar to 

http://www.birdlife.org/
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other columbids. I calibrated the estimated stage matrix by adjusting the survival and fecundity 

values to generate two population matrices, one with a lower-bound generation time of 5.1 

years and one with an upper-bound generation time of 6.5 years. Generation time was 

calculated for each matrix using the popbio package in R (Stubben et al. 2012) which uses the 

calculation described by (Caswell 2001). Both upper and lower-bound matrices have a lambda 

value near 1 at carrying capacity and will vary in a density dependent manner depending on the 

difference between total population size and carrying capacity at each time step. I used these 

population matrices as the upper and lower bound matrices in the global sensitivity analysis.  

The lower-bound matrix has a generation time of 5.1 years and is as follows: 

 

 
        
        

  

 

The upper-bound matrix has a generation time of 6.5 years and is as follows: 

 

 
       
        

  

 

I estimated temporal variability in survival and fecundity initially by estimating the 

standard deviation of estimated annual survival rates observed in the Oregon population of 

band-tailed pigeons (Jarvis and Passmore 1992). I then tuned these values in RAMAS Metapop 

(Akçakaya and Root 2007) to produce population trajectories with CV values similar to what 

was observed in this population between 1950 and 1968 before the population began to 

decline.  
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Density Dependence 

I modeled the population with a scramble-type density dependence (Ricker 1954) 

calculated on the abundance of both HY and AHY birds. I justify this density dependence 

structure because of the extremely gregarious nature of this species. Nesting and flocking birds 

were non-territorial and therefore it is expected that resources for food and space would have 

been equally shared. I modeled the effects of density dependence as only impacting fecundity 

values. In descriptive accounts of captive birds, adults could persist for long periods of time on 

low-quality food sources but rarely produced viable young in captivity despite frequent 

attempts at reproduction (Deane 1908). This could possibly be evidence that nutrient 

requirements for adult maintenance were less stringent than for successful reproduction. Like 

most other columbids, passenger pigeons fed young with a high protein, high-fat crop milk after 

hatching which resulted in very rapid growth rates. Nestling mass paralleled adult mass within 

14 days of hatching (Schorger 1955).  Further, for many other nomadic colonial nesters such as 

the red-billed quelea (Quelea quelea) and eared dove (Zenaida auriculata), breeding attempts 

are also thought to be closely tied to food availability (Bucher 1982, 1992, Allen and Saunders 

2002).  

I estimated a maximum growth rate (Rmax) value by constructing a matrix with 

maximum survival (0.82 for HY and AHY) and fecundity (0.3 HY and 0.48 AHY) estimates and 

calculating the lambda on this matrix, which was 1.24. To test the effect of uncertainty in this 

parameter in the global sensitivity analysis I set a lower bound on Rmax as 1.04 which would be 

a modest positive annual increase. 

Nomadic colonial nesting and carrying capacity 

Because of the nomadic and irruptive manner in which this species utilized mast 

resources, it would not be reasonable to treat the habitat suitability across the breeding range 

equally across years. I modeled this process by generating random trajectories of ‘masting 

areas’ for each model replicate. I modeled the masting process by selecting a random location 

within the breeding range, drawing a 250km radius buffer around that location, and summing 

the habitat suitability values that fall within the buffer area. In the following timestep a new 
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random location was selected with the restriction that it may not fall within the masting area 

from the previous timestep, as large colonies rarely nested in the same area two years in a row. 

I parameterized the radius of the masting area based on the records for the passenger pigeon 

nesting of 1871 in Wisconsin. That single year provides the best record for the possible spatial 

extent and arrangement of a nesting colony as multiple observations were made across the 

entire state that year and are mapped in Schorger (1955).  

I used the simulated masting trajectories to generate trajectories of variable carrying 

capacity. Passenger pigeons were famous for their highly social breeding colonies; at the same 

time, it was not uncommon to see single pairs or smaller flocks nesting away from the main 

colony (Brewster 1889, Coale 1922). While there is much evidence that they were a highly 

social species, there is no mention in the literature of the existence of non-reproductive 

‘helpers’ which would be evident of them being obligately social breeders (Stephens and 

Sutherland 1999). Therefore it is clear they were facultatively social, but it is unknown to what 

degree or what proportion of the total population would have been nesting in the main colony 

in a given year.  I parameterized this variable as the degree of coloniality, defined as the 

proportion of the total population within the masting radius. I modeled this at 3 levels, 40, 60, 

or 80% of the total population. I used the assigned degree of coloniality to set a weighting 

constant for total habitat suitability within versus outside of the mast radius at each time step. 

As the degree of coloniality increases, it essentially has the effect of increasing the year-to-year 

variation in carrying capacity.  

Harvest 

I parameterized two different forms of harvest in the models; background and 

commercial harvest. The background level of harvest was meant to simulate utilization of 

passenger pigeons by the indigenous people and settlers that would come into contact with 

local breeding colonies. Passenger pigeons were utilized for food and feathers whenever they 

were encountered. The fledglings in particular were heavily harvested as they were more easily 

captured than adult birds yet weighed as much or more (Brewster 1889), provided an 

accessible source of protein and fat, and could be processed for medium-term food storage. 
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Once a breeding colony was located, the harvest of large numbers of fledglings could be 

accomplished with no more sophisticated tools than long sticks or poles to knock them from 

the nests or gather them from the ground before they could fly. Adult birds were also taken, 

but required more skill and either guns or nets to capture. Small numbers of birds were shipped 

short distances by boat and/or sold in local markets prior to the 1840’s but the majority of birds 

were utilized by the individuals or family groups that captured them. There are no historic 

records to estimate mortality from this opportunistic, subsistence-level harvest. I set the range 

of harvest values for the global sensitivity analysis as a proportional harvest of 0.05 – 0.5% of all 

HY and 0.01 – 0.1% of all AHY birds. This background harvest is simulated in all models 

throughout the entire duration of the simulation. 

The commercial harvest model simulates the effects of the commercial market in 

passenger pigeons that developed with the expansion of the rail and telegraph lines in the mid 

1800’s. The railroads provided a means to ship harvested birds from the breeding colonies in 

remote or rural areas to the urban population centers. The adult and juvenile birds were 

shipped fresh and minimally processed for consumption. Adult birds were also live-trapped and 

transported for use in sport-shooting. The first commercial shipments of passenger pigeons 

began in the 1840’s, but did not take off as a regular market until continuous rail lines spanned 

the distance from the east coast to the Mississippi in the early to mid-1850’s. 

Precise mortality estimates imposed on the population from the commercial harvest are 

not available. However, shipping records and estimates recorded by local observers and 

professional hunters at the time provide a range of estimates that I used to parameterize the 

model. Most estimates put the total harvest at 1.2 to 3 million birds per season. One of the 

highest estimates comes from Cook (1903) who participated in a pigeon hunt as a young man 

and calculates a rough estimate around 7.5 million birds from a nesting in Michigan in 1869. 

However, Martin (1915), a game dealer, strongly contradicted that account on the grounds that 

it would have far exceeded the shipping and storage capacity available at the time. I 

parameterized the commercial harvest as a density-dependent function with maximum 

harvests ranging from 1 to 5 million females per year. Because the model is female only, this 
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range represents total harvests of 2 to 10 million birds total (Figure 2-1). These estimates 

exceed the reported total harvest range to account for the fact that estimates based on rail 

shipping records do not include birds that were killed but not harvested, birds that spoiled 

before they were shipped, and birds that were sold in local markets or shipped via waterway. 

For model runs that include commercial harvest, I modeled it to begin in year 1845 and run 

until the end of the simulation. The density-dependent shape of the commercial harvest 

function (Figure 2-1) allows the maximum harvest levels to decrease with declining population 

sizes as would be expected with a commercial market.  

In comparison, it is estimated that approximately 10,000 and 30,000 band-tailed 

pigeons are currently harvested annually in North America (Sanders 2013). It is not clear what 

proportion of the total population this represents because the total population size is unknown. 

Making a rough calculation based on estimates of population sizes ranging from 1 to 3 million 

individuals (Jarvis and Passmore 1992, Sanders 2013) this is possibly 0.2 to 3.0% of the total 

North American population annually. On several occasions over the last century, unusually large 

harvests have occurred when the birds aggregated at lower elevations to take advantage of 

masting events. Following one of these large harvests in 1972, the population index the next 

year was observed to be only half as large (Jarvis and Passmore 1992).  

Probability of a failed colony  

Late winter storms and disturbance by man often resulted in failed nesting attempts or 

abandonment (Schorger 1955). It was believed that many of the birds would attempt to re-nest 

after a failed attempt, but it is unclear how successful these subsequent attempts were. Also 

unknown is the degree to which a failed attempt impacted the recruitment that year or how 

often these failed attempts took place. I parameterized the model to include a simulated 

nesting colony collapse that would result in a 70% reduction in the number of HY birds for that 

time step. I modeled colony collapse as a random process with a probability of 0.05 in the years 

prior to 1830 and either 0.1, 0.2, or 0.3 thereafter. This stepped function was meant to simulate 

primarily weather-related effects in the early years and an increased frequency of disturbance 
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later with the advance of human settlement and commercial hunting activity into the main 

breeding range.  

 

2.2.3 Exploring parameter uncertainty and extinction scenarios 

Global sensitivity analysis 

Because of uncertainty in model parameters, I conducted an extensive sensitivity 

analysis that fully explores the parameter space both within and across three primary 

anthropogenic impact factors: commercial harvest, habitat loss, and colony disturbance 

(probability of colony failure).  I used Latin hypercube sampling (LHS; McKay et al. 1979) to 

generate 500 models for each of the 12 unique combinations of anthropogenic impact factors 

(Figure 2-2) for a total of 6,000 separate models. LHS sampling divides each parameter into 

equally spaced strata. Unique models are generated by randomly sampling within each 

parameter’s strata without replacement. This sampling scheme, when used in population 

modeling allows a full sampling of the parameter space while still allowing tests for interactions 

between parameters, which is not possible in one-at-a-time sensitivity analysis (Conroy and 

Brook 2003).  Random variables selected by LHS for each parameter were held constant across 

the anthropogenic impact factors (see discussion below) to directly make paired comparisons 

between the effects of the impact factors on model outcome while holding the rest of the 

parameters constant. Models were run in RAMAS Metapop (Akçakaya and Root 2007) each 

with 1,000 replicates to incorporate environmental and demographic stochasticity. I ran all 

models for 100 time steps (years) plus 20 time steps at the beginning to allow the model to 

calibrate (spin-up). All models started with an initial abundance of 600 million females at spin-

up.   

To characterize the impact of commercial harvest, I analyzed two modes; either 

commercial harvest was conducted or there was no commercial harvest (although background, 

subsistence-level harvest was modeled regardless). The functional shape of the commercial 

harvest for the models when it was included was determined by the LHS by randomly selecting 



 

26 

 

the maximum harvest value between the upper and lower bounds and fitting the function as 

described in Figure 2-1.  

To measure the impact of habitat I also analyzed two modes for habitat loss in the 

impact factor analysis; carrying capacity either decreased with increasing anthropogenic land 

use, or maintained a consistent average through time. In either case the carrying capacity was 

variable according to the simulated nomadic nesting and degree of coloniality as described 

above. In other words, the habitat loss factor simply determined whether the stochastic 

carrying capacity process had a decreasing or a flat trend.  

I analyzed the impact of disturbance at the breeding colony by modeling three modes; 

the probability of a failed colony increasing to 0.1, 0.2, or 0.3 (low, medium, or high) after 1830.  

 

Figure 2-1  Upper and lower bound functions for commercial harvest model. 
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Figure 2-2  Schematic illustrating analysis structure used to explore parameter uncertainty and 
impact factors.  

 

2.2.4 Analysis of factors contributing to decline and extinction 

I analyzed the influence of model parameters on predicting decline and/or extinction of 

passenger pigeons using boosted regression trees (BRT). BRT build a succession of regression 

(or decision) trees in a forward fashion such that each new tree in the sequence is built from 

the residual deviance from the tree before (Elith et al. 2008). I implemented the BRT in R using 

the ‘gbm’ and ‘dismo’  packages (Hijmans et al. 2012, Ridgeway 2013). Under this 

implementation tree complexity (number of splits) and learning rate (maximum contribution of 

each tree) are controlled by the user (Elith et al. 2008, Elith and Leathwick 2013). Here, I 

allowed a tree complexity of 3 and tuned the learning rate such that at least 1,000 trees were 

created. 

I focused on two simulation results as response variables: (1) expected minimum 

abundance; and (2) probability of decline to a quasi-extinction threshold of 1,000 females at 

any point before the end of the simulation. Expected minimum abundance is the natural log of 
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the lowest abundance of each trajectory, averaged across all replicates and its difference from 

the initial abundance is a measure of overall population reduction. I specified a Gaussian 

distribution for the residuals of this parameter in the BRT analysis.  

Probability of decline to 1,000 is a way to measure whether the simulations approach 

extinction-risk levels before the end of the simulation. I chose a threshold of 1,000 females for 

two reasons. First, using an extinction threshold (decline to zero) can sometimes be less 

informative than using a higher threshold if few model replicates decline to extinction. Second, 

as a highly social, colonial species with high apparent intra-specific attraction that also 

exhibited signs of synchronized egg laying (Schorger 1955, Jovani and Grimm 2008) it is likely 

that there would have been Allee effects as the population declined (Halliday 1980, Reed 1999, 

Stephens and Sutherland 1999, Cook and Toft 2005). However, there are no data available to 

parameterize this within the model. In this instance a threshold at 1,000 females can be 

regarded as a de-facto extinction. Probability of decline to 1,000 is expressed in the BRT 

analysis as the number of replicates per model that decline to the threshold. Because this 

variable is heavily left-skewed count data (most replicates never reach the threshold), I 

specified a Poisson distribution of the residuals in the BRT analysis.  

 I selected 6 predictor variables in the BRT models to explore the effects of parameter 

uncertainty and the impact of anthropogenic factors. (1) Maximum growth rate (Rmax), which 

determines the shape of the density dependence curve and the rate of population increase 

when population levels are far below carrying capacity. (2) Generation time (GT), which is 

determined by the matrix of survival and fecundity values. (3) Coefficient of variation of total 

population size over the first 10 years after model spin-up (CV10). Variation in this parameter 

across models is due largely to the effect of colonial nesting and the degree of coloniality in the 

population. I use it here because it is correlated with, but more informative than, degree of 

coloniality.   (4) Habitat loss (HL), which is included in the model as a categorical variable. (5) 

Maximum commercial harvest (CH), which is the maximum harvest level selected by the LHS 

(see Figure 2-1 and description above). For models without commercial harvest this parameter 
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is zero in the analysis because it is ignored by RAMAS Metapop. (6) Probability of colony failure 

(Pfail), which is a categorical variable corresponding to probability levels of 0.1, 0.2, or 0.3.  

For both response variables, I conducted a 10-fold partition cross-validation on the BRT 

to validate model fit. This cross-validation method re-fits the BRT 10 times, each time leaving 

out 10% of the models as a testing set and using the other 90% for model building. Model 

performance can then be estimated as the average deviance in the testing set that can be 

explained by the model.  

 

2.3 RESULTS 

2.3.1 Available habitat through time 

The breeding range habitat suitability without anthropogenic disturbance is shown in 

Figure 2-3. Model fit AUC was 0.897 on the training set and 0.947 on the testing set. Accounting 

for habitat loss through time by subtracting the area estimated to be in crops or pasture 

resulted in a 52.8% decrease in the total summed habitat suitability between 1800 and 1900 

across the breeding range. A sample of maps illustrating the pattern of habitat loss is shown in 

Figure 2-4.  
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Figure 2-3  Modeled breeding habitat of passenger pigeon prior to anthropogenic land use 
changes.  
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Figure 2-4  Available breeding habitat at four selected time steps; 1810 (A), 1840 (B), 1870 (C), 
and 1900 (D). Warmer colors indicate higher suitability.   

 

2.3.2 Analysis of decline and extinction 

Predictably, increasing the number and severity of anthropogenic threats resulted in 

greater expected population declines. Habitat loss had the single largest effect on decreasing 

the expected minimum abundance, calculated as the mean minimum abundance achieved 

across all 1,000 replicates of a model (Figure 2-5). Paired comparisons of models across threat 
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factors with all other variables held constant allowed for directly measuring the impact of each 

threat factor without confounding variance due to random sampling in parameter space. In 

direct paired comparisons, including habitat loss in the model resulted in a 38.3 ± 0.1% 

(standard error) decrease in expected minimum abundance. Commercial harvest decreased 

expected minimum abundance by 17.7 ± 0.3%. Going from a low probability of colony failure 

(0.1 after 1830) to a high probability (0.3) results decreases the expected minimum abundance 

by 34.4 ± 0.4%. 

 

Figure 2-5  Distribution of expected minimum abundance values for the model sets under each 
anthropogenic threat factor combination. Expected minimum abundance is calculated as the 
mean minimum abundance achieved across model replicates. Panels 'low', 'med', and 'high’ 
refer to probabilities of colony failure of 0.1, 0.2, and 0.3 per year, respectively. Commercial 
harvest categories refer to models that included a commercial harvest at some level (‘Hunt’) or 
no commercial harvest (‘NOHunt’). Habitat loss categories refer to models with a declining trend 
in carrying capacity due to land use change (‘Hab’) or a constant average carrying capacity 
through the duration of the model (‘NoHab’). 
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The most important variable predicting expected minimum abundance in the boosted 

regression tree analysis was habitat loss (HL), accounting for 24.5% of the relative influence on 

the model. The next four variables, in order of importance, had roughly equal amounts of 

relative influence; they were maximum commercial harvest (CH) at 19.1%, coefficient of 

variation in total population size over the first 10 years (CV10) at 19.0%, probability of colony 

failure (Pfail) at 18.1%, and maximum growth rate (Rmax) at 17.9%. Generation time (GT) had 

the lowest influence on model prediction at 1.4% relative influence.  BRT models did not 

indicate any strong interactions between variables. Model fit as assessed through 10-fold cross-

validation showed high performance with average deviance explained (DE) by the model across 

folds at 0.98. 

Probability of the population falling below 1,000 females was most sensitive to the 

presence of a commercial harvest. Only models which included a commercial harvest resulted 

in probabilities greater than zero. The mean probability of falling to 1,000 females over all the 

models including a commercial harvest was only 0.01 (range 0 to 0.67).  Figure 2-6 shows the 

probability of falling below 1,000 individuals for all models with a commercial harvest. The 

probability of crossing this threshold increased with increasing probability of nest failure, but 

was only slightly positively influenced by the effect of habitat loss in the model.  

To analyze the boosted regression tree model for the probability of falling to 1,000 

females I only included the 467 models that achieved this threshold in at least one replicate. I 

limited the analysis in this way to more effectively explore the parameter space where this 

phenomenon occurred. In essence, I drilled down to the collection of models of the most 

interest in terms of determining which variables were important to reconstruct extinction 

scenarios.  The variable with the highest relative importance for predicting probability of 

decline to threshold was maximum commercial harvest (CH) at 34.6%, followed by maximum 

growth rate (Rmax) at 26.5%, and probability of colony failure (Pfail) at 25.0%. Coefficient of 

variation in total population size over the first 10 years (CV10) and Generation time (GT) had 

relatively low relative influence values at 9.8 and 3.0%, respectively. Habitat loss (HL) had the 

lowest relative influence at 1.2%. The strongest interaction terms were CH vs. Rmax and CH vs. 
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CV10 (Figure 2-7). Model fit assessed through the 10-fold cross validation had a mean DE across 

folds of 0.89.  

 

Figure 2-6  Probability of decline to 1,000 females for models with commercial harvest (all 
models without commercial harvest have probability values of zero). Panels 'low', 'med', and 
'high' refer to probabilities of colony failure of 0.1, 0.2, and 0.3 per year, respectively.  
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Figure 2-7  Interactions of variables predicting probability of decline to 1,000. (A) Relative 
importance of interaction terms, and (B) modeled response surface for interaction between 
maximum commercial harvest and maximum growth rate. Variables are maximum commercial 
harvest (CH), maximum population growth rate (Rmax), coefficient of Coefficient of variation in 
total population size over the first 10 years (CV10), and probability of colony failure (Pfail).  

 

2.4 DISCUSSION 

The results of this model indicate that although land-use changes throughout the 19th 

century likely caused substantial total area loss and disruption to the continuity of breeding 

habitat, it is possible to explain the extinction of passenger pigeons through overharvest alone.  

Model scenarios approaching extinction-level population thresholds always included maximum 

commercial harvest levels greater than 4 million birds (2 million females in female-only model) 

and showed a strong positive relationship with increasing maximum harvest levels. The 

relationship between threshold-level declines and habitat loss was much more tenuous. Model 

scenarios showed slightly higher probabilities of reaching these threshold population levels 

when commercial harvest was coupled with habitat loss, but this interaction was weak and 

habitat loss did not prove to be an important predictor in the BRT models, nor did it show a 

strong interaction with any other predictor variable. Model scenarios showing high likelihood of 

threshold-level declines were those having high maximum commercial harvest levels, low 
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maximum growth rate, high inter-annual population fluctuations, and high frequency of nest 

disturbance leading to low recruitment years.  

Despite the fact that habitat loss did not prove to be an important driver of declines in 

the final trajectory toward extinction, it was the most important predictor of expected 

minimum abundance across all models. This seeming contradiction is explained by the fact that 

habitat loss drove average overall carrying capacity down to half of the initial carrying capacity. 

All of the models had expected minimum abundances much less than the initial abundance 

even in cases of no habitat loss. In the model this was primarily because of the year to year 

fluctuations in carrying capacity driven by the simulated mast and colonial nesting. The degree 

to which the expected minimum abundance was pushed downward was heavily influenced by 

the decrease in carrying capacity from habitat loss. However, this predictable level of overall 

decrease in population size did not necessarily drive the population to threshold-level (i.e. 

pseudo-extinction) declines within the timeframe of the model.  

It is important to note that the duration of the model ended when the population was 

thought to have become extinct in the wild. It is conceivable that had the simulation run longer 

and continued to accumulate the effect of land conversion throughout this portion of the North 

American continent, habitat loss alone might have depressed the carrying capacity to the point 

where it might have become an important predictor of threshold-level declines. Forest loss in 

this region continued to outpace regeneration for several decades into the 20th century 

(Whitney 1996). Further, the mature beech trees on which this species depended are slow-

growing shade-tolerant species that tend to only dominate in undisturbed old-growth forests. 

Even today, with much of the formerly-forested area in the Northeast and Midwestern United 

States returning once again to forest cover (Ramankutty et al. 2010); it is unlikely that the age 

and composition of these second-growth forest could provide much suitable habitat for large 

passenger pigeon colonies. In essence, although the model I presented does not indicate that 

habitat loss was a key driver on the time-scale of the observed extinction event, it is likely it 

would have become more problematic for the species eventually.  
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An important caveat to the issue of habitat loss is the fact that the model I constructed 

only included land conversion for settlement (crop and pasture) and did not account for the 

commercial timber harvest. Unfortunately, including this factor in the habitat loss model was 

beyond the scope of this study. Tackling a wide-ranging and detailed reconstruction of 

deforestation in North America, including the effects of commercial timber harvest is an 

important but exceedingly difficult undertaking. The different physical properties of each 

commercially harvested tree species meant they had different uses, market demand, and 

transportation systems (Boucher et al. 2009). Further, these factors changed and evolved 

throughout the 19th century as advances and innovations were made in transportation and 

technology. Timber was inexorably linked with a complex history of domestic and geopolitical 

economics driving demand for building supplies, ship masts, railroad ties, and fuel (Williams 

1992, Whitney 1996).  Timber in 18th and 19th century North America was a burgeoning and 

largely unregulated industry, and records which might have been used to reconstruct maps of 

cleared land are inconsistent or nonexistent for most areas in North America. There are 

additional challenges even in establishing accurate pre-settlement forest cover maps to use as a 

baseline. Reconstructions based on the original land surveys are fraught with challenges such as 

erroneous (and sometimes fraudulent) survey coordinates, misidentification of bearing and 

witness trees, and reconciling a patchwork of different agencies conducting surveys at different 

times using different approaches (Bourdo 1956, Waisanen and Bliss 2002, Wang 2005).  Despite 

these challenges, there have been some notable attempts although they usually are conducted 

at either restricted spatial extents (Foster and O’Keefe 2000, Schulte et al. 2005, He et al. 2007, 

Rhemtulla et al. 2009, Boucher et al. 2009, Dupuis et al. 2011) or coarse spatial resolutions 

(Ramankutty and Foley 1999, Houghton and Hackler 2000, Steyaert and Knox 2008). If ever a 

reliable, detailed, and spatially-explicit reconstruction of deforestation including commercial 

timber harvest was made available, it would be worthwhile to revisit the conclusions of this 

study at that time. 

In summary, only a narrow set of parameter values results in population trajectories 

from billions of individuals to extinction in less than a century, as was observed for this species. 

The model results indicated that the mortality leveled on the population by commercial 
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harvests was on the high end of estimates made at the time. Despite the fact that the shipping 

and storage capacity at the time was inadequate to handle this level of harvest, it was noted 

that there was very high levels of waste involved in this industry (Hornaday 1913, Schorger 

1955). Young birds were often taken before they reached marketable size and were left on the 

ground. Birds that were improperly dressed or treated would spoil before they could be packed 

and shipped. While the harvest estimates based on rail shipments made at the time were 

imprecise and uncertain, it is possible that the harvest activity might have resulted in total 

mortality 2 to 10 times greater because of waste and improper handling.  

This case study demonstrates the role of a weakly regulated commercial harvest in the 

extinction of the passenger pigeon, and illustrates the importance of data collection and 

monitoring of any harvested species. It is vitally important to have accurate estimates of total 

harvest including all avenues for mortality; commercial harvest, non-commercial harvest, as 

well as incidental takes and waste (such as bycatch). In addition, it is essential to have an 

accurate understanding of the underlying population dynamics of commercially important 

species and to use the proper model structures to characterize the systems. The conservation 

biologist assessing extinction risk and the resource manager setting catch limits may approach 

the same population with very different model structures and assumptions. Some traditional 

models of open access harvest do not allow for extinction as a possible outcome (Conrad 2005), 

do not consider the possibility of critical inflection points such as Allee thresholds (Reed 1999), 

or assume that market forces will ease hunting pressures sufficiently as populations decline 

(Halliday 1980). The collapse of any commercially managed or natural population resulting from 

over-harvest is cause for alarm and should be avoided; few would contest this point. The 

disagreement arises over the most appropriate way to avoid situations where population 

collapse or extinction becomes inevitable or very expensive to prevent.  Many who participated 

in the harvest of passenger pigeons later lamented the role they played in causing their 

extinction, but at the time justified their activity because of mistaken notions about biology and 

the impact of their activities. 
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3 Red-listing analysis of the passenger pigeon  

3.1 INTRODUCTION 

Rule-based systems to assess risk of extinction, such as the IUCN Red List, can at times 

become contentious when species have experienced significant population declines but remain 

relatively abundant. This is especially true when species are economically important or when 

protection of key habitat would hamper other economic activities. This is not meant as a cynical 

observation but is a consequence of the need of policy makers to balance multiple societal 

demands and a desire to avoid ‘false alarms’ where economic activity is curtailed for the 

protection of species when they are not actually imperiled. Therefore, it is important to 

evaluate not only how well extinction risk metrics perform at providing an early-warning system 

for identifying species in need of conservation intervention (avoiding ‘missed opportunities’), 

but also how accurately the risk rankings translate to how imminent the threat is (avoiding 

‘false alarms’).  

Measuring the rate of ‘missed opportunities’ involves identifying species evaluated 

against the criteria, deemed not imperiled, but go extinct nonetheless. ‘False alarms’ are 

species identified as being on the verge of extinction, yet remain extant or recover on their 

own. This kind of objective evaluation is difficult because identifying a species as imperiled 

often (and rightly) brings conservation action which can change the trajectory the species was 

on. Since the goal of conservation actions would be to halt downward trajectories of imperiled 

species, a failure to go extinct as predicted is usually attributed to conservation actions 

(Hoffmann et al. 2010) rather than low specificity of the risk-assessment test.  

Any test for which the false positive rate is difficult to evaluate runs the risk of being 

perceived as overly sensitive or overly precautionary. After all, if a test evaluates most species 

as being imperiled there will be no ‘missed opportunities’ (true positive rate is 100%).  

Substantial economic costs either directly (i.e. habitat restoration, monitoring, or captive 

rearing programs) or indirectly due to lost opportunity costs for activities (i.e. resource 
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extraction, development, recreation) that might halt when species are listed as imperiled, will 

bring extra scrutiny. This is especially true when the criteria for which the species is listed is 

based primarily on past trends or predicted future trends and at present the species is still 

relatively abundant and extinction is not perceived as being an imminent threat. This has been 

the case in fisheries where it has been argued that the thresholds of decline levels for 

commercial marine species under IUCN Red List criteria are overly precautionary (Punt 2000, 

Hutchings 2001, Hutchings and Reynolds 2004, Dulvy et al. 2005, Godfrey and Godley 2008).  

Similarly, when the United States Fish and Wildlife Service (USFWS) evaluated the cerulean 

warbler (Setophaga cerulean) for protection under the Endangered Species Act, they found 

listing not warranted despite longstanding and continuing declines in part because the species 

remains relatively abundant (US Fish and Wildlife Service 2006).  

The IUCN first began to develop a comprehensive monitoring and data collection 

program for the world’s flora and fauna and set out to define extinction risk in concrete 

biological terms in the 1970’s (Scott et al. 1987) and adopted the first set of objective rule-

based criteria in 1994 (IUCN 2012).  Since that time the Red List criteria have undergone several 

revisions, with the most recent rules adopted in 2001 (Mace et al. 2008, IUCN 2012).  One 

approach that has been used to evaluate how well the IUCN Red List criteria assess extinction 

risk is to look for agreement between Red List categories and independent evaluations of 

population health. Dulvy et al. (2005) compared Red List status of harvested marine fisheries to 

the International Counsel on the Exploration of the Sea (ICES) evaluations of safe exploitation 

levels. They did not find any ‘false alarms’ where Red List criteria indicated a species was 

imperiled but ICES evaluated the harvest levels as safe (Dulvy et al. 2005). Hutchings & 

Reynolds (2004) found that Red List criteria based on observed percent declines are good 

indicators of ability for marine fish populations to recover if not probability of extinction, even 

when total abundances might still be high. Harris et al. (2012) found general agreement 

between the species listed under the United States Endangered Species Act (ESA) and IUCN Red 

List, although the ESA was generally found to be less precautionary. Species listed as vulnerable 

under IUCN were less likely to also be listed under ESA than species classified as endangered or 

critically endangered (Harris et al. 2012).  
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Another approach that can be used to evaluate rule-based risk assessment measures is 

by applying them retrospectively to populations for which the trajectory and fate is known. 

Keith et al. (2004) used this approach by comparing assessments of extinct and extant species 

pairs. Here I use simulated trajectories modeled after a recent extinction event and apply IUCN 

Red List criteria to trajectories that either resulted in extinction or remain extant by the end of 

the simulation. I used simulated population trajectories for a model based on the passenger 

pigeon (Ecotopistes migratorius) extinction in North America in the nineteenth century. I chose 

this species as a case study because it showed marked population declines but was reportedly 

still relatively abundant up to within a decade or two of its believed extinction in the wild 

(Schorger 1955).  This species is also a relevant case study in this context because little was 

done in terms of management or conservation which might have impacted the trajectory. 

Therefore the trajectories can be examined for ‘false alarms’ without the confounding factor of 

recovery resulting from conservation actions.  

In order for a rule-based risk assessment approach to be useful as a conservation tool, it 

is important to establish the amount of time available from the point when imperiled status is 

first recognized to the point when the species is beyond recovery. This kind of metric provides 

an estimate of how much time is available for mobilizing conservation action. Here, I also 

examine each trajectory in terms of when it is first recognized as imperiled and how long it 

spends in each category.    

 

3.2 METHODS 

3.2.1 Hindcast annual IUCN Red List assessment 

I applied IUCN Red List criteria separately each time step to individual stochastic 

replicate model runs from stage-based matrix population models of passenger pigeon. Details 

of the listing criteria and guidelines for their use are available from the IUCN (2012; for 

summary table see http://www.iucnredlist.org/documents/2001CatsCrit_Summary_EN.pdf).  
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The models analyzed here are described in Chapter 1. I treated each trajectory 

generated from the model as a possible realized truth. In other words, I regarded population 

numbers from each stochastically generated population trajectory as if they were field data 

collected without measurement error.  I conducted this analysis independently for each year 

(i.e., model time step), using the data generated from the initialization of each model trajectory 

up to the time step being considered without knowledge or speculation of the future of that 

trajectory. To avoid circularity, I did not consider any Red List criteria involving forecasts of 

future population trajectories or future risk analysis such as criteria A3, A4 or E.  

I also did not consider Red List criteria based on geographic range or occupancy such as 

under criteria B or D2.  Despite the fact that a considerable amount of total breeding habitat 

area is lost during the course of the simulation, the remaining habitat defining the area of 

occupancy (AOO) and extent of occurrence (EOO) at the end of the simulation are still too large 

to trigger the thresholds for listing under criteria B or D2.   

I analyzed the raw output of 467 separate models from RAMAS Metapop (Akçakaya and 

Root 2007). The models chosen for this analysis were the 467 out of 6000 possible passenger 

pigeon models that resulted in at least one replicate falling below a threshold of 1000. The 

models were developed to explore the parameter space and possible factors leading to the 

extinction of the passenger pigeon (see Chapter 1). The models used in this analysis all included 

a simulated commercial harvest beginning in the model year 1845 and continuing until the end 

of the simulation in 1900. The simulated harvest increased with population to a maximum 

harvest level between 1 and 5 million birds. Each model was run with 1000 replicates.  

I analyzed this subset of models because I was interested in determining the amount of 

time that conservation workers of the day would have had to enact conservation actions had a 

diagnostic tool such as the Red List been available. Model trajectories that do not result in, or 

even approach, extinction are not representative of the actual trajectory of the population 

which is known to have been extinct in the wild before 1900.   
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To simulate Red List assessment of each trajectory, I used the "raw output" option of 

RAMAS Metapop, which gives the simulated population numbers for each time step of each 

replicate, instead of the results displayed by the program's user interface, which are 

summarized over replicates. The raw output also partitions the population data based on age or 

stage class and individual subpopulations if the model is structured as a Metapopulation. 

Therefore the raw output can be treated as if they were annually repeated full-population 

census data with each replicate being a possible time-series of such data.  

I implemented the analysis in R (ver.3.0.0, R Core Team 2013) by coding a rule set based 

on the current IUCN Red List criteria rules and guidelines (IUCN 2012). The R script I developed 

for this purpose (see Appendix) reads the raw output for each replicate and calculates the Red 

List category (and the criteria that triggered the category) for each time step based on the 

information up to and including that time step (see details below).  This R script also uses R 

functions for reading in results and model parameters from RAMAS Metapop (developed by M. 

Aiello-Lammens).  

By applying the Red List criteria separately for each time step and each replicate I was 

able to track each population trajectory as it progressed through the threat categories towards 

extinction. I smoothed the results by giving each Red List category a numerical score and 

calculating a 5-year moving window average. I implemented this smoothing to minimize the 

effects of stochastic year-to-year switching between categories which can happen when the 

trajectories approach the threshold boundaries between two threat categories. I also ignored 

category switches (either upgrades or downgrades) of 3 years or less if the classification 

returned to the original category (for example going from vulnerable to near threatened if it 

returns to vulnerable within 3 time steps). This makes the simulated assessments more 

realistic, because most taxa are assessed for the IUCN Red List at 4 to 10 year intervals.  All 

models include a 20 year spin-up period for model calibration which I excluded from the Red 

List analysis.  

I recorded the time step at which the criteria were met for each Red List category and 

the number of years spent in each category before advancing to the next category or going 
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extinct. I analyzed trajectories ending in extinction separately from trajectories that did not 

result in extinction prior to the end of the simulation to see if they showed substantial 

differences in Red List categorization trends.  

3.2.2 Calculation of Red List criteria 

Criterion A 

IUCN Red Listing under criterion A is met when there are substantial reductions in 

population size. Red List guidelines stipulate that these reductions should be independent of 

inter-annual variation or fluctuations (Red List guidelines). Criterion A1 is met when the cause 

of the reduction is known, reversible, and has ceased. In the case of passenger pigeon, the 

causes for the population reductions were driven by habitat loss and harvesting, neither of 

which ceased before extinction. Therefore, I did not consider criterion A1 in this study.  

Criterion A2 is met when the cause of the reduction is either unknown, non-reversible, 

or ongoing. The criterion stipulates that the reduction is calculated over the past three 

generations or 10 years whichever is longer and can be based on direct observation of 

abundance, an appropriate index measure of abundance, decline in spatial measures (extent of 

occurrence, area of occupancy, or habitat quality), actual or potential harvest levels, or inferred 

population declines because of invasive species, hybridization, pathogens, pollutants, 

competitors, or parasites. Observed reductions of 80%, 50%, or 30% would qualify the species 

for classification as critically endangered (CR), endangered (EN), or vulnerable (VU), 

respectively. Classification as near threatened (NT) is less strictly prescribed, but observed 

population reductions of greater than 20%, but less than 30% would qualify the species for that 

status.  

I determined if criterion A2 was met by calculating the slope of a linear function of the 

natural log of the number of mature individuals at each time step. The population trend each 

year was calculated for the timeframe of the 3 previous generations utilizing a moving window 

function. Generation time is calculated from the stage matrix and ranges from 5.1 to 6.5 years 

(see Chapter 1).  I treated the population trend, or slope of the curve, as the observed 
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population growth rate, r, and transformed this into percent reduction calculation using the 

formula 100-ert *100, where t is 3x generation time. I applied the thresholds described above 

for determining classification as CR, EN and VU. I used a threshold of 20% decline for 

classification as NT. Classification under criteria A3 or A4 both involve projections to future 

population trends and I therefore did not consider them for this analysis as discussed above.  

Criterion C 

IUCN Red Listing under criterion C can occur when the total population size is small and 

is coupled with observed declines. Population sizes of less than 250, 2,500, or 10,000 mature 

individuals would qualify the species as CR, EN, or VU, respectively, when the species is also 

experiencing a continuing decline. Each threat level has a specified severity of this continuing 

decline specified as 25% over 3 years or 1 generation for classification as CR; 20% in 5 years or 2 

generations for EN; or 10% in 10 years or 3 generations for VU. Alternatively, declines of any 

level if also accompanied by extreme population fluctuations or a risk-prone distribution of 

individuals in sub-populations may also qualify the species to be listed as threatened under 

criterion C. To qualify as NT under Red List guidelines the species should be very near the 

thresholds described for listing as VU (IUCN Red List guidelines).  

To determine if criterion C was met, I checked the number of mature individuals against 

the thresholds above, then determined if any of the sub-criteria were met. I defined extreme 

fluctuations for this criterion as the ratio between the maximum and minimum number of 

mature adults over the past 2 generations being greater than 10.  It should be noted that under 

criterion C, continuing declines of any level, if coupled with risk-prone metapopulation 

structure (such as 95% or more of all mature individuals in a single sub-population), would 

qualify the species for listing if the thresholds for low abundance were met. In the case of this 

model of passenger pigeon, since it was modeled as a single panmictic population, any negative 

population trend by default would meet this sub-criterion. I defined the NT classification under 

criterion C as being met if the population size was estimated to be fewer than 15,000 mature 

individuals and declines were as described above for VU.  
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Criterion D 

Species achieve threatened status under criterion D when population sizes are very 

small. The criterion for CR is met when the population falls to 50 or fewer mature individuals. 

Criterion for EN is met when the population falls to 250 individuals. Classification of VU under 

criterion D is met when either the population falls to 1,000 individuals or either of the following 

conditions are met: 1) the occupied area is less than 20km2 or 2) there are 5 or fewer locations.  

Because the definition of location depends on the spatial distribution of threats, and such 

information is not available from simulation results, I only considered the population level 

thresholds for criterion D and ignored the spatial criteria under VU D2. I considered criterion D 

met for NT if the number of mature individuals fell to 1,500 individuals. 

 

3.3 RESULTS 

Out of the 467,000 model replicates (467 models with 1,000 replicates each) 21,297 

result in extinction before the end of the simulation. Of these extinction replicates, the majority 

are categorized as non-threatened (least concern or near threatened) through most of the first 

half of the simulation. Around the mid-century mark, the proportion of trajectories classified as 

threatened (vulnerable, endangered, or critically endangered) rises sharply with the onset of 

the simulated commercial harvest. By 1855, 10 years after the onset of the commercial harvest, 

more than 90% of replications are classified as threatened (Figure 3-1). The mean extinction 

year is 1892, with the earliest extinction occurring in 1863.  The mean number of years 

continuously listed in a threatened category before going extinct was 43 years, with the most 

time spent listed as CR. On average 23 years were spent listed in the CR category, 12 years in 

EN, and 4 years in VU (Figures 3-2 and 3-3).  

Trajectories that do not end in extinction show lower proportions of threatened status 

overall throughout the simulation compared with replications that end in extinction. Non-

extinction trajectories show a similar spike in the proportion meeting threatened status shortly 

after the onset of the simulated commercial hunting, yet approximately 1/3 of the trajectories 
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are classified as non-threatened after this point. Relatively few trajectories are classified as CR 

even toward the end of the simulation (Figure 3-1).  

In almost all cases, the listings were driven by meeting criterion A2 at the highest level. 

In 50 replicates, criterion C was also met briefly at the CR level. However, it should be noted 

that IUCN Red List criteria stipulate that the highest threat level achieved for any criterion 

determines the listing category. For example if criterion A2 was met at a CR level and criterion C 

or D was also met, but at a lower threat level (EN or VU) for a given time step, only the CR due 

to A2 was recorded as the threat classification.  



 

48 

 

 

Figure 3-1  Proportion of replicates listed under IUCN Red List criteria each time step. A) 
replicates resulting in extinction and B) replicates without extinction 
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Figure 3-2  Number of years spent in each IUCN Red List category prior to extinction.  

 

 

Figure 3-3 Frequency distributions of the number of years before extinction that trajectories first 
enter each IUCN Red List category. For example, trajectories that eventually went extinct were 
typically classified as VU for the first time about 40 years before extinction.  
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3.4 DISCUSSION 

The results of this study highlight the essential roles that population monitoring and risk 

assessment play in preventing extinctions. Had a quantitative and objective evaluation tool, 

such as the IUCN Red List criteria, been available at the time it might have provided an early 

and evidence-based mechanism to focus the need for reversing the extinction-bound 

trajectory. There were some who were sounding the alarms over the rate that the species was 

declining. Not co-incidentally, this was likely around the same time the species would have 

qualified as threatened under Red List criteria. Protection laws were passed by various states in 

the 1870’s and 1880’s in an attempt to regulate the harvest (Hornaday 1913), but the 

restrictions carried little weight or enforcement and were largely ignored. The perception that 

passenger pigeon were still abundant masked the immediacy of the threat.  

If the extinction trajectories presented here are an accurate re-enactment of this 

extinction event, they demonstrate how the misperception that declining but still abundant 

species are at very low risk of extinction can lead to unintended consequences. Without 

accurate data collection and analysis of population trends through time, a sense that flocks 

seem smaller, or nesting colonies do not cover the area they once did, might not be obvious or 

alarming until population sizes are extremely reduced. Criterion C, small population size 

accompanied by continuing decline, is probably the criterion that is most accessible and easily 

perceivable to a general population where most observations of wildlife are casual. In this 

study, criterion C was only met rarely and the vast majority of listing criteria was met under 

criterion A2 (high rate of continued population decline). Without any data collection and 

analysis of abundance trends through time, the rate of decline was possibly not perceivable to 

the casual observer and therefore the true risk of extinction though most of the second half of 

the 18th century would have been obscured. The multiple criteria of the IUCN Red List allows 

different avenues for risk assessment. This fact might have been crucial for the passenger 

pigeon had it been available as a conservation tool in the 19th century. Different species might 

take different trajectories toward extinction and therefore should be assessed against as many 

criteria as possible.  
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All of the trajectories that resulted in quasi-extinction before the end of the simulation 

listed the species as imperiled under the Red List criteria (Figure 3-1A), meaning that there 

were no ‘missed opportunities’ or false negatives. Of the trajectories that do not reach the 

quasi-extinction threshold before the end of the simulation (Figure 3-1B), some proportion 

nonetheless are categorized as threatened at each time step. These can be thought of as being 

‘false alarms’ or false positives. However, it should be kept in mind that those trajectories 

which did not reach quasi-extinction shared the same model parameters as those that did (only 

models that had at least one trajectory reaching quasi-extinction were included in this analysis). 

All were on declining trajectories; they just did not decline to the threshold before the end of 

the simulation. Looking at the trajectories prior to the onset of commercial harvest in the mid-

1800’s when most of the habitat was still intact (see Chapter 1) gives a more accurate sense of 

the rate of ‘false alarms’ in the models. During this timeframe, random fluctuations primarily 

because of the species’ reliance on ephemeral food resources (tree mast) would occasionally 

result in multiple years of poor reproduction resulting in declining population trends. 

Approximately 1/3 of the time these trajectories met the criteria for ranking as VU or EN 

despite extinction not being imminent. However the overall patterns show a good 

discrimination between trajectories that did or did not result in quasi-extinction (Figure 3-1).  

An important caveat to this study is that in real population studies it is very rarely 

possible to measure the true population size without error as I have assumed for the 

simulations I present here. Most population trend data are collected with various forms of 

measurement error that can obscure true population size. However, it is unlikely that 

measurement error will have much impact on estimates of population trends through time 

(Meir and Fagan 2000). If measurement error or missing data is of concern several different 

approaches are available to account for poor data problems (Holmes 2001, 2004, Holmes et al. 

2012). 

Had the appropriate data been collected and the appropriate analysis been conducted 

to recognize the threat level, this study suggests that there could have been several decades in 

which to enact appropriate conservation measures. For species threatened by agricultural 
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activities and hunting, formal recognition of threat status (such as through Red Listing) can 

result in improvement in the status (Hayward 2011).  Presumably this is possible because 

conservation measures and changes in legislation can relieve these types of threats more 

quickly than more diffuse or chronic threats such as hard infrastructure encroachment, invasive 

species or climate change.  In an analysis of 37 mammal species that showed improved status 

between subsequent Red List assessments (Vié et al. 2009) more than half of the implemented 

conservation actions included hunting restrictions (Butchart et al. 2006, Hayward 2011).  It is 

important to note that all of the simulations presented in this study included some level of 

commercial harvest, yet only a relatively small proportion of the replicates resulted in either CR 

threat status or extinction. The probability of the population declining to extremely low 

abundances is predicted by the highest levels of maximum commercial harvest (see Chapter 1).  

This suggests that commercial hunting per se was not unsustainable, only the intensity and 

manner (in terms of disrupting reproduction) in which it was carried out. In addition, the levels 

of commercial harvest in the models that induce the highest risk were at the limit of what could 

be shipped, stored, and marketed before spoilage (Martin 1915).  Both the commercial market 

and local harvests resulted in extremely high levels of waste, where birds were harvested but 

spoiled before shipping or were left uncollected to decompose on the forest floor (Schorger 

1955). All this suggests that there would have been room to increase the efficiency of the 

commercial harvest with minimal impact to those with financial interests.    

It is impossible to know if enforcing regulations on the exploitation of passenger pigeons 

would have been enough to entirely prevent this extinction event. In addition to the mortality 

caused by hunting, the species was impacted by tremendous changes to the forested 

landscape. Total carrying capacity between 1800 and 1900 was possibly reduced by half 

because of land conversion related to pioneer settlement alone (see Chapter 1). This 

deforestation continued well into the 20th century. Even today, as much of that forest cover has 

regenerated throughout the Northeast and portions of the Midwestern United States, these 

second growth forests bear little resemblance to the late-successional deciduous and mixed-

deciduous forests that passenger pigeons relied on (Whitney 1996). Had the crisis of over-

harvest been averted, crisis levels of habitat-loss were still likely just a few years down the road 
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for this species. The passenger pigeon went extinct in the wild around the same time that 

federal management and oversight of forested lands were first established under the Forest 

Reserve Act of 1891 (Williams 2000) . Whether or not the species would have been able to 

persist into the 20th century as smaller flocks in a disturbed and fragmented landscape is purely 

speculation. What can be said with some degree of certainty is that recognizing that a species is 

at risk of extinction is a crucial first step toward averting that outcome.  
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4 Extinction risk assessment and Red-listing of species 
threatened with climate change 

4.1 INTRODUCTION  

IUCN Red List criteria has been shown to work well for identifying the current 

compendium of factors threatening species today (Hutchings and Reynolds 2004, Keith et al. 

2004, Dulvy et al. 2005, Hayward 2011, Harris et al. 2012) and provides ample warning for 

action (Chapter 2) even if recognition of threat status doesn’t always halt deterioration of 

populations (Butchart et al. 2004).  The Red List has also proven to be a useful tool in tracking 

the status of global biodiversity (Hoffmann et al. 2010) and the effectiveness of conservation 

action (Butchart et al. 2006, Rodrigues 2006).  

Although the IUCN Red List has proven to be a highly useful conservation tool for a 

number of threats encountered by species today, it has been suggested that the criteria as they 

stand may not provide sufficient warning to protect species impacted by ‘slow acting and 

persistent’ threats such as global climate change (Thomas et al. 2004).  Red List threat 

classifications are made on the basis of either recent data indicating the species is already 

headed toward extinction (criteria A – D) or evidence that projects a high risk of extinction in 

the near future (criterion E). The concern is that climate change may already be impacting 

species, but so gradually that waiting until observable signs of decline are evident may prove to 

be too late to take conservation action (Hannah 2011). The implication is that the horizons over 

which the IUCN Red List operates are too short (Thomas et al. 2004) especially for short-lived 

species (Akçakaya et al. 2006). Several alternative methods for identifying species as vulnerable 

to climate change have been proposed recently (Thomas et al. 2011, Young et al. 2012, Foden 

et al. 2013).  

To evaluate how climate change might influence the effectiveness of the IUCN Red List 

criteria as a tool for identifying species at risk, I used a set of models developed previously for 

forecasting extinction risk due to climate change for a number of endemic North American 
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reptiles and amphibians. I evaluated individual stochastic model replicates run under a climate 

change scenario by applying IUCN Red List criteria at each model year. I calculated the length of 

time spent in each threat category prior to extinction. I also measured agreement among listing 

criteria as a measure of robustness of classification.  

 

4.2 METHODS 

In Pearson et al. (in press), ecological niche models (ENM) were coupled with 

demographic models to forecast risk of extinction under three climate change scenarios: no 

climate change; a reduced carbon emissions scenario (Policy model), and a business-as-usual 

carbon emissions scenario (Reference model). Pearson et al. (in press) generated ENM based on 

occurrence data for 36 North American endemics under current climate and landscape 

variables. Pearson et al. (in press) then projected those distributions to annual future climate 

modeled variables thus generating 36 unique spatial trajectories of suitable habitat to the year 

2100. Those spatial models were then paired with age- and stage-structured generic life history 

(GLH) models designed to encompass the range of demographic parameters representing a 

typical snake, small salamander, large salamander, turtle, tortoise, or lizard. Pearson et al. (in 

press) sampled within the parameter space for each paired GLH and ENM to generate 40-50 

different spatially explicit demographic metapopulation models for each habitat-by-GLH 

combination. This modeling framework generated thousands of individual models representing 

realistic species scenarios with annual time steps tracking the impact of climate change. This 

previous study was constructed to explore what measurable life history traits and recent trend 

indicators might be useful for identifying species most at risk of extinction under climate 

change.  Here, I extend this analysis to test how well the IUCN Red List criteria might perform in 

predicting individual model trajectories resulting in extinction. Details of the listing criteria and 

guidelines for their use are available from the IUCN (2012; for summary table see 

http://www.iucnredlist.org/documents/2001CatsCrit_Summary_EN.pdf). 



 

56 

 

To isolate the impact of climate change as the primary risk-factor for this analysis, I only 

included models that showed low probability of extinction under a "no climate change" 

scenario (with probability less than 0.1).  I separated the remaining models depending on 

whether they showed an increased extinction risk due to climate change or not. Overall risk of 

extinction and increased risk due to climate change was determined running each model with 

1,000 replicates. Note that any individual model replicate resulting in extinction would give that 

model a positive extinction risk, although individual replicates may or may not result in 

extinction. I determined the IUCN Red List status annually for 10 replicates of each model run 

under a reference (business as usual) CO2 concentration of 750 ppm (WRE750; Wigley et al. 

1996) climate scenario model.  All together there were 1,680 models run for a total of 16,800 

individual replicates analyzed.  
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Figure 4-1  Schematic illustrating IUCN Red List analysis as applied to a single model replicate. 
Height of bars indicate the category the replicate would be classified under that model year 
considering data available up to and including that year. Blue dots indicate the criteria 
determining the Red List classification. Note that B1 and B2 are labeled separately for 
illustration purposes only; meeting either criterion would classify the replicate that year under 
criterion B. IUCN categories used in this analysis are: Least Concern (LC), Near Threatened 
(NT), Vulnerable (VU), Endangered (EN), Critically Endangered (CR), and Extinct (EX).  

 

Similar to the approach described in Chapter 2, I evaluated each simulated trajectory 

separately against the IUCN Red List criteria. I applied the criteria at annual timesteps to 

generate a continuous time-line of Red List categories for each model replicate (see Appendix). 

Also as in Chapter 2, I only considered the information available in each time-line up to and 

including each time step under evaluation without consideration for the ultimate fate of the 

trajectory (Figure 4-1). I did not consider Red List criteria that involved making future 

projections such as criteria A3, A4, or E, in order to avoid circularity.  
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The details on the application of each individual Red List criterion are as described in 

Chapter 2. However, whereas I did not consider the criterion based on observed spatial 

parameters for the passenger pigeon (criteria B and D2), I do consider them here. The 

passenger pigeon as a nomadic breeder had a very unique and specialized manner in which it 

used its habitat, which made concepts such as area of occupancy (AOO) and extent of 

occurrence (EOO) problematic in the context of IUCN Red List criteria. Many of the species 

considered here have limited ranges and low dispersal. For these species, the spatial 

parameters EOO and AOO are relevant to the traditional definitions of how geographic 

constraints are thought to contribute to extinction risk (Gaston 1991, 1994).  

Criterion B is met under IUCN Red List rules if EOO (B1) or AOO (B2) fall at or below 

threshold levels in conjunction with at least two of three additional aggravating circumstances. 

These additional circumstances are a) severe fragmentation or existing at a single location or 

few locations (depending on the threat category), b) continuing decline, or c) extreme 

fluctuations.  The term severe fragmentation is used to identify conditions where most of a 

species total population is found in relatively small and isolated subpopulations (IUCN 

Standards and Petitions Subcommittee 2010). Here I define severe fragmentation as being met 

if more than half of the total adult population exists in populations of fewer than 100 total 

individuals that are isolated from the next closest population by a distance greater than 3 times 

the average dispersal distance.  I determine the number of locations as the number of extant 

subpopulations.  The definition for continuing decline under criterion B is slightly less strict than 

declines specified under criterion C because the designation is being made in conjunction with 

being spatially restricted (IUCN Standards and Petitions Subcommittee 2010).  Here I define 

continuing decline as any negative trend in the total number of mature individuals, the total 

number of subpopulations, EOO, or AOO observed for at least the last generation or 3 years 

(whichever is longer). Extreme fluctuations or high variability in population sizes through time is 

associated with increased extinction risk. IUCN Red List criteria allows for taking a species 

biology, distribution, and dispersal patterns into account when establishing when this 

subcriterion is met (IUCN Standards and Petitions Subcommittee 2010). To establish a binary 

rule for determining if extreme fluctuations are occurring or not, I defined it as any 10-fold 



 

59 

 

increase or decrease between the smallest and largest values in number of mature individuals, 

number of subpopulations, EOO, or AOO over the past 2 generations.  

A species would be considered threatened under criterion B on the basis of EOO if any 

two of the conditions described above were met and EOO was less than 100km2 for critically 

endangered, 5,000km2 for endangered, or 20,000km2 for vulnerable. The thresholds for AOO 

are 10km2 for critically endangered, 500km2 for endangered and 2,000km2 for vulnerable. 

These threshold levels are as prescribed by IUCN standards (IUCN Standards and Petitions 

Subcommittee 2010). The near threatened category is less precisely defined by the IUCN. For 

this analysis I considered criterion B met if any of the above threshold requirements was met 

along with any one of the aggravating circumstances. I also considered criterion B met for near 

threatened if two of the aggravating circumstances were met, and EOO was less than 

30,000km2 or AOO was less than 3,000km2.  

Criterion D is reserved for identifying species whose population abundance has fallen to 

extremely low levels. The IUCN Red List allows for a special case of listing species as VU under a 

subcriterion D2 for species with severely restricted distributions, typically AOO less than 20km2 

or 5 or fewer locations. Criterion D2 is meant for cases where either the conditions that led to 

this severely restricted range are still actively threatening the species or the circumstances of 

the restriction could rapidly deteriorate and cause the species to become CR or EX (IUCN 

Standards and Petitions Subcommittee 2010). Although the IUCN does not necessarily advocate 

that these threshold levels to be applied as a strict rule-set for D2, I applied them in such a way 

here both for practicality and because within the context of these models climate change 

continues to be a threat. I also allowed listing at NT under criterion D2 if AOO was less than 

30km2. 

 

4.3 RESULTS 

Of the 1,680 models run, 1,069 did not demonstrate an increased risk of extinction due 

to climate change, 601 did show an increased risk, and the remainder (n=10) had extinction risk 
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greater than 0.1 under the ‘no climate change’ scenario and were not analyzed further. Eighty-

three percent (4,986 of 6010) of individual replicates from models that showed increased risk 

due to climate change resulted in extinction before the end of the simulation (Figure 4-2), 

whereas, only 3 out of 10,690 replicates from models not showing an increased risk from 

climate change resulted in extinction.  For models that showed increased risk, 85% of model 

replicates were already classified as threatened (IUCN categories VU, EN, or CR) in simulation 

year 2010 compared with 54% of the replicates that did not show increased risk due to climate 

change. As the simulation progressed, nearly 100% of the replicates that showed increased risk 

were eventually classified as threatened if not already extinct (Figures 4-2 & 4-3). Models that 

did not show increased risk due to climate change eventually reached a relatively stable 

proportion where approximately 80-88% of replicates were classified as threatened (Figure 4-

3). Many of the models that showed little to no risk of extinction under climate change 

nonetheless showed declining trends compared with the models run under a constant climate.  

Under the climate change scenario, 58% of these low extinction risk models showed decreases 

in total abundance over the course of the model with abundance in year 2100 only 0.25 of the 

abundance in year 2000 on average (s.d. 0.30). 

All replicates that resulted in extinction were classified as threatened prior to that 

event. For these replicates, the final trajectory through the IUCN Red List categories toward 

extinction transitioned rapidly through the NT and VU categories and in general spent longer 

periods of time in the EN and CR categories (Figure 4-4). It should be noted that by model year 

2010, few of the replicates were classified as LC or NT. Therefore, the number of years spent in 

these categories may have been truncated by the replicates beginning the analysis as already 

threatened, near-threatened, or extinct. However, examination of only the replicates that 

began the simulation as LC and ended in extinction showed a similar pattern of time spent in 

each category and total number of years threatened before extinction.  

The criteria determining Red List classification varied by both Red List category and 

whether the model showed increased risk of extinction from climate change (Table 4-1). The 

criteria based partially on spatial parameters (B1, B2, as well as D for VU and NT) were strongly 
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influential, particularly in determining the listing of models not under increased risk from 

climate change. However, the influence of these criteria varied across Red List categories.  

In general there was stronger agreement between listing criteria in the determination of 

threatened categories (VU, EN, or CR) for replicates from models that demonstrated increased 

risk from climate change (Figure 4-5). By Red Listing rules, the criteria meeting the highest level 

of threat determines the listing category. Therefore, when a threat category is determined by a 

single criterion (for example CR by criterion C) it can be assumed that all other criteria displayed 

a lower threat level (criteria A, B, and D would have showed lower threat by this example). 

Seventy-four percent of replicates from models not showing an increased risk from climate 

change were listed as threatened on the basis of a single criterion, whereas this was the case 

for only 47% of replicates from climate risk models (Figure 4-5).  



 

62 

 

 

Figure 4-2  Distribution of IUCN Red List classification of model replicates in simulation years 
2010, 2050, and 2100 for models that either do or do not demonstrate an increased risk of 
extinction due to climate change. IUCN categories used in this analysis are: Least Concern 
(LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN), Critically Endangered (CR), 
and Extinct (EX).  
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Figure 4-3  Proportion of model replicates in each IUCN Red List category by year. A) shows 
replicates from models that showed an increased risk of extinction due to climate change and B) 
shows replicates from models that did not exhibit an increased risk attributable to climate 
change.   

 



 

64 

 

 

Figure 4-4  Number of continuous years spent in each IUCN Red List category prior to 
extinction for the 4,986 replicates that end in extinction.  

 

 

Table 4-1 Proportion of each IUCN Red List category that met each listing criterion in any model 
year. Note that totals for each category do not sum to one because criteria are not mutually 
exclusive and often multiple criteria are met.  

 
No increased risk due to climate 

change  
Increased risk due to climate 

change 
IUCN Red List 

Category 
A2 B1 B2 C D 

 
A2 B1 B2 C D 

CR 0.25 0.88 0.68 0.22 0.10 
 

0.43 0.62 0.58 0.61 0.44 

EN 0.42 0.43 0.43 0.39 0.04 
 

0.43 0.37 0.47 0.66 0.15 

VU 0.22 0.14 0.15 0.34 0.53 
 

0.17 0.52 0.50 0.45 0.46 

NT 0.12 0.78 0.80 0.10 0.17 
 

0.03 0.85 0.92 0.08 0.10 
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Figure 4-5  Agreement of Red List criteria when a threatened category (VU, EN, or CR) was 
assigned. Listing criteria considered here were criteria A – D. Note that by Red List assessment 
rules criteria not in agreement would have assigned a lower threat category.    

 

4.4 DISCUSSION 

The early warning time necessary for effective conservation of species threatened with 

extinction is difficult to determine, as it depends on the specific mechanisms through which 

climate change is affecting the species, the nature of conservation actions that are feasible, and 

social, institutional and economic constraints, among other factors.  However, for most 

situations, a warning time of several decades might be considered sufficient.  For replicates 

which ultimately resulted in extinction, the Red List criteria considered here did provide 

advanced warning and did not miss any replicates. It would be unlikely for a species to go from 

a non-threatened category to extinction between recommended re-evaluation intervals when 

climate change is a major threat. However, the progression through the NT, and VU categories 

were rapid with more time spent in EN and CR prior to extinction. In general, it is more 
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desirable to take conservation action toward species recovery before a species is critically 

endangered. The costs of recovery generally increase while the likelihood of success generally 

decreases as a species becomes more imperiled. The short duration of time spent in lower-risk 

categories may result in species headed toward imperilment being overlooked as candidates for 

conservation until the situation is dire.  

It is difficult to predict or anticipate how long a species is likely to spend in any given risk 

category. It is highly dependent on the rate and shape of the decline curve which can be 

influenced by the type of threat, whether impacts are proportional to population size, 

increasing or decreasing in intensity,  are on-going,  or happening all at once (Mace et al. 2008, 

Di Fonzo et al. 2013). Aside from listings based on criterion E (projected probability of 50% in 10 

years for CR, 20% in 20 years for EN, and 10% in the next 100 years VU), IUCN Red List criteria A 

through D do not make assertions about probabilities of extinction within any specific 

timeframes (Akçakaya et al. 2006, Mace et al. 2008). This is despite the common assumption 

that they are (Crosby et al. 1994, Thomas et al. 2004, Sekercioğlu et al. 2004), or at least ought 

to be (Brooke et al. 2008, Brooke 2009), roughly equivalent. Assuming that the trajectory 

toward extinction is sequential through all categories and that the rate of extinction is constant, 

(Brooke et al. 2008) estimated that the number of years spent in each category should decrease 

with increasing threat level. Here I found the opposite pattern, implying that the assumptions 

outlined for this estimation were not met. This raises an important issue since failure to 

conform to the anticipated timeline in terms of not advancing to a higher threat level or 

persisting longer than a predicted extinction might be attributed to the effects of conservation 

actions when it’s possible there was little impact of conservation – only a mistaken assumption 

of how long the progression toward extinction should take. I point out that in the models 

presented here there were no conservation actions represented. The changing quantity, quality 

and spatial arrangement of habitat patches caused by climate change interacting with the life 

history characteristics, density dependence, and dispersal of the modeled species often 

resulted in fluctuating rates of decline (and sometimes periods of increasing abundance) in 

individual model trajectories. This in turn caused some replicates’ transitions through the Red 

List categories to include reversals to lower risk categories and long residence times.  In the 
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absence of knowledge about the details of a particular species, the specific threats it is facing, 

and the measured results of conservation actions taken (Butchart et al. 2006, Rodrigues 2006), 

the more conservative approach of not assuming an expected trajectory or timeline (Hoffmann 

et al. 2010) may be advisable, particularly when the primary threats include climate change.  

A large proportion of the replicates from models that did not show high risks of 

extinction from climate change were nonetheless categorized as threatened (Figures 4-2 & 4-3). 

This would imply that the Red List may occasionally do a poor job of discriminating between 

replicates that are threatened and those that are not.  However, threat listings for replicates 

that did not result in extinction before the end of the simulation do not necessarily indicate, for 

several reasons, that the Red List is in general overly precautionary.  First, it should be noted 

that a large proportion of the threatened listings for the lower risk models were listed under 

the spatial-based criteria (B1, B2, as well as D for VU and NT; Table 4-1). This may indicate a bias 

particular to the species these models were constructed after. Many of the species selected for 

inclusion in this study were done so because they are North American endemics, many with 

relatively small ranges. This may have predisposed these models toward meeting the criteria 

based in-part on spatial parameters (note that B1 and B2 also require additional indicators to 

also be present in addition to the spatial thresholds). 

 Second, the fate of these replicates beyond the time-frame of the simulation is not 

known. The models these replicates were drawn from may have had a low probability of 

extinction before the end of the simulation, but extinction risk is not always the most useful 

measure of population viability (Ginzburg et al. 1982, McCarthy and Thompson 2001, Reed et 

al. 2002, McCarthy et al. 2003). In this study I sorted the models based on whether climate 

change increased the risk of extinction because that was the ultimate outcome I was primarily 

interested in. Many of the models that did not demonstrate an increased risk of extinction did  

nonetheless show greater levels of decline overall compared to models run under a constant 

climate scenario (see Results). Given that the Red List was designed to be precautionary (Mace 

et al. 2008) it is to be expected that it should have some difficulty distinguishing between 

replicates headed toward extinction and replicates merely declining (Keith et al. 2004).  



 

68 

 

The third reason why these results don’t necessarily cast the Red List as overly 

precautionary is that in this modeling scenario I had perfect information on all aspects of the 

populations with which to apply the criteria, which is not the reality for most species 

assessment. The Red List takes the generally precautionary approach of allowing the criterion 

which meets the highest threat level to determine the overall listing category rather than 

seeking agreement over multiple criteria. Instances where data are insufficient to evaluate a 

species against all of the criteria generally results in listing species at lower threat levels if the 

data that is missing is that which would have met the criterion for a higher listing (Keith et al. 

2000). In this study the vast majority (74%, Figure 4-5) of threatened status listings from models 

not showing increased risk of extinction are based on a single criterion. It is reasonable to 

assume that if a more realistic amount of information was used in this analysis the rate at which 

replicates were listed as threatened would be lower and at lower threat levels. Whereas for the 

models showing increased risk of extinction, more than half of the threatened listings showed 

agreement between at least two criteria (Figure 4-5). Therefore those results should be more 

robust to missing data.   

Although this study goes beyond a simple climate envelope approach to risk assessment 

due to climate change by incorporating realistic life history and dispersal dynamics, there are 

still some notable avenues whereby species’ extinction risks may be impacted by climate 

change that are not addressed here. Pearson et al. (in press) modeled climate change as 

altering the amount and physical configuration of habitat in the landscape gradually through 

time. The suitability values of the habitat patches were also impacted by the shifting bioclimate 

variables, which impacted the dynamics of the population by altering the carrying capacity. 

Thus climate change in this study influenced vital rates through the density dependence 

function rather than through physiological tolerances to specific temperature or precipitation 

extremes (Pörtner et al. 2006, Deutsch et al. 2008). In addition, changes in temperature or 

precipitation regimes may affect species in other complex and sometimes unpredictable ways 

such as by altering fire regimes (Keith et al. 2008), reducing the availability of pollinator 

(Memmott et al. 2007) or prey species (Fordham et al. 2013), or by increasing predation (Harley 

2011) or disease (Pounds et al. 2006). Nor do the Pearson et al (in press) models used for this 
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study address the possibility of genetic local adaptation.  Incorporating these dynamics into the 

forecast of extinction risk due to climate change is best addressed on a species-specific basis 

rather than through a multi-species approach such as this. Still, many of these complex factors 

have already shown to be implicated in local extinctions (Cahill & Aiello-Lammens et al. 2013) 

and are likely to continue in the future. 
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5 Conclusions 

The notion that natural resources and wild species are not inexhaustible is relatively 

new to this country and many other nations around the world, as are organized systems for 

monitoring and conservation. In the last century, risk assessment for individual species has 

become a dominant framework in which to organize conservation priorities (Scott et al. 1987). 

Only in the last few decades has the standard and goal become to set a priori quantitative 

thresholds and evaluate all known species into threat categories (Mace et al. 2008). As this 

framework has evolved, the utility of being able to identify and take action on individual or 

groups of species has become apparent  (Cart 1973, Smith 1976). Going forward, the intensity 

of many of the known threats to species (e.g., resource extraction and land use change) will 

only intensify as the impact of new threats such as climate change become apparent. Having 

the most precise and defensible risk assessment tools is, and will continue to be, important for 

maintaining biodiversity.   

Before looking forward, sometimes it is useful to first reflect on the past. I used the 

passenger pigeon (Ectopistes migratorius) as a case study for how an abundant and wide-

spread species can rapidly decline to extinction. I conducted a retrospective population 

modeling analysis to quantitatively explore the interaction of anthropogenic impacts and 

intrinsic life-history characteristics that may have led to the extinction of this species. I found 

that high mortality and nest disturbance from the commercial harvest industry interacting with 

slow population growth rates and a high inter-annual variation due to the species’ reliance on 

ephemeral food resources presented the most probable scenario. My models show that 

although habitat loss drove population levels downward throughout the 18th century, habitat 

loss does not explain the extinction event. Only commercial harvest at very intensive levels 

resulted in extinction-level declines in the model. This harvest intensity was likely beyond the 

capacity of what the rail-lines and processing facilities would have been able to process at the 

time (Martin 1915) implying that the waste in the system (Schorger 1955) cause a very high 

level of unnecessary mortality. These results have important implications for other species that 
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are commercially harvested or are impacted as by-catch species especially if they have a 

propensity for high variability in either reproduction or survival rates.  

 The application of the IUCN Red-listing criteria to simulated trajectories of this 

passenger pigeon allowed me to determine how much time might have been available for 

conservation action had a tool like the Red List criteria and the appropriate monitoring data 

been available. I found that the Red List would probably have identified the species as 

endangered shortly after the expansion of the commercial industry and possibly decades before 

casual observers began to note that the species’ seemed to be declining. I found that all 

simulated trajectories that resulted in extinction were identified at threatened by the Red List 

criteria prior to extinction. Most of those threat listings were made under criterion A2 

(observed declines) rather than criteria based on small population sizes (criteria C and D). In the 

models, the population sizes only reached threatened-level thresholds in the last few time-

steps before extinction after decades of decline. These results highlight the importance of data 

collection and monitoring. The extinction of the passenger pigeon was described at the time in 

terms of the species simply ‘vanishing’ and many were incredulous that a species once so 

abundant could go extinct. This study demonstrates how allowing different avenues for 

assessing risk is a precautionary approach that would have identified this species as at risk in a 

more timely manner than waiting until the population was at extremely low levels. This finding 

is highly relevant for modern conservation because there has been skepticism over basing risk 

assessments on observed declines when total population numbers imply a species is still 

abundant, this skepticism is especially relevant for species under commercial harvest. These 

results also highlight the fact that there are multiple avenues toward extinction and it should 

not be assumed that every species will display the same risk indicators. 

I next turned my attention to the future to evaluate how the current IUCN Red List 

criteria might be used for conservation of species likely to be negatively impacted by global 

climate change.  Because the effects of climate change are thought to be gradual but persistent 

there is concern that species may not manifest the threatened indicators within the time 

frames used by the IUCN Red List. Or once they do trigger the threshold criteria, conservation 



 

72 

 

would be extremely challenging. I sought to address this by examining a set of modeled species 

under a climate change scenario. I found that for the models predicting extinction due to 

climate change the IUCN Red List provided advanced warning with no models going to 

extinction without first being classified as threatened. I also found that it would be unlikely for a 

species to go from a non-threatened category to extinction between recommended re-

evaluation intervals when climate change is a major threat. However, I did find a general 

pattern where the models progressed rapidly through the lower threat level categories. This 

may indicate a potential problem because the costs of recovery generally increase while the 

likelihood of success generally decreases as a species becomes more imperiled. In the near 

future identifying extinction risk and taking action to prevent extinctions due to climate change 

will be a major challenge for conservation professionals. The most effective conservation 

methods and approaches have yet to be determined whether it be establishing corridors, 

protected area reserve networks, restoration, assisted migration, or a combination of the 

above. Therefore, how much time or advance warning risk assessment needs to provide is not 

clear. 

In general, I found further support for the conclusion that extinction risk assessment and 

threat ranking provides a clear, convenient, and accessible method for setting conservation 

priorities. This approach is also readily understood by the general public and policy makers. This 

aspect becomes very important when it comes to allocating resources or gaining support for 

conservation. The IUCN Red List threat categories have become a shorthand way of 

communicating extinction risk that is generally understood and broadly supported.  Preventing 

further anthropogenic extinctions while balancing the needs of a growing human population 

will be a challenge for the foreseeable future  
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Appendix   

Application of IUCN Red List assessment criteria from RAMAS output in R 

The following is a portion of the code developed to apply IUCN Red List criteria (A2, B1, B2, C, and D; 

(IUCN 2012) from RAMAS population model output (Akçakaya and Root 2007) in the computing 

software R (R Core Team 2013). Red List categories are determined for each timestep of each 
stochastic model replicate.  
 
Definition of parameters: 
Nmature – total number of individuals of reproductive age.  
percentreduction – percent reduction calculated from the slope of the natural log of the linear trend in 

number of mature individuals. Calculated as a moving window function with an interval width the 
longer of [1] one generation or three years, [2] two generations or five years, [3] three generations 
or 10 years.  

EOO – extent of occurrence calculated as the area in km2 within the minimum convex polygon 
surrounding all occupied patches.  

AOO – area of occupancy in km2 calculated as either the sum of the area of occupied patches or 4 x the 
number of mature individuals (whichever value is less).  

SevereFrag – severe fragmentation condition is met when more than half of the total adult population 
exists in small and isolated subpopulations. A subpopulation is considered small if there are fewer 
than 100 mature individuals. A subpopulation is considered isolated if it’s closes neighboring 
patch (whether occupied or not) is more than 3 x the average dispersal distance away.  

singleLoc, fiveLoc,  tenLoc, and fifteenLoc  - number of occupied subpopulations is equal to or less 
than 1, 5, 10, or 15 respectively.  

ContDecline – continuing decline determined as any current negative trend in number of mature 
individuals, extent of occurrence, or area of occupancy.  

ExFluc2gen – extreme fluctuations condition is met when the ratio of maximum abundance to minimum 
abundance over the previous 2 generations is equal to 10 or greater. 

LargestPopSize – number of mature individuals in the largest subpopulation.  
PropInLargestPop – proportion of the total mature population contained in the largest subpopulation.  

 
 
  ## IN FINAL TABLE: 
  ##   1 - Extinct (EX) 
  ##   2 - Critically Endagered (CR) 
  ##   3 - Endangered (EN) 
  ##   4 - Vulnerable (VU) 
  ##   5 - Near Threatened (NT) 
  ##   6 - Least Concern (LC) 
  ######################################Extinct############################## 
  # population is zero 
  Extinct <- Ntotal == 0 
  EX<-Extinct*1 
  EX[EX==0]<-NA 
  ##############################Critically Endangered####################### 

## CriterionA #### 
  # Criterion A here is applied as if the observed trajectory from the beginning of the simulation 
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  # up to the year for which the criteria is being applied is regarded as direct observation. 
  # Potential declines (future timesteps) are not considered.  
  # The criterion of threats being understood,  reversible,  
  # and ceased are assumed to not be met for simulations. Criteria A1, A3, and A4 are not considered.  
  # 
  # CR.A.2 80% reduction over 3 generations or 10 years whichever is longer 
  CRA2<-apply(percentreduction[[3]],2,function(x){ x >= 80})*1 
  CRA2<-replace(CRA2, is.na(CRA2),0) 
  CRA<-CRA2 

##Criterion B ## 
  ### Criterion B is met if B1 OR B2 is met 
  # CR.B.1 extent of occurrence (EOO) is less than 100km2 AND at least two a-c criteria 
  CRB1.part1 <- apply(EOO,2,function(x) { x < 100})*1 
  #### a-c criteria calculated below (same for B2)  
  # CR.B.2 area of occupancy (AOO), is less than 10km2 (part1) AND two of a-c criteria (part2) 
  #Part 1:AOO is less than 10km2 
  CRB2.part1<-apply(AOO,2,function(x){x < 10 })*1 
  #Part 2: At least two of a-c: 
  #CR.B Part 2 a: Severely Fragmented OR known to exist at only a single location 
  CRB.part2.a<-(SevereFrag+singleLoc >=1) 
  #CR.B Part 2 b: Continuing decline (Calculated above combined to single var) 
  #CR.B Part 2 c: Extreme fluctuations (Calculated above combined to single var) 
  #NOTE: This is for Extreme fluctions over 2 generations - 3 gen is option 
  #Determine if 2 of a-c is met 
  CRB.part2<-(CRB.part2.a+ContDecline+ExFluc2gen >= 2)*1 
  # CR.B1 and CR.B2 (combine parts 1 and 2) 
  CRB1<-CRB1.part1*CRB.part2 
  CRB2<-CRB2.part1*CRB.part2 
  CRB<-CRB2 + CRB1 >=1 
   

###Criterion C ###### 
  ### To meet this criterion Part 1 AND Part 2 most both be met 
  ### Criterion C - Part 1: Population size estimated to number fewer than 250 mature  
  CRC.part1<-apply(Nmature,2,function(x){ x < 250 })*1 
  #Criterion C - Part 2:  Contdition 1 OR condition 2 
  #Cond 1. Continuing decline of at least 25% within 3 years 
  #or one generation whichever is longer OR  
  #Cond 2. Continuing decline in N mature AND sub condition a or b:  
  #a: popualtion structure such that condition (i) OR (ii) 
  # (i) there are no subpopulation with at least 50 mature  
  # (ii)  at least 90% of mature indv. in single pop 
  #b: Extreme fluctuations in N mat (calculated over 2 generations change for 3) 
  CRC.part2.cond1<-apply(percentreduction[[1]],2,function(x){ x >= 25 })*1 
  CRC.part2.cond1 <- replace(CRC.part2.cond1, is.na(CRC.part2.cond1),0) 
  CRC.part2.cond2.ai<-apply(LargestPopSize,2,function(x){ x<=50 })*1 
  CRC.part2.cond2.aii<-apply(PropInLargestPop,2,function(x){ x >= .90})*1 
  CRC.part2.cond2.a <- (CRC.part2.cond2.ai + CRC.part2.cond2.aii >= 1)*1 
  CRC.part2.cond2.b <- ExFluc2gen.Nmature *1  
  CRC.part2.cond2 <- (CRC.part2.cond2.a + CRC.part2.cond2.b >=1) 
  CRC.part2.cond2 <- (CRC.part2.cond2*ContDecline.lnNmat)*1 
  CRC.part2 <- (CRC.part2.cond1 + CRC.part2.cond2 >=1)*1 
  CRC<-CRC.part1*CRC.part2  
   

###Criterion D ###### 
 ### Population size estimated fewer 50 mature 
  CRD<-Nmature < 50 
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  CRD <-CRD*1 
####Criterion E Not Calculated ##### 

#####  Determine Critically Endangered   ####### 
  CR<-(CRA+CRB+CRC+CRD)>=1 
  CR <- CR*1 
  #change 0's to NA's 
  CR[CR==0]<-NA 
  CR<-CR+1 
  #In the next step (i.e for Endangered" change 1 to 3, to create hierarchy) 
   
  ##############################Endangered####################### 
  

## Criterion A #### 
  # EN.A.1 70% reduction where cause is understood and ceased - not modeled 
  # EN.A.2 50% reduction over 3 generations or 10 years (and possibly ongoing) 
  ENA2<-apply(percentreduction[[3]],2,function(x){ x >= 50 })*1 
  ENA2<-replace(ENA2, is.na(ENA2),0) 
  ENA<-ENA2 
   

##Criterion B ## 
  ### Criterion B is met if B1 OR B2 is met 
  #EN.B.1 extent of occurrence (EOO) is less than 5000km AND at least two a-c criteria 
  ENB1.part1<-apply(EOO,2,function(x){  x < 5000 })*1     
  #EN.B.2 area of occupancy (AOO), is less than 500km (part1) AND *two* of a-c criteria (part2) 
  #ENB2 Part 1:AOO is less than 500km 
  ENB2.part1<-apply(AOO,2,function(x){x < 500 })*1 
  #Part 2: At least two of a-c: 
  #ENB Part 2 a: Severely Fragmented OR known to exist at no more than 5 populations 
  ENB.part2.a<-(SevereFrag+fiveLoc >=1) 
  #ENB Part 2 b: Continuing decline (Calculated above combined to single var) 
  #ENB Part 2 c: Extreme fluctuations (Calculated above combined to single var) 
  #NOTE: This is for Extreme fluctions over 2 generations - 3 gen is option 
  #Determine if 2 of a-c is met 
  ENB.part2<-(ENB.part2.a+ContDecline+ExFluc2gen >= 2)*1 
  # ENB1 and ENB2 (including parts 1 and 2) 
  ENB1 <- ENB1.part1*ENB.part2 
  ENB2 <- ENB2.part1*ENB.part2 
  ENB<-ENB2 + ENB1 >= 1 
   

###Criterion C ###### 
  ### To meet this criterion Part 1 AND Part 2 most both be met 
  ### Criterion C - Part 1: Population size estimated to number fewer than 2500 mature  
  ENC.part1<-apply(Nmature,2,function(x){ x < 2500  })*1 
   
  #Criterion C - Part 2:  Contdition 1 OR condition 2 
  #Cond 1. Continuing decline of at least 20% within 5 years 
  #or two generations whichever is longer OR  
  #Cond 2. Continuing decline in N mature AND sub condition a or b:  
  #a: popualtion structure such that condition (i) OR (ii) 
  # (i) there are no subpopulation with at least 250 mature  
  # (ii)  at least 95% of mature indv. in single pop 
  #b: Extreme fluctuations in N mat (calculated over 2 generations change for 3) 
  ENC.part2.cond1<-apply(percentreduction[[2]],2,function(x){   x >= 20  })*1 
  ENC.part2.cond1 <- replace(ENC.part2.cond1, is.na(ENC.part2.cond1),0)  
  ENC.part2.cond2.ai<-apply(LargestPopSize,2,function(x){ x<=250  })*1 
  ENC.part2.cond2.aii<-apply(PropInLargestPop,2,function(x){ x >= .95 })*1 
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  ENC.part2.cond2.a <- (ENC.part2.cond2.ai + ENC.part2.cond2.aii >= 1)*1 
  ENC.part2.cond2.b <- ExFluc2gen.Nmature *1  
  ENC.part2.cond2 <- (ENC.part2.cond2.a + ENC.part2.cond2.b >=1) 
  ENC.part2.cond2 <- (ENC.part2.cond2*ContDecline.lnNmat)*1 
  ENC.part2 <- (ENC.part2.cond1 + ENC.part2.cond2 >=1)*1 
  ENC<-ENC.part1*ENC.part2  
   

###Criterion D ###### 
 
  # D Population size estimated fewer 250 mature 
  END<-Nmature < 250 
  END <-END*1 

####Criterion E Not Calculated ##### 
#####  Determine Endangered   ####### 

   
  EN<-(ENA+ENB+ENC+END)>=1 
  EN <- EN*1 
  #change 0's to NA's 
  EN[EN==0]<-NA 
  EN<-EN+2 
   
  ############################## Vulnerable ####################### 
   

## Criterion A #### 
  # VU.A.1 50% reduction where cause is understood and ceased - not modeled 
  # VU.A.2 30% reduction over 3 generations or 10 years (and possibly ongoing) 
  VUA2<-apply(percentreduction[[3]],2,function(x){  x >= 30 })*1 
  VUA2<-replace(VUA2, is.na(VUA2),0) 
  VUA<-VUA2 
   

##Criterion B ## 
  ### Criterion B is met if B1 OR B2 is met 
  #VU.B.1 extent of occurrence (EOO) is less than 20,000km (part1) AND *two* of a-c criteria (part2) 
  VUB1.part1<-apply(EOO,2,function(x){ x < 20000 })*1   
  #VU.B.2 area of occupancy (AOO), is less than 2,000km (part1) AND *two* of a-c criteria (part2) 
  #VUB2 Part 1:AOO is less than 2,000km 
  VUB2.part1<-apply(AOO,2,function(x){ x < 2000 })*1 
  #Part 2: At least two of a-c: 
  #VUB Part 2 a: Severely Fragmented OR known to exist at no more than 10 locations 
  VUB.part2.a<-(SevereFrag+tenLoc >=1) 
  #VUB Part 2 b: Continuing decline (Calculated above combined to single var) 
  #VUB Part 2 c: Extreme fluctuations (Calculated above combined to single var) 
  #NOTE: This is for Extreme fluctions over 2 generations - 3 gen is option 
  #Determine if 2 of a-c is met 
  VUB.part2<-(VUB.part2.a+ContDecline+ExFluc2gen >= 2)*1 
  # VUA1 and VUB2 (including parts 1 and 2) 
  VUB1<-VUB1.part1*VUB.part2 
  VUB2<-VUB2.part1*VUB.part2 
  VUB<-VUB2 + VUB1 >= 1 
   

###Criterion C ###### 
  ### To meet this criterion Part 1 AND Part 2 most both be met 
  ### Criterion C - Part 1: Population size estimated to number fewer than 10,000 mature  
  VUC.part1<-apply(Nmature,2,function(x){  x < 10000  })*1 
    #Criterion C - Part 2:  Contdition 1 OR condition 2 
  #Cond 1. Continuing decline of at least 10% within 10 years 
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  #or three generations whichever is longer OR  
  #Cond 2. Continuing decline in N mature AND sub condition a or b:  
  #a: popualtion structure such that condition (i) OR (ii) 
  # (i) there are no subpopulation with at least 1000 mature  
  # (ii)  100% of mature indv. in single pop 
  #b: Extreme fluctuations in N mat (calculated over 2 generations change for 3) 
  VUC.part2.cond1<-apply(percentreduction[[3]],2,function(x){  x >= 10 })*1 
  VUC.part2.cond1 <- replace(VUC.part2.cond1, is.na(VUC.part2.cond1),0)  
  VUC.part2.cond2.ai<-apply(LargestPopSize,2,function(x){   x<=1000 })*1  
  VUC.part2.cond2.aii<-apply(PropInLargestPop,2,function(x){   x >= 1 })*1 
  VUC.part2.cond2.a <- (VUC.part2.cond2.ai + VUC.part2.cond2.aii >= 1)*1 
  VUC.part2.cond2.b <- ExFluc2gen.Nmature *1  
  VUC.part2.cond2 <- (VUC.part2.cond2.a + VUC.part2.cond2.b >=1) 
  VUC.part2.cond2 <- (VUC.part2.cond2*ContDecline.lnNmat)*1 
  VUC.part2 <- (VUC.part2.cond1 + VUC.part2.cond2 >=1)*1   
  VUC<-VUC.part1*VUC.part2  
   

###Criterion D ######   
#D Either (1) Population size estimated fewer 1000 mature  OR 
  # (2) AOO < 20km or Number of locations <= 5 
  VUD.1<-Nmature < 1000 
VUD.2<-apply(AOO,2,function(x){   x < 20 })*1 
    VUD.2<-(VUD.2 + fiveLoc)>=1 
    VUD <-(VUD.1 + VUD.2 >=1)*1 
 

  ####Criterion E Not Calculated ##### 
#####  Determine Vulnerable   ####### 

  VU<-(VUA+VUB+VUC+VUD)>=1 
  VU <- VU*1 
  #change 0's to NA's 
  VU[VU==0]<-NA 
  VU<-VU+3 
   
  ##############################Near Threatened####################### 
   

## Criterion A #### 
  # NT - Decline over 3 generations of 20%   
  NTA2<-apply(percentreduction[[3]],2,function(x){ x >= 20  })*1 
  NTA2<-replace(NTA2, is.na(NTA2),0) 
  NTA<-NTA2 
   

##Criterion B ## 
  ### Criterion B is met if B1 OR B2 is met 
  #Near threatened category is less precisely defined. Here it is defined as meeting the  
  #area requirement for threatned with only one (rather than 2) of a-c 
  #OR 
  #meeting a NT threshold of 30,000km2 for EOO or 3,000km2 for AOO and 2 of a-c 
  #NTB1 Part 1:EOO is less than 30,000km 
  NTB1.part1<-apply(EOO,2,function(x){ x < 30000 })*1 
  #NTB2 Part 1:AOO is less than 3,000km 
  NTB2.part1<-apply(AOO,2,function(x){ x < 3000})*1 
  #Part 2: At least one of a-c: 
  #NTB2 Part 2 a: Severely Fragmented OR known to exist at no more than 15 locations 
  NTB.part2.a<-(SevereFrag+fifteenLoc >=1) 
  #NTB Part 2 b: Continuing decline (Calculated above combined to single var) 
  #NTB Part 2 c: Extreme fluctuations (Calculated above combined to single var) 
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  #NOTE: This is for Extreme fluctions over 2 generations - 3 gen is option 
  #Determine if any 1 or at least 2 of a-c is met 
  NTB.part2.any<-(NTB.part2.a+ContDecline+ExFluc2gen >= 1)*1 
  NTB.part2.two<-(NTB.part2.a+ContDecline+ExFluc2gen >= 2)*1 
  # NTB1 (including parts 1 and 2) 
  NTB1a<-VUB1.part1*NTB.part2.any 
  NTB1b<-NTB1.part1*NTB.part2.two   
  NTB1<-(NTB1a+NTB1b>=1)*1  
  # NTB2 (including parts 1 and 2) 
  NTB2a<-VUB2.part1*NTB.part2.any 
  NTB2b<-NTB2.part1*NTB.part2.two   
  NTB2<-(NTB2a+NTB2b>=1)*1  
  NTB<-NTB2 + VUB1 >= 1 
   

###Criterion C ###### 
  ### To meet this criterion Part 1 AND Part 2 most both be met 
  ### Criterion C - Part 1: Population size estimated to number fewer than 15,000 mature  
  NTC.part1<-apply(Nmature,2,function(x){ x < 15000 })*1 
   
  #Criterion C - Part 2:  Contdition 1 OR condition 2 
  #Cond 1. Continuing decline of at least 10% within 10 years 
  #or three generations whichever is longer (note: this is the same as VU) OR  
  #Cond 2. Continuing decline in N mature AND sub condition a or b:  
  #a: popualtion structure such that condition (i) OR (ii) 
  # (i) there are no subpopulation with at least 1500 mature  
  # (ii)  100% of mature indv. in single pop (note: this is the same as VU) 
  #b: Extreme fluctuations in N mat (calculated over 2 generations change for 3)   
  NTC.part2.cond2.ai<-apply(LargestPopSize,2,function(x){ x<=1500  })*1 
   
  NTC.part2.cond2.a <- (NTC.part2.cond2.ai + VUC.part2.cond2.aii >= 1)*1 
  NTC.part2.cond2 <- (NTC.part2.cond2.a + VUC.part2.cond2.b >=1) 
  NTC.part2.cond2 <- (NTC.part2.cond2*ContDecline.lnNmat)*1 
  NTC.part2 <- (VUC.part2.cond1 + NTC.part2.cond2 >=1)*1 
   
  NTC<-NTC.part1*NTC.part2  
   
  #D Either (1) Population size estimated fewer 1500 mature  OR 
  # (2) AOO < 30km or Number of locations <= 5   
  NTD.1<-Nmature < 1500 
    NTD.2<-apply(AOO,2,function(x){ x <= 30})*1 
    NTD.2<-(NTD.2 + fiveLoc)>=1 
    NTD <-(NTD.1 + NTD.2 >=1)*1 
 

####Criterion E Not Calculated ##### 
#####  Determine Near Threatened   ####### 

  NT<-(NTA+NTB+NTC+NTD)>=1 
  NT <- NT*1 
  #change 0's to NA's 
  NT[NT==0]<-NA 
  NT<-NT+4 
  ############################################################################# 
  redlist.cat <- pmin(EX,CR,EN,VU,NT, na.rm =TRUE) #combine categories into single table 
  redlist.cat <- replace(redlist.cat, is.na(redlist.cat), 6) 

 


