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Abstract of the Dissertation

Essays on the Spillover Effects of Information Arrivals in Security Trading

by

Zhenning Wang

Doctor of Philosophy

in

Economics

Stony Brook University

2016

The mixture distribution hypothesis is widely used to explain the be-
havior of returns and volumes in security trading in single-security settings,
and the unobservable information arrival process in models based on this
hypothesis is the key factor that determines the conditional distributions
of returns and volumes. In order to investigate whether the information
arrival processes of different securities may interact with each other, in the
first part of this dissertation I extended the framework of mixture distri-
bution hypothesis to a multiple-security setting, in which the unobservable
information arrival processes of different securities may potentially interact
with each other through vector autoregression.

Then I picked 43 large capitalization stocks publicly traded on US ex-
changes, grouped them into 11 pairs and 7 triplets with the same industrial
sectors, and estimated the multi-security mixture distribution model using
these data. My estimation results show that contemporary correlations in
the shocks to information arrival processes are more common than cross-
security historical dependencies in information arrival processes. However,
for 9 out of 18 groups of stocks in industries such as banking, retail, con-
sumer goods and telecommunication services, the cross-security historical
dependencies are of both statistical and practical significance. Further-
more, such dependencies are asymmetric in the sense that large capitaliza-
tion stocks tend to give more impacts to small capitalization stocks than
in the other way.

My estimation method is based on transforming the likelihood maxi-
mization problem into an equation-solving problem involving a high-dimensional
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integral, and then I use Stochastic Approximation and Markov Chain
Monte Carlo simulations to search for the equations solution. My simu-
lation study shows that point estimates produced by this method are close
to the true parameter values, but the estimated confidence intervals may
be not wide enough to cover true parameter values with the corresponding
probabilities.

In the second part of this dissertation I applied the same model us-
ing ETF data to investigate spillover effects in information arrivals among
international stock portfolios and among different US asset classes. My
estimation results show that the information arrival process of the US
stock portfolio can heavily impact those of other countries stock portfolios.
Similarly, the information arrival process of the large-capitalization stock
portfolio can heavily impact those of mid- and small-capitalization stock
portfolios. However, both of these two kinds of impacts are unidirectional.
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This research is an investigation into the relationship among multiple
financial securities’ information flows. To better explain it, I will start with
clarifying the meaning of information flow and financial security used here.

Let us assume for one moment that the financial security is the common
stock of a publicly traded company. Information flow is a concept that is
used by Tauchen and Pitts (1983) among other to explain the behavior
of the financial securities’ daily returns and trading volumes. The funda-
mental idea of information flow-centered models is that investors’ position
choices on the stock are based on their subjective valuations for the stock.
The stock’s valuations, which in general are different across investors, in
turn are calculated using the information investors have received regarding
the stock. When new information arrives to the market and is absorbed by
the investors (for instance, some news breaks out about the public company
whose stocks are traded), it tends to change investors’ valuations for the
stock idiosyncratically and thus to create trading opportunities among the
investors. Investors adjust their positions until the market reaches an equi-
librium, and such an position-adjustment and equilibrium process occurs
for every arrival of new information. A simplifying assumption is that the
effects of each arrival of new information is homogeneous, which is shocking
investors’ existing valuations by an idiosyncratic random variable. This as-
sumption allows us to focus on information flow, defined as the number of
times for which new information regarding a security occurs on the market
over a fixed period of time, as information flow in this setting determines
the distribution of returns and trading volumes. Since 1970’s, information
flow has been widely used to explain the distributions of financial securities’
daily returns and trading volumes by a well-developed line of literatures
on financial econometrics. It provides a way to explain the positive corre-
lation between return volatilities and trading volumes, and also gives an
explanation for the autocorrelation in returns’ volatility process.1

A key feature of models with information flows is that information flows
are not directly observable. Nowadays, the trading data for public com-
panies’ common stocks, for example, are freely available from Internet fi-
nancial media.2 However, the variables included in such data sources are
usually limited to open, close, low and high prices, trading volumes and
dividend amounts at daily frequencies.3 Though up-to-date news reports
are usually posted on the same page together with other variables, no quan-
titative measure is taken towards determining the amount of information

1See Clark (1973), Tauchen and Pitts (1983), Andersen (1996) and Liesenfeld (2001)
for examples of major contributions to this area of research. Reviews on these papers
will be presented in Section 1.4.

2This research has used Yahoo Finance (http://finance.yahoo.com) as the major
data source.

3Of course, dividends amount is non-zero only on ex-dividend days.
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flow, not to mention the availability of historical data. Two reasons may
be causing the practical difficulties in implementing the definition of in-
formation flow, i.e. the number of times that news breaks out within a
given time period regarding a specific security. One is that many different
media resources may simultaneously cover the same event, yet producing
reports with differentiating information contents. In such cases, it would
be difficult to determine whether to count different news reports as a single
or multiple information arrivals, due to the overlap in reports. Moreover,
the variety of news resources makes it costly to make a complete, fully-
covering report count. The other reason is that it is also difficult to count
information arrivals over time from a single news source, since a news event
itself may develop over time and provide new information to the market.
It is thus inappropriate to treat the series reports as a single information
arrival, but nor is it easy to separate them as documentations of distinct
events. Therefore, an easier way to handle information flow is to assume
it is unobservable, and later use special techniques to deal with its unob-
servability in the estimation stage. After all, no data is available for such
variables, but several estimation techniques have been developed for models
with unobservable variables.

But the unobservability of information flows does introduce difficulties
into the estimation procedure. This research has taken maximum likelihood
as the primary estimation technique. With the presence of unobservable
information flow variables as well as their autoregressive property, the (log-
) likelihood function would contain a very high dimensional integral that
cannot be computationally tracked. This research has taken an approach
introduced by Gu and Kong (1998), who have applied the Stochastic Ap-
proximation algorithm to the likelihood maximization problem. The main
idea of their method is to first transform the likelihood maximization prob-
lem into an equation solving problem, and then uses Stochastic Approxima-
tion (Robbins and Monro 1951) to solve the equation. Since the equation
still involves a high dimensional integral, meaning that its value cannot be
directly assessed, in each parameter update step, the Stochastic Approxi-
mation algorithm uses Markov Chain Monte Carlo simulations (Metropolis
et al. 1953, Hastings 1970 and Peskun 1973) to draw an noised observation
of the equation’s value, and use the noised observation to make parameter
updates. Under some regularity conditions, the parameters updated in this
manner will converge to the Maximum Likelihood estimate.

The usage of information flow in explaining the behavior of single se-
curities has been very successful.4 However, the application of the same
modeling method to a multiple asset framework have been very limited so
far. On one hand, the volatility processes of different securities are often
highly correlated, as will be shown in Section 1.3 of this chapter. On the

4Please see footnote 1 and Section 1.4.
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other, the information flows of different securities could be correlated as
well. For example, in the case of common stocks, a companies’s financial
performance could be related with that of another company through compe-
tition, cooperation, shared subjection to macroeconomic shocks and other
channels. The existence of such connections between companies implies
that the information flows of these securities may also be correlated. This
research calls “information spillover” the mechanism through which infor-
mation flows of different securities are correlated with each other, which
will be explained in more detail in Section 1.3 and Chapter 2. The pri-
mary goal of this research is testing the existence of information spillover,
and using spillovers in information flows to explain the correlations among
multiple securities’ volatility processes, based on the framework introduced
by Tauchen and Pitts (1983).

I have used common stocks as an example for securities in explaining
information flow based models, but such models can be applied to ana-
lyzing other asset classes as well. For example, Tauchen and Pitts (1983)
actually have used this framework to explain the behavior of 90-day Trea-
sury bill contracts. Thus I am planning to use this multi-security model to
examine not only the spillover effects of information flows among different
stocks, but also among different stock indexes on the US market, among
stock markets indexes of different countries, and among indexes of differ-
ent asset classes (stock, bond and commodity indexes). Since indexes are
portfolios of individual securities, in principle they should be able to inherit
the interactions among individual securities’ information flows. Applying
the model to index level data allows us to investigate the joint behavior of
different types of securities, without being limited to a few specific choices
of each type.

However, index data cannot be directly utilized to estimate information
flow based models, since in such models there is another variable that plays
an important role, which trading volume. A central idea embedded in these
models is that the conditional distributions of both return and trading
volume are determined by the unobservable information flow, which in turn
indicates that incorporating volume information in the estimation process
would produce more efficient estimates. There is no difficulty in using
trading volume data of individual stocks, but trading volume is not easily
defined for market indexes. Trading volume is the amount of securities
that are traded within a given amount of time. For stocks it is the number
of shares traded, and for future contracts it is the number of contracts
traded. But such a definition cannot be applied to market indexes, since
market indexes are not traded in the same way as individual securities. It
is very difficult for an investor to trade a market index by directly buying
or selling its component securities simultaneously, which would involve a
large amount of transactions and also entails a large amount of capital.
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Instead, the common alternatives for an investor to trade a market index
are through trading an Exchange Traded Fund (ETF), a market index
future, or a market index option.5

ETF is a type of passively managed funds which target at replicating
certain predetermined market indexes. A distinct feature of ETF’s is that
they are traded in the same way as stocks on public exchanges. In addition,
for ETF’s there is an arbitrage-free mechanism known as Creation and
Redemption, in which an Authorized Participant (a financial institution
different from the fund management firm) can creates and redeem shares
of the ETF, and essentially limits the price differences between a share
in an ETF and a corresponding share in the targeted index into a very
small range.6 Thus ETF’s, especially those with large values of asset under
management (such that they are more intensively traded), are good proxies
for the market indexes they track.

On the other hand, though the theoretical prices of future and option
contracts are also uniquely linked with the spot market index value, in
practice the linkage could be loose because of transaction costs and uncer-
tainties in parameters. For example, the existence of volatility smiles/skews
indicates that option contracts on the same underlying assets and with the
same expiration date, may be priced with different volatility values at dif-
ferent strikes. As a matter of fact, the volatility parameter itself is uncer-
tain, the accurate estimation of which is one of the major objectives of this
research.

Therefore, ETF’s are chosen as proxies for the corresponding market
indexes. Three type of ETF’s tracking US market indexes are selected, to
proxy the performance of stock, bond and commodity markets, respectively.
Within the category of stock market ETF’s, future granularity is introduced
by ETF’s tracking stock indexes of large, middle and small capitalization
stocks. In addition, ETF’s that targeting at replicating the performance
of international stock markets are also included. In Chapter ??, I will
present in details the features of such data, and the results of estimating
the information flow framework using such data.

5Another investment vehicle that allows one to track the performance of a market
index is known as index fund, which is a type of mutual fund that is passively managed.
The manager of an index fund does not try to beat the performance of the tracked market
index, but only to replicate its performance. Index fund cannot be traded (which is also
true for the more general mutual funds), since investors can only redeem or purchase
shares of an index fund at the end of a trade day from the fund management firm. Nor
can an investor hold short positions on an index fund.

6For more information on the Creation and Redemption mechanism, please
see the following page at http://www.etf.com/etf-education-center/

7540-what-is-the-etf-creationredemption-mechanism.html.
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1.1 Volatility Modeling

Suppose we can draw observations of transaction prices and accumulated
transaction volumes over fixed time intervals for a security traded on some
speculative market. The length of the time interval used for making such
drawings may vary from a few minutes to a month, depending on the data
source one can access. Then we can calculate security returns from its price
data, either as percentage changes or changes in logarithmic prices between
two consecutive observations. The data collected in this way—observations
drawn over fixed time intervals, is called time series data. And if we see
each observation as a realization of a unique random variable, then the
collection of all these random variables together with the time index is
called a stochastic process. A long observed feature of time series return
data is that its conditional variances display substantial variations over
time.7

For example, this research has used the following definition for an asset’s
return Rt on day t:

Rt = 100× log

(
St
St−1

)
,

where St is the asset’s price on day t, and the factor 100 enables the inter-
pretation of Rt as return in percentages. Figure 1.1a then plots the daily
returns of the Standard & Poor’s 500 Index (S&P 500) between January 3,
2006 to December 31, 2015 calculated in this way. It shows that for most
part of the observation period, the returns of S&P 500 fluctuate mildly
within the range (−2.5, 2.5), but there are other times during which return
observations far out of this range are well documented.8 The fourth quarter
of 2008 is the period that gives the most extreme return observations, while
several other periods such as the second half of 2007, the first half of 2008
and 2009, the second quarter of 2010, the second half of 2011 and the third
quarter of 2015, also display higher-than-normal return fluctuations. Dur-
ing these heavily fluctuating time periods, extreme return observations do
not appear alone but in clusters. An extreme observation is often followed
by a few more observations which are also extreme. Mandelbrot (1963)
has called such a behavior of security returns “volatility clustering”. The
existence of volatility clustering indicates that the conditional variances of
returns may have increased to and persisted at high levels during certain
periods.

An quantitative way to exhibit the existence of volatility clustering is
to examine the levels of partial autocorrelations in the absolute return se-
ries. In general, the return series itself is not highly correlated, since if

7This feature is also exhibited by some other time series data. See Footnote 10.
8Here the S & P 500 index is treated as a single security.
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Figure 1.1: Daily returns and annualized historical volatilities of S&P 500 Index,
2005—2014. Data source: Yahoo Finance (http://finance.yahoo.com).

The return and historical volatility are respectively calculated as: Rt = 100·log(St/St−1)

and σ̂t =
√

(252 ·
[∑20

i=0

(
Rt−i −

∑20
j=0Rt−j/21

)2
/20

]1/2
, where St is S&P500’s close

value on day t. σ̂t has a factor of
√

252 since there are about 252 trading days in a year.

it were, traders in the market would be able to make profits from trad-
ing on such correlations, and make the correlation vanish. However, the
absolute return series can exhibit higher positive autocorrelations, as pre-
viously explained in the concept the volatility clustering. Figures 1.2a and
1.2b have plotted the partial autocorrelation coefficients at lags from 1 to
30 for S&P 500’s returns and their absolute values, respectively. Com-
pared to autocorrelation, partial autocorrelation cleans the correlation at
low lags before examining higher lag correlations. In these two figures, the
blue dashed lines mark the 5% rejection boundaries for separately testing
the null hypothesis of zero correlation at a given lag. For most lags, the null
hypothesis of no correlation cannot be rejected at 5% significance level, as
shown in Figure 1.2a. And for the lags with which the null can be rejected,
the magnitudes of estimated partial autocorrelation coefficients are not big.
Lag 1 shows the highest extent of autocorrelation, which is slightly lower
than −0.1. However, Figure 1.2b presents strong evidence against the null
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hypothesis of zero autocorrelation for lags from 1 to 7. For these lags the
estimated partial autocorrelations fall well above the rejection boundaries,
and the magnitude of these estimates are also much greater than those
shown in Figure 1.2a. The results shown in two graphs are consistent with
the concept of volatility clustering.
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(a) The Partial Autocorrelations of Daily Returns

−0.1

0.0

0.1

0.2

0.3

0.4

0 10 20 30
Lag

P
ar

tia
l A

ut
oc

or
re

la
tio

n

(b) The Partial Autocorrelations of Absolute Daily Returns
Figure 1.2: The partial autocorrelations of S&P 500’s returns and their absolute
values.

The partial autocorrelation coefficient is defined as follows. Suppose we have observa-
tions on variables X, Y and Z. The partial correlation coefficient ρXY ·Z between X
and Y adjusted for Z is the correlation coefficient between rX and rY , which are the
residuals of regressing X and Y on Z, respectively. The partial autocorrelation coeffi-
cient at lag h for time series data Rt is then the partial correlation coefficient between
Rt and Rt−h adjusted for Rt−1, · · · , Rt−h+1. The blue dashed lines in the graphs mark
the 5% rejection boundaries for partial autocorrelation coefficient estimates at all lags,
such that if an estimate falls out, the corresponding null hypothesis should be rejected.
Since the partial autocorrelation estimates follow N (0, 1/T ) in large samples, the blue
lines are located at ±1.96/

√
T , where T is the number of observation periods.

The area of time series research which addresses how conditional vari-
ances change over time is called volatility modeling. For return data, the
word volatility actually refers to an observation’s annualized conditional
standard deviation9. In practice, there are different measures for volatil-

9See Ruey S. Tsay (2002, p. 109) for a definition of volatility.
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ity, such as realized volatility, implied volatility and historical volatility.
Realized volatilities are computed from high frequency data and implied
volatilities are calculated using data on option prices. Since these two types
of data are not available in this research, historical volatility becomes the
suitable tool for measuring volatility empirically. Figure 1.1b has plotted
the historical volatilities of S&P 500’s returns, showing that the histori-
cal volatilities have spiked during the times when returns fluctuate heavily.
And then it takes some time for volatilities to return to their long term aver-
age level. The idea of volatility modeling is then to describe how volatilities
evolve over time using statistical models.

Ever since the groundbreaking work of R. F. Engle (1982) who in-
troduced the autoregressive conditional heteroscedasticity (ARCH) model,
volatility modeling has become one of the most intensively studied areas
in time series research.10 Depending essentially on the specification of the
current period information set, which could be though of as the collection
of all currently available information, volatility models can be grouped into
two categories: those using the generalized autoregressive conditional het-
eroscedasticity (GARCH) framework and those using the stochastic volatil-
ity (SV) framework. The GARCH framework is a major development by
Bollerslev (1986) to Engle’s ARCH model. In the simplest case in which
returns are uncorrelated with zero means, the GARCH(p, q) model specifies
that

Rt = σtεt, (1.1)

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjR
2
t−j, (1.2)

where εt is i.i.d. N (0, 1). Equation (1.2) allows volatilities to be autocorre-
lated and also to depend on past values of returns. Thus, it can potentially
describe the volatility clustering behavior mentioned above. That is, the
spikes in volatility are caused by extreme values in returns, and volatilities
show persistence due to the autoregression coefficients βi’s.

On the other hand, the origination of the SV framework has been due
to Clark (1973) and Taylor (1982)). Clark first proposes that informa-
tion arrivals during trading days produce a random amount of i.i.d. shocks
to compose the daily return distributions. And Taylor introduces autore-
gression to the information arrival process to model volatility persistence.
Taylor’s model essentially replaces equation (1.2) with

log σ2
t+1 = ω + β(log σ2

t − ω) + ηt, (1.3)

10Thus volatility modeling is not limited to applying to asset return data, but can
also be applied to other time series data. For example, R. F. Engle (1982) has used it
to estimate the British inflation data.
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where ηt’s are i.i.d. N (0, σ2
η).

11 Equation (1.3) describes the volatility be-
havior in a different way: Volatilities still follow an autoregressive process,
but are now subject to another source of disturbance ηt rather than Rt,
though ηt and Rt are allowed to be correlated.

The critical difference between the two types of models is that, in
GARCH the next period conditional variance is fully determined by the
current period information set, while in SV the next period conditional
variance is driven by another unobservable stochastic process {ηt}.12

After being introduced into the academic world, both of these two lines
of volatility modeling have experienced significant developments, among
which the ones most closely related to my research are their extensions to
multivariate models. Early works on volatility modeling have employed a
univariate framework, which means they focus on modeling the volatilities
of a single stochastic process, though in the case of SV volatilities ac-
tually depend on another stochastic process. However, as summarized by
Bauwens et al. (2006), there are many cases in which one may be interested
in the volatilities of multiple stochastic processes, which entails adopting a
multivariate approach. For example, we may be interested in investigating
the relations between the return volatilities of multiple assets, of multiple
indexes, of different asset classes, or of assets in different countries. We
may also would like to study the relations between volatilities of real and
financial time series. To attain such objectives, we would have to employ
a multivariate framework to model the volatilities of multiple stochastic
processes simultaneously. Multivariate volatility modeling also have appli-
cations in the areas of portfolio optimization and risk management, since
in these areas return series of multiple assets are often involved. In Sec-
tion 1.4, we will see in more details how multivariate volatility models are
developed.

1.2 The Mixture of Distributions

Hypothesis

The literature on volatility modeling usually estimates models using only
return data. However, there is another widely observed phenomena in
financial trading data that squared returns and volatilities are positively
correlated with trading volumes. Before presenting a figure showing the

11In Taylor’s (1982) work, εt and ηt are assumed to be independent, but correlations
between them are introduced later by other authors to model the leverage effect.

12As pointed out by Shephard and Andersen (2008), sometimes the GARCH frame-
work is also described as SV, but here I follow the custom of reserving SV for models
with stochastic conditional variances, which is followed by Shepard and Anderson. They
have also pointed out other distinctions between the two frameworks. For example, the
SV framework is more suitable for continuous time modeling.
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correlations between these two variables, an quick introduction on volume
detrending is entailed. Trading volumes are not stationary. For example,
as the market for a security grows, more traders may participate in trading
the security, trading volumes then tend to grow; and vice versa.13 Such an
effect may contaminate the relation between return volatilities and trading
volumes this research is trying to uncover, which results from the behavior
of traders already participating in trading. Thus detrending the volume
data is necessary so as to remove the effects of no interests to us, before
using the volume data in any comparison with other variables.

This research has followed a detrending method used by Andersen
(1996). It first calculates volume trends as centered moving averages, and
then divide trading volumes by their corresponding trend values. Two years
of observations (505 trading days) are used in calculating volume trends.
Figure 1.3 has plotted the trading volumes of S&P 500 index (black line) as
well as its trend values (blue line) calculated using this method. The S&P
500 index has experienced a steadily growing trend in trading volumes until
mid-2009, which is then followed by a gradual decrease. Though the mech-
anism causing such a change of direction in volume trends is not clear, its
occurrence seems to coincide with the outbreak of the 2008 financial crisis.

Figure 1.4 then plots the squared returns as well as detrended trading
volumes of S&P 500 index. For the periods such as late 2008, early 2009,
mid-2010 and late 2011, during which squared returns are higher than
adjacent observations, the detrended volumes also tend to be at high levels.
To see this more rigorously, the correlation coefficient between detrended
trading volumes and squared returns is 0.248, and the correlation coefficient
between detrended trading volumes and historical volatilities is 0.285.

Early researchers who have observed such a phenomena include Ying
(1966) and Clark (1973). Ying has reported that, “a large increase in vol-
ume is usually accompanied by either a large rise in price or a large fall in
price”, and then conjectured that returns and volumes of stock trading are
the results of a single market mechanism. As such, incorporating volume
information in model estimation should produce more efficient estimates.
Clark further raises a hypothesis that daily returns of security prices are a
subordinated process directed by daily numbers of transactions which can
be measured by daily trading volumes, and thus explains the positive cor-
relation between squared returns and trading volumes. This hypothesis is
later known as the Mixture of Distributions Hypothesis (MDH). An econo-
metric model with microeconomic foundation is then proposed by Tauchen
and Pitts (1983), who hypothesize that on a trading day, an equilibrium
follows each information arrival to the market, which drives price to fluc-

13See Tauchen and Pitts (1983) for an example: As the US Treasury futures market
grew, more traders participated in the market, and the trading volumes grew.
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Figure 1.3: Daily Trading Volumes of S&P 500 Index, 2005—2014. Data Source:
Yahoo Finance (http://finance.yahoo.com).

Trading volumes depend on the numbers of active traders in the market,
and are usually non-stationary. This is more evident for individual securi-
ties (for example the stocks of International Business Machines investigated
by Andersen (1996)) and markets in growth (for example the treasury bill
futures market studied by Tauchen and Pitts (1983)). The trading volume

trend V̂ trend
t in this figure is calculated as the two-year moving average

centered on day t. 505 observations are used in calculating each trend
value. The trading volumes of S&P 500 index show a growth trend before
mid-2009 and a decline trend after that.

tuate and volume to accumulate. The observed daily returns and trading
volumes are then the aggregated effects of these individual information ar-
rivals. The number of information arrivals plays a key role in this model,
since it determines the distribution of return and volume.

Later, the work of these authors have been followed by a series of con-
tributions to the MDH framework, which I will explain in more details
in Section 1.4. Especially, as the information arrival process is modeled
to be autocorrelated, the volatility-volume relation framework would then
be able to explain the source of volatility clustering illustrated in Section
1.1.14 In addition, since it can also take into consideration the information
carried by trading volumes, the MDH framework would be able to produce
more efficient parameter estimates than the univariate volatility models15.

However, most of the researches within the MDH framework consider
modeling the trading data of only one security. As mentioned in Section
1.1, there are many cases in which we may be interested in the joint distri-
bution of multiple security’s trading data, and especially in the relationship

14Shephard and Andersen (2008) actually attribute part of SV’s origination to Clark
(1973).

15Here “univariate” means a model only considers return data in volatility model-
ing, while the MDH is also known as the Bivariate Mixture Model, since it sees the
distributions of volatility and volume both determined by the same information arrival
process.
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(b) Detrended Trading Volumes
Figure 1.4: Squared Returns and Detrended Trading Volumes of S&P 500 Index,
2005—2014. Data Source: Yahoo Finance (http://finance.yahoo.com).

I have followed one of the detrending methods employed by Andersen (1996), which

includes first estimating the trading volume trend V̂ trend
t as the two-year moving average

centered on day t, and then computing the detrended trading volume V̂t as Vt/V̂
trend
t ,

where Vt is the original trading volume. The correlation between R2
t and V̂t is 0.248, and

the correlation between σ̂t and V̂t is 0.285. The same correlation coefficients computed
using the original trading volumes are actually higher, at 0.347 and 0.598 respectively.
The original trading volumes having higher correlations with the other two series may
be due to some fundamental changes in market participants’ behavior, which are out of
the scope of this research.

between these securities’ return volatilities. Multivariate GARCH and SV
models provides options to carry out such studies, but they do not utilize
the information contained in trading volumes. My research then focuses
on bridging this gap between the MDH and multivariate volatility models,
providing a framework to jointly model the volatilities of multiple securities
and jointly model the distribution of returns and trading volumes.
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1.3 Information, Volatility and Volume for

Multiple Securities

As mentioned in the previous section, information arrival plays a key role
in determining the joint distribution of returns and trading volumes in the
MDH framework. Since each information arrival can drive the fluctuation
of price and the accumulation of trading volume, as a greater number of in-
formation arrivals occur, both return volatility and trading volume tend to
be large. Together with the autocorrelation in the information arrival pro-
cess, the MDH framework not only explains the correlation between return
volatilities and trading volumes, but also reveals the source of volatility
clustering to be the autocorrelation of information arrivals.

When justifying the choice of modeling information arrivals as an au-
toregressive process, Andersen (1996) has elucidated that when some news
breaks out about a security, more detailed disclosures tend to follow the
initial report over the next few days or even weeks. On the other hand, it
also takes time for companies to fully implement changes in their “tacti-
cal orientations” such as “take-over battles and proxy fights”. Liesenfeld
(2001) has used a similar argument to explain why the number of informa-
tion arrivals on a trading day could depend on its historical values. This
research tries to generalize the argument by Andersen and Liesenfeld, such
that the number of information arrivals about a security could depend on
not only its own past values, but also the past values of other securities’
information arrivals.

The reasoning for such a generalization can be explained at multiple
levels. For common stocks, it is because companies’ businesses are related
with each other. They may be supplying similar products or services and
thus competing with each other, or be operating in the same industry but
taking different positions in the supply chain. A company may also be
holding shares in other companies, or be a creditor of other companies.
Moreover, they may be subject to the same macroeconomic shocks. These
examples are far from complete, but they are sufficient to demonstrate that
there are plenty of channels through which companies could be connected
with each other. Thus a new piece of information occurred to one company
may have substantial impacts on other companies as well. In particular,
the type of impacts this research considers is not that one company’s num-
ber of information arrival directly affects the price or volume of another
company’s stock, but that it affects the number of information arrivals
to other companies that it is related to. There are two forms which such
cross-company impacts of information arrivals may take. One is contempo-
raneous correlations among the random shocks to companies’ information
arrival processes, such that when one company encounters a positive shock
in its number of information arrivals, other related companies also tend to
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have positive shocks, and vice versa (in the case of positive correlations).
And the other form is information arrivals’ cross-company dependence

on their historical values. As emphasized by Andersen and Liesenfeld, an
important feature of the role played by information is that it takes time
for its impacts to fully develop and disclose, causing autocorrelation in
information arrival numbers. There is no reason to limit this time-taking
feature of information arrival to only the impacts on the company that new
information directly occurred to, because when a news event regarding a
company occurs, its impacts on other related companies may also develop
over time, creating cross-company historical dependencies in information
arrivals. Another reason for cross-company historical dependency is that it
takes time for information to spread across companies. For example, com-
pared to information directly occurred to the company she usually analyzes,
a business analyst may take more time to pick up a piece of information
occurred to another company because of her constrained specialty, though
the latter company is related to the one she covers. In addition, she may
need communicate with other people to better understand the full impacts
of news occurred to other companies, which again is a time-taking process.
Therefore, we can generally expect that in the multiple-stock case, the
number of information arrivals for one stock would depend not only on its
own historical observations, but also on that for other-related companies.

After the forms of cross-security dependence in information arrivals are
explained for companies’ common stocks, i.e. the contemporaneous corre-
lation and cross-security historical dependence, the case could be easily
extended to other financial securities. This research then considers the
information spillover effects among stocks, among market indices, among
equity and bond markets, and among markets of different countries. Mar-
ket indices are constructed as portfolios of individual stocks, and thus the
connections among individual stocks can be inherited by market indices.
The bond market and equity market are both subject to macroeconomic
shocks, and thus also have correlated information processes. And finally,
markets of different countries are also correlated, because the intense finan-
cial and economic interactions among international economies make them
all subject to global-wide macroeconomic shocks. Except for the case of
stocks, this research will use market indices to represent the correspond-
ing financial markets or hypothetical securities. As in the case of multiple
stocks, interactions among the information arrival processes of these secu-
rities will take the same two forms, contemporaneous correlations in shocks
and cross-security historical dependence.

In order to illustrate the correlation among securities’ information ar-
rival processes, I have plotted in Figure 1.5 the squared historical volatilities
of all component stocks of Dow Jones Industrial Average Index (DJIA In-
dex), since in Tauchen and Pitts’s (1983) model (which is a single-security
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MDH model) the number of information arrivals is proportional to a se-
curity’s squared volatility. All stocks had clearly experienced a volatil-
ity spike at the end of 2008, which implies they were all subject to the
macroeconomic shock of the 2008 financial crisis. Please see Table 1.2 for
correspondence between company names and their stock ticker symbols, as
well as their industrial classifications given by Yahoo Finance. In order to
more accurately examine the correlations among these squared volatility
series, Table 1.1 has presented their correlation coefficients, showing that
the correlation coefficients of squared historical volatilities between most
pairs of DJIA Index’s component stocks are higher than 0.75 (367 out of
435). For some companies in same industries, the correlation coefficients
are especially high. For example, BA and UTX (0.93), CVX and XOM
(0.99). Some other pairs of stocks also show very high levels of correla-
tions, though they are not in same industries, such as CVX and JNJ (0.96)
and DIS and UTX (0.95). Figure 1.7 has made a histogram for all corre-
lation coefficients, showing that the frequencies of correlation coefficients
peaked between 0.8 and 0.85, and most correlation coefficients are at rel-
atively high levels. Figure 1.6 is included to facilitate visual examinations
of the correlation coefficients in Table 1.2. The evidence shown by these
tables and figures strongly support the hypothesis mentioned above, that
the securities’ information arrival processes are correlated. And the follow-
ing sections will show in detail the way this research takes to model such
correlations.

1.4 Literature Reviews

The Development of Multivariate Volatility Modeling

As mentioned in Section 1.3, while the information arrival process plays an
important role in explaining the joint behavior of returns and volumes, it
is also closely related to the volatilities of returns. Since the main purpose
of this dissertation is to jointly model the information arrival processes
of multiple securities, it is appropriate to review the developments of the
multivariate volatility literature. For these literature reviews, I will focus
on their model specifications.

I will start with multivariate GARCH models. Given a stochastic pro-
cess {rt} and the information set Ft−1 generated by the information up to
period t− 1 , a multivariate GARCH specification usually writes

rt
n×1

= Σt
n×n

1/2 · εt
n×1

,

where the i.i.d. process {εt} satisfies E (εt|Ft−1) = 0 and E (εtε
′
t|Ft−1) =

I
n×n

, Σt is measurable with respect to Ft−1, and thus E (rtr
′
t|Ft−1) = Σt
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Figure 1.6: The Correlation Among DJIA’s Component Stocks. Data Source:
Yahoo Finance (http://finance.yahoo.com)
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Figure 1.7: The Histogram of Cross-Security Correlations Coefficients for
Squared Historical Volatilities. Data Source: Yahoo Finance (http://finance.
yahoo.com)

is the conditional variance of rt. The focus of the multivariate GARCH
literature is then modeling the behavior of Σt.

As stated by Silvennoinen and Teräsvirta (2009), multivariate GARCH
models can be caxtegorized into four classes, in terms of the approaches
they take to model Σt. But since the semi-parametric and non-parametric
approaches are less-related my dissertation, I will review the other three
classes of multivariate GARCH models. The first class is known as the
VEC-GARCH model by Bollerslev et al. (1988) and the BEKK model by
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R. F. Engle and Kroner (1995). Using the vectorization operator Vech(·)
which collects the lower triangular entries of a symmetric matrix into a
vector, the VEC-GARCH model specifies that

Vech (Σt) = c
N(N+1)

2
×1

+

q∑
j=1

Aj
N(N+1)

2
×N(N+1)

2

Vech
(
rt−jr

′
t−j
)

+

p∑
j=1

Bt−j
N(N+1)

2
×N(N+1)

2

Vech (Σt−j)

(1.4)

The VEC-GARCH model is flexible as it allows all kinds of cross-entry
historical dependency for entries in Σt, but is also limited by the difficulty
in guaranteeing the positive definiteness of Σt. In addition, the cross-
entry historical dependency introduces a large amount of parameters to be

estimated, which is (p+q)
(
N(N+1)

2

)2

+N(N+1)
2

. Silvennoinen and Teräsvirta

(2009) also mentioned that it is numerically demanding to estimate an
VEC-GARCH model, also because of the necessity to invert Σt for all t in
each parameter update step.

In specifying the model for Σt, the BEKK model has taken a different
approach by directly embedding the positive definiteness of Σt in its law
of motion:

Σt = CC ′ +

q∑
j=1

M∑
i=1

A′ijrt−jr
′
t−jAij +

p∑
j=1

M∑
i=1

B′ijΣt−jBij, (1.5)

where Aij,Bij, and C are all parameter matrices to be estimated and C
is lower triangular. In addition, the BEKK model also has a smaller num-
ber of parameters to be estimated compared to the VEC-GARCH model
(in order of N2 rather than N4). But as pointed out by R. F. Engle and
Kroner (1995), a given BEKK model has several observationally equiva-
lent parameterizations. The authors have given conditions on eliminate
redundant parameterizations.

Another way to circumvent the difficulty of ensuring Σt’s positive defi-
niteness is proposed by Kawakatsu (2006), who specifies that

Vech (lnΣt −C) =

q∑
j=1

Aiεt +

q∑
j=1

Fj (|εt| − E|εt|) +

p∑
j=1

BiVech (lnΣt−j −C) ,

(1.6)

where the logarithm of a symmetric matrix is defined indirectly by

exp(A) =
∞∑
i=0

Ai

i!
. (1.7)

The positive definiteness of Σt is guaranteed by the positive definiteness of
exp(A).
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The second class of GARCH models is the factor model introduced
by R. Engle et al. (1990), who hope to use a small number of possibly
correlated factors f1,t, · · · , fM,t to model the behavior of Σt. The factors
follow the GARCH(1,1) processes:

fm,t = ωm + αm(γ′mrt−1)2 + βmfm,t−1. (1.8)

And the conditional covariance matrix Σt follows:

Σt = Ω +
M∑
m=1

λmλ
′
mfm,t. (1.9)

R. Engle et al. (1990) have proposed using two factors, one is the return
of a stock index and the other is the return of treasury bills, to model the
volatilities of individual assets.

A different approach to factor models of multivariate GARCH is the
Generalized Orthogonal GARCH (GO-GARCH) by Weide (2002), which
uses uncorrelated factors ft to write rt as

rt = W
N×N

ft, (1.10)

where W is a non-singular. By restricting the factors to be uncorrelated,
the GO-GARCH model can avoid the appearance of several correlated fac-
tors showing similar characteristics. Each of the uncorrelated factors fol-
lows univariate model, and together they are restricted to be orthogonal.
The GARCH models for the factors are written as:

Σf
t = I

N×N
− A

N×N
− B

N×N
+A�

(
ft−1f

′
t−1

)
+BΣf

t−1, (1.11)

where Σf
t = E (rt|Ft−1), A and B are all orthogonal matrices, and �

represents the element-wise product of matrices.
The third class is known as the correlation models, the simplest form of

which is the Constant Conditional Correlation (CCC-) GARCH model by
Bollerslev (1990). The CCC-GARCH model decomposes the conditional
covariance matrix of rt into the product of a constant conditional correla-
tion matrix and a diagonal matrix of standard deviations :

Σt = DtPDt,

whereDt = [diag (Σt)]
1/2, and P is the conditional correlation matrix. The

conditional variances are modeled as univariate GARCH for each compo-
nent of rt. Put in a matrix form, the vector dt of standard deviations
follows:

dt = ω +

q∑
j=1

Aj (rt−j � rt−j) +

p∑
j=1

Bjdt−1, (1.12)
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where Aj and Bj are both diagonal matrices. An extension known as
Extended CCC-GARCH model, by Jeantheau (1998) drops the diagonal
restriction on Aj and Bj. With this extra flexibility, the Extended CCC-
GARCH model can describe a rich variety of volatility behaviors.

As empirical evidence indicates the assumption of constant conditional
correlation may be too restrictive, some researchers have introduced new
models to allow P to vary over time. For example, the Varying-Correlation
(VC-) GARCH model by Y. K. Tse and Tsui (2002) assume with the
decomposition

Σt = DtPtDt,

there is

Pt = (1− a− b)S + a
t−1∑
s=0

D̂−1
s rs

(
D̂−1

s rs

)′
+ bPt−1, (1.13)

where 0 ≤ a, b < 1, a+ b < 1 and S is a constant correlation matrix. That
is, the conditional correlation matrix Pt is a combination of a constant
matrix, the observed sample correlation matrix, and its past estimate.

Another interesting extension to the CCC-GARCH model is done by
Silvennoinen and Teräsvirta (2005), who gave their model the name Smooth
Transition Conditional Correlation (STCC-) GARCH. The essential idea of
STCC-GARCH is to introduce another variable st which controls a convex
combination to produce the conditional correlation matrix Pt.

Pt = (1−G(st))P(1) +G(st)P(2), (1.14)

where P(1) and P(2) are both positive definite correlation matrices, and
G(st) is a function mapping st into the interval [0, 1].

Similar to this convex combination approach, the Regime Switching Dy-
namic Correlation (RSDC-) GARCH model introduced by Pelletier (2006)
specifies that the conditional correlation matrix is determined by a Markov
chain {Xt} with R states {1, 2, · · · , R}, such that

Pt =
R∑
i=1

1{Xt=i}Pi. (1.15)

In addition, the Markov chain {Xt} has transition probability matrix Π.
Another comprehensive literature review on multivariate GARCH mod-

els is Bauwens et al. (2006). In the following part of this subsection, I will
move on to reviewing the developments of multivariate Stochastic Volatility
(MSV) models. According to Chib et al. (2009), MSV models can also be
categorized into three classes, each of which can be seen as the counterpart
class of MGARCH models.
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The first class, as investigated by researchers including Harvey et al.
(1994) and Daǹıelsson (1998), is a straightforward extension of univari-
ate SV model into multivariate cases. Given a K-dimensional stochastic
process {rt}, the multivariate extension for SV specifies that

rt = diag [exp(ht,1/2), · · · , exp(ht,K/2)] εt, (1.16)

ht+1 = µ+B(ht − µ) + ηt, (1.17)

where B is a matrix representing the historical dependence of ht+1, εt∼
N (0,Σεε) with Σεε being a correlation matrix, and ηt ∼ N (0,Σηη).
Please note in this model no correlations among components of rt are as-
sumed. Correlations between εt and ηt could be introduced to model the
leverage effect. In order to do this, D. Chan et al. (2006) have built the
following model:

rt = diag [exp(ht,1/2), · · · , exp(ht,1/2)] εt, (1.18)

ht+1 = µ+ diag (B11, · · · , BKK) (ht − µ) + diag (σ11, · · · , σKK)ηt,
(1.19)

where [
εt
ηt

]
∼ N

(
0,

[
Σεε Σεη

Σεη Σηη

])
. (1.20)

Asai and McAleer (2006) have considered a simpler specification for mod-
eling leverage effects, by assuming the matrix Σεη to be diagonal.

An important extension to the above strand of MSV model is specifying
ε to follow t-distribution in order to describe its heavy tail behavior, as
illustrated in Harvey et al. (1994).

As a matter of fact, Harvey et al. (1994) have also considered another
class of MSV model, i.e. the class of factor models. The factor model they
consider essentially replaces the specification for the n-dimensional vector
ht with

ht = Φft + f̄ , (1.21)

where the L-dimensional vector of factors ft follows a vector auto-regression
process and L ≤ K.

The above factor model focuses on using a small number of factors to
control the transition of conditional variance parameters, while assuming
the mean of rt is always 0. In contrast to this, the mean factor model
by K. Pitt and Shephard (1999) aims at combining a factor model for
E (rt|Ft−1) with an MSV model.

rt = B
K×L

gt
L×1

+ diag

[
exp

(
ht,1
2

)
, · · · , exp

(
ht,K

2

) ]
εt, εt∼ N(0, I),

(1.22)
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gt = diag

[
exp

(
ht,K+1

2

)
, · · · , exp

(
ht,K+L

2

)]
γt, γt∼ N(0, I),

(1.23)

ht+1
(K+L)×1

= µ+ diag (B11, · · · , BK+L,K+L) (ht − µ) + ηt, ηt∼ N(0,Σηη),

(1.24)

An extension to the above factor model was introduced by Han (2006),
who modeled the mean factors gt with an vector auto-regression process:

gt = c+Agt−1 + diag

[
exp

(
ht,K+1

2

)
, · · · , exp

(
ht,K+L

2

)]
γt, γt∼ N(0, I).

(1.25)

The last class of MSV models that I am going to cover in this literature
review is known as the Dynamic correlation MSV model. For example, Yu
and Meyer (2006) considers a bivariate case of the basic MSV model in
which the conditional correlation between the two components of rt is ρt.
In addition, they write

ρt =
exp(qt)− 1

exp(qt) + 1
, (1.26)

where qt follows an AR(1) process.
Another approach to modeling the correlation matrix is Cholesky de-

composition, which is taken by Ruey S Tsay (2005). In the case of bivariate
models, this is to write the conditional covariance matrix of rt as

Cov (rt|Ft−1) =

[
1 0
qt 1

] [
ht,1 0
0 ht,2

] [
1 qt
0 1

]
. (1.27)

And again, qt follows an AR(1) process. The advantage of the Cholesky
decomposition approach is its easy extension to high-dimensional cases.

Similar to MGARCH models, the matrix exponentiation can also be
applied to MSV models. That is, define Cov (yt|Ft−1) = exp (At), and
then model the entries of At through a VAR process:

Vech (At+1) = µ+ ΨVech (At) + ηt. (1.28)

This approach has been explored by Asai, McAleer, and Yu (2006).
And finally, the Inverse Wishart (IW) distribution has also been em-

ployed to build MSV models, by Alexander Philipov (2006). Their model
is as such:

rt|Σt∼ Σ
1/2
t εt, εt∼ N(0, I), (1.29)

Σt|ν,Wt−1∼ IW (ν,Wt−1) , (1.30)
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Wt−1 =
1

ν
A1/2

(
Σ−1
t−1

)d
A1/2′. (1.31)

Besides the researched mentioned in this section, Chib et al. (2009) provide
a good review for MSV models.

The Development of the MDH Framework

The MDH framework focuses on investigating the positive correlation be-
tween return volatilities and trading volumes. It dates back to Clark (1973),
who hypothesizes that due to the variations in the rates of information ar-
rivals to the market, the distribution of daily security returns will consist
of a random number of homogeneous shocks. The classical central limit
theorems would not apply in this case and the distribution of daily returns
would be leptokurtic. Clark has also suggested that trading volumes would
be good proxies for information arrivals, and found evidence to support
MDH in cotton trading data. To be specific, Clark’s results support that
daily price changes are observations of a stochastic process subordinated
to a normal price change process and directed by a log-normal information
arrival process. T. W. Epps and M. L. Epps (1976) have proposed an alter-
native model based on traders’ portfolio optimization behavior, in which
they assume that for a single information arrival, trader’s disagreement
regarding the asset’s value is positively correlated with the information’s
impact on asset value, as well as the amount of traders’ position adjustment.
And thus return volatilities and trading volumes are positively correlated
for each information arrival, but the variations in information arrival rates
do not play a role as important as the one in the MDH.

Also observing the positive correlation between price variations (defined
as squared price changes) and trading volumes, Tauchen and Pitts (1983)
have provided a significant theoretical development for the MDH frame-
work based on information arrival, trader reaction and market equilibrium.
They model the price changes and trading volumes of treasury bond future
contracts as bivariate normal distributions mixed by the number of infor-
mation arrivals for the security. Since my model is a multivariate extension
to theirs, I will review their model in detail. On a trading day right after
the arrival of the i-th piece of information to the market, each of the J
traders in the market will form a new reservation price P ∗ij for the traded
security. Then they will adjust their positions on the asset to the level

Qij = c · (P ∗ij − Pi), (1.32)

where c is a constant and Pi is the market price of the asset. The market
clearing condition then requires

∑J
j=1 Qij = 0, which gives Pi =

∑J
j=1 P

∗
ij/J .

Tauchen and Pitts decompose the change in trader j’s reservation price
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∆P ∗ij = P ∗ij − P ∗i−1,j resulting from the i-th information arrival as

∆P ∗ij = φi + ψij, (1.33)

where φi ∼ N (0, σ2
φ) and ψij ∼ N (0, σ2

ψ). The price change ∆Pi and
trading volume Vi can thus be written as

∆Pi = φi +
J∑
j=1

ψij/J, (1.34)

Vi =
c

2

J∑
j=1

|∆P ∗ij −∆Pi|. (1.35)

Then for J being large, they derive the asymptotic distribution of ∆Pi and
Vi as independent normals with the following means and variances:

E (∆Pi) = 0, Var (∆Pi) = σ2
φ + σ2

ψ/J ; (1.36)

E (Vi) =
c

2
σψ

√
2J(J − 1)

π
, Var (Vi) =

( c
2

)2

σ2
ψ(1− 2

π
)J + o(J). (1.37)

When there is It times of information arrivals to the market on day t,
the conditional distributions of price change ∆Pt =

∑I
i=1 ∆Pi and trading

volume Vt =
∑I

i=1 Vi are

∆Pt|It ∼ N
(

0, It
√

Var(∆Pi)
)
, (1.38)

Vt|It ∼ N
(
ItE(Vi), It

√
Var(Vi)

)
. (1.39)

Using transaction level data, Harris (1987) has devised a method to test
the two alternative models, i.e. MDH and the model by T. W. Epps and
M. L. Epps (1976). Based on an assumption that transactions occur at
a uniform rate in event time, his method compares the statistical proper-
ties of daily data and transaction level data (or transaction-adjusted data),
including skewness, kurtosis, correlation and autocorrelation, heteroscedas-
ticity and normality. The differences in such statistical properties between
the two groups of data are found to be consistent with the predictions of
MDH and thus give strong support for MDH.

In addition, Harris (1986) proposed a method to test the cross-security
variations in the information arrival processes. Under the null hypothesis
that such processes differ across securities, the following statistics should
be all positively correlated: return skewness and kurtosis, volume skewness,
return-volume correlation, squared-return volume correlation, return and
volume heteroscedasticity. Harris has found evidence supporting the null
hypothesis from a sample of 479 stocks traded on the New York or American
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Stock Exchanges between January 1, 1976 and December 31, 1977. This
study would be part the basis on which my research extends the MDH to
a multivariate framework.

Rather than considering prices and volumes rising from Walrasian mar-
ket equilibria, Andersen (1996) has adopted the market microstructure
model proposed by Glosten and Milgrom (1985) in which three types of
market participants—informed traders, uninformed traders, and a specialist—
interact within a game theoretical framework. The specialist provides liq-
uidity to the market by quoting bid and ask prices, and the informed and
uninformed traders decide whether to trade one unit of the asset at the
quoted prices based on their respective information sets. Using this frame-
work, Andersen has derived the same conditional distribution for returns,
but for trading volumes he has proposed using the following Poisson dis-
tribution

Vt|It ∼ Poisson(µV 0 + µV 1It), (1.40)

where µV 0 and µV 1 correspond to the trading volumes generated by unin-
formed and informed traders, respectively16.

In addition, Anderson suggests modeling information arrivals using an
autoregressive process, because of two reasons: One is that news arrival
itself exhibits autocorrelation, and the other one is that information arrivals
are closely related to the volatility process, which has been shown to be
autocorrelated by the GARCH literature. Then the author finds out the
following information arrival process is best supported by the empirical
evidence from the common stock trading data of International Business
Machines:

I
1/2
t = ω + βI

1/2
t−1 + αI

1/2
t−1εt, (1.41)

where εt is the absolute value of a Generalized Error distributed random
variable GEDw(0, 1).

Estimated using the generalized method of moments, one of Andersen’s
key findings is that the persistence level of information process is signifi-
cantly lowered when volume data is added to estimation. Liesenfeld (1998,
2001) has obtained similar empirical results using maximum simulated like-
lihood based on importance sampling, and hypothesized that this may be
due to trading volumes and return volatilities may have different levels
of the persistence. To incorporate this into the bivariate mixture model,
Liesenfeld postulates that in addition to the information arrival process

ln It = βI ln It−1 + εt, (1.42)

16Informed trading depends on the number of information arrivals, but uninformed
trading does not.
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where εt ∼ i.i.d. N (0, σ2
ε); the parameters σ2

φ and σ2
ψ which represent

traders’ sensitivity to information arrivals, are both determined by a second
latent process Ht in the following way:

lnσ2
φ,t = γφ + αφHt, (1.43)

lnσ2
ψ,t = γψ + αψHt, (1.44)

where

Ht = κRt−1 + βHHt−1 + νt, (1.45)

with νt ∼ i.i.d.N (0, σ2
ν). The autocorrelation of Ht is added to reconcile the

different persistence levels between return volatilities and trading volumes,
while the dependence of Ht on Rt−1 is used to model the leverage effect,
i.e. returns and future conditional variances are negatively correlated.

Park (2011) asserts that the classical MDH model cannot fully capture
of the effects of surprising information, which, according the author’s in-
terpretation, is the type of information that changes traders’ valuations
unanimously and dramatically, and at the same time decreases traders’
propensity to trade. Being able to access high frequency foreign exchange
rates data and compute realized volatilities, the author has used quan-
tile regression to show that the correlation between return volatilities and
trading volumes becomes insignificant at high quantiles. Then the author
claims that realized volatilities higher than the threshold quantile indicates
arrivals of surprise information, which has distinct signed effects on volatil-
ities and trading volumes.

A Literature Review on Stochastic Approximation

In this section I will review some important Stochastic Approximation al-
gorithms. In addition, I will also review its application to the Expectation
Maximization algorithm to solve the estimation problem in models with
incomplete data.

The Stochastic Approximation algorithm was introduced by Robbins
and Monro in 1951 to address an equation-solving problem in which the
equation’s value cannot be accurately determined. To illustrate the idea
of Stochastic Approximation, consider the following equation of a scalar
variable x:

M(x) = 0,

where M(x0) = 0, and M ′(x) > 0 for all x. With an initial guess x(0), the
Newton-Raphson algorithm searches for x0 recursively through the updat-
ing equation:

x(k+1) = x(k) −
M
[
x(k)
]

M ′ [x(k)]
. (1.46)
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Based on the assumptions on M(x), x(k) → x0 as k →∞. However, there
are many cases in which the value of M(x) cannot be directly observed. For
example, in this dissertation M(x) actually is a high-dimensional integral
which cannot be easily tracked. However, a noised observation f(x) of
M(x) is available such that

f
[
x(k+1)

]
= M

[
x(k)
]

+ εk,

where εk is random variable with E(εk) = 0. The Newton-Raphson algo-
rithm cannot be directly applied to searching for x0 in this case. As Lai
(2003) has explained, under the Newton-Raphson updating scheme, the
presence of εk implies that

x(k+1) = x(k) −
M
[
x(k)
]

M ′ [x(k)]
− εk
M ′ [x(k)]

.

Should x(k+1) converge to x0, it requires that εk → 0, which cannot be
guaranteed in many applications.

In order to search for x0 within such a setting, Robbins and Monro
(1951) have proposed modifying Equation (1.46), and using

x(k+1) = x(k) − γkf
[
x(k)
]
, (1.47)

where {γk} are a series of positive constants such that
∑∞

k=0 γk = ∞ and∑∞
k=0 γ

2
k <∞. Assume the distribution function of εk has finite tails, then

the requirement on
∑∞

k=0 γ
2
k guarantees the almost sure and L2 convergence

of
∑∞

k=0 γkεk, such that the noises εk’s will eventually “cancel out” with
each other. On the other hand, the requirement on

∑∞
k=0 γk makes sure

that the x(k) will not converge before reaching x0. A common choice that
satisfies such requirements is γk = 1/kα, with α ∈ (1/2, 1].

An important development to Robbins and Monro’s method was in-
troduced by Kiefer and Wolfowitz (1952), who consider an optimization
problem with noises in the objective function. Suppose M(x) has a unique
minimum obtained at x0 (for maximum, multiply −1 to M(x)) such that
M ′(x0) = 0, but still we can only observe f(x). The algorithm for searching
for x0 proposed by Kiefer and Wolfowitz is written as follows:

x(k+1) = x(k) − γk
f
[
x(k) + ck

]
− f

[
x(k) − ck

]
2ck

, (1.48)

where {γk} and {ck} are both series of positive constants such that ck → 0,∑∞
k=1 γk =∞,

∑∞
k=1 γkck <∞ and

∑∞
k=1 (γk/ck)

2 <∞.
The sequence of {γk}, known as the gain sequence, are deterministic

in the work of both Robbins and Monro (1951) and Kiefer and Wolfowitz
(1952). Kesten (1958) introduced an alternative way to design the gain se-
quence stochastically, in order to improve the finite-sample performance of
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the algorithms. The basic idea of Kesten is, if
(
x(k+1) − x0

)
−
(
x(k) − x0

)
=

x(k+1) − x(k) changes sign frequently, it indicates x(k) is close to x0. Other-
wise, x(k) is still far from x0. Thus the gain sequence suggested on Kesten
depends on the past number of sign changes in

(
x(i+1) − x(i)

)
for i ≤ k, such

that more sign changes decreases γk. Kesten suggests such gain sequences
may accelerate the convergence of x(k) to x0.

Blum (1954) has extended both the Robbins-Monro and Kiefer-Wolfowitz
algorithms to multivariate cases. Spall (1987, 1992) has introduced an im-
provement to the Kiefer-Wolfwitz algorithm using simultaneous perturba-
tion. Specifically, for multivariate cases in which the scaler solution x0 is
replaced by a vector solution x0 ∈ Rp, the Kiefer-Wolfwitz algorithm given
in Equation (1.48) requires 2p evaluations of f(·) in each step of parameter
update, to calculate an finite-difference approximation for the gradient of
M(·), since each dimension of x has to be evaluated twice. Spall’s (1987)
simultaneous perturbation method requires only two evaluations in each
parameter update step, instead. The idea is to replace the deterministic ck
by a random vector ∆k, all components of which are mutually independent.
And the gradient function DM(·) is approximated by

D̂M(x(k)) =


f[x(k)+∆k]−f[x(k)−∆k]

2∆k,1

...
f[x(k)+∆k]−f[x(k)−∆k]

2∆k,p

 . (1.49)

Spall (1992) generalizes the above approximation method to perturbing
x(k) with q mutually independent random shocks ∆k1, · · · ,∆kq, calculat-

ing D̂M(x(k)) for each perturbation and then using the average over all
perturbations to approximate DM(·).

Spall (2000) has introduced an adaptive stochastic approximation method
that is closely related to the one used in this research. In the Newton-
Raphson algorithm given by Equation (1.46), M ′(·) is used to adjust the
magnitude of each update step, which guarantees the fast convergence of
the algorithm. But such an adjustment is not possible for the Robbins-
Monro algorithm, since M ′(·) (or the Jacobian matrix for multivariate
cases) is not observable. For optimization problems, the Newton-Raphson
algorithm also adjust the parameter update step by the second-order deriva-
tive (or the Hessian matrix for multivariate cases) of the objective function,
which again is unobservable in the Kiefer-Wolfowitz algorithm. To improve
the performance of stochastic approximation algorithms, Spall (2000) has
suggested that both the Jacobian and Hessian matrices could be estimated
using simultaneous perturbations. However, taking the Hessian matrix for
an example, the estimated Hessian matrix Ĥk at step k should not be di-
rectly used in adjusting update steps. Instead, Spall suggests using the
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average of all historical estimates:

H̄k =
k − 1

k
Ĥk−1 +

1

k
Ĥk =

1

k

k∑
i=1

Ĥk, (1.50)

for k = 1, 2, · · · Equation (1.50) is also used by the method introduced by
Gu and Kong (1998), which is employed by this research.

The above part has introduced the forms of some general stochastic
approximation algorithms. A large amount of literature has contributed to
investigating the conditions under which such algorithms would converge
to the solution x0, as well as the asymptotic distribution of

√
k
[
x(k) − x0

]
.

Please see Lai (2003) for a survey on such results. The remaining part of
this section will instead focus on stochastic approximation methods that
are more closely related to their applications in maximum likelihood es-
timations in models with incomplete data. In particular, the maximum
likelihood estimate used in this research is based on Expectation Maxi-
mization (EM), and thus I would start with a brief introduction on EM.

Introduced by Dempster et al. (1977), the EM algorithm is a widely
used method in carrying out maximum likelihood estimation in incomplete
data models. Suppose there is a family of distribution densities f(x;θ),
where the true value of parameter vector θ is θ0. In many applications,
the complete data x is not fully observable, but what is observable is y
given by a many-to-one mapping g(·) such that y = g(x). For example, in
this research the distributions of securities’ returns and trading volumes are
determined by unobservable information arrivals. We can only observe the
return and volume data, because information arrival is difficult to quan-
titatively measure. For more information, please see Section 1. In this
case, the vector x corresponds to the collection of all variables including
the information variables, while the vector y contains only the observed
ones.

The likelihood function with observed data y is written as

L(θ|y) =

∫
x∈{x:y=g(x)}

f(x;θ)dx.

Directly maximizing L(θ|y) to obtain the maximum likelihood estimate
may be infeasible due to the intractability of the involved integral, which is
usually very high-dimensional. To address such an issue, the EM algorithm
transforms the likelihood maximization problem and approaches it in two
iterative steps: expectation (the E-step) and maximization (the M-step).

With an given estimate θ̂k, the E-step is to compute the expected log-
likelihood of the complete data conditional on the observed data:

E
(

log f(x;θ)|y; θ̂k

)
=

∫
x∈{x:y=g(x)}

log f(x;θ)π
(
x|y; θ̂k

)
dx,
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where conditional distribution

π (x|y;θ) =
f (x;θ)∫

x∈{x:y=g(x)} f(x;θ)dx

is derived using Bayes rule.
The M-step is then to search for

θ̂k+1 = arg max
θ

E
(

log f(x;θ)|y; θ̂k

)
.

Then the EM algorithm is carried out by iterating over the expectation
and maximization steps alternately until convergence. The EM algorithm
guarantees that the likelihood would be improved during the process, which
can be seen from the following inequalities:

logL
(
θ̂k+1|y

)
= log

∫
x∈{x:y=g(x)}

f(x; θ̂k+1)

π
(
x|y; θ̂k

)π (x|y; θ̂k

)
dx

≥
∫
x∈{x:y=g(x)}

log

 f(x; θ̂k+1)

π
(
x|y; θ̂k

)
 π (x|y; θ̂k

)
dx

≥
∫
x∈{x:y=g(x)}

log

 f(x; θ̂k)

π
(
x|y; θ̂k

)
 π (x|y; θ̂k

)
dx

= logL
(
θ̂k|y

)
.

The first inequality results from the application of Jensen’s inequality, while
the second one is due to θ̂k+1 solves

max
θ

∫
x∈{x:y=g(x)}

log f(x;θ)π
(
x|y; θ̂k

)
dx.

Dempster et al. (1977) have proved that the sequence {θ̂k} produced by

the EM algorithm will converge to the maximum likelihood estimate θ̂.
The original EM algorithm introduced above works well if both the

expectation and maximization steps have analytical solutions. However, in
practice this may not be the case, and more developed methods have to
be employed. To address complexities in the maximization step, possible
solutions include replacing the original maximization problem with many
smaller and simpler conditional maximization problems (Liu and Rubin
1994; Meng and Rubin 1993), or with a single iteration of approximate
Newton’s method (Lange 1995). On the other hand, to address complexities
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in the expectation step, a few other methods have been proposed, which
we will now cover in more details.

Celeux and Diebolt (1985) have suggested using one Monte Carlo draw

from π
(
x|y; θ̂k

)
to replace the expectation step (known as the Stochastic

EM algorithm), while Wei and Martin A. Tanner (1990) (see also Martin A

Tanner (1996)) have proposed drawing multiple samples from π
(
x|y; θ̂k

)
(known as the Monte Carlo or MCEM algorithm). Basically, the E-step
at iteration k is replaced by the following simulations step (Delyon et al.
(1999) called this the S-step):

Ê
(

log f(x;θ)|y; θ̂k

)
=

1

m(k)

m(k)∑
i=1

log f
(
x

(k)
i ;θ

)
,

where the x
(k)
i ’s are drawn from π

(
·|y; θ̂k

)
. For cases in which π

(
·|y; θ̂k

)
takes a complicated form, MCMC algorithms can be employed to draw
samples from the target distribution. And the maximization step remains
unchanged.

Delyon et al. (1999) have proposed the application Stochastic Approx-
imation to Expectation Maximization problems in which the E-step is not
difficult. In particular, they suggest the following approximation

Ê
(

log f(x;θ)|y; θ̂k

)
= (1− γk)Ê

(
log f(x;θ)|y; θ̂k−1

)
+

γk
m(k)

m(k)∑
i=1

log f
(
x

(k)
i ;θ

)
,

where {γk} is the gain sequence, x(k) is still drawn from π
(
x|y; θ̂k

)
, and

the maximization remains unchanged. This algorithm is called by the au-
thors Stochastic Approximation Expectation Maximization (SAEM). The
performance of the SAEM algorithm depends on the choices of γk and
m(k). As suggested by the authors, one should start with relatively large
γk and gradually decrease it, and with relatively small m(k) and gradu-
ally increase it. Such choices are intuitive, since for the first few steps
of iterations, θ̂k may be far from the maximum likelihood estimate θ̂, and

thus
∑m(k)

i=1 log f
(
x

(k)
i ;θ

)
is also potentially far from E

(
log f(x;θ)|y; θ̂k

)
.

Therefore, larger γk makes the past estimates
∑m(k)

i=1 log f
(
x

(k)
i ;θ

)
to fade

away faster, and larger m(k) makes the latest estimate more and more
precise.

The authors argue that since the SAEM algorithm keeps the drawn
samples from previous iteration steps and discount their contributions to

Ê
(

log f(x;θ)|y; θ̂k

)
at rates inversely determined by γk, it uses the im-

puted information more efficiently than the MCEM algorithm, which es-
sentially drops all previously drawn samples. For this reason, the SAEM
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converges faster than the MCEM algorithm. In addition, their paper also
provides an estimate for the Fisher information matrix that is close to the
one used in this research.

Next I am going to review the method that this research has employed,
which is due to Gu and Kong (1998). From the M-step of EM algorithm

we can see that the maximum likelihood estimate θ̂ solves the following
equation ∫

x∈{x:y=g(x)}

∂ log f(x;θ)

∂θ
π
(
x|y; θ̂k

)
dx = 0. (1.51)

This can be seen by assuming the set {x : y = g(x)} does not depend on the
parameter θ, which implies the sequence of integration and differentiation
can be interchanged, and then applying the first-order condition to the
maximization problem in the M-step. The integral in Equation (1.51) is
still non-tractable, yet Gu and Kong (1998) have proposed directly apply
the Robbins-Monro algorithm to solving it, as long as one can draw noised
observations for the equation’s left-hand side expression. They also used
an estimated Hessian matrix for L(θ|y) to adjust the parameter updating
process.

In particular, Gu and Kong’s (1998) algorithm is implemented in the
following way:

1. Start with the initial guess θ̂0 for parameters and Γ̂0 for the Hessian
matrix of L(θ|y).

2. With given θ̂k, draw samples of
{
x

(k)
1 , · · · ,x(k)

m

}
from the distribu-

tion π
(
x|y; θ̂k

)
. Again, samples could be drawn using appropriate

MCMC algorithms.

3. Update Γ̂ using the equation

Γ̂k+1 = (1− γk) Γ̂k + γkĤk

(
x

(k)
1 , · · · ,x(k)

m ; θ̂k

)
,

where

Ĥk

(
x

(k)
1 , · · · ,x(k)

m ; θ̂k

)
=

1

m

m∑
i=1

[
∂2f(x

(k)
i ; θ̂k)

∂θ∂θ′
+
∂f(x

(k)
i ; θ̂k)

∂θ

(
∂f(x

(k)
i ; θ̂k)

∂θ

)′]

−

[
1

m

m∑
i=1

(
∂f(x

(k)
i ; θ̂k)

∂θ

)][
1

m

m∑
i=1

(
∂f(x

(k)
i ; θ̂k)

∂θ

)]′
. (1.52)
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4. Update the estimate for θ0 through

θ̂k+1 = (1− γk)θ̂k + γkΓ̂
−1
k G

(
x

(k)
1 , · · · ,x(k)

m ; θ̂k

)
,

where

G
(
x

(k)
1 , · · · ,x(k)

m ; θ̂k

)
=

1

m

m∑
i=1

∂ log f
(
x

(k)
i ; θ̂k

)
∂θ

.

5. Iterate Steps 2 to 4 until convergence.

In order to justify the choice for Ĥk

(
x

(k)
1 , · · · ,x(k)

m ; θ̂k

)
, note Louis (1982)’s

missing information principle gives

∂2 logL(θ|y)

∂θ∂θ′
= E

[
∂2 log f(x;θ)

∂θ∂θ′
|y;θ

]
+ Var

[
∂ log f(x;θ)

∂θ
|y;θ

]
.

Another paper by Gu and Zhu (2001) has reported that the above scheme
does not perform well enough for finite update steps when the γk = 1/k and

the initial guess θ̂0 is far away from θ̂. Thus they have combined two stages
of updates, where in stage one the parameters are updated with bigger γk
and in stage two the parameters are updated with γk = 1/k. ({γk} is the
optimal choice of gain sequence theoretically.)

A Literature Review on MCMC

In this part, I will review the development of several classical Markov
Chain Monte Carlo (MCMC) algorithms, including the Metropolis algo-
rithm (Metropolis et al. 1953), the Metropolis-Hastings algorithm (Hast-
ings 1970) and the Gibbs Sampling algorithm (S. Geman and D. Geman
1984), and also give a brief introduction on the theoretical background of
MCMC.

There are many applications in which one may need compute the ex-
pected value of a function h(·) of a random variable X:

E [h(X)] =

∫
x

h(x)f(x)dx,

where f(·) is the probability density function of X. Sometimes, analyti-
cally computing the expectation is infeasible since no analytical form could
be found for the integrand h(·)f(·). And the basic idea of Monte Carlo
simulation is to use a random number generator to draw i.i.d. samples
{X1, · · · , Xn} that follow the distribution f(·), and approximate the ex-
pectation using the sample mean:

E [h(X)] ≈ 1

n

n∑
i=1

h(Xi). (1.53)
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Under the Strong Law of Large Numbers there is:

1

n

n∑
i=1

h(Xi)
a.s.−−−→
n→∞

E [h(X)] .

The method given by Equation (1.53) is not difficult to implement if ran-
dom number generation algorithms have already been designed for the dis-
tribution given by f(·). But more commonly the involved distribution itself
is complicated such that no random number generator is readily available
for drawing samples from it. In even more complicated cases, the involved
distribution f(·) is known only up to a proportion, such that f(x) = c ·g(x)
with only g(·) being known and c being an unknown constant. This is
usually the case for posterior distributions in Bayesian analysis, where
c =

∫
g(x)d(x) and the definite integral here again has no analytical solu-

tion. Then the major difficulty in implementing Monte Carlo simulations
in such applications is to draw random samples from a possibly compli-
cated distribution which may be known only up to a proportion. MCMC
algorithms are devised to address such issues.

MCMC algorithms are based on the idea of rejection sampling. Consider
the above mentioned case in which f(x) = c · g(x) for x ∈ R with c be an
unknown scaling constant, and we are interested in draw samples from
the target distribution f(·). Suppose we can find a known constant α >
1 and a known probability density function ϕ(·) known as the proposal
distribution with random number generator available, such that α ·ϕ(x) ≥
g(x) for all x ∈ R. Then in order to sample from f(·), we can first draw
a sample from the proposal distribution ϕ(·), and then accept the sample
with probability g(x)/ [α · ϕ(x)] and discard the sample with probability 1−
g(x)/ [α · ϕ(x)]. The probability density function of a sample drawn in this
way is proportional to ϕ(x) · g(x)/ [α · ϕ(x)] = g(x)/α, which justifies the
method of rejection sampling. But it may be difficult to find an appropriate
proposal distribution ϕ(·).

While rejection also occurs in MCMC sampling, the requirement of
MCMC sampling on the proposal distribution is much less. Suppose we
have a proposal distribution ϕ(·|x) with possibly multiple parameters, and
one of the parameters is denoted as x17. The requirements of Metropolis
algorithm (Metropolis et al. 1953) on ϕ(·) is that it has the same sup-
port as f(·), and is symmetric in the sense that for all x(0) and x(1) in
its support, there is ϕ(x(1)|x(0)) = ϕ(x(0)|x(1)). Then the Metropolis al-
gorithm is implemented in the following way: Start with an initial guess
sample X(0). In step i + 1 with a previous sample X(i), we first draw a

17It is not necessary that the proposal distribution ϕ(·) must have x as one of its
parameters. If it does not, then resulting MCMC algorithm is called an independent
sampler.
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proposal sample X̃(i+1) from ϕ(·|X(i)), then accept the proposed sample by

setting X(i+1) = X̃(i+1) with probability min
{
f(X̃(i+1))/f(X(i)), 1

}
, and

reject the proposed sample by setting X(i+1) = X(i) with probability 1 −
min

{
f(X̃(i+1))/f(X(i)), 1

}
. The sequence of samples

{
X(0), X(1), · · ·X(N)

}
drawn in this way though are serial correlated, have the following property
under some regularity conditions which will be shown later:

1

n

n∑
i=0

h(X(i))
a.s.−−−→
n→∞

E [h(X)] , where X ∼ f(·).

The intuition underneath the practice of rejection in Metropolis algorithm
is that we want to draw more samples from areas where f(·) is large.
While any point in the support of f(·) could be a “good” initial sam-
ple regardless of f(X(0)) being large of not, when we have already had
samples in hand, we want to weigh a proposed sample against our current
samples by comparing the probability density at the proposal against that
at the most recent sample. By accepting the new sample with probability

min
{
f(X̃(i+1))/f(X(i)), 1

}
, we are essentially biased towards placing more

samples in areas where f(·) is large. And the “Markov Chain” in the al-
gorithm family’s name comes from fact that only the most recent sample
plays a part in determining the acceptance probability of the proposal. In
addition, the Markov Chain constructed by MCMC algorithms have the
target distribution f(·) as its limit distribution (See Roberts and Smith
1994).

A major generalization to the Metropolis algorithm is known as the
Metropolis-Hastings algorithm, introduced by by Hastings (1970). The
generalization allows the proposal distribution ϕ(·) to be asymmetric, and
in order to do this, changes the acceptance probability to

min
{
f(X̃(i+1))ϕ(X(i)|X̃(i+1))/

[
f(X(i))ϕ(X̃(i+1)|X(i))

]
, 1
}
.

For a symmetric proposal distribution ϕ(·), the acceptance probability will

reduce to min
{
f(X̃(i+1))/f(X(i)), 1

}
. Therefore, the Metropolis algorithm

is a special case of the Metropolis-Hastings algorithm.
The above introduction has clearly shown that in the MCMC procedure

proposed samples are not always accepted. C. Geyer (2011) has suggested
that it is a good practice to keep acceptance rate of the simulated chain at
around 20%. One can tune other parameters in the proposal distribution
to make acceptance rate close to this level. For multimodal target distri-
butions, if the acceptance rate is too high, then the simulated chain may
be only exploring a single mode. If the acceptance rate is too low, then the
chain may not have enough distinct samples.
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Note that though I have not emphasized in the above introduction
to Metropolis and Metropolis-Hastings algorithm, they can be applied to
drawing samples from multivariate distributions. However, for a high-
dimensional distribution, directly applying an MCMC algorithm to it may
have acceptance rate very low. The Gibbs sampling algorithm introduced
by S. Geman and D. Geman (1984) was designed to address such an is-
sue. For a high-dimensional target distribution f(x1, · · · , xd), suppose
the conditional density of Xk given {X1, · · · , Xk−1, Xk+1, · · · , Xd} is f(xd|
x1, · · · , xk−1, xk+1, · · · , xd). Then the Gibbs sampling algorithm divides
every Markov Chain step in the usual Metropolis-Hastings algorithm into
d smaller stages to update each dimension of X = (X1, · · · , Xd) sep-
arately. Specifically, in updating the dimension k, Gibbs sampler uses

f
(
·|x(i+1)

1 , · · · , x(i+1)
k−1 , x

(i)
k+1, · · · , x

(i)
d

)
as the proposal distribution and ac-

ceptance rate is constantly at 1. The acceptance rate in stage k can be
derived from the following equation:

min

f
(
X̃

(i+1)
k ,X−k

)
· f
(
X

(i)
k |X−k

)
f
(
X

(i)
k ,X−k

)
· f
(
X̃

(i+1)
k |X−k

) , 1


= min

{
f (X−k)

f (X−k)
, 1

}
=1,

where X−k =
(
X

(i+1)
0 , · · · , X(i+1)

k−1 , X
(i)
k+1, · · · , X

(i)
d

)
, and the notation f is

abused to represent all of joint, conditional and marginal densities. There-
fore, Gibbs sampler is also a special case of Metropolis-Hastings algorithm.

In the remaining part of this section I will present some simple theoret-
ical grounds on why MCMC works, but the presentation is not intended to
be fully rigorous. Please see Tierney (1994) for details. The basis of MCMC
is the Ergodic Theorem for Markov chains. Consider the stochastic process
{Xn} following a Markov chain with state space S and transitional proba-
bility matrix P such that Pij = Pr (Xn+1 = j|Xn = i).18 Then a state Sj
is accessible from state Si if (P n)ij > 0 for some n. Since P n gives the n-
step transition probability matrix, accessibility means that it is probable to
reach Sj from Si in finite steps. If states Si and Sj are both accessible from
each other, then the two states communicate with each other. If any two
states in the state space S communicate with each other, then the Markov
chain is irreducible. Irreducibility essentially requires that it is probable to
move from any state to any state in finite steps.

For a state Si in S that communicate with itself, denote k as the greatest
common divisor for all members of the set {n : (P n)ii > 0}. If k = 1, then

18Here I use a Markov chain with discrete state space to describe the related defini-
tions.
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state Si is aperiodic. If all states in S are aperiodic, then the Markov chain
is aperiodic. Put in another way, aperiodicity means that it is not allowed
for a state to return to itself only at multiples of k ≥ 2 steps.

A state is transient if there is a nonzero probability that it would never
return to itself. A state is recurrent if it is not transient. For a recurrent
state, if the expected number of steps to return to itself is finite, then the
state is positive recurrent. A Markov chain is positive recurrent if all its
states are positive recurrent.

If a Markov chain is irreducible, aperiodic and positive recurrent, then
there is the following result:

1

n

n∑
i=1

h(Xi)
a.s.−−−→
n→∞

∫
h(x)π(x)dx, (1.54)

where {X1, ·, Xn} are the first n observations of the Markov chain, and π(·)
is the invariant distribution of the Markov chain.

MCMC algorithms are designed to make sure the resulted Markov
chains satisfy the above three requirements. They are irreducible if the
proposal distribution has the same support as the target distribution, then
it is possible to go to any point from any point in one step. They are aperi-
odic because in each step, there is a possibility of rejection so that the chain
will return to its current state. And for conditions on positive recurrence,
please see Tierney (1994) and K. S. Chan and C. J. Geyer (1994). The final
part is to ensure that the target distribution is the invariant distribution
of the Markov chain resulting from MCMC algorithms. This is guaranteed
by a sufficient condition called detailed balance condition (also known as
reversibility condition), which says if a distribution f(·) satisfies:

f(Si)Pij = f(Sj)Pji

for all Si, Sj ∈ S, then f(·) is the invariant distribution of the Markov chain
with transition probability matrix P . Metropolis-Hastings algorithm has
its transitional kernel and the target distribution meet the detailed balance
condition (see Andrieu et al. 2003).
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Chapter 2

Model specification
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In this Chapter I will extend Tauchen and Pitts’s (1983) framework to
a multi-security case, in order to study the spillover effects of information
flows across different securities. Tauchen and Pitts’s model has been in-
troduced in Section 1.4, thus here I will only briefly review the essence of
their framework, to facilitate the following multi-security extension.

In the market there is a group of traders who can take long or short po-
sitions on a single security. The position they would like to take depends on
how they interpret the information they received. All information is public,
and arrives to all traders in the market simultaneously. But traders may
still have different valuations for the security based on the same informa-
tion, because of the differences in their preferences. After receiving a new
piece of information, a trader examines her new valuation, or reservation
price for the security, and takes a position in the security that is propor-
tional to the difference between her reservation price and the security’s
current market price. The market reaches an equilibrium for the traded se-
curity when the sum of all traders’ desired positions equals the total supply
of the security, which is usually assumed fixed. The model abstracts away
from the mechanism through which the market reaches a new equilibrium,
but focuses on the effects of the new information arrival on security’s price
and trading volume. The effect of a new information arrival on an individ-
ual trader’s reservations prices is decomposed into two parts, one remains
the same across all traders and the other is idiosyncratic. Based on this
decomposition, the effects of the new information arrival on the security
under law of large numbers is to shock its return rt and trading volume by
two independent random variables.1 When a series of information arrives
to the market on a trading day, the daily return and trading volume of the
security would then be the aggregate effects of all information arrivals. To
sum up, their model describes the joint behavior of a security’s daily return
and trading volume using the following distributions:

rt|It ∼ N (Itµr, Itσ
2
r), (2.1)

Vt|It ∼ N (ItµV , Itσ
2
V ), (2.2)

It ∼ i.i.d. lognormal(µI , σ
2
I ), (2.3)

where It, which is unobservable, is the number of information arrivals on
day t.

My plan to extend the above single-security framework is to consider
the case in which there are K securities traded on K markets separately.
The traders in each market considers trading the security on the corre-
sponding market only. This implies that the traders do not consider doing

1In Tauchen and Pitts’s (1983) work, they have modeled price changes rather than
returns. Liesenfeld (2001) considers logarithmic prices and new information arrivals
would then affect returns.
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portfolio optimizations across securities. Their positions in a given security
is completely determined by the difference between the security’s market
price and their reservation prices for the security. These assumptions are
not completely realistic, but they allow the model to be more tractable.
In addition, the following facts can help justifying such assumptions. One
is that it is costly to formulate accurate valuations regarding a security.
When gathering and analyzing information cost too much, a trader’s op-
timal choice may be specializing in trading only one security, if she tries
to buy low and sell high for this security. If the trader intends to hold
some security portfolio for a long time instead and is satisfied with receiv-
ing the expected return, then she can choose to invest in one of the ETF’s
introduced in Chapter 1. The ETF market is rapidly growing,2 and there
is an increasingly large amount of ETF products tracking various kinds of
market indexes. The existence of such investment vehicles would decrease
the necessity for traders to do portfolio optimizations on their own. Unless
a trader intends to outperform a market index, she can choose to invest in
an ETF tracking the corresponding index.3

Based on the assumption that the markets for these K securities are
separate, then the following model is built. For each security I assume
there is a positive stochastic process {Itk}, where Itk measures the amount
of information arrivals to the market on day t that are related to Secu-
rity k. Information arrivals then determine the conditional distributions of
the securities’ daily returns and trading volumes. In particular, by writing
Ytk := (Rtk, Vtk)

′ where Rtk and Vtk are Security k’s return and trading
volume on the trading day t respectively, I assume Ytk’s distribution con-
ditional on Itk is:

Ytk
∣∣ Itk ∼ N (Itk · µk

2×1
, Itk ·Σk

2×2

)
; k = 1, . . . , K, t = 1, · · · , T (2.4)

where µk and Σk are stock-specific parameters determining the means and
covariance matrices of the distributions. Equation (2.4) is an example of
the mixture models explained in Section 1.4, with {It} being the continuous
mixing variable.

The next step is to specify the distributions of information arrivals. As
pointed out by Andersen (1996) and Liesenfeld (2001), information arrivals
are auto-regressive, because when a news event breaks out and brings new

2For example, see the following report by Wall Street Journal on : Another Milestone-
Leaping Year for ETFs.

3Of course, if a trader intends to beat the performance of a market index, she still
needs active portfolio optimizations. But there are plenty of reports showing that the
majority of actively managed funds actually underperform their benchmark indexes.
For example, see the following report by Financial Times on : Nine out of 10 active
funds underperform benchmark. Actually, the unsatisfactory performance of active asset
management is part of the reason why index funds and ETF’s were introduced.
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information to the market, it tends to develop over a following time period
and continues to shock the market with new information within that time
period.

Another property that information arrival variables should possess is
that they are correlated. As explained in Chapter 1, the cross-security
correlation in information arrivals takes two forms. One is that the ran-
dom shocks to different securities’ information arrival processes are con-
temporarily correlated. If the valuations of some securities are correlated,
then when a news event breaks out about one security, shocking its in-
formation arrival process with a positive random variable, the information
arrival processes of other related securities also tend to be subject to posi-
tive shocks. Thus the shocks to information arrival processes are positively
correlated.

The second form of correlation is that the information arrival of one
security may depend on historical information arrivals of other securities,
during to the following reasons. First, as a news event develops, it continues
to impact other related securities’ information arrivals; and second, it also
takes traders time to fully realize the cross-security impacts of the occurred
new event.

Based on the above explanations on the forms of cross-security corre-
lations in information arrivals, I have the following specification for the
information arrival processes. With the definition Λtk = log Itk and the
notation Λt = (Λt1, . . . ,ΛtK)′, the dynamics of information flow follows the
vector auto-regression process:

Λt = c
K×1

+ B
K×K

·Λt−1
K×1

+ εt, (2.5)

where c is a constant term, and the shock term εt ∼ i.i.d. N (0, V
K×K

). The

diagonal elements in the coefficient matrix B represent the persistence in
the information processes, which already exist in Andersen’s (1996) and
Liesenfeld’s (2001) work. The off-diagonal entries of B represent the cross-
security historical dependencies in information arrivals, and those of V
corresponds to the contemporary correlations in the shocks to information
arrival processes. Based on the previous explanation, we should expect
that all entries of the matrices B and V are positive.

Similar to other Mixture Distribution models, the information arrival
process {Λt} is not directly observable. This in turn causes the constant
term c in Equation (2.5) not identifiable. This can be seen by defining

Λ̃t = Λt+d, with d being a constant vector. Then Λ̃t satisfies the following
equation:

Λ̃t = c̃+B · Λ̃t−1 + εt, (2.6)
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where c̃ = c+ (I −B)d. Similarly, with Ĩtk = exp
(
λ̃tk

)
= exp (dk) It, the

conditional distributions of Ytk on Ĩt can be written as

Ytk
∣∣ Ĩtk ∼ N (Ĩtk · µ̃k, Ĩtk · Σ̃k

)
.

By writing µ̃k = exp (−dk) · µk and Σ̃k = exp (−dk) ·Σk, we have the the
same conditional distribution for Ytk as the one in (2.4).

Therefore, for the model to be identifiable, the term c in Equation (2.5)
has to be dropped. The model to be used in the following estimation is

Ytk
∣∣ Itk ∼ N (Itk · µk, Itk ·Σk) , (2.7)

Λt = B ·Λt−1 + εt, (2.8)

where k = 1, . . . , K, and t = 1, · · · , T . Suppose Λ̃t in Equation (2.6) is the
true value of logarithmic information arrivals, then Λt in Equation (2.8) is

equal to Λ̃t + (B − I)−1 c.
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Chapter 3

Inference method
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There are mainly two types of methods used in estimating MDH mod-
els. One is maximum likelihood and its simulation-based counterparts,
such as the estimation techniques adopted by Tauchen and Pitts (1983),
and Liesenfeld (1998, 2001). The other is Generalized Method of Moments,
which is adopted by Andersen (1996). Maximum likelihood based methods
are more efficient since they assume the parametric form of the distribution
family from which data are generated, rather than only assuming some mo-
ment conditions. Therefore, in this dissertation, I will adopt an estimation
method based on maximum likelihood.

3.1 The Maximum Likelihood Problem

In order to carry out the maximum likelihood estimation, I have to first
write the likelihood function in terms of the parameters to be estimated.

The matrices {Σk}k=1..K and V are constrained to be symmetric and
positive definite. This allows us to work with their inverses, which turns
out to be more convenient. Define

Ωk := Σ−1
k =

[
Ωk11 Ωk12

Ωk12 Ωk22

]
and

W := V −1 =


W11 W12 · · · W1K

W12 W22 · · · W2K
...

...
. . .

...
W1K W2K · · · WKK

 .
Since we only need the upper triangular entries of Ωk and W , I define

θ :=
( {
µTk , vechU(Ωk)

T
}
k=1,··· ,K , vechF (B)T , vechU(W )T

)T
as the vector

consisting of all individual parameters, where the operator vechU(·) takes a
symmetric matrix as its argument and collects the upper triangular entries
of the matrix by line and stack them into a column vector. The operator
vechF (·) does a similar work as vech(vech)U(·), except that its stacks all
entries of its argument. In addition, assume the true value of θ is equal to
θ0.

Also, let Yt := (Yt1, · · · ,YtK) be the collection of all securities’s return
and volume observations on Day t, Y := (Y1, · · · ,YT ) be the collection of
observations on all days, and Λ := (Λ1, · · · ,ΛT ) be the collection of all
securities’ latent information variables on all days.

Then the likelihood function is written as:

l(θ|Y ) =

∫
fθ(Y |λ)gθ(λ)dλ, (3.1)
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where fθ(·|λ) is the p.d.f. of Y conditional on Λ = λ and gθ(·) is the
p.d.f. of Λ. According to Equations (2.4) and (2.5), the detailed expressions
for the two p.d.f.’s are:

fθ(y|λ) =
T∏
t=1

K∏
k=1

exp
{
− e−λtk

2
(ytk − eλtkµk)′Ωk(ytk − eλtkµk)

}
2πeλtk |Ωk|−1/2

, (3.2)

gθ(λ) =
T∏
t=1

exp
{
−1

2
(λt −Bλt−1)′W (λt −Bλt−1)

}
(2π)K/2|W |−1/2

, (3.3)

Λ0 is assumed to be 0 for convenience. For large T , choosing a specific
value for Λ0 or assuming it is drawn from the invariant distribution of Λt

should not have much difference.
Then, to carry out the maximum likelihood estimation for θ0, one can

solve

max
θ

l(θ|Y ). (3.4)

3.2 Missing Information

Assume θ̂ solves the maximization problem in (3.4). Finding θ̂ by directly
solving (3.4) is impractical as the high-dimensional integral in Equation

(3.1) has no analytical form. However, if we assume that θ̂ is an interior
solution, and the support of Λ does not depend on θ, then we can ex-
change the order of expectation and differentiation, and θ̂ must satisfy the
following first-order condition:∫

∂hθ(Y ,λ)

∂θ
dλ = 0, (3.5)

where for convenience, I redefine hθ(y,λ) = fθ(y|λ)gθ(λ) as the joint
density function of Y and Λ.

By dividing and then multiplying hθ(Y ,λ) the integrand in Equation
(3.5), and then dividing both sides of the equation by

∫
hθ(Y,λ)dλ, we

have ∫ ∂hθ(Y ,λ)
∂θ

hθ(Y ,λ)

hθ(Y ,λ)∫
hθ(Y,λ)dλ

dλ = 0, (3.6)

where

πθ(λ|Y ) =
hθ(Y,λ)∫
hθ(Y,λ)dλ

(3.7)
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is actually the p.d.f. of the conditional distribution of Λ on Y with given θ.
Solving Equation (3.6), rather than solving the maximization problem in
(3.4), is then the missing information principle introduced by Louis (1982).
In the following part, I will use ∆(θ) to denote the left hand side of (3.6)
such that

∆(θ) =

∫
∂ log hθ(Y ,λ)

∂θ
πθ(λ|Y )dλ. (3.8)

Note that the expression in (3.8) still involves a high-dimensional inte-
gration and we cannot easily evaluate ∆(θ). Yet Gu and Kong (1998) have
proposed to apply the method of stochastic approximation introduced by
Robbins and Monro (1951) to solve this equation. The idea is that though
we are not able to observe the true value of ∆(θ), we can obtain an un-
biased estimate for it by drawing Monte Carlo simulations from πθ(λ|Y ).
Then we can use such estimates for ∆(θ) to update our estimates for θ.

In particular, given a current estimate θ̂n, if we draw m simulations of
Λ from πθn(λ|Y ), denoted as Λn := (Λn,1, · · · ,Λn,s), then ∆(θ̂n) can be
estimated as

∆̂(θ̂n,Λn) =
1

m

m∑
i=1

(
∂ log hθ(Y ,Λn,i)

∂θ

∣∣∣
θ=θ̂n

)
.

In addition, since

∂∆(θ)

∂θ′
= Eπθ(·|Y )

(
∂2 log hθ(Y ,Λ)

∂θ∂θ′

)
+ Varπθ(·|Y )

(
∂ log hθ(Y ,Λ)

∂θ

)
,

(3.9)

Gu and Kong (1998) have suggested approximating the derivative matrix
∂∆(θ)
∂θ′

using:

H(θ̂n,Λn) =
1

m

m∑
i=1

[
∂2 log hθ(Y ,Λn,i)

∂θ∂θT
+

(
∂ log hθ(Y ,Λn,i)

∂θ

)⊗2∣∣∣
θ=θ̂n

]
(3.10)

−

[
1

m

m∑
i=1

(
∂ log hθ(Y ,Λn,i)

∂θ

∣∣∣
θ=θ̂n

)]⊗2

. (3.11)

With the above equations, the estimation procedure can be carried out by
the following algorithm.

1. Start with an initial guess θ̂0, an arbitrary matrix Γ0 and a sequence
of step sizes {γn}. A typical choice for step size is γn = 1

(n+1)α
with

α ∈ (0.5, 1].
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2. Given an estimate θ̂n, draw Monte Carlo simulations Λn from the
distribution πθn(λ|Y ), the expression of which is given in Equa-
tion (3.7). Since we are unable to evaluate the normalizing constant∫
hθ(Y,λ)dλ in Equation (3.7), we employ MCMC algorithms to do

sampling from πθn(λ|Y ). A classical algorithm to do such samplings
is the Metropolis-Hastings algorithm introduced in Section 1.4, which
is restated as follows:

(a) Start with an arbitrary point Λ(0), and a proposal distribution
p (·|Λ;β). As indicated by its notation, the proposal distribution
may have parameters Λ and β. The proposal distribution used
in this research isN

(
·|Λ(i), σ2E

)
, whereE is the identity matrix

of order KT , and σ2 is a parameter to be tuned.

(b) Given Λ(i), draw a new sample Λ̃(i) from the proposal distribu-
tion p

(
·|Λ(i);β

)
.

(c) With probability

πθn(Λ(i+1)|Y )p
(
Λ(i)|Λ(i+1);β

)
πθn(Λ(i)|Y )p (Λ(i+1)|Λ(i);β)

,

accept the proposed new sample by setting Λi+1 = Λ̃i+1. And
with probability

1−
πθn(Λ(i+1)|Y )p

(
Λ(i)|Λ(i+1);β

)
πθn(Λ(i)|Y )p (Λ(i+1)|Λ(i);β)

,

reject the proposed new sample by setting Λi+1 = Λi.

When the symmetric proposal distribution N
(
·|Λ(i), σ2 ·E

)
is

employed, the probability of accepting the proposed new sample
is equal to

πθn(Λ(i+1)|Y )

πθn(Λ(i)|Y )
.

(d) Repeat steps (b) to (c) until getting m samples Λ(0), · · · ,Λ(m−1).

(e) Compute the percentage pa for proposed samples being accepted
among the newly sampled chain Λ(0), · · · ,Λ(m−1). If pa is not in
the interval [0.21, 0.25], then tune the parameter σ2 and repeat
the steps (a) to (d). When the proposal distributionN

(
·|Λ(i), σ2 ·E

)
is used, increasing σ2 will decrease pa and vice versa. The ne-
cessity to keep pa in a range close to 20% has been explained in
Section 1.4.
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3. Compute ∆̂(θ̂n,Λn) and H(θ̂n,Λn), and update Γn through the
equation

Γn+1 = γnH(θ̂n,Λn) + (1− γn)Γn. (3.12)

4. Compute θ̂n+1 through the equation

θ̂n+1 = θ̂n − γnΓ−1
n+1∆̂(θ̂n,Λn).

5. Iterate through Steps 2 to 4 until convergence of θ̂n.

According to Theorem 1 in Gu and Kong (1998), we have θ̂n
a.s.−−→ θ̂,

and Γn
a.s.−−→ ∂∆(θ̂)

∂θ′
, as n goes to infinity. In addition, we can use −Γ−1

n as

an estimate of Var(θ̂). Recall that I have included the entries of Σk = Ω−1
k

and W = V −1 in θ. I will use the delta method to obtain the covariance
matrix of the original parameter vector.

The analytical expressions for the first order and second order partial

derivatives ∂ log hθ(Y ,Λ)
∂θ

and ∂2 log hθ(Y ,Λ)
∂θ∂θ′

are shown in Section 3.3, and the
details of the delta method to derive the covariance matrix of the original
parameter vector are shown in Section 3.4.

3.3 Detailed analytical expressions

Since the stochastic approximation procedure for parameter estimation in-
volves many partial derivatives, in this part I will give the detailed expres-
sions for all such derivatives. In notation, I will follow the tradition that[
∂f(A)
∂A

]
ij

= ∂f(A)
∂Aji

, where A is a matrix and f(·) is a scalar-valued function.

The log-likelihood function of the complete data is written as:

log hθ(y,λ) =− 1

2

T∑
t=1

{
(λt −Bλt−1)′W (λt −Bλt−1)− log |W |+K log 2π

+
K∑
k=1

[
e−λtk(ytk − eλtkµk)

′Ωk(ytk − eλtkµk) + 2λtk − log |Ωk|+ 2 log 2π
] }
.

(3.13)

For the first-order partial derivatives of log hθ(y,λ), we have: For k ∈
{1, · · · , K},

∂ log hθ(y,λ)

∂µk
=

T∑
t=1

(ytk − eλtkµk)
′Ωk; (3.14)
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[
∂ log hθ(y,λ)

∂Ωk11

∂ log hθ(y,λ)
∂Ωk12

0 ∂ log hθ(y,λ)
∂Ωk22

]

=

[
−1

2

∑T
t=1

[
e−λtk(ytk − eλtkµk)

⊗2 −Ω−1
k

]
11
−
∑T

t=1

[
e−λtk(ytk − eλtkµk)

⊗2 −Ω−1
k

]
12

0 −1
2

∑T
t=1

[
e−λtk(ytk − eλtkµk)

⊗2 −Ω−1
k

]
22

]
;

(3.15)

∂ log hθ(y,λ)

∂B
=

T∑
t=1

λt−1(λt −Bλt−1)′W ; (3.16)
∂ log hθ(y,λ)

∂W11
· · · ∂ log hθ(y,λ)

∂Wij

...
. . .

...

0 · · · ∂ log hθ(y,λ)
∂WKK



=

−
1
2

∑T
t=1

[
(λt −Bλt−1)⊗2 −W−1

]
11
· · · −

∑T
t=1

[
(λt −Bλt−1)⊗2 −W−1

]
ij

...
. . .

...

0 · · · −1
2

∑T
t=1

[
(λt −Bλt−1)⊗2 −W−1

]
KK

 ,
(3.17)

where i, j ∈ {1, · · · , K} and i < j.
And for the second-order partial derivatives of log hθ(y,λ), we have:

For k ∈ {1, · · · , K},

∂

∂µk

(
∂ log hθ(y,λ)

∂µk

)′
= −

T∑
t=1

eλtkΩk; (3.18)

∂

∂µj

(
∂ log hθ(y,λ)

∂µk

)′
= 0

2×2
, for j 6= k; (3.19) ∂

∂Ωk11

(
∂ log hθ(y,λ)

∂µk

)′
∂

∂Ωk12

(
∂ log hθ(y,λ)

∂µk

)′
0

2×1

∂
∂Ωk22

(
∂ log hθ(y,λ)

∂µk

)′


=


∑T

t=1

(
ytk − eλtkµk

)
1

∑T
t=1

(
ytk − eλtkµk

)
2

0
∑T

t=1

(
ytk − eλtkµk

)
1

0 0

0
∑T

t=1

(
ytk − eλtkµk

)
2

 ; (3.20)

 ∂
∂Ωj11

(
∂ log hθ(y,λ)

∂µk

)′
∂

∂Ωj12

(
∂ log hθ(y,λ)

∂µk

)′
0

2×1

∂
∂Ωj22

(
∂ log hθ(y,λ)

∂µk

)′
 = 0

4×2
, for j 6= k; (3.21)

[
∂

∂Bji

(
∂ log hθ(y,λ)

∂µk

)′]
2K×K

= 0
2K×K

; (3.22)
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
∂

∂W11

(
∂ log hθ(y,λ)

∂µk

)′
· · · ∂

∂Wij

(
∂ log hθ(y,λ)

∂µk

)′
...

. . .
...

0 · · · ∂
∂WKK

(
∂ log hθ(y,λ)

∂µk

)′


2K×K

= 0
2K×K

; (3.23)

[
∂
∂µk

∂ log hθ(y,λ)
∂Ωk11

∂
∂µk

∂ log hθ(y,λ)
∂Ωk21

0
1×2

∂
∂µk

∂ log hθ(y,λ)
∂Ωk22

]
(3.24)

=

[∑T
t=1

(
ytk − eλtkµk

)
1

0
∑T

t=1

(
ytk − eλtkµk

)
2

∑T
t=1

(
ytk − eλtkµk

)
1

0 0 0
∑T

t=1

(
ytk − eλtkµk

)
2

]
;

(3.25)[
∂
∂µj

∂ log hθ(y,λ)
∂Ωk11

∂
∂µj

∂ log hθ(y,λ)
∂Ωk21

0
1×2

∂
∂µj

∂ log hθ(y,λ)
∂Ωk22

]
= 0

2×4
, for j 6= k; (3.26)

[
∂

∂Ωk11

∂ log hθ(y,λ)
∂Ωk11

∂
∂Ωk12

∂ log hθ(y,λ)
∂Ωk11

0 ∂
∂Ωk22

∂ log hθ(y,λ)
∂Ωk11

]
=

[
−T

2

Ω2
k22

|Ωk|2
T Ωk12Ωk22

|Ωk|2

0 −T
2

Ω2
k12

|Ωk|2

]
; (3.27)[

∂
∂Ωk11

∂ log hθ(y,λ)
∂Ωk22

∂
∂Ωk12

∂ log hθ(y,λ)
∂Ωk22

0 ∂
∂Ωk22

∂ log hθ(y,λ)
∂Ωk22

]
=

[
−T

2

Ω2
k12

|Ωk|2
T Ωk11Ωk12

|Ωk|2

0 −T
2

Ω2
k11

|Ωk|2

]
; (3.28)[

∂
∂Ωk11

∂ log hθ(y,λ)
∂Ωk12

∂
∂Ωk12

∂ log hθ(y,λ)
∂Ωk12

0 ∂
∂Ωk22

∂ log hθ(y,λ)
∂Ωk12

]
=

[
T Ωk12Ωk22

|Ωk|2
−T Ωk11Ωk22+Ω2

k12

|Ωk|2

0 T Ωk11Ωk12
|Ωk|2

]
;

(3.29)[
∂

∂Ωj11

∂ log hθ(y,λ)
∂Ωk11

∂
∂Ωj12

∂ log hθ(y,λ)
∂Ωk11

0 ∂
∂Ωj22

∂ log hθ(y,λ)
∂Ωk11

]
=

[
∂

∂Ωj11

∂ log hθ(y,λ)
∂Ωk22

∂
∂Ωj12

∂ log hθ(y,λ)
∂Ωk22

0 ∂
∂Ωj22

∂ log hθ(y,λ)
∂Ωk22

]
(3.30)

=

[
∂

∂Ωj11

∂ log hθ(y,λ)
∂Ωk12

∂
∂Ωj12

∂ log hθ(y,λ)
∂Ωk12

0 ∂
∂Ωj22

∂ log hθ(y,λ)
∂Ωk12

]
= 0

2×2
, for j 6= k; (3.31)[

∂
∂B

∂ log hθ(y,λ)
∂Ωk11

∂
∂B

∂ log hθ(y,λ)
∂Ωk12

0
K×K

∂
∂B

∂ log hθ(y,λ)
∂Ωk22

]
= 0

2K×2K
; (3.32)[

∂
∂Wij

∂ log hθ(y,λ)
∂Ωk11

∂
∂Wij

∂ log hθ(y,λ)
∂Ωk12

0 ∂
∂Wij

∂ log hθ(y,λ)
∂Ωk22

]
= 0

2×2
, where i ≤ j; (3.33)

∂

∂µk

∂ log hθ(y,λ)

∂B
= 0

K×2K
; (3.34)[

∂
∂Ωk11

∂ log hθ(y,λ)
∂B

∂
∂Ωk12

∂ log hθ(y,λ)
∂B

0
K×K

∂
∂Ωk22

∂ log hθ(y,λ)
∂B

]
= 0

2K×2K
, (3.35)
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
∂

∂B11

∂ log hθ(y,λ)
∂B

· · · ∂
∂BK1

∂ log hθ(y,λ)
∂B

...
. . .

...
∂

∂B1K

∂ log hθ(y,λ)
∂B

· · · ∂
∂BKK

∂ log hθ(y,λ)
∂B

 =

u1w
′
1 · · · u1w

′
K

...
. . .

...
uKw

′
1 · · · uKw

′
K

 ,
(3.36)

where u1, · · · ,uK and w1, · · · ,wK are the column and row vectors decom-
posing the following two matrices such that

∑T
t=1−λt−1λ

′
t−1 =

[
u1 · · · uK

]
,

and W =
[
w1, · · · ,wK

]′
;

∂
∂W11

∂ log hθ(y,λ)
∂B

· · · ∂
∂Wij

∂ log hθ(y,λ)
∂B

...
. . .

...

0
K×K

· · · ∂
∂WKK

∂ log hθ(y,λ)
∂B

 (3.37)

=


∑T

t=1 λt−1(λt −Bλt−1)′Ẽ11 · · ·
∑T

t=1 λt−1(λt −Bλt−1)′Ẽij
...

. . .
...

0
K×K

· · ·
∑T

t=1 λt−1(λt −Bλt−1)′ẼKK

 ,
(3.38)

where Ẽij is the K-order identity matrix whose i-th and j-th columns are
interchanged and all other columns are set to zero;1

∂
∂µk

∂ log hθ(y,λ)
∂W11

· · · ∂
∂µk

∂ log hθ(y,λ)
∂Wij

...
. . .

...

0
1×2

· · · ∂
∂µk

∂ log hθ(y,λ)
∂WKK

 = 0
K×2K

; (3.39)


∂
∂Ω

∂ log hθ(y,λ)
∂W11

· · · ∂
∂Ω

∂ log hθ(y,λ)
∂Wij

...
. . .

...

0 · · · ∂
∂Ω

∂ log hθ(y,λ)
∂WKK

 = 0
K×K

, where Ω ∈ {Ωk11,Ωk12,Ωk22};

(3.40)
∂
∂B

∂ log hθ(y,λ)
∂W11

· · · ∂
∂B

∂ log hθ(y,λ)
∂Wij

...
. . .

...

0 · · · ∂
∂B

∂ log hθ(y,λ)
∂WKK

 (3.41)

=


∑T

t=1 e
′
1(λt −Bλt−1)λt−1e

′
1 · · ·

∑T
t=1

[
e′i(λt −Bλt−1)λt−1e

′
j + e′j(λt −Bλt−1)λt−1e

′
i

]
...

. . .
...

0 · · ·
∑T

t=1 e
′
K(λt −Bλt−1)λt−1e

′
K

 ,
(3.42)

(3.43)

1Thus when i = j only the i-th column is kept unchanged.
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where ek is the k-th column of the K-order identity matrix.
∂

∂W11

∂ log hθ(y,θ)
∂Wii

· · · ∂
∂Wmn

∂ log hθ(y,θ)
∂Wii

...
. . .

...

0 · · · ∂
∂WKK

∂ log hθ(y,θ)
∂Wii

 =

−
T
2
V 2

1i · · · −TVmiVni
...

. . .
...

0 · · · −T
2
V 2
Ki

 ,
(3.44)

where i,m, n ∈ {1, 2, · · · , K}, m < n, and Vmi is the corresponding entity
of V = W−1;

∂
∂W11

∂ log hθ(y,θ)
∂Wij

· · · ∂
∂Wmn

∂ log hθ(y,θ)
∂Wij

...
. . .

...

0 · · · ∂
∂WKK

∂ log hθ(y,θ)
∂Wij

 =

−TV1iV1j · · · −T (VmiVnj + VniVmj)
...

. . .
...

0 · · · −TVKiVKj

 ,
(3.45)

where i, j,m, n ∈ {1, 2, · · · , K}, i < j and m < n.

3.4 Covariance Matrix for Parameter

Estimates

In addition, since the estimation procedure has used entries of the inverses
of Σk and V , I need run the delta method to derive the covariance matrix

for estimate of the original parameter vector ξ :=
({
µTk , vechU(Σk)

T
}
k=1,··· ,K ,

vechF (B)T , vechU(V )T
)T

. The delta method is a procedure used to derive

the asymptotic distributions of functions of estimated parameters.
In order to apply the delta method, I first have to define a function that

relates ξ and the estimated parameter θ. The function is defined as follows:
F : R(2+3)K ×RK2 ×R(K2+K)/2 → R(2+3)K ×RK2 ×R(K2+K)/2 such that for
vectors ak, bk, c and d of length 2, 3, K2 and (K2 + K)/2, respectively,
there is:

F
[
(aT1 , b

T
1 ; . . . ;aTK , b

T
K ; cT ;dT )T

]

=



a1

vechU
{

[vech−1
U (b1)]−1

}
...
aK

vechU
{

[vech−1
U (bK)]−1

}
c

vechU
{

[vech−1
U (d)]−1

}


. (3.46)
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The operator vech−1
U (·) is the inverse operator of vechU(·) so that it takes

a vector argument and constructs a symmetric matrix by filling by line its
upper triangular entries with the provided vector argument.2

Suppose the asymptotic distribution of θ̂ is N
[
θ0,Var(θ̂)

]
. Then the

first-order Taylor extension of F (θ̂) at θ = θ0 gives the following approxi-
mation:

F (θ̂) ≈ F (θ0) +DF (θ0) · (θ̂ − θ0), (3.47)

where DF is the Jacobian matrix of F . The delta method essential
says: From Equation (3.47) one can derive the asymptotic distribution

of ξ̂ = F (θ̂) is N
[
ξ0, DF (θ0)Var(θ̂) (DF (θ0))T

]
, with ξ0 = F (θ0) being

the true value of ξ. In order to determine the covariance matrix of this
normal distribution, we only need to derive the expressions for entries of
the Jacobian matrix DF , which in the case of Equation (3.46) is block
diagonal. In addition, many blocks on the diagonal of DF (·) are identity
matrices, except for the ones corresponding to the operator vech−1

U .
The main functional transformation in operator vech−1

U is matrix inver-
sion. For a symmetric invertible matrix A = [Aij], we can write

AA−1 = I. (3.48)

Taking derivatives of both sides of Equation (3.48) with respect to Aij, we
have

∂A

∂Aij
A−1 +A

∂A−1

Aij
= 0,

which gives

∂A−1

∂Aij
= −A−1 ∂A

∂Aij
A−1. (3.49)

Then we can apply Equation (3.49) to deriving the blocks of DF and have
∂Σk11
∂Ωk11

∂Σk11
∂Ωk12

∂Σk11
∂Ωk22

∂Σk12
∂Ωk11

∂Σk12
∂Ωk12

∂Σk12
∂Ωk22

∂Σk22
∂Ωk11

∂Σk22
∂Ωk12

∂Σk22
∂Ωk22


2Given a vector of length (K2+K)/2, the output of vech−1

U (·) is uniquely determined,
since the following equation in K has only one positive solution for n ∈ N:

K2 +K

2
= n.

The unique positive solution is K =
(√

1 + 8n− 1
)
/2, meaning if the vector argument

is of length n, vech−1
U (·) will produce a symmetric matrix of order

(√
1 + 8n− 1

)
/2.
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=|Ωk|−2

 −Ω2
k22 2Ωk12Ωk22 −Ω2

k12

Ωk12Ωk22 −Ωk11Ωk22 − Ω2
k12 Ωk11Ωk12

−Ω2
k12 2Ωk11Ωk12 −Ω2

k11

 , (3.50)

where k ∈ {1, 2, · · ·K}. For entries in ∂vechU (V )
∂vecU (W )

, there is

∂vechU(V )

∂Wij

=

{
−vechU (viv

′
i) , if i = j,

−vechU
(
viv

′
j + vjv

′
i

)
, otherwise ,

(3.51)

where vi is the i-th column vector of V , i, j ∈ {1, 2, · · ·K}, and i < j. In

construct the matrix ∂vechU (V )
∂vecU (W )

, expressions in Equation (3.51) are placed
in the following way:

∂vechU(V )

∂vecU(W )

=
[
∂vechU (V )
∂W11

, · · · , ∂vechU (V )
∂W1K

; ∂vechU (V )
∂W22

, · · · , ∂vechU (V )
∂W2K

; · · · ; ∂vechU (V )
∂WKK

]
.

(3.52)

So far, all the blocks on the diagonal of DF have been defined, while all
other blocks are zero matrices.
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Chapter 4

Simulation Studies
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Since the method described in Chapter 3, i.e. applying stochastic ap-
proximation to a maximum likelihood estimation problem is relatively new,
its practical performance have not been extensively studied so far, espe-
cially in complicated cases like the multivariate volatility-volume model
introduced in Chapter 2. Therefore, in this chapter, I will use Monte Carlo
simulations to investigate the method’s performance.

The first question of interest is whether the algorithm can run smoothly
without moving into un-allowed areas in the parameter space. There are
mainly two restrictions on the parameters. One is that the covariance
matrices {Σk}Kk=1 and V have to be positive definite. And the other is that
the auto-regression matrix B must have all its eigenvalues in the interval
(−1, 1), in order to guarantee that the information arrival process described
by Equation (2.5) is covariance stationary. It turned out that there are some
parameters in the algorithm that could be tuned to guarantee the smooth
updates of the algorithm, which will be explained in detail in Section 4.1.

The convergence of the algorithm is theoretically guaranteed, as ex-
plained in Section 1.4 and Chapter 3. Thus as long as it can run without
moving into prohibited areas in the parameter space, we do not need worry
about its convergence. But we are still interested in whether the parameter
estimates produced by the SA algorithm can converge within a reasonable
number of steps, and whether confidence intervals produced by the SA al-
gorithm can effectively cover the true values. These two questions will be
addressed in Sections 4.2.1.

4.1 Primary Simulation Results

Since the smooth updating of parameter estimates depends on the true
parameter value, as well as the parameters in the estimation algorithm, I
have used some primary simulations to study how to tune the parameters
in the estimation algorithm to keep the algorithm running smoothly. It
turned out the smooth running of the algorithm depends primarily on the
true values of the parameters B, V and the length of MCMC chains m. In
particular, for a given m, the algorithm tends to fail when the values of B
and V become too extreme, which in turn can be alleviated by increasing
m.

4.1.1 Sensitivity of the Algorithm w.r.t. B

The simulations in this part focus on testing the sensitivity of the algorithm
regarding B, so the other parameters remain fixed as follows:

µk = [1, 1]′, Σk =

[
1 0
0 1

]
, for k = 1, 2;
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V =

[
2 1
1 2

]
.

For all the five settings listed below, I simulated m = 120000 samples of
information variables in each parameter update step, with each sample
being 753-period observations of bivariate normals, i.e. T = 753.

1. The benchmark case: B =

[
0.5 0.25
0.25 0.5

]
, with eigenvalues 0.75

and 0.25.

The algorithm updates estimates smoothly in this case. This case
can be interpreted as: The persistence in information flows is at a
level comparable to that in other researchers’ findings. For example,
Andersen (1996) estimated that the persistence coefficient in a model
with a single security is between 0.7 to 0.8. In a multi-security model,
the information, persistence of the information arrival variables are
determined by the eigenvalues of B. As the off-diagonal entries of
B increase with diagonal entries fixed, the eigenvalues of B will also
increase. As mentioned in Chapter 2, the off-diagonal entries of B
also correspond to one of the cross-security spillover effects that this
research tries to identify.

2. Cases with increased off-diagonal entries.

(a) B =

[
0.5 0.3
0.3 0.5

]
, with eigenvalues equal to 0.8 and 0.2; and

B =

[
0.5 0.35
0.35 0.5

]
, with eigenvalues equal to 0.85 and 0.15.

The algorithm can still update parameter estimates smoothly.

(b) B =

[
0.5 0.4
0.4 0.5

]
, with eigenvalues equal to 0.9 and 0.1.

The algorithm fails with simulation number being 120000, be-
cause the updated parameters violate the restrictions on the
parameter vector. The algorithm can be restored to working as
I increase the number of simulations m from 120000 to 200000.
However, even with increased m, the estimation error is bigger
than the cases with smaller eigenvalues. Especially, the esti-
mate Ω̂k = Σ̂−1

k becomes less accurate for k = 1, 2. Estimates
for other parameters seem not affected much.

For example, with the true value Ω1 = Ω2 =

[
1 0
0 1

]
, after three

steps of parameter update, there is Ω̂1 =

[
0.923 −0.196
−0.196 0.923

]
and
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Ω̂2 =

[
0.876 −0.227
−0.227 0.911

]
. The off-diagonal entries of Ω̂k are

more erratic than diagonal entries. And when the simulation
number was not big enough (e.g. m = 120000), it was also the
off-diagonal values that became largely negative, such that their
absolute values are bigger than the diagonal elements, making
these two matrices no longer positive definite.

For the four settings of B in Cases 1, 2a and2b, the cross-security
historical dependency in information arrivals becomes more and more
important, and simultaneously the bigger eigenvalue increased from
0.75 in the benchmark case to 0.80, 0.85 and 0.90, meaning the in-
formation process becomes more and more persistent. This indicates
that to study cases of heavier cross-security historical dependency,
one has to use larger number of simulations m.

3. Cases with more dispersed diagonal entries.

(a) B =

[
0.6 0.25
0.25 0.4

]
, with eigenvalues equal to 0.77 and 0.23, and

B =

[
0.65 0.25
0.25 0.35

]
, with eigenvalues equal to 0.79 and 0.21.

The algorithm works in these two settings. These cases can be
interpreted as: The coefficient of auto-regression differs across
securities, causing one security to be more and more persistent
while the other one in the opposite direction.

(b) B =

[
0.8 0.25
0.25 0.2

]
. The algorithm fails. The eigenvalues are

0.89 and 0.11. In addition, for Security 2, cross-security de-
pendency is even more important and auto-dependency. Again,
with increased m, the algorithm can be restored to working.

4. Cases in which B is asymmetric.

B =

[
0.5 0.3
0.2 0.5

]
with eigenvalues being 0.74 and 0.26,B =

[
0.5 0.35
0.15 0.5

]
with eigenvalues being 0.73 and 0.27, and B =

[
0.5 0.45
0.05 0.5

]
with

eigenvalues being 0.65 and 0.35.

With the three settings forB in this case, the cross-security historical
dependencies in information variables become increasingly asymmet-
ric. However, the larger eigenvalue ofB becomes further away from 1.
Not surprisingly, the algorithm also works well in these three settings.

5. A general case for B.
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B =

[
0.6 0.2
0.3 0.4

]
, with eigenvalues 0.76 and 0.24.

This is the most general setting for B tested so far. The two hypo-
thetical securities have different levels of auto-regression (0.6 versus
0.4), and the cross-security historical dependencies for their informa-
tion arrivals are also different (0.2 versus 0.3). Since the eigenvalues
of B in this case are not too extreme, the estimation algorithm still
works well.

From the above simulation results, we can see that the bigger eigen-
value of B, which determines the closeness of the information process to
non-stationarity, affects the reliability of the estimation algorithm. As the
information process approaches non-stationarity, it requires a bigger num-
ber of simulations m in each parameter update step, in order to prevent
updated parameters from going into un-allowed areas.

4.1.2 Sensitivity of the Algorithm w.r.t. V

Another parameter that affects the reliability of the estimation algorithm
is the matrix V , which is the covariance matrix of the shocks to informa-
tion arrival processes. In principle, smaller V should impose no problem
to the success of the algorithm, because the information arrival process be-
comes less noisy with smaller V , which in turn makes the unobservability
of information arrivals a less severe problem. Therefore, in this part I have
focused on testing the reliability of the estimation algorithm in cases with
V having bigger entries. For convenience I have copied here the benchmark
parameter settings from Section 4.1.1:

µk = [1, 1]′, Σk =

[
1 0
0 1

]
, for k = 1, 2;

V =

[
2 1
1 2

]
, B =

[
0.5 0.25
0.25 0.5

]
.

To test the reliability of the estimation algorithm in cases with “bigger”

V , I have multiplied the matrix V =

[
4 2
2 4

]
by 1.2, 1.4, 1.6, 1.8 and 2

respectively, and keep other parameters unchanged. The algorithm works
with m = 120000 except in the last case. And again, as I increase m, the
algorithm can be restored to working.

Another interesting thing to note is that as the entries of V increase, the
accuracy of Ωk’s are affected the most, while other parameters are still close
to their complete model MLE estimates (i.e. when information variables are

observable). For example, when V =

[
7.2 3.6
3.6 7.2

]
, I obtained the estimation
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results shown in Table 4.1 after 10 parameter updates. Please note that I
have used entries of W = V −1 in the table.

Table 4.1: Estimation Results for Increased V

SA MLE SA MLE
µ1,1 1.01 1.00 Σ2,22 0.64 0.99
µ1,2 1.01 1.00 B11 0.46 0.48
µ2,1 1.01 1.00 B12 0.26 0.23
µ2,2 1.00 0.99 B21 0.25 0.26

Σ1,11 0.55 1.02 B22 0.53 0.52
Σ1,12 -0.34 0.00 W11 0.33 0.35
Σ1,22 0.59 0.94 W12 -0.18 -0.19
Σ2,11 0.59 1.01 W22 0.35 0.38
Σ2,12 -0.30 -0.01

Numbers in the columns labeled “MLE” are parameter estimates when information
variables are observable.

As we can see from the above simulation results as I vary B and W ,
the estimation algorithm tends to fail if the information process becomes
too close to random walk or its shock term has too “big” variances. A
common feature shared by these two types of changes is that they make
the information process more noisy. Since the MCMC simulations are used
to approximate a high-dimensional integral, and its approximation error is
determined by the noisiness (or variance) of the unobservable information
variables, it makes sense that we need run more simulations to obtain a
certain level of approximation accuracy as the unobservable information
process becomes more noisy.

4.2 Large Scale Simulations

The previous section has explored different settings of model parameters
and algorithm parameters to examine whether the estimation algorithm
can update parameter estimates smoothly in various settings. When the
estimation algorithm has no problem in updating parameter estimates, the
convergence of updated parameter estimates to the true maximum like-
lihood estimate is theoretically guaranteed. However, it is still of great
interest to investigate the practical performance of the algorithm in two
aspects. One is whether the algorithm can converge within a practical
time period. And the other one is whether the estimated information ma-
trix can provide reliable estimates for the covariance matrix of parameter
estimates. This section is used to address these two questions.
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4.2.1 Simulation Parameter Settings

To carry out such studies, I have chosen sets of values for each parameter,
which are listed below. The primary consideration for choosing such values
is that the exhibit enough variations to cover distinct cases, so that the
performance of the SA algorithm can be examined in a thorough way. In
particular, some parameter values are chosen to be close to estimates given
in other researchers’ work.

In the general case, the model in Chapter 2 has K securities. The study
in this chapter has set K = 2.

1. One choice for µ:

µ1 =
[
0 1

]′
, µ2 =

[
0.1 1

]′
.

The two components of µk correspond to the expectations of Security
K’s return and trading volume, respectively, conditional on that the
information arrival I is equal to 1. A great amount of researches,
including Tauchen and Pitts (1983), Andersen (1996) and Liesenfeld
(2001), have shown that for daily data, the conditional expected re-
turn is not significantly different from 0, thus µ11 is set equal to 0. µ21

is set to be slightly positive, in order to introduce some variations.
The detrending procedure used in estimation, which will be intro-
duced in Chapter ?? will bring the unconditional mean of trading
volume close to 1. Since the expectation of information arrival I is
approximately 1, it implies the conditional mean of trading volume is
also close to 1. Therefore, both µ12 and µ22 are set to 1 in parameter
choice.

2. Two choices for Σ:

(a) Σ1 =

[
2 0
0 0.05

]
, Σ2 =

[
4 0
0 0.2

]
.

(b) Σ1 =

[
1 0
0 0.1

]
, Σ2 =

[
0.5 0
0 0.1

]
.

(c) Σ1 =

[
1.6 0
0 0.4

]
, Σ2 =

[
0.9 0
0 0.3

]
.

(d) Σ1 =

[
1.2 0
0 0.6

]
, Σ2 =

[
0.5 0
0 0.5

]
.

It has also been observed by Andersen (1996), Liesenfeld (2001) and
Park (2010) among others that the conditional variance of return
(Σk11) is bigger than that of trading volume (Σk22). Thus all of the
above four pairs of Σk have set Σk11 bigger than Σk22. The ratio be-
tween these two entries takes value from the set {1, 2, 3, 4, 5, 10, 20, 40},

66



which should provide a good coverage for all practical cases. In
Tauchen and Pitts (1983)’s original model, the authors have derived
that the correlation between returns and trading volumes conditional
on information arrival is zero. Other researches on the MDH frame-
work have adopted the same assumption. Thus the above four pairs
of Σk have all set the off-diagonal values equal to 0.

3. Seven choices for B:

(a) B =

[
0.55 0.15
0.15 0.55

]
, with eigenvalues 0.70 and 0.40.

(b) B =

[
0.70 0.10
0.20 0.60

]
, with eigenvalues 0.80 and 0.50.

(c) B =

[
0.40 0.10
0.20 0.30

]
, with eigenvalues 0.50 and 0.20.

(d) B =

[
0.20 0.50
0.60 0.10

]
, with eigenvalues 0.70 and − 0.40.

(e) B = −
[
0.20 0.50
0.60 0.10

]
, with eigenvalues 0.40 and − 0.70.

(f) B = −
[
0.70 0.10
0.20 0.60

]
, with eigenvalues − 0.50 and − 0.80.

(g) B = −
[
0.40 0.10
0.20 0.30

]
, with eigenvalues − 0.20 and − 0.50.

In their study of uni-asset models, Andersen (1996), Liesenfeld (1998)
and Liesenfeld (2001) have found out that in the MDH framework,
the persistence of the information arrival process is lower than that of
the volatility process in univariate models in which only return data
is considered. In particular, their estimated autoregression parameter
for the information arrival process is about 0.8 or lower. In a multi-
asset MDH framework, the eigenvalues of the B matrix determines
the persistence level of the information arrival process. This can be
seen by replacing B with its singular value decomposition such that
B = PDP−1, where D is a diagonal matrix having B’s eigenvalues
on its diagonal, and the columns of the invertible matrix P are the
corresponding eigenvectors of B.1 By multiplying P−1 to both sides

1Here I assume B is diagonalizable. If it is not, B can be written in Jordan canonical
form such that B = PJP−1, where the columns of P are eigenvectors or generalized
eigenvectors of B, and the matrix J is no longer diagonal but may have 1’s for entries
on the diagonal immediately above the main diagonal. Please see Simon and Blume
(1994, Chapter 23, p. 605–608) for details on Jordan canonical form. However, in this
case, the validity of the analysis that follows are not affected, except that the notation
may become more tedious.
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of Equation (2.5), we have

P−1Λt = DP−1Λt−1 + P−1εt.

By defining the Xt := P−1Λt and ηt := P−1εt, we have a new vector
autoregression process

Xt = DXt−1 + ηt. (4.1)

However, since the matrix D is diagonal, the components of Xt can
be solved individually, which can be used to recover Λt = PXt. In
this procedure, it is evident that the diagonal elements of D, which
are the eigenvalues of B determines the autocorrelation of Xt and
thus also the autocorrelation of Λt.

Therefore, I have made choices forB based on its eigenvalues, to make
sure they cover persistence levels of the information arrival processes
reported in other researches.

The other consideration in choosing B is to introduce distinct com-
binations of the signs of its two eigenvalues. The above list have
covered all three possible cases, i.e. both positive, only one positive
and both negative. The inclusion of such combinations is still used
to examine the SA algorithm’s reliability in practice.

4. Four choices for V :

(a) V =

[
0.2 0.01
0.01 0.2

]
, with correlation being 0.05.

(b) V =

[
0.4 0.05
0.05 0.10

]
, with correlation being 0.25.

(c) V =

[
0.16 0.08
0.08 0.25

]
, with correlation being 0.4.

(d) V =

[
0.32 0.24
0.24 0.50

]
, with correlation being 0.6.

There are mainly two considerations in setting values for entries in V .
One is regarding the diagonal values. Liesenfeld (1998) and Liesenfeld
(2001) have estimated models that are close to a uni-asset version of
my model, and the diagonal values of V are chosen to be close to
the parameter estimates in these two papers. However, since other
researchers so far have not studied multi-asset specifications close
to mine, there are not many established benchmarks to consider in
choosing the off-diagonal values for V . The values given in the above
list are chosen so as to cover a relatively large range of correlations
between the random shocks to the information processes, from 0.05
in the least correlated case, to 0.6 to the most correlated case.
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In addition, I have made the following choices for other parameters:

1. The length T of the observation period is set to 755, which is approx-
imately equal to the number of trading days in three years.

2. The parameter m, which is the number of MCMC simulations used
in each parameter update step, is set to 1.6 × 105. This is a very
large number when compared to the suggested range of 10–100 by
Gu and Kong (1998) (GK hereafter). But my application of the
SA algorithm to the multi-asset MDH model in this paper is very
different from the example given in GK’s work. First, GK’s example
essentially has only 200 periods of observations, while my setting is
about as 3.5 times long as that. Second, in GK’s example, there is
only 1 unobservable variable, while mine has 2. Third, unobservable
variables in GK’s example are i.i.d, but my application has all these
variables correlated. And fourth, GK’s example has only 1 parameter
to be estimated, while my application has 17 for the case with K = 2.2

These differences create large computational difficulties for my appli-
cation. In particular, the SA algorithm when applied to the multi-
asset MDH model in this dissertation has to maintain that the up-
dated parameter vector still has positive definite Σk and V . When
m is small, this requirement is seldom met, implying that the Monte
Carlo estimates for ∆(θ̂) and ∂∆(θ̂)/∂θ are too non-accurate. In or-
der to avoid this problem, I increased the m to its current level, since
the variance of the Monte Carlo estimates for ∆(θ̂) and ∂∆(θ̂)/∂θ
are of order 1/m.

Another consideration in choosing m is the associated computational
costs. When m is large, it requires more computing time and stor-
age space. The simulation results in Section 4.2.2 show that the SA
algorithm always converges with my current choice of m.

3. The MCMC algorithm uses a normal random walk proposal distri-
bution and has maintained acceptance rates of chains between 21%
and 25%.

To be specific, in the n-th parameter update step, given a current
sample Λn,i in the MCMC chain, the next sample Λn,i+1 is drawn from
the distribution N (Λn,i, σ

2 ·E2T ), where σp is a scalar parameter to
be tuned, and E2T is the identity matrix of order 2T , since there are
2T unobservable information variables in my model.

The procedure for tuning the parameter σp in the proposal distribu-
tion is designed as follows. σp is set equal to a specific value in the first

2Given K, the number of parameters to be estimated in my model is
(
3K2 + 11K

)
/2.

69



parameter update step.3 Then the MCMC procedure is run with the
chosen σp to produce m samples of Λ, as well as an acceptance rate.
If the produced acceptance rate is just between 21% and 25%, then
the initial value for σp has worked well and the simulated chain is then
used for computing the first-step parameter update. However, if the
produced acceptance rate is below the range 21%, then the MCMC
procedure is re-run with a decreased σp, and vice-versa.4 A binary
search algorithm for σp is used when two consecutive trials produce
two acceptance rates that completely cover the range between 21% to
25%. When an acceptance rate within this range is found, the sim-
ulated MCMC chain is then used in computing parameter updates,
and the σp just used is kept to the next parameter update step as the
initial value for MCMC trials.

Choosing an appropriate range for acceptance rates is a non-trivial
issue in MCMC. For example, see Reference problematic here. I have
followed the suggestion by these authors to choose the current range.

In addition, though authors like Brooks et al. (2011) has suggested
that it is not necessary to burn-in the simulated chain of samples, I
have burned the first 20% of all simulated chains to be more caution-
ary. The length of unburned MCMC chain is 2.0×105, so as to make
the after burn-in length to be 1.6× 105.

4. The number of parameter update steps is set to 30. There is a trade-
off between two considerations in choosing this number. One is to
run the algorithm long enough to insure its convergence. Since the
effectiveness of the SA algorithm essentially depends on a law of large
numbers, the longer the algorithm is run, the closer would the pa-
rameter estimates be to their limit values, which are the maximum
likelihood estimates that would be obtained by solving Problem (3.4).
And the other consideration is to maintain the computation costs at a
manageable level. Since I have already choose m = 1.6× 105, in each
parameter update step, it takes a large amount of computation costs
both to generate long a chain of MCMC simulations, and to make cal-
culations based on the simulated chain. The results shown in Section
4.2.2 suggest that the improvements in parameter estimates is quite
small in general after 25 steps of parameter updates. Thus 30 seems
a conservative choice guaranteeing the convergence of the algorithm,

3The choice of this initial value for σp depends on the values of µk,Σk,B and V .
For example, when the latter four parameters all take their first choice listed above, the
initial value for σp is set at 0.0125.

4It has turned out that the acceptance rate depends negatively on σp, which is not
difficult to understand, since the normal proposal distribution with a small σp tends to
draw samples close to the current sample, which in turn keeps the acceptance rate high.

70



which is also computationally viable.

5. The starting point of parameter update is equal to be the parame-
ter true value θ0 plus a normal random shock, with mean zero and
standard deviation equal to 0.05 multiplying the absolute value of θ0.

The simulations are then generated in this way: For each choice of pa-
rameters, simulate the information arrival process, which will be used to
determine the conditional distributions of returns and trading volumes.
Then returns and trading volumes are simulated, which are then fed into
the SA algorithm to produce parameter estimates. Based on the above
numbers of choices for each parameter, there are 112 such simulations in
total.

4.2.2 Convergence of the SA Algorithm

After fully describing the settings used for running simulations, I can now
present the simulation results. The most desirable result is that the param-
eter estimates θ̂ produced by the SA algorithm can quickly converge to the
true maximum likelihood estimate θ̂MLE obtained from solving Problem
(3.4). The convergence is theoretically guaranteed, but cannot be eas-
ily verified in practice, since the direct solution to Problem (3.4) is not
practically feasible in the problem studied in this research. Therefore, the
following part instead focuses on presenting the changes in θ̂, the difference
between θ̂ and θ0, and the difference between θ̂ and θ̂cMLE, where θ̂cMLE

is the maximum likelihood estimate of the complete model in which the
information variables are observable. Please note that since in the incom-
plete model with unobservable information variables, θ̂ will be different
from θ̂cMLE in general due to the lost information, there is no guarantee

that θ̂ will converge to θ̂cMLE.
The first choice of update steps γn’s is defined by

γn = 1/n. (4.2)

And the second choice of update steps is defined by

γn =
b/n+ a

b/n+ a+ n− 1
.

where a = 1 and b = 2000.

4.2.3 Comparison of Update Steps

As noted in the literature, one of the main factor that affects the perfor-
mance of the stochastic approximation algorithm is the sequence of update
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Figure 4.1: Convergence of the Stochastic Approximation Algorithm

steps. Unfortunately, there is no computationally tractable way to con-
struct the optimal series of update steps systematically, and the choice of
update steps are mainly ad hoc. The convergence results shown in Figure
4.1 suggest that the update steps defined by γn = 1/n probably might have

decreased to zero too fast when θ̂n was still far from θ̂i and θ̂cMLE. Thus I
tried an alternative way to define update steps which is suggested by Powell
(2007):

γn =
b/n+ a

b/n+ a+ n− 1
, (4.3)

where a and b are tunable positive parameters. {γn} given Equation (4.3)
satisfies the restrictions on update steps, such that

∞∑
n=1

γn =∞, and
∞∑
n=1

γ2
n <∞.

The parameters I actually used are a = 1 and b = 2000 which are also
included in Powell’s work. In order to show the difference in the behaviors
of step sizes defined in Equations (4.2) and (4.3), I have plotted them in
Figure 4.2. Clearly, the updating steps given by Equation (4.3) decreases
to zero much slower than those given in Equation (4.2).

The performances of the stochastic approximation algorithm with these
two schemes of step sizes are also compared, as shown in Figures 4.3 and
4.4. In these figures, a label having the form of “xyz” indicates that Σ, B
and V taking their x-th, y-th and z-th settings, respectively. I have chosen
two benchmarks for comparison: One is the true parameter values, and the
other is the complete model maximum likelihood estimates. There is no
guarantee that parameter estimates should converge to either of these two
values, but generally they should not be too far from them.

From Figure 4.3 we can see that for the parameter settings labeled as
“111”, step sizes given in Equation (4.3) performs better than those given
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Figure 4.2: Comparison of Step Sizes.

by Equation (4.2). Because the initial parameter estimate starts relatively
far from the true parameters, and steps sizes in (4.2) decreases to 0 too
fast, the parameter estimates cannot be updated quickly enough by the
simulated gradients. On the contrary, the step sizes given in (4.3) stay
close to 1 for an extended period, and thus allows the influence of a bad
initial guess to fade away more quickly.

However, for the remaining three settings labeled as “242”, “313” and
“444”, the step sizes given in (4.3) fail to provide better performances.
They cannot make parameter estimates closer to the true parameter values.
Their inferior performance appear to be more apparent for parameter sets
“242” and “313”, for which the distance between parameter estimates with
update steps given by (4.2) is still decreasing. However, we should note
that the sub-figures in Figure 4.3 are plotted in different scales, such that
the initial distance for parameter set “111” is much bigger.

Figure 4.4 provides very similar results, that if the initial parameter
estimates is far from the true value, update steps given in (4.3) seem ca-
pable of quickly moving parameter estimates into an area that is close to
the true parameter values. But if the initial guess is already close the to
true parameter value, then update steps given in (4.2) are more stable in
keeping parameter estimates within a small area around the true param-
eter values. The unstable performance of update steps given in Equation
(4.3) may be due to that fact that the matrix Γn in Equation (3.12) is an
approximation to Hessian matrix in the Newton-Raphson algorithm, and
it is also updated using the same update steps. When (4.3) discounts his-
torical values at a faster rate, it also drops too much information in the
historical approximations of Γn, making the direction of parameter update
not as accurate as those using (4.2).

In principle, one can use different update steps for θ̂n and Γn. Or
alternatively, one can use a piecewise function to force quick parameter
updates, and then switch to Equation (4.2). In the following part of large
scale simulation, as well as in real data estimation presented in Chapter
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Figure 4.3: Comparison of Step Sizes: Distance to θ̂cMLE .

??, I have used the following update steps

γn =

{
1, for n ≤ 3;

1
n−3

, for n ≥ 4.
(4.4)
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Figure 4.4: Comparison of Step Sizes: Distance to θ̂0.
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4.2.4 Effectiveness of the Information Matrix
Estimate

A desirable feature of the EM algorithm is that it can easily accommodate
the computation of the information matrix, which can then be used for
computing confidence intervals and implementing hypothesis tests. Since
the application of SA algorithm in this research is closely related to EM,
it also produces estimates for the information matrix in the process of pa-
rameter updates. One question of interest is then whether the information
matrix estimates are accurate enough, such that the confidence intervals
produced using such estimates can cover the true parameter values θ0 with
the corresponding confidence levels. In this section, I will show the results
of some large scale simulations intended to address this question.

I have chosen four sets of parameters to carry out large-scale simula-
tions. For convenience, I have copied the parameters in the following list.

1. Setting “111”.

Σ1 =

[
2 0
0 0.05

]
, Σ2 =

[
4 0
0 0.2

]
, B =

[
0.55 0.15
0.15 0.55

]
, V =

[
0.2 0.01
0.01 0.2

]
.

2. Setting “242”.

Σ1 =

[
1 0
0 0.1

]
, Σ2 =

[
0.5 0
0 0.1

]
, B =

[
0.20 0.50
0.60 0.10

]
, V =

[
0.4 0.05
0.05 0.10

]
.

3. Setting “313”.

Σ1 =

[
1.6 0
0 0.4

]
, Σ2 =

[
0.9 0
0 0.3

]
, B =

[
0.55 0.15
0.15 0.55

]
,V =

[
0.16 0.08
0.08 0.25

]
.

4. Setting “444”.

Σ1 =

[
1.2 0
0 0.6

]
, Σ2 =

[
0.5 0
0 0.5

]
, B =

[
0.20 0.50
0.60 0.10

]
, V =

[
0.32 0.24
0.24 0.50

]
.

For each of the above four settings, at least 300 simulations have been
run. And each simulation is run in this way: Generate information variables
using the true parameter values for T = 755 and K = 2, then generate
return and volume variables also using the true parameter values and their
conditional distributions on information variables, and finally estimate the
model under the restriction that the information variables are unobservable.
The update steps given in Equation (4.4) are used, and each parameter
estimation uses 30 steps of updates.

In practice, I did not directly use confidence intervals, but p-values for
testing the hypothesis θ = θ̂0 to carry out the accuracy checks. Again, such
p-values are calculated separately for each dimension of θ. This method
is justified by observing that the confidence interval for a parameter θ is
calculated from the following equation:

Pr
{
|θ̂ − θ0| < C1−α/2

}
= 1− α,
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where θ̂ follows its asymptotic normal distribution which is symmetric,
and C1−α/2 is the (1−α/2)-th percentile of this distribution. For a specific

realization θ̂∗ of θ̂, the inequality

|θ̂∗ − θ0| < C1−α/2

is equivalent to

Pr
{
|θ̂ − θ0| < |θ̂∗ − θ0|

}
< 1− α,

or
1− Pr

{
|θ̂ − θ0| < |θ̂∗ − θ0|

}
> α.

The detailed procedure for determining the accuracy of information
matrix estimates is as such: Fix a set of parameters, run a large number
of simulations, and then determine in each simulation the p-value of each
parameter. Suppose the significance level is α, then if the portion of sim-
ulations with p-value greater than α is approximately equal to 1 − α, it
would imply the information matrix estimation is accurate.

From Table 4.2 we can see that the confidence interval estimates for
µk1 are most accurate, because for these parameters, the table entries are
most close to 1 − α at all three significance levels. In contrast, the confi-
dence interval estimates for µk2 are least accurate, especially for the first
three settings. This is somewhat counter-intuitive, since these two param-
eter play very similar roles in the model, except for that fact that their
numerical values are different. An examination into the actual parameter
estimates shows that for µk2, the estimated standard errors are very small,
and thus the confidence intervals can easily miss the true parameter values.
The parameters that we are most interested in are B12 and B21, the esti-
mation accuracy for the confidence interval of which are at intermediate
levels. Though they also miss the true parameter values with probabilities
higher than significance levels, the differences are not very big. In the real
data estimation, we should only reject hypotheses with extra high level of
confidence.

A possible explanation for the discrepancy between the estimated and
Monte Carlo simulation confidence intervals is that the distribution of the
estimated parameters are not normal, which is only the limiting distribu-
tion for T = ∞. To investigate this point, I have plotted histograms of
parameter estimates from the simulations, which are shown in Figures 4.5,
4.6, 4.7 and 4.8.

There are 17 parameters in a two-security model, among which there
are entries in Σk and V . The figures have also plotted histograms for
entries in the inverse matrices of Σk and V . Estimated kernel densities
are plotted together with histograms as black curves. Such densities are
estimated using a Gaussian kernel and a bandwidth given by Silverman’s
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Table 4.2: The Effectiveness of Estimated Confidence Intervals

Setting 1 Setting 2 Setting 3 Setting 4
(305 Sim.) (307 Sim.) (307 Sim.) (325 Sim.)

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
µ11 0.88 0.94 0.98 0.90 0.96 0.99 0.87 0.94 0.99 0.90 0.94 0.98
µ12 0.23 0.26 0.31 0.27 0.31 0.39 0.57 0.64 0.77 0.62 0.70 0.83
µ21 0.92 0.96 0.99 0.89 0.95 1.00 0.93 0.97 1.00 0.91 0.97 0.99
µ22 0.42 0.49 0.60 0.34 0.39 0.49 0.47 0.54 0.65 0.79 0.85 0.94

Σ1,11 0.78 0.84 0.93 0.73 0.83 0.92 0.79 0.88 0.96 0.81 0.87 0.94
Σ1,12 0.65 0.75 0.89 0.69 0.81 0.92 0.85 0.91 0.98 0.81 0.89 0.96
Σ1,22 0.64 0.74 0.81 0.61 0.68 0.79 0.71 0.79 0.89 0.71 0.79 0.91
Σ2,11 0.78 0.85 0.94 0.79 0.88 0.94 0.75 0.84 0.95 0.79 0.85 0.94
Σ2,12 0.79 0.87 0.93 0.77 0.82 0.92 0.80 0.87 0.94 0.84 0.90 0.97
Σ2,22 0.68 0.76 0.89 0.62 0.72 0.87 0.71 0.77 0.87 0.73 0.80 0.93
B11 0.81 0.87 0.94 0.82 0.87 0.97 0.72 0.79 0.91 0.73 0.82 0.90
B12 0.77 0.86 0.94 0.79 0.87 0.95 0.70 0.79 0.90 0.66 0.74 0.85
B21 0.75 0.84 0.95 0.69 0.77 0.86 0.68 0.78 0.88 0.69 0.76 0.86
B22 0.73 0.82 0.93 0.72 0.82 0.92 0.69 0.79 0.88 0.70 0.77 0.90
V11 0.74 0.81 0.90 0.76 0.83 0.92 0.62 0.70 0.82 0.59 0.68 0.80
V12 0.73 0.80 0.92 0.71 0.81 0.92 0.65 0.74 0.88 0.56 0.66 0.81
V22 0.67 0.74 0.90 0.64 0.73 0.86 0.64 0.73 0.91 0.58 0.67 0.79

Ω1,11 0.77 0.84 0.94 0.74 0.83 0.91 0.81 0.87 0.95 0.80 0.87 0.93
Ω1,12 0.65 0.74 0.89 0.69 0.81 0.92 0.85 0.91 0.98 0.81 0.89 0.96
Ω1,22 0.64 0.72 0.82 0.61 0.68 0.79 0.71 0.79 0.92 0.71 0.78 0.90
Ω2,11 0.78 0.85 0.95 0.79 0.87 0.96 0.73 0.84 0.95 0.78 0.86 0.95
Ω2,12 0.79 0.87 0.93 0.77 0.82 0.92 0.80 0.87 0.94 0.84 0.90 0.97
Ω2,22 0.68 0.76 0.88 0.62 0.72 0.87 0.72 0.76 0.88 0.71 0.80 0.91
W11 0.75 0.80 0.91 0.72 0.81 0.93 0.65 0.71 0.84 0.64 0.72 0.86
W12 0.71 0.79 0.91 0.71 0.83 0.92 0.74 0.81 0.93 0.74 0.80 0.92
W22 0.68 0.76 0.90 0.64 0.73 0.88 0.68 0.79 0.91 0.66 0.75 0.88
For each parameter setting, 300 simulations have been run. The numbers shown in
the table are the ratio between the number of simulations with true parameter’s p-
values greater the corresponding significance levels. A number close to 1−α implies
that the confidence interval estimate is accurate.

(1986) “rule of thumb”. The rule chooses as the bandwidth 0.9 multiplying
the smaller value between sample standard deviation and the interquartile
range divided by 1.34 to the power of the −0.2. The red curves in these
figures are the density function of normal distributions with the same means
and standard deviations.

From these graphs we can see that the difference between kernel density
estimates and normal densities are actually not very big, which implies that
the accuracy of confidence intervals may be negatively impacted by some

78



factors other than the non-normal distributions of parameter estimates. For
example, 30 steps of parameter updates may be too less for the algorithm
to approximate the Hessian matrix accurately using Γn. Since Γn is used in
calculating the confidence intervals, the noise in Γn may cause confidence
intervals to be inaccurate. To alleviate this, a straightforward method is to
increase the number of parameter update steps. The real data estimation
presented in Chapter ?? are all estimated using 100 parameter update
steps.

4.2.5 Simulated Information Variables

Another way to inspect the performance of the estimation algorithm is
examining if the sampled Markov chains in MCMC have been run long
enough. If this is not the case, then these MCMC samples may not be
closely approximating the unobservable information variables, which in
turn entails more parameter updating steps. In order to do such an exam-
ination, I will plot the percentiles of the simulated information variables,
and see if the true information variables can be effectively covered by some
percentile bands of the simulated information variables.

Figure 4.9 has plotted the information variables as well as the percentile
bands of simulated information variables for the model with Parameter In-
dex “111” (see Section 4.2.4 for the parameter values). The simulated
information variables are those drawn after 30 steps of parameter updates.
The red lines marked the maximum and minimum simulated information
variables in each period, and the blue lines are the true information vari-
ables. Though not easy to spot, two percentile bands are also plotted in
the graph, with the darker one marks the (25%, 75%) percentiles of sim-
ulated information variables, and the lighter one marks the (2.5%, 97.5%)
percentile.

Compared to the volatilities of the information variables, the conditional
distribution of information variable on parameter values and observed re-
turn and volume data are very concentrated. Thus in Figure 4.9 it is diffi-
cult to distinguish the percentile bands of simulated information variables
from the true information variable values. This in turn suggests that the
information variables have been well-approximated. Because otherwise we
will see the blue lines deviate from the bands delimited by the red dashed
lines, or the gray bands frequently. The same figure has been plotted for
the other three model settings too. Since they are all qualitatively very
similar, these figures are not included in this dissertation.

The narrowness of percentile bands compared to the volatility of infor-
mation variables suggests breaking the graphs in Figure 4.9 into smaller
time periods, which is done in Figures 4.10 to 4.13. From these graphs,
we can see more clearly that the simulated percentile bands have covered
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Figure 4.5: The Histograms of Parameter Estimates for Setting One. Parameters
Index = 111.
There are 17 parameters in the two-asset model, where 9 of them are entries
of covariance matrices Σ1, Σ2 and V . Histograms for entries in the inverses
of these matrices are also plotted. For a full list of parameters, please see the
first column in Table 4.2. The black curves are estimated Gaussian kernel
densities using bandwidth given by Silverman’s (1986) “rule of thumb” for
bandwidth, while the red curves are normal densities with the same mean
and variance. In general, the above histograms show that the distributions
of parameter estimates are close to normal distributions.
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Figure 4.6: The Histograms of Parameter Estimates for Setting Two. Parameters
Index = 242.
There are 17 parameters in the two-asset model, where 9 of them are entries
of covariance matrices Σ1, Σ2 and V . Histograms for entries in the inverses
of these matrices are also plotted. For a full list of parameters, please see the
first column in Table 4.2. The black curves are estimated Gaussian kernel
densities using bandwidth given by Silverman’s (1986) “rule of thumb” for
bandwidth, while the red curves are normal densities with the same mean
and variance. In general, the above histograms show that the distributions
of parameter estimates are close to normal distributions.
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Figure 4.7: The Histograms of Parameter Estimates for Setting Three. Param-
eters Index = 313.
There are 17 parameters in the two-asset model, where 9 of them are entries
of covariance matrices Σ1, Σ2 and V . Histograms for entries in the inverses
of these matrices are also plotted. For a full list of parameters, please see the
first column in Table 4.2. The black curves are estimated Gaussian kernel
densities using bandwidth given by Silverman’s (1986) “rule of thumb” for
bandwidth, while the red curves are normal densities with the same mean
and variance. In general, the above histograms show that the distributions
of parameter estimates are close to normal distributions.
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Figure 4.8: The Histograms of Parameter Estimates for Setting Four. Parame-
ters Index = 444.
There are 17 parameters in the two-asset model, where 9 of them are entries
of covariance matrices Σ1, Σ2 and V . Histograms for entries in the inverses
of these matrices are also plotted. For a full list of parameters, please see the
first column in Table 4.2. The black curves are estimated Gaussian kernel
densities using bandwidth given by Silverman’s (1986) “rule of thumb” for
bandwidth, while the red curves are normal densities with the same mean
and variance. In general, the above histograms show that the distributions
of parameter estimates are close to normal distributions.
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Figure 4.9: The True and Simulated Information Variables, Parameter Index =
111. Asset 2.
For the two assets in the model with Parameter Index 111, these two graphs have plotted
the true values (solid blue line), maximum and minimum simulated values (dashed
red lines), (2.5%, 97.5%) percentile band (light gray) and (25%, 75%) percentile band
(dark gray) of information variables. During T = 755 periods of observations, the
posterior distributions of information variables in each period are very concentrated
around the true values. Thus the percentile bands are very small such that it is not easy
to visually distinguish them. But on the other hand, this also suggests that the MCMC
algorithm has worked well, drawn samples successfully from the target distribution and
approximated the true information variables closely.

the true information variables effectively. As the true information variables
fluctuate, the simulated percentile bands can make quick adjustments ac-
cordingly. I will give more specific explanations for the graphs in each
graph’s footnote.

To examine the performance of the MCMC part in the estimation algo-
rithm more quantitatively, I have calculated the percentages of information
variables being covered by respective percentile bands over the 755 obser-
vation periods, the results of which are listed in Table 4.3. It is confirmed
that the MCMC algorithm has approximated the unobservable information
variables well, because the percentage numbers are close to the width of
percentile bands.

Another way to examine the performance of the MCMC algorithm is
comparing the distribution of the true and simulated information variables
over time, which is done in Figure 4.14. In this graph, I have plotted the
kernel density estimates for both the true and simulated information vari-
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Figure 4.10a: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 111.
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Figure 4.10b: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 111.
These graphs compare the true and simulated information variables. Each of the small
graphs in this panel plots the true values (solid blue line), maximum and minimum
simulated values (dashed red lines), (2.5%, 97.5%) percentile band (light gray) and
(25%, 75%) percentile band (dark gray) of information variables. The graphs in Lines
1, 3, 5, 7 and 9 are for Asset 1, and the remaining lines are for Asset 2. The percentile
bands for Asset 1’s information variables are narrower than those for Asset 2’s, though
the two information variables are completely symmetric, as determined by B and V .
This is because entries in Σ2 are bigger than those in Σ1, meaning the unobservability of
Asset 2’s information variables are more severe. Consequently, the conditional variance
of Asset 2’s information variable is bigger.
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Figure 4.11a: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 242.
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Figure 4.11b: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 242.
These graphs compare the true and simulated information variables. Each of the small
graphs in this panel plots the true values (solid blue line), maximum and minimum
simulated values (dashed red lines), (2.5%, 97.5%) percentile band (light gray) and
(25%, 75%) percentile band (dark gray) of information variables. The graphs in Lines
1, 3, 5, 7 and 9 are for Asset 1, and the remaining lines are for Asset 2. The width of
percentile bands for the two asset’s simulated information variables are close, though
V11 is four time as big as V22.
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Figure 4.12a: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 313.
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Figure 4.12b: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 313.
These graphs compare the true and simulated information variables. Each of the small
graphs in this panel plots the true values (solid blue line), maximum and minimum
simulated values (dashed red lines), (2.5%, 97.5%) percentile band (light gray) and
(25%, 75%) percentile band (dark gray) of information variables. The graphs in Lines
1, 3, 5, 7 and 9 are for Asset 1, and the remaining lines are for Asset 2. The width
of percentile bands for the two asset’s simulated information variables are also close.
But compared to Figures 4.10 and 4.11, the percentile bands in Figure 4.12 are gener-
ally wider. This may suggest that the minimum diagonal value of Σk is important in
determining the width of percentile bands.
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Figure 4.13a: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 444.
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Figure 4.13b: The evolution of two assets’ true and simulated information vari-
ables. Parameters Index = 444.
These graphs compare the true and simulated information variables. Each of the small
graphs in this panel plots the true values (solid blue line), maximum and minimum
simulated values (dashed red lines), (2.5%, 97.5%) percentile band (light gray) and
(25%, 75%) percentile band (dark gray) of information variables. The graphs in Lines 1,
3, 5, 7 and 9 are for Asset 1, and the remaining lines are for Asset 2. Again, the width
of percentile bands are close for the two assets.
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Table 4.3: The Effectiveness of Percentile Bands

25% – 50% 2.5% – 97.5% 0–100%
Model 111, Asset 1 0.48 0.93 1.00
Model 111, Asset 2 0.48 0.92 0.99
Model 242, Asset 1 0.47 0.91 0.99
Model 242, Asset 2 0.46 0.93 0.99
Model 313, Asset 1 0.50 0.94 0.99
Model 313, Asset 2 0.48 0.92 0.99
Model 444, Asset 1 0.50 0.94 0.99
Model 444, Asset 2 0.48 0.92 0.99

ables (taking the last step in MCMC chains). Again, the graphs conform
with my previous finding that MCMC part of the algorithm has worked
well, since the two estimated kernel densities are close to each other.

To sum up the simulation results, the success of estimation algorithm
depends on three things. One is the length of MCMC chains, which deter-
mines if the true information variables can be well-approximated. Longer
chains are always better, at the cost of longer computation time. The
second one is the step size scheme. If step sizes decreases too fast, the pa-
rameter updating may become too slow while the parameters are still far
from their limit value. On the other hand, if the step sizes decreases too
slow, past simulated information may be discounted at a high rate, causing
the algorithm to be unstable. The third one is the number update steps.
More parameter update steps is always better. The examination on the
large-scale simulation results and the simulated information variables sug-
gest that 30 parameter update steps may be too few. Based on this result,
in the real data estimation part, I will increase the number of update steps
to 100.
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Figure 4.14: Kernel Density Estimates for the True and Simulated Information
Variables.
These graphs compare the kernel density estimates between the true and simulated
information variables (last steps in MCMC chains are used) in the four models. The
kernel densities are close to each other in general, again suggesting that the MCMC part
of the algorithm has worked well.
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Chapter 5

Real Data Estimation
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In this chapter, I will present the results obtained from estimating the
model in Chapter 2 using real security trading data. As mentioned in
Chapter 1, the real data are organized into three categories. One is indi-
vidual stock data. The second one is data of ETFs tracking U.S. equity and
bond market indexes. And the third one is data of ETFs tracking U.S. and
international stock market indexes. In the remaining part of this chapter,
I will present in sequence the results on these three categories of real data
estimates.

5.1 Models Estimated Using Stock Data

I have built real data estimations mainly using the component stocks of the
DJIA index. Table 5.1 shows a record of all real data models estimated.
The models are labeled using stock ticker symbols. For a correspondence
between these ticker symbols and the companies they represent, please see
Table 5.2 on the following page. Also listed in Table 5.2 are the industrial
sectors that each company belongs to. All the data used in this chapter is
taken from Yahoo Finance (http://finance.yahoo.com).

The real data estimations are designed in such a way that each of the
seven industrial sectors will be covered by at least one two-security model
and one three-security model. The exceptions are the health care indus-
try which has two three-security models, and the consumer good industry
which has two two-security models. To meet such a purpose, I have included
some other stocks with large market capitalizations that are not DJIA com-
ponents, but are in the same industries as some DJIA component stocks.
For example, the basic materials sector has three component stocks, CVX,
DD and XOM. However, the three companies they represent are not still
not very similar, since Chevron and Exxon Mobil are primarily oil compa-
nies while DuPont focuses on the production of chemical materials. It is
better to estimate them in separate models, in order to find information
spillover effects. Thus another chemical material company’s stock DOW is
added to be estimated together with DD, and RDS-B is also added to be
estimated together with CVX and XOM. Similar actions have been taken
for other industries as well. Another exception is the model composed of
AAPL and PG. The companies these two stocks represent also differ very
much in their major products, but I kept the model, with an expectation
that the information spillover effects are not significant between these two
companies.
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Table 5.1: Read Data Pairs and Triplets Estimated

Sector Name Estimated Models
Basic Materials DD & DOW CVX &RDS-B &XOM
Consumer Goods AAPL & PG

KO & PEP
Financial AXP &V BAC & C & WFC

GS & JPM
Health Care AET & ANTM & UNH

JNJ & MRK & PFE
Industrial Goods BA & GE CAT & MMM & UTX
Services DIS & FOXA MCD & SBUX & YUM

COST & WMT
HD & LOW

Technology T & VZ CSCO & INTC & IBM
GOOGL & MSFT

5.2 Stock Data Description

The returns of Stock k on Day t is defined as

rt,k = 100 ln

(
St,k
St,k−1

)
,

where St,k is Stock k’s closing price on day t.1 For each stock, daily obser-
vations of return rt,k and trading volume Vt,k are collected for the period
between Jan 1, 2012 and Dec 31, 2014, giving 754 observations per stock.
Table 5.3 has listed some descriptive statistics for the stocks.

A feature that is shared by all stocks’ return data is that, compared
to the magnitudes of average returns, standard deviations of returns are
usually larger by an order of magnitude. Also interesting is that stocks’
standard deviations are concentrated in the relatively small interval of
(0.78, 1.83). Yet stocks differ in their levels of skewness, with 11 posi-
tively skewed and the rest negatively skewed. GOOGL, FOXA and COST
are the three most right-skewed stocks, and IBM, ANTM and YUM are
the most left-skewed ones. As far as kurtosis is concerned, all stocks are
leptokurtic, but of varying degrees. Kurtosis values between 4.0 and 6.0
are most common, and stocks with the highest kurtosis values are CSCO,
GOOGL and IBM.

Figures 5.1a to 5.1d have plotted the autocorrelations of returns, abso-
lute returns and squared returns for lags between 1 and 30. For all stocks,
the autocorrelations of returns at most lags are not significantly different
from zero. A limited amount of exceptions exist. For example, the autocor-
relation of AAPL at lags 8 and 11 are slightly out of the range marked by

1The data source has adjusted the raw closing prices for dividends and splits.
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5% critical values. But it is more common for absolute and squared returns
to have significant autocorrelations. For example, BAC’s autocorrelations
for squared and absolute returns are still high at lag 29. The p-values lines
in Table 5.3 report the p-Values of Ljung-Box tests carried out for each
stocks returns with lag 30. 6 stocks out of 43 have p-Values smaller than
0.1.

Figures 5.2a to 5.2d compare the sample distributions of returns and
normal distributions with the same means and variances. All stocks’ ker-
nel density estimates have more probability mass concentrated around the
means than the normal distributions do. The difference in tail behaviors
between sample and normal distributions are difficult to visually exam-
ine. But the sample Kurtosis given in Table 5.3 indicate that the sample
distributions all have fatter tails.

Qualitatively, the data used in this research show the same features as
those investigated by Andersen (1996) and Liesenfeld (2001).

Now I will move on to describing the volume data. The first step in
processing trading volume data is de-trending. I have followed the method
used by Andersen (1996) and taken the centered two-year moving average
as the trend values of trading volumes. De-trended volumed are then cal-
culated as the ratios between original volumes and the corresponding trend
values.

Table 5.4 has listed some descriptive statistics for the de-trended vol-
ume series. The means of all stocks’ de-trended volumes are close to one,
which is due to the de-trending process calculating the ratio between raw
volumes and trend values. Remarkably, the sample variances of de-trended
volumes are smaller than those of returns. As the means de-trended vol-
umes are larger in the meantime than those of returns, this indicates that
return series are more volatile than trading volumes. All stocks’ de-trended
volumes are right-skewed, which is of no surprise as they are positive ran-
dom variables. And kurtosis are all greater than 3, indicating the high
probabilities of extreme observations.

The p-Value lines give the p-Values of Ljung-Box tests for autocorre-
lation, the null hypothesis of which (no autocorrelation) is rejected for all
stocks. And the Cor. lines give the correlation between de-trended volumes
and squared returns. Most stocks show positive correlations between these
two series, with correlation coefficient in the range between 0.4 and 0.7.
Four exceptions are provided by PFE, RDSB, UTX and VZ, the correla-
tions of which are below 0.30.

Figures 5.3a to 5.3d plot the autocorrelation functions for the stocks’
de-trended volumes. As consistent with the results of Ljung-Box tests,
all stocks show high levels of autocorrelations, at least for low lags (lags
smaller than 10). Interestingly, the auto-correlations in de-trended vol-
umes are higher than that of absolute or squared returns, which may imply
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Figure 5.1a: Autocorrelation Functions of Returns, Absolute Returns and
Squared Returns.
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Figure 5.1b: Autocorrelation Functions of Returns, Absolute Returns and
Squared Returns.
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Figure 5.1c: Autocorrelation Functions of Returns, Absolute Returns and
Squared Returns.
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Figure 5.1d: Autocorrelation Functions of Returns, Absolute Returns and
Squared Returns.
The autocorrelation functions in Figures 5.1a to 5.1d show that autocorrelations are
more significantly different from zero in absolute and squared returns than returns. The
black dashed lines mark the 5% critical values for the null hypothesis of zero autocorre-
lation.
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Figure 5.2a: Comparisons between the Sample Return Distributions and Normal
Distributions
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Figure 5.2b: Comparisons between the Sample Return Distributions and Normal
Distributions
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Figure 5.2c: Comparisons between the Sample Return Distributions and Normal
Distributions
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Figure 5.2d: Comparisons between the Sample Return Distributions and Normal
Distributions
The histograms shown in Figures 5.2a to 5.2d exhibits similar qualitative features pos-
sessed by all stocks. That is, all stocks’ kernel density estimates have higher probability
mass concentrated around means than normal distributions.
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that return volatilities and volumes are driven by different processes, as
suggested by Tauchen and Pitts (1983) and Liesenfeld (2001).

Figures 5.4a to 5.4d plot the histograms for all stocks’ logarithmic
de-trended volumes. Here I took the logarithms to counter-balance the
right-skewness in the distributions of de-trend volumes, as shown in Ta-
ble 5.4. The procedure seems worked well, since the resulting histograms
and kernel density estimates resembles normal distribution densities with
the same means and variances. This also suggests that the distributions
of de-trended volumes may be well-described by log-normal distributions.
Again, this feature also contrasts with that of returns, which cannot be
closely described by normal distributions.
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Figure 5.3a: Autocorrelation Functions of Detrended Volumes
These graphs plot the auto correlation coefficients of de-trended volumes
for lags between 1 and 30. The black dotted lines mark the 5% confidence
intervals.
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Figure 5.3b: Autocorrelation Functions of Detrended Volumes
These graphs plot the auto correlation coefficients of de-trended volumes
for lags between 1 and 30. The black dotted lines mark the 5% confidence
intervals. The original data is downloaded from Yahoo Finance.
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Figure 5.3c: Autocorrelation Functions of Detrended Volumes
These graphs plot the auto correlation coefficients of de-trended volumes
for lags between 1 and 30. The black dotted lines mark the 5% confidence
intervals. The original data is downloaded from Yahoo Finance.
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Figure 5.3d: Autocorrelation Functions of Detrended Volumes
These graphs plot the auto correlation coefficients of de-trended volumes
for lags between 1 and 30. The black dotted lines mark the 5% confidence
intervals. The original data is downloaded from Yahoo Finance.

111



0.0

0.5

1.0

−1.5 −1.0 −0.5 0.0 0.5 1.0

AAPL

0.0

0.5

1.0

−1 0 1

AET

0.0

0.3

0.6

0.9

1.2

−1 0 1 2

ANTM

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0

AXP

0.0

0.5

1.0

−1 0 1 2

BA

0.0

0.3

0.6

0.9

−1 0 1

BAC

0.0

0.5

1.0

−1 0 1

C

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0 1.5

CAT

0.0

0.5

1.0

1.5

−1 0 1

COST

0.0

0.5

1.0

1.5

−1 0 1 2

CSCO

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0

CVX

0.00

0.25

0.50

0.75

1.00

1.25

−1 0 1

DD

Kernel Density Normal Density

Figure 5.4a: Comparisons between the Sample Distributions of Logarithmic De-
trended Volumes and Normal Distributions

These graphs plot the histograms of logarithmic de-trended
volumes. Two lines were added to the plots. The red solid
lines are the kernel density estimates for logarithmic de-
trended volumes, while the black dotted lines are the densi-
ties of normal distributions of the same means and variances.
The original data is downloaded from Yahoo Finance.
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Figure 5.4b: Comparisons between the Sample Distributions of Logarithmic De-
trended Volumes and Normal Distributions

These graphs plot the histograms of logarithmic de-trended
volumes. Two lines were added to the plots. The red solid
lines are the kernel density estimates for logarithmic de-
trended volumes, while the black dotted lines are the densi-
ties of normal distributions of the same means and variances.
The original data is downloaded from Yahoo Finance.
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Figure 5.4c: Comparisons between the Sample Distributions of Logarithmic De-
trended Volumes and Normal Distributions

These graphs plot the histograms of logarithmic de-trended
volumes. Two lines were added to the plots. The red solid
lines are the kernel density estimates for logarithmic de-
trended volumes, while the black dotted lines are the densi-
ties of normal distributions of the same means and variances.
The original data is downloaded from Yahoo Finance.
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Figure 5.4d: Comparisons between the Sample Distributions of Logarithmic De-
trended Volumes and Normal Distributions

These graphs plot the histograms of logarithmic de-trended
volumes. Two lines were added to the plots. The red solid
lines are the kernel density estimates for logarithmic de-
trended volumes, while the black dotted lines are the densi-
ties of normal distributions of the same means and variances.
The original data is downloaded from Yahoo Finance.
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Table 5.3: Descriptive Statistics of Stock Return Data
AAPL AET ANTM AXP BA BAC C CAT COST CSCO CVX

Mean 0.09 0.10 0.09 0.10 0.08 0.16 0.10 0.01 0.08 0.07 0.02
Std.Dev 1.69 1.44 1.47 1.18 1.24 1.83 1.73 1.36 0.95 1.45 1.04

Skewness -0.51 -0.03 -0.84 -0.09 -0.10 0.23 -0.03 -0.09 0.48 -0.35 -0.41
Kurtosis 7.64 2.53 9.04 0.92 1.78 1.72 1.89 1.97 2.86 18.58 2.45

Maximum 8.50 6.33 7.40 5.00 5.20 8.26 7.40 5.77 6.10 11.90 4.16
Minimum -13.19 -8.56 -12.86 -4.39 -5.48 -7.41 -8.55 -6.26 -3.24 -11.61 -5.57

p-Value 0.04 0.29 0.67 0.67 0.97 0.12 0.30 0.02 0.49 0.98 0.50
DD DIS DOW FOXA GE GOOGL GS HD IBM INTC JNJ

Mean 0.08 0.13 0.07 0.12 0.06 0.07 0.11 0.13 -0.01 0.07 0.07
Std.Dev 1.10 1.13 1.56 1.39 1.07 1.38 1.44 1.10 1.10 1.34 0.78

Skewness -0.66 -0.25 -0.16 0.43 0.10 0.41 0.10 0.18 -1.23 0.16 -0.21
Kurtosis 8.33 1.93 1.84 2.41 1.28 13.54 1.78 1.90 10.13 4.51 1.31

Maximum 5.14 5.16 6.43 7.99 4.51 12.92 6.57 5.54 4.34 8.87 2.60
Minimum -9.50 -6.14 -7.22 -6.43 -4.14 -8.75 -6.77 -3.65 -8.64 -6.51 -2.73

p-Value 0.38 0.43 0.47 0.60 0.34 0.99 0.15 0.13 0.46 0.04 0.29
JPM KO LOW MCD MMM MRK MSFT PEP PFE PG RDSB

Mean 0.09 0.04 0.14 0.00 0.10 0.07 0.09 0.06 0.06 0.05 0.01
Std.Dev 1.41 0.92 1.45 0.81 0.91 1.07 1.37 0.78 0.95 0.87 1.11

Skewness -0.31 -0.23 -0.51 -0.53 -0.31 0.29 -0.51 -0.03 -0.07 -0.14 -0.58
Kurtosis 4.54 5.21 5.98 3.15 2.90 3.00 9.66 1.58 1.69 5.45 4.64

Maximum 6.79 5.53 6.18 3.69 4.30 6.29 7.03 3.22 4.11 3.96 4.30
Minimum -9.74 -6.22 -10.66 -4.56 -4.46 -4.39 -12.10 -3.77 -4.57 -6.06 -7.60

p-Value 0.35 0.73 0.05 0.48 0.49 0.51 0.02 0.37 0.38 0.53 0.00
SBUX T UNH UTX V VZ WFC WMT XOM YUM

Mean 0.08 0.03 0.10 0.07 0.13 0.04 0.10 0.06 0.02 0.04
Std.Dev 1.42 0.91 1.27 1.06 1.33 0.97 1.10 0.89 0.94 1.45

Skewness -0.06 -0.49 -0.08 0.08 0.24 -0.07 -0.05 -0.24 -0.30 -0.67
Kurtosis 6.15 3.13 2.06 0.57 5.69 1.21 2.48 4.15 1.90 9.37

Maximum 8.67 3.76 6.32 3.96 9.75 3.43 5.62 4.61 3.27 8.54
Minimum -9.88 -5.16 -5.21 -3.44 -7.84 -4.13 -6.08 -4.77 -4.26 -10.45

p-Value 0.63 0.85 0.66 0.94 0.36 0.16 0.45 0.43 0.29 0.51
The daily observations on returns and volumes of the 43 stocks cover the period
between Jan 1, 2012 and Dec 31, 2014, with 754 observations in total for each
stock. Returns are calculated as the natural logarithms of two consecutive close
prices, which have been adjusted for stock splits and dividends by the data
source, Yahoo Finance. The p-Value lines report the p-Values of Ljung-Box
tests with 30 lags. 6 of 43 stocks have p-Values smaller than 0.1.

117



Table 5.4: Descriptive Statistics for De-trended Volumes
AAPL AET ANTM AXP BA BAC C CAT COST CSCO CVX

Mean 0.99 0.98 1.00 0.92 0.98 0.97 0.96 0.95 0.98 0.96 0.94
Std.Dev 0.42 0.45 0.61 0.37 0.54 0.42 0.40 0.39 0.47 0.48 0.31

Skewness 1.73 2.39 4.38 2.15 6.43 1.83 2.72 2.41 2.91 4.73 1.81
Kurtosis 4.46 10.16 33.52 8.82 78.96 6.20 16.96 11.47 15.17 38.68 5.91

Maximum 3.37 4.15 7.94 3.58 9.20 3.75 5.00 4.01 4.98 6.59 2.85
Minimum 0.25 0.21 0.22 0.24 0.25 0.21 0.22 0.29 0.31 0.31 0.26

p-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cor. 0.49 0.56 0.48 0.45 0.54 0.56 0.50 0.57 0.52 0.69 0.42

DD DIS DOW FOXA GE GOOGL GS HD IBM INTC JNJ
Mean 0.95 0.96 0.99 0.96 0.94 0.97 0.97 0.99 0.97 0.97 0.98

Std.Dev 0.50 0.38 0.50 0.50 0.36 0.51 0.39 0.37 0.49 0.45 0.45
Skewness 3.41 2.82 2.75 3.89 2.11 3.87 3.70 2.00 3.83 2.60 7.32
Kurtosis 18.51 14.09 11.73 33.43 6.35 26.21 35.31 6.45 23.60 10.11 103.24

Maximum 5.55 3.92 4.42 7.06 2.78 6.20 5.95 3.41 5.24 4.23 8.43
Minimum 0.24 0.29 0.29 0.19 0.36 0.30 0.24 0.27 0.31 0.27 0.37

p-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cor. 0.50 0.47 0.52 0.53 0.54 0.62 0.41 0.53 0.67 0.57 0.40

JPM KO LOW MCD MMM MRK MSFT PEP PFE PG RDSB
Mean 0.96 0.99 0.97 0.98 0.96 0.97 0.97 0.97 0.97 1.00 0.91

Std.Dev 0.42 0.42 0.40 0.42 0.37 0.48 0.48 0.38 0.58 0.43 0.56
Skewness 4.01 4.32 2.64 2.49 2.65 2.87 4.43 2.49 4.88 2.88 2.27
Kurtosis 36.93 42.00 12.79 9.38 10.68 11.06 33.11 10.93 34.86 11.52 7.86

Maximum 6.35 6.52 3.76 3.98 3.26 3.95 5.71 3.66 6.75 3.72 4.90
Minimum 0.25 0.32 0.30 0.22 0.34 0.31 0.33 0.23 0.31 0.28 0.18

p-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cor. 0.67 0.45 0.54 0.52 0.48 0.46 0.60 0.52 0.28 0.48 0.26

SBUX T UNH UTX V VZ WFC WMT XOM YUM
Mean 1.00 0.98 0.98 0.98 0.97 1.00 0.96 0.96 0.95 0.98

Std.Dev 0.49 0.44 0.45 0.37 0.53 1.39 0.32 0.40 0.33 0.64
Skewness 2.50 2.74 3.23 1.85 5.18 19.45 1.66 2.57 3.73 4.20
Kurtosis 10.24 10.41 16.53 6.23 44.54 458.43 5.01 9.86 32.49 28.29

Maximum 4.32 3.82 4.36 3.20 7.23 34.72 2.89 3.78 5.02 7.64
Minimum 0.27 0.33 0.23 0.21 0.25 0.25 0.25 0.31 0.34 0.21

p-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cor. 0.57 0.41 0.58 0.27 0.63 0.20 0.40 0.64 0.40 0.64

The first six lines of the table has self-explanatory line names. Lines with name
p-Value give the p-Values of Ljung-Box tests for no autocorrelation. The lines
with name Cor. give the correlation coefficients between squared returns and
de-trended volumes. The raw volume data is downloaded from Yahoo Finance,
which is then fed to a de-trending procedure. Specifically, the de-trending
procedure first finds two-year centered moving averages as trend values, then
de-trend the raw volumes by taking the ratios between raw volumes and corre-
sponding trend values.
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5.3 Estimation Results on Individual

Stocks

Using return and volume data of the 43 individual stocks described above,
I have estimated 11 bi-stock models and 7 tri-stock models. Tables 5.5 (bi-
stock models) and 5.6 (tri-stock models) have collected the results of these
estimates. In the following part, I will move on to explaining the results
of these estimations. The large sample properties of Maximum Likelihood
Estimation indicate these parameter estimates are asymptotically normally
distributed.

Starting from the estimation for the conditional mean return param-
eters, µk1 for k = 1, 2, 3, a result to observe is that, the signs of µ̂k1 are
consistent with the mean returns shown in Table 5.3. Among all the stocks
used in estimation, only IBM has negative negative mean returns in Table
5.3, and it also has a negative µ̂k1 in Table 5.5, though not significantly
different from 0. As a matter of fact, µ̂k1 are close to the mean returns
given in Section 5.2 for all stocks. And the stocks having significant esti-
mates for µk1 overlap by a large extent with the stocks having significant
estimates for conditional mean returns in Table 5.3. For example, the most
significant estimates include µ11 in columns 3 (COST ), 5 (DIS ), 9 (HD),
and µ21 in columns 2 (V ), 5 (FOXA), 9 (LOW ) in Table 5.5, and µ11 in
columns 2 (BAC ), 6 (JNJ ), µ21 in column 3 (MMM ), and µ31 in column 2
(WFC ) in Table 5.6. These stocks also have the most significant estimates
for expected returns in Table 5.3.

Tauchen and Pitts (1983) have assumed the parameter µk1 to be zero
when they built a single security model to explain the trading data of fu-
ture contracts on treasury notes. Results in Tables 5.5 and 5.6 suggest that
such an assumption may need reconsideration. Andersen (1996), Liesenfeld
(1998) and Liesenfeld (2001) have obtained similar results that the condi-
tional mean parameter estimate µ̂k1 may be significantly different from
zero.

The estimated conditional mean parameter of trading volumes, µ̂k2 for
k = 1, 2, 3 are close to one for all stocks, which are also close to the descrip-
tive statistics in Table 5.4. The standard errors for µ̂k2 are small, indicating
the significant difference of these estimates from zero.

It is interesting to see that the parameter estimates for both the con-
ditional mean return and the conditional mean volume are close to the
corresponding descriptive statistics. This is actually caused by the specifi-
cation of Equation (2.8), which I have copied here:

Λt = B ·Λt−1 + εt.

The unconditional mean of Λt is E(Λt) = 0. And since the information
variable Itk = exp(λtk), the unconditional mean E(Itk) is approximately
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equal to 1. According to the distribution specification for the vector of
return and volume Ytk = (Rtk, Vtk) in Equation (2.4):

Ytk
∣∣ Itk ∼ N (Itk · µk

2×1
, Itk ·Σk

2×2

)
,

the unconditional mean of Ytk is:

E (Ytk) = E [E (Ytk|Itk)] = E (Itk) · µk,

which is close to µk.
Next, let us move on to examining the estimates for entries of Σk. For

the variance of Ytk, there is

Var(Ytk)

=E [Var (Ytk|Itk)] + Var [E (Ytk|Itk)]
=E [Itk] Σk + Var (Itk)µkµ

T
k

For Itk is distributed as log-normal, the exact expressions for its mean and
variance are:

E (Itk) = exp

[
Var (λtk)

2

]
,

Var (Itk) = {exp [Var (λtk)]− 1} exp [Var (λtk)] ,

where I have used the condition that E (λtk) = 0. To find the value of
Var (Itk), I have used the following method: With the singular value de-
composition of B, such that B = P−1DP , rewrite Equation (2.5) as

ηt = Dηt−1 + δt,

where ηt = Pλt, and δt = Pεt. Then Var(ηt) satisfies the following
equation:

Var(ηt) = DVar(ηt)D
T + Var(δt), (5.1)

where Var(δt) = PVar(εt)P
T = PV P T . Since D is diagonal, the entries

of Var(ηt) can be solved for individually, which can then be used to compute

Var(λt) = P−1Var(ηt)
(
P−1

)T
Thus to compare the estimation results with the descriptive statistics,

I have used the point estimates shown in Tables 5.5 and 5.6 to compute
E(Ytk) and Var (Ytk), the results of which are shown in Table 5.9. Columns
2 to 5 of Table 5.9 are the sample moments (means and standard deviations,
actually) of returns and trading volumes copied from Tables 5.3 and 5.4,
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while Columns 6 to 9 show the same moments calculated from estimation
results. The sample moments and estimated moments of returns are close
to each other, while those of trading volumes are more discrepant. Please
note that there are 40 stock tickers listed in Table 5.9, with CSCO, INTC
and IBM missing. The reason is that B̂ in the estimated model for these
three stocks has complex eigenvalues, which eventually causes the estimated
moments of these three stocks to be complex numbers. Thus I dropped
them from the comparison.

Due to the large number of stock tickers, it is difficult to see straightfor-
wardly on how much the differences are between the sample and estimated
moments. Thus using the data in Table 5.9, I have made four scatter
plots, as shown in Figure 5.6 to examine the estimation results. In each of
the scatter plots, estimated moments (either mean of standard deviation
of returns or trading volumes) are plotted on the horizontal axis, and the
vertical axis plots the corresponding sample moments. For example, the
top-left panel plots sample means of returns (vertical axis) against esti-
mated means of returns (horizontal axis). For each scatter plot, I have run
an Ordinary Least Squares (OLS) regression of sample moments on the cor-

responding estimated moments, the intercept (α̂), slope (β̂) and goodness
of fit (R2) of which have been put in the subtitles. Ideally, the estimated
intercept should be close to 0, while the estimated slope should be close
to 1. From the plots and parameter estimates, we can clearly see that
the estimated moments of returns conform better with the sample means,
while the estimated moments of volumes is relatively far from their sample
counterparts. This is partly due to the de-trending procedure of trading
volume, which rescaled sample mean volumes to a very small range, and
thus causing the R2 in the top-right panel to be small. For the same reason,
the standard deviations in the top-right panels are much bigger than those
in other figures. Another reason that might have caused the discrepancy in
estimated moments vs. sample moments comparison between returns and
volumes may be due the hypothesis raised by Liesenfeld (2001), that the
volumes and returns are driven by different latent processes, and thus my
current model is not versatile enough to capture that.

In addition to the above comparison between sample moments and es-
timated moments, there are two features shown in Tables 5.5 and 5.6 re-
garding the conditional variance matrix Σk that should be mentioned. One
is that the conditional return variance parameter Σk,11 is much bigger than
the conditional volume variance parameter Σk,22. Together with the fact
that average de-trended volumes are close to one while average returns are
close to zero, this indicates that the return series are more volatile than
the volume series. Tauchen and Pitts (1983)’s model has provided an ex-
planation for this: Arrivals of common information will move all traders’
reservation prices, and thus they will affect the equilibrium price but will

121



not increase the trading volume.
The other feature shown by the entries of Σ̂k is that the conditional

covariance between return and volume is small for all cases and insignifi-
cant for most cases (30 out of 43 stocks have the Z-stat for Σk = 0 smaller
than 2). Previous researches, such as Tauchen and Pitts (1983), Andersen
(1996) and Liesenfeld (1998, 2001) all assumed conditional independence
between returns and volumes, which implies Σk,12 = 0 for all k. Thus the
results in Table 5.5 and 5.6 conform well with this assumption. To better
examine this hypothesis, I have calculated the conditional correlations be-
tween returns and volumes, the result of which are shown in Table 5.7. The
conditional correlations are small for all stocks, with the biggest absolute
value being 0.117. But they are all significantly different from zero, accord-
ing to their standard errors shown in parentheses. The standard errors are
calculated using the delta method. Specifically, with the estimate Σ̂k and

its standard error matrix V̂ar
(

Σ̂k

)
, the standard error of the conditional

correlation between rk and Vk

ρ̂ =
Σ̂k,12√

Σ̂k,11Σ̂k,22

is

V̂ar (ρ̂) =


1√

Σ̂k,11Σ̂k,22

− Σ̂k,12

2
√

Σ̂3
k,11Σ̂k,22

− Σ̂k,12

2
√

Σ̂k,11Σ̂3
k,22


T

V̂ar
(

Σ̂k

)


1√
Σ̂k,11Σ̂k,22

− Σ̂k,12

2
√

Σ̂3
k,11Σ̂k,22

− Σ̂k,12

2
√

Σ̂k,11Σ̂3
k,22


Next, let us move on to examining the entries of B̂. As I have explained

in Chapter 2, we should expect the diagonal entries B̂kk of B̂ to be positive
due to the autocorrelation of information arrival processes. This expecta-
tion is well confirmed by the estimation results. The 43 stocks in 18 models
have their corresponding diagonal entries (B̂kk) ranging between 0.435 and

0.865, and the corresponding standard deviations (ŝ.e.(B̂kk)) ranging be-

tween 0.026 and 0.044. The ratio between B̂kk and ŝ.e.(B̂kk) ranges from
10.273 to 28.238. Since these ratios are asymptotically distributed as stan-
dard normal under the null hypothesis Bkk = 0, it implies that the p-values
for testing Bkk ≤ 0 individually are essentially zero and the evidence sup-
porting the alternative hypothesis Bkk > 0 is strong.

In addition, we also expect that the off-diagonal values of B̂ to be
non-negative. If there are spillover effects in the form of cross-security
historical dependency in information arrivals, then the off-diagonal values
of B should be zero. Otherwise, they should be positive. In the 11 bi-stock
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Figure 5.5: The Abnormal Observation in VZ ’s Trading Volumes

Note: The extraordinarily high trading volume was on 02/14/2014.

and 7 tri-stock models estimated, there are 64 off-diagonal entries of B in
total, among which 14 B̂ij’s are negative. Except for B̂21 = −0.16 with

s.e.
(
B̂21

)
= 0.047 in the model of T and VZ, other B̂ij’s range between

−0.045 and −0.002, with standard errors ranging between 0.027 and 0.041.

The ratio B̂ij/s.e.
(
B̂ij

)
ranges between −1.430 and −0.079 so that the

null hypothesis Bij = 0 could not be rejected for these models, when tested
individually.

As a matter of fact, the negative B̂21 in the model of T and VZ seems
to be caused by VZ ’s abnormally high volume observation on 02/14/2014,
which is plotted in Figure 5.5.

Thus the non-negativity of B’s off-diagonal values is largely confirmed.
Furthermore, to find the stocks between which evidence for the spillover
effects is strong, I tested the hypothesis Bkl ≤ 0 with k 6= l, k, l ∈ {1, 2, 3}
for the positive B̂kl’s. Among all the estimated stock models, 50 point esti-
mates of B̂kl are positive, ranging between 0.001 and 0.229. Their standard

errors range between 0.018 and 0.068, and the ratio B̂kl

/
ŝ.e.(B̂kl) ranges

from 0.024 to 5.764. Under the asymptotic normality of MLE estimator,
29 out of 50 hypothesis tests have p-values smaller than 0.1, 24 have p-
values smaller than 0.05, 18 have p-values smaller than 0.01, and 13 have
p-values smaller than 0.001, which indicates that at least for some of the
stock models, the evidence for the existence of spillover effects is strong.
The parameter estimates showing the strongest evidence for the spillover
effects (p-value smaller than 0.001) include B̂12 in columns 3 (BA and GE ),

8 (GS and JPM ), 10 (KO and PEP), 11 (T and VZ ), and B̂21 in columns
3 (BA and GE ), 7 (GOOGL and MSFT ), 9 (HD and LOW ), 10 (KO and

PEP) of Table 5.5, and B̂13 in column 5 (CVX, RDSB and XOM ), B̂21 in

column 3 (CAT, MMM and UTX ), B̂23 in columns 2 (BAC, C and WFC ),

6 (JNJ, MRK and PFE ), and B̂32 in columns 2 (BAC, C and WFC ), 4
(CSCO, INTC and IBM ), 5 (CVX, RDSB and XOM ) in Table 5.6.

To sum up the results of individual test on off-diagonal values of B, we
have the stocks in the two models, BA and GE, and KO and PEP, both
having the most significant spillover effects in the form of cross-security his-
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torical dependencies in information arrival processes. For tri-stock models,
among BAC, C and WFC, and among CVX, RDSB and XOM, there are
two stocks having the most significant spillover effects.

We also observe from these test results that the spillover effects are not
symmetric between stocks. While the information arrivals of one stock may
depend on the historical value of another stock’s information arrivals, the
second stock’s information arrivals are not necessarily affected as much by
the first one’s. Such asymmetric patterns of spillover effects are most ap-
parent for GOOGL vs. MSFT, GS vs. JPM, HD vs. LOW, CVX vs. XOM,
INTC vs. IBM, and MRK vs. PFE. For example, in the model of GS
vs. JPM, B̂12 = 0.154 which implies a considerably large spillover effect of
JPM to GS, but the impact of GS on JPM is only 0.01. An examination
into the market capitalization of these stocks shows that the information
arrival process of the stock with larger capitalization tends to affect that
of the stock with smaller capitalization, but not vice versa.

The final part of the estimation results are entries of V̂ . The diagonal
entries of V̂ are concentrated in a fairly small interval, between 0.054 and
0.142 (with only 4 bigger than 0.1). Since their standard errors of V̂kk are

very small compared to V̂kk, these estimates are all significantly greater
than zero, which is a desired result.

The off-diagonal values of V̂ are associated with the second form of
spillover effects in information arrival processes. That is, the shocks to
stocks’ information arrival processes are correlated contemporarily. Again,
we expect this form of spillover effects to be measured by positive numbers,
which implies that the off-diagonal values of V are non-negative. The
second form of information arrival’s spillover effects is well documented by
the off-diagonal values of V̂ as shown by Tables 5.5 and 5.6. The values of
Vij range between 0.012 and 0.062, while their standard errors range from

0.002 to 0.004. Correspondingly, the ratio V̂ij/s.e.(V̂ij) range from to . As
a result, the p-values for testing individually the null hypotheses Vkl < 0
with k, l ∈ {1, 2, 3} and k < l, are essentially zero, giving strong evidence
favoring the alternative hypothesis that Vkl ≥ 0.

It is also of interest to investigate the estimate Ĉorr(εtk, εtl) = V̂kl/

√
V̂kkV̂ll

for the contemporary correlation between shocks to the information arrival
processes of stocks k and l. Thus in Table 5.8 I have calculated the point
estimates of such correlations as well as their standard deviations for each
pair of stocks shown in Tables 5.5 and 5.6. The correlations are gener-
ally of considerable magnitude, ranging from 0.170 to 0.643. The z-tests
for testing the null hypothesis Corr(εtk) = 0 individually are all rejected
essentially with p-value zero.

To sum up, the two forms of spillover effects in information arrivals are
supported by different degrees. The contemporary correlations in shocks to
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information arrival processes are well documented in all estimated models,
but only part of the stock pairs or stock triplets show cross-security his-
torical dependencies in information arrival processes. In Tables 5.10 and
5.11, I have shown the results of jointly testing the off-diagonal entries of
B and V . These test results are consistent with those shown above. The
off-diagonal entries of V̂ are significantly different from zero for all esti-
mated models, while the off-diagonal entries of B̂ are most significant in
these models: BA and GE, KO and PEP, BAC, C and WFC, and CVX,
RDSB and XOM.

Table 5.5: Estimation Results Using Stock Pairs Data
Asset 1 AAPL AXP BA COST DIS DOW GOOGL GS HD KO T
Asset 2 PG V GE WMT FOXA DD MSFT JPM LOW PEP VZ

µ11 0.094 0.103 0.089 0.091 0.133 0.077 0.07 0.111 0.136 0.039 0.037
(0.054) (0.044) (0.045) (0.035) (0.041) (0.054) (0.046) (0.051) (0.039) (0.033) (0.033)

µ12 1.003 0.991 1.034 1.06 1.004 1.007 1.024 1.008 1.035 1.062 1.048
(0.006) (0.006) (0.007) (0.007) (0.006) (0.007) (0.006) (0.006) (0.006) (0.007) (0.006)

µ21 0.056 0.133 0.065 0.063 0.127 0.082 0.092 0.101 0.144 0.064 0.041
(0.03) (0.045) (0.04) (0.031) (0.05) (0.04) (0.045) (0.048) (0.049) (0.029) (0.038)

µ22 1.038 1.008 1.016 1.042 1.005 1.025 1.002 1.017 1.006 1.068 1.07
(0.007) (0.007) (0.006) (0.007) (0.007) (0.007) (0.006) (0.006) (0.007) (0.007) (0.006)

Σ1,11 2.214 1.339 1.427 0.846 1.181 2.135 1.526 1.89 1.079 0.76 0.767
(0.114) (0.069) (0.073) (0.044) (0.061) (0.11) (0.079) (0.097) (0.055) (0.039) (0.039)

Σ1,12 -0.004 -0.008 -0.014 0.013 -0.009 -0.001 0.005 -0.003 -0.008 -0.004 -0.015
(0.008) (0.006) (0.007) (0.005) (0.006) (0.009) (0.007) (0.008) (0.006) (0.005) (0.005)

Σ1,22 0.026 0.025 0.028 0.029 0.026 0.03 0.026 0.026 0.026 0.028 0.025
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Σ2,11 0.641 1.46 1.084 0.678 1.783 1.124 1.506 1.669 1.754 0.585 1.031
(0.033) (0.075) (0.056) (0.035) (0.092) (0.058) (0.077) (0.086) (0.09) (0.03) (0.053)

Σ2,12 0.012 0.006 -0.005 -0.01 0.003 -0.02 0.004 -0.02 -0.007 0.011 0.001
(0.005) (0.007) (0.006) (0.005) (0.008) (0.006) (0.007) (0.007) (0.008) (0.004) (0.005)

Σ2,22 0.028 0.028 0.026 0.028 0.033 0.029 0.026 0.024 0.027 0.027 0.024
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

B11 0.722 0.7 0.604 0.684 0.57 0.659 0.738 0.522 0.619 0.559 0.435
(0.026) (0.03) (0.031) (0.031) (0.035) (0.03) (0.029) (0.038) (0.037) (0.034) (0.042)

B12 -0.02 -0.03 0.145 0.044 0.026 0.007 -0.013 0.154 -0.012 0.124 0.166
(0.029) (0.029) (0.035) (0.034) (0.027) (0.028) (0.033) (0.036) (0.036) (0.034) (0.03)

B21 -0.002 -0.025 0.065 0.059 0.065 -0.026 0.099 0.01 0.226 0.131 -0.16
(0.027) (0.034) (0.028) (0.03) (0.04) (0.029) (0.03) (0.038) (0.039) (0.031) (0.047)

B22 0.627 0.62 0.641 0.608 0.637 0.719 0.556 0.695 0.441 0.623 0.865
(0.029) (0.033) (0.031) (0.033) (0.032) (0.028) (0.034) (0.036) (0.038) (0.031) (0.033)

V11 0.069 0.074 0.084 0.084 0.072 0.096 0.082 0.072 0.068 0.076 0.087
(0.003) (0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.003) (0.004) (0.004)

V12 0.012 0.04 0.019 0.034 0.036 0.036 0.034 0.036 0.034 0.021 0.062
(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.004)

V22 0.073 0.096 0.066 0.08 0.099 0.093 0.088 0.07 0.076 0.061 0.108
(0.004) (0.005) (0.003) (0.004) (0.005) (0.005) (0.004) (0.003) (0.004) (0.003) (0.006)
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Table 5.6: Estimation Results Using Stock Triplets Data
Asset 1 AET BAC CAT CSCO CVX JNJ MCD
Asset 2 ANTM C MMM INTC RDSB MRK SBUX
Asset 3 UNH WFC UTX IBM XOM PFE YUM

µ11 0.108 0.168 0.012 0.071 0.023 0.081 0.004
(0.05) (0.065) (0.049) (0.046) (0.039) (0.029) (0.029)

µ12 1.015 1.035 1.017 1.008 1.044 1.063 1.047
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006) (0.007)

µ21 0.094 0.104 0.111 0.071 0.009 0.074 0.086
(0.05) (0.062) (0.033) (0.047) (0.043) (0.039) (0.048)

µ22 1.024 1.041 1.047 1.018 1.012 1.055 1.042
(0.007) (0.006) (0.006) (0.006) (0.008) (0.007) (0.006)

µ31 0.102 0.11 0.073 -0.011 0.025 0.069 0.037
(0.044) (0.04) (0.04) (0.037) (0.036) (0.037) (0.046)

µ32 1.017 1.027 1.035 1.052 1.061 1.07 1.007
(0.006) (0.006) (0.007) (0.006) (0.006) (0.006) (0.007)

Σ1,11 1.841 2.926 1.682 1.502 1.051 0.592 0.595
(0.095) (0.149) (0.087) (0.077) (0.054) (0.03) (0.03)

Σ1,12 0.001 -0.001 -0.009 -0.018 -0.015 0 -0.011
(0.008) (0.009) (0.007) (0.007) (0.005) (0.004) (0.004)

Σ1,22 0.027 0.025 0.027 0.026 0.024 0.024 0.028
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Σ2,11 1.826 2.702 0.768 1.551 1.272 1.052 1.641
(0.094) (0.139) (0.039) (0.08) (0.066) (0.054) (0.085)

Σ2,12 0.014 -0.01 -0.001 -0.009 -0.026 0.004 0
(0.008) (0.009) (0.005) (0.007) (0.008) (0.006) (0.007)

Σ2,22 0.029 0.024 0.025 0.027 0.04 0.028 0.027
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Σ3,11 1.427 1.141 1.129 0.961 0.863 0.941 1.521
(0.073) (0.059) (0.058) (0.049) (0.044) (0.049) (0.078)

Σ3,12 -0.011 -0.007 0 -0.014 0.007 -0.003 -0.01
(0.007) (0.006) (0.006) (0.005) (0.005) (0.005) (0.007)

Σ3,22 0.026 0.024 0.027 0.026 0.022 0.024 0.03
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

B11 0.623 0.613 0.518 0.613 0.455 0.675 0.549
(0.039) (0.039) (0.037) (0.032) (0.042) (0.032) (0.034)

B12 0.022 0.104 0.104 -0.045 0.045 0.012 0.069
(0.032) (0.047) (0.042) (0.032) (0.019) (0.029) (0.029)

B13 -0.032 0.026 0.043 0.045 0.229 0.019 0.035
(0.041) (0.05) (0.04) (0.033) (0.044) (0.027) (0.024)

B21 0.014 0.021 0.13 -0.021 0.091 0.024 0.051
(0.043) (0.037) (0.033) (0.031) (0.064) (0.037) (0.034)

B22 0.656 0.558 0.531 0.669 0.688 0.608 0.719
(0.035) (0.044) (0.038) (0.031) (0.029) (0.034) (0.028)

B23 0.001 0.179 0.065 0.01 0.083 0.092 0.005
(0.046) (0.046) (0.036) (0.032) (0.068) (0.032) (0.024)

B31 0.046 -0.022 0.061 0.002 0.075 -0.003 0.031
(0.037) (0.034) (0.034) (0.032) (0.041) (0.033) (0.042)

B32 0.051 0.155 -0.036 0.136 0.079 0.019 0.003
(0.031) (0.04) (0.039) (0.032) (0.018) (0.03) (0.035)

B33 0.545 0.517 0.61 0.618 0.559 0.79 0.664
(0.04) (0.042) (0.037) (0.033) (0.043) (0.028) (0.03)

V11 0.097 0.09 0.084 0.086 0.057 0.064 0.084
(0.005) (0.005) (0.004) (0.004) (0.003) (0.003) (0.004)

V12 0.058 0.051 0.03 0.022 0.021 0.03 0.026
(0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003)

V13 0.053 0.04 0.029 0.034 0.03 0.026 0.033
(0.004) (0.003) (0.003) (0.003) (0.002) (0.003) (0.004)

V22 0.118 0.079 0.068 0.083 0.142 0.09 0.081
(0.006) (0.004) (0.003) (0.004) (0.007) (0.005) (0.004)

V23 0.051 0.038 0.034 0.029 0.025 0.032 0.029
(0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004)

V33 0.088 0.064 0.071 0.085 0.054 0.069 0.13
(0.004) (0.003) (0.004) (0.004) (0.003) (0.003) (0.007)
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Table 5.7: Conditional Correlations between Returns and Volumes
AAPL AET ANTM AXP BA BAC C
-0.016 0.004 0.06 -0.042 -0.069 -0.005 -0.039
(0.001) (0) (0.003) (0.002) (0.004) (0) (0.002)
CAT COST CSCO CVX DD DIS DOW
-0.04 0.081 -0.092 -0.098 -0.109 -0.05 -0.004
(0.002) (0.005) (0.005) (0.005) (0.006) (0.003) (0)
FOXA GE GOOGL GS HD IBM INTC
0.013 -0.029 0.024 -0.016 -0.045 -0.091 -0.043
(0.001) (0.002) (0.001) (0.001) (0.003) (0.005) (0.002)
JNJ JPM KO LOW MCD MMM MRK
-0.004 -0.102 -0.028 -0.032 -0.081 -0.009 0.022
(0) (0.006) (0.002) (0.002) (0.005) (0.001) (0.001)
MSFT PEP PFE PG RDSB SBUX T
0.02 0.087 -0.022 0.091 -0.117 0.001 -0.111
(0.001) (0.005) (0.001) (0.005) (0.007) (0) (0.006)
UNH UTX V VZ WFC WMT XOM
-0.058 0.003 0.032 0.007 -0.043 -0.075 0.049
(0.003) (0) (0.002) (0) (0.002) (0.004) (0.003)
YUM
-0.046
(0.003)

Table 5.8: Correlations between Shocks to Stocks’ Information Arrival Processes
AAPL & AXP & BA & COST & DIS & DOW & GOOGL & GS &
PG V GE WMT FOXA DD MSFT JPM
0.17 0.469 0.262 0.413 0.423 0.385 0.404 0.51
(0.034) (0.027) (0.033) (0.029) (0.029) (0.03) (0.029) (0.025)
HD & KO & T & AET & AET & ANTM & BAC & BAC &
LOW PEP VZ ANTM UNH UNH C WFC
0.476 0.314 0.643 0.537 0.571 0.501 0.606 0.523
(0.027) (0.031) (0.02) (0.025) (0.023) (0.026) (0.022) (0.025)
C & CAT & CAT & MMM & CSCO & CSCO & INTC & CVX &
WFC MMM UTX UTX INTC IBM IBM RDSB
0.531 0.397 0.372 0.49 0.255 0.394 0.349 0.235
(0.024) (0.029) (0.03) (0.026) (0.033) (0.03) (0.031) (0.034)
CVX & RDSB & JNJ & JNJ & MRK & MCD & MCD & SBUX &
XOM XOM MRK PFE PFE SBUX YUM YUM
0.539 0.281 0.397 0.392 0.409 0.313 0.319 0.277
(0.023) (0.033) (0.029) (0.029) (0.029) (0.032) (0.032) (0.033)
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Table 5.9: Comparison between Sample and Estimated Moments

Ticker
Desc. Ret. Desc. Vol. Desc. Ret. Desc. Vol. Est. Ret. Est. Vol. Est. Ret. Est. Vol.
Mean Mean Std. Dev Std. Dev Mean Mean Std. Dev Std. Dev.

AAPL 0.093 0.993 1.690 0.422 0.101 1.079 1.544 0.459
AET 0.104 0.979 1.437 0.449 0.116 1.092 1.409 0.468
ANTM 0.092 1.000 1.475 0.612 0.107 1.163 1.442 0.654
AXP 0.095 0.918 1.178 0.369 0.111 1.069 1.203 0.463
BA 0.085 0.979 1.243 0.535 0.096 1.111 1.239 0.471
BAC 0.157 0.968 1.828 0.421 0.181 1.118 1.780 0.486
C 0.096 0.963 1.726 0.401 0.113 1.131 1.714 0.507
CAT 0.011 0.950 1.363 0.385 0.013 1.089 1.341 0.448
COST 0.084 0.981 0.950 0.471 0.098 1.145 0.957 0.500
CVX 0.020 0.943 1.041 0.313 0.024 1.095 1.049 0.379
DD 0.076 0.947 1.097 0.504 0.091 1.129 1.114 0.552
DIS 0.127 0.959 1.126 0.381 0.141 1.063 1.119 0.406
DOW 0.075 0.985 1.559 0.505 0.083 1.094 1.523 0.498
FOXA 0.121 0.955 1.387 0.499 0.139 1.095 1.395 0.509
GE 0.059 0.935 1.068 0.363 0.069 1.083 1.075 0.434
GOOGL 0.066 0.966 1.383 0.508 0.076 1.121 1.293 0.527
GS 0.107 0.966 1.441 0.394 0.117 1.060 1.410 0.381
HD 0.130 0.990 1.104 0.371 0.144 1.095 1.070 0.413
JNJ 0.074 0.977 0.783 0.449 0.085 1.117 0.789 0.396
JPM 0.095 0.961 1.411 0.423 0.109 1.101 1.345 0.485
KO 0.036 0.988 0.920 0.425 0.042 1.132 0.900 0.450
LOW 0.139 0.973 1.447 0.398 0.151 1.053 1.356 0.367
MCD 0.004 0.979 0.814 0.422 0.004 1.127 0.800 0.482
MMM 0.102 0.961 0.907 0.372 0.117 1.097 0.898 0.382
MRK 0.069 0.972 1.072 0.476 0.084 1.195 1.093 0.660
MSFT 0.088 0.968 1.370 0.480 0.097 1.066 1.266 0.422
PEP 0.059 0.973 0.778 0.377 0.068 1.134 0.789 0.439
PFE 0.062 0.966 0.953 0.578 0.074 1.141 1.002 0.451
PG 0.054 0.998 0.866 0.434 0.060 1.102 0.825 0.430
RDSB 0.008 0.909 1.111 0.561 0.009 1.114 1.183 0.553
SBUX 0.082 0.998 1.415 0.492 0.091 1.103 1.318 0.419
T 0.035 0.978 0.911 0.440 0.039 1.112 0.903 0.429
UNH 0.098 0.975 1.274 0.452 0.108 1.076 1.230 0.408
UTX 0.069 0.977 1.060 0.367 0.078 1.095 1.093 0.415
V 0.129 0.974 1.330 0.527 0.145 1.092 1.259 0.486
VZ 0.038 0.997 0.973 1.390 0.051 1.342 1.138 1.032
WFC 0.102 0.958 1.104 0.324 0.114 1.072 1.092 0.358
WMT 0.058 0.956 0.885 0.404 0.067 1.107 0.850 0.435
XOM 0.022 0.952 0.937 0.332 0.026 1.134 0.961 0.454
YUM 0.036 0.976 1.454 0.639 0.042 1.151 1.318 0.662
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Returns and Volumes
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Table 5.10: Results of Joint Hypothesis Tests for Stock Pairs

Test
AAPL AXP BA COST DIS DOW

PG V GE WMT FOXA DD
Bij = 0 0.490 1.950 25.530 6.789 4.272 0.778
p-value (χ2

2) 0.783 0.377 0.000 0.034 0.118 0.678
Bij = 0 and Vij = 0 23.382 139.480 76.881 117.258 119.756 99.209
p-value (χ2

3) 0.000 0.000 0.000 0.000 0.000 0.000

Test GOOGL GS HD KO T
MSFT JPM LOW PEP VZ

Bij = 0 10.776 20.823 34.752 36.512 31.583
p-value (χ2

2) 0.005 0.000 0.000 0.000 0.000
Bij = 0 and Vij = 0 119.136 178.003 177.061 108.184 247.893
p-value (χ2

3) 0.000 0.000 0.000 0.000 0.000

Table 5.11: Results of Joint Hypothesis Tests for Stock Triplets

Test
AET BAC CAT CSCO CVX JNJ MCD

ANTM C MMM INTC RDSB MRK SBUX
UNH WFC UTX IBM XOM PFE YUM

Bij = 0 7.184 57.261 41.691 30.003 91.243 12.755 14.131
p-value (χ2

6) 0.304 0.000 0.000 0.000 0.000 0.047 0.028
Vij = 0 219.984 225.442 172.931 136.687 185.766 154.900 109.657
p-value (χ2

3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Bij = 0 and Vij = 0 227.041 281.779 213.812 166.985 277.262 167.510 123.505
p-value (χ2

9) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Chapter 6

Conclusion
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In this essay, by extending the mixture distribution hypothesis to a
multi-security framework, I have found evidence supporting the existence
of spillover effects in securities’ information arrival processes. This research
has defined spillover effects in two forms based on assumptions on how
news may occur and spread: One is the contemporary correlation in the
shocks to different securities’ information arrival processes, and the other
is the cross-security historical dependency of different securities’ informa-
tion arrival processes. The estimation results shown in Chapter 5 gives
strong supports for the existence of the first form of spillover effects, as all
estimated models show that the contemporary correlations in shocks are
statistically significant. In the mean time, the models estimated in Chapter
5 show different degrees of support for spillover effects of the second form.
Among the 11 bi-stock and 22 tri-stock models estimated, BA and GE, KO
and PEP, BAC, C and WFC, and CVX, RDSB and XOM have shown the
strongest supports for cross-security historical dependencies. In addition,
the cross-security historical dependency is not necessarily symmetric, as
most evidently shown by 6 bi-stock models. The information arrival pro-
cess of the stock with larger market capitalization may have big impacts on
that of a smaller-capitalized stock, but the contrary does not always hold.

The biggest challenge for the estimation procedure is the invisibility of
securities’ information arrival processes, which introduces a high-dimensional
and intractable integral to the likelihood function. In order to solve the
likelihood maximization problem, I have applied the technique devised by
Gu and Kong (1998), which transforms the MLE problem into an equa-
tion solving problem involving a conditional expectation, and then uses
the stochastic approximation algorithm to approximate the conditional ex-
pectation and update parameter estimates. This estimation technique not
only enables to search for the MLE point estimate for parameters, but also
gives an approximation for the Fisher information matrix as a byproduct,
allowing the implementation of inferences.

However, prior to this research, the practical performance of the above
estimation technique has not been evaluated in any real estimation prob-
lems as complicated as the one studied in this research. Thus before apply-
ing the method to real data estimations, I simulated 300 datasets for four
combinations of different parameter settings to test the performance of the
estimation technique. In these four scenarios, the values that the parame-
ters take cover well the ranges in which real model’s parameter values may
take, as implied by previous studies.

Then I applied the above estimation technique to these simulated datasets,
obtained the parameter estimates, and calculated the their confidence in-
tervals. The simulation results show that the estimation technique works
in general. The intervals spanned by simulated information variables can
cover the true information variables with probabilities close to one; the fi-
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nal parameter estimates it produced are close to the true parameter values;
and the confidence intervals it produced for most parameters can cover the
true values of the corresponding parameters by probabilities that are close
to the confidence levels. However, there are exceptions to the last case. The
estimates of the conditional mean parameter for trading volumes are most
volatile as compared to the standard errors such that The confidence inter-
vals are often too narrow to cover the true parameter values. I checked the
distributions of the estimated parameters, which are close to normal distri-
butions. Therefore, the remaining explanation for the bad performance of
the standard error of this parameter is that the estimation algorithm has
not been iterated long enough. Due to constraints in computation costs, I
have iterated each simulation by 30 parameter update steps.

Based on the simulation results, I elongated the number of parameter
update steps to 100 in real data estimation. The first and second-order mo-
ments of return and trading volumes, calculated from parameter estimates
match up well with the corresponding sample moments, which suggests
that the parameter estimates are reliable. The signs and magnitudes of the
parameter estimates conform well with implications of the multi-security
mixture distribution hypothesis. For example, the off-diagonal entries of
V̂ are all positive, as well as most off-diagonal entries of B̂. The nega-
tive off-diagonal entries of B̂ are insignificant, except for one case. Then
I did hypothesis tests to search for evidence supporting the existence of
information arrival spillover effects, up which I drew the conclusions stated
in the beginning of this chapter. However, there is something that could
potentially be improved in the hypothesis testing procedure. I tested a se-
ries of single inequality constraints and multiple equality constraints using
Wald tests, but the multiple-security mixture distribution hypothesis actu-
ally gives multiple inequality constraints. It would be more appropriate to
test these inequality constraints simultaneously, which requires the incor-
porations of multiple inequality constraints in the stochastic approximation
process.
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Part II

Information Spillover Effects
across Asset Classes and

International Markets
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Chapter 7

Introduction
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In the first part of the dissertation, I extended the mixture distribution
hypothesis to a multi-security setting, and studied the information spillover
effects among different stocks using the multi-security a framework. The
empirical results show that at least some stocks pairs and triplets in the
energy and finance industries exhibit strong evidence supporting the exis-
tence of spillover effects among multiple stocks (please see 5 for details).
While the assumption for conducting such a study is that information as-
sociated with one company may have implications on another, it is natural
to extend such an assumption to assets other than individual stocks. For
example, information associated with the category of large market capi-
talization stocks may have important implications for stocks in the mid-
and small-cap categories. Information associated with equity assets may
have important implications for bond assets, and vice versa. And informa-
tion associated with equity assets in one country may also have important
implications for those in other countries.

In the second part of my dissertation, I will study the information
spillover effects in the three scenarios listed above. Since the objects investi-
gated in this study cannot be represented by individual assets (for example,
when studying the spillover effects among international markets, a single
stock cannot represent a countries’ stock market well), market indexes that
are representative for the studied objects are more suitable for examining
the spillover effects among these objects. It then requires to collect the
indexes’ price and volume trading data sampled at fixed intervals.

While price data for market indexes are readily available, trading vol-
umes are not well defined for market indexes, unless the market indexes are
directly traded. The primary data sources I used, i.e. Google Finance (www.
google.com/finance) and Yahoo Finance (finance.yahoo.com), provide
data for some market indexes’ trading volumes, but such data seem in-
consistent with each other. For example, Figure 7.1 plots the time series
observations of S&P 500 index’s trading volumes provided by the two data
sources between Jan. 3, 2012 and Dec. 31, 2014, and Figure 7.2 does a scat-
ter plot between the two series of trading volumes. Though the two series
are highly correlated with a correlation coefficient of 0.804, the correlation
is far from perfect.

For comparison, the index levels of S&P 500 provided by the two data
sources are also plotted, which is shown in Figure 7.3. The differences
between the two data sources are very small that the two series are indis-
tinguishable from each other. Thus the index level observations are reliable,
but the volume observations seem not.

The more severe problem is the lack of proper definition for market in-
dexes’ trading volumes. If we define a market index’s trade volume as the
average trading volume of its component assets, then assets with more out-
standing shares and low per share prices will impact too much the average
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Figure 7.1: Time Series Plots of S&P 500 Index Trading Volumes from Google
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and Yahoo Finance

1400

1600

1800

2000

2012−01 2012−07 2013−01 2013−07 2014−01 2014−07 2015−01

Figure 7.3: S&P 500 Index Values from Google Finance and Yahoo Finance

trading volume. If we use some variable such as price and market capi-
talization to weight component assets’ trading volumes, then the resulting
trading volume will contain price and return information, which we would
like to keep separate from trading volumes.

The key to solve the problem is to find market indexes that are directly
traded. It turned out that ETF (exchange traded funds) may be a good
choice for approximating market indexes. An ETF usually tracks a mar-
ket index, and is traded in the same way as stocks on public exchanges.
An arbitrage free mechanism known as Creation and Redemption insures
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that the discrepancy between the returns of indexes and the corresponding
ETF’s should be close to zero.1

For example, Figure 7.4 has plotted the returns of both the S&P 500
index and SPY (which is an ETF tracking S&P 500), showing that the two
return series are very highly correlated with each other (the correlation co-
efficient is 0.998), such that the two series are barely distinguishable from
each other. Figure 7.5 shows the scatter plot of the returns of S&P 500
and SPY, as well as the coefficient estimates for an ordinary least squares
regression between the two return series. The plots and OLS coefficient es-
timates demonstrate that the ETFs are good approximations of the tracked
market indexes. Therefore, for studying the spillover effects among market
indexes, I decided to use ETF trading data. Since ETFs are traded in the
same way as stocks, trading volumes are naturally defined for them.
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Figure 7.4: The S&P 500 Index Values

Table 7.1 shows the models I estimated using ETF data, corresponding
to the three scenarios that I introduced at the beginning of this chapter.
Table 7.2 lists some information about the used ETFs.

Table 7.1: ETF Triplets Used in Read Data Estimation

Varying market caps SPY IJH IJR
Varying countries SPY EFA VWO
Varying asset classes SPY AGG GLD

1When the price of an ETF is too high to be in line with the tracked market index’s
value, an authorized participant (usually a market maker) can buy the component assets
of the index and deliver them to the ETF issuer, get ETF shares, and then sell them in
the market to get risk free profits, and vice versa.
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Chapter 8

Literature Review
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In this chapter I will review some previous researches in the area of
spillover effects.

Hamao et al. (1990) studied the Tokyo, London and New York stock
markets’ daily opening and closing levels of market indexes using the ARCH
family of models. They found evidence of price volatility spillovers in di-
rections from New York to Tokyo, from London to Tokyo, and and from
New York to London.

Theodossiou and Lee (1993) investigated the interdependence among
the stocks markets of US, Japan, UK, Canada and Germany with a GARCH-
M model. He found out US market’s mean spilled over to the UK, Canadian
and German markets, and Japan market’s mean spilled over to the Ger-
many market. In terms of volatilities, the US market spills over to all other
four markets, the UK market spills over to the Canadian market, and the
German market spills over to the Japanese market.

Booth et al. (1997) used a multivariate EGARCH model to study the
four Scandinavian stock markets, i.e. Danish, Norwegian, Swedish, and
Finnish stock markets. They found asymmetric volatility spillovers, in
that bad news tends to spread more than good news.

Y. Tse (1999) studied the DJIA spot and future markets minute level
prices using Hasbrouck’s (1995) cointegration model, and found out the
most price-discovery took place in the future market. Furthermore, he
found out that volatility spillovers exist in both directions, though the
future market impact the spot market more. Asymmetries between good
and bad news also exist, with bad news tending to spillover more. Zhong
et al. (2004) obtained similar results studying the Mexican stock market.

Kanas (2000) used a bivariate EGARCH model to study to spillover
effects between stock and foreign exchange markets in six developed coun-
tries: US, UK, Japan, Germany, France, and Canada, and found evidence
for spillover effects from stock markets to foreign exchange markets in coun-
tries other than Germany. In addition, the spillover effects are symmetric
in the sense that the spillover effects by positive and negative shocks are
of the same magnitudes.

Hong (2001) developed a class of N (0, 1) tests defined as weighted sums
of squared sample cross-correlations between squared standardized resid-
uals for examining volatility spillovers between two time series that are
conditionally heteroscedastic. Applying the test to studying two exchange
rates, US Dollar-Deutschemark and US Dollar-Japanese Yen, the author
finds evidence for simultaneous interactions between the two exchange rates
in both means and volatilities. However, volatility spillover in the form of
Granger causality only exists uni-directionally from Deutschemark’s ex-
change rate to Japanese Yen’s.

Baele (2005) used a regime switching model to study volatility spillovers
from the aggregated European market and US market to 13 local European
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markets, and found out the spillover intensity increased substantially from
1980s to 1990s, due to increased trade integration, equity market develop-
ment, and low inflation.

Diebold and Yilmaz (2009) studied 19 global equity markets from the
early 1990s, and using the separate measures of return spillover and volatil-
ity spillover, they find out the dynamics of return and volatility spillovers
are very different: return spillovers have a gently increasing trend without
bursts, while volatility spillovers have bursts but no trends.

Wu et al. (2011) studied volatility spillovers from crude oil prices to corn
spot and future prices, and found out the time-varying impacts from the
energy market to corn market were strengthened after 2005. The impacts
are also stronger when the ratio in ethanol and gasoline consumptions ex-
ceeds a certain threshold. They also devised a cross-hedging strategy that
uses oil market to hedge against risks in the corn markets, but found out
the improvement is marginal compared to the traditional hedging strategy
using corn markets alone.

All the current researches uses multivariate GARCH or Stochastic Volatil-
ity based methods to study the spillover effects. Thus, my current research
of using a multi-security MDH framework will contribute to the volatility
spillover literature by providing a new perspective.
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Chapter 9

ETF Data Estimation
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In this chapter, I will show the descriptive statistics of the ETF data I
used, as well as showing the estimation results.

9.1 Data Description

Table 9.1: Return Descriptive Statistics of ETF Data Used

AGG EFA GLD IJH IJR SPY VWO
Mean 0.01 0.04 -0.04 0.07 0.07 0.07 0.02

Std.Dev 0.19 0.93 1.11 0.87 0.95 0.74 1.13
Skewness -0.46 -0.20 -0.99 -0.41 -0.22 -0.24 0.02
Kurtosis 2.54 1.10 8.42 1.11 0.47 1.19 0.88

Maximum 0.84 3.54 4.26 2.85 2.98 2.53 4.54
Minimum -1.10 -3.74 -9.19 -3.39 -3.47 -2.55 -4.44

p-Value 0.05 0.04 0.76 0.02 0.15 0.50 0.10
The daily observations on returns and volumes of the 7 ETFs cover the
period between Jan 1, 2012 and Dec 31, 2014, with 754 observations in
total for each ETF. Returns are calculated as the natural logarithms of
two consecutive close prices, which have been adjusted for stock splits
and dividends by the data source, Yahoo Finance. The p-Value lines
report the p-Values of Ljung-Box tests with 30 lags. 3 of 7 ETF have
p-Values smaller than 0.1.

Table 9.1 shows some descriptive statistics of the 7 ETFs’ returns. The
statistics are qualitatively close to those of individual stocks. That is, the
mean returns are close to zero, while the standard deviations of returns are
relatively large. All return series have excessive kurtosis, and 3 out of 7
have the p-value for Ljung-Box test smaller than 0.1. The autocorrelation
functions are also plotted in Figure 9.1, which shows that absolute and
squared returns tend to have higher levels of autocorrelation than return
series.

Figure 9.2 shows the histograms of the 7 ETF’s return series. We can
see that compared to normal distributions, the “bell shapes” of the returns
series are thinner and taller, which is similar to the cases of individual
stocks.

Table 9.2 shows the descriptive statistics of the ETF’s de-trended trad-
ing volumes. The de-trending method is first calculating two-year moving
averages as trend values of trading volumes, then dividing the raw trading
volumes to their trend values. The detrending process causes the mean
trading volumes to be close to 1, as shown in Table 9.2. The standard
deviations of trading volumes are much smaller compared to return series.
Since trading volumes are positive, it should be non-surprising to see their
skewness are all positive. The p-value of the Ljung-Box tests for zero auto-
correlation for lags from 1 to 30 are all zero, contradicting to the case of

145



●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.1

0.0

0.1

0 5 10 15 20 25 30

AGG

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.05

0.00

0.05

0.10

0 5 10 15 20 25 30

EFA

●

● ●

●

●

●

●

● ●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0 5 10 15 20 25 30

GLD

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

−0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25 30

IJH

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

−0.10

−0.05

0.00

0.05

0.10

0 5 10 15 20 25 30

IJR

●
●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

−0.10

−0.05

0.00

0.05

0.10

0 5 10 15 20 25 30

SPY

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

−0.1

0.0

0.1

0 5 10 15 20 25 30

VWO

Return Absolute Return Squared Return

Figure 9.1: The Autocorrelation Functions of ETFs’ Returns, Absolute Returns
and Squared Returns
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returns. The last line gives the correlation between trading volumes and
squared returns, supporting the mixture distribution hypothesis.

Table 9.2: Volume Descriptive Statistics of ETF Data Used

AGG EFA GLD IJH IJR SPY VWO
Mean 0.96 0.96 0.96 1.00 0.96 0.94 0.98

Std.Dev 0.54 0.33 0.60 1.99 0.50 0.34 0.43
Skewness 2.02 1.44 5.63 7.46 1.69 1.67 1.97
Kurtosis 6.12 3.53 62.19 63.93 4.35 4.88 7.38

Maximum 4.40 2.72 9.47 25.17 4.00 3.29 4.24
Minimum 0.21 0.35 0.23 0.19 0.26 0.37 0.19

p-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cor. 0.10 0.38 0.74 0.21 0.16 0.51 0.41

The first six lines of the table has self-explanatory line names. Lines
with name p-Value give the p-Values of Ljung-Box tests for no au-
tocorrelation. The lines with name Cor. give the correlation coef-
ficients between squared returns and de-trended volumes. The raw
volume data is downloaded from Yahoo Finance, which is then fed
to a de-trending procedure. Specifically, the de-trending procedure
first finds two-year centered moving averages as trend values, then
de-trend the raw volumes by taking the ratios between raw volumes
and corresponding trend values.

Figure 9.3 plots the autocorrelation functions of detrended trading vol-
umes, showing that detrended trading volumes show high levels of autocor-
relation. Figure 9.4 plots the histograms of logarithmic detrended trading
volumes. The distribution of detrended trading volumes are actually close
to logarithmic normals, except for the case of IJH (Blackrock’s ETF track-
ing the mid-cap stock index S&P 400).

9.2 Estimation Results

Tables 9.3 and 9.4 show present the estimation results from applying the
multi-security mixture distribution hypothesis to ETF data, with 9.3 focus-
ing on the conditional distribution parameters and 9.4 on the information
process parameters. Using the parameter estimates in these two tables, I
calculated the unconditional means and variances of returns and detrended
trading volumes, which are shown in Table 9.5. Table 9.5 does not contain
AGG and GLD, because the model containing these two and SPY has
complex eigenvalues for B̂. And my method of computing unconditional
moments cannot be applied.

Since we are most interested in identifying the spillover effects among
information arrival processes, let us move on to examining the estimates for
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Figure 9.3: The Autocorrelation Functions of ETFs’ Detrended Trading Volumes
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Figure 9.4: The Histograms of ETFs’ Logarithmic Detrended Trading Volumes

entries in B̂ and V̂ . We expect the off-diagonal entries of both B̂ and V̂ to
be non-negative, which is largely confirmed by Table 9.4. There are three
negative off-diagonal entries of B̂, i.e. B̂12 and B̂32 in Column 2, and B̂21

in Column 4, with only the last one being statistically significant, though
its magnitude is still small (-0.074). The off-diagonal entries of V̂ are all
positive.
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Table 9.3: Estimation Results Using ETF Data

Asset 1 AGG EFA IJH
Asset 2 GLD SPY IJR
Asset 3 SPY VWO SPY

µ11 0.012 0.044 0.071
(0.012) (0.035) (0.035)

µ12 1.188 1.054 0.975
(0.009) (0.007) (0.007)

µ21 -0.042 0.084 0.081
(0.037) (0.028) (0.038)

µ22 1.032 1.074 1.056
(0.007) (0.007) (0.008)

µ31 0.087 0.018 0.087
(0.029) (0.043) (0.029)

µ32 1.111 1.062 1.113
(0.007) (0.007) (0.007)

Σ1,11 0.073 0.85 0.967
(0.003) (0.044) (0.05)

Σ1,12 0 -0.021 0.018
(0.002) (0.005) (0.007)

Σ1,22 0.051 0.028 0.039
(0.002) (0.001) (0.002)

Σ2,11 0.953 0.53 0.996
(0.049) (0.027) (0.051)

Σ2,12 -0.03 -0.024 -0.014
(0.006) (0.004) (0.007)

Σ2,22 0.036 0.026 0.044
(0.002) (0.001) (0.002)

Σ3,11 0.55 1.278 0.552
(0.028) (0.066) (0.028)

Σ3,12 -0.028 -0.005 -0.028
(0.004) (0.007) (0.004)

Σ3,22 0.027 0.034 0.028
(0.001) (0.002) (0.001)

The significantly positive off-diagonal entries of B̂ include B̂13, B̂21,
B̂31 in Column 1, B̂12, B̂13, B̂32 in Column 2, and B̂13 and B̂23 in Column
3. These significant estimates indicate that spillover effects in the form of
cross-security historical dependency does exist among ETFs. Furthermore,
similar to the case of stocks in which we observed asymmetric spillover
effects, the spillover effects among ETFs are also asymmetric. Take the
model of IJH (mid-cap stocks), IJR (small-cap stocks) and SPY (large-
cap stocks) for an example, though SPY has significant spillover effects
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Table 9.4: Estimation Results Using ETF Data

Asset 1 AGG EFA IJH
Asset 2 GLD SPY IJR
Asset 3 SPY VWO SPY

B11 0.567 0.278 0.27
(0.032) (0.045) (0.039)

B12 -0.065 0.268 0.106
(0.039) (0.041) (0.058)

B13 0.318 0.097 0.516
(0.052) (0.034) (0.08)

B21 0.096 0.02 -0.074
(0.03) (0.044) (0.022)

B22 0.486 0.683 0.557
(0.037) (0.041) (0.033)

B23 0.033 0.057 0.325
(0.049) (0.033) (0.046)

B31 0.088 0.067 0.007
(0.019) (0.052) (0.016)

B32 -0.02 0.17 0.035
(0.024) (0.048) (0.024)

B33 0.712 0.499 0.747
(0.032) (0.039) (0.032)

V11 0.17 0.065 0.37
(0.009) (0.003) (0.019)

V12 0.045 0.034 0.066
(0.006) (0.003) (0.008)

V13 0.021 0.034 0.053
(0.004) (0.003) (0.005)

V22 0.153 0.061 0.121
(0.008) (0.003) (0.006)

V23 0.048 0.036 0.027
(0.004) (0.003) (0.003)

V33 0.059 0.088 0.056
(0.003) (0.004) (0.003)
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Table 9.5: The Moments of ETFs’ Returns and Detrended Traindg Volumes
Calculated from Parameter Estimates

EFA VWO IJH IJR SPY
E(rt) 0.05 0.02 0.09 0.09 0.10
E(Vt) 1.10 1.15 1.20 1.15 1.26
Var(rt) 0.88 1.39 1.19 1.09 0.63
Cov(rt, Vt) -0.02 -0.00 0.07 0.00 0.00
Var(Vt) 0.13 0.27 0.77 0.29 0.48

on IJH (B̂13 = 0.516), the effect does not exist in the reverse direction

(B̂31 = 0.007). This is aligned with my finding in Chapter 5 that assets
with large market capitalizations tend to impact more those with smaller
ones.

The off-diagonal entries of V̂ strongly support the existence of spillover
effects in the form of contemporary correlation in shocks. Estimates for all
such parameters are significantly positive. In Table 9.6 I have calculated
the contemporary correlations, which are of both statistical and practical
significance.

Therefore, we can conclude that the existence of spillover effects among
ETFs are supported by empirical evidence. Spillover effects in the form
of contemporary correlations in shocks widely exist among all models I
estimated, while cross-security historical dependency only exists between
certain ETFs, and such dependency is asymmetric that assets with large
market capitalizations tend to give more impacts on smaller ones.

Table 9.6: Contemporaneous Correlations between Shocks to Information Pro-
cesses

AGG & GLD AGG & SPY GLD & SPY EFA & SPY EFA & VWO
0.278 0.214 0.507 0.532 0.454
(0.034) (0.034) (0.026) (0.024) (0.028)
SPY & VWO IJH & IJR IJH & SPY IJR & SPY
0.487 0.311 0.367 0.332
(0.026) (0.033) (0.03) (0.031)
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Chapter 10

Conclusion

152



In the second part of my dissertation, I applied the Multi-security Mix-
ture Distribution framework developed in the first part to studying the
spillover effects in information arrivals among different market indexes. I
took three perspectives, i.e. spillovers among large-cap, mid-cap and small-
caps stocks, spillovers among US, other developed countries’ and develop-
ing countries’ markets, and spillovers among stock, bond and gold markets.
Due to the difficulty in defining trading volumes for market indexes, I used
ETFs to proxy the corresponding market indexes.

The empirical results support the existence of spillover effects among
studied markets in both forms. For spillovers in the form of cross-security
historical dependency in information arrivals, large-cap stocks exhibit strong
spillovers to mid-cap and small-cap stocks, but is not affected much by the
two latter markets. The US market exhibits strong spillovers to other devel-
oped and developing countries’ markets, and again the latter two markets’
spillover effects are not as strong. And lastly, the US stock market spills
over heavily to the bond market, the bond market spills over slightly to
both the stock and gold market, and the gold market does not exhibit
spillover effects to either of the other two markets.

For spillover effects in the form of contemporaneous correlations in
shocks to information arrival processes, all studied models show strong
evidence supporting this type of spillovers.
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