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Abstract of the Dissertation 

On miRNA-mRNA network extraction and ultra-fast nucleotide barcodes clustering 

Lu 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

  2016 

This thesis consists of two topics: (1) discovery of microRNA/mRNA regulatory networks on 

essential thrombocytosis (ET), and (2) a novel ultrafast clustering algorithm to count nucleotide 

barcode and amplicon reads with errors.  

The objective of the first study is to discover miRNA-mRNA regulatory networks related to ET, 

a chronic myeloproliferative disorder with an unregulated surplus of platelets. Complications of 

ET include stroke, heart attack, and formation of blood clots. While the genetic basis of ET has 

been studied to some extent, no direct diagnostic test is available to date. In this study, we aim to 

identify novel ET-related miRNA-mRNA regulatory networks through comparisons of 

transcriptomes between healthy control and ET patients. Four network discovery algorithms have 

been employed, including (a) Pearson correlation network, (b) sparse supervised canonical 

correlation analysis (sparse sCCA), (c) sparse partial correlation network analysis (SPACE), and, 

(d) (sparse) Bayesian network analysis – all through a combination of data-driven and 

knowledge-based analyses. The result predicts a close relationship between 8 miRNAs 

(including miR-9, miR-490-5p, miR-490-3p, miR-182, miR-34a, miR-196b, miR-34b*, miR-

181a-2*) and a 9-mRNA set (including CAV2, LAPTM4B, TIMP1, PKIG, WASF1, MMP1, 
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ERVH-4, NME4, HSD17B12). The majority of the identified variables have been linked to 

hematologic function by a sizable number of studies. Furthermore, it is observed that the selected 

mRNAs are high relevant to ET disease. The study will shed light on understanding the etiology 

of ET. 

The objective of the second study is to develop an ultrafast and accurate clustering algorithm and 

software to detect barcodes, certain DNA sequences, and their abundances from raw next-

generation barcode sequencing (bar-seq) data. Although bar-seq use has been quickly growing, 

the computational pipelines for its analyses have not been well developed. Available methods are 

slow and often result in over-clustering artifacts that group distinct barcodes together. Here, we 

developed a software package called Bartender, which employs a divide-and-conquer strategy 

for fast implementation and a modified two-sample proportion test for cluster merging. 

Additionally, Bartender includes a “multiple time point” mode that matches barcode clusters 

between different clustering runs for seamless handling of time course data. For both simulated 

and real data, Bartender clusters millions of unique barcodes in a few minutes at high accuracy 

(>99.9%), and is ~100-fold faster than previous methods. 
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Preface 

 

This dissertation is an original, unpublished and independent work by the author, Lu Zhao, and 
consists of two self-contained papers. The numbered lists of Figures, Tables and Bibliographies 
are in a combined format.  

The thesis includes the mathematical model, algorithm and selected results accomplished during 
the Ph.D. study of the author at Stony Brook University, New York. It first discusses the 
discovery of microRNA/messenger RNA regulatory networks on essential thrombocytosis, 
through a thorough comparison of four existing miRNA-mRNA network extraction methods. It 
also presents a novel ultrafast clustering algorithm to count nucleotide barcode and amplicon 
reads.  

 

 



	

1 
	

 

 

 

 

 

Part I miRNA-mRNA regulatory network analyses 
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1 Background 

Platelets are anucleate blood cells that play an important role in haemostasis and 

thrombosis. Thrombocytosis is a disorder of platelet overproduction in the blood, which has two 

major forms: essential/primary thrombocytosis (ET) and reactive/secondary thrombocytosis 

(RT). Essential thrombocytosis is caused by a chronic myeloproliferation with an unregulated 

surplus of platelets attributed to a malfunction in the body’s feedback system. Complications of 

ET include stroke, heart attack, and formation of blood clots. To date, the genetic basis of ET is 

still under full investigation and no direct diagnostic tests are available (Gnatenko, Cupit et al. 

2005).  

Messenger RNA (mRNA) is an RNA molecule that is transcribed from a DNA template. 

It embodies the genetic information and acts as the template in the process of protein synthesis 

(Kozak Mar. 1983). microRNA (miRNA) is a single-stranded 21 to 23 nucleotide RNA molecule 

that binds to mRNAs through a complementary pairing to the 3’-untranslated region (UTR) of 

mRNAs (Edelstein and Bray 2011) and subsequently regulates their translation or stability 

(Edelstein, McKenzie et al. 2013). Increasing evidence demonstrates that miRNAs play 

important roles in various biological processes, through regulating expression levels of their 

target genes.  

Many computational methods have been developed to study interactions between miRNA 

and mRNA, which are largely based on two types of methods: one is computer-based method 

that uses the sequence complementarities of miRNA and its mRNA targets to build in silicon 

interaction databases, including MiRBase (Griffiths-Jones, Saini et al. 2008), TargetScan (Lewis, 

Burge et al. 2005, Grimson, Farh et al. 2007) and so on; the second one is data-based method that 

examines expression profiles of miRNAs and mRNAs for negative correlations. For example, 
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GenMiR++ (Huang, Babak et al. 2007, Huang, Morris et al. 2007) and HOCTAR (Gennarino, 

Sardiello et al. 2009) predicts the interaction between miRNA and mRNA by integrating the 

expression profiling and sequence-based recognition software.  Several other methods that are 

based on solely on expression profile have also been published. Jayaswal (Jayaswal, 

Lutherborrow et al. 2011) developed a two-stage procedure that first clusters each expression 

data for miRNA and mRNA and then identify significant miRNA-mRNA relationship using t-

test. Li (Li, Gill et al. 2011) proposed a method to find a set of differentially expressed miRNAs 

and mRNAs via Partial Least Squares Regression. It is very challenging to build causal 

relationship using observational data. Le (Le, Liu et al. 2013) designed a algorithm to uncover 

the causal regulatory relationship between miRNAs and mRNAs, using expression profiles of 

miRNAs and mRNAs without taking into consideration the previous target information. It is 

based on Intervention calculus when the Directed Acrylic Graph (DAG) is absent (IDA) 

(Maathuis, Kalisch et al. 2009).  

While all above methods focus on uncovering interaction between individual miRNA and 

mRNA, there is a growing body of literature showing that multiple miRNAs are coordinated by 

forming cohesive groups to collectively regulate one or more mRNAs (Boross, Orosz et al. 2009). 

The complex regulatory network formed between a group of miRNAs and a group of mRNAs 

acts as a vital force in catering similar functioning miRNAs and mRNAs together, and may 

provide better understandings on robust and potent miRNA-mRNA regulatory modules 

(MMRMs) (Masud Karim, Liu et al. 2016). 

In this study, we explore the potential miRNA/mRNA regulatory networks associated to 

ET based on a 43-member cohort, through a combination of data-driven and knowledge-based 

analyses. Three classes of correlation network analyses methods, namely, the Pearson correlation 
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network, the sparse canonical correlation network, and the sparse partial correlation network 

have been implemented, compared and finally, integrated for a more reliable miRNA-mRNA 

pathway. This pathway was subsequently examined for its biological functionalities through an 

Ingenuity Pathway Analysis. Additionally, we have also applied a sparse Bayesian Network 

paradigm, the A* Lasso, to compare with the three correlational network analysis methods.   

2 Methods 

2.1 Pearson Correlation, Partial Correlation, and the Sparse Partial Correlation Network 

Correlation is a widely used concept to describe how two random variables are related to 

each other. The first correlation measurement was created by Francis Galton, Karl Pearson’s 

mentor, in 1888 to relate measurements under different conditions (Stigler 1989). The degree of 

correlation is measured by a correlation coefficient, usually denoted as !		 (pho) for a population 

and by !			for a sample. Another well-known measurement is Pearson product-moment correlation 

coefficient (or Pearson’s r), which was introduced by Karl Pearson to measure the linear 

dependence between two variables (Pearson 1920). The value of Pearson’s r always lies between 

-1 and 1. The geometrical interpretation of Pearson’s r can be considered as the cosine of the 

angle between two vectors in the Euclidean space, each pointing from the variable mean to the 

origin point (Fisher 1924). By Fisher’s transformation, correlation coefficient would follow 

approximately a normal distribution.  

A high correlation between two variables in a network may be indicative of three 

potential situations: (1) direct interaction, (2) indirect interaction, or (3) regulation through a 

third common variable (Figure	 1). To explore the functional mechanisms between biological 



	

5 
	

molecules, most investigators would be primarily interested in the direct. For this purpose, the 

partial correlation coefficient (Yule 1907, Pearson 1915, Fisher 1924) has been designed.  

 
Figure	1	Potential	relationships	between	two	variables	with	high	correlation	coefficient 

In the situations depicted in the center and right-hand side of the figure, the partial correlation coefficients of !		 and 
!		 given !		 would be zero (assuming ideal experimental conditions). Hence partial correlation coefficient prevents 
false positives due to indirect, rather than direct effects between two variables.  

The partial correlation coefficient measures the degree of dependence between two 

random variables (e.g. miRNA and mRNA expressions) while controlling for the effects from 

other variables. For example, the correlation !"#.% 		 between variables !" 		 and !" 		 conditioning on !" 		 

is the correlation between the parts of !" 		 and !" 		 that are uncorrelated with !" 		. Under the 

normality assumption, a partial correlation coefficient of zero between two random variables 

means that they are conditionally independent given the remaining variables. Given a group of 

random variables, we are typically interested in the following questions for each pairwise 

analysis: (1) measuring the strength of a relationship (i.e. the magnitude of a partial correlation 

coefficient); (2) determining whether a relationship is significant; and (3) comparing the 

relationship of the same pair of variables between different groups.  

Given !		 continuous random variables	{#$, & = 1, 2, … , +}.		 from !		 samples, we can denote 

the set of measurements/data as  
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 !	 = !$, !&, …… , !( ) 	∈ ℝ,×. 	 Equation	1-1 

Here the rows of the matrix represent the samples and the columns the variables. Within each 

column (variable), the data are centered to the column mean. For any two random variables !" 		 

and !" 		, we denote the set of all other variables as !- #,% 		, that is,  

 !- #,% = !	 ∖ !#, !% = {!*, 1 ≤ -	 ≠ /, 0	 ≤ 1}	 
Equation	1-2 

where !" 		 and !" 	∈ 	ℛ& 		 are the !		th and !		th columns of !		, and !- #,% 	 ∈ 	ℝ)×(,--)		 is the matrix 

obtained from !		 by deleting its !		th and !		th columns. Without loss of generality, we assume that 

!	 < $		. When the sample size (")		 is larger than the number of variables (")		, the standard estimate 

of partial correlation coefficient of !" 		 and !" 		 while controlling the effects of variables in the 

remaining variable set of !- #,% 		, can be calculated using three different methods.  

The first method is through “matrix inversion” (Schafer and Strimmer 2005) and can be 

accomplished in a computation time of !(#$)		. Denoting the covariance matrix of !		 as 

Σ = #$% &*& 		, it can be further decomposed into the variance components !"# 		 and the Pearson 

correlation matrix ! = #$% &*& 		. Since the data are column-centered, the covariance matrix Σ		 is 

estimated as 

 Σ′#*# = &-(& ) &-(& 	= &)&	 
Equation	1-3 

Here 	" 		 denote the transpose of a matrix and !"!		 is the inner product of !		 itself, that is, the sum 

of squares of all elements in !.		 The standard unbiased estimate of Σ		 is then given by  
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 Σ"*" = 	
1
'-1 Σ′"*" = 	

1
'-1*

+*	
 

Equation	1-4 

In the setting of ! > #		, the above p-by-p matrix is symmetric and positive-semi definite. If Σ		 is 

invertible, we denote the precision (or concentration) matrix Ω		 as the inverse of Σ		 such that  

Ω = #$% &*& = 	Σ
-+ 	

 

Therefore, an unbiased estimate of the partial correlation coefficient of !" 		 and !" 		 giving !- #,% 		 is 

given by 

 !"# = 	 -
'"#
'""'##

	
 

Equation	1-5 

Another simple way to compute partial correlation coefficient is through the least square 

regression. Consider the two linear regression models 

 !" = !-(",'))(") 	+ 	," = 	 )-" 	!- +	,"
-	.",'

	

 

Equation	1-6 

 !" = !-(&,"))(") 	+ 	," = 	 )-" 	!- +	,"
-	.&,"

	

 

Equation	1-7	

where !" 		 and !" 		 are i.i.d. random noises. The intercept term is not included in neither model 

because all variables are centered. The least square estimates of !"# 		 and !"# 		 can be obtained as 

follows:  

 ! " = !$" , !&" , … , !"-$" , !")$" , … , !*-$" , !*)$" , … , !+" 	
 Equation	1-8 
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						= arg min
)	∈	ℛ,-.	

/0-/- 0,2 3
4
	
 

 

 

! " = !$" , !&" , … , !(-$" , !(*$" , … , !"-$" , !"*$" , … , !+" 	
 

						= arg min
)	∈	ℛ,-.	

/0-/- 1,0 3
4
	
 

Equation	1-9	

!"#"	 % &
& = %(&( 			 is the !" 		 norm, indicating the sum of squared elements of the matrix. The 

corresponding regression residuals are 

 !" = $%-	$- %,) * % = $%-	 *+% 	$+
+	,%,)

	

 
Equation	1-10 

 !" = $%-	$- (,% * % = $%-	 *+% 	$+
+	,(,%

	

 

Equation	1-11	

The Pearson correlation between the residuals is a measurement of the strength of the 

relationship between !" 		 and !" 		 with the linear effect of !-($,&)		 removed and can thus represent the 

partial correlation between the two variables of interest.  

A third way to estimate the partial correlation coefficient also relates to the least square 

regression problem (Peng, Wang et al. 2009). Constructing !		 linear regression models 

 !" = !-(")'(") 	+ 	* = 	 '+" 	!+ + 	*
+	,"

, . = 1, 2, … , 2		
 Equation	1-12 

where !		 are i.i.d. disturbance terms, the least square estimate of the regression coefficient vector 

is calculated as 



	

9 
	

 
! " = !$" , !&" , … , !"-$" , !")$" , … , !*" 	= arg min

2	∈	ℛ5-6	
7"-7- " !

&

= 7- "8 7- "
-$7- "8 7",			9:;	< = 1, 2, … , ?	  

Equation	1-13 

The sample partial correlation coefficient is then estimated as 

 !"# = 	&'() *# " *# " *"
# 	

 Equation	1-14 

Given ! > #		, the two coefficient vectors !" # 		 and !" # 		 always have the same sign and thus the 

term of square root in the above equation is well-defined. Based on the above formula, the 

process of searching for non-zero partial correlation coefficients is equivalent to the model 

selection problem under the regression setting. 

To tackle the high-dimension-low-sample size problem, a new loss function was proposed by 

employing sparse regression techniques. The loss function contains two parts. One part 

represents the regression part (Equation	1-15).  

 !" Θ, Λ, & = 1
2 *+ ,+- .+/,/

/0+

12

+34
	

 
Equation	1-15 

Where Θ= ρ"#,⋯ , ρ &'" &
(
		; Λ = 	$%&' Σ-1 = {,%%}%=1

. 		; !"# = %"# &''
&(( 		 ; ! = !# $%&

'
		; Lastly, 

!		 are nonnegative weights. The other part is the ℓ" 		 penalty on partial correlations Θ		 (Equation	

1-16), 

 ! " = $ " % = $ &'(
%)'*()+

	

 
Equation	1-16 
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The partial correlations Θ		 is estimated by minimizing a penalized loss function 

 !"( Θ, Λ, ' = )* Θ, Λ, ' + , - 	 Equation	1-17 

An active-shooting algorithm was developed to solve the loss function efficiently 

The distribution of the sample partial correlation for continuous variables was first 

studied by Fisher (Fisher 1924). Assuming the original data of all variables coming from a 

multivariate Gaussian distribution, it states that the random sampling distribution of a partial 

correlation coefficient controlling !		 variables, is exactly that of a total correlation coefficient 

with !		 fewer degrees of freedom. Thus, we can test the null hypothesis that the population partial 

correlation coefficient equals to zero via an !		-test (Equation	1-18). 

 ! = 	 $%&'
1 − $%&'

* +---2 	~	!0,2-3-' 	
 

Equation	1-18 

Here !		 is the sample size and !		 is the number of variables being controlled. Similarly, the 

Fisher’s z-transformation can also be used: 

 ! = 	12	ln
1 +	)*+
1 −	)*+

		~	. 0, 1 	
 Equation	1-19 

There is no exact test for the equality between two partial correlation coefficients. For 

data with sufficiently large sample size, some methods of approximation are known. Again the 

most widely used approach is Fisher’s z-transformation (Fisher 1914). To compare two 

population partial correlation coefficients !"#
(%)		 and !"#

(%)		 conditioning on !		 variables, draw an 

independent sample from each of the population with sample size !" 		 and !" 		 respectively, and 
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calculate the sample partial correlation coefficients !"#
(%)		 and !"#

(%)		. The test statistics of the null 

hypothesis that the two population partial correlation coefficients !"#
(%)		 and !"#

(%)		 are equal is  

 ! = 	
1 2	 ln

1 + )*+,

1 − )*+,
-	ln 1 + )*+/

1 − )*+/

1
0,-1-3 +	

1
0/-1-3

	~	4 0, 1 	

 

Equation	1-20 

	 	

As noted previously, the bootstrap resampling method (Efron 1994) is a widely used non-

parametric alternative for data failed to meet the normality assumption. To determine whether 

two partial correlation coefficients are equal, one could perform either of the following: (1) to 

generate a bootstrap confidence interval for each sample partial correlation coefficient and see 

whether the two confidence intervals overlap; or (2) to bootstrap the difference between two 

partial correlation coefficients and see whether the bootstrap confidence interval of the difference 

contains zero.  

Pradhan (Pradhan 2009) proposed a two-level regression method to convert the test to 

that of a regression coefficient for the aim of comparing the strength of a partial correlation 

between two groups (for example, diseased and normal), in a network. The binary grouping 

covariate is denoted as ! = {0,1}		. In the first step, two residual terms (prediction errors) !"		 and 

!"		 are obtained via linear regressions of !" 		 and !" 		 on !- #,% 		 respectively.  

 !" = !- ",& ' " 	+ 	*" 	 
Equation	1-21	

	

 !" = !-(",'))(") 	+ 	," 	 
Equation	1-22 

	 	



	

12 
	

 !" = $%-	$- %,) * % = $%-	 *+% 	$+
+	,%,)

	

 
Equation	1-23 

	 	

 !" = $%-	$- (,% * % = $%-	 *+% 	$+
+	,(,%

	

 
Equation	1-24 

	 	

The test of the Pearson correlation coefficient between two residuals features the same 

significance to that of the slope coefficient in the linear regression model of !"		 and !"		.  

 !" = $% + $'!( + 	*	 
Equation	1-25 

	 	

Or equivalently, 

 !" = $% + $'!( + 	*	 
Equation	1-26 

	 	

Integrating the covariate !		 into the above regression models brings about the second stage 

models: 

!" 	= 	%& 	+	%(!) 	+ 	*	 = 	%& 	+	 +& 	+	+(, 	!) 	+ 	*	 = 	%' 	+ 	+&!) 	+	+(,!) 	+ 	*	 

!" 	= 	 %& 	+	%(!) 	+ 	*	 = 	 %& 	+	 +& 	+	+(, 	!) 	+ 	*	 = 	 %' 	+ 	+&!) 	+	+(,!) 	+ 	*	 

Therefore, the significance of coefficients !" 		 and !" 		, (that is, the average p-value from 

tests of significance for !" 		 and !" 		) represents the significance of the covariate effect !		 on the 

partial correlation coefficient between !" 		 and !" 		 controlling for !-($,&)		.  

In 2008, Friedman, Hastie, and Tibshirani proposed an L1-penalized precision matrix 

estimation, the graphical Lasso, for learning partial correlation structures for a multivariate 

normal distribution. A different but yet equivalent perspective is on learning a precision matrix 
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through the estimation of a set of joint sparse linear regression models, as described in (Peng et 

al. 2009) mentioned previously in this work. The R-code based on their approach, SPACE, has 

been applied to our dataset and compared to other correlational network methods, and 

subsequently integrated with, the sparse canonical correlation method (sCCA) introduced below.   

2.2 Sparse Canonical Correlation Analysis 

Introduced by Hotelling in 1936, (the first) canonical correlation between two variable 

sets looks for the weighted combination of all variables within each variable set such that the 

correlation of the two combinations is maximized. The weighted combinations are called 

canonical variables or components. Considering an matrix !	 ∈ ℝ%×' 		 and an matrix !	 ∈ ℝ%×'			.  

Without loss of generality, we assume ! < #.		 Canonical correlation analysis (CCA) (Hotelling 

1936) seeks coefficient vectors !	 ∈ 	ℝ%×' 		 and ! ∈ 	ℝ%×' 		, such that the correlation between the 

linear combinations ! = #$		 and ! = #$		 is maximized, i.e. 

	max
%,'

()** +, , = 	max
%,'

	 %'Σ01'
%'Σ00%	 ''Σ11'

	
 

where Σ"" 		, Σ"" 		, and Σ"# 		 are the variance for !		, !		, and the covariance for !		 and !		, 

respectively. It is attained by the canonical variate pairs 

! = #$ = %'Σ((-
*
+	#; 										. = /0 = 1'Σ22-

*
+	/	 

with !		 and !		 from the singular value decomposition (SVD) of a matrix !		 given by 

! =	Σ%%-
'
(Σ%)Σ))-

'
( = *+,'		(Parkhomenko, Tritchler et al. 2007). 
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 In canonical correlation analysis, all variables are included in the linear combinations, 

yet for genetic data obtained via microarray studies or other high throughput methods, the 

number of variables usually surpasses tens of thousands, exceeding the number of study subjects. 

Thus the fitted linear combinations may not be easily interpreted and the application of standard 

algorithms may fail. These problems may be solved by introducing sparse loadings in the 

canonical components. Motivated by this idea, sparse canonical correlation analysis (SCCA) has 

been firstly proposed in 2007 (Parkhomenko, Tritchler et al. 2007) and has been extended and 

widely applied in the genetic area. The idea of SCCA in the field of genetics is consistent with 

the belief that only a small section of genes is expressed under a certain condition.  

Based on the foundation of SCCA, Witten and Tibshirani (Witten and Tibshirani 2009) 

have further presented “sparse supervised canonical correlation analysis (sparse sCCA)”, 

targeting on finding the sparse linear combinations of the two variable sets that are correlated 

with each other and also associated with the trait of interest. Still an matrix !	 ∈ ℝ%×' 		 and an 

matrix !	 ∈ ℝ%×'			, and assuming that the columns of !		 and !		 have been standardized with mean 

0 and standard deviation 1. Suppose in addition we have a categorical outcome vector ! ∈ ℝ$ 		. 

The estimates of canonical vectors are defined as  

max
$,&

'()(*+		, subject to 

! " ≤ 1		, ! " ≤ 1		, !" # = # " ≤ &' 		, !" # = # % ≤ '( 		, 

!" = 0	∀	'	 ∉ )* 		, !" = 0	∀	'	 ∉ )* 		, 
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where !" 		 and !" 		 are convex penalty functions; !" 		 and !" 		 are assumed to be 1 ≤ #$ ≤ %		 

and 1 ≤ #$ ≤ %		; !" 		 and !" 		 are the sets of variables with highest univariate association with the 

outcome !		 in !		 and !		, respectively; the threshold for variables to be included in !" 		 and !" 		 can 

either be fixed or be defined as a tuning parameter. The vectors !		 and !		 are obtained using an 

iterative algorithm with soft-thresholding. We have performed this sparse sSCCA method on our 

genetic data set to investigate whether the expression of miRNA would have a significant effect 

on that of genes and vice versa. 

2.3 Sparse Bayesian Network Analysis 

The fundamental structure among a series of random variables is depicted by their joint 

probability distribution. Probabilistic graphical models are used to describe the conditional 

independence or dependence structure implied by the joint distribution with a graph-induced 

decomposition of the joint density function. A Bayesian Network (BN), a branch of probabilistic 

graphical model, is a probabilistic graphical model defined over a DAG !		 with a set of ! = 	 $ 		 

nodes ! = {$%,⋯ , $(}		.  In such a graph or network, a node is a random variable, and an edge 

between two nodes indicates certain stochastic association. The probability model associated 

with 	"		 in a Bayesian network factorizes as ! "#,⋯ , "& = 	 !("*|,- "* )&
*/# 		, where 

!(#$|&' #$ )		 is the conditional probability distribution for !" 		 given its parents !"($%)		 with 

directed edges from each node in !"($%)		 to !" 		  in !		. For Gaussian random variables, this is 

equivalent to a zero partial correlation: !"#⋅% = 0		, as illustrated in Figure	 2. This provides certain 

insight into the relationship between the Bayesian network and the partial correlation network in 
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that, the partial correlation, by controlling all other variables except the two targeting variables, 

should in general be more conservative than the Bayesian network.   

 

Figure	2	Conditional	independence	in	a	Bayesian	network 

 A recently published paper (Jing Xiang 2013) presented an algorithm entitled A* lasso, 

for learning a Sparse Bayesian Network structure for continuous variables in a high-dimensional 

space. Compared to the common two-stage inference methods, A* lasso is a single stage method 

that recovers the optimal sparse Bayesian network structure by solving a single optimization 

problem with A* search algorithm that uses lasso in its scoring system. The A*lasso method 

assumes continuous random variables and uses a linear regression model for the conditional 

probability distribution of each node !" = $% !" *'" + 	*		, where !" = {!"%' '()*	,% ∈ ./ ," }		 

is the vector of unknown parameters to be estimated from data and !		 is the noise distributed as 

!(0, 1)		. The BN’s structure and parameters are obtained by minimizing the negative log 

likelihood of data with sparsity enforcing !" 		 penalty (Equation	1-27). 
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$%,⋯,$(

)*-)-*' -* .
. + 	1 -* 2

3
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	5. 7. 8	 ∈ :;8.	

 

Equation	1-27 

	 	

Here !-# 		 represents all columns of !		 excluding !" 		, assuming all other variables are candidate 

parents of node !" 		. This  lasso optimization problem can be solved efficiently with the shooting 

algorithm (Fu 1998) if the acyclicity constraint is ignored, which is the most challenge part of the 

BN inference procedure. A heuristic scheme of A* lasso is proposed to prune search space when 

learning the Bayesian network structure by exploring a scoring algorithm based on lasso score 

generated by the shooting algorithm (Fu 1998).  

 ! "# = 	& "# + ℎ("#)	 
Equation	1-28 

	 	

Here !" 		 is the set of variables for which the ordering has been determined. And ! "# 		 is the 

accumulated cost for reaching the !" 		 state (Equation	1-29). 

 ! "# = 	 &'(()*+),-(/0| ℎ("#)
45

67878∈45

)	
 

Equation	1-29 

	 	

 

!"#"	ℎ('()		 is the estimated cost of reaching the goal stat from the current state (Equation	1-30). 

 ! "# = 	 &'(()*+),-(/0|2\/0
45∈7\89

)	
 

Equation	1-30 

	 	

Furthermore, the Lasso Score is defined in Equation	1-31 

 !"##$%&$'( )* +\)* = 	min
23

4*-4-*' 7* 8
8 + : 7* ;

<

*=;
	

 

Equation	1-31 
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On top of the heuristic scheme, A* lasso further reduces the search space by limiting the size of 

intermediate search path via a size-limited priority queue that orders the promising intermediate 

search paths via the above scoring scheme. The combined strategy gives the A* lasso great 

advantage in efficiency over the common DP algorithms, which makes it scalable for high-

dimension data, such as the miRNA and mRNA interaction problem in our study. This is why we 

have applied the A* lasso algorithm to our dataset and compared it with the sCCA and the 

SPACE (see result please). 

2.4 Overview of the Pipeline 

We proposed a novel pipeline for extracting miRNA and mRNA interaction network by 

combining the sCCA and the SPACE methods. Our pipeline is designed for small/moderate 

sample size with large number of miRNAs and mRNAs. In order to extract meaningful insights 

from small/moderate datasets, the pipeline selects most relevant miRNAs and mRNAs that has 

the largest canonical correlation via sCCA and then finds the links between these selected 

miRNAs and mRNAs through the SPACE method, where the latter would compute the pair-wise 

partial correlation coefficient conditioned on other features.  

There are four steps in the pipeline. First, the differentially expressed (DE) miRNAs and 

mRNAs are selected via commonly used packages, such as limma (Altschul, Gish et al. 1990) or 

SAM (Chu, Li et al. 2001). Second, a subset of miRNAs and mRNAs are selected by performed 

the sparse sCCA method on the pooled DE miRNAs and mRNAs. In the third step, the pair-wise 

partial correlations are calculated by performing SPACE on the pooled DE miRNAs and 

mRNAs. Lastly, only the links that connects the selected miRNAs and mRNAs by sCCA are 

kept and added to the sCCA result. 
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Figure	3	Pipeline	for	extracting	the	data-based	miRNA	and	mRNA	interaction	network	

3 Data analysis and result 

3.1 Data processing 

Our data included two data sets: 354 platelet-specific mRNA data from the custom array and 939 miRNA 
data from the Agilent microarray (Santa Clara, CA), which are paired with each other from 13 patients 
with essential thrombocytosis (ET) disease and 30 control subjects (Error! Reference source not 
found.). 
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Table	1	Data	structure 

 
ET Control Total 

# of Paired Subjects 13 30 43 

 miRNA mRNA Subject 

Total # of Items 939 354 43 

 

Data were preprocessed and analyzed using R 3.2.2 with the Bioconductor packages 

(http://www.bioconductor.org/).  Figure 4 presents the flow chart of the entire data processing 

process, before the ensuing network analysis. 

There are 8 (3 ET, 4 NO, 1 RT) samples with technical replicates. The values of these 

samples are reset by the mean value of the sample replicates. The original miRNA data set was 

filtered by two steps: The first step is to filter out miRNAs with less than 30% non-absent cells in 

both groups. Next, miRNAs with more than 40% missing values in the sample sets were also 

dropped out. For the mRNA data, the proportion of missing expression data in the sample set for 

each mRNA was calculated and those with 50% or more absent data have been excluded. In 

addition, potential outliers were checked and filtered with a criterion of 3 standard deviations 

from the mean expression value. In both data sets, quantile normalization was applied to correct 

between-array variation (Pradervand, Weber et al. 2009), followed by the K-nearest neighbors 

algorithm for imputing missing expression data.  

After data filtering and processing, there are totally 327 platelet-specific mRNAs and 396 

miRNAs left. Linear models for microarray data (limma)(Smyth 2005) was used to picked up 
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DE miRNAs and mRNAS. A total of 61 miRNAs and 19 mRNAs are selected at the significant 

level 0.01. 

 

Figure	4	Flow	chart	of	data	processing	before	the	network	analysis	

3.2 Result 

With the 61 selected miRNAs as one variable set, the 19 mRNAs as the other, and the 

vector of subject disease status as a binary outcome vector, we applied three methods (sCCA, 

SPACE and A* lasso) to the differentially expressed data sets (miRNA and mRNA).  

On the Pearson correlation analysis, the pair-wise Pearson correlation coefficient is 

calculated using psych package and 3200 non-zero coefficients are identified. It covers all links 

from the results of SPACE and A* lasso, which indicates Pearson correlation generates much 

more false positives than other methods. Therefore, we decided focus on the results of other 

three methods.	
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On the sSCCA method, the miRNA and mRNA subsets are selected with the penalty 0.3 

on vector !		 and 0.5 on vector !		.  As discussed previously, vector !		 restricts the number of 

selected miRNA, while vector !		 does the same to the mRNA.  In the result, 8 miRNAs stand out 

with 9 corresponding mRNAs (Table 2).  

Table	2	Selected	miRNAs	and	mRNAs	by	sSCCA	

miRNA weight mRNA weight 

Has-miR-9 0.609 WASF1 0.797 

Has-miR-182 -0.537 TIMP1 0.442 

Has-miR-490-3p 0.439 CAV2 0.244 

Has-miR-490-5p 0.289 HSD17B12 0.232 

Has-miR-196b -0.171 NME4 0.157 

Has-miR-34a 0.165 ERVH-4 -0.154 

Has-miR-34b* 0.089 MMP1 0.066 

Has-miR-181a-2* -0.045 LAPTM4B 0.049 

  PKIG 0.038 

	

Figure	5	visualizes the weights in the loadings of the first canonical coefficient of selected 
miRNAs and mRNAs. Here red or green node represents positive or negative weight in vector 
!			and !		. The node size represents the absolute value of weight.  
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Figure	5	Bipartite	plot	of	the	sSCCA	result 

SPACE is a sparse method, which has one tuning parameter that controls the !" 		 penalty on Lasso 
regression. The value is set as	0.5765849 as calculated by Equation	1-32. 

 !" = 	
Φ(1 −	 )

2 ∗ ,-)
/ 	

 

Equation	1-32 

	 	

Here !		 is the sample size (43), !		 is the number of features (80), and !		 is a constant (1). 
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Figure	6	Bipartite	plot	of	the	SPACE	result 

Here red circles represent miRNAs that have direct connection with the mRNAs, while the red squares denote the 
mRNAs that have direct link with the miRNAs.In addition, red and green lines represent positive or negative partial 
correlations between the pairs. 
 

Figure 6 illustrates the SPACE interaction network emphasizing the interactions between 

miRNAs and mRNAs. Those miRNAs and mRNAs that have direct link with the other side are 

labeled. The network is connected and there is no isolated node. Within group links accounts for 

most of the edges of the network and suggests that interaction within group is more common 

than that between groups. There are only 14 (14/165) direct links between miRNAs and mRNAs.  

On the result from the A* lasso algorithm, there are two critical parameters. One is the !" 		 

penalty on Lasso regression. We choose 0.2 (recommended value) as the !" 		 value. The other 

parameter is the queue size that limits the search depth. In order to obtain close-to optimal 

structure, 3000 is chosen for this option. Since all mRNAs have direct link with miRNAs, the 
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names are not listed in the figure (Figure	7) , A* lasso shows the same pattern with SPACE result, 

that is, within group interaction is more common than the between group interaction.  

 

Figure	7	Network	generated	by	A*	lasso 

As discussed in the method section, A* lasso identified 306 links that covers 192 out of 

250 links from SPACE result, which is consistent with our expectation that SPACE should be 

more conservative than A* lasso considering the methodology differences. Since it is very hard 

to interpret a network with too many links and nodes, we integrate the SPACE and A* lasso 

result with result from sCCA by only keeping the selected miRNAs, mRNAs and the 

corresponding links from SPACE and A* lasso method (Figure	 8) respectively. Figure	 8 compares 
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the integrated results using SPACE and A* Lasso method with sSCCA. The interaction within 

the selected mRNAs are strikingly consistent both on links and the value signs except A* Lasso 

has more links. Two miRNA and mRNA interactions are overlapped. One is the link between 

has-miR-182 and WASF1. The other is the link between has-mir-34a and MMP1 gene (miRNA). 

hsa-miR-9

hsa-miR-490-5p

hsa-miR-490-3p

hsa-miR-34b

hsa-miR-34a

hsa-miR-196b

hsa-miR-182

hsa-miR-181a-2*

WASF1

TIMP1

PKIG

NME4

LAPTM4B

HSD17B12

ERVH-4

CAV2

MMP1

Positive sCCA coefficient

Negative sCCA coefficient

Positive Partial Correlation Coefficient

Negative Partial Correlation Coefficient

(A) (B)

 
Figure	8	Integrated	results	

(A) is the integrated result between sSCCA and SPACE. (B) is the integrated result between sSCCA and A* Lasso method. 
The arrow is added back on figure (B) 

To render the results more comprehensive, the expression value of those selected miRNAs and 
mRNAs are presented by Table	 3 and Table	 4. All selected miRNAs and mRNAs are differentially 
expressed with very small p-values.  
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Table	3	Quantile	normalized	expression	of	selected	miRNAs 

miRNAs Normal ET Adjusted p-value 

mean std mean std 

Has-miR-9 2.6443 0.7643 4.8766 1.6094 <0.0001 

hsa-miR-490-5p 1.2040 1.0495 4.7451 2.3452 <0.0001 

hsa-miR-182 3.8207 0.7794 2.0378 1.3189 <0.0001 

hsa-miR-34a 6.0485 0.7324 8.2727 0.9558 <0.0001 

hsa-miR-490-3p 1.1563 1.1951 5.3272 2.3615 <0.0001 

hsa-miR-196b 6.1403 0.3886 5.2337 0.5812 <0.0001 

hsa-miR-34b* 2.1224 0.9340 4.5740 0.9960 <0.0001 

hsa-miR-181a-2* 5.5544 0.4086 4.4720 0.7544 <0.0001 
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Table	4	Quantile	normalized	expression	of	selected	mRNAs 

 
Genes (miRNA) Normal ET Adjusted p-value 

mean std mean std 

CAV2 1.2077 0.7195 2.1356 0.7285 <0.0001 

LAPTM4B 0.7808 0.3000 1.7317 1.2278 <0.0001 

TIMP1 0.8762 0.7070 2.6453 1.5047 <0.0001 

PKIG 0.7111 0.2330 1.4218 0.3989 <0.0001 

WASF1 0.7378 0.2937 2.8658 1.7532 <0.0001 

MMP1 0.9536 0.8535 2.3396 1.4260 <0.0001 

 ERVH-4 1.3802 0.7963 0.6395 0.4932 <0.0001 

NME4 0.7495 0.3800 1.8671  1.3119 <0.0001 

HSD17B12 0.8473 0.6015 2.2129 0.9899 <0.0001 
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3.3 Comparison between SPACE and A* Lasso 

Since results between SPACE and A* Lasso have significant overlap, this section will 

explore the overlapped part in more details.  There are 108 out of 192 shared links that have the 

same sign in both results (Figure 9). Among the 108 links, there are 7 links with the direct 

interactions between miRNA and mRNA. Although all links could not be supported by previous 

studies, most of miRNA and RNAs highlighted are reported to be relevant to ET disease. For 

example, two encoded protease/protease inhibitors – MMP1 (Matrix Metallopeptidase 1) and 

SERPINI1 (Serpin Peptidase Inhibitor, Clade I (Neuroserpin), Member 1) are a class of proteins 

well-associated in tumor invasiveness and cancer metastases and have both been detected as 

over-expressed in ET group comparing to normal (Gnatenko, Cupit et al. 2005, Saito and 

Bunnett 2005). MMP1 has been demonstrated to be related to inflammation in several studies 

(Brassart, Fuchs et al. 2001, Herouy, Mellios et al. 2001, Zhang, Cai et al. 2003, Andonovska, 

Dimova et al. 2008). Moreover, members in the matrix Metallopeptidase family have been 

indicated to be involved in the migration and invasion of leukemia cell (MMP-2) (He, Cao et al. 

2009); and to mediate megakaryocyte transendothelial migration and proplatelet formation 

(MMP-9) (Lane, Dias et al. 2000).  
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Figure	9	Overlaped	links	between	SPACE	and	A*	lasso 
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4 Discussion and Future work 

4.1 Discussion 

As shown in Table 3, the miRNA hsa-miR-34a and has-miR-182 identified by sparse 

sSCCA expresses has been previously shown to express aberrantly in polycythemia vera (PV) 

granulocytes (Bruchova, Merkerova et al. 2008)  and is one of the miRNA members that 

expressed most differentially among the ET, RT, and control groups (Xu, et al. 2012).    

The platelet-expressed gene HSD17B12, standing for “Hydroxysteroid (17-β) 

Dehydrogenase 12”, has been claimed previously to be associated with the distinction of ET 

platelets from the normal ones (Gnatenko, Cupit et al. 2005). The encoded protease/protease 

inhibitors – MMP1 (Matrix Metallopeptidase 1) is a class of proteins well-associated in tumor 

invasiveness and cancer metastases and have both been detected over-expressed in the ET group 

comparing to the normal (Gnatenko, Cupit et al. 2005, Saito and Bunnett 2005). MMP1 has been 

demonstrated to be related to inflammation in several studies (Brassart, Fuchs et al. 2001, 

Herouy, Mellios et al. 2001, Zhang, Cai et al. 2003, Andonovska, Dimova et al. 2008). 

Moreover, members in the matrix Metallopeptidase family have been indicated to be involved in 

the migration and invasion of leukemia cell (MMP-2) (He, Cao et al. 2009); and to mediate 

megakaryocyte transendothelial migration and proplatelet formation (MMP-9) (Lane, Dias et al. 

2000). 

CAV2 (Caveolin 2 and NME4 (NME/NM23 Nucleoside Diphosphate Kinase 4) have 

been inferred to associate with tumors, metastasis, and multiple types of cancer. TIMP1 (TIMP 

Metallopeptidase Inhibitor 1) has been found to be highly related to tumors, cancer metastasis 



	

32 
	

and inflammation. WASF1 (WAS Protein Family, Member 1) has been predicted as a potential 

target of hsa-miR-34a by a popular miRNA target prediction tools, TargetScan 

(http://www.targetscan.org/), which predicts regulatory targets using conserved complementary 

(Lewis, Burge et al. 2005). Moreover, the WAS protein family has been shown to be related to 

nucleosome and chromatin assembly, performing an important role in gene transcription that 

may regulate megakaryocytopoiesis and/or proplatelet formation (Schulze and Shivdasani 2004). 

A recent study in class prediction models of ET included a member from this family, WASF3, as 

one of the biomarkers segregating ET, RT and the normal groups (Gnatenko, Zhu et al. 2010). 

Although instead of WASF1, the study pointed to WASF3, our result would implicate a specific 

role WASF1 plays in the classification and prediction models for ET and normal cohorts.  

In conclusion, our data analysis on miRNA and mRNA data has predicted a close 

relationship between 8 miRNAs (including miR-9, miR-490-5p, miR-490-3p, miR-182, miR-

34a, miR-196b, miR-34b*, miR-181a-2*) and a 9-mRNA set (including CAV2, LAPTM4B, 

TIMP1, PKIG, WASF1, MMP1, ERVH-4, NME4, HSD17B12). A majority of the identified 

variables have been linked to hematologic function by a sizable number of studies. Furthermore, 

it is observed that the selected mRNAs are high relevant to ET disease. On the other side, the 

networks identified by SPACE and A* lass method has a significant overlap, which suggests that 

the two methods give comparable results even they use different methodology to identify the 

network. To be specific, the two overlapped links (miR-182--WAFS1 and miR-34a--MMP1) are 

highly worthy targets for biological validation since all four mRNAs/mRNAs involved have 

been shown to be related with the ET disease by various studies. All together it alludes that the 

identified mRNA set might be considered as a contributor in the regulatory mechanism of the ET 

disease -- with the 8 selected miRNAs playing a modulating role on that mRNA set.  We also 
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used Ingenuity Pathway Analysis (IPA) software to find the confirmed links between 8-miRNAs 

and 9-mRNAs.   IPA predicts that miR-9 and	 miR-196b have interaction with NME4, which is 

related with several pathways, such as Salvage Pathways of Pyrimidine Ribonucleotides, 

Pyrimidine Ribonucleotides De Novo Biosynthesis and Pyrimidine Ribonucleotides 

Interconversion and Pyrimidine Deoxyribonucleotides De Novo Biosynthesis I. It also links hsa-

miR-34a/has-miR-34b* with WASF1 and relates these two links with multiple pathways 

including Actin Cytoskeleton Signaling, Actin Nucleation by ARP-WASP Complex, Epithelial 

Adherens Junction Signaling, Rac Signaling, Regulation of Actin-based Motility by Rho, RhoA 

Signaling,RhoGDI Signaling and Signaling by Rho Family GTPases.  

4.2 Future work 
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Part II an ultrafast clustering algorithm to count barcode and 
amplicon reads. 
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1 Introduction 

1.1 Next generation sequencing technology 

Next Generation Sequencing (NGS) Technology provides an inexpensive, high resolution, 

genome-wide sequence readout as an endpoint to applications ranging from chromatin 

immunoprecipitation, mutation mapping and polymorphism discovery to noncoding RNA 

discovery(Mardis 2008). With great advantages over the old sequencing methods, NGS now 

becomes the main stream method that is used to extract the genetic information in most of 

biology fields, where it provides the ability to answer the questions in unimaginable speed. The 

Table 5 is a brief comparison between NGS and traditional sequence platform Sanger 

sequencing.  

Table 5 Gains and pains of NGS 

GAINS PAINS 

NGS provides a much cheaper and higher 
throughput alternative to sequencing DNA 
than traditional Sanger sequencing. Whole 
small genomes can now be sequenced in a 
day.    

NGS, although much less costly in time and 
money in comparison to first-generation 
sequencing, is still too expensive for many 
labs. NGS platforms can cost more than $ 
100,000 in start-up costs, and individual 
sequencing reactions can cost upward of $ 
1,000 per genome.   

High-throughput sequencing of the human 
genome facilitates the discovery of genes 
and regulatory elements associated with 
disease    

Inaccurate sequencing of homopolymer 
regions (spans of repeating nucleotides) on 
certain NGS platforms, including the Ion 
Torrent PGM, and short-sequencing read 
lengths (on average 200 500 nucleotides) can 
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lead to sequence errors.  

Targeted sequencing allows the 
identification of disease-causing muta- 
tions for diagnosis of pathological 
conditions.    

Data analysis can be time-consuming and 
may require special knowledge of 
bioinformatics to garner accurate information 
from sequence data. 

  

Error rates of individual NGS reads are higher than Sanger sequencing. To addressing the 

accuracy issue, redundancy of sequence coverage is the primary method to enhance the 

reliability of down-stream analysis on NGS data. The presence of multiple reads in the same 

location is used to confirm the accuracy of the base calls in the applications where accuracy is 

critical. NGS also provides the quality values for each sequenced base pair. The quality values 

calculated during NGS base calling provide important information for alignment, assembly, and 

variant analysis. Although the calculation of quality varies between platforms, the calculations 

are all related to the historically relevant phred score, introduced in 1998 for Sanger sequence 

data. The phred score quality value, q, uses a mathematical scale to convert the estimated 

probability of an incorrect call, !		, to a log scale: ! = 	−10 ∗ log	(,)		 Miscall probabilities of 

0.1(10%),0.01(1%) and 0.001(0.1%) yield phred scores 10, 20 and 30. Quality values an 

important tool for rejecting low quality reads, trimming low quality bases, improving alignment 

accuracy, and determining consensus sequence and variation calls (Li, Ruan et al. 2008). 

1.2 High resolution lineage track with random barcode 

This section will briefly introduce the basic concepts, the development of this area and 

latest experimental approach.  
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Lineage tracking refers the idea of tracking the descendants of a small number of 

founders and was first used in genealogy, which has been studied for centuries. Lineage tracking 

was first studied in mathematical way by a problem proposed by Francis Galton. The problem 

came from the concern that aristocratic surnames were becoming extinct. Francis Galton 

formulized this problem in mathematical way and published it in Educational Times. Rev. H. W. 

Watson answered this problem with a solution and they started to investigate this problem 

together later on. This story ended up with a new area named branching process and their work 

still forms the basis of this area nowadays.  

Lineage tracking was introduced to biology area in 19th centuries and was widely used to 

study the development.  More recently, lineage track was adapted to study experimental 

evolution dynamics using fluorescent lineage tagging(Hegreness, Shoresh et al. 2006). However, 

fluorescent lineage tagging does not have enough resolution to handle large population and could 

not be applied to evolution dynamics of large populations. One approach to increase the number 

of unique lineages is to use genetic markers and track their relative abundance via NGS. Since 

NGS is inexpensive and high throughput,  sequencing-based lineage tracking is a platform that is 

cheap, scalable, and, in theory, provides an unlimited number of unique lineage tags(Blundell 

and Levy 2014).  To generate large number of lineage tags in sequence based lineage tracking, 

the short engineered DNA sequence called DNA barcode, is the key component. A DNA barcode 

is a stretch of bases at a known location in the genome or on a plasmid, whose relative frequency 

within a population can be measured by microarrays, and more recently quantitative sequencing. 

If each nucleotide position in DNA barcode is generated pure randomly, then the possible 

combination of a fixed length DNA barcode could easily reach to millions (e.g. a 26mer random 

barcode could have about 10#$ 		 possible combinations) and make it possible to keep track large 
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populations simultaneously. In the early stage, constructing DNA barcode is slow and labor 

intensive. Then a random DNA barcode was developed to and is generated by a lentivirus 

insertion system (Robinson, Chen et al. 2014), which is much efficient DNA barcode 

construction system. Although construction random DNA barcode is easy, a high quality barcode 

library usually takes much more to construct. First, the barcode length should be long enough 

such that sequence error will not result in misidentification in but also should be short as much as 

possible in order to reduce computational challenge in downstream analysis. Second, truncated 

barcode might be erroneously generated and could dramatically reduce the library complexity. A 

fixed “spacer” could be inserted into adjacent random region to remove most of truncated 

barcodes. In addition, “spacer” also adds the benefit for the downstream analysis by serving as 

anchor to locate the barcode, therefore, simplifying the barcode extraction. Another challenge is 

to integrate the DNA barcode with genome at neutral location, which should be considered 

carefully. There are a couple of feasible methods, each of which has its own pros and cons. The 

most popular way is to use Plasmids containing viral recombinases such as Cre-loxP (Austin, 

Ziese et al. 1981)  and the lambda phage recombination system. This approach could combine 

the barcode to a specific sit of genome with high efficiency (Figure	10). 
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Figure	10	Site-specific	genome	integration	 

 Sequences containing random barcodes (indicated by different colors) are amplified by PCR and ligated into a 
plasmid. The plasmid library is integrated into a specific neutral location in the yeast genome using the high-
efficiency viral Cre-LoxP recombination system. Plasmid integration com- pletes a URA3 selectable marker that is 
interrupted by an artificial intron containing the barcode and one loxP site. Barcodes are maintained during the 
evolution by continued selection for the URA3 marker (Blundell and Levy 2014).  

Now the study that uses high-throughput sequencing of nucleotide barcodes to assay 

large numbers of cell lineages, genotypes or perturbations in complex cell pools forms a new 

area named bar-seq. It generally works by growing a pool of barcoded cells under selective 

conditions, amplifying extracted barcodes using common primers, and sequencing barcode 

amplicons to quantify relative barcode frequencies in the cell pool. This approach was first 

applied on the Saccharomyces cerevisiae deletion collection, which was designed such that each 

individual deletion strain is marked with a unique barcode (Winzeler, Shoemaker et al. 1999, 

Giaever, Chu et al. 2002). Bar-seq of these deletion strains have been used, for example, to 
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detect gene products that are drug targets (Smith, Vijaykrishna et al. 2009), and those that are 

important for surviving starvation (Gresham, Boer et al. 2011), and heat stress (Gibney, Lu et al. 

2013). Barcoded deletion collections have subsequently been generated in a number of bacteria 

and yeasts, allowing for similar massively parallel functional profiling (Han, Xu et al. 2010, 

Hobbs, Astarita et al. 2010, Noble, Treadwell et al. 2010, Schwarzmuller, Ma et al. 2014). 

Analogously, a growing number of studies in mammalian cells sequence pseudo-barcodes: short 

nucleotide sequences such as shRNAs or sgRNAs, that serve as both the cell-specific 

perturbation and the unique cell identifier for short-read sequencing (Schlabach, Luo et al. 2008, 

Silva, Rowntree et al. 2008, Bassik, Lebbink et al. 2009, Sims, Mendes-Pereira et al. 2011, 

Wang, Wei et al. 2014, Wong, Choi et al. 2015).  

In addition to the above approaches where the sequence of the barcode or pseudo-barcode 

is known a priori, more recent bar-seq studies employ barcodes of random unknown sequence. 

As one example, sequencing of the DNA that happens to be adjacent to a transposon in random 

transposon insertion libraries has been used to functionally profile gene disruptions when 

systematic deletion collections are unavailable (Gawronski, Wong et al. 2009, van Opijnen, Bodi 

et al. 2009, Carette, Raaben et al. 2011, Brutinel and Gralnick 2012).  A second example is the 

insertion of random barcode libraries into genomes to serve as neutral markers for lineage 

tracking studies over the course of development, evolution or cancer progression (Lu, Neff et al. 

2011, Blundell and Levy 2014, Bhang, Ruddy et al. 2015, Levy, Blundell et al. 2015, Nguyen, 

Pellacani et al. 2015). In these studies, random barcodes are generated from primers with random 

bases, which are first inserted into vectors and then into cell genomes. 
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Despite the widespread use of bar-seq, computational pipelines for handling the resulting 

sequencing data have not been well developed. For barcodes of known sequence, the primary 

concern is mapping reads that may contain PCR or sequencing errors to the known barcodes. 

One naïve strategy would be to ignore reads that do not exactly match any putative barcode. 

However, given that some barcodes in the pool may be more prone to PCR or sequencing errors 

(Meyerhans, Vartanian et al. 1990, Goren, Ozsolak et al. 2010, Gundry and Vijg 2012, Schmitt, 

Kennedy et al. 2012), this strategy could introduce counting biases. A more sensible strategy 

currently employed is to compare each read to the set of putative barcodes by calculating the 

Hamming(Hamming 1950) or Levenshtein distance(Levenshtein 1966), thereby discovering the 

best match (Gresham, Boer et al. 2011). However, this strategy is extremely computationally 

expensive and computational cost grows at least quadratically with the number of putative 

barcodes. Additionally, a priori errors in the set of known barcodes (likely due to errors that 

occurred during Sanger sequencing of barcoded clones) have been found to be common (Smith, 

Vijaykrishna et al. 2009), meaning that unexpected barcodes that are present in the pool may be 

missed. To find these, an unbiased barcode detection strategy that does not depend on prior 

information would be needed.  

For random barcode libraries, an additional computational problem is discovering the true 

barcodes in the pool.  That is, reads that identify a true barcode must be differentiated from reads 

that contain PCR or sequencing errors. Because sequences representing an exact match to a true 

barcode are likely to be sequenced at much higher frequencies than those with errors, one 

approach would be to ignore reads below a predefined frequency threshold and treat all other 

reads as true barcodes. However, in cell pools with a skewed barcode frequency distribution, less 

abundant true barcodes will fall below the threshold, while errors from extremely abundant 
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barcodes rise above it. If each barcode in the pool is expected to be distant in sequence space 

from all other barcodes (e.g. >3 mismatches), a second approach is to cluster reads by their 

sequence similarities (Lu, Neff et al. 2011, Bhang, Ruddy et al. 2015, Levy, Blundell et al. 

2015). Here, reads that are within one or two mismatches of each other are grouped together, 

with the most abundant sequence likely to be the true barcode and others being errors. This 

approach, however, is currently extremely computationally expensive because each unique read 

must be compared against each other unique read, with the number of unique reads often 

exceeding 106 in a typical Illumina HiSeq run. To avoid calculating all pairwise Hamming or 

Levenshtein distances, we have previously used a semi-pairwise BLAST strategy to cluster reads 

(Altschul, Gish et al. 1990, Levy, Blundell et al. 2015). However, even this strategy is 

computationally expensive and may often falsely merge distinct barcodes that are close in 

sequence space (see Results). 

Here, we developed Bartender, an ultrafast and unbiased clustering algorithm for 

identifying and counting barcodes and pseudo-barcodes from short read sequencing data. We use 

a divide-and-conquer strategy that first identifies high-quality seeds and then iterates through 

each seed to sort short reads into different bins for parallel processing. Reads within each bin are 

clustered using a computationally efficient greedy clustering algorithm. Instead of merging 

clusters solely on sequence similarity (Hamming or Levenshtein distance), Bartender uses 

additional information of the cluster size to prevent over-merging.  Our algorithm includes 

handling of unique molecular identifiers (UMIs), which, if included in the sequencing reads, 

allow an investigator to detect and remove PCR duplicates (Kivioja, Vaharautio et al. 2012, 

Levy, Blundell et al. 2015). Additionally, we include a “multiple time point” mode, which uses 

cluster information from adjacent time points to minimize the impact of read errors on barcode 
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trajectories. Compared to previous methods, we find Bartender to be orders of magnitude faster 

and more accurate for routine processing of barcodes and pseudo-barcodes. 

1.3 Method based on BLAST  

To the best of our knowledge, there is no general clustering algorithm for bar-seq data.	

Most research groups developed their own in-house methods to count lineage tag.  Due to the 

most recent and relative efficient one is described in (Levy, Blundell et al. 2015), which uses the 

semi-pairwise BLAST strategy (this method will be referred as BLAST in the remaining 

sections) to group similar unique reads to identify the true lineages and corresponding frequency. 

There are three major steps that are critical for keeping a result as accurate as possible and 

reducing the computation.	

The first step is to find the size threshold to split unique reads into putative barcode (high 

frequency) and low frequency unique reads, most of which are barcode variations due to 

sequence and PCR errors. To determine the gating threshold, one has to know the underlying 

experiment design (e.g the expected number of barcode and the distribution of unique reads) and 

has a good estimation on sequence parameters including sequence depth, sequence error. In the 

paper (Levy, Blundell et al. 2015), the gating threshold is set to 10 based on their own 

experiments. 

Once the unique reads are divided into two lists, the second step is to group similar high 

frequent sequences by performing a pairwise comparison within the high frequency list, where 

the similarity is defined in terms of e-value in BLAST package. Two clusters are joined if any 

member (sequence) presents in both cluster. Clustering joining continues until the number of 

clusters is stable. 



	

44 
	

In the last step, sequences with less than the pre-specified size threshold are then matched 

to the clustering list obtained in the second step by BLAST using the same criteria. 

One challenge posed by this method is how to define the similarity using the e-value in 

BLAST. E-value in this problem is related with many factors, i.e. the barcode library size, 

barcode length and sequence errors. There is no explicit formula or guideline for the choice of e-

value, which make this method difficult to tune once the data changes. 

Presumably each cluster represents one barcode lineage and the cluster size is treated as 

the lineage size. BLAST calculates the center by majority voting at each nucleotide position and 

use the center to be representative of the lineage tag. 
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2 Methods 

This chapter covers Bartender in full details. Each section describes one component of 

Bartender, including the Bartender extractor, the clustering algorithm and multiple sample mode. 

Barcode or pseudo-barcode lengths typically range between 10 and 30 nucleotides. 

However, with the advent of highly complex long oligonucleotide libraries (LeProust, Peck et al. 

2010). Synthesis of high-quality libraries of long (150mer) oligo-nucleotides by a novel 

depurination controlled process. Variable regions may sometimes exceed	 100 

nucleotides(Goodman, Church et al. 2013, Kosuri, Goodman et al. 2013). Current tools become 

cumbersome for analysis of these longer barcodes for two major reasons. First, longer barcodes 

will accumulate more errors and result in more unique reads that must be clustered. Second, 

longer barcodes will slow similarity comparisons between unique reads because more nucleotide 

positions must be accounted for. To address these problems, an ultrafast and accurate package, 

named Bartender, was built with the capability and speed to handle arbitrary barcode lengths. 

First, an extractor tool was developed that will quickly pull the variable region from 

FASTQ/FASTA files using a user-defined pattern and read quality threshold (see below). Second, 

the Bartender clustering tool was designed to improve speed and accuracy by exploring several 

strategies (below). We devised a statistics test to add another constrain on merging operation 

between reads or clusters in the clustering process. This test statistic incorporates the sequence 

similarity and the barcode size information into the two-sample proportion test by assuming that 

the small cluster derives from the large cluster by sequence error under the null hypothesis.  The 

primary speedup comes from a divide-and-conquer binning strategy that greatly reduces the 

number of comparisons (Figure	 13). Lastly, a multiple sample mode was developed to track the 
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lineages along the time point. 

2.1 Bartender Extractor 

Bartender extractor is a simple command-line tool that is designed to extract barcode 

from the raw reads.  This tool was developed under the barcode temple design philosophy 

presented by (Blundell and Levy 2014, Levy, Blundell et al. 2015). Basically it assumes that 

each read has one barcode and the barcode is preceded and followed by a flank sequence, which 

help to locate the barcode.  The barcode template could have multiple random regions 

interleaved by spacers (optional). To deal with sequence error, at most one mismatch in each 

flank region is allowed. Synthesis of oligonucleotides with random regions can often result in 

some variants with missing or additional random bases. To account for these errors, the extractor 

allows the user to assign random nucleotide regions of variable lengths during extraction.  

The extractor tool also calculates the combined PCR and sequencing error rate by 

examining the frequency of errors at user-defined invariant regions of the amplicons. These error 

rates are useful for downstream clustering. Along the extraction process, the extractor also keeps 

track the total number of error bases identified in the flank region and estimate the sequence 

error using the percentage of error bases in the flank region in the last step. Since it allows one 

mismatch in flank region, the specified flank sequence should not be too long in order to obtain 

relative accurate error estimation given only one-mistmatch is allowed and we recommend 5bps 

right next to the barcode region from both end separately. Although the sequence error estimated 

might have bias given the fact that the sequence error is not uniform across all positions, it could 

give some insight on the data and serves as a baseline to compare the sequence error estimated 

from the clustering result by Bartender. 
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The extractor transfers the fed barcode template into regular expression and extracts the 

matched subsequence in each read in the raw file (FASTQ or FASTA format). To filter out low 

quality barcode, a user defined quality threshold is used to filter out those barcode, whose 

average quality is below the threshold (only applicable to FASTQ format). The matched 

sequence (flank region removed) and the corresponding line number in raw file forms the 

ultimate output file, which could be the input of the clustering component.  To remove the PCR 

effects, users need to extract the UMIs from the raw reads by themselves, replace the line 

number with the UMIs at same line of the raw file and use this updated file as the input for 

clustering algorithm.  

2.2 Clustering algorithm 

2.2.1 General overview 

The Bartender clustering tool utilizes a number of strategies to improve speed. The 

primary speedup comes from a divide-and-conquer binning strategy that greatly reduces the 

number of comparisons (Figure 11). Briefly, Bartender surveys the variable regions for 

nucleotide positions with the greatest entropy (most variability) and generates a set of non-

contiguous seeds (3-8 nucleotides) ranked by total entropy (Figure 13). These seeds are then 

used to split unique reads into bins, with each read within a bin having an identical seed. 

Comparisons are only performed between reads within each bin. Similar clusters are merged (the 

merging criteria are described later) and these merged clusters are then used with the next seed 

for further merging. By using seeds with the greatest entropy first, Bartender creates the 

maximum number of bins at the first clustering step (when the most clusters exist) and thereby 

minimizes the number of comparisons necessary. Bartender continues clustering with additional 

seeds. In most cases, however, the number of comparisons needed drops dramatically between 
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rounds. A secondary speedup comes from prioritizing comparisons to the largest clusters within 

each bin. These large clusters are the most likely to be “true” barcodes and have a better chance 

of matching to smaller clusters that are more likely to be a sequence that contains a PCR or 

sequencing error. A last source of increased speed comes from the use of a computationally 

efficient comparison metric that is described in more detail later. Bartender also estimates the 

sequence error using high quality and relative large clusters after the clustering process. The two 

estimated sequence error could be compared and help users roughly evaluate how the Bartender 

perform on the data and tune the parameters e.g distance threshold and z-value to generate 

“better” results 

Bartender’s accuracy stems from a new statistical test schema that uses both nucleotide 

sequence and cluster size information to prevent over-merging; its speed stems from a novel 

binning strategy and a computationally efficient greedy clustering algorithm. Bartender includes 

handling of both UMIs and time course data, and promises to be a useful tool for a large number 

of diverse applications.  Here is a high level introduction to our method and the following 

sections will explain the critical components one by one. 

Before clustering, identical barcode reads are grouped together to form a list of unique 

read sequences, each is associated with a count. Unique Molecular Identifiers (UMIs) for each 

read, which can later be used to detect and remove PCR duplicates, can be stored with each 

cluster. Using this list, a set of overlapping 3-8 base pair seeds are selected (depending on how 

parameters are set). Seeds are not necessarily contiguous and are chosen such that nucleotide 

positions with the most entropy (variance) appear in the first seed, those with slightly less 

entropy are added to the second seed, and so on (Figure 13). The total number of seeds is 

determined by the seed length and the number of selected positions.  For each seed, clusters 
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(initially the set of unique reads) are partitioned into bins, each of which has a unique seed 

sequence. Next, each bin is clustered independently using the greedy clustering approach that 

searches for sequence similarity across all nucleotides of the barcode. Then clusters are merged 

within each bin and these are used as the starting point for clustering with the next seed.  Each 

step is discussed in more detail below. PCR duplicates are next removed by searching for 

identical UMIs within each cluster. Lastly, three data files are output: the consensus cluster 

sequence (the barcode) and its counts, the quality of each cluster, and a map between each 

unique read which cluster it belongs in. 

 

Figure	11	A	schematic	flowchart	of	the	Bartender	clustering	algorithm	

Figure 12 illustrates the detail logic of the clustering algorithm. The algorithm takes a list of 

extracted barcode and UMIs associated with each barcode. And it outputs a list of clusters with 

quality and mapping information between unique reads and clusters.  
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s 

Figure	12	Main	procedure	of	clustering	algorithm	

The input is the tabulated extracted barcode frequency table.  The output is a list of clusters. The logic is very 
simple. It first identifies the high diversity nucleotide positions and form a list of seeds using these selected 
positions. Then it group similar barcode/clusters using each seed. And the algorithm stops when there is no change 
between adjacent round or all seeds are processed. 

There are three critical components in this clustering algorithm. The first one is the 

binning strategy. The second one is the test statistics used to distinguish barcode lineages that are 

similar in sequence space. The last one is the greedy clustering algorithm used in each bucket 

after binning step. Before introducing these components, some necessary notations need to be 

defined. 

2.2.2 Dissimilarity measures between reads and clusters 

Suppose there are !		 unique reads and let !" 		 Be the ith unique read with a frequency of !" 		. 

For two distinct reads ( !" 		 And !" 		), we use Hamming distance (Hamming 1950) as the 

dissimilarity metric to defines their distance, which is given as follows: 

 ! "#, "% = 	 ( "# ) 	≠ 	 "% )+
,-. 		    Equation	2-1 

where !"($)		 is the nucleotide at the kth position of sequence !" 		, and ! " 		 is an indicator function 

such that  
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 ! " = 1			if	x	is	true
0			if	x	is	false	 

For a particular barcode cluster !		 that may contain several unique reads, we define its size to be: 

 ! " = 	 %&'((	)*∈, 		 Equation 2-2 

The centroid of the cluster !		 is defined as a sequence ! = [!$!% … !']		, where 

!" = 	 argmax
*∈ ,,.,/,0

12*4 52 6 == 7899	:;∈. , for	6 = 1,… , @		. That is, the centroid consists of 

nucleotides that are most frequent at each position. Since a cluster usually corresponds to a 

barcode, the centroid can also be viewed as an estimate of the corresponding barcode. 

For two distinct clusters !", !$ 		, let !", !$ 		 denote their centroids. We use Hamming 

distance between the two centroids as the dissimilarity metric to define the distance between the 

two clusters, which is given as follows: 

  ! "#, "% = 	!()#, )%)		           Equation 2-3 

The position weight matrix !"#$∗&    of cluster C is defined by 

 

!"# =
(&',# == ))*,'-.∈0
1(2)  

 
Equation 2-4 

W h e r e  A ,  C ,  G ,  T  i s  e n c o d e d  a s  0 , 1 , 2 , 3  r e s p e c t i v e l y .   

2.2.3 Seeds selection and binning    

The most computationally expensive task of this problem is a large number of pairwise 

comparisons between barcode sequences. To minimize the pairwise computation, we partition 
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barcode clusters by seeds and only perform pairwise comparisons within each bucket. Thus, 

choosing seeds that break barcode clusters into a certain number of bins will decrease the 

number of pairwise comparisons and thereby improve speed. To select seed nucleotide positions 

with the greatest potential to maximize effectiveness of binning, the entropy value for each 

nucleotide position is calculated first. For N unique reads, we first calculate the frequency of 

each nucleotide at each position: !",$ = !&*([*& + == ,].
&/0 		, where ! ∈ #, %, &, ' 		 and 

! = 1,… , &		. At each position !		, the four nucleotides are dichotomized into one group with the 

most frequent nucleotide (the major allele) and another group with the other three nucleotides 

(the other alleles). The relative frequencies of the major and other alleles are then calculated and 

denoted as !" =
$%&'∈ ),+,,,- .',/

.',/'∈ ),+,,,- 			 and 1 − #$ 		, respectively. The entropy at position k is defined as: 

    ! " = 	 -&'()*+ &' - 1 −	&' ()*+(1 −	&')		 Equation 2-5 

Seeds are then selected based on the order of the entropy values, and positions with larger 

entropies are used in earlier iterations of binning. Nucleotide positions with too low entropies 

below a pre-specified (or user-defined) threshold are excluded from seed selection.  

Next, clusters, based on their centroids, are sorted into different bins based on selected 

seeds. The binning process is demonstrated in Figure	 13.  Each bin contains all clusters containing 

the same seed sequence. There are two major computational advantages of binning by seeds. 

First, unnecessary pairwise comparisons between distant clusters are dramatically reduced 

because only clusters within the same bin will be compared. Second, each bin can be processed 

independently, making it easy to parallelize the algorithm on multiple-core computers. 

Intuitively, longer seed generates more bins and the number of clusters in each bin decreases 
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which will reduce the number of pair-wise comparison. So seed length is a critical parameter that 

balances the speed and accuracy of the clustering algorithm. That is, longer seeds increase speed 

by reducing pairwise comparisons, but are more likely to leave spurious barcodes ungrouped, 

thereby increasing false positives. By default, seed length is set to be five (see Figure	 13 for 

details), and Bartender iterates through the seed position list using a sliding window with a size 

of the seed length and slide one nucleotide at a time.  

 

Figure	13	Binning	strategy	

A toy example of seed selection on eight unique sequences with a seed size of two. The entropy value at each 
position is calculated and positions are sorted in descending order, with ties broken arbitrarily.  Here, positions 
eight and six have the highest entropy and are used as the first seed, breaking the sequences into six bins (right). 
The next seed is positions are by default positions six and seven. 

2.2.4 Statistical test schema in clustering algorithm 

When two clusters are close in distance, they may arise from three possibilities: (1) one 

cluster is a true barcode cluster and another is a cluster with error reads, (2) both clusters are 

errorneous reads derived, and (3) both clusters are true barcode clusters. To avoid over-merging 
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in the second case, we use a modified two-sample proportion test to determine if two clusters 

would be merged or not.  

Let !" 		and !" 		 denote the two clusters being tested, with centroids of !" 		 and !" 		, 

respectively. The distance between !" 		and !" 		 is ! "#, "% = ! '#, '% = 	!		. Let !" 		 denote the 

new cluster when !" 		and !" 		 are merged, with a new centroid !" 		. The sizes of !" 		and !" 		 are 

S(!")	and	((!*)		, and the size of !" 		 is !(#$ 		 ) = S(!") + %(!')		. Let !",$, % = 1,2		  be the 

cumulative number of base pair errors of  reads in !"			with respect to the new cluster !" 		: 

 !",$ = 	 '()*, +$)
-..	/0∈23

*	5" 	
 

Equation 2-5 

Let !",$ 		 be the error rate of cluster !" 		 with respect to cluster !" 		, which is defined as: 

 !",$ = 	
'",$

(**(,")
	
 

Equation 2-7 

The idea is that if one barcode cluster indeed originates from errors of another barcode 

cluster, the size of the error cluster should be much smaller than that of the true barcode cluster. 

This two error rates are different from each other in most cases. This test statistic incorporates 

the size information, which amplifies the error rate by the cluster size (the smaller one). That is, 

the larger the smaller cluster is, the more significant of this test will be.  

The hypotheses can be formulated as  

!": $%,' = $),'				+,			!%:	$%,' ≠ $),' 	 

The test statistic is given by: 
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! = 	 $%,'-$),'

$%,'(1 − $%,')
.*0(1%) 	+	$),'(1 − $),').*0(1)) 	

	

 

Equation 2-8 

We reject !" 		 for large !		 value. T becomes large under two scenarios: 1) the distance 

between cluster centroids is large regardless of the relative cluster sizes, and 2) a small but 

consistent difference between two sufficiently large cluster centroids. This allows us to merge 

closely-spaced clusters that are likely caused by errors but avoid merging-closely spaced clusters 

that are likely to each represent a true barcode.  Since true barcodes close in sequence space 

accounts a very small portion of the barcode library, the test should be very conservative on 

rejecting the null hypotheses, which could be achieved by choosing a very small p-value or a 

very large critical values. 

This test schema becomes very sensitive when the number base pairs within both clusters 

are sufficiently large. That is, any small difference between two sufficiently large clusters will 

make the test significant and the merge operation will be rejected, which is the desirable feature 

used to alleviate merging issues. 

2.2.5 Clustering within one bin 

Since there may be thousands of barcode clusters within one bin, pairwise comparisons 

within a bin are still computationally expensive. To further improve the speed, we developed a 

greedy clustering algorithm that uses cluster frequency information to prioritize comparisons. 

The rationale is that clusters with high frequencies are more likely to represent a true barcode, 

while those at low frequencies are more likely to be errors. We take advantage of this by first 

splitting clusters into high- and low-frequency bins based on a threshold, the mean cluster size 
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that is derived from the empirical distribution of the cluster sizes. Since error reads are expected 

to greatly outnumber reads with true barcode sequences, the mean cluster size should partition 

the majority of error-containing sequences (and a minority of true barcodes) into the low-

frequency group. Then for each cluster in the low-frequency group, all similar high-frequency 

clusters are picked up by matching it against to the high-frequency group. There are three 

scenarios on the number of picked high-frequency clusters. If no high-frequency cluster got 

picked, this low-frequency cluster is added to the high-frequency cluster group, as they are likely 

to be true barcode clusters; if it only picks one large cluster, the low-frequency cluster is then 

merged into this high-frequency cluster. If this low-frequency cluster picks more than one high-

frequency clusters, the low-frequency cluster will be merged with the closest high-frequency 

cluster. If there are multiple high-frequency clusters are equally close to this low-frequency 

cluster, then it will be merged into the largest high-frequency cluster and tie break arbitrarily. A 

pairwise comparison among those picked high-frequency clusters is performed and merge those 

large clusters if they are similar and pass the statistical test (see Statistical test schema in 

clustering algorithm). A rigorous description is given by Figure 14. 
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Figure	14	Greedy	algorithm	within	single	bucket 

Figure 14 Greedy	 algorithm	 within	 single	 bucket illustrates the clustering process in each bucket. This module 
takes a sub list of clusters that belongs to the bucket and outputs a list of updated clusters. This module is called by 
the main procedure for clustering individual bins. 



	

58 
	

2.3 Merging clusters across multiple samples 

A growing number of studies perform time course bar-seq experiments that require 

tracking barcode lineages over time (Gresham, Boer et al. 2011, Levy, Blundell et al. 2015). In 

some cases, lineages will persist at low frequencies or be driven over time to extinction. These 

sorts of scenarios present additional challenges for Bartender clustering. As discussed above, a 

small cluster is more likely to result in a difference between the true barcode sequence and the 

sequence Bartender calls. These cluster center errors will result in some barcodes that reach low 

frequencies apparently “disappearing” at some time points and then “reappearing” at others, 

greatly impacting interpretation of the lineage trajectory. One work-around we previously 

employed (Levy, Blundell et al. 2015), was to pool reads from all time points, cluster the big 

pool to build a map between each unique read and a barcode cluster, and then reconstruct the 

counts at each time point from this map. However, this approach is extremely computationally 

expensive and can easily exceed the memory limitations of even a powerful desktop computer.	

To solve this problem, we include a “multiple time point” mode in Bartender. This 

feature allows time points to be clustered independently, thereby reducing computational 

overhead and allowing for parallelization. First, the clustering result of each time point should be 

obtained by applying the Bartender to the raw data. Once barcode clusters are obtained for each 

time point; we next match cluster centroids across all time points. Sequencing or PCR errors, 

especially in reads that form a small barcode cluster, may result in centroids that do not match 

between time points. For time course data, where many barcode lineages may be driven to 

extinction, these mismatches may result in the observation that some lineages prematurely 

disappear from the pool, as errors in small clusters become increasingly likely to result in 

miscalled centroid. For data with multiple time points, these errors may make Bartender miss 
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crucial non-zero data points.  To solve these problems, we load the clustering results in the order 

specified by user and assume that each listed result is the descendent of the previous time point. 

This strategy uses prior information to assign the results across time points (Figure	 15) and 

handles several subtleties observed in real data.  

	

Figure	15	The	schematic	flowchart	of	multiple	sample	mode	

A flowchart of cluster merging across multiple time points. The merging strategy starts from a list of clustering 
results of each time point. Clusters from the latest available time point are merged to identical clusters from the 
previous time point. Clusters without an identical match merged with the most appropriate (see the main text) 
cluster within one mismatch. Other unmatched clusters will be kept only if its size is larger than the user specified 
size threshold.  

By comparing barcode clusters with the previous time point, exact matches are merged 

into the previous condition. The remaining unmerged barcode clusters of current time point fall 

into two primary categories. One is unmerged barcode variations due to PCR and sequence error. 

The second are those true barcodes, which is not (correctly) identified in the previous time point. 
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To handle these two cases, Bartender searches for all barcode clusters with a centroid that is one 

mismatch away from an unmatched cluster centroid in the previous condition. If a match exists, 

the cluster is merged with the closest cluster in sequence space (Equation	 2-1) if the merge 

operation passes the statistic test. If there are multiple one mis-matched clusters, then it will be 

merged with the cluster that has the least significant test result. If there is no match and the size 

of unmatched barcode cluster is larger than the user defined threshold (most likely be the second 

category), it will be added to the current condition. The size of each barcode cluster is recorded 

for all time points, with “zeros” included when the cluster is absent at any time point. The final 

result contains a list clusters, each of which keeps the size information along the merging 

process. The overall cluster quality and position weight matrix across all time points (conditions) 

are also included in the final result. The detail logic is presented by Figure	16 and Figure	17. 

 
Figure	16	Main	procedure	of	merging	strategy	

The algorithm takes into a list of clustering results. The results should be logically ordered either by condition or 
time. Then it merge the results in backward manner by repeatedly calling procedure that merges two adjacent time 
points, which is described in Figure 17. 
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Figure	17	Procedure	of	merging	two	adjacent	time	points	

Basically, it assumes that the lineages in current time point is the subset of the previous time point. To correct the 
mis-call center due to PCR or sequence error, it first find all exact matched clusters by their center under Hamming 
distance metric. Then it finds all clusters that are one-mismatch away and combine them. For those unmatched 
clusters with size larger then the user specified size threshold, they will be kept and should be checked in more detail 
after the mergint step. 
	
2.4 Miscellaneous 

Bartender measures the similarity between reads/clusters using Hamming distance (see 

above) instead of Levenshtein distance for two reasons. First, the time complexity of computing 

Levenshitein distance is quadratic with respect to barcode length, which make it a computational 

burden for long barcode sequence given that the dominant computation step of this problem is 



	

62 
	

barcode sequence comparison. In contract, the computation of Hamming distance metrics grows 

linearly with the barcode sequence length and has much more advantage for long barcode 

sequence although it is only applicable for sequences with same length. Second, insertion or 

deletions occur in much lower chance than mismatches in biological process or sequence stage. 

So the accuracy gains by using Levenshitein similarity metric is very limited for bar-seq data. 

Theoretically, Bartender will slightly underestimate the lineage size if indels happen to this 

lineage in the biological process or other experimental steps. However, we did not observe this in 

the comparison on the real data between BLAST and Bartender (see  

Performance on real	data ).  

Unique molecular identifiers (UMIs) are additional, usually random, sequences that are 

added to template molecules before PCR that allow an investigator to detect and remove PCR 

duplicates and thereby improve the accuracy of amplicon counting (Kivioja, Vaharautio et al. 

2012, Levy, Blundell et al. 2015). Bartender allows a user to attach a UMI sequence to each 

barcode prior to clustering: the user must simply generate a comma separated file the contains 

one barcode and one UMI on each line. Following clustering, Bartender will search for identical 

UMIs within each cluster and report counts that include or exclude repeated UMIs (putative PCR 

duplicates). We note here that UMI length must be carefully considered as part of the 

experimental design, and provide more some general guidelines in the Discussion. 

To better evaluate clustering result, Bartender provides a cluster quality measurement 

using the entropy metric. For each cluster, the position weight matrix is first generated based on 

all unique reads that belong to it. Then the largest binomial entropy value in each position is 

treated as the cluster quality and saved to the output file. This measurement directly gauges the 
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most diversity nucleotide position. And this diversity could help users to check if this cluster 

could potential contain more than one true barcodes.  Bartender also estimates the sequence error 

by leveraging the cluster result. It first selects all high quality clusters by the cluster quality value 

(e.t the value is less than 0.8 (the majority nucleotide accounts at least 95% in each position)). 

Then it adds up all error bases and non-error bases in all clusters. The sequence error is the ratio 

of this to numbers. 
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3 Experiments and validations 

To characterize bartender performance and accuracy, three simulation datasets and one real 

datasets are applied to Bartender with different settings. This chapter is organized into four 

sections. The first section characterizes the Bartender’s efficiency using three datasets. Accuracy 

comparisons are presented using one simulation data and one real dataset in the second section. 

The third section demonstrates the effectiveness of multiple sample mode using a multiple time 

points simulation datasets. Lastly, an experimental approach was designed and carried out to 

study the impact of sequence depth on Bartender’s accuracy. 

3.1 Bartender is flexible and ultrafast 

To measure the effect of these improvements, we compared Bartender clustering speed to the 

fastest existing clustering method, which performs comparisons between unique reads by 

BLAST (see Methods and (Levy, Blundell et al. 2015)). We simulated 100,000 barcodes of a 

number of different realistic barcode lengths (26, 38, and 64 nucleotides), while keeping the 

number of reads (~10M) and the combined PCR and sequencing error rate (2%) constant 

(Methods). The frequency distribution follows exponential distribution with mean 100. On a 

desktop computer, Bartender performed the clustering in under two minutes in all cases, at least 

two orders of magnitude faster than BLAST. One tunable parameter that affects Bartender 

performance is the seed length used to partition unique reads prior to performing pairwise 

comparisons (Methods). Longer seeds will reduce the pairwise comparisons (increase speed) by 

creating more bins, but, if error rates are high, may result in under-merging because similar 

clusters might never find themselves in the same bin. By testing Bartender performance across 

different seed lengths, we find that longer seeds do indeed increase speed, however increases are 

marginal above 5 (Figure 2B). We next performed these same speed tests on a typical laptop 
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computer, and found that performance is only moderately diminished (< 2-fold slower). Taken 

together, these results indicate Bartender can be used to process most realistic barcode libraries 

on most computers in just a few minutes. Other parameters in Bartender are default value, such as z-

value is 5. 

 

Figure	18	Bartender	speed 

 (A) Running time for Bartender and BLAST on simulated data of barcodes of different lengths (BLs), using 12 
processors (t = 12). Bartender was performed with a seed length of 5 (l = 5). B) Bartender performance using a 
variable number of processors (t) and seed lengths (l). Input/output (I/O) time is shown in orange and clustering 
time in shown in yellow.  For t = 12, a desktop equipped with 3.5 GHz 6-core intel xeon E5, 64 GB memory was 
used. For t =4, a laptop equipped with 3.0 GHz Intel core i7 and 16GB memory was used. 

   

3.2 Bartender prevents over-clustering  

3.2.1 Performance on simulation data 

To evaluate Bartender performance, we generated a simulated dataset that includes 

sampling noise from DNA extraction and sequencing and a 2% sequencing error rate (see 

Methods) (Levy, Blundell et al. 2015). Similar to the barcode design in our previous work(Levy, 

Blundell et al. 2015), 100,000 barcodes were generated, consisting of four random 5mers, 
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separated by two constant dimers. To simulate non-uniform barcode distributions that can be 

found in real data, simulated barcode frequencies were exponential ( ! = 0.01		) before 

introduction of sampling or sequencing errors.  

The raw data has 4,562,582 unique reads with 38 base pairs (Table	 6). To make the data 

close to real dataset, 6 base pairs flank region is added to both ends. There are 6 spacers and 20 

random positions (Figure	 19 (b))Averagely a true barcode loses 53.5 percent of size due to the 

sequence error (Figure	 19 (c)). The data set is analyzed by bartender with the following options. 

Distance threshold is 3. The seed length is 6 and the overlapped base pairs between adjacent 

seeds are 1. Z value is 5(default). Since extremely low frequent barcodes are very hard to 

recover, the result only considers true barcodes with frequency larger than 3. The BLAST use e-

value 0.01 to assess the barcode similarity, which is equivalent to 2-mismatch in Levenshtein 

distance. 

Table	6	Simulation	parameters 

Parameters Value 

Number of Lineages 100,000 

Barcode length 38 

Barcode size distribution Exponential distribution with λ=0.01 

Number of reads ~10,000,000 

Sequence error 0.02 
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Figure	19	Summary	of	simulation	data. 
 (a) is the histogram of the true barcode size in log in base 10 scale. The majority of barcoded has about 100 size, 
which is consistent with the simulation setting. (b) is the position matrix of the raw sequence data. (c) is the scatter 
plot between true size and frequency after sequencing. It shows that the size lost is proportional to the true barcode 
size. 
 

The in-house method (BLAST) and bartender is applied to the simulation data. The best 

results from both in-house BLSST and Bartender are presented in Figure	 20. For this comparison, 

clusters with less than three reads were ignored because these low-frequency clusters are more 

likely to be erroneous and derived from another cluster in the pool. Using the remaining 96610 

clusters, the two methods found nearly the same number of clusters (96517 for Bartender, 95537 

for BLAST), however Bartender generally estimated the true count with greater accuracy (Figure	

20). In particular, many BLAST clusters were too large, indicating that two closely-spaced 

clusters were erroneously merged (Figure	 20, green triangles). BLAST over-merging resulted in a 

higher number of false negatives (Bartender = 93, BLAST = 1073), and marginally less false 

positives (Bartender = 94, BLAST = 53), with Bartender errors exclusively occurring in small 

clusters. We note that over-merging is not a problem that is unique to BLAST. All previous 
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methods use a similarity threshold (e.g. 2 mismatches) to merge similar reads, but not cluster size 

information (unique to Bartender), and will therefore be subject to the same over-merging 

artifacts as BLAST unless the method under-clusters the data.  The sequence error estimated by 

Bartender on this simulated dataset is 0.184, which is close to the theoretical value (0.2). 

Furthermore, BLAST takes about 339.73 minutes and bartender takes about 1.53 minutes, which 

is 122 times faster than blast. 

 

Figure	20	Comparison	of	BLAST	and	Bartender	on	simulation	data 

Comparison of Bartender and BLAST on simulated data. A scatter plot of the estimated and true counts of each 
barcode cluster for Bartender (red) and BLAST (blue).  Over-clustering by BLAST but not Bartender results in some 
unique barcodes being merged. Green triangles and inset of position weight matrices show a representative example 
of BLAST over-merging of barcodes that are two mismatches away from each other. Heatmaps show the rate of 
false positives and false negatives for Bartender (red) and BLAST (blue).  
 



	

69 
	

To make the comparison complete, the barcode frequency distributions recovered by 

blast and bartender are compared to the true distribution respectively. The two-sample 

Kolmogorov-Smirnov(KS) test indicates that the frequency distribution from the blast method is 

significantly different from the truth with test statistics 0.013966 and p-value less than 0.0001, 

while we cannot reject the null hypothesis that the frequency distribution estimated by bartender 

is consistent with the truth given the test statistics is 0.0029 and p-value equals 0.8167.   

3.3 Performance on real data 

To compare Bartender and BLAST performance on real sequencing data, we next 

clustered published data of a high-complexity barcode library (~0.5M barcodes, 20 random 

bases, 26 total bases) that has been sequenced deeply (~136M reads) to generate ~3M unique 

barcode reads (Levy, Blundell et al. 2015). This barcode library is generated from a random 

primer and, in contrast with simulated data, some barcodes are by chance longer or shorter than 

the expected 26 bases. Bartender uses a comparison metric based on the Hamming distance that 

does not allow comparisons between barcodes of different lengths, and instead clusters barcodes 

of different lengths independently (see  

	
Miscellaneous). In contrast, BLAST uses a comparison metric based on the Levenshtein 

distance that allows barcodes of different lengths to be compared directly. This difference 

complicates comparisons between Bartender and BLAST, because BLAST cluster centers (the 

consensus nucleotide at each position) can be influenced by “frame-shifts” where reads with an 

additional or missing base at one position causes a misalignment in many other positions. 

Therefore, to maximize the overlaps between Bartender and BLAST results, we redefine the 

BLAST cluster center as the most frequent unique read within each cluster. The two methods 

discovered 488,983 overlapping barcode clusters, with 2602 additional clusters identified by 
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Bartender and 22 by BLAST (Figure 21 (A)). The 2602 Bartender-only clusters typically 

contained numerous reads (2301 clusters with more than 10 reads), indicating that these are 

likely to be true barcodes that BLAST erroneously merged with another barcode (Figure 21 (B)). 

In contrast, the 22 BLAST-only clusters were only present at low frequencies, suggesting they 

likely arose from read errors. The overlapped clusters between BLAST and Bartender (Figure 21 

(B)) reveals that the two methods generally correlate well (Figure 21 (B)and Figure 22, Pearson’ 

correlation = 0.9723). For many barcodes, however, BLAST estimated higher counts than 

Bartender, echoing findings on simulated data (Figure 20), and suggesting BLAST over-

merging. To investigate this possibility, we examined these outliers and found that, in most 

cases, BLAST merged two or more distinct barcodes together. A representative example of 

BLAST over-merging is shown in Figure 21(4C) and Figure 21(4D)  (grey triangles): several 

barcodes with similar counts that are close in sequence space can be distinguished by Bartender 

but not BLAST. Similar speed improvements found with simulated data are found with this real 

data set (Bartender = 5.4 minutes, BLAST = 337 minutes, 4 threads) and the detailed running 

time of Bartender is given by Figure 23. The sequence error estimated by Bartender is 0.033, 

which is very close to the estimated error by Bartender extractor (0.036). 
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Figure	21	Performance	on	real	data 

 (A) summarizes the overlap between blast and bartender results. Bartender results almost covers blast result (only 
22 low frequency clusters left from blast). And about 2600 extra clusters are identified by bartender. The frequency 
distribution of non-overlapped clusters/barcodes is shown in (B). The 22 clusters presented only in blast result are 
in low frequency and only one reaches 150. Bartender’s unique clusters has about 1737 clusters that the size is over 
50. The unique clusters by bartender mainly comes from two categories. The first category contains all true 
barcodes that are missed by blast due to aggressive merging. The second category is consisted of barcode variations 
that could not be grouped to the true barcodes either due to indels errors or merging errors made by bartender. (C) 
zooms into the cluster size ranging between 0 to 4000, which covers most of the clusters. The scatter plot has similar 
pattern with simulation data (figure 3).  One representative cluster (in grey triangle) is selected to illustrate the 
difference between blast and bartender on how similar barcodes are treated in figure (D). Blast merges 6 similar 
barcodes with comparable size, while bartender distinguishes them very well. The first cluster is generated by 
BLAST, is variable at multiple nucleotide positions, matches the sequence of the first Bartender cluster (second 
black dot), and incorporates many additional unique clusters that are distinguished by Bartender (red dots). All 
Bartender clusters display low variation at each nucleotide position.  
 

 



	

72 
	

 

Figure	22	Complete	scatter	plot	on	real	data	

X-axis is the cluster size (log 10 scale) in Bartender and Y-axis is the cluster size (log 10) in BLAST. Most of points 
lie on the diagonal line. And a certain portion of points lie above the diagonal line, which is similar to what we 
observed in simulation data (Figure 20). The grey triangle is the one highlighted by Figure 21.  

Another more extreme point is selected to show the over-merging errors in BLAST. The 

position weight matrix shows that there are at least 7 heterogeneous positions. The boxplot 

below the line summarizes the distribution of unique reads frequency. The most frequent reads in 

this cluster is only 1630 while the estimated cluster size by BLAST is 51180. There are 115 
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unique reads that the frequency is above 100. To sum up, this giant cluster is primarily consisted 

of unique barcodes with relative comparable size and no dominant barcode is found. 

Since this dataset has about 136M reads, Bartender spent most of time on loading the 

extracted barcode and tabulate the unique reads. The actually wall-lock time on clustering 

process takes very small portion of the overall running time (Figure	 23). When seed length 

reaches 5, the efficiency gains by increasing seed length almost disappear, which indicates seed 

length 5 should be a good parameter for this dataset considering the balance between accuracy 

and speed discussed in section Seeds	 selection	 and	 binning. The z-value in bartender was set to 5 

for all running instance. And the distance is set to 3. 

 

Figure	23	Running	time	of	Bartender	on	real	data	

Here, t means number of threads and l means seed length. This experiment runs on the same laptop used in 
efficiency comparison above (page 64). Two thread settings are explored, which shows that the clustering process 
indeed becomes faster when seed length is 4.  
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3.4 Evaluation on multiple sample merging strategy 

3.4.1 Simulation Setting 

To validate the merging strategy on the multiple time points situation, another simulation 

dataset is generated and the parameters were adopted from estimates in real data. Since the goal 

of this experiment is to evaluate the merging strategy, the simulation assumes that there is no 

mutation occurring at any time point and each lineage tag has a fixed growth rate throughout all 

generations.  No spacer and flank sequence are present in barcode because these constant regions 

have little impact on the effectiveness of merging strategy. The simulation process mimics the 

real experiment and sequencing step using two separate stages at each time point. The first stage 

simulates the cell growth and bottleneck caped by the medium saturation size. In this stage, each 

lineage grows based on the its growth rate and its actual population size follows the Poisson 

distribution with mean equals to the normalized frequency caped by the medium saturation size. 

The second step is sequencing, which is simulated by a Poisson distribution with mean equals to 

the actual population size. Table	7 shows all relevant parameters in this simulation. 

Growth and bottleneck: Growth is performed in discrete generations where the population of 

cells in the ! + 1		 generation !",$%& 		 follows Poisson distribution with ! = #$,&* ()	+$ *#,
#$,&* ()	+$-

$
		 assuming 

that the whole population has already saturated the whole medium from the initial generation.  

Sequence: to simplify the sequence step, the simulation assumes that the number of cell 

sequenced cell for a specific lineage follows the Poisson distribution with ! = #$,& 		. And the 

sequence process is purely random and only mismatches occurs. 
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Table	7	Multiple	time	point	simulation	parameters	

Parameters Symbol Value 

Number of Lineages !	
 

100,000 

Barcode length !	
 

20 

Generations of evolution !	
 

113 

Number of lineage tags with growth 
advantage 

- 5,000 

Initial population size per barcode  - !"#(100)	
 

Sequence error !	 0.02 

Distribution of growth rate (fitness 
coefficient) 

- Truncated Exponential Distribution 
! = 0.00083		 

Bounded	by	(0.05,	0.15) 

The growth rate of lineage i  !"	 

Population size of lineage !		 at time 
point !		 

!",$	
 

Poisson distribution with  

! = #$,&-(* 1 +	-$ *#.
#$,&-(* 1 +	-$/

$
	
 

Number of actual sequenced cells for 
lineage !		 at time point !		 

!",$% 	
 

Poisson distribution with ! = #$,&		 

Saturation population size !"	
 

10,000,000 

Number of reads at each generation !"	
 

~10,000,000 
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To	 analyze	 the	 multiple	 time	 points	 simulated	 data,	 each	 time	 point	 is	 first	

processed	by	bartender.	The	parameters	for	each	single	run	is	covered	by	Table	8.	Then	the	

merging	 strategy	 is	 used	 to	 combine	 the	 clustering	 results.	 The	merging	 strategy	 is	 run	

with	z-value	5	and	frequency	cutoff	1. 

Table	8	Bartender	parameters	in	multiple	time	points	simulation 

Parameters Value 

Seed length 5 

Overlap between adjacent seeds  4 

Hamming distance 3 

Z-value 5 

	

Over time, higher fitness lineages will expand and drive lower fitness lineages to low 

frequencies and eventual extinction. And we observed that all lineages start with roughly same 

size and all lineage tags without growth advantage begin to die out from the 73rd generation and 

completely extinguish at 81generation. All 5000 lineages with growth advantage co-exist for a 

long stretch of generations after 81st generation and we stop at 113th generation, which covers all 

the interesting evolution stages. To examine the effectiveness of algorithm, the selected 

generations are 0, 19, 49, 59, 64, 69, 72 - 82, 84, 86, 90, 92, 96, 104 and 112, which zooms in the 

generations between 72 and 92 to capture the evolution dynamics and how many low frequency 

lineages are lost in the clustering result. 

3.4.2 Experiment results 

Bartender detected 100389 barcode clusters including all true barcodes (no false 

negatives) and 390 (one cell lineage has zero frequency at initial generation due to randomness) 
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erroneous barcodes (false positives). False positives were only detected in the first time point and 

no subsequent time points, and would be easily identified and ignored by an investigator. 

Bartender was extremely accurate at estimating barcode frequencies over time, but accuracy 

suffered when lineages fell to low frequencies of ~2-3 reads per barcode. To exemplify this 

point, we sampled the barcode frequencies often during the mass extinction event that begins at 

~70 generations in our simulation (Figure	 24). During this time, we find that Bartender 

underestimates the number of barcode lineages that are still present in the pool. As discussed 

above, these errors are generally due to PCR and sequencing errors in low frequency lineages 

that cause Bartender to miscall barcode cluster centers. When the number of lineages becomes 

stable (5000 lineages at 81 generations), Bartender again finds all barcodes that exist in the pool. 

 

Figure	24	Performance	of	merging	strategy	on	simulation	data 

Bartender performance on time course data. A simulation was performed of 100,000 barcoded cells with different 
fitness coefficients that are evolved in competition for 112 generations (A) Lineage trajectories of 1000 randomly 
selected barcodes (colors).  Solid lines are trajectories estimated by Bartender and dashed lines are the true 
trajectories. (B) The number of barcodes present in the pool at a count greater than 1 (red) and the number detected 
by Bartender (turquoise). At ~70 generations, lineages without a growth advantage begin to go extinct. During the 
following mass extinction, Bartender slightly underestimates the number of barcodes present. 
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3.5 Bartender errors and sequencing depth   

Barcodes with low sequencing depths are difficult to accurately count for several reasons. 

First, sampling noise (derived from which molecules happen to be sequenced) scales with the 

square root of the expected number of reads. That is, barcodes with less reads will have high 

coefficients of variation simply because of sampling on the sequencer. Second, small read 

numbers can often result in an erroneous cluster center (the predicted barcode sequence does not 

match the true barcode sequence) because PCR or sequencing errors in one read will have a large 

impact on the predicted center. These errors in small clusters will often result in both false 

positives and false negatives because reads matching true barcode sequence are missing while 

those matching a new (erroneous) barcode sequence are present.  Third, merging decisions 

between small clusters become less accurate. As described above, Bartender takes advantage of 

cluster size information to make merging decisions. An unequal frequency between clusters 

favors merging because it becomes more likely that the low frequency cluster represents a 

sequence error of the high frequency cluster. However, when a barcode is present at low 

frequencies, both true reads and errors are expected to have few counts, so differences in 

frequency become blunted and less informative.    

3.5.1 Experimental approach 

This section is trying to give some insights on how to determine the sequence depth such 

that bartender could adjust the sampling and sequencing error to recover most of the true 

lineages. To answer this question, the error proportion introduced by bartender with respect to 

the overall error is measured in both simulation and real data.  

To make the problem simpler, this study only considers the three most primary errors 

including sampling error, sequencing error and error introduced by bartender. The sampling error 
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refers the size difference of each barcode lineage between the actual sequenced copy number and 

the theoretically expected sequence copy number. Sequence error refers only include the 

mismatched introduced in the sequence step. Lastly, error by Bartender is defined as the size 

difference between the estimated and the actual sequence copy number. 

To evaluate these three types of errors, the whole dataset is randomly partitioned into 15 

subsets. Bartender is applied to analyze each partition and the result of each partition is matched 

to the ground truth by the cluster center. Since there is no ground truth for the real data, the 

clustering result on the whole dataset is used as the truth.  

Since each reads are sampled individually, the cluster size in each partition follows the 

Binomial distribution (Equation	 3-1). And the expected barcode count and standard deviation are 

given by equation (Equation	3-2) and (Equation	3-3). 

 !"	~	%&'()*,
1
')	 

Equation	3-1 

where !"		 is the size of the corresponding cluster in whole dataset. 

So the expected cluster size in one partition is given by 

 Ε "# = 	& = '( )	 
Equation	3-2 

And the standard deviation in one partition is given by 

 !" = 	 %&
1
( *

(-1
( 	

 

Equation	3-3 
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The coefficient of variation (CV) (Equation	 3-3) is selected as the error measurement for each 

error source since it is an error measurement independent of the barcode lineage size. The 

estimated CV is calculated based on equation (Equation	 3-5) for three errors in an accumulative 

way.  

 !" = 	%&	 
Equation	3-4 

 !" = 	 %&		    Equation	3-5	

where ! = 	 (%&-%))
*-+

*
,-+ 		 and  ! = 	$ = %&'

&()
* 		.  

 !"		 is the observed frequency of each cluster in partition i. ! = 	$ = %&'
&()
* 		 

3.5.2 Experiment results  

In both cases (Figure 25), Bartender clustering introduced almost no errors for large 

clusters (>10 reads). Counting errors for these large clusters are due almost exclusively to 

sampling at the sequencer. For smaller clusters (<10 reads), the clustering process does introduce 

additional error for reasons described above. However, the additional error due to clustering is 

small, especially at the lower (and more realistic) ~0.33% sequencing error rate. Nevertheless, 

sequencing at a coverage sufficient to read each barcode at least 10 times would virtually 

eliminate Bartender errors.  
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Figure	25	Coefficient	of	Variations	of	three	types	errors	on	simulation	data	

X-axis is the expected barcode count in each partition. Y-axis is the Coefficient of variation (CV) calculated by Equation	 3-4. 
Black line is the theoretical CV of the expected barcode size, which follows the Binomial distribution. The blue line is the CV of 
the realized barcode size after sampling. The red line represents the accumulative error that contains the sampling error, 
sequencing error and errors introduced by Bartender. The impact of sequencing depth on Bartender performance. A plot 
of the barcode count by the coefficient of variation (CV) for that count on simulated data with a 2% (A) and 0.33% 
(B) combined error rate of PCR and sequencing error. The black lines are theoretical values, which follow the 
Binomial distribution. The blue lines are the CV of sampling (at the sequencer) alone, without sequencing errors or 
errors introduced by Bartender clustering. The red lines are the CV after running Bartender, and include sampling, 
sequencing, and clustering errors. All lines are smoothed with window size 0.5. To sum up, larger sequence error and 
longer barcode poses more challenges on recovering low frequency barcode. 

We also test bartender on the real data using the same approach described above. Since 

there is no ground truth for real data, the clustering result on whole dataset is considered as the 

“ground truth”. Figure	 26 shows the results by applying the approach on this dataset. The three 

lines overlap with each other very well. Bartender does not introduce extra error on top of 

sampling error, which indicates the real data is in high quality and bartender works well on this 

dataset. Same bin size and software parameters are applied to the data. 
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Figure	26	CV	plot	on	real	data	

The single time point simulation data and the same real dataset is used in this study. This 

experiment suggests that the idea sequence depth is related with two factors. One is the sequence 

error. Low sequence error (high quality data) requires less sequence depth in order to have an 

accurate clustering result from bartender, which means that high quality data saves experiment 

cost. The other factor is the barcode length. Longer barcode needs larger sequencing depth in 

order to recover the low frequency barcodes as much as possible based on the fact that the 

probability that the barcode is not mutated decreases exponentially with respect to barcode 

length. 
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4 Discussion and future work 

4.1 Discussion 

To the best of our knowledge, Bartender is the first general clustering algorithm for 

accurate and fast counting of barcode and amplicon reads. Bartender’s accuracy stems from a 

new statistical test schema that uses both nucleotide sequence and cluster size information to 

prevent over-merging; its speed stems from a novel binning strategy and a computationally 

efficient greedy clustering algorithm. Bartender includes handling of both UMIs and time course 

data, and promises to be a useful tool for a large number of diverse applications.  

Bartender includes three parameters that are tunable for different applications: the 

sequencing error rate (e), the seed length (l, see Chapter 3), and the merging threshold (z, see 

Chapter 2). We recommend using the empirically determined e (an output of Bartender extractor) 

for all applications, and the default seed length (l = 5) for applications where shorter run times 

are not a priority. The remaining parameter, z, should be set according to the expected coverage 

per barcode and the barcode library complexity.  For low to medium coverage (<500 

reads/barcode), we recommend starting with the default setting for z (= 5). However, in some 

cases, it may be necessary to adjust the z. For example, we have noticed some nucleotide 

sequences in our random barcode libraries are more prone to PCR or sequencing errors (i.e. 

errors at that position are greater than e), and, if these errors occur within an abundant barcode, 

they may cause the same erroneous read to occur at a high frequency and therefore be interpreted 

as an independent barcode cluster. At extremely high coverage (e.g. >10,000 reads/barcode in a 

low-complexity barcode library), this problem is amplified because a high error position in any 

barcode will create this artifact. In this case, we recommend setting z higher.  In cases where all 

barcodes are expected to be distant (averagely 5-6 mismatches from a nearest neighbor), we 
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recommend disabling the merging threshold (z = -1) to make merging decisions based on cluster 

distance only, i.e., all sequences within the user specified distance of each other will be merged, 

since this scheme is unlikely to merge any real barcodes together (over-merging) and will 

remove the possibility of nucleotide sequences with abnormally high errors causing artifacts. We 

note that Bartender will only perform well if most barcodes within the pool are sufficiently 

spaced such that they are at least 3-4 mismatches away from a nearest neighbor (see (Blundell 

and Levy 2014, Levy, Blundell et al. 2015) for a discussion on random barcode design). In cases 

where this rule is broken (Bhang, Ruddy et al. 2015), Bartender performance will be 

encumbered, as will any existing clustering approach.  

 

Bartender speed is mainly due to the fact that it partitions unique reads into bins and 

restrains sequence comparisons within a bin. We use the entropy at each nucleotide position to 

prioritize seeds that have the highest probability of creating a maximal number of bins, and 

thereby minimizing the number of pairwise sequence comparisons. Barcode designs with regions 

of varying complexity (e.g. (Goodman, Church et al. 2013, Kosuri, Goodman et al. 2013, 

McKenna, Findlay et al. 2016)) could potentially disrupt this process and greatly slow Bartender, 

for example, for a barcode that is split into low complexity (e.g. 1000 random variants) and high 

complexity (e.g. 1M random variants) regions. Because a nucleotide in either region would be 

expected to have high entropy, Bartender may choose initial seeds that contain only low 

complexity nucleotides resulting in far fewer bins. One potential solution would be to use a seed 

selection protocol that considers associations between nucleotides (e.g. information gain or 

mutual information), however this is not implemented here as this type of design should be rare. 
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Bartender removes PCR duplicates by simply searching for repeated UMIs within each 

cluster (exact matches) and removing these from the counts. Because it searches only for exact 

UMI matches, a PCR or sequencing error that happened to occur in a repeated UMI would not be 

recognized as a repeat and thus result in over-counting of that cluster. However, the alternative, 

merging UMI with similar sequences, raises greater problems. Large clusters may contain many 

UMIs, and, because UMIs are generally short, UMI clustering would erroneously merge many 

distinct UMIs that are close in sequence. Even using our exact match criterion, it is possible that 

extremely large barcode clusters will begin to use up all available UMIs resulting in under-

counting. For example, a barcode that is read 100,000 times and contains an 8mer UMI (48 = 

~65,000 possible sequences) will necessarily have UMI repeats even when each sequenced read 

stems from a unique template molecule. To avoid these problems, we recommend selecting a 

UMI length that results in at least 10-fold more possible sequences than the largest expected 

cluster. 

The multiple time point mode is designed to generate the trajectory for an evolution 

process, which naturally put the constraint that the lineage at any time point (generation) is the 

result of the previous time point (generation) assuming that the diversity of cell lineage does not 

increase along the biological process. This mode could then be applied to other non-time point 

data if the data confirms this assumption. To capture the crucial near-zero point (generation), i.e. 

the extinction point of most lineage tags, and alleviate the miscall error observed in extremely 

low frequency lineage tag, Bartender matches the cluster of current time point to previous time 

point by allowing at most one mismatch. For data with general multiple experiment conditions 

that do not satisfy such subset connection, they need to be handled on a case-by-case basis. If 

there are only few (2-3) conditions and large overlap in barcodes is expected between conditions, 
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the multiple time point mode can be directly applied by assigning an arbitrary sequence to 

conditions. However, in cases where the overlap between conditions is expected to be small, the 

multiple time point mode will not be beneficial and the regular mode of Bartender can be applied 

to each condition separately to obtain clustering results for subsequent analyses.    

Lastly, based on our experience, Bartender will work well with a standard laptop or 

desktop computer for most applications. Available memory (RAM) is generally the limiting 

factor for Bartender processing, and the necessary RAM is a function of the number of unique 

barcode reads and the barcode length. We recommend 4-6 GB RAM for datasets with less than 

1M unique 40mer barcodes, and 8-10 GB RAM for datasets with less than 3M unique 60mer 

barcodes. 

4.2 Future work 

Although Bartender is ultrafast and generates accurate result on the simulation data and 

published real data, there are still some characteristics of bar-seq data is not well handled by 

Bartender.  

For low complexity barcode with extremely high coverage, the test will fail because it is 

quite easy for a high frequent lineages generate large artifacts and merging these artifacts with its 

true cluster will always be rejected by the statistical test proposed above. So a more robust 

statistical test that considering the sequence coverage and barcode complexity library should be 

developed in order to handle these case. One way to achieve it is to use bootstrap and resize high 

frequent clusters under the scale that the current statistical test has the most power.  

We tested Bartender on some unpublished double barcode data, which refers the paired-

end read and both ends have valid barcodes inside. We notice that some positions have much 



	

87 
	

higher error rate than other position due to the barcode template.  So it might be a good idea to 

give each nucleotide position with different weight based on the sequence error profile when 

measuring the similarity including the sequence similarity and the test statistic test. However, it 

is very difficult to estimate the sequence error from the raw data unless the sequence platform 

could provide these statistics.  One thing could be done on Bartender extractor. That is, 

Bartender extractor could calculate the error rate on several discrete positions on fixed region by 

allowing mismatches on fixed regions. And the smoothing error rate between positions interval 

could be used as the error rate for the positions between those positions with estimated error rate.  

As discussed above, picking up high diversity seeds is very challenge problem, which is 

quite computational expensive to find the optimal seed sequence. The goal is to find a set of 

positions in the raw sequence such that the raw sequence could be distributed into buckets as 

even as possible. Mathematically, it could be formulized as an optimization problem, which 

could be potentially an interesting research direction. 
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